

# 2024 ANNUAL GROUNDWATER MONITORING REPORT

Plant Arkwright Ash Pond 1 (AP-1) Landfill Macon, Georgia

July 31, 2024

### Prepared for:



Prepared by: Stantec Consulting Services Inc. 10745 Westside Way, Suite 250 Alpharetta, Georgia 30009-7640

# 2024 Annual Groundwater Monitoring Report Plant Arkwright Ash Pond 1 Landfill

### **CERTIFICATION STATEMENT**

This 2024 Annual Groundwater Monitoring Report, Plant Arkwright, Ash Pond 1 Landfill has been prepared in compliance with the Interim Groundwater Monitoring Plan submitted to the Georgia Environmental Protection Division on September 24, 2021. Plant Arkwright AP-1 Landfill closed according to Solid Waste Management Tracking Number 011-030D(LI) since July 30, 2010. This report has been prepared by a qualified groundwater scientist or engineer with Stantec Consulting Services, Inc. I hereby certify that I am a qualified groundwater scientist, in accordance with the Georgia Rules of Solid Waste Management 391-3-4-.01.

Jennifer Kolbe, Ph.D., P.E. Principal

SEORGIA RESIDENCE DE PROFESSION

7/31/2024

Date

Katie Ross, P.G.

Senior Principal

<u>7/31/2024</u> Date

# **Table of Contents**

| EXECU <sup>-</sup>                                                        | TIVE SUMMARY                                                                                                                                                                                                                                                                                            | II.               |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| ACRON                                                                     | YMS / ABBREVIATIONS                                                                                                                                                                                                                                                                                     | Ш                 |
| 1.0<br>1.1<br>1.2<br>1.2.1<br>1.2.2<br>1.3                                | INTRODUCTION                                                                                                                                                                                                                                                                                            | . 1<br>. 2<br>. 2 |
| <b>2.0</b><br>2.1<br>2.2                                                  | GROUNDWATER MONITORING ACTIVITIES  Well and Piezometer Maintenance  Surface Water Sampling.                                                                                                                                                                                                             | . 4               |
| 3.0<br>3.1<br>3.2<br>3.3<br>3.4<br>3.5<br>3.6                             | SAMPLE METHODOLOGY & ANALYSES Groundwater Elevation Measurements and Flow Direction Groundwater Gradient and Flow Velocity Groundwater Sampling Surface Water Sampling Laboratory Analyses Quality Assurance & Quality Control                                                                          | . 5<br>. 6<br>. 6 |
| 4.0                                                                       | GROUNDWATER AND SURFACE WATER RESULTS                                                                                                                                                                                                                                                                   | .8                |
| 5.0                                                                       | MONITORING PROGRAM STATUS                                                                                                                                                                                                                                                                               | .9                |
| 6.0                                                                       | CONCLUSIONS & FUTURE ACTIONS                                                                                                                                                                                                                                                                            | 10                |
| 7.0                                                                       | REFERENCES                                                                                                                                                                                                                                                                                              | 11                |
| LIST OF<br>Table 1<br>Table 2<br>Table 3<br>Table 4<br>Table 5<br>Table 6 | Summary of Piezometer Construction Groundwater Sampling Event Summary Summary of Groundwater Elevations Groundwater Flow Velocity Calculations Analytical Data Summary – Groundwater, June 2023, October 2023, and January 2024 Analytical Data Summary – Surface Water, October 2023, and January 2024 |                   |
| <b>LIST OF</b><br>Figure 1<br>Figure 2<br>Figure 3<br>Figure 4            | FIGURES Site Location Map Piezometer and Surface Water Sample Locations Map Potentiometric Surface Contour Map, Ash Pond 1 Landfill – October 9, 2023 Potentiometric Surface Contour Map, Ash Pond 1 Landfill – January 22, 2024                                                                        |                   |
|                                                                           | APPENDICES  A Well Inspections                                                                                                                                                                                                                                                                          |                   |

Appendix B Field Sampling Data and Analytical Data Reports

- Field Sampling Data B.1
- B.2 Calibration Data
- Groundwater & Surface Water Laboratory Analytical Reports B.3
- Data Quality Evaluation B.4



# **Executive Summary**

This summary of the *2024 Annual Groundwater Monitoring Report* provides the status of the groundwater monitoring program from July 2023 through June 2024 at the Georgia Power Company (Georgia Power)

former Plant Arkwright Ash Pond 1 (AP-1) Landfill. This summary was prepared by Stantec Consulting Services Inc. (Stantec) on behalf of Georgia Power.

Plant Arkwright is located in Bibb County, Georgia, approximately 6 miles northwest of the city of Macon. The plant address is 5241 Arkwright Road, Macon, Georgia 31210. The 31-acre AP-1 Landfill is located south of the former plant area and is bordered by the Ocmulgee River, Beaverdam Creek, and a Norfolk Southern Railroad line. When in operation, the coal-fired Plant Arkwright power plant consisted of four 40-megawatt units. In the years before retirement, the plant was used primarily to provide peaking power and operated approximately 40 to 60 days per year. Plant Arkwright was retired in 2002 and decommissioned in 2003. The AP-1 Landfill received a closure certificate on July 30, 2010, under Solid Waste Permit Number 011-030D(LI). AP-1 Landfill is currently in post-closure care.

A coal combustion residuals (CCR) unit solid waste handling permit application, dated November 2018, was submitted to the Georgia Environmental Protection Division (GA EPD) pursuant to the requirements of Georgia Administrative Code Rule 391-3-4-.10. Per the 2018 permit submittal, Georgia Power has elected to remove CCR material from AP-1 Landfill and place it in a lined landfill. The Groundwater Monitoring Plan, Revision 1, is a minor modification



Plant Arkwright Ash Pond 1 Landfill

to Solid Waste Permit Number 011-030D(LI) and an interim plan, as requested by GA EPD on March 23, 2021, to be used until the new CCR unit solid waste handling permit is issued and a permanent groundwater monitoring system is established for AP-1 Landfill. Monitoring and reporting utilizing the existing interim groundwater monitoring network will be conducted on a semi-annual basis in accordance with the Groundwater Monitoring Plan until CCR removal activities require the interim piezometers to be abandoned. Groundwater monitoring at AP-1 Landfill has been initiated in order to meet GA EPD requirements. A minor modification was submitted to GA EPD on June 15, 2023, for the abandonment of AP1PZ-6 and removal of AP1PZ-6 from the groundwater monitoring system in support of initial construction. AP1PZ-6 was abandoned on June 21, 2023.

During the 2023-2024 annual reporting period, Stantec conducted two semi-annual groundwater sampling events in October 2023 and January 2024. Piezometer AP1PZ-6 was sampled in June 2023 prior to its abandonment. Samples were analyzed for the full suites of Appendix III and Appendix IV constituents listed in Title 40, Code of Federal Regulations, Part 257.

Georgia Power will continue semi-annual groundwater monitoring and reporting at the AP-1 Landfill. Reports will be provided to GA EPD semi-annually.



# **Acronyms / Abbreviations**

40 CFR Title 40 Code of Federal Regulations

AP-1 Ash Pond 1

CCR Coal Combustion Residuals
District Washington Slope District

DO Dissolved Oxygen

GA EPD Georgia Environmental Protection Division

GEL Laboratories LLC
Georgia Power Georgia Power Company

mg/L Milligrams per Liter

NAVD88 North American Vertical Datum of 1988

NELAP National Environmental Laboratory Accreditation Program

NTU Nephelometric Turbidity Units
ORP Oxidation-Reduction Potential
Pace Pace Analytical Services, LLC

PWR Partially Weathered Rock

QA/QC Quality Assurance/Quality Control

Site Former Plant Arkwright Ash Pond 1 Landfill Site

Stantec Stantec Consulting Services, Inc.

US EPA United States Environmental Protection Agency

## 1.0 Introduction

This 2024 Annual Groundwater Monitoring Report has been prepared to document groundwater monitoring activities conducted at the Georgia Power Company (Georgia Power) former Plant Arkwright Ash Pond-1 (AP-1) Landfill Site (Site).

Groundwater monitoring and reporting for Plant Arkwright AP-1 Landfill are performed in accordance with the Interim Groundwater Monitoring Plan, Revision 1 (Jacobs, 2021), submitted to Georgia Environmental Protection Division (GA EPD) on September 24, 2021. This interim plan is a minor modification to Solid Waste Permit Number 011-030D(LI), as requested by GA EPD on March 23, 2021. Per the 2018 Georgia Power Company (CCR) permit submittal, Georgia Power has elected to remove CCR material from AP-1 Landfill and place it in a lined landfill. Groundwater monitoring at the Site will be conducted in accordance with this Interim Groundwater Monitoring Plan until the new CCR unit solid waste handling permit is issued, and a permanent groundwater monitoring network is established for AP-1 Landfill. This 2024 annual report documents the activities completed between July 2023 and June 2024. Two groundwater monitoring events were conducted during this monitoring period in October 2023 and January 2024. Additionally, piezometer AP1PZ-6 was sampled in June 2023, prior to abandonment due to construction, and the results are included in this report.

## 1.1 Site Description and Background

Plant Arkwright is located in Bibb County, Georgia, approximately 6 miles northwest of the city of Macon (Figure 1). The physical address of the plant is 5241 Arkwright Road, Macon, Georgia 31210. The 31-acre AP-1 Landfill is located south of the former plant area and is bordered by the Ocmulgee River, Beaverdam Creek, and a Norfolk Southern Railroad line (Figure 2). When in operation, the coal-fired Plant Arkwright power plant consisted of four 40-megawatt units. In the years before retirement, the plant was used primarily to provide peaking power and operated approximately 40 to 60 days per year. Plant Arkwright was retired in 2002 and decommissioned in 2003.

AP-1 Landfill was constructed prior to 1958 and was closed with 2 feet of soil cover and vegetation in 1990. Regrading and stabilization of the riverbank and creek bank occurred in two phases in 2004 and 2007. Additionally, the slopes and top of AP-1 Landfill were regraded by relocating CCR and placing additional cover soil (Jacobs, 2018).

AP-1 Landfill received a closure certificate on July 30, 2010, under Solid Waste Permit Number 011-030D(LI) and is currently in post-closure care. Because the unit ceased receiving waste prior to October 19, 2015, the AP-1 Landfill is exempt from the 2015 requirements in Title 40 Code of Federal Regulations (40 CFR) Part 257 Subpart D – Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments, as specified in 40 CFR §257.50 (d) and (e). As such, a CCR unit solid waste handling permit application package for the AP-1 Landfill was submitted to GA EPD in November 2018 and is currently under review. To continue stabilization and streambank improvement of the AP-1 Landfill slope and to reduce the steepness of the slope along the south point of the AP-1 Landfill, the south point was excavated and regraded in late 2023 under GA EPD's approval of a minor modification. CCR materials were removed and transported to a CCR Stockpile within the Landfill footprint. The CCR Stockpile as well as the south point after CCR removal was subsequently graded and covered with



# 2024 Annual Groundwater Monitoring Report Plant Arkwright Ash Pond 1 Landfill 1.0 Introduction

suitable material in accordance with permit requirements. Activities were documented in the AP-1 South Point Slope Improvement CCR Removal and Cover Certification Report, which was submitted to GA EPD on April 26, 2024.

## 1.2 Regional Geology & Hydrogeologic Setting

The geology and hydrogeology of the Plant Arkwright Site are summarized below. The Plant Arkwright Site is located along the southern edge of the Washington Slope District (the District) within the Piedmont Physiographic Province (Clark and Zisa, 1976). The District is characterized by a gently undulating surface, which generally slopes to the south and southeast toward the Coastal Plain Physiographic Province located approximately 3.8 miles to the southeast of the Site.

Topography of the District ranges from approximately 700 feet above mean sea level in the areas of southern Atlanta and Athens to approximately 500 feet above mean sea level at its southern limit along the Georgia Fall Line. Streams follow the surface topography of the underlying crystalline rocks eastward toward the Ocmulgee River. Typically, relief throughout the District ranges between 50 and 100 feet. However, the greatest relief occurs along the Ocmulgee River where the elevation changes from 150 to 200 feet due to steep walled valleys (Clark and Zisa, 1976). Ultimately, the area surface water flow is directed toward the Ocmulgee River.

Bedrock in the region is composed of moderate to high-grade metamorphic rocks, consisting of biotite-granite gneiss, schist, and amphibolite, and igneous rocks like granite. In the southernmost Piedmont, around the Site, bedrock is predominantly composed of biotite gneiss. Major geologic structures in the region include the Ocmulgee fault, located approximately 7 miles northwest of the Site, which strikes mostly northeast – southwest. The top of bedrock surface is highly weathered and, where exposed, is generally soft and friable (LeGrand, 1962).

# 1.2.1 Site Geology

The general geology beneath Plant Arkwright consists of clays, silty and sandy clays, silty sands, sandy silts, and minor gravel at depth, underlain by a silty sand saprolite and bedrock. Historical borings advanced at the Site indicate overburden thickness ranging from 22 to 62 feet, overlying a thin layer (5 to 10 feet) of partially weathered rock (PWR) above a more competent bedrock. The underlying bedrock consists of quartzofeldspathic gneiss, hornblende gneiss, and schist (Jacobs, 2021).

# 1.2.2 Site Hydrogeology

The uppermost aquifer at the Site consists of two hydrostratigraphic units: the water table (overburden) hydrostratigraphic unit and the underlying shallow fractured bedrock hydrostratigraphic unit. The water table (overburden) unit is composed of unconsolidated silty sands and sandy silts with clays and variable thicknesses of PWR mantling the bedrock surface, whereas the bedrock unit is a zone comprised of weathered and fractured bedrock.

The water table unit is hydraulically connected to the underlying bedrock through fractures in the partially weathered and fractured bedrock (Southern Company Services, 2005) and is considered to be under



# 2024 Annual Groundwater Monitoring Report Plant Arkwright Ash Pond 1 Landfill 1.0 Introduction

unconfined conditions. The interim piezometers were installed to evaluate the uppermost occurrence of groundwater at the Site and form the groundwater monitoring system for AP-1 Landfill (Figure 2).

Slug testing data from the Site reflects a range of hydraulic conductivities from 10<sup>-6</sup> to 10<sup>-3</sup> centimeters per second in the water table (overburden) hydrostratigraphic unit (Jacobs, 2021). Groundwater level gauging data from the Site show stable water level trends, and the potentiometric surface maps depict groundwater flowing to the east, southeast, and northeast, in the direction of the Ocmulgee River and Beaverdam Creek (Figures 3 and 4).

## 1.3 Groundwater Monitoring System

Georgia Power installed a temporary groundwater monitoring system within the uppermost aquifer at the Site. Wells and piezometers were located to serve as upgradient or downgradient monitoring points based on the groundwater flow direction (Table 1). The well and piezometer locations are depicted in Figure 2. Due to access constraints and safety concerns, downgradient piezometers at AP-1 Landfill were installed through CCR and will be removed during the closure by removal of the unit. A permanent groundwater monitoring system will be established following closure as noted in the 2018 CCR permit application.



# 2.0 Groundwater Monitoring Activities

The following describes monitoring-related activities performed between July 2023 and June 2024. Samples were collected from each of the wells and piezometers in the monitoring network depicted in Figure 2. In accordance with 40 CFR § 257.93, Table 2 presents a summary of the groundwater sampling events completed for AP-1 Landfill during this monitoring period.

Piezometer AP1PZ-6 was abandoned in June of 2023 due to construction activities involving ash removal on the southern tip of the landfill, and groundwater sampling for the Fall of 2023 was completed for piezometer AP1PZ-6 on June 13, 2023, prior to the abandonment. The remaining AP-1 Landfill piezometers were sampled in October 2023 and January 2024.

### 2.1 Well and Piezometer Maintenance

Wells and piezometers are inspected semi-annually to determine if repairs or corrective actions are necessary to meet the requirements of the Georgia Water Well Standards Act (O.C.G.A. § 12-5-134(5)(d)(vii)). Well inspection forms are included in Appendix A. In October 2023 and January 2024, the piezometers were inspected. There was no need for corrective actions for the wells at AP-1 Landfill during this reporting period.

### 2.2 Surface Water Sampling

Due to the close proximity of Beaverdam Creek and the Ocmulgee River in the downgradient direction, Georgia Power proactively collected surface water samples. Surface water samples were collected from four locations along the Ocmulgee River and two locations along Beaverdam Creek in October 2023 and January 2024, as depicted in Figure 2.

Surface water samples were analyzed for the full suites of 40 CFR Part 257 Appendix III and Appendix IV constituents. Surface water samples were also submitted for analysis of total alkalinity, bicarbonate alkalinity, magnesium, potassium, and sodium.

The laboratory reports associated with the October 2023 and January 2024 sampling events are provided in Appendix B. Georgia Power will continue collecting the surface water samples semi-annually during interim groundwater monitoring.



# 3.0 Sample Methodology & Analyses

The semi-annual groundwater sampling events completed in June 2023 (AP1PZ-6 only), October 2023, and January 2024 for AP-1 Landfill includes sampling for the constituents listed in 40 CFR Part 257 Appendix III and Appendix IV. Groundwater analytical data and chain-of-custody records are located in Appendix B. The following sections describe methods used to conduct groundwater monitoring activities at AP-1.

### 3.1 Groundwater Elevation Measurements and Flow Direction

Prior to each sampling event, the static groundwater levels were measured in each well and piezometer at AP-1 Landfill. The water level indicator was properly decontaminated between each measurement. Groundwater elevations are summarized in Table 3. The recorded groundwater levels were used to determine the groundwater elevations in each piezometer and develop potentiometric surface contour maps (Figures 3 and 4). Review of the figures indicates that the apparent groundwater flow direction in the uppermost aquifer is to the east, southeast, and northeast, in the direction of the Ocmulgee River and Beaverdam Creek. This groundwater flow pattern is generally consistent with historical groundwater flow patterns.

## 3.2 Groundwater Gradient and Flow Velocity

The groundwater flow velocity at AP-1 Landfill was calculated using a derivation of Darcy's Law. Specifically,

$$V = \frac{K * i}{n_e}$$

Where:

V = Groundwater flow velocity  $\left(\frac{feet}{day}\right)$ 

 $K = \text{Average hydraulic conductivity of the aquifer } \left(\frac{feet}{day}\right)$ 

i = Horizontal hydraulic gradient  $\left(\frac{feet}{foot}\right)$ 

 $n_{\circ} =$  Effective porosity (unitless)

The general groundwater flow velocities were calculated for AP-1 Landfill based on hydraulic gradients, average hydraulic conductivity based on previous slug test data, and an estimated effective porosity of 0.20 for silty sand (based on a review of several sources, including Driscoll, 1986; US EPA, 1989; Freeze and Cherry 1979). The general groundwater flow velocity values based on October 9, 2023, and January 22, 2024, are presented in Table 4. The results for groundwater flow velocities ranged from 0.0040 to 0.0053 feet/day in the southern portion of the Site to 0.12 feet/day in the northeastern portion of the Site (1.5 to 1.9 and 43 to 45 feet/year, respectively) on October 9, 2023, and January 22, 2024. The observed groundwater flow velocities calculated for these monitoring events are generally consistent with expected velocities in the regolith-upper bedrock aquifers of the Georgia Piedmont.



### 3.3 Groundwater Sampling

Groundwater samples were collected in June 2023 (AP1PZ-6 only), October 2023, and January 2024. Sampling procedures were conducted in accordance with U.S. Environmental Protection Agency (US EPA) Region 4 Laboratory Services and Applied Science Division Operating Procedures for Groundwater Sampling (LSASDPROC-301-R6, April 22, 2023). Wells and piezometers were purged and sampled using low-flow sampling procedures. Dedicated or non-dedicated low-flow pneumatic bladder or peristaltic pumps were used to purge and sample the wells. An In-Situ Aqua TROLL® 400 field instrument was used to monitor and record field water quality parameters (pH, conductivity, dissolved oxygen [DO], temperature, and oxidation-reduction potential [ORP]), and a Hach 2100Q was used to measure turbidity during well purging to verify stabilization prior to sampling.

Groundwater samples were collected when the following stabilization criteria were met for consecutive readings measured at 5-minute intervals:

- pH ± 0.1 Standard Units
- Specific conductance ± 5 %
- $\pm$  10% for DO where DO > 0.5 milligrams per liter (mg/L). No criterion applies if DO < 0.5 mg/L
- Turbidity measurements less than five Nephelometric Turbidity Units (NTU)
- Temperature Record only, not used for stabilization criteria
- ORP Record only, not used for stabilization criteria

Once stabilization was achieved, samples were collected into appropriately preserved laboratory-supplied sample containers. Sample bottles were placed in ice-packed coolers and submitted to GEL Laboratories LLC (GEL) in Charleston, South Carolina, following chain-of-custody protocols. Stabilization logs and Equipment Calibration forms are included in Appendix B.

# 3.4 Surface Water Sampling

Surface water samples were collected in accordance with US EPA Region 4 *Laboratory Services and Applied Science Division Operating Procedures for Surface Water Sampling* (LSASDPROC-201-R6, April 22, 2023).

Surface water samples were analyzed for the full suites of 40 CFR Part 257 Appendix III and Appendix IV constituents. Surface water samples were also submitted for analysis of total alkalinity, bicarbonate alkalinity, magnesium, potassium, and sodium.

Sample bottles were placed in ice-packed coolers and submitted to Pace Analytical Services, LLC (Pace) of Peachtree Corners, Georgia following chain-of-custody protocol.

# 3.5 Laboratory Analyses

The groundwater samples were analyzed for 40 CFR Part 257 Appendix III and Appendix IV constituents. Laboratory analyses of the groundwater were performed by GEL, which is accredited by the National



### 2024 Annual Groundwater Monitoring Report Plant Arkwright Ash Pond 1 Landfill 3.0 Sample Methodology & Analyses

Environmental Laboratory Accreditation Program (NELAP) and maintains the NELAP accreditation for the constituents analyzed for this project. Table 5 summarizes the groundwater analytical results for June 2023 (AP1PZ-6 only), October 2023, and January 2024, and the corresponding formal analytical reports are in Appendix B.

The October 2023 and January 2024 surface water samples were also analyzed for 40 CFR Part 257 Appendix III and Appendix IV constituents. Laboratory analyses of the surface water samples were performed by Pace, which is also a NELAP accredited laboratory. Table 6 summarizes the surface water analytical results, and the corresponding formal analytical reports can be found in Appendix B.

## 3.6 Quality Assurance & Quality Control

During each sampling event, various quality assurance/quality control (QA/QC) samples were collected. Equipment blanks (where non-dedicated sampling equipment was used) were collected at a rate of one QA/QC sample per 10 groundwater samples to assess the adequacy of the decontamination process. Blind field duplicate samples were collected by filling additional containers at the same location during the sampling events at a rate of one QA/QC sample per 10 groundwater samples. Field blanks were also collected to evaluate ambient conditions at the sampling locations at a rate of one QA/QC sample per 10 groundwater samples.

QA/QC of the groundwater data were assessed by performing a data quality evaluation of the laboratory results reported. A data quality evaluation was conducted on the data using laboratory precision and accuracy, and analytical method requirements (US EPA, 2002). The data quality evaluations are included in Appendix B.

The analytical results provided in Tables 5 and 6 provide concentrations from the June 2023 (AP1PZ-6 only), October 2023, and January 2024 groundwater and surface water sampling events as reported by the laboratories. When values are followed by a" J" flag, this indicates that the value is an estimated analyte concentration detected between the method detection limit and the laboratory reporting limit. The estimated value is positively identified but is below the lowest level that can be reliably achieved within specified limits of precision and accuracy under routine laboratory operating conditions. Radium values followed by a "U" flag indicate that the constituent was not detected above the analytical minimum detectable concentration. The data are considered usable for meeting project objectives and the results are considered valid.



## 4.0 Groundwater and Surface Water Results

The analytical data for the 40 CFR Part 257 Appendix III and IV constituents for the June 2023 (AP1PZ-6 only), October 2023, and January 2024 groundwater monitoring events and for the October 2023 and January 2024 surface water sampling events, are summarized in Table 5 and Table 6, respectively. The complete laboratory and field data sheets are included in Appendix B.



# 5.0 Monitoring Program Status

The AP-1 Landfill is currently in post-closure care. Groundwater monitoring has been initiated at the request of GA EPD. Georgia Power will continue routine groundwater monitoring and reporting at the Site. Reports will be submitted to the GA EPD semi-annually.



## 6.0 Conclusions & Future Actions

This 2024 Annual Groundwater Monitoring Report was prepared to fulfill the requirements of the Interim Groundwater Monitoring Plan (Jacobs, 2021). Due to construction activities at the Site, groundwater sampling for the Fall of 2023 was completed for piezometer AP1PZ-6 on June 13, 2023, for the AP-1 Landfill. The remaining AP-1 Landfill piezometers, monitoring wells, and surface water sampling locations were sampled in October 2023 and January 2024. The next semi-annual sampling event is scheduled for July 2024. The July 2024 semi-annual monitoring event will include sampling and analysis of the full suites of 40 CFR Part 257 Appendix III and IV constituents.



## 7.0 References

- Clark, W.Z., and Zisa, A.C., 1976, Physiographic Map of Georgia: 1:2,000,000, Georgia Department of Natural Resources, Geologic and Water Resources Division, Atlanta, Georgia.
- Driscoll, F.G. 1986. Ground Water and Wells, 2<sup>nd</sup> Edition, Johnson Filtration Systems, Inc., St. Paul. Minnesota, 1089p.
- Freeze, R.A. and Cherry, JA. 1979, Groundwater, Prentice-Hall, Englewood Cliffs, New Jersey, 604 pp.
- Jacobs, 2018. Limited Hydrogeological Assessment Report for Inactive CCR Landfill Georgia Power Company Former Plant Arkwright AP1 Landfill, Macon, Bibb County, Georgia., November 2018.
- Jacobs, 2021. Groundwater Monitoring Plan, Revision 1 Georgia Power Company Former Plant Arkwright AP1 Landfill, Permit No. 011-030D(LI), Bibb County, Georgia., September 2021.
- LeGrand, H. E. 1962. Geology and Ground-water Resources of the Macon Area, Georgia. The Geological Survey Bulletin No. 72.
- Southern Company Services, Inc., 2005. Plant Arkwright Ash Ponds 2 and 3 and Ash Monofill Site Acceptability Report, Revision 1.
- Stantec (2023a). "Minor Modification AP-1: Update Groundwater Monitoring Plan." Prepared for Southern Company Services, June 2023.
- Stantec (2023b). "Minor Modification AP-1: South Point Slope Improvement." Prepared for Southern Company Services, June 2023.
- Stantec (2024) "AP-1 South Point Slope Improvement CCR Removal and Cover Certification Report" Prepared for Southern Company Services, April 2024.
- US EPA, 1989. US EPA 530/SW-89-031 Interim Final RCRA Investigation (RFI) Guidance, Volume I and II.
- US EPA, 2002. Data Validation Standard Operating Procedures and Quality Assurance Manual., November 2002
- US EPA, 2023, Laboratory Services and Applied Science Division Operating Procedures for Surface Water Sampling LSASDPROC-201-R6, April 22, 2023.
- US EPA, 2023, Laboratory Services and Applied Science Division Operating Procedures for Groundwater Sampling LSASDPROC-301-R6, April 22, 2023.

**(** 

# **TABLES**

# TABLE 1 SUMMARY OF PIEZOMETER CONSTRUCTION Georgia Power Company - Plant Arkwright AP-1 Landfill Macon, Georgia

| Well     | Installation<br>Date | Northing <sup>(1)</sup> | Easting <sup>(1)</sup> | Top of Casing<br>Elevation<br>(feet NAVD88) <sup>(2)</sup> | Ground Surface<br>Elevation<br>(feet NAVD88) <sup>(2)</sup> | Top of Screen<br>Elevation<br>(feet NAVD88) <sup>(3)</sup> | Bottom of Screen<br>Elevation<br>(feet NAVD88) <sup>(3)</sup> | Screen Length<br>(feet) | Groundwater Zone<br>Screened | Hydraulic<br>Location |
|----------|----------------------|-------------------------|------------------------|------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------|-------------------------|------------------------------|-----------------------|
| AP1GWA-1 | 4/20/2018            | 1066048.91              | 2439462.98             | 345.44                                                     | 342.28                                                      | 318.6                                                      | 308.6                                                         | 10.0                    | Overburden/<br>Bedrock       | Upgradient            |
| AP1GWA-2 | 4/20/2018            | 1065095.10              | 2439623.37             | 341.42                                                     | 338.55                                                      | 320.9                                                      | 310.9                                                         | 10.0                    | Overburden/<br>Bedrock       | Upgradient            |
| AP1PZ-1  | 5/1/2021             | 1062799.79              | 2440164.34             | 338.97                                                     | 335.92                                                      | 261.9                                                      | 251.9                                                         | 10.0                    | Overburden/<br>Bedrock       | Downgradient          |
| AP1PZ-2  | 5/2/2021             | 1062573.21              | 2440300.14             | 339.58                                                     | 336.64                                                      | 287.5                                                      | 277.5                                                         | 10.0                    | Bedrock                      | Downgradient          |
| AP1PZ-3  | 5/4/2021             | 1062286.28              | 2440387.36             | 338.57                                                     | 335.50                                                      | 281.7                                                      | 271.7                                                         | 10.0                    | Overburden/<br>Bedrock       | Downgradient          |
| AP1PZ-4  | 5/11/2021            | 1061989.86              | 2440520.65             | 338.36                                                     | 334.98                                                      | 281.4                                                      | 271.4                                                         | 10.0                    | Overburden                   | Downgradient          |
| AP1PZ-5  | 5/13/2021            | 1061645.61              | 2440599.18             | 339.81                                                     | 336.61                                                      | 283.1                                                      | 273.1                                                         | 10.0                    | Overburden                   | Downgradient          |
| AP1PZ-6* | 5/13/2021            | 1061273.40              | 2440714.78             | 347.56                                                     | 344.25                                                      | 285.4                                                      | 275.4                                                         | 10.0                    | Overburden/PWR               | Downgradient          |
| AP1PZ-7  | 5/15/2021            | 1061483.62              | 2440573.47             | 340.91                                                     | 337.56                                                      | 273.7                                                      | 263.7                                                         | 10.0                    | Overburden                   | Downgradient          |
| AP1PZ-8  | 5/16/2021            | 1061721.72              | 2440362.39             | 338.31                                                     | 334.94                                                      | 282.7                                                      | 272.7                                                         | 10.0                    | Overburden/PWR               | Downgradient          |
| AP1PZ-9  | 5/17/2021            | 1062083.33              | 2440187.59             | 337.62                                                     | 334.14                                                      | 291.4                                                      | 281.4                                                         | 10.0                    | Bedrock                      | Downgradient          |
| AP1PZ-10 | 5/19/2021            | 1062334.74              | 2440116.05             | 338.38                                                     | 335.07                                                      | 292.4                                                      | 282.4                                                         | 10.0                    | Bedrock                      | Downgradient          |
| AP1PZ-11 | 5/26/2021            | 1062615.94              | 2440044.48             | 338.98                                                     | 335.78                                                      | 276.2                                                      | 266.2                                                         | 10.0                    | Overburden                   | Downgradient          |

- 1. Horizontal locations were referenced to Georgia State Plane West, North American Datum of 1983 (NAD 83).
- 2. Elevations are feet referenced to North American Vertical Datum of 1988 (NAVD 88).
- 3. Screen elevations were calculated using total depth and length of bottom sump.
- 4. PWR indicates Partially Weathered Rock.
- 5. \* = Abandoned. AP1PZ-6 was abandoned on June 20 21, 2023.

# TABLE 2 GROUNDWATER SAMPLING EVENT SUMMARY Georgia Power Company - Plant Arkwright

# AP-1 Landfill Macon, Georgia

| Well ID      | Hydraulic              | Summary of<br>Sampling Event |                     |  |  |  |  |  |
|--------------|------------------------|------------------------------|---------------------|--|--|--|--|--|
| Woll ID      | Location               | October 9-11, 2023           | January 22-23, 2024 |  |  |  |  |  |
| Purpose of S | Sampling Event         | Mor                          | nitoring            |  |  |  |  |  |
| Al           | P-1 LANDFILL INTERIM N | IONITORING WELL NET          | WORK                |  |  |  |  |  |
| AP1GWA-1     | Upgradient             | Х                            | Χ                   |  |  |  |  |  |
| AP1GWA-2     | Upgradient             | Х                            | X                   |  |  |  |  |  |
| AP1PZ-1      | Downgradient           | Х                            | Х                   |  |  |  |  |  |
| AP1PZ-2      | Downgradient           | Х                            | Х                   |  |  |  |  |  |
| AP1PZ-3      | Downgradient           | X                            | Х                   |  |  |  |  |  |
| AP1PZ-4      | Downgradient           | Х                            | Х                   |  |  |  |  |  |
| AP1PZ-5      | Downgradient           | Х                            | X                   |  |  |  |  |  |
| AP1PZ-6*     | Downgradient           | X                            |                     |  |  |  |  |  |
| AP1PZ-7      | Downgradient           | X                            | Х                   |  |  |  |  |  |
| AP1PZ-8      | Downgradient           | X                            | X                   |  |  |  |  |  |
| AP1PZ-9      | Downgradient           | X                            | X                   |  |  |  |  |  |
| AP1PZ-10     | Downgradient           | X X                          |                     |  |  |  |  |  |
| AP1PZ-11     | Downgradient           | X X                          |                     |  |  |  |  |  |

X - Indicates well sampled during event

<sup>\*</sup> AP1PZ-6 was sampled on June 13, 2023 as part of the October 2023 event and abandoned on June 21, 2023.

# TABLE 3 SUMMARY OF GROUNDWATER ELEVATIONS Georgia Power Company - Plant Arkwright AP-1 Landfill Macon, Georgia

| Well ID          | Top of Casing Elevation<br>(feet NAVD88) <sup>(1)</sup> | Depth to Water<br>(feet below TOC) <sup>(2)</sup> | Groundwater Elevation<br>(feet NAVD88) <sup>(1)</sup> | Depth to Water<br>(feet below TOC) <sup>(2)</sup> | Groundwater Elevation<br>(feet NAVD88) <sup>(1)</sup> |
|------------------|---------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|
| Measurement Date |                                                         | 10/                                               | /9/2023                                               | 1/2                                               | 2/2024                                                |
| AP1GWA-1         | 345.44                                                  | 26.96                                             | 318.48                                                | 25.95                                             | 319.49                                                |
| AP1GWA-2         | 341.42                                                  | 19.67                                             | 321.75                                                | 18.19                                             | 323.23                                                |
| AP1PZ-1          | 338.97                                                  | 45.73                                             | 293.24                                                | 44.81                                             | 294.16                                                |
| AP1PZ-2          | 339.58                                                  | 43.04                                             | 296.54                                                | 43.01                                             | 296.57                                                |
| AP1PZ-3          | 338.57                                                  | 43.65                                             | 294.92                                                | 43.28                                             | 295.29                                                |
| AP1PZ-4          | 338.36                                                  | 48.02                                             | 290.34                                                | 46.52                                             | 291.84                                                |
| AP1PZ-5          | 339.81                                                  | 49.55                                             | 290.26                                                | 48.35                                             | 291.46                                                |
| AP1PZ-7          | 340.91                                                  | 50.93                                             | 289.98                                                | 50.08                                             | 290.83                                                |
| AP1PZ-8          | 338.31                                                  | 47.34                                             | 290.97                                                | 46.23                                             | 292.08                                                |
| AP1PZ-9          | 337.62                                                  | 42.14                                             | 295.48                                                | 42.12                                             | 295.50                                                |
| AP1PZ-10         | 338.38                                                  | 39.96                                             | 298.42                                                | 40.78                                             | 297.60                                                |
| AP1PZ-11         | 338.98                                                  | 41.23                                             | 297.75                                                | 40.42                                             | 298.56                                                |

- 1. Groundwater elevations are feet referenced to North American Vertical Datum of 1988 (NAVD88)
- 2. Groundwater elevations were measured as depth to water from the top of casing (TOC).

# TABLE 4 GROUNDWATER FLOW VELOCITY CALCULATIONS Georgia Power Company - Plant Arkwright

AP-1 Landfill Macon, Georgia

| Potentiometric<br>Map Date | Location               | in Wel<br>(h <sub>1</sub> , | r Elevations<br>I Pairs<br>h <sub>2</sub> )<br>et) | Change in<br>Elevation (Δh)<br>(feet) | Distance<br>Measured (L)<br>(feet) | Hydraulic<br>Gradient (i)<br>(feet/foot) | Average<br>Hydraulic<br>Conductivity (K)<br>(feet/day) | Estimated<br>Effective<br>Porosity (n <sub>e</sub> ) | Calculated<br>Groundwater<br>Flow Velocity (V)<br>(feet/day) | Calculated<br>Groundwater<br>Flow Velocity (V)<br>(feet/year) |
|----------------------------|------------------------|-----------------------------|----------------------------------------------------|---------------------------------------|------------------------------------|------------------------------------------|--------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|
| October 9, 2023            | AP1PZ-10 to<br>AP1PZ-5 | 298.42                      | 290.26                                             | 8.16                                  | 842                                | 0.010                                    | 0.11                                                   | 0.20                                                 | 0.0053                                                       | 1.9                                                           |
| October 9, 2023            | AP1PZ-11 to<br>AP1PZ-1 | 297.75                      | 293.24                                             | 4.51                                  | 222                                | 0.020                                    | 1.20                                                   | 0.20                                                 | 0.12                                                         | 45                                                            |
| January 22, 2024           | AP1PZ-10 to<br>AP1PZ-5 | 297.60                      | 291.46                                             | 6.14                                  | 842                                | 0.007                                    | 0.11                                                   | 0.20                                                 | 0.0040                                                       | 1.5                                                           |
| January 22, 2024           | AP1PZ-11 to<br>AP1PZ-1 | 298.56                      | 294.16                                             | 4.40                                  | 222                                | 0.020                                    | 1.20                                                   | 0.20                                                 | 0.12                                                         | 43                                                            |

- 1. The geometric mean of the in-situ hydraulic conductivity (K) slug test values for AP1PZ-10 and AP1PZ-5 used for AP1PZ-10 to AP1PZ-5 calculation; the slug test K value for AP1PZ-11 used for the AP1PZ-11 to AP1PZ-11 calculation.
- 2. Effective porosity of 20% was selected for the silty sands/sandy silts overburden based on a review of several sources, including Driscoll, 1986; US EPA, 1989; Freeze and Cherry, 1979.

# TABLE 5 ANALYTICAL DATA SUMMARY - GROUNDWATER, JUNE 2023, OCTOBER 2023 AND JANUARY 2024

### Georgia Power Company - Plant Arkwright

AP-1 Landfill

Macon, Georgia

|          |            |             |             |             |             |             | We          | ell ID      |             |             |             |             |             |
|----------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|          | Substance  | AP1GWA-1    | AP1GWA-1    | AP1GWA-2    | AP1GWA-2    | AP1PZ-1     | AP1PZ-1     | AP1PZ-2     | AP1PZ-2     | AP1PZ-3     | AP1PZ-3     | AP1PZ-4     | AP1PZ-4     |
|          |            | 10/9/2023   | 1/22/2024   | 10/9/2023   | 1/22/2024   | 10/9/2023   | 1/22/2024   | 10/9/2023   | 1/22/2024   | 10/10/2023  | 1/23/2024   | 10/10/2023  | 1/23/2024   |
|          | Boron      | 0.108       | 0.108       | 0.0734      | 0.0266      | 0.355       | 0.364       | 0.470       | 0.408       | 1.71        | 1.57        | 4.02        | 3.75        |
| =        | Calcium    | 19.3        | 16.5        | 6.91        | 5.47        | 33.2        | 31.6        | 205         | 183         | 434         | 426         | 418         | 399         |
|          | Chloride   | 1.77        | 1.75        | 1.81        | 1.90        | 3.13        | 2.13        | 2.98        | 2.99        | 4.77        | 4.79        | 5.59        | 4.64        |
|          | Fluoride   | 0.426       | 0.339       | 0.225       | 0.120       | 0.279       | 0.139       | 0.262       | 0.123       | < 0.165     | 0.139       | 0.565       | 0.235       |
| APPENDIX | Sulfate    | 58.3        | 46.0        | 2.17        | 3.36        | 105         | 102         | 801         | 625         | 1290        | 1310        | 1370        | 1310        |
| ₹        | TDS        | 139         | 139         | 52.0        | 56.0        | 211         | 235         | 1170        | 998         | 1830        | 1880        | 2030        | 2160        |
|          | pН         | 5.29        | 5.34        | 5.99        | 6.03        | 6.41        | 6.41        | 5.98        | 6.2         | 5.61        | 5.61        | 6.28        | 6.27        |
|          | Antimony   | < 0.00100   | < 0.00100   | < 0.00100   | < 0.00100   | < 0.00100   | < 0.00100   | < 0.00100   | < 0.00100   | < 0.00100   | < 0.00100   | < 0.00100   | < 0.00100   |
|          | Arsenic    | 0.00219 J   | < 0.00200   | 0.00255 J   | < 0.00200   | 0.00222 J   | < 0.00200   | < 0.00200   | < 0.00200   | < 0.00200   | < 0.00200   | 0.00302 J   | 0.00230 J   |
|          | Barium     | 0.0609      | 0.0551      | 0.0580      | 0.0382      | 0.0422      | 0.0359      | 0.0300      | 0.0242      | 0.0254      | 0.0226      | 0.0395      | 0.0326      |
|          | Beryllium  | 0.00187     | 0.00204     | < 0.000200  | < 0.000200  | < 0.000200  | < 0.000200  | < 0.000200  | < 0.000200  | < 0.000200  | < 0.000200  | < 0.000200  | < 0.000200  |
|          | Cadmium    | 0.000410 J  | 0.000354 J  | < 0.000300  | < 0.000300  | < 0.000300  | < 0.000300  | 0.000689 J  | 0.000374 J  | 0.00195     | 0.00200     | < 0.000300  | < 0.000300  |
| ⋛        | Chromium   | 0.00462 J   | 0.00447 J   | 0.00340 J   | 0.00561 J   | < 0.00300   | < 0.00300   | < 0.00300   | < 0.00300   | < 0.00300   | < 0.00300   | < 0.00300   | < 0.00300   |
| APPENDIX | Cobalt     | 0.00672     | 0.00650     | 0.0112      | 0.000388 J  | 0.000610 J  | 0.000480 J  | 0.169       | 0.110       | 0.0639      | 0.0600      | 0.000518 J  | 0.000674 J  |
| Ř        | Lead       | < 0.000500  | < 0.000500  | < 0.000500  | < 0.000500  | < 0.000500  | < 0.000500  | < 0.000500  | < 0.000500  | < 0.000500  | < 0.000500  | < 0.000500  | < 0.000500  |
| AP       | Lithium    | 0.00944 J   | 0.0101      | < 0.00300   | < 0.00300   | 0.00408 J   | 0.00421 J   | 0.0214      | 0.0189      | 0.0659      | 0.0677      | 0.00657 J   | 0.00686 J   |
|          | Mercury    | < 0.0000670 | < 0.0000670 | < 0.0000670 | < 0.0000670 | < 0.0000670 | < 0.0000670 | < 0.0000670 | < 0.0000670 | < 0.0000670 | < 0.0000670 | < 0.0000670 | 0.0000830 J |
|          | Molybdenum | < 0.000200  | < 0.000200  | < 0.000200  | < 0.000200  | 0.000437 J  | 0.000400 J  | < 0.000200  | < 0.000200  | 0.000299 J  | 0.000296 J  | 0.00398     | 0.00366     |
|          | Radium     | 4.31        | 1.06 U      | 6.78        | 2.89        | 4.93        | 2.22        | 7.40        | 3.55        | 12.5        | 1.95        | 5.33        | 0.946 U     |
|          | Selenium   | 0.00299 J   | 0.00243 J   | < 0.00150   | < 0.00150   | < 0.00150   | < 0.00150   | < 0.00150   | < 0.00150   | < 0.00150   | < 0.00150   | < 0.00150   | < 0.00150   |
|          | Thallium   | < 0.000600  | < 0.000600  | < 0.000600  | < 0.000600  | < 0.000600  | < 0.000600  | < 0.000600  | < 0.000600  | < 0.000600  | < 0.000600  | < 0.000600  | < 0.000600  |

- 1. Results for constituents are reported in milligrams per liter (mg/L). pH values are reported in standard units (s.u.)
- 2. Radium results are reported in picocuries per liter (pCi/L).
- 3. < indicates the constituent was not detected above the analytical method detection limit (MDL) shown.
- 4. J indicates the result is an estimated concentration. "J" qualifiers are applied by the laboratory when the concentration reported in above the method detection limit but below the laboratory reporting limit.

  Therefore, the value displayed (value J) is qualified by the laboratory as an estimated number.
- 5. TDS indicates total dissolved solids.
- 6. U indicates the constituent was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not produce a reliable value. Therefore, the value followed by U is qualified by the laboratory as estimated.

### TABLE 5

### ANALYTICAL DATA SUMMARY - GROUNDWATER, JUNE 2023, OCTOBER 2023 AND JANUARY 2024

Georgia Power Company - Plant Arkwright

AP-1 Landfill

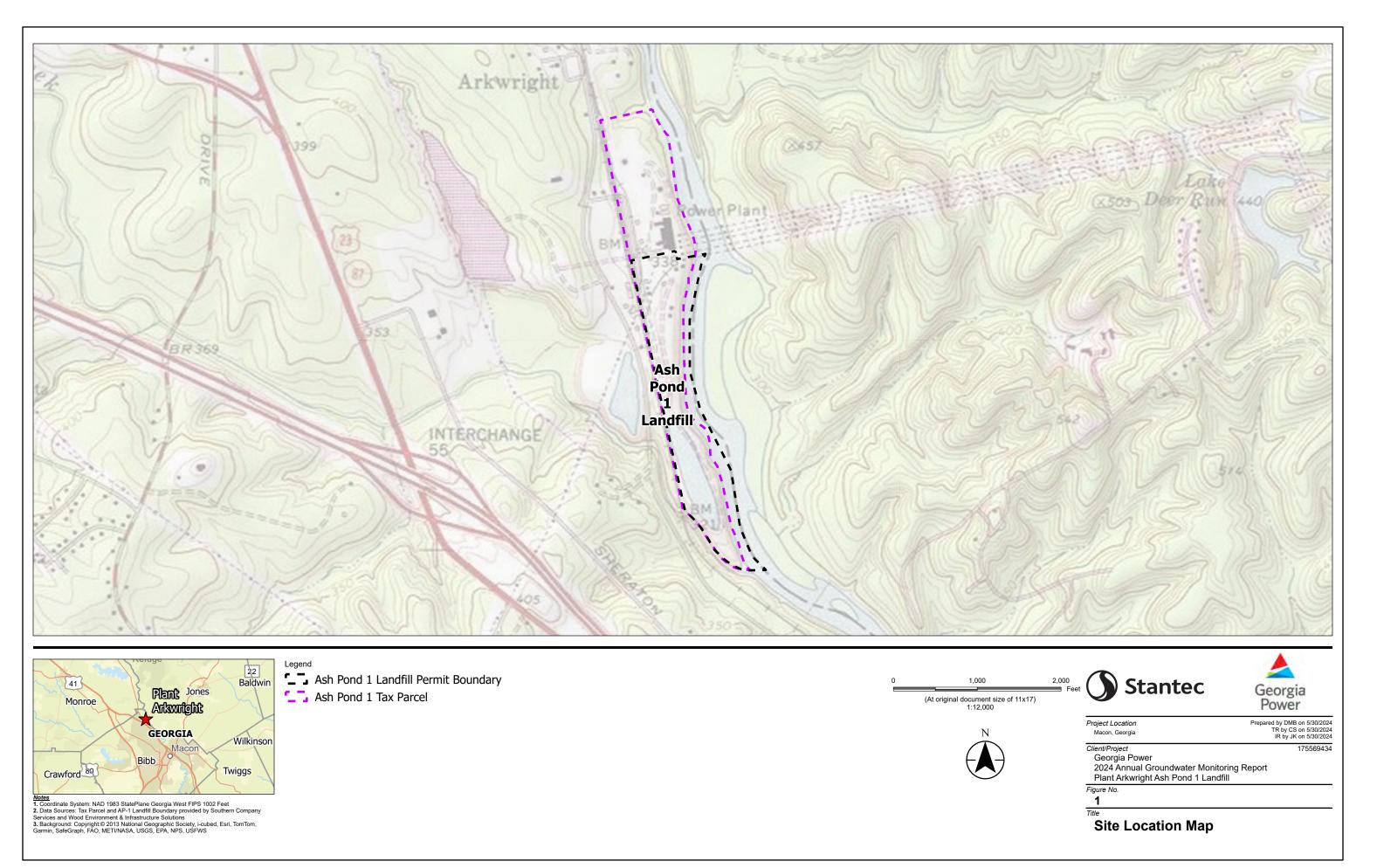
Macon, Georgia

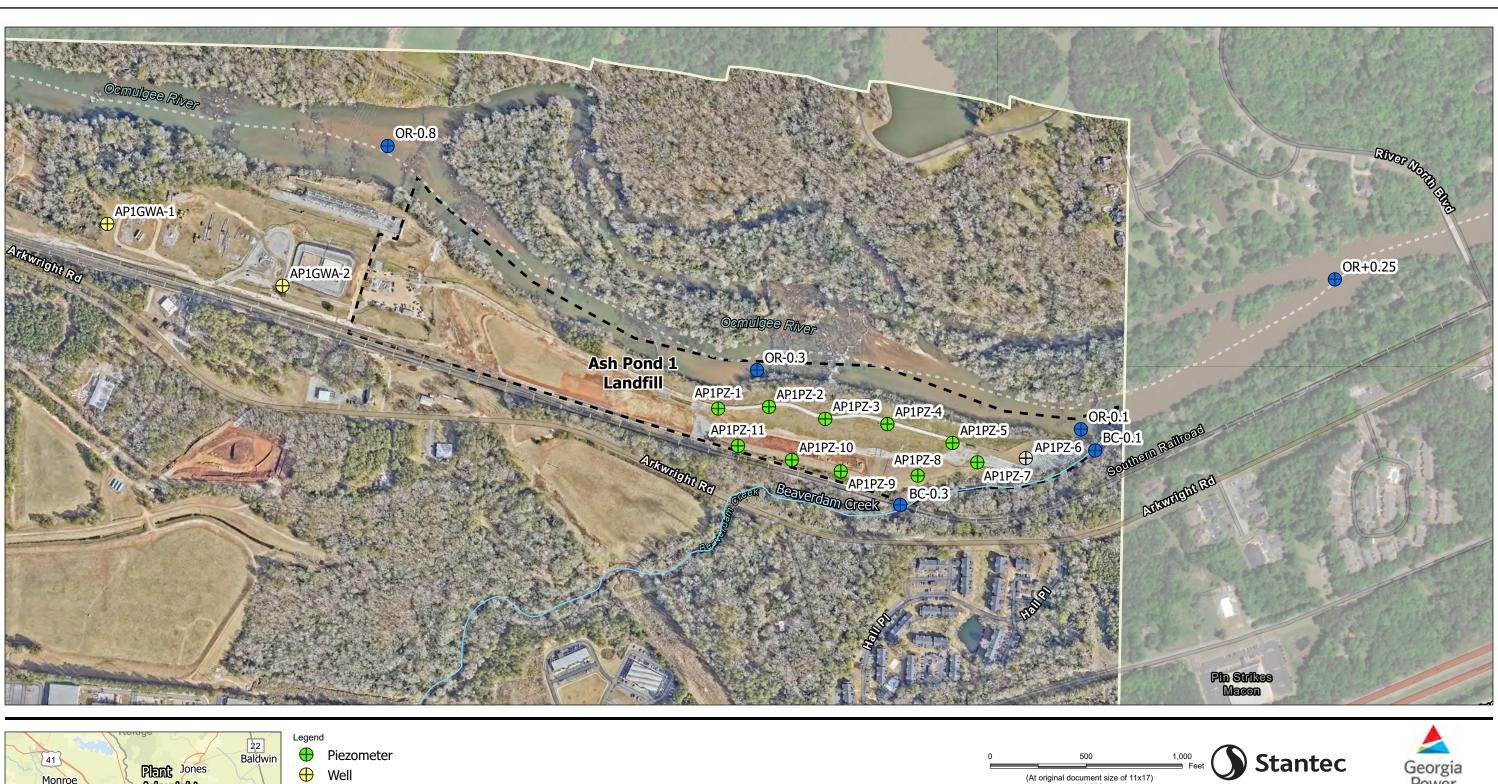
|          |            |             |             |            |             |             |             | Well ID     |             |             |             |             |             |             |
|----------|------------|-------------|-------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|          | Substance  | AP1PZ-5     | AP1PZ-5     | AP1PZ-6    | AP1PZ-7     | AP1PZ-7     | AP1PZ-8     | AP1PZ-8     | AP1PZ-9     | AP1PZ-9     | AP1PZ-10    | AP1PZ-10    | AP1PZ-11    | AP1PZ-11    |
|          |            | 10/10/2023  | 1/23/2024   | 6/13/2023  | 10/10/2023  | 1/23/2024   | 10/10/2023  | 1/23/2024   | 10/11/2023  | 1/23/2024   | 10/10/2023  | 1/23/2024   | 10/10/2023  | 1/23/2024   |
|          | Boron      | 7.16        | 7.05        | 6.95       | 2.76        | 2.74        | 2.88        | 2.83        | 0.707       | 0.701       | 0.357       | 0.342       | 0.143       | 0.161       |
| ≡        | Calcium    | 589         | 598         | 460        | 383         | 383         | 311         | 320         | 72.3        | 69.4        | 90.4        | 88.9        | 27.6        | 25.1        |
|          | Chloride   | 7.01        | 7.74        | 7.77       | 6.29        | 5.09        | 2.72        | 2.96        | 8.68        | 4.92        | 10.9        | 9.71        | 1.20        | 1.15        |
|          | Fluoride   | 0.409 J     | 0.352       | < 0.500    | 0.270 J     | 0.182 J     | 0.292       | 0.293       | 0.964       | 0.798       | 0.647       | 0.459       | 0.202       | 0.146       |
| APPENDIX | Sulfate    | 1970        | 1960        | 2480       | 1370        | 1380        | 680         | 646         | 308         | 291         | 231         | 218         | 54.3        | 46.5        |
| ⋖        | TDS        | 3080        | 2890        | 3340       | 1960        | 2050        | 1370        | 1340        | 527         | 517         | 499         | 507         | 198         | 187         |
|          | pН         | 6.05        | 6.1         | 5.33       | 6.27        | 6.25        | 6.6         | 6.59        | 5.17        | 4.68        | 6.3         | 6.38        | 6.67        | 6.79        |
|          | Antimony   | < 0.00100   | < 0.00100   | < 0.00300  | < 0.00100   | < 0.00100   | < 0.00100   | < 0.00100   | < 0.00100   | < 0.00100   | < 0.00100   | < 0.00100   | < 0.00100   | < 0.00100   |
|          | Arsenic    | 0.00493 J   | 0.00420 J   | 0.00324 J  | 0.00399 J   | 0.00207 J   | 0.00326 J   | < 0.00200   | 0.00224 J   | < 0.00200   | 0.00382 J   | 0.00300 J   | 0.00303 J   | < 0.00200   |
|          | Barium     | 0.0362      | 0.0402      | 0.0228     | 0.0421      | 0.0333      | 0.0449      | 0.0404      | 0.0252      | 0.0224      | 0.0347      | 0.0275      | 0.0234      | 0.0192      |
|          | Beryllium  | < 0.000200  | < 0.000200  | 0.00172    | < 0.000200  | < 0.000200  | < 0.000200  | < 0.000200  | 0.000523    | 0.000794    | < 0.000200  | < 0.000200  | < 0.000200  | < 0.000200  |
|          | Cadmium    | < 0.000300  | < 0.000300  | < 0.00100  | < 0.000300  | < 0.000300  | 0.00125     | 0.000323 J  | 0.00112     | 0.00125     | < 0.000300  | < 0.000300  | < 0.000300  | < 0.000300  |
| ⋛        | Chromium   | < 0.00300   | < 0.00300   | < 0.0100   | < 0.00300   | < 0.00300   | < 0.00300   | < 0.00300   | < 0.00300   | < 0.00300   | < 0.00300   | < 0.00300   | < 0.00300   | < 0.00300   |
| APPENDIX | Cobalt     | 0.0631      | 0.0486      | 0.415      | 0.00123     | 0.00164     | 0.00118     | 0.00113     | 0.100       | 0.106       | 0.00140     | 0.000707 J  | < 0.000300  | < 0.000300  |
| Ĕ        | Lead       | < 0.000500  | < 0.000500  | < 0.00200  | < 0.000500  | < 0.000500  | < 0.000500  | < 0.000500  | < 0.000500  | < 0.000500  | < 0.000500  | < 0.000500  | < 0.000500  | < 0.000500  |
| AP       | Lithium    | 0.343       | 0.317       | 0.00923 J  | 0.00302 J   | 0.00306 J   | 0.00315 J   | 0.00364 J   | 0.145       | 0.155       | 0.0189      | 0.0176      | < 0.00300   | < 0.00300   |
| `        | Mercury    | < 0.0000670 | < 0.0000670 | < 0.000200 | < 0.0000670 | < 0.0000670 | < 0.0000670 | < 0.0000670 | < 0.0000670 | < 0.0000670 | < 0.0000670 | < 0.0000670 | < 0.0000670 | < 0.0000670 |
|          | Molybdenum | 0.0437      | 0.0355      | < 0.00100  | 0.00367     | 0.00192     | 0.729       | 0.683       | 0.000323 J  | 0.000302 J  | 0.00214     | 0.00216     | 0.000342 J  | 0.000629 J  |
|          | Radium     | 4.50        | 1.94        | 3.69       | 1.64 U      | 0.892 U     | 3.27        | 2.87        | 5.37        | 2.87        | 11.6        | 4.89        | 1.77 U      | 1.43        |
|          | Selenium   | < 0.00150   | < 0.00150   | 0.00251 J  | < 0.00150   | < 0.00150   | < 0.00150   | < 0.00150   | < 0.00150   | < 0.00150   | < 0.00150   | < 0.00150   | < 0.00150   | < 0.00150   |
|          | Thallium   | < 0.000600  | < 0.000600  | < 0.00200  | < 0.000600  | < 0.000600  | < 0.000600  | < 0.000600  | < 0.000600  | < 0.000600  | < 0.000600  | < 0.000600  | < 0.000600  | < 0.000600  |

- 1. Results for constituents are reported in milligrams per liter (mg/L). pH values are reported in standard units (s.u.)
- 2. Radium results are reported in picocuries per liter (pCi/L).
- 3. < indicates the constituent was not detected above the analytical method detection limit (MDL) shown.
- 4. J indicates the result is an estimated concentration. "J" qualifiers are applied by the laboratory when the concentration reported in above the method detection limit but below the laboratory reporting limit.

  Therefore, the value displayed (value J) is qualified by the laboratory as an estimated number.
- 5. TDS indicates total dissolved solids.
- 6. U indicates the constituent was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not produce a reliable value. Therefore, the value followed by U is qualified by the laboratory as estimated.

### **TABLE 6**


# ANALYTICAL DATA SUMMARY - SURFACE WATER, OCTOBER 2023 and JANUARY 2024 Georgia Power Company - Plant Arkwright AP-1 Landfill


### Macon, Georgia

|                        |                        |           |           |           |           | Sur       | face Water S | Sample Loca | tion      |           |           |           |           |
|------------------------|------------------------|-----------|-----------|-----------|-----------|-----------|--------------|-------------|-----------|-----------|-----------|-----------|-----------|
|                        | Substance              | OR        | -0.8      | OR        | -0.3      | OR        | -0.1         | OR+         | 0.25      | ВС        | -0.3      | ВС        | -0.1      |
|                        |                        | 10/3/2023 | 1/23/2024 | 10/3/2023 | 1/23/2024 | 10/3/2023 | 1/23/2024    | 10/3/2023   | 1/23/2024 | 10/3/2023 | 1/23/2024 | 10/3/2023 | 1/23/2024 |
|                        | Boron                  | <0.027    | <0.027    | <0.027    | <0.027    | <0.027    | <0.027       | <0.027      | <0.027    | <0.027    | <0.027    | 0.045     | <0.027    |
| =                      | Calcium                | 7.4       | 4.7       | 7.2       | 4.5       | 7.4       | 4.8          | 7.2         | 4.8       | 12.9      | 8.5       | 15.0      | 8.6       |
| ×                      | Chloride               | 9.0       | 5.1       | 9.0       | 5.1       | 8.9       | 5.1          | 9.0         | 5.1       | 9.3       | 8.4       | 9.2       | 8.4       |
|                        | Fluoride               | <0.050    | <0.050    | <0.050    | <0.050    | <0.050    | <0.050       | <0.050      | <0.050    | 0.16      | <0.050    | 0.14      | <0.050    |
| APPENDIX III           | Sulfate                | 6.4       | 4.4       | 6.3       | 4.5       | 6.4       | 4.5          | 6.5         | 4.5       | 11.6      | 7.7       | 14.7      | 8.1       |
| ¥                      | TDS                    | 72.0      | 52.0      | 66.0      | 211       | 72.0      | 77.0         | 67.0        | 68.0      | 99.0      | 90.0      | 110       | 94.0      |
|                        | pН                     | 7.32      | 6.80      | 7.45      | 6.45      | 7.71      | 6.53         | 7.74        | 6.62      | 7.77      | 6.82      | 7.72      | 6.60      |
|                        | Antimony               | <0.0012   | <0.00054  | <0.0012   | <0.00054  | <0.0012   | <0.00054     | <0.0012     | <0.00054  | <0.0012   | <0.00054  | <0.0012   | <0.00054  |
|                        | Arsenic                | <0.0037   | <0.00084  | <0.0037   | <0.00084  | <0.0037   | <0.00084     | <0.0037     | <0.00084  | <0.0037   | <0.00084  | <0.0037   | <0.00084  |
|                        | Barium                 | 0.021     | 0.031     | 0.020     | 0.030     | 0.021     | 0.031        | 0.019       | 0.031     | 0.037     | 0.038     | 0.036     | 0.054     |
|                        | Beryllium              | <0.000054 | <0.000094 | <0.000054 | <0.000094 | <0.000054 | <0.000094    | <0.000054   | <0.000094 | <0.000054 | <0.000094 | <0.000054 | <0.000094 |
|                        | Cadmium                | <0.00011  | <0.00010  | <0.00011  | <0.00010  | <0.00011  | <0.00010     | <0.00011    | <0.00010  | <0.00011  | <0.00010  | <0.00011  | <0.00010  |
| <del>-</del>           | Chromium               | <0.0011   | <0.0019   | <0.0011   | <0.0019   | <0.0011   | <0.0019      | <0.0011     | <0.0019   | <0.0011   | <0.0019   | <0.0011   | <0.0019   |
|                        | Cobalt                 | <0.00039  | <0.00032  | <0.00039  | <0.00032  | <0.00039  | <0.00032     | <0.00039    | <0.00032  | <0.00039  | <0.00032  | <0.00039  | <0.00032  |
| APPENDIX IV            | Lead                   | <0.00012  | <0.00016  | <0.00012  | <0.00016  | <0.00012  | <0.00016     | <0.00012    | <0.00016  | <0.00012  | <0.00016  | <0.00012  | <0.00016  |
| l ₽                    | Lithium                | <0.00073  | <0.0016   | <0.00073  | <0.0016   | <0.00073  | <0.0016      | <0.00073    | <0.0016   | <0.00073  | <0.0016   | <0.00073  | <0.0016   |
| `                      | Mercury                | <0.00013  | <0.00013  | <0.00013  | <0.00013  | <0.00013  | <0.00013     | <0.00013    | <0.00013  | <0.00013  | <0.00013  | <0.00013  | <0.00013  |
|                        | Molybdenum             | <0.00074  | <0.00062  | <0.00074  | <0.00062  | <0.00074  | <0.00062     | <0.00074    | <0.00062  | <0.00074  | <0.00062  | <0.00074  | <0.00062  |
|                        | Radium                 | 0.106     | 0.712     | 0.160     | 0.991     | 0.549     | 1.57         | 0.187       | 0.273     | 0.302     | 0.423     | 0.297     | 1.52      |
|                        | Selenium               | <0.0014   | <0.00096  | <0.0014   | <0.00096  | <0.0014   | <0.00096     | <0.0014     | <0.00096  | <0.0014   | <0.00096  | <0.0014   | <0.00096  |
|                        | Thallium               | <0.00018  | <0.00038  | <0.00018  | <0.00038  | <0.00018  | <0.00038     | <0.00018    | <0.00038  | <0.00018  | <0.00038  | <0.00018  | <0.00038  |
| A S                    | Total Alkalinity       | 32.7      | 17.9      | 32.4      | 20.2      | 33.1      | 20.0         | 33.1        | 20.2      | 60.9      | 39.1      | 61.8      | 39.7      |
| N E                    | Bicarbonate Alkalinity | 32.7      | 17.9      | 32.4      | 20.2      | 33.1      | 20.0         | 33.1        | 20.2      | 60.9      | 39.1      | 61.8      | 39.7      |
| ΙĔΆ                    | Magnesium              | 2.0       | 1.7       | 2.0       | 1.6       | 2.0       | 1.7          | 2.0         | 1.7       | 5.5       | 4.3       | 6.4       | 4.3       |
| ADDITIONAL<br>ANALYTES | Potassium              | 3.6       | 2.9       | 3.5       | 2.7       | 3.3       | 2.9          | 3.4         | 2.9       | 2.7       | 2.1       | 2.8       | 2.2       |
| _ ₹ ₹                  | Sodium                 | 9.4       | 5.8       | 9.1       | 5.5       | 9.5       | 5.9          | 9.2         | 5.9       | 11.2      | 8.9       | 11.3      | 8.5       |

- 1. Results for constituents are reported in milligrams per liter (mg/L). pH values are reported in standard units (s.u.)
- 2. Radium results are reported in picocuries per liter (pCi/L).
- 3. < indicates the constituent was not detected above the analytical method detection limit (MDL)
- 4. TDS indicates total dissolved solids.

# **FIGURES**







Notes
1. Coordinate System: NAD 1983 StatePlane Georgia West FIPS 1002 Feet
2. Data Sources: AP-1 Boundary, Surface Water Samples, Piezometers, and Beave
Creek locations provided by Southern Company Services and Wood Environment &

2. Data Sources: AP-1 Bourloary,
Creek locations provided by Southern Company Services and vvoos L.....
Infrastructure Solutions
3. Background: Source: Esri, Maxar, Earthstar Geographics, and the GIS User Community,
Esri, TomTom, Garmin, SafeGraph, FAO, METI/NASA, USGS, EPA, NPS, USFWS, Esri,
Community Maps Contributors, @ OpenStreetMap, Microsoft, Esri, TomTom, Garmin,
SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau,

SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau,

SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau,

SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau,

SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau,

SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau,

SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau,

SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau,

SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau,

SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau,

SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau,

SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau,

SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau,

SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau,

SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau,

SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau,

SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau,

SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau,

SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau,

SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau,

SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau,

SafeGraph, Ge

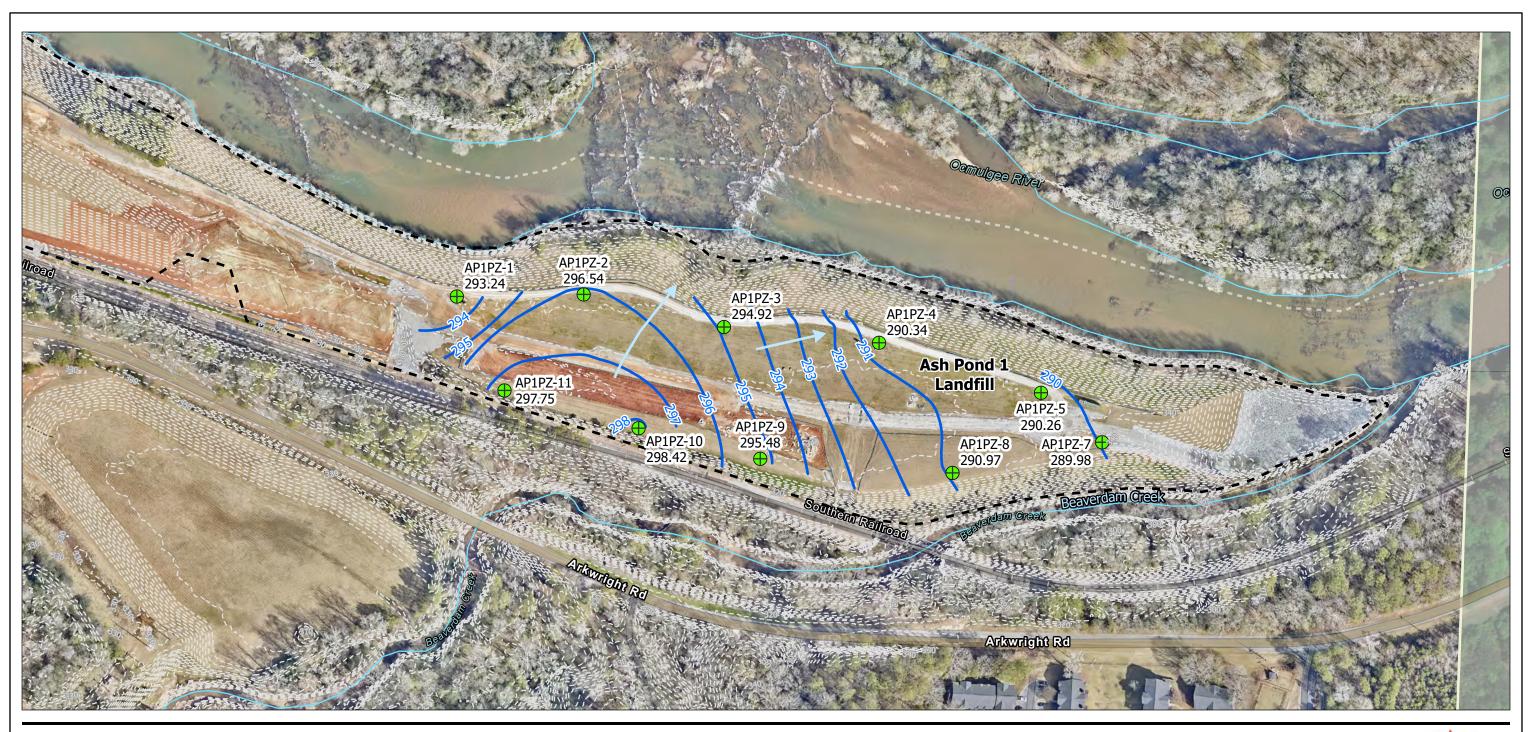
Abandoned Piezometer

Surface Water Sampling Location

Beaverdam Creek

Ash Pond 1 Landfill Permit Boundary

Limit of Client Imagery (dated 1/22/2024)






Prepared by DMB on 5/30/2024 TR by CS on 5/30/2024 IR by JK on 5/30/2024 Project Location

Client/Project Georgia Power 2024 Annual Groundwater Monitoring Report Plant Arkwright Ash Pond 1 Landfill

**Piezometer and Surface Water** Sample Locations Map





Notes

1. Coordinate System: NAD 1983 StatePlane Georgia West FIPS 1002 Feet
2. Data Sources: AP-1 Boundary, Piezometers, Topography, and Beaverdam Creek provided by Southern Company Services and Wood Environment & Infrastructure Solutions; Groundwater Contours, Flow Arrow, and Ocmulgee River provided by Stantes
3. Background: Source: Esri, Maxar, Earthstar Geographics, and the GIS User Community, Esri, Tom Tom, Garmin, SafeGraph, FAO, METLINASA, USGS, EPA, NPS, USFWS, Esri Community Maps Contributors, © OpenStreetMap, Microsoft, Esri, Tom Tom, Garmin, SafeGraph, Geo Technologies, Inc, METLINASA, USGS, EPA, NPS, US Census Bureau, USCA, LICENAS, Classification of Control Control

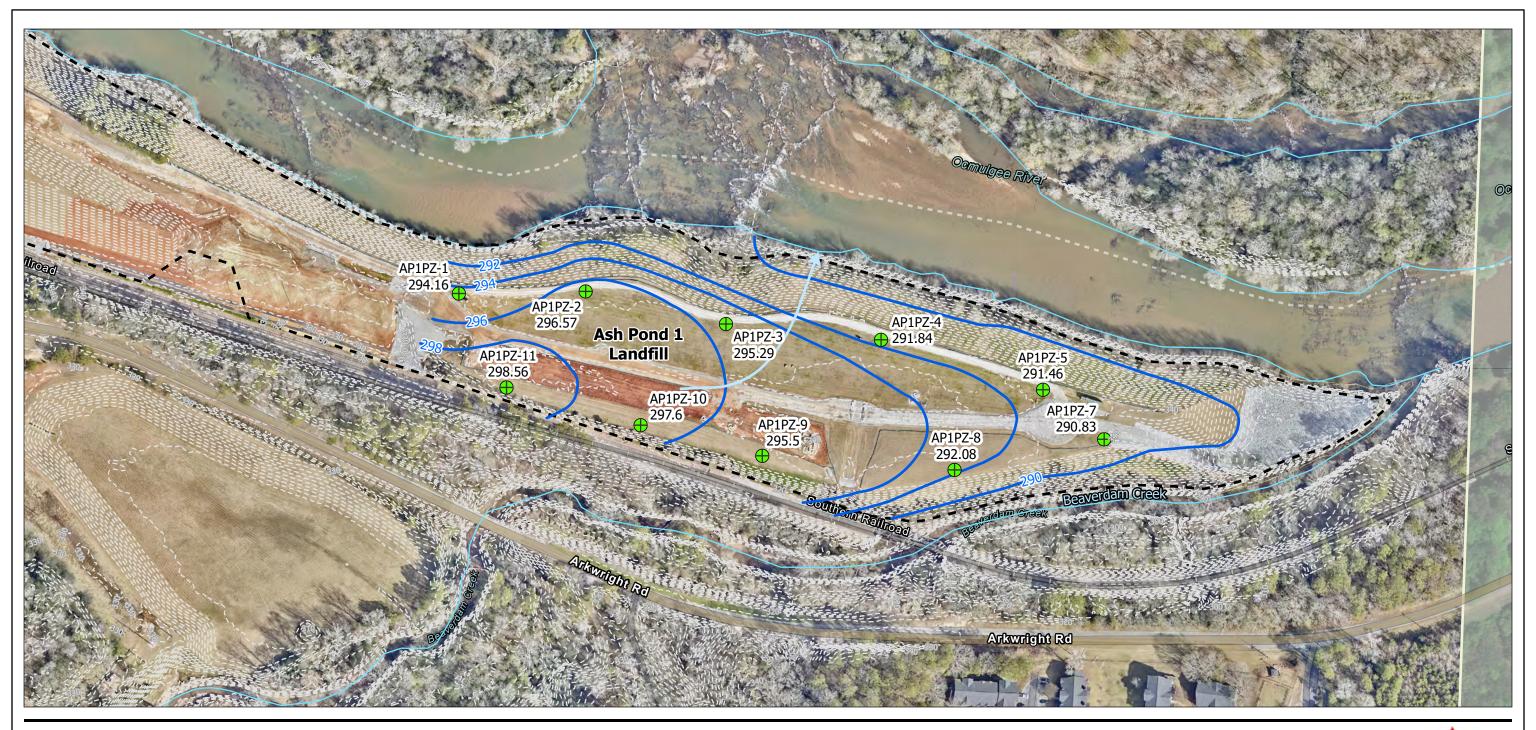
Legend Piezometer Location Potentiometric Surface Contour (feet (ft) NAVD88) Interpreted Groundwater Flow Direction Beaverdam Creek/Ocmulgee River (Approximate) Topographic Contour 2024 (2 ft interval) Approximate Limits of Ash Pond 1 Landfill

Limit of Client Imagery (dated 1/22/2024) 293.24 Groundwater Elevation (ft NAVD88) AP1GWA-1 and AP1GWA-2 not included in contouring NAVD88 - North American Vertical Datum of 1988



Stantec (At original document size of 11x17)




Project Location

Prepared by DMB on 5/30/2024 TR by CS on 5/30/2024 IR by JK on 5/30/2024

Client/Project Georgia Power

2024 Annual Groundwater Monitoring Report Plant Arkwright Ash Pond 1 Landfill

**Potentiometric Surface Contour Map** Ash Pond 1 Landfill - October 9, 2023





Notes

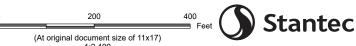
1. Coordinate System: NAD 1983 StatePlane Georgia West FIPS 1002 Feet

2. Data Sources: AP-1 Boundary, Piezometers, Topography, and Beaverdam Creek provide by Southern Company Services and Wood Environment & Infrastructure Solutions; 2. Data Sources: AP-1 Boundary, Precuriors...
by Southern Company Services and Wood Environment & Infrastructure Solutions;
Groundwater Contours, Flow Arrow, and Ocmulgee River provided by Stantec
3. Background: Source: Esti, Maxar, Earthstar Geographics, and the GIS User Community,
Esri, TomTom, Garmin, SafeGraph, FAO, METI/NASA, USGS, EPA, NPS, USEVWS, Esri
Community Maps Contributors, © OpenStreetMap, Microsoft, Esri, TomTom, Garmin,
SafeGraph, FAO, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau,

Legend Piezometer Location

Potentiometric Surface Contour (feet (ft) NAVD88)

Interpreted Groundwater Flow Direction


Beaverdam Creek/Ocmulgee River (Approximate)

Topographic Contour 2024 (2 ft interval)

Approximate Limits of Ash Pond 1 Landfill Limit of Client Imagery (dated 1/22/2024)

294.16 Groundwater Elevation (ft NAVD88) AP1GWA-1 and AP1GWA-2 not included in contouring NAVD88 - North American Vertical Datum of 1988







Project Location

Prepared by DMB on 5/30/2024 TR by CS on 5/30/2024 IR by JK on 5/30/2024

Client/Project Georgia Power

2024 Annual Groundwater Monitoring Report Plant Arkwright Ash Pond 1 Landfill

**Potentiometric Surface Contour Map** Ash Pond 1 Landfill - January 22, 2024

# **APPENDIX A Well Inspections**



| Project Name:        | Southern Company Arkwright           |
|----------------------|--------------------------------------|
| Plant Name:          | Plant Arkwright                      |
| Plant Address:       | 5001 Arkwright Road, Macon, GA 31210 |
| Project Number:      | 175569434                            |
| Goal/Task:           | Hydrogeological investigation        |
| Date:                | 10/9/2023                            |
| Monitoring Well No.: | APIGWA-1                             |
| Priority Maintenance | Item Identified: N/A                 |

|        | Danadalian .                                                                                                                            | V   | N - | NI A | IC       |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------|-----|-----|------|----------|
| 1      | Description Location/Identification                                                                                                     | Yes | No  | NA   | Comments |
| а      | Is the well visible and accessible?                                                                                                     | Х   | 1   |      |          |
| b      | Is the well properly identified with the correct well ID?                                                                               | X   |     |      |          |
| -      | Is the well in a high traffic area and does the well require protection                                                                 |     | X   |      |          |
| Ŭ      | from traffic?                                                                                                                           |     |     |      |          |
| d      | Is the drainage around the well acceptable? (no standing water, nor is                                                                  | Х   |     |      |          |
|        | well located in obvious drainage flow path)                                                                                             |     |     |      |          |
|        |                                                                                                                                         |     | •   | •    |          |
| 2      | Protective Casing                                                                                                                       |     |     |      |          |
| а      | Is the protective casing free from apparent damage and able to be                                                                       | X   |     |      |          |
|        | secured?                                                                                                                                |     |     |      |          |
| b      | Is the casing free of degradation or deterioration?                                                                                     | X   |     |      |          |
| С      | Does the casing have a functioning weep hole?                                                                                           | Х   |     |      |          |
| d      | Is the annular space between casings clear of debris and water, or filled                                                               | X   |     |      |          |
|        | with pea gravel/sand?                                                                                                                   |     |     |      |          |
| е      | Is the well locked and is the lock in good condition?                                                                                   | X   |     |      |          |
|        |                                                                                                                                         |     |     |      |          |
| 3      | Surface pad                                                                                                                             |     |     |      |          |
| а      | Is the well pad in good condition (not cracked or broken)?                                                                              | Χ   |     |      |          |
| b      | Is the well pad sloped away from the protective casing?                                                                                 | Χ   |     |      |          |
| С      | Is the well pad in complete contact with the protective casing?                                                                         | Χ   |     |      |          |
| d      | Is the well pad in complete contact with the ground surface and                                                                         | X   |     |      |          |
|        | stable?(Not undermined by erosion, animal burrows, and does not                                                                         |     |     |      |          |
|        | move when stepped on).                                                                                                                  |     |     |      |          |
| е      | Is the pad surface clean (not covered with sediment or debris)?                                                                         | Х   |     |      |          |
| 4      | Internal casing                                                                                                                         |     |     | 1    | T        |
| 4<br>a | Does the cap prevent entry of foreign material into the well?                                                                           | Х   |     |      | +        |
| b      |                                                                                                                                         | X   |     |      |          |
| D      | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                       | ^   |     |      |          |
|        | , ,                                                                                                                                     |     |     |      |          |
| С      | Is the well properly vented for equilibrium of air pressure?                                                                            | X   |     |      |          |
|        | Is the survey point clearly marked on the inner casing?                                                                                 | X   |     |      |          |
| e      | Is the depth of the well consistent with the original well log?                                                                         | X   |     |      |          |
| T      | Is the casing stable? (or does the PVC move easily when touched or<br>can it be taken apart by hand due to lack of grout or use of slip | Х   |     |      |          |
|        | couplings in construction)                                                                                                              |     |     |      |          |
|        |                                                                                                                                         |     |     | 1    | 1        |
| 5      | Sampling (Groundwater Wells Only)                                                                                                       |     |     |      |          |
| а      | Does well recharge adequately when purged?                                                                                              | Χ   |     |      |          |
| b      |                                                                                                                                         | Х   |     |      |          |
|        | If dedicated sampling equipment installed, is it in good condition and                                                                  |     | ĺ   |      |          |
|        | specified in the approved groundwater plan for the facility?                                                                            |     |     |      |          |
| С      | Does the well require redevelopment (low-flow, turbid)?                                                                                 |     | Χ   |      |          |

Comments: Include inspection details, including items requiring repair or maintenance.

N/A

Prepared By / Date: John Myer 10/9/2023
DL/SME Review By / Date: Dylan Ripley 10/17/2023



| Plant Name:          | Plant Arkwright                            |
|----------------------|--------------------------------------------|
|                      |                                            |
| Plant Address:       | 5001 Arkwright Road, Macon, GA 31210       |
| Project Number:      | 175569434                                  |
| Goal/Task:           | Hydrogeological investigation              |
| Date:                | 10/9/2023                                  |
| Monitoring Well No.: | AP1GWA-2                                   |
| Priority Maintenance | Item Identified: Missing dedicated tubing. |

|   | Description                                                                                                                         | Yes | No | NA | Comments                            |
|---|-------------------------------------------------------------------------------------------------------------------------------------|-----|----|----|-------------------------------------|
| 1 | Location/Identification                                                                                                             |     |    |    |                                     |
| а | Is the well visible and accessible?                                                                                                 | Х   |    |    |                                     |
| Э | Is the well properly identified with the correct well ID?                                                                           | Х   |    |    |                                     |
| 0 | Is the well in a high traffic area and does the well require protection                                                             | Х   |    |    | Well is located at the confluence   |
|   | from traffic?                                                                                                                       |     |    |    | of two high-traffic roads; truck co |
| b | Is the drainage around the well acceptable? (no standing water, nor is                                                              | X   |    |    |                                     |
|   | well located in obvious drainage flow path)                                                                                         |     |    |    |                                     |
| 2 | Protective Casing                                                                                                                   | 1   |    |    |                                     |
| а | Is the protective casing free from apparent damage and able to be secured?                                                          | Х   |    |    |                                     |
| 5 | Is the casing free of degradation or deterioration?                                                                                 | Χ   |    |    |                                     |
| 0 | Does the casing have a functioning weep hole?                                                                                       | Х   |    |    |                                     |
| b | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                     | Х   |    |    |                                     |
| Э | Is the well locked and is the lock in good condition?                                                                               | Х   |    |    |                                     |
| _ | I                                                                                                                                   |     | 1  |    |                                     |
|   | Surface pad                                                                                                                         |     |    |    |                                     |
|   | Is the well pad in good condition (not cracked or broken)?                                                                          | Х   |    |    |                                     |
|   | Is the well pad sloped away from the protective casing?                                                                             | Х   |    |    |                                     |
|   | Is the well pad in complete contact with the protective casing?                                                                     | Х   |    |    |                                     |
| d | Is the well pad in complete contact with the ground surface and                                                                     | Х   |    |    |                                     |
|   | stable?(Not undermined by erosion, animal burrows, and does not move when stepped on).                                              |     |    |    |                                     |
| Э | Is the pad surface clean (not covered with sediment or debris)?                                                                     | Х   | 1  |    |                                     |
| = | is the pad sofface clear (not covered with seatment of debtis)?                                                                     | ^   |    |    |                                     |
| 4 | Internal casing                                                                                                                     | 1   |    |    |                                     |
| a | Does the cap prevent entry of foreign material into the well?                                                                       | Х   |    |    |                                     |
| 0 | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                   | Х   |    |    |                                     |
| - | Is the well properly vented for equilibrium of air pressure?                                                                        | Х   | 1  |    |                                     |
|   | Is the survey point clearly marked on the inner casing?                                                                             |     | Х  |    |                                     |
|   | Is the depth of the well consistent with the original well log?                                                                     | Х   |    |    |                                     |
|   | Is the casing stable? (or does the PVC move easily when touched or                                                                  | Х   |    |    |                                     |
|   | can it be taken apart by hand due to lack of grout or use of slip                                                                   |     |    |    |                                     |
|   | couplings in construction)                                                                                                          |     |    |    |                                     |
| 5 | Sampling (Groundwater Wells Only)                                                                                                   | ı   | ı  |    |                                     |
|   | Does well recharge adequately when purged?                                                                                          | Х   | 1  |    |                                     |
| 2 | 5 , , , ,                                                                                                                           |     | Χ  |    | Dedicated length of tubing is       |
| , | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility? |     | (` |    | missing from gauging portal.        |
|   | Does the well require redevelopment (low-flow, turbid)?                                                                             |     | Х  | -  | Well breathes at 400 mL/min.        |

Comments: Include inspection details, including items requiring repair or maintenance.

Well is protected on two sides by concrete barriers. Defunct wasp nest inside outer casing and defunct ant hill on edge of well pad. Well pad and surrounding area are in need of mild landscaping maintenance.

Prepared By / Date: 10/12/2023 Dylan Quintal

DL/SME Review By / Date: Dylan Ripley 10/17/2023



| Project Name:        | Southern Company Arkwright           |  |  |  |  |  |
|----------------------|--------------------------------------|--|--|--|--|--|
| Plant Name:          | Plant Arkwright                      |  |  |  |  |  |
| Plant Address:       | 5001 Arkwright Road, Macon, GA 31210 |  |  |  |  |  |
| Project Number:      | 175569434                            |  |  |  |  |  |
| Goal/Task:           | Hydrogeological investigation        |  |  |  |  |  |
| Date:                | 10/9/2023                            |  |  |  |  |  |
| Monitoring Well No.: | AP1PZ-1                              |  |  |  |  |  |
| Priority Maintenance | Item Identified: N/A                 |  |  |  |  |  |

|        | Description                                                                                                                                                           | Yes | No | NA | Comments     |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|----|--------------|
| 1      | Location/Identification                                                                                                                                               |     |    |    |              |
| а      | Is the well visible and accessible?                                                                                                                                   | Х   |    |    |              |
| b      | Is the well properly identified with the correct well ID?                                                                                                             | Х   |    |    |              |
| С      | Is the well in a high traffic area and does the well require protection from traffic?                                                                                 |     | Х  |    |              |
| d      | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                                    | Х   |    |    |              |
| 2      | Protective Casing                                                                                                                                                     |     |    |    |              |
| а      | Is the protective casing free from apparent damage and able to be secured?                                                                                            | Х   |    |    |              |
| b      | Is the casing free of degradation or deterioration?                                                                                                                   | Х   |    |    |              |
| С      | Does the casing have a functioning weep hole?                                                                                                                         | Χ   |    |    |              |
| d      | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                       | Х   |    |    |              |
| е      | Is the well locked and is the lock in good condition?                                                                                                                 | Χ   |    |    |              |
| _      | [a                                                                                                                                                                    |     | 1  | 1  |              |
|        | Surface pad                                                                                                                                                           |     |    |    |              |
|        | Is the well pad in good condition (not cracked or broken)?                                                                                                            | X   |    |    |              |
| b      | Is the well pad sloped away from the protective casing?                                                                                                               | Х   |    |    |              |
| С      | Is the well pad in complete contact with the protective casing?                                                                                                       | Х   |    |    |              |
| d      | Is the well pad in complete contact with the ground surface and<br>stable? (Not undermined by erosion, animal burrows, and does not<br>move when stepped on).         | Х   |    |    |              |
| е      | Is the pad surface clean (not covered with sediment or debris)?                                                                                                       | Χ   |    |    |              |
|        |                                                                                                                                                                       |     |    |    |              |
| 4      | Internal casing                                                                                                                                                       |     |    |    |              |
| а      | Does the cap prevent entry of foreign material into the well?                                                                                                         | Х   |    |    |              |
| b      | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                                     | Х   |    |    |              |
| С      | Is the well properly vented for equilibrium of air pressure?                                                                                                          | Х   |    |    |              |
| d      | Is the survey point clearly marked on the inner casing?                                                                                                               | Χ   |    |    |              |
| е      | Is the depth of the well consistent with the original well log?                                                                                                       | Χ   |    |    |              |
| f      | Is the casing stable? (or does the PVC move easily when touched or<br>can it be taken apart by hand due to lack of grout or use of slip<br>couplings in construction) | Х   |    |    |              |
| _      | [a                                                                                                                                                                    |     |    |    |              |
|        | Sampling (Groundwater Wells Only)                                                                                                                                     | V   | -  |    | <del> </del> |
| a<br>b | Does well recharge adequately when purged?                                                                                                                            | X   |    |    |              |
| IJ     | If dedicated sampling equipment installed, is it in good condition and<br>specified in the approved groundwater plan for the facility?                                | ^   |    |    |              |
|        |                                                                                                                                                                       |     |    |    |              |

Comments: Include inspection details, including items requiring repair or maintenance.

N/A

Prepared By / Date: John Myer 10/9/2023

DL/SME Review By / Date: Dylan Ripley 10/17/2023



| Project Name:        | Southern Company Arkwright                        |            |  |  |  |  |  |
|----------------------|---------------------------------------------------|------------|--|--|--|--|--|
| Plant Name:          | Plant Arkwright                                   |            |  |  |  |  |  |
| Plant Address:       | 5001 Arkwright Road, Macon, GA 31210<br>175569434 |            |  |  |  |  |  |
| Project Number:      |                                                   |            |  |  |  |  |  |
| Goal/Task:           | Hydrogeological investigation                     |            |  |  |  |  |  |
| Date:                |                                                   | 10/12/2023 |  |  |  |  |  |
| Monitoring Well No.: | AP1PZ-2                                           |            |  |  |  |  |  |
| Priority Maintenance | Item Identified:                                  | N/A        |  |  |  |  |  |

|        | Description                                                                                                                                                           | Yes | No | NA | Comments                                                         |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|----|------------------------------------------------------------------|
| 1      | Location/Identification                                                                                                                                               |     |    |    | 1                                                                |
| а      | Is the well visible and accessible?                                                                                                                                   | Х   |    |    |                                                                  |
| b      | Is the well properly identified with the correct well ID?                                                                                                             | Х   |    |    |                                                                  |
| С      | Is the well in a high traffic area and does the well require protection from traffic?                                                                                 | Х   |    |    | Well is located on circuit road used exclusivey by pickup trucks |
| d      | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                                    | Х   |    |    |                                                                  |
| 2      | Protective Casing                                                                                                                                                     |     |    |    |                                                                  |
| а      | Is the protective casing free from apparent damage and able to be secured?                                                                                            | Х   |    |    |                                                                  |
| b      | Is the casing free of degradation or deterioration?                                                                                                                   | Х   |    |    |                                                                  |
| С      | Does the casing have a functioning weep hole?                                                                                                                         | Х   |    |    |                                                                  |
| d      | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                       | Х   |    |    |                                                                  |
| е      | Is the well locked and is the lock in good condition?                                                                                                                 | Х   |    |    |                                                                  |
|        |                                                                                                                                                                       |     |    |    |                                                                  |
| 3      | Surface pad                                                                                                                                                           |     |    |    |                                                                  |
| а      | Is the well pad in good condition (not cracked or broken)?                                                                                                            | X   |    |    |                                                                  |
| b      | Is the well pad sloped away from the protective casing?                                                                                                               | Х   |    |    |                                                                  |
| С      | Is the well pad in complete contact with the protective casing?                                                                                                       | Х   |    |    |                                                                  |
| d      | Is the well pad in complete contact with the ground surface and<br>stable? (Not undermined by erosion, animal burrows, and does not<br>move when stepped on).         | Х   |    |    |                                                                  |
| е      | Is the pad surface clean (not covered with sediment or debris)?                                                                                                       | Х   |    |    |                                                                  |
|        |                                                                                                                                                                       |     |    |    |                                                                  |
| 4      | Internal casing                                                                                                                                                       |     |    |    |                                                                  |
| а      | Does the cap prevent entry of foreign material into the well?                                                                                                         | Х   |    |    |                                                                  |
| b      | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                                     | Х   |    |    |                                                                  |
| С      | Is the well properly vented for equilibrium of air pressure?                                                                                                          | Х   |    |    |                                                                  |
| d      | Is the survey point clearly marked on the inner casing?                                                                                                               | Х   |    |    |                                                                  |
| е      | Is the depth of the well consistent with the original well log?                                                                                                       | Х   |    |    |                                                                  |
| f      | Is the casing stable? (or does the PVC move easily when touched or<br>can it be taken apart by hand due to lack of grout or use of slip<br>couplings in construction) | Х   |    |    |                                                                  |
|        | Samuella a (Casara danda a Walla Oaka)                                                                                                                                | 1   | 1  |    | 1                                                                |
| 5      | Sampling (Groundwater Wells Only)  Does well recharge adequately when purged?                                                                                         | Х   |    |    |                                                                  |
| a<br>b | Does well recharge adequately when purgeas                                                                                                                            | X   |    |    |                                                                  |
| D      | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                                   | ^   |    |    |                                                                  |
|        |                                                                                                                                                                       |     |    |    |                                                                  |

Comments: Include inspection details, including items requiring repair or maintenance.

Well is protected on two sides by concrete barriers. Ant hill located on or near well pad; presented no significant hazard.

10/12/2023 Prepared By / Date: Dylan Quintal DL/SME Review By / Date: Dylan Ripley 10/17/2023



| Project Name:        | Southern Company Arkwright                |  |  |  |  |  |  |
|----------------------|-------------------------------------------|--|--|--|--|--|--|
| Plant Name:          | Plant Arkwright                           |  |  |  |  |  |  |
| Plant Address:       | 5001 Arkwright Road, Macon, GA 31210      |  |  |  |  |  |  |
| Project Number:      | 175569434                                 |  |  |  |  |  |  |
| Goal/Task:           | Hydrogeological investigation             |  |  |  |  |  |  |
| Date:                | 10/9/2023                                 |  |  |  |  |  |  |
| Monitoring Well No.: | AP1PZ-3                                   |  |  |  |  |  |  |
| Priority Maintenance | Item Identified: Grass cutting; Ant mound |  |  |  |  |  |  |
|                      |                                           |  |  |  |  |  |  |

|   | Description                                                                                                                                                           | Yes | No | NA | Comments                               |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|----|----------------------------------------|
| 1 | Location/Identification                                                                                                                                               |     |    |    |                                        |
| а | Is the well visible and accessible?                                                                                                                                   | Χ   |    |    |                                        |
| b | Is the well properly identified with the correct well ID?                                                                                                             | Χ   |    |    |                                        |
| С | Is the well in a high traffic area and does the well require protection from traffic?                                                                                 |     | Х  |    |                                        |
| d | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                                    | Х   |    |    |                                        |
| 2 | Protective Casing                                                                                                                                                     |     |    |    | 1                                      |
| а | Is the protective casing free from apparent damage and able to be secured?                                                                                            | Х   |    |    |                                        |
| b | Is the casing free of degradation or deterioration?                                                                                                                   | Χ   |    |    |                                        |
| C | Does the casing have a functioning weep hole?                                                                                                                         | Х   |    |    |                                        |
| d | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                       | Х   |    |    |                                        |
| е | Is the well locked and is the lock in good condition?                                                                                                                 | Х   |    |    |                                        |
|   | · · · · · · · · · · · · · · · · · · ·                                                                                                                                 |     |    |    | -                                      |
| 3 | Surface pad                                                                                                                                                           |     |    |    |                                        |
| а | Is the well pad in good condition (not cracked or broken)?                                                                                                            | Х   |    |    |                                        |
| b | Is the well pad sloped away from the protective casing?                                                                                                               | Х   |    |    |                                        |
| С | Is the well pad in complete contact with the protective casing?                                                                                                       | Х   |    |    |                                        |
| d | Is the well pad in complete contact with the ground surface and stable? (Not undermined by erosion, animal burrows, and does not move when stepped on).               |     | Х  |    | Ant mound found; Grass needs to be cut |
| е | Is the pad surface clean (not covered with sediment or debris)?                                                                                                       | Χ   |    |    |                                        |
|   |                                                                                                                                                                       |     |    |    | •                                      |
| 4 | Internal casing                                                                                                                                                       |     |    |    |                                        |
| а | Does the cap prevent entry of foreign material into the well?                                                                                                         | X   |    |    |                                        |
| b | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                                     | Х   |    |    |                                        |
| С | Is the well properly vented for equilibrium of air pressure?                                                                                                          | Х   |    |    |                                        |
| d | Is the survey point clearly marked on the inner casing?                                                                                                               | Х   |    |    |                                        |
| е | Is the depth of the well consistent with the original well log?                                                                                                       | Х   |    |    |                                        |
| f | Is the casing stable? (or does the PVC move easily when touched or<br>can it be taken apart by hand due to lack of grout or use of slip<br>couplings in construction) | Х   |    |    |                                        |
|   |                                                                                                                                                                       |     |    |    |                                        |
| 5 | Sampling (Groundwater Wells Only)                                                                                                                                     |     |    |    |                                        |
| а | Does well recharge adequately when purged?                                                                                                                            | X   |    |    |                                        |
| b | If dedicated sampling equipment installed, is it in good condition and<br>specified in the approved groundwater plan for the facility?                                | Х   |    |    |                                        |
| С | Does the well require redevelopment (low-flow, turbid)?                                                                                                               |     | X  |    |                                        |
| U | poes the well require redevelopment flow-flow, forbid/9                                                                                                               |     |    |    |                                        |

Comments: Include inspection details, including items requiring repair or maintenance.

N/A

Prepared By / Date: John Myer 10/9/2023

DL/SME Review By / Date: Dylan Ripley 10/17/2023



|          |                                    | MONITORING WELL INSPECTION                                                                 | ON CHE   | CKLIST       | Stantec                          |
|----------|------------------------------------|--------------------------------------------------------------------------------------------|----------|--------------|----------------------------------|
|          | Project Name:                      | Southern Company Arkwright                                                                 |          |              |                                  |
|          | Plant Name:                        | Plant Arkwright                                                                            |          |              |                                  |
|          | Plant Address:                     | 5001 Arkwright Road, Macon, GA 31210                                                       |          |              |                                  |
|          | Project Number:                    | 175569434                                                                                  |          |              |                                  |
|          | Goal/Task:                         | Hydrogeological investigation                                                              |          |              |                                  |
|          | oodi, rasii.                       |                                                                                            |          |              |                                  |
|          | Date:                              | 10/12/2023                                                                                 |          |              |                                  |
|          | Monitoring Well No.:               | AP1PZ-4                                                                                    |          |              |                                  |
|          | Priority Maintenance               | Item Identified: N/A                                                                       |          |              |                                  |
|          |                                    | ·                                                                                          |          |              |                                  |
|          |                                    | B 1 II                                                                                     | I v      |              | To .                             |
| 1        | Location/Identification            | Description                                                                                | Yes      | No NA        | Comments                         |
| <u> </u> | Is the well visible and            |                                                                                            | Χ        |              |                                  |
| 5        |                                    | dentified with the correct well ID?                                                        | Х        |              |                                  |
| 2        |                                    | affic area and does the well require protection                                            | Х        |              | Well is located on circuit road  |
|          | from traffic?                      |                                                                                            |          |              | used exclusivey by pickup trucks |
| t        |                                    | nd the well acceptable? (no standing water, nor is<br>ous drainage flow path)              | Х        |              |                                  |
|          | T                                  |                                                                                            |          |              | 1                                |
| 2        | Protective Casing                  |                                                                                            | Х        |              |                                  |
| 1        | Is the protective casi<br>secured? | ng free from apparent damage and able to be                                                | X        |              |                                  |
| _        |                                    | degradation or deterioration?                                                              | Х        |              | +                                |
| :        |                                    | e a functioning weep hole?                                                                 | X        |              | +                                |
| d        |                                    | between casings clear of debris and water, or filled                                       | Χ        |              |                                  |
|          | with pea gravel/sand               |                                                                                            |          |              |                                  |
| Э        | Is the well locked an              | d is the lock in good condition?                                                           | Х        |              |                                  |
|          |                                    |                                                                                            |          |              | 1                                |
| 3        | Surface pad                        |                                                                                            |          | <u> </u>     |                                  |
| 2        |                                    | od condition (not cracked or broken)? d away from the protective casing?                   | X        |              |                                  |
| -        |                                    | mplete contact with the protective casing?                                                 | X        |              | 1                                |
| <u></u>  |                                    | mplete contact with the ground surface and                                                 | X        |              |                                  |
|          |                                    | ned by erosion, animal burrows, and does not                                               |          |              |                                  |
|          | move when stepped                  | •                                                                                          |          |              |                                  |
| 9        | is the pad surface ci              | ean (not covered with sediment or debris)?                                                 | Х        |              |                                  |
| 1        | Internal casing                    |                                                                                            | 1        |              | 1                                |
| <u>.</u> |                                    | nt entry of foreign material into the well?                                                | Х        |              |                                  |
| 5        |                                    | inks or bends, or any obstructions from foreign                                            | Χ        |              |                                  |
|          | objects (such as baile             |                                                                                            |          |              |                                  |
| 2        | Is the well properly v             | ented for equilibrium of air pressure?                                                     | Х        |              |                                  |
| t        |                                    | early marked on the inner casing?                                                          | Χ        |              |                                  |
| 9        |                                    | ell consistent with the original well log?                                                 | X        |              |                                  |
| t        |                                    | (or does the PVC move easily when touched or t by hand due to lack of grout or use of slip | Х        |              |                                  |
|          | couplings in construc              |                                                                                            |          |              |                                  |
|          |                                    | •                                                                                          |          |              | 1                                |
| 5        | Sampling (Groundwo                 |                                                                                            |          |              |                                  |
| 1        | Does well recharge of              | adequately when purged?                                                                    | Χ        |              |                                  |
| 0        |                                    | g equipment installed, is it in good condition and oved groundwater plan for the facility? | Х        |              |                                  |
| 2        | Does the well require              | redevelopment (low-flow, turbid)?                                                          |          | Х            | Well breathes at 100 mL/min.     |
|          |                                    |                                                                                            | •        |              |                                  |
| or       |                                    | ction details, including items requiring repair or mair                                    |          |              |                                  |
|          | Well is pr                         | otected on two sides by concrete barriers. Small wa                                        | tercraft | located on w | est side of well pad.            |
|          |                                    |                                                                                            |          |              |                                  |
|          |                                    |                                                                                            |          |              |                                  |
|          |                                    |                                                                                            |          |              |                                  |

Prepared By / Date: 10/12/2023 Dylan Quintal

DL/SME Review By / Date: Dylan Ripley 10/17/2023



|                         | MONITORINO WELL INSI ECITO           | II CIIL | CKLIST |   |  |  |  |  |  |
|-------------------------|--------------------------------------|---------|--------|---|--|--|--|--|--|
| Project Name:           | Southern Company Arkwright           |         |        |   |  |  |  |  |  |
| Plant Name:             | Plant Arkwright                      |         |        |   |  |  |  |  |  |
| Plant Address:          | 5001 Arkwright Road, Macon, GA 31210 |         |        |   |  |  |  |  |  |
| Project Number:         | 175569434                            |         |        |   |  |  |  |  |  |
| Goal/Task:              | Plant Arkwright                      |         |        |   |  |  |  |  |  |
| Date:                   | 10/9/2023                            |         |        | _ |  |  |  |  |  |
| Monitoring Well No.:    | AP1PZ-5                              |         |        |   |  |  |  |  |  |
| Priority Maintenance    | Item Identified: Grass Cutting       |         |        |   |  |  |  |  |  |
|                         |                                      |         |        |   |  |  |  |  |  |
|                         | Description                          | Yes     | No     |   |  |  |  |  |  |
| Location/Identificatio  | n                                    |         |        |   |  |  |  |  |  |
| Is the well visible and | accessible?                          | Χ       |        | ľ |  |  |  |  |  |
| Is the well properly id | ontified with the correct well ID2   |         |        | Г |  |  |  |  |  |

|   | Description                                                                                                                                                     | Yes | No | NA | Comments              |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|----|-----------------------|
| 1 | Location/Identification                                                                                                                                         |     |    |    |                       |
| а | Is the well visible and accessible?                                                                                                                             | Х   |    |    |                       |
| b | Is the well properly identified with the correct well ID?                                                                                                       | Х   |    |    |                       |
| С | Is the well in a high traffic area and does the well require protection                                                                                         |     | Х  |    |                       |
|   | from traffic?                                                                                                                                                   |     |    |    |                       |
| d | Is the drainage around the well acceptable? (no standing water, nor is                                                                                          | Х   |    |    |                       |
|   | well located in obvious drainage flow path)                                                                                                                     |     |    |    |                       |
|   |                                                                                                                                                                 |     |    |    |                       |
| 2 | Protective Casing                                                                                                                                               |     |    |    |                       |
| а | Is the protective casing free from apparent damage and able to be secured?                                                                                      | Х   |    |    |                       |
| b | Is the casing free of degradation or deterioration?                                                                                                             | Х   |    |    |                       |
| С | Does the casing have a functioning weep hole?                                                                                                                   | Χ   |    |    |                       |
| d | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | Х   |    |    |                       |
| е | Is the well locked and is the lock in good condition?                                                                                                           | Х   |    |    |                       |
|   | J                                                                                                                                                               |     | •  |    | -                     |
| 3 | Surface pad                                                                                                                                                     |     |    |    |                       |
| а | Is the well pad in good condition (not cracked or broken)?                                                                                                      | Х   |    |    |                       |
| b | Is the well pad sloped away from the protective casing?                                                                                                         | Х   |    |    |                       |
| С | Is the well pad in complete contact with the protective casing?                                                                                                 | Х   |    |    |                       |
| d | Is the well pad in complete contact with the ground surface and stable? (Not undermined by erosion, animal burrows, and does not move when stepped on).         |     | Х  |    | Grass needs to be cut |
| е | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | Х   |    |    |                       |
| _ | is the pad seriace crear (her covered times cannot in create in).                                                                                               |     |    |    |                       |
| 4 | Internal casing                                                                                                                                                 |     |    |    |                       |
| a |                                                                                                                                                                 | Х   |    |    |                       |
| b | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | Х   |    |    |                       |
| С | Is the well properly vented for equilibrium of air pressure?                                                                                                    | Х   |    |    |                       |
| d | Is the survey point clearly marked on the inner casing?                                                                                                         | Х   |    |    |                       |
| е | Is the depth of the well consistent with the original well log?                                                                                                 | Χ   |    |    |                       |
| f | Is the casing stable? (or does the PVC move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Х   |    |    |                       |
|   |                                                                                                                                                                 |     |    |    |                       |
| 5 | 3(                                                                                                                                                              |     |    |    |                       |
| а | Does well recharge adequately when purged?                                                                                                                      | Χ   |    |    |                       |
| b | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             | Х   |    |    |                       |
| _ | Does the well require redevelopment (low-flow, turbid)?                                                                                                         |     | Х  |    | <del> </del>          |
| С | Does the well require redevelopment (low-llow, turbid)?                                                                                                         |     | ,  |    | 1                     |

Comments: Include inspection details, including items requiring repair or maintenance.

N/A

Prepared By / Date: John Myer 10/9/2023

DL/SME Review By / Date: Dylan Ripley 10/17/2023



| Location/Identification |                      |                 |     |    | _ |
|-------------------------|----------------------|-----------------|-----|----|---|
|                         | Description          |                 | Yes | No | П |
|                         |                      |                 |     |    | • |
| Priority Maintenance    | Item Identified:     | N/A             |     |    | - |
| Monitoring Well No.:    | AP1PZ-7              |                 |     |    | - |
| Date:                   | 10/9/2023            |                 |     |    |   |
| Goal/Task:              | Hydrogeological inve | estigation      |     |    | _ |
| Project Number:         | 175569434            |                 |     |    | _ |
| Plant Address:          | 5001 Arkwright Road  | Macon, GA 31210 |     |    |   |
| Plant Name:             | Plant Arkwright      |                 |     |    |   |
| Project Name:           | Southern Company     | Arkwright       |     |    |   |
|                         |                      |                 |     |    |   |

|        | Description                                                                                       | Yes | No | NA | Comments |
|--------|---------------------------------------------------------------------------------------------------|-----|----|----|----------|
| 1      | Location/Identification                                                                           |     |    |    |          |
| а      | Is the well visible and accessible?                                                               | Х   |    |    |          |
| b      | Is the well properly identified with the correct well ID?                                         | Х   |    |    |          |
| С      | Is the well in a high traffic area and does the well require protection                           |     | Х  |    |          |
|        | from traffic?                                                                                     |     |    |    |          |
| d      | Is the drainage around the well acceptable? (no standing water, nor is                            | X   |    |    |          |
|        | well located in obvious drainage flow path)                                                       |     |    |    |          |
|        |                                                                                                   |     |    |    |          |
| 2      | Protective Casing                                                                                 |     |    |    |          |
| а      | Is the protective casing free from apparent damage and able to be secured?                        | Х   |    |    |          |
| b      | Is the casing free of degradation or deterioration?                                               | Х   |    |    |          |
| С      | Does the casing have a functioning weep hole?                                                     | Х   |    |    |          |
| d      | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?   | Х   |    |    |          |
| е      | Is the well locked and is the lock in good condition?                                             | Х   |    |    |          |
|        | <u> </u>                                                                                          |     | •  |    |          |
| 3      | Surface pad                                                                                       |     |    |    |          |
| а      | Is the well pad in good condition (not cracked or broken)?                                        | Х   |    |    |          |
| b      | Is the well pad sloped away from the protective casing?                                           | Х   |    |    |          |
| С      | Is the well pad in complete contact with the protective casing?                                   | Х   |    |    |          |
| d      | Is the well pad in complete contact with the ground surface and                                   | Х   |    |    |          |
|        | stable?(Not undermined by erosion, animal burrows, and does not                                   |     |    |    |          |
|        | move when stepped on).                                                                            |     |    |    |          |
| е      | Is the pad surface clean (not covered with sediment or debris)?                                   | Χ   |    |    |          |
|        | I                                                                                                 |     |    |    |          |
|        | Internal casing                                                                                   |     |    |    |          |
| a      | Does the cap prevent entry of foreign material into the well?                                     | X   |    |    |          |
| b      | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? | Х   |    |    |          |
| С      | Is the well properly vented for equilibrium of air pressure?                                      | Х   |    |    |          |
|        | Is the survey point clearly marked on the inner casing?                                           | Χ   |    |    |          |
|        | Is the depth of the well consistent with the original well log?                                   | X   |    |    |          |
| f      | Is the casing stable? (or does the PVC move easily when touched or                                | Х   |    |    |          |
|        | can it be taken apart by hand due to lack of grout or use of slip                                 |     |    |    |          |
|        | couplings in construction)                                                                        |     | l  |    | L        |
| -      | Carantina (Carana da International Malla Carla)                                                   |     | 1  |    | T        |
|        | Sampling (Groundwater Wells Only)  Does well recharge adequately when purged?                     | Х   |    |    |          |
| a<br>b | Does well recticing adequately when purgeds                                                       | X   | -  |    |          |
| D      | If dedicated sampling equipment installed, is it in good condition and                            | ^   |    |    |          |
|        | specified in the approved groundwater plan for the facility?                                      |     |    |    |          |
| С      | Does the well require redevelopment (low-flow, turbid)?                                           |     | Х  |    |          |
| Ė      | to a seek a sign of A seek a seek.                                                                |     |    |    |          |

Comments: Include inspection details, including items requiring repair or maintenance.

N/A

Prepared By / Date: John Myer 10/9/2023

DL/SME Review By / Date: Dylan Ripley 10/17/2023



| Project Name:        | Southern Company                     | Arkwright                           |  |  |  |  |  |  |
|----------------------|--------------------------------------|-------------------------------------|--|--|--|--|--|--|
| Plant Name:          | Plant Arkwright                      |                                     |  |  |  |  |  |  |
| Plant Address:       | 5001 Arkwright Road, Macon, GA 31210 |                                     |  |  |  |  |  |  |
| Project Number:      | 175569434                            |                                     |  |  |  |  |  |  |
| Goal/Task:           | Hydrogeological investigation        |                                     |  |  |  |  |  |  |
| Date:                |                                      | 10/12/2023                          |  |  |  |  |  |  |
| Monitoring Well No.: | AP1PZ-8                              |                                     |  |  |  |  |  |  |
| Priority Maintenance | Item Identified:                     | Access via wattles and landscaping. |  |  |  |  |  |  |

|   | Description                                                                                                                          | Yes | No | NA | Comments                       |
|---|--------------------------------------------------------------------------------------------------------------------------------------|-----|----|----|--------------------------------|
| 1 | Location/Identification                                                                                                              |     |    |    |                                |
| а | Is the well visible and accessible?                                                                                                  |     | Х  |    | Well cannot be easily accessed |
| b | Is the well properly identified with the correct well ID?                                                                            | Х   |    |    |                                |
| U | Is the well in a high traffic area and does the well require protection from traffic?                                                |     | Х  |    |                                |
| d | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                   | Х   |    |    |                                |
| 2 | Protective Casing                                                                                                                    |     |    | l  | T                              |
| a |                                                                                                                                      | Х   |    |    |                                |
| u | Is the protective casing free from apparent damage and able to be secured?                                                           | ^   |    |    |                                |
| b | Is the casing free of degradation or deterioration?                                                                                  | X   |    |    |                                |
| С | Does the casing have a functioning weep hole?                                                                                        | Х   |    |    |                                |
| d | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                      | Х   |    |    |                                |
| е | Is the well locked and is the lock in good condition?                                                                                | Х   |    |    |                                |
|   |                                                                                                                                      |     |    |    | •                              |
| 3 | Surface pad                                                                                                                          |     |    |    |                                |
| а | Is the well pad in good condition (not cracked or broken)?                                                                           | Х   |    |    |                                |
| b | Is the well pad sloped away from the protective casing?                                                                              | Х   |    |    |                                |
| С | Is the well pad in complete contact with the protective casing?                                                                      | Х   |    |    |                                |
| d | Is the well pad in complete contact with the ground surface and                                                                      | Х   |    |    |                                |
|   | stable?(Not undermined by erosion, animal burrows, and does not                                                                      |     |    |    |                                |
|   | move when stepped on).                                                                                                               |     |    |    |                                |
| е | Is the pad surface clean (not covered with sediment or debris)?                                                                      | X   |    |    |                                |
|   |                                                                                                                                      |     |    |    |                                |
| 4 | Internal casing                                                                                                                      |     |    |    |                                |
| а | Does the cap prevent entry of foreign material into the well?                                                                        | Х   |    |    |                                |
| b | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                    | Х   |    |    |                                |
| С | Is the well properly vented for equilibrium of air pressure?                                                                         | Х   |    |    |                                |
| d | Is the survey point clearly marked on the inner casing?                                                                              | Х   |    |    |                                |
| е | Is the depth of the well consistent with the original well log?                                                                      | Х   |    |    |                                |
| f | Is the casing stable? (or does the PVC move easily when touched or can it be taken apart by hand due to lack of grout or use of slip | Х   |    |    |                                |
|   | couplings in construction)                                                                                                           |     |    |    |                                |
|   |                                                                                                                                      |     |    |    |                                |
| 5 | Sampling (Groundwater Wells Only)                                                                                                    |     |    |    |                                |
| а | Does well recharge adequately when purged?                                                                                           | X   |    |    |                                |
| b | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?  | Х   |    |    |                                |
|   |                                                                                                                                      |     |    |    |                                |
| С | Does the well require redevelopment (low-flow, turbid)?                                                                              |     | Х  |    | Well breathes at 100 mL/min.   |
|   |                                                                                                                                      |     |    |    |                                |

Comments: Include inspection details, including items requiring repair or maintenance.

Well located behind wattles in less well-maintained area; requires landscaping maintenance.

Prepared By / Date: 10/12/2023 Dylan Quintal DL/SME Review By / Date: Dylan Ripley 10/17/2023



|    |                                                   | MONITORING WELL INST ECTIO                              | IN CITE   | CKLIS |    | Stantec               |  |  |  |  |  |
|----|---------------------------------------------------|---------------------------------------------------------|-----------|-------|----|-----------------------|--|--|--|--|--|
|    | Project Name:                                     | Southern Company Arkwright                              |           |       |    |                       |  |  |  |  |  |
|    | Plant Name:                                       | Plant Arkwright                                         |           |       |    |                       |  |  |  |  |  |
|    | Plant Address:                                    | 5001 Arkwright Road, Macon, GA 31210                    |           |       |    |                       |  |  |  |  |  |
|    | Project Number:                                   | 175569434                                               |           |       | ,  |                       |  |  |  |  |  |
|    | Goal/Task:                                        | Hydrogeological investigation                           |           |       |    |                       |  |  |  |  |  |
|    | Godi/Task.                                        | Tryatogeological investigation                          |           |       |    |                       |  |  |  |  |  |
|    | Date:                                             | 10/9/2023                                               | 10/9/2023 |       |    |                       |  |  |  |  |  |
|    | Monitoring Well No.:                              | AP1PZ-9                                                 |           |       |    |                       |  |  |  |  |  |
|    | Priority Maintenance                              | Item Identified: Grass Cutting                          |           |       |    |                       |  |  |  |  |  |
|    |                                                   |                                                         |           |       | •  |                       |  |  |  |  |  |
|    |                                                   |                                                         |           |       |    | In .                  |  |  |  |  |  |
|    | Location/Identification                           | Description                                             | Yes       | No    | NA | Comments              |  |  |  |  |  |
| 1  | Is the well visible and                           |                                                         | Х         |       |    |                       |  |  |  |  |  |
| ,  |                                                   | dentified with the correct well ID?                     | X         |       |    |                       |  |  |  |  |  |
| :  |                                                   | affic area and does the well require protection         |           | Х     |    |                       |  |  |  |  |  |
|    | from traffic?                                     |                                                         |           |       |    |                       |  |  |  |  |  |
| 1  |                                                   | nd the well acceptable? (no standing water, nor is      | Χ         |       |    |                       |  |  |  |  |  |
|    | well located in obvio                             | ous drainage flow path)                                 |           |       |    |                       |  |  |  |  |  |
| ,  | Protective Casing                                 |                                                         |           |       |    | T                     |  |  |  |  |  |
| 1  | _                                                 | ng free from apparent damage and able to be             | X         |       |    |                       |  |  |  |  |  |
|    | secured?                                          | ng nee nom apparem damage and able to be                | ^         |       |    |                       |  |  |  |  |  |
| )  | Is the casing free of a                           | degradation or deterioration?                           | Χ         |       |    |                       |  |  |  |  |  |
| ;  | Does the casing have                              | e a functioning weep hole?                              | Χ         |       |    |                       |  |  |  |  |  |
| 1  |                                                   | between casings clear of debris and water, or filled    | Χ         |       |    |                       |  |  |  |  |  |
|    | with pea gravel/sand                              |                                                         |           |       |    |                       |  |  |  |  |  |
| •  | is the well locked and                            | d is the lock in good condition?                        | Х         |       |    |                       |  |  |  |  |  |
|    | Surface pad                                       |                                                         |           |       |    |                       |  |  |  |  |  |
| 1  |                                                   | od condition (not cracked or broken)?                   | Х         |       |    |                       |  |  |  |  |  |
| )  |                                                   | d away from the protective casing?                      | Χ         |       |    |                       |  |  |  |  |  |
| ;  | Is the well pad in cor                            | mplete contact with the protective casing?              | Χ         |       |    |                       |  |  |  |  |  |
| 1  |                                                   | mplete contact with the ground surface and              |           | Х     |    | Grass needs to be cut |  |  |  |  |  |
|    | stable?(Not undermit<br>move when stepped         | ned by erosion, animal burrows, and does not            |           |       |    |                       |  |  |  |  |  |
| ,  |                                                   | ean (not covered with sediment or debris)?              | Х         |       |    |                       |  |  |  |  |  |
|    | is mo pad sondes on                               | can (not concrete miniscannon or account).              |           |       |    |                       |  |  |  |  |  |
| ļ  | Internal casing                                   |                                                         |           |       |    |                       |  |  |  |  |  |
| 1  | Does the cap prever                               | nt entry of foreign material into the well?             | Χ         |       |    |                       |  |  |  |  |  |
| )  | Is the casing free of k<br>objects (such as baile | cinks or bends, or any obstructions from foreign        | Х         |       |    |                       |  |  |  |  |  |
| ;  |                                                   | ented for equilibrium of air pressure?                  | Х         |       |    |                       |  |  |  |  |  |
| 1  |                                                   | early marked on the inner casing?                       | X         |       |    |                       |  |  |  |  |  |
| ,  |                                                   | ell consistent with the original well log?              | Χ         |       |    |                       |  |  |  |  |  |
|    |                                                   | (or does the PVC move easily when touched or            | Χ         |       |    |                       |  |  |  |  |  |
|    |                                                   | t by hand due to lack of grout or use of slip           |           |       |    |                       |  |  |  |  |  |
| _  | couplings in construc                             | JION                                                    |           | l     |    | 1                     |  |  |  |  |  |
| ;  | Sampling (Groundwo                                | ster Wells Only)                                        |           |       |    |                       |  |  |  |  |  |
| 1  |                                                   | adequately when purged?                                 | Х         |       |    |                       |  |  |  |  |  |
| )  |                                                   | g equipment installed, is it in good condition and      | Х         |       |    |                       |  |  |  |  |  |
|    |                                                   | oved groundwater plan for the facility?                 |           |       |    |                       |  |  |  |  |  |
|    |                                                   | redevelopment (low-flow, turbid)?                       |           | X     |    |                       |  |  |  |  |  |
|    | Ipoes the well reduite                            | reactophiciii (iow-iiow, iorbia) t                      |           |       | _  |                       |  |  |  |  |  |
| or | nments: Include inspe                             | ction details, including items requiring repair or main | tenanc    | e.    |    |                       |  |  |  |  |  |
|    |                                                   | N/A                                                     |           |       |    |                       |  |  |  |  |  |

Prepared By / Date: John Myer 10/9/2023 DL/SME Review By / Date: Dylan Ripley 10/17/2023



|        |                                               | MONITORING WELL INSPECTION                                                           | ON CHE  | CKLIS  | ī         | Stantec                          |
|--------|-----------------------------------------------|--------------------------------------------------------------------------------------|---------|--------|-----------|----------------------------------|
|        | Project Name:                                 | Southern Company Arkwright                                                           |         |        |           |                                  |
|        | Plant Name:                                   | Plant Arkwright                                                                      |         |        | _         |                                  |
|        | Plant Address:                                | 5001 Arkwright Road, Macon, GA 31210                                                 |         |        | -         |                                  |
|        | Project Number:                               | 175569434                                                                            |         |        | -         |                                  |
|        | Goal/Task:                                    | Hydrogeological investigation                                                        |         |        | -         |                                  |
|        |                                               | 10/12/2022                                                                           |         |        | _         |                                  |
|        | Date:                                         | 10/12/2023                                                                           |         |        | _         |                                  |
|        | Monitoring Well No.:                          | AP1PZ-10                                                                             |         |        | _         |                                  |
|        | Priority Maintenance                          | Item Identified: Tilted bollard.                                                     |         |        | _         |                                  |
|        |                                               |                                                                                      |         |        |           |                                  |
|        |                                               | Description                                                                          | Yes     | No     | NA        | Comments                         |
| 1      | Location/Identification                       |                                                                                      |         |        |           |                                  |
| а      | Is the well visible and                       |                                                                                      |         | Χ      |           | Well cannot be easily seen or    |
| b      |                                               | lentified with the correct well ID?                                                  | Х       |        |           |                                  |
| С      | from traffic?                                 | affic area and does the well require protection                                      |         | Х      |           |                                  |
| d      |                                               | nd the well acceptable? (no standing water, nor is bus drainage flow path)           | Х       |        |           |                                  |
| 2      | Bratastiva Casina                             |                                                                                      |         |        |           | 1                                |
| 2<br>a | Protective Casing                             | ng free from apparent damage and able to be                                          | Х       |        |           |                                  |
| _      | secured?                                      | ng nee nom apparem damage and able to be                                             | ^`      |        |           |                                  |
| b      | Is the casing free of a                       | degradation or deterioration?                                                        | Х       |        |           |                                  |
| С      | Does the casing have                          | e a functioning weep hole?                                                           | Χ       |        |           |                                  |
| d      | Is the annular space<br>with pea gravel/sand  | between casings clear of debris and water, or filled d?                              | Х       |        |           |                                  |
| е      | Is the well locked an                         | d is the lock in good condition?                                                     | Χ       |        |           |                                  |
|        |                                               |                                                                                      |         |        |           |                                  |
| 3      | Surface pad                                   |                                                                                      |         |        |           |                                  |
| a      |                                               | od condition (not cracked or broken)? d away from the protective casing?             | X       |        |           |                                  |
| b<br>c |                                               | mplete contact with the protective casing?                                           | X       |        |           |                                  |
| d      |                                               | mplete contact with the ground surface and                                           | X       |        |           |                                  |
| -      |                                               | ned by erosion, animal burrows, and does not                                         |         |        |           |                                  |
|        | move when stepped                             | •                                                                                    |         |        |           |                                  |
| е      | Is the pad surface cl                         | ean (not covered with sediment or debris)?                                           | Х       |        |           | Ant hill located on edge of well |
| 4      | Internal casing                               |                                                                                      |         | 1      | 1         |                                  |
| а      |                                               | nt entry of foreign material into the well?                                          | Х       |        |           |                                  |
| b      |                                               | tinks or bends, or any obstructions from foreign                                     | Х       |        |           |                                  |
|        | objects (such as baile                        |                                                                                      |         |        |           |                                  |
| С      | Is the well properly v                        | ented for equilibrium of air pressure?                                               | Х       |        |           |                                  |
| d      | Is the survey point cle                       | early marked on the inner casing?                                                    | Χ       |        |           |                                  |
| е      |                                               | ell consistent with the original well log?                                           | Х       |        |           |                                  |
| f      |                                               | (or does the PVC move easily when touched or                                         | Х       |        |           |                                  |
|        | can it be taken apar<br>couplings in construc | t by hand due to lack of grout or use of slip                                        |         |        |           |                                  |
|        | coopiii iga ii i coriaii oc                   | SIOT I                                                                               |         | l .    |           | 1                                |
| 5      | Sampling (Groundwo                            | iter Wells Only)                                                                     |         |        |           |                                  |
| а      |                                               | adequately when purged?                                                              | Χ       |        |           |                                  |
| b      | If dedicated samplin                          | g equipment installed, is it in good condition and                                   | Х       |        |           |                                  |
|        | specified in the appr                         | oved groundwater plan for the facility?                                              |         |        |           |                                  |
| С      | Does the well require                         | redevelopment (low-flow, turbid)?                                                    |         | Х      | <u> </u>  | Well breathes at 100 mL/min.     |
| Cor    | mments: Include inspe                         | ction details, including items requiring repair or main                              | ntenanc | e.     |           |                                  |
|        | Southeast bollard doe                         | s not stand completely vertically. Active ant hill locc<br>need of landscaping maint | ited on | edge c | of well p |                                  |
| _      | pared By / Date:                              | Dylan Quintal                                                                        |         |        |           | 10/12/2023                       |
| DL/    | SME Review By / Date                          | : Dylan Ripley 10/17/2023                                                            |         |        |           |                                  |



| Plant Name           | Plant Arkwright                                      |  |  |  |  |
|----------------------|------------------------------------------------------|--|--|--|--|
| Plant Address:       | 5001 Arkwright Road, Macon, GA 31210                 |  |  |  |  |
| Project Number:      | 175569434                                            |  |  |  |  |
| Goal/Task:           | Hydrogeological investigation                        |  |  |  |  |
| Date:                | 10/12/2023                                           |  |  |  |  |
| Monitoring Well No.: | AP1PZ-11                                             |  |  |  |  |
| Priority Maintenance | Item Identified: Access via wattles and landscaping. |  |  |  |  |

|   | Description                                                               | Yes | No | NA | Comments                         |
|---|---------------------------------------------------------------------------|-----|----|----|----------------------------------|
| 1 | Location/Identification                                                   |     |    |    |                                  |
| a | Is the well visible and accessible?                                       |     | Χ  |    | Well cannot be easily seen or    |
|   | Is the well properly identified with the correct well ID?                 | Х   |    |    |                                  |
| ) | Is the well in a high traffic area and does the well require protection   |     | Х  |    |                                  |
|   | from traffic?                                                             |     |    |    |                                  |
| b | Is the drainage around the well acceptable? (no standing water, nor is    | Х   |    |    |                                  |
|   | well located in obvious drainage flow path)                               |     |    |    | <u> </u>                         |
| 2 | Protective Casing                                                         |     |    |    |                                  |
|   | Is the protective casing free from apparent damage and able to be         | Х   |    |    |                                  |
| - | secured?                                                                  | ,   |    |    |                                  |
| ) | Is the casing free of degradation or deterioration?                       | Χ   |    |    |                                  |
| 2 | Does the casing have a functioning weep hole?                             | X   |    |    |                                  |
| b | Is the annular space between casings clear of debris and water, or filled | Χ   |    |    |                                  |
|   | with pea gravel/sand?                                                     |     |    |    |                                  |
| е | Is the well locked and is the lock in good condition?                     | Х   |    |    |                                  |
|   |                                                                           |     |    |    |                                  |
|   | Surface pad                                                               |     |    |    |                                  |
|   | Is the well pad in good condition (not cracked or broken)?                | X   |    |    |                                  |
|   | Is the well pad sloped away from the protective casing?                   | Х   |    |    |                                  |
|   | Is the well pad in complete contact with the protective casing?           | Х   |    |    |                                  |
| b | Is the well pad in complete contact with the ground surface and           | Х   |    |    |                                  |
|   | stable?(Not undermined by erosion, animal burrows, and does not           |     |    |    |                                  |
| _ | move when stepped on).                                                    |     | Х  |    | A-4 - 11                         |
| Э | Is the pad surface clean (not covered with sediment or debris)?           |     | Α  |    | Ant hill located on edge of well |
| 4 | Internal casing                                                           |     | 1  |    |                                  |
| a | Does the cap prevent entry of foreign material into the well?             | Χ   |    |    |                                  |
|   | Is the casing free of kinks or bends, or any obstructions from foreign    | X   |    |    |                                  |
|   | objects (such as bailers)?                                                |     |    |    |                                  |
| - | Is the well properly vented for equilibrium of air pressure?              | Х   |    |    |                                  |
|   | Is the survey point clearly marked on the inner casing?                   | X   |    |    | -                                |
| _ | Is the depth of the well consistent with the original well log?           | X   |    |    |                                  |
|   | Is the casing stable? (or does the PVC move easily when touched or        | X   |    |    | +                                |
|   | can it be taken apart by hand due to lack of grout or use of slip         | ^   |    |    |                                  |
|   | couplings in construction)                                                |     |    |    |                                  |
| _ | ,                                                                         |     |    |    | •                                |
| 5 | Sampling (Groundwater Wells Only)                                         |     |    |    |                                  |
| а | Does well recharge adequately when purged?                                | Χ   |    |    |                                  |
| b | If dedicated sampling equipment installed, is it in good condition and    | Χ   |    |    |                                  |
|   | specified in the approved groundwater plan for the facility?              |     |    |    |                                  |
|   | , , ,                                                                     |     |    |    |                                  |
| С | Does the well require redevelopment (low-flow, turbid)?                   |     | X  | l  | Well breathes at 200 mL/min.     |

Comments: Include inspection details, including items requiring repair or maintenance.

Well located behind wattles in less well-maintained area; requires landscaping maintenance.

Prepared By / Date: Dylan Quintal 10/12/2023

DL/SME Review By / Date: Dylan Ripley 10/17/2023

|          |                        | Location/Id          | dentification                                             |                     |                    |     | Protective Casing |                                                                                  |     |                                         | Surface Pad                            |     |     | Internal Casing                                                                          |                                                         |                                        |  |
|----------|------------------------|----------------------|-----------------------------------------------------------|---------------------|--------------------|-----|-------------------|----------------------------------------------------------------------------------|-----|-----------------------------------------|----------------------------------------|-----|-----|------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------|--|
|          | Visible and accessible | with correct well ID | traffic area; does the<br>well require<br>protection from | standing water, not | Free from apparent |     | Functioning weep  | Annular space clear<br>of debris and water,<br>or filled with pea<br>gravel/sand |     | Good condition (not<br>cracked/ broken) | Sloped away from the protective casing |     |     | Free of kinks/bends,<br>or any obstructions<br>from foreign objects<br>(such as bailers) | Properly vented for<br>equilibration of air<br>pressure | Corrective actions as needed, by date: |  |
| Well ID: |                        |                      |                                                           |                     |                    |     |                   |                                                                                  |     |                                         |                                        |     |     |                                                                                          |                                                         |                                        |  |
| AP-1     |                        |                      |                                                           |                     |                    |     |                   |                                                                                  |     |                                         |                                        |     |     |                                                                                          |                                                         |                                        |  |
| AP1GWA-  |                        | Yes                  | Yes                                                       | Yes                 | Yes                | Yes | Yes               | Yes                                                                              | Yes | Yes                                     | Yes                                    | Yes | Yes | Yes                                                                                      | Yes                                                     | NA .                                   |  |
| AP1GWA-  | Yes                    | Yes                  | Yes                                                       | Yes                 | Yes                | Yes | Yes               | Yes                                                                              | Yes | Yes                                     | Yes                                    | Yes | Yes | Yes                                                                                      | Yes                                                     | NA NA                                  |  |
| AP1PZ-1  |                        | Yes                  | Yes                                                       | Yes                 | Yes                | Yes | Yes               | Yes                                                                              | Yes | Yes                                     | Yes                                    | Yes | Yes | Yes                                                                                      | Yes                                                     | NA NA                                  |  |
| AP1PZ-2  |                        | Yes                  | Yes                                                       | Yes                 | Yes                | Yes | Yes               | Yes                                                                              | Yes | Yes                                     | Yes                                    | Yes | Yes | Yes                                                                                      | Yes                                                     | NA                                     |  |
| AP1PZ-3  |                        | Yes                  | Yes                                                       | Yes                 | Yes                | Yes | Yes               | Yes                                                                              | Yes | Yes                                     | Yes                                    | Yes | Yes | Yes                                                                                      | Yes                                                     | NA                                     |  |
| AP1PZ-4  |                        | Yes                  | Yes                                                       | Yes                 | Yes                | Yes | Yes               | Yes                                                                              | Yes | Yes                                     | Yes                                    | Yes | Yes | Yes                                                                                      | Yes                                                     | NA                                     |  |
| AP1PZ-5  |                        | Yes                  | Yes                                                       | Yes                 | Yes                | Yes | Yes               | Yes                                                                              | Yes | Yes                                     | Yes                                    | Yes | Yes | Yes                                                                                      | Yes                                                     | NA                                     |  |
| AP1PZ-7  |                        | Yes                  | Yes                                                       | Yes                 | Yes                | Yes | Yes               | Yes                                                                              | Yes | Yes                                     | Yes                                    | Yes | Yes | Yes                                                                                      | Yes                                                     | NA                                     |  |
| AP1PZ-8  |                        | Yes                  | Yes                                                       | Yes                 | Yes                | Yes | Yes               | Yes                                                                              | Yes | Yes                                     | Yes                                    | Yes | Yes | Yes                                                                                      | Yes                                                     | NA .                                   |  |
| AP1PZ-9  |                        | Yes                  | Yes                                                       | Yes                 | Yes                | Yes | Yes               | Yes                                                                              | Yes | Yes                                     | Yes                                    | Yes | Yes | Yes                                                                                      | Yes                                                     | NA NA                                  |  |
| AP1PZ-10 |                        | Yes                  | Yes                                                       | Yes                 | Yes                | Yes | Yes               | Yes                                                                              | Yes | Yes                                     | Yes                                    | Yes | Yes | Yes                                                                                      | Yes                                                     | NA NA                                  |  |
| AP1PZ-11 | Yes                    | Yes                  | Yes                                                       | Yes                 | Yes                | Yes | Yes               | Yes                                                                              | Yes | Yes                                     | Yes                                    | Yes | Yes | Yes                                                                                      | Yes                                                     | NA NA                                  |  |

# APPENDIX B Field Sampling Data and Analytical Data Reports

# **B.1** Field Sampling Data

Test Date / Time: 10/9/2023 1:11:56 PM

**Project:** Arkwright **Operator Name:** J. Myer

Location Name: AP1GWA-1 Latitude: 32.930019061764 Longitude: -83.7010088190436

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 26.8 ft Total Depth: 37.5 ft

Initial Depth to Water: 29.96 ft

26.96

**Pump Type: Dedicated Bladder** 

**Pump** 

**Tubing Type: HDPE** 

Pump Intake From TOC: 31.8 ft Estimated Total Volume Pumped:

7500 ml

Flow Cell Volume: 90 ml Final Flow Rate: 300 ml/min Final Draw Down: 2.81 ft

0.19

Instrument Used: Aqua TROLL 400

Serial Number: 850751

## **Test Notes:**

Heron Instruments Dipper-T ID: WL006

MP50 SN: 26 ID: 103

Pressure: 25 psi

## **Weather Conditions:**

Sunny 71 F

#### **Low-Flow Readings:**

| Date Time            | Elapsed Time | рН      | Temperature | Specific<br>Conductivity | RDO<br>Concentration | Turbidity | ORP      | Depth to<br>Water | Flow          |
|----------------------|--------------|---------|-------------|--------------------------|----------------------|-----------|----------|-------------------|---------------|
|                      |              | +/- 0.1 | +/- 0.5     | +/- 5 %                  | +/- 10 %             | +/- 10 %  | +/- 10   | +/- 0.3           |               |
| 10/9/2023<br>1:11 PM | 00:00        | 5.32 pH | 22.31 °C    | 203.05 μS/cm             | 4.21 mg/L            | 2.44 NTU  | 188.7 mV | 27.15 ft          | 300.00 ml/min |
| 10/9/2023<br>1:16 PM | 05:00        | 5.25 pH | 20.71 °C    | 203.67 μS/cm             | 3.15 mg/L            | 2.52 NTU  | 161.0 mV | 27.15 ft          | 300.00 ml/min |
| 10/9/2023<br>1:21 PM | 10:00        | 5.29 pH | 20.66 °C    | 203.66 μS/cm             | 3.06 mg/L            | 2.04 NTU  | 180.8 mV | 27.15 ft          | 300.00 ml/min |
| 10/9/2023<br>1:26 PM | 15:00        | 5.30 pH | 20.62 °C    | 202.08 μS/cm             | 3.03 mg/L            | 2.10 NTU  | 145.2 mV | 27.15 ft          | 300.00 ml/min |
| 10/9/2023<br>1:31 PM | 20:00        | 5.30 pH | 20.62 °C    | 202.21 μS/cm             | 3.01 mg/L            | 2.30 NTU  | 138.7 mV | 27.15 ft          | 300.00 ml/min |
| 10/9/2023<br>1:36 PM | 25:00        | 5.29 pH | 20.66 °C    | 201.95 μS/cm             | 3.00 mg/L            | 3.10 NTU  | 135.2 mV | 27.15 ft          | 300.00 ml/min |

| Sam | ple ID: | Description: |
|-----|---------|--------------|
|-----|---------|--------------|

|               | 1345                     |
|---------------|--------------------------|
|               | 6 bottles                |
|               | Metals                   |
| ARK-AP1GWA-1  | Radium                   |
|               | TDS                      |
|               | Anions                   |
|               |                          |
|               | 1405                     |
|               | 6 bottles                |
|               | Metals                   |
| ARK-AP1-FB-01 | Radium                   |
|               | TDS                      |
|               | Anions                   |
|               | DI water provided by AIR |

Test Date / Time: 10/9/2023 1:40:42 PM

Project: Arkwright

Operator Name: Dylan Quintal

Location Name: Arkwright, AP-1,

AP1GWA-2

Latitude: 32.9273346601797 Longitude: -83.7005548551679

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 20.5 ft Total Depth: 31.1 ft

Initial Depth to Water: 19.67 ft

Pump Type: Dedicated Bladder

**Pump** 

**Tubing Type: HDPE** 

Pump Intake From TOC: 25.3 ft Estimated Total Volume Pumped:

16000 ml

Flow Cell Volume: 90 ml

Final Flow Rate: 400 ml/min Final

Draw Down: 0 ft

Instrument Used: Aqua TROLL 400

Serial Number: 850762

## **Test Notes:**

Heron Dipper-T SN: 11FF2205014ML

MP50 SN: 22 ID: 103

Pressure: 35 psi

#### **Weather Conditions:**

Sunny, 73F

# **Low-Flow Readings:**

| Date Time            | Elapsed Time | рН      | Temperature | Specific<br>Conductivity | RDO<br>Concentration | Turbidity | ORP      | Depth to<br>Water | Flow          |
|----------------------|--------------|---------|-------------|--------------------------|----------------------|-----------|----------|-------------------|---------------|
|                      |              | +/- 0.1 | +/- 0.5     | +/- 5 %                  | +/- 10 %             | +/- 10 %  | +/- 10   | +/- 0.3           |               |
| 10/9/2023<br>1:40 PM | 00:00        | 6.01 pH | 21.68 °C    | 87.35 μS/cm              | 3.50 mg/L            | 27.50 NTU | 49.9 mV  | 19.67 ft          | 400.00 ml/min |
| 10/9/2023<br>1:45 PM | 05:00        | 6.00 pH | 21.80 °C    | 91.00 µS/cm              | 3.22 mg/L            | 18.20 NTU | 16.1 mV  | 19.67 ft          | 400.00 ml/min |
| 10/9/2023<br>1:50 PM | 10:00        | 6.00 pH | 21.83 °C    | 93.36 µS/cm              | 3.01 mg/L            | 15.10 NTU | -2.5 mV  | 19.67 ft          | 400.00 ml/min |
| 10/9/2023<br>1:55 PM | 15:00        | 6.00 pH | 21.87 °C    | 94.40 µS/cm              | 2.90 mg/L            | 11.30 NTU | -5.1 mV  | 19.67 ft          | 400.00 ml/min |
| 10/9/2023<br>2:00 PM | 20:00        | 5.95 pH | 21.91 °C    | 94.79 µS/cm              | 2.86 mg/L            | 8.17 NTU  | -16.2 mV | 19.67 ft          | 400.00 ml/min |
| 10/9/2023<br>2:05 PM | 25:00        | 5.95 pH | 21.84 °C    | 95.81 µS/cm              | 2.72 mg/L            | 7.42 NTU  | -20.3 mV | 19.67 ft          | 400.00 ml/min |
| 10/9/2023<br>2:10 PM | 30:00        | 5.98 pH | 21.87 °C    | 96.42 µS/cm              | 2.59 mg/L            | 5.51 NTU  | -26.6 mV | 19.67 ft          | 400.00 ml/min |
| 10/9/2023<br>2:15 PM | 35:00        | 5.99 pH | 21.93 °C    | 97.22 μS/cm              | 2.44 mg/L            | 3.99 NTU  | -33.2 mV | 19.67 ft          | 400.00 ml/min |
| 10/9/2023<br>2:20 PM | 40:00        | 5.99 pH | 21.89 °C    | 97.80 μS/cm              | 2.36 mg/L            | 3.64 NTU  | -37.9 mV | 19.67 ft          | 400.00 ml/min |

# **Samples**

| Sample ID:    | Description:                           |
|---------------|----------------------------------------|
|               | Sample time: 1430                      |
| ARK-AP1GWA-2  | 6 bottles: Metals, Anions, TDS, Radium |
| ARK-AP1-EB-01 | 6 bottles: Metals, Anions, TDS, Radium |

Test Date / Time: 10/9/2023 3:31:25 PM

**Project:** Arkwright **Operator Name:** J. Myer

Location Name: AP1PZ-1 Latitude: 32.9210574183589 Longitude: -83.6987658217549

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 77 ft Total Depth: 87.6 ft

Initial Depth to Water: 45.73 ft

Pump Type: Dedicated Bladder

**Pump** 

**Tubing Type: HDPE** 

Pump Intake From TOC: 82.6 ft Estimated Total Volume Pumped:

4000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 100 ml/min Final Draw Down: 2.33 ft Instrument Used: Aqua TROLL 400

Serial Number: 850751

#### **Test Notes:**

Heron Instruments Dipper-T SN WL 006

MP50 SN: 26 ID: 105 Pressure: 45

#### **Weather Conditions:**

Sunny 76 F

#### **Low-Flow Readings:**

| Date Time            | Elapsed Time | рН      | Temperature | Specific<br>Conductivity | RDO<br>Concentration | Turbidity | ORP     | Depth to<br>Water | Flow          |
|----------------------|--------------|---------|-------------|--------------------------|----------------------|-----------|---------|-------------------|---------------|
|                      |              | +/- 0.1 | +/- 0.5     | +/- 5 %                  | +/- 10 %             | +/- 10 %  | +/- 10  | +/- 0.3           |               |
| 10/9/2023<br>3:31 PM | 00:00        | 6.75 pH | 24.42 °C    | 329.45 μS/cm             | 1.76 mg/L            | 3.32 NTU  | 19.4 mV | 46.49 ft          | 100.00 ml/min |
| 10/9/2023<br>3:36 PM | 05:00        | 6.50 pH | 22.11 °C    | 337.93 μS/cm             | 1.12 mg/L            | 3.51 NTU  | 58.1 mV | 46.98 ft          | 100.00 ml/min |
| 10/9/2023<br>3:41 PM | 10:00        | 6.44 pH | 21.87 °C    | 337.04 μS/cm             | 1.14 mg/L            | 3.36 NTU  | 65.9 mV | 47.34 ft          | 100.00 ml/min |
| 10/9/2023<br>3:46 PM | 15:00        | 6.43 pH | 21.73 °C    | 336.97 μS/cm             | 0.99 mg/L            | 3.70 NTU  | 70.4 mV | 47.71 ft          | 100.00 ml/min |
| 10/9/2023<br>3:51 PM | 20:00        | 6.42 pH | 21.64 °C    | 339.90 μS/cm             | 0.83 mg/L            | 2.55 NTU  | 81.7 mV | 47.73 ft          | 100.00 ml/min |
| 10/9/2023<br>3:56 PM | 25:00        | 6.42 pH | 21.47 °C    | 339.04 μS/cm             | 0.73 mg/L            | 1.97 NTU  | 70.1 mV | 47.83 ft          | 100.00 ml/min |
| 10/9/2023<br>4:01 PM | 30:00        | 6.41 pH | 21.50 °C    | 338.33 µS/cm             | 0.68 mg/L            | 1.45 NTU  | 69.6 mV | 47.94 ft          | 100.00 ml/min |
| 10/9/2023<br>4:06 PM | 35:00        | 6.41 pH | 21.46 °C    | 337.40 μS/cm             | 0.64 mg/L            | 1.46 NTU  | 68.9 mV | 48.01 ft          | 100.00 ml/min |
| 10/9/2023<br>4:11 PM | 40:00        | 6.41 pH | 21.41 °C    | 337.44 µS/cm             | 0.64 mg/L            | 1.80 NTU  | 68.1 mV | 48.06 ft          | 100.00 ml/min |

# **Samples**

| Sample ID:  | Description:             |
|-------------|--------------------------|
|             | 1620 6 bottles collected |
|             | Metals                   |
| ARK-AP1PZ-1 | Radium                   |
|             | Anions                   |
|             | TDS                      |

Test Date / Time: 10/9/2023 4:20:06 PM

Project: Arkwright

**Operator Name:** Dylan Quintal

Location Name: Arkwright, AP-1,

AP1PZ-2

Latitude: 32.920425025932 Longitude: -83.6982994526625

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 52.1 ft Total Depth: 62.7 ft

Initial Depth to Water: 43.04 ft

Pump Type: Dedicated Bladder

**Pump** 

**Tubing Type: HDPE** 

Pump Intake From TOC: 56.6 ft Estimated Total Volume Pumped:

9000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 300 ml/min Final Draw Down: 0 ft Instrument Used: Aqua TROLL 400

Serial Number: 850762

## **Test Notes:**

Heron dipper-T SN: 11FF2205014ML

MP50 SN: 22 ID: 103

Pressure: 45 psi

# **Weather Conditions:**

Sunny, 77F

# **Low-Flow Readings:**

| Date Time            | Elapsed Time | рН      | Temperature | Specific<br>Conductivity | RDO<br>Concentration | Turbidity | ORP     | Depth to<br>Water | Flow          |
|----------------------|--------------|---------|-------------|--------------------------|----------------------|-----------|---------|-------------------|---------------|
|                      |              | +/- 0.1 | +/- 0.5     | +/- 5 %                  | +/- 10 %             | +/- 10 %  | +/- 10  | +/- 0.3           |               |
| 10/9/2023<br>4:20 PM | 00:00        | 6.12 pH | 20.84 °C    | 1,154.8<br>μS/cm         | 0.48 mg/L            | 11.50 NTU | 54.4 mV | 43.04 ft          | 300.00 ml/min |
| 10/9/2023<br>4:25 PM | 05:00        | 6.08 pH | 20.78 °C    | 1,216.5<br>μS/cm         | 0.44 mg/L            | 9.03 NTU  | 56.6 mV | 43.04 ft          | 300.00 ml/min |
| 10/9/2023<br>4:30 PM | 10:00        | 6.05 pH | 20.65 °C    | 1,268.1<br>μS/cm         | 0.36 mg/L            | 7.15 NTU  | 64.5 mV | 43.04 ft          | 300.00 ml/min |
| 10/9/2023<br>4:35 PM | 15:00        | 6.02 pH | 20.76 °C    | 1,317.6<br>μS/cm         | 0.24 mg/L            | 4.31 NTU  | 71.7 mV | 43.04 ft          | 300.00 ml/min |
| 10/9/2023<br>4:40 PM | 20:00        | 6.01 pH | 21.00 °C    | 1,326.9<br>μS/cm         | 0.18 mg/L            | 4.04 NTU  | 75.5 mV | 43.04 ft          | 300.00 ml/min |
| 10/9/2023<br>4:45 PM | 25:00        | 5.99 pH | 20.95 °C    | 1,343.6<br>μS/cm         | 0.18 mg/L            | 3.87 NTU  | 79.8 mV | 43.04 ft          | 300.00 ml/min |
| 10/9/2023<br>4:50 PM | 30:00        | 5.98 pH | 20.92 °C    | 1,369.4<br>μS/cm         | 0.17 mg/L            | 3.29 NTU  | 82.1 mV | 43.04 ft          | 300.00 ml/min |

| Sample ID: Description: |
|-------------------------|
|-------------------------|

| ARK-AP1PZ-2   | Sample time: 1700; 6 bottles: Metals, Anions, TDS, Radium |
|---------------|-----------------------------------------------------------|
| ARK-AP1-FD-01 | 6 bottles: Metals, Anions, TDS, Radium                    |

Test Date / Time: 10/10/2023 8:49:00 AM

**Project:** Arkwright **Operator Name:** J. Myer

Location Name: AP1PZ-3 Latitude: 32.9196479679014 Longitude: -83.6980466544628

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 56.9 ft Total Depth: 67.4 ft

Initial Depth to Water: 43.7 ft

Pump Type: Dedicated Bladder

**Pump** 

**Tubing Type: HDPE** 

Pump Intake From TOC: 61.4 ft Estimated Total Volume Pumped:

5250 ml

Flow Cell Volume: 90 ml Final Flow Rate: 150 ml/min Final Draw Down: 0.3 ft Instrument Used: Aqua TROLL 400

Serial Number: 850751

#### **Test Notes:**

Heron Instrument Dipper-T SN: WL-006

MP-50 SN: 26 ID: 103

Pressure: 35 PSI

#### **Weather Conditions:**

Cloudy 53 F

## **Low-Flow Readings:**

| Date Time             | Elapsed Time | рН      | Temperature | Specific<br>Conductivity | RDO<br>Concentration | Turbidity | ORP      | Depth to<br>Water | Flow          |
|-----------------------|--------------|---------|-------------|--------------------------|----------------------|-----------|----------|-------------------|---------------|
|                       |              | +/- 0.1 | +/- 0.5     | +/- 5 %                  | +/- 10 %             | +/- 10 %  | +/- 10   | +/- 0.3           |               |
| 10/10/2023<br>8:49 AM | 00:00        | 5.56 pH | 18.11 °C    | 2,156.4<br>μS/cm         | 4.47 mg/L            | 1.36 NTU  | 198.0 mV | 44.00 ft          | 150.00 ml/min |
| 10/10/2023<br>8:54 AM | 05:00        | 5.60 pH | 19.14 °C    | 2,143.6<br>μS/cm         | 0.83 mg/L            | 0.80 NTU  | 175.2 mV | 44.00 ft          | 150.00 ml/min |
| 10/10/2023<br>8:59 AM | 10:00        | 5.61 pH | 19.11 °C    | 2,126.4<br>μS/cm         | 0.58 mg/L            | 0.59 NTU  | 192.3 mV | 44.00 ft          | 150.00 ml/min |
| 10/10/2023<br>9:04 AM | 15:00        | 5.61 pH | 19.15 °C    | 2,138.6<br>μS/cm         | 0.51 mg/L            | 0.74 NTU  | 164.2 mV | 44.00 ft          | 150.00 ml/min |
| 10/10/2023<br>9:09 AM | 20:00        | 5.61 pH | 19.23 °C    | 2,127.3<br>μS/cm         | 0.52 mg/L            | 0.51 NTU  | 178.5 mV | 44.00 ft          | 150.00 ml/min |
| 10/10/2023<br>9:14 AM | 25:00        | 5.61 pH | 19.23 °C    | 2,133.2<br>μS/cm         | 0.38 mg/L            | 0.94 NTU  | 152.0 mV | 44.00 ft          | 150.00 ml/min |
| 10/10/2023<br>9:19 AM | 30:00        | 5.61 pH | 19.24 °C    | 2,143.0<br>μS/cm         | 0.30 mg/L            | 0.69 NTU  | 147.2 mV | 44.00 ft          | 150.00 ml/min |
| 10/10/2023<br>9:24 AM | 35:00        | 5.61 pH | 19.33 °C    | 2,130.6<br>μS/cm         | 0.27 mg/L            | 0.34 NTU  | 142.6 mV | 44.00 ft          | 150.00 ml/min |

| Sample ID: | Description: |
|------------|--------------|
|------------|--------------|

|             | 0930 6 bottles collected |
|-------------|--------------------------|
|             | Metals                   |
| ARK-AP1PZ-3 | Radium                   |
|             | Anions                   |
|             | TDS                      |

Test Date / Time: 10/10/2023 8:45:09 AM

Project: Arkwright

**Operator Name:** Dylan Quintal

Location Name: Arkwright, AP-1,

AP1PZ-4

Latitude: 32.9188151770192 Longitude: -83.6975826323032

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 56.9 ft Total Depth: 67.4 ft

Initial Depth to Water: 48.03 ft

Pump Type: Dedicated Bladder

**Pump** 

**Tubing Type: HDPE** 

Pump Intake From TOC: 61.5 ft Estimated Total Volume Pumped:

2000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 100 ml/min

Final Draw Down: 0 ft

Instrument Used: Aqua TROLL 400

Serial Number: 850762

#### **Test Notes:**

Heron dipper-T SN: 11FF2205014ML; MP50 SN: 22; ID: 101; Pressure: 35 psi

## **Weather Conditions:**

Cloudy, 54F

# **Low-Flow Readings:**

| Date Time  | Elapsed Time | рН            | Temperature | Specific<br>Conductivity | RDO<br>Concentration | Turbidity | ORP              | Depth to<br>Water | Flow               |
|------------|--------------|---------------|-------------|--------------------------|----------------------|-----------|------------------|-------------------|--------------------|
|            |              | +/- 0.1       | +/- 0.5     | +/- 5 %                  | +/- 10 %             | +/- 10 %  | +/- 10           | +/- 0.3           |                    |
| 10/10/2023 | 00:00        | 6.30 pH       | 18.19 °C    | 2,379.5                  | 0.46 mg/L            | 6.10 NTU  | .10 NTU -52.7 mV | 48.03 ft          | 100.00 ml/min      |
| 8:45 AM    | 00.00        | 0.50 pri      | 10.19 C     | μS/cm                    | 0.40 mg/L            | 0.101010  | -32.7 1110       |                   |                    |
| 10/10/2023 | 05:00        | 5:00 6.29 pH  | 18.37 °C    | 2,371.3                  | 0.45 mg/L            | 5.98 NTU  | -69.0 mV         | 48.03 ft          | 100.00 ml/min      |
| 8:50 AM    | 03.00        |               |             | μS/cm                    | 0.45 mg/L            | 5.96 NTO  |                  |                   | 100.00 1111/111111 |
| 10/10/2023 | 10:00        | 6.29 pH       | 18.57 °C    | 2,362.8                  | 0.45 mg/L            | 4.55 NTU  | -52.0 mV         | 48.03 ft          | 100.00 ml/min      |
| 8:55 AM    | 10.00        | 0.29 pm       | 10.57       | μS/cm                    | 0.43 Hig/L           | 4.55 1110 |                  | 40.03 10          | 100.00 1111/111111 |
| 10/10/2023 | 15:00        | 6.29 pH       | 18.46 °C    | 2,361.8                  | 0.43 mg/L            | 4.15 NTU  | -51.1 mV         | 48.03 ft          | 100.00 ml/min      |
| 9:00 AM    | 15.00        | 6.29 pm       | 10.40       | μS/cm                    | 0.43 Hig/L           | 4.131010  | -51.11110        | 40.03 10          | 100.00 1111/111111 |
| 10/10/2023 | 20:00        | 20:00 6.28 pH | 18.59 °C    | 2,357.5                  | 0.43 mg/L            | 3.99 NTU  | -66.8 mV         | 48.03 ft          | 100.00 ml/min      |
| 9:05 AM    | 20.00        |               |             | μS/cm                    |                      |           |                  | 40.03 10          | 100.00 1111/111111 |

| Sample ID:    | Description:                                              |
|---------------|-----------------------------------------------------------|
| ARK-AP1PZ-4   | Sample time: 0910; 6 bottles: Metals, Anions, TDS, Radium |
| ARK-AP1-FB-02 | Sample time: 0930; 6 bottles: Metals, Anions, TDS, Radium |

Test Date / Time: 10/10/2023 10:31:42 AM

**Project:** Arkwright **Operator Name:** J. Myer

Location Name: AP1PZ-5 Latitude: 32.9179289032926 Longitude: -83.6973509564996

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 56.8 ft Total Depth: 67.2 ft

Initial Depth to Water: 49.55 ft

Pump Type: Dedicated Bladder

**Pump** 

**Tubing Type: HDPE** 

Pump Intake From TOC: 61.3 ft Estimated Total Volume Pumped:

4500 ml

Flow Cell Volume: 90 ml Final Flow Rate: 100 ml/min Final Draw Down: 1.12 ft Instrument Used: Aqua TROLL 400

Serial Number: 850751

#### **Test Notes:**

Heron Instruments Dipper-T SN: WL-006

MP-50 SN: 26 ID: 103

Pressure: 35 psi

#### **Weather Conditions:**

Sunny 64 F

# **Low-Flow Readings:**

| Date Time              | Elapsed Time | рН      | Temperature | Specific<br>Conductivity | RDO<br>Concentration | Turbidity | ORP      | Depth to<br>Water | Flow          |
|------------------------|--------------|---------|-------------|--------------------------|----------------------|-----------|----------|-------------------|---------------|
|                        |              | +/- 0.1 | +/- 0.5     | +/- 5 %                  | +/- 10 %             | +/- 10 %  | +/- 10   | +/- 0.3           |               |
| 10/10/2023<br>10:31 AM | 00:00        | 6.03 pH | 22.07 °C    | 2,926.0<br>μS/cm         | 2.18 mg/L            | 20.50 NTU | -11.3 mV | 50.30 ft          | 100.00 ml/min |
| 10/10/2023<br>10:36 AM | 05:00        | 6.05 pH | 20.32 °C    | 3,023.3<br>µS/cm         | 1.37 mg/L            | 14.90 NTU | -37.6 mV | 50.48 ft          | 100.00 ml/min |
| 10/10/2023<br>10:41 AM | 10:00        | 6.06 pH | 20.30 °C    | 3,028.5<br>µS/cm         | 1.20 mg/L            | 8.60 NTU  | -42.2 mV | 50.55 ft          | 100.00 ml/min |
| 10/10/2023<br>10:46 AM | 15:00        | 6.06 pH | 20.35 °C    | 3,019.0<br>µS/cm         | 1.05 mg/L            | 6.59 NTU  | -74.1 mV | 50.60 ft          | 100.00 ml/min |
| 10/10/2023<br>10:51 AM | 20:00        | 6.06 pH | 20.33 °C    | 3,022.2<br>µS/cm         | 0.85 mg/L            | 5.51 NTU  | -49.9 mV | 50.63 ft          | 100.00 ml/min |
| 10/10/2023<br>10:56 AM | 25:00        | 6.05 pH | 20.38 °C    | 3,023.4<br>µS/cm         | 0.72 mg/L            | 3.26 NTU  | -48.9 mV | 50.66 ft          | 100.00 ml/min |
| 10/10/2023<br>11:01 AM | 30:00        | 6.06 pH | 20.54 °C    | 3,025.1<br>μS/cm         | 0.66 mg/L            | 2.07 NTU  | -50.6 mV | 50.67 ft          | 100.00 ml/min |
| 10/10/2023<br>11:06 AM | 35:00        | 6.05 pH | 20.57 °C    | 3,015.2<br>µS/cm         | 0.63 mg/L            | 1.71 NTU  | -77.6 mV | 50.67 ft          | 100.00 ml/min |
| 10/10/2023<br>11:11 AM | 40:00        | 6.05 pH | 20.66 °C    | 3,027.6<br>µS/cm         | 0.60 mg/L            | 1.03 NTU  | -48.8 mV | 50.67 ft          | 100.00 ml/min |
| 10/10/2023<br>11:16 AM | 45:00        | 6.05 pH | 20.77 °C    | 3,026.0<br>μS/cm         | 0.59 mg/L            | 0.88 NTU  | -46.8 mV | 50.67 ft          | 100.00 ml/min |

# **Samples**

| Sample ID:    | Description:         |
|---------------|----------------------|
|               | 1120 6 Samples taken |
|               | Metals               |
| ARK-AP1PZ-5   | Radium               |
|               | Anions               |
|               | TDS                  |
|               | 1210 6 Samples taken |
|               | Metals               |
| ARK-AP1-EB-02 | Radium               |
|               | TDS                  |
|               | Anions               |

Test Date / Time: 6/13/2023 2:42:52 PM

**Project:** Arkwright

Operator Name: B. Pennell

Location Name: Arkwright, AP-1,

PZ-6

Latitude: 32.9169078058876 Longitude: -83.696961030364

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 62.2 ft Total Depth: 72.2 ft

Initial Depth to Water: 57.13 ft

Pump Type: Dedicated Bladder

**Pump** 

**Tubing Type: LDPE** 

Tubing Inner Diameter: 0.17 in Pump Intake From TOC: 67.6 ft Estimated Total Volume Pumped:

9750 ml

Flow Cell Volume: 90 ml Final Flow Rate: 150 ml/min Final Draw Down: 0.43 ft Instrument Used: Aqua TROLL 400

Serial Number: 989630

**Test Notes:** 

Sample time: 1552

#### **Weather Conditions:**

Light rain, 30 C

# **Low-Flow Readings:**

| Date Time            | Elapsed Time | рН      | Temperature | Specific<br>Conductivity | RDO<br>Concentration | Turbidity | ORP      | Depth to<br>Water | Flow          |
|----------------------|--------------|---------|-------------|--------------------------|----------------------|-----------|----------|-------------------|---------------|
|                      |              | +/- 0.1 | +/- 0.5     | +/- 5 %                  | +/- 10 %             | +/- 10 %  | +/- 10   | +/- 0.33          |               |
| 6/13/2023<br>2:42 PM | 00:00        | 4.68 pH | 20.23 °C    | 3,021.4<br>µS/cm         | 2.60 mg/L            | 4.86 NTU  | 164.5 mV | 57.13 ft          | 150.00 ml/min |
| 6/13/2023<br>2:47 PM | 05:00        | 5.10 pH | 19.95 °C    | 3,047.8<br>µS/cm         | 1.96 mg/L            | 6.22 NTU  | 89.1 mV  | 57.56 ft          | 150.00 ml/min |
| 6/13/2023<br>2:52 PM | 10:00        | 5.22 pH | 19.86 °C    | 3,044.7<br>µS/cm         | 1.47 mg/L            | 3.59 NTU  | 76.2 mV  | 57.56 ft          | 150.00 ml/min |
| 6/13/2023<br>2:57 PM | 15:00        | 5.26 pH | 19.86 °C    | 3,049.9<br>µS/cm         | 1.27 mg/L            | 2.36 NTU  | 53.4 mV  | 57.56 ft          | 150.00 ml/min |
| 6/13/2023<br>3:02 PM | 20:00        | 5.28 pH | 19.86 °C    | 3,049.8<br>μS/cm         | 1.10 mg/L            | 2.04 NTU  | 45.6 mV  | 57.56 ft          | 150.00 ml/min |
| 6/13/2023<br>3:07 PM | 25:00        | 5.30 pH | 19.86 °C    | 3,051.9<br>μS/cm         | 1.00 mg/L            | 1.41 NTU  | 40.7 mV  | 57.56 ft          | 150.00 ml/min |
| 6/13/2023<br>3:12 PM | 30:00        | 5.31 pH | 19.89 °C    | 3,048.2<br>μS/cm         | 0.87 mg/L            | 0.97 NTU  | 37.2 mV  | 57.56 ft          | 150.00 ml/min |
| 6/13/2023<br>3:17 PM | 35:00        | 5.31 pH | 19.91 °C    | 3,057.0<br>μS/cm         | 0.80 mg/L            | 0.82 NTU  | 34.7 mV  | 57.56 ft          | 150.00 ml/min |
| 6/13/2023<br>3:22 PM | 40:00        | 5.32 pH | 19.91 °C    | 3,055.5<br>μS/cm         | 0.71 mg/L            | 0.62 NTU  | 32.6 mV  | 57.56 ft          | 150.00 ml/min |
| 6/13/2023<br>3:27 PM | 45:00        | 5.33 pH | 19.90 °C    | 3,042.9<br>μS/cm         | 0.62 mg/L            | 0.68 NTU  | 31.1 mV  | 57.56 ft          | 150.00 ml/min |
| 6/13/2023<br>3:32 PM | 50:00        | 5.33 pH | 19.86 °C    | 3,039.1<br>µS/cm         | 0.55 mg/L            | 0.47 NTU  | 29.7 mV  | 57.56 ft          | 150.00 ml/min |
| 6/13/2023<br>3:37 PM | 55:00        | 5.33 pH | 19.81 °C    | 3,036.5<br>µS/cm         | 0.49 mg/L            | 0.39 NTU  | 28.8 mV  | 57.56 ft          | 150.00 ml/min |

| 6/13/2023<br>3:42 PM | 01:00:00 | 5.34 pH | 19.81 °C | 3,031.2<br>μS/cm | 0.43 mg/L | 0.39 NTU | 27.6 mV | 57.56 ft | 150.00 ml/min |
|----------------------|----------|---------|----------|------------------|-----------|----------|---------|----------|---------------|
| 6/13/2023<br>3:47 PM | 01:05:00 | 5.34 pH | 19.83 °C | 3,029.3<br>μS/cm | 0.38 mg/L | 0.34 NTU | 26.6 mV | 57.56 ft | 150.00 ml/min |

# Samples

| Sample ID:           | Description:              |
|----------------------|---------------------------|
| ARK-AP1PZ-6-20230613 | 6 Polys collected at 1552 |

Test Date / Time: 10/10/2023 1:11:16 PM

**Project:** Arkwright **Operator Name:** J. Myer

Location Name: AP1PZ-7 Latitude: 32.9174028763597 Longitude: -83.6975306645036

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 67.3 ft Total Depth: 77.8 ft

Initial Depth to Water: 51.1 ft

Pump Type: Dedicated Bladder

**Pump** 

**Tubing Type: HDPE** 

Pump Intake From TOC: 71.8 ft Estimated Total Volume Pumped:

3000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 100 ml/min

Final Draw Down: 3 ft

Instrument Used: Aqua TROLL 400

Serial Number: 850751

# **Test Notes:**

Heron Instruments Dipper-T SN: WL 006

MP50 SN: 26 ID: 103

Pressure: 40 PSI

#### **Weather Conditions:**

Sunny 76 F

#### **Low-Flow Readings:**

| Date Time  | Elapsed Time | рН                     | Temperature | Specific<br>Conductivity | RDO<br>Concentration     | Turbidity | ORP        | Depth to<br>Water | Flow              |
|------------|--------------|------------------------|-------------|--------------------------|--------------------------|-----------|------------|-------------------|-------------------|
|            |              | +/- 0.1                | +/- 0.5     | +/- 5 %                  | +/- 10 %                 | +/- 10 %  | +/- 10     | +/- 0.3           |                   |
| 10/10/2023 | 00:00        | 6.34 pH                | 25.56 °C    | 2,237.8                  | 1.52 mg/L                | 8.00 NTU  | -51.5 mV   | 52.05 ft          | 100.00 ml/min     |
| 1:11 PM    | 00.00        | 6.54 μπ                | 25.56 C     | μS/cm                    | 1.52 IIIg/L   6.00 N T O | 8.00 NTO  | -51.51117  | 32.03 It          |                   |
| 10/10/2023 | 05:00        | 6.24 pH                | 22.56 °C    | 2,332.4                  | 0.81 mg/L                | 7.55 NTU  | -41.5 mV   | 52.50 ft          | 100.00 ml/min     |
| 1:16 PM    | 03.00        | 0.24 pri               | 22.56 C     | μS/cm                    | 0.61 mg/L 7.50           | 7.55 1110 | -41.51110  | 32.30 It          |                   |
| 10/10/2023 | 10:00        | 10:00 6.25 pH 21.96 °C | 21.96 °C    | 2,343.3                  | 0.67 mg/L                | 6.62 NTU  | -33.3 mV   | 52.95 ft          | 100.00 ml/min     |
| 1:21 PM    | 10.00        |                        | 21.50 0     | μS/cm                    |                          | 0.02 1110 | 00.01111   |                   | 100.00 1111/11111 |
| 10/10/2023 | 15:00        | 00 6.28 pH             | 22.18 °C    | 2,323.1                  | 0.81 mg/L                | 5.26 NTU  | -24.2 mV   | 53.35 ft          | 100.00 ml/min     |
| 1:26 PM    | 15.00        | 0.20 pr i              | 22.10       | μS/cm                    | 0.01 mg/L                | 3.20 1110 | 24.21117   | 55.55 It          | 100.00 111/111111 |
| 10/10/2023 | 20:00        | 6.28 pH                | 22.08 °C    | 2,327.5                  | 0.93 mg/L                | 2.72 NTU  | -22.2 mV   | 53.65 ft          | 100.00 ml/min     |
| 1:31 PM    | 20.00        | 0.20 pm                | 22.00 0     | μS/cm                    | 0.55 mg/L                | 2.72 1110 | 22.2 111 V | 55.05 It          | 100.00 111/111111 |
| 10/10/2023 | 25:00        | 25:00 6.28 pH 22       | 22.18 °C    | 2,312.8                  | 0.98 mg/L                | 2.21 NTU  | -41.6 mV   | 53.85 ft          | 100.00 ml/min     |
| 1:36 PM    | 25.00        |                        | 22.10 0     | μS/cm                    | 0.96 Hig/L               | 2.211110  | -41.01110  | 33.63 10          | 100.00 111/111111 |
| 10/10/2023 | 30:00        | 6.27 pH                | 22.32 °C    | 2,300.6                  | 0.98 mg/L                | 1.98 NTU  | -23.8 mV   | 54.10 ft          | 100.00 ml/min     |
| 1:41 PM    | 00.00        | 0.27 pm                | 22.32 0     | μS/cm                    | 0.96 mg/L                | 1.90 NTO  | -23.6 1110 | 54.10 π           | 100.00 111/111111 |

| S | Sample ID: | Description: |
|---|------------|--------------|
|---|------------|--------------|

|             | 1350 6 samples taken |
|-------------|----------------------|
|             | Metals               |
| ARK-AP1PZ-7 | Radium               |
|             | TDS                  |
|             | Anions               |

Test Date / Time: 10/10/2023 10:40:18 AM

Project: Arkwright

**Operator Name:** Dylan Quintal

Location Name: Arkwright, AP-1,

AP1PZ-8

Latitude: 32.9180746929753 Longitude: -83.6980637535453

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 55.6 ft Total Depth: 66.1 ft

Initial Depth to Water: 47.87 ft

Pump Type: Dedicated Bladder

**Pump** 

**Tubing Type: HDPE** 

Pump Intake From TOC: 59 ft Estimated Total Volume Pumped:

7500 ml

Flow Cell Volume: 90 ml Final Flow Rate: 100 ml/min Final Draw Down: 2.27 ft Instrument Used: Aqua TROLL 400

Serial Number: 850762

## **Test Notes:**

Heron dipper-T SN: 11FF2205014ML; MP50 SN: 22; ID: 99; Pressure: 40 psi

#### **Weather Conditions:**

Partly cloudy, 66F

# **Low-Flow Readings:**

| Date Time              | Elapsed Time | рН      | Temperature | Specific<br>Conductivity | RDO<br>Concentration | Turbidity | ORP      | Depth to<br>Water | Flow          |
|------------------------|--------------|---------|-------------|--------------------------|----------------------|-----------|----------|-------------------|---------------|
|                        |              | +/- 0.1 | +/- 0.5     | +/- 5 %                  | +/- 10 %             | +/- 10 %  | +/- 10   | +/- 0.3           |               |
| 10/10/2023<br>10:40 AM | 00:00        | 6.63 pH | 20.37 °C    | 1,569.6<br>μS/cm         | 2.14 mg/L            | 2.02 NTU  | -22.3 mV | 50.14 ft          | 100.00 ml/min |
| 10/10/2023<br>10:45 AM | 05:00        | 6.60 pH | 20.88 °C    | 1,631.7<br>μS/cm         | 1.45 mg/L            | 1.08 NTU  | -31.5 mV | 50.14 ft          | 100.00 ml/min |
| 10/10/2023<br>10:50 AM | 10:00        | 6.60 pH | 20.80 °C    | 1,653.1<br>μS/cm         | 1.12 mg/L            | 0.64 NTU  | -37.0 mV | 50.14 ft          | 100.00 ml/min |
| 10/10/2023<br>10:55 AM | 15:00        | 6.60 pH | 20.99 °C    | 1,659.2<br>μS/cm         | 0.99 mg/L            | 0.54 NTU  | -39.0 mV | 50.14 ft          | 100.00 ml/min |
| 10/10/2023<br>11:00 AM | 20:00        | 6.60 pH | 21.53 °C    | 1,655.6<br>μS/cm         | 0.89 mg/L            | 0.50 NTU  | -40.6 mV | 50.14 ft          | 100.00 ml/min |
| 10/10/2023<br>11:05 AM | 25:00        | 6.60 pH | 21.91 °C    | 1,651.5<br>μS/cm         | 0.82 mg/L            | 0.54 NTU  | -41.4 mV | 50.14 ft          | 100.00 ml/min |
| 10/10/2023<br>11:10 AM | 30:00        | 6.59 pH | 21.84 °C    | 1,652.4<br>μS/cm         | 0.76 mg/L            | 0.48 NTU  | -42.3 mV | 50.14 ft          | 100.00 ml/min |
| 10/10/2023<br>11:15 AM | 35:00        | 6.59 pH | 22.27 °C    | 1,653.1<br>μS/cm         | 0.72 mg/L            | 0.45 NTU  | -42.7 mV | 50.14 ft          | 100.00 ml/min |
| 10/10/2023<br>11:20 AM | 40:00        | 6.59 pH | 22.60 °C    | 1,650.5<br>μS/cm         | 0.67 mg/L            | 0.46 NTU  | -42.2 mV | 50.14 ft          | 100.00 ml/min |
| 10/10/2023<br>11:25 AM | 45:00        | 6.59 pH | 22.60 °C    | 1,652.6<br>μS/cm         | 0.63 mg/L            | 0.67 NTU  | -42.1 mV | 50.14 ft          | 100.00 ml/min |
| 10/10/2023<br>11:30 AM | 50:00        | 6.59 pH | 22.68 °C    | 1,652.7<br>μS/cm         | 0.59 mg/L            | 0.34 NTU  | -42.3 mV | 50.14 ft          | 100.00 ml/min |
| 10/10/2023<br>11:35 AM | 55:00        | 6.59 pH | 22.33 °C    | 1,651.2<br>μS/cm         | 0.57 mg/L            | 0.28 NTU  | -42.1 mV | 50.14 ft          | 100.00 ml/min |

| 10/10/2023 | 01:00:00 | 6.60 pH  | 22.38 °C | 1,648.9      | 0.52 mg/L  | 0.27 NTU  | -42.6 mV  | 50.14 ft | 100.00 ml/min     |
|------------|----------|----------|----------|--------------|------------|-----------|-----------|----------|-------------------|
| 11:40 AM   |          |          |          | μS/cm        | 0.52 mg/L  | 0.27 1010 | -42.01110 | 50.1411  | 100.00 111/111111 |
| 10/10/2023 | 01:05:00 | 6.60 pH  | 22.07 °C | 1,650.4      | 0.50 mg/L  | 0.26 NTU  | -55.9 mV  | 50.14 ft | 100.00 ml/min     |
| 11:45 AM   |          | 0.00 pm  | 22.07 0  | μS/cm        |            | 0.201110  | 33.3 111  |          | 100.00 111/111111 |
| 10/10/2023 | 01:10:00 | 6.60 pH  | 22.16 °C | 1,651.0      | 0.49 mg/L  | 0.25 NTU  | -55.8 mV  | 50.14 ft | 100.00 ml/min     |
| 11:50 AM   | 01.10.00 | 0.00 pri | 22.10 C  | μS/cm        | 0.43 mg/L  | 0.25 1410 | 33.0 111  | 30.1410  | 100.00 111/111111 |
| 10/10/2023 | 01:15:00 | 7.06 pH  | 24.69 °C | 0.93 µS/cm   | 8.11 mg/L  |           | 13.1 mV   | 50.14 ft | 100.00 ml/min     |
| 11:55 AM   | 01.10.00 | 7.00 pm  | 24.00 0  | 0.00 μ0/6/11 | O.11 Hig/L |           | 10.1111   | 00.1410  | 100.00 111/111111 |

# Samples

| Sample ID:  | Description:                                              |
|-------------|-----------------------------------------------------------|
| ARK-AP1PZ-8 | Sample time: 1155; 6 bottles: Metals, Anions, TDS, Radium |

Created using VuSitu from In-Situ, Inc.

Final reading at 11:55 AM was taken after flow through cell was detached and while sampling was occurring. Values are not applicable to stabilization criteria. Final stable parameters are recorded at 11:50 AM.

Test Date / Time: 10/10/2023 3:11:32 PM

**Project:** Arkwright **Operator Name:** J. Myer

Location Name: AP1PZ-9

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 46.3 ft Total Depth: 57.4 ft

Initial Depth to Water: 42.15 ft

**Pump Type: Dedicated Bladder** 

**Pump** 

**Tubing Type: HDPE** 

Pump Intake From TOC: 50.1 ft Estimated Total Volume Pumped:

3500 ml

Flow Cell Volume: 90 ml Final Flow Rate: 100 ml/min Final Draw Down: 4.85 ft Instrument Used: Aqua TROLL 400

Serial Number: 850751

#### **Test Notes:**

Heron Instruments Dipper-T SN: WL 006

MP50 SN: 26 ID: 103

Pressure: 35 PSI

Well purged dry. Well will allow to recharge and sample the following day

# **Weather Conditions:**

Cloudy 81 F

## Low-Flow Readings:

| Date Time             | Elapsed Time | рН      | Temperature | Specific<br>Conductivity | RDO<br>Concentration | Turbidity | ORP      | Depth to<br>Water | Flow          |
|-----------------------|--------------|---------|-------------|--------------------------|----------------------|-----------|----------|-------------------|---------------|
|                       |              | +/- 0.1 | +/- 0.5     | +/- 5 %                  | +/- 10 %             | +/- 10 %  | +/- 10   | +/- 0.3           |               |
| 10/10/2023<br>3:11 PM | 00:00        | 5.22 pH | 28.36 °C    | 589.11 μS/cm             | 2.15 mg/L            | 11.70 NTU | 191.7 mV | 43.33 ft          | 100.00 ml/min |
| 10/10/2023<br>3:16 PM | 05:00        | 4.61 pH | 22.70 °C    | 636.28 μS/cm             | 1.88 mg/L            | 13.10 NTU | 224.2 mV | 43.89 ft          | 100.00 ml/min |
| 10/10/2023<br>3:21 PM | 10:00        | 4.39 pH | 22.36 °C    | 646.67 µS/cm             | 2.16 mg/L            | 9.85 NTU  | 248.2 mV | 44.45 ft          | 100.00 ml/min |
| 10/10/2023<br>3:26 PM | 15:00        | 4.32 pH | 22.19 °C    | 649.23 μS/cm             | 2.37 mg/L            | 6.60 NTU  | 259.8 mV | 44.90 ft          | 100.00 ml/min |
| 10/10/2023<br>3:31 PM | 20:00        | 4.30 pH | 22.00 °C    | 650.97 μS/cm             | 2.36 mg/L            | 5.39 NTU  | 263.2 mV | 45.40 ft          | 100.00 ml/min |
| 10/10/2023<br>3:36 PM | 25:00        | 4.32 pH | 22.23 °C    | 646.95 µS/cm             | 2.27 mg/L            | 3.87 NTU  | 262.3 mV | 45.90 ft          | 100.00 ml/min |
| 10/10/2023<br>3:41 PM | 30:00        | 4.36 pH | 22.31 °C    | 645.89 μS/cm             | 2.25 mg/L            | 3.20 NTU  | 258.1 mV | 46.30 ft          | 100.00 ml/min |
| 10/10/2023<br>3:46 PM | 35:00        | 4.40 pH | 22.08 °C    | 645.34 μS/cm             | 2.44 mg/L            | 2.66 NTU  | 252.9 mV | 47.00 ft          | 100.00 ml/min |

# **Samples**

| Sample ID:     | Description:                                    |
|----------------|-------------------------------------------------|
|                | Collected 10/11/23 due to well being purged dry |
|                | 6 bottles collected                             |
| A DIV A DADZ 0 | <del>Metals</del>                               |
| ARK-AP1PZ-9    | <del>Anions</del>                               |
|                | <del>TDS</del>                                  |
|                | Radium                                          |

Created using VuSitu from In-Situ, Inc.

Well not sampled due to insufficient water

Test Date / Time: 10/11/2023 8:15:06 AM

**Project:** Arkwright

**Operator Name:** Dylan Quintal

Location Name: Arkwright, AP-1,

AP1PZ-9

Latitude: 32.9191016872371 Longitude: -83.6986887082457

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 46.3 ft Total Depth: 57.4 ft

Initial Depth to Water: 42.26 ft

**Pump Type: Dedicated Bladder** 

**Pump** 

**Tubing Type: HDPE** 

Pump Intake From TOC: 50.1 ft Estimated Total Volume Pumped:

0 ml

Flow Cell Volume: 90 ml Final Flow Rate: 100 ml/min

Final Draw Down: 0 ft

Instrument Used: Aqua TROLL 400

Serial Number: 850762

#### **Test Notes:**

Heron dipper-T SN: 11FF2205014ML; MP50 SN: 22; ID: 103; Pressure: 35 psi

#### **Weather Conditions:**

Cloudy, 60F

## Low-Flow Readings:

| Date Time             | Elapsed Time | рН      | Temperature | Specific<br>Conductivity | RDO<br>Concentration | Turbidity | ORP      | Depth to<br>Water | Flow          |
|-----------------------|--------------|---------|-------------|--------------------------|----------------------|-----------|----------|-------------------|---------------|
|                       |              | +/- 0.1 | +/- 0.5     | +/- 5 %                  | +/- 10 %             | +/- 10 %  | +/- 10   | +/- 0.3           |               |
| 10/11/2023<br>8:15 AM | 00:00        | 5.17 pH | 18.68 °C    | 692.89 μS/cm             | 1.93 mg/L            | 3.97 NTU  | 170.3 mV | 42.26 ft          | 100.00 ml/min |

## **Samples**

| Sample ID:  | Description:                                              |
|-------------|-----------------------------------------------------------|
| ARK-AP1PZ-9 | Sample time: 0820; 6 bottles: Metals, Anions, TDS, Radium |

Test Date / Time: 10/10/2023 1:30:27 PM

Project: Arkwright

**Operator Name:** Dylan Quintal

Location Name: Arkwright, AP-1,

**AP1PZ-10** 

Latitude: 32.9197326819116 Longitude: -83.6989545822144

Well Diameter: 2 cm Casing Type: PVC Screen Length: 10 ft Top of Screen: 46 ft Total Depth: 56.5 ft

Initial Depth to Water: 39.98 ft

Pump Type: Dedicated Bladder

**Pump** 

**Tubing Type: HDPE** 

Pump Intake From TOC: 50.5 ft Estimated Total Volume Pumped:

4500 ml

Flow Cell Volume: 90 ml Final Flow Rate: 100 ml/min Final Draw Down: 2.52 ft Instrument Used: Aqua TROLL 400

Serial Number: 850762

#### **Test Notes:**

Heron dipper-T SN: 11FF2205014ML; MP50 SN: 22; ID: 99; Pressure: 30 psi

#### **Weather Conditions:**

Sunny, 77F

# **Low-Flow Readings:**

| Date Time             | Elapsed Time | рН      | Temperature | Specific<br>Conductivity | RDO<br>Concentration | Turbidity | ORP      | Depth to<br>Water | Flow          |
|-----------------------|--------------|---------|-------------|--------------------------|----------------------|-----------|----------|-------------------|---------------|
|                       |              | +/- 0.1 | +/- 0.5     | +/- 5 %                  | +/- 10 %             | +/- 10 %  | +/- 10   | +/- 0.3           |               |
| 10/10/2023<br>1:30 PM | 00:00        | 6.24 pH | 23.54 °C    | 671.01 μS/cm             | 1.72 mg/L            | 2.88 NTU  | 11.9 mV  | 42.50 ft          | 100.00 ml/min |
| 10/10/2023<br>1:35 PM | 05:00        | 6.38 pH | 23.54 °C    | 739.85 µS/cm             | 1.46 mg/L            | 2.00 NTU  | -48.0 mV | 42.50 ft          | 100.00 ml/min |
| 10/10/2023<br>1:40 PM | 10:00        | 6.43 pH | 23.59 °C    | 764.43 µS/cm             | 1.23 mg/L            | 1.71 NTU  | -48.9 mV | 42.50 ft          | 100.00 ml/min |
| 10/10/2023<br>1:45 PM | 15:00        | 6.42 pH | 23.75 °C    | 763.75 µS/cm             | 1.08 mg/L            | 1.95 NTU  | -47.9 mV | 42.50 ft          | 100.00 ml/min |
| 10/10/2023<br>1:50 PM | 20:00        | 6.40 pH | 23.83 °C    | 752.07 μS/cm             | 1.02 mg/L            | 2.37 NTU  | -44.3 mV | 42.50 ft          | 100.00 ml/min |
| 10/10/2023<br>1:55 PM | 25:00        | 6.40 pH | 23.68 °C    | 751.40 μS/cm             | 0.93 mg/L            | 1.94 NTU  | -42.6 mV | 42.50 ft          | 100.00 ml/min |
| 10/10/2023<br>2:00 PM | 30:00        | 6.38 pH | 23.24 °C    | 740.03 µS/cm             | 0.84 mg/L            | 2.62 NTU  | -40.2 mV | 42.50 ft          | 100.00 ml/min |
| 10/10/2023<br>2:05 PM | 35:00        | 6.35 pH | 23.22 °C    | 719.32 µS/cm             | 0.79 mg/L            | 2.55 NTU  | -35.7 mV | 42.50 ft          | 100.00 ml/min |
| 10/10/2023<br>2:10 PM | 40:00        | 6.34 pH | 22.62 °C    | 720.61 µS/cm             | 0.75 mg/L            | 3.03 NTU  | -32.4 mV | 42.50 ft          | 100.00 ml/min |
| 10/10/2023<br>2:15 PM | 45:00        | 6.30 pH | 22.70 °C    | 700.48 μS/cm             | 0.77 mg/L            | 1.89 NTU  | -27.0 mV | 42.50 ft          | 100.00 ml/min |

| Sample ID:   | Description:                                              |
|--------------|-----------------------------------------------------------|
| ARK-AP1PZ-10 | Sample time: 1420; 6 bottles: Metals, Anions, TDS, Radium |

Test Date / Time: 10/10/2023 3:50:03 PM

Project: Arkwright

**Operator Name:** Dylan Quintal

Location Name: Arkwright, AP-1,

AP1PZ-11

Latitude: 32.9205162123018 Longitude: -83.6991527304053

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 62.8 ft Total Depth: 73.3 ft

Initial Depth to Water: 41.22 ft

Pump Type: Dedicated Bladder

**Pump** 

**Tubing Type: HDPE** 

Pump Intake From TOC: 67.9 ft Estimated Total Volume Pumped:

4000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min

Final Draw Down: 0 ft

Instrument Used: Aqua TROLL 400

Serial Number: 850762

#### **Test Notes:**

Heron dipper-T SN: 11FF2205014ML; MP50 SN: 22; ID: 104; Pressure: 40 psi

#### **Weather Conditions:**

Cloudy, 81F

# **Low-Flow Readings:**

| Date Time             | Elapsed Time | рН      | Temperature | Specific<br>Conductivity | RDO<br>Concentration | Turbidity | ORP     | Depth to<br>Water | Flow          |
|-----------------------|--------------|---------|-------------|--------------------------|----------------------|-----------|---------|-------------------|---------------|
|                       |              | +/- 0.1 | +/- 0.5     | +/- 5 %                  | +/- 10 %             | +/- 10 %  | +/- 10  | +/- 0.3           |               |
| 10/10/2023<br>3:50 PM | 00:00        | 6.67 pH | 21.09 °C    | 297.14 μS/cm             | 3.55 mg/L            | 2.38 NTU  | 77.3 mV | 41.22 ft          | 200.00 ml/min |
| 10/10/2023<br>3:55 PM | 05:00        | 6.67 pH | 20.92 °C    | 298.01 μS/cm             | 3.00 mg/L            | 2.33 NTU  | 69.7 mV | 41.22 ft          | 200.00 ml/min |
| 10/10/2023<br>4:00 PM | 10:00        | 6.67 pH | 20.82 °C    | 297.33 μS/cm             | 2.77 mg/L            | 2.15 NTU  | 68.7 mV | 41.22 ft          | 200.00 ml/min |
| 10/10/2023<br>4:05 PM | 15:00        | 6.67 pH | 20.77 °C    | 295.74 μS/cm             | 2.67 mg/L            | 1.69 NTU  | 67.6 mV | 41.22 ft          | 200.00 ml/min |
| 10/10/2023<br>4:10 PM | 20:00        | 6.67 pH | 20.74 °C    | 294.40 μS/cm             | 2.64 mg/L            | 1.41 NTU  | 80.5 mV | 41.22 ft          | 200.00 ml/min |

| Sample ID:    | Description:                                                     |  |  |  |  |  |  |
|---------------|------------------------------------------------------------------|--|--|--|--|--|--|
| ARK-AP1PZ-11  | IPZ-11 Sample time: 1615; 6 bottles: Metals, Anions, TDS, Radium |  |  |  |  |  |  |
| ARK-AP1-FD-02 | Sample time: NA; 6 bottles: Metals, Anions, TDS, Radium          |  |  |  |  |  |  |

Test Date / Time: 1/22/2024 2:01:36 PM

**Project:** Arkwright **Operator Name:** J. Myer

Location Name: AP1GWA-1 Latitude: 32.930019061764 Longitude: -83.7010088190436

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 26.8 ft Total Depth: 37.5 ft

Initial Depth to Water: 25.9 ft

Pump Type: Dedicated Bladder

**Tubing Type: LDPE** 

Pump Intake From TOC: 31.8 ft Estimated Total Volume Pumped:

9600 ml

Flow Cell Volume: 90 ml Final Flow Rate: 320 ml/min Final Draw Down: 0.25 ft Instrument Used: Aqua TROLL 400

Serial Number: 989630

#### **Test Notes:**

AquaTroll ID: 989630

Turbidimeter S/N: 22090D000345

MP-50 S/N: 35

ID: 103 PSI: 30

#### Weather Conditions:

Sunny 54 °F

# **Low-Flow Readings:**

| Date Time            | Elapsed Time | рН      | Temperature | Specific<br>Conductivity | RDO<br>Concentration | Turbidity | ORP      | Depth to<br>Water | Flow          |
|----------------------|--------------|---------|-------------|--------------------------|----------------------|-----------|----------|-------------------|---------------|
|                      |              | +/- 0.1 | +/- 0.5     | +/- 5 %                  | +/- 10 %             | +/- 10 %  | +/- 10   | +/- 0.5           |               |
| 1/22/2024<br>2:01 PM | 00:00        | 5.28 pH | 20.39 °C    | 179.06 μS/cm             | 3.62 mg/L            | 14.60 NTU | 130.6 mV | 26.15 ft          | 320.00 ml/min |
| 1/22/2024<br>2:06 PM | 05:00        | 5.30 pH | 20.41 °C    | 176.01 μS/cm             | 2.36 mg/L            | 9.38 NTU  | 96.3 mV  | 26.15 ft          | 320.00 ml/min |
| 1/22/2024<br>2:11 PM | 10:00        | 5.31 pH | 20.43 °C    | 175.76 μS/cm             | 2.27 mg/L            | 8.02 NTU  | 86.7 mV  | 26.15 ft          | 320.00 ml/min |
| 1/22/2024<br>2:16 PM | 15:00        | 5.30 pH | 20.47 °C    | 175.89 μS/cm             | 2.25 mg/L            | 6.17 NTU  | 82.5 mV  | 26.15 ft          | 320.00 ml/min |
| 1/22/2024<br>2:21 PM | 20:00        | 5.32 pH | 20.36 °C    | 176.05 μS/cm             | 2.24 mg/L            | 4.35 NTU  | 79.8 mV  | 26.15 ft          | 320.00 ml/min |
| 1/22/2024<br>2:26 PM | 25:00        | 5.33 pH | 20.38 °C    | 175.49 μS/cm             | 2.23 mg/L            | 3.09 NTU  | 77.6 mV  | 26.15 ft          | 320.00 ml/min |
| 1/22/2024<br>2:31 PM | 30:00        | 5.34 pH | 20.35 °C    | 175.12 μS/cm             | 2.23 mg/L            | 2.37 NTU  | 80.3 mV  | 26.15 ft          | 320.00 ml/min |

| Sample ID: | Description: |
|------------|--------------|
|------------|--------------|

|               | Sample Time: 14:35                            |
|---------------|-----------------------------------------------|
| ARK-AP1GWA-1  | 6 bottles: metals, radiologicals, TDS, anions |
|               |                                               |
| ARK-AP1-FD-01 | 6 bottles: metals, radiologicals, TDS, anions |
|               | Sample Time: 15:00                            |
| ARK-AP1-FB-01 | 6 bottles: metals, radiologicals, TDS, anions |
|               | DI water provided by AIR                      |

Test Date / Time: 1/22/2024 2:03:37 PM

**Project:** Arkwright AP1GWA-2 **Operator Name:** Dylan Ripley

Location Name: AP1GWA-2 Latitude: 32.92731739864359 Longitude: -83.70052860236954

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 20.5 ft Total Depth: 31.1 ft

Initial Depth to Water: 18.22 ft

Pump Type: Dedicated Bladder

**Tubing Type: LDPE** 

Pump Intake From TOC: 25.3 ft Estimated Total Volume Pumped:

10760 ml

Flow Cell Volume: 90 ml Final Flow Rate: 300 ml/min

Final Draw Down: 0 ft

Instrument Used: Aqua TROLL 400

Serial Number: 965586

#### **Test Notes:**

MP-50 S/N: 07

ID: 99 PSI: 35

Turbidimeter S/N: 22090D000235 WLM S/N: T11FF2104058JH

#### **Weather Conditions:**

Partly Cloudy

10 °C

## Low-Flow Readings:

| Date Time | Elapsed Time | рН        | Temperature | Specific<br>Conductivity | RDO<br>Concentration | Turbidity | ORP       | Depth to<br>Water | Flow              |
|-----------|--------------|-----------|-------------|--------------------------|----------------------|-----------|-----------|-------------------|-------------------|
|           |              | +/- 0.1   | +/- 0.5     | +/- 5 %                  | +/- 10 %             | +/- 10 %  | +/- 10    | +/- 0.5           |                   |
| 1/22/2024 | 00.00        | 0.05 -11  | 20.04.80    | 77.00 0/2                | 4.44/                | 4 00 NTU  | 400.4\/   | 40.00#            | 200.001/          |
| 2:03 PM   | 00:00        | 6.05 pH   | 20.04 °C    | 77.28 µS/cm              | 4.11 mg/L            | 4.33 NTU  | 136.1 mV  | 18.22 ft          | 300.00 ml/min     |
| 1/22/2024 | 05.00        | 0.05 -11  | 20.44.90    | 77.070/2                 | 2.00/                | O OC NEU  | 07.5\/    | 40.00#            | 200.001/:-        |
| 2:08 PM   | 05:00        | 6.05 pH   | 20.11 °C    | 77.27 µS/cm              | 3.98 mg/L            | 2.36 NTU  | 97.5 mV   | 18.22 ft          | 300.00 ml/min     |
| 1/22/2024 | 10.00        | 6.02 =1.1 | 20.42.90    | 76.00 uC/om              | 2.00 mg/l            | C 44 NTU  | 422.2 m\/ | 40.00#            | 200 00 ml/min     |
| 2:13 PM   | 10:00        | 6.03 pH   | 20.12 °C    | 76.92 µS/cm              | 3.90 mg/L            | 6.44 NTU  | 133.3 mV  | 18.22 ft          | 300.00 ml/min     |
| 1/22/2024 | 15:00        | 6.02 =1.1 | 20.21 °C    | 77.72 µS/cm              | 2.04 mg/l            | 5.04 NTU  | 88.3 mV   | 18.22 ft          | 300.00 ml/min     |
| 2:18 PM   | 15.00        | 6.03 pH   | 20.21 C     | 77.72 μ3/011             | 3.84 mg/L            | 5.04 1010 | 00.3 1117 | 10.2211           | 300.00 111/111111 |
| 1/22/2024 | 20:00        | 6.04 pH   | 20.24 °C    | 78.24 µS/cm              | 3.79 mg/L            | 3.04 NTU  | 91.0 mV   | 18.22 ft          | 300.00 ml/min     |
| 2:23 PM   | 20.00        | 0.04 pm   | 20.24 0     | 70.24 μο/οπ              | 3.79 Hig/L           | 3.04 1110 | 91.01110  | 10.22 10          | 300.00 111/111111 |
| 1/22/2024 | 25:00        | 6.03 pH   | 20.17 °C    | 78.61 µS/cm              | 3.73 mg/L            | 3.17 NTU  | 90.3 mV   | 18.22 ft          | 300.00 ml/min     |
| 2:28 PM   | 23.00        | 0.03 pri  | 20.17       | 70.01 μο/οπ              | 3.73 Hig/L           | 3.17 N10  | 90.5 1117 | 10.22 10          | 300.00 111/111111 |
| 1/22/2024 | 25:52        | 6.03 pH   | 20.19 °C    | 80.53 µS/cm              | 3.73 mg/L            | 2.11 NTU  | 82.8 mV   | 18.22 ft          | 300.00 ml/min     |
| 2:29 PM   | 25.52        | 0.03 pri  | 20.19 0     | 00.55 μ5/6/11            | 3.73 Hig/L           | 2.111010  | 02.0 1117 | 10.22 10          | 300.00 111/111111 |
| 1/22/2024 | 30:52        | 6.04 pH   | 20.21 °C    | 79.34 µS/cm              | 3.71 mg/L            | 0.95 NTU  | 87.8 mV   | 18.22 ft          | 300.00 ml/min     |
| 2:34 PM   | 30.32        | 0.04 pri  | 20.21 0     | 7 3.5 4 μο/οπ            | 5.7 Tillg/L          | 0.00 1410 | 07.01110  | 10.22 10          | 300.00 111/111111 |
| 1/22/2024 | 35:52        | 6.03 pH   | 20.26 °C    | 79.86 µS/cm              | 3.65 mg/L            | 1.00 NTU  | 88.0 mV   | 18.22 ft          | 300.00 ml/min     |
| 2:39 PM   | 33.32        | 0.03 pri  | 20.20       | 7 3.00 μο/οπ             | 3.03 mg/L            | 1.00 1010 | 00.0 111  | 10.22 11          | 300.00 111/111111 |

## **Samples**

| Sample ID:   | Description:    |
|--------------|-----------------|
|              | 14:45 6 bottles |
|              | Metals          |
| ARK-AP1GWA-2 | Radiums         |
|              | TDS             |
|              | Anions          |
|              |                 |

Test Date / Time: 1/22/2024 4:09:33 PM

**Project:** Arkwright **Operator Name:** J. Myer

Location Name: AP1PZ-1 Latitude: 32.9210574183589 Longitude: -83.6987658217549

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 77 ft Total Depth: 87.6 ft

Initial Depth to Water: 44.8 ft

Pump Type: Dedicated Bladder

**Pump** 

**Tubing Type: LDPE** 

Pump Intake From TOC: 82.6 ft Estimated Total Volume Pumped:

2500 ml

Flow Cell Volume: 90 ml Final Flow Rate: 100 ml/min Final Draw Down: 2.85 ft Instrument Used: Aqua TROLL 400

Serial Number: 989630

#### **Test Notes:**

AquaTroll ID: 989630

Turbidimeter: 22690D000345

MP-50 S/N: 35 ID: 105 Pressure: 40

#### **Weather Conditions:**

Sunny 14 °C

#### **Low-Flow Readings:**

| Date Time            | Elapsed Time | pН      | Temperature | Specific<br>Conductivity | RDO<br>Concentration | Turbidity | ORP      | Depth to<br>Water | Flow          |
|----------------------|--------------|---------|-------------|--------------------------|----------------------|-----------|----------|-------------------|---------------|
|                      |              | +/- 0.1 | +/- 0.5     | +/- 5 %                  | +/- 10 %             | +/- 10 %  | +/- 10   | +/- 0.5           |               |
| 1/22/2024<br>4:09 PM | 00:00        | 7.01 pH | 19.96 °C    | 326.75 μS/cm             | 4.38 mg/L            | 3.66 NTU  | 105.1 mV | 45.35 ft          | 100.00 ml/min |
| 1/22/2024<br>4:14 PM | 05:00        | 6.47 pH | 18.92 °C    | 327.92 μS/cm             | 1.19 mg/L            | 4.98 NTU  | 62.2 mV  | 46.05 ft          | 100.00 ml/min |
| 1/22/2024<br>4:19 PM | 10:00        | 6.42 pH | 18.83 °C    | 328.60 μS/cm             | 1.10 mg/L            | 4.41 NTU  | 49.6 mV  | 46.65 ft          | 100.00 ml/min |
| 1/22/2024<br>4:24 PM | 15:00        | 6.41 pH | 18.78 °C    | 328.59 μS/cm             | 1.00 mg/L            | 2.76 NTU  | 42.6 mV  | 47.05 ft          | 100.00 ml/min |
| 1/22/2024<br>4:29 PM | 20:00        | 6.41 pH | 18.74 °C    | 328.84 μS/cm             | 0.93 mg/L            | 2.67 NTU  | 39.1 mV  | 47.40 ft          | 100.00 ml/min |
| 1/22/2024<br>4:34 PM | 25:00        | 6.41 pH | 18.70 °C    | 328.78 μS/cm             | 0.85 mg/L            | 2.17 NTU  | 55.0 mV  | 47.65 ft          | 100.00 ml/min |

## **Samples**

| Sample ID: | Description: |
|------------|--------------|
| -          |              |

ARK-AP1PZ-1 Sample Time: 16:40
6 bottles: metals, radiologicals, TDS, anions

Test Date / Time: 1/22/2024 4:06:49 PM

**Project:** Arkwright AP1PZ-2 **Operator Name:** Dylan Ripley

Location Name: AP1PZ-2 Latitude: 32.92042654370735

Longitude: -83.69832418021439

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 52.1 ft Total Depth: 62.7 ft

Initial Depth to Water: 42.99 ft

Pump Type: Dedicated Bladder

**Tubing Type: LDPE** 

Pump Intake From TOC: 56.6 ft Estimated Total Volume Pumped:

5375 ml

Flow Cell Volume: 90 ml Final Flow Rate: 215 ml/min Final Draw Down: 0.51 ft Instrument Used: Aqua TROLL 400

Serial Number: 965586

#### **Test Notes:**

MP-50 S/N: 07

ID: 99 PSI: 45

Turbidimeter S/N: 23060D000342 WLM S/N: T11FF2104058JH

#### **Weather Conditions:**

Partly cloudy

13 °C

### Low-Flow Readings:

| Date Time            | Elapsed Time | рН      | Temperature | Specific Conductivity | RDO<br>Concentration | Turbidity | ORP      | Depth to<br>Water | Flow          |
|----------------------|--------------|---------|-------------|-----------------------|----------------------|-----------|----------|-------------------|---------------|
|                      |              | +/- 0.1 | +/- 0.5     | +/- 5 %               | +/- 10 %             | +/- 10 %  | +/- 10   | +/- 0.5           |               |
| 1/22/2024<br>4:06 PM | 00:00        | 6.24 pH | 18.52 °C    | 974.62 μS/cm          | 0.43 mg/L            | 10.00 NTU | 103.5 mV | 43.45 ft          | 215.00 ml/min |
| 1/22/2024<br>4:11 PM | 05:00        | 6.24 pH | 18.48 °C    | 1,040.6<br>μS/cm      | 0.32 mg/L            | 6.66 NTU  | 62.9 mV  | 43.47 ft          | 215.00 ml/min |
| 1/22/2024<br>4:16 PM | 10:00        | 6.24 pH | 18.52 °C    | 1,061.7<br>μS/cm      | 0.27 mg/L            | 4.59 NTU  | 66.8 mV  | 43.48 ft          | 215.00 ml/min |
| 1/22/2024<br>4:21 PM | 15:00        | 6.22 pH | 18.44 °C    | 1,085.9<br>μS/cm      | 0.25 mg/L            | 3.23 NTU  | 55.1 mV  | 43.50 ft          | 215.00 ml/min |
| 1/22/2024<br>4:26 PM | 20:00        | 6.21 pH | 18.46 °C    | 1,108.7<br>μS/cm      | 0.24 mg/L            | 2.39 NTU  | 53.8 mV  | 43.50 ft          | 215.00 ml/min |
| 1/22/2024<br>4:31 PM | 25:00        | 6.20 pH | 18.48 °C    | 1,127.2<br>µS/cm      | 0.23 mg/L            | 1.75 NTU  | 55.5 mV  | 43.50 ft          | 215.00 ml/min |

#### **Samples**

| Sample ID: | Description: |
|------------|--------------|
|------------|--------------|

| ARK-AP1PZ-2   | Sample time: 16:40 6 bottles: Metals Radium TDS Anions |
|---------------|--------------------------------------------------------|
| ARK-AP1-EB-01 | Sample time:17:15 6 bottles: Metals Radium TDS Anions  |

Test Date / Time: 1/23/2024 10:46:10 AM

**Project:** Arkwright

Operator Name: E. Scheiben

**Location Name: AP1PZ-3** 

Latitude: 32.91960816463575 Longitude: -83.6980804498379

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 56.9 ft Total Depth: 67.4 ft

Initial Depth to Water: 43.55 ft

Pump Type: Dedicated bladder

**Tubing Type: LDPE** 

**Tubing Inner Diameter: 0.17 in** 

**Tubing Length: 65 ft** 

Pump Intake From TOC: 61.4 ft Estimated Total Volume Pumped:

7500 ml

Flow Cell Volume: 90 ml Final Flow Rate: 150 ml/min

Final Draw Down: 0 ft

Instrument Used: Aqua TROLL 400

Serial Number: 966105

## **Test Notes:**

MP-50 S/N: 06

ID: 50 PSI: 30

Turbidimeter S/N: 23100D000368 WLM S/N: removed. Rental ID 29051

#### **Weather Conditions:**

Overcast, 45 °F

#### Low-Flow Readings:

| Date Time | Elapsed Time | рН        | Temperature | Specific Conductivity | RDO<br>Concentration | Turbidity | ORP        | Depth to<br>Water | Flow               |               |
|-----------|--------------|-----------|-------------|-----------------------|----------------------|-----------|------------|-------------------|--------------------|---------------|
|           |              | +/- 0.1   | +/- 0.5     | +/- 5 %               | +/- 10 %             | +/- 10 %  | +/- 10     | +/- 0.5           |                    |               |
| 1/23/2024 | 00:00        | E E0 pU   | 18.98 °C    | 2,043.5               | 0.65 mg/l            | 0.66 NTU  | 103.4 mV   | 43.55 ft          | 150.00 ml/min      |               |
| 10:46 AM  | 00.00        | 5.59 pH   | 10.96 C     | μS/cm                 | 0.65 mg/L            | 0.00 NTO  | 103.4 1117 | 43.55 11          | 150.00 111/111111  |               |
| 1/23/2024 | 05:00        | 5.61 pH   | 18.52 °C    | 2,157.6               | 0.35 mg/L            | 0.42 NTU  | 189.6 mV   | 43.55 ft          | 150.00 ml/min      |               |
| 10:51 AM  | 03.00        | 3.01 pm   | 10.52 C     | μS/cm                 | 0.55 Hig/L           | 0.42 1110 | 109.01117  | 45.55 10          | 130.00 111/111111  |               |
| 1/23/2024 | 10:00        | 5.61 pH   | 18.44 °C    | 2,157.9               | 0.24 mg/L            | 0.24 NTU  | 148.6 mV   | 43.55 ft          | 150.00 ml/min      |               |
| 10:56 AM  | 10.00        | 0.01 pm   | 10.44 C     | μS/cm                 | 0.24 mg/L            | 0.241410  | 140.01111  | 40.00 It          | 130.00 111/111111  |               |
| 1/23/2024 | 15:00        | 15:00     | 5.62 pH     | 18.49 °C              | 2,155.8              | 0.23 mg/L | 0.23 NTU   | 137.9 mV          | 43.55 ft           | 150.00 ml/min |
| 11:01 AM  | 10.00        | 3.02 pri  | 0.02 pri    |                       | μS/cm                | 0.20 mg/2 | 0.201110   | 107.01117         | 10.00 11           |               |
| 1/23/2024 | 20:00        | 5.62 pH   | 18.49 °C    | 2,142.0               | 0.23 mg/L            | 0.40 NTU  | 127.6 mV   | 43.55 ft          | 150.00 ml/min      |               |
| 11:06 AM  | 20.00        | 0.02 pi i | 10.10       | μS/cm                 | 0.20 mg/L            | 0.101110  | 127.01117  | 10.00 11          | 100.00 1111/111111 |               |
| 1/23/2024 | 25:00        | 5.62 pH   | 18.61 °C    | 2,133.9               | 0.24 mg/L            | 0.18 NTU  | 123.2 mV   | 43.55 ft          | 150.00 ml/min      |               |
| 11:11 AM  | 20.00        | 0.02 pi i | 10.01       | μS/cm                 | 0.2 i iiig/ 2        | 0.101110  | 120.2 1117 | 10.00 11          | 100.00 1111/111111 |               |
| 1/23/2024 | 30:00        | 5.62 pH   | 18.63 °C    | 2,134.4               | 0.25 mg/L            | 0.26 NTU  | 113.8 mV   | 43.55 ft          | 150.00 ml/min      |               |
| 11:16 AM  | 00.00        | 0.02 pm   | 10.00       | μS/cm                 | 0.20 mg/L            | 0.201110  | 110.01111  | 40.00 K           | 100.00 1111/111111 |               |
| 1/23/2024 | 35:00        | 5.62 pH   | 18.65 °C    | 2,156.9               | 0.26 mg/L            | 0.26 NTU  | 132.4 mV   | 43.55 ft          | 150.00 ml/min      |               |
| 11:21 AM  | 33.00        | 0.02 pm   | 10.00       | μS/cm                 | 5.25 mg/L            | 0.201110  | 102.71117  | 10.50 10          | 100.00 111/11111   |               |
| 1/23/2024 | 40:00        | 5.62 pH   | 18.70 °C    | 2,150.0               | 0.26 mg/L            | 0.18 NTU  | 108.4 mV   | 43.55 ft          | 150.00 ml/min      |               |
| 11:26 AM  | 40.00        | 0.02 pm   | 13.70       | μS/cm                 | 3.23 mg/L            | 3.131410  | 100.41111  | 10.50 10          | 100.00 111/111111  |               |

| 1/23/2024 | 45:00 | 5.61 pH  | 18.70 °C | 2,146.9 | 0.26 mg/L | 0.16 NTU | 105.1 mV  | 43.55 ft | 150.00 ml/min     |
|-----------|-------|----------|----------|---------|-----------|----------|-----------|----------|-------------------|
| 11:31 AM  | 45.00 | 5.61 pn  | 16.70 C  | μS/cm   | 0.26 mg/L | 0.16 N10 | 105.11110 | 43.33 11 | 150.00 111/111111 |
| 1/23/2024 | F0:00 | F 61 all | 18.70 °C | 2,142.8 | 0.26 mg/l | 0.16 NTU | 440.0 ~\/ | 43.55 ft | 150.00 ml/min     |
| 11:36 AM  | 50:00 | 5.61 pH  | 18.70 °C | μS/cm   | 0.26 mg/L | 0.16 N10 | 118.8 mV  | 43.55 11 | 150.00 ml/min     |

## Samples

| Sample ID:  | Description:              |
|-------------|---------------------------|
|             | 6 bottles filled at 11:45 |
|             | (3) Ra-226/Ra-228         |
| ARK-AP1PZ-3 | (1) TDS                   |
|             | (1) Anions                |
|             | (1) metals                |

Test Date / Time: 1/23/2024 12:27:43 PM

**Project:** Arkwright

Operator Name: E. Scheiben

Location Name: AP1PZ-4 Latitude: 32.9210630471097 Longitude: -83.698776550591

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 56.9 ft Total Depth: 67.4 ft

Initial Depth to Water: 46.56 ft

Pump Type: Dedicated bladder

**Tubing Type: LDPE** 

**Tubing Inner Diameter: 0.17 in** 

**Tubing Length: 65 ft** 

Pump Intake From TOC: 61.5 ft Estimated Total Volume Pumped:

4000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 100 ml/min Final Draw Down: 1.43 ft Instrument Used: Aqua TROLL 400

Serial Number: 966105

#### **Test Notes:**

MP-50 S/N: 06

ID:47 PSI:30

Turbidimeter S/N: 23100D000368 WLM S/N: removed. Rental ID 29051

### **Weather Conditions:**

Overcast, 45 °F

#### Low-Flow Readings:

| Date Time | Elapsed Time  | рН        | Temperature | Specific<br>Conductivity | RDO<br>Concentration | Turbidity | ORP        | Depth to<br>Water | Flow               |                   |               |
|-----------|---------------|-----------|-------------|--------------------------|----------------------|-----------|------------|-------------------|--------------------|-------------------|---------------|
|           |               | +/- 0.1   | +/- 0.5     | +/- 5 %                  | +/- 10 %             | +/- 10 %  | +/- 10     | +/- 0.5           |                    |                   |               |
| 1/23/2024 | 00:00         | 6 25 pU   | 18.20 °C    | 2,351.1                  | 4.85 mg/L            | 42.30 NTU | -75.8 mV   | 46.56 ft          | 100.00 ml/min      |                   |               |
| 12:27 PM  | 00.00         | 6.35 pH   | 16.20 C     | μS/cm                    | 4.65 Hig/L           | 42.30 NTO | -75.6 1110 | 40.50 11          | 100.00 111/111111  |                   |               |
| 1/23/2024 | 05:00         | 6.31 pH   | 18.43 °C    | 2,342.0                  | 1.36 mg/L            | 5.79 NTU  | -94.7 mV   | 47.58 ft          | 100.00 ml/min      |                   |               |
| 12:32 PM  | 03.00         | 0.31 pm   | 16.43 C     | μS/cm                    | 1.30 Hig/L           | 3.79 1110 | -94.7 1110 | 47.56 11          | 100.00 111/111111  |                   |               |
| 1/23/2024 | 10:00         | 6.30 pH   | 18.56 °C    | 2,337.2                  | 1.22 mg/L            | 4.83 NTU  | -88.5 mV   | 47.68 ft          | 100.00 ml/min      |                   |               |
| 12:37 PM  | 10.00         | 0.30 pm   | 18.56 °C    | μS/cm                    | 1.22 Hig/L           | 4.03 1110 | -00.5 111  | 47.0010           | 100.00 111/111111  |                   |               |
| 1/23/2024 | 15:00         | 15:00     | 15:00       | 6.30 pH                  | 18.61 °C             | 2,336.9   | 0.96 mg/L  | 4.17 NTU          | -85.9 mV           | 47.81 ft          | 100.00 ml/min |
| 12:42 PM  | 13.00         | 0.30 pn   | 0.00 pri    | 10.01                    | μS/cm                | 0.50 mg/L | 4.17 1110  | 00.0 111 V        | 47.0110            | 100.00 111/111111 |               |
| 1/23/2024 | 20:00         | 6.29 pH   | 18.59 °C    | 2,335.1                  | 0.66 mg/L            | 4.80 NTU  | -88.3 mV   | 47.86 ft          | 100.00 ml/min      |                   |               |
| 12:47 PM  | 20.00         | 0.23 pm   | 10.55       | μS/cm                    | 0.00 mg/L            | 4.001410  | -00.5 111  | 47.0010           | 100.00 111/111111  |                   |               |
| 1/23/2024 | 25:00         | 6.29 pH   | 18.63 °C    | 2,337.8                  | 0.50 mg/L            | 3.80 NTU  | -129.4 mV  | 47.92 ft          | 100.00 ml/min      |                   |               |
| 12:52 PM  | 20.00         | 0.20 pm   | 10.00       | μS/cm                    | 0.00 mg/L            | 0.001110  | 120.4111   | 47.02 10          | 100.00 1111/111111 |                   |               |
| 1/23/2024 | 30:00         | 6.28 pH   | 18.63 °C    | 2,334.3                  | 0.42 mg/L            | 3.29 NTU  | -86.6 mV   | 47.96 ft          | 100.00 ml/min      |                   |               |
| 12:57 PM  | 30.00 0.28 pm | 0.20 pr i | 10.05       | μS/cm                    | 0.42 mg/L            | 3.23 1110 | -00.0 111  | 47.5010           | 100.00 111/111111  |                   |               |
| 1/23/2024 | 35:00         | 6.27 pH   | 18.66 °C    | 2,333.4                  | 0.37 mg/L            | 2.51 NTU  | -88.0 mV   | 47.98 ft          | 100.00 ml/min      |                   |               |
| 1:02 PM   | 33.00         | 0.27 pm   | 10.00 C     | μS/cm                    | 0.57 Hig/L           | 2.51 1110 | 33.3 111   | 47.90 It          | 100.00 111/111111  |                   |               |
| 1/23/2024 | 40:00         | 6.27 pH   | 18.63 °C    | 2,330.7                  | 0.33 mg/L            | 1.80 NTU  | -128.4 mV  | 47.99 ft          | 100.00 ml/min      |                   |               |
| 1:07 PM   |               | 0.27 pm   | 10.03       | μS/cm                    | 0.55 Hig/L           | 1.00 1410 | 120.4 1110 | 47.5510           | 100.00 1111/111111 |                   |               |

## **Samples**

| Sample ID:  | Description:              |
|-------------|---------------------------|
|             | 6 bottles filled at 13:10 |
|             | (3) Ra-226/Ra-228         |
| ARK-AP1PZ-4 | (1) TDS                   |
|             | (1) Anions                |
|             | (1) metals                |

Test Date / Time: 1/23/2024 2:12:59 PM

**Project:** Arkwright

Operator Name: E. Scheiben

Location Name: AP1PZ-5 Latitude: 32.917865859031 Longitude: -83.6973610147834

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 56.8 ft Total Depth: 67.3 ft

Initial Depth to Water: 48.79 ft

Pump Type: Dedicated bladder

**Tubing Type: LDPE** 

**Tubing Inner Diameter: 0.17 in** 

**Tubing Length: 65 ft** 

Pump Intake From TOC: 61.3 ft Estimated Total Volume Pumped:

3500 ml

Flow Cell Volume: 90 ml Final Flow Rate: 100 ml/min Final Draw Down: 0.73 ft Instrument Used: Aqua TROLL 400

Serial Number: 966105

#### **Test Notes:**

MP-50 S/N: 06

ID:47 PSI:30

Turbidimeter S/N: 23100D000368 WLM S/N: removed. Rental ID 29051

### **Weather Conditions:**

Overcast, 45 °F

#### Low-Flow Readings:

| Date Time            | Elapsed Time | рН      | Temperature | Specific<br>Conductivity | RDO<br>Concentration | Turbidity | ORP       | Depth to<br>Water | Flow          |
|----------------------|--------------|---------|-------------|--------------------------|----------------------|-----------|-----------|-------------------|---------------|
|                      |              | +/- 0.1 | +/- 0.5     | +/- 5 %                  | +/- 10 %             | +/- 10 %  | +/- 10    | +/- 0.5           |               |
| 1/23/2024<br>2:12 PM | 00:00        | 6.10 pH | 18.69 °C    | 3,018.8<br>μS/cm         | 5.18 mg/L            | 1.17 NTU  | -37.3 mV  | 48.79 ft          | 100.00 ml/min |
| 1/23/2024<br>2:17 PM | 05:00        | 6.09 pH | 18.43 °C    | 3,041.6<br>μS/cm         | 1.69 mg/L            | 1.22 NTU  | -42.1 mV  | 49.29 ft          | 100.00 ml/min |
| 1/23/2024<br>2:22 PM | 10:00        | 6.09 pH | 18.48 °C    | 3,041.9<br>μS/cm         | 1.43 mg/L            | 1.94 NTU  | -45.9 mV  | 49.38 ft          | 100.00 ml/min |
| 1/23/2024<br>2:27 PM | 15:00        | 6.09 pH | 18.49 °C    | 3,040.2<br>μS/cm         | 1.18 mg/L            | 0.93 NTU  | -84.1 mV  | 49.39 ft          | 100.00 ml/min |
| 1/23/2024<br>2:32 PM | 20:00        | 6.09 pH | 18.52 °C    | 3,039.8<br>μS/cm         | 0.89 mg/L            | 0.62 NTU  | -63.8 mV  | 49.42 ft          | 100.00 ml/min |
| 1/23/2024<br>2:37 PM | 25:00        | 6.10 pH | 18.50 °C    | 3,038.7<br>μS/cm         | 0.69 mg/L            | 0.48 NTU  | -102.5 mV | 49.46 ft          | 100.00 ml/min |
| 1/23/2024<br>2:42 PM | 30:00        | 6.10 pH | 18.48 °C    | 3,036.3<br>µS/cm         | 0.64 mg/L            | 0.45 NTU  | -106.2 mV | 49.49 ft          | 100.00 ml/min |
| 1/23/2024<br>2:47 PM | 35:00        | 6.10 pH | 18.47 °C    | 3,030.8<br>µS/cm         | 0.58 mg/L            | 0.39 NTU  | -107.9 mV | 49.52 ft          | 100.00 ml/min |

## **Samples**

| Sample ID:  | Description:              |
|-------------|---------------------------|
|             | 6 bottles filled at 14:50 |
|             | (3) Ra-226/Ra-228         |
| ARK-AP1PZ-5 | (1) TDS                   |
|             | (1) Anions                |
|             | (1) Metals                |

Test Date / Time: 1/23/2024 3:54:25 PM

**Project:** Arkwright

Operator Name: E. Scheiben

**Location Name: AP1PZ-7** 

Latitude: 32.91790369787738 Longitude: -83.6973066453411

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 67.3 ft Total Depth: 77.8 ft

Initial Depth to Water: 50.94 ft

Pump Type: Dedicated bladder

**Tubing Type: LDPE** 

**Tubing Inner Diameter: 0.17 in** 

**Tubing Length: 76 ft** 

Pump Intake From TOC: 71.8 ft Estimated Total Volume Pumped:

3000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 100 ml/min Final Draw Down: 2.39 ft Instrument Used: Aqua TROLL 400

Serial Number: 966105

#### **Test Notes:**

MP-50 S/N: 06

ID:45 PSI:35

Turbidimeter S/N: 23100D000368 WLM S/N: removed. Rental ID 29051

### **Weather Conditions:**

Overcast, 46 °F

#### **Low-Flow Readings:**

| Date Time | Elapsed Time | рН       | Temperature | Specific<br>Conductivity | RDO<br>Concentration | Turbidity | ORP         | Depth to<br>Water | Flow               |
|-----------|--------------|----------|-------------|--------------------------|----------------------|-----------|-------------|-------------------|--------------------|
|           |              | +/- 0.1  | +/- 0.5     | +/- 5 %                  | +/- 10 %             | +/- 10 %  | +/- 10      | +/- 0.5           |                    |
| 1/23/2024 | 00:00        | 6.27 pH  | 19.28 °C    | 2,311.2                  | 2.91 mg/L            | 7.26 NTU  | -60.6 mV    | 50.94 ft          | 100.00 ml/min      |
| 3:54 PM   | 00.00        | 0.27 pm  | 19.20 C     | μS/cm                    | 2.91 mg/L            | 7.20 NTO  | -00.01117   | 30.94 II          | 100.00 1111/111111 |
| 1/23/2024 | 05:00        | 6.23 pH  | 18.20 °C    | 2,356.2                  | 1.09 mg/L            | 7.38 NTU  | -52.1 mV    | 51.80 ft          | 100.00 ml/min      |
| 3:59 PM   | 03.00        | 0.23 pri | 10.20 C     | μS/cm                    | 1.09 Hig/L           | 7.50 1410 | -32.11110   | 31.0010           | 100.00 1111/111111 |
| 1/23/2024 | 10:00        | 6.22 pH  | 18.04 °C    | 2,353.8                  | 1.05 mg/L            | 7.48 NTU  | -71.9 mV    | 52.34 ft          | 100.00 ml/min      |
| 4:04 PM   | 10.00        | 0.22 pm  | 10.04 0     | μS/cm                    | 1.00 mg/L            | 7.401110  | 7 1.5 111   | 02.04 K           | 100.00 1111/111111 |
| 1/23/2024 | 15:00        | 6.22 pH  | 18.03 °C    | 2,351.3                  | 0.87 mg/L            | 5.14 NTU  | -75.6 mV    | 52.87 ft          | 100.00 ml/min      |
| 4:09 PM   | 13.00        | 0.22 pm  | 10.05       | μS/cm                    | 0.07 Hig/L           | 3.141010  | 7 3.0 111 0 | 52.07 It          | 100.00 111/111111  |
| 1/23/2024 | 20:00        | 6.23 pH  | 17.99 °C    | 2,348.6                  | 0.88 mg/L            | 4.92 NTU  | -80.5 mV    | 52.91 ft          | 100.00 ml/min      |
| 4:14 PM   | 20.00        | 0.23 pm  | 17.55 0     | μS/cm                    | 0.00 mg/L            | 4.52 1110 | -00.5 111   | 52.51 It          | 100.00 1111/111111 |
| 1/23/2024 | 25:00        | 6.25 pH  | 18.02 °C    | 2,342.5                  | 0.90 mg/L            | 3.51 NTU  | -86.1 mV    | 53.19 ft          | 100.00 ml/min      |
| 4:19 PM   | 20.00        | 0.20 pm  | 10.02 0     | μS/cm                    | 0.00 Hig/L           | 0.011110  | 55.1 IIIV   | 55.1510           | 100.00 1111/111111 |
| 1/23/2024 | 30:00        | 6.25 pH  | 18.03 °C    | 2,344.5                  | 0.90 mg/L            | 2.88 NTU  | -57.4 mV    | 53.33 ft          | 100.00 ml/min      |
| 4:24 PM   | 30.00        | 0.23 pri | 10.03 0     | μS/cm                    | 0.50 Hig/L           | 2.00 1410 | 57.4 IIIV   | 55.55 It          | 100.00 111/111111  |

#### **Samples**

| Sample ID:   | Description:              |
|--------------|---------------------------|
|              | 6 bottles filled at 16:25 |
|              | (3) Ra-226/Ra-228         |
| ARK-AP1PZ-7  | (1) TDS                   |
|              | (1) Anions                |
|              | (1) metals                |
|              | 6 bottles filled at 15:55 |
|              | (3) Ra-226/Ra-228         |
| ARK-AP1-FB02 | (1) TDS                   |
|              | (1) Anions                |
|              | (1) metals                |
|              | 6 bottles filled at 17:00 |
|              | (3) Ra-226/Ra-228         |
| ARK-AP1-EB02 | (1) TDS                   |
|              | (1) Anions                |

Created using VuSitu from In-Situ, Inc.

(1) metals

Test Date / Time: 1/23/2024 10:53:48 AM

**Project:** Arkwright

**Operator Name:** Zach Levy

**Location Name: AP1PZ-8** 

Latitude: 32.916992633965506 Longitude: -83.6994890825729

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 55.6 ft Total Depth: 66.1 ft

Initial Depth to Water: 46.11 ft

Pump Type: Dedicated bladder

**Tubing Type: LDPE** 

Pump Intake From TOC: 59 ft Estimated Total Volume Pumped:

4000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 100 ml/min Final Draw Down: 4.39 ft Instrument Used: Aqua TROLL 400

Serial Number: 952637

Test Notes: MP-50 S/N: 02

ID: 103 PSI: 40

Turbidimeter S/N: 23100D000373

WLM S/N: 28839

#### **Weather Conditions:**

Cloudy

#### **Low-Flow Readings:**

|           |              |           |             | Specific     | RDO           |           |            | Depth to |                    |
|-----------|--------------|-----------|-------------|--------------|---------------|-----------|------------|----------|--------------------|
| Date Time | Elapsed Time | рН        | Temperature | Conductivity | Concentration | Turbidity | ORP        | Water    | Flow               |
|           |              | +/- 0.1   | +/- 0.5     | +/- 5 %      | +/- 10 %      | +/- 10 %  | +/- 10     | +/- 0.5  |                    |
| 1/23/2024 | 00:00        | 6.58 pH   | 17.47 °C    | 1,643.3      | 1.44 mg/L     | 1.46 NTU  | -6.2 mV    | 49.80 ft | 100.00 ml/min      |
| 10:53 AM  | 00.00        | 0.36 pri  | 17.47 C     | μS/cm        | 1.44 mg/L     | 1.40 1110 | -0.2 1110  | 49.00 11 | 100.00 111/111111  |
| 1/23/2024 | 05:00        | 6.60 pH   | 17.85 °C    | 1,640.1      | 0.94 mg/L     | 0.64 NTU  | -41.5 mV   | 49.95 ft | 100.00 ml/min      |
| 10:58 AM  | 03.00        | 0.00 pi i | 17.05 C     | μS/cm        | 0.94 Hig/L    | 0.04 1110 | -41.51117  | 49.95 11 | 100.00 111/111111  |
| 1/23/2024 | 10:00        | 6.59 pH   | 17.88 °C    | 1,646.1      | 0.78 mg/L     | 0.58 NTU  | -31.0 mV   | 50.11 ft | 100.00 ml/min      |
| 11:03 AM  | 10.00        | 0.59 pm   | 17.00 C     | μS/cm        | 0.78 mg/L     | 0.38 1410 | -31.01110  | 30.1111  | 100.00 111/111111  |
| 1/23/2024 | 15:00        | 6.59 pH   | 17.94 °C    | 1,646.1      | 0.60 mg/L     | 0.47 NTU  | -34.3 mV   | 50.22 ft | 100.00 ml/min      |
| 11:08 AM  | 13.00        | 0.59 pri  | 17.94 0     | μS/cm        | 0.00 mg/L     | 0.47 1110 | -54.5 111  | 30.22 It | 100.00 111/111111  |
| 1/23/2024 | 20:00        | 6.59 pH   | 18.08 °C    | 1,653.2      | 0.53 mg/L     | 0.37 NTU  | -56.4 mV   | 50.30 ft | 100.00 ml/min      |
| 11:13 AM  | 20.00        | 0.00 pi i | 10.00       | μS/cm        | 0.55 Hig/L    | 0.57 1410 | 30.41117   | 30.30 10 | 100.00 111/111111  |
| 1/23/2024 | 25:00        | 6.60 pH   | 18.05 °C    | 1,653.0      | 0.43 mg/L     | 0.43 NTU  | -59.2 mV   | 50.38 ft | 100.00 ml/min      |
| 11:18 AM  | 23.00        | 0.00 pi i | 10.05 C     | μS/cm        | 0.43 Hig/L    | 0.43 1110 | -59.2 1110 | 30.36 it | 100.00 1111/111111 |
| 1/23/2024 | 30:00        | 6.59 pH   | 18.02 °C    | 1,656.1      | 0.38 mg/L     | 0.21 NTU  | -39.0 mV   | 50.42 ft | 100.00 ml/min      |
| 11:23 AM  | 30.00        | 0.59 pri  | 10.02 C     | μS/cm        | 0.30 Hig/L    | 0.211010  | -59.0 1110 | 30.42 It | 100.00 111/111111  |
| 1/23/2024 | 35:00        | 6.59 pH   | 18.12 °C    | 1,655.5      | 0.35 mg/L     | 0.24 NTU  | -39.4 mV   | 50.49 ft | 100.00 ml/min      |
| 11:28 AM  | 33.00        | 0.53 pi i | 10.12 0     | μS/cm        | 0.55 Hig/L    | 0.24 1410 | .55.4 1117 | 30.4311  | 100.00 111/111111  |
| 1/23/2024 | 40:00        | 6.59 pH   | 18.13 °C    | 1,656.3      | 0.33 mg/L     | 0.28 NTU  | -38.5 mV   | 50.50 ft | 100.00 ml/min      |
| 11:33 AM  | 40.00        | 0.53 pri  | 10.13       | μS/cm        | 0.33 Hig/L    | 0.20 1010 | -30.3 1117 | 30.30 It | 100.00 1111/111111 |

## **Samples**

| Sample ID:                             | Description:       |  |  |  |  |
|----------------------------------------|--------------------|--|--|--|--|
| ARK-AP1PZ-8                            | Sample time: 11:40 |  |  |  |  |
| 6 bottles: metals, anions, TDS, radium |                    |  |  |  |  |

Test Date / Time: 1/23/2024 12:44:59 PM

**Project:** Arkwright

**Operator Name:** Zach Levy

Location Name: AP1PZ-9

Latitude: 32.919084221218284 Longitude: -83.69870549726224

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 46.3 ft Total Depth: 57.4 ft

Initial Depth to Water: 41.97 ft

Pump Type: Dedicated bladder

**Tubing Type: LDPE** 

Pump Intake From TOC: 50.1 ft Estimated Total Volume Pumped:

4500 ml

Flow Cell Volume: 90 ml Final Flow Rate: 100 ml/min Final Draw Down: 4.73 ft Instrument Used: Aqua TROLL 400

Serial Number: 952637

Test Notes: MP-50 S/N: 02

ID: 103 PSI: 25

Turbidimeter S/N: 23100D000373

WLM S/N: 28839

#### **Weather Conditions:**

Cloudy

#### **Low-Flow Readings:**

| Date Time             | Elapsed Time | рН      | Temperature | Specific<br>Conductivity | RDO<br>Concentration | Turbidity | ORP      | Depth to<br>Water | Flow          |
|-----------------------|--------------|---------|-------------|--------------------------|----------------------|-----------|----------|-------------------|---------------|
|                       |              | +/- 0.1 | +/- 0.5     | +/- 5 %                  | +/- 10 %             | +/- 10 %  | +/- 10   | +/- 0.5           |               |
| 1/23/2024<br>12:44 PM | 00:00        | 4.26 pH | 18.66 °C    | 646.30 μS/cm             | 2.96 mg/L            | 3.93 NTU  | 259.7 mV | 44.55 ft          | 100.00 ml/min |
| 1/23/2024<br>12:49 PM | 05:00        | 4.23 pH | 18.03 °C    | 649.33 μS/cm             | 2.48 mg/L            | 2.62 NTU  | 277.4 mV | 44.89 ft          | 100.00 ml/min |
| 1/23/2024<br>12:54 PM | 10:00        | 4.26 pH | 17.99 °C    | 653.40 μS/cm             | 2.17 mg/L            | 1.31 NTU  | 254.9 mV | 45.55 ft          | 100.00 ml/min |
| 1/23/2024<br>12:59 PM | 15:00        | 4.30 pH | 17.95 °C    | 650.84 μS/cm             | 2.54 mg/L            | 1.33 NTU  | 248.5 mV | 46.12 ft          | 100.00 ml/min |
| 1/23/2024<br>1:04 PM  | 20:00        | 4.31 pH | 17.42 °C    | 648.64 µS/cm             | 2.50 mg/L            | 0.98 NTU  | 244.2 mV | 46.40 ft          | 100.00 ml/min |
| 1/23/2024<br>1:09 PM  | 25:00        | 4.41 pH | 17.29 °C    | 648.69 µS/cm             | 2.59 mg/L            | 1.12 NTU  | 233.2 mV | 46.59 ft          | 100.00 ml/min |
| 1/23/2024<br>1:14 PM  | 30:00        | 4.52 pH | 17.39 °C    | 647.63 μS/cm             | 2.60 mg/L            | 1.37 NTU  | 220.6 mV | 46.70 ft          | 100.00 ml/min |
| 1/23/2024<br>1:19 PM  | 35:00        | 4.60 pH | 17.18 °C    | 644.72 μS/cm             | 2.57 mg/L            | 1.16 NTU  | 211.5 mV | 46.70 ft          | 100.00 ml/min |
| 1/23/2024<br>1:24 PM  | 40:00        | 4.66 pH | 16.91 °C    | 646.68 µS/cm             | 2.53 mg/L            | 1.11 NTU  | 204.6 mV | 46.70 ft          | 100.00 ml/min |
| 1/23/2024<br>1:29 PM  | 45:00        | 4.68 pH | 17.05 °C    | 645.77 μS/cm             | 2.53 mg/L            | 1.22 NTU  | 201.8 mV | 46.70 ft          | 100.00 ml/min |

## **Samples**

| Sample ID:                             | Description:       |  |  |  |  |
|----------------------------------------|--------------------|--|--|--|--|
| ARK-AP1PZ-9                            | Sample time: 13:35 |  |  |  |  |
| 6 bottles: metals, anions, TDS, Radium |                    |  |  |  |  |

Test Date / Time: 1/23/2024 3:36:40 PM

**Project:** Arkwright

**Operator Name:** Zach Levy

**Location Name: AP1PZ-10** 

Latitude: 32.919759918035005 Longitude: -83.69891015820549

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 46 ft Total Depth: 56.5 ft

Initial Depth to Water: 40.59 ft

Pump Type: Dedicated bladder

**Tubing Type: LDPE** 

Pump Intake From TOC: 50.5 ft Estimated Total Volume Pumped:

3000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 150 ml/min Final Draw Down: 4.13 ft Instrument Used: Aqua TROLL 400

Serial Number: 952637

Test Notes:

MP-50 S/N: 02

ID: 103 PSI: 30

Turbidimeter S/N: 23100D000373

WLM S/N: 28839

## **Weather Conditions:**

Cloudy

#### Low-Flow Readings:

| Date Time            | Elapsed Time | рН      | Temperature | Specific<br>Conductivity | RDO<br>Concentration | Turbidity | ORP      | Depth to<br>Water | Flow          |
|----------------------|--------------|---------|-------------|--------------------------|----------------------|-----------|----------|-------------------|---------------|
|                      |              | +/- 0.1 | +/- 0.5     | +/- 5 %                  | +/- 10 %             | +/- 10 %  | +/- 10   | +/- 0.5           |               |
| 1/23/2024<br>3:36 PM | 00:00        | 6.19 pH | 18.56 °C    | 651.39 μS/cm             | 1.97 mg/L            | 4.98 NTU  | 60.4 mV  | 43.05 ft          | 150.00 ml/min |
| 1/23/2024<br>3:41 PM | 05:00        | 6.31 pH | 18.45 °C    | 690.31 μS/cm             | 1.51 mg/L            | 2.74 NTU  | -36.2 mV | 43.45 ft          | 150.00 ml/min |
| 1/23/2024<br>3:46 PM | 10:00        | 6.35 pH | 18.52 °C    | 706.63 μS/cm             | 1.40 mg/L            | 2.09 NTU  | -40.1 mV | 43.96 ft          | 150.00 ml/min |
| 1/23/2024<br>3:51 PM | 15:00        | 6.37 pH | 18.57 °C    | 705.68 μS/cm             | 1.37 mg/L            | 2.33 NTU  | -39.4 mV | 44.39 ft          | 150.00 ml/min |
| 1/23/2024<br>3:56 PM | 20:00        | 6.38 pH | 18.52 °C    | 704.53 μS/cm             | 1.29 mg/L            | 1.60 NTU  | -37.6 mV | 44.72 ft          | 150.00 ml/min |

### **Samples**

| Sample ID:    | Description:                           |
|---------------|----------------------------------------|
| ARK-AP1PZ-10  | Sample time: 16:00                     |
| ANN-AF IFZ-10 | 6 bottles: metals, anions, TDS, Radium |

Test Date / Time: 1/23/2024 4:45:33 PM

**Project:** Arkwright

**Operator Name:** Zach Levy

**Location Name: AP1PZ-11** 

Latitude: 32.92053163985994 Longitude: -83.69913831360982

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 62.8 ft Total Depth: 73.3 ft

Initial Depth to Water: 40.22 ft

Pump Type: Dedicated bladder

**Tubing Type: LDPE** 

Pump Intake From TOC: 67.9 ft Estimated Total Volume Pumped:

7500 ml

Flow Cell Volume: 90 ml Final Flow Rate: 300 ml/min Final Draw Down: 0.58 ft Instrument Used: Aqua TROLL 400

Serial Number: 952637

## Test Notes:

MP50 SN: 02

ID: 104 PSI: 40

Turbidity meter SN: 23100D000373

WL meter SN: 28839

## **Weather Conditions:**

Cloudy

#### **Low-Flow Readings:**

| Date Time            | Elapsed Time | рН      | Temperature | Specific<br>Conductivity | RDO<br>Concentration | Turbidity | ORP     | Depth to<br>Water | Flow          |
|----------------------|--------------|---------|-------------|--------------------------|----------------------|-----------|---------|-------------------|---------------|
|                      |              | +/- 0.1 | +/- 0.5     | +/- 5 %                  | +/- 10 %             | +/- 10 %  | +/- 10  | +/- 0.5           |               |
| 1/23/2024<br>4:45 PM | 00:00        | 6.91 pH | 18.16 °C    | 285.42 μS/cm             | 2.40 mg/L            | 1.60 NTU  | 39.7 mV | 40.78 ft          | 300.00 ml/min |
| 1/23/2024<br>4:50 PM | 05:00        | 6.86 pH | 18.36 °C    | 281.32 μS/cm             | 1.72 mg/L            | 1.80 NTU  | 61.9 mV | 40.80 ft          | 300.00 ml/min |
| 1/23/2024<br>4:55 PM | 10:00        | 6.83 pH | 18.30 °C    | 279.00 μS/cm             | 1.84 mg/L            | 1.44 NTU  | 55.2 mV | 40.80 ft          | 300.00 ml/min |
| 1/23/2024<br>5:00 PM | 15:00        | 6.81 pH | 18.32 °C    | 276.77 μS/cm             | 2.00 mg/L            | 1.53 NTU  | 56.9 mV | 40.80 ft          | 300.00 ml/min |
| 1/23/2024<br>5:05 PM | 20:00        | 6.80 pH | 18.30 °C    | 275.06 μS/cm             | 2.13 mg/L            | 1.83 NTU  | 58.4 mV | 40.80 ft          | 300.00 ml/min |
| 1/23/2024<br>5:10 PM | 25:00        | 6.79 pH | 18.34 °C    | 273.71 μS/cm             | 2.22 mg/L            | 1.47 NTU  | 59.6 mV | 40.80 ft          | 300.00 ml/min |

## **Samples**

| Sample ID: |
|------------|
|------------|

| ARK-AP1PZ-11  | Sample time: 17:15                     |
|---------------|----------------------------------------|
| ARR-AFTFZ-11  | 6 bottles: metals, anions, TDS, Radium |
| ADK AD4 ED 00 | Sample time: N/A                       |
| ARK-AP1-FD-02 | 6 bottles: metals, anions, TDS, Radium |

## **B.2** Calibration Data

| Site Name:     | <u>Arkwright</u> | Date:             | 10/9/23    |
|----------------|------------------|-------------------|------------|
| Calibrated By: | John Myer        | Field Conditions: | Clear 65 F |

| Instrument          | Manufactuer/ Model | Serial Number |
|---------------------|--------------------|---------------|
| Water Quality Meter | AquaTroll          | 850751        |
| Turbidity Meter     | Hach 2100Q         | 23060D00290   |

| Calibration Standard Information |          |          |                    |       |  |  |
|----------------------------------|----------|----------|--------------------|-------|--|--|
| Parameter                        | Standard | Lot#     | Date of Expiration | Brand |  |  |
| Specific Conductance (µS/cm)     | 4,490    | 24000044 | May-24             | AIR   |  |  |
| pH (SU)                          | 4.00     | 24000044 | May-24             | AIR   |  |  |
| pH (SU)                          | 7.00     | 22290139 | Apr-24             | AIR   |  |  |
| pH (SU)                          | 10.00    | 22110130 | Apr-24             | AIR   |  |  |
| D.O. (%)                         | N/A      | N/A      | N/A                | N/A   |  |  |
| ORP (mV)                         | 228.0    | 24002258 | Jun-24             | AIR   |  |  |

| Calibration                  |          |                   |                      |                     |           |  |  |  |
|------------------------------|----------|-------------------|----------------------|---------------------|-----------|--|--|--|
| Time Start                   | 10:34    | Time Finish       | 10:55                |                     |           |  |  |  |
|                              |          |                   | Calibration Solution |                     |           |  |  |  |
| Parameter                    | Standard | Calibration Value | Temperature (°C)     | Acceptance Criteria | Reference |  |  |  |
| Specific Conductance (µS/cm) | 4,490    | 4484              | 20.35                | ± 10% of standard   | EPA 2023  |  |  |  |
| pH (SU)                      | 4.00     | 4.02              | 20.59                | ± 0.1               | GWMP      |  |  |  |
| pH (SU)                      | 7.00     | 7.05              | 20.51                | ± 0.1               | GWMP      |  |  |  |
| pH (SU)                      | 10.00    | 10.05             | 20.75                | ± 0.1               | GWMP      |  |  |  |
| D.O. (%)                     | N/A      | 100.09            | 20.11                | ± 10%               | NA        |  |  |  |
| ORP (mV)                     | 228.0    | 235               | 20.49                | ± 10                | EPA 2023  |  |  |  |

|                 | Standard | Calibration Value | Acceptance Criteria | Reference |
|-----------------|----------|-------------------|---------------------|-----------|
|                 | 20       | 19.7              |                     |           |
| Turbidity (NTU) | 100      | 98.9              | ± 10% of standard   | EPA 2023  |
|                 | 800      | 798               | ± 10 % Of Standard  | LFA 2023  |
|                 | 10       | 10.3              |                     |           |

|                                    |          | 0 111 11          | <b>0</b> 1 1         |                     |           |  |  |
|------------------------------------|----------|-------------------|----------------------|---------------------|-----------|--|--|
| Calibration Check                  |          |                   |                      |                     |           |  |  |
| Time Start 15:00 Time Finish 15:15 |          |                   |                      |                     |           |  |  |
|                                    |          |                   | Calibration Solution |                     |           |  |  |
| Parameter                          | Standard | Calibration Value | Temperature (°C)     | Acceptance Criteria | Reference |  |  |
| Specific Conductance (µS/cm)       | 4,490    | 4342.7            | 25.6                 | ± 10% of standard   | EPA 2023  |  |  |
| pH (SU)                            | 4.00     | 4.07              | 25.6                 | ± 0.1               | GWMP      |  |  |
| pH (SU)                            | 7.00     | 7.08              | 24.1                 | ± 0.1               | GWMP      |  |  |
| pH (SU)                            | 10.00    | 10.04             | 24.4                 | ± 0.1               | GWMP      |  |  |

|                 | Standard | Calibration Value | Acceptance Criteria | Reference |
|-----------------|----------|-------------------|---------------------|-----------|
|                 | 20       | 20.3              |                     |           |
| Turbidity (NTU) | 100      | 103               | ± 10% of standard   | EPA 2023  |
|                 | 800      | 795               | 1 10 % Of Standard  | LI A 2023 |
|                 | 10       | 10.2              |                     |           |

Field Conditions: Clear 60F

Date: 2023-10-09\_

| Instrument          | Manufactuer/ Model   | Serial Number |
|---------------------|----------------------|---------------|
| Water Quality Meter | nSitu Aqua TROLL 400 | 850762        |
| Turbidity Meter     | Hach 2100Q           | 22090D000086  |

| Calibration Standard Information |          |          |                    |       |  |  |
|----------------------------------|----------|----------|--------------------|-------|--|--|
| Parameter                        | Standard | Lot#     | Date of Expiration | Brand |  |  |
| Specific Conductance (µS/cm)     | 4,490    | 24000044 | May-24             | AIR   |  |  |
| pH (SU)                          | 4.00     | 24000044 | May-24             | AIR   |  |  |
| pH (SU)                          | 7.00     | 22290139 | Apr-24             | AIR   |  |  |
| pH (SU)                          | 10.00    | 22110130 | Apr-24             | AIR   |  |  |
| D.O. (%)                         | N/A      | NA       | NA                 | NA    |  |  |
| ORP (mV)                         | 228.0    | 24002258 | Jun-24             | AIR   |  |  |

| Calibration                  |          |                   |                      |                     |           |  |  |  |
|------------------------------|----------|-------------------|----------------------|---------------------|-----------|--|--|--|
| Time Start                   | 10:30    | Time Finish       | 11:05                |                     |           |  |  |  |
|                              |          |                   | Calibration Solution |                     |           |  |  |  |
| Parameter                    | Standard | Calibration Value | Temperature (°C)     | Acceptance Criteria | Reference |  |  |  |
| Specific Conductance (µS/cm) | 4,490    | 4484.9            | 20.49                | ± 10% of standard   | EPA 2023  |  |  |  |
| pH (SU)                      | 4.00     | 4.03              | 19.35                | ± 0.1               | GWMP      |  |  |  |
| pH (SU)                      | 7.00     | 7.05              | 19.67                | ± 0.1               | GWMP      |  |  |  |
| pH (SU)                      | 10.00    | 10.05             | 20.33                | ± 0.1               | GWMP      |  |  |  |
| D.O. (%)                     | N/A      | 100.13            | 21.76                | ± 10%               | NA        |  |  |  |
| ORP (mV)                     | 228.0    | 228               | 20.4                 | ± 10                | EPA 2023  |  |  |  |

|                 | Standard | Calibration Value | Acceptance Criteria | Reference |
|-----------------|----------|-------------------|---------------------|-----------|
|                 | 20       | 19.4              |                     |           |
| Turbidity (NTU) | 100      | 101               | ± 10% of standard   | EPA 2023  |
|                 | 800      | 802               | 1 10 % Of Staffdard | LFA 2023  |
|                 | 10       | 10.1              |                     |           |

| Calibration Check            |          |                   |                      |                     |           |  |
|------------------------------|----------|-------------------|----------------------|---------------------|-----------|--|
| Time Start                   | 15:15    | Time Finish       | 15:35                |                     |           |  |
|                              |          |                   | Calibration Solution |                     |           |  |
| Parameter                    | Standard | Calibration Value | Temperature (°C)     | Acceptance Criteria | Reference |  |
| Specific Conductance (µS/cm) | 4,490    | 4516.7            | 22.64                | ± 10% of standard   | EPA 2023  |  |
| pH (SU)                      | 4.00     | 4.07              | 22.72                | ± 0.1               | GWMP      |  |
| pH (SU)                      | 7.00     | 7.04              | 21.89                | ± 0.1               | GWMP      |  |
| pH (SU)                      | 10.00    | 9.95              | 22.06                | ± 0.1               | GWMP      |  |

|                 | Standard | Calibration Value | Acceptance Criteria | Reference |
|-----------------|----------|-------------------|---------------------|-----------|
|                 | 20       | 20.6              |                     |           |
| Turbidity (NTU) | 100      | 99.3              | ± 10% of standard   | EPA 2023  |
|                 | 800      | 802               | ± 10 % of Standard  | LI A 2020 |
|                 | 10       | 9.92              |                     |           |

Site Name: Plant Arkwrigh

Calibrated By: John Myer

Date: \_\_\_\_\_10/10/23

Field Conditions: Clear 51 F

| Instrument          | Manufactuer/ Model | Serial Number |
|---------------------|--------------------|---------------|
| Water Quality Meter | AquaTroll          | 850751        |
| Turbidity Meter     | Hach 2100Q         | 23060D00290   |

| Calibration Standard Information |          |          |                    |       |  |  |
|----------------------------------|----------|----------|--------------------|-------|--|--|
| Parameter                        | Standard | Lot#     | Date of Expiration | Brand |  |  |
| Specific Conductance (µS/cm)     | 4,490    | 24000044 | May-24             | AIR   |  |  |
| pH (SU)                          | 4.00     | 24000044 | May-24             | AIR   |  |  |
| pH (SU)                          | 7.00     | 22290139 | Apr-24             | AIR   |  |  |
| pH (SU)                          | 10.00    | 22110130 | Apr-24             | AIR   |  |  |
| D.O. (%)                         | N/A      | N/A      | N/A                | N/A   |  |  |
| ORP (mV)                         | 228.0    | 24002258 | Jun-24             | AIR   |  |  |

|                              | Calibration |                   |                      |                     |           |  |  |
|------------------------------|-------------|-------------------|----------------------|---------------------|-----------|--|--|
| Time Start                   | 5:30        | Time Finish       | 6:00                 |                     |           |  |  |
|                              |             |                   | Calibration Solution |                     |           |  |  |
| Parameter                    | Standard    | Calibration Value | Temperature (°C)     | Acceptance Criteria | Reference |  |  |
| Specific Conductance (µS/cm) | 4,490       | 4403              | 19.89                | ± 10% of standard   | EPA 2023  |  |  |
| pH (SU)                      | 4.00        | 4.03              | 20.22                | ± 0.1               | GWMP      |  |  |
| pH (SU)                      | 7.00        | 7.06              | 20.25                | ± 0.1               | GWMP      |  |  |
| pH (SU)                      | 10.00       | 10.06             | 20.28                | ± 0.1               | GWMP      |  |  |
| D.O. (%)                     | N/A         | 100.05            | 20.08                | ± 10%               | NA        |  |  |
| ORP (mV)                     | 228.0       | 235.5             | 20.08                | ± 10                | EPA 2023  |  |  |

|                 | Standard | Calibration Value | Acceptance Criteria  | Reference |
|-----------------|----------|-------------------|----------------------|-----------|
|                 | 20       | 20.2              |                      |           |
| Turbidity (NTU) | 100      | 104               | ± 10% of standard    | EPA 2023  |
|                 | 800      | 816               | ± 10 /0 OI Stalldald | LFA 2023  |
|                 | 10       | 10.1              |                      |           |

| Calibration Check                  |          |                   |                      |                     |           |  |
|------------------------------------|----------|-------------------|----------------------|---------------------|-----------|--|
| Time Start 12:35 Time Finish 12:50 |          |                   |                      |                     |           |  |
|                                    |          |                   | Calibration Solution |                     |           |  |
| Parameter                          | Standard | Calibration Value | Temperature (°C)     | Acceptance Criteria | Reference |  |
| Specific Conductance (µS/cm)       | 4,490    | 4301              | 25.41                | ± 10% of standard   | EPA 2023  |  |
| pH (SU)                            | 4.00     | 4.06              | 25.41                | ± 0.1               | GWMP      |  |
| pH (SU)                            | 7.00     | 7.08              | 23.89                | ± 0.1               | GWMP      |  |
| pH (SU)                            | 10.00    | 10.05             | 22.59                | ± 0.1               | GWMP      |  |

|                 | Standard | Calibration Value | Acceptance Criteria | Reference |
|-----------------|----------|-------------------|---------------------|-----------|
|                 | 20       | 20.2              |                     |           |
| Turbidity (NTU) | 100      | 102               | ± 10% of standard   | EPA 2023  |
|                 | 800      | 803               | 1 10 % Of Standard  | LI A 2023 |
|                 | 10       | 10.1              |                     |           |

Field Conditions: Partly cloudy

Date: 2023-10-10\_

| Instrument          | Manufactuer/ Model   | Serial Number |
|---------------------|----------------------|---------------|
| Water Quality Meter | InSitu AquaTroll 400 | 850762        |
| Turbidity Meter     | Hach 2100Q           | 22090D000086  |

| Calibration Standard Information |          |          |                    |       |  |
|----------------------------------|----------|----------|--------------------|-------|--|
| Parameter                        | Standard | Lot#     | Date of Expiration | Brand |  |
| Specific Conductance (µS/cm)     | 4,490    | 24000044 | May-24             | AIR   |  |
| pH (SU)                          | 4.00     | 24000044 | May-24             | AIR   |  |
| pH (SU)                          | 7.00     | 22290139 | Apr-24             | AIR   |  |
| pH (SU)                          | 10.00    | 22110130 | Apr-24             | AIR   |  |
| D.O. (%)                         | N/A      | NA       | NA                 | NA    |  |
| ORP (mV)                         | 228.0    | 24002258 | Jun-24             | AIR   |  |

|                              | Calibration |                   |                      |                     |           |  |  |
|------------------------------|-------------|-------------------|----------------------|---------------------|-----------|--|--|
| Time Start                   | 7:25        | Time Finish       | 7:50                 |                     |           |  |  |
|                              |             |                   | Calibration Solution |                     |           |  |  |
| Parameter                    | Standard    | Calibration Value | Temperature (°C)     | Acceptance Criteria | Reference |  |  |
| Specific Conductance (µS/cm) | 4,490       | 4470.4            | 11.85                | ± 10% of standard   | EPA 2023  |  |  |
| pH (SU)                      | 4.00        | 4.03              | 12.00                | ± 0.1               | GWMP      |  |  |
| pH (SU)                      | 7.00        | 7.09              | 12.24                | ± 0.1               | GWMP      |  |  |
| pH (SU)                      | 10.00       | 10.14             | 12.38                | ± 0.1               | GWMP      |  |  |
| D.O. (%)                     | N/A         | 100.1             | 14.47                | ± 10%               | NA        |  |  |
| ORP (mV)                     | 228.0       | 246.7             | 11.82                | ± 10                | EPA 2023  |  |  |

|                 | Standard | Calibration Value | Acceptance Criteria | Reference |  |
|-----------------|----------|-------------------|---------------------|-----------|--|
|                 | 20       | 20.3              |                     |           |  |
| Turbidity (NTU) | 100      | 101               | ± 10% of standard   | EPA 2023  |  |
|                 | 800      | 771               | ± 10 % Of Staffdard | EFA 2023  |  |
|                 | 10       | 9.71              |                     |           |  |

| Calibration Check                  |          |                   |                      |                     |           |  |
|------------------------------------|----------|-------------------|----------------------|---------------------|-----------|--|
| Time Start 14:40 Time Finish 14:50 |          |                   |                      |                     |           |  |
|                                    | -        |                   | Calibration Solution |                     |           |  |
| Parameter                          | Standard | Calibration Value | Temperature (°C)     | Acceptance Criteria | Reference |  |
| Specific Conductance (µS/cm)       | 4,490    | 4285.4            | 25.72                | ± 10% of standard   | EPA 2023  |  |
| pH (SU)                            | 4.00     | 4.09              | 25.72                | ± 0.1               | GWMP      |  |
| pH (SU)                            | 7.00     | 7.09              | 24.75                | ± 0.1               | GWMP      |  |
| pH (SU)                            | 10.00    | 10.02             | 23.73                | ± 0.1               | GWMP      |  |

|                 | Standard | Calibration Value | Acceptance Criteria | Reference |
|-----------------|----------|-------------------|---------------------|-----------|
|                 | 20       | 20.7              |                     |           |
| Turbidity (NTU) | 100      | 103               | ± 10% of standard   | EPA 2023  |
|                 | 800      | 797               | 1 10 % Of Standard  | LI A 2023 |
|                 | 10       | 10.2              |                     |           |

Field Conditions:Cloudy, 59F

Date: 2023-10-11

| Instrument          | Manufactuer/ Model   | Serial Number |
|---------------------|----------------------|---------------|
| Water Quality Meter | InSitu AquaTroll 400 | 850762        |
| Turbidity Meter     | Hach 2100Q           | 22090D000086  |

| Calibration Standard Information |          |          |                    |       |  |  |
|----------------------------------|----------|----------|--------------------|-------|--|--|
| Parameter                        | Standard | Lot#     | Date of Expiration | Brand |  |  |
| Specific Conductance (µS/cm)     | 4,490    | 24000044 | May-24             | AIR   |  |  |
| pH (SU)                          | 4.00     | 24000044 | May-24             | AIR   |  |  |
| pH (SU)                          | 7.00     | 22290139 | Apr-24             | AIR   |  |  |
| pH (SU)                          | 10.00    | 22110130 | Apr-24             | AIR   |  |  |
| D.O. (%)                         | N/A      | NA       | NA                 | NA    |  |  |
| ORP (mV)                         | 228.0    | 24002258 | Jun-24             | AIR   |  |  |

|                              | Calibration |                   |                      |                     |           |  |  |  |
|------------------------------|-------------|-------------------|----------------------|---------------------|-----------|--|--|--|
| Time Start                   | 7:00        | Time Finish       | 7:30                 |                     |           |  |  |  |
|                              |             |                   | Calibration Solution |                     |           |  |  |  |
| Parameter                    | Standard    | Calibration Value | Temperature (°C)     | Acceptance Criteria | Reference |  |  |  |
| Specific Conductance (µS/cm) | 4,490       | 4477.8            | 18.09                | ± 10% of standard   | EPA 2023  |  |  |  |
| pH (SU)                      | 4.00        | 4.04              | 18.03                | ± 0.1               | GWMP      |  |  |  |
| pH (SU)                      | 7.00        | 7.07              | 18.05                | ± 0.1               | GWMP      |  |  |  |
| pH (SU)                      | 10.00       | 10.05             | 18.21                | ± 0.1               | GWMP      |  |  |  |
| D.O. (%)                     | N/A         | 100.07            | 17.65                | ± 10%               | NA        |  |  |  |
| ORP (mV)                     | 228.0       | 227.9             | 17.93                | ± 10                | EPA 2023  |  |  |  |

|                 | Standard | Calibration Value | Acceptance Criteria | Reference |
|-----------------|----------|-------------------|---------------------|-----------|
|                 | 20       | 20.4              |                     |           |
| Turbidity (NTU) | 100      | 97.5              | ± 10% of standard   | EPA 2023  |
|                 | 800      | 803               | ± 10 % Of Standard  | LFA 2023  |
|                 | 10       | 9.76              |                     |           |

| Calibration Check                |          |                   |                      |                     |           |  |
|----------------------------------|----------|-------------------|----------------------|---------------------|-----------|--|
| Time Start 8:50 Time Finish 9:00 |          |                   |                      |                     |           |  |
|                                  |          |                   | Calibration Solution |                     |           |  |
| Parameter                        | Standard | Calibration Value | Temperature (°C)     | Acceptance Criteria | Reference |  |
| Specific Conductance (µS/cm)     | 4,490    | 4412.9            | 17.61                | ± 10% of standard   | EPA 2023  |  |
| pH (SU)                          | 4.00     | 4.04              | 17.63                | ± 0.1               | GWMP      |  |
| pH (SU)                          | 7.00     | 7.04              | 17.97                | ± 0.1               | GWMP      |  |
| pH (SU)                          | 10.00    | 10.03             | 18.00                | ± 0.1               | GWMP      |  |

|                 | Standard | Calibration Value | Acceptance Criteria | Reference |
|-----------------|----------|-------------------|---------------------|-----------|
|                 | 20       | 19.2              |                     |           |
| Turbidity (NTU) | 100      | 88.6              | ± 10% of standard   | EPA 2023  |
|                 | 800      | 807               | 1 10 % Of Standard  | LI A 2023 |
|                 | 10       | 9.81              |                     |           |

Site Name: Plant Arkwright
Calibrated By: E.Scheiben

Date: <u>01/23/2024</u>

Field Conditions: Overcast, 44°F

| Instrument          | Manufactuer/ Model  | Serial Number |
|---------------------|---------------------|---------------|
| Water Quality Meter | InSitu/AquaTroll400 | 966105        |
| Turbidity Meter     | Hach/2100Q          | 23100D000368  |

| Calibration Standard Information |          |          |                    |       |  |  |
|----------------------------------|----------|----------|--------------------|-------|--|--|
| Parameter                        | Standard | Lot #    | Date of Expiration | Brand |  |  |
| Specific Conductance (µS/cm)     | 4,490    | 24000044 | May-24             | AIR   |  |  |
| pH (SU)                          | 4.00     | 24000044 | May-24             | AIR   |  |  |
| pH (SU)                          | 7.00     | 22290139 | Apr-24             | AIR   |  |  |
| pH (SU)                          | 10.00    | 22110130 | Apr-24             | AIR   |  |  |
| D.O. (%)                         | N/A      |          |                    |       |  |  |
| ORP (mV)                         | 228.0    | 24002258 | Jun-24             | AIR   |  |  |

| Calibration                  |          |                   |                      |                     |           |  |  |
|------------------------------|----------|-------------------|----------------------|---------------------|-----------|--|--|
| Time Start                   | 0815     | Time Finish       | 0900                 |                     |           |  |  |
|                              |          |                   | Calibration Solution |                     |           |  |  |
| Parameter                    | Standard | Calibration Value | Temperature (°C)     | Acceptance Criteria | Reference |  |  |
| Specific Conductance (µS/cm) | 4,490    | 4,485.70          | 18.92                | ± 10% of standard   | EPA 2023  |  |  |
| pH (SU)                      | 4.00     | 4.01              | 16.78                | ± 0.1               | GWMP      |  |  |
| pH (SU)                      | 7.00     | 7.03              | 16.17                | ± 0.1               | GWMP      |  |  |
| pH (SU)                      | 10.00    | 10.02             | 17.05                | ± 0.1               | GWMP      |  |  |
| D.O. (%)                     | N/A      | 97.1              | 16.65                | ± 10%               | NA        |  |  |
| ORP (mV)                     | 228.0    | 227.9             | 16.53                | ± 10                | EPA 2023  |  |  |

|                 | Standard | Calibration Value | Acceptance Criteria | Reference |
|-----------------|----------|-------------------|---------------------|-----------|
|                 | 20       | 20.2              |                     |           |
| Turbidity (NTU) | 100      | 101               | ± 10% of standard   | EPA 2023  |
|                 | 800      | 790               | 1 10 % Of Standard  |           |
|                 | 10       | 9.81              |                     |           |

| Calibration Check            |                      |                   |                  |                     |           |  |  |
|------------------------------|----------------------|-------------------|------------------|---------------------|-----------|--|--|
| Time Start                   | 13:16                |                   |                  |                     |           |  |  |
|                              | Calibration Solution |                   |                  |                     |           |  |  |
| Parameter                    | Standard             | Calibration Value | Temperature (°C) | Acceptance Criteria | Reference |  |  |
| Specific Conductance (µS/cm) | 4,490                | 4,260.10          | 17.01            | ± 10% of standard   | EPA 2023  |  |  |
| pH (SU)                      | 4.00                 | 4.05              | 17.01            | ± 0.1               | GWMP      |  |  |
| pH (SU)                      | 7.00                 | 7.06              | 15.89            | ± 0.1               | GWMP      |  |  |
| pH (SU)                      | 10.00                | 10.04             | 16.11            | ± 0.1               | GWMP      |  |  |

|                 | Standard | Calibration Value | Acceptance Criteria | Reference |
|-----------------|----------|-------------------|---------------------|-----------|
| Turbidity (NTU) | 20       | 20.2              |                     |           |
| rurbidity (NTO) | 100      | 101               | ± 10% of standard   | EPA 2023  |
|                 | 800      | 798               | ± 10 % Of Standard  |           |
|                 | 10       | 10.2              |                     |           |

Date: <u>1/24/24</u>

Site Name: Plant Arkwright

Scheiben Field Conditions: light rain,55∘F

 Instrument
 Manufactuer/ Model
 Serial Number

 Water Quality Meter
 InSitu/AquaTroll 400
 966105

 Turbidity Meter
 Hach/2100Q
 23100D000368

| Calibration Standard Information |          |          |                    |       |  |  |
|----------------------------------|----------|----------|--------------------|-------|--|--|
| Parameter                        | Standard | Lot #    | Date of Expiration | Brand |  |  |
| Specific Conductance (µS/cm)     | 4,490    | 24000044 | May-24             | AIR   |  |  |
| pH (SU)                          | 4.00     | 24000044 | May-24             | AIR   |  |  |
| pH (SU)                          | 7.00     | 22290139 | Apr-24             | AIR   |  |  |
| pH (SU)                          | 10.00    | 22110130 | Apr-24             | AIR   |  |  |
| D.O. (%)                         | N/A      |          |                    |       |  |  |
| ORP (mV)                         | 228.0    | 24002258 | Jun-24             | AIR   |  |  |

| Calibration                  |          |                   |                      |                     |           |  |  |  |
|------------------------------|----------|-------------------|----------------------|---------------------|-----------|--|--|--|
| Time Start                   | 07:45    | Time Finish       | 08:15                |                     |           |  |  |  |
|                              |          |                   | Calibration Solution |                     |           |  |  |  |
| Parameter                    | Standard | Calibration Value | Temperature (°C)     | Acceptance Criteria | Reference |  |  |  |
| Specific Conductance (µS/cm) | 4,490    | 4,491.50          | 15.66                | ± 10% of standard   | EPA 2023  |  |  |  |
| pH (SU)                      | 4.00     | 4.01              | 15.69                | ± 0.1               | GWMP      |  |  |  |
| pH (SU)                      | 7.00     | 7.04              | 15.73                | ± 0.1               | GWMP      |  |  |  |
| pH (SU)                      | 10.00    | 10.02             | 15.83                | ± 0.1               | GWMP      |  |  |  |
| D.O. (%)                     | N/A      | 101.43            | 15.87                | ± 10%               | NA        |  |  |  |
| ORP (mV)                     | 228.0    | 227.7             | 15.79                | ± 10                | EPA 2023  |  |  |  |

|                 | Standard | Calibration Value | Acceptance Criteria | Reference |  |
|-----------------|----------|-------------------|---------------------|-----------|--|
| Turbidity (NTU) | 20       | 20.2              |                     |           |  |
|                 | 100      | 99.6              | ± 10% of standard   | EPA 2023  |  |
|                 | 800      | 788               | ± 10 % of Standard  | EPA 2023  |  |
|                 | 10       | 9.81              |                     |           |  |

| Calibration Check            |                                  |                   |                      |                     |           |  |  |
|------------------------------|----------------------------------|-------------------|----------------------|---------------------|-----------|--|--|
| Time Start                   | me Start 15:20 Time Finish 15:35 |                   |                      |                     |           |  |  |
|                              |                                  |                   | Calibration Solution |                     |           |  |  |
| Parameter                    | Standard                         | Calibration Value | Temperature (°C)     | Acceptance Criteria | Reference |  |  |
| Specific Conductance (µS/cm) | 4,490                            | 4,334.70          | 19.61                | ± 10% of standard   | EPA 2023  |  |  |
| pH (SU)                      | 4.00                             | 4.08              | 19.61                | ± 0.1               | GWMP      |  |  |
| pH (SU)                      | 7.00                             | 7.08              | 18.99                | ± 0.1               | GWMP      |  |  |
| pH (SU)                      | 10.00                            | 9.98              | 18.72                | ± 0.1               | GWMP      |  |  |

| Turbidity (NTU) | Standard | Calibration Value Acceptance Criteria |                   | Reference |  |
|-----------------|----------|---------------------------------------|-------------------|-----------|--|
|                 | 20       | 20.8                                  |                   |           |  |
|                 | 100      | 106                                   | ± 10% of standard | EPA 2023  |  |
|                 | 800      | 798                                   | ± 10% of Standard | EPA 2023  |  |
|                 | 10       | 11.3                                  |                   |           |  |

Site Name:\_\_\_\_\_Plant Arkwright\_

Field Conditions: \_\_\_\_Overcast, 65F\_\_\_\_\_

Date: \_\_\_\_1/25/2024\_\_\_

| Calibrated By: Emily Scheiben |                     |               |  |  |  |  |  |
|-------------------------------|---------------------|---------------|--|--|--|--|--|
| Instrument                    | Manufactuer/ Model  | Serial Number |  |  |  |  |  |
| Water Quality Meter           | InSitu/AquaTroll400 | 966105        |  |  |  |  |  |
| Turbidity Meter               | Hach/2100Q          | 23100D000368  |  |  |  |  |  |

| Calibration Standard Information |          |          |                    |       |  |  |
|----------------------------------|----------|----------|--------------------|-------|--|--|
| Parameter                        | Standard | Lot #    | Date of Expiration | Brand |  |  |
| Specific Conductance (µS/cm)     | 4,490    | 24000044 | May-24             | AIR   |  |  |
| pH (SU)                          | 4.00     | 24000044 | May-24             | AIR   |  |  |
| pH (SU)                          | 7.00     | 22290139 | Apr-24             | AIR   |  |  |
| pH (SU)                          | 10.00    | 22110130 | Apr-24             | AIR   |  |  |
| D.O. (%)                         | N/A      |          |                    |       |  |  |
| ORP (mV)                         | 228.0    | 24002258 | Jun-24             | AIR   |  |  |

| Calibration                  |          |                   |                                          |                     |           |  |  |  |
|------------------------------|----------|-------------------|------------------------------------------|---------------------|-----------|--|--|--|
| Time Start                   |          | Time Finish       |                                          |                     |           |  |  |  |
| Parameter                    | Standard | Calibration Value | Calibration Solution<br>Temperature (°C) | Acceptance Criteria | Reference |  |  |  |
| Specific Conductance (µS/cm) | 4,490    | 4,482.30          | 16.15                                    | ± 10% of standard   | EPA 2023  |  |  |  |
| pH (SU)                      | 4.00     | 4.03              | 16.38                                    | ± 0.1               | GWMP      |  |  |  |
| pH (SU)                      | 7.00     | 7.04              | 16.74                                    | ± 0.1               | GWMP      |  |  |  |
| pH (SU)                      | 10.00    | 10.02             | 16.83                                    | ± 0.1               | GWMP      |  |  |  |
| D.O. (%)                     | N/A      | 102.27            | 17.29                                    | ± 10%               | NA        |  |  |  |
| ORP (mV)                     | 228.0    | 228.0             | 17.00                                    | ± 10                | EPA 2023  |  |  |  |

|                 | Standard | Calibration Value | Acceptance Criteria | Reference |  |
|-----------------|----------|-------------------|---------------------|-----------|--|
| Turbidity (NTU) | 20       | 19.9              |                     |           |  |
|                 | 100      | 99.7              | ± 10% of standard   | EPA 2023  |  |
|                 | 800      | 799               | ± 10 % of Standard  | EPA 2023  |  |
|                 | 10       | 10                |                     |           |  |

| Calibration Check            |          |                      |                  |                     |           |  |  |
|------------------------------|----------|----------------------|------------------|---------------------|-----------|--|--|
| Time Start                   |          | Time Finish          |                  |                     |           |  |  |
|                              |          | Calibration Solution |                  |                     |           |  |  |
| Parameter                    | Standard | Calibration Value    | Temperature (°C) | Acceptance Criteria | Reference |  |  |
| Specific Conductance (µS/cm) | 4,490    | 4,233.30             | 22.63            | ± 10% of standard   | EPA 2023  |  |  |
| pH (SU)                      | 4.00     | 4.08                 | 22.63            | ± 0.1               | GWMP      |  |  |
| pH (SU)                      | 7.00     | 7.07                 | 22.91            | ± 0.1               | GWMP      |  |  |
| pH (SU)                      | 10.00    | 9.98                 | 22.77            | ± 0.1               | GWMP      |  |  |

|                 | Standard | Calibration Value | Acceptance Criteria | Reference |
|-----------------|----------|-------------------|---------------------|-----------|
| Turbidity (NTU) | 20       | 20                |                     |           |
| Turblatty (NTO) | 100      | 96.5              | ± 10% of standard   | EPA 2023  |
|                 | 800      | 784               | ± 10 /0 OI Standard | LFA 2023  |
|                 | 10       | 9.75              |                     |           |

Site Name: Plant Arkwright

 Manufactuer/ Model
 Serial Number

 Water Quality Meter
 AquaTroll 400
 989630

 Turbidity Meter
 Hack 2100Q
 22690D000345

| Field Conditions: | Sunnv |  |
|-------------------|-------|--|

Date: \_1/22/2024\_

| Calibration Standard Information                  |       |          |        |     |  |  |  |
|---------------------------------------------------|-------|----------|--------|-----|--|--|--|
| Parameter Standard Lot # Date of Expiration Brand |       |          |        |     |  |  |  |
| Specific Conductance (µS/cm)                      | 4,490 | 24000044 | May-24 | AIR |  |  |  |
| pH (SU)                                           | 4.00  | 24000044 | May-24 | AIR |  |  |  |
| pH (SU)                                           | 7.00  | 22290139 | Apr-24 | AIR |  |  |  |
| pH (SU)                                           | 10.00 | 22110130 | Apr-24 | AIR |  |  |  |
| D.O. (%)                                          | N/A   | NA       | NA     | NA  |  |  |  |
| ORP (mV)                                          | 228.0 | 24002258 | Jun-24 | AIR |  |  |  |

| Calibration                  |          |                   |                      |                     |           |  |  |
|------------------------------|----------|-------------------|----------------------|---------------------|-----------|--|--|
| Time Start                   | 12:15    | Time Finish       | 13:00                |                     |           |  |  |
|                              |          |                   | Calibration Solution |                     |           |  |  |
| Parameter                    | Standard | Calibration Value | Temperature (°C)     | Acceptance Criteria | Reference |  |  |
| Specific Conductance (µS/cm) | 4,490    | 4496.9            | 5.51                 | ± 10% of standard   | EPA 2023  |  |  |
| pH (SU)                      | 4.00     | 4.09              | 7,98                 | ± 0.1               | GWMP      |  |  |
| pH (SU)                      | 7.00     | 7.07              | 7.74                 | ± 0.1               | GWMP      |  |  |
| pH (SU)                      | 10.00    | 10.09             | 7.54                 | ± 0.1               | GWMP      |  |  |
| D.O. (%)                     | N/A      | 100.36            | 8.86                 | ± 10%               | NA        |  |  |
| ORP (mV)                     | 228.0    | 227.3             | 7.58                 | ± 10                | EPA 2023  |  |  |

|                 | Standard | Calibration Value | Acceptance Criteria | Reference |
|-----------------|----------|-------------------|---------------------|-----------|
|                 | 20       | 20.2              |                     |           |
| Turbidity (NTU) | 100      | 99                | ± 10% of standard   | EPA 2023  |
|                 | 800      | 814               | ± 10 % of Standard  | LFA 2023  |
|                 | 10       | 9.86              |                     |           |

| Calibration Check            |                                    |                   |                      |                     |           |  |  |
|------------------------------|------------------------------------|-------------------|----------------------|---------------------|-----------|--|--|
| Time Start                   | Time Start 15:15 Time Finish 15:30 |                   |                      |                     |           |  |  |
|                              |                                    |                   | Calibration Solution |                     |           |  |  |
| Parameter                    | Standard                           | Calibration Value | Temperature (°C)     | Acceptance Criteria | Reference |  |  |
| Specific Conductance (µS/cm) | 4,490                              | 4053.2            | 16.92                | ± 10% of standard   | EPA 2023  |  |  |
| pH (SU)                      | 4.00                               | 4.1               | 17.13                | ± 0.1               | GWMP      |  |  |
| pH (SU)                      | 7.00                               | 7.05              | 15.3                 | ± 0.1               | GWMP      |  |  |
| pH (SU)                      | 10.00                              | 10.1              | 13.8                 | ± 0.1               | GWMP      |  |  |

|                 | Standard | Calibration Value | Acceptance Criteria | Reference |
|-----------------|----------|-------------------|---------------------|-----------|
| Turbidity (NTU) | 20       | 20.2              |                     |           |
| rurbidity (NTO) | 100      | 101               | ± 10% of standard   | EPA 2023  |
|                 | 800      | 753               | ± 10% of Standard   | EPA 2023  |
|                 | 10       | 9.69              |                     |           |

Site Name: <u>Arkwright</u>

 Calibrated By:
 John Myer

 Instrument
 Manufactuer/ Model
 Serial Number

 Water Quality Meter
 AquaTroll 400
 989619

 Turbidity Meter
 Hach 2100Q
 23060D000342

| Field Conditions: | Overcast |  |
|-------------------|----------|--|

Date: \_\_\_<u>1/23/24</u>

| Calibration Standard Information |          |          |                    |       |  |  |
|----------------------------------|----------|----------|--------------------|-------|--|--|
| Parameter                        | Standard | Lot #    | Date of Expiration | Brand |  |  |
| Specific Conductance (µS/cm)     | 4,490    | 24000044 | May-24             | AIR   |  |  |
| pH (SU)                          | 4.00     | 24000044 | May-24             | AIR   |  |  |
| pH (SU)                          | 7.00     | 22290139 | Apr-24             | AIR   |  |  |
| pH (SU)                          | 10.00    | 22110130 | Apr-24             | AIR   |  |  |
| D.O. (%)                         | N/A      | NA       | NA                 | NA    |  |  |
| ORP (mV)                         | 228.0    | 24002258 | Jun-24             | AIR   |  |  |

|                              | Calibration |                   |                      |                     |           |  |  |
|------------------------------|-------------|-------------------|----------------------|---------------------|-----------|--|--|
| Time Start                   | 8:45        | Time Finish       | 9:35                 |                     |           |  |  |
|                              |             |                   | Calibration Solution |                     |           |  |  |
| Parameter                    | Standard    | Calibration Value | Temperature (°C)     | Acceptance Criteria | Reference |  |  |
| Specific Conductance (µS/cm) | 4,490       | 4466.8            | 13.63                | ± 10% of standard   | EPA 2023  |  |  |
| pH (SU)                      | 4.00        | 4.08              | 11.68                | ± 0.1               | GWMP      |  |  |
| pH (SU)                      | 7.00        | 7.05              | 10.49                | ± 0.1               | GWMP      |  |  |
| pH (SU)                      | 10.00       | 10.01             | 10.19                | ± 0.1               | GWMP      |  |  |
| D.O. (%)                     | N/A         | 100.09            | 10.92                | ± 10%               | NA        |  |  |
| ORP (mV)                     | 228.0       | 227.5             | 9.66                 | ± 10                | EPA 2023  |  |  |

|                 | Standard | Calibration Value | Acceptance Criteria | Reference |
|-----------------|----------|-------------------|---------------------|-----------|
|                 | 20       | 20.2              |                     |           |
| Turbidity (NTU) | 100      | 101               | ± 10% of standard   | EPA 2023  |
|                 | 800      | 791               | ± 10 % of Standard  | LFA 2023  |
|                 | 10       | 9.96              |                     |           |

| Calibration Check            |                                    |                   |                  |                     |           |  |  |
|------------------------------|------------------------------------|-------------------|------------------|---------------------|-----------|--|--|
| Time Start                   | Time Start 12:55 Time Finish 13:15 |                   |                  |                     |           |  |  |
|                              |                                    |                   |                  |                     |           |  |  |
| Parameter                    | Standard                           | Calibration Value | Temperature (°C) | Acceptance Criteria | Reference |  |  |
| Specific Conductance (µS/cm) | 4,490                              | 4169.4            | 14.31            | ± 10% of standard   | EPA 2023  |  |  |
| pH (SU)                      | 4.00                               | 4.1               | 14.31            | ± 0.1               | GWMP      |  |  |
| pH (SU)                      | 7.00                               | 7.09              | 13.79            | ± 0.1               | GWMP      |  |  |
| pH (SU)                      | 10.00                              | 9.98              | 13.57            | ± 0.1               | GWMP      |  |  |

|                 | Standard | Calibration Value | Acceptance Criteria | Reference |
|-----------------|----------|-------------------|---------------------|-----------|
| Turbidity (NTU) | 20       | 19.5              |                     |           |
| rurbidity (NTO) | 100      | 96.8              | ± 10% of standard   | EPA 2023  |
|                 | 800      | 778               | ± 10 % Of Standard  | EPA 2023  |
|                 | 10       | 9.95              |                     |           |

Date: \_\_1/24/2024\_

Site Name: Arkwright

Calibrated By: John Myer Field Conditions: Showers

| Calibrated by. John Wyer |                    |               |
|--------------------------|--------------------|---------------|
| Instrument               | Manufactuer/ Model | Serial Number |
| Water Quality Meter      | AquaTroll 400      | 989619        |
| Turbidity Meter          | Hach 2100Q         | 23060D000342  |

| Calibration Standard Information |          |          |                    |       |  |  |  |
|----------------------------------|----------|----------|--------------------|-------|--|--|--|
| Parameter                        | Standard | Lot #    | Date of Expiration | Brand |  |  |  |
| Specific Conductance (µS/cm)     | 4,490    | 24000044 | May-24             | AIR   |  |  |  |
| pH (SU)                          | 4.00     | 24000044 | May-24             | AIR   |  |  |  |
| pH (SU)                          | 7.00     | 22290139 | Apr-24             | AIR   |  |  |  |
| pH (SU)                          | 10.00    | 22110130 | Apr-24             | AIR   |  |  |  |
| D.O. (%)                         | N/A      | NA       | NA                 | NA    |  |  |  |
| ORP (mV)                         | 228.0    | 24002258 | Jun-24             | AIR   |  |  |  |

| Calibration                       |          |                   |                  |                     |           |  |  |
|-----------------------------------|----------|-------------------|------------------|---------------------|-----------|--|--|
| Time Start 9:30 Time Finish 10:00 |          |                   |                  |                     |           |  |  |
|                                   |          |                   |                  |                     |           |  |  |
| Parameter                         | Standard | Calibration Value | Temperature (°C) | Acceptance Criteria | Reference |  |  |
| Specific Conductance (µS/cm)      | 4,490    | 4463.9            | 11.37            | ± 10% of standard   | EPA 2023  |  |  |
| pH (SU)                           | 4.00     | 4.04              | 13.24            | ± 0.1               | GWMP      |  |  |
| pH (SU)                           | 7.00     | 7.03              | 13.3             | ± 0.1               | GWMP      |  |  |
| pH (SU)                           | 10.00    | 10.01             | 13.04            | ± 0.1               | GWMP      |  |  |
| D.O. (%)                          | N/A      | 100               | 13.58            | ± 10%               | NA        |  |  |
| ORP (mV)                          | 228.0    | 227.7             | 13.4             | ± 10                | EPA 2023  |  |  |

|                 | Standard | Calibration Value | Acceptance Criteria | Reference |  |
|-----------------|----------|-------------------|---------------------|-----------|--|
| Turbidity (NTU) | 20       | 20                |                     |           |  |
|                 | 100      | 98.1              | ± 10% of standard   | EPA 2023  |  |
|                 | 800      | 806               | ± 10 % of Standard  |           |  |
|                 | 10       | 10.3              |                     |           |  |

| Calibration Check                  |          |                   |                  |                     |           |  |  |
|------------------------------------|----------|-------------------|------------------|---------------------|-----------|--|--|
| Time Start 15:00 Time Finish 15:15 |          |                   |                  |                     |           |  |  |
| Calibration Solution               |          |                   |                  |                     |           |  |  |
| Parameter                          | Standard | Calibration Value | Temperature (°C) | Acceptance Criteria | Reference |  |  |
| Specific Conductance (µS/cm)       | 4,490    | 4197.3            | 18.74            | ± 10% of standard   | EPA 2023  |  |  |
| pH (SU)                            | 4.00     | 4.09              | 18.54            | ± 0.1               | GWMP      |  |  |
| pH (SU)                            | 7.00     | 7.08              | 17.87            | ± 0.1               | GWMP      |  |  |
| pH (SU)                            | 10.00    | 9.97              | 17.67            | ± 0.1               | GWMP      |  |  |

|                 | Standard | Calibration Value | Acceptance Criteria | Reference |
|-----------------|----------|-------------------|---------------------|-----------|
| Turbidity (NTU) | 20       | 19.2              |                     |           |
| rurbidity (NTO) | 100      | 103               | ± 10% of standard   | EPA 2023  |
|                 | 800      | 775               | ± 10 % Of Standard  | EPA 2023  |
|                 | 10       | 9.76              |                     |           |

Site Name:\_ Arkwright

Calibrated By:\_ John Myer Instrument
Water Quality Meter
Turbidity Meter Manufactuer/ Model Serial Number AquaTroll 400 989619

Hach 2100Q

Field Conditions:\_ Overcast

Date:

1/25/2024

| Calibration Standard Information |          |          |                    |       |  |  |  |
|----------------------------------|----------|----------|--------------------|-------|--|--|--|
| Parameter                        | Standard | Lot #    | Date of Expiration | Brand |  |  |  |
| Specific Conductance (µS/cm)     | 4,490    | 24000044 | May-24             | AIR   |  |  |  |
| pH (SU)                          | 4.00     | 24000044 | May-24             | AIR   |  |  |  |
| pH (SU)                          | 7.00     | 22290139 | Apr-24             | AIR   |  |  |  |
| pH (SU)                          | 10.00    | 22110130 | Apr-24             | AIR   |  |  |  |
| D.O. (%)                         | N/A      | NA       | NA                 | NA    |  |  |  |
| ORP (mV)                         | 228.0    | 24002258 | Jun-24             | AIR   |  |  |  |

23060D000342

| Calibration                  |          |                   |                      |                     |           |  |  |
|------------------------------|----------|-------------------|----------------------|---------------------|-----------|--|--|
| Time Start                   |          |                   |                      |                     |           |  |  |
|                              |          |                   | Calibration Solution |                     |           |  |  |
| Parameter                    | Standard | Calibration Value | Temperature (°C)     | Acceptance Criteria | Reference |  |  |
| Specific Conductance (µS/cm) | 4,490    | 4487.2            | 18.34                | ± 10% of standard   | EPA 2023  |  |  |
| pH (SU)                      | 4.00     | 4.01              | 19.06                | ± 0.1               | GWMP      |  |  |
| pH (SU)                      | 7.00     | 7.04              | 18.97                | ± 0.1               | GWMP      |  |  |
| pH (SU)                      | 10.00    | 10                | 18.79                | ± 0.1               | GWMP      |  |  |
| D.O. (%)                     | N/A      | 100.02            | 19.56                | ± 10%               | NA        |  |  |
| ORP (mV)                     | 228.0    | 227.7             | 19.14                | ± 10                | EPA 2023  |  |  |

|                 | Standard | Calibration Value | Acceptance Criteria | Reference |
|-----------------|----------|-------------------|---------------------|-----------|
| Turbidity (NTU) | 20       | 19.9              |                     |           |
|                 | 100      | 102               | ± 10% of standard   | EPA 2023  |
|                 | 800      | 801               | ± 10 % of Standard  |           |
|                 | 10       | 10.2              | 7                   |           |

| Calibration Check                  |          |                   |                  |                     |           |  |  |
|------------------------------------|----------|-------------------|------------------|---------------------|-----------|--|--|
| Time Start 14:25 Time Finish 14:35 |          |                   |                  |                     |           |  |  |
|                                    |          |                   |                  |                     |           |  |  |
| Parameter                          | Standard | Calibration Value | Temperature (°C) | Acceptance Criteria | Reference |  |  |
| Specific Conductance (µS/cm)       | 4,490    | 4431.8            | 23.95            | ± 10% of standard   | EPA 2023  |  |  |
| pH (SU)                            | 4.00     | 4.06              | 23.95            | ± 0.1               | GWMP      |  |  |
| pH (SU)                            | 7.00     | 7.04              | 23.5             | ± 0.1               | GWMP      |  |  |
| pH (SU)                            | 10.00    | 9.96              | 23.13            | ± 0.1               | GWMP      |  |  |

|                 | Standard | Calibration Value | Acceptance Criteria | Reference |  |
|-----------------|----------|-------------------|---------------------|-----------|--|
| Turbidity (NTU) | 20       | 20.2              |                     |           |  |
| rurbidity (NTO) | 100      | 97.8              | ± 10% of standard   | EPA 2023  |  |
|                 | 800      | 780               | ± 10 % of standard  | EPA 2023  |  |
|                 | 10       | 9.66              |                     |           |  |

Site Name: Arkwright Date: 1-22-24

Field Conditions: Partly Cloudy 20-50 F

Calibrated By: Dylan Ripley

| Instrument          | Manufactuer/ Model | Serial Number |
|---------------------|--------------------|---------------|
| Water Quality Meter | Aqua Troll 400     | 965586        |
| Turbidity Meter     | HACH 2100Q         | 22090D000235  |

| Calibration Standard Information                  |       |          |        |     |  |  |
|---------------------------------------------------|-------|----------|--------|-----|--|--|
| Parameter Standard Lot # Date of Expiration Brand |       |          |        |     |  |  |
| Specific Conductance (µS/cm)                      | 4,490 | 24000044 | May-24 | AIR |  |  |
| pH (SU)                                           | 4.00  | 24000044 | May-24 | AIR |  |  |
| pH (SU)                                           | 7.00  | 22290139 | Apr-24 | AIR |  |  |
| pH (SU)                                           | 10.00 | 22110130 | Apr-24 | AIR |  |  |
| D.O. (%)                                          | N/A   | N/A      | N/A    | N/A |  |  |
| ORP (mV)                                          | 228.0 | 24002258 | Jun-24 | AIR |  |  |

| Calibration                  |          |                   |                      |                     |           |  |
|------------------------------|----------|-------------------|----------------------|---------------------|-----------|--|
| Time Start                   | 1130     | Time Finish       | 1229                 |                     |           |  |
|                              |          |                   | Calibration Solution |                     |           |  |
| Parameter                    | Standard | Calibration Value | Temperature (°C)     | Acceptance Criteria | Reference |  |
| Specific Conductance (µS/cm) | 4,490    | 4490.9            | 9.55                 | ± 10% of standard   | EPA 2023  |  |
| pH (SU)                      | 4.00     | 3.98              | 9.75                 | ± 0.1               | GWMP      |  |
| pH (SU)                      | 7.00     | 7.14              | 9.13                 | ± 0.1               | GWMP      |  |
| pH (SU)                      | 10.00    | 10.15             | 9.23                 | ± 0.1               | GWMP      |  |
| D.O. (%)                     | N/A      | 99.78             | 8.32                 | ± 10%               | NA        |  |
| ORP (mV)                     | 228.0    | 227.7             | 9.79                 | ± 10                | EPA 2023  |  |

|                 | Standard | Calibration Value | Acceptance Criteria | Reference |
|-----------------|----------|-------------------|---------------------|-----------|
|                 | 10       | 9.95              |                     |           |
| Turbidity (NTU) | 20       | 19.4              | ± 10% of standard   | EPA 2023  |
|                 | 100      | 97.0              | ± 10 % of Standard  | LFA 2023  |
|                 | 800      | 722               |                     |           |

| Calibration Check                |          |                   |                      |                     |           |  |  |
|----------------------------------|----------|-------------------|----------------------|---------------------|-----------|--|--|
| Time Start 1530 Time Finish 1541 |          |                   |                      |                     |           |  |  |
|                                  |          |                   | Calibration Solution |                     |           |  |  |
| Parameter                        | Standard | Calibration Value | Temperature (°C)     | Acceptance Criteria | Reference |  |  |
| Specific Conductance (µS/cm)     | 4,490    | 4288.3            | 15.70                | ± 10% of standard   | EPA 2023  |  |  |
| pH (SU)                          | 4.00     | 4.19              | 15.70                | ± 0.1               | GWMP      |  |  |
| pH (SU)                          | 7.00     | 7.09              | 15.56                | ± 0.1               | GWMP      |  |  |
| pH (SU)                          | 10.00    | 10.08             | 15.26                | ± 0.1               | GWMP      |  |  |

|                  | Standard | Calibration Value | Acceptance Criteria | Reference |
|------------------|----------|-------------------|---------------------|-----------|
| Turbidity (NTU)  | 10       | 10.3              |                     |           |
| raibiaity (ivio) | 20       | 20.1              | ± 10% of standard   | EPA 2023  |
|                  | 100      | 99.1              | ± 10 /0 OI Standard | LI A 2023 |
|                  | 800      | 800               |                     |           |

Notes: Original turbiditimeter's lamp failed, had to use spare.

Site Name: Arkwright Date: 1-23-24

Field Conditions: Partly Cloudy 44 - 62 F

Calibrated By: Dylan Ripley

| Instrument          | Manufactuer/ Model | Serial Number |
|---------------------|--------------------|---------------|
| Water Quality Meter | Aqua Troll 400     | 965586        |
| Turbidity Meter     | HACH 2100Q         | 22060D000342  |

| Calibration Standard Information                  |       |          |        |     |  |  |
|---------------------------------------------------|-------|----------|--------|-----|--|--|
| Parameter Standard Lot # Date of Expiration Brand |       |          |        |     |  |  |
| Specific Conductance (µS/cm)                      | 4,490 | 24000044 | May-24 | AIR |  |  |
| pH (SU)                                           | 4.00  | 24000044 | May-24 | AIR |  |  |
| pH (SU)                                           | 7.00  | 22290139 | Apr-24 | AIR |  |  |
| pH (SU)                                           | 10.00 | 22110130 | Apr-24 | AIR |  |  |
| D.O. (%)                                          | N/A   | N/A      | N/A    | N/A |  |  |
| ORP (mV)                                          | 228.0 | 24002258 | Jun-24 | AIR |  |  |

| Calibration                  |          |                   |                      |                     |           |  |
|------------------------------|----------|-------------------|----------------------|---------------------|-----------|--|
| Time Start                   | 0820     | Time Finish       | 0930                 |                     |           |  |
|                              |          |                   | Calibration Solution |                     |           |  |
| Parameter                    | Standard | Calibration Value | Temperature (°C)     | Acceptance Criteria | Reference |  |
| Specific Conductance (µS/cm) | 4,490    | 4477.2            | 10.87                | ± 10% of standard   | EPA 2023  |  |
| pH (SU)                      | 4.00     | 4.04              | 11.01                | ± 0.1               | GWMP      |  |
| pH (SU)                      | 7.00     | 7.13              | 11.05                | ± 0.1               | GWMP      |  |
| pH (SU)                      | 10.00    | 10.17             | 11.14                | ± 0.1               | GWMP      |  |
| D.O. (%)                     | N/A      | 99.99             | 9.51                 | ± 10%               | NA        |  |
| ORP (mV)                     | 228.0    | 227.7             | 10.68                | ± 10                | EPA 2023  |  |

|                 | Standard | Calibration Value | Acceptance Criteria | Reference |
|-----------------|----------|-------------------|---------------------|-----------|
|                 | 10       | 9.98              |                     |           |
| Turbidity (NTU) | 20       | 19.7              | ± 10% of standard   | EPA 2023  |
|                 | 100      | 97.4              | ± 10 % of Standard  | LFA 2023  |
|                 | 800      | 805               |                     | ļ         |

| Calibration Check            |          |                   |                      |                     |           |  |
|------------------------------|----------|-------------------|----------------------|---------------------|-----------|--|
| Time Start                   | 1525     | Time Finish       | 1535                 |                     |           |  |
|                              |          |                   | Calibration Solution |                     |           |  |
| Parameter                    | Standard | Calibration Value | Temperature (°C)     | Acceptance Criteria | Reference |  |
| Specific Conductance (µS/cm) | 4,490    | 4374.4            | 14.12                | ± 10% of standard   | EPA 2023  |  |
| pH (SU)                      | 4.00     | 4.03              | 14.12                | ± 0.1               | GWMP      |  |
| pH (SU)                      | 7.00     | 7.13              | 4.03                 | ± 0.1               | GWMP      |  |
| pH (SU)                      | 10.00    | 10.17             | 13.81                | ± 0.1               | GWMP      |  |

|                 | Standard | Calibration Value | Acceptance Criteria | Reference |
|-----------------|----------|-------------------|---------------------|-----------|
| Turbidity (NTU) | 10       | 10.1              |                     |           |
| Turblaity (NTO) | 20       | 19.9              | ± 10% of standard   | EPA 2023  |
|                 | 100      | 101               | ± 10 % of Standard  | LFA 2023  |
|                 | 800      | 783               |                     |           |

Notes: Original turbiditimeter's lamp failed, had to use spare.

Field Conditions: Partly Cloudy 53 - 70 F

Calibrated By: Dylan Ripley

| Instrument          | Manufactuer/ Model | Serial Number |
|---------------------|--------------------|---------------|
| Water Quality Meter | Aqua Troll 400     | 965586        |
| Turbidity Meter     | HACH 2100Q         | 22060D000342  |

| Calibration Standard Information                  |       |          |        |     |  |  |  |
|---------------------------------------------------|-------|----------|--------|-----|--|--|--|
| Parameter Standard Lot # Date of Expiration Brand |       |          |        |     |  |  |  |
| Specific Conductance (µS/cm)                      | 4,490 | 24000044 | May-24 | AIR |  |  |  |
| pH (SU)                                           | 4.00  | 24000044 | May-24 | AIR |  |  |  |
| pH (SU)                                           | 7.00  | 22290139 | Apr-24 | AIR |  |  |  |
| pH (SU)                                           | 10.00 | 22110130 | Apr-24 | AIR |  |  |  |
| D.O. (%)                                          | N/A   | N/A      | N/A    | N/A |  |  |  |
| ORP (mV)                                          | 228.0 | 24002258 | Jun-24 | AIR |  |  |  |

| Calibration                  |          |                   |                      |                     |           |  |
|------------------------------|----------|-------------------|----------------------|---------------------|-----------|--|
| Time Start                   | 0745     | Time Finish       | 0814                 |                     |           |  |
|                              |          |                   | Calibration Solution |                     |           |  |
| Parameter                    | Standard | Calibration Value | Temperature (°C)     | Acceptance Criteria | Reference |  |
| Specific Conductance (µS/cm) | 4,490    | 4486.3            | 14.24                | ± 10% of standard   | EPA 2023  |  |
| pH (SU)                      | 4.00     | 4.04              | 14.24                | ± 0.1               | GWMP      |  |
| pH (SU)                      | 7.00     | 7.08              | 14.08                | ± 0.1               | GWMP      |  |
| pH (SU)                      | 10.00    | 10.12             | 14.12                | ± 0.1               | GWMP      |  |
| D.O. (%)                     | N/A      | 100.09            | 13.53                | ± 10%               | NA        |  |
| ORP (mV)                     | 228.0    | 228               | 14.03                | ± 10                | EPA 2023  |  |

|                 | Standard | Calibration Value | Acceptance Criteria | Reference |
|-----------------|----------|-------------------|---------------------|-----------|
|                 | 10       | 10.1              |                     |           |
| Turbidity (NTU) | 20       | 20.1              | ± 10% of standard   | EPA 2023  |
|                 | 100      | 101               | ± 10 % of Standard  | LFA 2023  |
|                 | 800      | 797               | 1                   |           |

| Calibration Check            |                                  |                   |                  |                     |           |  |  |
|------------------------------|----------------------------------|-------------------|------------------|---------------------|-----------|--|--|
| Time Start                   | Time Start 1450 Time Finish 1458 |                   |                  |                     |           |  |  |
| Calibration Solution         |                                  |                   |                  |                     |           |  |  |
| Parameter                    | Standard                         | Calibration Value | Temperature (°C) | Acceptance Criteria | Reference |  |  |
| Specific Conductance (µS/cm) | 4,490                            | 4381              | 14.12            | ± 10% of standard   | EPA 2023  |  |  |
| pH (SU)                      | 4.00                             | 4.04              | 14.12            | ± 0.1               | GWMP      |  |  |
| pH (SU)                      | 7.00                             | 7.01              | 4.03             | ± 0.1               | GWMP      |  |  |
| pH (SU)                      | 10.00                            | 10.02             | 13.81            | ± 0.1               | GWMP      |  |  |

|                  | Standard | Calibration Value | Acceptance Criteria | Reference |
|------------------|----------|-------------------|---------------------|-----------|
| Turbidity (NTU)  | 10       | 10.3              |                     |           |
| raibiaity (1410) | 20       | 21.2              | ± 10% of standard   | EPA 2023  |
|                  | 100      | 101               | ± 10 % of standard  | LFA 2023  |
|                  | 800      | 773               |                     |           |

Note:

Field Conditions: Partly Cloudy 61 - 71 F

Calibrated By: Dylan Ripley

| Instrument          | Manufactuer/ Model | Serial Number |
|---------------------|--------------------|---------------|
| Water Quality Meter | Aqua Troll 400     | 965586        |
| Turbidity Meter     | HACH 2100Q         | 22060D000342  |

| Calibration Standard Information |          |          |                    |       |  |  |
|----------------------------------|----------|----------|--------------------|-------|--|--|
| Parameter                        | Standard | Lot #    | Date of Expiration | Brand |  |  |
| Specific Conductance (µS/cm)     | 4,490    | 24000044 | May-24             | AIR   |  |  |
| pH (SU)                          | 4.00     | 24000044 | May-24             | AIR   |  |  |
| pH (SU)                          | 7.00     | 22290139 | Apr-24             | AIR   |  |  |
| pH (SU)                          | 10.00    | 22110130 | Apr-24             | AIR   |  |  |
| D.O. (%)                         | N/A      | N/A      | N/A                | N/A   |  |  |
| ORP (mV)                         | 228.0    | 24002258 | Jun-24             | AIR   |  |  |

| Calibration                  |          |                   |                      |                     |           |  |
|------------------------------|----------|-------------------|----------------------|---------------------|-----------|--|
| Time Start                   | 0740     | Time Finish       | 0821                 |                     |           |  |
|                              |          |                   | Calibration Solution |                     |           |  |
| Parameter                    | Standard | Calibration Value | Temperature (°C)     | Acceptance Criteria | Reference |  |
| Specific Conductance (µS/cm) | 4,490    | 4492.1            | 18.16                | ± 10% of standard   | EPA 2023  |  |
| pH (SU)                      | 4.00     | 4.02              | 18.16                | ± 0.1               | GWMP      |  |
| pH (SU)                      | 7.00     | 7.03              | 18.29                | ± 0.1               | GWMP      |  |
| pH (SU)                      | 10.00    | 10.05             | 18.31                | ± 0.1               | GWMP      |  |
| D.O. (%)                     | N/A      | 99.96             | 18.64                | ± 10%               | NA        |  |
| ORP (mV)                     | 228.0    | 227.8             | 18.51                | ± 10                | EPA 2023  |  |

|                 | Standard | Calibration Value | Acceptance Criteria | Reference |
|-----------------|----------|-------------------|---------------------|-----------|
|                 | 10       | 10.1              |                     |           |
| Turbidity (NTU) | 20       | 19.2              | ± 10% of standard   | EPA 2023  |
|                 | 100      | 102               | ± 10 % of Standard  | LFA 2023  |
|                 | 800      | 807               |                     |           |

| Calibration Check            |                                  |                   |                  |                     |           |  |  |
|------------------------------|----------------------------------|-------------------|------------------|---------------------|-----------|--|--|
| Time Start                   | Time Start 1200 Time Finish 1211 |                   |                  |                     |           |  |  |
| Calibration Solution         |                                  |                   |                  |                     |           |  |  |
| Parameter                    | Standard                         | Calibration Value | Temperature (°C) | Acceptance Criteria | Reference |  |  |
| Specific Conductance (µS/cm) | 4,490                            | 4479.3            | 21.57            | ± 10% of standard   | EPA 2023  |  |  |
| pH (SU)                      | 4.00                             | 4.03              | 21.57            | ± 0.1               | GWMP      |  |  |
| pH (SU)                      | 7.00                             | 6.97              | 21.11            | ± 0.1               | GWMP      |  |  |
| pH (SU)                      | 10.00                            | 9.93              | 20.1             | ± 0.1               | GWMP      |  |  |

|                 | Standard | Calibration Value | Acceptance Criteria | Reference |
|-----------------|----------|-------------------|---------------------|-----------|
| Turbidity (NTU) | 10       | 10.2              |                     |           |
| ruibidity (NTO) | 20       | 20.1              | ± 10% of standard   | EPA 2023  |
|                 | 100      | 98.7              | ± 10% of Standard   | EPA 2023  |
|                 | 800      | 782               |                     |           |

Note:

#### Field Instrumentation Calibration Form

Site Name: \_\_\_Arkwright\_\_\_\_\_

Date: \_\_1/23/2024\_\_\_\_\_
Field Conditions:\_\_\_Cloudy/rainy\_\_\_\_\_

| Calibrated By: Z. Levy |                    |               |
|------------------------|--------------------|---------------|
| Instrument             | Manufactuer/ Model | Serial Number |
| Water Quality Meter    | In-Situ            | 952637        |
| Turbidity Meter        | Hach               | 23100D000373  |

| Calibration Standard Information |          |          |                    |                        |  |  |
|----------------------------------|----------|----------|--------------------|------------------------|--|--|
| Parameter                        | Standard | Lot #    | Date of Expiration | Brand                  |  |  |
| Specific Conductance (µS/cm)     | 4,490    | 24000044 | May-24             | AIR - Autocal solution |  |  |
| pH (SU)                          | 4.00     | 24000044 | May-24             | AIR - Autocal solution |  |  |
| pH (SU)                          | 7.00     | 22290139 | 24-Apr             | AIR - pH 7 solution    |  |  |
| pH (SU)                          | 10.00    | 22110130 | 24-Apr             | AIR - pH 10 solution   |  |  |
| D.O. (%)                         | N/A      | N/A      | N/A                | N/A                    |  |  |
| ORP (mV)                         | 228.0    | 24002258 | 24-Jun             | AIR - ORP solution     |  |  |

| Calibration                  |          |                   |                                          |                     |           |  |
|------------------------------|----------|-------------------|------------------------------------------|---------------------|-----------|--|
| Time Start: 0830             |          | Time Finish: 0850 |                                          |                     |           |  |
| Parameter                    | Standard | Calibration Value | Calibration Solution<br>Temperature (°C) | Acceptance Criteria | Reference |  |
| Specific Conductance (µS/cm) | 4,490    | 4490              | 16.16                                    | ± 10% of standard   | EPA 2023  |  |
| pH (SU)                      | 4.00     | 4                 | 16.59                                    | ± 0.1               | GWMP      |  |
| pH (SU)                      | 7.00     | 7                 | 16.06                                    | ± 0.1               | GWMP      |  |
| pH (SU)                      | 10.00    | 10                | 15.98                                    | ± 0.1               | GWMP      |  |
| D.O. (%)                     | N/A      | 100               | 13.05                                    | ± 10%               | NA        |  |
| ORP (mV)                     | 228.0    | 228               | 15.67                                    | ± 10                | EPA 2023  |  |

|                 | Standard | Calibration Value | Acceptance Criteria | Reference |
|-----------------|----------|-------------------|---------------------|-----------|
|                 | 20       | 20.5              |                     |           |
| Turbidity (NTU) | 100      | 99.9              | ± 10% of standard   | EPA 2023  |
|                 | 800      | 798               | ± 10 % of Standard  | LFA 2023  |
|                 | 10       | 10.3              |                     |           |

| Calibration Check            |          |                   |                      |                     |           |  |
|------------------------------|----------|-------------------|----------------------|---------------------|-----------|--|
| Time Start: 1400             |          | Time Finish: 1422 |                      |                     |           |  |
|                              |          |                   | Calibration Solution |                     |           |  |
| Parameter                    | Standard | Calibration Value | Temperature (°C)     | Acceptance Criteria | Reference |  |
| Specific Conductance (µS/cm) | 4,490    | 4318.6            | 16.08                | ± 10% of standard   | EPA 2023  |  |
| pH (SU)                      | 4.00     | 4.06              | 16.08                | ± 0.1               | GWMP      |  |
| pH (SU)                      | 7.00     | 7.07              | 16.56                | ± 0.1               | GWMP      |  |
| pH (SU)                      | 10.00    | 10.12             | 16.7                 | ± 0.1               | GWMP      |  |
| ORP (mV)                     | 228      | 229.7             | 16.79                |                     | •         |  |

| Orti (IIIV)     | 220      | 225.1             | 10.73               |           |
|-----------------|----------|-------------------|---------------------|-----------|
|                 | Standard | Calibration Value | Acceptance Criteria | Reference |
| Turbidity (NTU) | 20       | 20.5              |                     |           |
| Turblaity (NTO) | 100      | 100               | ± 10% of standard   | EPA 2023  |
|                 | 800      | 791               | ± 10 % of Standard  | LFA 2023  |
|                 | 10       | 10.1              |                     |           |

Notes:

#### Field Instrumentation Calibration Form

Site Name:\_\_\_Arkwright\_\_\_\_\_

Date: \_\_1/24/2024\_\_\_\_\_\_Field Conditions:\_\_Cloudy/rainy\_\_\_\_\_

| Calibrated By: Z. Levy |                    |               |
|------------------------|--------------------|---------------|
| Instrument             | Manufactuer/ Model | Serial Number |
| Water Quality Meter    | In-Situ            | 952637        |
| Turbidity Meter        | Hach               | 23100D000373  |

| Calibration Standard Information |          |          |                    |                        |  |  |
|----------------------------------|----------|----------|--------------------|------------------------|--|--|
| Parameter                        | Standard | Lot #    | Date of Expiration | Brand                  |  |  |
| Specific Conductance (µS/cm)     | 4,490    | 24000044 | May-24             | AIR - Autocal solution |  |  |
| pH (SU)                          | 4.00     | 24000044 | May-24             | AIR - Autocal solution |  |  |
| pH (SU)                          | 7.00     | 22290139 | 24-Apr             | AIR - pH 7 solution    |  |  |
| pH (SU)                          | 10.00    | 22110130 | 24-Apr             | AIR - pH 10 solution   |  |  |
| D.O. (%)                         | N/A      | N/A      | N/A                | N/A                    |  |  |
| ORP (mV)                         | 228.0    | 24002258 | 24-Jun             | AIR - ORP solution     |  |  |

| Calibration                  |          |                   |                      |                     |           |  |
|------------------------------|----------|-------------------|----------------------|---------------------|-----------|--|
| Time Start: 0740             |          | Time Finish: 0755 |                      |                     |           |  |
|                              |          |                   | Calibration Solution |                     |           |  |
| Parameter                    | Standard | Calibration Value | Temperature (°C)     | Acceptance Criteria | Reference |  |
| Specific Conductance (µS/cm) | 4,490    | 4490              | 14.85                | ± 10% of standard   | EPA 2023  |  |
| pH (SU)                      | 4.00     | 4                 | 15.26                | ± 0.1               | GWMP      |  |
| pH (SU)                      | 7.00     | 7                 | 15.2                 | ± 0.1               | GWMP      |  |
| pH (SU)                      | 10.00    | 10                | 15.19                | ± 0.1               | GWMP      |  |
| D.O. (%)                     | N/A      | 100               | 14.76                | ± 10%               | NA        |  |
| ORP (mV)                     | 228.0    | 228               | 15.21                | ± 10                | EPA 2023  |  |

|                 | Standard | Calibration Value | Acceptance Criteria | Reference |
|-----------------|----------|-------------------|---------------------|-----------|
|                 | 20       | 20.1              |                     |           |
| Turbidity (NTU) | 100      | 101               | ± 10% of standard   | EPA 2023  |
|                 | 800      | 806               | ± 10 % of Standard  | LFA 2023  |
|                 | 10       | 10.2              |                     |           |

| Calibration Check            |          |                   |                      |                     |           |  |
|------------------------------|----------|-------------------|----------------------|---------------------|-----------|--|
| Time Start: 1300             |          | Time Finish: 1315 |                      |                     |           |  |
|                              |          |                   | Calibration Solution |                     |           |  |
| Parameter                    | Standard | Calibration Value | Temperature (°C)     | Acceptance Criteria | Reference |  |
| Specific Conductance (µS/cm) | 4,490    | 4388.9            | 18.55                | ± 10% of standard   | EPA 2023  |  |
| pH (SU)                      | 4.00     | 4.04              | 18.55                | ± 0.1               | GWMP      |  |
| pH (SU)                      | 7.00     | 7.07              | 18.69                | ± 0.1               | GWMP      |  |
| pH (SU)                      | 10.00    | 10.08             | 18.75                | ± 0.1               | GWMP      |  |
| ORP (mV)                     | 228      | 225.6             | 18.78                |                     |           |  |

| Orti (IIIV)     | 220      | 220.0             | 10.70               |           |
|-----------------|----------|-------------------|---------------------|-----------|
|                 | Standard | Calibration Value | Acceptance Criteria | Reference |
| Turbidity (NTU) | 20       | 20.7              |                     |           |
| Turblaity (NTO) | 100      | 101               | ± 10% of standard   | EPA 2023  |
|                 | 800      | 795               | ± 10 % of Standard  | LFA 2023  |
|                 | 10       | 10.2              |                     |           |

Notes:

#### Field Instrumentation Calibration Form

Site Name: \_\_\_Arkwright\_\_\_\_\_

Date: \_\_1/25/2024\_\_\_\_\_

Field Conditions:\_\_\_Cloudy/rainy\_\_\_

AIR - ORP solution

Calibrated By: Z. Levy

ORP (mV)

| Instrument          | Manufactuer/ Model | Serial Number |
|---------------------|--------------------|---------------|
| Water Quality Meter | In-Situ            | 952637        |
| Turbidity Meter     | Hach               | 23100D000373  |

228.0

| Calibration Standard Information |          |          |                    |                        |  |  |
|----------------------------------|----------|----------|--------------------|------------------------|--|--|
| Parameter                        | Standard | Lot #    | Date of Expiration | Brand                  |  |  |
| Specific Conductance (µS/cm)     | 4,490    | 24000044 | May-24             | AIR - Autocal solution |  |  |
| pH (SU)                          | 4.00     | 24000044 | May-24             | AIR - Autocal solution |  |  |
| pH (SU)                          | 7.00     | 22290139 | 24-Apr             | AIR - pH 7 solution    |  |  |
| pH (SU)                          | 10.00    | 22110130 | 24-Apr             | AIR - pH 10 solution   |  |  |
| D.O. (%)                         | N/A      | N/A      | N/A                | N/A                    |  |  |

24002258

|                              |          | Calibra           | ation                |                     |           |
|------------------------------|----------|-------------------|----------------------|---------------------|-----------|
| Time Start: 0730             |          | Time Finish: 0750 |                      |                     |           |
|                              |          |                   | Calibration Solution |                     |           |
| Parameter                    | Standard | Calibration Value | Temperature (°C)     | Acceptance Criteria | Reference |
| Specific Conductance (µS/cm) | 4,490    | 4490              | 18.45                | ± 10% of standard   | EPA 2023  |
| pH (SU)                      | 4.00     | 4                 | 18.69                | ± 0.1               | GWMP      |
| pH (SU)                      | 7.00     | 7                 | 18.56                | ± 0.1               | GWMP      |
| pH (SU)                      | 10.00    | 10                | 18.71                | ± 0.1               | GWMP      |
| D.O. (%)                     | N/A      | 100               | 18.66                | ± 10%               | NA        |
| ORP (mV)                     | 228.0    | 228               | 18.73                | ± 10                | EPA 2023  |

24-Jun

|                 | Standard | Calibration Value | Acceptance Criteria | Reference |
|-----------------|----------|-------------------|---------------------|-----------|
|                 | 20       | 19.9              |                     |           |
| Turbidity (NTU) | 100      | 99.8              | ± 10% of standard   | EPA 2023  |
|                 | 800      | 789               | ± 10% of Standard   | EPA 2023  |
|                 | 10       | 10.8              |                     |           |

| Calibration Check            |          |                   |                      |                     |           |  |  |
|------------------------------|----------|-------------------|----------------------|---------------------|-----------|--|--|
| Time Start: 1140             |          | Time Finish: 1152 |                      |                     |           |  |  |
|                              |          |                   | Calibration Solution |                     |           |  |  |
| Parameter                    | Standard | Calibration Value | Temperature (°C)     | Acceptance Criteria | Reference |  |  |
| Specific Conductance (µS/cm) | 4,490    | 4473.1            | 23.16                | ± 10% of standard   | EPA 2023  |  |  |
| pH (SU)                      | 4.00     | 4.06              | 23.16                | ± 0.1               | GWMP      |  |  |
| pH (SU)                      | 7.00     | 7.06              | 23.41                | ± 0.1               | GWMP      |  |  |
| pH (SU)                      | 10.00    | 10.04             | 23.56                | ± 0.1               | GWMP      |  |  |
| ORP (mV)                     | 228      | 225.2             | 23.74                |                     | •         |  |  |

| Ord (IIIV)      | 220      | 220.2             | 20.14               |           |
|-----------------|----------|-------------------|---------------------|-----------|
|                 | Standard | Calibration Value | Acceptance Criteria | Reference |
| Turbidity (NTU) | 20       | 20.5              |                     |           |
| Turblatty (NTO) | 100      | 98.9              | ± 10% of standard   | EPA 2023  |
|                 | 800      | 791               | ± 10 % of Standard  | LFA 2023  |
|                 | 10       | 10.2              |                     |           |

Notes:

## **B.3** Groundwater & Surface Water Laboratory Analytical Reports



a member of The GEL Group INC







PO Box 30712 Charleston, SC 29417 2040 Savage Road Charleston, SC 29407 P 843.556.8171 F 843.766.1178

gel.com

June 30, 2023

Joju Abraham Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

Re: Arkwright CCR Groundwater Compliance AP1 Work Order: 625986

Dear Joju Abraham:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on June 14, 2023. This revised data report has been prepared and reviewed in accordance with GEL's standard operating procedures. Georgia Power EQuIS Database Manager requested for the correction of the sample IDs by removing the dates. These updates ensure the sample nomenclature is consistent on final PDF & EDD and successful upload to database.

The sample was delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4504.

Sincerely,

Anna Johnson for Erin Trent Project Manager

Purchase Order: GPC82177-0005

Enclosures



2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## Certificate of Analysis Report for

GPCC001 Georgia Power Company Client SDG: 625986 GEL Work Order: 625986

#### The Qualifiers in this report are defined as follows:

- \* A quality control analyte recovery is outside of specified acceptance criteria
- \*\* Analyte is a Tracer compound
- \*\* Analyte is a surrogate compound
- B Either presence of analyte detected in the associated blank, or MDL/IDL < sample value < PQL
- J Value is estimated

N/A RPD or %Recovery limits do not apply.

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Erin Trent.

Page 2 of 19 SDG: 625986 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## Certificate of Analysis

Report Date: June 30, 2023

GPCC00100

2444297

1250

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-6 Sample ID:

Matrix: WG

Collect Date: 13-JUN-23 15:52 Receive Date: 14-JUN-23 Collector: Client

Project: 625986001 Client ID: GPCC001

| Parameter              | Qualifier        | Result       | DL        | RL       | Units    | PF   | DF   | Analy | yst Date  | Time | Batch   | Method |
|------------------------|------------------|--------------|-----------|----------|----------|------|------|-------|-----------|------|---------|--------|
| Field Data             |                  |              |           |          |          |      |      |       |           |      |         |        |
| Client collected Field | pH "As Receiv    | ved"         |           |          |          |      |      |       |           |      |         |        |
| Field pH               | •                | 5.33         |           |          | SU       |      |      | EOS1  | 06/13/23  | 1552 | 2443847 | 1      |
| Ion Chromatography     |                  |              |           |          |          |      |      |       |           |      |         |        |
| EPA 300.0 Anions Li    | quid "As Recei   | ived"        |           |          |          |      |      |       |           |      |         |        |
| Chloride               | 1                | 7.77         | 0.335     | 1.00     | mg/L     |      | 5    | JLD1  | 06/14/23  | 2231 | 2444191 | 2      |
| Fluoride               | U                | ND           | 0.165     | 0.500    | mg/L     |      | 5    |       |           |      |         |        |
| Sulfate                |                  | 2480         | 26.6      | 80.0     | mg/L     |      | 200  | JLD1  | 06/15/23  | 1330 | 2444191 | 3      |
| Mercury Analysis-CV    | /AA              |              |           |          |          |      |      |       |           |      |         |        |
| 7470 Cold Vapor Mer    | rcury, Liquid ". | As Received" |           |          |          |      |      |       |           |      |         |        |
| Mercury                | U                | ND           | 0.0000670 | 0.000200 | mg/L     | 1.00 | 1    | JP2   | 06/16/23  | 1039 | 2444300 | 4      |
| Metals Analysis-ICP-   | MS               |              |           |          |          |      |      |       |           |      |         |        |
| SW846 3005A/6020E      | 3 "As Received   | ."           |           |          |          |      |      |       |           |      |         |        |
| Boron                  |                  | 6.95         | 0.520     | 1.50     | mg/L     | 1.00 | 100  | PRB   | 06/17/23  | 2127 | 2443846 | 5      |
| Calcium                |                  | 460          | 8.00      | 20.0     | mg/L     | 1.00 | 100  |       |           |      |         |        |
| Antimony               | U                | ND           | 0.00100   | 0.00300  | mg/L     | 1.00 | 1    | PRB   | 06/17/23  | 1936 | 2443846 | 6      |
| Arsenic                | J                | 0.00324      | 0.00200   | 0.00500  | mg/L     | 1.00 | 1    |       |           |      |         |        |
| Barium                 |                  | 0.0228       | 0.000670  | 0.00400  | mg/L     | 1.00 | 1    |       |           |      |         |        |
| Beryllium              |                  | 0.00172      | 0.000200  | 0.000500 | mg/L     | 1.00 | 1    |       |           |      |         |        |
| Cadmium                | U                | ND           | 0.000300  | 0.00100  | mg/L     | 1.00 | 1    |       |           |      |         |        |
| Chromium               | U                | ND           | 0.00300   | 0.0100   | mg/L     | 1.00 | 1    |       |           |      |         |        |
| Cobalt                 |                  | 0.415        | 0.000300  | 0.00100  | mg/L     | 1.00 | 1    |       |           |      |         |        |
| Lead                   | U                | ND           | 0.000500  | 0.00200  | mg/L     | 1.00 | 1    |       |           |      |         |        |
| Lithium                | J                | 0.00923      | 0.00300   | 0.0100   | mg/L     | 1.00 | 1    |       |           |      |         |        |
| Molybdenum             | U                | ND           | 0.000200  | 0.00100  | mg/L     | 1.00 | 1    |       |           |      |         |        |
| Selenium               | J                | 0.00251      | 0.00150   | 0.00500  | mg/L     | 1.00 | 1    |       |           |      |         |        |
| Thallium               | U                | ND           | 0.000600  | 0.00200  | mg/L     | 1.00 | 1    |       |           |      |         |        |
| Solids Analysis        |                  |              |           |          |          |      |      |       |           |      |         |        |
| SM2540C Dissolved      | Solids "As Rec   | eived"       |           |          |          |      |      |       |           |      |         |        |
| Total Dissolved Solids |                  | 3340         | 23.8      | 100      | mg/L     |      |      | CH6   | 06/15/23  | 1400 | 2444265 | 7      |
| The following Prep M   | lethods were po  | erformed:    |           |          |          |      |      |       |           |      |         |        |
| Method                 | Description      | n            |           | Analyst  | Date     | ,    | Гimе | e Pı  | rep Batch |      |         |        |
| SW846 3005A            | ICP-MS 3005      | 5A PREP      |           | JD2      | 06/15/23 |      | 0720 | 24    | 43845     |      |         |        |
|                        |                  |              |           |          |          |      |      |       |           |      |         |        |

EK1

06/15/23

Page 3 of 19 SDG: 625986 Rev1

EPA 7470A Mercury Prep Liquid

SW846 7470A Prep

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: June 30, 2023

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-6 Project: GPCC00100 Sample ID: 625986001 Client ID: GPCC001

| Parameter              | Qualifier                         | Result        | DL | RL | Units | PF     | DF Analyst Date | Time Batch | Method |
|------------------------|-----------------------------------|---------------|----|----|-------|--------|-----------------|------------|--------|
| The following Analytic | vere performed:                   |               |    |    |       |        |                 |            |        |
| Method Description     |                                   |               |    |    |       | Analys | t Comments      |            |        |
| 1                      | SM 4500-H B/SW846 9040C, SM 2550B |               |    |    |       |        |                 |            |        |
| 2                      | EPA 300.0                         |               |    |    |       |        |                 |            |        |
| 3                      | EPA 300.0                         |               |    |    |       |        |                 |            |        |
| 4                      | SW846 7470A                       | Λ             |    |    |       |        |                 |            |        |
| 5                      | SW846 3005A                       | A/6020B       |    |    |       |        |                 |            |        |
| 6                      | SW846 3005A                       | \dagger/6020B |    |    |       |        |                 |            |        |
| 7                      | SM 2540C                          |               |    |    |       |        |                 |            |        |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

## QC Summary

Report Date: June 30, 2023

Page 1 of 8

Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia Joju Abraham

Contact: Joju Ab

Workorder: 625986

| Parmname                               | NOM    | Sample Qual | QC     | Units | RPD%   | REC% | Range Anlst   | Date Time      |
|----------------------------------------|--------|-------------|--------|-------|--------|------|---------------|----------------|
| Ion Chromatography Batch 2444191       |        |             |        |       |        |      |               |                |
| QC1205433470 625884001 DUP<br>Chloride |        | 2.67        | 2.70   | mg/L  | 1.22   |      | (0%-20%) JLD1 | 06/15/23 03:18 |
| Fluoride                               | J      | 0.0909 J    | 0.0803 | mg/L  | 12.4 ^ |      | (+/-0.100)    |                |
| Sulfate                                |        | 88.1        | 89.8   | mg/L  | 1.91   |      | (0%-20%)      | 06/15/23 07:01 |
| QC1205433469 LCS<br>Chloride           | 5.00   |             | 4.85   | mg/L  |        | 97.1 | (90%-110%)    | 06/15/23 02:46 |
| Fluoride                               | 2.50   |             | 2.49   | mg/L  |        | 99.5 | (90%-110%)    |                |
| Sulfate                                | 10.0   |             | 9.93   | mg/L  |        | 99.3 | (90%-110%)    |                |
| QC1205433468 MB<br>Chloride            |        | U           | ND     | mg/L  |        |      |               | 06/15/23 02:15 |
| Fluoride                               |        | U           | ND     | mg/L  |        |      |               |                |
| Sulfate                                |        | U           | ND     | mg/L  |        |      |               |                |
| QC1205433471 625884001 PS<br>Chloride  | 5.00   | 2.67        | 7.39   | mg/L  |        | 94.4 | (90%-110%)    | 06/15/23 03:50 |
| Fluoride                               | 2.50 J | 0.0909      | 2.38   | mg/L  |        | 91.8 | (90%-110%)    |                |
| Sulfate                                | 10.0   | 8.81        | 18.9   | mg/L  |        | 101  | (90%-110%)    | 06/15/23 07:33 |

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

## **QC** Summary

Workorder: 625986 Page 2 of 8 Sample Qual Parmname NOM QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2443846 Batch QC1205432938 LCS 0.0478 0.0500 mg/L 95.7 (80%-120%) PRB 06/17/23 19:33 Antimony Arsenic 0.0500 0.0486 mg/L 97.1 (80% - 120%)0.0500 0.0496 99.3 Barium mg/L (80%-120%) Beryllium 0.0500 0.0581 mg/L 116 (80%-120%) 0.100 0.0984 98.4 06/17/23 21:23 Boron mg/L (80%-120%) Cadmium 0.0500 0.0495 mg/L 98.9 (80% - 120%)06/17/23 19:33 Calcium 2.00 2.00 mg/L 99.8 (80%-120%) 06/17/23 21:23 Chromium 0.0500 0.047806/17/23 19:33 mg/L 95.7 (80%-120%) Cobalt 0.0500 0.0492 mg/L98.4 (80%-120%) 0.0489 0.0500 mg/L 97.8 (80%-120%) Lead Lithium 0.0500 0.0533 107 mg/L (80%-120%) 0.0493 98.6 Molybdenum 0.0500 mg/L (80%-120%) Selenium 0.0500 0.0472 mg/L 94.4 (80% - 120%)Thallium 0.0500 0.0469 93.7 (80%-120%) mg/L QC1205432937 MB U ND 06/17/23 19:29 Antimony mg/L

**GEL LABORATORIES LLC** 2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

## QC Summary

|                                       |          | QC D        | umma,       | y     |      |      |           |       |                  |
|---------------------------------------|----------|-------------|-------------|-------|------|------|-----------|-------|------------------|
| Workorder: 625986                     |          |             |             |       |      |      |           |       | Page 3 of 8      |
| Parmname                              | NOM      | Sample Qual | QC          | Units | RPD% | REC% | Range     | Anlst | Date Time        |
| Metals Analysis - ICPMS Batch 2443846 |          |             |             |       |      |      |           |       |                  |
| Arsenic                               |          | U           | ND          | mg/L  |      |      |           | PRB   | 06/17/23 19:29   |
| riseme                                |          | C           | ND          | mg/L  |      |      |           | TRD   | 00/17/23 17.27   |
| ъ.                                    |          |             | ND          | σ     |      |      |           |       |                  |
| Barium                                |          | U           | ND          | mg/L  |      |      |           |       |                  |
|                                       |          |             |             |       |      |      |           |       |                  |
| Beryllium                             |          | U           | ND          | mg/L  |      |      |           |       |                  |
|                                       |          |             |             |       |      |      |           |       |                  |
| Boron                                 |          | U           | ND          | mg/L  |      |      |           |       | 06/17/23 21:20   |
|                                       |          |             |             |       |      |      |           |       |                  |
| Cadmium                               |          | U           | ND          | mg/L  |      |      |           |       | 06/17/23 19:29   |
|                                       |          |             |             | C     |      |      |           |       |                  |
| Calcium                               |          | U           | ND          | mg/L  |      |      |           |       | 06/17/23 21:20   |
| Culcium                               |          | _           | 112         | mg/L  |      |      |           |       | 00/17/23 21:20   |
| an :                                  |          | **          | <b>1</b> ID | ar.   |      |      |           |       | 0.5/1.5/00.10.00 |
| Chromium                              |          | U           | ND          | mg/L  |      |      |           |       | 06/17/23 19:29   |
|                                       |          |             |             |       |      |      |           |       |                  |
| Cobalt                                |          | U           | ND          | mg/L  |      |      |           |       |                  |
|                                       |          |             |             |       |      |      |           |       |                  |
| Lead                                  |          | U           | ND          | mg/L  |      |      |           |       |                  |
|                                       |          |             |             |       |      |      |           |       |                  |
| Lithium                               |          | U           | ND          | mg/L  |      |      |           |       |                  |
|                                       |          |             |             | C     |      |      |           |       |                  |
| Molybdenum                            |          | U           | ND          | mg/L  |      |      |           |       |                  |
| Wory odenum                           |          | C           | ND          | mg/L  |      |      |           |       |                  |
|                                       |          |             |             | -     |      |      |           |       |                  |
| Selenium                              |          | U           | ND          | mg/L  |      |      |           |       |                  |
|                                       |          |             |             |       |      |      |           |       |                  |
| Thallium                              |          | U           | ND          | mg/L  |      |      |           |       |                  |
|                                       |          |             |             |       |      |      |           |       |                  |
| QC1205432939 625986001 MS             |          |             |             | -     |      |      |           |       |                  |
| Antimony                              | 0.0500 U | ND          | 0.0503      | mg/L  |      | 100  | (75%-125% | )     | 06/17/23 19:40   |
|                                       |          |             |             |       |      |      |           |       |                  |
| Arsenic                               | 0.0500 J | 0.00324     | 0.0553      | mg/L  |      | 104  | (75%-125% | )     |                  |
|                                       |          |             |             |       |      |      |           |       |                  |

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

## **QC** Summary

Workorder: 625986 Page 4 of 8 Sample Qual **Parmname** NOM QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2443846 Batch Barium 0.0500 0.0228 0.0707 mg/L95.8 (75% - 125%)PRB 06/17/23 19:40 Beryllium 0.0500 0.00172 0.0628122 (75%-125%) mg/L Boron 0.100 6.95 7.09 mg/L N/A (75%-125%) 06/17/23 21:31 0.0500 U ND 0.0505 Cadmium mg/L 101 (75%-125%) 06/17/23 19:40 Calcium 2.00 460 483 mg/L N/A (75%-125%) 06/17/23 21:31 0.0500 U ND 0.0488 mg/L Chromium 97 06/17/23 19:40 (75%-125%)0.0500 Cobalt 0.415 0.466 mg/L N/A (75% - 125%)0.0500 U ND 0.0479 95.7 Lead (75% - 125%)mg/L 0.0500 0.00923 0.0675 Lithium J mg/L 116 (75%-125%) 0.0500 U ND 0.0543 108 Molybdenum mg/L(75% - 125%)Selenium 0.0500 J 0.00251 0.0607 116 (75%-125%) mg/L Thallium 0.0500 U ND 0.0471 94.1 mg/L (75% - 125%)QC1205432940 625986001 MSD 0.0500 U ND 0.0511 1.61 102 (0%-20%)06/17/23 19:43 Antimony mg/L0.00324 0.0559 0.0500 J 105 mg/L 0.988 (0%-20%)Arsenic Barium 0.0500 0.0228 0.0702 mg/L 0.749 94.7 (0% - 20%)

Page 8 of 19 SDG: 625986 Rev1

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

## **QC** Summary

625986 Page 5 of 8 **Parmname** NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2443846 Batch Beryllium 0.0500 0.00172 0.0627 mg/L 0.132 122 (0%-20%)PRB 06/17/23 19:43 0.100 6.95 N/A(0%-20%)06/17/23 21:34 Boron 6.62 mg/L 6.82 Cadmium 0.0500 ND 0.0501 mg/L 0.774 100 (0%-20%)06/17/23 19:43 Calcium 2.00 460 455 mg/L 6.05 N/A(0%-20%)06/17/23 21:34 Chromium 0.0500 U ND 0.0485 mg/L 0.516 96.5 (0%-20%)06/17/23 19:43 0.0500 0.415 0.460 mg/L Cobalt 1.25 N/A(0%-20%)0.0500 U ND 0.0473 Lead mg/L 1.25 94.5 (0% - 20%)Lithium 0.0500 J 0.00923 0.0668 1.04 115 (0%-20%)mg/L 0.0500 U ND 0.0535 Molybdenum mg/L 1.46 107 (0%-20%)0.0500 J 0.00251 0.0596 Selenium mg/L1.75 114 (0%-20%)Thallium 0.0500 U ND 0.0461 2.07 92.2 (0%-20%)mg/L QC1205432941 625986001 SDILT U ND U ND 06/17/23 19:51 Antimony ug/L (0%-20%)N/A Arsenic J 3.24 ND N/A (0% - 20%)ug/L 22.8 4.32 Barium ug/L 5.44 (0%-20%)Beryllium 1.72 0.296 ug/L 13.9 (0% - 20%)

Page 9 of 19 SDG: 625986 Rev1

Workorder:

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

## **QC** Summary

625986 Page 6 of 8 Parmname NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2443846 Batch Boron 69.5 10.7 ug/L 22.8 (0%-20%)PRB 06/17/23 21:38 U Cadmium ND U ND ug/L N/A (0%-20%)06/17/23 19:51 Calcium 4600 950 ug/L 3.2 (0%-20%)06/17/23 21:38 U ND U ND (0%-20%)Chromium ug/L N/A 06/17/23 19:51 Cobalt 415 84.0 ug/L 1.19 (0%-20%)U ND U ND (0%-20%)ug/L N/A Lead J 9.23 U ND Lithium ug/L N/A (0%-20%)U Molybdenum ND U ND N/A (0%-20%)ug/L J 2.51 U ND Selenium ug/L N/A (0%-20%)Thallium U ND U ND N/A (0%-20%)ug/L Metals Analysis-Mercury 2444300 Batch QC1205433645 625831006 DUP U ND U ND JP2 06/16/23 10:06 Mercury mg/L N/A LCS QC1205433644 0.00200 0.00210 105 (80%-120%) 06/16/23 09:48 Mercury mg/L QC1205433643 MB U Mercury ND 06/16/23 09:46 mg/L

Page 10 of 19 SDG: 625986 Rev1

Workorder:

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

## QC Summary

Workorder: 625986 Page 7 of 8 Units **Parmname** NOM Sample Qual QC RPD% REC% Range Anlst Date Time Metals Analysis-Mercury Batch 2444300 QC1205433646 625831006 MS ND 0.00183 mg/L 89.3 0.00200 U (75% - 125%)JP2 06/16/23 10:08 QC1205433647 625831006 SDILT U ND Mercury ND U ug/L N/A (0%-10%)06/16/23 10:09 **Solids Analysis** Batch 2444265 QC1205433571 625877002 DUP U Total Dissolved Solids ND U ND mg/L N/A CH6 06/15/23 14:00 QC1205433567 LCS Total Dissolved Solids 300 302 mg/L 101 (95%-105%) 06/15/23 14:00 QC1205433566 ND U **Total Dissolved Solids** mg/L 06/15/23 14:00

#### **Notes:**

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- N Metals--The Matrix spike sample recovery is not within specified control limits
- H Analytical holding time was exceeded
- < Result is less than value reported
- > Result is greater than value reported
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- Z Paint Filter Test--Particulates passed through the filter, however no free liquids were observed.
- d 5-day BOD--The 2:1 depletion requirement was not met for this sample
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- E %difference of sample and SD is >10%. Sample concentration must meet flagging criteria

Page 11 of 19 SDG: 625986 Rev1

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

### **QC** Summary

625986 Page 8 of 8 **Parmname** NOM Sample Qual  $\mathbf{OC}$ Units RPD% REC% Range Anlst Date Time

- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Е General Chemistry--Concentration of the target analyte exceeds the instrument calibration range
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- FB Mercury was found present at quantifiable concentrations in field blanks received with these samples. Data associated with the blank are deemed invalid for reporting to regulatory agencies
- N1See case narrative

Workorder:

- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- R Per section 9.3.4.1 of Method 1664 Revision B, due to matrix spike recovery issues, this result may not be reported or used for regulatory compliance purposes.
- В The target analyte was detected in the associated blank.
- 5-day BOD--Test replicates show more than 30% difference between high and low values. The data is qualified per the method and can be used for e reporting purposes
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- \* Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 12 of 19 SDG: 625986 Rev1

#### Technical Case Narrative Georgia Power Company SDG #: 625986

#### **Metals**

Product: Determination of Metals by ICP-MS Analytical Method: SW846 3005A/6020B Analytical Procedure: GL-MA-E-014 REV# 35

**Analytical Batch:** 2443846

**Preparation Method:** SW846 3005A

**Preparation Procedure:** GL-MA-E-006 REV# 14

**Preparation Batch:** 2443845

The following samples were analyzed using the above methods and analytical procedure(s).

| GEL Sample ID# | Client Sample Identification                          |
|----------------|-------------------------------------------------------|
| 625986001      | ARK-AP1PZ-6                                           |
| 1205432937     | Method Blank (MB)ICP-MS                               |
| 1205432938     | Laboratory Control Sample (LCS)                       |
| 1205432941     | 625986001(ARK-AP1PZ-6L) Serial Dilution (SD)          |
| 1205432939     | 625986001(ARK-AP1PZ-6S) Matrix Spike (MS)             |
| 1205432940     | 625986001(ARK-AP1PZ-6SD) Matrix Spike Duplicate (MSD) |

The samples in this SDG were analyzed on an "as received" basis.

#### **Data Summary:**

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

#### **Calibration Information**

#### **ICSA/ICSAB Statement**

For the ICP-MS analysis, the ICSA solution contains analyte concentrations which are verified trace impurities indigenous to the purchased standard.

#### **Technical Information**

#### **Sample Dilutions**

Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range. Samples were diluted to ensure that the analyte concentrations were within the linear calibration range of the instrument.

| A l     | 625986 |
|---------|--------|
| Analyte | 001    |
| Boron   | 100X   |
| Calcium | 100X   |

Page 13 of 19 SDG: 625986 Rev1

**Product:** Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer

**Analytical Method:** SW846 7470A

Analytical Procedure: GL-MA-E-010 REV# 39

**Analytical Batch:** 2444300

**Preparation Method:** SW846 7470A Prep

Preparation Procedure: GL-MA-E-010 REV# 39

**Preparation Batch:** 2444297

The following samples were analyzed using the above methods and analytical procedure(s).

| GEL Sample ID# | Client Sample Identification              |
|----------------|-------------------------------------------|
| 625986001      | ARK-AP1PZ-6                               |
| 1205433643     | Method Blank (MB)CVAA                     |
| 1205433644     | Laboratory Control Sample (LCS)           |
| 1205433647     | 625831006(NonSDGL) Serial Dilution (SD)   |
| 1205433645     | 625831006(NonSDGD) Sample Duplicate (DUP) |
| 1205433646     | 625831006(NonSDGS) Matrix Spike (MS)      |

The samples in this SDG were analyzed on an "as received" basis.

#### **Data Summary:**

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

## **General Chemistry**

**Product: Ion Chromatography Analytical Method:** EPA 300.0

Analytical Procedure: GL-GC-E-086 REV# 31

**Analytical Batch:** 2444191

The following samples were analyzed using the above methods and analytical procedure(s).

| GEL Sample ID# | Client Sample Identification             |
|----------------|------------------------------------------|
| 625986001      | ARK-AP1PZ-6                              |
| 1205433468     | Method Blank (MB)                        |
| 1205433469     | Laboratory Control Sample (LCS)          |
| 1205433470     | 625884001(NonSDG) Sample Duplicate (DUP) |
| 1205433471     | 625884001(NonSDG) Post Spike (PS)        |

The samples in this SDG were analyzed on an "as received" basis.

#### **Data Summary:**

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Page 14 of 19 SDG: 625986 Rev1

#### **Technical Information**

#### **Sample Dilutions**

The following samples 1205433470 (Non SDG 625884001DUP), 1205433471 (Non SDG 625884001PS) and 625986001 (ARK-AP1PZ-6) were diluted because target analyte concentrations exceeded the calibration range. Sample 625986001 (ARK-AP1PZ-6) was diluted to minimize matrix effects on instrument performance. Sample 625986001 (ARK-AP1PZ-6) was diluted based on historical data. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

| A 1      | 625986 |
|----------|--------|
| Analyte  | 001    |
| Chloride | 5X     |
| Fluoride | 5X     |
| Sulfate  | 200X   |

**Product: Solids, Total Dissolved Analytical Method:** SM 2540C

Analytical Procedure: GL-GC-E-001 REV# 20

**Analytical Batch:** 2444265

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID# Client Sample Identification

625986001 ARK-AP1PZ-6 1205433566 Method Blank (MB)

1205433567 Laboratory Control Sample (LCS)

1205433571 625877002(NonSDG) Sample Duplicate (DUP)

The samples in this SDG were analyzed on an "as received" basis.

#### **Data Summary:**

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

#### **Miscellaneous Information**

#### **Additional Comments**

Sample filtration took > 10 minutes; therefore as prescribed in the method, a reduced aliquot was used. 625986001 (ARK-AP1PZ-6). A reduced aliquot was used due to limited volume. The client did not provide an entire 1 liter aliquot. 1205433571 (Non SDG 625877002DUP).

#### **Certification Statement**

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 15 of 19 SDG: 625986 Rev1

| Perct # 175569434                                                                                                                                                                                                                                                                                                                                                                       | <u>ত</u>                                                                                                          | Call Laboratories LLC 625986                                                          | ITIES LLO                                                              | Coord Charles                                                                                                                | , the state of the | 3          | 25986                  | 186                                   |          | )40 Sav     | 2040 Savage Road      | ad<br>90407   |                                                                                                                                 |                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------|---------------------------------------|----------|-------------|-----------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| OC Number (1):                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                   | Chain of Custody and Analytical Request                                               | Analytical R                                                           | equest                                                                                                                       | a la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E          | 3                      |                                       |          | none: (8    | Phone: (843) 556-8171 | 5-8171        |                                                                                                                                 |                           |
| ØNumber:                                                                                                                                                                                                                                                                                                                                                                                | GEL Work Order Number:                                                                                            | GEL Project Manager: Erin Trent                                                       | Aanager: Erin                                                          |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                        |                                       | Fa       | ıx: (84     | Fax: (843) 766-1178   | 178           |                                                                                                                                 |                           |
| Hent Name: Georgia Power                                                                                                                                                                                                                                                                                                                                                                | Pho                                                                                                               | Phone # (937-344-6533)                                                                |                                                                        | Sample A                                                                                                                     | nalysi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s Requ     | Analysis Requested (5) |                                       | in the   | numb        | er of c               | ontaine       | (Fill in the number of containers for each test)                                                                                |                           |
| Pegect/Site Name: Plant Arkwright Ash Pond 1                                                                                                                                                                                                                                                                                                                                            | Fax:                                                                                                              |                                                                                       | Should this                                                            | 1500                                                                                                                         | IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                        |                                       | IN       | IN          | IN                    |               | < Preservative Type (6)                                                                                                         | (9) ad                    |
| Variess: 241 Ralph McGill Blvd SE, Atlanta, GA 30308                                                                                                                                                                                                                                                                                                                                    | 30308                                                                                                             |                                                                                       | sample be considered:                                                  |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | ро                     | 86                                    |          |             | 'BJ                   | (00           |                                                                                                                                 |                           |
| Sected By: Bryan Pennell                                                                                                                                                                                                                                                                                                                                                                | Send Results To: jabraham@southemco.com EDD@stantec.com<br>brian.steele@stantec.com edgar.smith@stantec.com       | nco.com EDD@stantec.com<br>h@stantec.com                                              | ylqq<br>Ylqq                                                           | r of con                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | y (300     | ( Meth                 | 61 1.2                                | (B0      |             | I' K' M               | 200/ 11       | Comments                                                                                                                        | 60                        |
| Sample ID  * For composites - indicate start and stop date/time                                                                                                                                                                                                                                                                                                                         | *Date Collected (mm-dd-yy)                                                                                        | *Time Collected (Military) (Adminary) Code (3) Filered (5) Matrix (4)                 | Radioactive yes, please suj isotopic info.) (7) Known or possible Haza | Total number                                                                                                                 | Ag (App. I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Alkalinit  | R2.<br>TDS (SM<br>2540 | Anions (Cl,<br>(300.0 Rev<br>Metals A | 709)     | KAD 226-2   | Metals A<br>Na, Fe, M | 141 10 1 1911 | (Task_code: Akk-CCk-<br>ASSMT-2023S1)                                                                                           | -C.K-                     |
| ARK-AP1PZ-6-20230613                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                   | Z                                                                                     | N OT                                                                   | 9                                                                                                                            | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | ×                      | ×                                     | ×        | ×           |                       |               | pH: 5.33                                                                                                                        |                           |
|                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                   |                                                                                       |                                                                        |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                        |                                       |          |             |                       |               |                                                                                                                                 |                           |
|                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                   |                                                                                       |                                                                        |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                        |                                       | 1        | -           | _                     |               |                                                                                                                                 |                           |
|                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                   |                                                                                       |                                                                        |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                        |                                       |          |             |                       |               |                                                                                                                                 |                           |
|                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                   |                                                                                       | 0                                                                      |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                        |                                       |          |             |                       |               |                                                                                                                                 |                           |
|                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                   |                                                                                       | _                                                                      |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                        |                                       |          |             |                       |               |                                                                                                                                 |                           |
|                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                   | 643-27                                                                                |                                                                        |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                        |                                       |          |             |                       |               |                                                                                                                                 |                           |
|                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                   |                                                                                       |                                                                        |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1          |                        |                                       |          |             |                       |               |                                                                                                                                 |                           |
|                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                   |                                                                                       |                                                                        |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                        |                                       |          |             |                       |               |                                                                                                                                 |                           |
|                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                   |                                                                                       |                                                                        |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                        |                                       |          |             | 1                     | 1             |                                                                                                                                 |                           |
| Ch                                                                                                                                                                                                                                                                                                                                                                                      | Chain of Custody Signatures                                                                                       |                                                                                       | L                                                                      | TAT Requested:                                                                                                               | sted:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Normal:    | I: X                   | Rush:                                 | h:       | Spe         | Specify:              |               | (Subject to Surcharge)                                                                                                          | arge)                     |
| Relinquished By (Signed) Print Name                                                                                                                                                                                                                                                                                                                                                     | Date Received by (signed)                                                                                         | Print Name Date                                                                       | Fax F                                                                  | Fax Results: [ ] Yes                                                                                                         | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N X        | 0                      |                                       |          |             |                       |               | i                                                                                                                               |                           |
| THE EPHIN PENNEW                                                                                                                                                                                                                                                                                                                                                                        | 613-23 1 36/1                                                                                                     | (Xo,14,23)(                                                                           | Selec                                                                  | Select Deliverable: [ ] C of A [ ] QC Summary                                                                                | le: [ ] (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CofA       | [ ] 0C                 | Summs                                 | 1 . 1    | [ ] level 1 |                       | [X] Level 2   | 2 [ ] Level 3 [ ] Level 4                                                                                                       | evel 4                    |
|                                                                                                                                                                                                                                                                                                                                                                                         | 2 / "                                                                                                             |                                                                                       | Addii                                                                  | Additional Remarks:                                                                                                          | rks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                        |                                       |          |             |                       |               |                                                                                                                                 |                           |
|                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                 |                                                                                       | For                                                                    | For Lab Receiving Use Only: Custody Seal Intact? [ ] Yes                                                                     | ng Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Only:      | Custody                | Seal I                                | ntact?   | [ ] Ye      | -                     | ] No C        | Cooler Temp: Cooler Temp                                                                                                        |                           |
| For sample shipping and delivery details, see Sample Receipt & Review form (SRR.)                                                                                                                                                                                                                                                                                                       | ample Receipt & Review form (SR                                                                                   | IR.)                                                                                  | Sample Collection Time Zone: [X] Eastern                               | tion Time 2                                                                                                                  | cone:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [X]E       | 0000000                | [ ] Pacific                           |          | [ ] Central | DOM: N                | [ ] Mo        | [ ] Mountain [ ] Other:                                                                                                         |                           |
| .) Chain of Custody Number = Client Determined .) QC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicate, EB = Equipment Blank, MS = Matrix Spike Sample, MSD = Matrix Spike Duplicate Sample, G = Grab, C = Composite .) Field Filtered: For flouid matrices, indicate with a - Y - for yes the sample was field filtered or - N - for sample was not field filtered.      | old Duplicate, EB = Equipment Blank, MS: wes the sample was field filtered or - N - for                           | = Matrix Spike Sample, MSD = Matrix Spi<br>sample was not field filtered.             | ikc Duplicate Samp                                                     | c, <b>G</b> = Grab, (                                                                                                        | C = Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | oosite     |                        |                                       |          |             |                       |               |                                                                                                                                 |                           |
| .) Marix Codes: DW=Drinking Water, GW=Groundwater, SW=Surface Water, WW=Waste Water, WL=Wise Liquid, SO=Soil, SD=Sediment, SL=Sludge, SS=Soild Waste, O=Oil, F=Filter, P=Wipe, U=Urine, F=Fecal, N=Nasal                                                                                                                                                                                | W=Surface Water, WW=Waste Water, W=N                                                                              | Water, ML=Misc Liquid, SO=Soil, SD=Se                                                 | diment, SL=Sludge                                                      | , SS=Solid Wa                                                                                                                | iste, 0=(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ii, F=Fil  | er, P=Wi <sub>l</sub>  | e, U=Ur                               | ine, F=F | ecal, N=    | Nasal                 |               |                                                                                                                                 |                           |
| .) Sample Analysis Requested: Analytical method requested (i.e. 8260B, 6010B/7470A) and number of containers provided for each (i.e. 8260B - 3, 6010B/7470A - 1).  1. Preservative Type: HA = Hydrochloric Acid, NI = Nitric Acid, SH = Sodium Hydroxide, SA = Sulfuric Acid, AA = Ascorbic Acid, HX = Hexane, ST = Sodium Thiosulfate, If no preservative is added = leave field blank | i.e. <b>8260B</b> , <b>6010B/7470A</b> ) and number of cc cid, <b>SH</b> = Sodium Hydroxide, <b>SA</b> = Sulfuric | ontainers provided for each (i.e. 8260B - 3<br>Acid, AA = Ascorbic Acid, HX = Hexane, | , 60108/7470A - 1)<br>ST = Sodium Thio                                 | sulfate, If no p                                                                                                             | reservati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ve is adde | d = lcave              | field blar                            | *        |             |                       |               |                                                                                                                                 |                           |
| KNOWN OR POSSIBLE HAZARDS                                                                                                                                                                                                                                                                                                                                                               | Characteristic Hazards                                                                                            | Listed Waste                                                                          | Other                                                                  |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                        |                                       |          |             | Plea                  | se prov       | Please provide any additional details                                                                                           | uils .                    |
| CCRA Metals As = Arsenic Hg= Mercury Sa = Barium Se= Selenium                                                                                                                                                                                                                                                                                                                           | FL = Flammable/Ignitable CO = Corrosive RE = Reactive                                                             | LW= Listed Waste (F,K,P and U-listed wastes.) Waste code(s):                          | OI≒<br>(i.e.:<br>misc.<br>Descr                                        | OI= Other / Unknown<br>(i.e.: High/low pH, asbestos, beryllium, irritants, other<br>misc. health hazards, etc.) Description: | cnown<br>H, asbe<br>urds, et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | stos, be   | ryllium                | irritan                               | its, oth | er          | belo<br>conc<br>of si | erns. (       | below regarding handling and/or disposal concerns. (i.e.: Origin of sample(s), type of site collected from, odd matrices, etc.) | disposal ), type s, etc.) |
| nium Ag= Silver<br>mium MR= Misc. RCRA metals                                                                                                                                                                                                                                                                                                                                           | TSCA Regulated PCB = Polychlorinated                                                                              |                                                                                       |                                                                        |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                        |                                       |          | 1.1         |                       |               |                                                                                                                                 |                           |
| b = Lead                                                                                                                                                                                                                                                                                                                                                                                | biphenyls                                                                                                         |                                                                                       |                                                                        |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                        |                                       |          |             |                       |               |                                                                                                                                 |                           |

| Sample ID  Sample ID  ARK APIPZ 6_20230613  ARK APIPZ 6_20230613 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date Received by (signed)  6-13-2.3 1 2 2 3 umple Receipt & Review form (SRR res the sample was field filtered or - N - for san V=Surface Water, WW=Waste Water, W=Wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| GEL | Laboratories LLC |
|-----|------------------|
|-----|------------------|

SAMPLE RECEIPT & REVIEW FORM SDG/AR/COC/Work Order: (025986 625 Client: OPCC Received By: SNS Date Received: Circle Applicable: FedEx Express FedEx Ground UPS Field Services Courier Other Carrier and Tracking Number 399598403522-10 3511-1°C \*If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation. Xes ž Suspected Hazard Information UN#: Hazard Class Shipped: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes\_\_\_ No\_\_\_ A)Shipped as a DOT Hazardous? COC notation or radioactive stickers on containers equal client designation. B) Did the client designate the samples are to be received as radioactive? Maximum Net Counts Observed\* (Observed Counts - Area Background Counts): CPMV mR/Hr Classified as: Rad 1 Rad 2 Rad 3 C) Did the RSO classify the samples as radioactive? COC notation or hazard labels on containers equal client designation. D) Did the client designate samples are hazardous? If D or B is yes, select Hazards below. Foreign Soil RCRA Asbestos Beryllium PCB's Flammable E) Did the RSO identify possible hazards? Comments/Qualifiers (Required for Non-Conforming Items) Yes NA VA Sample Receipt Criteria Circle Applicable: Seals broken Damaged container Leaking container Other (describe) Shipping containers received intact and 1 sealed? Circle Applicable: Client contacted and provided COC COC created upon receipt Chain of custody documents included 2 with shipment? Preservation Method Wet Ice Ice Packs Dry ice None Other: TEMP: \*all temperatures are recorded in Celsius Samples requiring cold preservation 3 within  $(0 \le 6 \text{ deg. C})$ ?\* Temperature Device Serial #: IR1-23 Daily check performed and passed on IR Secondary Temperature Device Serial # (If Applicable): 4 temperature gun? Circle Applicable: Scals broken Damaged container Leaking container Other (describe) 5 |Sample containers intact and scaled? Sample ID's and Containers Affected: Samples requiring chemical preservation If Preservation added, Lott: at proper pH? If Yes, are Encores or Soil Kits present for solids? Yes\_\_\_No\_\_\_NA\_\_(If yes, take to VOA Freezer) \_ NA\_\_(If unknown, select No) Do liquid VOA vials contain acid preservation? Yes\_\_\_ No\_\_ Do any samples require Volatile Are liquid VOA vials free of headspace? Yes\_\_\_\_ No\_ 7 Analysis? Sample 1D's and containers affected: ID's and tests affected: Samples received within holding time? ID's and containers affected: Sample ID's on COC match ID's on bottles? Circle Applicable: No dates on containers No times on containers COC missing info Other (describe) Date & time on COC match date & time on bottles? Circle Applicable: No container count on COC Other (describe) Number of containers received match 11 number indicated on COC7 Are sample containers identifiable as 12 GEL provided by use of GEL labels? Circle Applicable: Not relinquished Other (describe) COC form is properly signed in relinquished/received sections? Comments (Use Continuation Form if needed): M(9 Date (2)15/23 Page 1 of )

GL-CHL-SR-001 Rev 7

PM (or PMA) review: Initials \_\_\_\_\_

List of current GEL Certifications as of 30 June 2023

| State                     | Certification                |
|---------------------------|------------------------------|
| Alabama                   | 42200                        |
| Alaska                    | 17-018                       |
| Alaska Drinking Water     | SC00012                      |
| Arkansas                  | 88-0651                      |
| CLIA                      | 42D0904046                   |
| California                | 2940                         |
| Colorado                  | SC00012                      |
| Connecticut               | PH-0169                      |
| DoD ELAP/ ISO17025 A2LA   | 2567.01                      |
| Florida NELAP             | E87156                       |
| Foreign Soils Permit      | P330-15-00283, P330-15-00253 |
| Georgia                   | SC00012                      |
| Georgia SDWA              | 967                          |
| Hawaii                    | SC00012                      |
| Idaho                     | SC00012                      |
| Illinois NELAP            | 200029                       |
| Indiana                   | C-SC-01                      |
| Kansas NELAP              | E-10332                      |
| Kentucky SDWA             | 90129                        |
| Kentucky Wastewater       | 90129                        |
| Louisiana Drinking Water  | LA024                        |
| Louisiana NELAP           | 03046 (AI33904)              |
| Maine                     | 2019020                      |
| Maryland                  | 270                          |
| Massachusetts             | M-SC012                      |
| Massachusetts PFAS Approv | Letter                       |
| Michigan                  | 9976                         |
| Mississippi               | SC00012                      |
| Nebraska                  | NE-OS-26-13                  |
| Nevada                    | SC000122023-4                |
| New Hampshire NELAP       | 2054                         |
| New Jersey NELAP          | SC002                        |
| New Mexico                | SC00012                      |
| New York NELAP            | 11501                        |
| North Carolina            | 233                          |
| North Carolina SDWA       | 45709                        |
| North Dakota              | R-158                        |
| Oklahoma                  | 2022-160                     |
| Pennsylvania NELAP        | 68-00485                     |
| Puerto Rico               | SC00012                      |
| S. Carolina Radiochem     | 10120002                     |
| Sanitation Districts of L | 9255651                      |
| South Carolina Chemistry  | 10120001                     |
| Tennessee                 | TN 02934                     |
| Texas NELAP               | T104704235-22-20             |
| Utah NELAP                | SC000122022-37               |
| Vermont                   | VT87156                      |
| Virginia NELAP            | 460202                       |
| Washington                | C780                         |
|                           |                              |



a member of The GEL Group INC



2040 Savage Road Charleston, SC 29407





P 843.556.8171 F 843.766.1178

gel.com

July 06, 2023

Joju Abraham Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

Re: Arkwright CCR Groundwater Compliance AP1 Work Order: 625987

Dear Joju Abraham:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on June 14, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The sample was delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4504.

Sincerely,

Erin Trent Project Manager

Purchase Order: GPC82177-0005

Enclosures



2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## Certificate of Analysis Report for

GPCC001 Georgia Power Company Client SDG: 625989 GEL Work Order: 625989

#### The Qualifiers in this report are defined as follows:

- \* A quality control analyte recovery is outside of specified acceptance criteria
- \*\* Analyte is a Tracer compound
- \*\* Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Erin Trent.

|             | Cuna Johnson |  |
|-------------|--------------|--|
| Reviewed by |              |  |

Page 2 of 24 SDG: 625987

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## Certificate of Analysis Report for

GPCC001 Georgia Power Company Client SDG: 625987 GEL Work Order: 625987

#### The Qualifiers in this report are defined as follows:

- \* A quality control analyte recovery is outside of specified acceptance criteria
- \*\* Analyte is a Tracer compound
- \*\* Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Erin Trent.

|             | Cuna Johnson |  |
|-------------|--------------|--|
| Reviewed by |              |  |

Page 3 of 24 SDG: 625987

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## **Certificate of Analysis**

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: July 6, 2023

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

GPCC00100 GPCC001 Client Sample ID: ARK-AP1PZ-3-20230616 Project: Client ID:

Sample ID: Matrix: 625989001 WG

Collect Date: 13-JUN-23 Receive Date: 14-JUN-23 Collector: Client

| Parameter                                  | Qualifier      | Result U     | ncertainty   | MDC   | TPU      | RL   | Units | PF | DF | Analyst | Date     | Time | Batch   | Mtd. |
|--------------------------------------------|----------------|--------------|--------------|-------|----------|------|-------|----|----|---------|----------|------|---------|------|
| Rad Gas Flow Proport<br>GFPC Ra228, Liquid |                | U            |              |       |          |      |       |    |    |         |          |      |         |      |
| Radium-228                                 | U              | 0.0108       | +/-0.698     | 1.37  | +/-0.698 | 3.00 | pCi/L |    |    | JE1     | 06/23/23 | 1509 | 2445900 | ) 1  |
| Radium-226+Radium                          | ı-228 Calcular | tion "See Pa | rent Product | s"    |          |      |       |    |    |         |          |      |         |      |
| Radium-226+228 Sum                         |                | 1.53         | +/-0.981     | 1.37  | +/-1.04  |      | pCi/L |    | 1  | LXB3    | 07/06/23 | 1001 | 2448609 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, L     | iquid "As Rece | eived"       |              |       |          |      |       |    |    |         |          |      |         |      |
| Radium-226                                 |                | 1.52         | +/-0.690     | 0.533 | +/-0.771 | 1.00 | pCi/L |    |    | LXP1    | 06/27/23 | 0810 | 2445887 | 3    |

The following Analytical Methods were performed Description

1 EPA 904.0/SW846 9320 Modified Calculation

EPA 903.1 Modified

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | <b>Acceptable Limits</b> |
|---------------------------|----------------------------------|----------|-----------|--------------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2445900  | 76.5      | (15%-125%)               |

#### **Notes:**

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor **RL**: Reporting Limit Lc/LC: Critical Level

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 4 of 24 SDG: 625987

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## **Certificate of Analysis**

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: July 6, 2023

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

ARK-AP1-EB-01-20230613 Client Sample ID: Project: GPCC00100 Sample ID: GPCC001 Client ID:

625989002 Matrix: WQ Collect Date: 13-JUN-23 Receive Date: 14-JUN-23 Collector: Client

| Parameter                                   | Qualifier     | Result U     | ncertainty   | MDC   | TPU      | RL   | Units | PF | DF Ana | lyst | Date Time   | Batch   | Mtd. |
|---------------------------------------------|---------------|--------------|--------------|-------|----------|------|-------|----|--------|------|-------------|---------|------|
| Rad Gas Flow Proportion  GFPC Ra228, Liquid |               | 0            |              |       |          |      |       |    |        |      |             |         |      |
| Radium-228                                  | U             | 0.605        | +/-1.44      | 2.53  | +/-1.45  | 3.00 | pCi/L |    | JE     | . 06 | /23/23 1509 | 2445900 | 1    |
| Radium-226+Radium-                          | 228 Calculat  | tion "See Pa | rent Product | s"    |          |      |       |    |        |      |             |         |      |
| Radium-226+228 Sum                          | U             | 0.766        | +/-1.48      | 2.53  | +/-1.49  |      | pCi/L |    | 1 LXI  | 3 07 | /06/23 1001 | 2448609 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, Liq    | juid "As Rece | eived"       |              |       |          |      |       |    |        |      |             |         |      |
| Radium-226                                  | U             | 0.160        | +/-0.352     | 0.698 | +/-0.354 | 1.00 | pCi/L |    | LXI    | 1 06 | /27/23 0810 | 2445887 | 3    |

The following Analytical Methods were performed **Description** 

|   | <u> </u>                      |
|---|-------------------------------|
| 1 | EPA 904.0/SW846 9320 Modified |
| 2 | Calculation                   |
| 3 | EPA 903.1 Modified            |

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | <b>Acceptable Limits</b> |
|---------------------------|----------------------------------|----------|-----------|--------------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2445900  | 78.6      | (15%-125%)               |

#### Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 5 of 24 SDG: 625987

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## **Certificate of Analysis**

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: July 6, 2023

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1-FB-01-20230613 Project: GPCC00100 Sample ID: Client ID: GPCC001

625989003 Matrix: WQ Collect Date: 13-JUN-23 Receive Date:

14-JUN-23 Collector: Client

| Parameter                                   | Qualifier     | Result Un     | certainty    | MDC   | TPU     | RL   | Units | PF | DF | Analys | t Date   | Time | Batch   | Mtd. |
|---------------------------------------------|---------------|---------------|--------------|-------|---------|------|-------|----|----|--------|----------|------|---------|------|
| Rad Gas Flow Proporti<br>GFPC Ra228, Liquid |               | 0             |              |       |         |      |       |    |    |        |          |      |         |      |
| Radium-228                                  | U             | 1.66          | +/-1.26      | 2.00  | +/-1.33 | 3.00 | pCi/L |    |    | JE1    | 06/23/23 | 1509 | 2445900 | 1    |
| Radium-226+Radium-                          | -228 Calculai | tion "See Par | rent Product | s"    |         |      |       |    |    |        |          |      |         |      |
| Radium-226+228 Sum                          |               | 5.04          | +/-1.65      | 2.00  | +/-1.78 |      | pCi/L |    | 1  | LXB3   | 07/06/23 | 1001 | 2448609 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, Lie    | quid "As Rece | eived"        |              |       |         |      |       |    |    |        |          |      |         |      |
| Radium-226                                  |               | 3.39          | +/-1.07      | 0.663 | +/-1.19 | 1.00 | pCi/L |    |    | LXP1   | 06/27/23 | 0848 | 2445887 | 3    |

The following Analytical Methods were performed

| Method | Description                   |
|--------|-------------------------------|
| 1      | EPA 904.0/SW846 9320 Modified |
| 2      | Calculation                   |
| 3      | EPA 903.1 Modified            |

Surrogate/Tracer Recovery Test Batch ID Recovery% **Acceptable Limits** Barium-133 Tracer 2445900 76.4 (15% - 125%)

GFPC Ra228, Liquid "As Received"

Notes:

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

The MDC is a sample specific MDC.

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 6 of 24 SDG: 625987

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## **Certificate of Analysis**

Company: Georgia Power Company, Southern

Client

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: July 6, 2023

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

ARK-AP1-FD-01-20230613 Client Sample ID: Project: GPCC00100 Sample ID: GPCC001 Client ID:

625989004 Matrix: WG Collect Date: 13-JUN-23 Receive Date: 14-JUN-23

Collector:

| Parameter                                   | Qualifier Resu      | ılt Uncertainty  | MDC   | TPU      | RL   | Units | PF | DF Analy | st Date Time  | Batch   | Mtd. |
|---------------------------------------------|---------------------|------------------|-------|----------|------|-------|----|----------|---------------|---------|------|
| Rad Gas Flow Proportion  GFPC Ra228, Liquid | 0                   |                  |       |          |      |       |    |          |               |         |      |
| Radium-228                                  | 1.                  | 90 +/-1.02       | 1.46  | +/-1.13  | 3.00 | pCi/L |    | JE1      | 06/23/23 1509 | 2445900 | 1    |
| Radium-226+Radium-                          | 228 Calculation "Se | ee Parent Produc | ts"   |          |      |       |    |          |               |         |      |
| Radium-226+228 Sum                          | 2.                  | 44 +/-1.10       | 1.46  | +/-1.20  |      | pCi/L |    | 1 LXB3   | 07/06/23 1001 | 2448609 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, Liq    | quid "As Received"  |                  |       |          |      |       |    |          |               |         |      |
| Radium-226                                  | 0.5                 | +/-0.408         | 0.475 | +/-0.419 | 1.00 | pCi/L |    | LXP1     | 06/27/23 0848 | 2445887 | 3    |

The following Analytical Methods were performed **Description** 

| 1 | EPA 904.0/SW846 9320 Modified |
|---|-------------------------------|
| 2 | Calculation                   |
| 3 | EPA 903.1 Modified            |
|   |                               |

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | Acceptable Limits |
|---------------------------|----------------------------------|----------|-----------|-------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2445900  | 80.4      | (15%-125%)        |

#### Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 7 of 24 SDG: 625987

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## **Certificate of Analysis**

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: July 6, 2023

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

GPCC00100 GPCC001 Client Sample ID: ARK-AP1PZ-6-20230613 Project: Client ID:

Sample ID: Matrix: 625987001 WG

Collect Date: 13-JUN-23 Receive Date: 14-JUN-23 Collector: Client

| Parameter                                  | Qualifier      | Result U1    | ncertainty   | MDC   | TPU      | RL   | Units | PF | DF | Analyst | Date     | Time | Batch   | Mtd. |
|--------------------------------------------|----------------|--------------|--------------|-------|----------|------|-------|----|----|---------|----------|------|---------|------|
| Rad Gas Flow Proport<br>GFPC Ra228, Liquid |                | 0            |              |       |          |      |       |    |    |         |          |      |         |      |
| Radium-228                                 | U              | 1.68         | +/-1.46      | 2.39  | +/-1.53  | 3.00 | pCi/L |    |    | JE1     | 06/23/23 | 1509 | 2445900 | 1    |
| Radium-226+Radium                          | ı-228 Calculat | tion "See Pa | rent Product | ts"   |          |      |       |    |    |         |          |      |         |      |
| Radium-226+228 Sum                         |                | 3.69         | +/-1.65      | 2.39  | +/-1.77  |      | pCi/L |    | 1  | LXB3    | 07/06/23 | 1001 | 2448609 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, Li    | iquid "As Rece | eived"       |              |       |          |      |       |    |    |         |          |      |         |      |
| Radium-226                                 |                | 2.01         | +/-0.768     | 0.560 | +/-0.901 | 1.00 | pCi/L |    |    | LXP1    | 06/27/23 | 0810 | 2445887 | 3    |

The following Analytical Methods were performed Description

|   | *                             |
|---|-------------------------------|
| 1 | EPA 904.0/SW846 9320 Modified |
| 2 | Calculation                   |

EPA 903.1 Modified

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | <b>Acceptable Limits</b> |
|---------------------------|----------------------------------|----------|-----------|--------------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2445900  | 74.4      | (15%-125%)               |

#### **Notes:**

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor **RL**: Reporting Limit Lc/LC: Critical Level

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 8 of 24 SDG: 625987

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

**QC** Summary

Client: Georgia Power Company, Southern Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia

Contact: Joju Abraham

Workorder: 625987

| Report Date: | July 6, | 2023 |   |
|--------------|---------|------|---|
|              | Page    | 1 of | 2 |

| Parmname                   | NOM     | Sample Qual |   | QC       | Units | RPD% | REC% | Range A     | Anlst | Date Time     |
|----------------------------|---------|-------------|---|----------|-------|------|------|-------------|-------|---------------|
| Rad Gas Flow               |         |             |   |          |       |      |      |             |       |               |
| Batch 2445900 -            |         |             |   |          |       |      |      |             |       |               |
| QC1205436474 625716001 DUP |         |             |   |          |       |      |      |             |       |               |
| Radium-228                 | U       | 0.410       | U | 1.25     | pCi/L | 0    |      | N/A         | JE1   | 06/23/2315:09 |
|                            | Uncert: | +/-0.944    |   | +/-1.03  |       |      |      |             |       |               |
|                            | TPU:    | +/-0.950    |   | +/-1.08  |       |      |      |             |       |               |
| QC1205436475 LCS           |         |             |   |          |       |      |      |             |       |               |
| Radium-228                 | 80.4    |             |   | 88.8     | pCi/L |      | 111  | (75%-125%)  | JE1   | 06/23/2315:09 |
|                            | Uncert: |             |   | +/-4.76  |       |      |      |             |       |               |
|                            | TPU:    |             |   | +/-23.1  |       |      |      |             |       |               |
| QC1205436473 MB            |         |             |   |          |       |      |      |             |       |               |
| Radium-228                 |         |             | U | 0.213    | pCi/L |      |      |             | JE1   | 06/23/2315:09 |
|                            | Uncert: |             |   | +/-0.991 |       |      |      |             |       |               |
|                            | TPU:    |             |   | +/-0.992 |       |      |      |             |       |               |
| Rad Ra-226                 |         |             |   |          |       |      |      |             |       |               |
| Batch 2445887              |         |             |   |          |       |      |      |             |       |               |
| QC1205436429 625648001 DUP |         |             |   |          |       |      |      |             |       |               |
| Radium-226                 | U       | 0.580       |   | 1.33     | pCi/L | 78.8 |      | (0% - 100%) | LXP1  | 06/27/2309:24 |
|                            | Uncert: | +/-0.575    |   | +/-0.739 |       |      |      |             |       |               |
|                            | TPU:    | +/-0.582    |   | +/-0.781 |       |      |      |             |       |               |
| QC1205436431 LCS           |         |             |   |          |       |      |      |             |       |               |
| Radium-226                 | 26.4    |             |   | 26.5     | pCi/L |      | 100  | (75%-125%)  | LXP1  | 06/27/2309:24 |
|                            | Uncert: |             |   | +/-2.78  |       |      |      |             |       |               |
|                            | TPU:    |             |   | +/-5.69  |       |      |      |             |       |               |
| QC1205436428 MB            |         |             |   |          |       |      |      |             |       |               |
| Radium-226                 |         |             | U | 0.326    | pCi/L |      |      |             | LXP1  | 06/27/2309:24 |
|                            | Uncert: |             |   | +/-0.394 |       |      |      |             |       |               |
|                            | TPU:    |             |   | +/-0.400 |       |      |      |             |       |               |
| QC1205436430 625648001 MS  |         |             |   |          |       |      |      |             |       |               |
| Radium-226                 | 127 U   | 0.580       |   | 117      | pCi/L |      | 92.1 | (75%-125%)  | LXP1  | 06/27/2309:24 |
|                            | Uncert: | +/-0.575    |   | +/-12.9  |       |      |      |             |       |               |
|                            | TPU:    | +/-0.582    |   | +/-27.6  |       |      |      |             |       |               |

#### **Notes:**

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- H Analytical holding time was exceeded
- < Result is less than value reported
- > Result is greater than value reported

Page 9 of 24 SDG: 625987

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

### **QC** Summary

Workorder: 625987 Page 2 of 2 **Parmname** NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time UI Gamma Spectroscopy--Uncertain identification BDResults are either below the MDC or tracer recovery is low Preparation or preservation holding time was exceeded h R Sample results are rejected RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry. N/A RPD or %Recovery limits do not apply. Analyte concentration is not detected above the detection limit ND M M if above MDC and less than LLD Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier NJ

- FA Failed analysis.UJ Gamma Spectroscopy--Uncertain identification
- One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- \*\* Analyte is a Tracer compound
- M REMP Result > MDC/CL and < RDL
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- \*\* Indicates analyte is a surrogate/tracer compound.
- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 10 of 24 SDG: 625987

# Radiochemistry Technical Case Narrative Georgia Power Company SDG #: 625987

**Product:** Radium-226+Radium-228 Calculation

**Analytical Method:** Calculation

Analytical Procedure: GL-RAD-D-003 REV# 45

**Analytical Batch:** 2448609

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID# Client Sample Identification
625987001 ARK-AP1PZ-6-20230613

The samples in this SDG were analyzed on an "as received" basis.

#### **Data Summary:**

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

**Product:** GFPC Ra228, Liquid

**Analytical Method:** EPA 904.0/SW846 9320 Modified **Analytical Procedure:** GL-RAD-A-063 REV# 5

**Analytical Batch:** 2445900

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#Client Sample Identification625987001ARK-AP1PZ-6-202306131205436473Method Blank (MB)

1205436474 625716001(NonSDG) Sample Duplicate (DUP)

1205436475 Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

#### **Data Summary:**

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

#### **Preparation Information**

#### **Homogenous Matrix**

Sample 1205436474 (Non SDG 625716001DUP) was non-homogenous matrix. particles and debris 1205436474 (Non SDG 625716001DUP).

Page 11 of 24 SDG: 625987

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

**Analytical Procedure:** GL-RAD-A-008 REV# 15

**Analytical Batch:** 2445887

The following samples were analyzed using the above methods and analytical procedure(s).

| GEL Sample ID# | Client Sample Identification             |
|----------------|------------------------------------------|
| 625987001      | ARK-AP1PZ-6-20230613                     |
| 1205436428     | Method Blank (MB)                        |
| 1205436429     | 625648001(NonSDG) Sample Duplicate (DUP) |
| 1205436430     | 625648001(NonSDG) Matrix Spike (MS)      |
| 1205436431     | Laboratory Control Sample (LCS)          |

The samples in this SDG were analyzed on an "as received" basis.

#### **Data Summary:**

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

#### **Miscellaneous Information**

#### **Additional Comments**

The matrix spike, 1205436430 (Non SDG 625648001MS), aliquot was reduced to conserve sample volume.

#### **Certification Statement**

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 12 of 24 SDG: 625987

# Radiochemistry Technical Case Narrative Georgia Power Company SDG #: 625989

**Product:** Radium-226+Radium-228 Calculation

**Analytical Method:** Calculation

Analytical Procedure: GL-RAD-D-003 REV# 45

**Analytical Batch:** 2448609

The following samples were analyzed using the above methods and analytical procedure(s).

| GEL Sample ID# | <b>Client Sample Identification</b> |
|----------------|-------------------------------------|
| 625989001      | ARK-AP1PZ-3-20230616                |
| 625989002      | ARK-AP1-EB-01-20230613              |
| 625989003      | ARK-AP1-FB-01-20230613              |
| 625989004      | ARK-AP1-FD-01-20230613              |

The samples in this SDG were analyzed on an "as received" basis.

#### **Data Summary:**

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

**Product:** GFPC Ra228, Liquid

<u>Analytical Method:</u> EPA 904.0/SW846 9320 Modified <u>Analytical Procedure:</u> GL-RAD-A-063 REV# 5

**Analytical Batch:** 2445900

The following samples were analyzed using the above methods and analytical procedure(s).

| GEL Sample ID# | Client Sample Identification             |
|----------------|------------------------------------------|
| 625989001      | ARK-AP1PZ-3-20230616                     |
| 625989002      | ARK-AP1-EB-01-20230613                   |
| 625989003      | ARK-AP1-FB-01-20230613                   |
| 625989004      | ARK-AP1-FD-01-20230613                   |
| 1205436473     | Method Blank (MB)                        |
| 1205436474     | 625716001(NonSDG) Sample Duplicate (DUP) |
| 1205436475     | Laboratory Control Sample (LCS)          |

The samples in this SDG were analyzed on an "as received" basis.

#### **Data Summary:**

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Page 13 of 24 SDG: 625987

#### **Preparation Information**

#### **Homogenous Matrix**

Sample 1205436474 (Non SDG 625716001DUP) was non-homogenous matrix. particles and debris 1205436474 (Non SDG 625716001DUP).

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

**Analytical Procedure:** GL-RAD-A-008 REV# 15

**Analytical Batch:** 2445887

The following samples were analyzed using the above methods and analytical procedure(s).

| <b>GEL Sample ID#</b> | Client Sample Identification             |
|-----------------------|------------------------------------------|
| 625989001             | ARK-AP1PZ-3-20230616                     |
| 625989002             | ARK-AP1-EB-01-20230613                   |
| 625989003             | ARK-AP1-FB-01-20230613                   |
| 625989004             | ARK-AP1-FD-01-20230613                   |
| 1205436428            | Method Blank (MB)                        |
| 1205436429            | 625648001(NonSDG) Sample Duplicate (DUP) |
| 1205436430            | 625648001(NonSDG) Matrix Spike (MS)      |
| 1205436431            | Laboratory Control Sample (LCS)          |

The samples in this SDG were analyzed on an "as received" basis.

#### **Data Summary:**

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

#### **Miscellaneous Information**

#### **Additional Comments**

The matrix spike, 1205436430 (Non SDG 625648001MS), aliquot was reduced to conserve sample volume.

#### **Certification Statement**

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 14 of 24 SDG: 625987

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Report Date: July 6, 2023

Page 1 of 2

100 (75%-125%) LXP1

92.1 (75%-125%) LXP1

LXP1

06/27/2309:24

06/27/2309:24

06/27/2309:24

**QC** Summary

Client: Georgia Power Company, Southern Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia

Contact: Joju Abraham

Workorder: 625989

| Parmname     |               | NOM     | Sample ( | Qual | QC       | Units | RPD% | REC% | Range Anlst     | Date Time     |
|--------------|---------------|---------|----------|------|----------|-------|------|------|-----------------|---------------|
| Rad Gas Flow |               |         |          |      |          |       |      |      |                 |               |
| Batch        | 2445900 -     |         |          |      |          |       |      |      |                 |               |
| QC1205436474 | 625716001 DUP |         |          |      |          |       |      |      |                 |               |
| Radium-228   |               | U       | 0.410    | U    | 1.25     | pCi/L | 0    |      | N/A JE          | 06/23/2315:09 |
|              |               | Uncert: | +/-0.944 |      | +/-1.03  |       |      |      |                 |               |
|              |               | TPU:    | +/-0.950 |      | +/-1.08  |       |      |      |                 |               |
| QC1205436475 | LCS           |         |          |      |          |       |      |      |                 |               |
| Radium-228   |               | 80.4    |          |      | 88.8     | pCi/L |      | 111  | (75%-125%) JE1  | 06/23/2315:09 |
|              |               | Uncert: |          |      | +/-4.76  |       |      |      |                 |               |
|              |               | TPU:    |          |      | +/-23.1  |       |      |      |                 |               |
| QC1205436473 | MB            |         |          |      |          |       |      |      |                 |               |
| Radium-228   |               |         |          | U    | 0.213    | pCi/L |      |      | JE1             | 06/23/2315:09 |
|              |               | Uncert: |          |      | +/-0.991 |       |      |      |                 |               |
|              |               | TPU:    |          |      | +/-0.992 |       |      |      |                 |               |
| Rad Ra-226   |               |         |          |      |          |       |      |      |                 |               |
| Batch        | 2445887 —     |         |          |      |          |       |      |      |                 |               |
| QC1205436429 | 625648001 DUP |         |          |      |          |       |      |      |                 |               |
| Radium-226   |               | U       | 0.580    |      | 1.33     | pCi/L | 78.8 |      | (0% - 100%) LXF | 06/27/2309:24 |
|              |               | Uncert: | +/-0.575 |      | +/-0.739 | •     |      |      | ,               |               |

+/-0.781

26.5

+/-2.78

+/-5.69

+/-0.394

+/-0.400

+/-12.9

+/-27.6

0.326

117

U

pCi/L

pCi/L

pCi/L

+/-0.582

0.580

+/-0.575

+/-0.582

#### **Notes:**

QC1205436431

QC1205436428

Radium-226

Radium-226

Radium-226

LCS

MB

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

127

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated

QC1205436430 625648001 MS

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

TPU:

Uncert:

Uncert:

Uncert:

TPU:

TPU:

U

TPU:

26.4

- H Analytical holding time was exceeded
- < Result is less than value reported
- > Result is greater than value reported

Page 15 of 24 SDG: 625987

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

### **QC** Summary

Workorder: 625989 Page 2 of 2 **Parmname** NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time UI Gamma Spectroscopy--Uncertain identification BDResults are either below the MDC or tracer recovery is low Preparation or preservation holding time was exceeded h R Sample results are rejected RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry. N/A RPD or %Recovery limits do not apply. Analyte concentration is not detected above the detection limit ND M M if above MDC and less than LLD

FA Failed analysis.

NJ

- UJ Gamma Spectroscopy--Uncertain identification
- One or more quality control criteria have not been met. Refer to the applicable narrative or DER.

Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- \*\* Analyte is a Tracer compound
- M REMP Result > MDC/CL and < RDL
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- \*\* Indicates analyte is a surrogate/tracer compound.
- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 16 of 24 SDG: 625987

| म्म्ट्रिटा # 175569434<br>स्ट्रिट Quote #:<br>COC Number (!)                                                                                                                                                                                                                                                                                                                         | 5                                                                                                              | Chain of Custody and Analytical Request                                           |                                                          | ay   Special                                                                                                                 | y Analy                    | EE               | 125986<br>1025987      | 2000                   | 0_               | 2040<br>Charle<br>Phone | 2040 Savage Road<br>Charleston, SC 294<br>Phone: (843) 556-8 | 2040 Savage Road<br>Charleston, SC 29407<br>Phone: (843) 556-8171 | . 11                                             |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------|------------------------|------------------------|------------------|-------------------------|--------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| O'Number:                                                                                                                                                                                                                                                                                                                                                                            | GEL Work Order Number:                                                                                         | GEL Project Manager: Erin Trent                                                   | Manager: Erin                                            | Trent                                                                                                                        |                            |                  |                        |                        |                  | Fax: (                  | 843) 7(                                                      | Fax: (843) 766-1178                                               |                                                  |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hent Name: Georgia Power                                                                                                                                                                                                                                                                                                                                                             | Phor                                                                                                           | Phone # (937-344-6533)                                                            |                                                          | Sample Analysis Requested (5)                                                                                                | nalys                      | is Rec           | uested                 | (5) (F                 | ill in t         | he nu                   | nber c                                                       | f contai                                                          | (Fill in the number of containers for each test) | ch test)                                                                                                                        | 20-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Period Name: Plant Arkwright Ash Pond 1                                                                                                                                                                                                                                                                                                                                              | Fax:                                                                                                           |                                                                                   |                                                          | S                                                                                                                            | IN                         | IN               |                        |                        | IN               | IN                      | IN                                                           | IN                                                                | < P                                              | < Preservative Type (6)                                                                                                         | (95W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Modess: 241 Ralph McGill Blvd SE, Atlanta, GA 30308                                                                                                                                                                                                                                                                                                                                  | 30308                                                                                                          |                                                                                   | sample be<br>considered:                                 | rənist                                                                                                                       |                            |                  | ро                     |                        | Λ                | pqı                     |                                                              |                                                                   |                                                  |                                                                                                                                 | 3 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ત્રી<br>Gollected By: Bryan Pennell                                                                                                                                                                                                                                                                                                                                                  | Send Results To: jabraham@southemco.com EDDO@stantec.com<br>brian.steele@stantec.com edgar.smith@stantec.com   | o.com EDD@stantec.com<br>@stantec.com                                             | ylqq                                                     |                                                                                                                              |                            | 00£) ų           | Meth                   | Fl, Sulfa              |                  | 228 Cm                  | 121                                                          |                                                                   | 1                                                | Comments                                                                                                                        | See W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sample ID * For composites - indicate start and stop date/time                                                                                                                                                                                                                                                                                                                       | *Date Collected Collected (Mi (Mi (mm-dd-yy) (h)                                                               | *Time Collected (Military) (Code (3) Filered (3) Matrix (4)                       | Radioactive yes, please sul isotopic info.) (7) Known or | Total number                                                                                                                 | I .qqA) gA                 | Metals App.      | R2.<br>TDS (SM<br>2540 | Anions (Cl, (300.0 Rev | Metals /<br>(602 | KAD 226-2               | Mercury                                                      | Metals A<br>Ma, Fe, Mi                                            | ( Task, AS                                       | (Task_code: AKK-UK-<br>ASSMT-2023S1)                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ARK-AP1PZ-6-20230613                                                                                                                                                                                                                                                                                                                                                                 | 123                                                                                                            | 52 N N                                                                            | N OT                                                     | 9                                                                                                                            | ×                          |                  | ×                      | ×                      | ×                | ×                       | ×                                                            |                                                                   | pH: 5.33                                         | 13                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |                                                                                   |                                                          |                                                                                                                              |                            |                  |                        | Dig.                   |                  |                         |                                                              |                                                                   | 强烈                                               |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |                                                                                   |                                                          | nt.                                                                                                                          |                            |                  |                        |                        |                  |                         |                                                              |                                                                   |                                                  |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |                                                                                   |                                                          |                                                                                                                              |                            |                  |                        |                        |                  |                         |                                                              |                                                                   | News and                                         |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                | 2                                                                                 | 0                                                        | . 350                                                                                                                        |                            |                  |                        |                        |                  |                         |                                                              |                                                                   |                                                  |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |                                                                                   | ~                                                        |                                                                                                                              |                            |                  |                        |                        |                  |                         |                                                              |                                                                   | 7.70                                             |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                | 6+3-27                                                                            | 1                                                        |                                                                                                                              |                            |                  |                        |                        |                  |                         |                                                              |                                                                   |                                                  |                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |                                                                                   |                                                          |                                                                                                                              |                            | 1                |                        |                        |                  |                         |                                                              |                                                                   | Tare III                                         |                                                                                                                                 | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |                                                                                   |                                                          |                                                                                                                              |                            |                  |                        |                        |                  |                         |                                                              |                                                                   |                                                  |                                                                                                                                 | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |                                                                                   |                                                          |                                                                                                                              |                            |                  |                        |                        |                  |                         |                                                              | 1                                                                 | 1                                                |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ch                                                                                                                                                                                                                                                                                                                                                                                   | Chain of Custody Signatures                                                                                    |                                                                                   | T                                                        | TAT Requested:                                                                                                               | sted:                      | Normal:          | ial:                   | a l                    | Rush:            |                         | Specify:                                                     |                                                                   | (Sub                                             | (Subject to Surcharge)                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Relinquished By (Signed) Print Name                                                                                                                                                                                                                                                                                                                                                  | Date Received by (signed)                                                                                      | Print Name Date                                                                   | Fax R                                                    | Fax Results: [ ] Yes                                                                                                         | Yes                        | [X]No            | N <sub>o</sub>         |                        |                  |                         |                                                              |                                                                   |                                                  |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| THE BRIAN PENNEW                                                                                                                                                                                                                                                                                                                                                                     | 6-18-23 1 34/1                                                                                                 | (Xo.14.73)(                                                                       | Select Select                                            | Select Deliverable: [ ] C of A [ ] QC Summary                                                                                | le: [ ]                    | C of A           | 2                      | C Sum                  | mary             | [ ] level 1             | vel 1                                                        | [X] Level 2                                                       |                                                  | [ ] Level 3 [ ] Level 4                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                      | 2 / 2                                                                                                          |                                                                                   | Addit                                                    | Additional Remarks:                                                                                                          | ırks:                      |                  |                        |                        |                  |                         |                                                              |                                                                   |                                                  | e                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                      | 3                                                                                                              |                                                                                   | For I                                                    | For Lab Receiving Use Only: Custody Seal Intact? [ ] Yes                                                                     | ing Us                     | e Only.          | Custo                  | dy Sea                 | l Intac          |                         |                                                              |                                                                   | Cooler Temp:                                     | mp:                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>For sample shipping and delivery details, see Sample Receipt &amp; Review form (SRR.)</li> <li>Chain of Custody Number = Client Determined</li> </ul>                                                                                                                                                                                                                       | ample Receipt & Review form (SRI                                                                               | R.)                                                                               | Sample Collection Time Zone: [X] Eastern [] Pacific      | ion Time                                                                                                                     | Cone:                      | ×                | castern                |                        | acific           | 9000                    | [ ] Central                                                  |                                                                   | [ ] Mountain [ ] Other:                          | [ ] Other:                                                                                                                      | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ) QC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicate, EB = Equipment Blank, MS = Matrix Spike Sample, MSD = Matrix Spike Duplicate Sample, G = Grab, C = Composite                                                                                                                                                                                                   | eld Duplicate, EB = Equipment Blank, MS =                                                                      | Matrix Spike Sample, MSD = Matrix Spi                                             | ike Duplicate Sampl                                      | e, G = Grab,                                                                                                                 | C = Con                    | nposite          |                        |                        |                  |                         |                                                              |                                                                   |                                                  |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .) Field Filtered: For liquid matrices, indicate with a - Y - for yes the sample was field filtered or - N - for sample was not field filtered.  .) Marix Codes: DW=Drinking Water, GW=Groundwater, SW=Surface Water, WW=Waste Water, W=Water, ML=Misc Liquid, SO=Soil, SD=Sediment, SL=Sludge, SS=Solid Waste, O=Oil, F=Filter, P=Wipc, U=Urine, F=Fecal, N=Nasal                   | yes the sample was field filtered or - N - for s.  W=Surface Water, WW=Waste Water, W=W                        | ample was not field filtered.  ater, ML=Misc Liquid, SO=Soil, SD=Se               | diment, <b>SL</b> =Sludge,                               | SS=Solid W                                                                                                                   | aste, 0=                   | Oil, F=F         | ilter, P=V             | /ipe, U=               | Urine, F         | =Fecal,                 | N=Nasa                                                       |                                                                   |                                                  |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .) Sample Analysis Requested: Analytical method requested (i.e. 8260B, 6010B/7470A) and number of containers provided for each (i.e. 8260B - 3, 6010B/7470A - 1).  Preservative Type: HA = Hydrochloric Acid, NI = Nitric Acid, SI = Sodium Hydroxide, SA = Sulfuric Acid, AA = Ascorbic Acid, HX = Hexane, ST = Sodium Thiosulfate, If no preservative is added = leave field blank | i.e. <b>8260B, 6010B/7470A)</b> and number of cor<br>sid, <b>SH</b> = Sodium Hydroxide, <b>SA</b> = Sulfuric A | ntainers provided for each (i.e. 8260B - 3. cid, AA = Ascorbic Acid, HX = Hoxane, | , 6010B/7470A - 1).<br>ST = Sodium Thios                 | ulfate, If no j                                                                                                              | reserval                   | ive is ad        | ded = lear             | e field b              | lank             |                         |                                                              |                                                                   |                                                  |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| () KNOWN OR POSSIBLE HAZARDS                                                                                                                                                                                                                                                                                                                                                         | Characteristic Hazards                                                                                         | Listed Waste                                                                      | Other                                                    |                                                                                                                              |                            |                  |                        |                        | 7.               |                         | 7                                                            | lease pr                                                          | ovide any c                                      | Please provide any additional details                                                                                           | 1223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Hg= Mercury<br>Se= Selenium                                                                                                                                                                                                                                                                                                                                                          | ole [                                                                                                          | LW= Listed Waste (F.K.P and U-listed wastes.) Waste code(s):                      | OT=<br>(i.e.: I<br>misc.<br>Descr                        | OI= Other / Unknown<br>(i.e.: High/low pH, asbestos, beryllium, irritants, other<br>misc. health hazards, etc.) Description: | known<br>H, asb<br>ards, e | estos, l<br>tc.) | berylliu               | m, irrit               | ants, o          | ther                    | 9 0 0                                                        | elow reg<br>oncerns<br>f site co                                  | arding han<br>(i.e.: Orig<br>lected fron         | below regarding handling and/or disposal concerns. (i.e.: Origin of sample(s). type of site collected from, odd matrices, etc.) | STATE OF THE PARTY |
| Cd = Cadmium Ag= Silver Cr = Chromium MR= Misc. RCRA metals 3t = 1 and                                                                                                                                                                                                                                                                                                               | TSCA Regulated PCB = Polychlorinated                                                                           |                                                                                   |                                                          |                                                                                                                              |                            |                  |                        |                        |                  |                         |                                                              |                                                                   |                                                  |                                                                                                                                 | - S   D   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| n = Leau                                                                                                                                                                                                                                                                                                                                                                             | oipnenyis                                                                                                      |                                                                                   |                                                          |                                                                                                                              |                            |                  |                        |                        |                  |                         |                                                              |                                                                   |                                                  |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|                                                                                                                                                                                                                                                                           |                                 | (Fill in the number of containers for each test) | < Preservative Type (6)                       |                                                      | Comments                                                                                                     | (Task_code: Akk-CCK-ASSMT-2023S1)                                           | pH: 5.33             |   |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  | (Subject to Surcharge)      |                                     | rel 2 [ ] Level 3 [ ] Level 4 | -                   | Cooler Temp: °C     | al [] Mountain [] Other:  Please provide any additional details below regarding handling and/or disposal concerns. (i.e.: Origin of sample(s), type of site collected from, odd matrices, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------|-----------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------|---|---|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-----------------------------|-------------------------------------|-------------------------------|---------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2040 Savage Road<br>Charleston, SC 29407<br>Phone: (843) 556-8171                                                                                                                                                                                                         | Fax: (843) 766-1178             | number of contai                                 | IN<br>IN<br>IN                                | (g<br>(g)                                            | <u>I' K' W</u><br>(1410B                                                                                     | RAD 226-: Mercury Metals A Na, Fe, Mr                                       | ×                    |   |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  | Specify:                    |                                     | [ ] level 1 [X] Level 2       |                     | [ ] Yes [ ] No      | ccal, N=Nasal  Please pr below reg concerns of site co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <u> </u>                                                                                                                                                                                                                                                                  | Fa                              | (5)                                              | IN                                            | A<br>(5)3                                            | OC)<br>Fi, Sulfa<br>2. 2.1 199<br>App. IV                                                                    | A Shetals (SM)  Anions (Cl., (300.0 Rev  Metals A  (6002)                   | x x x                |   |   |      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  | X Rush:                     |                                     | [ ] QC Summary [              |                     | dy Seal Intact?     | . F=+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ocialty Analytics                                                                                                                                                                                                                                                         |                                 | le Analysis Requested                            | IN<br>IN                                      | (H0)                                                 | 208) III<br>00E) y<br>(1.                                                                                    | Ag (App. 1 Metals App. Alkalinit R2                                         | x 9                  |   | 1 | 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  | TAT Requested: Normal:      | N [ X ] No                          | ble: [ ] C of A               | emarks:             | ceiving Use Only: C | 's Sample, G = Grab, C = Composite  Sludge, SS=Solid Waste, O=Oil, F=Filter  M - 1).  OTher  OT = Other / Unknown  (i.e.: High/low pH, asbestos, bermise. health hazards, etc.)  Description:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 16SLLC<br>rry I Radiobioassay I Spe<br>nalytical Reques                                                                                                                                                                                                                   | GEL Project Manager: Erin Trent | Sample A                                         | 760                                           | sample be considered:                                | pply                                                                                                         | Radioactive yes, please su isotopic info.) (7) Known or possible Haza       | OT                   | 2 | - | 13.5 | \frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\fint{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}}}}}}}{\firac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\fir}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\f |  | TATRe                       | Fax Results:                        | Select Delive                 | Additional Remarks: | For Lab Rec         | Sample Collection Time Zone: [X] Eastern ke Duplicate Sample, G = Grab, C = Composite diment, SL=Sludge, SS=Solid Waste, O=Oil, F=Filter, P=V 6010B/7470A - 1).  ST = Sodium Thiosulfate, If no preservative is added = leav [Other Other Onknown   Other Other   Unknown   (i.e.: Hight/low pH, asbestos, berylliu misc. health hazards, etc.)  Description:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Laboratories LLC get.com   Chemistry   Radiochemistry   Chain of Custody and Analytical Request | GEL Project Ma                  | Phone # (937-344-6533)                           | X:                                            |                                                      |                                                                                                              | *Time Collected (Military) (Adminary) Code (2) Flield Sample (1) Matrix (9) | 1552 N N GW N        |   |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |                             | d) Print Name Date                  | 0 5240)                       |                     |                     | S = Matrix Spike Sample, MSD = Matrix Spike r sample was not field filtered.  =Water, ML=Misc Liquid, SO=Soil, SD=Sedir containers provided for each (i.e. 8260B - 3, 60 c Acid, AA = Ascorbic Acid, HX = Hexane, SI  Listed Waste L.W=Listed Waste  (F.K.P and U-listed wastes.)  Waste code(s):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>9</b>                                                                                                                                                                                                                                                                  | GEL Work Order Number:          | P                                                | Fax:                                          | A 30308                                              | Send Results To: jabraham@southernco.com EDD@stantec.com<br>brian.steele@stantec.com edgar.smith@stantec.com | *Date Collected (mm-dd-yy)                                                  | 6/13/2023            |   |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  | Chain of Custody Signatures | Date Received by (signed)           | 6-18-23 1 Styl                | 2                   | 3                   | ield Duplicate, EB = Equipment Blank, Mister yes the sample was field filtered or - N - fc Sw-Surface Water, WW=Waste Water, W (i.e. 8260B, 6010B/7470A) and number of Kid. SH = Sodium Hydroxide, SA = Sulfuri Characteristic Hazards  FL = Flammable/Ignitable CO = Corrosive RE = Reactive  TSCA Regulated PCB = Polychlorinated PCB = Polychlorinated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Project # 175569434  (BL Quote #:                                                                                                                                                                                                                                         | P8Number:                       | Chent Name: Georgia Power                        | Project/Site Name: Plant Arkwright Ash Pond 1 | Address: 241 Ralph McGill Blvd SE, Atlanta, GA 30308 | Collected By: Bryan Pennell                                                                                  | Sample ID  * For composites - indicate start and stop date/time             | ARK-AP1PZ-6-20230613 |   |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |                             | Relinquished By (Signed) Print Name | 1 Jibu BRYAN PENNEN           | 20                  | 3                   | Sample shipping and delivery details, see Sample Receipt & Review form (SRR)   Sample Collection Time Zone: [X] Eastern [] Pacific [] Central   Chain of Custody Number = Circun Determined   Chain of Custody Number = Circun Determined |

SAMPLE RECEIPT & REVIEW FORM SDG/AR/COC/Work Order: (02598(0 625 Client: GPCC Received By: SNS Date Received: Circle Applicable; FedEx Express FedEx Ground UPS Field Services Courier Other Carrier and Tracking Number 399598403522-10 3511-10 \*If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation. Yes ĝ Suspected Hazard Information UN#: Hazard Class Shipped: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes\_\_\_No\_\_\_ A)Shipped as a DOT Hazardous? COC notation or radioactive stickers on containers equal client designation. B) Did the client designate the samples are to be received as radioactive? CPMy mR/Hr Maximum Net Counts Observed\* (Observed Counts - Area Background Counts): Classified as: Rad 1 Rad 2 Rad 3 C) Did the RSO classify the samples as radicactive? COC notation or hazard labels on containers equal client designation. D) Did the client designate samples are hazardous? If D or B is yes, select Hazards below. Foreign Soil RCRA Asbestos Beryllium PCB's Flammable E) Did the RSO identify possible hazards? Comments/Qualifiers (Required for Non-Conforming Items) X 2 2 Sample Receipt Criteria Circle Applicable: Seals broken Damaged container Leaking container Other (describe) Shipping containers received intact and 1 sealed? Circle Applicable: Client contacted and provided COC COC created upon receipt Chain of custody documents included 2 with shipment? Preservation Method: Wet Ice Ice Packs Dry ice None Other: TEMP: \*all temperatures are recorded in Celsius Samples requiring cold preservation 3 within  $(0 \le 6 \text{ deg. C})$ ?\* Temperature Device Serial #: <u>IR1-23</u> Daily check performed and passed on IR Secondary Temperature Device Serial # (If Applicable): temperature gun? Circle Applicable: Seals broken Damaged container Leaking container Other (describe) Sample containers intact and sealed? Sample ID's and Containers Affected: Samples requiring chemical preservation 6 If Preservation added, Lot#: at proper pH? If Yes, are Encores or Soil Kits present for solids? Yes No NA (If yes, take to VOA Freezer) NA\_\_(If unknown, select No) Do liquid VOA vials contain acid preservation? Yes\_\_\_\_ No\_\_ Do any samples require Volatile Are liquid VOA vials free of headspace? Yes\_\_\_ No\_\_\_ NA\_ 7 Analysis? Sample ID's and containers affected; ID's and tests affected: Samples received within holding time? ID's and containers affected: Sample ID's on COC match ID's on 9 bottles? Circle Applicable: No dates on containers No times on containers COC missing info Other (describe) Date & time on COC match date & time 10 on bottles? Circle Applicable: No container count on COC Other (describe) Number of containers received match number indicated on COC? Are sample containers identifiable as 12 GEL provided by use of GEL labels? Circle Applicable: Not relinquished Other (describe) COC form is properly signed in relinquished/received sections? Comments (Use Continuation Form if needed):

> M(9 Date (0)15/23 Page 1 of 1 PM (or PMA) review: Initials .\_\_\_\_

| Regject # 175569434                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                     | TI College                                         | _                      | abc<br>emistry                                               | )rat                 | Orie<br>mistry I R | _aboratories LLC                  | Laboratories LLC<br>Chemistry   Radiochemistry   Radiobioassay   Specialty Analytics 6259 89                           | ialty Ana                  | alytics C             | 625988                       | 800                   | 700                     | <u>C</u> 5 | 40 Sava     | 2040 Savage Road<br>Charleston, SC 29407  | ad<br>29407           |                                                  |                                                                                                                                                                      |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------|------------------------|--------------------------------------------------------------|----------------------|--------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------|------------------------------|-----------------------|-------------------------|------------|-------------|-------------------------------------------|-----------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| COC Number '':                                                                                                                                                                                                                                                                                                                                                             | GEI. Work Order Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | umhor.                | Chain                                              | 0                      | ustod                                                        | y and                | Analy              | ustody and Analytical Reques      | of Custody and Analytical Request                                                                                      |                            |                       |                              |                       |                         | Ä.         | one: (8     | 43) 55                                    | Phone: (843) 556-8171 |                                                  |                                                                                                                                                                      |          |
| (Hent Name: Georgia Power                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P                     | Phone # (937-344-6533)                             | 7-344-0                | 5533)                                                        | and and              |                    | al. El                            | Sample                                                                                                                 |                            | vsis R                | Analysis Requested (5)       | (5) hed               | (Fill                   | in the     | c: (843     | Fax: (843) 766-1178<br>he number of conta | 1178                  | (Fill in the number of containers for each test) | (teet)                                                                                                                                                               |          |
| Project/Site Name: Plant Arkwright Ash Pond 1                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F                     | Fax:                                               |                        |                                                              |                      | Sh                 | Should this                       |                                                                                                                        |                            | IN                    |                              |                       |                         | IN         | IN          | IN                                        |                       | A Pre                                            | Second (4) Second (4) Second (4)                                                                                                                                     | (i)      |
| Address: 241 Ralph McGill Blvd SE, Atlanta, GA 30308                                                                                                                                                                                                                                                                                                                       | 3A 30308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                                                    |                        |                                                              |                      | Sa                 | sample be                         | sanie                                                                                                                  | (B)                        |                       |                              |                       | 8                       |            |             | 3, 1                                      | (0                    |                                                  | (a) Africa                                                                                                                                                           | 100      |
| Collected By: Bryan Pennell                                                                                                                                                                                                                                                                                                                                                | Send Results To: jabraham@southernco.com EDD@stantec.com<br>brian.steele@stantec.com edgar.smith@stantec.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n@southe              | rnco.com lith@stante                               | DD@sta                 | intec.com                                                    | _                    |                    |                                   | la est                                                                                                                 | ) (205(                    |                       | (1                           | ()(                   | 2.1 199                 | (BC        |             | ' K' W                                    | 0700)                 |                                                  | Comments                                                                                                                                                             | Section. |
| Sample ID * For composites - indicate start and stop date/time                                                                                                                                                                                                                                                                                                             | *Date Collected ate/time (nmr-dd-yy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | *Time<br>Collected<br>(Military)<br>(hhmm)         | QC<br>Code (2)         | Field<br>Filtered (3)                                        | Sample<br>Matrix (4) | Radioactive        | isotopic info.) (7) Known or      | possible Haza                                                                                                          | I .qqA) gA                 | Metals App.           | Alkalinity<br>R2.<br>TDS (SM | 254C<br>Anions (Cl, I | (300.0 Rev.<br>A statsM | (602(      | Метситу (   | Metals Al<br>Na, Fe, Mn                   | IIIAI to I tak I      | (task_c<br>ASS                                   | ( task_code: ARK-CCR-<br>ASSMT-2023S1 )                                                                                                                              |          |
| ARK-AP1PZ-3-20230613                                                                                                                                                                                                                                                                                                                                                       | 6/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6/13/2023             | 1308                                               | Z                      | Z                                                            | GW                   | z                  | OT                                | 9                                                                                                                      |                            | ×                     | ×                            | ×                     | ×                       | ×          | ×           |                                           |                       | pH: 5.57                                         |                                                                                                                                                                      |          |
| ARK-API-EB-01-20230613                                                                                                                                                                                                                                                                                                                                                     | 6/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6/13/2023             | 1405                                               | EB                     | Z                                                            | W                    | z                  | OT                                | 9                                                                                                                      |                            | ×                     | ×                            |                       | ×                       | ×          | ×           |                                           |                       |                                                  |                                                                                                                                                                      |          |
| ARK-AP1-FB-01-20230613                                                                                                                                                                                                                                                                                                                                                     | 6/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6/13/2023             | 1420 FB                                            | FB                     | Z                                                            | ×                    | z                  | OT                                | 9                                                                                                                      |                            | ×                     | ×                            |                       | ×                       | ×          | ×           |                                           |                       |                                                  |                                                                                                                                                                      |          |
| ARK-API-FD-01-20230613                                                                                                                                                                                                                                                                                                                                                     | 6/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6/13/2023             |                                                    | FD                     | N                                                            | MD                   | z                  | OT                                | 9                                                                                                                      |                            | ×                     | ×                            | ×                     | ×                       | ×          | ×           |                                           |                       |                                                  |                                                                                                                                                                      |          |
|                                                                                                                                                                                                                                                                                                                                                                            | The same of the sa |                       |                                                    |                        |                                                              |                      |                    |                                   |                                                                                                                        |                            |                       |                              |                       |                         |            |             |                                           |                       |                                                  |                                                                                                                                                                      | T        |
|                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    | · >                    | 1                                                            | A                    |                    | . (                               |                                                                                                                        |                            |                       |                              |                       |                         |            |             |                                           |                       |                                                  |                                                                                                                                                                      | 1        |
|                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    |                        | 6-1                                                          | J'A                  |                    |                                   |                                                                                                                        |                            |                       |                              |                       |                         |            |             |                                           |                       |                                                  |                                                                                                                                                                      |          |
|                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    |                        | ,                                                            | 25                   |                    |                                   |                                                                                                                        | 1                          |                       |                              |                       |                         |            |             |                                           |                       |                                                  |                                                                                                                                                                      |          |
|                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    |                        |                                                              |                      |                    |                                   |                                                                                                                        |                            |                       |                              |                       | H                       |            |             |                                           |                       |                                                  |                                                                                                                                                                      |          |
|                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                    |                        |                                                              |                      |                    |                                   |                                                                                                                        |                            |                       |                              |                       |                         |            |             |                                           | 1                     |                                                  |                                                                                                                                                                      |          |
|                                                                                                                                                                                                                                                                                                                                                                            | Chain of Custody Signatures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tures                 |                                                    |                        |                                                              |                      |                    | L                                 | TAT Requested:                                                                                                         | nested                     |                       | Normal:                      | 1                     | Rush:                   | ×          | Specify:    | ify:                                      |                       | (Subje                                           | (Subject to Surcharge)                                                                                                                                               |          |
| Ę l                                                                                                                                                                                                                                                                                                                                                                        | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Received by (signed)  |                                                    | Print Name             |                                                              | Date                 |                    | Fax F                             | Fax Results: [ ] Yes                                                                                                   | ] Yes                      |                       | ON [X]                       |                       |                         |            |             |                                           |                       |                                                  |                                                                                                                                                                      |          |
| 1 H GRTAN DENNEU                                                                                                                                                                                                                                                                                                                                                           | 615-23 1 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N                     | 0                                                  | 75                     | 2                                                            | ğ                    | 9                  | Selec                             | Select Deliverable: [ ] C of A                                                                                         | able: [                    | ]C of                 | Α [ ]                        | [ ] QC Summary        | ımmar                   | - 1        | [ ] level 1 |                                           | [X] Level 2           | 2 [ ] Level 3                                    | el 3 [ ] Level 4                                                                                                                                                     |          |
|                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )                     |                                                    |                        |                                                              |                      |                    | Addit                             | Additional Remarks                                                                                                     | marks:                     |                       |                              |                       |                         |            |             |                                           |                       |                                                  |                                                                                                                                                                      |          |
|                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                    |                        |                                                              |                      |                    | For I                             | For Lab Receiving Use Only: Custody Seal Intact?                                                                       | iving L                    | se On                 | ly: Cu                       | stody S               | eal In                  | act? [     | [ ] Yes     | []                                        | ] No C                | Cooler Temp:                                     | <i>2</i> ,                                                                                                                                                           |          |
| For sample shipping and delivery details, see Sample Receipt & Review form (SRR.)                                                                                                                                                                                                                                                                                          | Sample Receipt & Review                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | form (S               | RR.)                                               |                        |                                                              |                      | Sample             | e Colleci                         | Collection Time Zone: [X] Eastern                                                                                      | e Zone                     | x]:                   | Easter                       |                       | [ ] Pacific             | j ji       | ] Central   |                                           | [ ] Mountain          |                                                  | [ ] Other:                                                                                                                                                           | 45.50    |
| .) OC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicate, EB = Equipment Blank, MS = Matrix Spike Sample, MSD = Matrix Spike Duplicate Sample, G = Grab, C = Composite .) Field Filtered: For liquid matrices, indicate with a · Y · for yes the sample was field filtered or · N · for sample was not field filtered.                                        | Field Duplicate, <b>EB</b> = Equipment<br>or yes the sample was field filtered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Blank, MS             | S = Matrix S<br>r sample wa                        | oike Samp              | Sample, MSD =<br>field filtered.                             | Matrix S             | pike Dupli         | cate Sampl                        | e, <b>G</b> = Gra                                                                                                      | ç, C = Ω                   | omposite              |                              |                       |                         |            |             |                                           |                       |                                                  |                                                                                                                                                                      |          |
| .) Marrix Codes: DW=Drinking Water, GW=Groundwater, SW=Surface Water, WW=Waste Water, WL=Misc Liquid, SO=Soil, SD=Sediment, SL=Sludge, SS=Solid Waste, O=Oil, F=Filler, P=Wipe, U=Urine, F=Fecal, N=Nasal.) Sample Analysis Requested: Analytical method requested (i.e. 8260B, 6010B/7470A) and number of containers provided for each (i.e. 8260B - 3, 6010B/7470A - 1). | . SW=Surface Water, WW=Wasted (i.e. 8260B, 6010B/7470A) and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | : Water, Wannumber of | =Water, ML                                         | =Misc Lic<br>ovided fo | luid, SO=S                                                   | Soil, <b>SD</b> =S   | ediment, S         | L=Sludge,                         | SS=Solid                                                                                                               | Waste, C                   | =Oil, F               | =Filter, P                   | =Wipe,                | U=Urin                  | e, F=Fec   | al, N=N     | asal                                      |                       |                                                  |                                                                                                                                                                      |          |
| .) Preservative Type: HA = Hydrochloric Acid, NI = Nitric Acid, SH = Sodium Hydroxide, SA = Sulfuric Acid, AA = Ascorbic Acid, HX = Hexane, ST = Sodium Thiosulfate, If no preservative is added = leave field blank    KNOWN OR POSSIBLE HAZARDS   Characteristic Hazards   Listed Waste   Other                                                                          | Acid, SH = Sodium Hydroxide, SA =   Characteristic Hazards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A = Sulfurio          | Acid, AA = Ascort                                  | Ascorbic               | Acid, HX                                                     | = Hexane             | , ST = So          | Jium Thiosu                       | ulfate, If no                                                                                                          | o preserv                  | ative is              | added = 1                    | eave fiel             | d blank                 |            |             | Pleas                                     | o nrow                | ido any adi                                      | Please provide any additional details                                                                                                                                | (8)      |
|                                                                                                                                                                                                                                                                                                                                                                            | FL = Flammable/Ignitable CO = Corrosive RE = Reactive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ple                   | LW=Listed Waste (F.K.P and U-listee Waste code(s): | sted Wand U-li         | LW= Listed Waste (F.K,P and U-listed wastes.) Waste code(s): | tes.)                |                    | OT=<br>(i.e.: 1<br>misc.<br>Descr | OT=-Other / Unknown (i.e.: High/low pH, asbestos, beryllium, irritants, other misc. health hazards, etc.) Description: | Jnknow<br>pH, as<br>zards, | n<br>sbestos<br>etc.) | , beryll                     | ium, ir               | ritant                  | s, other   |             | belov<br>conce<br>of site                 | e regar               | ding handlie.: Origin                            | rease provine any auditional actions below regarding handling and/or disposal concerns. (i.e.: Origin of sample(s), type of site collected from, odd matrices, etc.) |          |
| Cd = Cadmium Ag= Silver  Tr = Chromium MR= Misc. RCRA metals  Db = Lead                                                                                                                                                                                                                                                                                                    | TSCA Regulated PCB = Polychlorinated hinhenyls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                                                    |                        |                                                              |                      |                    |                                   |                                                                                                                        |                            |                       |                              |                       |                         |            | 1.1         |                                           |                       |                                                  |                                                                                                                                                                      |          |
|                                                                                                                                                                                                                                                                                                                                                                            | Utpuvuya                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                                                    |                        |                                                              |                      |                    |                                   |                                                                                                                        |                            |                       |                              |                       |                         |            |             |                                           |                       |                                                  |                                                                                                                                                                      | 200      |

| Pagiect # 175569434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                        | T<br>T                                                   |                                          | hors                                                         | aboratorias -                                | 01100                                                                                                                                                                                         |                                                                                                                                 |                               |             |                          |                       |             | 2040      | Savage        | 2040 Savage Road                    |                                                  |                                                                                                                                 | -        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------|--------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------|--------------------------|-----------------------|-------------|-----------|---------------|-------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------|
| Ouote #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        | gel.com                                                  | Cher                                     | nistry   Radi                                                | ochemistry                                   | Chemistry   Radiochemistry   Radiobioassay   Specialty Analytics                                                                                                                              | ıy I Specia                                                                                                                     | ulty Analy                    | tics        |                          |                       |             | Charle    | ston,         | Charleston, SC 29407                | _                                                |                                                                                                                                 |          |
| COC Number (1):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                        | Chain o                                                  | of CL                                    | stody a                                                      | ind Anal                                     | <b>Custody and Analytical Request</b>                                                                                                                                                         | quest                                                                                                                           | ,                             |             |                          |                       |             | Phone     | : (843)       | Phone: (843) 556-8171               | 71                                               |                                                                                                                                 |          |
| P <del>O'</del> Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GEL Work Order Number:                                                                                 |                                                          |                                          | GEL Pro                                                      | ject Mana                                    | GEL Project Manager: Erin Trent                                                                                                                                                               | Trent                                                                                                                           |                               |             |                          |                       |             | Fax: (    | 343) 7        | Fax: (843) 766-1178                 |                                                  |                                                                                                                                 |          |
| CHent Name: Georgia Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                        | Phone # (937-344-6533)                                   | -344-65                                  | 33)                                                          |                                              | 3                                                                                                                                                                                             | le                                                                                                                              | Analysis Requested (5)        | sis Req     | uested                   |                       | III in t    | he nu     | nber          | of contain                          | (Fill in the number of containers for each test) | ach test)                                                                                                                       |          |
| Project/Site Name: Plant Arkwright Ash Pond 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        | Fax:                                                     |                                          |                                                              | S                                            | Should this                                                                                                                                                                                   | -83%                                                                                                                            | IN                            | IN          |                          |                       | IN          | IN        | IN            | IN                                  | \<br>\                                           | < Preservative Type (6)                                                                                                         |          |
| Agiress: 241 Ralph McGill Blvd SE, Atlanta, GA 30308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30308                                                                                                  |                                                          |                                          |                                                              |                                              | sample be                                                                                                                                                                                     | ainers                                                                                                                          | 20000                         |             | ро                       | VV/45-33              |             | pq        |               |                                     |                                                  |                                                                                                                                 |          |
| Collected By: Bryan Pennell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Send Results To: jabraham@southernco.com EDD@brian.steele@stantec.com edgar.smith@stantec.com          | hernco.com ED<br>mith@stantec.c                          | D@stan                                   | stantec.com                                                  | л)                                           |                                                                                                                                                                                               | ot cont                                                                                                                         | 10000                         | .00£) y     | Metho                    | Fl, Sulfa             |             | 228 Cm    |               |                                     | ,                                                | Comments                                                                                                                        |          |
| Sample ID * For composites - indicate start and stop date/time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *Date Collected time (mm-dd-yy)                                                                        | *Time Collected (Military)                               | 9                                        | Field Si                                                     | Sample Matrix (4) Radioactive                | yes, please sul isotopic info.) (7) Known or possible Haza                                                                                                                                    | Total number                                                                                                                    | I .qqA) gA                    | Metals App. | .R2.<br>TDS (SM<br>D\$42 | Anions (Cl, 300.0 Rev | Metals A    | KAD 226-2 | Mercury       | Metals Al<br>Na, Fe, Mr             | ( task                                           | task_code: ARK-CCR-<br>ASSMT-2023S1)                                                                                            | <u>.</u> |
| ARK-AP1PZ-3-20230613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6/13/2023                                                                                              | 1308 N                                                   | Z                                        |                                                              | N                                            | OT                                                                                                                                                                                            | 9                                                                                                                               | ×                             |             | ×                        | ×                     | ×           | ×         | ×             |                                     | pH: 5.                                           | 5.57                                                                                                                            |          |
| ARK-AP1-EB-01-20230613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6/13/2023                                                                                              | 1405 EB                                                  | B                                        | M                                                            | Z                                            | TO                                                                                                                                                                                            | 9                                                                                                                               | ×                             |             | ×                        | ×                     | ×           | X         | ×             |                                     | 机发音                                              |                                                                                                                                 |          |
| ARK-AP1-FB-01-20230613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6/13/2023                                                                                              | 1420 FB                                                  | N<br>B                                   | *                                                            | z                                            | OT                                                                                                                                                                                            | 9                                                                                                                               | ×                             |             | ×                        | ×                     |             |           | ×             |                                     |                                                  |                                                                                                                                 |          |
| ARK-AP1-FD-01-20230613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6/13/2023                                                                                              | E                                                        | FD N                                     | MD .                                                         | Z<br>3                                       | OT                                                                                                                                                                                            | 9                                                                                                                               | ×                             |             | ×                        | ×                     |             |           | ×             |                                     | 200                                              |                                                                                                                                 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                        |                                                          |                                          |                                                              | 1                                            |                                                                                                                                                                                               | 1003                                                                                                                            |                               |             |                          |                       |             |           |               |                                     |                                                  |                                                                                                                                 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                        |                                                          | 1                                        |                                                              | 7                                            | V                                                                                                                                                                                             |                                                                                                                                 |                               |             |                          |                       |             |           |               |                                     | 10 mg                                            |                                                                                                                                 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                        |                                                          |                                          | U                                                            | 3                                            | 1                                                                                                                                                                                             |                                                                                                                                 |                               |             |                          |                       |             |           |               |                                     |                                                  |                                                                                                                                 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                        |                                                          |                                          |                                                              |                                              | ~                                                                                                                                                                                             |                                                                                                                                 |                               | +           |                          |                       |             |           |               |                                     |                                                  |                                                                                                                                 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                        |                                                          |                                          |                                                              |                                              |                                                                                                                                                                                               | 1635                                                                                                                            |                               |             |                          |                       |             | 1         |               |                                     |                                                  |                                                                                                                                 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                        |                                                          |                                          |                                                              |                                              |                                                                                                                                                                                               |                                                                                                                                 |                               |             |                          |                       |             |           |               | 1                                   |                                                  |                                                                                                                                 |          |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chain of Custody Signatures                                                                            |                                                          |                                          |                                                              |                                              | TA                                                                                                                                                                                            | TAT Requested:                                                                                                                  | ested:                        | Normal:     | al:                      | Rush:                 | j<br>ji     | X         | Specify:      |                                     | nS)                                              | (Subject to Surcharge)                                                                                                          |          |
| Relinquished By (Signed) Print Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date Received by (signed)                                                                              |                                                          | Print Name                               | Date                                                         |                                              | Fax Re                                                                                                                                                                                        | Fax Results: [ ] Yes                                                                                                            | ] Yes                         | [X]No       | 92                       |                       |             |           |               |                                     |                                                  |                                                                                                                                 |          |
| 1914 BRYAN GENNEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (-13-23 1 3AM)                                                                                         | 1 (2)                                                    | 141                                      | 1 82                                                         | 1000                                         | Select                                                                                                                                                                                        | Select Deliverable: [ ] C of A                                                                                                  | ble: [ ]                      | CofA        | [ ] QC Summary           | Sum                   | nary        | ] le      | ] level 1     | [X] Level 2                         |                                                  | [ ] Level 3 [ ] Level 4                                                                                                         |          |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                      | )                                                        |                                          |                                                              |                                              | Additio                                                                                                                                                                                       | Additional Remarks                                                                                                              | ıarks:                        |             |                          |                       |             |           |               |                                     |                                                  |                                                                                                                                 |          |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                      |                                                          |                                          |                                                              |                                              | For La                                                                                                                                                                                        | For Lab Receiving Use Only: Custody Seal Intact? [ ] Yes                                                                        | ving Us                       | e Only:     | Custoc                   | ly Seal               | Intaci      | .? [ ]    |               | [ ] No                              | Cooler Temp:                                     | Э°:                                                                                                                             |          |
| > For sample shipping and delivery details, see Sample Receipt & Review form (SRR.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | unple Receipt & Review form                                                                            | (SRR.)                                                   |                                          |                                                              | Sam                                          | Sample Collection Time Zone: [X] Eastern                                                                                                                                                      | on Time                                                                                                                         | Zone:                         | [X]E        | astern                   | []P                   | [ ] Pacific |           | [ ] Central   | Total I                             | [ ] Mountain                                     | [ ] Other:                                                                                                                      |          |
| <ol> <li>Chain of Custody Number = Client Determined</li> <li>QC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicate, EB = Equipment Blank, MS = Matrix Spike Sample, MSD = Matrix Spike Duplicate Sample, G = Grab, C = Composite Sample, FO inquid matrices, indicate with a - Y - for yes the sample was field filtered or - N - for sample was not field Filtered.</li> </ol>                                                                                                                                                           | id Duplicate, EB = Equipment Blank, es the sample was field filtered or - N                            | MS = Matrix Spil                                         | ce Sample                                | MSD = Mai<br>tered.                                          | rrix Spike Du                                | plicate Sample                                                                                                                                                                                | G = Grab                                                                                                                        | , C = Con                     | posite      |                          |                       |             |           |               |                                     |                                                  |                                                                                                                                 |          |
| 4-) Main'x Codes, DW=Drinking water, GW=Groundwater, SW=Surface water, WW=Waste, WB=Waster, U=Urine, F=Freeai, NB=Nastar, Codes, DM=Nativeal method requested (i.e. 8260B, 6010B/7470A) and number of containers provided for each (i.e. 8260B - 3, 6010B/7470A - 1).  5.) Sample Analysis Requested: Analytical method requested (i.e. 8260B, 6010B/7470A) and number of containers provided for each (i.e. 8260B - 3, 6010B/7470A - 1). | v=Surface water, ww=waste water, e. 8260B, 6010B/7470A) and number d. SH = Sodium Hydroxide, SA = Sulf | w=water, ML=r<br>of containers pro-<br>uric Acid, AA = / | vitse Liqui<br>vided for e<br>Ascorbic A | ach (i.e. 826<br>cid. HX = H                                 | SD=Sedimen<br>OB - 3, 60101<br>exane, ST = 5 | out, SD-Sedimont, 3L-Sludge, SS-Solid Wasic, O=Oli, F=Filler, F=Wipe, U=Urin 8260B - 3, 6010B/7470A - 1).  = Hexane, ST = Sodium Thiosulfate, If no preservative is added = leave field blank | SS=Solid v                                                                                                                      | vaste, U=<br>preservat        | OII, F=FI   | iter, F=w<br>ed = leave  | ipe, U=t              | Jrine, Fa   | =Fecal,   | N=Nasa        | _                                   |                                                  |                                                                                                                                 |          |
| 7.) KNOWN OR POSSIBLE HAZARDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Characteristic Hazards                                                                                 | Listed Waste                                             | aste                                     |                                                              |                                              | Other                                                                                                                                                                                         |                                                                                                                                 |                               |             |                          |                       |             |           | I             | lease pro                           | ovide any                                        | Please provide any additional details                                                                                           | 36       |
| RCRA Metals  As = Arsenic Hg= Mercury  Ba = Barium Se= Selenium  Cd = Cadmium Ag= Silver  Cr = Chromium MR= Misc. RCRA metals  Pb = Lead                                                                                                                                                                                                                                                                                                                                                                                                                | FL = Flammable/Ignitable CO = Corrosive RE = Reactive TSCA Regulated PCB = Polychlorinated biphenyls   | LW= Listed W (F,K,P and U-l) Waste code(s):              | ed Waste<br>d U-listea<br>fe(s):         | LW= Listed Waste (F,K,P and U-listed wastes.) Waste code(s): |                                              | OT= Other / (i.e.: High/lo misc. health Description:                                                                                                                                          | OT= Other / Unknown<br>(i.e.: High/low pH, asbestos, beryllium, irritants, other<br>misc. health hazards, etc.)<br>Description: | nknown<br>pH, asb<br>zards, e | estos, b    | eryllium                 | ı, irrite             | unts, o     | ther      | <b>a</b> 2 0, | elow reg<br>oncerns.<br>f site coll | arding ha (i.e.: Ori, lected fron                | below regarding handling and/or disposal concerns. (i.e.: Origin of sample(s), type of site collected from, odd matrices, etc.) | al       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                        | *                                                        |                                          |                                                              |                                              |                                                                                                                                                                                               |                                                                                                                                 |                               |             |                          |                       |             |           |               |                                     |                                                  |                                                                                                                                 |          |

Laboratories LLC SAMPLE RECEIPT & REVIEW FORM SDG/AR/COC/Work Order: (025988 / 625 Client: GPCC Received By: SNS Date Received: Circle Applicable: FedEx Express FedEx Ground UPS Field Services Courier Other Carrier and Tracking Number \*If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation. Yes ŝ Suspected Hazard Information UN#: Hazard Class Shipped: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes\_\_\_No\_\_\_ A)Shipped as a DOT Hazardous? COC notation or radioactive stickers on containers equal client designation. B) Did the client designate the samples are to be received as radioactive? Maximum Net Counts Observed\* (Observed Counts - Area Background Counts): CPM\ mR/Hr C) Did the RSO classify the samples as Classified as: Rad 1 Rad 2 Rad 3 radioactive? COC notation or hazard labels on containers equal client designation. D) Did the client designate samples are hazardous? If D or E is yes, select Hazards below. RCRA Asbestos Beryllium Foreign Soil PCB's Flammable E) Did the RSO identify possible hazards? Comments/Qualifiers (Required for Non-Conforming Items) Yes ž Sample Receipt Criteria Circle Applicable: Seals broken Damaged container Leaking container Other (describe) Shipping containers received intact and 1 Circle Applicable: Client contacted and provided COC COC created upon receipt Chain of custody documents included 2 with shipment? Preservation Method Wet lee Jee Packs Dry ice None Other: TEMP:\_ Samples requiring cold preservation \*all temperatures are recorded in Celsius within  $(0 \le 6 \text{ deg. C})$ ?\* Temperature Device Serial #: IR1-23 Daily check performed and passed on IR Secondary Temperature Device Serial # (If Applicable): temperature gun? Circle Applicable: Scals broken Damaged container Leaking container Other (describe) Sample containers intact and sealed? Sample ID's and Containers Affected: Samples requiring chemical preservation 6 If Preservation added, Lotif: at proper pH? If Yes, are Encores or Soil Kits present for solids 7 Yes No NA (If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Do any samples require Volatile Are liquid VOA vials free of headspace? Yes\_\_\_ No\_\_ NA\_ 7 Analysis? Sample ID's and containers affected: ID's and tests affected: Samples received within holding time? 8 ID's and containers affected: Sample ID's on COC match ID's on 9 Circle Applicable: No dates on containers No times on containers COC missing info Other (describe) Date & time on COC match date & time 10 on bottles? Circle Applicable: No container count on COC Other (describe) Number of containers received match 11 number indicated on COC? Are sample containers identifiable as 12 GEL provided by use of GEL labels? Circle Applicable: Not relinquished Other (describe) COC form is properly signed in relinquished/received sections? Comments (Use Continuation Form if needed):

PM (or PMA) review; Initials Mg Date 615 23 Page 1 of 1

List of current GEL Certifications as of 06 July 2023

| State                     | Certification                |
|---------------------------|------------------------------|
| Alabama                   | 42200                        |
| Alaska                    | 17-018                       |
| Alaska Drinking Water     | SC00012                      |
| Arkansas                  | 88-0651                      |
| CLIA                      | 42D0904046                   |
| California                | 2940                         |
| Colorado                  | SC00012                      |
| Connecticut               | PH-0169                      |
| DoD ELAP/ ISO17025 A2LA   | 2567.01                      |
| Florida NELAP             | E87156                       |
| Foreign Soils Permit      | P330-15-00283, P330-15-00253 |
| Georgia                   | SC00012                      |
| Georgia SDWA              | 967                          |
| Hawaii                    | SC00012                      |
| Idaho                     | SC00012                      |
| Illinois NELAP            | 200029                       |
| Indiana                   | C-SC-01                      |
| Kansas NELAP              | E-10332                      |
| Kentucky SDWA             | 90129                        |
| Kentucky Wastewater       | 90129                        |
| Louisiana Drinking Water  | LA024                        |
| Louisiana NELAP           | 03046 (AI33904)              |
| Maine                     | 2019020                      |
| Maryland                  | 270                          |
| Massachusetts             | M-SC012                      |
| Massachusetts PFAS Approv | Letter                       |
| Michigan                  | 9976                         |
| Mississippi               | SC00012                      |
| Nebraska                  | NE-OS-26-13                  |
| Nevada                    | SC000122023-4                |
| New Hampshire NELAP       | 2054                         |
| New Jersey NELAP          | SC002                        |
| New Mexico                | SC00012                      |
| New York NELAP            | 11501                        |
| North Carolina            | 233                          |
| North Carolina SDWA       | 45709                        |
| North Dakota              | R-158                        |
| Oklahoma                  | 2022-160                     |
| Pennsylvania NELAP        | 68-00485                     |
| Puerto Rico               | SC00012                      |
| S. Carolina Radiochem     | 10120002                     |
| Sanitation Districts of L | 9255651                      |
| South Carolina Chemistry  | 10120001                     |
| Tennessee                 | TN 02934                     |
| Texas NELAP               | T104704235-22-20             |
| Utah NELAP                | SC000122022-37               |
| Vermont                   | VT87156                      |
| Virginia NELAP            | 460202                       |
| Washington                | C780                         |
|                           |                              |

List of current GEL Certifications as of 06 July 2023

| State                       | Certification                |
|-----------------------------|------------------------------|
| Alabama                     | 42200                        |
| Alaska                      | 17-018                       |
| Alaska Drinking Water       | SC00012                      |
| Arkansas                    | 88-0651                      |
| CLIA                        | 42D0904046                   |
| California                  | 2940                         |
| Colorado                    | SC00012                      |
| Connecticut                 | PH-0169                      |
| DoD ELAP/ ISO17025 A2LA     | 2567.01                      |
| Florida NELAP               | E87156                       |
| Foreign Soils Permit        | P330-15-00283, P330-15-00253 |
| Georgia                     | SC00012                      |
| Georgia SDWA                | 967                          |
| Hawaii                      | SC00012                      |
| Idaho                       | SC00012<br>SC00012           |
| Illinois NELAP              | 200029                       |
| Indiana                     | C-SC-01                      |
| Kansas NELAP                | E-10332                      |
| Kansas NELAT  Kentucky SDWA | 90129                        |
| Kentucky Wastewater         | 90129                        |
| Louisiana Drinking Water    | LA024                        |
| Louisiana NELAP             | 03046 (AI33904)              |
| Maine                       | •                            |
| · · ·                       | 2019020                      |
| Maryland                    | 270                          |
| Massachusetts               | M-SC012                      |
| Massachusetts PFAS Approv   | Letter                       |
| Michigan                    | 9976                         |
| Mississippi                 | SC00012                      |
| Nebraska                    | NE-OS-26-13                  |
| Nevada                      | SC000122023-4                |
| New Hampshire NELAP         | 2054                         |
| New Jersey NELAP            | SC002                        |
| New Mexico                  | SC00012                      |
| New York NELAP              | 11501                        |
| North Carolina              | 233                          |
| North Carolina SDWA         | 45709                        |
| North Dakota                | R-158                        |
| Oklahoma                    | 2022-160                     |
| Pennsylvania NELAP          | 68-00485                     |
| Puerto Rico                 | SC00012                      |
| S. Carolina Radiochem       | 10120002                     |
| Sanitation Districts of L   | 9255651                      |
| South Carolina Chemistry    | 10120001                     |
| Tennessee                   | TN 02934                     |
| Texas NELAP                 | T104704235-22-20             |
| Utah NELAP                  | SC000122022-37               |
| Vermont                     | VT87156                      |
| Virginia NELAP              | 460202                       |
| Washington                  | C780                         |



a member of The GEL Group INC

October 23, 2023

Joju Abraham Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

Re: Arkwright CCR Groundwater Compliance AP1

Work Order: 640869

#### Dear Joju Abraham:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on October 11, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt. The laboratory received the following sample(s):

| <b>Laboratory ID</b> | Client ID     | <b>Matrix</b> | <b>Date Collected</b> | <b>Date Recieved</b> |
|----------------------|---------------|---------------|-----------------------|----------------------|
| 640869001            | ARK-AP1GWA-1  | Ground Water  | 09/10/23 13:45        | 11/10/23 15:28       |
| 640869002            | ARK-AP1-FB-01 | Ground Water  | 09/10/23 14:05        | 11/10/23 15:28       |
| 640869003            | ARK-AP1GWA-2  | Ground Water  | 09/10/23 14:30        | 11/10/23 15:28       |
| 640869004            | ARK-AP1-EB-01 | Ground Water  | 09/10/23 15:00        | 11/10/23 15:28       |
| 640869005            | ARK-AP1PZ-1   | Ground Water  | 09/10/23 16:20        | 11/10/23 15:28       |
| 640869006            | ARK-AP1PZ-2   | Ground Water  | 09/10/23 17:00        | 11/10/23 15:28       |
| 640869007            | ARK-AP1-FD-01 | Ground Water  | 09/10/23 00:00        | 11/10/23 15:28       |
| 640869008            | ARK-AP1PZ-4   | Ground Water  | 10/10/23 09:10        | 11/10/23 15:28       |
| 640869009            | ARK-AP1-FB-02 | Ground Water  | 10/10/23 09:30        | 11/10/23 15:28       |
| 640869010            | ARK-AP1PZ-3   | Ground Water  | 10/10/23 09:30        | 11/10/23 15:28       |
| 640869011            | ARK-AP1PZ-8   | Ground Water  | 10/10/23 11:55        | 11/10/23 15:28       |
| 640869012            | ARK-AP1PZ-5   | Ground Water  | 10/10/23 11:20        | 11/10/23 15:28       |
| 640869013            | ARK-AP1-EB-02 | Ground Water  | 10/10/23 12:10        | 11/10/23 15:28       |
| 640869014            | ARK-AP1PZ-7   | Ground Water  | 10/10/23 13:50        | 11/10/23 15:28       |
| 640869015            | ARK-AP1PZ-10  | Ground Water  | 10/10/23 14:20        | 11/10/23 15:28       |
| 640869016            | ARK-AP1PZ-11  | Ground Water  | 10/10/23 16:15        | 11/10/23 15:28       |



| 640869017 | ARK-AP1-FD-02 | Ground Water | 10/10/23 00:00 | 11/10/23 15:28 |
|-----------|---------------|--------------|----------------|----------------|
| 640869018 | ARK-AP1PZ-9   | Ground Water | 11/10/23 08:20 | 11/10/23 15:28 |

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

#### **Prep Methods and Prep Dates**

| <b>Method</b>   | Run Date ID    |
|-----------------|----------------|
| SW846 3005A     | 12-OCT-2023    |
| SW846 7470A Pro | ep 12-OCT-2023 |

#### **Analysis Methods and Analysis Dates**

| Method            | Run Date ID |
|-------------------|-------------|
| EPA 300.0         | 13-OCT-2023 |
| EPA 300.0         | 14-OCT-2023 |
| SM 2540C          | 12-OCT-2023 |
| SM 2540C          | 13-OCT-2023 |
| SW846 3005A/6020B | 14-OCT-2023 |
| SW846 3005A/6020B | 15-OCT-2023 |
| SW846 3005A/6020B | 16-OCT-2023 |
| SW846 7470A       | 13-OCT-2023 |

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4504.

Sincerely,

Amanda Turner for

Erin Trent

Project Manager

Purchase Order: GPC82177-0005

Enclosures

Page 3 of 60 SDG: 640869

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## Certificate of Analysis Report for

GPCC001 Georgia Power Company Client SDG: 640869 GEL Work Order: 640869

#### The Qualifiers in this report are defined as follows:

- \* A quality control analyte recovery is outside of specified acceptance criteria
- \*\* Analyte is a Tracer compound
- \*\* Analyte is a surrogate compound
- B Either presence of analyte detected in the associated blank, or MDL/IDL < sample value < PQL
- J Value is estimated
- N Metals--The Matrix spike sample recovery is not within specified control limits
- N/A RPD or %Recovery limits do not apply.
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Erin Trent.

| Reviewed by | manda | len |  |  |
|-------------|-------|-----|--|--|
|             |       |     |  |  |

Page 4 of 60 SDG: 640869

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## Certificate of Analysis

Report Date: October 23, 2023

GPCC00100

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1GWA-1

Sample ID: 640869001

Matrix: WG

Collect Date: 09-OCT-23 13:45
Receive Date: 11-OCT-23
Collector: Client

ICP-MS 3005A PREP

869001 Client ID: GPCC001

Project:

| Parameter              | Qualifier       | Result              | DL        | RL       | Units    | PF   | DF   | Analy | st Date  | Time | Batch   | Method |
|------------------------|-----------------|---------------------|-----------|----------|----------|------|------|-------|----------|------|---------|--------|
| Ion Chromatography     |                 |                     |           |          |          |      |      |       |          |      |         |        |
| EPA 300.0 Anions Lic   | quid "As Rece   | ived"               |           |          |          |      |      |       |          |      |         |        |
| Chloride               | •               | 1.77                | 0.335     | 1.00     | mg/L     |      | 5    | LXA2  | 10/13/23 | 0209 | 2507800 | 1      |
| Sulfate                |                 | 58.3                | 0.665     | 2.00     | mg/L     |      | 5    |       |          |      |         |        |
| Fluoride               |                 | 0.426               | 0.0330    | 0.100    | mg/L     |      | 1    | LXA2  | 10/13/23 | 2017 | 2507800 | 2      |
| Mercury Analysis-CV    | AA              |                     |           |          |          |      |      |       |          |      |         |        |
| 7470 Cold Vapor Mer    | cury, Liquid ". | As Received"        |           |          |          |      |      |       |          |      |         |        |
| Mercury                | U               | ND                  | 0.0000670 | 0.000200 | mg/L     | 1.00 | 1    | JP2   | 10/13/23 | 1200 | 2507487 | 3      |
| Metals Analysis-ICP-I  | MS              |                     |           |          |          |      |      |       |          |      |         |        |
| SW846 3005A/6020B      | "As Received    | l"                  |           |          |          |      |      |       |          |      |         |        |
| Antimony               | U               | ND                  | 0.00100   | 0.00300  | mg/L     | 1.00 | 1    | PRB   | 10/14/23 | 1441 | 2507328 | 4      |
| Barium                 |                 | 0.0609              | 0.000670  | 0.00400  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Beryllium              |                 | 0.00187             | 0.000200  | 0.000500 | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Cadmium                | J               | 0.000410            | 0.000300  | 0.00100  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Calcium                |                 | 19.3                | 0.0800    | 0.200    | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Chromium               | J               | 0.00462             | 0.00300   | 0.0100   | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Cobalt                 |                 | 0.00672             | 0.000300  | 0.00100  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Lead                   | U               | ND                  | 0.000500  | 0.00200  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Lithium                | J               | 0.00944             | 0.00300   | 0.0100   | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Molybdenum             | U               | ND                  | 0.000200  | 0.00100  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Selenium               | J               | 0.00299             | 0.00150   | 0.00500  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Thallium               | U               | ND                  | 0.000600  | 0.00200  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Arsenic                | J               | 0.00219             | 0.00200   | 0.00500  | mg/L     | 1.00 | 1    | PRB   | 10/15/23 | 1550 | 2507328 | 5      |
| Boron                  |                 | 0.108               | 0.00520   | 0.0150   | mg/L     | 1.00 | 1    | PRB   | 10/16/23 | 1028 | 2507328 | 6      |
| Solids Analysis        |                 |                     |           |          |          |      |      |       |          |      |         |        |
| SM2540C Dissolved S    | Solids "As Rec  | ceived"             |           |          |          |      |      |       |          |      |         |        |
| Total Dissolved Solids |                 | 139                 | 2.38      | 10.0     | mg/L     |      |      | CH6   | 10/12/23 | 1323 | 2507350 | 7      |
| The following Prep M   | ethods were p   | erformed:           |           |          |          |      |      |       |          |      |         |        |
| Method                 | Descriptio      | n                   |           | Analyst  | Date     | -    | Гim  | e Pr  | ep Batch |      |         |        |
| SW846 7470A Prep       |                 | Mercury Prep Liquid |           | EK1      | 10/12/23 | 1    | 1120 | 250   | 07486    |      |         |        |
| GTT10.4.5.200.5.4      | TCD 140 200     | * . DD TD           |           | ap       | 10/10/00 |      |      | ~     | 2000     |      |         |        |

SD

10/12/23

1525

2507327

Page 5 of 60 SDG: 640869

SW846 3005A

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 23, 2023

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1GWA-1 Project: GPCC00100 Sample ID: 640869001 Client ID: GPCC001

| Parameter              | Qualifier Result            | DL | RL | Units Pl | F DF Analyst Date Time Batch Method |
|------------------------|-----------------------------|----|----|----------|-------------------------------------|
| The following Analytic | cal Methods were performed: |    |    |          |                                     |
| Method                 | Description                 |    |    | Ana      | lyst Comments                       |
| 1                      | EPA 300.0                   |    |    |          |                                     |
| 2                      | EPA 300.0                   |    |    |          |                                     |
| 3                      | SW846 7470A                 |    |    |          |                                     |
| 4                      | SW846 3005A/6020B           |    |    |          |                                     |
| 5                      | SW846 3005A/6020B           |    |    |          |                                     |
| 6                      | SW846 3005A/6020B           |    |    |          |                                     |
| 7                      | SM 2540C                    |    |    |          |                                     |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 60 SDG: 640869

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## Certificate of Analysis

Project:

Client ID:

Report Date: October 23, 2023

GPCC00100

GPCC001

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1-FB-01

Sample ID: 640869002

Matrix: WQ

Collect Date: 09-OCT-23 14:05 Receive Date: 11-OCT-23

EPA 7470A Mercury Prep Liquid

Collector: Client

| Parameter              | Qualifier       | Result       | DL        | RL       | Units    | PF   | DF   | Analy | st Date  | Time Batch   | Method |
|------------------------|-----------------|--------------|-----------|----------|----------|------|------|-------|----------|--------------|--------|
| Ion Chromatography     |                 |              |           |          |          |      |      |       |          |              |        |
| EPA 300.0 Anions Liq   | uid "As Recei   | ved"         |           |          |          |      |      |       |          |              |        |
| Chloride               | -               | 0.213        | 0.0670    | 0.200    | mg/L     |      | 1    | LXA2  | 10/13/23 | 0342 2507800 | 1      |
| Fluoride               | U               | ND           | 0.0330    | 0.100    | mg/L     |      | 1    |       |          |              |        |
| Sulfate                | U               | ND           | 0.133     | 0.400    | mg/L     |      | 1    |       |          |              |        |
| Mercury Analysis-CV    | AA              |              |           |          |          |      |      |       |          |              |        |
| 7470 Cold Vapor Merc   | cury, Liquid "A | As Received" |           |          |          |      |      |       |          |              |        |
| Mercury                | U               | ND           | 0.0000670 | 0.000200 | mg/L     | 1.00 | 1    | JP2   | 10/13/23 | 1201 2507487 | 2      |
| Metals Analysis-ICP-N  | МS              |              |           |          |          |      |      |       |          |              |        |
| SW846 3005A/6020B      |                 | "            |           |          |          |      |      |       |          |              |        |
| Antimony               | U               | ND           | 0.00100   | 0.00300  | mg/L     | 1.00 | 1    | PRB   | 10/14/23 | 1506 2507328 | 3      |
| Barium                 | U               | ND           | 0.000670  | 0.00400  | mg/L     | 1.00 | 1    |       |          |              |        |
| Beryllium              | U               | ND           | 0.000200  | 0.000500 | mg/L     | 1.00 | 1    |       |          |              |        |
| Cadmium                | U               | ND           | 0.000300  | 0.00100  | mg/L     | 1.00 | 1    |       |          |              |        |
| Calcium                | U               | ND           | 0.0800    | 0.200    | mg/L     | 1.00 | 1    |       |          |              |        |
| Chromium               | U               | ND           | 0.00300   | 0.0100   | mg/L     | 1.00 | 1    |       |          |              |        |
| Cobalt                 | U               | ND           | 0.000300  | 0.00100  | mg/L     | 1.00 | 1    |       |          |              |        |
| Lead                   | U               | ND           | 0.000500  | 0.00200  | mg/L     | 1.00 | 1    |       |          |              |        |
| Lithium                | U               | ND           | 0.00300   | 0.0100   | mg/L     | 1.00 | 1    |       |          |              |        |
| Molybdenum             | U               | ND           | 0.000200  | 0.00100  | mg/L     | 1.00 | 1    |       |          |              |        |
| Selenium               | U               | ND           | 0.00150   | 0.00500  | mg/L     | 1.00 | 1    |       |          |              |        |
| Thallium               | U               | ND           | 0.000600  | 0.00200  | mg/L     | 1.00 | 1    |       |          |              |        |
| Boron                  | U               | ND           | 0.00520   | 0.0150   | mg/L     | 1.00 | 1    | PRB   | 10/16/23 | 1041 2507328 | 4      |
| Arsenic                | J               | 0.00231      | 0.00200   | 0.00500  | mg/L     | 1.00 | 1    | PRB   | 10/15/23 | 1604 2507328 | 5      |
| Solids Analysis        |                 |              |           |          |          |      |      |       |          |              |        |
| SM2540C Dissolved S    | solids "As Rec  | eived"       |           |          |          |      |      |       |          |              |        |
| Total Dissolved Solids | U               | ND           | 2.38      | 10.0     | mg/L     |      |      | CH6   | 10/12/23 | 1323 2507350 | 6      |
| The following Prep Mo  | ethods were pe  | erformed:    |           |          |          |      |      |       |          |              |        |
| Method                 | Description     | 1            |           | Analyst  | Date     | ,    | Гim  | e Pr  | ep Batch |              |        |
| SW846 3005A            | ICP-MS 3005     | SA PREP      |           | SD       | 10/12/23 |      | 1525 | 250   | 07327    |              |        |

EK1

10/12/23

1120

2507486

Page 7 of 60 SDG: 640869

SW846 7470A Prep

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 23, 2023

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1-FB-01 Project: GPCC00100 Sample ID: 640869002 Client ID: GPCC001

| Parameter             | Qualifier Result            | DL | RL | Units | PF     | DF Analyst Date | Time Batch | Method |
|-----------------------|-----------------------------|----|----|-------|--------|-----------------|------------|--------|
| The following Analyti | cal Methods were performed: |    |    |       |        |                 |            |        |
| Method                | Description                 |    |    | I     | Analys | t Comments      |            |        |
| 1                     | EPA 300.0                   |    |    |       |        |                 |            |        |
| 2                     | SW846 7470A                 |    |    |       |        |                 |            |        |
| 3                     | SW846 3005A/6020B           |    |    |       |        |                 |            |        |
| 4                     | SW846 3005A/6020B           |    |    |       |        |                 |            |        |
| 5                     | SW846 3005A/6020B           |    |    |       |        |                 |            |        |
| 6                     | SM 2540C                    |    |    |       |        |                 |            |        |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 60 SDG: 640869

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## Certificate of Analysis

Report Date: October 23, 2023

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1GWA-2

Sample ID: 640869003

Matrix: WG

Collect Date: 09-OCT-23 14:30 Receive Date: 11-OCT-23 Collector: Client

EPA 7470A Mercury Prep Liquid

ICP-MS 3005A PREP

Project: GPCC00100 Client ID: GPCC001

| Parameter              | Qualifier      | Result       | DL        | RL       | Units | PF   | DF  | Analy | st Date  | Time | Batch   | Method |
|------------------------|----------------|--------------|-----------|----------|-------|------|-----|-------|----------|------|---------|--------|
| Ion Chromatography     |                |              |           |          |       |      |     |       |          |      |         |        |
| EPA 300.0 Anions Liqu  | uid "As Recei  | ved"         |           |          |       |      |     |       |          |      |         |        |
| Chloride               |                | 1.81         | 0.0670    | 0.200    | mg/L  |      | 1   | LXA2  | 10/13/23 | 0413 | 2507800 | 1      |
| Fluoride               |                | 0.225        | 0.0330    | 0.100    | mg/L  |      | 1   |       |          |      |         |        |
| Sulfate                |                | 2.17         | 0.133     | 0.400    | mg/L  |      | 1   |       |          |      |         |        |
| Mercury Analysis-CVA   | λA             |              |           |          |       |      |     |       |          |      |         |        |
| 7470 Cold Vapor Merci  | ury, Liquid "A | As Received" |           |          |       |      |     |       |          |      |         |        |
| Mercury                | U              | ND           | 0.0000670 | 0.000200 | mg/L  | 1.00 | 1   | JP2   | 10/13/23 | 1203 | 2507487 | 2      |
| Metals Analysis-ICP-M  | IS             |              |           |          |       |      |     |       |          |      |         |        |
| SW846 3005A/6020B "    | 'As Received   | "            |           |          |       |      |     |       |          |      |         |        |
| Boron                  |                | 0.0734       | 0.00520   | 0.0150   | mg/L  | 1.00 | 1   | PRB   | 10/16/23 | 1043 | 2507328 | 3      |
| Arsenic                | J              | 0.00255      | 0.00200   | 0.00500  | mg/L  | 1.00 | 1   | PRB   | 10/15/23 | 1606 | 2507328 | 4      |
| Antimony               | U              | ND           | 0.00100   | 0.00300  | mg/L  | 1.00 | 1   | PRB   | 10/14/23 | 1510 | 2507328 | 5      |
| Barium                 |                | 0.0580       | 0.000670  | 0.00400  | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Beryllium              | U              | ND           | 0.000200  | 0.000500 | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Cadmium                | U              | ND           | 0.000300  | 0.00100  | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Calcium                |                | 6.91         | 0.0800    | 0.200    | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Chromium               | J              | 0.00340      | 0.00300   | 0.0100   | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Cobalt                 |                | 0.0112       | 0.000300  | 0.00100  | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Lead                   | U              | ND           | 0.000500  | 0.00200  | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Lithium                | U              | ND           | 0.00300   | 0.0100   | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Molybdenum             | U              | ND           | 0.000200  | 0.00100  | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Selenium               | U              | ND           | 0.00150   | 0.00500  | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Thallium               | U              | ND           | 0.000600  | 0.00200  | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Solids Analysis        |                |              |           |          |       |      |     |       |          |      |         |        |
| SM2540C Dissolved So   | olids "As Rec  | eived"       |           |          |       |      |     |       |          |      |         |        |
| Total Dissolved Solids |                | 52.0         | 2.38      | 10.0     | mg/L  |      |     | CH6   | 10/12/23 | 1323 | 2507350 | 6      |
| The following Prep Me  | thods were pe  | erformed:    |           |          |       |      |     |       |          |      |         |        |
| Method                 | Description    | 1            |           | Analyst  | Date  | -    | Гim | e Pr  | ep Batch |      |         |        |

EK1

SD

10/12/23

10/12/23

1120

1525

2507486

2507327

SW846 7470A Prep

SW846 3005A

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 23, 2023

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1GWA-2 Project: GPCC00100 Sample ID: 640869003 Client ID: GPCC001

| Parameter             | Qualifier Result            | DL | RL | Units | PF     | DF Analyst Date | Time Batch | Method |
|-----------------------|-----------------------------|----|----|-------|--------|-----------------|------------|--------|
| The following Analyti | cal Methods were performed: |    |    |       |        |                 |            |        |
| Method                | Description                 |    |    | I     | Analys | t Comments      |            |        |
| 1                     | EPA 300.0                   |    |    |       |        |                 |            |        |
| 2                     | SW846 7470A                 |    |    |       |        |                 |            |        |
| 3                     | SW846 3005A/6020B           |    |    |       |        |                 |            |        |
| 4                     | SW846 3005A/6020B           |    |    |       |        |                 |            |        |
| 5                     | SW846 3005A/6020B           |    |    |       |        |                 |            |        |
| 6                     | SM 2540C                    |    |    |       |        |                 |            |        |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 60 SDG: 640869

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## Certificate of Analysis

Project:

Client ID:

Report Date: October 23, 2023

GPCC00100

GPCC001

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1-EB-01 Sample ID: 640869004

Matrix: WQ

Collect Date: 09-OCT-23 15:00 Receive Date: 11-OCT-23

ICP-MS 3005A PREP

EPA 7470A Mercury Prep Liquid

Collector: Client

| Parameter              | Qualifier       | Result       | DL        | RL       | Units | PF   | DF  | Analy | st Date  | Time | Batch   | Method |
|------------------------|-----------------|--------------|-----------|----------|-------|------|-----|-------|----------|------|---------|--------|
| Ion Chromatography     |                 |              |           |          |       |      |     |       |          |      |         |        |
| EPA 300.0 Anions Lie   | quid "As Recei  | ved"         |           |          |       |      |     |       |          |      |         |        |
| Chloride               | •               | 0.364        | 0.0670    | 0.200    | mg/L  |      | 1   | LXA2  | 10/13/23 | 0546 | 2507800 | 1      |
| Fluoride               | U               | ND           | 0.0330    | 0.100    | mg/L  |      | 1   |       |          |      |         |        |
| Sulfate                | U               | ND           | 0.133     | 0.400    | mg/L  |      | 1   |       |          |      |         |        |
| Mercury Analysis-CV    | 'AA             |              |           |          |       |      |     |       |          |      |         |        |
| 7470 Cold Vapor Mer    | cury, Liquid "A | As Received" |           |          |       |      |     |       |          |      |         |        |
| Mercury                | U               | ND           | 0.0000670 | 0.000200 | mg/L  | 1.00 | 1   | JP2   | 10/13/23 | 1204 | 2507487 | 2      |
| Metals Analysis-ICP-   | MS              |              |           |          | C     |      |     |       |          |      |         |        |
| SW846 3005A/6020B      |                 | "            |           |          |       |      |     |       |          |      |         |        |
| Arsenic                | J               | 0.00243      | 0.00200   | 0.00500  | mg/L  | 1.00 | 1   | PRB   | 10/15/23 | 1608 | 2507328 | 3      |
| Boron                  | U               | ND           | 0.00520   | 0.0150   | mg/L  | 1.00 | 1   | PRB   | 10/16/23 | 1045 | 2507328 | 4      |
| Antimony               | U               | ND           | 0.00100   | 0.00300  | mg/L  | 1.00 | 1   | PRB   | 10/14/23 | 1513 | 2507328 | 5      |
| Barium                 | U               | ND           | 0.000670  | 0.00400  | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Beryllium              | U               | ND           | 0.000200  | 0.000500 | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Cadmium                | U               | ND           | 0.000300  | 0.00100  | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Calcium                | U               | ND           | 0.0800    | 0.200    | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Chromium               | U               | ND           | 0.00300   | 0.0100   | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Cobalt                 | U               | ND           | 0.000300  | 0.00100  | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Lead                   | U               | ND           | 0.000500  | 0.00200  | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Lithium                | U               | ND           | 0.00300   | 0.0100   | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Molybdenum             | U               | ND           | 0.000200  | 0.00100  | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Selenium               | U               | ND           | 0.00150   | 0.00500  | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Thallium               | U               | ND           | 0.000600  | 0.00200  | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Solids Analysis        |                 |              |           |          |       |      |     |       |          |      |         |        |
| SM2540C Dissolved S    | Solids "As Rec  | eived"       |           |          |       |      |     |       |          |      |         |        |
| Total Dissolved Solids | U               | ND           | 2.38      | 10.0     | mg/L  |      |     | CH6   | 10/12/23 | 1423 | 2507357 | 6      |
| The following Prep M   | lethods were pe | erformed:    |           |          |       |      |     |       |          |      |         |        |
| Method                 | Description     | n            |           | Analyst  | Date  | ,    | Tim | e Pr  | ep Batch |      |         |        |

SD

EK1

10/12/23

10/12/23

1525

1120

2507327

2507486

Page 11 of 60 SDG: 640869

SW846 3005A

SW846 7470A Prep

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 23, 2023

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1-EB-01 Project: GPCC00100 Sample ID: 640869004 Client ID: GPCC001

| Parameter           | Qualifier Result              | DL | RL | Units I | PF DF Analyst Date | Time Batch Method |
|---------------------|-------------------------------|----|----|---------|--------------------|-------------------|
| The following Analy | tical Methods were performed: |    |    |         |                    |                   |
| Method              | Description                   |    |    | An      | alyst Comments     |                   |
| 1                   | EPA 300.0                     |    |    |         |                    |                   |
| 2                   | SW846 7470A                   |    |    |         |                    |                   |
| 3                   | SW846 3005A/6020B             |    |    |         |                    |                   |
| 4                   | SW846 3005A/6020B             |    |    |         |                    |                   |
| 5                   | SW846 3005A/6020B             |    |    |         |                    |                   |
| 6                   | SM 2540C                      |    |    |         |                    |                   |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 12 of 60 SDG: 640869

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## Certificate of Analysis

Report Date: October 23, 2023

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-1 Sample ID: 640869005

Matrix: WG

Collect Date: 09-OCT-23 16:20 Receive Date: 11-OCT-23 Collector: Client

ICP-MS 3005A PREP

Project: GPCC00100 Client ID: GPCC001

| Parameter              | Qualifier      | Result              | DL        | RL       | Units    | PF   | DF   | Analy | st Date  | Time | Batch   | Method |
|------------------------|----------------|---------------------|-----------|----------|----------|------|------|-------|----------|------|---------|--------|
| Ion Chromatography     |                |                     |           |          |          |      |      |       |          |      |         |        |
| EPA 300.0 Anions Liqu  | id "As Recei   | ived"               |           |          |          |      |      |       |          |      |         |        |
| Fluoride               |                | 0.279               | 0.0330    | 0.100    | mg/L     |      | 1    | LXA2  | 10/13/23 | 2149 | 2507800 | 1      |
| Chloride               |                | 3.13                | 0.670     | 2.00     | mg/L     |      | 10   | LXA2  | 10/13/23 | 0718 | 2507800 | 2      |
| Sulfate                |                | 105                 | 1.33      | 4.00     | mg/L     |      | 10   |       |          |      |         |        |
| Mercury Analysis-CVA   | A              |                     |           |          |          |      |      |       |          |      |         |        |
| 7470 Cold Vapor Mercu  | ary, Liquid ". | As Received"        |           |          |          |      |      |       |          |      |         |        |
| Mercury                | U              | ND                  | 0.0000670 | 0.000200 | mg/L     | 1.00 | 1    | JP2   | 10/13/23 | 1206 | 2507487 | 3      |
| Metals Analysis-ICP-M  | S              |                     |           |          | Ü        |      |      |       |          |      |         |        |
| SW846 3005A/6020B ".   |                | "                   |           |          |          |      |      |       |          |      |         |        |
| Arsenic                | J              | 0.00222             | 0.00200   | 0.00500  | mg/L     | 1.00 | 1    | PRB   | 10/15/23 | 1610 | 2507328 | 4      |
| Antimony               | U              | ND                  | 0.00100   | 0.00300  | mg/L     | 1.00 | 1    | PRB   | 10/14/23 | 1517 | 2507328 | 5      |
| Barium                 |                | 0.0422              | 0.000670  | 0.00400  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Beryllium              | U              | ND                  | 0.000200  | 0.000500 | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Cadmium                | U              | ND                  | 0.000300  | 0.00100  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Calcium                |                | 33.2                | 0.0800    | 0.200    | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Chromium               | U              | ND                  | 0.00300   | 0.0100   | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Cobalt                 | J              | 0.000610            | 0.000300  | 0.00100  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Lead                   | U              | ND                  | 0.000500  | 0.00200  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Lithium                | J              | 0.00408             | 0.00300   | 0.0100   | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Molybdenum             | J              | 0.000437            | 0.000200  | 0.00100  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Selenium               | U              | ND                  | 0.00150   | 0.00500  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Thallium               | U              | ND                  | 0.000600  | 0.00200  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Boron                  |                | 0.355               | 0.0260    | 0.0750   | mg/L     | 1.00 | 5    | PRB   | 10/15/23 | 2114 | 2507328 | 6      |
| Solids Analysis        |                |                     |           |          |          |      |      |       |          |      |         |        |
| SM2540C Dissolved So   | olids "As Rec  | eived"              |           |          |          |      |      |       |          |      |         |        |
| Total Dissolved Solids |                | 211                 | 2.38      | 10.0     | mg/L     |      |      | CH6   | 10/12/23 | 1423 | 2507357 | 7      |
| The following Prep Met | thods were p   | erformed:           |           |          |          |      |      |       |          |      |         |        |
| Method                 | Description    | n                   |           | Analyst  | Date     | -    | Γim  | e Pr  | ep Batch |      |         |        |
| SW846 7470A Prep       | EPA 7470A I    | Mercury Prep Liquid |           | EK1      | 10/12/23 |      | 1120 | 250   | 07486    |      |         |        |

SD

10/12/23

1525

2507327

Page 13 of 60 SDG: 640869

SW846 3005A

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 23, 2023

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-1 Project: GPCC00100 Sample ID: 640869005 Client ID: GPCC001

| Parameter              | Qualifier     | Result          | DL | RL | Units | PF     | DF Analyst Date | Time Batch | Method |
|------------------------|---------------|-----------------|----|----|-------|--------|-----------------|------------|--------|
| The following Analytic | cal Methods w | vere performed: |    |    |       |        |                 |            |        |
| Method                 | Description   |                 |    |    |       | Analys | t Comments      |            |        |
| 1                      | EPA 300.0     |                 |    |    |       |        |                 |            |        |
| 2                      | EPA 300.0     |                 |    |    |       |        |                 |            |        |
| 3                      | SW846 7470A   | L               |    |    |       |        |                 |            |        |
| 4                      | SW846 3005A   | /6020B          |    |    |       |        |                 |            |        |
| 5                      | SW846 3005A   | /6020B          |    |    |       |        |                 |            |        |
| 6                      | SW846 3005A   | /6020B          |    |    |       |        |                 |            |        |
| 7                      | SM 2540C      |                 |    |    |       |        |                 |            |        |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 14 of 60 SDG: 640869

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## Certificate of Analysis

Report Date: October 23, 2023

GPCC00100

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-2 Sample ID:

Matrix: WG

Collect Date: 09-OCT-23 17:00 Receive Date: 11-OCT-23 Collector: Client

Project: 640869006 Client ID: GPCC001

| Parameter              | Qualifier      | Result       | DL        | RL       | Units | PF   | DF  | Analy | st Date  | Time Batch   | Method |
|------------------------|----------------|--------------|-----------|----------|-------|------|-----|-------|----------|--------------|--------|
| Ion Chromatography     |                |              |           |          |       |      |     |       |          |              |        |
| EPA 300.0 Anions Liqu  | uid "As Recei  | ved"         |           |          |       |      |     |       |          |              |        |
| Sulfate                |                | 801          | 6.65      | 20.0     | mg/L  |      | 50  | LXA2  | 10/13/23 | 0749 2507800 | 1      |
| Chloride               |                | 2.98         | 0.134     | 0.400    | mg/L  |      | 2   | LXA2  | 10/13/23 | 2220 2507800 | 2      |
| Fluoride               |                | 0.262        | 0.0660    | 0.200    | mg/L  |      | 2   |       |          |              |        |
| Mercury Analysis-CVA   | λA             |              |           |          |       |      |     |       |          |              |        |
| 7470 Cold Vapor Merci  | ury, Liquid "A | As Received" |           |          |       |      |     |       |          |              |        |
| Mercury                | U              | ND           | 0.0000670 | 0.000200 | mg/L  | 1.00 | 1   | JP2   | 10/13/23 | 1208 2507487 | 3      |
| Metals Analysis-ICP-M  | IS             |              |           |          |       |      |     |       |          |              |        |
| SW846 3005A/6020B "    | 'As Received   | "            |           |          |       |      |     |       |          |              |        |
| Antimony               | U              | ND           | 0.00100   | 0.00300  | mg/L  | 1.00 | 1   | PRB   | 10/14/23 | 1520 2507328 | 4      |
| Barium                 |                | 0.0300       | 0.000670  | 0.00400  | mg/L  | 1.00 | 1   |       |          |              |        |
| Beryllium              | U              | ND           | 0.000200  | 0.000500 | mg/L  | 1.00 | 1   |       |          |              |        |
| Cadmium                | J              | 0.000689     | 0.000300  | 0.00100  | mg/L  | 1.00 | 1   |       |          |              |        |
| Chromium               | U              | ND           | 0.00300   | 0.0100   | mg/L  | 1.00 | 1   |       |          |              |        |
| Cobalt                 |                | 0.169        | 0.000300  | 0.00100  | mg/L  | 1.00 | 1   |       |          |              |        |
| Lead                   | U              | ND           | 0.000500  | 0.00200  | mg/L  | 1.00 | 1   |       |          |              |        |
| Lithium                |                | 0.0214       | 0.00300   | 0.0100   | mg/L  | 1.00 | 1   |       |          |              |        |
| Molybdenum             | U              | ND           | 0.000200  | 0.00100  | mg/L  | 1.00 | 1   |       |          |              |        |
| Selenium               | U              | ND           | 0.00150   | 0.00500  | mg/L  | 1.00 | 1   |       |          |              |        |
| Thallium               | U              | ND           | 0.000600  | 0.00200  | mg/L  | 1.00 | 1   |       |          |              |        |
| Boron                  |                | 0.470        | 0.0260    | 0.0750   | mg/L  | 1.00 | 5   | PRB   | 10/15/23 | 2116 2507328 | 5      |
| Calcium                |                | 205          | 0.400     | 1.00     | mg/L  | 1.00 | 5   |       |          |              |        |
| Arsenic                | U              | ND           | 0.00200   | 0.00500  | mg/L  | 1.00 | 1   | PRB   | 10/15/23 | 1612 2507328 | 6      |
| Solids Analysis        |                |              |           |          |       |      |     |       |          |              |        |
| SM2540C Dissolved So   | olids "As Rec  | eived"       |           |          |       |      |     |       |          |              |        |
| Total Dissolved Solids |                | 1170         | 4.76      | 20.0     | mg/L  |      |     | CH6   | 10/12/23 | 1423 2507357 | 7      |
| The following Prep Me  | thods were pe  | erformed:    |           |          |       |      |     |       |          |              |        |
| Method                 | Description    | n            |           | Analyst  | Date  | -    | Гim | e Pr  | ep Batch |              |        |

SW846 3005A ICP-MS 3005A PREP SD 10/12/23 1525 2507327 EPA 7470A Mercury Prep Liquid SW846 7470A Prep EK1 10/12/23 1120 2507486

Page 15 of 60 SDG: 640869

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 23, 2023

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-2 Project: GPCC00100 Sample ID: 640869006 Client ID: GPCC001

| Parameter              | Qualifier Result            | DL | RL | Units | PF    | DF Analyst Date Time Batch Method |
|------------------------|-----------------------------|----|----|-------|-------|-----------------------------------|
| The following Analytic | cal Methods were performed: |    |    |       |       |                                   |
| Method                 | Description                 |    |    | A     | nalys | t Comments                        |
| 1                      | EPA 300.0                   |    |    |       |       |                                   |
| 2                      | EPA 300.0                   |    |    |       |       |                                   |
| 3                      | SW846 7470A                 |    |    |       |       |                                   |
| 4                      | SW846 3005A/6020B           |    |    |       |       |                                   |
| 5                      | SW846 3005A/6020B           |    |    |       |       |                                   |
| 6                      | SW846 3005A/6020B           |    |    |       |       |                                   |
| 7                      | SM 2540C                    |    |    |       |       |                                   |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 16 of 60 SDG: 640869

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## Certificate of Analysis

Report Date: October 23, 2023

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1-FD-01

Sample ID: 640869007

Matrix: WG

Collect Date: 09-OCT-23 00:00
Receive Date: 11-OCT-23
Collector: Client

EPA 7470A Mercury Prep Liquid

Project: GPCC00100 Client ID: GPCC001

| Parameter              | Qualifier      | Result       | DL        | RL       | Units    | PF   | DF   | Analy | st Date  | Time | Batch   | Method |
|------------------------|----------------|--------------|-----------|----------|----------|------|------|-------|----------|------|---------|--------|
| Ion Chromatography     |                |              |           |          |          |      |      |       |          |      |         |        |
| EPA 300.0 Anions Liqu  | uid "As Recei  | ived"        |           |          |          |      |      |       |          |      |         |        |
| Sulfate                |                | 804          | 13.3      | 40.0     | mg/L     |      | 100  | LXA2  | 10/13/23 | 0820 | 2507800 | 1      |
| Chloride               |                | 3.06         | 0.134     | 0.400    | mg/L     |      | 2    | LXA2  | 10/13/23 | 2251 | 2507800 | 2      |
| Fluoride               |                | 0.283        | 0.0660    | 0.200    | mg/L     |      | 2    |       |          |      |         |        |
| Mercury Analysis-CVA   | λA             |              |           |          |          |      |      |       |          |      |         |        |
| 7470 Cold Vapor Merc   | ury, Liquid ". | As Received" |           |          |          |      |      |       |          |      |         |        |
| Mercury                | U              | ND           | 0.0000670 | 0.000200 | mg/L     | 1.00 | 1    | JP2   | 10/13/23 | 1213 | 2507487 | 3      |
| Metals Analysis-ICP-M  | IS             |              |           |          |          |      |      |       |          |      |         |        |
| SW846 3005A/6020B '    |                | "            |           |          |          |      |      |       |          |      |         |        |
| Antimony               | U              | ND           | 0.00100   | 0.00300  | mg/L     | 1.00 | 1    | PRB   | 10/14/23 | 1524 | 2507328 | 4      |
| Barium                 |                | 0.0313       | 0.000670  | 0.00400  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Beryllium              | U              | ND           | 0.000200  | 0.000500 | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Cadmium                | J              | 0.000635     | 0.000300  | 0.00100  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Chromium               | U              | ND           | 0.00300   | 0.0100   | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Cobalt                 |                | 0.192        | 0.000300  | 0.00100  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Lead                   | U              | ND           | 0.000500  | 0.00200  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Lithium                |                | 0.0238       | 0.00300   | 0.0100   | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Molybdenum             | U              | ND           | 0.000200  | 0.00100  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Selenium               | U              | ND           | 0.00150   | 0.00500  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Thallium               | U              | ND           | 0.000600  | 0.00200  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Arsenic                | U              | ND           | 0.00200   | 0.00500  | mg/L     | 1.00 | 1    | PRB   | 10/15/23 | 1614 | 2507328 | 5      |
| Boron                  |                | 0.492        | 0.0260    | 0.0750   | mg/L     | 1.00 | 5    | PRB   | 10/15/23 | 2118 | 2507328 | 6      |
| Calcium                |                | 218          | 0.400     | 1.00     | mg/L     | 1.00 | 5    |       |          |      |         |        |
| Solids Analysis        |                |              |           |          |          |      |      |       |          |      |         |        |
| SM2540C Dissolved So   | olids "As Rec  | eived"       |           |          |          |      |      |       |          |      |         |        |
| Total Dissolved Solids |                | 1210         | 4.76      | 20.0     | mg/L     |      |      | CH6   | 10/12/23 | 1423 | 2507357 | 7      |
| The following Prep Me  | thods were pe  | erformed:    |           |          |          |      |      |       |          |      |         |        |
| Method                 | Description    | n            |           | Analyst  | Date     | ,    | Гimе | Pr    | ep Batch |      |         |        |
| SW846 3005A            | ICP-MS 3005    | 5A PREP      |           | SD       | 10/12/23 |      | 1525 | 250   | 07327    |      |         |        |

EK1

10/12/23

1120

2507486

Page 17 of 60 SDG: 640869

SW846 7470A Prep

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 23, 2023

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1-FD-01 Project: GPCC00100 Sample ID: 640869007 Client ID: GPCC001

| Parameter              | Qualifier     | Result          | DL | RL | Units | PF     | DF Analyst Date | Time Batch | Method |
|------------------------|---------------|-----------------|----|----|-------|--------|-----------------|------------|--------|
| The following Analytic | cal Methods w | vere performed: |    |    |       |        |                 |            |        |
| Method                 | Description   |                 |    |    |       | Analys | t Comments      |            |        |
| 1                      | EPA 300.0     |                 |    |    |       |        |                 |            |        |
| 2                      | EPA 300.0     |                 |    |    |       |        |                 |            |        |
| 3                      | SW846 7470A   | L               |    |    |       |        |                 |            |        |
| 4                      | SW846 3005A   | /6020B          |    |    |       |        |                 |            |        |
| 5                      | SW846 3005A   | /6020B          |    |    |       |        |                 |            |        |
| 6                      | SW846 3005A   | /6020B          |    |    |       |        |                 |            |        |
| 7                      | SM 2540C      |                 |    |    |       |        |                 |            |        |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 18 of 60 SDG: 640869

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## Certificate of Analysis

Report Date: October 23, 2023

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-4 Sample ID: 640869008

Matrix: WG

Collect Date: 10-OCT-23 09:10
Receive Date: 11-OCT-23
Collector: Client

Project: GPCC00100 Client ID: GPCC001

| Parameter              | Qualifier       | Result       | DL        | RL       | Units | PF   | DF   | Analy | st Date  | Time Batch   | Method |
|------------------------|-----------------|--------------|-----------|----------|-------|------|------|-------|----------|--------------|--------|
| Ion Chromatography     |                 |              |           |          |       |      |      |       |          |              |        |
| EPA 300.0 Anions Lic   | quid "As Recei  | ived"        |           |          |       |      |      |       |          |              |        |
| Chloride               | •               | 5.59         | 0.335     | 1.00     | mg/L  |      | 5    | LXA2  | 10/13/23 | 2321 2507800 | 1      |
| Fluoride               |                 | 0.565        | 0.165     | 0.500    | mg/L  |      | 5    |       |          |              |        |
| Sulfate                |                 | 1370         | 26.6      | 80.0     | mg/L  |      | 200  | LXA2  | 10/13/23 | 0851 2507800 | 2      |
| Mercury Analysis-CV    | AA              |              |           |          |       |      |      |       |          |              |        |
| 7470 Cold Vapor Mer    | cury, Liquid ". | As Received" |           |          |       |      |      |       |          |              |        |
| Mercury                | U               | ND           | 0.0000670 | 0.000200 | mg/L  | 1.00 | 1    | JP2   | 10/13/23 | 1214 2507487 | 3      |
| Metals Analysis-ICP-N  | MS              |              |           |          | C     |      |      |       |          |              |        |
| SW846 3005A/6020B      | "As Received    | <u>l</u> "   |           |          |       |      |      |       |          |              |        |
| Arsenic                | J               | 0.00302      | 0.00200   | 0.00500  | mg/L  | 1.00 | 1    | PRB   | 10/15/23 | 1616 2507328 | 4      |
| Antimony               | U               | ND           | 0.00100   | 0.00300  | mg/L  | 1.00 | 1    | PRB   | 10/14/23 | 1528 2507328 | 5      |
| Barium                 |                 | 0.0395       | 0.000670  | 0.00400  | mg/L  | 1.00 | 1    |       |          |              |        |
| Beryllium              | U               | ND           | 0.000200  | 0.000500 | mg/L  | 1.00 | 1    |       |          |              |        |
| Cadmium                | U               | ND           | 0.000300  | 0.00100  | mg/L  | 1.00 | 1    |       |          |              |        |
| Chromium               | U               | ND           | 0.00300   | 0.0100   | mg/L  | 1.00 | 1    |       |          |              |        |
| Cobalt                 | J               | 0.000518     | 0.000300  | 0.00100  | mg/L  | 1.00 | 1    |       |          |              |        |
| Lead                   | U               | ND           | 0.000500  | 0.00200  | mg/L  | 1.00 | 1    |       |          |              |        |
| Lithium                | J               | 0.00657      | 0.00300   | 0.0100   | mg/L  | 1.00 | 1    |       |          |              |        |
| Molybdenum             |                 | 0.00398      | 0.000200  | 0.00100  | mg/L  | 1.00 | 1    |       |          |              |        |
| Selenium               | U               | ND           | 0.00150   | 0.00500  | mg/L  | 1.00 | 1    |       |          |              |        |
| Thallium               | U               | ND           | 0.000600  | 0.00200  | mg/L  | 1.00 | 1    |       |          |              |        |
| Boron                  |                 | 4.02         | 0.130     | 0.375    | mg/L  | 1.00 | 25   | PRB   | 10/15/23 | 2120 2507328 | 6      |
| Calcium                |                 | 418          | 2.00      | 5.00     | mg/L  | 1.00 | 25   |       |          |              |        |
| Solids Analysis        |                 |              |           |          |       |      |      |       |          |              |        |
| SM2540C Dissolved S    | Solids "As Rec  | ceived"      |           |          |       |      |      |       |          |              |        |
| Total Dissolved Solids |                 | 2030         | 23.8      | 100      | mg/L  |      |      | CH6   | 10/12/23 | 1423 2507357 | 7      |
| The following Prep M   | ethods were p   | erformed:    |           |          |       |      |      |       |          |              |        |
| Method                 | Descriptio      | n            |           | Analyst  | Date  | ,    | Time | e Pr  | ep Batch |              |        |
|                        |                 |              |           |          |       |      |      |       |          |              |        |

 Method
 Description
 Analyst
 Date
 Time
 Prep Batch

 SW846 3005A
 ICP-MS 3005A PREP
 SD
 10/12/23
 1525
 2507327

 SW846 7470A Prep
 EPA 7470A Mercury Prep Liquid
 EK1
 10/12/23
 1120
 2507486

Page 19 of 60 SDG: 640869

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 23, 2023

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-4 Project: GPCC00100 Sample ID: 640869008 Client ID: GPCC001

| Parameter              | Qualifier Result            | DL | RL | Units | PF    | DF Analyst Date Time Batch Method |
|------------------------|-----------------------------|----|----|-------|-------|-----------------------------------|
| The following Analytic | cal Methods were performed: |    |    |       |       |                                   |
| Method                 | Description                 |    |    | A     | nalys | t Comments                        |
| 1                      | EPA 300.0                   |    |    |       |       |                                   |
| 2                      | EPA 300.0                   |    |    |       |       |                                   |
| 3                      | SW846 7470A                 |    |    |       |       |                                   |
| 4                      | SW846 3005A/6020B           |    |    |       |       |                                   |
| 5                      | SW846 3005A/6020B           |    |    |       |       |                                   |
| 6                      | SW846 3005A/6020B           |    |    |       |       |                                   |
| 7                      | SM 2540C                    |    |    |       |       |                                   |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 20 of 60 SDG: 640869

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## Certificate of Analysis

Report Date: October 23, 2023

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1-FB-02

Sample ID: 640869009

Matrix: WQ

Collect Date: 10-OCT-23 09:30
Receive Date: 11-OCT-23
Collector: Client

EPA 7470A Mercury Prep Liquid

ICP-MS 3005A PREP

Project: GPCC00100 Client ID: GPCC001

| Parameter              | Qualifier       | Result       | DL        | RL       | Units | PF   | DF   | Analy | st Date  | Time B   | atch  | Method |
|------------------------|-----------------|--------------|-----------|----------|-------|------|------|-------|----------|----------|-------|--------|
| Ion Chromatography     |                 |              |           |          |       |      |      |       |          |          |       |        |
| EPA 300.0 Anions Liq   | uid "As Recei   | ved"         |           |          |       |      |      |       |          |          |       |        |
| Chloride               | U               | ND           | 0.0670    | 0.200    | mg/L  |      | 1    | LXA2  | 10/13/23 | 0922 250 | 07800 | 1      |
| Fluoride               | U               | ND           | 0.0330    | 0.100    | mg/L  |      | 1    |       |          |          |       |        |
| Sulfate                | U               | ND           | 0.133     | 0.400    | mg/L  |      | 1    |       |          |          |       |        |
| Mercury Analysis-CV    | AA              |              |           |          |       |      |      |       |          |          |       |        |
| 7470 Cold Vapor Merc   | cury, Liquid "A | As Received" |           |          |       |      |      |       |          |          |       |        |
| Mercury                | U               | ND           | 0.0000670 | 0.000200 | mg/L  | 1.00 | 1    | JP2   | 10/13/23 | 1216 250 | 07487 | 2      |
| Metals Analysis-ICP-N  | ИS              |              |           |          |       |      |      |       |          |          |       |        |
| SW846 3005A/6020B      | "As Received    | "            |           |          |       |      |      |       |          |          |       |        |
| Antimony               | U               | ND           | 0.00100   | 0.00300  | mg/L  | 1.00 | 1    | PRB   | 10/14/23 | 1531 250 | 07328 | 3      |
| Barium                 | U               | ND           | 0.000670  | 0.00400  | mg/L  | 1.00 | 1    |       |          |          |       |        |
| Beryllium              | U               | ND           | 0.000200  | 0.000500 | mg/L  | 1.00 | 1    |       |          |          |       |        |
| Cadmium                | U               | ND           | 0.000300  | 0.00100  | mg/L  | 1.00 | 1    |       |          |          |       |        |
| Calcium                | U               | ND           | 0.0800    | 0.200    | mg/L  | 1.00 | 1    |       |          |          |       |        |
| Chromium               | U               | ND           | 0.00300   | 0.0100   | mg/L  | 1.00 | 1    |       |          |          |       |        |
| Cobalt                 | U               | ND           | 0.000300  | 0.00100  | mg/L  | 1.00 | 1    |       |          |          |       |        |
| Lead                   | U               | ND           | 0.000500  | 0.00200  | mg/L  | 1.00 | 1    |       |          |          |       |        |
| Lithium                | U               | ND           | 0.00300   | 0.0100   | mg/L  | 1.00 | 1    |       |          |          |       |        |
| Molybdenum             | U               | ND           | 0.000200  | 0.00100  | mg/L  | 1.00 | 1    |       |          |          |       |        |
| Selenium               | U               | ND           | 0.00150   | 0.00500  | mg/L  | 1.00 | 1    |       |          |          |       |        |
| Thallium               | U               | ND           | 0.000600  | 0.00200  | mg/L  | 1.00 | 1    |       |          |          |       |        |
| Boron                  | U               | ND           | 0.00520   | 0.0150   | mg/L  | 1.00 | 1    | PRB   | 10/16/23 | 1046 250 | 07328 | 4      |
| Arsenic                | J               | 0.00204      | 0.00200   | 0.00500  | mg/L  | 1.00 | 1    | PRB   | 10/15/23 | 1622 250 | 07328 | 5      |
| Solids Analysis        |                 |              |           |          |       |      |      |       |          |          |       |        |
| SM2540C Dissolved S    | olids "As Rec   | eived"       |           |          |       |      |      |       |          |          |       |        |
| Total Dissolved Solids | U               | ND           | 2.38      | 10.0     | mg/L  |      |      | CH6   | 10/12/23 | 1423 250 | 07357 | 6      |
| The following Prep Me  | ethods were pe  | erformed:    |           |          |       |      |      |       |          |          |       |        |
| Method                 | Description     | n            |           | Analyst  | Date  | ,    | Time | e Pr  | ep Batch |          |       |        |

EK1

SD

10/12/23

10/12/23

1120

1525

2507486

2507327

Page 21 of 60 SDG: 640869

SW846 7470A Prep

SW846 3005A

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 23, 2023

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1-FB-02 Project: GPCC00100 Sample ID: 640869009 Client ID: GPCC001

| Parameter           | Qualifier Result              | DL | RL | Units I | PF DF Analyst Date | Time Batch Method |
|---------------------|-------------------------------|----|----|---------|--------------------|-------------------|
| The following Analy | tical Methods were performed: |    |    |         |                    |                   |
| Method              | Description                   |    |    | An      | alyst Comments     |                   |
| 1                   | EPA 300.0                     |    |    |         |                    |                   |
| 2                   | SW846 7470A                   |    |    |         |                    |                   |
| 3                   | SW846 3005A/6020B             |    |    |         |                    |                   |
| 4                   | SW846 3005A/6020B             |    |    |         |                    |                   |
| 5                   | SW846 3005A/6020B             |    |    |         |                    |                   |
| 6                   | SM 2540C                      |    |    |         |                    |                   |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 22 of 60 SDG: 640869

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## Certificate of Analysis

Report Date: October 23, 2023

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-3 Sample ID: 640869010

Matrix: WG

Collect Date: 10-OCT-23 09:30 Receive Date: 11-OCT-23 Collector: Client

Project: GPCC00100 Client ID: GPCC001

| Parameter              | Qualifier       | Result              | DL        | RL       | Units    | PF   | DF   | Analy | st Date  | Time Batch  | Method |
|------------------------|-----------------|---------------------|-----------|----------|----------|------|------|-------|----------|-------------|--------|
| Ion Chromatography     |                 |                     |           |          |          |      |      |       |          |             |        |
| EPA 300.0 Anions Lic   | quid "As Recei  | ved"                |           |          |          |      |      |       |          |             |        |
| Sulfate                | 1               | 1290                | 13.3      | 40.0     | mg/L     |      | 100  | LXA2  | 10/13/23 | 0952 250780 | ) 1    |
| Chloride               |                 | 4.77                | 0.335     | 1.00     | mg/L     |      | 5    | LXA2  | 10/14/23 | 0054 250780 | ) 2    |
| Fluoride               | U               | ND                  | 0.165     | 0.500    | mg/L     |      | 5    |       |          |             |        |
| Mercury Analysis-CV    | AA              |                     |           |          |          |      |      |       |          |             |        |
| 7470 Cold Vapor Mer    | cury, Liquid "A | As Received"        |           |          |          |      |      |       |          |             |        |
| Mercury                | U               | ND                  | 0.0000670 | 0.000200 | mg/L     | 1.00 | 1    | JP2   | 10/13/23 | 1218 250748 | 7 3    |
| Metals Analysis-ICP-I  | MS              |                     |           |          |          |      |      |       |          |             |        |
| SW846 3005A/6020B      | "As Received    | "                   |           |          |          |      |      |       |          |             |        |
| Antimony               | U               | ND                  | 0.00100   | 0.00300  | mg/L     | 1.00 | 1    | PRB   | 10/14/23 | 1535 250732 | 3 4    |
| Barium                 |                 | 0.0254              | 0.000670  | 0.00400  | mg/L     | 1.00 | 1    |       |          |             |        |
| Beryllium              | U               | ND                  | 0.000200  | 0.000500 | mg/L     | 1.00 | 1    |       |          |             |        |
| Cadmium                |                 | 0.00195             | 0.000300  | 0.00100  | mg/L     | 1.00 | 1    |       |          |             |        |
| Chromium               | U               | ND                  | 0.00300   | 0.0100   | mg/L     | 1.00 | 1    |       |          |             |        |
| Cobalt                 |                 | 0.0639              | 0.000300  | 0.00100  | mg/L     | 1.00 | 1    |       |          |             |        |
| Lead                   | U               | ND                  | 0.000500  | 0.00200  | mg/L     | 1.00 | 1    |       |          |             |        |
| Lithium                |                 | 0.0659              | 0.00300   | 0.0100   | mg/L     | 1.00 | 1    |       |          |             |        |
| Molybdenum             | J               | 0.000299            | 0.000200  | 0.00100  | mg/L     | 1.00 | 1    |       |          |             |        |
| Selenium               | U               | ND                  | 0.00150   | 0.00500  | mg/L     | 1.00 | 1    |       |          |             |        |
| Thallium               | U               | ND                  | 0.000600  | 0.00200  | mg/L     | 1.00 | 1    |       |          |             |        |
| Arsenic                | U               | ND                  | 0.00200   | 0.00500  | mg/L     | 1.00 | 1    | PRB   | 10/15/23 | 1625 250732 | 3 5    |
| Boron                  |                 | 1.71                | 0.104     | 0.300    | mg/L     | 1.00 | 20   | PRB   | 10/15/23 | 2126 250732 | 6      |
| Calcium                |                 | 434                 | 1.60      | 4.00     | mg/L     | 1.00 | 20   |       |          |             |        |
| Solids Analysis        |                 |                     |           |          |          |      |      |       |          |             |        |
| SM2540C Dissolved S    | Solids "As Rec  | eived"              |           |          |          |      |      |       |          |             |        |
| Total Dissolved Solids |                 | 1830                | 23.8      | 100      | mg/L     |      |      | CH6   | 10/12/23 | 1423 250735 | 7 7    |
| The following Prep M   | ethods were pe  | erformed:           |           |          |          |      |      |       |          |             |        |
| Method                 | Description     | n                   |           | Analyst  | Date     | -    | Гіте | e Pr  | ep Batch |             |        |
| SW846 7470A Prep       | EPA 7470A N     | Mercury Prep Liquid |           | EK1      | 10/12/23 | 1    | 1120 | 250   | 07486    |             |        |
| SW846 3005A            | ICP-MS 3005     | SA PREP             |           | SD       | 10/12/23 | 1    | 1525 | 250   | 07327    |             |        |

Page 23 of 60 SDG: 640869

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 23, 2023

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-3 Project: GPCC00100 Sample ID: 640869010 Client ID: GPCC001

| Parameter              | Qualifier     | Result          | DL | RL | Units | PF     | DF Analyst Date | Time Batch | Method |
|------------------------|---------------|-----------------|----|----|-------|--------|-----------------|------------|--------|
| The following Analytic | cal Methods w | vere performed: |    |    |       |        |                 |            |        |
| Method                 | Description   |                 |    |    |       | Analys | t Comments      |            |        |
| 1                      | EPA 300.0     |                 |    |    |       |        |                 |            |        |
| 2                      | EPA 300.0     |                 |    |    |       |        |                 |            |        |
| 3                      | SW846 7470A   | <b>.</b>        |    |    |       |        |                 |            |        |
| 4                      | SW846 3005A   | /6020B          |    |    |       |        |                 |            |        |
| 5                      | SW846 3005A   | /6020B          |    |    |       |        |                 |            |        |
| 6                      | SW846 3005A   | /6020B          |    |    |       |        |                 |            |        |
| 7                      | SM 2540C      |                 |    |    |       |        |                 |            |        |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 24 of 60 SDG: 640869

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

# Certificate of Analysis

Report Date: October 23, 2023

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-8 Sample ID: 640869011

Matrix: WG

Collect Date: 10-OCT-23 11:55
Receive Date: 11-OCT-23
Collector: Client

ICP-MS 3005A PREP

Project: GPCC00100 Client ID: GPCC001

| Parameter                                                                                                                                                          | Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Result                                                                                                   | DL                                                                                                   | RL                                                                                            | Units                                   | PF                                                           | DF                                             | Analy | st Date              | Time | Batch   | Method |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------|------------------------------------------------|-------|----------------------|------|---------|--------|
| Ion Chromatography                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |                                                                                                      |                                                                                               |                                         |                                                              |                                                |       |                      |      |         |        |
| EPA 300.0 Anions Liq                                                                                                                                               | uid "As Recei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ved"                                                                                                     |                                                                                                      |                                                                                               |                                         |                                                              |                                                |       |                      |      |         |        |
| Sulfate                                                                                                                                                            | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 680                                                                                                      | 13.3                                                                                                 | 40.0                                                                                          | mg/L                                    |                                                              | 100                                            | LXA2  | 10/13/23             | 1023 | 2507800 | 1      |
| Chloride                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.72                                                                                                     | 0.134                                                                                                | 0.400                                                                                         | mg/L                                    |                                                              | 2                                              | LXA2  | 10/14/23             | 0125 | 2507800 | 2      |
| Fluoride                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.292                                                                                                    | 0.0660                                                                                               | 0.200                                                                                         | mg/L                                    |                                                              | 2                                              |       |                      |      |         |        |
| Mercury Analysis-CV                                                                                                                                                | AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                          |                                                                                                      |                                                                                               |                                         |                                                              |                                                |       |                      |      |         |        |
| 7470 Cold Vapor Merc                                                                                                                                               | cury, Liquid "A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | As Received"                                                                                             |                                                                                                      |                                                                                               |                                         |                                                              |                                                |       |                      |      |         |        |
| Mercury                                                                                                                                                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND                                                                                                       | 0.0000670                                                                                            | 0.000200                                                                                      | mg/L                                    | 1.00                                                         | 1                                              | JP2   | 10/13/23             | 1219 | 2507487 | 3      |
| Metals Analysis-ICP-N                                                                                                                                              | ИS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                          |                                                                                                      |                                                                                               | C                                       |                                                              |                                                |       |                      |      |         |        |
| SW846 3005A/6020B                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | "                                                                                                        |                                                                                                      |                                                                                               |                                         |                                                              |                                                |       |                      |      |         |        |
| Boron                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.88                                                                                                     | 0.104                                                                                                | 0.300                                                                                         | mg/L                                    | 1.00                                                         | 20                                             | PRB   | 10/15/23             | 2127 | 2507328 | 4      |
| Calcium                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 311                                                                                                      | 1.60                                                                                                 | 4.00                                                                                          | mg/L                                    | 1.00                                                         |                                                |       |                      |      |         |        |
| Antimony                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND                                                                                                       | 0.00100                                                                                              | 0.00300                                                                                       | mg/L                                    | 1.00                                                         | 1                                              | PRB   | 10/14/23             | 1546 | 2507328 | 5      |
| Barium                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0449                                                                                                   | 0.000670                                                                                             | 0.00400                                                                                       | mg/L                                    | 1.00                                                         | 1                                              |       |                      |      |         |        |
| Beryllium                                                                                                                                                          | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND                                                                                                       | 0.000200                                                                                             | 0.000500                                                                                      | mg/L                                    | 1.00                                                         | 1                                              |       |                      |      |         |        |
| Cadmium                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00125                                                                                                  | 0.000300                                                                                             | 0.00100                                                                                       | mg/L                                    | 1.00                                                         | 1                                              |       |                      |      |         |        |
| Chromium                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND                                                                                                       | 0.00300                                                                                              | 0.0100                                                                                        | mg/L                                    | 1.00                                                         | 1                                              |       |                      |      |         |        |
| Cobalt                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00118                                                                                                  | 0.000300                                                                                             | 0.00100                                                                                       | mg/L                                    | 1.00                                                         | 1                                              |       |                      |      |         |        |
| Lead                                                                                                                                                               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND                                                                                                       | 0.000500                                                                                             | 0.00200                                                                                       | mg/L                                    | 1.00                                                         | 1                                              |       |                      |      |         |        |
| Lithium                                                                                                                                                            | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00315                                                                                                  | 0.00300                                                                                              | 0.0100                                                                                        | mg/L                                    | 1.00                                                         | 1                                              |       |                      |      |         |        |
| Molybdenum                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.729                                                                                                    | 0.000200                                                                                             | 0.00100                                                                                       | mg/L                                    | 1.00                                                         | 1                                              |       |                      |      |         |        |
| Selenium                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND                                                                                                       | 0.00150                                                                                              | 0.00500                                                                                       | mg/L                                    | 1.00                                                         | 1                                              |       |                      |      |         |        |
| Thallium                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND                                                                                                       | 0.000600                                                                                             | 0.00200                                                                                       | mg/L                                    | 1.00                                                         | 1                                              |       |                      |      |         |        |
| Arsenic                                                                                                                                                            | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00326                                                                                                  | 0.00200                                                                                              | 0.00500                                                                                       | mg/L                                    | 1.00                                                         | 1                                              | PRB   | 10/15/23             | 1627 | 2507328 | 6      |
| Solids Analysis                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |                                                                                                      |                                                                                               |                                         |                                                              |                                                |       |                      |      |         |        |
| SM2540C Dissolved S                                                                                                                                                | olids "As Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eived"                                                                                                   |                                                                                                      |                                                                                               |                                         |                                                              |                                                |       |                      |      |         |        |
| Total Dissolved Solids                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1370                                                                                                     | 4.76                                                                                                 | 20.0                                                                                          | mg/L                                    |                                                              |                                                | CH6   | 10/12/23             | 1423 | 2507357 | 7      |
| The following Prep Me                                                                                                                                              | ethods were pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | erformed:                                                                                                |                                                                                                      |                                                                                               |                                         |                                                              |                                                |       |                      |      |         |        |
| Method                                                                                                                                                             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n                                                                                                        |                                                                                                      | Analyst                                                                                       | Date                                    | -                                                            | Гimе                                           | Pro   | ep Batch             |      |         |        |
| SW846 7470A Prep                                                                                                                                                   | EPA 7470A N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mercury Prep Liquid                                                                                      |                                                                                                      | EK1                                                                                           | 10/12/23                                | 1                                                            | 1120                                           | 250   | 07486                |      |         |        |
| Cadmium Chromium Cobalt Lead Lithium Molybdenum Selenium Thallium Arsenic Solids Analysis SM2540C Dissolved S Total Dissolved Solids The following Prep Med Method | U U J volids "As Recethods were perpendicular to the control of th | 0.00125<br>ND<br>0.00118<br>ND<br>0.00315<br>0.729<br>ND<br>ND<br>0.00326<br>eived"<br>1370<br>erformed: | 0.000300<br>0.00300<br>0.000300<br>0.000500<br>0.00300<br>0.000200<br>0.00150<br>0.000600<br>0.00200 | 0.00100<br>0.0100<br>0.00100<br>0.00200<br>0.0100<br>0.00100<br>0.00500<br>0.00200<br>0.00500 | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | CH6   | 10/12/23<br>ep Batch |      |         |        |

SD

10/12/23

1525

2507327

Page 25 of 60 SDG: 640869

SW846 3005A

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 23, 2023

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-8 Project: GPCC00100 Sample ID: 640869011 Client ID: GPCC001

| Parameter              | Qualifier     | Result          | DL | RL | Units | PF     | DF Analyst Date | Time Batch | Method |
|------------------------|---------------|-----------------|----|----|-------|--------|-----------------|------------|--------|
| The following Analytic | cal Methods w | vere performed: |    |    |       |        |                 |            |        |
| Method                 | Description   |                 |    |    |       | Analys | t Comments      |            |        |
| 1                      | EPA 300.0     |                 |    |    |       |        |                 |            |        |
| 2                      | EPA 300.0     |                 |    |    |       |        |                 |            |        |
| 3                      | SW846 7470A   | <b>.</b>        |    |    |       |        |                 |            |        |
| 4                      | SW846 3005A   | /6020B          |    |    |       |        |                 |            |        |
| 5                      | SW846 3005A   | /6020B          |    |    |       |        |                 |            |        |
| 6                      | SW846 3005A   | /6020B          |    |    |       |        |                 |            |        |
| 7                      | SM 2540C      |                 |    |    |       |        |                 |            |        |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 26 of 60 SDG: 640869

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

# Certificate of Analysis

Report Date: October 23, 2023

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-5 Sample ID: 640869012

Matrix: WG

Collect Date: 10-OCT-23 11:20 Receive Date: 11-OCT-23 Collector: Client

EPA 7470A Mercury Prep Liquid

Project: GPCC00100 Client ID: GPCC001

| Parameter              | Qualifier      | Result       | DL        | RL       | Units    | PF   | DF   | Analy | st Date  | Time | Batch   | Method |
|------------------------|----------------|--------------|-----------|----------|----------|------|------|-------|----------|------|---------|--------|
| Ion Chromatography     |                |              |           |          |          |      |      |       |          |      |         |        |
| EPA 300.0 Anions Lie   | quid "As Recei | ived"        |           |          |          |      |      |       |          |      |         |        |
| Sulfate                | 1              | 1970         | 26.6      | 80.0     | mg/L     |      | 200  | LXA2  | 10/13/23 | 1054 | 2507800 | 1      |
| Chloride               |                | 7.01         | 0.335     | 1.00     | mg/L     |      | 5    | LXA2  | 10/14/23 | 0156 | 2507800 | 2      |
| Fluoride               | J              | 0.409        | 0.165     | 0.500    | mg/L     |      | 5    |       |          |      |         |        |
| Mercury Analysis-CV    | AA             |              |           |          |          |      |      |       |          |      |         |        |
| 7470 Cold Vapor Mer    | cury, Liquid " | As Received" |           |          |          |      |      |       |          |      |         |        |
| Mercury                | U              | ND           | 0.0000670 | 0.000200 | mg/L     | 1.00 | 1    | JP2   | 10/13/23 | 1221 | 2507487 | 3      |
| Metals Analysis-ICP-   | MS             |              |           |          | Ü        |      |      |       |          |      |         |        |
| SW846 3005A/6020B      |                | "            |           |          |          |      |      |       |          |      |         |        |
| Arsenic                | J              | 0.00493      | 0.00200   | 0.00500  | mg/L     | 1.00 | 1    | PRB   | 10/15/23 | 1629 | 2507328 | 4      |
| Boron                  |                | 7.16         | 0.520     | 1.50     | mg/L     | 1.00 | 100  | PRB   | 10/15/23 | 2129 | 2507328 | 5      |
| Calcium                |                | 589          | 8.00      | 20.0     | mg/L     | 1.00 | 100  |       |          |      |         |        |
| Antimony               | U              | ND           | 0.00100   | 0.00300  | mg/L     | 1.00 | 1    | PRB   | 10/14/23 | 1549 | 2507328 | 6      |
| Barium                 |                | 0.0362       | 0.000670  | 0.00400  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Beryllium              | U              | ND           | 0.000200  | 0.000500 | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Cadmium                | U              | ND           | 0.000300  | 0.00100  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Chromium               | U              | ND           | 0.00300   | 0.0100   | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Cobalt                 |                | 0.0631       | 0.000300  | 0.00100  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Lead                   | U              | ND           | 0.000500  | 0.00200  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Lithium                |                | 0.343        | 0.00300   | 0.0100   | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Molybdenum             |                | 0.0437       | 0.000200  | 0.00100  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Selenium               | U              | ND           | 0.00150   | 0.00500  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Thallium               | U              | ND           | 0.000600  | 0.00200  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Solids Analysis        |                |              |           |          |          |      |      |       |          |      |         |        |
| SM2540C Dissolved S    | Solids "As Rec | eived"       |           |          |          |      |      |       |          |      |         |        |
| Total Dissolved Solids |                | 3080         | 23.8      | 100      | mg/L     |      |      | CH6   | 10/12/23 | 1423 | 2507357 | 7      |
| The following Prep M   | ethods were po | erformed:    |           |          |          |      |      |       |          |      |         |        |
| Method                 | Description    | n            |           | Analyst  | Date     | -    | Гimе | Pr    | ep Batch |      |         |        |
| SW846 3005A            | ICP-MS 3005    | 5A PREP      |           | SD       | 10/12/23 | 1    | 1525 | 250   | 07327    |      |         |        |

EK1

10/12/23

1120

2507486

Page 27 of 60 SDG: 640869

SW846 7470A Prep

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 23, 2023

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-5 Project: GPCC00100 Sample ID: 640869012 Client ID: GPCC001

| Parameter              | Qualifier    | Result          | DL | RL | Units | PF     | DF Analyst Date | Time Batch | Method |
|------------------------|--------------|-----------------|----|----|-------|--------|-----------------|------------|--------|
| The following Analytic | al Methods w | vere performed: |    |    |       |        |                 |            |        |
| Method                 | Description  |                 |    |    | 1     | Analys | st Comments     |            |        |
| 1                      | EPA 300.0    |                 |    |    |       |        |                 |            |        |
| 2                      | EPA 300.0    |                 |    |    |       |        |                 |            |        |
| 3                      | SW846 7470A  |                 |    |    |       |        |                 |            |        |
| 4                      | SW846 3005A  | /6020B          |    |    |       |        |                 |            |        |
| 5                      | SW846 3005A  | /6020B          |    |    |       |        |                 |            |        |
| 6                      | SW846 3005A  | /6020B          |    |    |       |        |                 |            |        |
| 7                      | SM 2540C     |                 |    |    |       |        |                 |            |        |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 28 of 60 SDG: 640869

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

# Certificate of Analysis

Project:

Client ID:

Report Date: October 23, 2023

GPCC00100

GPCC001

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance AP1

Client Sample ID: ARK-AP1-EB-02

Sample ID: 640869013

Matrix: WQ

Collect Date: 10-OCT-23 12:10
Receive Date: 11-OCT-23
Collector: Client

RL Parameter **Oualifier** DL Units PF DF Analyst Date Time Batch Method Result Ion Chromatography EPA 300.0 Anions Liquid "As Received" Chloride 0.206 0.0670 0.200 mg/L LXA2 10/13/23 1125 2507800 1 Fluoride 0.0330 U ND 0.100 mg/L 1 Sulfate U ND 0.133 0.400 mg/L 1 Mercury Analysis-CVAA 7470 Cold Vapor Mercury, Liquid "As Received" Mercury ND 0.0000670 0.000200 mg/L 1.00 1 JP2 10/13/23 1223 2507487 2 Metals Analysis-ICP-MS SW846 3005A/6020B "As Received" ND 0.00100 0.00300 PRB 10/14/23 1553 2507328 Antimony U mg/L 1.00 1 3 Barium U ND 0.000670 0.00400 mg/L 1.00 1 Beryllium U ND 0.000200 0.000500mg/L 1.00 1 U 0.000300 0.00100 mg/L 1.00 Cadmium ND 1 1.00 Calcium 0.115 0.0800 0.200 mg/L1 J mg/L Chromium U 0.00300 0.0100 1.00 1 ND Cobalt U ND 0.000300 0.00100mg/L 1.00 1 U 0.00200 1.00 Lead ND 0.000500mg/L Lithium U ND 0.00300 0.0100 mg/L 1.00 1 Molybdenum J 0.000205 0.000200 0.00100 mg/L 1.00 1 U ND 0.00500 mg/L 1.00 Selenium 0.00150 1 U Thallium ND 0.00200 mg/L 1.00 0.000600 1 Boron U ND 0.00520 0.0150 mg/L 1.00 1 PRB 10/16/23 1048 2507328 4 0.00200 0.00500 PRB Arsenic ND mg/L 1.00 1 10/15/23 1631 2507328 5 Solids Analysis SM2540C Dissolved Solids "As Received" Total Dissolved Solids 2.38 10.0 CH6 10/12/23 1423 2507357 mg/L 6 The following Prep Methods were performed:

Method Description Date Prep Batch Analyst Time SW846 3005A ICP-MS 3005A PREP SD 10/12/23 1525 2507327 SW846 7470A Prep EPA 7470A Mercury Prep Liquid EK1 10/12/23 1120 2507486

Page 29 of 60 SDG: 640869

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 23, 2023

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1-EB-02 Project: GPCC00100 Sample ID: 640869013 Client ID: GPCC001

| Parameter             | Qualifier Result            | DL | RL | Units | PF     | DF Analyst Date | Time Batch | Method |
|-----------------------|-----------------------------|----|----|-------|--------|-----------------|------------|--------|
| The following Analyti | cal Methods were performed: |    |    |       |        |                 |            |        |
| Method                | Description                 |    |    | 1     | Analys | st Comments     |            |        |
| 1                     | EPA 300.0                   |    |    |       |        |                 |            |        |
| 2                     | SW846 7470A                 |    |    |       |        |                 |            |        |
| 3                     | SW846 3005A/6020B           |    |    |       |        |                 |            |        |
| 4                     | SW846 3005A/6020B           |    |    |       |        |                 |            |        |
| 5                     | SW846 3005A/6020B           |    |    |       |        |                 |            |        |
| 6                     | SM 2540C                    |    |    |       |        |                 |            |        |

### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 30 of 60 SDG: 640869

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

# Certificate of Analysis

Report Date: October 23, 2023

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-7 Sample ID: 640869014

Matrix: WG

Collect Date: 10-OCT-23 13:50
Receive Date: 11-OCT-23
Collector: Client

Project: GPCC00100 Client ID: GPCC001

| Parameter              | Qualifier      | Result              | DL        | RL       | Units    | PF   | DF   | Analy | st Date  | Time | Batch   | Method |
|------------------------|----------------|---------------------|-----------|----------|----------|------|------|-------|----------|------|---------|--------|
| Ion Chromatography     |                |                     |           |          |          |      |      |       |          |      |         |        |
| EPA 300.0 Anions Liq   | uid "As Recei  | ved"                |           |          |          |      |      |       |          |      |         |        |
| Sulfate                |                | 1370                | 13.3      | 40.0     | mg/L     |      | 100  | LXA2  | 10/13/23 | 1156 | 2507800 | 1      |
| Chloride               |                | 6.29                | 0.335     | 1.00     | mg/L     |      | 5    | LXA2  | 10/14/23 | 0227 | 2507800 | 2      |
| Fluoride               | J              | 0.270               | 0.165     | 0.500    | mg/L     |      | 5    |       |          |      |         |        |
| Mercury Analysis-CVA   | AA             |                     |           |          |          |      |      |       |          |      |         |        |
| 7470 Cold Vapor Merc   | ury, Liquid "A | As Received"        |           |          |          |      |      |       |          |      |         |        |
| Mercury                | U              | ND                  | 0.0000670 | 0.000200 | mg/L     | 1.00 | 1    | JP2   | 10/13/23 | 1224 | 2507487 | 3      |
| Metals Analysis-ICP-M  | 1S             |                     |           |          | C        |      |      |       |          |      |         |        |
| SW846 3005A/6020B      |                | "                   |           |          |          |      |      |       |          |      |         |        |
| Arsenic                | J              | 0.00399             | 0.00200   | 0.00500  | mg/L     | 1.00 | 1    | PRB   | 10/15/23 | 1633 | 2507328 | 4      |
| Boron                  |                | 2.76                | 0.104     | 0.300    | mg/L     | 1.00 | 20   | PRB   | 10/15/23 | 2131 | 2507328 | 5      |
| Calcium                |                | 383                 | 1.60      | 4.00     | mg/L     | 1.00 | 20   |       |          |      |         |        |
| Antimony               | U              | ND                  | 0.00100   | 0.00300  | mg/L     | 1.00 | 1    | PRB   | 10/14/23 | 1556 | 2507328 | 6      |
| Barium                 |                | 0.0421              | 0.000670  | 0.00400  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Beryllium              | U              | ND                  | 0.000200  | 0.000500 | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Cadmium                | U              | ND                  | 0.000300  | 0.00100  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Chromium               | U              | ND                  | 0.00300   | 0.0100   | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Cobalt                 |                | 0.00123             | 0.000300  | 0.00100  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Lead                   | U              | ND                  | 0.000500  | 0.00200  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Lithium                | J              | 0.00302             | 0.00300   | 0.0100   | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Molybdenum             |                | 0.00367             | 0.000200  | 0.00100  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Selenium               | U              | ND                  | 0.00150   | 0.00500  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Thallium               | U              | ND                  | 0.000600  | 0.00200  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Solids Analysis        |                |                     |           |          |          |      |      |       |          |      |         |        |
| SM2540C Dissolved S    | olids "As Rec  | eived"              |           |          |          |      |      |       |          |      |         |        |
| Total Dissolved Solids |                | 1960                | 23.8      | 100      | mg/L     |      |      | CH6   | 10/12/23 | 1423 | 2507357 | 7      |
| The following Prep Me  | ethods were pe | erformed:           |           |          |          |      |      |       |          |      |         |        |
| Method                 | Description    | 1                   |           | Analyst  | Date     | 7    | Гіте | Pr    | ep Batch |      |         |        |
| SW846 7470A Prep       | EPA 7470A N    | Mercury Prep Liquid |           | EK1      | 10/12/23 | 1    | 1120 | 250   | 07486    |      |         |        |
| SW846 3005A            | ICP-MS 3005    | SA PREP             |           | SD       | 10/12/23 | 1    | 1525 | 250   | 07327    |      |         |        |

Page 31 of 60 SDG: 640869

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 23, 2023

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-7 Project: GPCC00100 Sample ID: 640869014 Client ID: GPCC001

| Parameter              | Qualifier     | Result          | DL | RL | Units | PF     | DF Analyst Date | Time Batch | Method |
|------------------------|---------------|-----------------|----|----|-------|--------|-----------------|------------|--------|
| The following Analytic | cal Methods w | vere performed: |    |    |       |        |                 |            |        |
| Method                 | Description   |                 |    |    |       | Analys | t Comments      |            |        |
| 1                      | EPA 300.0     |                 |    |    |       |        |                 |            |        |
| 2                      | EPA 300.0     |                 |    |    |       |        |                 |            |        |
| 3                      | SW846 7470A   | <b>.</b>        |    |    |       |        |                 |            |        |
| 4                      | SW846 3005A   | /6020B          |    |    |       |        |                 |            |        |
| 5                      | SW846 3005A   | /6020B          |    |    |       |        |                 |            |        |
| 6                      | SW846 3005A   | /6020B          |    |    |       |        |                 |            |        |
| 7                      | SM 2540C      |                 |    |    |       |        |                 |            |        |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 32 of 60 SDG: 640869

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

# Certificate of Analysis

Report Date: October 23, 2023

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-10 Sample ID: 640869015

Matrix: WG

Collect Date: 10-OCT-23 14:20 Receive Date: 11-OCT-23 Collector: Client

EPA 7470A Mercury Prep Liquid

Project: GPCC00100 Client ID: GPCC001

| Ion Chromatography EPA 300.0 Anions Liquid "As Refluoride Chloride Sulfate | ceiv         | ved"<br>0.647<br>10.9 | 0.0330    |          |          |      |      |      |          |      |         |   |
|----------------------------------------------------------------------------|--------------|-----------------------|-----------|----------|----------|------|------|------|----------|------|---------|---|
| Fluoride<br>Chloride                                                       | ceiv         | 0.647                 | 0.0330    |          |          |      |      |      |          |      |         |   |
| Fluoride<br>Chloride                                                       |              | 0.647                 | 0.0330    |          |          |      |      |      |          |      |         |   |
|                                                                            |              | 10.9                  |           | 0.100    | mg/L     |      | 1    | LXA2 | 10/14/23 | 0257 | 2507800 | 1 |
| Sulfate                                                                    |              |                       | 1.34      | 4.00     | mg/L     |      | 20   | LXA2 | 10/13/23 | 1329 | 2507800 | 2 |
| Bullate                                                                    |              | 231                   | 2.66      | 8.00     | mg/L     |      | 20   |      |          |      |         |   |
| Mercury Analysis-CVAA                                                      |              |                       |           |          |          |      |      |      |          |      |         |   |
| 7470 Cold Vapor Mercury, Liqui                                             | 1 "A         | s Received"           |           |          |          |      |      |      |          |      |         |   |
| Mercury                                                                    | J            | ND                    | 0.0000670 | 0.000200 | mg/L     | 1.00 | 1    | JP2  | 10/13/23 | 1226 | 2507487 | 3 |
| Metals Analysis-ICP-MS                                                     |              |                       |           |          | C        |      |      |      |          |      |         |   |
| SW846 3005A/6020B "As Recei                                                | ed"          |                       |           |          |          |      |      |      |          |      |         |   |
| Boron                                                                      |              | 0.357                 | 0.0260    | 0.0750   | mg/L     | 1.00 | 5    | PRB  | 10/15/23 | 2133 | 2507328 | 4 |
| Calcium                                                                    |              | 90.4                  | 0.400     | 1.00     | mg/L     | 1.00 | 5    |      |          |      |         |   |
| Antimony                                                                   | J            | ND                    | 0.00100   | 0.00300  | mg/L     | 1.00 | 1    | PRB  | 10/14/23 | 1600 | 2507328 | 5 |
| Barium                                                                     |              | 0.0347                | 0.000670  | 0.00400  | mg/L     | 1.00 | 1    |      |          |      |         |   |
| Beryllium                                                                  | J            | ND                    | 0.000200  | 0.000500 | mg/L     | 1.00 | 1    |      |          |      |         |   |
| Cadmium                                                                    | J            | ND                    | 0.000300  | 0.00100  | mg/L     | 1.00 | 1    |      |          |      |         |   |
| Chromium                                                                   | J            | ND                    | 0.00300   | 0.0100   | mg/L     | 1.00 | 1    |      |          |      |         |   |
| Cobalt                                                                     |              | 0.00140               | 0.000300  | 0.00100  | mg/L     | 1.00 | 1    |      |          |      |         |   |
| Lead                                                                       | J            | ND                    | 0.000500  | 0.00200  | mg/L     | 1.00 | 1    |      |          |      |         |   |
| Lithium                                                                    |              | 0.0189                | 0.00300   | 0.0100   | mg/L     | 1.00 | 1    |      |          |      |         |   |
| Molybdenum                                                                 |              | 0.00214               | 0.000200  | 0.00100  | mg/L     | 1.00 | 1    |      |          |      |         |   |
| Selenium                                                                   | J            | ND                    | 0.00150   | 0.00500  | mg/L     | 1.00 | 1    |      |          |      |         |   |
| Thallium                                                                   | J            | ND                    | 0.000600  | 0.00200  | mg/L     | 1.00 | 1    |      |          |      |         |   |
| Arsenic                                                                    | J            | 0.00382               | 0.00200   | 0.00500  | mg/L     | 1.00 | 1    | PRB  | 10/15/23 | 1635 | 2507328 | 6 |
| Solids Analysis                                                            |              |                       |           |          |          |      |      |      |          |      |         |   |
| SM2540C Dissolved Solids "As I                                             | Rece         | ived"                 |           |          |          |      |      |      |          |      |         |   |
| Total Dissolved Solids                                                     |              | 499                   | 2.38      | 10.0     | mg/L     |      |      | CH6  | 10/13/23 | 1601 | 2508295 | 7 |
| The following Prep Methods wer                                             | e pei        | rformed:              |           |          |          |      |      |      |          |      |         |   |
| Method Descrip                                                             | tion         |                       |           | Analyst  | Date     | 7    | Γime | Pre  | ep Batch |      |         |   |
| SW846 3005A ICP-MS                                                         | 005 <i>A</i> | A PREP                |           | SD       | 10/12/23 | 1    | 525  | 250  | 7327     |      |         |   |

EK1

10/12/23

1120

2507486

Page 33 of 60 SDG: 640869

SW846 7470A Prep

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 23, 2023

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-10 Project: GPCC00100 Sample ID: 640869015 Client ID: GPCC001

| Parameter              | Qualifier     | Result          | DL | RL | Units | PF     | DF Analyst Date | Time Batch | Method |
|------------------------|---------------|-----------------|----|----|-------|--------|-----------------|------------|--------|
| The following Analytic | cal Methods w | vere performed: |    |    |       |        |                 |            |        |
| Method                 | Description   |                 |    |    |       | Analys | t Comments      |            |        |
| 1                      | EPA 300.0     |                 |    |    |       |        |                 |            |        |
| 2                      | EPA 300.0     |                 |    |    |       |        |                 |            |        |
| 3                      | SW846 7470A   | <b>.</b>        |    |    |       |        |                 |            |        |
| 4                      | SW846 3005A   | /6020B          |    |    |       |        |                 |            |        |
| 5                      | SW846 3005A   | /6020B          |    |    |       |        |                 |            |        |
| 6                      | SW846 3005A   | /6020B          |    |    |       |        |                 |            |        |
| 7                      | SM 2540C      |                 |    |    |       |        |                 |            |        |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 34 of 60 SDG: 640869

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

# Certificate of Analysis

Report Date: October 23, 2023

GPCC00100

GPCC001

Project:

Client ID:

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-11 Sample ID: 640869016

Matrix: WG

Collect Date: 10-OCT-23 16:15 Receive Date: 11-OCT-23

Collector: Client

| Parameter              | Qualifier          | Result       | DL        | RL       | Units | PF   | DF  | Analy | st Date  | Time | Batch   | Method |
|------------------------|--------------------|--------------|-----------|----------|-------|------|-----|-------|----------|------|---------|--------|
| Ion Chromatograp       | ohy                |              |           |          |       |      |     |       |          |      |         |        |
| EPA 300.0 Anions       | s Liquid "As Recei | ived"        |           |          |       |      |     |       |          |      |         |        |
| Chloride               | •                  | 1.20         | 0.0670    | 0.200    | mg/L  |      | 1   | LXA2  | 10/14/23 | 0328 | 2507800 | 1      |
| Fluoride               |                    | 0.202        | 0.0330    | 0.100    | mg/L  |      | 1   |       |          |      |         |        |
| Sulfate                |                    | 54.3         | 0.665     | 2.00     | mg/L  |      | 5   | LXA2  | 10/13/23 | 1359 | 2507800 | 2      |
| Mercury Analysis-      | -CVAA              |              |           |          |       |      |     |       |          |      |         |        |
| 7470 Cold Vapor        | Mercury, Liquid ". | As Received" |           |          |       |      |     |       |          |      |         |        |
| Mercury                | U                  | ND           | 0.0000670 | 0.000200 | mg/L  | 1.00 | 1   | JP2   | 10/13/23 | 1227 | 2507487 | 3      |
| Metals Analysis-IO     | CP-MS              |              |           |          |       |      |     |       |          |      |         |        |
| SW846 3005A/60         | 20B "As Received   | l"           |           |          |       |      |     |       |          |      |         |        |
| Boron                  |                    | 0.143        | 0.00520   | 0.0150   | mg/L  | 1.00 | 1   | PRB   | 10/16/23 | 1050 | 2507328 | 4      |
| Arsenic                | J                  | 0.00303      | 0.00200   | 0.00500  | mg/L  | 1.00 | 1   | PRB   | 10/15/23 | 1708 | 2507328 | 5      |
| Antimony               | U                  | ND           | 0.00100   | 0.00300  | mg/L  | 1.00 | 1   | PRB   | 10/14/23 | 1604 | 2507328 | 6      |
| Barium                 |                    | 0.0234       | 0.000670  | 0.00400  | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Beryllium              | U                  | ND           | 0.000200  | 0.000500 | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Cadmium                | U                  | ND           | 0.000300  | 0.00100  | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Calcium                |                    | 27.6         | 0.0800    | 0.200    | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Chromium               | U                  | ND           | 0.00300   | 0.0100   | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Cobalt                 | U                  | ND           | 0.000300  | 0.00100  | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Lead                   | U                  | ND           | 0.000500  | 0.00200  | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Lithium                | U                  | ND           | 0.00300   | 0.0100   | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Molybdenum             | J                  | 0.000342     | 0.000200  | 0.00100  | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Selenium               | U                  | ND           | 0.00150   | 0.00500  | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Thallium               | U                  | ND           | 0.000600  | 0.00200  | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Solids Analysis        |                    |              |           |          |       |      |     |       |          |      |         |        |
| SM2540C Dissolv        | ed Solids "As Rec  | eived"       |           |          |       |      |     |       |          |      |         |        |
| Total Dissolved Solids |                    | 198          | 2.38      | 10.0     | mg/L  |      |     | CH6   | 10/13/23 | 1601 | 2508295 | 7      |
| The following Pre      | p Methods were po  | erformed:    |           |          |       |      |     |       |          |      |         |        |
| Method                 | Description        | n            |           | Analyst  | Date  | -    | Гim | e Pr  | ep Batch |      |         |        |

 Method
 Description
 Analyst
 Date
 Time
 Prep Batch

 SW846 7470A Prep
 EPA 7470A Mercury Prep Liquid
 EK1
 10/12/23
 1120
 2507486

 SW846 3005A
 ICP-MS 3005A PREP
 SD
 10/12/23
 1525
 2507327

Page 35 of 60 SDG: 640869

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 23, 2023

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-11 Project: GPCC00100 Sample ID: 640869016 Client ID: GPCC001

| Parameter              | Qualifier     | Result          | DL | RL | Units | PF     | DF Analyst Date | Time Batch | Method |
|------------------------|---------------|-----------------|----|----|-------|--------|-----------------|------------|--------|
| The following Analytic | cal Methods w | vere performed: |    |    |       |        |                 |            |        |
| Method                 | Description   |                 |    |    |       | Analys | t Comments      |            |        |
| 1                      | EPA 300.0     |                 |    |    |       |        |                 |            |        |
| 2                      | EPA 300.0     |                 |    |    |       |        |                 |            |        |
| 3                      | SW846 7470A   | <b>.</b>        |    |    |       |        |                 |            |        |
| 4                      | SW846 3005A   | /6020B          |    |    |       |        |                 |            |        |
| 5                      | SW846 3005A   | /6020B          |    |    |       |        |                 |            |        |
| 6                      | SW846 3005A   | /6020B          |    |    |       |        |                 |            |        |
| 7                      | SM 2540C      |                 |    |    |       |        |                 |            |        |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 36 of 60 SDG: 640869

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

# Certificate of Analysis

Report Date: October 23, 2023

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1-FD-02

Sample ID: 640869017

Matrix: WG

Collect Date: 10-OCT-23 00:00
Receive Date: 11-OCT-23
Collector: Client

ICP-MS 3005A PREP

EPA 7470A Mercury Prep Liquid

Project: GPCC00100 Client ID: GPCC001

| Parameter              | Qualifier      | Result       | DL        | RL       | Units | PF   | DF   | Analy | st Date  | Time | Batch   | Method |
|------------------------|----------------|--------------|-----------|----------|-------|------|------|-------|----------|------|---------|--------|
| Ion Chromatography     |                |              |           |          |       |      |      |       |          |      |         |        |
| EPA 300.0 Anions Liqu  | iid "As Recei  | ived"        |           |          |       |      |      |       |          |      |         |        |
| Sulfate                |                | 80.1         | 26.6      | 80.0     | mg/L  |      | 200  | LXA2  | 10/13/23 | 1430 | 2507800 | 1      |
| Chloride               |                | 1.21         | 0.0670    | 0.200    | mg/L  |      | 1    | LXA2  | 10/14/23 | 0359 | 2507800 | 2      |
| Fluoride               |                | 0.297        | 0.0330    | 0.100    | mg/L  |      | 1    |       |          |      |         |        |
| Mercury Analysis-CVA   | A              |              |           |          |       |      |      |       |          |      |         |        |
| 7470 Cold Vapor Mercu  | ary, Liquid "A | As Received" |           |          |       |      |      |       |          |      |         |        |
| Mercury                | U              | ND           | 0.0000670 | 0.000200 | mg/L  | 1.00 | 1    | JP2   | 10/13/23 | 1233 | 2507487 | 3      |
| Metals Analysis-ICP-M  | S              |              |           |          |       |      |      |       |          |      |         |        |
| SW846 3005A/6020B "    | As Received    |              |           |          |       |      |      |       |          |      |         |        |
| Arsenic                | J              | 0.00319      | 0.00200   | 0.00500  | mg/L  | 1.00 | 1    | PRB   | 10/15/23 | 1710 | 2507328 | 4      |
| Boron                  |                | 0.146        | 0.00520   | 0.0150   | mg/L  | 1.00 | 1    | PRB   | 10/16/23 | 1052 | 2507328 | 5      |
| Antimony               | U              | ND           | 0.00100   | 0.00300  | mg/L  | 1.00 | 1    | PRB   | 10/14/23 | 1607 | 2507328 | 6      |
| Barium                 |                | 0.0242       | 0.000670  | 0.00400  | mg/L  | 1.00 | 1    |       |          |      |         |        |
| Beryllium              | U              | ND           | 0.000200  | 0.000500 | mg/L  | 1.00 | 1    |       |          |      |         |        |
| Cadmium                | U              | ND           | 0.000300  | 0.00100  | mg/L  | 1.00 | 1    |       |          |      |         |        |
| Calcium                |                | 28.0         | 0.0800    | 0.200    | mg/L  | 1.00 | 1    |       |          |      |         |        |
| Chromium               | U              | ND           | 0.00300   | 0.0100   | mg/L  | 1.00 | 1    |       |          |      |         |        |
| Cobalt                 | U              | ND           | 0.000300  | 0.00100  | mg/L  | 1.00 | 1    |       |          |      |         |        |
| Lead                   | U              | ND           | 0.000500  | 0.00200  | mg/L  | 1.00 | 1    |       |          |      |         |        |
| Lithium                | U              | ND           | 0.00300   | 0.0100   | mg/L  | 1.00 | 1    |       |          |      |         |        |
| Molybdenum             | J              | 0.000326     | 0.000200  | 0.00100  | mg/L  | 1.00 | 1    |       |          |      |         |        |
| Selenium               | U              | ND           | 0.00150   | 0.00500  | mg/L  | 1.00 | 1    |       |          |      |         |        |
| Thallium               | U              | ND           | 0.000600  | 0.00200  | mg/L  | 1.00 | 1    |       |          |      |         |        |
| Solids Analysis        |                |              |           |          |       |      |      |       |          |      |         |        |
| SM2540C Dissolved So   | olids "As Rec  | eived"       |           |          |       |      |      |       |          |      |         |        |
| Total Dissolved Solids |                | 197          | 2.38      | 10.0     | mg/L  |      |      | CH6   | 10/13/23 | 1601 | 2508295 | 7      |
| The following Prep Met | thods were pe  | erformed:    |           |          |       |      |      |       |          |      |         |        |
| Method                 | Description    | n            |           | Analyst  | Date  | ,    | Гimе | e Pr  | ep Batch |      |         |        |

SD

EK1

10/12/23

10/12/23

1525

1120

2507327

2507486

Page 37 of 60 SDG: 640869

SW846 3005A

SW846 7470A Prep

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 23, 2023

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1-FD-02 Project: GPCC00100 Sample ID: 640869017 Client ID: GPCC001

| Parameter              | Qualifier Result            | DL | RL | Units Pl | F DF Analyst Date Time Batch Method |
|------------------------|-----------------------------|----|----|----------|-------------------------------------|
| The following Analytic | cal Methods were performed: |    |    |          |                                     |
| Method                 | Description                 |    |    | Ana      | lyst Comments                       |
| 1                      | EPA 300.0                   |    |    |          |                                     |
| 2                      | EPA 300.0                   |    |    |          |                                     |
| 3                      | SW846 7470A                 |    |    |          |                                     |
| 4                      | SW846 3005A/6020B           |    |    |          |                                     |
| 5                      | SW846 3005A/6020B           |    |    |          |                                     |
| 6                      | SW846 3005A/6020B           |    |    |          |                                     |
| 7                      | SM 2540C                    |    |    |          |                                     |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 38 of 60 SDG: 640869

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

# Certificate of Analysis

Report Date: October 23, 2023

GPCC00100

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-9 Sample ID: 640869018

Matrix: WG

Collect Date: 11-OCT-23 08:20 Receive Date: 11-OCT-23 Collector: Client

640869018 Client ID: GPCC001

Project:

| Parameter              | Qualifier      | Result              | DL        | RL       | Units    | PF   | DF   | Analy | st Date  | Time | Batch   | Method |
|------------------------|----------------|---------------------|-----------|----------|----------|------|------|-------|----------|------|---------|--------|
| Ion Chromatography     |                |                     |           |          |          |      |      |       |          |      |         |        |
| EPA 300.0 Anions Liqu  | uid "As Recei  | ved"                |           |          |          |      |      |       |          |      |         |        |
| Fluoride               |                | 0.964               | 0.0330    | 0.100    | mg/L     |      | 1    | LXA2  | 10/14/23 | 0430 | 2507800 | 1      |
| Chloride               |                | 8.68                | 2.68      | 8.00     | mg/L     |      | 40   | LXA2  | 10/13/23 | 1501 | 2507800 | 2      |
| Sulfate                |                | 308                 | 5.32      | 16.0     | mg/L     |      | 40   |       |          |      |         |        |
| Mercury Analysis-CVA   | AA             |                     |           |          |          |      |      |       |          |      |         |        |
| 7470 Cold Vapor Merc   | ury, Liquid "  | As Received"        |           |          |          |      |      |       |          |      |         |        |
| Mercury                | U              | ND                  | 0.0000670 | 0.000200 | mg/L     | 1.00 | 1    | JP2   | 10/13/23 | 1234 | 2507487 | 3      |
| Metals Analysis-ICP-N  | 1S             |                     |           |          |          |      |      |       |          |      |         |        |
| SW846 3005A/6020B      | "As Received   | "                   |           |          |          |      |      |       |          |      |         |        |
| Boron                  |                | 0.707               | 0.0260    | 0.0750   | mg/L     | 1.00 | 5    | PRB   | 10/15/23 | 2135 | 2507328 | 4      |
| Calcium                |                | 72.3                | 0.400     | 1.00     | mg/L     | 1.00 | 5    |       |          |      |         |        |
| Antimony               | U              | ND                  | 0.00100   | 0.00300  | mg/L     | 1.00 | 1    | PRB   | 10/14/23 | 1611 | 2507328 | 5      |
| Barium                 |                | 0.0252              | 0.000670  | 0.00400  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Beryllium              |                | 0.000523            | 0.000200  | 0.000500 | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Cadmium                |                | 0.00112             | 0.000300  | 0.00100  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Chromium               | U              | ND                  | 0.00300   | 0.0100   | mg/L     |      | 1    |       |          |      |         |        |
| Cobalt                 |                | 0.100               | 0.000300  | 0.00100  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Lead                   | U              | ND                  | 0.000500  | 0.00200  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Lithium                |                | 0.145               | 0.00300   | 0.0100   | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Molybdenum             | J              | 0.000323            | 0.000200  | 0.00100  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Selenium               | U              | ND                  | 0.00150   | 0.00500  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Thallium               | U              | ND                  | 0.000600  | 0.00200  | mg/L     | 1.00 | 1    |       |          |      |         |        |
| Arsenic                | J              | 0.00224             | 0.00200   | 0.00500  | mg/L     | 1.00 | 1    | PRB   | 10/15/23 | 1641 | 2507328 | 6      |
| Solids Analysis        |                |                     |           |          |          |      |      |       |          |      |         |        |
| SM2540C Dissolved Se   | olids "As Rec  | eived"              |           |          |          |      |      |       |          |      |         |        |
| Total Dissolved Solids |                | 527                 | 2.38      | 10.0     | mg/L     |      |      | CH6   | 10/13/23 | 1601 | 2508295 | 7      |
| The following Prep Me  | ethods were pe | erformed:           |           |          |          |      |      |       |          |      |         |        |
| Method                 | Description    |                     |           | Analyst  | Date     | 7    | Γim  | e Pro | ep Batch |      |         |        |
| SW846 7470A Prep       | EPA 7470A I    | Mercury Prep Liquid |           | EK1      | 10/12/23 | 1    | 120  | 250   | 07486    |      |         |        |
| SW846 3005A            | ICP-MS 3005    | SA PREP             |           | SD       | 10/12/23 | 1    | 1525 | 250   | 07327    |      |         |        |

Page 39 of 60 SDG: 640869

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 23, 2023

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-9 Project: GPCC00100 Sample ID: 640869018 Client ID: GPCC001

| Parameter              | Qualifier     | Result          | DL | RL | Units | PF     | DF Analyst Date | Time Batch | Method |
|------------------------|---------------|-----------------|----|----|-------|--------|-----------------|------------|--------|
| The following Analytic | cal Methods w | vere performed: |    |    |       |        |                 |            |        |
| Method Description     |               |                 |    |    |       | Analys | t Comments      |            |        |
| 1                      | EPA 300.0     |                 |    |    |       |        |                 |            |        |
| 2                      | EPA 300.0     |                 |    |    |       |        |                 |            |        |
| 3                      | SW846 7470A   | <b>.</b>        |    |    |       |        |                 |            |        |
| 4                      | SW846 3005A   | /6020B          |    |    |       |        |                 |            |        |
| 5                      | SW846 3005A   | /6020B          |    |    |       |        |                 |            |        |
| 6                      | SW846 3005A   |                 |    |    |       |        |                 |            |        |
| 7                      | SM 2540C      |                 |    |    |       |        |                 |            |        |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 40 of 60 SDG: 640869

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

# QC Summary

Report Date: October 23, 2023

Page 1 of 9

Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia Joju Abraham

640869

Workorder:

**Contact:** 

| Parmname                                         | NOM         | Sample Qual | QC    | Units    | RPD%   | REC% | Range Anlst    | Date Time      |
|--------------------------------------------------|-------------|-------------|-------|----------|--------|------|----------------|----------------|
| Ion Chromatography                               |             |             |       |          |        |      |                |                |
| Batch 2507800 —————————————————————————————————— |             |             |       |          |        |      |                |                |
| Chloride                                         |             | 1.77        | 1.83  | mg/L     | 2.97 ^ |      | (+/-1.00) LXA2 | 10/13/23 02:40 |
|                                                  |             |             |       |          |        |      |                |                |
| Fluoride                                         |             | 0.426       | 0.479 | mg/L     | 11.6 ^ |      | (+/-0.100)     | 10/13/23 20:47 |
|                                                  |             |             |       |          |        |      |                |                |
| Sulfate                                          |             | 58.3        | 59.2  | mg/L     | 1.5    |      | (0%-20%)       | 10/13/23 02:40 |
|                                                  |             |             |       |          |        |      |                |                |
| QC1205545079 640869003 DUP<br>Chloride           |             | 1.81        | 1.80  | mg/L     | 0.636  |      | (0%-20%)       | 10/13/23 04:44 |
| Cinoriac                                         |             | 1.01        | 1.00  | mg/L     | 0.030  |      | (070-2070)     | 10/13/23 04.44 |
| Fluoride                                         |             | 0.225       | 0.229 | mg/L     | 1.94 ^ |      | (+/-0.100)     |                |
| Taoride                                          |             | 0.223       | 0.22) | 111.5/12 | 1.,, 1 |      | (17 0.100)     |                |
| Sulfate                                          |             | 2.17        | 2.15  | mg/L     | 0.767  |      | (0%-20%)       |                |
|                                                  |             |             |       | 8        |        |      | (474 = 474)    |                |
| QC1205545077 LCS                                 |             |             |       |          |        |      |                |                |
| Chloride                                         | 5.00        |             | 4.58  | mg/L     |        | 91.6 | (90%-110%)     | 10/13/23 01:39 |
|                                                  |             |             |       |          |        |      |                |                |
| Fluoride                                         | 2.50        |             | 2.39  | mg/L     |        | 95.6 | (90%-110%)     |                |
|                                                  |             |             |       |          |        |      |                |                |
| Sulfate                                          | 10.0        |             | 9.46  | mg/L     |        | 94.6 | (90%-110%)     |                |
| 0.04007747074                                    |             |             |       |          |        |      |                |                |
| QC1205545076 MB<br>Chloride                      |             | U           | ND    | mg/L     |        |      |                | 10/13/23 01:08 |
|                                                  |             |             |       |          |        |      |                |                |
| Fluoride                                         |             | U           | ND    | mg/L     |        |      |                |                |
|                                                  |             |             |       |          |        |      |                |                |
| Sulfate                                          |             | U           | ND    | mg/L     |        |      |                |                |
|                                                  |             |             |       |          |        |      |                |                |
| QC1205545080 640869001 PS                        | <b>7</b> 00 | 0.255       | F 05  | 7.5      |        | 00.0 | (000/_1100/)   | 10/12/20 00 11 |
| Chloride                                         | 5.00        | 0.355       | 5.05  | mg/L     |        | 93.8 | (90%-110%)     | 10/13/23 03:11 |

Page 41 of 60 SDG: 640869

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

# **QC** Summary

Workorder: 640869 Page 2 of 9 Parmname **NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Ion Chromatography 2507800 Batch Fluoride 2.50 0.426 2.82 mg/L95.5 (90%-110%) LXA2 10/13/23 21:18 Sulfate 10.0 11.7 22.3 106 (90%-110%) 10/13/23 03:11 mg/L QC1205545081 640869003 PS Chloride 1.81 6.87 101 10/13/23 05:15 5.00 (90%-110%) mg/L Fluoride 2.50 0.225 2.68 mg/L 98.1 (90%-110%) Sulfate 10.0 2.17 12.1 99.2 mg/L (90%-110%) Metals Analysis - ICPMS 2507328 QC1205544129 LCS 0.0484 Antimony 0.0500 mg/L 96.8 (80%-120%) PRB 10/14/23 14:37 0.0500 0.0510 102 (80%-120%) 10/15/23 15:48 Arsenic mg/L 0.0560 Barium 0.0500 mg/L 112 (80%-120%) 10/14/23 14:37 Beryllium 0.0500 0.0518 mg/L 104 (80%-120%) Boron 0.100 0.104 104 (80%-120%) 10/16/23 10:26 mg/L Cadmium 0.0500 0.0507 mg/L 101 (80%-120%) 10/14/23 14:37 Calcium 2.00 2.08 mg/L 104 (80%-120%) Chromium 0.0500 0.0480 mg/L 96.1 (80%-120%) 0.0500 0.0479 Cobalt 95.8 mg/L (80%-120%)

Page 42 of 60 SDG: 640869

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

# QC Summary

Workorder: 640869 Page 3 of 9 QC RPD% REC% Range Parmname NOM Sample Qual Units Anlst Date Time Metals Analysis - ICPMS Batch 2507328 Lead 0.0500 0.0485 mg/L97 (80%-120%) PRB 10/14/23 14:37 Lithium 0.0500 0.0496 mg/L 99.2 (80%-120%) Molybdenum 0.0500 0.0521 mg/L104 (80%-120%) 0.0500 0.0520 104 Selenium mg/L(80%-120%) Thallium 0.0500 0.0474 mg/L 94.9 (80%-120%) QC1205544128 MB U ND Antimony mg/L10/14/23 14:34 U Arsenic ND mg/L 10/15/23 15:46 ND U 10/14/23 14:34 Barium mg/L Beryllium U ND mg/LU Boron ND mg/L 10/16/23 10:24 Cadmium U ND mg/L10/14/23 14:34 U ND Calcium mg/L Chromium U ND mg/LU ND Cobalt mg/L Lead U ND mg/L

**GEL LABORATORIES LLC** 2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

# QC Summary

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | <u> </u> | ge Summa | y     |           |              |       |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|-------|-----------|--------------|-------|----------------|
| Workorder: 640869                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |          |          |       |           |              |       | Page 4 of 9    |
| Parmname M. J. A. J. J. J. GPMG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NOM      | Sample   | Qual QC  | Units | RPD% REC% | 6 Range      | Anlst | Date Time      |
| Metals Analysis - ICPMS Batch 2507328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |          |          |       |           |              |       |                |
| Lithium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |          | U ND     | mg/L  |           |              | PRB   | 10/14/23 14:34 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |       |           |              |       |                |
| Molybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |          | U ND     | mg/L  |           |              |       |                |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |          |          | C     |           |              |       |                |
| Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |          | U ND     | mg/L  |           |              |       |                |
| , and the second |          |          |          | 8     |           |              |       |                |
| Thallium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |          | U ND     | mg/L  |           |              |       |                |
| Thamum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |          | c ND     | mg/L  |           |              |       |                |
| QC1205544130 640869001 MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |          |          |       |           |              |       |                |
| Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0500 U | ND       | 0.0497   | mg/L  | 99.4      | (75%-125%)   |       | 10/14/23 14:44 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |       |           |              |       |                |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0500 J | 0.00219  | 0.0530   | mg/L  | 102       | (75%-125%)   |       | 10/15/23 15:52 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |       |           |              |       |                |
| Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0500   | 0.0609   | 0.115    | mg/L  | 108       | (75%-125%)   |       | 10/14/23 14:44 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          | C     |           | ,            |       |                |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0500   | 0.00187  | 0.0544   | mg/L  | 105       | (75%-125%)   |       |                |
| Berymani                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0300   | 0.00107  | 0.00     | g 2   | 103       | (7570 12570) |       |                |
| Boron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.100    | 0.108    | 0.216    | mg/L  | 107       | (75%-125%)   |       | 10/16/23 10:29 |
| Doron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.100    | 0.108    | 0.210    | mg/L  | 107       | (7370-12370) |       | 10/10/23 10.29 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0500   | 0.000410 | 0.0516   | 7.    | 102       | (750/ 1050/) |       | 10/14/22 14 44 |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0500 J | 0.000410 | 0.0516   | mg/L  | 102       | (75%-125%)   |       | 10/14/23 14:44 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |       |           |              |       |                |
| Calcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.00     | 19.3     | 21.0     | mg/L  | N/A       | (75%-125%)   |       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |       |           |              |       |                |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0500 J | 0.00462  | 0.0539   | mg/L  | 98.5      | (75%-125%)   |       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |       |           |              |       |                |
| Cobalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0500   | 0.00672  | 0.0558   | mg/L  | 98.2      | (75%-125%)   |       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |       |           |              |       |                |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0500 U | ND       | 0.0494   | mg/L  | 98.7      | (75%-125%)   |       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |       |           |              |       |                |
| Lithium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0500 J | 0.00944  | 0.0604   | mg/L  | 102       | (75%-125%)   |       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          | -     |           |              |       |                |

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

# **QC** Summary

Workorder: 640869 Page 5 of 9 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2507328 Batch Molybdenum 0.0500 ND 0.0530 mg/L 106 (75% - 125%)PRB 10/14/23 14:44 Selenium 0.0500 J 0.00299 0.0538 102 (75%-125%) mg/L Thallium 0.0500 U ND 0.0479 mg/L 95.8 (75% - 125%)QC1205544131 640869001 MSD Antimony 0.0500 U ND 0.0508 mg/L 2.07 101 (0% - 20%)10/14/23 14:48 0.0500 0.00219 0.0528 0.334 101 10/15/23 15:54 J mg/L (0%-20%)Arsenic Barium 0.0500 0.0609 0.117 mg/L 1.29 111 (0%-20%)10/14/23 14:48 Beryllium 0.0500 0.00187 0.0556 mg/L 2.12 107 (0%-20%)0.108 0.214 Boron 0.100 mg/L 0.707 106 (0%-20%)10/16/23 10:31 mg/L Cadmium 0.0500 0.000410 0.0528 2.47 105 (0%-20%)10/14/23 14:48 2.00 19.3 21.1 N/A Calcium mg/L 0.633(0%-20%)0.00462 0.0543 99.3 Chromium 0.0500 mg/L 0.793 (0%-20%)0.0500 0.00672 0.0559 Cobalt mg/L (0%-20%)0.181 98.4 Lead 0.0500 U ND 0.0493 0.306 98.4 (0% - 20%)mg/L 0.00944 0.0606 0.0500 J 102 Lithium mg/L 0.261 (0%-20%)Molybdenum 0.0500 U ND 0.0544 mg/L 2.52 109 (0% - 20%)

Page 45 of 60 SDG: 640869

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

# **QC** Summary

640869 Page 6 of 9 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2507328 Batch mg/L 0.00558 Selenium 0.0500 0.00299 0.0538 102 (0%-20%)PRB 10/14/23 14:48 Thallium 0.0500 U ND 0.0480 mg/L 0.142 96 (0%-20%)QC1205544132 640869001 SDILT 10/14/23 14:55 U ND U ND Antimony ug/L N/A (0%-20%)Arsenic J 2.19 U ND ug/L N/A (0%-20%)10/15/23 15:58 60.9 12.1 10/14/23 14:55 Barium ug/L .317 (0%-20%)Beryllium 1.87 J 0.369 ug/L 1.18 (0%-20%)Boron 108 22.8 ug/L 5.38 (0%-20%)10/16/23 10:35 J 0.410 U ND Cadmium ug/L N/A (0%-20%)10/14/23 14:55 19300 4020 Calcium ug/L 4.06 (0%-20%)J Chromium 4.62 U ND (0%-20%)ug/L N/A 6.72 1.44 Cobalt ug/L 6.95 (0%-20%)U ND U ND Lead ug/L (0%-20%)N/A Lithium J 9.44 U ND N/A (0% - 20%)ug/L U ND U ND Molybdenum ug/L N/A (0%-20%)Selenium J 2.99 U ND ug/L N/A (0% - 20%)

Page 46 of 60 SDG: 640869

Workorder:

**GEL LABORATORIES LLC** 2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

# QC Summary

| Parmname                                         |       | NO      | м                                             | Sample | Onal | QC      | Units | RPD%     | REC%    | Range A    | Anlst | Page 7 of 9  Date Time |
|--------------------------------------------------|-------|---------|-----------------------------------------------|--------|------|---------|-------|----------|---------|------------|-------|------------------------|
| Metals Analysis - ICPMS                          |       | 1101    | <u>, , , , , , , , , , , , , , , , , , , </u> | Батріс | Quui | - QC    | Cints | III D 70 | 1112070 | runge 1    | IIIst | Dute Time              |
| Batch 2507328                                    |       |         |                                               |        |      |         |       |          |         |            |       |                        |
| Thallium                                         |       |         | U                                             | ND     | U    | ND      | ug/L  | N/A      |         | (0%-20%)   | PRB   | 10/14/23 14:55         |
| Metals Analysis-Mercury Batch 2507487            |       |         |                                               |        |      |         |       |          |         |            |       |                        |
| QC1205544431 640813001<br>Mercury                | DUP   |         | U                                             | ND     | U    | ND      | mg/L  | N/A      |         |            | JP2   | 10/13/23 11:53         |
| QC1205544430 LCS<br>Mercury                      |       | 0.00200 |                                               |        |      | 0.00198 | mg/L  |          | 99.2    | (80%-120%) |       | 10/13/23 11:47         |
| QC1205544429 MB<br>Mercury                       |       |         |                                               |        | U    | ND      | mg/L  |          |         |            |       | 10/13/23 11:45         |
| QC1205544432 640813001<br>Mercury                | MS    | 0.00200 | U                                             | ND     |      | 0.00134 | mg/L  |          | 67.1*   | (75%-125%) |       | 10/13/23 11:55         |
| QC1205544434 640813001<br>Mercury                | PS    | 2.00    | U                                             | ND     |      | 1.38    | ug/L  |          | 68.8*   | (80%-120%) |       | 10/13/23 11:58         |
| QC1205544433 640813001<br>Mercury                | SDILT |         | U                                             | ND     | U    | ND      | ug/L  | N/A      |         | (0%-10%)   |       | 10/13/23 11:56         |
| Solids Analysis Batch 2507350                    |       |         |                                               |        |      |         |       |          |         |            |       |                        |
| QC1205544191 640698013<br>Total Dissolved Solids | DUP   |         | U                                             | ND     | U    | ND      | mg/L  | N/A      |         |            | СН6   | 10/12/23 13:23         |
| QC1205544190 LCS<br>Total Dissolved Solids       |       | 300     |                                               |        |      | 303     | mg/L  |          | 101     | (95%-105%) |       | 10/12/23 13:23         |
| QC1205544189 MB<br>Total Dissolved Solids        |       |         |                                               |        | U    | ND      | mg/L  |          |         |            |       | 10/12/23 13:23         |

Page 47 of 60 SDG: 640869

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

# **QC** Summary

Workorder: 640869 Page 8 of 9 Units **Parmname** NOM Sample Qual QC RPD% REC% Range Anlst Date Time Solids Analysis 2507357 Batch QC1205544196 640683001 DUP 235 228 mg/L CH6 10/12/23 14:23 **Total Dissolved Solids** 3.02 (0%-5%)QC1205544195 LCS 300 **Total Dissolved Solids** 302 mg/L 101 (95%-105%) 10/12/23 14:23 QC1205544194 U ND 10/12/23 14:23 **Total Dissolved Solids** mg/L Batch 2508295 OC1205545882 641034002 DUP 395 Total Dissolved Solids 386 2.3 (0%-5%)CH6 10/13/23 16:01 mg/L QC1205545878 LCS **Total Dissolved Solids** 300 302 mg/L 101 (95%-105%) 10/13/23 16:01 QC1205545877 Total Dissolved Solids U ND mg/L 10/13/23 16:01

#### **Notes:**

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- N Metals--The Matrix spike sample recovery is not within specified control limits
- H Analytical holding time was exceeded
- < Result is less than value reported
- > Result is greater than value reported
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- Z Paint Filter Test--Particulates passed through the filter, however no free liquids were observed.
- d 5-day BOD--The 2:1 depletion requirement was not met for this sample
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.

Page 48 of 60 SDG: 640869

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

# **QC** Summary

Workorder: 640869 Page 9 of 9 Pa

| Parmname | NOM | Sample | Qual | QC | Units | RPD% | REC% | Range | Anlst | Date | Time |
|----------|-----|--------|------|----|-------|------|------|-------|-------|------|------|
|          |     |        |      |    |       |      |      |       |       |      |      |

- ND Analyte concentration is not detected above the detection limit
- Е % difference of sample and SD is >10%. Sample concentration must meet flagging criteria
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Е General Chemistry--Concentration of the target analyte exceeds the instrument calibration range
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- FB Mercury was found present at quantifiable concentrations in field blanks received with these samples. Data associated with the blank are deemed invalid for reporting to regulatory agencies
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- Per section 9.3.4.1 of Method 1664 Revision B, due to matrix spike recovery issues, this result may not be reported or used for regulatory compliance R
- В The target analyte was detected in the associated blank.
- 5-day BOD--Test replicates show more than 30% difference between high and low values. The data is qualified per the method and can be used for reporting purposes
- See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- \* Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 49 of 60 SDG: 640869

### Technical Case Narrative Georgia Power Company SDG #: 640869

# **Metals**

<u>Product:</u> Determination of Metals by ICP-MS <u>Analytical Method:</u> SW846 3005A/6020B <u>Analytical Procedure:</u> GL-MA-E-014 REV# 36

**Analytical Batch:** 2507328

**Preparation Method:** SW846 3005A

**Preparation Procedure:** GL-MA-E-006 REV# 14

**Preparation Batch:** 2507327

The following samples were analyzed using the above methods and analytical procedure(s).

| GEL Sample ID# | Client Sample Identification                           |
|----------------|--------------------------------------------------------|
| 640869001      | ARK-APIGWA-1                                           |
| 640869002      | ARK-AP1-FB-01                                          |
| 640869003      | ARK-AP1GWA-2                                           |
| 640869004      | ARK-AP1-EB-01                                          |
| 640869005      | ARK-AP1PZ-1                                            |
| 640869006      | ARK-AP1PZ-2                                            |
| 640869007      | ARK-AP1-FD-01                                          |
| 640869008      | ARK-AP1PZ-4                                            |
| 640869009      | ARK-AP1-FB-02                                          |
| 640869010      | ARK-AP1PZ-3                                            |
| 640869011      | ARK-AP1PZ-8                                            |
| 640869012      | ARK-AP1PZ-5                                            |
| 640869013      | ARK-AP1-EB-02                                          |
| 640869014      | ARK-AP1PZ-7                                            |
| 640869015      | ARK-AP1PZ-10                                           |
| 640869016      | ARK-AP1PZ-11                                           |
| 640869017      | ARK-AP1-FD-02                                          |
| 640869018      | ARK-AP1PZ-9                                            |
| 1205544128     | Method Blank (MB)ICP-MS                                |
| 1205544129     | Laboratory Control Sample (LCS)                        |
| 1205544132     | 640869001(ARK-AP1GWA-1L) Serial Dilution (SD)          |
| 1205544130     | 640869001(ARK-AP1GWA-1S) Matrix Spike (MS)             |
| 1205544131     | 640869001(ARK-AP1GWA-1SD) Matrix Spike Duplicate (MSD) |

The samples in this SDG were analyzed on an "as received" basis.

### **Data Summary:**

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

### **Calibration Information**

### **CRDL/PQL Requirements**

Page 50 of 60 SDG: 640869

The CRDL standard recoveries for SW846 6020B met the advisory control limits with the exception of calcium. Client sample concentrations were greater than two times the CRDL; therefore the data were not adversely affected. 640869006 (ARK-AP1PZ-2), 640869007 (ARK-AP1-FD-01), 640869008 (ARK-AP1PZ-4), 640869010 (ARK-AP1PZ-3), 640869011 (ARK-AP1PZ-8), 640869012 (ARK-AP1PZ-5), 640869014 (ARK-AP1PZ-7), 640869015 (ARK-AP1PZ-10) and 640869018 (ARK-AP1PZ-9).

#### **ICSA/ICSAB Statement**

For the ICP-MS analysis, the ICSA solution contains analyte concentrations which are verified trace impurities indigenous to the purchased standard.

#### **Technical Information**

#### **Sample Dilutions**

Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range. Samples 640869005 (ARK-AP1PZ-1), 640869006 (ARK-AP1PZ-2), 640869007 (ARK-AP1-FD-01), 640869008 (ARK-AP1-PZ-4), 640869010 (ARK-AP1-PZ-3), 640869011 (ARK-AP1-PZ-8), 640869012 (ARK-AP1-PZ-5), 640869014 (ARK-AP1-PZ-7), 640869015 (ARK-AP1-PZ-10) and 640869018 (ARK-AP1-PZ-9) were diluted to ensure that the analyte concentrations were within the linear calibration range of the instrument. The ICPMS solid samples in this SDG were diluted the standard two times.

| A 1 t - |     |     |     |     | 640 | 0869 |      |     |     |     |
|---------|-----|-----|-----|-----|-----|------|------|-----|-----|-----|
| Analyte | 005 | 006 | 007 | 008 | 010 | 011  | 012  | 014 | 015 | 018 |
| Boron   | 5X  | 5X  | 5X  | 25X | 20X | 20X  | 100X | 20X | 5X  | 5X  |
| Calcium | 1X  | 5X  | 5X  | 25X | 20X | 20X  | 100X | 20X | 5X  | 5X  |

**Product:** Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer

**Analytical Method:** SW846 7470A

**Analytical Procedure:** GL-MA-E-010 REV# 40

**Analytical Batch:** 2507487

**Preparation Method:** SW846 7470A Prep

Preparation Procedure: GL-MA-E-010 REV# 40

**Preparation Batch:** 2507486

The following samples were analyzed using the above methods and analytical procedure(s).

| <b>GEL Sample ID#</b> | <b>Client Sample Identification</b> |
|-----------------------|-------------------------------------|
| 640869001             | ARK-AP1GWA-1                        |
| 640869002             | ARK-AP1-FB-01                       |
| 640869003             | ARK-AP1GWA-2                        |
| 640869004             | ARK-AP1-EB-01                       |
| 640869005             | ARK-AP1PZ-1                         |
| 640869006             | ARK-AP1PZ-2                         |
| 640869007             | ARK-AP1-FD-01                       |
| 640869008             | ARK-AP1PZ-4                         |
| 640869009             | ARK-AP1-FB-02                       |
| 640869010             | ARK-AP1PZ-3                         |
| 640869011             | ARK-AP1PZ-8                         |
| 640869012             | ARK-AP1PZ-5                         |
| 640869013             | ARK-AP1-EB-02                       |
|                       |                                     |

| 640869014  | ARK-AP1PZ-7                               |
|------------|-------------------------------------------|
| 640869015  | ARK-AP1PZ-10                              |
| 640869016  | ARK-AP1PZ-11                              |
| 640869017  | ARK-AP1-FD-02                             |
| 640869018  | ARK-AP1PZ-9                               |
| 1205544429 | Method Blank (MB)CVAA                     |
| 1205544430 | Laboratory Control Sample (LCS)           |
| 1205544433 | 640813001(NonSDGL) Serial Dilution (SD)   |
| 1205544431 | 640813001(NonSDGD) Sample Duplicate (DUP) |
| 1205544432 | 640813001(NonSDGS) Matrix Spike (MS)      |
| 1205544434 | 640813001(NonSDGPS) Post Spike (PS)       |

The samples in this SDG were analyzed on an "as received" basis.

#### **Data Summary:**

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

#### **Quality Control (QC) Information**

### Matrix Spike (MS/MSD) Recovery Statement

The percent recoveries (%R) obtained from the MS/MSD analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. The MS/MSD (See Below) did not meet the recommended quality control acceptance criteria for percent recoveries for the following applicable analyte. The post spike also did not meet the required control limits; thus, confirming matrix interferences and/or sample non-homogeneity.

| Sample                           | Analyte | Value            |
|----------------------------------|---------|------------------|
| 1205544432 (Non SDG 640813001MS) | Mercury | 67.1* (75%-125%) |

#### Post Spike (PS) Recovery Statement

The percent recoveries (%R) obtained from the PS analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. The PS did not meet the recommended quality control acceptance criteria for percent recoveries for all applicable analytes and verifies the presence of matrix interferences.

| Sample                           | Analyte | Value            |
|----------------------------------|---------|------------------|
| 1205544434 (Non SDG 640813001PS) | Mercury | 68.8* (80%-120%) |

# **General Chemistry**

**Product: Ion Chromatography Analytical Method:** EPA 300.0

**Analytical Procedure:** GL-GC-E-086 REV# 33

**Analytical Batch:** 2507800

Page 52 of 60 SDG: 640869

The following samples were analyzed using the above methods and analytical procedure(s).

| GEL Sample ID# | Client Sample Identification                   |
|----------------|------------------------------------------------|
| 640869001      | ARK-AP1GWA-1                                   |
| 640869002      | ARK-AP1-FB-01                                  |
| 640869003      | ARK-AP1GWA-2                                   |
| 640869004      | ARK-AP1-EB-01                                  |
| 640869005      | ARK-AP1PZ-1                                    |
| 640869006      | ARK-AP1PZ-2                                    |
| 640869007      | ARK-AP1-FD-01                                  |
| 640869008      | ARK-AP1PZ-4                                    |
| 640869009      | ARK-AP1-FB-02                                  |
| 640869010      | ARK-AP1PZ-3                                    |
| 640869011      | ARK-AP1PZ-8                                    |
| 640869012      | ARK-AP1PZ-5                                    |
| 640869013      | ARK-AP1-EB-02                                  |
| 640869014      | ARK-AP1PZ-7                                    |
| 640869015      | ARK-AP1PZ-10                                   |
| 640869016      | ARK-AP1PZ-11                                   |
| 640869017      | ARK-AP1-FD-02                                  |
| 640869018      | ARK-AP1PZ-9                                    |
| 1205545076     | Method Blank (MB)                              |
| 1205545077     | Laboratory Control Sample (LCS)                |
| 1205545078     | 640869001(ARK-AP1GWA-1) Sample Duplicate (DUP) |
| 1205545079     | 640869003(ARK-AP1GWA-2) Sample Duplicate (DUP) |
| 1205545080     | 640869001(ARK-AP1GWA-1) Post Spike (PS)        |
| 1205545081     | 640869003(ARK-AP1GWA-2) Post Spike (PS)        |
|                |                                                |

The samples in this SDG were analyzed on an "as received" basis.

# **Data Summary:**

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

#### **Technical Information**

#### **Sample Dilutions**

The following samples 1205545078 (ARK-AP1GWA-1DUP), 1205545080 (ARK-AP1GWA-1PS), 640869001 (ARK-AP1GWA-1), 640869005 (ARK-AP1PZ-1), 640869006 (ARK-AP1PZ-2), 640869007 (ARK-AP1-FD-01), 640869008 (ARK-AP1PZ-4), 640869010 (ARK-AP1PZ-3), 640869011 (ARK-AP1PZ-8), 640869012 (ARK-AP1PZ-5), 640869014 (ARK-AP1PZ-7), 640869015 (ARK-AP1PZ-10), 640869016 (ARK-AP1PZ-11), 640869017 (ARK-AP1-FD-02) and 640869018 (ARK-AP1PZ-9) were diluted because target analyte concentrations exceeded the calibration range. Samples 1205545078 (ARK-AP1GWA-1DUP), 1205545080 (ARK-AP1GWA-1PS), 640869001 (ARK-AP1GWA-1), 640869005 (ARK-AP1PZ-1), 640869006 (ARK-AP1PZ-2), 640869007 (ARK-AP1-FD-01), 640869008 (ARK-AP1PZ-4), 640869010 (ARK-AP1PZ-3), 640869011 (ARK-AP1PZ-8), 640869012 (ARK-AP1PZ-5), 640869014 (ARK-AP1PZ-7), 640869018 (ARK-AP1PZ-10), 640869016 (ARK-AP1PZ-11), 640869017 (ARK-AP1-FD-02) and 640869018 (ARK-AP1PZ-9) were diluted based on historical data. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

| A 1     |     |     |     |     | 64  | 0869 |     |     |     |     |
|---------|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|
| Analyte | 001 | 005 | 006 | 007 | 008 | 010  | 011 | 012 | 014 | 015 |

| Chloride | 5X | 10X | 2X  | 2X   | 5X   | 5X   | 2X   | 5X   | 5X   | 20X |
|----------|----|-----|-----|------|------|------|------|------|------|-----|
| Fluoride | 1X | 1X  | 2X  | 2X   | 5X   | 5X   | 2X   | 5X   | 5X   | 1X  |
| Sulfate  | 5X | 10X | 50X | 100X | 200X | 100X | 100X | 200X | 100X | 20X |

| A 1 + -  |     | 640869 | )   |
|----------|-----|--------|-----|
| Analyte  | 016 | 017    | 018 |
| Chloride | 1X  | 1X     | 40X |
| Sulfate  | 5X  | 200X   | 40X |

#### **Miscellaneous Information**

#### **Manual Integrations**

Sample 640869004 (ARK-AP1-EB-01) was manually integrated to correctly position the baseline as set in the calibration standards.

**Product:** Solids, Total Dissolved **Analytical Method:** SM 2540C

Analytical Procedure: GL-GC-E-001 REV# 21

**Analytical Batch:** 2507350

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID# Client Sample Identification

640869001 ARK-AP1GWA-1 640869002 ARK-AP1-FB-01 640869003 ARK-AP1GWA-2 1205544189 Method Blank (MB)

1205544190 Laboratory Control Sample (LCS)

1205544191 640698013(NonSDG) Sample Duplicate (DUP)

The samples in this SDG were analyzed on an "as received" basis.

#### **Data Summary:**

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

**Product: Solids, Total Dissolved Analytical Method:** SM 2540C

Analytical Procedure: GL-GC-E-001 REV# 21

**Analytical Batch:** 2507357

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID# Client Sample Identification

640869004 ARK-AP1-EB-01 640869005 ARK-AP1PZ-1

Page 54 of 60 SDG: 640869

| ARK-AP1PZ-2                              |
|------------------------------------------|
| ARK-AP1-FD-01                            |
| ARK-AP1PZ-4                              |
| ARK-AP1-FB-02                            |
| ARK-AP1PZ-3                              |
| ARK-AP1PZ-8                              |
| ARK-AP1PZ-5                              |
| ARK-AP1-EB-02                            |
| ARK-AP1PZ-7                              |
| Method Blank (MB)                        |
| Laboratory Control Sample (LCS)          |
| 640683001(NonSDG) Sample Duplicate (DUP) |
|                                          |

The samples in this SDG were analyzed on an "as received" basis.

#### **Data Summary:**

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

#### **Miscellaneous Information**

#### **Additional Comments**

A TDS meter was used to check the samples for interference prior to analysis. 640869006 (ARK-AP1PZ-2), 640869007 (ARK-AP1-FD-01), 640869008 (ARK-AP1PZ-4), 640869010 (ARK-AP1PZ-3), 640869011 (ARK-AP1PZ-8), 640869012 (ARK-AP1PZ-5) and 640869014 (ARK-AP1PZ-7).

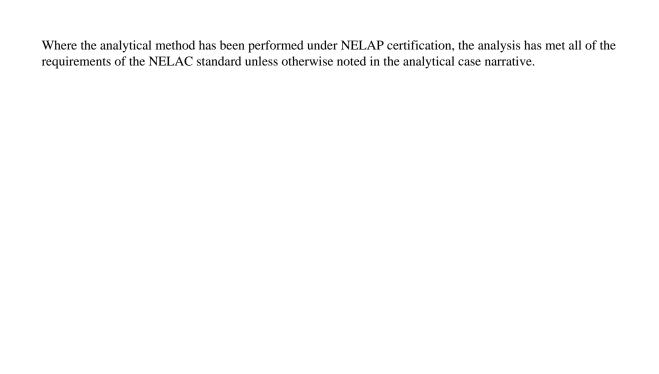
**Product: Solids, Total Dissolved Analytical Method:** SM 2540C

Analytical Procedure: GL-GC-E-001 REV# 21

**Analytical Batch:** 2508295

The following samples were analyzed using the above methods and analytical procedure(s).

| GEL Sample ID# | Client Sample Identification             |
|----------------|------------------------------------------|
| 640869015      | ARK-AP1PZ-10                             |
| 640869016      | ARK-AP1PZ-11                             |
| 640869017      | ARK-AP1-FD-02                            |
| 640869018      | ARK-AP1PZ-9                              |
| 1205545877     | Method Blank (MB)                        |
| 1205545878     | Laboratory Control Sample (LCS)          |
| 1205545882     | 641034002(NonSDG) Sample Duplicate (DUP) |


The samples in this SDG were analyzed on an "as received" basis.

### **Data Summary:**

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

#### **Certification Statement**

Page 55 of 60 SDG: 640869



Page 56 of 60 SDG: 640869

| Page: 1                                         | of 2                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                          |                                  |               | -                    | -                                                                                           |                                                                                                                   |                                | 0                       | ,                               | 2                               |                     | GEL 1       | aborato                 | GEL Laboratories, LLC                                             |                                                                                                                                                                       |       |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------|---------------|----------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------|---------------------------------|---------------------------------|---------------------|-------------|-------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| GL Quote #:                                     | 5 Coolers                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            | 1<br>5                                                                   |                                  | apol          | 910                  | DOFATORIES LLC                                                                              | TC OT                                                                                                             | 70000                          | 0                       | 9                               | _                               |                     | 2040 §      | 2040 Savage Road        | Road                                                              |                                                                                                                                                                       |       |
| COC Number (1)                                  |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            | Chain                                                                    | ्र ज                             | ustody        | and A                | Custody and Analytical Request                                                              | Reque                                                                                                             | pecialty A                     | nalytics                | 0/20/0                          | 90                              | 2                   | Charle      | ston, SC                | Charleston, SC 29407                                              |                                                                                                                                                                       |       |
| Ont Name:                                       |                                                                                                                                                                                                                     | GEL Wo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GEL Work Order Number:                                                                     | r:                                                                       |                                  | GEL P         | roject M             | GEL Project Manager: Erin Trent                                                             | Frin Tren                                                                                                         | щ                              |                         |                                 |                                 |                     | Fax: (8     | Fax: (843) 766-1178     | 5-1178                                                            |                                                                                                                                                                       |       |
| On Indine: Georgia Power                        | gia Power                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            | Phone # (937-344-6533)                                                   | 37-344-6                         | 533)          |                      |                                                                                             | Sam                                                                                                               | Sample Analysis Requested (5)  | lysis R                 | equeste                         |                                 | Fill in             | he min      | nher of                 | oontoinon.                                                        | (Fill in the number of contains for soil to the                                                                                                                       | T     |
| Perct/Site Name:                                | Perject/Site Name: Plant Arkwright Ash Pond 1                                                                                                                                                                       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                            | Fax:                                                                     |                                  |               |                      | Should this                                                                                 | 100                                                                                                               | IN                             | IN                      |                                 |                                 | 11                  | I           |                         | I collitatilier                                                   | s for each test)                                                                                                                                                      |       |
| Address: 241 Ralpl                              | Argiress: 241 Ralph McGill Blvd SE, Atlanta, GA 30308                                                                                                                                                               | GA3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                            |                                                                          |                                  |               | T                    | sample be                                                                                   |                                                                                                                   |                                | 327                     |                                 | (6                              | _                   | N P         | +                       |                                                                   | < Freservative Type (6)                                                                                                                                               | (9)   |
| Collected By: Joh                               | ın Myer; Dylan Quintal                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Send Results To: jabraham@southernco.com EDD@stantec.com<br>Cassidy.Sutherland@stantec.com | rthernco.com                                                             | EDD@sta                          | ntec.com      |                      | ) Alde                                                                                      | sp.i                                                                                                              |                                | - 03                    | )<br>Метро                      | l, Sulfat                       | VI .qq              | dmD 8       |                         |                                                                   | Comments                                                                                                                                                              | =1    |
| *For compc                                      | Sample ID  * For composites - indicate start and stop date/time                                                                                                                                                     | date/ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *Date Collected (mm-dd-yy)                                                                 | *Time Collected (Military) (hmm)                                         | QC<br>Code (2)                   | Field (3) N   | Sample<br>Matrix (4) | Radioactive yes, please sup isotopic info.)                                                 | (7) Known or<br>possible Hazar                                                                                    | Fotal number<br>Ag (App. I)    | Metals App. II          | Alkalinity<br>R2.1<br>TDS (SM I | Anions (Cl, Fl<br>(300.0 Rev. 2 | Metals Ap<br>(6020) | K∀D 556-22  | Mercury (7              | 1a, Fe, Mn (                                                      | ( task_code: ARK-CCR-ASSMT-2023S1 )                                                                                                                                   | CCR-  |
| -                                               | ARK-AP1GWA-1                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-09-23                                                                                   | 1345                                                                     | z                                | z             | MG                   |                                                                                             |                                                                                                                   | 9                              | ×                       | ×                               | ×                               | ×                   | >           | >                       | 1                                                                 |                                                                                                                                                                       | T     |
|                                                 | ARK-AP1-FB-01                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-09-23                                                                                   | 1405                                                                     | FB                               | z             | WQ                   |                                                                                             |                                                                                                                   | 9                              | ×                       | : >                             | : >                             |                     |             |                         |                                                                   |                                                                                                                                                                       |       |
|                                                 | ARK-AP1GWA-2                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-09-23                                                                                   | 1430                                                                     | z                                | z             | MG                   |                                                                                             |                                                                                                                   | 9                              | : ×                     | < >                             | < >                             |                     | < >         | 1                       |                                                                   |                                                                                                                                                                       |       |
|                                                 | ARK-AP1-EB-01                                                                                                                                                                                                       | 100 March 100 Ma | 10-09-23                                                                                   | 1500                                                                     | EB                               | Z             | WQ                   |                                                                                             |                                                                                                                   | 9                              | ×                       | <u> </u>                        | : ×                             |                     |             |                         |                                                                   |                                                                                                                                                                       |       |
|                                                 | ARK-AP1PZ-1                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-09-23                                                                                   | 1620                                                                     | z                                | z             | MG                   |                                                                                             |                                                                                                                   | 9                              | ×                       | ×                               | : ×                             |                     | Т           |                         |                                                                   |                                                                                                                                                                       | I     |
|                                                 | ARK-AP1PZ-2                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-09-23                                                                                   | 1700                                                                     | Z                                | z             | WG                   |                                                                                             |                                                                                                                   |                                | ×                       | ; ×                             | : >                             |                     |             |                         | +                                                                 |                                                                                                                                                                       | T     |
|                                                 | ARK-AP1-FD-01                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-09-23                                                                                   | NA                                                                       | FD                               | z             | ÓΜ                   |                                                                                             |                                                                                                                   |                                | : ×                     | < >                             | < >                             |                     | < >         | 1                       |                                                                   |                                                                                                                                                                       |       |
|                                                 | ARK-AP1PZ-4                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-10-23                                                                                   | 0160                                                                     | Z                                | z             | MG                   |                                                                                             |                                                                                                                   |                                | : >                     | < >                             | < >                             |                     |             | +                       |                                                                   |                                                                                                                                                                       | T     |
|                                                 | ARK-AP1-FB-02                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-10-23                                                                                   | 0830                                                                     | FB                               | -             | WO                   |                                                                                             |                                                                                                                   |                                | ( ×                     | < >                             | < >                             |                     |             | +                       |                                                                   |                                                                                                                                                                       | T     |
| 92                                              | ARK-AP1PZ-3                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-10-23                                                                                   | 0930                                                                     | z                                |               | WG                   |                                                                                             |                                                                                                                   |                                | < >                     | < >                             | < >                             |                     |             |                         | +                                                                 |                                                                                                                                                                       | T     |
|                                                 |                                                                                                                                                                                                                     | Chain of Cust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chain of Custody Signatures                                                                |                                                                          |                                  |               |                      |                                                                                             | TATR                                                                                                              | mester                         |                         | Normal.                         | V D                             | Duch:               | X X         |                         |                                                                   |                                                                                                                                                                       |       |
| 0                                               | gned) Print Name                                                                                                                                                                                                    | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Received by (signed)                                                                       |                                                                          | Print Name                       | Date          | a                    | East                                                                                        | . December                                                                                                        | 7 1 3                          |                         |                                 | 1                               | SIII:               | de          | Specify:                |                                                                   | (Subject to Surcharge)                                                                                                                                                | ge)   |
| 1 MMM                                           | John Myer                                                                                                                                                                                                           | 10(11/27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 Georgenmenen                                                                             | 1 1                                                                      | Brooker                          | JAMIN.        | iam                  | 2                                                                                           | Select Deliverable: [ ] C of A [ ] OC Summary                                                                     | rable:                         | 1C of A                 | No -                            | C Sumr                          |                     | [ ] level 1 |                         | ( level 7                                                         | 1 1 2 proof 7                                                                                                                                                         |       |
| 2                                               |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2/1                                                                                        | No.                                                                      |                                  | 7             | 11/                  | (23) Ada                                                                                    | Additional Remarks:                                                                                               | emarks:                        |                         |                                 |                                 |                     |             |                         | 7 10,07                                                           | 1                                                                                                                                                                     | +     |
| > For sample shippi                             | > For sample shipping and delivery details. see So                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                          |                                                                          |                                  |               | 7 6                  | For                                                                                         | For Lab Receiving Use Only: Custody Seal Intact? [ ] Yes                                                          | eiving l                       | se Only                 | : Custo                         | dy Seal                         | Intact?             | [ ] Ye      |                         | ] No Cool                                                         | Cooler Temp: 2-°C                                                                                                                                                     |       |
| 1.) Chain of Custody Number = Client Determined | iber = Client Determined                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                          |                                  |               | 38                   | sumple Contection Time Zone: [X] Eastern                                                    | ection In                                                                                                         | ne Zone                        | [x]                     | castern                         | [ ] Pacific                     | acific              | [ ] Central | - 1                     | [ ] Mountain                                                      | ain [ ] Other:                                                                                                                                                        |       |
| 2.) QC Codes: N = Norma                         | 2.) QC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicate, EB = Equipment Blank, MS = Matrix Spike Sampl                                                                                               | = Field Duplicate, EB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = Equipment Blank, N                                                                       | IS = Matrix Spi                                                          | ke Sample,                       | MSD = Ma      | trix Spike I         | te, $MSD = Matrix$ Spike Duplicate Sample, $G = Grab$ , $C = Composite$                     | ıple, <b>G</b> = Gr.                                                                                              | ab, C = Cc                     | mposite                 |                                 |                                 |                     |             |                         |                                                                   |                                                                                                                                                                       |       |
| 3.) Field Filtered: For liqu                    | 3.) Field Filtered: For liquid matrices, indicate with a - Y - for yes the sample was field filtered or - N - for sample was not field                                                                              | for yes the sample wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ss field filtered or - N -                                                                 | for sample was                                                           | not field fili                   | filtered.     |                      |                                                                                             |                                                                                                                   |                                |                         |                                 |                                 |                     |             |                         |                                                                   |                                                                                                                                                                       |       |
| 4.) Matrix Codes: <b>DW</b> =Dr                 | 4.) Matrix Codes: DW=Drinking Water, GW=Groundwater, SW=Surface Water, WW=Waste Water, W=Water, ML=Misc Liquid, 80=Soil, SD=Sediment, SL=Sludge, SS=Solid Waste, O=Oil, F=Filter, P=Wipe, U=Urine, F=Fecal, N=Nasal | r, SW=Surface Water,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , WW=Waste Water, V                                                                        | V=Water, ML=                                                             | Misc Liquic                      | , SO=Soil,    | SD=Sedim             | ent, SL=Sludg                                                                               | ge, SS=Solid                                                                                                      | l Waste, O                     | =0il, <b>F</b> =F       | ilter, P=W                      | ipe, U=U                        | rine, F=            | ecal, N=    | Nasal                   |                                                                   |                                                                                                                                                                       |       |
| 5.) Sample Analysis Reque                       | 5.) Sample Analysis Requested: Analytical method requested (i.e. 8260B, 6010B/7470A) and number of containers provided for                                                                                          | ed (i.e. <b>8260B</b> , <b>6010B</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8/7470A) and number o                                                                      | f containers pro                                                         | vided for e                      | ıch (i.e. 826 | 0B -3, 601           | each (i.e. 8260B - 3, 6010B/7470A - 1).                                                     | (1)                                                                                                               |                                |                         |                                 | ))<br>6                         |                     |             |                         |                                                                   |                                                                                                                                                                       |       |
| 7.) KNOWN OR POSSIBLE HAZARDS                   | 7.) KNOWN OR POSSIBLE HAZARDS                                                                                                                                                                                       | c Acid, SH = Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hydroxide, SA = Sulfu                                                                      | ric Acid, AA = .                                                         | Ascorbic A                       | id, HX = H    | exane, ST            | Acid, HX = Hexane, ST = Sodium Thiosulfate, If no preservative is added = leave field blank | osulfate, If r                                                                                                    | no preserva                    | ative is ad             | led = leav                      | e field bla                     | nk                  |             |                         |                                                                   |                                                                                                                                                                       |       |
| RCRA Metals As = Arsenic Hg Ba = Barium Se      | Hg= Mercury<br>Se= Selenium                                                                                                                                                                                         | Cuaracteristic Hazards FL = Flammable/Ignitabl CO = Corrosive RE = Reactive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cuaracteristic Hazards FL = Flammable/Ignitable CO = Corrosive RE = Reactive               | Listed Waste LW=Listed Waste (F.K.P and U-listed wastes.) Waste code(s): | ted Waste<br>d U-liste<br>te(s): | d wastes.,    |                      | Other<br>OT= (<br>(i.e.: F<br>misc. A                                                       | Other  OT= Other / Unknown  (i.e.: High/low pH, asbestos, beryllium, irritants, other misc. health hazards, etc.) | Unknow<br>v pH, as.<br>azards, | n<br>bestos, l<br>etc.) | erylliun                        | ı, irrita                       | nts, oth            | er          | Pleas<br>belov<br>conce | Please provide below regarding concerns. (i.e.: of site collected | Please provide any additional details below regarding handling and/or disposal concerns. (i.e.: Origin of sample(s), type of site collected from, odd matrices, etc.) | posal |
| nium<br>mium                                    | Ag= Silver<br>MR= Misc. RCRA metals                                                                                                                                                                                 | TSCA Regulated PCB = Polychlorinated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ated                                                                                       |                                                                          |                                  |               |                      | Test                                                                                        | rescription.                                                                                                      |                                |                         |                                 |                                 |                     | 1           | 7.5                     |                                                                   |                                                                                                                                                                       |       |
| Pb = Lead                                       |                                                                                                                                                                                                                     | biphenyls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | snyls                                                                                      |                                                                          |                                  |               |                      |                                                                                             |                                                                                                                   |                                |                         |                                 |                                 |                     | 1           |                         |                                                                   |                                                                                                                                                                       |       |
|                                                 |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                          |                                  | 45            |                      |                                                                                             |                                                                                                                   |                                |                         |                                 |                                 |                     |             |                         |                                                                   |                                                                                                                                                                       |       |

640 870

| $\vdash$  | lient: GPCC                                                                                           |      |    | S             | DG/AR/COC/Work Order:                                                                                                                                                                                                                                                                                 |
|-----------|-------------------------------------------------------------------------------------------------------|------|----|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R         | eceived By: QG                                                                                        |      |    | $\neg \vdash$ | Date Received: 0 / U / 2-3                                                                                                                                                                                                                                                                            |
|           | Carrier and Tracking Number                                                                           |      |    |               | Circle Applicable: FedEx Express FedEx Ground UPS Field Services Courier Other                                                                                                                                                                                                                        |
| Sı        | spected Hazard Information                                                                            | Yes  | No | *1            | If Net Counts > 100cm on samples not mode at ""                                                                                                                                                                                                                                                       |
|           |                                                                                                       | Ť    | -  | -             | If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.  azard Class Shipped:  UN#-                                                                                                                                                 |
| A)        | Shipped as a DOT Hazardous?                                                                           |      | 1  | 10.79         | If UN2910, Is the Radioactive Shipment Survey Compliant? Yes No                                                                                                                                                                                                                                       |
| B)<br>rec | Did the client designate the samples are to be eived as radioactive?                                  |      | -  | CC            | OC potation or radioactive stickers on containers equal client designation.                                                                                                                                                                                                                           |
| C)        | Did the RSO classify the samples as ioactive?                                                         |      | /  | Mi            | aximum Net Counts Observed* (Observed Counts - Area Background Counts):  Classified as: Rad 1 Rad 2 Rad 3                                                                                                                                                                                             |
| D)        | Did the client designate samples are hazardous                                                        | ?    | /  | 14500         | C notation or hazard labels on containers equal client designation.                                                                                                                                                                                                                                   |
| Ε)        | Did the RSO identify possible hazards?                                                                |      | /  | IfI           | D or E is yes, select Hazards below.<br>PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:                                                                                                                                                                                                   |
|           | Sample Receipt Criteria                                                                               | Yes  | NA | /Z            | Comments/Qualifiers (Required for Non-Conforming Items)                                                                                                                                                                                                                                               |
| 1         | Shipping containers received intact and scaled?                                                       | /    | 7  |               | Circle Applicable: Seals broken Damaged container Leaking container Other (describe)                                                                                                                                                                                                                  |
| 2         | Chain of custody documents included with shipment?                                                    |      |    | -             | Circle Applicable: Client contacted and provided COC COC created upon receipt                                                                                                                                                                                                                         |
| 3         | Samples requiring cold preservation within $(0 \le 6 \text{ deg. C})$ ?*                              |      | /  | /             | Preservation Method: We Lee Ice Packs Dry ice None Other: *all temperatures are recorded in Celsius TEMP: 2                                                                                                                                                                                           |
| 4         | Daily check performed and passed on IR temperature gun?                                               | 1    |    | /             | Temperature Device Serial #: <u>IR1-23</u><br>Secondary Temperature Device Serial # (If Applicable):                                                                                                                                                                                                  |
| 5         | Sample containers intact and sealed?                                                                  | 1    |    | /             | Circle Applicable: Seals broken Damaged container Leaking container Other (describe)                                                                                                                                                                                                                  |
| 6         | Samples requiring chemical preservation at proper pH?                                                 | 1    |    |               | Sample ID's and Containers Affected:                                                                                                                                                                                                                                                                  |
| 7         | Do any samples require Volatile<br>Analysis?                                                          | 2000 |    | /             | If Ppeservation added, Lot#:  If Yes, are Encores or Soil Kits present for solids? Yes No NA (If yes, take to VOA Freezer)  Do liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No)  Are liquid VOA vials free of headspace? Yes No NA  Sample ID's and containers affected: |
| 3         | Samples received within holding time?                                                                 | /    |    | /             | ID's and tests affected:                                                                                                                                                                                                                                                                              |
| ,         | Sample ID's on COC match ID's on bottles?                                                             | /    |    | /             | ID's and containers affected:                                                                                                                                                                                                                                                                         |
|           | Date & time on COC match date & time on bottles?                                                      |      | /  |               | Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)                                                                                                                                                                                                    |
|           | Number of containers received match number indicated on COC?                                          | 1    |    | 0             | Circle Applicable: No container count on COC Other (describe)                                                                                                                                                                                                                                         |
|           | Are sample containers identifiable as GEL provided by use of GEL labels?                              |      |    |               |                                                                                                                                                                                                                                                                                                       |
| 1         | COC form is properly signed in elinquished/received sections? ents (Use Continuation Form if needed): | /    |    | 0             | Circle Applicable: Not relinquished Other (describe)                                                                                                                                                                                                                                                  |
|           | Som includy.                                                                                          |      |    |               |                                                                                                                                                                                                                                                                                                       |

List of current GEL Certifications as of 23 October 2023

| State                       | Certification                |
|-----------------------------|------------------------------|
| Alabama                     | 42200                        |
| Alaska                      | 17-018                       |
| Alaska Drinking Water       | SC00012                      |
| Arkansas                    | 88-00651                     |
| CLIA                        | 42D0904046                   |
| California                  | 2940                         |
| Colorado                    | SC00012                      |
| Connecticut                 | PH-0169                      |
| DoD ELAP/ ISO17025 A2LA     | 2567.01                      |
| Florida NELAP               | E87156                       |
| Foreign Soils Permit        | P330-15-00283, P330-15-00253 |
| Georgia                     | SC00012                      |
| Georgia SDWA                | 967                          |
| Hawaii                      | SC00012                      |
| Idaho                       | SC00012<br>SC00012           |
| Illinois NELAP              | 200029                       |
| Indiana                     | C-SC-01                      |
| Kansas NELAP                | E-10332                      |
| Kansas NELAT  Kentucky SDWA | KY90129                      |
| Kentucky Wastewater         | KY90129<br>KY90129           |
| Louisiana Drinking Water    | LA024                        |
| Louisiana NELAP             | 03046 (AI33904)              |
| Maine                       | •                            |
| · · ·                       | 2023019                      |
| Maryland                    | 270                          |
| Massachusetts               | M-SC012                      |
| Massachusetts PFAS Approv   | Letter                       |
| Michigan                    | 9976                         |
| Mississippi                 | SC00012                      |
| Nebraska                    | NE-OS-26-13                  |
| Nevada                      | SC000122024-04               |
| New Hampshire NELAP         | 2054                         |
| New Jersey NELAP            | SC002                        |
| New Mexico                  | SC00012                      |
| New York NELAP              | 11501                        |
| North Carolina              | 233                          |
| North Carolina SDWA         | 45709                        |
| North Dakota                | R-158                        |
| Oklahoma                    | 2022-160                     |
| Pennsylvania NELAP          | 68-00485                     |
| Puerto Rico                 | SC00012                      |
| S. Carolina Radiochem       | 10120002                     |
| Sanitation Districts of L   | 9255651                      |
| South Carolina Chemistry    | 10120001                     |
| Tennessee                   | TN 02934                     |
| Texas NELAP                 | T104704235-23-21             |
| Utah NELAP                  | SC000122022-37               |
| Vermont                     | VT87156                      |
| Virginia NELAP              | 460202                       |
| Washington                  | C780                         |

Page 60 of 60 SDG: 640869



a member of The GEL Group INC

October 23, 2023

Joju Abraham Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

Re: Arkwright CCR Groundwater Compliance AP1

Work Order: 640870

### Dear Joju Abraham:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on October 11, 2023. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt. The laboratory received the following sample(s):

| <b>Laboratory ID</b> | Client ID     | <b>Matrix</b> | <b>Date Collected</b> | <b>Date Recieved</b> |
|----------------------|---------------|---------------|-----------------------|----------------------|
| 640870001            | ARK-AP1GWA-1  | Ground Water  | 09/10/23 13:45        | 11/10/23 15:28       |
| 640870002            | ARK-AP1-FB-01 | Ground Water  | 09/10/23 14:05        | 11/10/23 15:28       |
| 640870003            | ARK-AP1GWA-2  | Ground Water  | 09/10/23 14:30        | 11/10/23 15:28       |
| 640870004            | ARK-AP1-EB-01 | Ground Water  | 09/10/23 15:00        | 11/10/23 15:28       |
| 640870005            | ARK-AP1PZ-1   | Ground Water  | 09/10/23 16:20        | 11/10/23 15:28       |
| 640870006            | ARK-AP1PZ-2   | Ground Water  | 09/10/23 17:00        | 11/10/23 15:28       |
| 640870007            | ARK-AP1-FD-01 | Ground Water  | 09/10/23 00:00        | 11/10/23 15:28       |
| 640870008            | ARK-AP1PZ-4   | Ground Water  | 10/10/23 09:10        | 11/10/23 15:28       |
| 640870009            | ARK-AP1-FB-02 | Ground Water  | 10/10/23 09:30        | 11/10/23 15:28       |
| 640870010            | ARK-AP1PZ-3   | Ground Water  | 10/10/23 09:30        | 11/10/23 15:28       |
| 640870011            | ARK-AP1PZ-8   | Ground Water  | 10/10/23 11:55        | 11/10/23 15:28       |
| 640870012            | ARK-AP1PZ-5   | Ground Water  | 10/10/23 11:20        | 11/10/23 15:28       |
| 640870013            | ARK-AP1-EB-02 | Ground Water  | 10/10/23 12:10        | 11/10/23 15:28       |
| 640870014            | ARK-AP1PZ-7   | Ground Water  | 10/10/23 13:50        | 11/10/23 15:28       |
| 640870015            | ARK-AP1PZ-10  | Ground Water  | 10/10/23 14:20        | 11/10/23 15:28       |
| 640870016            | ARK-AP1PZ-11  | Ground Water  | 10/10/23 16:15        | 11/10/23 15:28       |



| 640870017 | ARK-AP1-FD-02 | Ground Water | 10/10/23 00:00 | 11/10/23 15:28 |
|-----------|---------------|--------------|----------------|----------------|
| 640870018 | ARK-AP1PZ-9   | Ground Water | 11/10/23 08:20 | 11/10/23 15:28 |

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

## **Prep Methods and Prep Dates**

Not Applicable

## **Analysis Methods and Analysis Dates**

| Method                        | Run Date ID |
|-------------------------------|-------------|
| Calculation                   | 23-OCT-2023 |
| EPA 903.1 Modified            | 23-OCT-2023 |
| EPA 904 0/SW846 9320 Modified | 16-OCT-2023 |

Page 2 of 31 SDG: 640870

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4504.

Sincerely,

Amanda Turner for

Erin Trent

Project Manager

Purchase Order: GPC82177-0005

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## Certificate of Analysis Report for

GPCC001 Georgia Power Company Client SDG: 640870 GEL Work Order: 640870

## The Qualifiers in this report are defined as follows:

- \* A quality control analyte recovery is outside of specified acceptance criteria
- \*\* Analyte is a Tracer compound
- \*\* Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Erin Trent.

|             | / manda | len |  |  |
|-------------|---------|-----|--|--|
| Reviewed by |         |     |  |  |
|             |         |     |  |  |

Page 4 of 31 SDG: 640870

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## **Certificate of Analysis**

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: October 23, 2023

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

GPCC00100 GPCC001 Client Sample ID: ARK-AP1GWA-1 Project: Client ID:

Sample ID: Matrix: 640870001 WG

Collect Date: 09-OCT-23 Receive Date: 11-OCT-23 Collector: Client

| Parameter                                | Qualifier       | Result U     | ncertainty   | MDC   | TPU      | RL   | Units | PF | DF | Analyst | Date '   | Time | Batch   | Mtd. |
|------------------------------------------|-----------------|--------------|--------------|-------|----------|------|-------|----|----|---------|----------|------|---------|------|
| Rad Gas Flow Propor<br>GFPC Ra228, Liqui |                 | 0            |              |       |          |      |       |    |    |         |          |      |         |      |
| Radium-228                               |                 | 2.41         | +/-1.09      | 1.37  | +/-1.25  | 3.00 | pCi/L |    |    | JE1     | 10/16/23 | 0816 | 2507338 | 1    |
| Radium-226+Radiu                         | m-228 Calcula   | tion "See Pa | rent Produci | ts"   |          |      |       |    |    |         |          |      |         |      |
| Radium-226+228 Sum                       |                 | 4.31         | +/-1.35      | 1.37  | +/-1.51  |      | pCi/L |    |    | NXL1    | 10/23/23 | 1409 | 2508821 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, 1   | Liquid "As Reco | eived"       |              |       |          |      |       |    |    |         |          |      |         |      |
| Radium-226                               |                 | 1.90         | +/-0.801     | 0.580 | +/-0.848 | 1.00 | pCi/L |    |    | LXP1    | 10/23/23 | 0818 | 2508813 | 3    |

The following Analytical Methods were performed Description

1 EPA 904.0/SW846 9320 Modified Calculation

EPA 903.1 Modified

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | Acceptable Limits |
|---------------------------|----------------------------------|----------|-----------|-------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2507338  | 66.4      | (15%-125%)        |

## **Notes:**

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor **RL**: Reporting Limit Lc/LC: Critical Level

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 5 of 31 SDG: 640870

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## **Certificate of Analysis**

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: October 23, 2023

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1-FB-01 Project: GPCC00100 Sample ID: Client ID: GPCC001 640870002 Matrix: WQ

Collect Date: 09-OCT-23 Receive Date: 11-OCT-23 Collector: Client

| Parameter                                   | Qualifier     | Result U     | ncertainty   | MDC   | TPU      | RL   | Units | PF | DF Analys | t Date Time   | Batch   | Mtd. |
|---------------------------------------------|---------------|--------------|--------------|-------|----------|------|-------|----|-----------|---------------|---------|------|
| Rad Gas Flow Proporti<br>GFPC Ra228, Liquid |               | U            |              |       |          |      |       |    |           |               |         |      |
| Radium-228                                  | U             | 1.12         | +/-1.18      | 1.96  | +/-1.21  | 3.00 | pCi/L |    | JE1       | 10/16/23 0816 | 2507338 | 1    |
| Radium-226+Radium                           | -228 Calcular | tion "See Pa | rent Produci | ts"   |          |      |       |    |           |               |         |      |
| Radium-226+228 Sum                          |               | 2.23         | +/-1.36      | 1.96  | +/-1.40  |      | pCi/L |    | NXL1      | 10/23/23 1409 | 2508821 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, Li     | quid "As Rece | eived"       |              |       |          |      |       |    |           |               |         |      |
| Radium-226                                  |               | 1.11         | +/-0.667     | 0.704 | +/-0.688 | 1.00 | pCi/L |    | LXP1      | 10/23/23 0818 | 2508813 | 3    |

## The following Analytical Methods were performed Description

EPA 904.0/SW846 9320 Modified

| Surrogate/Tracer | Recovery Test      | Batch ID Recovery% | <b>Acceptable Limits</b> |
|------------------|--------------------|--------------------|--------------------------|
| 3                | EPA 903.1 Modified |                    |                          |
| 2                | Calculation        |                    |                          |

#### Barium-133 Tracer 2507338 69.1 (15% - 125%)GFPC Ra228, Liquid "As Received"

## Notes:

Method

1

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 6 of 31 SDG: 640870

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## **Certificate of Analysis**

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: October 23, 2023

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1GWA-2 Project: GPCC00100 Sample ID: GPCC001 Client ID: 640870003

Matrix: WG

Collect Date: 09-OCT-23 Receive Date: 11-OCT-23 Collector: Client

| Parameter                                  | Qualifier     | Result Un     | certainty    | MDC   | TPU     | RL   | Units | PF | DF Analyst | Date Time     | Batch 1 | Mtd. |
|--------------------------------------------|---------------|---------------|--------------|-------|---------|------|-------|----|------------|---------------|---------|------|
| Rad Gas Flow Proportion GFPC Ra228, Liquid |               | 0             |              |       |         |      |       |    |            |               |         |      |
| Radium-228                                 | U             | 0.754         | +/-1.07      | 1.84  | +/-1.09 | 3.00 | pCi/L |    | JE1        | 10/16/23 0816 | 2507338 | 1    |
| Radium-226+Radium-                         | -228 Calculat | tion "See Par | ent Products | s"    |         |      |       |    |            |               |         |      |
| Radium-226+228 Sum                         |               | 6.78          | +/-1.83      | 1.84  | +/-2.05 |      | pCi/L |    | NXL1       | 10/23/23 1409 | 2508821 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, Lic   | quid "As Rece | eived"        |              |       |         |      |       |    |            |               |         |      |
| Radium-226                                 |               | 6.03          | +/-1.48      | 0.547 | +/-1.73 | 1.00 | pCi/L |    | LXP1       | 10/23/23 0818 | 2508813 | 3    |

The following Analytical Methods were performed **Description** 

|   | *                             |
|---|-------------------------------|
| 1 | EPA 904.0/SW846 9320 Modified |
| 2 | Calculation                   |
| 3 | EPA 903.1 Modified            |

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | <b>Acceptable Limits</b> |
|---------------------------|----------------------------------|----------|-----------|--------------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2507338  | 72.4      | (15%-125%)               |

#### Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 7 of 31 SDG: 640870

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## **Certificate of Analysis**

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: October 23, 2023

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1-EB-01 Project: GPCC00100 GPCC001 Sample ID: Client ID: 640870004

Matrix: WQ

Collect Date: 09-OCT-23 Receive Date: 11-OCT-23 Collector: Client

| Parameter                                   | Qualifier    | Result U      | ncertainty   | MDC   | TPU      | <u>RL</u> | Units | PF | DF Analys | t Date Time   | Batch   | Mtd. |
|---------------------------------------------|--------------|---------------|--------------|-------|----------|-----------|-------|----|-----------|---------------|---------|------|
| Rad Gas Flow Proportion  GFPC Ra228, Liquid |              | 0             |              |       |          |           |       |    |           |               |         |      |
| Radium-228                                  | U            | 1.24          | +/-1.22      | 2.01  | +/-1.26  | 3.00      | pCi/L |    | JE1       | 10/16/23 0816 | 2507338 | 1    |
| Radium-226+Radium-                          | 228 Calculo  | ation "See Pa | rent Product | s"    |          |           |       |    |           |               |         |      |
| Radium-226+228 Sum                          | U            | 1.38          | +/-1.25      | 2.01  | +/-1.29  |           | pCi/L |    | NXL1      | 10/23/23 1409 | 2508821 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, Liq    | quid "As Rec | ceived"       |              |       |          |           |       |    |           |               |         |      |
| Radium-226                                  | U            | 0.130         | +/-0.256     | 0.508 | +/-0.257 | 1.00      | pCi/L |    | LXP1      | 10/23/23 0852 | 2508813 | 3    |

The following Analytical Methods were performed Description

| 1 | EPA 904.0/SW846 9320 Modified |
|---|-------------------------------|
| 2 | Calculation                   |
| 3 | EPA 903.1 Modified            |

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | <b>Acceptable Limits</b> |
|---------------------------|----------------------------------|----------|-----------|--------------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2507338  | 69.4      | (15%-125%)               |

#### Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor **RL**: Reporting Limit Lc/LC: Critical Level

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 8 of 31 SDG: 640870

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## **Certificate of Analysis**

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: October 23, 2023

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-1 Project: GPCC00100 Sample ID: GPCC001 Client ID: 640870005

Matrix: WG

Collect Date: 09-OCT-23 Receive Date: 11-OCT-23 Collector: Client

| Parameter                                   | Qualifier     | Result U     | ncertainty   | MDC   | TPU     | RL   | Units | PF | DF Analyst | Date Time     | Batch   | Mtd. |
|---------------------------------------------|---------------|--------------|--------------|-------|---------|------|-------|----|------------|---------------|---------|------|
| Rad Gas Flow Proporti<br>GFPC Ra228, Liquid |               | 0            |              |       |         |      |       |    |            |               |         |      |
| Radium-228                                  |               | 2.01         | +/-1.04      | 1.42  | +/-1.16 | 3.00 | pCi/L |    | JE1        | 10/16/23 0816 | 2507338 | 1    |
| Radium-226+Radium                           | -228 Calculat | tion "See Pa | rent Product | s"    |         |      |       |    |            |               |         |      |
| Radium-226+228 Sum                          |               | 4.93         | +/-1.43      | 1.42  | +/-1.59 |      | pCi/L |    | NXL1       | 10/23/23 1409 | 2508821 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, Li     | quid "As Rece | eived"       |              |       |         |      |       |    |            |               |         |      |
| Radium-226                                  |               | 2.92         | +/-0.983     | 0.494 | +/-1.09 | 1.00 | pCi/L |    | LXP1       | 10/23/23 0852 | 2508813 | 3    |

The following Analytical Methods were performed Description

| 1 | EPA 904.0/SW846 9320 Modified |
|---|-------------------------------|
| 2 | Calculation                   |
| 3 | EPA 903.1 Modified            |

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | Acceptable Limits |
|---------------------------|----------------------------------|----------|-----------|-------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2507338  | 68.6      | (15%-125%)        |

#### Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 9 of 31 SDG: 640870

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## **Certificate of Analysis**

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: October 23, 2023

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-2 Project: GPCC00100 Sample ID: GPCC001 Client ID: 640870006

Matrix: WG

Collect Date: 09-OCT-23 Receive Date: 11-OCT-23 Collector: Client

| Parameter                                   | Qualifier     | Result Un | certainty | MDC   | TPU     | RL   | Units | PF | DF Analyst | Date Time     | Batch 1 | Mtd. |
|---------------------------------------------|---------------|-----------|-----------|-------|---------|------|-------|----|------------|---------------|---------|------|
| Rad Gas Flow Proportion  GFPC Ra228, Liquid |               | 0         |           |       |         |      |       |    |            |               |         |      |
| Radium-228                                  | U             | 1.39      | +/-1.07   | 1.65  | +/-1.13 | 3.00 | pCi/L |    | JE1        | 10/16/23 0816 | 2507338 | 1    |
| Radium-226+Radium-                          |               |           |           |       |         |      |       |    |            |               |         |      |
| Radium-226+228 Sum                          |               | 7.40      | +/-1.78   | 1.65  | +/-2.05 |      | pCi/L |    | NXL1       | 10/23/23 1409 | 2508821 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, Lic    | quid "As Rece | rived"    |           |       |         |      |       |    |            |               |         |      |
| Radium-226                                  |               | 6.01      | +/-1.43   | 0.676 | +/-1.71 | 1.00 | pCi/L |    | LXP1       | 10/23/23 0852 | 2508813 | 3    |

The following Analytical Methods were performed Description

|   | *                             |
|---|-------------------------------|
| 1 | EPA 904.0/SW846 9320 Modified |
| 2 | Calculation                   |
| 3 | EPA 903.1 Modified            |

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | <b>Acceptable Limits</b> |
|---------------------------|----------------------------------|----------|-----------|--------------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2507338  | 63.8      | (15%-125%)               |

#### Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 10 of 31 SDG: 640870

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## **Certificate of Analysis**

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: October 23, 2023

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1-FD-01 Project: GPCC00100 Sample ID: 640870007 Client ID: GPCC001

Matrix: WG

Collect Date: 09-OCT-23 Receive Date: 11-OCT-23 Collector: Client

| Parameter                                      | Qualifier      | Result Un     | certainty   | MDC   | TPU     | RL   | Units | PF | DF Analys | t Date Time   | Batch   | Mtd. |
|------------------------------------------------|----------------|---------------|-------------|-------|---------|------|-------|----|-----------|---------------|---------|------|
| Rad Gas Flow Proport<br>GFPC Ra228, Liquid     |                | U             |             |       |         |      |       |    |           |               |         |      |
| Radium-228                                     | U              | 1.66          | +/-1.20     | 1.85  | +/-1.28 | 3.00 | pCi/L |    | JE1       | 10/16/23 0816 | 2507338 | 1    |
| Radium-226+Radium                              | -228 Calcular  | tion "See Par | ent Produci | ts"   |         |      |       |    |           |               |         |      |
| Radium-226+228 Sum                             |                | 7.98          | +/-2.05     | 1.85  | +/-2.39 |      | pCi/L |    | NXL1      | 10/23/23 1409 | 2508821 | 2    |
| <b>Rad Radium-226</b><br>Lucas Cell, Ra226, Li | iquid "As Rece | eived"        |             |       |         |      |       |    |           |               |         |      |
| Radium-226                                     |                | 6.33          | +/-1.66     | 0.996 | +/-2.02 | 1.00 | pCi/L |    | LXP1      | 10/23/23 0852 | 2508813 | 3    |

The following Analytical Methods were performed

| Method | Description                   |
|--------|-------------------------------|
| 1      | EPA 904.0/SW846 9320 Modified |
| 2      | Calculation                   |
| 3      | EPA 903.1 Modified            |

Surrogate/Tracer Recovery Test Batch ID Recovery% Acceptable Limits

Barium-133 Tracer GFPC Ra228, Liquid "As Received" 2507338 60.3 (15%-125%)

#### **Notes:**

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution FactorMtd.: MethodDL: Detection LimitPF: Prep FactorLc/LC: Critical LevelRL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 11 of 31 SDG: 640870

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## **Certificate of Analysis**

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: October 23, 2023

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-4 Project: GPCC00100 Sample ID: GPCC001 Client ID: 640870008

Matrix: WG

Collect Date: 10-OCT-23 Receive Date: 11-OCT-23 Collector: Client

| Parameter                                   | Qualifier     | Result Un     | certainty    | MDC         | TPU     | RL   | Units | PF | DF Analys | t Date Time   | Batch 1 | Mtd. |
|---------------------------------------------|---------------|---------------|--------------|-------------|---------|------|-------|----|-----------|---------------|---------|------|
| Rad Gas Flow Proporti<br>GFPC Ra228, Liquid |               | 0             |              |             |         |      |       |    |           |               |         |      |
| Radium-228                                  | U             | 2.16          | +/-1.68      | 2.70        | +/-1.77 | 3.00 | pCi/L |    | JE1       | 10/16/23 0819 | 2507338 | 1    |
| Radium-226+Radium-                          | -228 Calculai | tion "See Par | rent Product | <i>'s''</i> |         |      |       |    |           |               |         |      |
| Radium-226+228 Sum                          |               | 5.33          | +/-1.96      | 2.70        | +/-2.14 |      | pCi/L |    | NXL1      | 10/23/23 1409 | 2508821 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, Lie    | quid "As Rece | eived"        |              |             |         |      |       |    |           |               |         |      |
| Radium-226                                  |               | 3.16          | +/-1.01      | 0.481       | +/-1.21 | 1.00 | pCi/L |    | LXP1      | 10/23/23 0852 | 2508813 | 3    |

The following Analytical Methods were performed Description

| 1 | EPA 904.0/SW846 9320 Modified |
|---|-------------------------------|
| 2 | Calculation                   |
| 3 | EPA 903.1 Modified            |

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | <b>Acceptable Limits</b> |
|---------------------------|----------------------------------|----------|-----------|--------------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2507338  | 62.9      | (15%-125%)               |

#### Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 12 of 31 SDG: 640870

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## **Certificate of Analysis**

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: October 23, 2023

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1-FB-02 Project: GPCC00100 Sample ID: GPCC001 Client ID: 640870009

Matrix: WQ

Collect Date: 10-OCT-23 Receive Date: 11-OCT-23 Collector: Client

| Parameter                                   | Qualifier    | Result U     | ncertainty   | MDC   | TPU      | RL   | Units | PF | DF Analys | Date Time     | Batch   | Mtd. |
|---------------------------------------------|--------------|--------------|--------------|-------|----------|------|-------|----|-----------|---------------|---------|------|
| Rad Gas Flow Proporti<br>GFPC Ra228, Liquid |              | U            |              |       |          |      |       |    |           |               |         |      |
| Radium-228                                  |              | 2.02         | +/-1.05      | 1.43  | +/-1.17  | 3.00 | pCi/L |    | JE1       | 10/16/23 0821 | 2507338 | 1    |
| Radium-226+Radium                           | -228 Calcula | tion "See Pa | rent Produci | ts"   |          |      |       |    |           |               |         |      |
| Radium-226+228 Sum                          |              | 2.51         | +/-1.13      | 1.43  | +/-1.25  |      | pCi/L |    | NXL1      | 10/23/23 1409 | 2508821 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, Li     | quid "As Rec | eived"       |              |       |          |      |       |    |           |               |         |      |
| Radium-226                                  | U            | 0.489        | +/-0.437     | 0.573 | +/-0.449 | 1.00 | pCi/L |    | LXP1      | 10/23/23 0852 | 2508813 | 3    |

The following Analytical Methods were performed

| Method | Description                   |
|--------|-------------------------------|
| 1      | EPA 904.0/SW846 9320 Modified |
| 2      | Calculation                   |
| 3      | EPA 903 1 Modified            |

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | <b>Acceptable Limits</b> |
|---------------------------|----------------------------------|----------|-----------|--------------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2507338  | 68.6      | (15%-125%)               |

## Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 13 of 31 SDG: 640870

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## **Certificate of Analysis**

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: October 23, 2023

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-3 Project: GPCC00100 Sample ID: GPCC001 Client ID: 640870010

Matrix: WG

Collect Date: 10-OCT-23 Receive Date: 11-OCT-23 Collector: Client

| Parameter                                   | Qualifier     | Result Un    | certainty     | MDC   | TPU     | RL   | Units | PF | DF Analyst | Date Time     | Batch 1 | Mtd. |
|---------------------------------------------|---------------|--------------|---------------|-------|---------|------|-------|----|------------|---------------|---------|------|
| Rad Gas Flow Proporti<br>GFPC Ra228, Liquid |               | 0            |               |       |         |      |       |    |            |               |         |      |
| Radium-228                                  |               | 3.12         | +/-1.40       | 1.86  | +/-1.61 | 3.00 | pCi/L |    | JE1        | 10/16/23 0821 | 2507338 | 1    |
| Radium-226+Radium-                          | -228 Calculat | ion "See Par | rent Products | s"    |         |      |       |    |            |               |         |      |
| Radium-226+228 Sum                          |               | 12.5         | +/-2.28       | 1.86  | +/-2.99 |      | pCi/L |    | NXL1       | 10/23/23 1409 | 2508821 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, Lic    | quid "As Rece | rived"       |               |       |         |      |       |    |            |               |         |      |
| Radium-226                                  |               | 9.36         | +/-1.80       | 0.761 | +/-2.52 | 1.00 | pCi/L |    | LXP1       | 10/23/23 0852 | 2508813 | 3    |

The following Analytical Methods were performed **Description** 

|   | •                             |
|---|-------------------------------|
| 1 | EPA 904.0/SW846 9320 Modified |
| 2 | Calculation                   |
| 3 | EPA 903.1 Modified            |

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | <b>Acceptable Limits</b> |
|---------------------------|----------------------------------|----------|-----------|--------------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2507338  | 57.7      | (15%-125%)               |

## Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 14 of 31 SDG: 640870

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## **Certificate of Analysis**

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: October 23, 2023

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

GPCC00100 GPCC001 Client Sample ID: ARK-AP1PZ-8 Project: Sample ID: Matrix: 640870011 Client ID:

WG

Collect Date: 10-OCT-23 Receive Date: 11-OCT-23 Collector: Client

| Parameter                                   | Qualifier     | Result U    | ncertainty    | MDC   | TPU      | RL   | Units | PF | DF Analyst | Date Time     | Batch 1 | Mtd. |
|---------------------------------------------|---------------|-------------|---------------|-------|----------|------|-------|----|------------|---------------|---------|------|
| Rad Gas Flow Proportion  GFPC Ra228, Liquid |               | 0           |               |       |          |      |       |    |            |               |         |      |
| Radium-228                                  |               | 1.84        | +/-0.907      | 1.17  | +/-1.02  | 3.00 | pCi/L |    | JE1        | 10/16/23 0821 | 2507338 | 1    |
| Radium-226+Radium-                          | 228 Calculat  | ion "See Pa | rent Product. | s"    |          |      |       |    |            |               |         |      |
| Radium-226+228 Sum                          |               | 3.27        | +/-1.13       | 1.17  | +/-1.27  |      | pCi/L |    | NXL1       | 10/23/23 1409 | 2508821 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, Lid    | juid "As Rece | eived"      |               |       |          |      |       |    |            |               |         |      |
| Radium-226                                  |               | 1.44        | +/-0.671      | 0.531 | +/-0.748 | 1.00 | pCi/L |    | LXP1       | 10/23/23 0852 | 2508813 | 3    |

The following Analytical Methods were performed Description

1 EPA 904.0/SW846 9320 Modified Calculation

EPA 903.1 Modified

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | Acceptable Limits |
|---------------------------|----------------------------------|----------|-----------|-------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2507338  | 71.3      | (15%-125%)        |

#### **Notes:**

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor **RL**: Reporting Limit Lc/LC: Critical Level

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 15 of 31 SDG: 640870

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## **Certificate of Analysis**

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: October 23, 2023

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

ARK-AP1PZ-5 Client Sample ID: Project: GPCC00100 Sample ID: GPCC001 Client ID: 640870012

Matrix: WG

Collect Date: 10-OCT-23 Receive Date: 11-OCT-23 Collector: Client

| Parameter                                   | Qualifier     | Result Un     | certainty     | MDC   | TPU     | RL   | Units | PF | DF Analys | t Date Time   | Batch 1 | Mtd. |
|---------------------------------------------|---------------|---------------|---------------|-------|---------|------|-------|----|-----------|---------------|---------|------|
| Rad Gas Flow Proporti<br>GFPC Ra228, Liquid |               | 0             |               |       |         |      |       |    |           |               |         |      |
| Radium-228                                  | U             | -0.394        | +/-1.54       | 2.87  | +/-1.54 | 3.00 | pCi/L |    | JE1       | 10/16/23 0821 | 2507338 | 1    |
| Radium-226+Radium                           | -228 Calculat | tion "See Par | rent Product. | s"    |         |      |       |    |           |               |         |      |
| Radium-226+228 Sum                          |               | 4.50          | +/-2.00       | 2.87  | +/-2.27 |      | pCi/L |    | NXL1      | 10/23/23 1409 | 2508821 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, Li     | quid "As Rece | eived"        |               |       |         |      |       |    |           |               |         |      |
| Radium-226                                  |               | 4.50          | +/-1.28       | 0.542 | +/-1.66 | 1.00 | pCi/L |    | LXP1      | 10/23/23 0927 | 2508813 | 3    |

The following Analytical Methods were performed **Description** 

| 1 | EPA 904.0/SW846 9320 Modified |
|---|-------------------------------|
| 2 | Calculation                   |
| 3 | EPA 903.1 Modified            |

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | <b>Acceptable Limits</b> |
|---------------------------|----------------------------------|----------|-----------|--------------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2507338  | 59.1      | (15%-125%)               |

#### Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 16 of 31 SDG: 640870

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## **Certificate of Analysis**

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: October 23, 2023

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

ARK-AP1-EB-02 Client Sample ID: Project: GPCC00100 Sample ID: GPCC001 Client ID: 640870013

Matrix: WQ

Collect Date: 10-OCT-23 Receive Date: 11-OCT-23 Collector: Client

| Parameter                                  | Qualifier    | Result Ui     | ncertainty   | MDC   | TPU      | RL   | Units | PF | DF Analys | Date Time     | Batch 1 | Mtd. |
|--------------------------------------------|--------------|---------------|--------------|-------|----------|------|-------|----|-----------|---------------|---------|------|
| Rad Gas Flow Proportion GFPC Ra228, Liquid |              | 0             |              |       |          |      |       |    |           |               |         |      |
| Radium-228                                 | U            | 1.38          | +/-1.34      | 2.21  | +/-1.39  | 3.00 | pCi/L |    | JE1       | 10/16/23 0821 | 2507338 | 1    |
| Radium-226+Radium-                         | 228 Calcula  | ation "See Pa | rent Product | s"    |          |      |       |    |           |               |         |      |
| Radium-226+228 Sum                         | U            | 1.91          | +/-1.44      | 2.21  | +/-1.49  |      | pCi/L |    | NXL1      | 10/23/23 1409 | 2508821 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, Liq   | quid "As Rec | ceived"       |              |       |          |      |       |    |           |               |         |      |
| Radium-226                                 | U            | 0.527         | +/-0.523     | 0.761 | +/-0.529 | 1.00 | pCi/L |    | LXP1      | 10/23/23 0927 | 2508813 | 3    |

The following Analytical Methods were performed **Description** 

|   | <u>-</u>                      |
|---|-------------------------------|
| 1 | EPA 904.0/SW846 9320 Modified |
| 2 | Calculation                   |
| 3 | EPA 903.1 Modified            |

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | <b>Acceptable Limits</b> |
|---------------------------|----------------------------------|----------|-----------|--------------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2507338  | 66.8      | (15%-125%)               |

#### Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 17 of 31 SDG: 640870

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## **Certificate of Analysis**

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: October 23, 2023

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-7 Project: GPCC00100 Sample ID: 640870014 Client ID: GPCC001

Matrix: WG

Collect Date: 10-OCT-23 Receive Date: 11-OCT-23 Collector: Client

| Parameter                                | Qualifier    | Result U     | ncertainty    | MDC_  | TPU      | RL_  | Units | PF | DF Analys | t Date Time   | Batch   | Mtd. |
|------------------------------------------|--------------|--------------|---------------|-------|----------|------|-------|----|-----------|---------------|---------|------|
| Rad Gas Flow Proportion                  |              | 0            |               |       |          |      |       |    |           |               |         |      |
| Radium-228                               | U            | 0.986        | +/-1.17       | 1.98  | +/-1.20  | 3.00 | pCi/L |    | JE1       | 10/16/23 0822 | 2507338 | 1    |
| Radium-226+Radium-                       | 228 Calculai | tion "See Pa | rent Product. | s"    |          |      |       |    |           |               |         |      |
| Radium-226+228 Sum                       | U            | 1.64         | +/-1.29       | 1.98  | +/-1.32  |      | pCi/L |    | NXL1      | 10/23/23 1409 | 2508821 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, Liq | uid "As Rece | eived"       |               |       |          |      |       |    |           |               |         |      |
| Radium-226                               |              | 0.652        | +/-0.529      | 0.587 | +/-0.545 | 1.00 | pCi/L |    | LXP1      | 10/23/23 0927 | 2508813 | 3    |
|                                          |              |              |               |       |          |      |       |    |           |               |         |      |

The following Analytical Methods were performed

| Method | Description                   |
|--------|-------------------------------|
| 1      | EPA 904.0/SW846 9320 Modified |
| 2      | Calculation                   |
| 3      | EPA 903.1 Modified            |

| Surrogate/Tracer Recovery | Test                            | Batch ID Recove | ry% Acceptable Limits |
|---------------------------|---------------------------------|-----------------|-----------------------|
| Darium 122 Trager         | CEDC Do229 Liquid "As Doggiyad" | 2507338 6       | (15%_125%)            |

Barium-133 Tracer GFPC Ra228, Liquid "As Received" 2507338 61.9 (15%-125%)

## Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution FactorMtd.: MethodDL: Detection LimitPF: Prep FactorLc/LC: Critical LevelRL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 18 of 31 SDG: 640870

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## **Certificate of Analysis**

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: October 23, 2023

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-10 Project: GPCC00100 Sample ID: GPCC001 Client ID: 640870015

Matrix: WG

Collect Date: 10-OCT-23 Receive Date: 11-OCT-23 Collector: Client

| Parameter                                   | Qualifier     | Result Un    | ncertainty   | MDC  | TPU      | RL   | Units | PF | DF Analyst | Date Time     | Batch 1 | Mtd. |
|---------------------------------------------|---------------|--------------|--------------|------|----------|------|-------|----|------------|---------------|---------|------|
| Rad Gas Flow Proportion  GFPC Ra228, Liquid |               | 0            |              |      |          |      |       |    |            |               |         |      |
| Radium-228                                  | U             | 1.06         | +/-0.958     | 1.53 | +/-0.995 | 3.00 | pCi/L |    | JE1        | 10/16/23 0822 | 2507338 | 1    |
| Radium-226+Radium-                          | 228 Calculat  | tion "See Pa | rent Product | s"   |          |      |       |    |            |               |         |      |
| Radium-226+228 Sum                          |               | 11.6         | +/-2.32      | 1.53 | +/-2.85  |      | pCi/L |    | NXL1       | 10/23/23 1409 | 2508821 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, Liq    | quid "As Rece | eived"       |              |      |          |      |       |    |            |               |         |      |
| Radium-226                                  |               | 10.5         | +/-2.11      | 1.15 | +/-2.67  | 1.00 | pCi/L |    | LXP1       | 10/23/23 0927 | 2508813 | 3    |

The following Analytical Methods were performed **Description** 

|   | *                             |
|---|-------------------------------|
| 1 | EPA 904.0/SW846 9320 Modified |
| 2 | Calculation                   |
| 3 | EPA 903.1 Modified            |

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | <b>Acceptable Limits</b> |
|---------------------------|----------------------------------|----------|-----------|--------------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2507338  | 64.6      | (15%-125%)               |

#### **Notes:**

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 19 of 31 SDG: 640870

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## **Certificate of Analysis**

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: October 23, 2023

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-11 Project: GPCC00100 Sample ID: GPCC001 Client ID: 640870016

Matrix: WG

Collect Date: 10-OCT-23 Receive Date: 11-OCT-23 Collector: Client

| Parameter                                  | Qualifier    | Result U     | ncertainty    | MDC   | TPU      | RL   | Units | PF | DF Analys | t Date Time   | Batch 1 | Mtd. |
|--------------------------------------------|--------------|--------------|---------------|-------|----------|------|-------|----|-----------|---------------|---------|------|
| Rad Gas Flow Proportion GFPC Ra228, Liquid |              | 0            |               |       |          |      |       |    |           |               |         |      |
| Radium-228                                 | U            | 0.798        | +/-1.05       | 1.78  | +/-1.07  | 3.00 | pCi/L |    | JE1       | 10/16/23 0814 | 2507338 | 1    |
| Radium-226+Radium-                         | 228 Calcula  | tion "See Pa | rent Product. | s"    |          |      |       |    |           |               |         |      |
| Radium-226+228 Sum                         | U            | 1.77         | +/-1.23       | 1.78  | +/-1.27  |      | pCi/L |    | NXL1      | 10/23/23 1409 | 2508821 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, Lie   | quid "As Rec | eived"       |               |       |          |      |       |    |           |               |         |      |
| Radium-226                                 |              | 0.977        | +/-0.648      | 0.813 | +/-0.685 | 1.00 | pCi/L |    | LXP1      | 10/23/23 0927 | 2508813 | 3    |

The following Analytical Methods were performed **Description** 

|   | <u>•</u>                      |
|---|-------------------------------|
| 1 | EPA 904.0/SW846 9320 Modified |
| 2 | Calculation                   |
| 3 | EPA 903.1 Modified            |

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | <b>Acceptable Limits</b> |
|---------------------------|----------------------------------|----------|-----------|--------------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2507338  | 76.2      | (15%-125%)               |

#### Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 20 of 31 SDG: 640870

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## **Certificate of Analysis**

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: October 23, 2023

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1-FD-02 Project: GPCC00100 Sample ID: 640870017 Client ID: GPCC001

Matrix: WG

Collect Date: 10-OCT-23 Receive Date: 11-OCT-23 Collector: Client

| Parameter                                   | Qualifier     | Result U     | ncertainty   | MDC   | TPU      | RL   | Units | PF | DF Analyst | Date Time     | Batch 1 | Mtd. |
|---------------------------------------------|---------------|--------------|--------------|-------|----------|------|-------|----|------------|---------------|---------|------|
| Rad Gas Flow Proportion  GFPC Ra228, Liquid |               | 0            |              |       |          |      |       |    |            |               |         |      |
| Radium-228                                  |               | 1.92         | +/-1.03      | 1.44  | +/-1.15  | 3.00 | pCi/L |    | JE1        | 10/16/23 0814 | 2507338 | 1    |
| Radium-226+Radium-                          | 228 Calculat  | tion "See Pa | rent Product | s"    |          |      |       |    |            |               |         |      |
| Radium-226+228 Sum                          |               | 3.72         | +/-1.32      | 1.44  | +/-1.48  |      | pCi/L |    | NXL1       | 10/23/23 1409 | 2508821 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, Lia    | quid "As Rece | eived"       |              |       |          |      |       |    |            |               |         |      |
| Radium-226                                  |               | 1.80         | +/-0.818     | 0.633 | +/-0.927 | 1.00 | pCi/L |    | LXP1       | 10/23/23 0927 | 2508813 | 3    |

The following Analytical Methods were performed

| Method | Description                   |
|--------|-------------------------------|
| 1      | EPA 904.0/SW846 9320 Modified |
| 2      | Calculation                   |
| 2      | EDA 002 1 M 1'C' 1            |

3 EPA 903.1 Modified

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | Acceptable Limits |
|---------------------------|----------------------------------|----------|-----------|-------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2507338  | 64.7      | (15%-125%)        |

#### **Notes:**

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution FactorMtd.: MethodDL: Detection LimitPF: Prep FactorLc/LC: Critical LevelRL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 21 of 31 SDG: 640870

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## **Certificate of Analysis**

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: October 23, 2023

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-9 Project: GPCC00100 Sample ID: Client ID: GPCC001 640870018

Matrix: WG

Collect Date: 11-OCT-23 Receive Date: 11-OCT-23 Collector: Client

| Parameter                                  | Qualifier     | Result Un    | certainty   | MDC   | TPU    | J RL | Units | PF | DF Analyst | Date Time     | Batch   | Mtd. |
|--------------------------------------------|---------------|--------------|-------------|-------|--------|------|-------|----|------------|---------------|---------|------|
| Rad Gas Flow Proportion GFPC Ra228, Liquid |               | 0            |             |       |        |      |       |    |            |               |         |      |
| Radium-228                                 | U             | 2.25         | +/-1.57     | 2.47  | +/-1.6 | 3.00 | pCi/L |    | JE1        | 10/16/23 0815 | 2507338 | 1    |
| Radium-226+Radium-                         | 228 Calculat  | ion "See Par | ent Product | s"    |        |      |       |    |            |               |         |      |
| Radium-226+228 Sum                         |               | 5.37         | +/-1.91     | 2.47  | +/-2.1 | 2    | pCi/L |    | NXL1       | 10/23/23 1409 | 2508821 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, Lie   | quid "As Rece | rived"       |             |       |        |      |       |    |            |               |         |      |
| Radium-226                                 |               | 3.12         | +/-1.09     | 0.740 | +/-1.3 | 1.00 | pCi/L |    | LXP1       | 10/23/23 0927 | 2508813 | 3    |

The following Analytical Methods were performed

| Method | Description                   |
|--------|-------------------------------|
| 1      | EPA 904.0/SW846 9320 Modified |
| 2      | Calculation                   |
| 3      | EPA 903.1 Modified            |

Surrogate/Tracer Recovery Test **Batch ID Recovery% Acceptable Limits** Barium-133 Tracer 2507338 62.6 (15% - 125%)

GFPC Ra228, Liquid "As Received"

The MDC is a sample specific MDC.

Notes:

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor **RL**: Reporting Limit Lc/LC: Critical Level

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 22 of 31 SDG: 640870

# Radiochemistry Technical Case Narrative Georgia Power Company SDG #: 640870

**Product:** Radium-226+Radium-228 Calculation

**Analytical Method:** Calculation

Analytical Procedure: GL-RAD-D-003 REV# 45

**Analytical Batch:** 2508821

The following samples were analyzed using the above methods and analytical procedure(s).

| GEL Sample ID# | <b>Client Sample Identification</b> |
|----------------|-------------------------------------|
| 640870001      | ARK-AP1GWA-1                        |
| 640870002      | ARK-AP1-FB-01                       |
| 640870003      | ARK-AP1GWA-2                        |
| 640870004      | ARK-AP1-EB-01                       |
| 640870005      | ARK-AP1PZ-1                         |
| 640870006      | ARK-AP1PZ-2                         |
| 640870007      | ARK-AP1-FD-01                       |
| 640870008      | ARK-AP1PZ-4                         |
| 640870009      | ARK-AP1-FB-02                       |
| 640870010      | ARK-AP1PZ-3                         |
| 640870011      | ARK-AP1PZ-8                         |
| 640870012      | ARK-AP1PZ-5                         |
| 640870013      | ARK-AP1-EB-02                       |
| 640870014      | ARK-AP1PZ-7                         |
| 640870015      | ARK-AP1PZ-10                        |
| 640870016      | ARK-AP1PZ-11                        |
| 640870017      | ARK-AP1-FD-02                       |
| 640870018      | ARK-AP1PZ-9                         |

The samples in this SDG were analyzed on an "as received" basis.

### **Data Summary:**

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

**Product:** GFPC Ra228, Liquid

**Analytical Method:** EPA 904.0/SW846 9320 Modified **Analytical Procedure:** GL-RAD-A-063 REV# 5

**Analytical Batch:** 2507338

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID# Client Sample Identification

640870001 ARK-AP1GWA-1

Page 23 of 31 SDG: 640870

| 640870002  | ARK-AP1-FB-01                                  |
|------------|------------------------------------------------|
| 640870003  | ARK-AP1GWA-2                                   |
| 640870004  | ARK-AP1-EB-01                                  |
| 640870005  | ARK-AP1PZ-1                                    |
| 640870006  | ARK-AP1PZ-2                                    |
| 640870007  | ARK-AP1-FD-01                                  |
| 640870008  | ARK-AP1PZ-4                                    |
| 640870009  | ARK-AP1-FB-02                                  |
| 640870010  | ARK-AP1PZ-3                                    |
| 640870011  | ARK-AP1PZ-8                                    |
| 640870012  | ARK-AP1PZ-5                                    |
| 640870013  | ARK-AP1-EB-02                                  |
| 640870014  | ARK-AP1PZ-7                                    |
| 640870015  | ARK-AP1PZ-10                                   |
| 640870016  | ARK-AP1PZ-11                                   |
| 640870017  | ARK-AP1-FD-02                                  |
| 640870018  | ARK-AP1PZ-9                                    |
| 1205544152 | Method Blank (MB)                              |
| 1205544153 | 640870001(ARK-AP1GWA-1) Sample Duplicate (DUP) |
| 1205544154 | Laboratory Control Sample (LCS)                |
|            |                                                |

The samples in this SDG were analyzed on an "as received" basis.

## **Data Summary:**

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

## **Technical Information**

## Recounts

Sample 1205544152 (MB) was recounted due to a suspected blank false positive. The recount is reported.

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

**Analytical Procedure:** GL-RAD-A-008 REV# 15

**Analytical Batch:** 2508813

The following samples were analyzed using the above methods and analytical procedure(s).

| GEL Sample ID# | Client Sample Identification |
|----------------|------------------------------|
| 640870001      | ARK-AP1GWA-1                 |
| 640870002      | ARK-AP1-FB-01                |
| 640870003      | ARK-AP1GWA-2                 |
| 640870004      | ARK-AP1-EB-01                |
| 640870005      | ARK-AP1PZ-1                  |
| 640870006      | ARK-AP1PZ-2                  |
| 640870007      | ARK-AP1-FD-01                |
| 640870008      | ARK-AP1PZ-4                  |
| 640870009      | ARK-AP1-FB-02                |
| 640870010      | ARK-AP1PZ-3                  |

| 640870011  | ARK-AP1PZ-8                                    |
|------------|------------------------------------------------|
| 640870012  | ARK-AP1PZ-5                                    |
| 640870013  | ARK-AP1-EB-02                                  |
| 640870014  | ARK-AP1PZ-7                                    |
| 640870015  | ARK-AP1PZ-10                                   |
| 640870016  | ARK-AP1PZ-11                                   |
| 640870017  | ARK-AP1-FD-02                                  |
| 640870018  | ARK-AP1PZ-9                                    |
| 1205546778 | Method Blank (MB)                              |
| 1205546779 | 640870001(ARK-AP1GWA-1) Sample Duplicate (DUP) |
| 1205546780 | 640870001(ARK-AP1GWA-1) Matrix Spike (MS)      |
| 1205546781 | Laboratory Control Sample (LCS)                |

The samples in this SDG were analyzed on an "as received" basis.

## **Data Summary:**

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

## **Miscellaneous Information**

### **Additional Comments**

The matrix spike, 1205546780 (ARK-AP1GWA-1MS), aliquot was reduced to conserve sample volume.

## **Certification Statement**

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 25 of 31 SDG: 640870

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

**QC** Summary

Client: Georgia Power Company, Southern Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia

**Contact:** Joju Abraham

Workorder: 640870

| Parmname      |               | NOM     | Sample (         | Qual | QC               | Units | RPD% | REC% | Range A      | Anlst | Date Time     |
|---------------|---------------|---------|------------------|------|------------------|-------|------|------|--------------|-------|---------------|
| Rad Gas Flow  |               |         |                  |      |                  |       |      |      |              |       |               |
| Batch         | 2507338       |         |                  |      |                  |       |      |      |              |       |               |
| QC1205544153  | 640870001 DUP |         |                  |      |                  |       |      |      |              |       |               |
| Radium-228    |               |         | 2.41             | U    | 1.61             | pCi/L | 39.9 |      | (0% - 100%)  | JE1   | 10/16/2309:05 |
|               |               | Uncert: | +/-1.09          |      | +/-1.09          |       |      |      |              |       |               |
|               |               | TPU:    | +/-1.25          |      | +/-1.17          |       |      |      |              |       |               |
| QC1205544154  | LCS           |         |                  |      |                  |       |      |      |              |       |               |
| Radium-228    |               | 76.7    |                  |      | 67.0             | pCi/L |      | 87.3 | (75%-125%)   | JE1   | 10/16/2309:05 |
|               |               | Uncert: |                  |      | +/-4.44          |       |      |      |              |       |               |
|               |               | TPU:    |                  |      | +/-17.7          |       |      |      |              |       |               |
| QC1205544152  | MB            |         |                  |      | 2.04             | C: /I |      |      |              | TE 1  | 10/16/2210 40 |
| Radium-228    |               | Uncert: |                  | U    | 2.84<br>+/-1.87  | pCi/L |      |      |              | JE1   | 10/16/2310:40 |
|               |               | TPU:    |                  |      | +/-1.87          |       |      |      |              |       |               |
| Rad Ra-226    |               | IPU:    |                  |      | +/-2.00          |       |      |      |              |       |               |
| Batch         | 2508813       |         |                  |      |                  |       |      |      |              |       |               |
|               |               |         |                  |      |                  |       |      |      |              |       |               |
| QC1205546779  | 640870001 DUP |         | 1.00             |      | 2.12             | ъC:/I | 11.5 |      | (00/ 1000/)  | I VD1 | 10/22/2210.02 |
| Radium-226    |               | Uncert: | 1.90<br>+/-0.801 |      | 2.13<br>+/-0.886 | pCi/L | 11.5 |      | (0% - 100%)  | LAFI  | 10/23/2310:02 |
|               |               | TPU:    | +/-0.848         |      | +/-0.880         |       |      |      |              |       |               |
| QC1205546781  | LCS           | 11 0.   | 17 0.040         |      | 17 0.557         |       |      |      |              |       |               |
| Radium-226    | Les           | 27.1    |                  |      | 23.8             | pCi/L |      | 88   | (75%-125%)   | LXP1  | 10/23/2310:02 |
| 114444411 220 |               | Uncert: |                  |      | +/-2.72          | F     |      |      | (1273 ===73) |       |               |
|               |               | TPU:    |                  |      | +/-6.04          |       |      |      |              |       |               |
| QC1205546778  | MB            |         |                  |      |                  |       |      |      |              |       |               |
| Radium-226    |               |         |                  | U    | 0.468            | pCi/L |      |      |              | LXP1  | 10/23/2309:27 |
|               |               | Uncert: |                  |      | +/-0.519         |       |      |      |              |       |               |
|               |               | TPU:    |                  |      | +/-0.526         |       |      |      |              |       |               |
| QC1205546780  | 640870001 MS  |         |                  |      |                  |       |      |      |              |       |               |
| Radium-226    |               | 135     | 1.90             |      | 148              | pCi/L |      | 109  | (75%-125%)   | LXP1  | 10/23/2310:02 |
|               |               | Uncert: | +/-0.801         |      | +/-17.0          |       |      |      |              |       |               |
|               |               | TPU:    | +/-0.848         |      | +/-27.6          |       |      |      |              |       |               |

### **Notes:**

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Н Analytical holding time was exceeded
- Result is less than value reported
- Result is greater than value reported

Page 26 of 31 SDG: 640870

Report Date: October 23, 2023

Page 1 of 2

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## **QC** Summary

Workorder: 640870 Page 2 of 2 **Parmname** NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time UI Gamma Spectroscopy--Uncertain identification BDResults are either below the MDC or tracer recovery is low Preparation or preservation holding time was exceeded h R Sample results are rejected RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry. N/A RPD or %Recovery limits do not apply. Analyte concentration is not detected above the detection limit ND M M if above MDC and less than LLD Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier NJ FA Failed analysis. UJ Gamma Spectroscopy--Uncertain identification 0 One or more quality control criteria have not been met. Refer to the applicable narrative or DER.

- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- \*\* Analyte is a Tracer compound
- M REMP Result > MDC/CL and < RDL
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- \*\* Indicates analyte is a surrogate/tracer compound.
- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 27 of 31 SDG: 640870

| Page of a   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
|----------------------------------------------------|
|----------------------------------------------------|

|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The second name of the second na |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                    |              |                                                                                                  |                                                                                          |                            |                   |                           |                                  |                       |                    |             |                                              |                                                  |                |                                                                                       |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------|--------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------|-------------------|---------------------------|----------------------------------|-----------------------|--------------------|-------------|----------------------------------------------|--------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| Page: 2                                                               | of <u>2</u><br>175569434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | aho                | rato         | aboratories                                                                                      | C                                                                                        |                            |                   |                           |                                  |                       | GE<br>204          | L Labo      | GEL Laboratories, LLC<br>2040 Savage Road    | TTC                                              |                |                                                                                       |
| GELOQuote #:                                                          | 5 Coolers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            | gel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ghain of C                                  | emistry   F        | Radiochemi   | hemistry I Radiochemistry I Radiobioassay I Specialty Analytics Ciretody and Analytical Reminest | oassay   S                                                                               | pecialty                   | Analytic          | so.                       |                                  |                       | Ch                 | arlesto     | Charleston, SC 29407                         | 107                                              |                |                                                                                       |
| PO Number:                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GEL WO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GEL Work Order Number:                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | GEL                | Project N    | GEL Project Manager: Erin Trent                                                                  | rin Trei                                                                                 | 11                         |                   |                           |                                  |                       | Fax                | one: (8-    | Fnone: (843) 556-8171<br>Fax: (843) 766-1178 | 21/1                                             |                |                                                                                       |
| Client Name: Georgia Power                                            | gia Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            | Phone # (937-344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37-344-6                                    | -6533)             |              |                                                                                                  | Sam                                                                                      | ple An                     | alysis            | Sample Analysis Requested | sted (5)                         |                       | n the 1            | numbe       | er of cont                                   | (Fill in the number of containers for each test) | r each t       | est)                                                                                  |
| Project/Site Name:                                                    | Project/Site Name: Plant Arkwright Ash Pond 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            | Fax:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                             |                    |              | Should this                                                                                      |                                                                                          | IN                         | IN                |                           |                                  | IN                    | IN                 | IN          | IN                                           | ļ ·                                              | Prese          | < Preservative Type (6)                                                               |
| Addı S: 241 Ralph                                                     | s: 241 Ralph McGill Blvd SE, Atlanta, GA 30308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3A 30308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                    |              | sample be                                                                                        |                                                                                          |                            | -                 |                           |                                  | 3                     | po                 | $\vdash$    | 69                                           |                                                  |                |                                                                                       |
| Collected By: Joh                                                     | ın Myer; Dylan Quintal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Send Resulh<br>Cassidy.Sut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Send Results To: jabraham@southernco.com EDD@stantec.com<br>Cassidy.Sutherland@stantec.com | n thernco.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EDD@sta                                     | antec.com          | _            | Aldo<br>Yldo                                                                                     | rds                                                                                      | To the second              |                   | (1                        | ()                               | 5.1 199               |                    |             | ' K' W                                       |                                                  | ပိ             | Comments                                                                              |
| 0870                                                                  | 082<br>0.<br>Sample ID<br>* For composites - indicate start and stop date/time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | late/time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *Date Collected                                                                            | *Time<br>Collected<br>(Military)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OC Code (3)                                 | Field Filtered (3) | Sample (4)   | Adioactive es, please sup sotopic info.)                                                         | 7) Known or<br>ossible Haza                                                              | otal number<br>Ag (App. I) | Metals App. I     | Alkalinity<br>R2,         | TDS (SM<br>2540<br>Anions (Cl, F | (300.0 Rev. A slass A | (6020<br>RAD 226-2 | Mercury (   | Metals Al,<br>Va, Fe, Mn                     | (task_AS                                         | sk_coc<br>ASSM | sk_code: ARK-CCR-<br>ASSMT-2023S1)                                                    |
|                                                                       | ARK-AP1PZ-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-10-23                                                                                   | 1155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Z                                           | z                  | 9M           | SI A                                                                                             | d                                                                                        | 19                         | ×                 |                           | ×                                | ×                     | ×                  | ×           | I                                            |                                                  |                |                                                                                       |
|                                                                       | ARK-AP1PZ-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-10-23                                                                                   | 1120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Z                                           | z                  | MG           |                                                                                                  |                                                                                          | 9                          | ×                 |                           |                                  |                       | ×                  | ×           |                                              |                                                  |                |                                                                                       |
|                                                                       | ARK-AP1-EB-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-10-23                                                                                   | 1210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EB                                          | z                  | WQ           |                                                                                                  |                                                                                          | 9                          | ×                 |                           |                                  | ×                     | ×                  | ×           |                                              |                                                  | ļ .            |                                                                                       |
|                                                                       | ARK-AP1PZ-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-10-23                                                                                   | 1350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Z                                           | Z                  | MG           |                                                                                                  |                                                                                          | 9                          | ×                 |                           |                                  |                       | ×                  | ×           |                                              |                                                  | -              |                                                                                       |
|                                                                       | ARK-APIPZ-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-10-23                                                                                   | 1420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Z                                           | Z                  | MG           |                                                                                                  |                                                                                          | 9                          | ×                 |                           | ×                                | ×                     | ×                  | ×           |                                              |                                                  |                |                                                                                       |
|                                                                       | ARK-AP1PZ-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-10-23                                                                                   | 1615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Z                                           | N                  | 9M           |                                                                                                  |                                                                                          | 9                          | ×                 |                           | ×                                | ×                     | ×                  | ×           |                                              |                                                  |                |                                                                                       |
|                                                                       | ARK-AP1-FD-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-10-23                                                                                   | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FD                                          | N                  | WQ           |                                                                                                  |                                                                                          | 9                          | ×                 |                           | ×                                | ×                     | ×                  | ×           |                                              |                                                  |                |                                                                                       |
| 5                                                                     | ARK-AP1PZ-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-11-23                                                                                   | 0820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Z                                           | N                  | WG           |                                                                                                  |                                                                                          | 9                          | ×                 |                           | ×                                | ×                     | ×                  | ×           |                                              |                                                  |                |                                                                                       |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                    |              |                                                                                                  |                                                                                          |                            |                   |                           |                                  |                       |                    |             |                                              |                                                  |                |                                                                                       |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ř.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                    |              |                                                                                                  |                                                                                          |                            |                   |                           |                                  |                       |                    |             |                                              |                                                  |                |                                                                                       |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chain of Cus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chain of Custody Signatures                                                                | James de la companya del companya de la companya del companya de la companya de l |                                             |                    |              |                                                                                                  | TATE                                                                                     | TAT Requested:             |                   | Normal:                   | X                                | Rush:                 |                    | Specify:    | ify:                                         | S)                                               | ubject         | (Subject to Surcharge)                                                                |
| Relinquished By (Signed)                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Received by (signed)                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Print Name                                  |                    | Date         |                                                                                                  | Fax Results: [ ] Yes                                                                     | : [ ] Y                    |                   | [X]No                     |                                  |                       |                    |             |                                              |                                                  |                |                                                                                       |
| 1 Christin                                                            | J JOHN MXEN 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2/1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 195 Linder                                                                                 | Proposition of the state of the | 1                                           | Brandon            |              | Er I Com Sel                                                                                     | Select Deliverable: [ ] C of A                                                           | verable                    | ] C               |                           | [ ] QC Summary                   | ummar                 |                    | [ ] level 1 | I [X] Level 2                                |                                                  | [ ] Level 3    | 3 [ ] Level 4                                                                         |
| 2                                                                     | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 Th                                                                                      | The state of the s |                                             |                    | 11/01        | (2) Ad.                                                                                          | Additional Remarks.                                                                      | Remar                      | £S:               |                           |                                  |                       |                    |             |                                              |                                                  |                |                                                                                       |
| 3                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                    | 57           | LS FO                                                                                            | For Lab Receiving Use Only: Custody Seal Intact? [ ] Yes                                 | eceiving                   | g Use (           | Inly: Ci                  | ustody S                         | eal In                | act? [             | ] Yes       | [ ] No                                       | Cooler Temp:                                     | Temp:          | 20 >                                                                                  |
| > For sample shipp                                                    | > For sample shipping and delivery details, see Sample Receipt & Review form (SRR.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e Sample Recei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ipt & Review form                                                                          | (SRR.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                             |                    | -1           | Sample Collection Time Zone: [X] Eastern                                                         | lection T                                                                                | ime Zo                     | ne: []            | X] East                   |                                  | [ ] Pacific           | _                  | ] Central   |                                              | [ ] Mountain                                     |                | [ ] Other:                                                                            |
| <ol> <li>Chain of Custody int.</li> <li>QC Codes: N = Norm</li> </ol> | 1.) Chain of Custody Number = Chent Determined 2.) QC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicate, EB = Equipment Blank, MS = Marrix Spike Sample, MSD = Marrix Spike Duplicate Sample, G = Grab, C = Commostre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Field Duplicate, El                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B = Equipment Blank.                                                                       | MS = Matrix S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Spike Samp                                  | e. MSD =           | Matrix Spik  | e Duplicate Sar                                                                                  | mole G = 0                                                                               | Trab C                     | : Compos          | site                      |                                  |                       |                    |             |                                              |                                                  |                |                                                                                       |
| 3.) Field Filtered: For lic                                           | 3.) Field Filtered: For liquid matrices, indicate with a - Y - for yes the sample was field filtered or - N - for sample was not field filtered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | for yes the sample w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | was field filtered or - N                                                                  | - for sample wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | as not field                                | filtered.          | •            | •                                                                                                |                                                                                          |                            |                   |                           |                                  |                       |                    |             |                                              |                                                  |                |                                                                                       |
| 4.) Matrix Codes: <b>DW</b> =I                                        | 4.) Matrix Codes: DW=Drinking Water, GW=Groundwater, SW=Surface Water, WW=Water, W=Water, ML=Misc Liquid, SO=Soil, SD=Sediment, SL=Sludge, SS=Solid Waste, O=Oil, F=Filter, P=Wipe, U=Urine, F=Fecal, N=Nasal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ; SW=Surface Wate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | er, WW=Waste Water,                                                                        | W=Water, M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C=Misc Liq                                  | uid, SO=So         | oil, SD=Sed. | iment, SL=Sluc                                                                                   | dge, SS=So                                                                               | lid Wast                   | 3, <b>0</b> =0il, | F=Filter,                 | P=Wipe,                          | U=Urin                | , F=Fec.           | al, N=N     | asal                                         |                                                  |                |                                                                                       |
| 5.) Sample Analysis Req                                               | 5.) Sample Analysis Requested: Analytical method requested (i.e. 8260B, 6010B/7470A) and number of containers provided for each (i.e. 8260B - 3, 6010B/7470A - 1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ed (i.e. 8260B, 6010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0B/7470A) and number                                                                       | of containers !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | orovided for                                | each (i.e.         | 8260B - 3, c | 5010B/7470A -                                                                                    | .1)                                                                                      |                            |                   |                           |                                  |                       |                    |             |                                              |                                                  |                |                                                                                       |
| 7.) KNOWN OR PC                                                       | o.) Preservative Type: I.A. = hydrochropre Acid, M. = Nittic Acid, M. = Sodium Hydroxide, SA = Sodium Hydroxide, S | Acid, SH = Sodiur<br>Characteri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d, SH = Sodium Hydroxide, SA = Sulf<br>Characteristic Hazards                              | huric Acid, AA = Ascort Listed Waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = Ascorbic                                  | Acid, HX           | = Hexane, S  | ST = Sodium Thiosu                                                                               | hiosulfate,                                                                              | If no pres                 | ervative          | is added =                | leave fie                        | ld blank              |                    |             | Plancar                                      | abinom                                           | " addit        | Planes menids am additional dainile                                                   |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FL = Flam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FL = Flammable/Ignitable                                                                   | LW=L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LW= Listed Waste                            | ste                |              | 0                                                                                                | OT= Other / Unknown                                                                      | / Unkn                     | uwo               |                           |                                  |                       |                    |             | below re                                     | egarding I                                       | handlin        | r reuse provide any daminonia actuins<br>below regarding handling and/or disposal     |
| <u>s</u>                                                              | Hg= Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CO = Corrosive<br>RE = Reactive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | osive                                                                                      | (F,K,P)<br>Waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (F,K,P and U-listed wastes.) Waste code(s): | sted wast          | (es.)        | (i.e. mis                                                                                        | (i.e.: High/low pH, asbestos, beryllium, irritants, other<br>misc. health hazards, etc.) | ow pH,                     | asbest            | os, bery.                 | llium, in                        | ritants               | , other            |             | concern                                      | S. (i.e.: O.                                     | rigin of       | concerns. (i.e.: Origin of sample(s), type of site collected from odd matrices, etc.) |
|                                                                       | Se= Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                    |              | Des                                                                                              | Description:                                                                             |                            |                   |                           |                                  |                       |                    |             | 9 3116                                       | discrea y                                        | out, out       | amdirates, etc.)                                                                      |
| Cr = Cadmium A<br>Cr = Chromium M                                     | Ag= Silver MR= Misc. RCRA metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PCB = Polychlorinated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ulated                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                    | 1            | 1.                                                                                               |                                                                                          |                            |                   |                           |                                  |                       |                    | 1           |                                              |                                                  |                |                                                                                       |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lqiq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | biphenyls                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                    |              |                                                                                                  |                                                                                          |                            |                   |                           |                                  |                       |                    | 1           |                                              |                                                  |                |                                                                                       |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |                    |              |                                                                                                  |                                                                                          |                            |                   |                           |                                  |                       |                    |             |                                              |                                                  |                |                                                                                       |

640 870

Laboratories LLC SAMPLE RECEIPT & REVIEW FORM Client: 6 PC C SDG/AR/COC/Work Order: Received By: QG Date Received: 10123 Circle Applicable: FedEx Express FedEx Ground UPS Field Services Courier Other Carrier and Tracking Number Suspected Hazard Information \*If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation. No Hazard Class Shipped: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes\_\_\_\_No\_ A)Shipped as a DOT Hazardous? B) Did the client designate the samples are to be COC potation or radioactive stickers on containers equal client designation. received as radioactive? C) Did the RSO classify the samples as Maximum Net Counts Observed\* (Observed Counts - Area Background Counts):

Classified as: Rad 1 Rad 2 Rad 3 CPM/mR/Hr radioactive? coc notation or hazard labels on containers equal client designation. D) Did the client designate samples are hazardous? If D or E is yes, select Hazards below. PCB's Flammable Fore E) Did the RSO identify possible hazards? Foreign Soil RCRA Asbestos Beryllium Sample Receipt Criteria NA NA Comments/Qualifiers (Required for Non-Conforming Items) Shipping containers received intact and Circle Applicable: Seals broken Damaged container Leaking container Other (describe) Chain of custody documents included Circle Applicable: Client contacted and provided COC COC created upon receipt with shipment? Preservation Method: Wellce Ice Packs Dry ice None Other: \*all temperatures are recorded in Celsius Samples requiring cold preservation within  $(0 \le 6 \text{ deg. C})$ ?\* Daily check performed and passed on IR Temperature Device Serial #: IR1-23 temperature gun? Secondary Temperature Device Serial # (If Applicable): Circle Applicable: Seals broken Damaged container Leaking container Other (describe) Sample containers intact and sealed? Samples requiring chemical preservation Sample ID's and Containers Affected: at proper pH? If Preservation added, Lot#: Ly es, are Encores or Soil Kits present for solids? Yes No NA (If yes, take to VOA Freezer)

Do liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Do any samples require Volatile Are liquid VOA vials free of headspace? Yes\_\_\_ No\_ Analysis? Sample ID's and containers affected: ID's and tests affected: Samples received within holding time? Sample ID's on COC match ID's on ID's and containers affected: bottles? Date & time on COC match date & time Circle Applicable: No dates on containers No times on containers COC missing info Other (describe) 10 on bottles? Number of containers received match Circle Applicable: No container count on COC Other (describe) 11 number indicated on COC? Are sample containers identifiable as GEL provided by use of GEL labels? COC form is properly signed in Circle Applicable: Not relinquished Other (describe) relinquished/received sections? Comments (Use Continuation Form if needed): PM (or PMA) review: Initials \_

GL-CHL-SR-001 Rev 7

List of current GEL Certifications as of 23 October 2023

| State                          | Certification                |  |  |
|--------------------------------|------------------------------|--|--|
| Alabama                        | 42200                        |  |  |
| Alaska                         | 17-018                       |  |  |
| Alaska Drinking Water          | SC00012                      |  |  |
| Arkansas                       | 88-00651                     |  |  |
| CLIA                           | 42D0904046                   |  |  |
| California                     | 2940                         |  |  |
| Colorado                       | SC00012                      |  |  |
| Connecticut                    | PH-0169                      |  |  |
| DoD ELAP/ ISO17025 A2LA        | 2567.01                      |  |  |
| Florida NELAP                  | E87156                       |  |  |
| Foreign Soils Permit           | P330-15-00283, P330-15-00253 |  |  |
| Georgia                        | SC00012                      |  |  |
| Georgia SDWA                   | 967                          |  |  |
| Hawaii                         | SC00012                      |  |  |
| Idaho                          | SC00012                      |  |  |
| Illinois NELAP                 | 200029                       |  |  |
| Indiana                        | C-SC-01                      |  |  |
| Kansas NELAP                   | E-10332                      |  |  |
| Kentucky SDWA                  | KY90129                      |  |  |
| Kentucky Wastewater            | KY90129                      |  |  |
| Louisiana Drinking Water       | LA024                        |  |  |
| Louisiana NELAP                | 03046 (AI33904)              |  |  |
| Maine                          | 2023019                      |  |  |
| Maryland                       | 270                          |  |  |
| Massachusetts                  | M-SC012                      |  |  |
| Massachusetts PFAS Approv      | Letter                       |  |  |
|                                | 9976                         |  |  |
| Michigan                       | 9976<br>SC00012              |  |  |
| Mississippi<br>Nebraska        | NE-OS-26-13                  |  |  |
|                                |                              |  |  |
| Nevada                         | SC000122024-04               |  |  |
| New Hampshire NELAP            | 2054                         |  |  |
| New Jersey NELAP New Mexico    | SC002                        |  |  |
|                                | SC00012                      |  |  |
| New York NELAP  North Carolina | 11501                        |  |  |
| North Carolina SDWA            | 233                          |  |  |
|                                | 45709                        |  |  |
| North Dakota                   | R-158<br>2022-160            |  |  |
| Oklahoma                       |                              |  |  |
| Pennsylvania NELAP             | 68-00485<br>SC00012          |  |  |
| Puerto Rico                    | SC00012                      |  |  |
| S. Carolina Radiochem          | 10120002                     |  |  |
| Sanitation Districts of L      | 9255651                      |  |  |
| South Carolina Chemistry       | 10120001                     |  |  |
| Tennessee                      | TN 02934                     |  |  |
| Texas NELAP                    | T104704235-23-21             |  |  |
| Utah NELAP                     | SC000122022-37               |  |  |
| Vermont                        | VT87156                      |  |  |
| Virginia NELAP                 | 460202                       |  |  |
| Washington                     | C780                         |  |  |





October 20, 2023

Kelley Sharpe ARCADIS - Atlanta 2839 Paces Ferry Rd STE 900 Atlanta, GA 30339

RE: Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92691202

### Dear Kelley Sharpe:

Enclosed are the analytical results for sample(s) received by the laboratory on October 03, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Maiya Parks

maiya.parks@pacelabs.com

Maiya Tacks

770-734-4205

Project Manager

Enclosures

cc: Joju Abraham, Georgia Power-CCR Jordan Gamble, ARCADIS - Atlanta Ben Hodges, Georgia Power-CCR Warren Johnson, ARCADIS - Atlanta Laura Midkiff, Georgia Power Noelia Muskus Ruiz, Georgia Power Charles Steele, Arcadis - Atlanta Tina Sullivan, ERM







#### **CERTIFICATIONS**

Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92691202

### Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417 ANABISO/IEC 17025:2017 Rad Cert#: L24170

Alabama Certification #: 41590 Arizona Certification #: AZ0734

**Arkansas Certification** 

California Certification #: 2950 Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification

Indiana Certification #: 391
Kansas Certification #: E-10358
Kentucky Certification #: KY90133
KY WW Permit #: KY0098221
KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA010 Louisiana DEQ/TNI Certification #: 04086

Maine Certification #: 2023021 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235

Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572023-03 New Hampshire/TNI Certification #: 297622 New Jersey/TNI Certification #: PA051

New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-015 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification

Tennessee Certification #: TN02867

Texas/TNI Certification #: T104704188-22-18
Utah/TNI Certification #: PA014572223-14
USDA Soil Permit #: 525-23-67-77263
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad



## **SAMPLE SUMMARY**

Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92691202

| Lab ID      | Sample ID   | Matrix | Date Collected | Date Received  |
|-------------|-------------|--------|----------------|----------------|
| 92691202001 | ARK-BC-0.3  | Water  | 10/03/23 12:45 | 10/03/23 15:46 |
| 92691202002 | ARK-BC-0.1  | Water  | 10/03/23 11:21 | 10/03/23 15:46 |
| 92691202003 | ARK-OR-0.8  | Water  | 10/03/23 09:35 | 10/03/23 15:46 |
| 92691202004 | ARK-OR-0.1  | Water  | 10/03/23 11:50 | 10/03/23 15:46 |
| 92691202005 | ARK-OR-0.3  | Water  | 10/03/23 10:12 | 10/03/23 15:46 |
| 92691202006 | ARK-OR+0.25 | Water  | 10/03/23 12:12 | 10/03/23 15:46 |



## **SAMPLE ANALYTE COUNT**

Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92691202

| Lab ID      | Sample ID   | Method                   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|-------------|--------------------------|----------|----------------------|------------|
| 92691202001 | ARK-BC-0.3  | EPA 903.1                | MAR1     | 1                    | PASI-PA    |
|             |             | EPA 904.0                | ZPC      | 1                    | PASI-PA    |
|             |             | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92691202002 | ARK-BC-0.1  | EPA 903.1                | MAR1     | 1                    | PASI-PA    |
|             |             | EPA 904.0                | ZPC      | 1                    | PASI-PA    |
|             |             | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92691202003 | ARK-OR-0.8  | EPA 903.1                | MAR1     | 1                    | PASI-PA    |
|             |             | EPA 904.0                | ZPC      | 1                    | PASI-PA    |
|             |             | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92691202004 | ARK-OR-0.1  | EPA 903.1                | MAR1     | 1                    | PASI-PA    |
|             |             | EPA 904.0                | ZPC      | 1                    | PASI-PA    |
|             |             | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92691202005 | ARK-OR-0.3  | EPA 903.1                | MAR1     | 1                    | PASI-PA    |
|             |             | EPA 904.0                | ZPC      | 1                    | PASI-PA    |
|             |             | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92691202006 | ARK-OR+0.25 | EPA 903.1                | MAR1     | 1                    | PASI-PA    |
|             |             | EPA 904.0                | ZPC      | 1                    | PASI-PA    |
|             |             | Total Radium Calculation | JAL      | 1                    | PASI-PA    |

PASI-PA = Pace Analytical Services - Greensburg



Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92691202

| Sample: ARK-BC-0.3<br>PWS: | Lab ID: 9269 <sup>-</sup><br>Site ID: | 1202001 Collected: 10/03/23 12:45<br>Sample Type: | Received: | 10/03/23 15:46 | Matrix: Water |      |
|----------------------------|---------------------------------------|---------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                                | Act ± Unc (MDC) Carr Trac                         | Units     | Analyzed       | CAS No.       | Qual |
|                            | Pace Analytical                       | Services - Greensburg                             |           |                |               |      |
| Radium-226                 | EPA 903.1                             | 0.0706 ± 0.571 (1.12)<br>C:NA T:90%               | pCi/L     | 10/19/23 13:13 | 3 13982-63-3  |      |
|                            | Pace Analytical                       | Services - Greensburg                             |           |                |               |      |
| Radium-228                 | EPA 904.0                             | 0.231 ± 0.383 (0.834)<br>C:80% T:79%              | pCi/L     | 10/18/23 11:45 | 5 15262-20-1  |      |
|                            | Pace Analytical                       | Services - Greensburg                             |           |                |               |      |
| Total Radium               | Total Radium<br>Calculation           | 0.302 ± 0.954 (1.95)                              | pCi/L     | 10/20/23 16:34 | 4 7440-14-4   |      |



Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92691202

| Sample: ARK-BC-0.1 PWS: | <b>Lab ID: 9269120</b><br>Site ID: | D2002 Collected: 10/03/23 11:21<br>Sample Type: | Received: | 10/03/23 15:46 | Matrix: Water |      |
|-------------------------|------------------------------------|-------------------------------------------------|-----------|----------------|---------------|------|
| Parameters              | Method                             | Act ± Unc (MDC) Carr Trac                       | Units     | Analyzed       | CAS No.       | Qual |
|                         | Pace Analytical Se                 | rvices - Greensburg                             |           |                |               |      |
| Radium-226              | EPA 903.1                          | -0.134 ± 0.490 (1.06)<br>C:NA T:92%             | pCi/L     | 10/19/23 13:13 | 3 13982-63-3  |      |
|                         | Pace Analytical Se                 | rvices - Greensburg                             |           |                |               |      |
| Radium-228              | EPA 904.0                          | 0.297 ± 0.399 (0.854)<br>C:77% T:84%            | pCi/L     | 10/18/23 11:45 | 15262-20-1    |      |
|                         | Pace Analytical Se                 | rvices - Greensburg                             |           |                |               |      |
| Total Radium            | Total Radium<br>Calculation        | 0.297 ± 0.889 (1.91)                            | pCi/L     | 10/20/23 16:34 | 7440-14-4     |      |



Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92691202

| Sample: ARK-OR-0.8<br>PWS: | Lab ID: 9269<br>Site ID:    | <b>1202003</b> Collected: 10/03/23 09:35 Sample Type: | Received: | 10/03/23 15:46 | Matrix: Water |      |
|----------------------------|-----------------------------|-------------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                      | Act ± Unc (MDC) Carr Trac                             | Units     | Analyzed       | CAS No.       | Qual |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-226                 | EPA 903.1                   | -0.123 ± 0.295 (0.737)<br>C:NA T:96%                  | pCi/L     | 10/19/23 13:1: | 3 13982-63-3  |      |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-228                 | EPA 904.0                   | 0.106 ± 0.368 (0.829)<br>C:77% T:76%                  | pCi/L     | 10/18/23 11:46 | 5 15262-20-1  |      |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Total Radium               | Total Radium<br>Calculation | 0.106 ± 0.663 (1.57)                                  | pCi/L     | 10/20/23 16:34 | 4 7440-14-4   |      |



Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92691202

| Sample: ARK-OR-0.1<br>PWS: | Lab ID: 9269<br>Site ID:    | 1202004 Collected: 10/03/23 11:50<br>Sample Type: | Received: | 10/03/23 15:46 | Matrix: Water |      |
|----------------------------|-----------------------------|---------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                      | Act ± Unc (MDC) Carr Trac                         | Units     | Analyzed       | CAS No.       | Qual |
|                            | Pace Analytical             | Services - Greensburg                             |           |                |               |      |
| Radium-226                 | EPA 903.1                   | 0.000 ± 0.567 (1.15)<br>C:NA T:90%                | pCi/L     | 10/19/23 13:13 | 3 13982-63-3  |      |
|                            | Pace Analytical             | Services - Greensburg                             |           |                |               |      |
| Radium-228                 | EPA 904.0                   | 0.549 ± 0.366 (0.700)<br>C:79% T:83%              | pCi/L     | 10/18/23 11:46 | 5 15262-20-1  |      |
|                            | Pace Analytical             | Services - Greensburg                             |           |                |               |      |
| Total Radium               | Total Radium<br>Calculation | 0.549 ± 0.933 (1.85)                              | pCi/L     | 10/20/23 16:34 | 4 7440-14-4   |      |



Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92691202

| Sample: ARK-OR-0.3<br>PWS: | Lab ID: 9269<br>Site ID:    | <b>1202005</b> Collected: 10/03/23 10:12 Sample Type: | Received: | 10/03/23 15:46 | Matrix: Water |      |
|----------------------------|-----------------------------|-------------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                      | Act ± Unc (MDC) Carr Trac                             | Units     | Analyzed       | CAS No.       | Qual |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-226                 | EPA 903.1                   | 0.000 ± 0.432 (0.913)<br>C:NA T:92%                   | pCi/L     | 10/19/23 13:1: | 3 13982-63-3  |      |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-228                 | EPA 904.0                   | 0.160 ± 0.333 (0.734)<br>C:81% T:83%                  | pCi/L     | 10/18/23 11:46 | 5 15262-20-1  |      |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Total Radium               | Total Radium<br>Calculation | 0.160 ± 0.765 (1.65)                                  | pCi/L     | 10/20/23 16:34 | 4 7440-14-4   |      |



Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92691202

| Sample: ARK-OR+0.25<br>PWS: | <b>Lab ID: 9269120</b> 2<br>Site ID: | 2006 Collected: 10/03/23 12:12<br>Sample Type: | Received: | 10/03/23 15:46 | Matrix: Water |      |
|-----------------------------|--------------------------------------|------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                  | Method                               | Act ± Unc (MDC) Carr Trac                      | Units     | Analyzed       | CAS No.       | Qual |
|                             | Pace Analytical Serv                 | vices - Greensburg                             |           |                |               |      |
| Radium-226                  | EPA 903.1                            | 0.000 ± 0.464 (0.950)<br>C:NA T:91%            | pCi/L     | 10/19/23 13:1: | 3 13982-63-3  |      |
|                             | Pace Analytical Serv                 | vices - Greensburg                             |           |                |               |      |
| Radium-228                  | EPA 904.0                            | 0.187 ± 0.344 (0.754)<br>C:80% T:77%           | pCi/L     | 10/18/23 11:46 | 5 15262-20-1  |      |
|                             | Pace Analytical Serv                 | vices - Greensburg                             |           |                |               |      |
| Total Radium                | Total Radium<br>Calculation          | 0.187 ± 0.808 (1.70)                           | pCi/L     | 10/20/23 16:34 | 4 7440-14-4   |      |



#### **QUALITY CONTROL - RADIOCHEMISTRY**

Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92691202

QC Batch: 620910 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92691202001, 92691202002, 92691202003, 92691202004, 92691202005, 92691202006

METHOD BLANK: 3026015 Matrix: Water

Associated Lab Samples: 92691202001, 92691202002, 92691202003, 92691202004, 92691202005, 92691202006

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.112 ± 0.300 (0.672) C:79% T:87%
 pCi/L
 10/18/23 11:43

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALITY CONTROL - RADIOCHEMISTRY**

Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92691202

QC Batch: 620909 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92691202001, 92691202002, 92691202003, 92691202004, 92691202005, 92691202006

METHOD BLANK: 3026014 Matrix: Water

Associated Lab Samples: 92691202001, 92691202002, 92691202003, 92691202004, 92691202005, 92691202006

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.504 ± 0.400 (0.520) C:NA T:93%
 pCi/L
 10/19/23 13:00

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALIFIERS**

Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92691202

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 10/20/2023 04:50 PM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval).

Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.



# **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92691202

Date: 10/20/2023 04:50 PM

| Lab ID      | Sample ID   | QC Batch Method          | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|-------------|--------------------------|----------|-------------------|---------------------|
| 92691202001 | ARK-BC-0.3  | EPA 903.1                | 620909   |                   |                     |
| 92691202002 | ARK-BC-0.1  | EPA 903.1                | 620909   |                   |                     |
| 92691202003 | ARK-OR-0.8  | EPA 903.1                | 620909   |                   |                     |
| 92691202004 | ARK-OR-0.1  | EPA 903.1                | 620909   |                   |                     |
| 92691202005 | ARK-OR-0.3  | EPA 903.1                | 620909   |                   |                     |
| 92691202006 | ARK-OR+0.25 | EPA 903.1                | 620909   |                   |                     |
| 92691202001 | ARK-BC-0.3  | EPA 904.0                | 620910   |                   |                     |
| 92691202002 | ARK-BC-0.1  | EPA 904.0                | 620910   |                   |                     |
| 92691202003 | ARK-OR-0.8  | EPA 904.0                | 620910   |                   |                     |
| 92691202004 | ARK-OR-0.1  | EPA 904.0                | 620910   |                   |                     |
| 92691202005 | ARK-OR-0.3  | EPA 904.0                | 620910   |                   |                     |
| 92691202006 | ARK-OR+0.25 | EPA 904.0                | 620910   |                   |                     |
| 92691202001 | ARK-BC-0.3  | Total Radium Calculation | 623972   |                   |                     |
| 92691202002 | ARK-BC-0.1  | Total Radium Calculation | 623972   |                   |                     |
| 92691202003 | ARK-OR-0.8  | Total Radium Calculation | 623972   |                   |                     |
| 92691202004 | ARK-OR-0.1  | Total Radium Calculation | 623972   |                   |                     |
| 92691202005 | ARK-OR-0.3  | Total Radium Calculation | 623972   |                   |                     |
| 92691202006 | ARK-OR+0.25 | Total Radium Calculation | 623972   |                   |                     |

CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

|                                                                         | ARK-CCF                   | App. IV                                                 |                         | 12       | 4    | 6 | 9        | 8        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ф.          | 0)         | 4          | 6          | N.         | 1          | ITEM#                                             |                    |                  | Requests                     | Phone:                               | -                | Address:                 | Company:                      | Required :                              |                    |
|-------------------------------------------------------------------------|---------------------------|---------------------------------------------------------|-------------------------|----------|------|---|----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|------------|------------|------------|------------|---------------------------------------------------|--------------------|------------------|------------------------------|--------------------------------------|------------------|--------------------------|-------------------------------|-----------------------------------------|--------------------|
|                                                                         | ARK-CCR-ASSMT-202382 [00] | App. IV - Sb, Aa, Ba, Be, Cd, Cr, Co, Pb, Li, Mo, Se, T | ADDITIONAL COMMENTS     |          | 200  |   |          | 600 6    | - ACC | ARK-OR+0.25 | ARK-OR-0.3 | ARK-OR-0.1 | ARK-OR-0.8 | ARK-8C-0.1 | ARK-BC-0.3 | (A-Z, 0-9 / ,-)  Sample ids must be unique Tissue | SAMPLE ID Solffadd | MATRO<br>Christo | Requested Due Date: 5 Day 41 | )384-6584                            | ulanta, GA 30339 | П                        | ARCADIS - Atlanta             | Required Client Information:            | MAMA PETET SECTION |
|                                                                         |                           | T + Hg                                                  |                         |          |      |   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |            |            |            |            |            |                                                   |                    |                  | Project #:                   | Proje                                |                  | Copy To:                 | Report To:                    | Required                                |                    |
|                                                                         |                           |                                                         | B                       |          |      |   |          |          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |            |            |            |            |            | or 2 20                                           | \$ 2 P 7 §         |                  | *                            | Project Name:                        | Purchase Order#  | 1 1                      |                               | Required Project Information:           | í<br>D             |
|                                                                         | ١,                        | D)                                                      | RELIMOUSE               |          |      |   |          |          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WGG         | WGG        | WGG        | WG G       | WG         | wgg        | MATRIX COD                                        | _                  | c=COMP)          | 11                           |                                      | *                | Ben Hodges, Joju Abraham | Kelley Sharpe, Warren Johnson | ŭ                                       |                    |
|                                                                         |                           | 1                                                       | F                       | -        |      |   | -        |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |            | i .        |            |            | -          | SAMPLE TYPE                                       | G=GRAB             | C=COMP)          | Н                            |                                      | 8                | odges                    | Sharp                         | form                                    |                    |
|                                                                         |                           |                                                         | 1                       |          |      |   |          | - 3      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 145/13      | 17/10      | 7/3        | 18/23      | 122        | 12         | DATE                                              | 123                |                  | Ш                            | Plant Arkwright/CCR-Ash Pond Closure | GPCROATALOOG     | 욛                        | ě                             | iton:                                   |                    |
| 2                                                                       |                           |                                                         | HOLLYTHERY FAL          |          | -    |   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | _          |            | 2          |            | 1245       | 2                                                 | START              | Ω                | Ш                            | E C                                  |                  | Abrat<br>Parat           | Tren.                         |                                         |                    |
| SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SIGNATURE of SAMPLER: |                           | Accels                                                  | à                       |          |      |   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17.12       | 1017       | 1120       | 0235       | 12         | 5          | TIME                                              |                    | COLLECTED        | П                            | ?<br>}                               | 3                | 1                        | 1                             |                                         |                    |
| PLER RAME AND SIGNATURE OF SAMPLER:                                     |                           | 5                                                       |                         |          | 7.50 |   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |            |            |            |            |            | DATE                                              |                    | CTED             | Ш                            | 3                                    |                  | 1                        | ß                             |                                         |                    |
| RE o                                                                    |                           |                                                         | 鑑                       |          |      | _ |          |          | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -           | $\vdash$   | -          | -          | -          | -          |                                                   | 물 .                |                  | Ш                            |                                      | 1                | L                        | П                             |                                         |                    |
| Y SAN                                                                   |                           | 24/2                                                    | BING                    |          |      |   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |            |            |            |            |            | TIME                                              |                    |                  | Ш                            | \$                                   |                  |                          |                               |                                         |                    |
| IPLEI PLEI                                                              |                           | 12                                                      | A                       | $\vdash$ |      | - | $\vdash$ | $\vdash$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | $\vdash$   | -          | +          | -          | -          | SAMPLE TEM                                        | P AT COLLE         | CTION            | 11                           | П                                    |                  |                          | П                             |                                         |                    |
| 2 2 2                                                                   |                           | 1-                                                      | 200                     |          |      |   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0           | 5          | 5          | 0          | 5          | On .       | # OF CONTA                                        | NERS               |                  | 1 🖥                          |                                      | 2 8              | Company Name:            | Alle                          | hvo                                     | £ .                |
|                                                                         |                           | 1246                                                    | E .                     |          |      |   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×           | ×          | ×          | ×          | ×          | ×          | Unpreserved                                       |                    |                  | Pace Profile #:              | 3                                    | Pace Quote:      | 1                        | Atlention                     | Ce In                                   | Section C          |
|                                                                         |                           | 6                                                       |                         |          |      |   |          |          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | ×          | ×          | ×          | ×          | ×          | H2SO4                                             |                    | ٠,,              | 1 1                          | 2                                    | •                | I S                      | П                             | 100                                     | ,-                 |
| 0                                                                       |                           | Lk,                                                     |                         | ⊢        | _    | - | _        | -        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ×           | <u>r</u>   | <u>r</u>   | ₽          | <u>r</u>   | <u> </u>   | HNO3<br>HCI                                       | +                  | — es             |                              | 151                                  |                  |                          | П                             | mvoice information:                     |                    |
| 7 \$ 1                                                                  |                           | 1 8                                                     |                         | $\vdash$ | -    | ⊢ | $\vdash$ | $\vdash$ | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\vdash$    | +-         | +          | ╁          | $\vdash$   | $\vdash$   | NaOH                                              | -                  | Preservativ      | 15836                        | *                                    | 1                | ı                        |                               | ļ .                                     |                    |
| <b>水</b> 片                                                              |                           | 16                                                      | 8                       | H        | -    | 1 |          |          | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\vdash$    | 1          | 1          | $\vdash$   | t          |            | Na2\$2O3                                          |                    | ives             | П                            |                                      | 1                | 1                        | П                             |                                         |                    |
| 15                                                                      |                           |                                                         | 3                       |          |      |   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |            |            |            |            |            | Methanol                                          |                    |                  | П                            | Na par                               |                  | 1                        |                               |                                         |                    |
| 1                                                                       |                           | 1 3                                                     | 180                     |          |      |   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |            |            |            | L          |            | Other                                             |                    | torn served      | П                            | S S                                  | 1                |                          |                               |                                         |                    |
| 124                                                                     |                           | C                                                       | NOCERTED BY FAFFELATION | _        |      | _ | _        | _        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ı×          | 1×         | T×         | 1×         | ×          | ×          | Analys Total/Bicarb                               |                    | YAN              |                              | naiya parks@pacelabs.com             |                  |                          |                               |                                         |                    |
|                                                                         |                           | 1                                                       | E                       | -        | -    | + | $\vdash$ | ╁        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ×           | ×          | ×          | ×          | ×          | ×          | CI, F, SO4                                        |                    | +                |                              | 8                                    |                  |                          |                               | ı                                       |                    |
| TES I                                                                   |                           |                                                         | Ž                       | H        |      | + | 1        | 1        | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ×           | ×          | ×          | ×          | ×          | ×          | TDS                                               |                    |                  | Į.                           | 1                                    |                  |                          |                               |                                         |                    |
| DATE Signed:                                                            |                           | 1                                                       |                         |          |      |   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×           | ×          | ×          | ×          | ×          | ×          | App. III Meta                                     |                    |                  | 2                            | П                                    |                  |                          |                               |                                         |                    |
|                                                                         | $\sqcup$                  | $\perp$                                                 |                         |          | _    |   | _        | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ×           | ×          | ×          | ×          | ×          | ×          | App. IV Meta<br>Metals - Mg.                      |                    | st)              | 1                            |                                      |                  |                          | 'n                            |                                         |                    |
|                                                                         |                           | 16.73                                                   | 9                       | _        | -    | + | +-       | +        | +-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ×           | ×          | ×          | ×          | ×          | ×          | Radium 226                                        | _                  | +                | -                            | 3                                    |                  |                          | Σ                             |                                         |                    |
|                                                                         |                           | -                                                       | DATE                    | -        | -    | + | +-       | +        | ╁                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +           | +          | +-         | +          | +          | +          |                                                   |                    |                  |                              |                                      |                  |                          | 5                             | 2                                       |                    |
|                                                                         | -                         | _                                                       | _                       | 1        | 1    | + |          | +        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T           |            |            |            |            |            |                                                   |                    |                  |                              | <u>š</u> =                           | Ξ                |                          | Ŧ                             | F                                       |                    |
|                                                                         |                           | 1/2/                                                    | TIME                    |          |      |   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |            |            |            |            | I          |                                                   |                    | _                |                              |                                      |                  |                          | •                             | 5                                       | <b>¬</b>           |
|                                                                         |                           |                                                         | -                       |          | L    |   | 1        | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\perp$     | +          | +          | +          |            | +          | -                                                 | -                  | _                | -                            | Ξ                                    | Ξ                |                          | 1                             | 5                                       | 1                  |
| TEMP in C                                                               |                           | 1                                                       |                         | _        |      | 1 |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _           | _          |            | _          |            | 1          | Residual C                                        | Notine (Y/N        | 1000             |                              | =                                    | - 3              | 1                        | σ                             | 5                                       |                    |
| Received on                                                             | ++-                       | ++                                                      |                         | -        |      | Т | T        | Т        | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T           | Т          | Т          | Т          | Т          | T          | -                                                 | 1000               |                  | The same of                  |                                      |                  |                          | C                             | # · 00000000000000000000000000000000000 |                    |
| ice<br>(Y/N)                                                            | 11                        |                                                         | иошамо жану             |          |      |   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |            |            |            |            |            |                                                   |                    |                  |                              |                                      | 1 70             | ļ                        | 4                             |                                         |                    |
| Custody                                                                 | ++                        | ++                                                      | 8                       |          |      |   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |            |            |            |            |            |                                                   |                    |                  | The same of                  |                                      |                  |                          | 7                             | 3.                                      |                    |
| Sealed<br>Cooler                                                        |                           |                                                         | ollio                   |          |      |   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1           |            |            |            |            |            |                                                   |                    | 4 8              |                              |                                      |                  |                          | 7                             | 1                                       |                    |
| (Y/N)<br>Samples                                                        | H                         | +                                                       | - 5                     |          |      |   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |            |            |            |            |            |                                                   |                    | *                |                              |                                      |                  |                          |                               |                                         |                    |
| Intact<br>(Y/N)                                                         |                           |                                                         |                         |          |      |   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |            |            | 1          |            |            |                                                   |                    |                  |                              |                                      |                  |                          |                               |                                         |                    |
|                                                                         |                           |                                                         | 100                     |          | 1    |   |          |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -           |            |            |            | _          |            |                                                   |                    |                  |                              |                                      |                  |                          |                               |                                         |                    |

| DC#_Title: ENV-FRM-HUN1                                         | -0083 v02_Sample Co            | ondition Upon Receipt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Effective Date: 11/14/2022                                      |                                | THE PARTY OF THE P | B. S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ry receiving samples:                                           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| le Eden Greenwood Hu                                            | untersville Raleigh            | Mechanicsville /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Atlanta Kernersville                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| e Condition Client Name:                                        |                                | WO#: 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2691202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Receipt                                                         | // L                           | roject #: PM: MP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Due Date: 10/25/23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Accidis →A                                                      | USPS Clie                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rcadAtl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ercial Pace                                                     | Other:                         | OCILITY ON THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| eal Present? Yes No Seals Int                                   | act? Yes                       | Date/Initials Person                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Examining Contents: 10-3-73 ICC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| laterial: Bubble Wrap Bubble                                    | e Bags None Ot                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gical Tissue Frozen?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 21R Gun 1D: 083                                                 | Type of Ice: Wet B             | ue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | April 1975 de de la composition della compositio |
| mp: Correction Factor: Add/Subtract (°C)                        | 6.0                            | Temp should be above fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eezing to 6°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 77                                                              |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | criteria. Samples on ice, cooling process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| mp Corrected (°C):                                              |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the sends                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| nples originate in a quarantine zone within the Unmaps)? Yes No | ited States: CA, NY, or SC     | including Hawaii and Puerto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ts/Discrepancy:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| of Custody Present?                                             | ✓ Yes □No □N/A                 | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| les Arrived within Hold Time?                                   | ✓Yes □No □N/A                  | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| t Hold Time Analysis (<72 hr.)?                                 | Yes No N/A                     | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Turn Around Time Requested?                                     | □Yes □No □N/A                  | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| cient Volume?                                                   | Yes No N/A                     | 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ect Containers Used?<br>ace Containers Used?                    | ☐Yes ☐No ☐N/A<br>☐Yes ☐No ☐N/A | 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The state of the s |
| ainers Intact?                                                  | ☐Yes ☐No ☐N/A                  | 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| olved analysis: Samples Field Filtered?                         | □Yes □No ☑N/A                  | 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ple Labels Match COC?                                           | ☐Yes ☐No ☐N/A                  | 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | As a religion of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ncludes Date/Time/ID/Analysis Matrix:                           | /                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 | □Yes □No ØŅ/A                  | 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| dspace in VOA Vials (>5-6mm)?<br>Blank Present?                 | Yes No N/A                     | 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Blank Custody Seals Present?                                    | Yes No DATA                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S/SAMPLE DISCREPANCY                                            |                                | Fiel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d Data Required? Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                 |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 |                                | Lot ID of split containers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TIFICATION/RESOLUTION                                           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 | Date/Tir                       | ne:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | The second of th |
| ontacted:                                                       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 12 k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ct Manager SCURF Review:                                        |                                | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ct Manager SRF Review:                                          |                                | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                 |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |



DC#\_Title: ENV-FRM-HUN1-0083 v02\_Sample Condition Upon Receipt

Effective Date: 11/14/2022

\*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

- \*\*Bottom half of box is to list number of bottles
- \*\*\*Check all unpreserved Nitrates for chlorine

Project #

WO#:92691202

PM: MP

Due Date: 10/25/23

CLIENT: GA-ArcadAtl

| Itemi | BP4U-125 mL Plastic Unpreserved (N/A) (CI-) | BP3U-250 mL Plastic Unpreserved (N/A) | BP2U-500 mL Plastic Unpreserved (N/A) | BP1U-1 liter Plastic Unpreserved (N/A) | <b>BP4S-1</b> 25 mL Plastic H2SO4 (pH < 2) (CI-) | BP3N-250 mL plastic HNO3 (pH < 2) | BP4Z-125 mL Plastic ZN Acetate & NaOH (>9) | BP4B-125 mL Plastic NaOH (pH > 12) (CI-) | WGFU-Wide-mouthed Glass jar Unpreserved | AG1U-1 liter Amber Unpreserved (N/A) (Cl-) | <b>AG1H-1</b> liter Amber HCl (pH < 2) | AG3U-250 mL Amber Unpreserved (N/A) (CI-) | AG15-1 liter Amber H2SO4 (pH < 2) | AG35-250 mL Amber H2SO4 (pH < 2) | DG94-40 mL Amber NH4C! (N/A)(CI-) | DG9H-40 mL VOA HCI (N/A) | VG9T-40 mL VOA Na2S2O3 (N/A) | VG9U-40 mL VOA Unpreserved (N/A) | DG9V-40 mL VOA H3PO4 (N/A) | KP7U-50 mL Plastic Unpreserved (N/A) | V/GK (3 vials per kit)-VPH/Gas kit (N/A) | SP5T-125 mL Sterile Plastic (N/A – lab) | SP2T-250 mL Sterile Plastic (N/A – lab) | BPIW         | BP3R-250 mL Plastic (NH2)2SO4 (9.3-9.7) | AG0U-100 ml. Amber Unpreserved (N/A) (CI-) | VSGU-20 mL Scintillation vials (N/A) | DG9U-40 mL Amber Unpreserved vials (N/A) |
|-------|---------------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|--------------------------------------------------|-----------------------------------|--------------------------------------------|------------------------------------------|-----------------------------------------|--------------------------------------------|----------------------------------------|-------------------------------------------|-----------------------------------|----------------------------------|-----------------------------------|--------------------------|------------------------------|----------------------------------|----------------------------|--------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|--------------|-----------------------------------------|--------------------------------------------|--------------------------------------|------------------------------------------|
| 1     |                                             | 7                                     |                                       |                                        |                                                  | V                                 |                                            |                                          |                                         |                                            |                                        |                                           |                                   |                                  |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         | $   \angle $ |                                         |                                            |                                      | 1                                        |
| 2     |                                             | 7                                     |                                       |                                        |                                                  | V                                 |                                            |                                          |                                         |                                            |                                        |                                           |                                   |                                  |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         | Z            | $\angle$                                |                                            |                                      |                                          |
| 3     |                                             | کر                                    |                                       |                                        |                                                  | X                                 |                                            |                                          |                                         |                                            |                                        |                                           |                                   |                                  |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         | Z            |                                         |                                            |                                      |                                          |
| 4     |                                             | 7                                     |                                       |                                        |                                                  | X                                 |                                            |                                          |                                         |                                            |                                        |                                           |                                   |                                  |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         | 15           |                                         |                                            |                                      |                                          |
| 5     |                                             | 7                                     |                                       |                                        |                                                  | X                                 |                                            |                                          |                                         |                                            |                                        |                                           |                                   |                                  |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         | Z            |                                         |                                            |                                      |                                          |
| 6     |                                             | 7                                     |                                       |                                        |                                                  | X                                 |                                            |                                          |                                         |                                            |                                        |                                           |                                   |                                  |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         | X            |                                         |                                            |                                      |                                          |
| 7     |                                             |                                       |                                       |                                        |                                                  |                                   |                                            |                                          |                                         |                                            |                                        |                                           |                                   |                                  |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         |              |                                         |                                            |                                      |                                          |
| 8     |                                             |                                       |                                       |                                        |                                                  |                                   |                                            |                                          |                                         |                                            |                                        |                                           |                                   |                                  |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         |              |                                         |                                            |                                      | Ш                                        |
| 9     |                                             |                                       |                                       |                                        |                                                  |                                   |                                            |                                          |                                         |                                            |                                        |                                           |                                   |                                  |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         |              |                                         |                                            |                                      |                                          |
| 10    |                                             |                                       |                                       |                                        |                                                  |                                   |                                            |                                          |                                         |                                            |                                        |                                           |                                   |                                  |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         |              |                                         |                                            |                                      |                                          |
| 11    |                                             |                                       |                                       |                                        |                                                  |                                   |                                            |                                          |                                         |                                            |                                        |                                           |                                   |                                  |                                   |                          |                              |                                  |                            |                                      | _                                        |                                         |                                         |              |                                         |                                            |                                      |                                          |
| 12    |                                             |                                       |                                       |                                        |                                                  |                                   |                                            |                                          |                                         |                                            |                                        |                                           |                                   |                                  |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         |              |                                         |                                            |                                      |                                          |

|           | 261 - 1301 -         | pH Ac           | ljustment Log for Pres     | erved Samples              |                              |       |
|-----------|----------------------|-----------------|----------------------------|----------------------------|------------------------------|-------|
| Sample ID | Type of Preservative | pH upon receipt | Date preservation adjusted | Time preservation adjusted | Amount of Preservative added | Lot # |
|           |                      |                 |                            | ·                          |                              |       |
|           |                      |                 |                            |                            |                              |       |
|           |                      |                 |                            |                            |                              |       |
|           |                      |                 |                            |                            | ,                            |       |

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DENR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.





November 07, 2023

Kelley Sharpe ARCADIS - Atlanta 2839 Paces Ferry Rd STE 900 Atlanta, GA 30339

RE: Project: Plant Arkwright-CCR Ash Pond-Revised Report

Pace Project No.: 92691209

#### Dear Kelley Sharpe:

Enclosed are the analytical results for sample(s) received by the laboratory on October 03, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Peachtree Corners, GA

Rev. 1 - This replaces the November 3, 2023 final report. Due to lab error, this report was revised to update the 6010 Metals list reported for sample 92691209-001 (ARK-BC-0.3). No other changes were made to this report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Maiya Parks

maiya.parks@pacelabs.com

770-734-4205 Project Manage

Project Manager

Enclosures

cc: Joju Abraham, Georgia Power-CCR Jordan Gamble, ARCADIS - Atlanta Ben Hodges, Georgia Power-CCR Warren Johnson, ARCADIS - Atlanta Laura Midkiff, Georgia Power Noelia Muskus Ruiz, Georgia Power Tina Sullivan, ERM



(770)734-4200



#### **CERTIFICATIONS**

Project: Plant Arkwright-CCR Ash Pond-Revised Report

Pace Project No.: 92691209

**Pace Analytical Services Asheville** 

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 North Carolina Drinking Water Certification #: 37712

North Carolina Wastewater Certification #: 40

**Pace Analytical Services Peachtree Corners** 

110 Technology Pkwy, Peachtree Corners, GA 30092 Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812

South Carolina Laboratory ID: 99030 South Carolina Certification #: 99030001

Virginia/VELAP Certification #: 460222

North Carolina Certification #: 381 South Carolina Certification #: 98011001

Virginia Certification #: 460204



# **SAMPLE SUMMARY**

Project: Plant Arkwright-CCR Ash Pond-Revised Report

Pace Project No.: 92691209

| Lab ID      | Sample ID   | Matrix | Date Collected | Date Received  |
|-------------|-------------|--------|----------------|----------------|
| 92691209001 | ARK-BC-0.3  | Water  | 10/03/23 12:45 | 10/03/23 15:46 |
| 92691209002 | ARK-BC-0.1  | Water  | 10/03/23 11:21 | 10/03/23 15:46 |
| 92691209003 | ARK-OR-0.8  | Water  | 10/03/23 09:55 | 10/03/23 15:46 |
| 92691209004 | ARK-OR-0.1  | Water  | 10/03/23 11:50 | 10/03/23 15:46 |
| 92691209005 | ARK-OR-0.3  | Water  | 10/03/23 10:12 | 10/03/23 15:46 |
| 92691209006 | ARK-OR+0.25 | Water  | 10/03/23 12:12 | 10/03/23 15:46 |



# **SAMPLE ANALYTE COUNT**

Project: Plant Arkwright-CCR Ash Pond-Revised Report

Pace Project No.: 92691209

| Lab ID      | Sample ID   | Method        | Analysts | Analytes<br>Reported | Laboratory |
|-------------|-------------|---------------|----------|----------------------|------------|
| 92691209001 | ARK-BC-0.3  | EPA 6010D     | DRB      | 5                    | PASI-GA    |
|             |             | EPA 6020B     | CW1      | 12                   | PASI-GA    |
|             |             | EPA 7470A     | VB       | 1                    | PASI-GA    |
|             |             | SM 2540C-2015 | DL1      | 1                    | PASI-GA    |
|             |             | SM 2320B-2011 | YEG      | 2                    | PASI-A     |
|             |             | EPA 9056A     | CDC      | 3                    | PASI-A     |
| 92691209002 | ARK-BC-0.1  | EPA 6010D     | DRB      | 5                    | PASI-GA    |
|             |             | EPA 6020B     | CW1      | 12                   | PASI-GA    |
|             |             | EPA 7470A     | VB       | 1                    | PASI-GA    |
|             |             | SM 2540C-2015 | DL1      | 1                    | PASI-GA    |
|             |             | SM 2320B-2011 | YEG      | 2                    | PASI-A     |
|             |             | EPA 9056A     | CDC      | 3                    | PASI-A     |
| 2691209003  | ARK-OR-0.8  | EPA 6010D     | DRB      | 5                    | PASI-GA    |
|             |             | EPA 6020B     | CW1      | 12                   | PASI-GA    |
|             |             | EPA 7470A     | VB       | 1                    | PASI-GA    |
|             |             | SM 2540C-2015 | DL1      | 1                    | PASI-GA    |
|             |             | SM 2320B-2011 | YEG      | 2                    | PASI-A     |
|             |             | EPA 9056A     | CDC      | 3                    | PASI-A     |
| 2691209004  | ARK-OR-0.1  | EPA 6010D     | DRB      | 5                    | PASI-GA    |
|             |             | EPA 6020B     | CW1      | 12                   | PASI-GA    |
|             |             | EPA 7470A     | VB       | 1                    | PASI-GA    |
|             |             | SM 2540C-2015 | DL1      | 1                    | PASI-GA    |
|             |             | SM 2320B-2011 | YEG      | 2                    | PASI-A     |
|             |             | EPA 9056A     | CDC      | 3                    | PASI-A     |
| 2691209005  | ARK-OR-0.3  | EPA 6010D     | DRB      | 5                    | PASI-GA    |
|             |             | EPA 6020B     | CW1      | 12                   | PASI-GA    |
|             |             | EPA 7470A     | VB       | 1                    | PASI-GA    |
|             |             | SM 2540C-2015 | DL1      | 1                    | PASI-GA    |
|             |             | SM 2320B-2011 | YEG      | 2                    | PASI-A     |
|             |             | EPA 9056A     | CDC      | 3                    | PASI-A     |
| 2691209006  | ARK-OR+0.25 | EPA 6010D     | DRB      | 5                    | PASI-GA    |
|             |             | EPA 6020B     | CW1      | 12                   | PASI-GA    |
|             |             | EPA 7470A     | VB       | 1                    | PASI-GA    |
|             |             | SM 2540C-2015 | DL1      | 1                    | PASI-GA    |
|             |             | SM 2320B-2011 | YEG      | 2                    | PASI-A     |
|             |             | EPA 9056A     | CDC      | 3                    | PASI-A     |





# **SAMPLE ANALYTE COUNT**

Project: Plant Arkwright-CCR Ash Pond-Revised Report

Pace Project No.: 92691209

Lab ID Sample ID Method Analysts Reported Laboratory

PASI-A = Pace Analytical Services - Asheville PASI-GA = Pace Analytical Services - Peachtree Corners, GA



Project: Plant Arkwright-CCR Ash Pond-Revised Report

Pace Project No.: 92691209

Date: 11/07/2023 04:29 PM

| Sample: ARK-BC-0.3              | Lab ID: 9269    | 91209001   | Collected: 10/03/2 | 23 12:45  | Received: 10   | 0/03/23 15:46  | Matrix: Water |       |
|---------------------------------|-----------------|------------|--------------------|-----------|----------------|----------------|---------------|-------|
| Parameters                      | Results         | Units      | Report Limit       | DF        | Prepared       | Analyzed       | CAS No.       | Qua   |
| 6010D ATL ICP                   | Analytical Meth | od: EPA 60 | 10D Preparation Me | ethod: El | PA 3010A       |                |               |       |
|                                 | Pace Analytica  | Services - | Peachtree Corners, | GA        |                |                |               |       |
| Boron                           | ND              | mg/L       | 0.040              | 1         | 10/10/23 11:20 | 10/23/23 23:25 | 7440-42-8     |       |
| Potassium                       | 2.7             | mg/L       | 0.50               | 1         | 10/10/23 11:20 | 10/24/23 20:15 | 7440-09-7     |       |
| Sodium                          | 11.2            | mg/L       | 1.0                | 1         | 10/10/23 11:20 | 10/24/23 20:15 | 7440-23-5     | M1    |
| Calcium                         | 12.9            | mg/L       | 1.0                | 1         | 10/10/23 11:20 | 10/23/23 23:25 | 7440-70-2     | L2,M0 |
| Magnesium                       | 5.5             | mg/L       | 0.050              | 1         | 10/10/23 11:20 | 10/23/23 23:25 | 7439-95-4     | M1    |
| 6020 MET ICPMS                  | Analytical Meth | od: EPA 60 | 20B Preparation Me | thod: Ef  | PA 3005A       |                |               |       |
|                                 | Pace Analytica  | Services - | Peachtree Corners, | GA        |                |                |               |       |
| Antimony                        | ND              | mg/L       | 0.0030             | 1         | 10/07/23 09:18 | 10/10/23 15:56 | 7440-36-0     |       |
| Arsenic                         | ND              | mg/L       | 0.0050             | 1         | 10/07/23 09:18 | 10/10/23 15:56 | 7440-38-2     |       |
| Barium                          | 0.037           | mg/L       | 0.0050             | 1         | 10/07/23 09:18 | 10/10/23 15:56 | 7440-39-3     |       |
| Beryllium                       | ND              | mg/L       | 0.00050            | 1         | 10/07/23 09:18 | 10/10/23 15:56 | 7440-41-7     |       |
| Cadmium                         | ND              | mg/L       | 0.00050            | 1         |                | 10/10/23 15:56 |               |       |
| Chromium                        | ND              | mg/L       | 0.0050             | 1         | 10/07/23 09:18 | 10/10/23 15:56 | 7440-47-3     |       |
| Cobalt                          | ND              | mg/L       | 0.0050             | 1         | 10/07/23 09:18 | 10/10/23 15:56 | 7440-48-4     |       |
| Lead                            | ND              | mg/L       | 0.0010             | 1         |                | 10/10/23 15:56 |               |       |
| Lithium                         | ND              | mg/L       | 0.030              | 1         |                | 10/10/23 15:56 |               | L1    |
| Molybdenum                      | ND              | mg/L       | 0.010              | 1         |                | 10/10/23 15:56 |               |       |
| Selenium<br>                    | ND              | mg/L       | 0.0050             | 1         |                | 10/10/23 15:56 |               |       |
| Thallium                        | ND              | mg/L       | 0.0010             | 1         | 10/07/23 09:18 | 10/10/23 15:56 | 5 7440-28-0   |       |
| 7470 Mercury                    | Analytical Meth | od: EPA 74 | 70A Preparation Me | thod: EF  | PA 7470A       |                |               |       |
|                                 | Pace Analytica  | Services - | Peachtree Corners, | GA        |                |                |               |       |
| Mercury                         | ND              | mg/L       | 0.00020            | 1         | 10/12/23 12:00 | 10/12/23 16:52 | 7439-97-6     |       |
| 2540C Total Dissolved Solids    | Analytical Meth | od: SM 254 | 40C-2015           |           |                |                |               |       |
|                                 | Pace Analytica  | Services - | Peachtree Corners, | GA        |                |                |               |       |
| Total Dissolved Solids          | 99.0            | mg/L       | 25.0               | 1         |                | 10/04/23 14:07 | 7             |       |
| 2320B Alkalinity                | Analytical Meth | od: SM 232 | 20B-2011           |           |                |                |               |       |
| ,                               | Pace Analytica  |            |                    |           |                |                |               |       |
| Alkalinity, Bicarbonate (CaCO3) | 60.9            | mg/L       | 5.0                | 1         |                | 10/09/23 17:07 | 7             |       |
| Alkalinity, Total as CaCO3      | 60.9            | mg/L       | 5.0                | 1         |                | 10/09/23 17:07 |               |       |
| 9056 IC anions 28 Days          | Analytical Meth | od: EPA 90 | 956A               |           |                |                |               |       |
|                                 | Pace Analytica  |            |                    |           |                |                |               |       |
| Chloride                        | 9.3             | mg/L       | 1.0                | 1         |                | 10/04/23 02:05 | 16887-00-6    |       |
| Fluoride                        | 0.16            | mg/L       | 0.10               | 1         |                | 10/04/23 02:05 |               |       |
|                                 | 0               | 9, =       | 0.10               |           |                | ,,             |               |       |



Project: Plant Arkwright-CCR Ash Pond-Revised Report

Pace Project No.: 92691209

Date: 11/07/2023 04:29 PM

| Sample: ARK-BC-0.1              | Lab ID: 926     | 91209002     | Collected: 10/03/2  | 3 11:21  | Received: 10   | )/03/23 15:46  | Matrix: Water |     |
|---------------------------------|-----------------|--------------|---------------------|----------|----------------|----------------|---------------|-----|
| Parameters                      | Results         | Units        | Report Limit        | DF       | Prepared       | Analyzed       | CAS No.       | Qua |
| 6010D ATL ICP                   | Analytical Meth | nod: EPA 60  | 010D Preparation Me | thod: El | PA 3010A       |                |               |     |
|                                 | Pace Analytica  | l Services - | Peachtree Corners,  | GA       |                |                |               |     |
| Boron                           | 0.045           | mg/L         | 0.040               | 1        | 10/31/23 12:33 | 11/02/23 19:05 | 7440-42-8     |     |
| Potassium                       | 2.8             | mg/L         | 0.50                | 1        | 10/31/23 12:33 | 11/02/23 19:05 | 7440-09-7     |     |
| Sodium                          | 11.3            | mg/L         | 1.0                 | 1        | 10/31/23 12:33 | 11/02/23 19:05 | 7440-23-5     | M1  |
| Calcium                         | 15.0            | mg/L         | 1.0                 | 1        | 10/31/23 12:33 | 11/02/23 19:05 | 7440-70-2     | M1  |
| Magnesium                       | 6.4             | mg/L         | 0.050               | 1        | 10/31/23 12:33 | 11/02/23 19:05 | 7439-95-4     |     |
| 6020 MET ICPMS                  | Analytical Meth | nod: EPA 60  | 020B Preparation Me | thod: El | PA 3005A       |                |               |     |
|                                 | Pace Analytica  | l Services - | Peachtree Corners,  | GA       |                |                |               |     |
| Antimony                        | ND              | mg/L         | 0.0030              | 1        | 10/07/23 09:18 | 10/10/23 16:00 | 7440-36-0     |     |
| Arsenic                         | ND              | mg/L         | 0.0050              | 1        | 10/07/23 09:18 | 10/10/23 16:00 | 7440-38-2     |     |
| Barium                          | 0.036           | mg/L         | 0.0050              | 1        | 10/07/23 09:18 | 10/10/23 16:00 | 7440-39-3     |     |
| Beryllium                       | ND              | mg/L         | 0.00050             | 1        | 10/07/23 09:18 | 10/10/23 16:00 | 7440-41-7     |     |
| Cadmium                         | ND              | mg/L         | 0.00050             | 1        | 10/07/23 09:18 | 10/10/23 16:00 | 7440-43-9     |     |
| Chromium                        | ND              | mg/L         | 0.0050              | 1        | 10/07/23 09:18 | 10/10/23 16:00 | 7440-47-3     |     |
| Cobalt                          | ND              | mg/L         | 0.0050              | 1        | 10/07/23 09:18 | 10/10/23 16:00 | 7440-48-4     |     |
| _ead                            | ND              | mg/L         | 0.0010              | 1        | 10/07/23 09:18 | 10/10/23 16:00 | 7439-92-1     |     |
| _ithium                         | ND              | mg/L         | 0.030               | 1        | 10/07/23 09:18 | 10/10/23 16:00 | 7439-93-2     | L1  |
| Molybdenum                      | ND              | mg/L         | 0.010               | 1        | 10/07/23 09:18 | 10/10/23 16:00 | 7439-98-7     |     |
| Selenium                        | ND              | mg/L         | 0.0050              | 1        | 10/07/23 09:18 | 10/10/23 16:00 | 7782-49-2     |     |
| Thallium                        | ND              | mg/L         | 0.0010              | 1        | 10/07/23 09:18 | 10/10/23 16:00 | 7440-28-0     |     |
| 7470 Mercury                    | Analytical Meth | nod: EPA 74  | 170A Preparation Me | thod: Ef | PA 7470A       |                |               |     |
| •                               | Pace Analytica  | l Services - | Peachtree Corners,  | GA       |                |                |               |     |
| Mercury                         | ND              | mg/L         | 0.00020             | 1        | 10/12/23 12:00 | 10/12/23 16:5  | 5 7439-97-6   |     |
| 2540C Total Dissolved Solids    | Analytical Meth | nod: SM 25   | 40C-2015            |          |                |                |               |     |
|                                 | Pace Analytica  | l Services - | Peachtree Corners,  | GA       |                |                |               |     |
| Total Dissolved Solids          | 110             | mg/L         | 25.0                | 1        |                | 10/04/23 14:07 | 7             |     |
| 2320B Alkalinity                | Analytical Meth | nod: SM 23   | 20B-2011            |          |                |                |               |     |
| •                               | Pace Analytica  | l Services - | Asheville           |          |                |                |               |     |
| Alkalinity, Bicarbonate (CaCO3) | 61.8            | mg/L         | 5.0                 | 1        |                | 10/09/23 17:28 | 3             |     |
| Alkalinity, Total as CaCO3      | 61.8            | mg/L         | 5.0                 | 1        |                | 10/09/23 17:28 |               |     |
| 9056 IC anions 28 Days          | Analytical Meth | nod: EPA 90  | 056A                |          |                |                |               |     |
| •                               | Pace Analytica  | l Services - | Asheville           |          |                |                |               |     |
| Chloride                        | 9.2             | mg/L         | 1.0                 | 1        |                | 10/04/23 02:20 | 16887-00-6    |     |
| Fluoride                        | 0.14            | mg/L         | 0.10                | 1        |                | 10/04/23 02:20 | 16984-48-8    |     |
| Sulfate                         | 14.7            | mg/L         | 1.0                 | 1        |                | 10/04/23 02:20 | 1/808-70-8    |     |



Project: Plant Arkwright-CCR Ash Pond-Revised Report

Pace Project No.: 92691209

Date: 11/07/2023 04:29 PM

| Sample: ARK-OR-0.8             | Lab ID: 926     | 91209003     | Collected: 10/03/2 | 23 09:55  | Received: 1    | 0/03/23 15:46   | Matrix: Water |     |
|--------------------------------|-----------------|--------------|--------------------|-----------|----------------|-----------------|---------------|-----|
| Parameters                     | Results         | Units        | Report Limit       | DF        | Prepared       | Analyzed        | CAS No.       | Qua |
| 6010D ATL ICP                  | Analytical Meth | nod: EPA 60  | 10D Preparation Me | ethod: EF | PA 3010A       |                 |               |     |
|                                | Pace Analytica  | l Services - | Peachtree Corners, | GA        |                |                 |               |     |
| Boron                          | ND              | mg/L         | 0.040              | 1         | 10/10/23 11:20 | 10/23/23 23:5   | 1 7440-42-8   |     |
| Calcium                        | 7.4             | mg/L         | 1.0                | 1         | 10/10/23 11:20 | 10/23/23 23:5   | 1 7440-70-2   | L2  |
| Magnesium                      | 2.0             | mg/L         | 0.050              | 1         | 10/10/23 11:20 | 10/23/23 23:5   | 1 7439-95-4   |     |
| Potassium                      | 3.6             | mg/L         | 0.50               | 1         | 10/10/23 11:20 | 10/24/23 20:3   | 6 7440-09-7   |     |
| Sodium                         | 9.4             | mg/L         | 1.0                | 1         | 10/10/23 11:20 | 10/24/23 20:3   | 6 7440-23-5   |     |
| 6020 MET ICPMS                 | Analytical Meth | nod: EPA 60  | 20B Preparation Me | ethod: EF | PA 3005A       |                 |               |     |
|                                | Pace Analytica  | l Services - | Peachtree Corners, | GA        |                |                 |               |     |
| Antimony                       | ND              | mg/L         | 0.0030             | 1         | 10/07/23 09:18 | 3 10/10/23 16:1 | 4 7440-36-0   |     |
| Arsenic                        | ND              | mg/L         | 0.0050             | 1         | 10/07/23 09:18 | 3 10/10/23 16:1 | 4 7440-38-2   |     |
| Barium                         | 0.021           | mg/L         | 0.0050             | 1         | 10/07/23 09:18 | 3 10/10/23 16:1 | 4 7440-39-3   |     |
| Beryllium                      | ND              | mg/L         | 0.00050            | 1         | 10/07/23 09:18 | 3 10/10/23 16:1 | 4 7440-41-7   |     |
| Cadmium                        | ND              | mg/L         | 0.00050            | 1         | 10/07/23 09:18 | 3 10/10/23 16:1 | 4 7440-43-9   |     |
| Chromium                       | ND              | mg/L         | 0.0050             | 1         | 10/07/23 09:18 | 3 10/10/23 16:1 | 4 7440-47-3   |     |
| Cobalt                         | ND              | mg/L         | 0.0050             | 1         | 10/07/23 09:18 | 3 10/10/23 16:1 | 4 7440-48-4   |     |
| ₋ead                           | ND              | mg/L         | 0.0010             | 1         | 10/07/23 09:18 | 3 10/10/23 16:1 | 4 7439-92-1   |     |
| _ithium                        | ND              | mg/L         | 0.030              | 1         | 10/07/23 09:18 | 3 10/10/23 16:1 | 4 7439-93-2   | L1  |
| Molybdenum                     | ND              | mg/L         | 0.010              | 1         | 10/07/23 09:18 | 3 10/10/23 16:1 | 4 7439-98-7   |     |
| Selenium                       | ND              | mg/L         | 0.0050             | 1         | 10/07/23 09:18 | 3 10/10/23 16:1 | 4 7782-49-2   |     |
| Thallium                       | ND              | mg/L         | 0.0010             | 1         | 10/07/23 09:18 | 3 10/10/23 16:1 | 4 7440-28-0   |     |
| 7470 Mercury                   | Analytical Meth | nod: EPA 74  | 70A Preparation Me | thod: EF  | PA 7470A       |                 |               |     |
|                                | Pace Analytica  | l Services - | Peachtree Corners, | GA        |                |                 |               |     |
| Mercury                        | ND              | mg/L         | 0.00020            | 1         | 10/12/23 12:00 | 10/12/23 16:5   | 7 7439-97-6   |     |
| 2540C Total Dissolved Solids   | Analytical Meth | nod: SM 254  | 40C-2015           |           |                |                 |               |     |
|                                | •               |              | Peachtree Corners, | GA        |                |                 |               |     |
| Total Dissolved Solids         | 72.0            | mg/L         | 25.0               | 1         |                | 10/04/23 14:0   | 7             |     |
| 2320B Alkalinity               | Analytical Meth | nod: SM 232  | 20B-2011           |           |                |                 |               |     |
| ,                              | Pace Analytica  |              |                    |           |                |                 |               |     |
| Alkalinity,Bicarbonate (CaCO3) | 32.7            | mg/L         | 5.0                | 1         |                | 10/09/23 17:4   | 8             |     |
| Alkalinity, Total as CaCO3     | 32.7            | mg/L         | 5.0                | 1         |                | 10/09/23 17:4   |               |     |
| 9056 IC anions 28 Days         | Analytical Meth | nod: EPA 90  | 956A               |           |                |                 |               |     |
|                                | Pace Analytica  |              |                    |           |                |                 |               |     |
| Chloride                       | 9.0             | mg/L         | 1.0                | 1         |                | 10/04/23 02:3   | 4 16887-00-6  |     |
| Fluoride                       | ND              | mg/L         | 0.10               | 1         |                |                 | 4 16984-48-8  |     |
|                                |                 |              |                    |           |                |                 |               |     |



Project: Plant Arkwright-CCR Ash Pond-Revised Report

Pace Project No.: 92691209

Date: 11/07/2023 04:29 PM

| Sample: ARK-OR-0.1             | Lab ID: 926     | 91209004     | Collected: 10/03/2  | 23 11:50  | Received: 1    | 0/03/23 15:46   | Matrix: Water |     |
|--------------------------------|-----------------|--------------|---------------------|-----------|----------------|-----------------|---------------|-----|
| Parameters                     | Results         | Units        | Report Limit        | DF        | Prepared       | Analyzed        | CAS No.       | Qua |
| 6010D ATL ICP                  | Analytical Meth | nod: EPA 60  | 010D Preparation Me | ethod: El | PA 3010A       |                 |               |     |
|                                | Pace Analytica  | l Services - | Peachtree Corners,  | GA        |                |                 |               |     |
| Boron                          | ND              | mg/L         | 0.040               | 1         | 10/10/23 11:20 | 10/23/23 23:5   | 6 7440-42-8   |     |
| Calcium                        | 7.4             | mg/L         | 1.0                 | 1         | 10/10/23 11:20 | 10/23/23 23:5   | 6 7440-70-2   | L2  |
| Magnesium                      | 2.0             | mg/L         | 0.050               | 1         | 10/10/23 11:20 | 10/23/23 23:5   | 6 7439-95-4   |     |
| Potassium                      | 3.3             | mg/L         | 0.50                | 1         | 10/10/23 11:20 | 10/24/23 20:4   | 1 7440-09-7   |     |
| Sodium                         | 9.5             | mg/L         | 1.0                 | 1         | 10/10/23 11:20 | 10/24/23 20:4   | 1 7440-23-5   |     |
| 6020 MET ICPMS                 | Analytical Meth | nod: EPA 60  | 20B Preparation Me  | ethod: El | PA 3005A       |                 |               |     |
|                                | Pace Analytica  | l Services - | Peachtree Corners,  | GA        |                |                 |               |     |
| Antimony                       | ND              | mg/L         | 0.0030              | 1         | 10/07/23 09:18 | 3 10/10/23 16:1 | 8 7440-36-0   |     |
| Arsenic                        | ND              | mg/L         | 0.0050              | 1         | 10/07/23 09:18 | 3 10/10/23 16:1 | 8 7440-38-2   |     |
| Barium                         | 0.021           | mg/L         | 0.0050              | 1         | 10/07/23 09:18 | 3 10/10/23 16:1 | 8 7440-39-3   |     |
| Beryllium                      | ND              | mg/L         | 0.00050             | 1         | 10/07/23 09:18 | 3 10/10/23 16:1 | 8 7440-41-7   |     |
| Cadmium                        | ND              | mg/L         | 0.00050             | 1         | 10/07/23 09:18 | 3 10/10/23 16:1 | 8 7440-43-9   |     |
| Chromium                       | ND              | mg/L         | 0.0050              | 1         | 10/07/23 09:18 | 3 10/10/23 16:1 | 8 7440-47-3   |     |
| Cobalt                         | ND              | mg/L         | 0.0050              | 1         | 10/07/23 09:18 | 3 10/10/23 16:1 | 8 7440-48-4   |     |
| Lead                           | ND              | mg/L         | 0.0010              | 1         | 10/07/23 09:18 | 3 10/10/23 16:1 | 8 7439-92-1   |     |
| Lithium                        | ND              | mg/L         | 0.030               | 1         | 10/07/23 09:18 | 3 10/10/23 16:1 | 8 7439-93-2   | L1  |
| Molybdenum                     | ND              | mg/L         | 0.010               | 1         | 10/07/23 09:18 | 3 10/10/23 16:1 | 8 7439-98-7   |     |
| Selenium                       | ND              | mg/L         | 0.0050              | 1         | 10/07/23 09:18 | 3 10/10/23 16:1 | 8 7782-49-2   |     |
| Thallium                       | ND              | mg/L         | 0.0010              | 1         | 10/07/23 09:18 | 3 10/10/23 16:1 | 8 7440-28-0   |     |
| 7470 Mercury                   | Analytical Meth | nod: EPA 74  | 70A Preparation Me  | thod: EF  | PA 7470A       |                 |               |     |
|                                | Pace Analytica  | l Services - | Peachtree Corners,  | GA        |                |                 |               |     |
| Mercury                        | ND              | mg/L         | 0.00020             | 1         | 10/12/23 12:00 | 10/12/23 17:0   | 5 7439-97-6   |     |
| 2540C Total Dissolved Solids   | Analytical Meth | nod: SM 254  | 40C-2015            |           |                |                 |               |     |
|                                | •               |              | Peachtree Corners,  | GA        |                |                 |               |     |
| Total Dissolved Solids         | 72.0            | mg/L         | 25.0                | 1         |                | 10/04/23 14:1   | 0             |     |
| 2320B Alkalinity               | Analytical Meth | nod: SM 232  | 20B-2011            |           |                |                 |               |     |
| ,                              | Pace Analytica  |              |                     |           |                |                 |               |     |
| Alkalinity,Bicarbonate (CaCO3) | 33.1            | mg/L         | 5.0                 | 1         |                | 10/09/23 18:0   | 4             |     |
| Alkalinity, Total as CaCO3     | 33.1            | mg/L         | 5.0                 | 1         |                | 10/09/23 18:0   |               |     |
| 9056 IC anions 28 Days         | Analytical Meth | nod: EPA 90  | 056A                |           |                |                 |               |     |
|                                | Pace Analytica  |              |                     |           |                |                 |               |     |
| Chloride                       | 8.9             | mg/L         | 1.0                 | 1         |                | 10/04/23 02:4   | 9 16887-00-6  |     |
| Fluoride                       | ND              | mg/L         | 0.10                | 1         |                |                 | 9 16984-48-8  |     |
|                                | _               | - ·          |                     |           |                |                 |               |     |



Project: Plant Arkwright-CCR Ash Pond-Revised Report

Pace Project No.: 92691209

Date: 11/07/2023 04:29 PM

| Sample: ARK-OR-0.3              | Lab ID: 926     | 91209005     | Collected: 10/03/2  | 3 10:12  | Received: 10   | )/03/23 15:46 | Matrix: Water |     |
|---------------------------------|-----------------|--------------|---------------------|----------|----------------|---------------|---------------|-----|
| Parameters                      | Results         | Units        | Report Limit        | DF       | Prepared       | Analyzed      | CAS No.       | Qua |
| 6010D ATL ICP                   | Analytical Metl | nod: EPA 60  | 010D Preparation Me | thod: Ef | PA 3010A       |               |               |     |
|                                 | Pace Analytica  | l Services - | Peachtree Corners,  | GA       |                |               |               |     |
| Potassium                       | 3.5             | mg/L         | 0.50                | 1        | 10/10/23 11:20 | 10/24/23 20:4 | 6 7440-09-7   |     |
| Sodium                          | 9.1             | mg/L         | 1.0                 | 1        | 10/10/23 11:20 | 10/24/23 20:4 | 6 7440-23-5   |     |
| Boron                           | ND              | mg/L         | 0.040               | 1        | 10/10/23 11:20 | 10/24/23 00:0 | 1 7440-42-8   |     |
| Calcium                         | 7.2             | mg/L         | 1.0                 | 1        | 10/10/23 11:20 | 10/24/23 00:0 | 1 7440-70-2   | L2  |
| Magnesium                       | 2.0             | mg/L         | 0.050               | 1        | 10/10/23 11:20 | 10/24/23 00:0 | 1 7439-95-4   |     |
| 020 MET ICPMS                   | Analytical Met  | nod: EPA 60  | 020B Preparation Me | thod: EF | PA 3005A       |               |               |     |
|                                 | Pace Analytica  | l Services - | Peachtree Corners,  | GA       |                |               |               |     |
| Antimony                        | ND              | mg/L         | 0.0030              | 1        | 10/07/23 09:18 | 10/10/23 16:2 | 3 7440-36-0   |     |
| Arsenic                         | ND              | mg/L         | 0.0050              | 1        | 10/07/23 09:18 | 10/10/23 16:2 | 3 7440-38-2   |     |
| Barium                          | 0.020           | mg/L         | 0.0050              | 1        | 10/07/23 09:18 | 10/10/23 16:2 | 3 7440-39-3   |     |
| Beryllium                       | ND              | mg/L         | 0.00050             | 1        | 10/07/23 09:18 | 10/10/23 16:2 | 3 7440-41-7   |     |
| Cadmium                         | ND              | mg/L         | 0.00050             | 1        | 10/07/23 09:18 | 10/10/23 16:2 | 3 7440-43-9   |     |
| Chromium                        | ND              | mg/L         | 0.0050              | 1        | 10/07/23 09:18 | 10/10/23 16:2 | 3 7440-47-3   |     |
| Cobalt                          | ND              | mg/L         | 0.0050              | 1        | 10/07/23 09:18 | 10/10/23 16:2 | 3 7440-48-4   |     |
| .ead                            | ND              | mg/L         | 0.0010              | 1        | 10/07/23 09:18 | 10/10/23 16:2 | 3 7439-92-1   |     |
| ithium                          | ND              | mg/L         | 0.030               | 1        | 10/07/23 09:18 | 10/10/23 16:2 | 3 7439-93-2   | L1  |
| Nolybdenum                      | ND              | mg/L         | 0.010               | 1        | 10/07/23 09:18 | 10/10/23 16:2 | 3 7439-98-7   |     |
| Selenium                        | ND              | mg/L         | 0.0050              | 1        | 10/07/23 09:18 | 10/10/23 16:2 | 3 7782-49-2   |     |
| Thallium Thallium               | ND              | mg/L         | 0.0010              | 1        | 10/07/23 09:18 | 10/10/23 16:2 | 3 7440-28-0   |     |
| 7470 Mercury                    | Analytical Met  | nod: EPA 74  | 170A Preparation Me | thod: EF | PA 7470A       |               |               |     |
|                                 | Pace Analytica  | l Services - | Peachtree Corners,  | GA       |                |               |               |     |
| Mercury                         | ND              | mg/L         | 0.00020             | 1        | 10/12/23 12:00 | 10/12/23 17:0 | 8 7439-97-6   |     |
| 2540C Total Dissolved Solids    | Analytical Met  | nod: SM 25   | 40C-2015            |          |                |               |               |     |
|                                 | Pace Analytica  | l Services - | Peachtree Corners,  | GA       |                |               |               |     |
| Total Dissolved Solids          | 66.0            | mg/L         | 25.0                | 1        |                | 10/04/23 14:1 | 0             |     |
| 2320B Alkalinity                | Analytical Metl | nod: SM 23   | 20B-2011            |          |                |               |               |     |
| ·                               | Pace Analytica  | l Services - | Asheville           |          |                |               |               |     |
| Alkalinity, Bicarbonate (CaCO3) | 32.4            | mg/L         | 5.0                 | 1        |                | 10/09/23 18:1 | 0             |     |
| Alkalinity, Total as CaCO3      | 32.4            | mg/L         | 5.0                 | 1        |                | 10/09/23 18:1 | 0             |     |
| 0056 IC anions 28 Days          | Analytical Met  | nod: EPA 90  | 056A                |          |                |               |               |     |
| -                               | Pace Analytica  | l Services - | Asheville           |          |                |               |               |     |
| Chloride                        | 9.0             | mg/L         | 1.0                 | 1        |                | 10/04/23 03:0 | 3 16887-00-6  |     |
| Fluoride                        | ND              | mg/L         | 0.10                | 1        |                | 10/04/23 03:0 | 3 16984-48-8  |     |
| Sulfate                         | 6.3             | mg/L         | 1.0                 | 1        |                | 10/04/23 03:0 | 3 14808-79-8  |     |



Project: Plant Arkwright-CCR Ash Pond-Revised Report

Pace Project No.: 92691209

Date: 11/07/2023 04:29 PM

| Sample: ARK-OR+0.25                   | Lab ID: 926     | 91209006     | Collected: 10/03/2  | 23 12:12  | Received: 1    | 0/03/23 15:46   | Matrix: Water |     |
|---------------------------------------|-----------------|--------------|---------------------|-----------|----------------|-----------------|---------------|-----|
| Parameters                            | Results         | Units        | Report Limit        | DF        | Prepared       | Analyzed        | CAS No.       | Qua |
| 6010D ATL ICP                         | Analytical Metl | nod: EPA 60  | 010D Preparation Me | ethod: El | PA 3010A       |                 |               |     |
|                                       | Pace Analytica  | l Services - | Peachtree Corners,  | GA        |                |                 |               |     |
| Boron                                 | ND              | mg/L         | 0.040               | 1         | 10/10/23 11:20 | 10/24/23 00:0   | 6 7440-42-8   |     |
| Calcium                               | 7.2             | mg/L         | 1.0                 | 1         | 10/10/23 11:20 | 10/24/23 00:0   | 6 7440-70-2   | L2  |
| Magnesium                             | 2.0             | mg/L         | 0.050               | 1         | 10/10/23 11:20 | 10/24/23 00:0   | 6 7439-95-4   |     |
| Potassium                             | 3.4             | mg/L         | 0.50                | 1         | 10/10/23 11:20 | 10/24/23 20:5   | 1 7440-09-7   |     |
| Sodium                                | 9.2             | mg/L         | 1.0                 | 1         | 10/10/23 11:20 | 10/24/23 20:5   | 1 7440-23-5   |     |
| 6020 MET ICPMS                        | Analytical Metl | nod: EPA 60  | 20B Preparation Me  | ethod: Ef | PA 3005A       |                 |               |     |
|                                       | Pace Analytica  | l Services - | Peachtree Corners,  | GA        |                |                 |               |     |
| Antimony                              | ND              | mg/L         | 0.0030              | 1         | 10/07/23 09:18 | 3 10/10/23 16:2 | 7 7440-36-0   |     |
| Arsenic                               | ND              | mg/L         | 0.0050              | 1         | 10/07/23 09:18 | 3 10/10/23 16:2 | 7 7440-38-2   |     |
| Barium                                | 0.019           | mg/L         | 0.0050              | 1         | 10/07/23 09:18 | 3 10/10/23 16:2 | 7 7440-39-3   |     |
| Beryllium                             | ND              | mg/L         | 0.00050             | 1         | 10/07/23 09:18 | 3 10/10/23 16:2 | 7 7440-41-7   |     |
| Cadmium                               | ND              | mg/L         | 0.00050             | 1         | 10/07/23 09:18 | 3 10/10/23 16:2 | 7 7440-43-9   |     |
| Chromium                              | ND              | mg/L         | 0.0050              | 1         | 10/07/23 09:18 | 3 10/10/23 16:2 | 7 7440-47-3   |     |
| Cobalt                                | ND              | mg/L         | 0.0050              | 1         | 10/07/23 09:18 | 3 10/10/23 16:2 | 7 7440-48-4   |     |
| Lead                                  | ND              | mg/L         | 0.0010              | 1         | 10/07/23 09:18 | 3 10/10/23 16:2 | 7 7439-92-1   |     |
| Lithium                               | ND              | mg/L         | 0.030               | 1         | 10/07/23 09:18 | 3 10/10/23 16:2 | 7 7439-93-2   | L1  |
| Molybdenum                            | ND              | mg/L         | 0.010               | 1         | 10/07/23 09:18 | 3 10/10/23 16:2 | 7 7439-98-7   |     |
| Selenium                              | ND              | mg/L         | 0.0050              | 1         | 10/07/23 09:18 | 3 10/10/23 16:2 | 7 7782-49-2   |     |
| Thallium                              | ND              | mg/L         | 0.0010              | 1         | 10/07/23 09:18 | 3 10/10/23 16:2 | 7 7440-28-0   |     |
| 7470 Mercury                          | Analytical Met  | nod: EPA 74  | 70A Preparation Me  | thod: EF  | PA 7470A       |                 |               |     |
|                                       | Pace Analytica  | l Services - | Peachtree Corners,  | GA        |                |                 |               |     |
| Mercury                               | ND              | mg/L         | 0.00020             | 1         | 10/12/23 12:00 | 10/12/23 17:1   | 0 7439-97-6   |     |
| 2540C Total Dissolved Solids          | Analytical Met  | nod: SM 254  | 40C-2015            |           |                |                 |               |     |
|                                       | •               |              | Peachtree Corners,  | GA        |                |                 |               |     |
| Total Dissolved Solids                | 67.0            | mg/L         | 25.0                | 1         |                | 10/04/23 14:1   | 0             |     |
| 2320B Alkalinity                      | Analytical Met  | nod: SM 232  | 20B-2011            |           |                |                 |               |     |
| · · · · · · · · · · · · · · · · · · · | Pace Analytica  |              |                     |           |                |                 |               |     |
| Alkalinity, Bicarbonate (CaCO3)       | 33.1            | mg/L         | 5.0                 | 1         |                | 10/09/23 18:1   | 6             |     |
| Alkalinity, Total as CaCO3            | 33.1            | mg/L         | 5.0                 | 1         |                | 10/09/23 18:1   |               |     |
| 9056 IC anions 28 Days                | Analytical Metl | nod: EPA 90  | 056A                |           |                |                 |               |     |
|                                       | Pace Analytica  |              |                     |           |                |                 |               |     |
| Chloride                              | 9.0             | mg/L         | 1.0                 | 1         |                | 10/04/23 03:4   | 7 16887-00-6  |     |
| Fluoride                              | ND              | mg/L         | 0.10                | 1         |                |                 | 7 16984-48-8  |     |
| riuolide                              |                 |              |                     |           |                |                 |               |     |



Project: Plant Arkwright-CCR Ash Pond-Revised Report

Pace Project No.: 92691209

Date: 11/07/2023 04:29 PM

QC Batch: 805246 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010D ATL

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92691209001, 92691209003, 92691209004, 92691209005, 92691209006

METHOD BLANK: 4169858 Matrix: Water

Associated Lab Samples: 92691209001, 92691209003, 92691209004, 92691209005, 92691209006

|           |       | Blank  | Reporting |                |            |
|-----------|-------|--------|-----------|----------------|------------|
| Parameter | Units | Result | Limit     | Analyzed       | Qualifiers |
| Boron     | mg/L  | ND     | 0.040     | 10/23/23 23:04 |            |
| Calcium   | mg/L  | ND     | 1.0       | 10/23/23 23:04 |            |
| Magnesium | mg/L  | ND     | 0.050     | 10/23/23 23:04 |            |
| Potassium | mg/L  | ND     | 0.50      | 10/24/23 19:55 |            |
| Sodium    | mg/L  | ND     | 1.0       | 10/24/23 19:55 |            |

| LABORATORY CONTROL SAMPLE: | 4169859 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Boron                      | mg/L    | 1     | 0.99   | 99    | 80-120 |            |
| Calcium                    | mg/L    | 1     | .77J   | 77    | 80-120 | L2         |
| Magnesium                  | mg/L    | 1     | 0.94   | 94    | 80-120 |            |
| Potassium                  | mg/L    | 1     | 1.1    | 111   | 80-120 |            |
| Sodium                     | mg/L    | 1     | 1.1    | 112   | 80-120 |            |

| MATRIX SPIKE & MATRIX S | PIKE DUPLIC | CATE: 4169 | 860         |              | 4169861 |        |       |       |        |     |     |      |
|-------------------------|-------------|------------|-------------|--------------|---------|--------|-------|-------|--------|-----|-----|------|
|                         | 9           | 2691209001 | MS<br>Spike | MSD<br>Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter               | Units       | Result     | Conc.       | Conc.        | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Boron                   | mg/L        | ND         | 1           | 1            | 1.1     | 1.1    | 105   | 104   | 75-125 | 1   | 20  |      |
| Calcium                 | mg/L        | 12.9       | 1           | 1            | 15.1    | 13.9   | 219   | 102   | 75-125 | 8   | 20  | MO   |
| Magnesium               | mg/L        | 5.5        | 1           | 1            | 7.2     | 6.4    | 174   | 96    | 75-125 | 11  | 20  | M1   |
| Potassium               | mg/L        | 2.7        | 1           | 1            | 3.7     | 3.9    | 106   | 122   | 75-125 | 4   | 20  |      |
| Sodium                  | mg/L        | 11.2       | 1           | 1            | 11.9    | 12.3   | 66    | 105   | 75-125 | 3   | 20  | M1   |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: Plant Arkwright-CCR Ash Pond-Revised Report

Pace Project No.: 92691209

Date: 11/07/2023 04:29 PM

QC Batch: 809947 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010D ATL

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92691209002

METHOD BLANK: 4193423 Matrix: Water

Associated Lab Samples: 92691209002

|           |       | Blank  | Reporting |                |            |
|-----------|-------|--------|-----------|----------------|------------|
| Parameter | Units | Result | Limit     | Analyzed       | Qualifiers |
| Boron     | mg/L  | ND     | 0.040     | 11/02/23 18:54 |            |
| Calcium   | mg/L  | ND     | 1.0       | 11/02/23 18:54 |            |
| Magnesium | mg/L  | ND     | 0.050     | 11/02/23 18:54 |            |
| Potassium | mg/L  | ND     | 0.50      | 11/02/23 18:54 |            |
| Sodium    | mg/L  | ND     | 1.0       | 11/02/23 18:54 |            |

|           |       | Spike | LCS    | LCS   | % Rec  |            |
|-----------|-------|-------|--------|-------|--------|------------|
| Parameter | Units | Conc. | Result | % Rec | Limits | Qualifiers |
| Boron     | mg/L  |       | 0.95   | 95    | 80-120 |            |
| alcium    | mg/L  | 1     | 1.0    | 100   | 80-120 |            |
| lagnesium | mg/L  | 1     | 1.0    | 103   | 80-120 |            |
| otassium  | mg/L  | 1     | 1.0    | 100   | 80-120 |            |
| odium     | mg/L  | 1     | .99J   | 99    | 80-120 |            |

| MATRIX SPIKE & MATRIX | SPIKE DUPL | ICATE: 4193 | 425         |              | 4193426 | i      |       |       |        |     |     |      |
|-----------------------|------------|-------------|-------------|--------------|---------|--------|-------|-------|--------|-----|-----|------|
|                       |            | 92691209002 | MS<br>Spike | MSD<br>Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter             | Units      | Result      | Conc.       | Conc.        | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Boron                 | mg/L       | 0.045       | 1           | 1            | 1.1     | 1.0    | 102   | 100   | 75-125 | 2   | 20  |      |
| Calcium               | mg/L       | 15.0        | 1           | 1            | 16.3    | 15.6   | 125   | 58    | 75-125 | 4   | 20  | M1   |
| Magnesium             | mg/L       | 6.4         | 1           | 1            | 7.6     | 7.3    | 117   | 91    | 75-125 | 3   | 20  |      |
| Potassium             | mg/L       | 2.8         | 1           | 1            | 3.8     | 3.8    | 103   | 102   | 75-125 | 0   | 20  |      |
| Sodium                | mg/L       | 11.3        | 1           | 1            | 12.6    | 12.3   | 132   | 94    | 75-125 | 3   | 20  | M1   |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: Plant Arkwright-CCR Ash Pond-Revised Report

Pace Project No.: 92691209

Date: 11/07/2023 04:29 PM

QC Batch: 804826 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92691209001, 92691209002, 92691209003, 92691209004, 92691209005, 92691209006

METHOD BLANK: 4168100 Matrix: Water

Associated Lab Samples: 92691209001, 92691209002, 92691209003, 92691209004, 92691209005, 92691209006

|            |       | Blank  | Reporting |                |            |
|------------|-------|--------|-----------|----------------|------------|
| Parameter  | Units | Result | Limit     | Analyzed       | Qualifiers |
| Antimony   | mg/L  | ND     | 0.0030    | 10/10/23 15:19 |            |
| Arsenic    | mg/L  | ND     | 0.0050    | 10/10/23 15:19 |            |
| Barium     | mg/L  | ND     | 0.0050    | 10/10/23 15:19 |            |
| Beryllium  | mg/L  | ND     | 0.00050   | 10/10/23 15:19 |            |
| Cadmium    | mg/L  | ND     | 0.00050   | 10/10/23 15:19 |            |
| Chromium   | mg/L  | ND     | 0.0050    | 10/10/23 15:19 |            |
| Cobalt     | mg/L  | ND     | 0.0050    | 10/10/23 15:19 |            |
| Lead       | mg/L  | ND     | 0.0010    | 10/10/23 15:19 |            |
| Lithium    | mg/L  | ND     | 0.030     | 10/10/23 15:19 |            |
| Molybdenum | mg/L  | ND     | 0.010     | 10/10/23 15:19 |            |
| Selenium   | mg/L  | ND     | 0.0050    | 10/10/23 15:19 |            |
| Thallium   | mg/L  | ND     | 0.0010    | 10/10/23 15:19 |            |

| LABORATORY CONTROL SAMPLE: | 4168101 |       |        |       |           |            |
|----------------------------|---------|-------|--------|-------|-----------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec     |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits    | Qualifiers |
| Antimony                   | mg/L    | 0.1   | 0.11   | 106   | 80-120    |            |
| Arsenic                    | mg/L    | 0.1   | 0.10   | 102   | 80-120    |            |
| Barium                     | mg/L    | 0.1   | 0.10   | 104   | 80-120    |            |
| Beryllium                  | mg/L    | 0.1   | 0.12   | 116   | 80-120    |            |
| Cadmium                    | mg/L    | 0.1   | 0.11   | 105   | 80-120    |            |
| Chromium                   | mg/L    | 0.1   | 0.11   | 106   | 80-120    |            |
| Cobalt                     | mg/L    | 0.1   | 0.11   | 106   | 80-120    |            |
| Lead                       | mg/L    | 0.1   | 0.11   | 105   | 80-120    |            |
| Lithium                    | mg/L    | 0.1   | 0.13   | 129   | 80-120 L1 |            |
| Molybdenum                 | mg/L    | 0.1   | 0.10   | 104   | 80-120    |            |
| Selenium                   | mg/L    | 0.1   | 0.10   | 102   | 80-120    |            |
| Thallium                   | mg/L    | 0.1   | 0.10   | 103   | 80-120    |            |

| MATRIX SPIKE & MATRIX SP | PIKE DUPLI | CATE: 4168  | 102         |              | 4168103 |        |       |       |        |     |     |      |
|--------------------------|------------|-------------|-------------|--------------|---------|--------|-------|-------|--------|-----|-----|------|
|                          | g          | 92687886008 | MS<br>Spike | MSD<br>Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                | Units      | Result      | Conc.       | Conc.        | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Antimony                 | mg/L       | ND          | 0.1         | 0.1          | 0.11    | 0.10   | 108   | 104   | 75-125 | 4   | 20  |      |
| Arsenic                  | mg/L       | ND          | 0.1         | 0.1          | 0.11    | 0.10   | 105   | 101   | 75-125 | 4   | 20  |      |
| Barium                   | mg/L       | 1090 ug/L   | 0.1         | 0.1          | 1.2     | 1.1    | 71    | 30    | 75-125 | 4   | 20  |      |
| Beryllium                | mg/L       | ND          | 0.1         | 0.1          | 0.10    | 0.097  | 102   | 97    | 75-125 | 5   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: Plant Arkwright-CCR Ash Pond-Revised Report

Pace Project No.: 92691209

Date: 11/07/2023 04:29 PM

|            |       |             | MS    | MSD   |        |        |       |       |        |     |     |     |
|------------|-------|-------------|-------|-------|--------|--------|-------|-------|--------|-----|-----|-----|
|            | 9     | 92687886008 | Spike | Spike | MS     | MSD    | MS    | MSD   | % Rec  |     | Max |     |
| Parameter  | Units | Result      | Conc. | Conc. | Result | Result | % Rec | % Rec | Limits | RPD | RPD | Qua |
| Cadmium    | mg/L  | ND ND       | 0.1   | 0.1   | 0.11   | 0.10   | 110   | 102   | 75-125 | 8   | 20  |     |
| Chromium   | mg/L  | ND          | 0.1   | 0.1   | 0.10   | 0.099  | 105   | 99    | 75-125 | 5   | 20  |     |
| Cobalt     | mg/L  | 162 ug/L    | 0.1   | 0.1   | 0.27   | 0.26   | 107   | 95    | 75-125 | 5   | 20  |     |
| _ead       | mg/L  | ND          | 0.1   | 0.1   | 0.10   | 0.099  | 104   | 99    | 75-125 | 6   | 20  |     |
| _ithium    | mg/L  | ND          | 0.1   | 0.1   | 0.12   | 0.12   | 113   | 108   | 75-125 | 4   | 20  |     |
| Molybdenum | mg/L  | ND          | 0.1   | 0.1   | 0.11   | 0.10   | 105   | 101   | 75-125 | 4   | 20  |     |
| Selenium   | mg/L  | ND          | 0.1   | 0.1   | 0.11   | 0.10   | 104   | 101   | 75-125 | 4   | 20  |     |
| Thallium   | mg/L  | 2.2 ug/L    | 0.1   | 0.1   | 0.11   | 0.10   | 103   | 98    | 75-125 | 6   | 20  |     |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: Plant Arkwright-CCR Ash Pond-Revised Report

Pace Project No.: 92691209

Date: 11/07/2023 04:29 PM

QC Batch: 805706 Analysis Method: EPA 7470A

QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92691209001, 92691209002, 92691209003, 92691209004, 92691209005, 92691209006

METHOD BLANK: 4172220 Matrix: Water

Associated Lab Samples: 92691209001, 92691209002, 92691209003, 92691209004, 92691209005, 92691209006

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Mercury mg/L ND 0.00020 10/12/23 16:01

LABORATORY CONTROL SAMPLE: 4172221

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Mercury mg/L 0.0025 0.0021 85 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4172222 4172223

MS MSD

92689717009 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result **RPD** RPD Qual Result Conc. Conc. Result % Rec % Rec Limits 0.0025 Mercury mg/L ND 0.0025 0.0026 0.0023 99 87 75-125 12 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: Plant Arkwright-CCR Ash Pond-Revised Report

Pace Project No.: 92691209

QC Batch: 804106 Analysis Method: SM 2540C-2015

QC Batch Method: SM 2540C-2015 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92691209001, 92691209002, 92691209003, 92691209004, 92691209005, 92691209006

METHOD BLANK: 4164514 Matrix: Water

Associated Lab Samples: 92691209001, 92691209002, 92691209003, 92691209004, 92691209005, 92691209006

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L ND 25.0 10/04/23 14:01

LABORATORY CONTROL SAMPLE: 4164515

Spike LCS LCS % Rec Conc. % Rec Limits Qualifiers Parameter Units Result mg/L **Total Dissolved Solids** 400 381 95 80-120

SAMPLE DUPLICATE: 4164516

92691004001 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 228 **Total Dissolved Solids** 9 mg/L 208 10

SAMPLE DUPLICATE: 4164517

Date: 11/07/2023 04:29 PM

92691209003 Dup Max Parameter RPD RPD Units Result Result Qualifiers Total Dissolved Solids 72.0 mg/L 76.0 5 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: Plant Arkwright-CCR Ash Pond-Revised Report

Pace Project No.: 92691209

QC Batch: 804990 Analysis Method: SM 2320B-2011
QC Batch Method: SM 2320B-2011 Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92691209001, 92691209002, 92691209003, 92691209004, 92691209005, 92691209006

METHOD BLANK: 4168576 Matrix: Water

Associated Lab Samples: 92691209001, 92691209002, 92691209003, 92691209004, 92691209005, 92691209006

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed Alkalinity, Total as CaCO3 ND 5.0 10/09/23 16:49 mg/L Alkalinity, Bicarbonate (CaCO3) mg/L ND 5.0 10/09/23 16:49

LABORATORY CONTROL SAMPLE: 4168577

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Alkalinity, Total as CaCO3 52.5 105 80-120 mg/L 50

LABORATORY CONTROL SAMPLE: 4168578

Date: 11/07/2023 04:29 PM

LCS Spike LCS % Rec Conc. Limits Qualifiers Parameter Units Result % Rec 102 Alkalinity, Total as CaCO3 mg/L 50 50.9 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4168579 4168580

MS MSD 92691209001 MS MSD MS MSD Spike Spike % Rec Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD Qual 50 50 Alkalinity, Total as CaCO3 60.9 111 112 101 103 80-120 25 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4168581 4168582

MSD MS 92691209002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec **RPD** RPD Result Limits Qual Alkalinity, Total as CaCO3 mg/L 61.8 50 50 114 112 104 101 80-120 2 25

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: Plant Arkwright-CCR Ash Pond-Revised Report

Pace Project No.: 92691209

LABORATORY CONTROL CAMPLE: 4162720

Date: 11/07/2023 04:29 PM

QC Batch: 803939 Analysis Method: EPA 9056A

QC Batch Method: EPA 9056A Analysis Description: 9056 IC anions 28 Days

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92691209001, 92691209002, 92691209003, 92691209004, 92691209005, 92691209006

METHOD BLANK: 4163719 Matrix: Water

Associated Lab Samples: 92691209001, 92691209002, 92691209003, 92691209004, 92691209005, 92691209006

|           |       | Blank  | Reporting |                |            |
|-----------|-------|--------|-----------|----------------|------------|
| Parameter | Units | Result | Limit     | Analyzed       | Qualifiers |
| Chloride  | mg/L  | ND ND  | 1.0       | 10/04/23 00:53 |            |
| Fluoride  | mg/L  | ND     | 0.10      | 10/04/23 00:53 |            |
| Sulfate   | mg/L  | ND     | 1.0       | 10/04/23 00:53 |            |

| LABORATORY CONTROL SAMPLE. | 4103720 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Chloride                   | mg/L    | 50    | 49.2   | 98    | 90-110 |            |
| Fluoride                   | mg/L    | 2.5   | 2.5    | 99    | 90-110 |            |
| Sulfate                    | mg/L    | 50    | 49.2   | 98    | 90-110 |            |

| MATRIX SPIKE & MATRIX SP | IKE DUPL | ICATE: 4163 | 721   |       | 4163722 |        |       |       |        |     |     |      |
|--------------------------|----------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                          |          |             | MS    | MSD   |         |        |       |       |        |     |     |      |
|                          |          | 92690697022 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                | Units    | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Chloride                 | mg/L     | 2.8         | 50    | 50    | 51.3    | 50.9   | 97    | 96    | 90-110 | 1   | 10  |      |
| Fluoride                 | mg/L     | ND          | 2.5   | 2.5   | 2.6     | 2.5    | 100   | 99    | 90-110 | 1   | 10  |      |
| Sulfate                  | mg/L     | 1.4         | 50    | 50    | 49.4    | 49.2   | 96    | 96    | 90-110 | 0   | 10  |      |

| MATRIX SPIKE & MATRIX SP | IKE DUPL | ICATE: 4163 | 723   |       | 4163724 |        |       |       |        |     |     |      |
|--------------------------|----------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                          |          |             | MS    | MSD   |         |        |       |       |        |     |     |      |
|                          |          | 92691157017 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                | Units    | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Chloride                 | mg/L     | 11.1        | 50    | 50    | 58.5    | 58.6   | 95    | 95    | 90-110 | 0   | 10  |      |
| Fluoride                 | mg/L     | ND          | 2.5   | 2.5   | 2.6     | 2.6    | 103   | 103   | 90-110 | 0   | 10  |      |
| Sulfate                  | mg/L     | 5.8         | 50    | 50    | 52.9    | 53.3   | 94    | 95    | 90-110 | 1   | 10  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALIFIERS**

Project: Plant Arkwright-CCR Ash Pond-Revised Report

Pace Project No.: 92691209

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### **ANALYTE QUALIFIERS**

Date: 11/07/2023 04:29 PM

- L1 Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
- L2 Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.

M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.



# **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: Plant Arkwright-CCR Ash Pond-Revised Report

Pace Project No.: 92691209

Date: 11/07/2023 04:29 PM

| Lab ID      | Sample ID   | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|-------------|-----------------|----------|-------------------|---------------------|
| 92691209001 | ARK-BC-0.3  | EPA 3010A       | 805246   | EPA 6010D         | 805325              |
| 92691209002 | ARK-BC-0.1  | EPA 3010A       | 809947   | EPA 6010D         | 810055              |
| 92691209003 | ARK-OR-0.8  | EPA 3010A       | 805246   | EPA 6010D         | 805325              |
| 92691209004 | ARK-OR-0.1  | EPA 3010A       | 805246   | EPA 6010D         | 805325              |
| 92691209005 | ARK-OR-0.3  | EPA 3010A       | 805246   | EPA 6010D         | 805325              |
| 92691209006 | ARK-OR+0.25 | EPA 3010A       | 805246   | EPA 6010D         | 805325              |
| 92691209001 | ARK-BC-0.3  | EPA 3005A       | 804826   | EPA 6020B         | 804860              |
| 92691209002 | ARK-BC-0.1  | EPA 3005A       | 804826   | EPA 6020B         | 804860              |
| 92691209003 | ARK-OR-0.8  | EPA 3005A       | 804826   | EPA 6020B         | 804860              |
| 92691209004 | ARK-OR-0.1  | EPA 3005A       | 804826   | EPA 6020B         | 804860              |
| 92691209005 | ARK-OR-0.3  | EPA 3005A       | 804826   | EPA 6020B         | 804860              |
| 92691209006 | ARK-OR+0.25 | EPA 3005A       | 804826   | EPA 6020B         | 804860              |
| 92691209001 | ARK-BC-0.3  | EPA 7470A       | 805706   | EPA 7470A         | 805878              |
| 92691209002 | ARK-BC-0.1  | EPA 7470A       | 805706   | EPA 7470A         | 805878              |
| 92691209003 | ARK-OR-0.8  | EPA 7470A       | 805706   | EPA 7470A         | 805878              |
| 92691209004 | ARK-OR-0.1  | EPA 7470A       | 805706   | EPA 7470A         | 805878              |
| 92691209005 | ARK-OR-0.3  | EPA 7470A       | 805706   | EPA 7470A         | 805878              |
| 92691209006 | ARK-OR+0.25 | EPA 7470A       | 805706   | EPA 7470A         | 805878              |
| 92691209001 | ARK-BC-0.3  | SM 2540C-2015   | 804106   |                   |                     |
| 92691209002 | ARK-BC-0.1  | SM 2540C-2015   | 804106   |                   |                     |
| 92691209003 | ARK-OR-0.8  | SM 2540C-2015   | 804106   |                   |                     |
| 92691209004 | ARK-OR-0.1  | SM 2540C-2015   | 804106   |                   |                     |
| 92691209005 | ARK-OR-0.3  | SM 2540C-2015   | 804106   |                   |                     |
| 92691209006 | ARK-OR+0.25 | SM 2540C-2015   | 804106   |                   |                     |
| 92691209001 | ARK-BC-0.3  | SM 2320B-2011   | 804990   |                   |                     |
| 92691209002 | ARK-BC-0.1  | SM 2320B-2011   | 804990   |                   |                     |
| 92691209003 | ARK-OR-0.8  | SM 2320B-2011   | 804990   |                   |                     |
| 92691209004 | ARK-OR-0.1  | SM 2320B-2011   | 804990   |                   |                     |
| 92691209005 | ARK-OR-0.3  | SM 2320B-2011   | 804990   |                   |                     |
| 92691209006 | ARK-OR+0.25 | SM 2320B-2011   | 804990   |                   |                     |
| 92691209001 | ARK-BC-0.3  | EPA 9056A       | 803939   |                   |                     |
| 92691209002 | ARK-BC-0.1  | EPA 9056A       | 803939   |                   |                     |
| 92691209003 | ARK-OR-0.8  | EPA 9056A       | 803939   |                   |                     |
| 92691209004 | ARK-OR-0.1  | EPA 9056A       | 803939   |                   |                     |
| 92691209005 | ARK-OR-0.3  | EPA 9056A       | 803939   |                   |                     |
| 92691209006 | ARK-OR+0.25 | EPA 9056A       | 803939   |                   |                     |

# CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

|                                                                         |   | ARK-CCF                |               | App. IV -                                             |                     | 12  | 11       | 10                                               | 9   | 8     | 7 | 0           | On .                                             | 4          | ۵                | N          | 4          | ITEM#                           |                                           | VAIR -             | Request              | Phone:                    | Attenta,        | Address                  | Company                     | Required                          |
|-------------------------------------------------------------------------|---|------------------------|---------------|-------------------------------------------------------|---------------------|-----|----------|--------------------------------------------------|-----|-------|---|-------------|--------------------------------------------------|------------|------------------|------------|------------|---------------------------------|-------------------------------------------|--------------------|----------------------|---------------------------|-----------------|--------------------------|-----------------------------|-----------------------------------|
|                                                                         |   | ARK-CCR-ASSMT-202382 ( |               | - Sb, As, Ba, Be, Cd, Cr, Co, Pb, Li, Mo, Se, Ti + Hq | ADDITIONAL COMMENTS |     |          |                                                  |     |       |   | ARK-OR+0.25 | ARK-OR-0.3                                       | ARK-OR-0.1 | ARK-OR-08        | ARK-BC-0.1 | ARK-BC-0.3 | Sample ids must be unique These | SAMPLE ID Solfsold One Character per box. | MATRIX<br>Drinkton | M                    | kelley sharpe@arcadis.com | Manta, GA 30339 | Ш                        | ARCADIS - Atlanta           | Required Client Information:      |
|                                                                         | F |                        | _             | Ŧ                                                     |                     |     |          |                                                  |     |       |   |             |                                                  |            |                  |            |            |                                 | <b>₩</b> ₽₽₽₽₩                            |                    | Project #:           | Project Name:             |                 | Copy To:                 | Report To:                  | Required Project Information:     |
|                                                                         |   | {                      | 1             |                                                       | RELINQU             |     |          |                                                  | b 3 |       |   | WG          | WG                                               | <b>¥</b>   | ¥.               | Ş.         | ¥          | MATRIX COL                      | E (see valid co                           | des to left)       | Ш                    | Order                     |                 |                          | 1                           | Proj.                             |
|                                                                         | 1 |                        | $\mathcal{H}$ |                                                       | HOUR                |     |          | <del>                                     </del> |     |       | t | G           | G                                                | ြ          | wGG              | wgg        | wa a       | SAMPLE TY                       |                                           |                    |                      |                           |                 |                          | 9                           | # Info                            |
|                                                                         |   |                        | *             |                                                       | 4                   |     |          |                                                  |     |       |   | 14/5/13     | 14/23                                            | 7/13       | %/ <sub>13</sub> | 1/3/       | 95/13      | DATE                            |                                           |                    |                      | 98                        | П               | Ben Hodges, Joju Abraham | Kelley Shame Warran Johnson |                                   |
| 1 6                                                                     |   |                        | ļ             | V                                                     | MIN                 |     |          | _                                                |     |       |   |             | 1                                                |            | 22               | /23        | 23         | īī .                            | START                                     |                    |                      | GPC82474-0003             |                 | Ş.                       | ٤                           | ≘                                 |
| S 5                                                                     |   | 1 1                    | -             | 14                                                    | NOTIALITIES ! N     |     |          |                                                  |     |       |   | 1712        | 1012                                             | 1150       | 0935             | 1121       | 1245       | TIME                            | 4                                         | 8                  |                      |                           |                 | BLEK                     |                             |                                   |
| SAMPLER HAME AND SIGNATURE PRINT Name of SAMPLER: SIGNATURE of SAMPLER: | ı |                        | Į             | 45/12                                                 | ROE                 |     | $\vdash$ |                                                  |     |       |   | 12          | -                                                | ۲          | 3                | _          | 3          |                                 |                                           | СОГГЕСТЕВ          |                      | 2                         | П               |                          | 3                           |                                   |
|                                                                         |   |                        | Ý             | ₹ <b> </b>                                            |                     |     |          |                                                  |     |       |   |             |                                                  |            |                  |            |            | DATE                            |                                           | 图                  |                      |                           | П               | П                        | 1                           |                                   |
| 9 9                                                                     | Г | $\Box$                 | _             | ₹                                                     | 100                 |     |          | -                                                |     |       |   |             | $\vdash$                                         | $\vdash$   |                  |            |            | <u> </u>                        |                                           |                    |                      | 3                         | Ш               | П                        | ı                           |                                   |
| AMPL                                                                    |   |                        | t             | 1/3/22                                                | DATE                |     |          |                                                  |     |       |   |             |                                                  |            |                  |            |            | TIME                            |                                           |                    |                      | 8                         | П               | П                        | ı                           |                                   |
| 9 9 2                                                                   | L | 11                     |               |                                                       |                     |     |          |                                                  |     |       |   | 5           | 5                                                | 5          | /5               | 5          | S          |                                 | IP AT COLLECT                             | ON                 | Ш                    | 1                         | Ļ               | Ц                        | 4                           |                                   |
| R                                                                       |   |                        | Į,            | ᆁ                                                     |                     |     | $\vdash$ | <u> </u>                                         |     |       |   | ×           | ×                                                | ×          | 5<br>X           | ×          | ×          | # OF CONTA                      |                                           | _                  | Pace Profile #: 1583 | Pace Quote:               | Bea Ippy        | Company Name:            | Attention:                  | Section C<br>Invoice information: |
|                                                                         |   |                        | 1             | 질                                                     | TIME                |     | $\vdash$ |                                                  |     |       | - |             | $\vdash$                                         |            |                  |            | $\vdash$   | Unpreserve<br>H2SO4             | <b>P</b>                                  | ┨                  | l logil.             |                           | 8               | N Vere                   | 9                           | 2 S                               |
|                                                                         | Н | 1                      | T             | Ť                                                     | 922                 |     | $\vdash$ |                                                  |     |       |   | ×           | ×                                                | ×          | ×                | ×          | ×          | HNO3                            |                                           | ┪╗                 |                      |                           | ı               | 9.<br>19.                |                             | Ž                                 |
| W.                                                                      | ı | 11                     | - 6           | Чl                                                    | 麗                   |     |          |                                                  |     |       |   |             |                                                  |            |                  |            |            | нсі                             |                                           | Tes<br>es          | 15836                |                           | П               | Н                        | ı                           | 9                                 |
| 720                                                                     |   | 11                     |               | ZI                                                    | A                   |     |          |                                                  |     |       |   |             |                                                  |            |                  |            |            | NaOH                            |                                           | Preservativ        | 8                    |                           |                 | П                        | ı                           |                                   |
| た                                                                       |   | 11                     | ľ             | Ľ                                                     | CCEF                |     | <u> </u> |                                                  |     |       | _ | _           | <del>                                     </del> | ļ          | _                | <u> </u>   |            | Na2S2O3                         |                                           | _les               |                      |                           | Н               | H                        | 1                           |                                   |
| F                                                                       | ı | 1 1                    | ı             | $\mathbb{N}$                                          | CEPTED              |     |          |                                                  |     |       |   |             | ⊢                                                |            | ┝                |            |            | Methanol<br>Other               |                                           | ╣.                 |                      |                           | П               | П                        | 1                           |                                   |
|                                                                         |   | 1                      |               | $ \mathcal{I}_{g} $                                   | NIA                 | 100 |          |                                                  |     |       |   | _           |                                                  | <u> </u>   |                  | ,          | Н          |                                 | os Test                                   | Y/N                | H                    |                           | П               | П                        | 1                           |                                   |
| 4                                                                       | ı |                        | 1             | 2000                                                  | NOUVILLAND AND      |     |          |                                                  |     |       |   | ×           | ×                                                | ×          | ×                | ×          | ×          | Total/Bicarb                    | Alkalinity                                |                    | Ro                   |                           | П               |                          | ı                           |                                   |
| DATE SCHOOL                                                             | ı |                        |               | ľ                                                     | NOE                 |     |          |                                                  |     |       |   | ×           | ×                                                | ×          | ×                | x l        | ×          | CI, F, SO4                      |                                           |                    | 2                    |                           | П               | П                        | ı                           |                                   |
|                                                                         | ı | 1                      |               | ١                                                     |                     |     |          |                                                  |     |       |   | ×           | ×                                                | ×          | ×                | ×          | ×          | TDS                             |                                           |                    | 1                    |                           | П               | П                        | ı                           |                                   |
| •                                                                       | ı | 1 1                    |               | ١                                                     | 繼                   |     |          |                                                  |     |       |   | ×           | ×                                                | ×          | ×                | ×          | ×          | App. III Meta<br>App. IV Meta   | ds (Client List)                          | -1                 | <u> </u>             | N.                        |                 |                          | i                           |                                   |
|                                                                         | H | +-+                    | -             | 8                                                     | 800                 |     | $\vdash$ | -                                                |     |       | - | ×           | ×                                                | ×          | ×                | ×          | ×          | Metais - Mg                     |                                           | -                  | <u> </u>             |                           | 3               | 7                        | 1                           |                                   |
|                                                                         |   |                        | Ŋ             | 10-8-73                                               | DATE                |     |          |                                                  |     |       |   | ×           | ×                                                | ×          | ×                | ×          | ×          | Radium 226                      | 228                                       |                    | ý =                  |                           | 1               | 3                        | Ц                           |                                   |
|                                                                         | L |                        |               | _                                                     |                     |     |          |                                                  |     |       |   |             |                                                  |            |                  |            |            |                                 |                                           |                    | <u> </u>             | Ξ                         |                 |                          | Г                           |                                   |
|                                                                         |   | 1 1                    | - [           | ゲル                                                    | =                   |     |          |                                                  |     |       | ļ | <u> </u>    | ├                                                |            | ļ                |            |            |                                 |                                           | -                  |                      |                           | (               | 2                        |                             |                                   |
|                                                                         | L | 1 1                    |               |                                                       | TIME                |     | ┝        |                                                  |     |       |   |             | ├                                                | $\vdash$   | $\vdash$         |            | Н          |                                 |                                           | +                  | $\equiv$             |                           | 1               | 5                        | F                           |                                   |
| 1000                                                                    | ۲ | ╁┤                     | $\dashv$      | +                                                     | 1000                |     | $\vdash$ |                                                  |     |       |   | $\vdash$    |                                                  |            | $\vdash$         | $\vdash$   | H          | · · · ·                         |                                           | +                  |                      | K                         | g               |                          |                             | Page :                            |
| MP in C                                                                 | 1 |                        | [             | ]                                                     |                     | ]   |          |                                                  |     | 31 15 |   |             | 0 C                                              |            |                  |            | ·          | Residual Cl                     | lorine (Y/N)                              | 1                  |                      |                           | 4               |                          | ŀ                           | •                                 |
| eceived on                                                              |   | $\prod$                | $\Box$        | $\neg$                                                | PAH                 |     |          |                                                  |     |       |   |             |                                                  |            |                  |            |            |                                 |                                           |                    | 9289                 |                           | ·               |                          |                             |                                   |
| 7N)                                                                     |   |                        |               | ╝                                                     | MAMPLE C            |     | ľ        |                                                  |     | i     |   |             |                                                  |            |                  |            |            |                                 |                                           |                    |                      | 6                         | ž               |                          | ſ                           | _                                 |
| ustody<br>aled                                                          |   |                        | T             |                                                       | COMOT               |     |          |                                                  |     |       |   |             |                                                  |            |                  |            |            |                                 |                                           |                    |                      | U                         | ō               |                          |                             | ð                                 |
| ooler<br>/N)                                                            |   | $\perp$                | $\perp$       | ╝                                                     | SNOWO               |     |          |                                                  |     |       |   |             |                                                  | İ          |                  |            |            |                                 |                                           |                    |                      | 110                       |                 |                          | ľ                           | •                                 |
| amples<br>act                                                           |   |                        |               | 1                                                     | THE REAL PROPERTY.  |     |          |                                                  |     |       |   |             |                                                  |            |                  |            |            |                                 |                                           |                    |                      |                           |                 | 0                        |                             | _                                 |
| /N)                                                                     | 1 | 1 [                    |               | - 1                                                   | 10/51               |     |          |                                                  |     |       |   | l           | 1                                                |            |                  | 1          |            |                                 |                                           |                    |                      |                           | 1               |                          | -11                         |                                   |

| DC#_Title: ENV-FRM-HU                                                                                    | JN1-0083 v0        | 2_Saı       | mple Co      | ondi   | ition Upon Receipt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------|--------------------|-------------|--------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Effective Date: 11/14/2022                                                                               |                    |             |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| atory receiving samples:  ville Eden Greenwood  r ple Condition Client Name:                             |                    |             |              |        | Mechanicsville Atlanta Kernersville Cet #: WO#: 92691209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| er: Fed Ex UPS                                                                                           | USPS Other:        |             | Clie         | -      | PM: MP Due Date: 10/11/23 CLIENT: GR-ArcadAt1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| dy Seal Present? ☐Yes ☑No Sea                                                                            | ls Intact?         | ]Yes        | <b>□</b> ₩   |        | Date/Initials Person Examining Contents: 10 3-73 T(C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Material: Bubble Wrap □8:  Dometer:  R Gun ID: 0 × 3                                                     | ubble Bags         | ]None<br>□v |              | her    | Biological Tissue Frozen?  ☐Yes ☐No ☐N/A  ☐None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| r Temp: 3,3 Correction Fact Add/Subtract ( r Temp Corrected (°C): 3,3                                    |                    |             |              |        | Temp should be above freezing to 6°C  Samples out of temp criteria. Samples on ice, cooling process has begun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Regulated Soil (  N/A, water sample) samples originate in a quarantine zone within the ck maps)? Yes  No | e United States: C | CA, NY, o   | or SC        | _      | Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)?  Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Asia of Contacto Brosses                                                                                 | 7                  |             |              | -      | Comments/Discrepancy:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| hain of Custody Present?                                                                                 |                    | □No         | □N/A         | 1.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| mples Arrived within Hold Time?                                                                          |                    | □No         | □N/A         | 2.     | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ort Hold Time Analysis (<72 hr.)?<br>ush Turn Around Time Requested?                                     | Yes<br>Yes         | ØN∘<br>DA∘  | □n/a<br>□n/a | 4.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| fficient Volume?                                                                                         | ✓¥es               | □No         | □N/A         | 5.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| errect Containers Used?                                                                                  |                    | □No         | □N/A         | 6.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -Pace Containers Used?                                                                                   | ďYes               | □No         | □N/A         | 1_     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ntainers Intact?                                                                                         | ⊒Yes               | □No         | □N/A         | 7.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ssolved analysis: Samples Field Filtered?                                                                |                    | □No         | ĭ∃N/A        | 8.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| emple Labels Match COC?                                                                                  | ☐fes               | □No         | □n/a         | 9.     | and the state of t |
| -Includes Date/Time/ID/Analysis Matrix:                                                                  |                    |             |              | +      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| eadspace in VOA Vials (>5-6mm)?  p Blank Present?                                                        | ☐Yes<br>☐Yes       | □No<br>□No  | ØN/A<br>ØN/A | 10.    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                                                                                                        |                    |             |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ip Blank Custody Seals Present? NTS/SAMPLE DISCREPANCY                                                   | Yes                | □No         | □w/A         |        | Field Data Required?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 y                                                                                                      |                    |             |              | Lot IC | D of split containers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| IDTIFICATION/RESOLUTION                                                                                  | <u> </u>           |             |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| n contacted:                                                                                             |                    |             | Date/Tim     | e: _   | No. decided to the control of the co |
| pect Manager SCURF Review:                                                                               |                    |             |              |        | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| oject Manager SRF Review:                                                                                |                    |             |              |        | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

V ID- 6061/I

Page 1 of 2



DC#\_Title: ENV-FRM-HUN1-0083 v02\_Sample Condition Upon Receipt

Effective Date: 11/14/2022

\*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

- \*\*Bottom half of box is to list number of bottles
- \*\*\*Check all unpreserved Nitrates for chlorine

Project #

WO#:92691209

PM: MP

Due Date: 10/11/23

CLIENT: GA-ArcadAt1

| tem# | BP4U-125 mL Plastic Unpreserved (N/A) (CI-) | BP3U-250 mL Plastic Unpreserved (N/A) | BP2U-500 mL Plastic Unpreserved (N/A) | BP1U-1 liter Plastic Unpreserved (N/A) | <b>BP4S-1</b> 25 mL Plastic H2SO4 (pH < 2) (Cl-) | BP3N-250 mL plastic HNO3 (pH < 2) | BP4Z-125 mL Plastic ZN Acetate & NaOH (>9) | <b>BP4B-125</b> mL Plastic NaOH (pH > 12) (Cl-) | WGFU-Wide-mouthed Glass jar Unpreserved | AG1U-1 liter Amber Unpreserved (N/A) (CI-) | <b>AG1H-1</b> liter Amber HCl (pH < 2) | AG3U-250 mL Amber Unpreserved (N/A) (CI-) | <b>AG1S-1</b> liter Amber H2SO4 (pH < 2) | AG3S-250 mL Amber H2SO4 (pH < 2) | DG94-40 mL Amber NH4Cl (N/A)(Cl-) | DG9H-40 mL VOA HCI (N/A) | VG9T-40 mL VOA Na2S2O3 (N/A) | VG9U-40 mL VOA Unpreserved (N/A) | DG9V-40 mL VOA H3PO4 (N/A) | KP7U-50 mL Plastic Unpreserved (N/A) | V/GK (3 vials per kit)-VPH/Gas kit (N/A) | SP5T-125 mL Sterile Plastic (N/A – lab) | SP2T-250 mL Sterile Plastic (N/A – lab) | BrIN        | <b>BP3R-</b> 250 mL Plastic (NH2)2SO4 (9.3-9.7) | AGOU-100 mL Amber Unpreserved (N/A) (CI-) | VSGU-20 mL Scintillation vials (N/A) | DG9U-40 mL Amber Unpreserved vials (N/A) |
|------|---------------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|--------------------------------------------------|-----------------------------------|--------------------------------------------|-------------------------------------------------|-----------------------------------------|--------------------------------------------|----------------------------------------|-------------------------------------------|------------------------------------------|----------------------------------|-----------------------------------|--------------------------|------------------------------|----------------------------------|----------------------------|--------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|-------------|-------------------------------------------------|-------------------------------------------|--------------------------------------|------------------------------------------|
| 1    |                                             | 7                                     |                                       |                                        |                                                  | N                                 |                                            |                                                 |                                         |                                            |                                        |                                           |                                          |                                  |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         | $\not \sim$ |                                                 |                                           |                                      |                                          |
| 2    |                                             | 7                                     |                                       |                                        |                                                  | N                                 |                                            |                                                 |                                         |                                            |                                        |                                           |                                          |                                  |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         | K.          |                                                 |                                           |                                      |                                          |
| 3    |                                             | 7                                     |                                       |                                        |                                                  | X                                 |                                            |                                                 |                                         |                                            |                                        |                                           |                                          |                                  |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         | Z           |                                                 |                                           |                                      |                                          |
| 4    |                                             | 7                                     |                                       |                                        |                                                  | X                                 |                                            |                                                 |                                         |                                            |                                        |                                           | /                                        |                                  | /                                 |                          |                              |                                  |                            |                                      |                                          |                                         |                                         | Z           |                                                 |                                           |                                      |                                          |
| 5    |                                             | 2                                     |                                       |                                        |                                                  | X                                 |                                            |                                                 |                                         |                                            |                                        |                                           |                                          |                                  |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         | Z           |                                                 |                                           |                                      |                                          |
| 6    |                                             | 7                                     |                                       |                                        |                                                  | X                                 |                                            |                                                 |                                         |                                            |                                        |                                           |                                          |                                  | /                                 |                          |                              |                                  |                            |                                      |                                          |                                         |                                         | Z,          | $\setminus$                                     |                                           |                                      |                                          |
| 7    |                                             |                                       |                                       |                                        |                                                  |                                   |                                            |                                                 |                                         |                                            |                                        |                                           |                                          |                                  |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         |             |                                                 |                                           |                                      |                                          |
| 8    |                                             |                                       |                                       |                                        |                                                  |                                   |                                            |                                                 |                                         |                                            |                                        |                                           |                                          |                                  |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         |             |                                                 |                                           |                                      |                                          |
| 9    |                                             |                                       |                                       |                                        |                                                  |                                   |                                            |                                                 |                                         |                                            |                                        |                                           |                                          |                                  |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         |             |                                                 |                                           |                                      |                                          |
| 10   |                                             |                                       |                                       |                                        |                                                  |                                   |                                            |                                                 |                                         |                                            |                                        |                                           |                                          |                                  |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         |             |                                                 |                                           |                                      |                                          |
| 11   |                                             |                                       |                                       | ,                                      |                                                  |                                   |                                            |                                                 |                                         |                                            |                                        |                                           | $\setminus$                              |                                  |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         |             |                                                 |                                           |                                      |                                          |
| 12   |                                             |                                       |                                       |                                        |                                                  |                                   |                                            |                                                 |                                         |                                            |                                        |                                           |                                          |                                  |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         |             |                                                 |                                           |                                      |                                          |

|           |                                         |                 |                            |                        |  |                              | -     |  |  |  |  |  |  |  |
|-----------|-----------------------------------------|-----------------|----------------------------|------------------------|--|------------------------------|-------|--|--|--|--|--|--|--|
|           | pH Adjustment Log for Preserved Samples |                 |                            |                        |  |                              |       |  |  |  |  |  |  |  |
| Sample ID | Type of Preservative                    | pH upon receipt | Date preservation adjusted | Time preser<br>adjuste |  | Amount of Preservative added | Lot # |  |  |  |  |  |  |  |
|           |                                         |                 |                            |                        |  |                              |       |  |  |  |  |  |  |  |
|           |                                         |                 |                            |                        |  |                              |       |  |  |  |  |  |  |  |
|           |                                         |                 |                            |                        |  | ·                            |       |  |  |  |  |  |  |  |

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DENR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.









gel.com



a member of The GEL Group INC

Joju Abraham Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

Re: Arkwright CCR Groundwater Compliance AP1

Work Order: 652703

February 07, 2024

#### Dear Joju Abraham:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on January 24, 2024. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt. The laboratory received the following sample(s):

| <b>Laboratory ID</b> | Client ID     | <b>Matrix</b> | <b>Date Collected</b> | <b>Date Recieved</b> |
|----------------------|---------------|---------------|-----------------------|----------------------|
| 652703001            | ARK-AP1GWA-1  | Ground Water  | 22/01/24 14:35        | 24/01/24 13:35       |
| 652703002            | ARK-AP1GWA-2  | Ground Water  | 22/01/24 14:45        | 24/01/24 13:35       |
| 652703003            | ARK-AP1PZ-1   | Ground Water  | 22/01/24 16:40        | 24/01/24 13:35       |
| 652703004            | ARK-AP1PZ-2   | Ground Water  | 22/01/24 16:40        | 24/01/24 13:35       |
| 652703005            | ARK-AP1-FB-01 | Water         | 22/01/24 15:00        | 24/01/24 13:35       |
| 652703006            | ARK-AP1-FD-01 | Ground Water  | 22/01/24 12:00        | 24/01/24 13:35       |
| 652703007            | ARK-AP1-EB-01 | Water         | 22/01/24 17:15        | 24/01/24 13:35       |
| 652703008            | ARK-AP1PZ-3   | Ground Water  | 23/01/24 11:45        | 24/01/24 13:35       |
| 652703009            | ARK-AP1PZ-4   | Ground Water  | 23/01/24 13:10        | 24/01/24 13:35       |
| 652703010            | ARK-AP1PZ-5   | Ground Water  | 23/01/24 14:50        | 24/01/24 13:35       |
| 652703011            | ARK-AP1PZ-7   | Ground Water  | 23/01/24 16:25        | 24/01/24 13:35       |
| 652703012            | ARK-AP1PZ-8   | Ground Water  | 23/01/24 11:40        | 24/01/24 13:35       |
| 652703013            | ARK-AP1PZ-9   | Ground Water  | 23/01/24 13:35        | 24/01/24 13:35       |
| 652703014            | ARK-AP1PZ-10  | Ground Water  | 23/01/24 16:00        | 24/01/24 13:35       |
| 652703015            | ARK-AP1PZ-11  | Ground Water  | 23/01/24 17:15        | 24/01/24 13:35       |
| 652703016            | ARK-AP1-EB-02 | Water         | 23/01/24 17:00        | 24/01/24 13:35       |



| 652703017 | ARK-AP1-FD-02 | Ground Water | 23/01/24 12:00 | 24/01/24 13:35 |
|-----------|---------------|--------------|----------------|----------------|
| 652703018 | ARK-AP1-FB-02 | Water        | 23/01/24 15:55 | 24/01/24 13:35 |

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

#### **Prep Methods and Prep Dates**

| <b>Method</b>    | Run Date ID |
|------------------|-------------|
| SW846 3005A      | 25-JAN-2024 |
| SW846 7470A Prep | 26-JAN-2024 |

#### **Analysis Methods and Analysis Dates**

| <b>Method</b>     | Run Date ID |
|-------------------|-------------|
| EPA 300.0         | 26-JAN-2024 |
| EPA 300.0         | 27-JAN-2024 |
| EPA 300.0         | 28-JAN-2024 |
| EPA 300.0         | 29-JAN-2024 |
| SM 2540C          | 25-JAN-2024 |
| SW846 3005A/6020B | 02-FEB-2024 |
| SW846 7470A       | 29-JAN-2024 |

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4504.

Sincerely,

Amanda Turner for

Erin Trent

Project Manager

Purchase Order: GPC82177-0005

Enclosures

Page 3 of 59 SDG: 652703

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

# Certificate of Analysis Report for

GPCC001 Georgia Power Company Client SDG: 652703 GEL Work Order: 652703

#### The Qualifiers in this report are defined as follows:

- \* A quality control analyte recovery is outside of specified acceptance criteria
- \*\* Analyte is a Tracer compound
- \*\* Analyte is a surrogate compound
- B Either presence of analyte detected in the associated blank, or MDL/IDL < sample value < PQL
- J Value is estimated

N/A RPD or %Recovery limits do not apply.

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Erin Trent.

| Reviewed by | Franda | len |  |  |
|-------------|--------|-----|--|--|
|             |        |     |  |  |

Page 4 of 59 SDG: 652703

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

### Certificate of Analysis

Project:

Client ID:

Report Date: February 7, 2024

GPCC00100

GPCC001

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1GWA-1

Sample ID: 652703001

Matrix: WG

Collect Date: 22-JAN-24 14:35 Receive Date: 24-JAN-24 Collector: Client

RL Parameter **Oualifier** DL Units PF DF Analyst Date Time Batch Method Result Ion Chromatography EPA 300.0 Anions Liquid "As Received" Sulfate 46.0 0.665 2.00 mg/L 5 CWW 01/27/24 0638 2559114 1 0.200 CWW 01/26/24 Chloride 1.75 0.0670 mg/L 1 2033 2559114 2 Fluoride 0.339 0.0330 0.100 mg/L Mercury Analysis-CVAA 7470 Cold Vapor Mercury, Liquid "As Received" Mercury ND 0.0000670 0.000200 mg/L 1.00 1 JP2 01/29/24 1122 2558962 3 Metals Analysis-ICP-MS SW846 3005A/6020B "As Received" ND 0.00100 0.00300 02/02/24 0034 2558106 Antimony U mg/L 1.00 1 BAJ Arsenic U ND 0.00200 0.00500 mg/L 1.00 1 Barium 0.0551 0.0006700.00400 mg/L 1.00 1 0.000200 0.000500 mg/L 1.00 Beryllium 0.00204 1 1.00 0.00520 0.0150 mg/LBoron 0.108 1 mg/L Cadmium 0.000354 0.000300 0.00100 1.00 1 J mg/L Calcium 0.0800 0.200 1.00 16.5 1 0.00447 0.0100 1.00 Chromium 0.00300mg/L Cobalt 0.00650 0.000300 0.00100mg/L 1.00 U 0.00200 Lead ND 0.000500 mg/L 1.00 1 Lithium 0.0101 0.0100 1.00 0.00300 mg/L 1 U ND 0.000200 0.00100 mg/L1.00 Molybdenum 1 Selenium J 0.00243 0.00150 0.00500 mg/L 1.00 1 0.000600 0.00200 Thallium ND mg/L 1.00 1 Solids Analysis SM2540C Dissolved Solids "As Received" Total Dissolved Solids 2.38 10.0 ES2 01/25/24 1214 2558321 5 mg/L The following Prep Methods were performed:

Method Description Date Prep Batch Analyst Time SW846 3005A ICP-MS 3005A PREP JD2 01/25/24 0845 2558105 SW846 7470A Prep EPA 7470A Mercury Prep Liquid JM13 01/26/24 1145 2558961

Page 5 of 59 SDG: 652703

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 7, 2024

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1GWA-1 Project: GPCC00100 Sample ID: 652703001 Client ID: GPCC001

| Parameter           | Qualifier       | Result          | DL | RL | Units | PF    | DF Analyst Date | Time Batch | Method |
|---------------------|-----------------|-----------------|----|----|-------|-------|-----------------|------------|--------|
| The following Analy | tical Methods v | were performed: |    |    |       |       |                 |            |        |
| Method              | Description     | 1               |    |    | 1     | Analy | st Comments     |            |        |
| 1                   | EPA 300.0       |                 |    |    |       | -     |                 |            |        |
| 2                   | EPA 300.0       |                 |    |    |       |       |                 |            |        |
| 3                   | SW846 7470A     | A               |    |    |       |       |                 |            |        |
| 4                   | SW846 3005A     | A/6020B         |    |    |       |       |                 |            |        |
| 5                   | SM 2540C        |                 |    |    |       |       |                 |            |        |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 59 SDG: 652703

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

### Certificate of Analysis

Report Date: February 7, 2024

GPCC00100

Project:

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1GWA-2

Sample ID:

Matrix: WG

Collect Date: 22-JAN-24 14:45 Receive Date: 24-JAN-24 Collector: Client

652703002 Client ID: GPCC001

| Parameter              | Qualifier          | Result       | DL        | RL       | Units | PF   | DF | Analy | st Date  | Time Batch   | Method |
|------------------------|--------------------|--------------|-----------|----------|-------|------|----|-------|----------|--------------|--------|
| Ion Chromatograph      | ny                 |              |           |          |       |      |    |       |          |              |        |
| EPA 300.0 Anions       | Liquid "As Recei   | ived"        |           |          |       |      |    |       |          |              |        |
| Chloride               | •                  | 1.90         | 0.0670    | 0.200    | mg/L  |      | 1  | CWW   | 01/26/24 | 2105 2559114 | 1      |
| Fluoride               |                    | 0.120        | 0.0330    | 0.100    | mg/L  |      | 1  |       |          |              |        |
| Sulfate                |                    | 3.36         | 0.133     | 0.400    | mg/L  |      | 1  |       |          |              |        |
| Mercury Analysis-      | CVAA               |              |           |          |       |      |    |       |          |              |        |
| 7470 Cold Vapor N      | Mercury, Liquid "A | As Received" |           |          |       |      |    |       |          |              |        |
| Mercury                | U                  | ND           | 0.0000670 | 0.000200 | mg/L  | 1.00 | 1  | JP2   | 01/29/24 | 1124 2558962 | 2      |
| Metals Analysis-IC     | CP-MS              |              |           |          |       |      |    |       |          |              |        |
| SW846 3005A/602        | 20B "As Received   |              |           |          |       |      |    |       |          |              |        |
| Antimony               | U                  | ND           | 0.00100   | 0.00300  | mg/L  | 1.00 | 1  | BAJ   | 02/02/24 | 0048 2558106 | 3      |
| Arsenic                | U                  | ND           | 0.00200   | 0.00500  | mg/L  | 1.00 | 1  |       |          |              |        |
| Barium                 |                    | 0.0382       | 0.000670  | 0.00400  | mg/L  | 1.00 | 1  |       |          |              |        |
| Beryllium              | U                  | ND           | 0.000200  | 0.000500 | mg/L  | 1.00 | 1  |       |          |              |        |
| Boron                  |                    | 0.0266       | 0.00520   | 0.0150   | mg/L  | 1.00 | 1  |       |          |              |        |
| Cadmium                | U                  | ND           | 0.000300  | 0.00100  | mg/L  | 1.00 | 1  |       |          |              |        |
| Calcium                |                    | 5.47         | 0.0800    | 0.200    | mg/L  | 1.00 | 1  |       |          |              |        |
| Chromium               | J                  | 0.00561      | 0.00300   | 0.0100   | mg/L  | 1.00 | 1  |       |          |              |        |
| Cobalt                 | J                  | 0.000388     | 0.000300  | 0.00100  | mg/L  | 1.00 | 1  |       |          |              |        |
| Lead                   | U                  | ND           | 0.000500  | 0.00200  | mg/L  | 1.00 | 1  |       |          |              |        |
| Lithium                | U                  | ND           | 0.00300   | 0.0100   | mg/L  | 1.00 | 1  |       |          |              |        |
| Molybdenum             | U                  | ND           | 0.000200  | 0.00100  | mg/L  | 1.00 | 1  |       |          |              |        |
| Selenium               | U                  | ND           | 0.00150   | 0.00500  | mg/L  | 1.00 | 1  |       |          |              |        |
| Thallium               | U                  | ND           | 0.000600  | 0.00200  | mg/L  | 1.00 | 1  |       |          |              |        |
| Solids Analysis        |                    |              |           |          |       |      |    |       |          |              |        |
| SM2540C Dissolve       | ed Solids "As Rec  | eived"       |           |          |       |      |    |       |          |              |        |
| Total Dissolved Solids |                    | 56.0         | 2.38      | 10.0     | mg/L  |      |    | ES2   | 01/25/24 | 1214 2558321 | 4      |
| The following Prep     | Methods were pe    | erformed:    |           |          |       |      |    |       |          |              |        |
| 3.6.1.1                |                    |              |           |          | -     |      |    |       |          |              |        |

Method Date Prep Batch Description Analyst Time 2558105 SW846 3005A ICP-MS 3005A PREP JD2 01/25/24 0845 SW846 7470A Prep EPA 7470A Mercury Prep Liquid JM13 01/26/24 1145 2558961

Page 7 of 59 SDG: 652703

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 7, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1GWA-2 Project: GPCC00100 Sample ID: 652703002 Client ID: GPCC001

| Parameter       | Qualifier Result                  | DL | RL | Units | PF     | DF Analyst Date | Time Batch | Method |
|-----------------|-----------------------------------|----|----|-------|--------|-----------------|------------|--------|
| The following A | nalytical Methods were performed: |    |    |       |        |                 |            |        |
| Method          | Description                       |    |    | A     | Analys | st Comments     |            |        |
| 1               | EPA 300.0                         |    |    |       |        |                 |            |        |
| 2               | SW846 7470A                       |    |    |       |        |                 |            |        |
| 3               | SW846 3005A/6020B                 |    |    |       |        |                 |            |        |
| 4               | SM 2540C                          |    |    |       |        |                 |            |        |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 59 SDG: 652703

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

### Certificate of Analysis

Project:

Client ID:

Report Date: February 7, 2024

GPCC00100

GPCC001

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-1 Sample ID: 652703003

Matrix: WG

Collect Date: 22-JAN-24 16:40 Receive Date: 24-JAN-24 Collector: Client

RL Parameter **Oualifier** DL Units PF DF Analyst Date Time Batch Method Result Ion Chromatography EPA 300.0 Anions Liquid "As Received" Sulfate 102 1.33 4.00 mg/L CWW 01/27/24 1521 2559114 1 0.0670 0.200 CWW 01/26/24 2137 2559114 Chloride 2.13 mg/L 1 2 Fluoride 0.139 0.0330 0.100 mg/L Mercury Analysis-CVAA 7470 Cold Vapor Mercury, Liquid "As Received" Mercury ND 0.0000670 0.000200 mg/L 1.00 1 JP2 01/29/24 1126 2558962 3 Metals Analysis-ICP-MS SW846 3005A/6020B "As Received" ND 0.00100 0.00300 02/02/24 0057 2558106 Antimony U mg/L 1.00 1 BAJ Arsenic U ND 0.00200 0.00500 mg/L 1.00 1 Barium 0.0359 0.0006700.00400 mg/L1.00 1 U 0.000200 0.000500 1.00 Beryllium ND mg/L 1 Cadmium U ND 0.000300 0.00100 mg/L1.00 1 mg/L Calcium 0.0800 0.200 1.00 1 31.6 0.0100 Chromium U ND 0.00300 mg/L 1.00 1 Cobalt 0.0004800.00100 1.00 0.000300 mg/L Lead U ND 0.000500 0.00200mg/L1.00 1 Lithium J 0.00421 0.00300 0.0100 mg/L 1.00 1 Molybdenum 0.000400 0.0002000.00100 1.00 T mg/L 1 U ND 0.00150 0.00500 mg/L1.00 Selenium 1 Thallium U ND 0.000600 0.00200 mg/L 1.00 1 0.364 0.0260 0.0750 02/02/24 1117 2558106 Boron mg/L 1.00 5 BAJ Solids Analysis SM2540C Dissolved Solids "As Received" Total Dissolved Solids 2.38 10.0 ES2 01/25/24 1214 2558321 mg/L 6 The following Prep Methods were performed:

| Method           | Description                   | Analyst | Date     | Time | Prep Batch |
|------------------|-------------------------------|---------|----------|------|------------|
| SW846 3005A      | ICP-MS 3005A PREP             | JD2     | 01/25/24 | 0845 | 2558105    |
| SW846 7470A Prep | EPA 7470A Mercury Prep Liquid | JM13    | 01/26/24 | 1145 | 2558961    |

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 7, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-1 Project: GPCC00100 Sample ID: 652703003 Client ID: GPCC001

| Parameter           | Qualifier Result              | DL | RL | Units | PF DF Analyst Date | Time Batch Method |
|---------------------|-------------------------------|----|----|-------|--------------------|-------------------|
| The following Analy | tical Methods were performed: |    |    |       |                    |                   |
| Method              | Description                   |    |    | An    | alyst Comments     |                   |
| 1                   | EPA 300.0                     |    |    |       |                    |                   |
| 2                   | EPA 300.0                     |    |    |       |                    |                   |
| 3                   | SW846 7470A                   |    |    |       |                    |                   |
| 4                   | SW846 3005A/6020B             |    |    |       |                    |                   |
| 5                   | SW846 3005A/6020B             |    |    |       |                    |                   |
| 6                   | SM 2540C                      |    |    |       |                    |                   |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 59 SDG: 652703

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

### Certificate of Analysis

Report Date: February 7, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-2 Sample ID: 652703004

Matrix: WG

Collect Date: 22-JAN-24 16:40
Receive Date: 24-JAN-24
Collector: Client

Description

ICP-MS 3005A PREP

EPA 7470A Mercury Prep Liquid

-AP1PZ-2 Project: GPCC00100 03004 Client ID: GPCC001

| Parameter               | Qualifier     | Result       | DL        | RL       | Units | PF   | DF  | Analy | st Date  | Time | Batch   | Method |
|-------------------------|---------------|--------------|-----------|----------|-------|------|-----|-------|----------|------|---------|--------|
| Ion Chromatography      |               |              |           |          |       |      |     |       |          |      |         |        |
| EPA 300.0 Anions Liqui  | d "As Recei   | ived"        |           |          |       |      |     |       |          |      |         |        |
| Sulfate                 |               | 625          | 13.3      | 40.0     | mg/L  |      | 100 | CWW   | 01/27/24 | 1624 | 2559114 | 1      |
| Chloride                |               | 2.99         | 0.0670    | 0.200    | mg/L  |      | 1   | CWW   | 01/27/24 | 1553 | 2559114 | 2      |
| Fluoride                |               | 0.123        | 0.0330    | 0.100    | mg/L  |      | 1   |       |          |      |         |        |
| Mercury Analysis-CVA    | A             |              |           |          |       |      |     |       |          |      |         |        |
| 7470 Cold Vapor Mercur  | ry, Liquid "A | As Received" |           |          |       |      |     |       |          |      |         |        |
| Mercury                 | U             | ND           | 0.0000670 | 0.000200 | mg/L  | 1.00 | 1   | JP2   | 01/29/24 | 1127 | 2558962 | 3      |
| Metals Analysis-ICP-MS  | S             |              |           |          |       |      |     |       |          |      |         |        |
| SW846 3005A/6020B "A    | As Received   |              |           |          |       |      |     |       |          |      |         |        |
| Boron                   |               | 0.408        | 0.0260    | 0.0750   | mg/L  | 1.00 | 5   | BAJ   | 02/02/24 | 1118 | 2558106 | 4      |
| Calcium                 |               | 183          | 0.400     | 1.00     | mg/L  | 1.00 | 5   |       |          |      |         |        |
| Antimony                | U             | ND           | 0.00100   | 0.00300  | mg/L  | 1.00 | 1   | BAJ   | 02/02/24 | 0059 | 2558106 | 5      |
| Arsenic                 | U             | ND           | 0.00200   | 0.00500  | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Barium                  |               | 0.0242       | 0.000670  | 0.00400  | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Beryllium               | U             | ND           | 0.000200  | 0.000500 | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Cadmium                 | J             | 0.000374     | 0.000300  | 0.00100  | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Chromium                | U             | ND           | 0.00300   | 0.0100   | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Cobalt                  |               | 0.110        | 0.000300  | 0.00100  | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Lead                    | U             | ND           | 0.000500  | 0.00200  | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Lithium                 |               | 0.0189       | 0.00300   | 0.0100   | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Molybdenum              | U             | ND           | 0.000200  | 0.00100  | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Selenium                | U             | ND           | 0.00150   | 0.00500  | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Thallium                | U             | ND           | 0.000600  | 0.00200  | mg/L  | 1.00 | 1   |       |          |      |         |        |
| Solids Analysis         |               |              |           |          |       |      |     |       |          |      |         |        |
| SM2540C Dissolved Sol   | ids "As Rec   | eived"       |           |          |       |      |     |       |          |      |         |        |
| Total Dissolved Solids  |               | 998          | 4.76      | 20.0     | mg/L  |      |     | ES2   | 01/25/24 | 1214 | 2558321 | 6      |
| The following Prep Meth | nods were pe  | erformed:    |           |          |       |      |     |       |          |      |         |        |

Analyst

JD2

JM13

Date

01/25/24

01/26/24

Prep Batch

2558105

2558961

Time

0845

1145

Page 11 of 59 SDG: 652703

Method

SW846 3005A

SW846 7470A Prep

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 7, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-2 Project: GPCC00100 Sample ID: 652703004 Client ID: GPCC001

| Parameter           | Qualifier Result              | DL | RL | Units P | F DF Analyst Date | Time Batch Method |
|---------------------|-------------------------------|----|----|---------|-------------------|-------------------|
| The following Analy | tical Methods were performed: |    |    |         |                   |                   |
| Method              | Description                   |    |    | Ana     | lyst Comments     |                   |
| 1                   | EPA 300.0                     |    |    |         |                   |                   |
| 2                   | EPA 300.0                     |    |    |         |                   |                   |
| 3                   | SW846 7470A                   |    |    |         |                   |                   |
| 4                   | SW846 3005A/6020B             |    |    |         |                   |                   |
| 5                   | SW846 3005A/6020B             |    |    |         |                   |                   |
| 6                   | SM 2540C                      |    |    |         |                   |                   |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 12 of 59 SDG: 652703

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

### Certificate of Analysis

Project:

Client ID:

Report Date: February 7, 2024

GPCC00100

GPCC001

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1-FB-01

Sample ID: 652703005

Matrix: WQ

Collect Date: 22-JAN-24 15:00 Receive Date: 24-JAN-24 Collector: Client

U

U

ND

ND

RL Parameter **Oualifier** DL Units PF DF Analyst Date Time Batch Method Result Ion Chromatography EPA 300.0 Anions Liquid "As Received" Chloride ND 0.0670 0.200 mg/L CWW 01/26/24 2240 2559114 1 Fluoride ND 0.0330 0.100 U mg/L 1 Sulfate U ND 0.133 0.400 mg/L 1 Mercury Analysis-CVAA 7470 Cold Vapor Mercury, Liquid "As Received" Mercury ND 0.0000670 0.000200 mg/L 1.00 1 JP2 01/29/24 1129 2558962 2 Metals Analysis-ICP-MS SW846 3005A/6020B "As Received" ND 0.00520 0.0150 02/02/24 1133 2558106 3 Boron U mg/L 1.00 1 BAJ U ND 0.00100 0.00300 mg/L 1.00 1 BAJ 02/02/24 0102 2558106 4 Antimony Arsenic U ND 0.002000.00500mg/L 1.00 1 U 0.000670 0.00400 mg/L 1.00 Barium ND 1 Beryllium U ND 0.000200 0.000500 mg/L1.00 1 0.000300 mg/L Cadmium U ND 0.00100 1.00 1

0.200

0.0100

10.0

mg/L

mg/L

mg/L

1.00 1

1.00

ES2

01/25/24 1214 2558321

5

Cobalt U ND 0.000300 0.00100mg/L 1.00 U 0.00200 Lead ND 0.000500 mg/L 1.00 1 Lithium U ND 0.0100 1.00 0.00300 mg/L 1 U ND 0.000200 0.00100 1.00 Molybdenum mg/L 1 Selenium U ND 0.00150 0.00500 mg/L 1.00 1 ND 0.000600 0.00200 Thallium mg/L 1.00 Solids Analysis SM2540C Dissolved Solids "As Received"

The following Prep Methods were performed:

Calcium

Chromium

Total Dissolved Solids

| Method           | Description                   | Analyst | Date     | Time | Prep Batch |
|------------------|-------------------------------|---------|----------|------|------------|
| SW846 3005A      | ICP-MS 3005A PREP             | JD2     | 01/25/24 | 0845 | 2558105    |
| SW846 7470A Prep | EPA 7470A Mercury Prep Liquid | JM13    | 01/26/24 | 1145 | 2558961    |

2.38

0.0800

0.00300

Page 13 of 59 SDG: 652703

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 7, 2024

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1-FB-01 Project: GPCC00100 Sample ID: 652703005 Client ID: GPCC001

| Parameter              | Qualifier     | Result          | DL | RL | Units | PF     | DF Analyst Date | Time Batch | Method |
|------------------------|---------------|-----------------|----|----|-------|--------|-----------------|------------|--------|
| The following Analytic | cal Methods v | were performed: |    |    |       |        |                 |            |        |
| Method                 | Description   | l               |    |    |       | Analys | st Comments     |            |        |
| 1                      | EPA 300.0     |                 |    |    |       |        |                 |            |        |
| 2                      | SW846 7470A   | A               |    |    |       |        |                 |            |        |
| 3                      | SW846 3005A   | A/6020B         |    |    |       |        |                 |            |        |
| 4                      | SW846 3005A   | A/6020B         |    |    |       |        |                 |            |        |
| 5                      | SM 2540C      |                 |    |    |       |        |                 |            |        |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 14 of 59 SDG: 652703

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

### Certificate of Analysis

Project:

Client ID:

Report Date: February 7, 2024

GPCC00100

GPCC001

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1-FD-01

Sample ID: 652703006

Matrix: WG

Collect Date: 22-JAN-24 12:00
Receive Date: 24-JAN-24
Collector: Client

RL Parameter **Oualifier** DL Units PF DF Analyst Date Time Batch Method Result Ion Chromatography EPA 300.0 Anions Liquid "As Received" Sulfate 46.5 0.665 2.00 mg/L 5 CWW 01/27/24 1656 2559114 1 0.400 2 CWW 01/26/24 Chloride 1.86 0.134 mg/L 2312 2559114 2 Fluoride 0.366 0.0660 0.200 mg/L 2 Mercury Analysis-CVAA 7470 Cold Vapor Mercury, Liquid "As Received" 1130 2558962 Mercury U ND 0.0000670 0.000200 mg/L 1.00 1 JP2 01/29/24 3 Metals Analysis-ICP-MS SW846 3005A/6020B "As Received" 0.109 0.00520 0.0150 02/02/24 1134 2558106 Boron mg/L 1.00 1 BAJ U ND 0.00100 0.00300 mg/L 1.00 1 BAJ 02/02/24 0105 2558106 5 Antimony Arsenic U ND 0.002000.00500mg/L 1.00 1 0.000670 0.00400 1.00 Barium 0.0518mg/L 1 1.00 Beryllium 0.00191 0.000200 0.000500 mg/L1 mg/L Cadmium J 0.000310 0.000300 0.00100 1.00 1 mg/L Calcium 0.0800 0.200 1.00 16.3 1 0.00429 0.0100 1.00 Chromium 0.00300mg/L Cobalt 0.00615 0.000300 0.00100mg/L 1.00 U 0.00200 Lead ND 0.000500 mg/L 1.00 1 Lithium 0.00940 0.0100 1.00 T 0.00300 mg/L 1 U ND 0.000200 0.00100 mg/L1.00 Molybdenum 1 Selenium J 0.00220 0.00150 0.00500 mg/L 1.00 1 0.000600 0.00200 Thallium ND mg/L 1.00 1 Solids Analysis SM2540C Dissolved Solids "As Received" Total Dissolved Solids 2.38 10.0 ES2 01/25/24 1214 2558321 mg/L 6 The following Prep Methods were performed:

Method Description Date Prep Batch Analyst Time SW846 3005A ICP-MS 3005A PREP JD2 01/25/24 0845 2558105 SW846 7470A Prep EPA 7470A Mercury Prep Liquid JM13 01/26/24 1145 2558961

Page 15 of 59 SDG: 652703

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 7, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1-FD-01 Project: GPCC00100 Sample ID: 652703006 Client ID: GPCC001

| Parameter           | Qualifier Result              | DL | RL | Units | PF     | DF Analyst Date | Γime Batch Method |
|---------------------|-------------------------------|----|----|-------|--------|-----------------|-------------------|
| The following Analy | tical Methods were performed: |    |    |       |        |                 |                   |
| Method              | Description                   |    |    | I     | Analys | st Comments     |                   |
| 1                   | EPA 300.0                     |    |    |       |        |                 |                   |
| 2                   | EPA 300.0                     |    |    |       |        |                 |                   |
| 3                   | SW846 7470A                   |    |    |       |        |                 |                   |
| 4                   | SW846 3005A/6020B             |    |    |       |        |                 |                   |
| 5                   | SW846 3005A/6020B             |    |    |       |        |                 |                   |
| 6                   | SM 2540C                      |    |    |       |        |                 |                   |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 16 of 59 SDG: 652703

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

### Certificate of Analysis

Report Date: February 7, 2024

GPCC00100

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1-EB-01

Client

Sample ID: Matrix: WQ

Collector:

Collect Date: 22-JAN-24 17:15 Receive Date: 24-JAN-24

Project: 652703007 Client ID: GPCC001

| Parameter              | Qualifier          | Result       | DL        | RL       | Units | PF   | DF  | Analy | st Date  | Time Batch   | Method |
|------------------------|--------------------|--------------|-----------|----------|-------|------|-----|-------|----------|--------------|--------|
| Ion Chromatograph      | y                  |              |           |          |       |      |     |       |          |              |        |
| EPA 300.0 Anions l     | Liquid "As Recei   | ved"         |           |          |       |      |     |       |          |              |        |
| Chloride               | J                  | 0.190        | 0.0670    | 0.200    | mg/L  |      | 1   | CWW   | 01/26/24 | 2344 2559114 | 1      |
| Fluoride               | U                  | ND           | 0.0330    | 0.100    | mg/L  |      | 1   |       |          |              |        |
| Sulfate                | U                  | ND           | 0.133     | 0.400    | mg/L  |      | 1   |       |          |              |        |
| Mercury Analysis-C     | CVAA               |              |           |          |       |      |     |       |          |              |        |
| 7470 Cold Vapor M      | lercury, Liquid "A | As Received" |           |          |       |      |     |       |          |              |        |
| Mercury                | U                  | ND           | 0.0000670 | 0.000200 | mg/L  | 1.00 | 1   | JP2   | 01/29/24 | 1132 2558962 | 2      |
| Metals Analysis-IC     | P-MS               |              |           |          |       |      |     |       |          |              |        |
| SW846 3005A/6020       | OB "As Received    | "            |           |          |       |      |     |       |          |              |        |
| Antimony               | U                  | ND           | 0.00100   | 0.00300  | mg/L  | 1.00 | 1   | BAJ   | 02/02/24 | 0108 2558106 | 3      |
| Arsenic                | U                  | ND           | 0.00200   | 0.00500  | mg/L  | 1.00 | 1   |       |          |              |        |
| Barium                 | U                  | ND           | 0.000670  | 0.00400  | mg/L  | 1.00 | 1   |       |          |              |        |
| Beryllium              | U                  | ND           | 0.000200  | 0.000500 | mg/L  | 1.00 | 1   |       |          |              |        |
| Cadmium                | U                  | ND           | 0.000300  | 0.00100  | mg/L  | 1.00 | 1   |       |          |              |        |
| Calcium                | U                  | ND           | 0.0800    | 0.200    | mg/L  | 1.00 | 1   |       |          |              |        |
| Chromium               | U                  | ND           | 0.00300   | 0.0100   | mg/L  | 1.00 | 1   |       |          |              |        |
| Cobalt                 | U                  | ND           | 0.000300  | 0.00100  | mg/L  | 1.00 | 1   |       |          |              |        |
| Lead                   | U                  | ND           | 0.000500  | 0.00200  | mg/L  | 1.00 | 1   |       |          |              |        |
| Lithium                | U                  | ND           | 0.00300   | 0.0100   | mg/L  | 1.00 | 1   |       |          |              |        |
| Molybdenum             | U                  | ND           | 0.000200  | 0.00100  | mg/L  | 1.00 | 1   |       |          |              |        |
| Selenium               | U                  | ND           | 0.00150   | 0.00500  | mg/L  | 1.00 | 1   |       |          |              |        |
| Thallium               | U                  | ND           | 0.000600  | 0.00200  | mg/L  | 1.00 | 1   |       |          |              |        |
| Boron                  | U                  | ND           | 0.00520   | 0.0150   | mg/L  | 1.00 | 1   | BAJ   | 02/02/24 | 1135 2558106 | 4      |
| Solids Analysis        |                    |              |           |          |       |      |     |       |          |              |        |
| SM2540C Dissolve       | d Solids "As Rec   | eived"       |           |          |       |      |     |       |          |              |        |
| Total Dissolved Solids | U                  | ND           | 2.38      | 10.0     | mg/L  |      |     | ES2   | 01/25/24 | 1214 2558321 | 5      |
| The following Prep     | Methods were pe    | erformed:    |           |          |       |      |     |       |          |              |        |
| Method                 | Description        | n            |           | Analyst  | Date  | ,    | Гim | e Pr  | ep Batch |              |        |

Description Analyst 1 ime SW846 7470A Prep EPA 7470A Mercury Prep Liquid JM13 01/26/24 1145 2558961 SW846 3005A ICP-MS 3005A PREP JD2 01/25/24 0845 2558105

Page 17 of 59 SDG: 652703

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 7, 2024

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1-EB-01 Project: GPCC00100 Sample ID: 652703007 Client ID: GPCC001

| Parameter              | Qualifier     | Result          | DL | RL | Units | PF     | DF Analyst Date | Time Batch | Method |
|------------------------|---------------|-----------------|----|----|-------|--------|-----------------|------------|--------|
| The following Analytic | cal Methods v | were performed: |    |    |       |        |                 |            |        |
| Method                 | Description   | l               |    |    |       | Analys | st Comments     |            |        |
| 1                      | EPA 300.0     |                 |    |    |       |        |                 |            |        |
| 2                      | SW846 7470A   | A               |    |    |       |        |                 |            |        |
| 3                      | SW846 3005A   | A/6020B         |    |    |       |        |                 |            |        |
| 4                      | SW846 3005A   | A/6020B         |    |    |       |        |                 |            |        |
| 5                      | SM 2540C      |                 |    |    |       |        |                 |            |        |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 18 of 59 SDG: 652703

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

# Certificate of Analysis

Report Date: February 7, 2024

GPCC00100

GPCC001

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-3 Sample ID: 652703008

Matrix: WG

Collect Date: 23-JAN-24 11:45 24-JAN-24

Receive Date: Collector: Client DI Units Qualifier Result DΙ DE DF Analyst Date Time Batch Method

Project:

Client ID:

| Parameter              | Qualifier         | Result       | DL        | RL       | Units | PF   | DF  | Analy | st Date  | Time Batch   | Method |
|------------------------|-------------------|--------------|-----------|----------|-------|------|-----|-------|----------|--------------|--------|
| Ion Chromatography     | 7                 |              |           |          |       |      |     |       |          |              |        |
| EPA 300.0 Anions L     | iquid "As Recei   | ived"        |           |          |       |      |     |       |          |              |        |
| Chloride               | •                 | 4.79         | 0.0670    | 0.200    | mg/L  |      | 1   | CWW   | 01/27/24 | 1728 2559114 | 1      |
| Fluoride               |                   | 0.139        | 0.0330    | 0.100    | mg/L  |      | 1   |       |          |              |        |
| Sulfate                |                   | 1310         | 26.6      | 80.0     | mg/L  |      | 200 | CWW   | 01/27/24 | 1800 2559114 | 2      |
| Mercury Analysis-C     | VAA               |              |           |          |       |      |     |       |          |              |        |
| 7470 Cold Vapor Me     | ercury, Liquid ". | As Received" |           |          |       |      |     |       |          |              |        |
| Mercury                | U                 | ND           | 0.0000670 | 0.000200 | mg/L  | 1.00 | 1   | JP2   | 01/29/24 | 1134 2558962 | 3      |
| Metals Analysis-ICP    | P-MS              |              |           |          |       |      |     |       |          |              |        |
| SW846 3005A/6020       | B "As Received    | ."           |           |          |       |      |     |       |          |              |        |
| Boron                  |                   | 1.57         | 0.104     | 0.300    | mg/L  | 1.00 | 20  | BAJ   | 02/02/24 | 1119 2558106 | 4      |
| Calcium                |                   | 426          | 1.60      | 4.00     | mg/L  | 1.00 | 20  |       |          |              |        |
| Antimony               | U                 | ND           | 0.00100   | 0.00300  | mg/L  | 1.00 | 1   | BAJ   | 02/02/24 | 0111 2558106 | 5      |
| Arsenic                | U                 | ND           | 0.00200   | 0.00500  | mg/L  | 1.00 | 1   |       |          |              |        |
| Barium                 |                   | 0.0226       | 0.000670  | 0.00400  | mg/L  | 1.00 | 1   |       |          |              |        |
| Beryllium              | U                 | ND           | 0.000200  | 0.000500 | mg/L  | 1.00 | 1   |       |          |              |        |
| Cadmium                |                   | 0.00200      | 0.000300  | 0.00100  | mg/L  | 1.00 | 1   |       |          |              |        |
| Chromium               | U                 | ND           | 0.00300   | 0.0100   | mg/L  | 1.00 | 1   |       |          |              |        |
| Cobalt                 |                   | 0.0600       | 0.000300  | 0.00100  | mg/L  | 1.00 | 1   |       |          |              |        |
| Lead                   | U                 | ND           | 0.000500  | 0.00200  | mg/L  | 1.00 | 1   |       |          |              |        |
| Lithium                |                   | 0.0677       | 0.00300   | 0.0100   | mg/L  | 1.00 | 1   |       |          |              |        |
| Molybdenum             | J                 | 0.000296     | 0.000200  | 0.00100  | mg/L  | 1.00 | 1   |       |          |              |        |
| Selenium               | U                 | ND           | 0.00150   | 0.00500  | mg/L  | 1.00 | 1   |       |          |              |        |
| Thallium               | U                 | ND           | 0.000600  | 0.00200  | mg/L  | 1.00 | 1   |       |          |              |        |
| Solids Analysis        |                   |              |           |          |       |      |     |       |          |              |        |
| SM2540C Dissolved      | l Solids "As Rec  | eived"       |           |          |       |      |     |       |          |              |        |
| Total Dissolved Solids |                   | 1880         | 23.8      | 100      | mg/L  |      |     | ES2   | 01/25/24 | 1214 2558321 | 6      |
| The following Prep I   | Methods were p    | erformed:    |           |          |       |      |     |       |          |              |        |

The following Prep Methods were performed:

| Method           | Description                   | Analyst | Date     | Time | Prep Batch |
|------------------|-------------------------------|---------|----------|------|------------|
| SW846 7470A Prep | EPA 7470A Mercury Prep Liquid | JM13    | 01/26/24 | 1145 | 2558961    |
| SW846 3005A      | ICP-MS 3005A PREP             | JD2     | 01/25/24 | 0845 | 2558105    |

Page 19 of 59 SDG: 652703

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 7, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-3 Project: GPCC00100 Sample ID: 652703008 Client ID: GPCC001

| Parameter           | Qualifier Result              | DL | RL | Units | PF     | DF Analyst Date | Γime Batch Method |
|---------------------|-------------------------------|----|----|-------|--------|-----------------|-------------------|
| The following Analy | tical Methods were performed: |    |    |       |        |                 |                   |
| Method              | Description                   |    |    | I     | Analys | st Comments     |                   |
| 1                   | EPA 300.0                     |    |    |       |        |                 |                   |
| 2                   | EPA 300.0                     |    |    |       |        |                 |                   |
| 3                   | SW846 7470A                   |    |    |       |        |                 |                   |
| 4                   | SW846 3005A/6020B             |    |    |       |        |                 |                   |
| 5                   | SW846 3005A/6020B             |    |    |       |        |                 |                   |
| 6                   | SM 2540C                      |    |    |       |        |                 |                   |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 20 of 59 SDG: 652703

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

### Certificate of Analysis

Report Date: February 7, 2024

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-4 Sample ID: 652703009

Matrix: WG

Collect Date: 23-JAN-24 13:10
Receive Date: 24-JAN-24
Collector: Client

Project: GPCC00100 Client ID: GPCC001

| Parameter              | Qualifier       | Result       | DL        | RL       | Units | PF   | DF  | Analy | st Date  | Time Batch   | Method |
|------------------------|-----------------|--------------|-----------|----------|-------|------|-----|-------|----------|--------------|--------|
| Ion Chromatography     |                 |              |           |          |       |      |     |       |          |              |        |
| EPA 300.0 Anions Lic   | quid "As Recei  | ived"        |           |          |       |      |     |       |          |              |        |
| Chloride               | •               | 4.64         | 0.134     | 0.400    | mg/L  |      | 2   | CWW   | 01/27/24 | 1832 2559114 | 1      |
| Fluoride               |                 | 0.235        | 0.0660    | 0.200    | mg/L  |      | 2   |       |          |              |        |
| Sulfate                |                 | 1310         | 26.6      | 80.0     | mg/L  |      | 200 | CWW   | 01/27/24 | 1904 2559114 | 2      |
| Mercury Analysis-CV    | AA              |              |           |          |       |      |     |       |          |              |        |
| 7470 Cold Vapor Mer    | cury, Liquid ". | As Received" |           |          |       |      |     |       |          |              |        |
| Mercury                | J               | 0.0000830    | 0.0000670 | 0.000200 | mg/L  | 1.00 | 1   | JP2   | 01/29/24 | 1135 2558962 | 3      |
| Metals Analysis-ICP-N  | MS              |              |           |          | Ü     |      |     |       |          |              |        |
| SW846 3005A/6020B      | "As Received    | <u>l</u> "   |           |          |       |      |     |       |          |              |        |
| Antimony               | U               | ND           | 0.00100   | 0.00300  | mg/L  | 1.00 | 1   | BAJ   | 02/02/24 | 0114 2558106 | 4      |
| Arsenic                | J               | 0.00230      | 0.00200   | 0.00500  | mg/L  | 1.00 | 1   |       |          |              |        |
| Barium                 |                 | 0.0326       | 0.000670  | 0.00400  | mg/L  | 1.00 | 1   |       |          |              |        |
| Beryllium              | U               | ND           | 0.000200  | 0.000500 | mg/L  | 1.00 | 1   |       |          |              |        |
| Cadmium                | U               | ND           | 0.000300  | 0.00100  | mg/L  | 1.00 | 1   |       |          |              |        |
| Chromium               | U               | ND           | 0.00300   | 0.0100   | mg/L  | 1.00 | 1   |       |          |              |        |
| Cobalt                 | J               | 0.000674     | 0.000300  | 0.00100  | mg/L  | 1.00 | 1   |       |          |              |        |
| Lead                   | U               | ND           | 0.000500  | 0.00200  | mg/L  | 1.00 | 1   |       |          |              |        |
| Lithium                | J               | 0.00686      | 0.00300   | 0.0100   | mg/L  | 1.00 | 1   |       |          |              |        |
| Molybdenum             |                 | 0.00366      | 0.000200  | 0.00100  | mg/L  | 1.00 | 1   |       |          |              |        |
| Selenium               | U               | ND           | 0.00150   | 0.00500  | mg/L  | 1.00 | 1   |       |          |              |        |
| Thallium               | U               | ND           | 0.000600  | 0.00200  | mg/L  | 1.00 | 1   |       |          |              |        |
| Boron                  |                 | 3.75         | 0.260     | 0.750    | mg/L  | 1.00 | 50  | BAJ   | 02/02/24 | 1120 2558106 | 5      |
| Calcium                |                 | 399          | 4.00      | 10.0     | mg/L  | 1.00 | 50  |       |          |              |        |
| Solids Analysis        |                 |              |           |          |       |      |     |       |          |              |        |
| SM2540C Dissolved S    | Solids "As Rec  | ceived"      |           |          |       |      |     |       |          |              |        |
| Total Dissolved Solids |                 | 2160         | 23.8      | 100      | mg/L  |      |     | ES2   | 01/25/24 | 1214 2558321 | 6      |
| The following Prep M   | ethods were p   | erformed:    |           |          |       |      |     |       |          |              |        |
| Method                 | Descriptio      | n            |           | Analyst  | Date  | ,    | Гim | e Pr  | ep Batch |              |        |
|                        |                 |              |           |          |       |      |     |       |          |              |        |

 Method
 Description
 Analyst
 Date
 Time
 Prep Batch

 SW846 3005A
 ICP-MS 3005A PREP
 JD2
 01/25/24
 0845
 2558105

 SW846 7470A Prep
 EPA 7470A Mercury Prep Liquid
 JM13
 01/26/24
 1145
 2558961

Page 21 of 59 SDG: 652703

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 7, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-4 Project: GPCC00100 Sample ID: 652703009 Client ID: GPCC001

| Parameter       | Qualifier Result                  | DL | RL | Units | PF     | DF Analyst Date | Time Batch | Method |
|-----------------|-----------------------------------|----|----|-------|--------|-----------------|------------|--------|
| The following A | nalytical Methods were performed: |    |    |       |        |                 |            |        |
| Method          | Description                       |    |    | 1     | Analys | st Comments     |            |        |
| 1               | EPA 300.0                         |    |    |       | -      |                 |            |        |
| 2               | EPA 300.0                         |    |    |       |        |                 |            |        |
| 3               | SW846 7470A                       |    |    |       |        |                 |            |        |
| 4               | SW846 3005A/6020B                 |    |    |       |        |                 |            |        |
| 5               | SW846 3005A/6020B                 |    |    |       |        |                 |            |        |
| 6               | SM 2540C                          |    |    |       |        |                 |            |        |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 22 of 59 SDG: 652703

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

### Certificate of Analysis

Report Date: February 7, 2024

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-5 Sample ID: 652703010

Matrix: WG

Collect Date: 23-JAN-24 14:50 Receive Date: 24-JAN-24 Collector: Client

ICP-MS 3005A PREP

EPA 7470A Mercury Prep Liquid

Project: GPCC00100 Client ID: GPCC001

| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Parameter              | Qualifier       | Result       | DL        | RL       | Units | PF   | DF   | Analy | st Date  | Time Batch   | Method |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------|--------------|-----------|----------|-------|------|------|-------|----------|--------------|--------|
| Sulface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ion Chromatography     |                 |              |           |          |       |      |      |       |          |              |        |
| Sulface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EPA 300.0 Anions Liq   | uid "As Recei   | ived"        |           |          |       |      |      |       |          |              |        |
| Fluoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                 |              | 33.3      | 100      | mg/L  |      | 250  | CWW   | 01/27/24 | 2318 2559114 | 1      |
| Mercury Analysis-CVAA           7470 Cold Vapor Mercury, Liquid "As Received"           Mercury         U ND         0.000200         mg/L         1.00         1         JP2         01/29/24         1137         2558962         3           Metals Analysis-ICP-MS           SW846 3005A/6020B "As Received"           Boron         7.05         0.520         1.50         mg/L         1.00         100         BAJ         02/02/24         1123         2558106         4           Calcium         598         8.00         20.0         mg/L         1.00         10         BAJ         02/02/24         1123         2558106         4           Calcium         598         8.00         20.0         mg/L         1.00         10         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00 <td>Chloride</td> <td></td> <td>7.74</td> <td>0.134</td> <td>0.400</td> <td>mg/L</td> <td></td> <td>2</td> <td>CWW</td> <td>01/27/24</td> <td>2247 2559114</td> <td>2</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chloride               |                 | 7.74         | 0.134     | 0.400    | mg/L  |      | 2    | CWW   | 01/27/24 | 2247 2559114 | 2      |
| Name   | Fluoride               |                 | 0.352        | 0.0660    | 0.200    | mg/L  |      | 2    |       |          |              |        |
| Mercury         U         ND         0.0000670         0.000200         mg/L         1.00         1         JP2         01/29/24         1137         2558962         3           Metals Analysis-ICP-MS           SW846 3005A/6020B "As Received"           Boron         7.05         0.520         1.50         mg/L         1.00         100         BAJ         02/02/24         1123         2558106         4           Calcium         598         8.00         20.0         mg/L         1.00         10         BAJ         02/02/24         1123         2558106         4           Antimony         U         ND         0.00100         0.00300         mg/L         1.00         1         BAJ         02/02/24         0117         2558106         5           Arsenic         J         0.00420         0.00200         0.00500         mg/L         1.00         1         BAJ         02/02/24         0117         2558106         5           Arsenic         J         0.00420         0.00200         mg/L         1.00         1         2         2         258106         2         2           Beryllium         U         ND         0.00300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mercury Analysis-CV    | AA              |              |           |          |       |      |      |       |          |              |        |
| Metals Analysis-ICP-MS           SW846 3005A/6020B "As Received"           Boron         7.05         0.520         1.50         mg/L         1.00         100         BAJ         02/02/24         1123         2558106         4           Calcium         598         8.00         20.0         mg/L         1.00         10         BAJ         02/02/24         011         2558106         4           Antimony         U         ND         0.00100         0.00300         mg/L         1.00         1         BAJ         02/02/24         011         2558106         5           Arsenic         J         0.00420         0.00200         0.00500         mg/L         1.00         1         25         4         2558106         5           Barium         0.0402         0.000607         0.00400         mg/L         1.00         1         2         4         2558106         5           Beryllium         U         ND         0.000200         0.000500         mg/L         1.00         1         2         4         4         4         4         4         4         4         4         4         4         4         4         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7470 Cold Vapor Merc   | cury, Liquid "A | As Received" |           |          |       |      |      |       |          |              |        |
| Metals Analysis-ICP-MS           SW846 3005A/6020B "As Received"           Boron         7.05         0.520         1.50         mg/L         1.00         100         BAJ         02/02/24         1123         2558106         4           Calcium         598         8.00         20.0         mg/L         1.00         10         bAJ         02/02/24         0117         2558106         4           Antimony         U         ND         0.00100         0.00300         mg/L         1.00         1         BAJ         02/02/24         0117         2558106         5           Arsenic         J         0.00420         0.000200         0.00500         mg/L         1.00         1         1         2558106         5           Barium         0.0402         0.000200         0.00500         mg/L         1.00         1         1         2558106         5           Beryllium         U         ND         0.000200         0.000500         mg/L         1.00         1         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mercury                | U               | ND           | 0.0000670 | 0.000200 | mg/L  | 1.00 | 1    | JP2   | 01/29/24 | 1137 2558962 | 3      |
| Boron   7.05   0.520   1.50   mg/L   1.00   100   BAJ   02/02/24   1123   2558106   4   Calcium   598   8.00   20.0   mg/L   1.00   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100 | Metals Analysis-ICP-N  | ИS              |              |           |          | C     |      |      |       |          |              |        |
| Calcium         598         8.00         20.0         mg/L         1.00         100           Antimony         U         ND         0.00100         0.00300         mg/L         1.00         1         BAJ         02/02/24         0117         2558106         5           Arsenic         J         0.00420         0.000670         0.00400         mg/L         1.00         1         BAJ         02/02/24         0117         2558106         5           Barium         0.00402         0.000670         0.00400         mg/L         1.00         1         Lou         1         Lou         1         Lou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SW846 3005A/6020B      | "As Received    | ."           |           |          |       |      |      |       |          |              |        |
| Calcium         598         8.00         20.0         mg/L         1.00         100           Antimony         U         ND         0.00100         0.00300         mg/L         1.00         1         BAJ         02/02/24         0117         2558106         5           Arsenic         J         0.00420         0.000670         0.00400         mg/L         1.00         1         BAJ         02/02/24         0117         2558106         5           Barium         0.0402         0.000670         0.000500         mg/L         1.00         1         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Boron                  |                 | 7.05         | 0.520     | 1.50     | mg/L  | 1.00 | 100  | BAJ   | 02/02/24 | 1123 2558106 | 4      |
| Antimony U ND 0.00100 0.00300 mg/L 1.00 1 BAJ 02/02/24 0117 2558106 5 Arsenic J 0.00420 0.00200 0.00500 mg/L 1.00 1 Barium 0.0402 0.000670 0.00400 mg/L 1.00 1 Beryllium U ND 0.000200 0.000500 mg/L 1.00 1 Cadmium U ND 0.000300 0.00100 mg/L 1.00 1 Chromium U ND 0.00300 0.0100 mg/L 1.00 1 Cobalt 0.0486 0.000300 0.00100 mg/L 1.00 1 Lead U ND 0.000500 0.00100 mg/L 1.00 1 Lead U ND 0.000500 0.00100 mg/L 1.00 1 Lithium 0.317 0.00300 0.0100 mg/L 1.00 1 Lithium 0.317 0.00300 0.0100 mg/L 1.00 1 Selenium U ND 0.00355 0.000200 0.00100 mg/L 1.00 1 Selenium U ND 0.00150 0.00500 mg/L 1.00 1 Selenium U ND 0.00150 0.00500 mg/L 1.00 1 Selenium U ND 0.00150 0.00500 mg/L 1.00 1 Selenium U ND 0.00600 0.00200 mg/L 1.00 1 Thallium U ND 0.00600 0.00200 mg/L 1.00 1 Thallium Prep Methods were performed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Calcium                |                 | 598          | 8.00      | 20.0     |       | 1.00 | 100  |       |          |              |        |
| Barium         0.0402         0.000670         0.00400         mg/L         1.00         1           Beryllium         U         ND         0.000200         0.000500         mg/L         1.00         1           Cadmium         U         ND         0.000300         0.00100         mg/L         1.00         1           Chromium         U         ND         0.00300         0.0100         mg/L         1.00         1           Cobalt         0.0486         0.000300         0.00100         mg/L         1.00         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td>Antimony</td> <td>U</td> <td>ND</td> <td>0.00100</td> <td>0.00300</td> <td></td> <td>1.00</td> <td>1</td> <td>BAJ</td> <td>02/02/24</td> <td>0117 2558106</td> <td>5</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Antimony               | U               | ND           | 0.00100   | 0.00300  |       | 1.00 | 1    | BAJ   | 02/02/24 | 0117 2558106 | 5      |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Arsenic                | J               | 0.00420      | 0.00200   | 0.00500  | mg/L  | 1.00 | 1    |       |          |              |        |
| Cadmium         U         ND         0.000300         0.00100         mg/L         1.00         1           Chromium         U         ND         0.00300         0.0100         mg/L         1.00         1           Cobalt         0.0486         0.000300         0.00100         mg/L         1.00         1           Lead         U         ND         0.000500         0.00200         mg/L         1.00         1           Lithium         0.317         0.00300         0.0100         mg/L         1.00         1           Molybdenum         0.0355         0.000200         0.00100         mg/L         1.00         1           Selenium         U         ND         0.00150         0.00500         mg/L         1.00         1           Thallium         U         ND         0.000600         0.00200         mg/L         1.00         1           Solids Analysis         SM2540C Dissolved Solids "As Received"           Total Dissolved Solids         2890         23.8         100         mg/L         ES2         01/25/24         1214         2558321         6           The following Prep Methods were performed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Barium                 |                 | 0.0402       | 0.000670  | 0.00400  | mg/L  | 1.00 | 1    |       |          |              |        |
| Chromium         U         ND         0.00300         0.0100         mg/L         1.00         1           Cobalt         0.0486         0.000300         0.00100         mg/L         1.00         1           Lead         U         ND         0.000500         0.00200         mg/L         1.00         1           Lithium         0.317         0.00300         0.0100         mg/L         1.00         1           Molybdenum         0.0355         0.000200         0.00100         mg/L         1.00         1           Selenium         U         ND         0.00150         0.00500         mg/L         1.00         1           Thallium         U         ND         0.000600         0.00200         mg/L         1.00         1           SOlids Analysis         SM2540C Dissolved Solids "As Received"           Total Dissolved Solids         2890         23.8         100         mg/L         ES2         01/25/24         1214         2558321         6           The following Prep Methods were performed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Beryllium              | U               | ND           | 0.000200  | 0.000500 | mg/L  | 1.00 | 1    |       |          |              |        |
| Cobalt         0.0486         0.000300         0.00100         mg/L         1.00         1           Lead         U         ND         0.000500         0.00200         mg/L         1.00         1           Lithium         0.317         0.00300         0.0100         mg/L         1.00         1           Molybdenum         0.0355         0.000200         0.00100         mg/L         1.00         1           Selenium         U         ND         0.00150         0.00500         mg/L         1.00         1           Thallium         U         ND         0.000600         0.00200         mg/L         1.00         1           SOlids Analysis         SM2540C Dissolved Solids "As Received"           Total Dissolved Solids         2890         23.8         100         mg/L         ES2         01/25/24         1214         2558321         6           The following Prep Methods were performed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cadmium                | U               | ND           | 0.000300  | 0.00100  | mg/L  | 1.00 | 1    |       |          |              |        |
| Cobalt       0.0486       0.000300       0.00100       mg/L       1.00       1         Lead       U       ND       0.000500       0.00200       mg/L       1.00       1         Lithium       0.317       0.00300       0.0100       mg/L       1.00       1         Molybdenum       0.0355       0.000200       0.00100       mg/L       1.00       1         Selenium       U       ND       0.00150       0.00500       mg/L       1.00       1         Thallium       U       ND       0.000600       0.00200       mg/L       1.00       1         SOlids Analysis       SM2540C Dissolved Solids "As Received"         Total Dissolved Solids       2890       23.8       100       mg/L       ES2       01/25/24       1214       2558321       6         The following Prep Methods were performed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chromium               | U               | ND           | 0.00300   | 0.0100   | mg/L  | 1.00 | 1    |       |          |              |        |
| Lithium 0.317 0.00300 0.0100 mg/L 1.00 1 Molybdenum 0.0355 0.000200 0.00100 mg/L 1.00 1 Selenium U ND 0.00150 0.00500 mg/L 1.00 1 Thallium U ND 0.000600 0.00200 mg/L 1.00 1 Solids Analysis SM2540C Dissolved Solids "As Received" Total Dissolved Solids 2890 23.8 100 mg/L ES2 01/25/24 1214 2558321 6 The following Prep Methods were performed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cobalt                 |                 | 0.0486       | 0.000300  | 0.00100  |       | 1.00 | 1    |       |          |              |        |
| Molybdenum         0.0355         0.000200         0.00100         mg/L         1.00         1           Selenium         U         ND         0.00150         0.00500         mg/L         1.00         1           Thallium         U         ND         0.000600         0.00200         mg/L         1.00         1           SM2540C Dissolved Solids "As Received"         Total Dissolved Solids "As Received"           Total Dissolved Solids         2890         23.8         100         mg/L         ES2         01/25/24         1214         2558321         6           The following Prep Methods were performed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lead                   | U               | ND           | 0.000500  | 0.00200  | mg/L  | 1.00 | 1    |       |          |              |        |
| Selenium         U         ND         0.00150         0.00500         mg/L         1.00         1           Thallium         U         ND         0.000600         0.00200         mg/L         1.00         1           SM2540C Dissolved Solids "As Received"           Total Dissolved Solids         2890         23.8         100         mg/L         ES2         01/25/24         1214         2558321         6           The following Prep Methods were performed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lithium                |                 | 0.317        | 0.00300   | 0.0100   | mg/L  | 1.00 | 1    |       |          |              |        |
| Thallium U ND 0.000600 0.00200 mg/L 1.00 1 Solids Analysis SM2540C Dissolved Solids "As Received" Total Dissolved Solids 2890 23.8 100 mg/L ES2 01/25/24 1214 2558321 6 The following Prep Methods were performed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Molybdenum             |                 | 0.0355       | 0.000200  | 0.00100  | mg/L  | 1.00 | 1    |       |          |              |        |
| Solids Analysis SM2540C Dissolved Solids "As Received" Total Dissolved Solids 2890 23.8 100 mg/L ES2 01/25/24 1214 2558321 6 The following Prep Methods were performed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Selenium               | U               | ND           | 0.00150   | 0.00500  | mg/L  | 1.00 | 1    |       |          |              |        |
| SM2540C Dissolved Solids "As Received"  Total Dissolved Solids 2890 23.8 100 mg/L ES2 01/25/24 1214 2558321 6  The following Prep Methods were performed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Thallium               | U               | ND           | 0.000600  | 0.00200  | mg/L  | 1.00 | 1    |       |          |              |        |
| Total Dissolved Solids 2890 23.8 100 mg/L ES2 01/25/24 1214 2558321 6 The following Prep Methods were performed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Solids Analysis        |                 |              |           |          |       |      |      |       |          |              |        |
| The following Prep Methods were performed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SM2540C Dissolved S    | olids "As Rec   | eived"       |           |          |       |      |      |       |          |              |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total Dissolved Solids |                 | 2890         | 23.8      | 100      | mg/L  |      |      | ES2   | 01/25/24 | 1214 2558321 | 6      |
| Method Description Analyst Date Time Prep Batch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The following Prep Me  | ethods were pe  | erformed:    |           |          |       |      |      |       |          |              |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Method                 | Description     | n            |           | Analyst  | Date  | ,    | Гimе | Pr    | ep Batch |              |        |

JD2

JM13

01/25/24

01/26/24

0845

1145

2558105

2558961

Page 23 of 59 SDG: 652703

SW846 3005A

SW846 7470A Prep

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 7, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-5 Project: GPCC00100 Sample ID: 652703010 Client ID: GPCC001

| Parameter           | Qualifier Result               | DL | RL | Units | PF     | DF Analyst Date | Time Batch | Method |
|---------------------|--------------------------------|----|----|-------|--------|-----------------|------------|--------|
| The following Analy | rtical Methods were performed: |    |    |       |        |                 |            |        |
| Method              | Description                    |    |    | A     | Analys | st Comments     |            |        |
| 1                   | EPA 300.0                      |    |    |       |        |                 |            |        |
| 2                   | EPA 300.0                      |    |    |       |        |                 |            |        |
| 3                   | SW846 7470A                    |    |    |       |        |                 |            |        |
| 4                   | SW846 3005A/6020B              |    |    |       |        |                 |            |        |
| 5                   | SW846 3005A/6020B              |    |    |       |        |                 |            |        |
| 6                   | SM 2540C                       |    |    |       |        |                 |            |        |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 24 of 59 SDG: 652703

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

### Certificate of Analysis

Report Date: February 7, 2024

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-7 Sample ID: 652703011

Matrix: WG

Collect Date: 23-JAN-24 16:25 Receive Date: 24-JAN-24 Collector: Client

ICP-MS 3005A PREP

EPA 7470A Mercury Prep Liquid

Project: GPCC00100 Client ID: GPCC001

| Parameter              | Qualifier        | Result       | DL        | RL       | Units | PF   | DF   | Analy | st Date  | Time Batch   | Method |
|------------------------|------------------|--------------|-----------|----------|-------|------|------|-------|----------|--------------|--------|
| Ion Chromatography     | y                |              |           |          |       |      |      |       |          |              |        |
| EPA 300.0 Anions I     | Liquid "As Recei | ived"        |           |          |       |      |      |       |          |              |        |
| Sulfate                | 1                | 1380         | 26.6      | 80.0     | mg/L  |      | 200  | CWW   | 01/28/24 | 0022 2559114 | 1      |
| Chloride               |                  | 5.09         | 0.134     | 0.400    | mg/L  |      | 2    | CWW   | 01/27/24 | 2350 2559114 | 2      |
| Fluoride               | J                | 0.182        | 0.0660    | 0.200    | mg/L  |      | 2    |       |          |              |        |
| Mercury Analysis-C     | CVAA             |              |           |          |       |      |      |       |          |              |        |
| 7470 Cold Vapor M      | ercury, Liquid " | As Received" |           |          |       |      |      |       |          |              |        |
| Mercury                | U                | ND           | 0.0000670 | 0.000200 | mg/L  | 1.00 | 1    | JP2   | 01/29/24 | 1142 2558962 | 3      |
| Metals Analysis-ICI    | P-MS             |              |           |          | C     |      |      |       |          |              |        |
| SW846 3005A/6020       |                  | ."           |           |          |       |      |      |       |          |              |        |
| Antimony               | U                | ND           | 0.00100   | 0.00300  | mg/L  | 1.00 | 1    | BAJ   | 02/02/24 | 0125 2558106 | 4      |
| Arsenic                | J                | 0.00207      | 0.00200   | 0.00500  | mg/L  | 1.00 | 1    |       |          |              |        |
| Barium                 |                  | 0.0333       | 0.000670  | 0.00400  | mg/L  | 1.00 | 1    |       |          |              |        |
| Beryllium              | U                | ND           | 0.000200  | 0.000500 | mg/L  | 1.00 | 1    |       |          |              |        |
| Cadmium                | U                | ND           | 0.000300  | 0.00100  | mg/L  | 1.00 | 1    |       |          |              |        |
| Chromium               | U                | ND           | 0.00300   | 0.0100   | mg/L  | 1.00 | 1    |       |          |              |        |
| Cobalt                 |                  | 0.00164      | 0.000300  | 0.00100  | mg/L  | 1.00 | 1    |       |          |              |        |
| Lead                   | U                | ND           | 0.000500  | 0.00200  | mg/L  | 1.00 | 1    |       |          |              |        |
| Lithium                | J                | 0.00306      | 0.00300   | 0.0100   | mg/L  | 1.00 | 1    |       |          |              |        |
| Molybdenum             |                  | 0.00192      | 0.000200  | 0.00100  | mg/L  | 1.00 | 1    |       |          |              |        |
| Selenium               | U                | ND           | 0.00150   | 0.00500  | mg/L  | 1.00 | 1    |       |          |              |        |
| Thallium               | U                | ND           | 0.000600  | 0.00200  | mg/L  | 1.00 | 1    |       |          |              |        |
| Boron                  |                  | 2.74         | 0.104     | 0.300    | mg/L  | 1.00 | 20   | BAJ   | 02/02/24 | 1124 2558106 | 5      |
| Calcium                |                  | 383          | 1.60      | 4.00     | mg/L  | 1.00 | 20   |       |          |              |        |
| Solids Analysis        |                  |              |           |          |       |      |      |       |          |              |        |
| SM2540C Dissolved      | d Solids "As Rec | eived"       |           |          |       |      |      |       |          |              |        |
| Total Dissolved Solids |                  | 2050         | 23.8      | 100      | mg/L  |      |      | ES2   | 01/25/24 | 1214 2558321 | 6      |
| The following Prep     | Methods were po  | erformed:    |           |          |       |      |      |       |          |              |        |
| Method                 | Description      | n            |           | Analyst  | Date  | ,    | Time | Pr    | ep Batch |              |        |

JD2

JM13

01/25/24

01/26/24

0845

1145

2558105

2558961

Page 25 of 59 SDG: 652703

SW846 3005A

SW846 7470A Prep

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 7, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-7 Project: GPCC00100 Sample ID: 652703011 Client ID: GPCC001

| Parameter       | Qualifier Result                  | DL | RL | Units | PF     | DF Analyst Date | Time Batch | Method |
|-----------------|-----------------------------------|----|----|-------|--------|-----------------|------------|--------|
| The following A | nalytical Methods were performed: |    |    |       |        |                 |            |        |
| Method          | Description                       |    |    | Α     | Analys | st Comments     |            |        |
| 1               | EPA 300.0                         |    |    |       | -      |                 |            |        |
| 2               | EPA 300.0                         |    |    |       |        |                 |            |        |
| 3               | SW846 7470A                       |    |    |       |        |                 |            |        |
| 4               | SW846 3005A/6020B                 |    |    |       |        |                 |            |        |
| 5               | SW846 3005A/6020B                 |    |    |       |        |                 |            |        |
| 6               | SM 2540C                          |    |    |       |        |                 |            |        |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 26 of 59 SDG: 652703

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

### Certificate of Analysis

Project:

Client ID:

Report Date: February 7, 2024

GPCC00100

GPCC001

ES2

01/25/24 1214 2558321

6

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-8 Sample ID: 652703012

Matrix: WG

Collect Date: 23-JAN-24 11:40
Receive Date: 24-JAN-24
Collector: Client

RL Parameter **Oualifier** DL Units PF DF Analyst Date Time Batch Method Result Ion Chromatography EPA 300.0 Anions Liquid "As Received" Chloride 2.96 0.134 0.400 mg/L 2 CWW 01/27/24 0431 2559114 1 Fluoride 0.293 0.0660 0.200 mg/L Sulfate 646 13.3 40.0 mg/L 100 CWW 01/28/24 0054 2559114 Mercury Analysis-CVAA 7470 Cold Vapor Mercury, Liquid "As Received" Mercury ND 0.0000670 0.000200 mg/L 1.00 1 JP2 01/29/24 1143 2558962 3 Metals Analysis-ICP-MS SW846 3005A/6020B "As Received" 0.104 0.300 20 BAJ 02/02/24 1125 2558106 Boron 2.83 mg/L 1.00 Calcium 320 1.60 4.00 mg/L 1.00 20 0.00300 Antimony U ND 0.00100mg/L 1.00 1 BAJ 02/02/24 0128 2558106 5 U 0.00200 0.00500 mg/L 1.00 Arsenic ND 1 0.00400 Barium 0.0404 0.000670 mg/L1.00 1 mg/L Bervllium U 0.000200 0.000500 1.00 1 ND Cadmium 0.000323 0.000300 0.00100mg/L 1.00 J 1 U 0.00300 0.0100 1.00 Chromium ND mg/L Cobalt 0.00113 0.000300 0.00100mg/L1.00 U 0.00200 Lead ND 0.000500 mg/L 1.00 1 Lithium 0.00364 0.0100 1.00 J 0.00300 mg/L 1 0.683 0.000200 0.00100 mg/L1.00 Molybdenum 1 Selenium U ND 0.00150 0.00500 mg/L 1.00 1 U ND 0.000600 0.00200 Thallium mg/L 1.00

The following Prep Methods were performed:

SM2540C Dissolved Solids "As Received"

Solids Analysis

Total Dissolved Solids

| Method           | Description                   | Analyst | Date     | Time | Prep Batch |
|------------------|-------------------------------|---------|----------|------|------------|
| SW846 3005A      | ICP-MS 3005A PREP             | JD2     | 01/25/24 | 0845 | 2558105    |
| SW846 7470A Prep | EPA 7470A Mercury Prep Liquid | JM13    | 01/26/24 | 1145 | 2558961    |

20.0

mg/L

4.76

Page 27 of 59 SDG: 652703

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 7, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-8 Project: GPCC00100 Sample ID: 652703012 Client ID: GPCC001

| Parameter       | Qualifier Result                  | DL | RL | Units | PF   | DF Analyst Date | Time Batch | Method |
|-----------------|-----------------------------------|----|----|-------|------|-----------------|------------|--------|
| The following A | nalytical Methods were performed: |    |    |       |      |                 |            |        |
| Method          | Description                       |    |    | An    | alys | t Comments      |            |        |
| 1               | EPA 300.0                         |    |    |       |      |                 |            |        |
| 2               | EPA 300.0                         |    |    |       |      |                 |            |        |
| 3               | SW846 7470A                       |    |    |       |      |                 |            |        |
| 4               | SW846 3005A/6020B                 |    |    |       |      |                 |            |        |
| 5               | SW846 3005A/6020B                 |    |    |       |      |                 |            |        |
| 6               | SM 2540C                          |    |    |       |      |                 |            |        |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 28 of 59 SDG: 652703

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## Certificate of Analysis

Report Date: February 7, 2024

GPCC00100

GPCC001

Company: Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160 Address:

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-9 Sample ID: 652703013

Matrix: WG

Collect Date: 23-JAN-24 13:35 Receive Date: 24-JAN-24

Collector: Client

Project:

Client ID:

| Parameter              | Qualifier         | Result       | DL        | RL       | Units | PF   | DF  | Analy | st Date  | Time Batch   | Method |
|------------------------|-------------------|--------------|-----------|----------|-------|------|-----|-------|----------|--------------|--------|
| Ion Chromatography     | ,                 |              |           |          |       |      |     |       |          |              |        |
| EPA 300.0 Anions L     | iquid "As Recei   | ived"        |           |          |       |      |     |       |          |              |        |
| Sulfate                | •                 | 291          | 6.65      | 20.0     | mg/L  |      | 50  | CWW   | 01/28/24 | 0126 2559114 | . 1    |
| Chloride               |                   | 4.92         | 0.0670    | 0.200    | mg/L  |      | 1   | CWW   | 01/27/24 | 0503 2559114 | 2      |
| Fluoride               |                   | 0.798        | 0.0330    | 0.100    | mg/L  |      | 1   |       |          |              |        |
| Mercury Analysis-C     | VAA               |              |           |          |       |      |     |       |          |              |        |
| 7470 Cold Vapor Me     | ercury, Liquid ". | As Received" |           |          |       |      |     |       |          |              |        |
| Mercury                | U                 | ND           | 0.0000670 | 0.000200 | mg/L  | 1.00 | 1   | JP2   | 01/29/24 | 1145 2558962 | 3      |
| Metals Analysis-ICP    | P-MS              |              |           |          |       |      |     |       |          |              |        |
| SW846 3005A/6020       | B "As Received    | ."           |           |          |       |      |     |       |          |              |        |
| Antimony               | U                 | ND           | 0.00100   | 0.00300  | mg/L  | 1.00 | 1   | BAJ   | 02/02/24 | 0131 2558106 | 4      |
| Arsenic                | U                 | ND           | 0.00200   | 0.00500  | mg/L  | 1.00 | 1   |       |          |              |        |
| Barium                 |                   | 0.0224       | 0.000670  | 0.00400  | mg/L  | 1.00 | 1   |       |          |              |        |
| Beryllium              |                   | 0.000794     | 0.000200  | 0.000500 | mg/L  | 1.00 | 1   |       |          |              |        |
| Cadmium                |                   | 0.00125      | 0.000300  | 0.00100  | mg/L  | 1.00 | 1   |       |          |              |        |
| Chromium               | U                 | ND           | 0.00300   | 0.0100   | mg/L  | 1.00 | 1   |       |          |              |        |
| Cobalt                 |                   | 0.106        | 0.000300  | 0.00100  | mg/L  | 1.00 | 1   |       |          |              |        |
| Lead                   | U                 | ND           | 0.000500  | 0.00200  | mg/L  | 1.00 | 1   |       |          |              |        |
| Lithium                |                   | 0.155        | 0.00300   | 0.0100   | mg/L  | 1.00 | 1   |       |          |              |        |
| Molybdenum             | J                 | 0.000302     | 0.000200  | 0.00100  | mg/L  | 1.00 | 1   |       |          |              |        |
| Selenium               | U                 | ND           | 0.00150   | 0.00500  | mg/L  | 1.00 | 1   |       |          |              |        |
| Thallium               | U                 | ND           | 0.000600  | 0.00200  | mg/L  | 1.00 | 1   |       |          |              |        |
| Boron                  |                   | 0.701        | 0.0520    | 0.150    | mg/L  | 1.00 | 10  | BAJ   | 02/02/24 | 1126 2558106 | 5 5    |
| Calcium                |                   | 69.4         | 0.800     | 2.00     | mg/L  | 1.00 | 10  |       |          |              |        |
| Solids Analysis        |                   |              |           |          |       |      |     |       |          |              |        |
| SM2540C Dissolved      | Solids "As Rec    | eived"       |           |          |       |      |     |       |          |              |        |
| Total Dissolved Solids |                   | 517          | 2.38      | 10.0     | mg/L  |      |     | ES2   | 01/25/24 | 1214 2558321 | 6      |
| The following Prep I   | Methods were po   | erformed:    |           |          |       |      |     |       |          |              |        |
| Method                 | Description       |              |           | Analyst  | Data  | ,    | Tim |       | on Ratch |              |        |

| Method           | Description                   | Analyst | Date     | Time | Prep Batch |
|------------------|-------------------------------|---------|----------|------|------------|
| SW846 7470A Prep | EPA 7470A Mercury Prep Liquid | JM13    | 01/26/24 | 1145 | 2558961    |
| SW846 3005A      | ICP-MS 3005A PREP             | JD2     | 01/25/24 | 0845 | 2558105    |

Page 29 of 59 SDG: 652703

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 7, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-9 Project: GPCC00100 Sample ID: 652703013 Client ID: GPCC001

| Parameter             | Qualifier Result            | DL | RL | Units | PF     | DF Analyst Date Time Batch Method |
|-----------------------|-----------------------------|----|----|-------|--------|-----------------------------------|
| The following Analyti | cal Methods were performed: |    |    |       |        |                                   |
| Method                | Description                 |    |    |       | Analys | st Comments                       |
| 1                     | EPA 300.0                   |    |    |       |        |                                   |
| 2                     | EPA 300.0                   |    |    |       |        |                                   |
| 3                     | SW846 7470A                 |    |    |       |        |                                   |
| 4                     | SW846 3005A/6020B           |    |    |       |        |                                   |
| 5                     | SW846 3005A/6020B           |    |    |       |        |                                   |
| 6                     | SM 2540C                    |    |    |       |        |                                   |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 30 of 59 SDG: 652703

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

# Certificate of Analysis

Report Date: February 7, 2024

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-10 Sample ID: 652703014

Matrix: WG

Collect Date: 23-JAN-24 16:00 Receive Date: 24-JAN-24 Collector: Client

ICP-MS 3005A PREP

Project: GPCC00100 Client ID: GPCC001

| Parameter              | Qualifier     | Result              | DL        | RL       | Units    | PF   | DF   | Analy | st Date  | Time Batch   | Method |
|------------------------|---------------|---------------------|-----------|----------|----------|------|------|-------|----------|--------------|--------|
| Ion Chromatography     |               |                     |           |          |          |      |      |       |          |              |        |
| EPA 300.0 Anions Liqu  | id "As Recei  | ved"                |           |          |          |      |      |       |          |              |        |
| Sulfate                |               | 218                 | 3.33      | 10.0     | mg/L     |      | 25   | TXT1  | 01/29/24 | 1212 2559394 | 1      |
| Chloride               |               | 9.71                | 0.0670    | 0.200    | mg/L     |      | 1    | TXT1  | 01/27/24 | 0023 2559394 | 2      |
| Fluoride               |               | 0.459               | 0.0330    | 0.100    | mg/L     |      | 1    |       |          |              |        |
| Mercury Analysis-CVA   | A             |                     |           |          |          |      |      |       |          |              |        |
| 7470 Cold Vapor Mercu  | ry, Liquid "A | As Received"        |           |          |          |      |      |       |          |              |        |
| Mercury                | U             | ND                  | 0.0000670 | 0.000200 | mg/L     | 1.00 | 1    | JP2   | 01/29/24 | 1147 2558962 | 3      |
| Metals Analysis-ICP-Ma | S             |                     |           |          |          |      |      |       |          |              |        |
| SW846 3005A/6020B ".   | As Received   | "                   |           |          |          |      |      |       |          |              |        |
| Antimony               | U             | ND                  | 0.00100   | 0.00300  | mg/L     | 1.00 | 1    | BAJ   | 02/02/24 | 0134 2558106 | 4      |
| Arsenic                | J             | 0.00300             | 0.00200   | 0.00500  | mg/L     | 1.00 | 1    |       |          |              |        |
| Barium                 |               | 0.0275              | 0.000670  | 0.00400  | mg/L     | 1.00 | 1    |       |          |              |        |
| Beryllium              | U             | ND                  | 0.000200  | 0.000500 | mg/L     | 1.00 | 1    |       |          |              |        |
| Cadmium                | U             | ND                  | 0.000300  | 0.00100  | mg/L     | 1.00 | 1    |       |          |              |        |
| Chromium               | U             | ND                  | 0.00300   | 0.0100   | mg/L     | 1.00 | 1    |       |          |              |        |
| Cobalt                 | J             | 0.000707            | 0.000300  | 0.00100  | mg/L     | 1.00 | 1    |       |          |              |        |
| Lead                   | U             | ND                  | 0.000500  | 0.00200  | mg/L     | 1.00 | 1    |       |          |              |        |
| Lithium                |               | 0.0176              | 0.00300   | 0.0100   | mg/L     | 1.00 | 1    |       |          |              |        |
| Molybdenum             |               | 0.00216             | 0.000200  | 0.00100  | mg/L     | 1.00 | 1    |       |          |              |        |
| Selenium               | U             | ND                  | 0.00150   | 0.00500  | mg/L     | 1.00 | 1    |       |          |              |        |
| Thallium               | U             | ND                  | 0.000600  | 0.00200  | mg/L     | 1.00 | 1    |       |          |              |        |
| Boron                  |               | 0.342               | 0.0260    | 0.0750   | mg/L     | 1.00 | 5    | BAJ   | 02/02/24 | 1127 2558106 | 5      |
| Calcium                |               | 88.9                | 0.400     | 1.00     | mg/L     | 1.00 | 5    |       |          |              |        |
| Solids Analysis        |               |                     |           |          |          |      |      |       |          |              |        |
| SM2540C Dissolved So   | lids "As Rec  | eived"              |           |          |          |      |      |       |          |              |        |
| Total Dissolved Solids |               | 507                 | 2.38      | 10.0     | mg/L     |      |      | ES2   | 01/25/24 | 1214 2558321 | 6      |
| The following Prep Met | hods were pe  | erformed:           |           |          |          |      |      |       |          |              |        |
| Method                 | Description   | n                   |           | Analyst  | Date     | -    | Γime | Pr    | ep Batch |              | _      |
| SW846 7470A Prep       | EPA 7470A     | Mercury Prep Liquid |           | JM13     | 01/26/24 |      | 1145 | 25    | 58961    |              |        |

JD2

01/25/24

0845

2558105

SW846 3005A

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 7, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-10 Project: GPCC00100 Sample ID: 652703014 Client ID: GPCC001

| Parameter           | Qualifier Result              | DL | RL | Units | PF DF Analyst Date | Time Batch Method |
|---------------------|-------------------------------|----|----|-------|--------------------|-------------------|
| The following Analy | tical Methods were performed: |    |    |       |                    |                   |
| Method              | Description                   |    |    | An    | alyst Comments     |                   |
| 1                   | EPA 300.0                     |    |    |       |                    |                   |
| 2                   | EPA 300.0                     |    |    |       |                    |                   |
| 3                   | SW846 7470A                   |    |    |       |                    |                   |
| 4                   | SW846 3005A/6020B             |    |    |       |                    |                   |
| 5                   | SW846 3005A/6020B             |    |    |       |                    |                   |
| 6                   | SM 2540C                      |    |    |       |                    |                   |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 32 of 59 SDG: 652703

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

### Certificate of Analysis

Report Date: February 7, 2024

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-11 Sample ID: 652703015

Matrix: WG

Collect Date: 23-JAN-24 17:15
Receive Date: 24-JAN-24
Collector: Client

EPA 7470A Mercury Prep Liquid

Project: GPCC00100 Client ID: GPCC001

| Parameter              | Qualifier      | Result       | DL        | RL       | Units    | PF   | DF   | Analy | st Date  | Time Batch   | Method |
|------------------------|----------------|--------------|-----------|----------|----------|------|------|-------|----------|--------------|--------|
| Ion Chromatography     |                |              |           |          |          |      |      |       |          |              |        |
| EPA 300.0 Anions Li    | quid "As Recei | ived"        |           |          |          |      |      |       |          |              |        |
| Sulfate                | 1              | 46.5         | 0.665     | 2.00     | mg/L     |      | 5    | TXT1  | 01/29/24 | 1348 2559394 | 1      |
| Chloride               |                | 1.15         | 0.0670    | 0.200    | mg/L     |      | 1    | TXT1  | 01/27/24 | 0159 2559394 | 2      |
| Fluoride               |                | 0.146        | 0.0330    | 0.100    | mg/L     |      | 1    |       |          |              |        |
| Mercury Analysis-CV    | 'AA            |              |           |          |          |      |      |       |          |              |        |
| 7470 Cold Vapor Mei    | cury, Liquid " | As Received" |           |          |          |      |      |       |          |              |        |
| Mercury                | U              | ND           | 0.0000670 | 0.000200 | mg/L     | 1.00 | 1    | JP2   | 01/29/24 | 1148 2558962 | 3      |
| Metals Analysis-ICP-   | MS             |              |           |          | J        |      |      |       |          |              |        |
| SW846 3005A/6020B      |                | "            |           |          |          |      |      |       |          |              |        |
| Antimony               | U              | ND           | 0.00100   | 0.00300  | mg/L     | 1.00 | 1    | BAJ   | 02/02/24 | 0136 2558106 | 4      |
| Arsenic                | U              | ND           | 0.00200   | 0.00500  | mg/L     | 1.00 | 1    |       |          |              |        |
| Barium                 |                | 0.0192       | 0.000670  | 0.00400  | mg/L     | 1.00 | 1    |       |          |              |        |
| Beryllium              | U              | ND           | 0.000200  | 0.000500 | mg/L     | 1.00 | 1    |       |          |              |        |
| Cadmium                | U              | ND           | 0.000300  | 0.00100  | mg/L     | 1.00 | 1    |       |          |              |        |
| Calcium                |                | 25.1         | 0.0800    | 0.200    | mg/L     | 1.00 | 1    |       |          |              |        |
| Chromium               | U              | ND           | 0.00300   | 0.0100   | mg/L     | 1.00 | 1    |       |          |              |        |
| Cobalt                 | U              | ND           | 0.000300  | 0.00100  | mg/L     | 1.00 | 1    |       |          |              |        |
| Lead                   | U              | ND           | 0.000500  | 0.00200  | mg/L     | 1.00 | 1    |       |          |              |        |
| Lithium                | U              | ND           | 0.00300   | 0.0100   | mg/L     | 1.00 | 1    |       |          |              |        |
| Molybdenum             | J              | 0.000629     | 0.000200  | 0.00100  | mg/L     | 1.00 | 1    |       |          |              |        |
| Selenium               | U              | ND           | 0.00150   | 0.00500  | mg/L     | 1.00 | 1    |       |          |              |        |
| Thallium               | U              | ND           | 0.000600  | 0.00200  | mg/L     | 1.00 | 1    |       |          |              |        |
| Boron                  |                | 0.161        | 0.00520   | 0.0150   | mg/L     | 1.00 | 1    | BAJ   | 02/02/24 | 1136 2558106 | 5      |
| Solids Analysis        |                |              |           |          |          |      |      |       |          |              |        |
| SM2540C Dissolved      | Solids "As Rec | eived"       |           |          |          |      |      |       |          |              |        |
| Total Dissolved Solids |                | 187          | 2.38      | 10.0     | mg/L     |      |      | ES2   | 01/25/24 | 1214 2558321 | 6      |
| The following Prep M   | lethods were p | erformed:    |           |          |          |      |      |       |          |              |        |
| Method                 | Description    | n            |           | Analyst  | Date     | -    | Γim  | e Pr  | ep Batch |              |        |
| SW846 3005A            | ICP-MS 3005    | 5A PREP      |           | JD2      | 01/25/24 | (    | 0845 | 25    | 58105    |              |        |

JM13

01/26/24

1145

2558961

Page 33 of 59 SDG: 652703

SW846 7470A Prep

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 7, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1PZ-11 Project: GPCC00100 Sample ID: 652703015 Client ID: GPCC001

| Parameter          | Qualifier Result               | DL               | RL | Units P | F DF Analyst Date | Time Batch Method |  |  |
|--------------------|--------------------------------|------------------|----|---------|-------------------|-------------------|--|--|
| The following Anal | ytical Methods were performed: |                  |    |         |                   |                   |  |  |
| Method             | Description                    | Analyst Comments |    |         |                   |                   |  |  |
| 1                  | EPA 300.0                      |                  |    |         |                   |                   |  |  |
| 2                  | EPA 300.0                      |                  |    |         |                   |                   |  |  |
| 3                  | SW846 7470A                    |                  |    |         |                   |                   |  |  |
| 4                  | SW846 3005A/6020B              |                  |    |         |                   |                   |  |  |
| 5                  | SW846 3005A/6020B              |                  |    |         |                   |                   |  |  |
| 6                  | SM 2540C                       |                  |    |         |                   |                   |  |  |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 34 of 59 SDG: 652703

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

### Certificate of Analysis

Report Date: February 7, 2024

GPCC00100

Project:

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1-EB-02

Sample ID: 652703016

Matrix: WQ

Collect Date: 23-JAN-24 17:00 Receive Date: 24-JAN-24 Collector: Client

703016 Client ID: GPCC001

| Parameter              | Qualifier          | Result       | DL        | RL       | Units | PF   | DF  | F Analyst Date |          | Time Batch |       | Method |
|------------------------|--------------------|--------------|-----------|----------|-------|------|-----|----------------|----------|------------|-------|--------|
| Ion Chromatograph      | ıy                 |              |           |          |       |      |     |                |          |            |       |        |
| EPA 300.0 Anions       | Liquid "As Recei   | ived"        |           |          |       |      |     |                |          |            |       |        |
| Chloride               | J                  | 0.112        | 0.0670    | 0.200    | mg/L  |      | 1   | TXT1           | 01/27/24 | 0231 253   | 59394 | 1      |
| Fluoride               | U                  | ND           | 0.0330    | 0.100    | mg/L  |      | 1   |                |          |            |       |        |
| Sulfate                | U                  | ND           | 0.133     | 0.400    | mg/L  |      | 1   |                |          |            |       |        |
| Mercury Analysis-C     | CVAA               |              |           |          |       |      |     |                |          |            |       |        |
| 7470 Cold Vapor M      | fercury, Liquid "A | As Received" |           |          |       |      |     |                |          |            |       |        |
| Mercury                | U                  | ND           | 0.0000670 | 0.000200 | mg/L  | 1.00 | 1   | JP2            | 01/29/24 | 1150 25:   | 58962 | 2      |
| Metals Analysis-IC     | P-MS               |              |           |          |       |      |     |                |          |            |       |        |
| SW846 3005A/602        | 0B "As Received    | ."           |           |          |       |      |     |                |          |            |       |        |
| Boron                  | U                  | ND           | 0.00520   | 0.0150   | mg/L  | 1.00 | 1   | BAJ            | 02/02/24 | 1137 25    | 58106 | 3      |
| Antimony               | U                  | ND           | 0.00100   | 0.00300  | mg/L  | 1.00 | 1   | BAJ            | 02/02/24 | 0139 25    | 58106 | 4      |
| Arsenic                | U                  | ND           | 0.00200   | 0.00500  | mg/L  | 1.00 | 1   |                |          |            |       |        |
| Barium                 | U                  | ND           | 0.000670  | 0.00400  | mg/L  | 1.00 | 1   |                |          |            |       |        |
| Beryllium              | U                  | ND           | 0.000200  | 0.000500 | mg/L  | 1.00 | 1   |                |          |            |       |        |
| Cadmium                | U                  | ND           | 0.000300  | 0.00100  | mg/L  | 1.00 | 1   |                |          |            |       |        |
| Calcium                | U                  | ND           | 0.0800    | 0.200    | mg/L  | 1.00 | 1   |                |          |            |       |        |
| Chromium               | U                  | ND           | 0.00300   | 0.0100   | mg/L  | 1.00 | 1   |                |          |            |       |        |
| Cobalt                 | U                  | ND           | 0.000300  | 0.00100  | mg/L  | 1.00 | 1   |                |          |            |       |        |
| Lead                   | U                  | ND           | 0.000500  | 0.00200  | mg/L  | 1.00 | 1   |                |          |            |       |        |
| Lithium                | U                  | ND           | 0.00300   | 0.0100   | mg/L  | 1.00 | 1   |                |          |            |       |        |
| Molybdenum             | U                  | ND           | 0.000200  | 0.00100  | mg/L  | 1.00 | 1   |                |          |            |       |        |
| Selenium               | U                  | ND           | 0.00150   | 0.00500  | mg/L  | 1.00 | 1   |                |          |            |       |        |
| Thallium               | U                  | ND           | 0.000600  | 0.00200  | mg/L  | 1.00 | 1   |                |          |            |       |        |
| Solids Analysis        |                    |              |           |          |       |      |     |                |          |            |       |        |
| SM2540C Dissolve       | d Solids "As Rec   | eived"       |           |          |       |      |     |                |          |            |       |        |
| Total Dissolved Solids | U                  | ND           | 2.38      | 10.0     | mg/L  |      |     | ES2            | 01/25/24 | 1214 25    | 58321 | 5      |
| The following Prep     | Methods were pe    | erformed:    |           |          |       |      |     |                |          |            |       |        |
| Method                 | Description        | n            |           | Analyst  | Date  | -    | Гim | e Pr           | ep Batch |            |       |        |

Method Description Analyst Time Prep Batch SW846 7470A Prep EPA 7470A Mercury Prep Liquid JM13 01/26/24 1145 2558961 SW846 3005A ICP-MS 3005A PREP JD2 01/25/24 0845 2558105

Page 35 of 59 SDG: 652703

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 7, 2024

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1-EB-02 Project: GPCC00100 Sample ID: 652703016 Client ID: GPCC001

| Parameter              | Qualifier           | Result          | DL | RL | Units | PF     | DF Analyst Date | Time Batch | Method |
|------------------------|---------------------|-----------------|----|----|-------|--------|-----------------|------------|--------|
| The following Analytic | cal Methods v       | were performed: |    |    |       |        |                 |            |        |
| Method                 | Description         | l               |    |    |       | Analys | st Comments     |            |        |
| 1                      | EPA 300.0           |                 |    |    |       |        |                 |            |        |
| 2                      | 2 SW846 7470A       |                 |    |    |       |        |                 |            |        |
| 3                      | 3 SW846 3005A/6020B |                 |    |    |       |        |                 |            |        |
| SW846 3005A/6020B      |                     |                 |    |    |       |        |                 |            |        |
| 5                      | SM 2540C            |                 |    |    |       |        |                 |            |        |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 36 of 59 SDG: 652703

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

### Certificate of Analysis

Report Date: February 7, 2024

6

GPCC00100

GPCC001

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1-FD-02

Sample ID: 652703017

Matrix: WG

Collect Date: 23-JAN-24 12:00 Receive Date: 24-JAN-24 Collector: Client

RL Parameter **Oualifier** DL Units PF DF Analyst Date Time Batch Method Result Ion Chromatography EPA 300.0 Anions Liquid "As Received" 1.16 0.0670 0.200 mg/L 1 TXT1 01/27/24 0302 2559394 1 0.0330 0.142 0.100 mg/L 46.8 0.665 2.00 mg/L TXT1 01/29/24 1419 2559394 Mercury Analysis-CVAA 7470 Cold Vapor Mercury, Liquid "As Received" ND 0.0000670 0.000200 mg/L 1.00 1 JP2 01/29/24 1152 2558962 3 Metals Analysis-ICP-MS 0.158 0.00520 0.0150 02/02/24 1138 2558106 mg/L 1.00 1 BAJ

Project:

Client ID:

SW846 3005A/6020B "As Received" Boron U ND 0.00100 0.00300 mg/L 1.00 1 BAJ 02/02/24 0142 2558106 5 Antimony Arsenic U ND 0.002000.00500mg/L 1.00 1 0.000670 0.00400 1.00 Barium 0.0191 mg/L 1 Beryllium U ND 0.000200 0.000500 mg/L1.00 1 0.000300 mg/L Cadmium U ND 0.00100 1.00 1 Calcium 25.0 0.0800 0.200 mg/L 1.00 1 U 0.00300 0.0100 1.00 Chromium ND mg/L Cobalt U ND 0.000300 0.00100mg/L1.00 U 0.00200 Lead ND 0.000500 mg/L 1.00 1 Lithium U ND 0.0100 1.00 0.00300 mg/L 1 0.000757 0.000200 0.00100 mg/L1.00 Molybdenum J 1 Selenium U ND 0.00150 0.00500 mg/L 1.00 1 U ND 0.000600 0.00200 Thallium mg/L 1.00

SM2540C Dissolved Solids "As Received"

Solids Analysis

Chloride

Fluoride

Sulfate

Mercury

Total Dissolved Solids 2.38 10.0 ES2 01/25/24 1214 2558321 mg/L

The following Prep Methods were performed:

| Method           | Description                   | Analyst | Date     | Time | Prep Batch |
|------------------|-------------------------------|---------|----------|------|------------|
| SW846 7470A Prep | EPA 7470A Mercury Prep Liquid | JM13    | 01/26/24 | 1145 | 2558961    |
| SW846 3005A      | ICP-MS 3005A PREP             | JD2     | 01/25/24 | 0845 | 2558105    |

Page 37 of 59 SDG: 652703

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 7, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1-FD-02 Project: GPCC00100 Sample ID: 652703017 Client ID: GPCC001

| Parameter           | Qualifier Result              | DL | RL | Units | PF DF Analyst Date | Time Batch Method |
|---------------------|-------------------------------|----|----|-------|--------------------|-------------------|
| The following Analy | tical Methods were performed: |    |    |       |                    |                   |
| Method              | Description                   |    |    | An    | alyst Comments     |                   |
| 1                   | EPA 300.0                     |    |    |       |                    |                   |
| 2                   | EPA 300.0                     |    |    |       |                    |                   |
| 3                   | SW846 7470A                   |    |    |       |                    |                   |
| 4                   | SW846 3005A/6020B             |    |    |       |                    |                   |
| 5                   | SW846 3005A/6020B             |    |    |       |                    |                   |
| 6                   | SM 2540C                      |    |    |       |                    |                   |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 38 of 59 SDG: 652703

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

### Certificate of Analysis

Report Date: February 7, 2024

2

3

4

5

GPCC00100

GPCC001

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1-FB-02

Sample ID: 652703018

Matrix: WQ

Parameter

Chloride

Fluoride

Sulfate

Collect Date: 23-JAN-24 15:55 Receive Date: 24-JAN-24

Collector: Client RL **Oualifier** DL Units PF DF Analyst Date Time Batch Method Result Ion Chromatography EPA 300.0 Anions Liquid "As Received" 0.125 0.0670 0.200 mg/L TXT1 01/27/24 0334 2559394 1 0.0330 U ND 0.100 mg/L 1 U ND 0.133 0.400 mg/L Mercury Analysis-CVAA 7470 Cold Vapor Mercury, Liquid "As Received"

Project:

Client ID:

Mercury ND 0.0000670 0.000200 mg/L 1.00 1 JP2 01/29/24 1157 2558965 Metals Analysis-ICP-MS SW846 3005A/6020B "As Received"

ND 0.00520 0.0150 02/02/24 1139 2558106 Boron U mg/L 1.00 1 BAJ U ND 0.00100 0.00300 mg/L 1.00 1 BAJ 02/02/24 0145 2558106 Antimony Arsenic U ND 0.002000.00500mg/L 1.00 1

U 0.000670 0.00400 mg/L 1.00 Barium ND 1 1.00 Beryllium U ND 0.000200 0.000500 mg/L1 mg/L Cadmium U ND 0.000300 0.00100 1.00 1 0.200 Calcium U ND 0.0800 mg/L 1.00 1

U 0.00300 0.0100 1.00 Chromium ND mg/L Cobalt U ND 0.000300 0.00100mg/L 1.00 U 0.00200 Lead ND 0.000500 mg/L 1.00 1 Lithium U ND 0.0100 1.00 0.00300 mg/L 1 U ND 0.000200 0.00100 1.00 Molybdenum mg/L 1 mg/L 1.00 1

Selenium U ND 0.00150 0.00500 0.000600 0.00200 Thallium ND Solids Analysis

SM2540C Dissolved Solids "As Received" Total Dissolved Solids 2.38 10.0 ES2 01/25/24 1214 2558321 mg/L The following Prep Methods were performed:

mg/L

1.00 1

Method Description Date Prep Batch Analyst Time SW846 7470A Prep EPA 7470A Mercury Prep Liquid JM13 01/26/24 1145 2558964 SW846 3005A ICP-MS 3005A PREP JD2 01/25/24 0845 2558105

Page 39 of 59 SDG: 652703

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 7, 2024

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1

Client Sample ID: ARK-AP1-FB-02 Project: GPCC00100 Sample ID: 652703018 Client ID: GPCC001

| Parameter              | Qualifier           | Result          | DL | RL | Units | PF     | DF Analyst Date | Time Batch | Method |
|------------------------|---------------------|-----------------|----|----|-------|--------|-----------------|------------|--------|
| The following Analytic | cal Methods v       | were performed: |    |    |       |        |                 |            |        |
| Method                 | Description         | l               |    |    |       | Analys | st Comments     |            |        |
| 1                      | EPA 300.0           |                 |    |    |       |        |                 |            |        |
| 2                      | 2 SW846 7470A       |                 |    |    |       |        |                 |            |        |
| 3                      | 3 SW846 3005A/6020B |                 |    |    |       |        |                 |            |        |
| SW846 3005A/6020B      |                     |                 |    |    |       |        |                 |            |        |
| 5                      | SM 2540C            |                 |    |    |       |        |                 |            |        |

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 40 of 59 SDG: 652703

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

### QC Summary

Report Date: February 7, 2024

Page 1 of 9

Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia

Contact: Joju Abraham

Workorder: 652703

| Parmname                               | NOM  | Sample Qual | QC    | Units | RPD% 1  | REC% | Range Anlst  | Date Time      |
|----------------------------------------|------|-------------|-------|-------|---------|------|--------------|----------------|
| Ion Chromatography Batch 2559114       |      |             |       |       |         |      |              |                |
| QC1205632599 652703009 DUP<br>Chloride |      | 4.64        | 4.66  | mg/L  | 0.374   |      | (0%-20%) CWW | 01/27/24 19:35 |
| Fluoride                               |      | 0.235       | 0.233 | mg/L  | 0.684 ^ |      | (+/-0.200)   |                |
| Sulfate                                |      | 1310        | 1330  | mg/L  | 1.32    |      | (0%-20%)     | 01/27/24 20:07 |
| QC1205632596 LCS<br>Chloride           | 5.00 |             | 4.53  | mg/L  |         | 90.7 | (90%-110%)   | 01/26/24 14:43 |
| Fluoride                               | 2.50 |             | 2.43  | mg/L  |         | 97.1 | (90%-110%)   |                |
| Sulfate                                | 10.0 |             | 9.29  | mg/L  |         | 92.9 | (90%-110%)   |                |
| QC1205632595 MB<br>Chloride            |      | U           | ND    | mg/L  |         |      |              | 01/26/24 14:11 |
| Fluoride                               |      | U           | ND    | mg/L  |         |      |              |                |
| Sulfate                                |      | U           | ND    | mg/L  |         |      |              |                |
| QC1205632600 652703009 PS<br>Chloride  | 5.00 | 2.32        | 7.25  | mg/L  |         | 98.5 | (90%-110%)   | 01/27/24 21:43 |
| Fluoride                               | 2.50 | 0.117       | 2.59  | mg/L  |         | 98.9 | (90%-110%)   |                |
| Sulfate                                | 10.0 | 6.57        | 16.4  | mg/L  |         | 98.6 | (90%-110%)   | 01/27/24 22:15 |

Page 41 of 59 SDG: 652703

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

### **QC** Summary

Workorder: 652703 Page 2 of 9 Sample Qual Parmname **NOM** QC Units RPD% REC% Range Anlst Date Time Ion Chromatography 2559394 Batch QC1205633070 652703014 DUP 9.71 9.70 Chloride mg/L 0.113 (0%-20%) TXT1 01/27/24 00:55 Fluoride 0.459 0.460 mg/L 0.109 ^ (+/-0.100)Sulfate 218 01/29/24 12:44 218 mg/L 0.063 (0%-20%)QC1205633069 LCS 5.00 4.88 97.7 01/26/24 23:19 Chloride mg/L (90%-110%) Fluoride 2.50 2.44 mg/L 97.4 (90%-110%) Sulfate 10.0 9.77 97.7 (90%-110%) mg/L QC1205633068 MB 0.113 01/26/24 22:48 Chloride mg/LU Fluoride ND mg/L Sulfate U ND mg/L QC1205633071 652703014 PS Chloride 5.00 9.71 15.7 (90%-110%) 01/27/24 01:27 mg/L 2.50 0.459 2.90 97.5 Fluoride mg/L (90%-110%) Sulfate 10.0 8.73 19.2 105 (90%-110%) 01/29/24 13:16 mg/L **Metals Analysis - ICPMS** 2558106 QC1205630744 LCS 0.0500 BAJ 02/02/24 00:31 0.0500 Antimony mg/L 99.9 (80%-120%)

Page 42 of 59 SDG: 652703

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

## QC Summary

Workorder: 652703

Parmname NOM Sample Qual OC Units RPD% REC% Range Anlst Date Time

| Parmname                 |         | NO     | M Sample Qual | l QC   | Units | RPD% REC% | <b>6</b> Range | Anlst | Date Time      |
|--------------------------|---------|--------|---------------|--------|-------|-----------|----------------|-------|----------------|
| Metals Analysis<br>Batch | 2558106 |        |               |        |       |           |                |       |                |
| Arsenic                  |         | 0.0500 |               | 0.0515 | mg/L  | 103       | (80%-120%)     | BAJ   | 02/02/24 00:31 |
| Barium                   |         | 0.0500 |               | 0.0514 | mg/L  | 103       | (80%-120%)     |       |                |
| Beryllium                |         | 0.0500 |               | 0.0586 | mg/L  | 117       | (80%-120%)     |       |                |
| Boron                    |         | 0.100  |               | 0.113  | mg/L  | 113       | (80%-120%)     |       |                |
| Cadmium                  |         | 0.0500 |               | 0.0513 | mg/L  | 103       | (80%-120%)     |       |                |
| Calcium                  |         | 2.00   |               | 2.09   | mg/L  | 104       | (80%-120%)     |       |                |
| Chromium                 |         | 0.0500 |               | 0.0515 | mg/L  | 103       | (80%-120%)     |       |                |
| Cobalt                   |         | 0.0500 |               | 0.0525 | mg/L  | 105       | (80%-120%)     |       |                |
| Lead                     |         | 0.0500 |               | 0.0515 | mg/L  | 103       | (80%-120%)     |       |                |
| Lithium                  |         | 0.0500 |               | 0.0550 | mg/L  | 110       | (80%-120%)     |       |                |
| Molybdenum               |         | 0.0500 |               | 0.0528 | mg/L  | 106       | (80%-120%)     |       |                |
| Selenium                 |         | 0.0500 |               | 0.0511 | mg/L  | 102       | (80%-120%)     |       |                |
| Thallium                 |         | 0.0500 |               | 0.0495 | mg/L  | 99.1      | (80%-120%)     |       |                |
| QC1205630<br>Antimony    | 743 M   | IB     | U             | ND     | mg/L  |           |                |       | 02/02/24 00:28 |
| Arsenic                  |         |        | U             | ND     | mg/L  |           |                |       |                |

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

### QC Summary

Workorder: 652703 Page 4 of 9 NOM QC RPD% REC% Parmname Sample Qual Units Range Anlst Date Time Metals Analysis - ICPMS Batch 2558106 Barium U ND mg/L BAJ 02/02/24 00:28 U Beryllium ND mg/L U Boron ND mg/LU ND Cadmium mg/LCalcium U ND mg/L U ND Chromium mg/LU Cobalt ND mg/LU ND Lead mg/LU ND Lithium mg/L U ND Molybdenum mg/LU ND Selenium mg/L Thallium U ND mg/L QC1205630745 652703001 MS Antimony 0.0500 U ND 0.0495 mg/L98.9 (75%-125%) 02/02/24 00:37 0.0500 U ND 0.0526 104 (75%-125%) Arsenic mg/L Barium 0.0500 0.0551 0.106 mg/L102 (75% - 125%)

Page 44 of 59 SDG: 652703

**GEL LABORATORIES LLC** 2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

## QC Summary

Workorder: 652703 Page 5 of 9

| Parmname                               | NOM      | Sample Qual | QC     | Units | RPD%  | REC% | Range      | Anlst | Date Time      |
|----------------------------------------|----------|-------------|--------|-------|-------|------|------------|-------|----------------|
| Metals Analysis - ICPMS Potob 2559106  |          |             |        |       |       |      |            |       |                |
| Batch 2558106<br>Beryllium             | 0.0500   | 0.00204     | 0.0620 | mg/L  |       | 120  | (75%-125%) | BAJ   | 02/02/24 00:37 |
| Boron                                  | 0.100    | 0.108       | 0.215  | mg/L  |       | 107  | (75%-125%) |       |                |
| Cadmium                                | 0.0500 J | 0.000354    | 0.0517 | mg/L  |       | 103  | (75%-125%) |       |                |
| Calcium                                | 2.00     | 16.5        | 18.2   | mg/L  |       | N/A  | (75%-125%) |       |                |
| Chromium                               | 0.0500 Ј | 0.00447     | 0.0557 | mg/L  |       | 102  | (75%-125%) |       |                |
| Cobalt                                 | 0.0500   | 0.00650     | 0.0597 | mg/L  |       | 106  | (75%-125%) |       |                |
| Lead                                   | 0.0500 U | ND          | 0.0513 | mg/L  |       | 102  | (75%-125%) |       |                |
| Lithium                                | 0.0500   | 0.0101      | 0.0660 | mg/L  |       | 112  | (75%-125%) |       |                |
| Molybdenum                             | 0.0500 U | ND          | 0.0540 | mg/L  |       | 108  | (75%-125%) |       |                |
| Selenium                               | 0.0500 Ј | 0.00243     | 0.0523 | mg/L  |       | 99.7 | (75%-125%) |       |                |
| Thallium                               | 0.0500 U | ND          | 0.0492 | mg/L  |       | 98.3 | (75%-125%) |       |                |
| QC1205630746 652703001 MSD<br>Antimony | 0.0500 U | ND          | 0.0494 | mg/L  | 0.192 | 98.7 | (0%-20%)   |       | 02/02/24 00:39 |
| Arsenic                                | 0.0500 U | ND          | 0.0512 | mg/L  | 2.72  | 101  | (0%-20%)   |       |                |
| Barium                                 | 0.0500   | 0.0551      | 0.106  | mg/L  | 0.18  | 102  | (0%-20%)   |       |                |
| Beryllium                              | 0.0500   | 0.00204     | 0.0619 | mg/L  | 0.194 | 120  | (0%-20%)   |       |                |

Page 45 of 59 SDG: 652703

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

### **QC** Summary

Workorder: 652703 Page 6 of 9 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2558106 Batch Boron 0.100 0.108 0.219 mg/L1.98 111 (0%-20%)BAJ 02/02/24 00:39 Cadmium 0.0500 J 0.000354 0.0514 mg/L 0.537 102 (0%-20%)Calcium 2.00 16.5 18.3 mg/L 0.17 N/A (0%-20%)0.0567 104 (0%-20%)Chromium 0.0500 0.00447 mg/L 1.78 mg/L Cobalt 0.0500 0.00650 0.0601 0.583 107 (0%-20%)0.0500 U ND 0.0508 mg/L 101 (0%-20%)0.907 Lead 0.0500 0.0101 Lithium 0.0659 mg/L0.0334 112 (0%-20%)0.0500 U ND 0.0549 110 (0%-20%)Molybdenum mg/L 1.61 0.0500 0.00243 0.0525 100 Selenium J mg/L 0.395 (0%-20%)Thallium 0.0500 U ND 0.0489 97.9 mg/L0.463 (0%-20%)QC1205630747 652703001 SDILT U ND U ND 02/02/24 00:45 Antimony ug/L N/A (0%-20%)ND U ND U ug/L N/A (0%-20%)Arsenic Barium 55.1 10.8 1.96 (0%-20%)ug/L 2.04 J 0.395 Beryllium ug/L 2.95 (0%-20%)

108

22.5

ug/L

3.73

(0%-20%)

Page 46 of 59 SDG: 652703

Boron

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

### **QC** Summary

Workorder: 652703 Page 7 of 9 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2558106 Batch (0%-20%) Cadmium J 0.354 ND ug/L N/A BAJ 02/02/24 00:45 Calcium 16500 3470 ug/L 5.19 (0%-20%)ug/L Chromium J 4.47 U ND N/A (0%-20%)Cobalt 6.50 1.36 ug/L 4.8 (0%-20%)U Lead ND U ND ug/L N/A (0%-20%)10.1 U ND (0%-20%)Lithium ug/L N/A U U ND Molybdenum ND ug/L N/A (0%-20%)J Selenium 2.43 U ND N/A (0%-20%)ug/L U ND U ND Thallium ug/L N/A (0%-20%)Metals Analysis-Mercury 2558962 QC1205632403 652690004 DUP Mercury U ND U ND mg/LN/A JP2 01/29/24 11:09 QC1205632402 LCS Mercury 0.00200 0.00198 mg/L(80% - 120%)01/29/24 11:06 QC1205632401 MB U ND mg/L 01/29/24 11:04 Mercury QC1205632404 652690004 MS Mercury 0.00200 U ND 0.00158 mg/L 78.4 (75%-125%) 01/29/24 11:11

Page 47 of 59 SDG: 652703

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

### QC Summary

652703 Page 8 of 9 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis-Mercury Batch 2558962 QC1205632405 652690004 SDILT U ND U ND ug/L JP2 01/29/24 11:12 Mercury N/A (0%-10%)Batch 2558965 QC1205632413 652847001 DUP Mercury J 0.122 0.129 mg/L 5.58 ^ (+/-0.200)JP2 01/29/24 12:03 QC1205632412 LCS Mercury 0.00200 0.00200 mg/L 100 (80%-120%) 01/29/24 11:55 QC1205632411 MB U ND 01/29/24 11:53 Mercury mg/L QC1205632414 652847001 MS 2.00 J 0.122 2.20 104 01/29/24 12:05 Mercury mg/L (75% - 125%)QC1205632415 652847001 SDILT J 0.122 U ND 01/29/24 12:06 Mercury ug/L N/A (0%-10%)**Solids Analysis** 2558321 QC1205631200 652703001 DUP Total Dissolved Solids 139 136 mg/L 2.18 (0%-5%)ES2 01/25/24 12:14 QC1205631201 652703014 DUP mg/L **Total Dissolved Solids** 507 504 0.593 (0%-5%)01/25/24 12:14 QC1205631199 LCS **Total Dissolved Solids** 300 290 mg/L 96.7 (95%-105%) 01/25/24 12:14 QC1205631198 MB U **Total Dissolved Solids** ND mg/L 01/25/24 12:14

**Notes:** 

Workorder:

Page 48 of 59 SDG: 652703

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

### **QC** Summary

652703 Page 9 of 9 **Parmname** NOM Sample Qual  $\mathbf{OC}$ Units RPD% REC% Range Anlst Date Time

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- Value is estimated

Workorder:

- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- N Metals--The Matrix spike sample recovery is not within specified control limits
- Η Analytical holding time was exceeded
- < Result is less than value reported
- > Result is greater than value reported
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- Z Paint Filter Test--Particulates passed through the filter, however no free liquids were observed.
- d 5-day BOD--The 2:1 depletion requirement was not met for this sample
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- Ε % difference of sample and SD is >10%. Sample concentration must meet flagging criteria
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Ε General Chemistry--Concentration of the target analyte exceeds the instrument calibration range
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- FΒ Mercury was found present at quantifiable concentrations in field blanks received with these samples. Data associated with the blank are deemed invalid for reporting to regulatory agencies
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- R Per section 9.3.4.1 of Method 1664 Revision B, due to matrix spike recovery issues, this result may not be reported or used for regulatory compliance purposes.
- The target analyte was detected in the associated blank. B
- 5-day BOD--Test replicates show more than 30% difference between high and low values. The data is qualified per the method and can be used for reporting purposes
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- \* Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 49 of 59 SDG: 652703

#### Technical Case Narrative Georgia Power Company SDG #: 652703

### **Metals**

<u>Product:</u> Determination of Metals by ICP-MS <u>Analytical Method:</u> SW846 3005A/6020B <u>Analytical Procedure:</u> GL-MA-E-014 REV# 36

Analytical Batch: 2558106

**Preparation Method:** SW846 3005A

Preparation Procedure: GL-MA-E-006 REV# 14

**Preparation Batch:** 2558105

The following samples were analyzed using the above methods and analytical procedure(s).

| GEL Sample ID# | Client Sample Identification                           |
|----------------|--------------------------------------------------------|
| 652703001      | ARK-AP1GWA-1                                           |
| 652703002      | ARK-AP1GWA-2                                           |
| 652703003      | ARK-AP1PZ-1                                            |
| 652703004      | ARK-AP1PZ-2                                            |
| 652703005      | ARK-AP1-FB-01                                          |
| 652703006      | ARK-AP1-FD-01                                          |
| 652703007      | ARK-AP1-EB-01                                          |
| 652703008      | ARK-AP1PZ-3                                            |
| 652703009      | ARK-AP1PZ-4                                            |
| 652703010      | ARK-AP1PZ-5                                            |
| 652703011      | ARK-AP1PZ-7                                            |
| 652703012      | ARK-AP1PZ-8                                            |
| 652703013      | ARK-AP1PZ-9                                            |
| 652703014      | ARK-AP1PZ-10                                           |
| 652703015      | ARK-AP1PZ-11                                           |
| 652703016      | ARK-AP1-EB-02                                          |
| 652703017      | ARK-AP1-FD-02                                          |
| 652703018      | ARK-AP1-FB-02                                          |
| 1205630743     | Method Blank (MB)ICP-MS                                |
| 1205630744     | Laboratory Control Sample (LCS)                        |
| 1205630747     | 652703001(ARK-AP1GWA-1L) Serial Dilution (SD)          |
| 1205630745     | 652703001(ARK-AP1GWA-1S) Matrix Spike (MS)             |
| 1205630746     | 652703001(ARK-AP1GWA-1SD) Matrix Spike Duplicate (MSD) |

The samples in this SDG were analyzed on an "as received" basis.

#### **Data Summary:**

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

#### **Calibration Information**

#### **ICSA/ICSAB Statement**

For the ICP-MS analysis, the ICSA solution contains analyte concentrations which are verified trace impurities

Page 50 of 59 SDG: 652703

indigenous to the purchased standard.

#### **Technical Information**

#### **Sample Dilutions**

Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range. Samples 652703003 (ARK-AP1PZ-1), 652703004 (ARK-AP1PZ-2), 652703008 (ARK-AP1PZ-3), 652703009 (ARK-AP1PZ-4), 652703010 (ARK-AP1PZ-5), 652703011 (ARK-AP1PZ-7), 652703012 (ARK-AP1PZ-8), 652703013 (ARK-AP1PZ-9) and 652703014 (ARK-AP1PZ-10) were diluted to ensure that the analyte concentrations were within the linear calibration range of the instrument.

| A 1 4 - |     |     |     |     | 652703 | 3   |     |     |     |
|---------|-----|-----|-----|-----|--------|-----|-----|-----|-----|
| Analyte | 003 | 004 | 008 | 009 | 010    | 011 | 012 | 013 | 014 |
| Boron   | 5X  | 5X  | 20X | 50X | 100X   | 20X | 20X | 10X | 5X  |
| Calcium | 1X  | 5X  | 20X | 50X | 100X   | 20X | 20X | 10X | 5X  |

**Product:** Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer

**Analytical Method:** SW846 7470A

Analytical Procedure: GL-MA-E-010 REV# 40

**Analytical Batch:** 2558962

**Preparation Method:** SW846 7470A Prep

**Preparation Procedure:** GL-MA-E-010 REV# 40

**Preparation Batch:** 2558961

The following samples were analyzed using the above methods and analytical procedure(s).

| <b>GEL Sample ID#</b> | Client Sample Identification                   |
|-----------------------|------------------------------------------------|
| 652703001             | ARK-AP1GWA-1                                   |
| 652703002             | ARK-AP1GWA-2                                   |
| 652703003             | ARK-AP1PZ-1                                    |
| 652703004             | ARK-AP1PZ-2                                    |
| 652703005             | ARK-AP1-FB-01                                  |
| 652703006             | ARK-AP1-FD-01                                  |
| 652703007             | ARK-AP1-EB-01                                  |
| 652703008             | ARK-AP1PZ-3                                    |
| 652703009             | ARK-AP1PZ-4                                    |
| 652703010             | ARK-AP1PZ-5                                    |
| 652703011             | ARK-AP1PZ-7                                    |
| 652703012             | ARK-AP1PZ-8                                    |
| 652703013             | ARK-AP1PZ-9                                    |
| 652703014             | ARK-AP1PZ-10                                   |
| 652703015             | ARK-AP1PZ-11                                   |
| 652703016             | ARK-AP1-EB-02                                  |
| 652703017             | ARK-AP1-FD-02                                  |
| 1205632401            | Method Blank (MB)CVAA                          |
| 1205632402            | Laboratory Control Sample (LCS)                |
| 1205632405            | 652690004(ARK-ARAMW-7L) Serial Dilution (SD)   |
| 1205632403            | 652690004(ARK-ARAMW-7D) Sample Duplicate (DUP) |
| 1205632404            | 652690004(ARK-ARAMW-7S) Matrix Spike (MS)      |
|                       |                                                |

Page 51 of 59 SDG: 652703

#### **Data Summary:**

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

**Product:** Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer

**Analytical Method:** SW846 7470A

Analytical Procedure: GL-MA-E-010 REV# 40

**Analytical Batch:** 2558965

**Preparation Method:** SW846 7470A Prep

Preparation Procedure: GL-MA-E-010 REV# 40

**Preparation Batch: 2558964** 

The following samples were analyzed using the above methods and analytical procedure(s).

| GEL Sample ID# | Client Sample Identification              |
|----------------|-------------------------------------------|
| 652703018      | ARK-AP1-FB-02                             |
| 1205632411     | Method Blank (MB)CVAA                     |
| 1205632412     | Laboratory Control Sample (LCS)           |
| 1205632415     | 652847001(NonSDGL) Serial Dilution (SD)   |
| 1205632413     | 652847001(NonSDGD) Sample Duplicate (DUP) |
| 1205632414     | 652847001(NonSDGS) Matrix Spike (MS)      |

The samples in this SDG were analyzed on an "as received" basis.

#### **Data Summary:**

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

#### **Technical Information**

#### **Preparation Information**

The samples and associated matrix QC 1205632413 (Non SDG 652847001DUP), 1205632414 (Non SDG 652847001MS) and 1205632415 (Non SDG 652847001SDILT) were prepared at a dilution for CVAA analysis because larger volumes of the matrix consume excessive amounts of potassium permanganate.

### **General Chemistry**

**Product: Ion Chromatography Analytical Method:** EPA 300.0

Analytical Procedure: GL-GC-E-086 REV# 34

**Analytical Batch:** 2559114

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID# Client Sample Identification

Page 52 of 59 SDG: 652703

| 652703001  | ARK-AP1GWA-1                                  |
|------------|-----------------------------------------------|
| 652703002  | ARK-AP1GWA-2                                  |
| 652703003  | ARK-AP1PZ-1                                   |
| 652703004  | ARK-AP1PZ-2                                   |
| 652703005  | ARK-AP1-FB-01                                 |
| 652703006  | ARK-AP1-FD-01                                 |
| 652703007  | ARK-AP1-EB-01                                 |
| 652703008  | ARK-AP1PZ-3                                   |
| 652703009  | ARK-AP1PZ-4                                   |
| 652703010  | ARK-AP1PZ-5                                   |
| 652703011  | ARK-AP1PZ-7                                   |
| 652703012  | ARK-AP1PZ-8                                   |
| 652703013  | ARK-AP1PZ-9                                   |
| 1205632595 | Method Blank (MB)                             |
| 1205632596 | Laboratory Control Sample (LCS)               |
| 1205632599 | 652703009(ARK-AP1PZ-4) Sample Duplicate (DUP) |
| 1205632600 | 652703009(ARK-AP1PZ-4) Post Spike (PS)        |
|            |                                               |

#### **Data Summary:**

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

#### **Technical Information**

#### Sample Dilutions

The following samples 1205632599 (ARK-AP1PZ-4DUP), 1205632600 (ARK-AP1PZ-4PS), 652703001 (ARK-AP1GWA-1), 652703003 (ARK-AP1PZ-1), 652703004 (ARK-AP1PZ-2), 652703006 (ARK-AP1-FD-01), 652703008 (ARK-AP1PZ-3), 652703009 (ARK-AP1PZ-4), 652703010 (ARK-AP1PZ-5), 652703011 (ARK-AP1PZ-7), 652703012 (ARK-AP1PZ-8) and 652703013 (ARK-AP1PZ-9) were diluted because target analyte concentrations exceeded the calibration range. Sample 652703011 (ARK-AP1PZ-7) was diluted to minimize matrix effects on instrument performance. Samples 1205632599 (ARK-AP1PZ-4DUP), 1205632600 (ARK-AP1PZ-4PS), 652703006 (ARK-AP1-FD-01), 652703009 (ARK-AP1PZ-4) and 652703012 (ARK-AP1PZ-8) were diluted based on historical data. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

| A 1 4    |     |     |      |     | 65   | 52703 |      |      |      |     |
|----------|-----|-----|------|-----|------|-------|------|------|------|-----|
| Analyte  | 001 | 003 | 004  | 006 | 008  | 009   | 010  | 011  | 012  | 013 |
| Chloride | 1X  | 1X  | 1X   | 2X  | 1X   | 2X    | 2X   | 2X   | 2X   | 1X  |
| Fluoride | 1X  | 1X  | 1X   | 2X  | 1X   | 2X    | 2X   | 2X   | 2X   | 1X  |
| Sulfate  | 5X  | 10X | 100X | 5X  | 200X | 200X  | 250X | 200X | 100X | 50X |

**Product: Ion Chromatography Analytical Method:** EPA 300.0

Analytical Procedure: GL-GC-E-086 REV# 34

**Analytical Batch:** 2559394

The following samples were analyzed using the above methods and analytical procedure(s).

#### GEL Sample ID# Client Sample Identification

| 652703014  | ARK-AP1PZ-10                                   |
|------------|------------------------------------------------|
| 652703015  | ARK-AP1PZ-11                                   |
| 652703016  | ARK-AP1-EB-02                                  |
| 652703017  | ARK-AP1-FD-02                                  |
| 652703018  | ARK-AP1-FB-02                                  |
| 1205633068 | Method Blank (MB)                              |
| 1205633069 | Laboratory Control Sample (LCS)                |
| 1205633070 | 652703014(ARK-AP1PZ-10) Sample Duplicate (DUP) |
| 1205633071 | 652703014(ARK-AP1PZ-10) Post Spike (PS)        |

#### **Data Summary:**

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

#### **Quality Control (QC) Information**

#### Matrix Spike (MS)/Post Spike (PS) Recovery Statement

The percent recoveries (%R) obtained from the spike analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. The matrix spike recovered outside of the established acceptance limits due to matrix interference and/or non-homogeneity.

| Analyte  | Sample                      | Value           |
|----------|-----------------------------|-----------------|
| Chloride | 1205633071 (ARK-AP1PZ-10PS) | 119* (90%-110%) |

#### **Technical Information**

#### **Sample Dilutions**

The following samples 1205633070 (ARK-AP1PZ-10DUP), 1205633071 (ARK-AP1PZ-10PS), 652703014 (ARK-AP1PZ-10), 652703015 (ARK-AP1PZ-11) and 652703017 (ARK-AP1-FD-02) were diluted because target analyte concentrations exceeded the calibration range. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

| Amalasta | 6   | 5270 | 3   |
|----------|-----|------|-----|
| Analyte  | 014 | 015  | 017 |
| Sulfate  | 25X | 5X   | 5X  |

**Product:** Solids, Total Dissolved **Analytical Method:** SM 2540C

Analytical Procedure: GL-GC-E-001 REV# 21

**Analytical Batch: 2558321** 

The following samples were analyzed using the above methods and analytical procedure(s).

| <b>GEL Sample ID#</b> | Client Sample Identification |
|-----------------------|------------------------------|
| 652703001             | ARK-AP1GWA-1                 |
| 652703002             | ARK-AP1GWA-2                 |
| 652703003             | ARK-AP1PZ-1                  |
| 652703004             | ARK-AP1PZ-2                  |

| 652703005  | ARK-AP1-FB-01                                  |
|------------|------------------------------------------------|
| 652703006  | ARK-AP1-FD-01                                  |
| 652703007  | ARK-AP1-EB-01                                  |
| 652703008  | ARK-AP1PZ-3                                    |
| 652703009  | ARK-AP1PZ-4                                    |
| 652703010  | ARK-AP1PZ-5                                    |
| 652703011  | ARK-AP1PZ-7                                    |
| 652703012  | ARK-AP1PZ-8                                    |
| 652703013  | ARK-AP1PZ-9                                    |
| 652703014  | ARK-AP1PZ-10                                   |
| 652703015  | ARK-AP1PZ-11                                   |
| 652703016  | ARK-AP1-EB-02                                  |
| 652703017  | ARK-AP1-FD-02                                  |
| 652703018  | ARK-AP1-FB-02                                  |
| 1205631198 | Method Blank (MB)                              |
| 1205631199 | Laboratory Control Sample (LCS)                |
| 1205631200 | 652703001(ARK-AP1GWA-1) Sample Duplicate (DUP) |
| 1205631201 | 652703014(ARK-AP1PZ-10) Sample Duplicate (DUP) |
|            |                                                |

#### **Data Summary:**

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

#### **Miscellaneous Information**

#### **Additional Comments**

A reduced aliquot was used due to matrix interference. 652703004 (ARK-AP1PZ-2), 652703008 (ARK-AP1PZ-3), 652703009 (ARK-AP1PZ-4), 652703010 (ARK-AP1PZ-5), 652703011 (ARK-AP1PZ-7) and 652703012 (ARK-AP1PZ-8). A TDS meter was used to check the samples for interference prior to analysis. 652703004 (ARK-AP1PZ-2), 652703008 (ARK-AP1PZ-3), 652703009 (ARK-AP1PZ-4), 652703010 (ARK-AP1PZ-5), 652703011 (ARK-AP1PZ-7) and 652703012 (ARK-AP1PZ-8).

#### **Certification Statement**

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 55 of 59 SDG: 652703

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                            | -                                                         |                                                  |                      |                                                                                                                                                              |                                                           |                |            |                               |            | GE         | Labora                                             | GEL Lahoratories 1.1.C                                  |                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------|------------|-------------------------------|------------|------------|----------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Page: 1 of 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            |                                            |                                                           |                                                  | 7                    | ahoratories                                                                                                                                                  | _                                                         | U              | V          | 65770                         | 5          | 204        | 2040 Savage Road                                   | Road                                                    |                                                                                                                                         |
| .# 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                            | os les                                     | ] 5<br>                                                   | Chemistry   R                                    | adiochen             | nistry   Radic                                                                                                                                               | Jiobioassay   Spec                                        | Special (      | alty Ans   | malytics                      |            | Ch         | rleston,                                           | Charleston, SC 29407                                    |                                                                                                                                         |
| COC Number (1): 5 Sample Cooler(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                            | Chain of                                   | Custo                                                     | dy and                                           | Anal                 | <b>Custody and Analytical Request</b>                                                                                                                        | dnest                                                     | 9              | 52         | 20                            | 2          | Pho        | ne: (843                                           | Phone: (843) 556-8171                                   |                                                                                                                                         |
| 82177-0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GEL Work Order Number:                                                     |                                            |                                                           | GEL P                                            | roject               | GEL Project Manager: Erin Trent                                                                                                                              | Erin T                                                    | rent           |            |                               |            | $\neg$     | : (843) 7                                          | Fax: (843) 766-1178                                     |                                                                                                                                         |
| Cont Name: Georgia Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                            | Phone # (93                                | 7-344-6533)                                               | 533)                                             |                      |                                                                                                                                                              | Sam                                                       | ple Ar         | alysis     | Sample Analysis Requested (3) | ested      |            | I in the                                           | number of conta                                         | (Fill in the number of containers for each test)                                                                                        |
| Pegect/Site Name: Plant Arkwright Ash Pond 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I                                                                          | Fax: N/A                                   |                                                           |                                                  | 3                    | Should this                                                                                                                                                  | I this                                                    | S.I            | IN         |                               | IN         | IN         | IN                                                 |                                                         | < Preservative Type (6)                                                                                                                 |
| Ardress: 241 Ralph McGill Blvd SE, Atlanta, GA 30308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80                                                                         |                                            |                                                           |                                                  |                      | sample be<br>considered:                                                                                                                                     | ered:                                                     | enist          | (B02       |                               | 866        |            | (8                                                 |                                                         |                                                                                                                                         |
| y, John Myer, Dylan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Send Results To: jabraham@southernco.com E. Cassidy.Sutherland@stantec.com | легисо.сош Е                               | DD@sta                                                    | DD@stantec.com                                   |                      | ۲Iddr                                                                                                                                                        |                                                           | er of cor      |            |                               | 21 1.2 .vs |            | 10747) y                                           |                                                         | Comments (task code: ARK-CCR-                                                                                                           |
| Sample ID  * For compositor, indicate start and stan date time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *Date Collected (mm-dd-vv)                                                 | *Time<br>Collected<br>(Military)<br>(hhmm) | QC<br>Code (2)                                            | Field<br>Filtered (3)                            | Sample<br>Matrix (4) | Radioactive<br>yes, please su<br>isotopic info                                                                                                               | (7) Known o                                               | dmun latoT     | Metals App | T<br>ItsM M2)<br>D) anoinA    | (300.0 Re  | Metals App | Mercur                                             |                                                         | ASSMT-2024S1)                                                                                                                           |
| ARK-APIGWA-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            | 14:35                                      | z                                                         | z                                                | MG                   |                                                                                                                                                              |                                                           | 9              | ×          | ×                             | ×          | ×          | ×                                                  |                                                         |                                                                                                                                         |
| ARK-APIGWA-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/22/2024                                                                  | 14:45                                      | z                                                         | z                                                | WG                   |                                                                                                                                                              |                                                           | 9              | ×          | ×                             | ×          | ×          | ×                                                  |                                                         |                                                                                                                                         |
| ARK-AP1PZ-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/22/2024                                                                  | 16:40                                      | z                                                         | z                                                | WG                   |                                                                                                                                                              |                                                           | 9              | ×          | ×                             | ×          | ×          | ×                                                  |                                                         |                                                                                                                                         |
| ARK-APIPZ-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/22/2024                                                                  | 16:40                                      | z                                                         | z                                                | MG                   |                                                                                                                                                              |                                                           | 9              | ×          | ×                             | ×          | ×          | ×                                                  |                                                         |                                                                                                                                         |
| ARK-API-FB-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/22/2024                                                                  | 15:00                                      | FB                                                        | z                                                | WQ                   |                                                                                                                                                              |                                                           | 9              | ×          | ×                             | ×          | ×          | ×                                                  |                                                         |                                                                                                                                         |
| ARK-API-FD-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/22/2024                                                                  | NA                                         | FD                                                        | z                                                | WQ                   |                                                                                                                                                              |                                                           | 9              | ×          | ×                             | ×          | ×          | ×                                                  |                                                         |                                                                                                                                         |
| ARK-API-EB-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/22/2024                                                                  | 17:15                                      | EB                                                        | z                                                | WQ                   |                                                                                                                                                              |                                                           | 9              | ×          | ×                             | ×          | ×          | ×                                                  |                                                         |                                                                                                                                         |
| ARK-APIPZ-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/23/2024                                                                  | 11:45                                      | z                                                         | z                                                | WG                   |                                                                                                                                                              |                                                           | 9              | ×          | ×                             | ×          | ×          | ×                                                  |                                                         |                                                                                                                                         |
| ARK-APIPZ-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/23/2024                                                                  | 13:10                                      | z                                                         | Z                                                | MG                   |                                                                                                                                                              |                                                           | 9              | ×          | ×                             | ×          | ×          | ×                                                  |                                                         |                                                                                                                                         |
| ARK-APIPZ-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/23/2024                                                                  | 14:50                                      | N                                                         | z                                                | MG                   |                                                                                                                                                              |                                                           | 9              | ×          | ×                             | ×          | ×          | ×                                                  |                                                         |                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chain of Custody Signatures                                                |                                            |                                                           |                                                  |                      |                                                                                                                                                              | TAT                                                       | TAT Requested: | sted:      | Normal:                       | al: X      |            | Rush:                                              | Specify:                                                | (Subject to Surcharge)                                                                                                                  |
| Relinquished By (Signed) Print Name Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | te Received by (signed)                                                    |                                            | Print Name                                                | 1                                                | Date                 |                                                                                                                                                              | Fax Results: [ ] Yes                                      | sults: [       | ] Yes      |                               | [X]No      |            |                                                    |                                                         |                                                                                                                                         |
| 1) Company Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4141 By                                                                    | h                                          | 112                                                       | 1/20                                             | 1500                 |                                                                                                                                                              | Select Deliverable: [ ] C of A                            | Jeliver        | able: [    | ]C of                         | -          | QC St      | ] QC Summary                                       | [ ] level 1 [X]                                         | Level 2 [ ] Level 3 [ ] Leve                                                                                                            |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 / 20                                                                     | ma                                         | 3                                                         | c/1                                              | 24/24                | 1335                                                                                                                                                         | Additional Remarks:                                       | nal Re         | marks.     |                               |            |            |                                                    |                                                         | 1                                                                                                                                       |
| 11 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                          |                                            |                                                           |                                                  |                      |                                                                                                                                                              | For La                                                    | b Rece         | iving      | Jse On                        | b: Cu      | stody S    | For Lab Receiving Use Only: Custody Seal Intact? [ | ] Yes [ ].                                              | Cooler Te                                                                                                                               |
| > For sample shipping and delivery details, see Sample Receipt & Review form (SRR.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ole Receipt & Review form                                                  | (SRR.)                                     |                                                           |                                                  |                      | Sample Collection Time Zone: [X] Eastern                                                                                                                     | Collectic                                                 | n Tim          | e Zon      | × .                           | Easter     | - 1        | [ ] Pacific                                        | [ ] Central                                             | [ ] Mountain [ ] Other:                                                                                                                 |
| 1.) Chain of Custody Number = Client Determined 2.) QC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicate, EB = Equipment Blank, MS = Matrix Spike Sample, MSD = Matrix Spike Duplicate Sample, G = Grab, C = Composite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | uplicate, $\mathbf{E}\mathbf{B}=\mathrm{Equipment}$ Blank,                 | MS = Matrix !                              | spike Sam                                                 | ple, MSD =                                       | - Matrix S           | pike Duplicat                                                                                                                                                | te Sample,                                                | <b>G</b> = Gra | b, C = (   | omposite                      |            |            |                                                    |                                                         |                                                                                                                                         |
| 3.) Field Filtered: For liquid matrices, indicate with a - Y - for yes the sample was field filtered or - N - for sample was not field filtered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | he sample was field filtered or - N $\cdot$                                | - for sample w                             | as not fiel                                               | i filtered.                                      |                      |                                                                                                                                                              |                                                           |                | :          |                               |            |            |                                                    | -Food N=Nace                                            |                                                                                                                                         |
| 4) Matrix Codes: DW=Drinking Water, GW=Groundwater, SW=Surface Water, WW=Waste Water, W=Water, ML=Misc Liquid, SO=Soil, SD=Sediment, SL=Sludge, SS=Soild Waste, O=Oul, F=Fulter, F=Wipe, U=Orther, F=Feder, r=recat, r=reca | urface Water, WW=Waste Water,                                              | W=Water, M                                 | L=Misc Li                                                 | quid, SO=9                                       | Soil, SD=S           | sediment, SL                                                                                                                                                 | =Sludge, S                                                | PiloS=S        | Waste,     | J=Oil, F                      | =Filter,   | =w ibe,    | U=UIIIIe, I                                        | r-recal, iv-ivasai                                      |                                                                                                                                         |
| 5) Sample Analysis Requested: Analytical method requested (i.e. 8260B, 6010B/7470A) and number of containers provided for each (i.e. 8260B - 3, 6010B/7470A - 1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 260B, 6010B/7470A) and number H = Sodium Hydroxide. SA = Sulf              | of containers juric Acid, AA               | provided f<br>= Ascorb                                    | or each (i.e<br>c Acid, HX                       | . 8260B -            | provided for each (i.e. \$260B - 3, 6010B7470A - 1).  = Ascorbic Acid, HX = Hexane, ST = Sodium Thiosulfate, If no preservative is added = leave field blank | 70.4 - 1).<br>ım Thiosul                                  | fate, If n     | o preser   | vative is                     | = added =  | eave fie   | d blank                                            |                                                         |                                                                                                                                         |
| 6.) Preservative Type: HA = Hydrochloric Acid, 31 7.) KNOWN OR POSSIBLE HAZARDS [Ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Characteristic Hazards                                                     | Listed                                     | Waste                                                     |                                                  |                      |                                                                                                                                                              | Other Other / Habroun                                     | 1/ 101         | - Julia    | 5                             |            |            |                                                    | Please provide a                                        | Please provide any additional details below regarding handling and/or disposal concerns.                                                |
| FL RCRA Metals CC As = Arsenic Hg = Mercury RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FL = Flammable/Ignitable CO = Corrosive RE = Reactive                      | LW = L $(F, K, P)$ $Waste c$               | LW= Listed waste<br>(F,K,P and U-listed<br>Waste code(s): | asted waste<br>and U-listed wastes.)<br>code(s): | stes.)               |                                                                                                                                                              | (i.e.: High/low pH, asbest<br>misc. health hazards, etc.) | igh/low        | v pH, c    | sbestos<br>, etc.)            | i, beryl   | lium, ii   | ritants,                                           | (i.e.: Origin of sample(s)<br>from, odd matrices, etc.) | (i.e.: High/low pH, asbestos, beryllium, irritants, · (i.e.: Origin of sample(s), type of site collected<br>misc. health hazards, etc.) |
| Se= Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SCA Regulated                                                              |                                            |                                                           |                                                  |                      | 1                                                                                                                                                            | Description:                                              | tton:          |            |                               |            |            | 1                                                  |                                                         |                                                                                                                                         |
| Cr = Cadmium Ag = Since<br>Cr = Chromium MR = Misc. RCRA metals PC<br>Db = 1 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PCB = Polychlorinated binhenvls                                            |                                            |                                                           |                                                  |                      | ſ                                                                                                                                                            |                                                           |                |            |                               |            |            | 1 1                                                |                                                         |                                                                                                                                         |
| I D - Leau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                            |                                            |                                                           |                                                  |                      |                                                                                                                                                              |                                                           |                |            |                               |            |            |                                                    |                                                         |                                                                                                                                         |

|                                           |                                               |                                 | tainers for each test)                           | < Preservative Type (6)                       |                                                     | Comments                                                                                   | ( task_code: ARK-CCR-<br>ASSMT-2024S1 )                        |             |             |             |              |              |               |               |               | (Subject to Surcharge)      |                          | [X] Level 2 [ ] Level 3 [ ] Level |                    | Vo Cooler Temp: ₹ °C                                            | [ ] Mountain [ ] Other:                                                             |                                                 |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                    |                                                                                                                                                                                                                       | Other regarding handling and/or disposal concerns.  OT=Other / Unknown regarding handling and/or disposal concerns. (i.e.: High/low pH, asbestos, beryllium, irritants, (i.e.: Origin of sample(s), type of site collected misc. health hazards, etc.) |                                                        |
|-------------------------------------------|-----------------------------------------------|---------------------------------|--------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------|-------------|-------------|--------------|--------------|---------------|---------------|---------------|-----------------------------|--------------------------|-----------------------------------|--------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| GEL Laboratories, LLC<br>2040 Savage Road | Charleston, SC 29407<br>Phone: (843) 556-8171 | Fax: (843) 766-1178             | (Fill in the number of containers for each test) | IN                                            |                                                     | (80747)                                                                                    | <b>Метсигу</b> (                                               | ×           | ×           | ×           | ×            | ×            | ×             | ×             | ×             | Specify:                    |                          | [ ] level 1                       |                    | For Lab Receiving Use Only: Custody Seal Intact? [ ] Yes [ ] No | [ ] Central                                                                         |                                                 |                                                                                                                                                                                      | rine, F=Fecal, N=Nasal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                    | ınk                                                                                                                                                                                                                   | Please provide any addirection of the search of the search of semple (s) from, odd matrices, etc.)                                                                                                                                                     |                                                        |
| GEL<br>2040                               | Phone                                         | Fax: (                          |                                                  | IN                                            | -                                                   |                                                                                            | KAD 226-2                                                      | ×           | ×           | ×           | ×            | ×            | ×             | ×             | ×             | Rush:                       |                          | [ ] QC Summary                    |                    | ody Seal                                                        | [ ] Pacific                                                                         |                                                 |                                                                                                                                                                                      | Vipe, U=U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                    | ve field bla                                                                                                                                                                                                          | m, irrita                                                                                                                                                                                                                                              |                                                        |
| 5                                         | ~                                             |                                 | Sample Analysis Requested (5)                    | IN                                            | E                                                   | 561 1'7 '                                                                                  | (300.0 Rev                                                     | ×           | ×           | ×           | ×            | ×            | ×             | ×             | ×             | H:                          | No                       |                                   |                    | r: Custo                                                        | Eastern                                                                             |                                                 |                                                                                                                                                                                      | Filter, P=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                    | Ided = Iea                                                                                                                                                                                                            | berylliu                                                                                                                                                                                                                                               |                                                        |
| L0125                                     | 270<br>170                                    |                                 | s Requ                                           |                                               | -                                                   | 04 2540C                                                                                   | TD (SM Methors, (Cl., 17)                                      | ×           | ×           | ×           | ×            | ×            | ×             | ×             | ×             | Normal:                     | X                        | Select Deliverable: [ ] C of A    |                    | se Only                                                         | : [X]                                                                               |                                                 | omposite                                                                                                                                                                             | ⊨Oil, <b>F</b> =l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                    | ative is ad                                                                                                                                                                                                           | n<br>bestos,<br>etc.)                                                                                                                                                                                                                                  |                                                        |
| 659                                       | C S 7                                         |                                 | Analysi                                          | IN                                            | (B0                                                 | 709) III                                                                                   | Metals App.                                                    | ×           | ×           | ×           | ×            | ×            | ×             | ×             | ×             | ested:                      | Yes                      | able: [                           | marks:             | eiving U                                                        | e Zone                                                                              |                                                 | 1b, C = C                                                                                                                                                                            | Waste, O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                    | o preserv                                                                                                                                                                                                             | Other  OT = Other / Unknown (i.e.: High/low pH, asbest misc. health hazards, etc.)                                                                                                                                                                     |                                                        |
| )                                         | St spi                                        | Trent                           | mple 4                                           | s                                             | -<br>ainer                                          | Ι                                                                                          | Total number                                                   | 9           | 9           | 9           | 9            | 9            | 9             | 9             | 9             | TAT Requested:              | Fax Results:             | Deliver                           | Additional Remarks | ab Rece                                                         | ion Tim                                                                             |                                                 | , <b>G</b> = G <sub>12</sub>                                                                                                                                                         | SS=Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                    | ılfate, If n                                                                                                                                                                                                          | Other / U<br>ligh/low<br>realth h                                                                                                                                                                                                                      | ption:                                                 |
|                                           | Request ( < 2.7.7                             | r: Erin                         | Sa                                               | Should this                                   | sample be<br>considered:                            | spae                                                                                       | (7) Known or                                                   |             |             |             |              |              |               |               |               | TAT                         | Fax R                    | Select                            | Additi             | For L                                                           | Collecti                                                                            |                                                 | te Sample                                                                                                                                                                            | =Sludge,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 704 - 1).                                                                                                                                                          | ım Thiosu                                                                                                                                                                                                             | Other<br>OT= (i.e.: h                                                                                                                                                                                                                                  | Description:                                           |
|                                           | tical F                                       | fanage                          |                                                  | Shou                                          | sam                                                 | (Iţ                                                                                        | Radioactive<br>yes, please sup<br>isotopic info.)              |             |             |             |              |              |               |               |               |                             |                          |                                   |                    |                                                                 | Sample Collection Time Zone: [ $X$ ] Eastern                                        |                                                 | te Duplica                                                                                                                                                                           | iment, SL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$010B/74;                                                                                                                                                         | T = Sodi                                                                                                                                                                                                              |                                                                                                                                                                                                                                                        |                                                        |
| ratc                                      | Analy                                         | GEL Project Manager: Erin Trent |                                                  |                                               |                                                     |                                                                                            | Sample<br>Matrix (4)                                           | ÐM          | WG          | DM          | ÐM           | WG           | WQ            | МQ            | WQ            |                             | Date                     |                                   |                    |                                                                 |                                                                                     |                                                 | fatrix Spil                                                                                                                                                                          | il, SD=Sed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 260B - 3,                                                                                                                                                          | Hexane,                                                                                                                                                                                                               | s.)                                                                                                                                                                                                                                                    |                                                        |
| Laboratories LLC                          | Custody and Analytical Request                | GEL P                           | (33)                                             |                                               |                                                     | tec.com                                                                                    | Field<br>Filtered (3)                                          | z           | Z           | z           | Z            | Z            | z             | Z             | z             |                             | Ď                        | 12021                             |                    |                                                                 |                                                                                     |                                                 | MSD = N                                                                                                                                                                              | d, SO=Soi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ach (i.e. 8.                                                                                                                                                       | cid, HX =                                                                                                                                                                                                             | e<br>ed waste                                                                                                                                                                                                                                          |                                                        |
|                                           | Custo                                         |                                 | 7-344-6533)                                      |                                               |                                                     | OD@stan                                                                                    | QC<br>Code (2) F                                               | z           | z           | z           | Z            | Z            | EB            | ED            | FB            |                             | Print Name               | 5                                 |                    |                                                                 |                                                                                     |                                                 | ke Sample                                                                                                                                                                            | Misc Liqui                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | vided for e                                                                                                                                                        | Ascorbic A                                                                                                                                                                                                            | aste<br>ed Wast<br>d U-liste<br>te(s):                                                                                                                                                                                                                 |                                                        |
|                                           | Chain of                                      |                                 | Phone # (937                                     | Fax: N/A                                      |                                                     | егисо.сош ЕІ                                                                               | *Time Collected (Military) (thmm)                              | 16:25       | 11:40       | 13:35       | 16:00        | 17:15        | 17:00         | NA            | 15:55         |                             | ,                        | 01/2                              | 1                  |                                                                 | SRR.)                                                                               |                                                 | S = Matrix Spi                                                                                                                                                                       | =Water, ML=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | containers pro                                                                                                                                                     | c Acid, AA = A                                                                                                                                                                                                        | Listed Waste LW= Listed Waste (F. K.P and U-listed wastes.) Waste code(s):                                                                                                                                                                             |                                                        |
|                                           | J                                             | GEL Work Order Number:          | Н                                                | Ħ                                             |                                                     | Send Results To: jabraham@southernco.com EDD@stantec.com<br>Cassidy.Sutherland@stantec.com | *Date Collected (mm-dd-yy)                                     | 1/23/2024   | 1/23/2024   | 1/23/2024   | 1/23/2024    | 1/23/2024    | 1/23/2024     | 1/23/2024     | 1/23/2024     | dy Signatures               | Received by (signed)     | Ja De                             | 2                  | 3                                                               | & Review form (S                                                                    |                                                 | = Equipment Blank, M                                                                                                                                                                 | WW=Waste Water, W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7470A) and number of                                                                                                                                               | Hydroxide, SA = Sulfuri                                                                                                                                                                                               | tic Hazards able/Ignitable ive 'e                                                                                                                                                                                                                      | ated<br>hlorinated                                     |
|                                           |                                               | GEL Work                        |                                                  |                                               | iA 30308                                            | Send Results '<br>Cassidy.Suthe                                                            | ate/time                                                       |             |             |             |              |              |               |               |               | Chain of Custody Signatures | Date                     | 124/24                            | 7                  | 1                                                               | Sample Receipt                                                                      |                                                 | Field Duplicate, EB                                                                                                                                                                  | SW=Surface Water,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 (i.e. 8260B, 6010B/                                                                                                                                              | Acid, SH = Sodium E                                                                                                                                                                                                   | Characteristic Hazards FL = Flammable/Ignitable CO = Corrosive RE = Reactive                                                                                                                                                                           | TSCA Regulated PCB = Polychlorinated                   |
| of 2                                      | 5 Sample Cooler(s)                            | C82177-0005                     | orgia Power                                      | Project/Site Name: Plant Arkwright Ash Pond 1 | ddress: 241 Ralph McGill Blvd SE, Atlanta, GA 30308 | Collected By: Zach Levy, John Myer, Dylan<br>Mipley, Emily Scheiben                        | Sample ID * For composites - indicate start and stop date time |             |             |             |              |              |               |               |               |                             | (Signed) Print Name      | A Stantec                         |                    |                                                                 | > For sample shipping and delivery details, see Sample Receipt & Review form (SRR.) | 1.) Chain of Custody Number = Client Determined | 2.) QC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicate, EB = Equipment Blank, MS = Matrix Spike Sample, MSD = Matrix Spike Duplicate Sample, G = Grab, C = Composite | 3.) Then Trickets. To requir matrices, indicate write a T-Toy yes use sample was field inference of TN-Toy sample was field inference. The field inference of TN-Toy sample was field inference of TN-Toy sample was field inference. The field inference of TN-Toy sample was field inference. The Figure of Toy of T | 5.) Sample Analysis Requested: Analytical method requested (i.e. 82608, 601087/470A) and number of containers provided for each (i.e. 82608 - 3, 601087/470A - 1). | 6.) Preservative Type: HA = Hydrochloric Acid, NI = Nitric Acid, SH = Sodium Hydroxide, SA = Sulfuric Acid, AA = Ascorbic Acid, HX = Hexane, ST = Sodium Thiosulfate, If no preservative is added = leave field blank | 7) KNOWN OR POSSIBLE HAZARDS  RCRA Metals As = Arsenic Hg= Mercury                                                                                                                                                                                     | Se= Selenium<br>Ag= Silver<br>MR= Misc. RCRA metals    |
| Page: 2                                   | GOC Number (1).                               | PO Number: GPC82177-0005        | Glient Name: Georgia Power                       | Project/Site Nam                              | Address: 241 Ral                                    | Collected By: Za<br>Ripley, Emily Sc                                                       | 2703                                                           | ARK-AP1PZ-7 | ARK-AP1PZ-8 | ARK-AP1PZ-9 | ARK-AP1PZ-10 | ARK-AP1PZ-11 | ARK-AP1-EB-02 | ARK-AP1-FD-02 | ARK-AP1-FB-02 |                             | Relinquished By (Signed) | 1 JM                              | . 12               | 3                                                               | > For sample shi                                                                    | 1.) Chain of Custody                            | 2.) QC Codes: N=N                                                                                                                                                                    | 4.) Matrix Codes: DW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.) Sample Analysis R.                                                                                                                                             | 6.) Preservative Type:                                                                                                                                                                                                | 7.) KNOWN OR I RCRA Metals As = Arsenic                                                                                                                                                                                                                | Ba = Barium $Cd = Cadmium$ $Cr = Chromium$ $Dr = Tand$ |

652694

652704 652703

GEL Laboratories LLC

| Client: GPCC                                                               |          | SAMPLE RECEIPT & REVIEW FORM                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Received By: QG                                                            |          | DG/AR/COC/Work Order:                                                                                                                                                                                                                                            |
| Carrier and Tracking Number                                                |          | Circle Applicable: FedEx Express FedEx Ground UPS Field Services Courier Other  h (s.                                                                                                                                                                            |
| Suspected Hazard Information                                               | ç *      | If New Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.                                                                                                                                        |
|                                                                            | <u> </u> | lazard Class Shipped: UN#:                                                                                                                                                                                                                                       |
| A)Shipped as a DOT Hazardous?                                              | 1        | If UN2910, Is the Radioactive Shipment Survey Compliant? Yes No                                                                                                                                                                                                  |
| B) Did the client designate the samples are to be received as radioactive? |          | OC notation or radioactive stickers on containers equal client designation                                                                                                                                                                                       |
| C) Did the RSO classify the samples as radioactive?                        |          | faximum Net Counts Observed* (Observed Counts - Area Background Counts): CPM/hR/Hr Classified as: Rad 1 Rad 2 Rad 3                                                                                                                                              |
| D) Did the client designate samples are hazardous?                         | /c       | OC peranon or hazard labels on continers equal client designation.  D or E is yes, select Hazards below.                                                                                                                                                         |
| E) Did the RSO identify possible hazards?                                  |          | PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:                                                                                                                                                                                                      |
|                                                                            | ¥ Z      | Comments/Qualifiers (Required for Non-Conforming Items)                                                                                                                                                                                                          |
| Shipping containers received intact and sealed?                            |          | Circle Applicable: Seals broken Damaged container Leaking container Other (describe)                                                                                                                                                                             |
| 2 Chain of custody documents included with shipment?                       |          | Circle Applicable: Client contacted and provided COC COC created upon receipt                                                                                                                                                                                    |
| 3 Samples requiring cold preservation within (0 ≤ 6 deg. C)?*              |          | Preservation Method: Wet/ice ce Packs Dry ice None Other: *all temperatures represented in Celsius TEMP: 1                                                                                                                                                       |
| 4 Daily check performed and passed on IR temperature gun?                  |          | Temperature Device Serial #: <u>IR1-23</u> Secondary Temperature Device Serial # (If Applicable):                                                                                                                                                                |
| 5 Sample containers intact and sealed?                                     | مر ۱۰۰   | Circle Applicable: Seals broken Damaged container Leaking container Other (describe)                                                                                                                                                                             |
| 6 Samples requiring chemical preservation at proper pH?                    |          | Sample ID's and Containers Affected:  If Preservation added, Lott:                                                                                                                                                                                               |
| 7 Do any samples require Volatile<br>Analysis?                             |          | If Yes, are Encores or Soil Kits present for solids? YesNoNA (If yes, take to VOA Freezer)  Do liquid VOA vials contain acid preservation? YesNoNA (If unknown, select No)  Are liquid VOA vials free of headspace? YesNoNA Sample ID's and containers affected: |
| 8 Samples received within holding time?                                    |          | ID's and tests affected:                                                                                                                                                                                                                                         |
| 9 Sample ID's on COC match ID's on bottles?                                |          | ID's and containers affected:                                                                                                                                                                                                                                    |
| Date & time on COC match date & time on bottles?                           |          | Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)                                                                                                                                                               |
| Number of containers received match number indicated on COC?               | 9        | Circle Applicable: No container count on COC Other (describe)                                                                                                                                                                                                    |
| Are sample containers identifiable as GEL provided by use of GEL labels?   |          |                                                                                                                                                                                                                                                                  |
| COC form is properly signed in relinquished/received sections?             |          | Circle Applicable: Not relinquished Other (describe)                                                                                                                                                                                                             |
| Comments (Use Continuation Form if needed):                                |          |                                                                                                                                                                                                                                                                  |
| ÷                                                                          |          |                                                                                                                                                                                                                                                                  |
| ,                                                                          |          |                                                                                                                                                                                                                                                                  |
|                                                                            |          | •                                                                                                                                                                                                                                                                |
|                                                                            |          |                                                                                                                                                                                                                                                                  |
|                                                                            |          |                                                                                                                                                                                                                                                                  |
| PM (or PMA) revie                                                          | Ie!      | tials W7 Dute 1/25/24 Dura at                                                                                                                                                                                                                                    |

List of current GEL Certifications as of 07 February 2024

| State                         | Certification                |
|-------------------------------|------------------------------|
| Alabama                       | 42200                        |
| Alaska                        | 17-018                       |
| Alaska Drinking Water         | SC00012                      |
| Arkansas                      | 88-00651                     |
| CLIA                          | 42D0904046                   |
| California                    | 2940                         |
| Colorado                      | SC00012                      |
| Connecticut                   | PH-0169                      |
| DoD ELAP/ ISO17025 A2LA       | 2567.01                      |
| Florida NELAP                 | E87156                       |
| Foreign Soils Permit          | P330-15-00283, P330-15-00253 |
| Georgia                       | SC00012                      |
| Georgia SDWA                  | 967                          |
| Hawaii                        | SC00012                      |
| Idaho                         | SC00012                      |
| Illinois NELAP                | 200029                       |
| Indiana                       | C-SC-01                      |
| Kansas NELAP                  | E-10332                      |
| Kentucky SDWA                 | KY90129                      |
| Kentucky Wastewater           | KY90129                      |
| Louisiana Drinking Water      | LA024                        |
| Louisiana NELAP               | 03046 (AI33904)              |
| Maine                         | 2023019                      |
| Maryland                      | 270                          |
| Massachusetts                 | M-SC012                      |
| Massachusetts PFAS Approv     | Letter                       |
| Michigan                      | 9976                         |
| Mississippi                   | SC00012                      |
| Nebraska                      | NE-OS-26-13                  |
| Nevada                        | SC000122024-05               |
| New Hampshire NELAP           | 2054                         |
| New Jersey NELAP              | SC002                        |
| New Mexico                    | SC002<br>SC00012             |
| New York NELAP                | 11501                        |
| North Carolina                | 233                          |
| North Carolina SDWA           | 45709                        |
| North Dakota                  | R-158                        |
|                               |                              |
| Oklahoma  Ponnsylvonia NEL AD | 2023-152                     |
| Pennsylvania NELAP            | 68-00485                     |
| Puerto Rico                   | SC00012                      |
| S. Carolina Radiochem         | 10120002                     |
| Sanitation Districts of L     | 9255651                      |
| South Carolina Chemistry      | 10120001                     |
| Tennessee                     | TN 02934                     |
| Texas NELAP                   | T104704235-23-21             |
| Utah NELAP                    | SC000122023-38               |
| Vermont                       | VT87156                      |
| Virginia NELAP                | 460202                       |
| Washington                    | C780                         |











a member of **The GEL Group** INC

gel.com

February 20, 2024

Joju Abraham Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

Re: Arkwright CCR Groundwater Compliance AP1-R

Work Order: 652704

#### Dear Joju Abraham:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on January 24, 2024. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt. The laboratory received the following sample(s):

| <u>Laboratory ID</u> | Client ID     | <b>Matrix</b> | <b>Date Collected</b> | <b>Date Recieved</b> |
|----------------------|---------------|---------------|-----------------------|----------------------|
| 652704001            | ARK-AP1GWA-1  | Ground Water  | 22/01/24 14:35        | 24/01/24 13:35       |
| 652704002            | ARK-AP1GWA-2  | Ground Water  | 22/01/24 14:45        | 24/01/24 13:35       |
| 652704003            | ARK-AP1PZ-1   | Ground Water  | 22/01/24 16:40        | 24/01/24 13:35       |
| 652704004            | ARK-AP1PZ-2   | Ground Water  | 22/01/24 16:40        | 24/01/24 13:35       |
| 652704005            | ARK-AP1-FB-01 | Water         | 22/01/24 15:00        | 24/01/24 13:35       |
| 652704006            | ARK-AP1-FD-01 | Ground Water  | 22/01/24 12:00        | 24/01/24 13:35       |
| 652704007            | ARK-AP1-EB-01 | Water         | 22/01/24 17:15        | 24/01/24 13:35       |
| 652704008            | ARK-AP1PZ-3   | Ground Water  | 23/01/24 11:45        | 24/01/24 13:35       |
| 652704009            | ARK-AP1PZ-4   | Ground Water  | 23/01/24 13:10        | 24/01/24 13:35       |
| 652704010            | ARK-AP1PZ-5   | Ground Water  | 23/01/24 14:50        | 24/01/24 13:35       |
| 652704011            | ARK-AP1PZ-7   | Ground Water  | 23/01/24 16:25        | 24/01/24 13:35       |
| 652704012            | ARK-AP1PZ-8   | Ground Water  | 23/01/24 11:40        | 24/01/24 13:35       |
| 652704013            | ARK-AP1PZ-9   | Ground Water  | 23/01/24 13:35        | 24/01/24 13:35       |
| 652704014            | ARK-AP1PZ-10  | Ground Water  | 23/01/24 16:00        | 24/01/24 13:35       |
| 652704015            | ARK-AP1PZ-11  | Ground Water  | 23/01/24 17:15        | 24/01/24 13:35       |
| 652704016            | ARK-AP1-EB-02 | Water         | 23/01/24 17:00        | 24/01/24 13:35       |



| 652704017 | ARK-AP1-FD-02 | Ground Water | 23/01/24 12:00 | 24/01/24 13:35 |
|-----------|---------------|--------------|----------------|----------------|
| 652704018 | ARK-AP1-FB-02 | Water        | 23/01/24 15:55 | 24/01/24 13:35 |

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

#### **Prep Methods and Prep Dates**

Not Applicable

#### **Analysis Methods and Analysis Dates**

| <b>Method</b>                 | Run Date ID |
|-------------------------------|-------------|
| Calculation                   | 20-FEB-2024 |
| EPA 903.1 Modified            | 06-FEB-2024 |
| EPA 903.1 Modified            | 08-FEB-2024 |
| EPA 904.0/SW846 9320 Modified | 15-FEB-2024 |

Page 2 of 33 SDG: 652704

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4504.

Sincerely,

Amanda Turner for

Erin Trent

Project Manager

Purchase Order: GPC82177-0005

Enclosures

Page 3 of 33 SDG: 652704

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

# Certificate of Analysis Report for

GPCC001 Georgia Power Company Client SDG: 652704 GEL Work Order: 652704

#### The Qualifiers in this report are defined as follows:

- \* A quality control analyte recovery is outside of specified acceptance criteria
- \*\* Analyte is a Tracer compound
- \*\* Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Erin Trent.

| Reviewed by | Franda | len |  |  |
|-------------|--------|-----|--|--|
|             |        |     |  |  |

Page 4 of 33 SDG: 652704

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

### Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: February 20, 2024

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1-R

Client Sample ID: ARK-AP1GWA-1 Project: GPCC00100 GPCC001 Client ID:

Sample ID: Matrix: 652704001 WG

Collect Date: 22-JAN-24 Receive Date: 24-JAN-24 Collector: Client

| Parameter                                              | Qualifier     | Result U    | ncertainty   | MDC   | TPU      | RL   | Units | PF | DF | Analys | t Date   | Time | Batch   | Mtd. |
|--------------------------------------------------------|---------------|-------------|--------------|-------|----------|------|-------|----|----|--------|----------|------|---------|------|
| Rad Gas Flow Proportion GFPC Ra228, Liquid             |               | 0           |              |       |          |      |       |    |    |        |          |      |         |      |
| Radium-228                                             | U             | -0.0261     | +/-1.04      | 1.94  | +/-1.04  | 3.00 | pCi/L |    |    | JE1    | 02/15/24 | 0839 | 2562861 | 1    |
| Radium-226+Radium-                                     | -228 Calculat | ion "See Pa | rent Product | s"    |          |      |       |    |    |        |          |      |         |      |
| Radium-226+228 Sum                                     | U             | 1.06        | +/-1.11      | 1.94  | +/-1.14  |      | pCi/L |    | 1  | NXL1   | 02/20/24 | 1250 | 2562864 | 2    |
| Rad Radium-226 Lucas Cell, Ra226, Liquid "As Received" |               |             |              |       |          |      |       |    |    |        |          |      |         |      |
| Radium-226                                             |               | 1.06        | +/-0.407     | 0.290 | +/-0.473 | 1.00 | pCi/L |    |    | LXP1   | 02/08/24 | 1004 | 2559124 | 3    |

The following Analytical Methods were performed

Description 1 EPA 904.0/SW846 9320 Modified Calculation

EPA 903.1 Modified

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | <b>Acceptable Limits</b> |
|---------------------------|----------------------------------|----------|-----------|--------------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2562861  | 92.7      | (15%-125%)               |

#### **Notes:**

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor **RL**: Reporting Limit Lc/LC: Critical Level

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 5 of 33 SDG: 652704

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

### Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: February 20, 2024

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1-R

Client Sample ID: ARK-AP1GWA-2 Project: GPCC00100 Sample ID: 652704002 Client ID: GPCC001

Matrix: WG
Collect Date: 22-JA

Collect Date: 22-JAN-24
Receive Date: 24-JAN-24
Collector: Client

| Parameter                                   | Qualifier     | Result U     | ncertainty   | MDC   | TPU      | RL   | Units | PF | DF Analys | t Date Time   | Batch   | Mtd. |
|---------------------------------------------|---------------|--------------|--------------|-------|----------|------|-------|----|-----------|---------------|---------|------|
| Rad Gas Flow Proporti<br>GFPC Ra228, Liquid |               | 0            |              |       |          |      |       |    |           |               |         |      |
| Radium-228                                  | U             | 1.05         | +/-0.999     | 1.64  | +/-1.03  | 3.00 | pCi/L |    | JE1       | 02/15/24 0839 | 2562861 | 1    |
| Radium-226+Radium                           | -228 Calculat | tion "See Pa | rent Produci | ts"   |          |      |       |    |           |               |         |      |
| Radium-226+228 Sum                          |               | 2.89         | +/-1.18      | 1.64  | +/-1.25  |      | pCi/L |    | 1 NXL1    | 02/20/24 1250 | 2562864 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, Li     | quid "As Rece | eived"       |              |       |          |      |       |    |           |               |         |      |
| Radium-226                                  |               | 1.84         | +/-0.625     | 0.566 | +/-0.708 | 1.00 | pCi/L |    | LXP1      | 02/08/24 1004 | 2559124 | 3    |

The following Analytical Methods were performed

| Method | Description                   |
|--------|-------------------------------|
| 1      | EPA 904.0/SW846 9320 Modified |
| 2      | Calculation                   |
| 2      | EDA 002 1 Modified            |

3 EPA 903.1 Modified

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | <b>Acceptable Limits</b> |
|---------------------------|----------------------------------|----------|-----------|--------------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2562861  | 92.4      | (15%-125%)               |

#### **Notes:**

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method
DL: Detection Limit PF: Prep Factor
Lc/LC: Critical Level RL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 6 of 33 SDG: 652704

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

### Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: February 20, 2024

Project:

Client ID:

GPCC00100

GPCC001

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1-R

Client Sample ID: ARK-AP1PZ-1 Sample ID: 652704003 Matrix: WG Collect Date: 22-JAN-24

Receive Date: 24-JAN-24 Collector: Client

| Parameter                                | Qualifier    | Result U     | ncertainty   | MDC   | TPU      | RL   | Units | PF | DF | Analys | t Date   | Time | Batch   | Mtd. |
|------------------------------------------|--------------|--------------|--------------|-------|----------|------|-------|----|----|--------|----------|------|---------|------|
| Rad Gas Flow Proportion                  |              | U            |              |       |          |      |       |    |    |        |          |      |         |      |
| Radium-228                               | U            | 0.815        | +/-0.871     | 1.45  | +/-0.896 | 3.00 | pCi/L |    |    | JE1    | 02/15/24 | 0839 | 2562861 | 1    |
| Radium-226+Radium-                       | 228 Calculat | tion "See Pa | rent Product | s"    |          |      |       |    |    |        |          |      |         |      |
| Radium-226+228 Sum                       |              | 2.22         | +/-1.02      | 1.45  | +/-1.09  |      | pCi/L |    | 1  | NXL1   | 02/20/24 | 1250 | 2562864 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, Liq | uid "As Rece | eived"       |              |       |          |      |       |    |    |        |          |      |         |      |
| Radium-226                               |              | 1.41         | +/-0.527     | 0.435 | +/-0.627 | 1.00 | pCi/L |    |    | LXP1   | 02/08/24 | 1004 | 2559124 | 3    |

#### The following Analytical Methods were performed **Description**

| 1 | EPA 904.0/SW846 9320 Modified |
|---|-------------------------------|
| 2 | Calculation                   |
| 3 | EPA 903.1 Modified            |
|   |                               |

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | <b>Acceptable Limits</b> |
|---------------------------|----------------------------------|----------|-----------|--------------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2562861  | 95.1      | (15%-125%)               |

#### **Notes:**

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 7 of 33 SDG: 652704

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

### Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: February 20, 2024

Project:

Client ID:

GPCC00100

GPCC001

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1-R

Client Sample ID: ARK-AP1PZ-2 Sample ID: 652704004 Matrix: WG Collect Date: 22-JAN-24

Receive Date: 24-JAN-24 Collector: Client

| Parameter                                   | Qualifier     | Result U    | ncertainty   | MDC_  | TPU      | RL   | Units | PF | DF A | Analys | t Date   | Time | Batch   | Mtd. |
|---------------------------------------------|---------------|-------------|--------------|-------|----------|------|-------|----|------|--------|----------|------|---------|------|
| Rad Gas Flow Proporti<br>GFPC Ra228, Liquid |               | 0           |              |       |          |      |       |    |      |        |          |      |         |      |
| Radium-228                                  |               | 2.10        | +/-1.00      | 1.40  | +/-1.14  | 3.00 | pCi/L |    |      | JE1    | 02/15/24 | 0839 | 2562861 | 1    |
| Radium-226+Radium                           | -228 Calculat | ion "See Pa | rent Product | s"    |          |      |       |    |      |        |          |      |         |      |
| Radium-226+228 Sum                          |               | 3.55        | +/-1.16      | 1.40  | +/-1.31  |      | pCi/L |    | 1    | NXL1   | 02/20/24 | 1250 | 2562864 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, Li     | quid "As Rece | rived"      |              |       |          |      |       |    |      |        |          |      |         |      |
| Radium-226                                  |               | 1.46        | +/-0.583     | 0.556 | +/-0.641 | 1.00 | pCi/L |    |      | LXP1   | 02/08/24 | 1004 | 2559124 | 3    |

#### The following Analytical Methods were performed **Description**

| 1 | EPA 904.0/SW846 9320 Modified |
|---|-------------------------------|
| 2 | Calculation                   |
| 3 | EPA 903.1 Modified            |
|   |                               |

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | Acceptable Limits |
|---------------------------|----------------------------------|----------|-----------|-------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2562861  | 89.2      | (15%-125%)        |

#### Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 8 of 33 SDG: 652704

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

### Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: February 20, 2024

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1-R

ARK-AP1-FB-01 Client Sample ID: Project: GPCC00100 Sample ID: GPCC001 Client ID: 652704005

Matrix: WQ

Collect Date: 22-JAN-24 Receive Date: 24-JAN-24 Collector: Client

| Parameter                                  | Qualifier     | Result U    | ncertainty    | MDC   | TPU      | RL   | Units | PF | DF | Analys | t Date   | <u> Fime</u> | Batch 1 | Mtd. |
|--------------------------------------------|---------------|-------------|---------------|-------|----------|------|-------|----|----|--------|----------|--------------|---------|------|
| Rad Gas Flow Proportion GFPC Ra228, Liquid |               | 0           |               |       |          |      |       |    |    |        |          |              |         |      |
| Radium-228                                 |               | 1.96        | +/-0.861      | 1.13  | +/-0.997 | 3.00 | pCi/L |    |    | JE1    | 02/15/24 | 0839         | 2562861 | 1    |
| Radium-226+Radium-                         | -228 Calculat | ion "See Pa | irent Product | s"    |          |      |       |    |    |        |          |              |         |      |
| Radium-226+228 Sum                         |               | 2.84        | +/-0.963      | 1.13  | +/-1.11  |      | pCi/L |    | 1  | NXL1   | 02/20/24 | 1250         | 2562864 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, Lic   | quid "As Rece | rived"      |               |       |          |      |       |    |    |        |          |              |         |      |
| Radium-226                                 |               | 0.883       | +/-0.430      | 0.375 | +/-0.478 | 1.00 | pCi/L |    |    | LXP1   | 02/08/24 | 1004         | 2559124 | 3    |

The following Analytical Methods were performed Description

| 1 | EPA 904.0/SW846 9320 Modified |
|---|-------------------------------|
| 2 | Calculation                   |
| 3 | EPA 903.1 Modified            |

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | <b>Acceptable Limits</b> |
|---------------------------|----------------------------------|----------|-----------|--------------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2562861  | 93.7      | (15%-125%)               |

#### Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 9 of 33 SDG: 652704

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

### Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: February 20, 2024

Project:

Client ID:

GPCC00100

GPCC001

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1-R

Client Sample ID: ARK-AP1-FD-01 Sample ID: 652704006 Matrix: WG

Matrix: WG Collect Date: 22-JAN-24

Receive Date: 24-JAN-24
Collector: Client

| Parameter                                   | Qualifier     | Result U    | ncertainty   | MDC   | TPU      | RL   | Units | PF | DF A | nalyst | Date T      | ime | Batch   | Mtd. |
|---------------------------------------------|---------------|-------------|--------------|-------|----------|------|-------|----|------|--------|-------------|-----|---------|------|
| Rad Gas Flow Proports<br>GFPC Ra228, Liquid |               | 0           |              |       |          |      |       |    |      |        |             |     |         |      |
| Radium-228                                  | U             | 0.921       | +/-0.766     | 1.21  | +/-0.801 | 3.00 | pCi/L |    |      | JE1    | 02/15/24 08 | 839 | 2562861 | 1    |
| Radium-226+Radium                           | -228 Calculat | ion "See Pa | rent Product | s"    |          |      |       |    |      |        |             |     |         |      |
| Radium-226+228 Sum                          |               | 1.66        | +/-0.851     | 1.21  | +/-0.892 |      | pCi/L |    | 1 N  | NXL1   | 02/20/24 12 | 250 | 2562864 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, Li     | quid "As Rece | eived"      |              |       |          |      |       |    |      |        |             |     |         |      |
| Radium-226                                  |               | 0.738       | +/-0.371     | 0.332 | +/-0.392 | 1.00 | pCi/L |    | I    | LXP1   | 02/08/24 10 | 036 | 2559124 | 3    |

#### The following Analytical Methods were performed

| Method | Description                   |
|--------|-------------------------------|
| 1      | EPA 904.0/SW846 9320 Modified |
| 2      | Calculation                   |
| 3      | EPA 903.1 Modified            |

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | <b>Acceptable Limits</b> |
|---------------------------|----------------------------------|----------|-----------|--------------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2562861  | 86.3      | (15%-125%)               |

#### **Notes:**

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method
DL: Detection Limit PF: Prep Factor
Lc/LC: Critical Level RL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 10 of 33 SDG: 652704

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

### Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: February 20, 2024

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1-R

ARK-AP1-EB-01 Client Sample ID: Project: GPCC00100 Sample ID: GPCC001 Client ID: 652704007

Matrix: WQ Collect Date: 22-JAN-24 Receive Date:

24-JAN-24 Collector: Client

| Parameter                            | Qualifier           | Result U     | ncertainty    | MDC_  | TPU      | RL   | Units | PF | DF | Analys | t Date Ti   | me ] | Batch I | Mtd. |
|--------------------------------------|---------------------|--------------|---------------|-------|----------|------|-------|----|----|--------|-------------|------|---------|------|
| Rad Gas Flow Prop<br>GFPC Ra228, Lie | portional Counting  | 0            |               |       |          |      |       |    |    |        |             |      |         |      |
| Radium-228                           | U                   | 1.27         | +/-0.970      | 1.53  | +/-1.02  | 3.00 | pCi/L |    |    | JE1    | 02/15/24 08 | 39 2 | 2562861 | 1    |
| Radium-226+Rad                       | dium-228 Calculai   | tion "See Pa | irent Product | s"    |          |      |       |    |    |        |             |      |         |      |
| Radium-226+228 Sun                   | n                   | 1.61         | +/-1.03       | 1.53  | +/-1.09  |      | pCi/L |    | 1  | NXL1   | 02/20/24 12 | 50 2 | 2562864 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra22   | ?6, Liquid "As Reco | eived"       |               |       |          |      |       |    |    |        |             |      |         |      |
| Radium-226                           | U                   | 0.342        | +/-0.356      | 0.574 | +/-0.364 | 1.00 | pCi/L |    |    | LXP1   | 02/08/24 10 | 36 2 | 2559124 | 3    |

The following Analytical Methods were performed **Description** 

| 1 | EPA 904.0/SW846 9320 Modified |
|---|-------------------------------|
| 2 | Calculation                   |
| 3 | EPA 903.1 Modified            |

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | <b>Acceptable Limits</b> |
|---------------------------|----------------------------------|----------|-----------|--------------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2562861  | 87.4      | (15%-125%)               |

#### Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 11 of 33 SDG: 652704

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

### Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: February 20, 2024

Project:

Client ID:

GPCC00100

GPCC001

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1-R

Client Sample ID: ARK-AP1PZ-3
Sample ID: 652704008
Matrix: WG
Collect Date: 23-JAN-24

Receive Date: 24-JAN-24
Collector: Client

| Parameter                                   | Qualifier     | Result U    | ncertainty   | MDC   | TPU      | RL   | Units | PF | DF Ana | yst Dat   | e Time | Batch 1 | Mtd. |
|---------------------------------------------|---------------|-------------|--------------|-------|----------|------|-------|----|--------|-----------|--------|---------|------|
| Rad Gas Flow Proportion  GFPC Ra228, Liquid |               | 0           |              |       |          |      |       |    |        |           |        |         |      |
| Radium-228                                  | U             | 1.14        | +/-0.868     | 1.36  | +/-0.915 | 3.00 | pCi/L |    | JE1    | 02/15/2   | 4 0839 | 2562861 | 1    |
| Radium-226+Radium-                          | 228 Calculat  | ion "See Pa | rent Product | s"    |          |      |       |    |        |           |        |         |      |
| Radium-226+228 Sum                          |               | 1.95        | +/-0.975     | 1.36  | +/-1.03  |      | pCi/L |    | 1 NXI  | 1 02/20/2 | 4 1250 | 2562864 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, Liq    | quid "As Rece | eived"      |              |       |          |      |       |    |        |           |        |         |      |
| Radium-226                                  |               | 0.813       | +/-0.445     | 0.487 | +/-0.473 | 1.00 | pCi/L |    | LXF    | 1 02/08/2 | 4 1036 | 2559124 | 3    |

The following Analytical Methods were performed

| Method | Description                   |
|--------|-------------------------------|
| 1      | EPA 904.0/SW846 9320 Modified |
| 2      | Calculation                   |
| 3      | EPA 903.1 Modified            |

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | <b>Acceptable Limits</b> |
|---------------------------|----------------------------------|----------|-----------|--------------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2562861  | 85.9      | (15%-125%)               |

#### **Notes:**

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method
DL: Detection Limit PF: Prep Factor
Lc/LC: Critical Level RL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 12 of 33 SDG: 652704

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

# Certificate of Analysis

Company: Georgia Power Company, Southern

Client

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: February 20, 2024

Project:

Client ID:

GPCC00100

GPCC001

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1-R

Client Sample ID: ARK-AP1PZ-4
Sample ID: 652704009
Matrix: WG

Collect Date: 23-JAN-24 Receive Date: 24-JAN-24

Collector:

| Parameter                                   | Qualifier    | Result U     | ncertainty     | MDC   | TPU      | RL   | Units | PF | <u>DF</u> | Analys | t Date   | Time | Batch   | Mtd. |
|---------------------------------------------|--------------|--------------|----------------|-------|----------|------|-------|----|-----------|--------|----------|------|---------|------|
| Rad Gas Flow Proporti<br>GFPC Ra228, Liquid |              | 0            |                |       |          |      |       |    |           |        |          |      |         |      |
| Radium-228                                  | U            | -0.670       | +/-0.897       | 1.81  | +/-0.897 | 3.00 | pCi/L |    |           | JE1    | 02/15/24 | 0839 | 2562861 | 1    |
| Radium-226+Radium-                          | -228 Calcula | tion "See Pa | arent Products | s"    |          |      |       |    |           |        |          |      |         |      |
| Radium-226+228 Sum                          | U            | 0.946        | +/-1.00        | 1.81  | +/-1.02  |      | pCi/L |    | 1         | NXL1   | 02/20/24 | 1250 | 2562864 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, Lie    | quid "As Rec | eived"       |                |       |          |      |       |    |           |        |          |      |         |      |
| Radium-226                                  |              | 0.946        | +/-0.451       | 0.529 | +/-0.486 | 1.00 | pCi/L |    |           | LXP1   | 02/08/24 | 1036 | 2559124 | 3    |

The following Analytical Methods were performed

| Method | Description                   |
|--------|-------------------------------|
| 1      | EPA 904.0/SW846 9320 Modified |
| 2      | Calculation                   |
| 3      | EPA 903.1 Modified            |

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | <b>Acceptable Limits</b> |
|---------------------------|----------------------------------|----------|-----------|--------------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2562861  | 88        | (15%-125%)               |

#### **Notes:**

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method
DL: Detection Limit PF: Prep Factor
Lc/LC: Critical Level RL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 13 of 33 SDG: 652704

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: February 20, 2024

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1-R

Client Sample ID: ARK-AP1PZ-5 Project: GPCC00100 GPCC001 Sample ID: Client ID: 652704010 Matrix:

WG

Collect Date: 23-JAN-24 Receive Date: 24-JAN-24 Client Collector:

| Parameter                                   | Qualifier      | Result U   | ncertainty     | MDC   | TPU      | RL   | Units | PF | DF | Analys | t Date   | Time | Batch 1 | Mtd. |
|---------------------------------------------|----------------|------------|----------------|-------|----------|------|-------|----|----|--------|----------|------|---------|------|
| Rad Gas Flow Proporti<br>GFPC Ra228, Liquid | ,              | 0          |                |       |          |      |       |    |    |        |          |      |         |      |
| Radium-228                                  |                | 1.14       | +/-0.749       | 1.13  | +/-0.803 | 3.00 | pCi/L |    |    | JE1    | 02/15/24 | 0839 | 2562861 | 1    |
| Radium-226+Radium                           | -228 Calculati | on "See Pa | irent Products | ,"    |          |      |       |    |    |        |          |      |         |      |
| Radium-226+228 Sum                          |                | 1.94       | +/-0.844       | 1.13  | +/-0.909 |      | pCi/L |    | 1  | NXL1   | 02/20/24 | 1250 | 2562864 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, Li     | quid "As Recei | ived"      |                |       |          |      |       |    |    |        |          |      |         |      |
| Radium-226                                  |                | 0.798      | +/-0.389       | 0.339 | +/-0.425 | 1.00 | pCi/L |    |    | LXP1   | 02/08/24 | 1036 | 2559124 | 3    |

The following Analytical Methods were performed

| Method | Description                   |
|--------|-------------------------------|
| 1      | EPA 904.0/SW846 9320 Modified |
| 2      | Calculation                   |
| 3      | EPA 903.1 Modified            |

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | Acceptable Limits |
|---------------------------|----------------------------------|----------|-----------|-------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2562861  | 94.3      | (15%-125%)        |

#### Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 14 of 33 SDG: 652704

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

# Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: February 20, 2024

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1-R

Client Sample ID: ARK-AP1PZ-7 Project: GPCC00100 Sample ID: Matrix: GPCC001 652704011 Client ID:

WG

Collect Date: 23-JAN-24 Receive Date: 24-JAN-24 Collector: Client

| Parameter                                  | Qualifier      | Result U     | ncertainty    | MDC   | TPU      | RL   | Units | PF | DF Analy | st Date Tim   | e Batch | Mtd. |
|--------------------------------------------|----------------|--------------|---------------|-------|----------|------|-------|----|----------|---------------|---------|------|
| Rad Gas Flow Proport<br>GFPC Ra228, Liquid |                | 0            |               |       |          |      |       |    |          |               |         |      |
| Radium-228                                 | U              | -1.18        | +/-0.776      | 1.73  | +/-0.776 | 3.00 | pCi/L |    | JE1      | 02/15/24 0840 | 2562861 | 1    |
| Radium-226+Radium                          | ı-228 Calcular | tion "See Pa | arent Product | s"    |          |      |       |    |          |               |         |      |
| Radium-226+228 Sum                         | U              | 0.892        | +/-0.868      | 1.73  | +/-0.880 |      | pCi/L |    | 1 NXL1   | 02/20/24 1250 | 2562864 | 1 2  |
| Rad Radium-226<br>Lucas Cell, Ra226, L     | iquid "As Rece | eived"       |               |       |          |      |       |    |          |               |         |      |
| Radium-226                                 |                | 0.892        | +/-0.389      | 0.310 | +/-0.415 | 1.00 | pCi/L |    | LXP1     | 02/08/24 1036 | 2559124 | 1 3  |

The following Analytical Methods were performed Description

1 EPA 904.0/SW846 9320 Modified Calculation

EPA 903.1 Modified

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | <b>Acceptable Limits</b> |
|---------------------------|----------------------------------|----------|-----------|--------------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2562861  | 84.2      | (15%-125%)               |

#### **Notes:**

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor **RL**: Reporting Limit Lc/LC: Critical Level

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 15 of 33 SDG: 652704

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: February 20, 2024

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1-R

Client Sample ID: ARK-AP1PZ-8 Project: GPCC00100 Sample ID: GPCC001 Client ID: 652704012

Matrix: WG

Collect Date: 23-JAN-24 Receive Date: 24-JAN-24 Collector: Client

| Parameter                                   | Qualifier   | Result U      | ncertainty  | MDC   | TPU      | RL   | Units | PF | DF | Analys | t Date   | Time | Batch 1 | Mtd. |
|---------------------------------------------|-------------|---------------|-------------|-------|----------|------|-------|----|----|--------|----------|------|---------|------|
| Rad Gas Flow Proporti<br>GFPC Ra228, Liquid |             | 0             |             |       |          |      |       |    |    |        |          |      |         |      |
| Radium-228                                  |             | 2.67          | +/-1.29     | 1.93  | +/-1.46  | 3.00 | pCi/L |    |    | JE1    | 02/15/24 | 0841 | 2562861 | 1    |
| Radium-226+Radium                           | -228 Calcul | ation "See Pa | rent Produc | ts"   |          |      |       |    |    |        |          |      |         |      |
| Radium-226+228 Sum                          |             | 2.87          | +/-1.35     | 1.93  | +/-1.51  |      | pCi/L |    | 1  | NXL1   | 02/20/24 | 1250 | 2562864 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, Li     | quid "As Re | ceived"       |             |       |          |      |       |    |    |        |          |      |         |      |
| Radium-226                                  | U           | 0.200         | +/-0.393    | 0.721 | +/-0.394 | 1.00 | pCi/L |    |    | LXP1   | 02/08/24 | 1036 | 2559124 | 3    |

The following Analytical Methods were performed

| Method | Description                   |
|--------|-------------------------------|
| 1      | EPA 904.0/SW846 9320 Modified |
| 2      | Calculation                   |
| 2      | EDA 002 1 M-4:6:-4            |

EPA 903.1 Modified

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | Acceptable Limits |
|---------------------------|----------------------------------|----------|-----------|-------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2562861  | 94.3      | (15%-125%)        |

#### Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 16 of 33 SDG: 652704

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

# Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: February 20, 2024

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1-R

Client Sample ID: ARK-AP1PZ-9 Project: GPCC00100 Sample ID: 652704013 Client ID: GPCC001

Matrix: WG

Collect Date: 23-JAN-24
Receive Date: 24-JAN-24
Collector: Client

| Parameter                                   | Qualifier   | Result U      | ncertainty  | MDC   | TPU      | RL   | Units | PF | DF | Analys | t Date   | Time | Batch   | Mtd. |
|---------------------------------------------|-------------|---------------|-------------|-------|----------|------|-------|----|----|--------|----------|------|---------|------|
| Rad Gas Flow Proporti<br>GFPC Ra228, Liquid |             | U             |             |       |          |      |       |    |    |        |          |      |         |      |
| Radium-228                                  |             | 2.60          | +/-1.17     | 1.69  | +/-1.35  | 3.00 | pCi/L |    |    | JE1    | 02/15/24 | 0841 | 2562861 | 1    |
| Radium-226+Radium                           | -228 Calcul | ation "See Pa | rent Produc | ts"   |          |      |       |    |    |        |          |      |         |      |
| Radium-226+228 Sum                          |             | 2.87          | +/-1.19     | 1.69  | +/-1.37  |      | pCi/L |    | 1  | NXL1   | 02/20/24 | 1250 | 2562864 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, Li     | quid "As Re | ceived"       |             |       |          |      |       |    |    |        |          |      |         |      |
| Radium-226                                  | U           | 0.261         | +/-0.220    | 0.286 | +/-0.228 | 1.00 | pCi/L |    |    | LXP1   | 02/08/24 | 1036 | 2559124 | 3    |

The following Analytical Methods were performed

| Method | Description                   |
|--------|-------------------------------|
| 1      | EPA 904.0/SW846 9320 Modified |
| 2      | Calculation                   |
| 3      | EPA 903.1 Modified            |

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | <b>Acceptable Limits</b> |
|---------------------------|----------------------------------|----------|-----------|--------------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2562861  | 93.3      | (15%-125%)               |

#### **Notes:**

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method
DL: Detection Limit PF: Prep Factor
Lc/LC: Critical Level RL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 17 of 33 SDG: 652704

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

# Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: February 20, 2024

GPCC00100

GPCC001

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1-R

Client Sample ID: ARK-AP1PZ-10 Project: Sample ID: Client ID: 652704014 Matrix: WG

Collect Date:

23-JAN-24 Receive Date: 24-JAN-24 Client Collector:

| Parameter                                  | Qualifier     | Result U     | ncertainty   | MDC   | TPU      | RL   | Units | PF | DF | Analys | t Date   | Time | Batch 1 | Mtd. |
|--------------------------------------------|---------------|--------------|--------------|-------|----------|------|-------|----|----|--------|----------|------|---------|------|
| Rad Gas Flow Proportion GFPC Ra228, Liquid |               | 0            |              |       |          |      |       |    |    |        |          |      |         |      |
| Radium-228                                 |               | 1.31         | +/-0.730     | 1.01  | +/-0.802 | 3.00 | pCi/L |    |    | JE1    | 02/15/24 | 0841 | 2562861 | 1    |
| Radium-226+Radium-                         | 228 Calculat  | tion "See Pa | rent Product | s"    |          |      |       |    |    |        |          |      |         |      |
| Radium-226+228 Sum                         |               | 4.89         | +/-1.18      | 1.01  | +/-1.44  |      | pCi/L |    | 1  | NXL1   | 02/20/24 | 1250 | 2562864 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, Lic   | quid "As Rece | eived"       |              |       |          |      |       |    |    |        |          |      |         |      |
| Radium-226                                 |               | 3.59         | +/-0.925     | 0.359 | +/-1.20  | 1.00 | pCi/L |    |    | LXP1   | 02/06/24 | 1039 | 2559126 | 3    |

The following Analytical Methods were performed Description

|   | <del>-</del>                  |
|---|-------------------------------|
| 1 | EPA 904.0/SW846 9320 Modified |
| 2 | Calculation                   |
| 3 | EPA 903.1 Modified            |

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | <b>Acceptable Limits</b> |
|---------------------------|----------------------------------|----------|-----------|--------------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2562861  | 93.7      | (15%-125%)               |

### Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 18 of 33 SDG: 652704

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

# Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: February 20, 2024

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1-R

Client Sample ID: ARK-AP1PZ-11 Project: GPCC00100 Sample ID: 652704015 Client ID: GPCC001

Matrix: WG

Collect Date: 23-JAN-24 Receive Date: 24-JAN-24 Collector: Client

| Parameter                                  | Qualifier | Result U | ncertainty | MDC   | TPU      | RL   | Units | PF | DF A | nalys | t Date     | Гіте | Batch 1 | Mtd. |
|--------------------------------------------|-----------|----------|------------|-------|----------|------|-------|----|------|-------|------------|------|---------|------|
| Rad Gas Flow Proportion GFPC Ra228, Liquid |           | 0        |            |       |          |      |       |    |      |       |            |      |         |      |
| Radium-228                                 | U         | 1.07     | +/-0.773   | 1.15  | +/-0.820 | 3.00 | pCi/L |    |      | JE1   | 02/15/24 ( | )842 | 2562861 | 1    |
| Radium-226+Radium-                         |           |          |            |       |          |      |       |    |      |       |            |      |         |      |
| Radium-226+228 Sum                         |           | 1.43     | +/-0.846   | 1.15  | +/-0.891 |      | pCi/L |    | 1 N  | XL1   | 02/20/24 1 | 1250 | 2562864 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, Lic   |           |          |            |       |          |      |       |    |      |       |            |      |         |      |
| Radium-226                                 | U         | 0.357    | +/-0.344   | 0.514 | +/-0.349 | 1.00 | pCi/L |    | I    | XP1   | 02/06/24 1 | 1039 | 2559126 | 3    |

The following Analytical Methods were performed

| Method | Description                   |
|--------|-------------------------------|
| 1      | EPA 904.0/SW846 9320 Modified |
| 2      | Calculation                   |
| 3      | EPA 903.1 Modified            |

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | <b>Acceptable Limits</b> |
|---------------------------|----------------------------------|----------|-----------|--------------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2562861  | 75.3      | (15%-125%)               |

#### **Notes:**

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method
DL: Detection Limit PF: Prep Factor
Lc/LC: Critical Level RL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 19 of 33 SDG: 652704

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

# Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: February 20, 2024

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1-R

ARK-AP1-EB-02 Client Sample ID: Project: GPCC00100 Sample ID: GPCC001 Client ID: 652704016

Matrix: WQ

Collect Date: 23-JAN-24 Receive Date: 24-JAN-24 Collector: Client

| Parameter                                   | Qualifier    | Result U      | ncertainty   | MDC   | TPU      | RL   | Units | PF | DF A | nalys | t Date   | <u> Fime</u> | Batch 1 | Mtd. |
|---------------------------------------------|--------------|---------------|--------------|-------|----------|------|-------|----|------|-------|----------|--------------|---------|------|
| Rad Gas Flow Proporti<br>GFPC Ra228, Liquid |              | 0             |              |       |          |      |       |    |      |       |          |              |         |      |
| Radium-228                                  |              | 1.19          | +/-0.784     | 1.17  | +/-0.842 | 3.00 | pCi/L |    |      | JE1   | 02/15/24 | 0842         | 2562861 | 1    |
| Radium-226+Radium-                          | -228 Calculo | ation "See Pa | rent Produci | s"    |          |      |       |    |      |       |          |              |         |      |
| Radium-226+228 Sum                          |              | 1.51          | +/-0.845     | 1.17  | +/-0.900 |      | pCi/L |    | 1 N  | VXL1  | 02/20/24 | 1250         | 2562864 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, Lic    |              |               |              |       |          |      |       |    |      |       |          |              |         |      |
| Radium-226                                  | U            | 0.314         | +/-0.314     | 0.442 | +/-0.318 | 1.00 | pCi/L |    | I    | LXP1  | 02/06/24 | 1039         | 2559126 | 3    |

The following Analytical Methods were performed **Description** 

| 1 | EPA 904.0/SW846 9320 Modified |
|---|-------------------------------|
| 2 | Calculation                   |
| 3 | EPA 903.1 Modified            |

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | <b>Acceptable Limits</b> |
|---------------------------|----------------------------------|----------|-----------|--------------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2562861  | 91.2      | (15%-125%)               |

#### **Notes:**

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 20 of 33 SDG: 652704

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

# Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: February 20, 2024

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1-R

Client Sample ID: ARK-AP1-FD-02 Project: GPCC00100 Sample ID: 652704017 Client ID: GPCC001

Matrix: WG

Collect Date: 23-JAN-24
Receive Date: 24-JAN-24
Collector: Client

| Parameter                                  | Qualifier     | Result U | ncertainty | MDC   | TPU      | RL   | Units | PF | DF | Analys | t Date   | Time | Batch   | Mtd. |
|--------------------------------------------|---------------|----------|------------|-------|----------|------|-------|----|----|--------|----------|------|---------|------|
| Rad Gas Flow Proportion GFPC Ra228, Liquid |               | 0        |            |       |          |      |       |    |    |        |          |      |         |      |
| Radium-228                                 | U             | -0.106   | +/-0.724   | 1.40  | +/-0.724 | 3.00 | pCi/L |    |    | JE1    | 02/15/24 | 0842 | 2562861 | 1    |
| Radium-226+Radium-                         |               |          |            |       |          |      |       |    |    |        |          |      |         |      |
| Radium-226+228 Sum                         |               | 2.22     | +/-0.974   | 1.40  | +/-1.08  |      | pCi/L |    | 1  | NXL1   | 02/20/24 | 1250 | 2562864 | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226, Lie   | quid "As Rece |          |            |       |          |      |       |    |    |        |          |      |         |      |
| Radium-226                                 |               | 2.22     | +/-0.651   | 0.339 | +/-0.796 | 1.00 | pCi/L |    |    | LXP1   | 02/06/24 | 1039 | 2559126 | 3    |

The following Analytical Methods were performed

| Method | Description                   |
|--------|-------------------------------|
| 1      | EPA 904.0/SW846 9320 Modified |
| 2      | Calculation                   |
| 3      | EPA 903.1 Modified            |

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | <b>Acceptable Limits</b> |
|---------------------------|----------------------------------|----------|-----------|--------------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2562861  | 90.9      | (15%-125%)               |

### Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method
DL: Detection Limit PF: Prep Factor
Lc/LC: Critical Level RL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 21 of 33 SDG: 652704

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: February 20, 2024

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceAP1-R

Client Sample ID: ARK-AP1-FB-02 Project: GPCC00100 Sample ID: 652704018 Client ID: GPCC001

Matrix: WQ

Collect Date: 23-JAN-24
Receive Date: 24-JAN-24
Collector: Client

| Parameter                                              | Qualifier     | Result U     | ncertainty   | MDC   | TPU      | RL   | Units | PF | DF | Analys | t Date   | Time | Batch   | Mtd. |
|--------------------------------------------------------|---------------|--------------|--------------|-------|----------|------|-------|----|----|--------|----------|------|---------|------|
| Rad Gas Flow Proporti<br>GFPC Ra228, Liquid            |               | 0            |              |       |          |      |       |    |    |        |          |      |         |      |
| Radium-228                                             |               | 1.80         | +/-1.11      | 1.70  | +/-1.20  | 3.00 | pCi/L |    |    | JE1    | 02/15/24 | 0842 | 2562861 | 1    |
| Radium-226+Radium-                                     | -228 Calcular | tion "See Pa | rent Produci | ts"   |          |      |       |    |    |        |          |      |         |      |
| Radium-226+228 Sum                                     |               | 2.63         | +/-1.19      | 1.70  | +/-1.29  |      | pCi/L |    | 1  | NXL1   | 02/20/24 | 1250 | 2562864 | 2    |
| Rad Radium-226 Lucas Cell, Ra226, Liquid "As Received" |               |              |              |       |          |      |       |    |    |        |          |      |         |      |
| Radium-226                                             |               | 0.834        | +/-0.444     | 0.427 | +/-0.479 | 1.00 | pCi/L |    |    | LXP1   | 02/06/24 | 1039 | 2559126 | 3    |

The following Analytical Methods were performed

| Method | Description                   |
|--------|-------------------------------|
| 1      | EPA 904.0/SW846 9320 Modified |
| 2      | Calculation                   |
| 3      | EPA 903.1 Modified            |

| Surrogate/Tracer Recovery | Test                             | Batch ID | Recovery% | <b>Acceptable Limits</b> |
|---------------------------|----------------------------------|----------|-----------|--------------------------|
| Barium-133 Tracer         | GFPC Ra228, Liquid "As Received" | 2562861  | 87.3      | (15%-125%)               |

#### **Notes:**

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method
DL: Detection Limit PF: Prep Factor
Lc/LC: Critical Level RL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 22 of 33 SDG: 652704

## Radiochemistry Technical Case Narrative Georgia Power Company SDG #: 652704

**Product:** Radium-226+Radium-228 Calculation

**Analytical Method:** Calculation

Analytical Procedure: GL-RAD-D-003 REV# 45

**Analytical Batch:** 2562864

The following samples were analyzed using the above methods and analytical procedure(s).

| GEL Sample ID# | Client Sample Identification |
|----------------|------------------------------|
| 652704001      | ARK-AP1GWA-1                 |
| 652704002      | ARK-AP1GWA-2                 |
| 652704003      | ARK-AP1PZ-1                  |
| 652704004      | ARK-AP1PZ-2                  |
| 652704005      | ARK-AP1-FB-01                |
| 652704006      | ARK-AP1-FD-01                |
| 652704007      | ARK-AP1-EB-01                |
| 652704008      | ARK-AP1PZ-3                  |
| 652704009      | ARK-AP1PZ-4                  |
| 652704010      | ARK-AP1PZ-5                  |
| 652704011      | ARK-AP1PZ-7                  |
| 652704012      | ARK-AP1PZ-8                  |
| 652704013      | ARK-AP1PZ-9                  |
| 652704014      | ARK-AP1PZ-10                 |
| 652704015      | ARK-AP1PZ-11                 |
| 652704016      | ARK-AP1-EB-02                |
| 652704017      | ARK-AP1-FD-02                |
| 652704018      | ARK-AP1-FB-02                |

The samples in this SDG were analyzed on an "as received" basis.

#### **Data Summary:**

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

**Product:** GFPC Ra228, Liquid

Analytical Method: EPA 904.0/SW846 9320 Modified Analytical Procedure: GL-RAD-A-063 REV# 5

**Analytical Batch:** 2562861

The following samples were analyzed using the above methods and analytical procedure(s).

| GEL Sample ID# | Client Sample Identification |
|----------------|------------------------------|
| 652704001      | ARK-AP1GWA-1                 |
| 652704002      | ARK-AP1GWA-2                 |
| 652704003      | ARK-AP1PZ-1                  |

Page 23 of 33 SDG: 652704

| 652704004  | ARK-AP1PZ-2                                    |
|------------|------------------------------------------------|
| 652704005  | ARK-AP1-FB-01                                  |
| 652704006  | ARK-AP1-FD-01                                  |
| 652704007  | ARK-AP1-EB-01                                  |
| 652704008  | ARK-AP1PZ-3                                    |
| 652704009  | ARK-AP1PZ-4                                    |
| 652704010  | ARK-AP1PZ-5                                    |
| 652704011  | ARK-AP1PZ-7                                    |
| 652704012  | ARK-AP1PZ-8                                    |
| 652704013  | ARK-AP1PZ-9                                    |
| 652704014  | ARK-AP1PZ-10                                   |
| 652704015  | ARK-AP1PZ-11                                   |
| 652704016  | ARK-AP1-EB-02                                  |
| 652704017  | ARK-AP1-FD-02                                  |
| 652704018  | ARK-AP1-FB-02                                  |
| 1205639369 | Method Blank (MB)                              |
| 1205639370 | 652704001(ARK-AP1GWA-1) Sample Duplicate (DUP) |
| 1205639371 | Laboratory Control Sample (LCS)                |
|            |                                                |

The samples in this SDG were analyzed on an "as received" basis.

## **Data Summary:**

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

### **Quality Control (QC) Information**

#### **Method Blank Criteria**

The blank result (See Below) is greater than the MDC but less than the required detection limit.

| Sample          | Analyte    | Value                                                   |
|-----------------|------------|---------------------------------------------------------|
| 1205639369 (MB) | Radium-228 | Result: 1.68 pCi/L > MDA: 1.42 pCi/L <= RDL: 3.00 pCi/L |

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

**Analytical Procedure:** GL-RAD-A-008 REV# 15

**Analytical Batch:** 2559124

The following samples were analyzed using the above methods and analytical procedure(s).

| GEL Sample ID# | Client Sample Identification |
|----------------|------------------------------|
| 652704001      | ARK-AP1GWA-1                 |
| 652704002      | ARK-AP1GWA-2                 |
| 652704003      | ARK-AP1PZ-1                  |
| 652704004      | ARK-AP1PZ-2                  |
| 652704005      | ARK-AP1-FB-01                |
| 652704006      | ARK-AP1-FD-01                |
| 652704007      | ARK-AP1-EB-01                |

| 652704008  | ARK-AP1PZ-3                                    |
|------------|------------------------------------------------|
| 652704009  | ARK-AP1PZ-4                                    |
| 652704010  | ARK-AP1PZ-5                                    |
| 652704011  | ARK-AP1PZ-7                                    |
| 652704012  | ARK-AP1PZ-8                                    |
| 652704013  | ARK-AP1PZ-9                                    |
| 1205632622 | Method Blank (MB)                              |
| 1205632623 | 652694001(ARK-ARGWA-19) Sample Duplicate (DUP) |
| 1205632624 | 652694001(ARK-ARGWA-19) Matrix Spike (MS)      |
| 1205632625 | Laboratory Control Sample (LCS)                |

The samples in this SDG were analyzed on an "as received" basis.

## **Data Summary:**

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

### **Miscellaneous Information**

#### **Additional Comments**

The matrix spike, 1205632624 (ARK-ARGWA-19MS), aliquot was reduced to conserve sample volume.

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

**Analytical Procedure:** GL-RAD-A-008 REV# 15

**Analytical Batch:** 2559126

The following samples were analyzed using the above methods and analytical procedure(s).

| GEL Sample ID# | Client Sample Identification             |
|----------------|------------------------------------------|
| 652704014      | ARK-AP1PZ-10                             |
| 652704015      | ARK-AP1PZ-11                             |
| 652704016      | ARK-AP1-EB-02                            |
| 652704017      | ARK-AP1-FD-02                            |
| 652704018      | ARK-AP1-FB-02                            |
| 1205632626     | Method Blank (MB)                        |
| 1205632627     | 652607001(NonSDG) Sample Duplicate (DUP) |
| 1205632628     | 652607001(NonSDG) Matrix Spike (MS)      |
| 1205632629     | Laboratory Control Sample (LCS)          |

The samples in this SDG were analyzed on an "as received" basis.

### **Data Summary:**

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

### **Miscellaneous Information**

#### **Additional Comments**

Page 25 of 33 SDG: 652704

The matrix spike, 1205632628 (Non SDG 652607001MS), aliquot was reduced to conserve sample volume.

## **Certification Statement**

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 26 of 33 SDG: 652704

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Client: Georgia Power Company, Southern Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia

Contact: Joju Abraham

Workorder: 652704

Report Date: February 20, 2024
Page 1 of 3

| Parmname                      | NOM             | Sample (            | Qual | QC                 | Units | RPD% | REC% | Range Anlst        | Date Time     |
|-------------------------------|-----------------|---------------------|------|--------------------|-------|------|------|--------------------|---------------|
| Rad Gas Flow                  |                 |                     |      |                    |       |      |      |                    |               |
| Batch 2562861 -               |                 |                     |      |                    |       |      |      |                    |               |
| QC1205639370 652704001 DUP    |                 |                     |      |                    |       |      |      |                    |               |
| Radium-228                    | U               | -0.0261             | U    | -0.841             | pCi/L | 0    |      | N/A JE1            | 02/15/2408:41 |
|                               | Uncert:         | +/-1.04             |      | +/-1.19            |       |      |      |                    |               |
|                               | TPU:            | +/-1.04             |      | +/-1.19            |       |      |      |                    |               |
| QC1205639371 LCS              |                 |                     |      |                    |       |      |      |                    |               |
| Radium-228                    | 73.4            |                     |      | 74.5               | pCi/L |      | 102  | (75%-125%) JE1     | 02/15/2408:41 |
|                               | Uncert:         |                     |      | +/-3.93            |       |      |      |                    |               |
| OC1205/20270 MD               | TPU:            |                     |      | +/-19.4            |       |      |      |                    |               |
| QC1205639369 MB<br>Radium-228 |                 |                     |      | 1 60               | pCi/L |      |      | JE1                | 02/15/2408:41 |
| Radium-228                    | Uncert:         |                     |      | 1.68<br>+/-0.969   | pc1/L |      |      | JE1                | U2/13/24U0.41 |
|                               | TPU:            |                     |      | +/-0.909           |       |      |      |                    |               |
| Rad Ra-226                    | 110.            |                     |      | 1/-1.00            |       |      |      |                    |               |
| Batch 2559124 -               |                 |                     |      |                    |       |      |      |                    |               |
| QC1205632623 652694001 DUP    |                 |                     |      |                    |       |      |      |                    | ļ             |
| Radium-226                    |                 | 1.46                |      | 1.90               | pCi/L | 25.8 |      | (0% - 100%) LXP1   | 02/08/2411:08 |
| Radium 220                    | Uncert:         | +/-0.552            |      | +/-0.638           | PCL   | 20.0 |      | (0/0 100/0) 2:22 1 | 02,00,2111.00 |
|                               | TPU:            | +/-0.595            |      | +/-0.713           |       |      |      |                    |               |
| QC1205632625 LCS              |                 |                     |      |                    |       |      |      |                    |               |
| Radium-226                    | 26.3            |                     |      | 19.9               | pCi/L |      | 75.6 | (75%-125%) LXP1    | 02/08/2411:08 |
|                               | Uncert:         |                     |      | +/-1.74            | -     |      |      |                    |               |
|                               | TPU:            |                     |      | +/-4.53            |       |      |      |                    |               |
| QC1205632622 MB               |                 |                     |      |                    |       |      |      |                    |               |
| Radium-226                    |                 |                     | U    | 0.315              | pCi/L |      |      | LXP1               | 02/08/2411:08 |
|                               | Uncert:         |                     |      | +/-0.405           |       |      |      |                    |               |
|                               | TPU:            |                     |      | +/-0.409           |       |      |      |                    |               |
| QC1205632624 652694001 MS     | 120             | 1.46                |      | 1.40               | C: /I |      | 100  | (550/ 1050/) I WD1 | 02/00/2411 00 |
| Radium-226                    | 128             | 1.46                |      | 140                | pCi/L |      | 108  | (75%-125%) LXP1    | 02/08/2411:08 |
|                               | Uncert:         | +/-0.552            |      | +/-11.2            |       |      |      |                    |               |
| Batch 2559126 -               | TPU:            | +/-0.595            |      | +/-34.0            |       |      |      |                    |               |
|                               |                 |                     |      |                    |       |      |      |                    |               |
| QC1205632627 652607001 DUP    |                 | 2.51                |      | 4.17               | C: /I | 17.1 |      | (00/ 200/) LVD1    | 00/06/0410 56 |
| Radium-226                    | I In cont.      | 3.51                |      | 4.17               | pCi/L | 17.1 |      | (0%-20%) LXP1      | 02/06/2410:56 |
|                               | Uncert:<br>TPU: | +/-0.864<br>+/-1.19 |      | +/-1.04<br>+/-1.23 |       |      |      |                    |               |
| QC1205632629 LCS              | ITU.            | +/-1.19             |      | ⊤/-1.∠ <i>3</i>    |       |      |      |                    |               |
| Radium-226                    | 27.3            |                     |      | 21.0               | pCi/L |      | 76.8 | (75%-125%) LXP1    | 02/06/2410:56 |
| Rudram 220                    | Uncert:         |                     |      | +/-2.02            | P~~=  |      | ,    | (10/0 120/0) 212   | 02,00,2.10.2  |
|                               | TPU:            |                     |      | +/-3.69            |       |      |      |                    |               |
| QC1205632626 MB               |                 |                     |      |                    |       |      |      |                    |               |
| Radium-226                    |                 |                     | U    | 0.344              | pCi/L |      |      | LXP1               | 02/06/2410:56 |
|                               |                 |                     |      |                    |       |      |      |                    |               |

Page 27 of 33 SDG: 652704

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## **QC** Summary

Workorder: 652704 Page 2 of 3 Sample Qual **Units Parmname NOM** QC RPD% REC% Range Anlst Date Time Rad Ra-226 2559126 Batch Uncert: +/-0.402 TPU: +/-0.405OC1205632628 652607001 MS Radium-226 137 3.51 119 pCi/L 84.1 (75%-125%) LXP1 02/06/2410:56 +/-0.864 +/-10.4Uncert: +/-1.19 +/-25.1 TPU:

#### Notes:

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- H Analytical holding time was exceeded
- < Result is less than value reported
- Result is greater than value reported
- UI Gamma Spectroscopy--Uncertain identification
- BD Results are either below the MDC or tracer recovery is low
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- M M if above MDC and less than LLD
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- FA Failed analysis.
- UJ Gamma Spectroscopy--Uncertain identification
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- \*\* Analyte is a Tracer compound
- M REMP Result > MDC/CL and < RDL
- J See case narrative for an explanation

Page 28 of 33 SDG: 652704

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

# QC Summary

Workorder: 652704

Parmname NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 29 of 33 SDG: 652704

<sup>\*\*</sup> Indicates analyte is a surrogate/tracer compound.

<sup>^</sup> The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

| Page: 1 of 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                      |                                |                                                                  |                                                             | +                    |                                                 | (                                                                                                | •                                   | (                          | (                                      | J                   | GEL 1           | GEL Laboratories, LLC                                                                                         |                                                                                                                                                                                                                                             |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------|-------------------------------------------------------------|----------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------|----------------------------------------|---------------------|-----------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 21.03.0434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                      |                                |                                                                  | 200                                                         | 2                    | $\mathcal{L}$                                   |                                                                                                  | D                                   | 70                         | 0770                                   | _                   | 2040            | 2040 Savage Road                                                                                              |                                                                                                                                                                                                                                             |           |
| COC Number (1): 5 Sample Cooler(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                      | ुन्।<br>Chain of               |                                                                  | Chemistry   Badiochemist<br>stody and Analyti               | Radioche<br>d Anal   | Sa                                              | Radiobioassay I Specially<br>I <b>Request</b> $\zeta$ $\zeta$                                    | Specialt                            | Ly Analytics               |                                        | h                   | Charle<br>Phone | Charleston, SC 29407<br>Phone: (843) 556-8171                                                                 |                                                                                                                                                                                                                                             |           |
| PO Number: GPC82177-0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GEL Work Order Number:                                                                               | nber:                          |                                                                  | GEL                                                         | Project              | GEL Project Manager: Erin Trent                 | Erin Tr                                                                                          |                                     |                            |                                        |                     | Fax: (8         | Fax: (843) 766-1178                                                                                           |                                                                                                                                                                                                                                             |           |
| Client Name: Georgia Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                      | Phone # (93                    |                                                                  | 7-344-6533)                                                 |                      |                                                 | Samp                                                                                             | Sample Analysis Requested (5)       | lysis F                    | sednes                                 | ted (5)             | (Fill i         | (Fill in the number of containers for each test)                                                              | ainers for each test)                                                                                                                                                                                                                       |           |
| Project/Site Name: Plant Arkwright Ash Pond 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                                                   | Fax: N/A                       |                                                                  |                                                             | Š                    | Should this                                     | this                                                                                             | s                                   | IN                         |                                        | IN                  | IN              | IN                                                                                                            | < Preservative Type (6)                                                                                                                                                                                                                     | ype (6)   |
| Address: 241 Ralph McGill Blvd SE, Atlanta,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , GA 30308                                                                                           |                                |                                                                  |                                                             |                      | sample be                                       | e be                                                                                             |                                     |                            | (91                                    |                     | p               |                                                                                                               |                                                                                                                                                                                                                                             |           |
| Collected By: Zach Levy, John Myer, Dylan Ripley, Emily Scheiben                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Send Results To: jabraham@southernco.com El<br>Cassidy.Sutherland@stantec.com                        | asouthernco.con                | ı EDD@s                                                          | OD@stantec.com                                              | -                    |                                                 | sp.res                                                                                           |                                     | SC                         | FI, Sulfa                              | e value - watercook | 228 Cmb         | (B0\/\psi\/)                                                                                                  | Comments                                                                                                                                                                                                                                    | (2)       |
| Sample ID  * For composites - indicate start and stop date time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *Date Collected o date/time (mm-dd-yy)                                                               | *Time ted Collected (Military) | QC<br>Code (2)                                                   | Field<br>Filtered (3)                                       | Sample<br>Matrix (4) | Radioactive<br>yes, please su<br>isotopic info. | onwonM (7)<br>possible Haza                                                                      | Total numbe                         | Metals App.                | (SM Methoday)<br>(S) Anions (Cl, 1909) | Metals App.         | KAD 226-2       | Мегсигу                                                                                                       | ( task_code: ARK-CCK-<br>ASSMT-2024S1 )                                                                                                                                                                                                     | S1)       |
| ARK-AP1GWA-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/22/2024                                                                                            | 4 14:35                        | z                                                                | z                                                           | MG                   |                                                 |                                                                                                  | 9                                   | X                          | ×                                      | ×                   | ×               | ×                                                                                                             |                                                                                                                                                                                                                                             |           |
| ARK-APIGWA-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/22/2024                                                                                            | 4 14:45                        | Z                                                                | z                                                           | MG                   |                                                 |                                                                                                  | 9                                   | X                          | ×                                      | ×                   | ×               | ×                                                                                                             |                                                                                                                                                                                                                                             |           |
| ARK-AP1PZ-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/22/2024                                                                                            | 4 16:40                        | z                                                                | Z                                                           | MG                   |                                                 |                                                                                                  | 9                                   | ×                          | ×                                      | ×                   | ×               | ×                                                                                                             |                                                                                                                                                                                                                                             |           |
| ARK-APIPZ-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/22/2024                                                                                            | 4 16:40                        | z                                                                | z                                                           | MG                   |                                                 |                                                                                                  | 6 3                                 | ×                          | ×                                      | ×                   | ×               | ×                                                                                                             |                                                                                                                                                                                                                                             |           |
| ARK-AP1-FB-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/22/2024                                                                                            | 4 15:00                        | FB                                                               | z                                                           | WQ                   |                                                 |                                                                                                  | X 9                                 | ×                          | ×                                      | ×                   | ×               | X                                                                                                             |                                                                                                                                                                                                                                             |           |
| ARK-AP1-FD-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/22/2024                                                                                            | 4 NA                           | Ð                                                                | z                                                           | WQ                   |                                                 |                                                                                                  | X 9                                 | X                          | ×                                      | ×                   | ×               | ×                                                                                                             |                                                                                                                                                                                                                                             |           |
| ARK-API-EB-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/22/2024                                                                                            | 4 17:15                        | EB                                                               | z                                                           | WQ                   |                                                 |                                                                                                  | X 9                                 | X                          | ×                                      | ×                   | ×               | ×                                                                                                             |                                                                                                                                                                                                                                             |           |
| ARK-AP1PZ-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/23/2024                                                                                            | 4 11:45                        | z                                                                | z                                                           | MG                   |                                                 |                                                                                                  | X 9                                 | ×                          | ×                                      | ×                   | ×               | ×                                                                                                             |                                                                                                                                                                                                                                             |           |
| ARK-AP1PZ-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/23/2024                                                                                            | 4 13:10                        | z                                                                | Z                                                           | MG                   |                                                 |                                                                                                  | X 9                                 | ×                          | ×                                      | ×                   | ×               | ×                                                                                                             |                                                                                                                                                                                                                                             |           |
| ARK-AP1PZ-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/23/2024                                                                                            | 14:50                          | z                                                                | Z                                                           | WG                   |                                                 |                                                                                                  | X 9                                 | ×                          | ×                                      | ×                   | ×               | X                                                                                                             |                                                                                                                                                                                                                                             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chain of Custody Signatures                                                                          | res                            |                                                                  |                                                             |                      |                                                 | TAT Re                                                                                           | Requested:                          |                            | Normal:                                | X                   | Rush:           | Specify:                                                                                                      | (Subject to Surcharge)                                                                                                                                                                                                                      | charge)   |
| Relinquished By (Signed) Print Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Date Received by (signed)                                                                            |                                | Print Name                                                       |                                                             | Date                 | I                                               | Fax Results: [ ] Yes                                                                             | ts: [ ]                             | 1                          | N[X]                                   |                     |                 |                                                                                                               |                                                                                                                                                                                                                                             |           |
| 1 Offmer Stantee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 124/24/18                                                                                            | na                             | May                                                              | 18                                                          | 1294                 |                                                 | Select Deliverable: [                                                                            | iverable                            | )[]:                       | ] C of A                               | []00                | ] QC Summary    | [ ] level 1                                                                                                   | X Level 2 [ ] Level 3                                                                                                                                                                                                                       | [ ] Level |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 00                                                                                                 | moma                           | B                                                                | c//                                                         | 24/24133             | 5                                               | Additional Remarks:                                                                              | l Remai                             | ks:                        |                                        |                     |                 |                                                                                                               | 8.                                                                                                                                                                                                                                          |           |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                    |                                |                                                                  |                                                             |                      | 1                                               | For Lab Receiving Use Only: Custody Seal Intact? [                                               | Receivin                            | g Use                      | Only:                                  | Sustod              | Seal I          | itact? [ ] Yes [ ] No                                                                                         | o Cooler Temp:                                                                                                                                                                                                                              | 7°C       |
| > For sample shipping and delivery details, see Sample Receipt & Review form (SRR.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ee Sample Receipt & Review f                                                                         | orm (SRR.)                     |                                                                  |                                                             |                      | Sample Collection Time Zone: [X] Eastern        | Mection                                                                                          | Time Z                              | ne: [                      | X ] Ea                                 | stern               | [ ] Pacific     | [ ] Central                                                                                                   | [ ] Mountain [ ] Other:                                                                                                                                                                                                                     | er:       |
| 1.) Chain of Custody Number = Client Determined 2.) Of Codes: N = Normal Samula TB = Trin Black FD = Field Dandisons DB = Emissions Dlack MC = Normal Samula Codes (N = Normal Samula TB = Trin Black FD = Field Dandisons DB = Emissions Dlack MC = Normal Samula TB = Trin Black FD = Field Dandisons DB = Emissions Dlack MC = Normal Samula Samula Samula TB = Trin Black FD = Field Dandisons DB = Emissions Dlack MC = Normal Samula Sa | = Field Dunlingte FD = Equipment D                                                                   | MS - Mortin                    | o Clino                                                          | Men                                                         | Silve                |                                                 | -                                                                                                | ,                                   | C                          | 2                                      |                     |                 |                                                                                                               |                                                                                                                                                                                                                                             |           |
| 3.) Field Filtered. For liquid matrices, indicate with a - Y - for yes the sample was field filtered or - N - for sample was not field filtered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - for ves the sample was field filtered or                                                           | - N - for sample w             | as not field                                                     | filtered.                                                   | de vinani            | ne Dupincate                                    | Sample, G                                                                                        | Ol ab,                              |                            | Sile                                   |                     |                 |                                                                                                               |                                                                                                                                                                                                                                             |           |
| Matrix Codes: DW=Drinking Water, GW=Groundwater, SW=Surface Water, WW=Water, W=Water, ML=Misc Liquid, SO=Soil, SD=Sediment, SL=Sludge, SS=Solid Waste, O=Oil, F=Filter, P=Wipe, U=Urine, F=Fecal, N=Nasal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | er, SW=Surface Water, WW=Waste W                                                                     | ater, W=Water, M               | L=Misc Li                                                        | quid, SO=S                                                  | oil, SD=Se           | diment, SL=S                                    | ludge, SS=                                                                                       | olid Was                            | ie, <b>0</b> =0            | l, F=Filte                             | r, P=Wip            | e, U=Ur         | ne, F=Fecal, N=Nasal                                                                                          |                                                                                                                                                                                                                                             |           |
| 5.) Sample Analysis Requested: Analytical method requested (i.e. 8260B, 6010B/7470A) and number of containers provided for each (i.e. 8260B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sted (i.e. <b>8260B, 6010B/7470A)</b> and nu                                                         | nber of containers             | provided f                                                       | or each (i.e.                                               | 8260B - 3            | -3, 6010B/7470A -1).                            | 1 - 1)                                                                                           |                                     |                            |                                        |                     |                 |                                                                                                               |                                                                                                                                                                                                                                             |           |
| 5.) Preservative Type: HA = Hydrochloric Acid, NI = Nitric Acid, SH = Sodium Hydroxide, SA = Sulfuric Acid, AA = Ascorbic Acid, HX = Hexane, ST = Sodium Thiosulfare, If no preservative is added = leave field blank or KNOWN OR POSSIBLE HAZARDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ic Acid, SH = Sodium Hydroxide, SA =                                                                 | Sulfuric Acid, AA = A          | = Ascorbi                                                        | c Acid, HX                                                  | = Hexane,            | ST = Sodium                                     | m Thiosulfate                                                                                    | . If no pre                         | servativ                   | is added                               | l = leave           | ield blar       |                                                                                                               |                                                                                                                                                                                                                                             |           |
| RCRA Metals  As = Arsenic Hg= Mercury  Ba = Barium Se= Selenium  Cd = Cadmium Ag= Silver  Cr = Chromium MR= Misc. RCRA metals  Pb = Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FC = Flammable/Ignitable CO = Corrosive RE = Reactive TSCA Regulated PCB = Polychlorinated hinherwys | ] [                            | Elster waste LW= Listed Waste (F.K.P and U-listee Waste code(s): | Elector waste  (F.K.P and U-listed wastes.)  Waste code(s): | tes.)                |                                                 | OTE Other / Unknown<br>(i.e.: High/low pH, asbest<br>misc. health hazards, etc.,<br>Description: | T / Unka<br>Tow pH<br>h hazar<br>n: | lown<br>, asbes<br>ds, etc | tos, be                                | yllium,             | irritar         | rease provate any add<br>regarding handling and<br>s. (i.e.: Origin of sample(s,<br>from, odd matrices, etc.) | rease provide any administration useful below  Tegarding handling and/or disposal concerns.  (i.e.: High/low pH, asbestos, beryllium, irritants, (i.e.: Origin of sample(s), type of site collected from, odd matrices, etc.)  Description: | ected     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - C                                                                                                  |                                |                                                                  |                                                             |                      |                                                 |                                                                                                  |                                     |                            |                                        |                     |                 |                                                                                                               |                                                                                                                                                                                                                                             |           |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                               |                       |                                                                             |                            | 1000                       |                      |                                                                                               |                                                                                                 |                               |                   |                        |              |             |                 |                                                                                                                |                                            |                                                                                                                                                                                                                         |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------|----------------------------|----------------------------|----------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------|-------------------|------------------------|--------------|-------------|-----------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                               |                       |                                                                             |                            | (                          | -!                   | ,<br>,                                                                                        |                                                                                                 |                               | 152707            | 27                     | 20           |             | BEL L           | GEL Laboratories, LLC                                                                                          | Ŋ                                          |                                                                                                                                                                                                                         |               |
| 175569434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                               |                       |                                                                             | .U                         |                            | J . T .              |                                                                                               |                                                                                                 |                               | ,                 |                        |              |             | 2040 S          | 2040 Savage Road                                                                                               |                                            |                                                                                                                                                                                                                         |               |
| COC Number (1): 5 Sample Cooler(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                               | Cha                   | Chain of C                                                                  | ustod                      | Chemistry   Rz<br>fodv and | Analy                | Custody and Analytical Requests                                                               | Redictions and Specialty Analytics Redicted Control Control                                     | ay spe                        | cialty A          | nalyfics<br>J          | ٥,           |             | harles<br>hone. | Charleston, SC 29407<br>Phone: (843) 556 9171                                                                  | 7                                          |                                                                                                                                                                                                                         | -             |
| 82177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GEL Work Order Number:                                                        | mber:                 |                                                                             |                            | SEL P                      | oject A              | GEL Project Manager: Erin Trent                                                               | : Erin                                                                                          | Trent                         |                   | 1                      |              | T           | ax: (8          | Fax: (843) 766-1178                                                                                            |                                            |                                                                                                                                                                                                                         |               |
| Client Name: Georgia Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                               | Phone                 | Phone # (937-                                                               | 7-344-6533)                | 33)                        |                      |                                                                                               | Sar                                                                                             | Sample Analysis Requested (5) | nalys             | is Re                  | queste       |             | Fill in         | the number of                                                                                                  | of conta                                   | (Fill in the number of containers for each test)                                                                                                                                                                        |               |
| Project/Site Name: Plant Arkwright Ash Pond 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                               | Fax: N/A              | Α,                                                                          |                            |                            |                      | Shoul                                                                                         | Should this                                                                                     | S                             | IN                |                        |              |             | IN              | IN                                                                                                             |                                            | < Preservative Type (6)                                                                                                                                                                                                 | (9            |
| ddress: 241 Ralph McGill Blvd SE, Atlanta, GA 30308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A 30308                                                                       |                       |                                                                             |                            |                            |                      | samp                                                                                          | sample be<br>considered:                                                                        | ,<br>ainer                    | (BC               | (3                     |              | (B)         | p               |                                                                                                                |                                            |                                                                                                                                                                                                                         |               |
| Collected By: Zach Levy, John Myer, Dylan<br>Ripley, Emily Scheiben                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Send Results To: jabraham@southernco.com El<br>Cassidy.Sutherland@stantec.com | asouthernce<br>ec.com | .com ED                                                                     | DD@stantec.com             | ec.com                     |                      | H)                                                                                            | ırds                                                                                            | , ot cont                     | 709) III          |                        |              | )Z09) AI    | dmD 82          | (80747)                                                                                                        |                                            | Comments                                                                                                                                                                                                                |               |
| Sample ID  * For composites - indicate start and stop date/time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *Date Collected                                                               |                       | _ ^                                                                         | QC<br>Code (2) Fi          | Field (3)                  | Sample<br>Matrix (4) | Radioactive<br>yes, please sup<br>isotopic info.)                                             | (7) Known or<br>possible Haza                                                                   | Total number                  | Metals App.       | TD<br>(SM Metho        | (300.0 Rev.) | Metals App. | KAD 226-2       | , метсшу (                                                                                                     |                                            | ( task_code: ARK-CCR-<br>ASSMT-2024S1 )                                                                                                                                                                                 | - <del></del> |
| ARK-APIPZ-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                               | _                     |                                                                             | z                          | z                          | MG                   |                                                                                               |                                                                                                 | . 9                           | ×                 | ×                      | ×            | ×           | ×               | ×                                                                                                              | 1                                          |                                                                                                                                                                                                                         |               |
| ARK-AP1PZ-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/23/2024                                                                     |                       | 11:40                                                                       | z                          | z                          | ВM                   |                                                                                               |                                                                                                 | 9                             | ×                 | ×                      | ×            | ×           | ×               | ×                                                                                                              |                                            |                                                                                                                                                                                                                         |               |
| ARK-AP1PZ-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/23/2024                                                                     |                       | 13:35                                                                       | z                          | z                          | MG                   |                                                                                               |                                                                                                 | 9                             | ×                 | ×                      | ×            | ×           | ×               | ×                                                                                                              |                                            |                                                                                                                                                                                                                         | T             |
| ARK-AP1PZ-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/23/2024                                                                     | 24 16:00              | 00                                                                          | Z                          | z                          | MG                   |                                                                                               |                                                                                                 | 9                             | ×                 | ×                      | ×            | ×           | ×               | ×                                                                                                              |                                            |                                                                                                                                                                                                                         | T             |
| ARK-AP1PZ-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/23/2024                                                                     |                       | 17:15                                                                       | Z                          | z                          | MG                   |                                                                                               |                                                                                                 | 9                             | ×                 | ×                      | ×            | ×           | ×               | ×                                                                                                              |                                            |                                                                                                                                                                                                                         |               |
| ARK-AP1-EB-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/23/2024                                                                     | 24   17:00            |                                                                             | EB                         | z                          | WQ                   |                                                                                               |                                                                                                 | 9                             | ×                 | ×                      | ×            | ×           | ×               | ×                                                                                                              |                                            |                                                                                                                                                                                                                         | Γ             |
| ARK-AP1-FD-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/23/2024                                                                     | 24 NA                 |                                                                             | ED                         | z                          | WQ                   |                                                                                               |                                                                                                 | 9                             | ×                 | ×                      | ×            | ×           | ×               | ×                                                                                                              |                                            |                                                                                                                                                                                                                         |               |
| ARK-AP1-FB-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/23/2024                                                                     | 24 15:55              |                                                                             | FB                         | z                          | WQ                   |                                                                                               |                                                                                                 | 9                             | ×                 | ×                      | ×            | ×           | ×               | ×                                                                                                              |                                            |                                                                                                                                                                                                                         | Τ             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                               |                       |                                                                             |                            |                            |                      |                                                                                               |                                                                                                 |                               |                   |                        |              |             |                 |                                                                                                                |                                            |                                                                                                                                                                                                                         |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chain of Custody Signatures                                                   | nres                  | 1                                                                           | 1                          |                            |                      |                                                                                               | TAT                                                                                             | TAT Requested:                | sted:             | Normal:                | nai:         | ×           | Rush:           | Specify:                                                                                                       |                                            | (Subject to Surcharge)                                                                                                                                                                                                  | ge)           |
| Relinquished By (Signed) Print Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date Received                                                                 | Received by (signed)  | Print                                                                       | Print Name                 | Date                       | te                   |                                                                                               | Fax Results: [ ] Yes                                                                            | sults:                        | l Ye              | İ                      | [X]No        |             |                 |                                                                                                                |                                            |                                                                                                                                                                                                                         | Γ             |
| 1 Manne   Stantec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 124/24                                                                        | Sa                    | 1/2                                                                         | 12/12                      | 12021                      |                      |                                                                                               | Select Deliverable: [ ] C of A [ ] QC Summary                                                   | Deliver                       | able: [           | ) C o                  | fA [         | 100         | nmuş            | ry [ ] level 1                                                                                                 | 1                                          | [X Level 2 [ ] Level 3 [ ] Leve                                                                                                                                                                                         | evel          |
| Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | de                                                                            |                       | 1                                                                           |                            |                            |                      |                                                                                               | Additional Remarks.                                                                             | nal Re                        | marks.            |                        |              |             |                 |                                                                                                                |                                            |                                                                                                                                                                                                                         |               |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                             |                       |                                                                             |                            |                            |                      |                                                                                               | For La                                                                                          | b Rece                        | iving             | Use O                  | dy: C        | ustody      | Seal In         | For Lab Receiving Use Only: Custody Seal Intact? [ ] Yes                                                       | [ ].No                                     | o Cooler Temp: 7 °C                                                                                                                                                                                                     | C             |
| > For sample shipping and delivery details, see Sample Receipt & Review form (SRR.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Receipt & Review                                                       | form (SRR.            |                                                                             |                            |                            | -1                   | Sample Collection Time Zone : [ $X$ ] Eastern                                                 | Collectio                                                                                       | n Tim                         | e Zon             | x] ::                  | ] East       |             | [ ] Pacific     | fic [ ] Central                                                                                                |                                            | [ ] Mountain [ ] Other:                                                                                                                                                                                                 |               |
| 1.) Chain of Custody Number = Client Determined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                               |                       |                                                                             | -                          |                            |                      | :                                                                                             |                                                                                                 | (                             | (                 |                        |              |             |                 |                                                                                                                |                                            |                                                                                                                                                                                                                         |               |
| (2.) Que codes: N = Normal Sample, 1B = 1 rpp Blank, F D = Freto Duplicate, EB = Equipment Blank, MS = Matrix Spike Sample, MSD = Matrix Spike Duplicate Sample, G = Grab, C = Composite 3.) Field Filtered: For hourd matrices, indicate with a - Y - for ves the sample was field filtered or - N - for sample was not field Filtered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fred Dupircate, <b>E.B.</b> = Equipment I                                     | stank, MS = M         | atrix Spike                                                                 | s Sample,<br>it field filt | MSD = M<br>ered            | аптх эртк            | e Dupincate                                                                                   | s sample,                                                                                       | ق<br>ا                        | ۵, <del>د</del> = | isodwo                 | e.           |             |                 |                                                                                                                |                                            |                                                                                                                                                                                                                         |               |
| 4.) Matrix Codes: <b>DW</b> =Drinking Water, <b>GW</b> =Groundwater, <b>SW</b> =Surface Water, <b>WW</b> =Waste Water, <b>W</b> =Waste, <b>W</b> =Miser, <b>W</b> , | SW=Surface Water, WW=Waste                                                    | Water, W=Wat          | er, ML=M                                                                    | isc Liquic                 | SO=Soil                    | SD=Sed               | iment, SL=                                                                                    | Sludge, S                                                                                       | S=Solid                       | Waste,            | D=Oil, I               | =Filter,     | P=Wip       | , U=Uri         | ie, F=Fecal, N=N                                                                                               | asal                                       |                                                                                                                                                                                                                         |               |
| 5) Sample Analysis Requested: Analytical method requested (i.e. 8260B, 6010B/7470A) and number of containers provided for each (i.e. 8260B - 3, 6010B/7470A - 1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | l (i.e. 8260B, 6010B/7470A) and n                                             | umber of conta        | iners provi                                                                 | ded for ea                 | ch (i.e. 82                | 60B -3,              | S010B/7470                                                                                    |                                                                                                 |                               |                   |                        |              | í           |                 |                                                                                                                |                                            |                                                                                                                                                                                                                         |               |
| 6.) Preservative Type: HA = Hydrochloric Acid, NI = Nitric Acid, SH = Sodium Hydroxide, SA = Sulfuric Acid, AA = Ascorbic Acid, HX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Acid, SH = Sodium Hydroxide, SA                                               | = Sulfuric Acio       | 1, AA = As                                                                  | corbic Ac                  | id, HX =                   | Hexane, S            | = Hexane, $\mathbf{ST}$ = Sodium Thiosulfate, If no preservative is added = leave field blank | n Thiosul                                                                                       | fate, If n                    | o preser          | ative is               | added =      | leave fi    | eld blan        |                                                                                                                |                                            |                                                                                                                                                                                                                         |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Characteristic Hazards FL = Flammable/Ignitable CO = Corrosive RE = Reactive  |                       | Listed Waste LW= Listed Waste (F, K, P and U-listed wastes.) Waste code(s): | d Waste U-liste            | d wastes                   |                      |                                                                                               | Other  OT= Other / Unknown (i.e.: High/low pH, asbesti misc. health hazards, etc.) Description: | her / Ugh/low                 | Inknov<br>pH, a   | vn<br>sbesto.<br>etc.) | s, bery      | llium,      | irritan         | Please provide any addi<br>regarding handling and<br>s. (i.e.: Origin of sample(s<br>from, odd matrices, etc.) | vide an<br>handlin<br>n of san<br>matrices | Other  OT=Other / Unknown  regarding handling and/or disposal concerns.  (i.e.: High/low pH, asbestos, beryllium, irritants, (i.e.: Origin of sample(s), type of site collected from, odd matrices, etc.)  Description: | g %           |
| Cr = Caumun Ag= Savet<br>Cr = Chromium MR= Misc. RCRA metals<br>Pb = Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PCB = Polychlorinated biphenyls                                               | 1                     |                                                                             |                            |                            |                      | I Is a                                                                                        |                                                                                                 |                               |                   |                        |              |             | 11              |                                                                                                                |                                            | P.                                                                                                                                                                                                                      | П             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                               |                       |                                                                             |                            |                            |                      |                                                                                               |                                                                                                 |                               |                   |                        |              |             | 1               |                                                                                                                |                                            |                                                                                                                                                                                                                         | П             |

652694

652704 652703

GEL Laboratories LLC

| CI         | ent: GPCC                                                                |     |         | _    | SAMPLE RECEIPT & REVIEW FORM                                                                                                                                                                                                                                            |
|------------|--------------------------------------------------------------------------|-----|---------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\vdash$   |                                                                          |     |         |      | G/AR/COC/Work Order:                                                                                                                                                                                                                                                    |
| Re         | ceived By: QG                                                            |     |         | Da   | te Received: 124/24  Circle Applicable:                                                                                                                                                                                                                                 |
|            | Carrier and Tracking Number                                              |     |         |      | FedEx Express FedEx Ground UPS Field Services Courier Other                                                                                                                                                                                                             |
| Sus        | pected Hazard Information                                                | Yes | ž       | *[f  | Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Croup for further investigation.                                                                                                                                                  |
|            | Pooren America Indiana                                                   | 34  | -       | 1    |                                                                                                                                                                                                                                                                         |
| <u>A)S</u> | hipped as a DOT Hazardous?                                               |     | _       |      | ard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? YesNo                                                                                                                                                                                  |
|            | Did the client designate the samples are to be ived as radioactive?      |     | _       |      | notation or radioactive stickers on containers equal client designation.                                                                                                                                                                                                |
|            | oid the RSO classify the samples as pactive?                             |     | /       | Max  | timum Net Counts Observed* (Observed Counts - Area Background Counts): CPM / hR/Hr Classified as: Rad 1 Rad 2 Rad 3                                                                                                                                                     |
| D) :       | Did the client designate samples are hazardous?                          | ļ   | /       | 1,33 | position or hazard labels on containers equal chent designation  or B is yes, select Hazards below.                                                                                                                                                                     |
| E) I       | Pid the RSO identify possible hazards?                                   |     | /       | 1    | PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:                                                                                                                                                                                                             |
|            | Sample Receipt Criteria                                                  | Yes | ¥       | ž    | Comments/Qualifiers (Required for Non-Conforming Items)                                                                                                                                                                                                                 |
| 1          | Shipping containers received intact and sealed?                          | _   | 7 a     |      | Circle Applicable: Seals broken Danuaged container Leaking container Other (describe)                                                                                                                                                                                   |
| 2          | Chain of custody documents included with shipment?                       | /   | 100     |      | Circle Applicable: Client contacted and provided COC COC created upon receipt                                                                                                                                                                                           |
| 3          | Samples requiring cold preservation within $(0 \le 6 \text{ deg. C})$ ?* | /   |         |      | Preservation Method: Wertee dee Packs Dry ice None Other: *all temperatures are presented in Celsius  TEMP: 1 2                                                                                                                                                         |
| 4          | Daily check performed and passed on IR temperature gun?                  | ~   | A Sales |      | Temperature Device Serial #: <u> R1-23</u><br>Secondary Temperature Device Serial # (If Applicable):                                                                                                                                                                    |
| 5          | Sample containers intact and sealed?                                     | /   | รักเ    |      | Circle Applicable: Seals broken Damaged container Leaking container Other (describe)                                                                                                                                                                                    |
| 6          | Samples requiring chemical preservation at proper pH?                    | /   |         |      | Sample ID's and Containers Affected:  If Preservation added, Lotti:                                                                                                                                                                                                     |
| 7          | Do any samples require Volatile<br>Analysis?                             |     |         |      | If Yes, are Encores or Soil Kits present for solids? Yes No NA (If yes, take to VOA Freezer)  Do liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No)  Are liquid VOA vials free of headspace? Yes No NA  Sample ID's and containers affected: |
| 8          | Samples received within holding time?                                    | /   |         |      | ID's and tests affected;                                                                                                                                                                                                                                                |
| 9          | Sample ID's on COC match ID's on bottles?                                |     | 12 d    | ) )  | ID's and containers affected:                                                                                                                                                                                                                                           |
| 10         | Date & time on COC match date & time on bottles?                         | /   |         | _    | Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)                                                                                                                                                                      |
| 11         | Number of containers received match number indicated on COC?             |     |         |      | Circle Applicable: No container count on COC Other (describe)                                                                                                                                                                                                           |
| 12         | Are sample containers identifiable as GEL provided by use of GEL labels? |     |         | //   |                                                                                                                                                                                                                                                                         |
|            | COC form is properly signed in relinquished/received sections?           |     | •       |      | Circle Applicable; Not relinquished Other (describe)                                                                                                                                                                                                                    |
| Com        | ments (Use Continuation Form if needed):                                 |     |         |      |                                                                                                                                                                                                                                                                         |
|            | ,                                                                        |     |         |      |                                                                                                                                                                                                                                                                         |
|            | •                                                                        |     |         |      |                                                                                                                                                                                                                                                                         |
|            |                                                                          |     |         |      |                                                                                                                                                                                                                                                                         |
|            |                                                                          |     |         |      |                                                                                                                                                                                                                                                                         |
|            |                                                                          |     |         |      |                                                                                                                                                                                                                                                                         |
|            |                                                                          |     |         |      | (h) 5 - 4/25/7 h                                                                                                                                                                                                                                                        |

List of current GEL Certifications as of 20 February 2024

| State                         | Certification                |
|-------------------------------|------------------------------|
| Alabama                       | 42200                        |
| Alaska                        | 17-018                       |
| Alaska Drinking Water         | SC00012                      |
| Arkansas                      | 88-00651                     |
| CLIA                          | 42D0904046                   |
| California                    | 2940                         |
| Colorado                      | SC00012                      |
| Connecticut                   | PH-0169                      |
| DoD ELAP/ ISO17025 A2LA       | 2567.01                      |
| Florida NELAP                 | E87156                       |
| Foreign Soils Permit          | P330-15-00283, P330-15-00253 |
| Georgia                       | SC00012                      |
| Georgia SDWA                  | 967                          |
| Hawaii                        | SC00012                      |
| Idaho                         | SC00012                      |
| Illinois NELAP                | 200029                       |
| Indiana                       | C-SC-01                      |
| Kansas NELAP                  | E-10332                      |
| Kentucky SDWA                 | KY90129                      |
| Kentucky Wastewater           | KY90129                      |
| Louisiana Drinking Water      | LA024                        |
| Louisiana NELAP               | 03046 (AI33904)              |
| Maine                         | 2023019                      |
| Maryland                      | 270                          |
| Massachusetts                 | M-SC012                      |
| Massachusetts PFAS Approv     | Letter                       |
| Michigan                      | 9976                         |
| Mississippi                   | SC00012                      |
| Nebraska                      | NE-OS-26-13                  |
| Nevada                        | SC000122024-05               |
| New Hampshire NELAP           | 2054                         |
| New Jersey NELAP              | SC002                        |
| New Mexico                    | SC002<br>SC00012             |
| New York NELAP                | 11501                        |
| North Carolina                | 233                          |
| North Carolina SDWA           | 45709                        |
| North Dakota                  | R-158                        |
|                               |                              |
| Oklahoma  Ponnsylvonia NEL AD | 2023-152                     |
| Pennsylvania NELAP            | 68-00485                     |
| Puerto Rico                   | SC00012                      |
| S. Carolina Radiochem         | 10120002                     |
| Sanitation Districts of L     | 9255651                      |
| South Carolina Chemistry      | 10120001                     |
| Tennessee                     | TN 02934                     |
| Texas NELAP                   | T104704235-23-21             |
| Utah NELAP                    | SC000122023-38               |
| Vermont                       | VT87156                      |
| Virginia NELAP                | 460202                       |
| Washington                    | C780                         |





February 09, 2024

Kelley Sharpe ARCADIS - Atlanta 2839 Paces Ferry Rd STE 900 Atlanta, GA 30339

RE: Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92709786

#### Dear Kelley Sharpe:

Enclosed are the analytical results for sample(s) received by the laboratory on January 24, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Maiya Parks

maiya.parks@pacelabs.com

Maiya Tacks

770-734-4205

Project Manager

Enclosures

cc: Joju Abraham, Georgia Power-CCR Jordan Gamble, ARCADIS - Atlanta Ben Hodges, Georgia Power-CCR Warren Johnson, ARCADIS - Atlanta Jennifer Kolbe, Stantec Consulting Laura Midkiff, Southern Company Noelia Muskus Ruiz, Georgia Power Tina Sullivan, ERM







#### **CERTIFICATIONS**

Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92709786

#### Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417 ANABISO/IEC 17025:2017 Rad Cert#: L24170

Alabama Certification #: 41590 Arizona Certification #: AZ0734

**Arkansas Certification** 

California Certification #: 2950 Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification

Indiana Certification lowa Certification #: 391 Kansas Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA010 Louisiana DEQ/TNI Certification #: 04086

Maine Certification #: 2023021 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572023-03 New Hampshire/TNI Certification #: 297622 New Jersey/TNI Certification #: PA051

New Jersey/TNI Certification #: PA05 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Missouri Certification #: 235

Oregon/TNI Certification #: PA200002-015 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification

Tennessee Certification #: TN02867

Texas/TNI Certification #: T104704188-22-18
Utah/TNI Certification #: PA014572223-14
USDA Soil Permit #: 525-23-67-77263
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad



### **SAMPLE SUMMARY**

Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92709786

| Lab ID      | Sample ID   | Matrix | Date Collected | Date Received  |
|-------------|-------------|--------|----------------|----------------|
| 92709786001 | ARK-BC-0.3  | Water  | 01/23/24 13:48 | 01/24/24 11:06 |
| 92709786002 | ARK-BC-0.1  | Water  | 01/23/24 13:05 | 01/24/24 11:06 |
| 92709786003 | ARK-OR-0.8  | Water  | 01/23/24 10:34 | 01/24/24 11:06 |
| 92709786004 | ARK-OR-0.1  | Water  | 01/23/24 11:53 | 01/24/24 11:06 |
| 92709786005 | ARK-OR-0.3  | Water  | 01/23/24 11:14 | 01/24/24 11:06 |
| 92709786006 | ARK-OR+0.25 | Water  | 01/23/24 12:08 | 01/24/24 11:06 |



### **SAMPLE ANALYTE COUNT**

Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92709786

| Lab ID      | Sample ID   | Method                   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|-------------|--------------------------|----------|----------------------|------------|
| 92709786001 | ARK-BC-0.3  | EPA 903.1                | LL1      | 1                    | PASI-PA    |
|             |             | EPA 904.0                | JJS1     | 1                    | PASI-PA    |
|             |             | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92709786002 | ARK-BC-0.1  | EPA 903.1                | LL1      | 1                    | PASI-PA    |
|             |             | EPA 904.0                | JJS1     | 1                    | PASI-PA    |
|             |             | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92709786003 | ARK-OR-0.8  | EPA 903.1                | LL1      | 1                    | PASI-PA    |
|             |             | EPA 904.0                | JJS1     | 1                    | PASI-PA    |
|             |             | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92709786004 | ARK-OR-0.1  | EPA 903.1                | LL1      | 1                    | PASI-PA    |
|             |             | EPA 904.0                | JJS1     | 1                    | PASI-PA    |
|             |             | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92709786005 | ARK-OR-0.3  | EPA 903.1                | LL1      | 1                    | PASI-PA    |
|             |             | EPA 904.0                | JJS1     | 1                    | PASI-PA    |
|             |             | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92709786006 | ARK-OR+0.25 | EPA 903.1                | LL1      | 1                    | PASI-PA    |
|             |             | EPA 904.0                | JJS1     | 1                    | PASI-PA    |
|             |             | Total Radium Calculation | JAL      | 1                    | PASI-PA    |

PASI-PA = Pace Analytical Services - Greensburg



Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92709786

| Sample: ARK-BC-0.3<br>PWS: | Lab ID: 9270<br>Site ID:    | <b>9786001</b> Collected: 01/23/24 13:48 Sample Type: | Received: | 01/24/24 11:06 | Matrix: Water |      |
|----------------------------|-----------------------------|-------------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                      | Act ± Unc (MDC) Carr Trac                             | Units     | Analyzed       | CAS No.       | Qual |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-226                 | EPA 903.1                   | 0.000 ± 0.516 (1.02)<br>C:NA T:85%                    | pCi/L     | 02/07/24 14:4  | 1 13982-63-3  |      |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-228                 | EPA 904.0                   | 0.423 ± 0.353 (0.700)<br>C:93% T:69%                  | pCi/L     | 02/08/24 15:1  | 5 15262-20-1  |      |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Total Radium               | Total Radium<br>Calculation | 0.423 ± 0.869 (1.72)                                  | pCi/L     | 02/09/24 10:28 | 8 7440-14-4   |      |



Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92709786

| Sample: ARK-BC-0.1<br>PWS: | Lab ID: 9270<br>Site ID:    | <b>9786002</b> Collected: 01/23/24 13:05 Sample Type: | Received: | 01/24/24 11:06 | Matrix: Water |      |
|----------------------------|-----------------------------|-------------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                      | Act ± Unc (MDC) Carr Trac                             | Units     | Analyzed       | CAS No.       | Qual |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-226                 | EPA 903.1                   | 0.941 ± 0.870 (1.36)<br>C:NA T:88%                    | pCi/L     | 02/07/24 14:4  | 1 13982-63-3  |      |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-228                 | EPA 904.0                   | 0.581 ± 0.429 (0.851)<br>C:92% T:80%                  | pCi/L     | 02/08/24 15:1  | 5 15262-20-1  |      |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Total Radium               | Total Radium<br>Calculation | 1.52 ± 1.30 (2.21)                                    | pCi/L     | 02/09/24 10:28 | 8 7440-14-4   |      |



Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92709786

| Sample: ARK-OR-0.8<br>PWS: | Lab ID: 9270<br>Site ID:    | <b>9786003</b> Collected: 01/23/24 10:34 Sample Type: | Received: | 01/24/24 11:06 | Matrix: Water |      |
|----------------------------|-----------------------------|-------------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                      | Act ± Unc (MDC) Carr Trac                             | Units     | Analyzed       | CAS No.       | Qual |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-226                 | EPA 903.1                   | 0.139 ± 0.669 (1.26)<br>C:NA T:88%                    | pCi/L     | 02/07/24 14:4  | 1 13982-63-3  |      |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-228                 | EPA 904.0                   | 0.573 ± 0.427 (0.839)<br>C:88% T:76%                  | pCi/L     | 02/08/24 15:1  | 5 15262-20-1  |      |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Total Radium               | Total Radium<br>Calculation | 0.712 ± 1.10 (2.10)                                   | pCi/L     | 02/09/24 10:28 | 3 7440-14-4   |      |



Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92709786

| Sample: ARK-OR-0.1<br>PWS: | Lab ID: 9270<br>Site ID:    | <b>9786004</b> Collected: 01/23/24 11:53 Sample Type: | Received: | 01/24/24 11:06 | Matrix: Water |      |
|----------------------------|-----------------------------|-------------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                      | Act ± Unc (MDC) Carr Trac                             | Units     | Analyzed       | CAS No.       | Qual |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-226                 | EPA 903.1                   | -0.213 ± 0.502 (1.12)<br>C:NA T:86%                   | pCi/L     | 02/07/24 14:4  | 1 13982-63-3  |      |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-228                 | EPA 904.0                   | 1.57 ± 0.528 (0.694)<br>C:88% T:73%                   | pCi/L     | 02/08/24 15:1  | 5 15262-20-1  |      |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Total Radium               | Total Radium<br>Calculation | 1.57 ± 1.03 (1.81)                                    | pCi/L     | 02/09/24 10:28 | 8 7440-14-4   |      |



Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92709786

| Sample: ARK-OR-0.3<br>PWS: | Lab ID: 9270<br>Site ID:    | <b>9786005</b> Collected: 01/23/24 11:14 Sample Type: | Received: | 01/24/24 11:06 | Matrix: Water |      |
|----------------------------|-----------------------------|-------------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                 | Method                      | Act ± Unc (MDC) Carr Trac                             | Units     | Analyzed       | CAS No.       | Qual |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-226                 | EPA 903.1                   | -0.358 ± 0.467 (1.13)<br>C:NA T:84%                   | pCi/L     | 02/07/24 14:53 | 3 13982-63-3  |      |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-228                 | EPA 904.0                   | 0.991 ± 0.613 (1.17)<br>C:80% T:68%                   | pCi/L     | 02/08/24 15:15 | 5 15262-20-1  |      |
|                            | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Total Radium               | Total Radium<br>Calculation | 0.991 ± 1.08 (2.30)                                   | pCi/L     | 02/09/24 10:28 | 3 7440-14-4   |      |



Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92709786

| Sample: ARK-OR+0.25<br>PWS: | Lab ID: 9270<br>Site ID:    | <b>9786006</b> Collected: 01/23/24 12:08 Sample Type: | Received: | 01/24/24 11:06 | Matrix: Water |      |
|-----------------------------|-----------------------------|-------------------------------------------------------|-----------|----------------|---------------|------|
| Parameters                  | Method                      | Act ± Unc (MDC) Carr Trac                             | Units     | Analyzed       | CAS No.       | Qual |
|                             | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-226                  | EPA 903.1                   | -0.286 ± 0.486 (1.13)<br>C:NA T:82%                   | pCi/L     | 02/07/24 14:53 | 3 13982-63-3  |      |
|                             | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Radium-228                  | EPA 904.0                   | 0.273 ± 0.410 (0.884)<br>C:83% T:73%                  | pCi/L     | 02/08/24 15:1  | 5 15262-20-1  |      |
|                             | Pace Analytical             | Services - Greensburg                                 |           |                |               |      |
| Total Radium                | Total Radium<br>Calculation | 0.273 ± 0.896 (2.01)                                  | pCi/L     | 02/09/24 10:28 | 3 7440-14-4   |      |



#### **QUALITY CONTROL - RADIOCHEMISTRY**

Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92709786

QC Batch: 644984 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92709786001, 92709786002, 92709786003, 92709786004, 92709786005, 92709786006

METHOD BLANK: 3143117 Matrix: Water

Associated Lab Samples: 92709786001, 92709786002, 92709786003, 92709786004, 92709786005, 92709786006

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.139 ± 0.213 (0.342) C:NA T:87%
 pCi/L
 02/07/24 14:41

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALITY CONTROL - RADIOCHEMISTRY**

Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92709786

QC Batch: 644985 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 92709786001, 92709786002, 92709786003, 92709786004, 92709786005, 92709786006

METHOD BLANK: 3143118 Matrix: Water

Associated Lab Samples: 92709786001, 92709786002, 92709786003, 92709786004, 92709786005, 92709786006

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.174 ± 0.361 (0.797) C:87% T:76%
 pCi/L
 02/08/24 11:59

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALIFIERS**

Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92709786

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 02/09/2024 10:40 AM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval).

Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.



### **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92709786

Date: 02/09/2024 10:40 AM

| Lab ID      | Sample ID   | QC Batch Method          | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|-------------|--------------------------|----------|-------------------|---------------------|
| 92709786001 | ARK-BC-0.3  | EPA 903.1                | 644984   |                   |                     |
| 92709786002 | ARK-BC-0.1  | EPA 903.1                | 644984   |                   |                     |
| 92709786003 | ARK-OR-0.8  | EPA 903.1                | 644984   |                   |                     |
| 92709786004 | ARK-OR-0.1  | EPA 903.1                | 644984   |                   |                     |
| 92709786005 | ARK-OR-0.3  | EPA 903.1                | 644984   |                   |                     |
| 92709786006 | ARK-OR+0.25 | EPA 903.1                | 644984   |                   |                     |
| 92709786001 | ARK-BC-0.3  | EPA 904.0                | 644985   |                   |                     |
| 92709786002 | ARK-BC-0.1  | EPA 904.0                | 644985   |                   |                     |
| 92709786003 | ARK-OR-0.8  | EPA 904.0                | 644985   |                   |                     |
| 92709786004 | ARK-OR-0.1  | EPA 904.0                | 644985   |                   |                     |
| 92709786005 | ARK-OR-0.3  | EPA 904.0                | 644985   |                   |                     |
| 92709786006 | ARK-OR+0.25 | EPA 904.0                | 644985   |                   |                     |
| 92709786001 | ARK-BC-0.3  | Total Radium Calculation | 647695   |                   |                     |
| 92709786002 | ARK-BC-0.1  | Total Radium Calculation | 647695   |                   |                     |
| 92709786003 | ARK-OR-0.8  | Total Radium Calculation | 647695   |                   |                     |
| 92709786004 | ARK-OR-0.1  | Total Radium Calculation | 647695   |                   |                     |
| 92709786005 | ARK-OR-0.3  | Total Radium Calculation | 647695   |                   |                     |
| 92709786006 | ARK-OR+0.25 | Total Radium Calculation | 647695   |                   |                     |

#### App. IV - Sb, As, Bs, Be, Cd, Cr, Co, Pb, Li, Mo, Se, Ti + Hg RK-CCR-ASSMT-2024S1 equired Cilent Information: company: ARCADIS - Altanta ITEM # Ilanta, GA 30339 12 quested Due Date: W0#:92709786 kelley.shape@arcadis.com ARK-OR-0.1 ARK-BC-0.3 MK-OR+0.25 ARK-OR-0.8 ARK-BC-0.1 2839 Paces Ferry Rd (770)384-6584 Sample ids must be unique One Character per box. **SAMPLE ID** (A.Z. 0-9/, -) ADDITIONAL CON MENTS E E MANTRIX Drinking Water Waste Water Product Soul/Sohld Oil Wilps Air Other Tissue Project Name: p Report To: Kelley Sharpe, Warren Johnson Copy To: Ben Hodges, Joju Abraham Required Project Information: Project #: 3 4 5 4 7 4 5 8 8 8 8 8 8 PIC-2 marga BELINOUSHED BY / APPLICATION WGG WGG WG G MATRIX CODE (see valid codes to left) Plant Arkwright/CCR-Ash Pond Closure SAMPLE TYPE (G=GRAB C=COMP) 2 123 348 11127 123 1153 元00元 123 1208 START 100 186 MATER HAMEAND SIGNATURE TIME COLLECTED SIGNATURE of SAMPLER: PRINT Name of SAMPLER: DATE S TIME 51/12 DATE SAMPLE TEMP AT COLLECTION Company Name: Address: Pace Profile #: Paca Quote: Pace Project Manager: Attention: invoice information: # OF CONTAINERS 8 252 Unpreserved H2SO4 HN03 Preservatives Swarson 15836 HCI NaOH Na2S2O3 maiya parks@pacelabs.com ACCESTED BY ASSETVATION Methanol Other YN Analyses Test Total/Bicarb Alkalinity DATE Signed: CI, F. SO4 TOS App. III Metals - B, Ca App. IV Metals (Client List) Metale - Mg, Na, K BANE Radium 226/228 Page : TEMP in C Residual Chlorine (Y/N) 2 Received on BANIFLE CONDITIONS Ice (Y/N)

Custod) Sealed

Cooler (Y/N) Samples ntaci (Y/N)

3

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

CHAIN-OF-CUSTODY / Analytical Request Document

Pace Analytical

| Pace.                                                                                               | DC#_Title: ENV-FRM                                                              | -HUN1-0083 v0         | 3_San        | nple Cond | dition Upon Receipt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------|--------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ARALYTICAL SERVICES                                                                                 | Effective Date: 11/29/20                                                        | )23                   |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sample Conditi Upon Receipt  Courier: Commercial  Custody Seal Pres  Packing Material: Thermometer: | Fed Ex Pace                                                                     | UPS USPS Other:_      | Yes          | Client    | Mechanicsville Atlanta Kernersville  ect # WO#: 92709786  ect # Due Date: 02/14/24  PM: IIP CLIENT: GA-ArcadRt1  Date/Initials Person Examining Contents: //24/24 St.  Biological Tissue Frozen?  Yes No N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Cooler Temp: Cooler Temp Corn                                                                       | rected (°C):<br>Soil (  N/A, water sample)<br>riginate in a quarantine zone wir | tract (°C) <u>70.</u> | )            |           | □ None  Temp should be above freezing to 6°C □ Samples out of temp criteria. Samples on ice, cooling process has begun  Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)? □ Yes □ No  Comments/Discrepancy:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Chain of Cus                                                                                        | tody Present?                                                                   | Yes                   | □No          | □N/A      | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                     | ived within Hold Time?                                                          | Yes                   | □No          | □N/A      | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                     | Time Analysis (<72 hr.)?                                                        | □Yes                  | □Kio         | □N/A      | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                     | round Time Requested?                                                           | □Yes                  | No           | □N/A      | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sufficient Vo                                                                                       |                                                                                 | ⊠Yes                  | □No          | □n/A      | 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                     | tainers Used?                                                                   | Yes                   | □No          | □N/A      | 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                     | ntainers Used?                                                                  | Yes                   | □No          | □N/A      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Containers I                                                                                        | ntact?                                                                          | Yes                   | □No          |           | 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Dissolved ar                                                                                        | nalysis: Samples Field Filtered?                                                | Yes                   | □No          | E/N/A     | 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sample Labe                                                                                         | els Match COC?                                                                  | <b>→</b> Yes          | □No          | □n/a      | 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -Includes                                                                                           | Date/Time/ID/Analysis Matri                                                     | x:                    | <del>-</del> |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Headspace i                                                                                         | in VOA Vials (>5-6mm)?                                                          | Yes                   | No_          | DN/A      | 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Trip Blank P                                                                                        | Present?                                                                        | Yes                   | □No          | ZKV/A     | 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Trip Blank C                                                                                        | Custody Seals Present?                                                          | Yes                   | □No          | ØN/A      | Field Data Required? ☐Yes ☐No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| COMMENTS/SAMF                                                                                       | PLE DISCREPANCY                                                                 |                       |              |           | , red sets in the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set |
| Rt                                                                                                  |                                                                                 |                       |              | Lo        | ot ID of split containers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CLIENT NOTIFICATION                                                                                 | ON/RESOLUTION                                                                   |                       |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Page 16 of 17

Date: \_\_\_\_\_\_

Person contacted:

Project Manager SCURF Review:

Project Manager SRF Review:



DC#\_Title: ENV-FRM-HUN1-0083 v03\_Sample Condition Upon Receipt

Effective Date: 11/29/2023

\*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

Project #

WO#: 92709786

PM: 11F

Due Date: 02/14/24

CLIENT: GA-ArcadAti

\*\*Bottom half of box is to list number of bottles

\*\*\*Check all unpreserved Nitrates for chlorine

| Item# | BP4U-125 mL Plastic Unpreserved (N/A) (CI-) | BP3U-250 mL Plastic Unpreserved (N/A) | BP2U-500 mL Plastic Unpreserved (N/A) | BP1U-1 liter Plastic Unpreserved (N/A) | <b>BP4S-1</b> 25 mL Plastic H2SO4 (pH < 2) (CI-) | BP3N-250 mL plastic HNO3 (pH < 2) | BP4Z-125 mL Plastic ZN Acetate & NaOH (>9) | <b>BP4B-125</b> mL Plastic NaOH (pH > 12) (CI-) | WGFU-Wide-mouthed Glass jar Unpreserved | AG1U-1 liter Amber Unpreserved (N/A) (Cl-) | AG1H-1 liter Amber HCl (pH < 2) | AG3U-250 mL Amber Unpreserved (N/A) (CI-) | AG1S-1 liter Amber H25O4 (pH < 2) | AG3S-250 mL Amber H2SO4 (pH < 2) | DG94-40 mL Amber NH4Cl (N/A)(Cl-) | DG9H-40 mL VOA HC! (N/A) | VG9T-40 mL VOA Na2S2O3 (N/A) | VG9U-40 mL VOA Unpreserved (N/A) | DG9V-40 mL VOA H3PO4 (N/A) | KP7U-50 mL Plastic Unpreserved (N/A) | V/GK (3 vials per kit)-VPH/Gas kit (N/A) | SP5T-125 mL Sterile Plastic (N/A – łab) | SP2T-250 mL Sterile Plastic (N/A – lab) | 3P/N | BP3R-250 mL Plastic (NH2)2SO4 (9.3-9.7) | AG0U-100 mL Amber Unpreserved (N/A) (CI-) | VSGU-20 mL Scintillation vials {N/A} | DG9U-40 mL Amber Unpreserved vials (N/A) |
|-------|---------------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|--------------------------------------------------|-----------------------------------|--------------------------------------------|-------------------------------------------------|-----------------------------------------|--------------------------------------------|---------------------------------|-------------------------------------------|-----------------------------------|----------------------------------|-----------------------------------|--------------------------|------------------------------|----------------------------------|----------------------------|--------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|------|-----------------------------------------|-------------------------------------------|--------------------------------------|------------------------------------------|
| 1     |                                             |                                       | 2                                     |                                        |                                                  | N                                 |                                            |                                                 |                                         |                                            |                                 |                                           |                                   |                                  |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         | Ŕ    |                                         |                                           | $\neg$                               |                                          |
| 2     |                                             | ,                                     | 7                                     |                                        | $\setminus$                                      | $\overline{\mathbf{M}}$           |                                            |                                                 |                                         |                                            |                                 |                                           |                                   |                                  |                                   | ,                        |                              |                                  |                            |                                      |                                          |                                         |                                         | Z    |                                         |                                           |                                      |                                          |
| 3     |                                             |                                       | 7                                     |                                        |                                                  | X                                 |                                            |                                                 |                                         |                                            |                                 |                                           |                                   |                                  |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         | X    | 7                                       |                                           |                                      |                                          |
| 4     |                                             | ,                                     | 7                                     |                                        |                                                  | 1                                 |                                            |                                                 | J                                       |                                            | $\bigvee$                       |                                           |                                   |                                  |                                   | ~                        |                              |                                  |                            |                                      |                                          |                                         |                                         | Z    | 1                                       |                                           |                                      |                                          |
| 5     |                                             |                                       | 7                                     |                                        | $\sqrt{\ }$                                      | N                                 |                                            |                                                 |                                         |                                            |                                 |                                           | abla                              |                                  |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         | V    | 1                                       |                                           |                                      | $\dashv$                                 |
| 6     |                                             |                                       | Σ                                     |                                        | abla                                             | V                                 |                                            |                                                 |                                         |                                            | J                               |                                           |                                   |                                  |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         | R    | 1                                       |                                           |                                      | $\dashv$                                 |
| 7     |                                             |                                       |                                       |                                        | abla                                             |                                   | $\bigcup$                                  |                                                 |                                         |                                            | 1                               |                                           |                                   |                                  | $\setminus$                       |                          |                              |                                  |                            |                                      |                                          |                                         |                                         | 7    | 1                                       |                                           |                                      | $\dashv$                                 |
| 8     |                                             |                                       |                                       |                                        |                                                  | V                                 |                                            |                                                 |                                         |                                            |                                 |                                           |                                   |                                  |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         | 7    | 1                                       |                                           | $\dashv$                             | $\dashv$                                 |
| •     |                                             |                                       |                                       |                                        |                                                  |                                   |                                            |                                                 |                                         |                                            | J                               |                                           |                                   |                                  |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         | 7    |                                         |                                           |                                      |                                          |
| 10    |                                             |                                       |                                       |                                        |                                                  |                                   |                                            |                                                 |                                         |                                            |                                 |                                           |                                   | 7                                |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         | 7    | 1                                       | $\dashv$                                  |                                      | _                                        |
| 11    |                                             |                                       |                                       |                                        |                                                  |                                   | V                                          |                                                 |                                         |                                            | $ egthinspace{1.5em} olimits $  |                                           | $\bigvee$                         |                                  |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         | 7    | 1                                       |                                           |                                      |                                          |
| 12    |                                             |                                       |                                       |                                        |                                                  |                                   |                                            |                                                 |                                         |                                            |                                 |                                           |                                   | Ì                                |                                   | ~                        |                              |                                  |                            |                                      |                                          |                                         |                                         | 7    |                                         | $\neg$                                    |                                      | $\dashv$                                 |

| pH Adjustment Log for Preserved Samples |  |             |                            |                            |                              |       |  |  |  |  |  |
|-----------------------------------------|--|-------------|----------------------------|----------------------------|------------------------------|-------|--|--|--|--|--|
| Sample ID                               |  |             | Date preservation adjusted | Time preservation adjusted | Amount of Preservative added | Lot # |  |  |  |  |  |
|                                         |  |             |                            |                            |                              |       |  |  |  |  |  |
|                                         |  | <del></del> |                            |                            |                              |       |  |  |  |  |  |
|                                         |  |             |                            | <u> </u>                   |                              |       |  |  |  |  |  |

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DENR Certification Office (i.e. Dut of hold, incorrect preservative, out of temp, incorrect containers.





January 31, 2024

Kelley Sharpe ARCADIS - Atlanta 2839 Paces Ferry Rd STE 900 Atlanta, GA 30339

RE: Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92709790

#### Dear Kelley Sharpe:

Enclosed are the analytical results for sample(s) received by the laboratory on January 24, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Peachtree Corners, GA

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Maiya Parks

maiya.parks@pacelabs.com

770-734-4205 Project Manager

Enclosures

cc: Joju Abraham, Georgia Power-CCR Jordan Gamble, ARCADIS - Atlanta Ben Hodges, Georgia Power-CCR Warren Johnson, ARCADIS - Atlanta Laura Midkiff, Southern Company Noelia Muskus Ruiz, Georgia Power Tina Sullivan, ERM





#### **CERTIFICATIONS**

Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92709790

**Pace Analytical Services Asheville** 

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 North Carolina Drinking Water Certification #: 37712

North Carolina Wastewater Certification #: 40

South Carolina Laboratory ID: 99030 South Carolina Certification #: 99030001

Virginia/VELAP Certification #: 460222

**Pace Analytical Services Peachtree Corners** 

110 Technology Pkwy, Peachtree Corners, GA 30092

Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812 North Carolina Certification #: 381 South Carolina Certification #: 98011001

Virginia Certification #: 460204



## **SAMPLE SUMMARY**

Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92709790

| Lab ID      | Sample ID   | Matrix | Date Collected | Date Received  |
|-------------|-------------|--------|----------------|----------------|
| 92709790001 | ARK-BC-0.3  | Water  | 01/23/24 13:48 | 01/24/24 11:06 |
| 92709790002 | ARK-BC-0.1  | Water  | 01/23/24 13:05 | 01/24/24 11:06 |
| 92709790003 | ARK-OR-0.8  | Water  | 01/23/24 10:34 | 01/24/24 11:06 |
| 92709790004 | ARK-OR-0.1  | Water  | 01/23/24 11:53 | 01/24/24 11:06 |
| 92709790005 | ARK-OR-0.3  | Water  | 01/23/24 11:14 | 01/24/24 11:06 |
| 92709790006 | ARK-OR+0.25 | Water  | 01/23/24 12:08 | 01/24/24 11:06 |



## **SAMPLE ANALYTE COUNT**

Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92709790

| Lab ID      | Sample ID   | Method        | Analysts | Analytes<br>Reported | Laboratory |
|-------------|-------------|---------------|----------|----------------------|------------|
| 92709790001 | ARK-BC-0.3  | EPA 6010D     | DRB      | 5                    | PASI-GA    |
|             |             | EPA 6020B     | MT1      | 12                   | PASI-GA    |
|             |             | EPA 7470A     | VB       | 1                    | PASI-GA    |
|             |             | SM 2540C-2015 | DL1      | 1                    | PASI-GA    |
|             |             | SM 2320B-2011 | SMS      | 2                    | PASI-A     |
|             |             | EPA 9056A     | CDC      | 3                    | PASI-A     |
| 2709790002  | ARK-BC-0.1  | EPA 6010D     | DRB      | 5                    | PASI-GA    |
|             |             | EPA 6020B     | MT1      | 12                   | PASI-GA    |
|             |             | EPA 7470A     | VB       | 1                    | PASI-GA    |
|             |             | SM 2540C-2015 | DL1      | 1                    | PASI-GA    |
|             |             | SM 2320B-2011 | SMS      | 2                    | PASI-A     |
|             |             | EPA 9056A     | CDC      | 3                    | PASI-A     |
| 2709790003  | ARK-OR-0.8  | EPA 6010D     | DRB      | 5                    | PASI-GA    |
|             |             | EPA 6020B     | MT1      | 12                   | PASI-GA    |
|             |             | EPA 7470A     | VB       | 1                    | PASI-GA    |
|             |             | SM 2540C-2015 | DL1      | 1                    | PASI-GA    |
|             |             | SM 2320B-2011 | SMS      | 2                    | PASI-A     |
|             |             | EPA 9056A     | CDC      | 3                    | PASI-A     |
| 2709790004  | ARK-OR-0.1  | EPA 6010D     | DRB      | 5                    | PASI-GA    |
|             |             | EPA 6020B     | MT1      | 12                   | PASI-GA    |
|             |             | EPA 7470A     | VB       | 1                    | PASI-GA    |
|             |             | SM 2540C-2015 | DL1      | 1                    | PASI-GA    |
|             |             | SM 2320B-2011 | SMS      | 2                    | PASI-A     |
|             |             | EPA 9056A     | CDC      | 3                    | PASI-A     |
| 2709790005  | ARK-OR-0.3  | EPA 6010D     | DRB      | 5                    | PASI-GA    |
|             |             | EPA 6020B     | MT1      | 12                   | PASI-GA    |
|             |             | EPA 7470A     | VB       | 1                    | PASI-GA    |
|             |             | SM 2540C-2015 | DL1      | 1                    | PASI-GA    |
|             |             | SM 2320B-2011 | SMS      | 2                    | PASI-A     |
|             |             | EPA 9056A     | CDC      | 3                    | PASI-A     |
| 2709790006  | ARK-OR+0.25 | EPA 6010D     | DRB      | 5                    | PASI-GA    |
|             |             | EPA 6020B     | MT1      | 12                   | PASI-GA    |
|             |             | EPA 7470A     | VB       | 1                    | PASI-GA    |
|             |             | SM 2540C-2015 | DL1      | 1                    | PASI-GA    |
|             |             | SM 2320B-2011 | SMS      | 2                    | PASI-A     |
|             |             | EPA 9056A     | CDC      | 3                    | PASI-A     |





## **SAMPLE ANALYTE COUNT**

Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92709790

Lab ID Sample ID Method Analysts Reported Laboratory

PASI-A = Pace Analytical Services - Asheville PASI-GA = Pace Analytical Services - Peachtree Corners, GA



Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92709790

Date: 01/31/2024 10:52 AM

| Sample: ARK-BC-0.3                       | Lab ID: 9270    | 09790001     | Collected: 01/23/2 | 4 13:48  | Received: 01   | /24/24 11:06 I                   | Matrix: Water |     |
|------------------------------------------|-----------------|--------------|--------------------|----------|----------------|----------------------------------|---------------|-----|
| Parameters                               | Results         | Units        | Report Limit       | DF       | Prepared       | Analyzed                         | CAS No.       | Qua |
| 6010D ATL ICP                            | Analytical Meth | nod: EPA 60  | 10D Preparation Me | thod: E  | PA 3010A       |                                  |               |     |
|                                          | Pace Analytica  | l Services - | Peachtree Corners, | GA       |                |                                  |               |     |
| Boron                                    | ND              | mg/L         | 0.040              | 1        | 01/25/24 13:04 | 01/26/24 20:32                   | 7440-42-8     |     |
| Potassium                                | 2.1             | mg/L         | 0.50               | 1        | 01/25/24 13:04 | 01/26/24 20:32                   | 7440-09-7     |     |
| Sodium                                   | 8.9             | mg/L         | 1.0                | 1        | 01/25/24 13:04 | 01/26/24 20:32                   | 7440-23-5     |     |
| Calcium                                  | 8.5             | mg/L         | 1.0                | 1        | 01/25/24 13:04 | 01/26/24 20:32                   | 7440-70-2     |     |
| Magnesium                                | 4.3             | mg/L         | 0.050              | 1        | 01/25/24 13:04 | 01/26/24 20:32                   | 7439-95-4     |     |
| 6020 MET ICPMS                           | Analytical Meth | nod: EPA 60  | 20B Preparation Me | thod: El | PA 3005A       |                                  |               |     |
|                                          | Pace Analytica  | l Services - | Peachtree Corners, | GA       |                |                                  |               |     |
| Antimony                                 | ND              | mg/L         | 0.0030             | 1        | 01/26/24 10:13 | 01/26/24 18:13                   | 7440-36-0     |     |
| Arsenic                                  | ND              | mg/L         | 0.0050             | 1        | 01/26/24 10:13 | 01/26/24 18:13                   | 7440-38-2     |     |
| Barium                                   | 0.038           | mg/L         | 0.0050             | 1        | 01/26/24 10:13 | 01/26/24 18:13                   | 7440-39-3     |     |
| Beryllium                                | ND              | mg/L         | 0.00050            | 1        | 01/26/24 10:13 | 01/26/24 18:13                   | 7440-41-7     |     |
| Cadmium                                  | ND              | mg/L         | 0.00050            | 1        | 01/26/24 10:13 | 01/26/24 18:13                   | 7440-43-9     |     |
| Chromium                                 | ND              | mg/L         | 0.0050             | 1        | 01/26/24 10:13 | 01/26/24 18:13                   | 7440-47-3     |     |
| Cobalt                                   | ND              | mg/L         | 0.0050             | 1        | 01/26/24 10:13 | 01/26/24 18:13                   | 7440-48-4     |     |
| _ead                                     | ND              | mg/L         | 0.0010             | 1        | 01/26/24 10:13 | 01/26/24 18:13                   | 7439-92-1     |     |
| _ithium                                  | ND              | mg/L         | 0.030              | 1        | 01/26/24 10:13 | 01/26/24 18:13                   | 7439-93-2     |     |
| Molybdenum                               | ND              | mg/L         | 0.010              | 1        | 01/26/24 10:13 | 01/26/24 18:13                   | 7439-98-7     |     |
| Selenium                                 | ND              | mg/L         | 0.0050             | 1        | 01/26/24 10:13 | 01/26/24 18:13                   | 7782-49-2     |     |
| Thallium                                 | ND              | mg/L         | 0.0010             | 1        | 01/26/24 10:13 | 01/26/24 18:13                   | 7440-28-0     |     |
| 7470 Mercury                             | Analytical Meth | nod: EPA 74  | 70A Preparation Me | thod: El | PA 7470A       |                                  |               |     |
|                                          | Pace Analytica  | l Services - | Peachtree Corners, | GA       |                |                                  |               |     |
| Mercury                                  | ND              | mg/L         | 0.00020            | 1        | 01/30/24 08:00 | 01/30/24 11:03                   | 7439-97-6     |     |
| 2540C Total Dissolved Solids             | Analytical Meth | nod: SM 254  | 40C-2015           |          |                |                                  |               |     |
|                                          |                 |              | Peachtree Corners, | GA       |                |                                  |               |     |
| Total Dissolved Solids                   | 90.0            | mg/L         | 25.0               | 1        |                | 01/25/24 12:54                   |               |     |
| 2320B Alkalinity                         | Analytical Meth | nod: SM 23   | 20B-2011           |          |                |                                  |               |     |
| LOLOD ARGINITY                           | Pace Analytica  |              |                    |          |                |                                  |               |     |
| Alkalinity,Bicarbonate (CaCO3)           | 39.1            | mg/L         | 5.0                | 1        |                | 01/25/24 12:38                   |               |     |
| Alkalinity, Total as CaCO3               | 39.1            | mg/L         | 5.0                | 1        |                | 01/25/24 12:38                   |               |     |
|                                          | Analytical Meth | nod: EPA 90  | 956A               |          |                |                                  |               |     |
| 9056 IC anions 28 Davs                   | •               | l Services - |                    |          |                |                                  |               |     |
| 9056 IC anions 28 Days                   | Pace Analytica  |              |                    |          |                |                                  |               |     |
| 9056 IC anions 28 Days Chloride          | •               |              | 1.0                | 1        |                | 01/24/24 22:44                   | 16887-00-6    |     |
| 9056 IC anions 28 Days Chloride Fluoride | 8.4<br>ND       | mg/L<br>mg/L | 1.0<br>0.10        | 1<br>1   |                | 01/24/24 22:44<br>01/24/24 22:44 |               |     |



Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92709790

Date: 01/31/2024 10:52 AM

| Sample: ARK-BC-0.1             | Lab ID: 927     | 09790002     | Collected: 01/23/2  | 24 13:05  | Received: 0    | 1/24/24 11:06    | Matrix: Water |     |
|--------------------------------|-----------------|--------------|---------------------|-----------|----------------|------------------|---------------|-----|
| Parameters                     | Results         | Units        | Report Limit        | DF        | Prepared       | Analyzed         | CAS No.       | Qua |
| 6010D ATL ICP                  | Analytical Meth | nod: EPA 60  | 010D Preparation Me | ethod: El | PA 3010A       |                  |               |     |
|                                | Pace Analytica  | l Services - | Peachtree Corners,  | GA        |                |                  |               |     |
| Boron                          | ND              | mg/L         | 0.040               | 1         | 01/25/24 13:04 | 01/26/24 20:5    | 1 7440-42-8   |     |
| Potassium                      | 2.2             | mg/L         | 0.50                | 1         | 01/25/24 13:04 | 01/26/24 20:5    | 1 7440-09-7   |     |
| Sodium                         | 8.5             | mg/L         | 1.0                 | 1         | 01/25/24 13:04 | 01/26/24 20:5    | 1 7440-23-5   |     |
| Calcium                        | 8.6             | mg/L         | 1.0                 | 1         | 01/25/24 13:04 | 01/26/24 20:5    | 1 7440-70-2   |     |
| Magnesium                      | 4.3             | mg/L         | 0.050               | 1         | 01/25/24 13:04 | 01/26/24 20:5    | 1 7439-95-4   |     |
| 6020 MET ICPMS                 | Analytical Meth | nod: EPA 60  | 20B Preparation Me  | thod: Ef  | PA 3005A       |                  |               |     |
|                                | Pace Analytica  | l Services - | Peachtree Corners,  | GA        |                |                  |               |     |
| Antimony                       | ND              | mg/L         | 0.0030              | 1         | 01/26/24 10:13 | 01/26/24 18:10   | 6 7440-36-0   |     |
| Arsenic                        | ND              | mg/L         | 0.0050              | 1         | 01/26/24 10:13 | 01/26/24 18:10   | 6 7440-38-2   |     |
| Barium                         | 0.054           | mg/L         | 0.0050              | 1         | 01/26/24 10:13 | 01/26/24 18:10   | 6 7440-39-3   |     |
| Beryllium                      | ND              | mg/L         | 0.00050             | 1         | 01/26/24 10:13 | 01/26/24 18:10   | 6 7440-41-7   |     |
| Cadmium                        | ND              | mg/L         | 0.00050             | 1         | 01/26/24 10:13 | 01/26/24 18:10   | 6 7440-43-9   |     |
| Chromium                       | ND              | mg/L         | 0.0050              | 1         | 01/26/24 10:13 | 01/26/24 18:10   | 6 7440-47-3   |     |
| Cobalt                         | ND              | mg/L         | 0.0050              | 1         | 01/26/24 10:13 | 01/26/24 18:10   | 6 7440-48-4   |     |
| Lead                           | ND              | mg/L         | 0.0010              | 1         | 01/26/24 10:13 | 01/26/24 18:10   | 6 7439-92-1   |     |
| Lithium                        | ND              | mg/L         | 0.030               | 1         | 01/26/24 10:13 | 01/26/24 18:10   | 6 7439-93-2   |     |
| Molybdenum                     | ND              | mg/L         | 0.010               | 1         | 01/26/24 10:13 | 01/26/24 18:10   | 6 7439-98-7   |     |
| Selenium                       | ND              | mg/L         | 0.0050              | 1         | 01/26/24 10:13 | 01/26/24 18:10   | 6 7782-49-2   |     |
| Thallium                       | ND              | mg/L         | 0.0010              | 1         | 01/26/24 10:13 | 3 01/26/24 18:10 | 6 7440-28-0   |     |
| 7470 Mercury                   | Analytical Meth | nod: EPA 74  | 70A Preparation Me  | thod: EF  | PA 7470A       |                  |               |     |
|                                | Pace Analytica  | l Services - | Peachtree Corners,  | GA        |                |                  |               |     |
| Mercury                        | ND              | mg/L         | 0.00020             | 1         | 01/30/24 08:00 | 01/30/24 11:19   | 9 7439-97-6   |     |
| 2540C Total Dissolved Solids   | Analytical Meth | nod: SM 254  | 40C-2015            |           |                |                  |               |     |
|                                | Pace Analytica  | l Services - | Peachtree Corners,  | GA        |                |                  |               |     |
| Total Dissolved Solids         | 94.0            | mg/L         | 25.0                | 1         |                | 01/25/24 12:5    | 5             |     |
| 2320B Alkalinity               | Analytical Meth | nod: SM 232  | 20B-2011            |           |                |                  |               |     |
| •                              | Pace Analytica  | l Services - | Asheville           |           |                |                  |               |     |
| Alkalinity,Bicarbonate (CaCO3) | 39.7            | mg/L         | 5.0                 | 1         |                | 01/25/24 12:4    | 5             |     |
| Alkalinity, Total as CaCO3     | 39.7            | mg/L         | 5.0                 | 1         |                | 01/25/24 12:4    | 5             |     |
| 9056 IC anions 28 Days         | Analytical Meth | nod: EPA 90  | 056A                |           |                |                  |               |     |
| •                              | Pace Analytica  | l Services - | Asheville           |           |                |                  |               |     |
| Chloride                       | 8.4             | mg/L         | 1.0                 | 1         |                | 01/24/24 23:29   | 9 16887-00-6  |     |
| Fluoride                       | ND              | mg/L         | 0.10                | 1         |                |                  | 9 16984-48-8  |     |
|                                |                 |              |                     |           |                | _                |               |     |



Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92709790

Date: 01/31/2024 10:52 AM

| Sample: ARK-OR-0.8              | Lab ID: 927     | 09790003                      | Collected: 01/23/2  | 24 10:34  | Received: 01   | 1/24/24 11:06 <b>I</b>           | Matrix: Water |     |
|---------------------------------|-----------------|-------------------------------|---------------------|-----------|----------------|----------------------------------|---------------|-----|
| Parameters                      | Results         | Units                         | Report Limit        | DF        | Prepared       | Analyzed                         | CAS No.       | Qua |
| 6010D ATL ICP                   | Analytical Met  | hod: EPA 60                   | 010D Preparation Me | ethod: El | PA 3010A       |                                  |               |     |
|                                 | Pace Analytica  | al Services -                 | Peachtree Corners,  | GA        |                |                                  |               |     |
| Boron                           | ND              | mg/L                          | 0.040               | 1         | 01/25/24 13:04 | 01/26/24 20:56                   | 7440-42-8     |     |
| Potassium                       | 2.9             | mg/L                          | 0.50                | 1         | 01/25/24 13:04 | 01/26/24 20:56                   | 7440-09-7     |     |
| Sodium                          | 5.8             | mg/L                          | 1.0                 | 1         | 01/25/24 13:04 | 01/26/24 20:56                   | 7440-23-5     |     |
| Calcium                         | 4.7             | mg/L                          | 1.0                 | 1         | 01/25/24 13:04 | 01/26/24 20:56                   | 7440-70-2     |     |
| Magnesium                       | 1.7             | mg/L                          | 0.050               | 1         | 01/25/24 13:04 | 01/26/24 20:56                   | 7439-95-4     |     |
| 6020 MET ICPMS                  | Analytical Met  | hod: EPA 60                   | 20B Preparation Me  | ethod: El | PA 3005A       |                                  |               |     |
|                                 | Pace Analytica  | al Services -                 | Peachtree Corners,  | GA        |                |                                  |               |     |
| Antimony                        | ND              | mg/L                          | 0.0030              | 1         | 01/26/24 10:13 | 01/26/24 18:20                   | 7440-36-0     |     |
| Arsenic                         | ND              | mg/L                          | 0.0050              | 1         | 01/26/24 10:13 | 01/26/24 18:20                   | 7440-38-2     |     |
| Barium                          | 0.031           | mg/L                          | 0.0050              | 1         | 01/26/24 10:13 | 01/26/24 18:20                   | 7440-39-3     |     |
| Beryllium                       | ND              | mg/L                          | 0.00050             | 1         | 01/26/24 10:13 | 01/26/24 18:20                   | 7440-41-7     |     |
| Cadmium                         | ND              | mg/L                          | 0.00050             | 1         | 01/26/24 10:13 | 01/26/24 18:20                   | 7440-43-9     |     |
| Chromium                        | ND              | mg/L                          | 0.0050              | 1         | 01/26/24 10:13 | 01/26/24 18:20                   | 7440-47-3     |     |
| Cobalt                          | ND              | mg/L                          | 0.0050              | 1         | 01/26/24 10:13 | 01/26/24 18:20                   | 7440-48-4     |     |
| Lead                            | ND              | mg/L                          | 0.0010              | 1         | 01/26/24 10:13 | 01/26/24 18:20                   | 7439-92-1     |     |
| Lithium                         | ND              | mg/L                          | 0.030               | 1         | 01/26/24 10:13 | 01/26/24 18:20                   | 7439-93-2     |     |
| Molybdenum                      | ND              | mg/L                          | 0.010               | 1         | 01/26/24 10:13 | 01/26/24 18:20                   | 7439-98-7     |     |
| Selenium                        | ND              | mg/L                          | 0.0050              | 1         | 01/26/24 10:13 | 01/26/24 18:20                   | 7782-49-2     |     |
| Thallium                        | ND              | mg/L                          | 0.0010              | 1         | 01/26/24 10:13 | 01/26/24 18:20                   | 7440-28-0     |     |
| 7470 Mercury                    | Analytical Met  | hod: EPA 74                   | 70A Preparation Me  | ethod: El | PA 7470A       |                                  |               |     |
|                                 | Pace Analytica  | al Services -                 | Peachtree Corners,  | GA        |                |                                  |               |     |
| Mercury                         | ND              | mg/L                          | 0.00020             | 1         | 01/30/24 08:00 | 01/30/24 11:22                   | 7439-97-6     |     |
| 2540C Total Dissolved Solids    | Analytical Met  | hod: SM 254                   | 40C-2015            |           |                |                                  |               |     |
|                                 | Pace Analytica  | al Services -                 | Peachtree Corners,  | GA        |                |                                  |               |     |
| Total Dissolved Solids          | 52.0            | mg/L                          | 25.0                | 1         |                | 01/25/24 12:55                   | j             |     |
| 2320B Alkalinity                | Analytical Met  | hod: SM 232                   | 20B-2011            |           |                |                                  |               |     |
|                                 | Pace Analytica  |                               |                     |           |                |                                  |               |     |
| Alkalinity, Bicarbonate (CaCO3) | 17.9            | mg/L                          | 5.0                 | 1         |                | 01/25/24 12:52                   | <u> </u>      |     |
| Alkalinity, Total as CaCO3      | 17.9            | mg/L                          | 5.0                 | 1         |                | 01/25/24 12:52                   | !             |     |
|                                 | Analytical Metl | hod: EPA 90                   | 056A                |           |                |                                  |               |     |
| 9056 IC anions 28 Davs          |                 |                               |                     |           |                |                                  |               |     |
| 9056 IC anions 28 Days          | Pace Analytica  | al Services -                 | Asheville           |           |                |                                  |               |     |
| 9056 IC anions 28 Days Chloride | Pace Analytica  |                               | Asheville 1.0       | 1         |                | 01/24/24 23:44                   | 16887-00-6    |     |
| •                               | •               | al Services -<br>mg/L<br>mg/L |                     | 1<br>1    |                | 01/24/24 23:44<br>01/24/24 23:44 |               |     |



Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92709790

Date: 01/31/2024 10:52 AM

| Sample: ARK-OR-0.1              | Lab ID: 927     | 09790004     | Collected: 01/23/2 | 24 11:53  | Received: 0    | 1/24/24 11:06  | Matrix: Water |     |
|---------------------------------|-----------------|--------------|--------------------|-----------|----------------|----------------|---------------|-----|
| Parameters                      | Results         | Units        | Report Limit       | DF        | Prepared       | Analyzed       | CAS No.       | Qua |
| 6010D ATL ICP                   | Analytical Meth | od: EPA 60   | 10D Preparation Me | ethod: El | PA 3010A       |                |               |     |
|                                 | Pace Analytica  | l Services - | Peachtree Corners, | GA        |                |                |               |     |
| Boron                           | ND              | mg/L         | 0.040              | 1         | 01/25/24 13:04 | 01/26/24 21:0  | 1 7440-42-8   |     |
| Potassium                       | 2.9             | mg/L         | 0.50               | 1         | 01/25/24 13:04 | 01/26/24 21:0  | 1 7440-09-7   |     |
| Sodium                          | 5.9             | mg/L         | 1.0                | 1         | 01/25/24 13:04 | 01/26/24 21:0  | 1 7440-23-5   |     |
| Calcium                         | 4.8             | mg/L         | 1.0                | 1         | 01/25/24 13:04 | 01/26/24 21:0  | 1 7440-70-2   |     |
| Magnesium                       | 1.7             | mg/L         | 0.050              | 1         | 01/25/24 13:04 | 01/26/24 21:0  | 1 7439-95-4   |     |
| 6020 MET ICPMS                  | Analytical Meth | od: EPA 60   | 20B Preparation Me | thod: Ef  | PA 3005A       |                |               |     |
|                                 | Pace Analytica  | l Services - | Peachtree Corners, | GA        |                |                |               |     |
| Antimony                        | ND              | mg/L         | 0.0030             | 1         | 01/26/24 10:13 | 01/26/24 18:3  | 5 7440-36-0   |     |
| Arsenic                         | ND              | mg/L         | 0.0050             | 1         | 01/26/24 10:13 | 01/26/24 18:3  | 5 7440-38-2   |     |
| Barium                          | 0.031           | mg/L         | 0.0050             | 1         |                | 01/26/24 18:3  |               |     |
| Beryllium                       | ND              | mg/L         | 0.00050            | 1         | 01/26/24 10:13 | 01/26/24 18:3  | 5 7440-41-7   |     |
| Cadmium                         | ND              | mg/L         | 0.00050            | 1         | 01/26/24 10:13 | 01/26/24 18:3  | 5 7440-43-9   |     |
| Chromium                        | ND              | mg/L         | 0.0050             | 1         | 01/26/24 10:13 | 01/26/24 18:3  | 5 7440-47-3   |     |
| Cobalt                          | ND              | mg/L         | 0.0050             | 1         | 01/26/24 10:13 | 01/26/24 18:3  | 5 7440-48-4   |     |
| _ead                            | ND              | mg/L         | 0.0010             | 1         |                | 01/26/24 18:3  |               |     |
| Lithium                         | ND              | mg/L         | 0.030              | 1         |                | 01/26/24 18:3  |               |     |
| Molybdenum                      | ND              | mg/L         | 0.010              | 1         | 01/26/24 10:13 | 01/26/24 18:3  | 5 7439-98-7   |     |
| Selenium                        | ND              | mg/L         | 0.0050             | 1         | 01/26/24 10:13 | 01/26/24 18:3  | 5 7782-49-2   |     |
| Γhallium                        | ND              | mg/L         | 0.0010             | 1         | 01/26/24 10:13 | 01/26/24 18:3  | 5 7440-28-0   |     |
| 7470 Mercury                    | Analytical Meth | od: EPA 74   | 70A Preparation Me | thod: EF  | PA 7470A       |                |               |     |
|                                 | Pace Analytica  | l Services - | Peachtree Corners, | GA        |                |                |               |     |
| Mercury                         | ND              | mg/L         | 0.00020            | 1         | 01/30/24 08:00 | 01/30/24 11:24 | 7439-97-6     |     |
| 2540C Total Dissolved Solids    | Analytical Meth | od: SM 254   | 40C-2015           |           |                |                |               |     |
|                                 | Pace Analytica  | l Services - | Peachtree Corners, | GA        |                |                |               |     |
| Total Dissolved Solids          | 77.0            | mg/L         | 25.0               | 1         |                | 01/25/24 12:5  | 5             |     |
| 2320B Alkalinity                | Analytical Meth | od: SM 232   | 20B-2011           |           |                |                |               |     |
| •                               | Pace Analytica  |              |                    |           |                |                |               |     |
| Alkalinity, Bicarbonate (CaCO3) | 20.0            | mg/L         | 5.0                | 1         |                | 01/25/24 12:58 | 3             |     |
| Alkalinity, Total as CaCO3      | 20.0            | mg/L         | 5.0                | 1         |                | 01/25/24 12:58 |               |     |
| 9056 IC anions 28 Days          | Analytical Meth | od: EPA 90   | 956A               |           |                |                |               |     |
|                                 | Pace Analytica  |              |                    |           |                |                |               |     |
| Chloride                        | 5.1             | mg/L         | 1.0                | 1         |                | 01/24/24 23:59 | 9 16887-00-6  |     |
| Fluoride                        | ND              | mg/L         | 0.10               | 1         |                | 01/24/24 23:59 |               |     |
|                                 |                 |              |                    |           |                |                |               |     |



Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92709790

Date: 01/31/2024 10:52 AM

| Sample: ARK-OR-0.3             | Lab ID: 927     | 09790005     | Collected: 01/23/2  | 24 11:14  | Received: 0°   | 1/24/24 11:06  | Matrix: Water |     |
|--------------------------------|-----------------|--------------|---------------------|-----------|----------------|----------------|---------------|-----|
| Parameters                     | Results         | Units        | Report Limit        | DF        | Prepared       | Analyzed       | CAS No.       | Qua |
| 6010D ATL ICP                  | Analytical Meth | nod: EPA 60  | 010D Preparation Me | ethod: El | PA 3010A       |                |               |     |
|                                | Pace Analytica  | l Services - | Peachtree Corners,  | GA        |                |                |               |     |
| Boron                          | ND              | mg/L         | 0.040               | 1         | 01/25/24 13:04 | 01/26/24 21:0  | 5 7440-42-8   |     |
| Potassium                      | 2.7             | mg/L         | 0.50                | 1         | 01/25/24 13:04 | 01/26/24 21:0  | 5 7440-09-7   |     |
| Sodium                         | 5.5             | mg/L         | 1.0                 | 1         | 01/25/24 13:04 | 01/26/24 21:0  | 5 7440-23-5   |     |
| Calcium                        | 4.5             | mg/L         | 1.0                 | 1         | 01/25/24 13:04 | 01/26/24 21:0  | 5 7440-70-2   |     |
| Magnesium                      | 1.6             | mg/L         | 0.050               | 1         | 01/25/24 13:04 | 01/26/24 21:0  | 5 7439-95-4   |     |
| 6020 MET ICPMS                 | Analytical Meth | nod: EPA 60  | 020B Preparation Me | thod: Ef  | PA 3005A       |                |               |     |
|                                | Pace Analytica  | l Services - | Peachtree Corners,  | GA        |                |                |               |     |
| Antimony                       | ND              | mg/L         | 0.0030              | 1         | 01/26/24 10:13 | 01/26/24 18:3  | 9 7440-36-0   |     |
| Arsenic                        | ND              | mg/L         | 0.0050              | 1         | 01/26/24 10:13 | 01/26/24 18:3  | 9 7440-38-2   |     |
| Barium                         | 0.030           | mg/L         | 0.0050              | 1         | 01/26/24 10:13 | 01/26/24 18:3  | 9 7440-39-3   |     |
| Beryllium                      | ND              | mg/L         | 0.00050             | 1         | 01/26/24 10:13 | 01/26/24 18:3  | 9 7440-41-7   |     |
| Cadmium                        | ND              | mg/L         | 0.00050             | 1         | 01/26/24 10:13 | 01/26/24 18:3  | 9 7440-43-9   |     |
| Chromium                       | ND              | mg/L         | 0.0050              | 1         | 01/26/24 10:13 | 01/26/24 18:3  | 9 7440-47-3   |     |
| Cobalt                         | ND              | mg/L         | 0.0050              | 1         | 01/26/24 10:13 | 01/26/24 18:3  | 9 7440-48-4   |     |
| _ead                           | ND              | mg/L         | 0.0010              | 1         | 01/26/24 10:13 | 01/26/24 18:3  | 9 7439-92-1   |     |
| _ithium                        | ND              | mg/L         | 0.030               | 1         | 01/26/24 10:13 | 01/26/24 18:3  | 9 7439-93-2   |     |
| Molybdenum                     | ND              | mg/L         | 0.010               | 1         | 01/26/24 10:13 | 01/26/24 18:3  | 9 7439-98-7   |     |
| Selenium                       | ND              | mg/L         | 0.0050              | 1         | 01/26/24 10:13 | 01/26/24 18:3  | 9 7782-49-2   |     |
| Thallium                       | ND              | mg/L         | 0.0010              | 1         | 01/26/24 10:13 | 01/26/24 18:3  | 9 7440-28-0   |     |
| 7470 Mercury                   | Analytical Meth | nod: EPA 74  | 170A Preparation Me | thod: EF  | PA 7470A       |                |               |     |
|                                | Pace Analytica  | l Services - | Peachtree Corners,  | GA        |                |                |               |     |
| Mercury                        | ND              | mg/L         | 0.00020             | 1         | 01/30/24 08:00 | 01/30/24 11:2  | 7 7439-97-6   |     |
| 2540C Total Dissolved Solids   | Analytical Meth | nod: SM 254  | 40C-2015            |           |                |                |               |     |
|                                | Pace Analytica  | l Services - | Peachtree Corners,  | GA        |                |                |               |     |
| Total Dissolved Solids         | 211             | mg/L         | 25.0                | 1         |                | 01/25/24 12:5  | 6             |     |
| 2320B Alkalinity               | Analytical Meth | nod: SM 232  | 20B-2011            |           |                |                |               |     |
| •                              | Pace Analytica  | l Services - | Asheville           |           |                |                |               |     |
| Alkalinity,Bicarbonate (CaCO3) | 20.2            | mg/L         | 5.0                 | 1         |                | 01/25/24 13:0  | 5             |     |
| Alkalinity, Total as CaCO3     | 20.2            | mg/L         | 5.0                 | 1         |                | 01/25/24 13:0  | 5             |     |
| 9056 IC anions 28 Days         | Analytical Meth | nod: EPA 90  | 056A                |           |                |                |               |     |
|                                | Pace Analytica  |              |                     |           |                |                |               |     |
| Chloride                       | 5.1             | mg/L         | 1.0                 | 1         |                | 01/25/24 00:1  | 3 16887-00-6  |     |
| Fluoride                       | ND              | mg/L         | 0.10                | 1         |                | 01/25/24 00:1: |               |     |
|                                |                 |              |                     |           |                |                |               |     |



Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92709790

Date: 01/31/2024 10:52 AM

| Sample: ARK-OR+0.25            | Lab ID: 927     | 09790006     | Collected: 01/23/2  | 24 12:08  | Received: 0    | 1/24/24 11:06  | Matrix: Water |     |
|--------------------------------|-----------------|--------------|---------------------|-----------|----------------|----------------|---------------|-----|
| Parameters                     | Results         | Units        | Report Limit        | DF        | Prepared       | Analyzed       | CAS No.       | Qua |
| 6010D ATL ICP                  | Analytical Meth | nod: EPA 60  | 010D Preparation Me | ethod: El | PA 3010A       |                |               |     |
|                                | Pace Analytica  | l Services - | Peachtree Corners,  | GA        |                |                |               |     |
| Boron                          | ND              | mg/L         | 0.040               | 1         | 01/25/24 13:04 | 01/26/24 21:2  | 0 7440-42-8   |     |
| Potassium                      | 2.9             | mg/L         | 0.50                | 1         | 01/25/24 13:04 | 01/26/24 21:2  | 0 7440-09-7   |     |
| Sodium                         | 5.9             | mg/L         | 1.0                 | 1         | 01/25/24 13:04 | 01/26/24 21:2  | 0 7440-23-5   |     |
| Calcium                        | 4.8             | mg/L         | 1.0                 | 1         | 01/25/24 13:04 | 01/26/24 21:2  | 0 7440-70-2   |     |
| Magnesium                      | 1.7             | mg/L         | 0.050               | 1         | 01/25/24 13:04 | 01/26/24 21:2  | 0 7439-95-4   |     |
| 6020 MET ICPMS                 | Analytical Meth | nod: EPA 60  | 20B Preparation Me  | thod: Ef  | PA 3005A       |                |               |     |
|                                | Pace Analytica  | l Services - | Peachtree Corners,  | GA        |                |                |               |     |
| Antimony                       | ND              | mg/L         | 0.0030              | 1         | 01/26/24 10:13 | 01/26/24 18:5  | 0 7440-36-0   |     |
| Arsenic                        | ND              | mg/L         | 0.0050              | 1         | 01/26/24 10:13 | 01/26/24 18:5  | 0 7440-38-2   |     |
| Barium                         | 0.031           | mg/L         | 0.0050              | 1         | 01/26/24 10:13 | 01/26/24 18:5  | 0 7440-39-3   |     |
| Beryllium                      | ND              | mg/L         | 0.00050             | 1         | 01/26/24 10:13 | 01/26/24 18:5  | 0 7440-41-7   |     |
| Cadmium                        | ND              | mg/L         | 0.00050             | 1         | 01/26/24 10:13 | 01/26/24 18:5  | 0 7440-43-9   |     |
| Chromium                       | ND              | mg/L         | 0.0050              | 1         | 01/26/24 10:13 | 01/26/24 18:5  | 0 7440-47-3   |     |
| Cobalt                         | ND              | mg/L         | 0.0050              | 1         | 01/26/24 10:13 | 01/26/24 18:5  | 0 7440-48-4   |     |
| Lead                           | ND              | mg/L         | 0.0010              | 1         | 01/26/24 10:13 | 01/26/24 18:5  | 0 7439-92-1   |     |
| Lithium                        | ND              | mg/L         | 0.030               | 1         | 01/26/24 10:13 | 01/26/24 18:5  | 0 7439-93-2   |     |
| Molybdenum                     | ND              | mg/L         | 0.010               | 1         | 01/26/24 10:13 | 01/26/24 18:5  | 0 7439-98-7   |     |
| Selenium                       | ND              | mg/L         | 0.0050              | 1         | 01/26/24 10:13 | 01/26/24 18:5  | 0 7782-49-2   |     |
| Thallium                       | ND              | mg/L         | 0.0010              | 1         | 01/26/24 10:13 | 01/26/24 18:5  | 0 7440-28-0   |     |
| 7470 Mercury                   | Analytical Meth | nod: EPA 74  | 70A Preparation Me  | thod: EF  | PA 7470A       |                |               |     |
|                                | Pace Analytica  | l Services - | Peachtree Corners,  | GA        |                |                |               |     |
| Mercury                        | ND              | mg/L         | 0.00020             | 1         | 01/30/24 08:00 | 01/30/24 11:30 | 7439-97-6     |     |
| 2540C Total Dissolved Solids   | Analytical Meth | nod: SM 254  | 40C-2015            |           |                |                |               |     |
|                                | •               |              | Peachtree Corners,  | GA        |                |                |               |     |
| Total Dissolved Solids         | 68.0            | mg/L         | 25.0                | 1         |                | 01/25/24 12:5  | 6             |     |
| 2320B Alkalinity               | Analytical Meth | nod: SM 232  | 20B-2011            |           |                |                |               |     |
| ,                              | Pace Analytica  |              |                     |           |                |                |               |     |
| Alkalinity,Bicarbonate (CaCO3) | 20.2            | mg/L         | 5.0                 | 1         |                | 01/25/24 13:2  | 1             |     |
| Alkalinity, Total as CaCO3     | 20.2            | mg/L         | 5.0                 | 1         |                | 01/25/24 13:2  |               |     |
| 9056 IC anions 28 Days         | Analytical Meth | nod: EPA 90  | 056A                |           |                |                |               |     |
|                                | Pace Analytica  |              |                     |           |                |                |               |     |
| Chloride                       | 5.1             | mg/L         | 1.0                 | 1         |                | 01/25/24 00:2  | 8 16887-00-6  |     |
| Fluoride                       | ND              | mg/L         | 0.10                | 1         |                |                | 8 16984-48-8  |     |
| i idolide                      |                 |              |                     |           |                |                |               |     |



Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92709790

Date: 01/31/2024 10:52 AM

QC Batch: 827606 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010D ATL

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92709790001, 92709790002, 92709790003, 92709790004, 92709790005, 92709790006

METHOD BLANK: 4279128 Matrix: Water

Associated Lab Samples: 92709790001, 92709790002, 92709790003, 92709790004, 92709790005, 92709790006

|           |       | Blank  | Reporting |                |            |
|-----------|-------|--------|-----------|----------------|------------|
| Parameter | Units | Result | Limit     | Analyzed       | Qualifiers |
| Boron     | mg/L  | ND     | 0.040     | 01/26/24 20:22 |            |
| Calcium   | mg/L  | ND     | 1.0       | 01/26/24 20:22 |            |
| Magnesium | mg/L  | ND     | 0.050     | 01/26/24 20:22 |            |
| Potassium | mg/L  | ND     | 0.50      | 01/26/24 20:22 |            |
| Sodium    | mg/L  | ND     | 1.0       | 01/26/24 20:22 |            |

| LABORATORY CONTROL SAMPLE: | 4279129 | Spike | LCS    | LCS   | % Rec  |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Boron                      | mg/L    |       | 0.98   | 98    | 80-120 |            |
| Calcium                    | mg/L    | 1     | .99J   | 99    | 80-120 |            |
| Magnesium                  | mg/L    | 1     | 1.0    | 102   | 80-120 |            |
| Potassium                  | mg/L    | 1     | 1.1    | 108   | 80-120 |            |
| Sodium                     | mg/L    | 1     | 1.0    | 104   | 80-120 |            |

| MATRIX SPIKE & MATRIX S | PIKE DUPLIC | CATE: 4279 | 130   |       | 4279131 |        |       |       |        |     |     |      |
|-------------------------|-------------|------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                         |             |            | MS    | MSD   |         |        |       |       |        |     |     |      |
|                         | 9           | 2709790001 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter               | Units       | Result     | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Boron                   | mg/L        | ND         | 1     | 1     | 1.0     | 1.0    | 102   | 101   | 75-125 | 1   | 20  |      |
| Calcium                 | mg/L        | 8.5        | 1     | 1     | 9.1     | 9.0    | 63    | 52    | 75-125 | 1   | 20  |      |
| Magnesium               | mg/L        | 4.3        | 1     | 1     | 5.2     | 5.1    | 83    | 77    | 75-125 | 1   | 20  |      |
| Potassium               | mg/L        | 2.1        | 1     | 1     | 3.0     | 3.1    | 95    | 96    | 75-125 | 1   | 20  |      |
| Sodium                  | mg/L        | 8.9        | 1     | 1     | 9.5     | 9.4    | 62    | 49    | 75-125 | 1   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92709790

Date: 01/31/2024 10:52 AM

QC Batch: 827976 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92709790001, 92709790002, 92709790003, 92709790004, 92709790005, 92709790006

METHOD BLANK: 4280989 Matrix: Water

Associated Lab Samples: 92709790001, 92709790002, 92709790003, 92709790004, 92709790005, 92709790006

|            |       | Blank  | Reporting |                |            |
|------------|-------|--------|-----------|----------------|------------|
| Parameter  | Units | Result | Limit     | Analyzed       | Qualifiers |
| Antimony   | mg/L  | ND     | 0.0030    | 01/26/24 18:05 |            |
| Arsenic    | mg/L  | ND     | 0.0050    | 01/26/24 18:05 |            |
| Barium     | mg/L  | ND     | 0.0050    | 01/26/24 18:05 |            |
| Beryllium  | mg/L  | ND     | 0.00050   | 01/26/24 18:05 |            |
| Cadmium    | mg/L  | ND     | 0.00050   | 01/26/24 18:05 |            |
| Chromium   | mg/L  | ND     | 0.0050    | 01/26/24 18:05 |            |
| Cobalt     | mg/L  | ND     | 0.0050    | 01/26/24 18:05 |            |
| Lead       | mg/L  | ND     | 0.0010    | 01/26/24 18:05 |            |
| Lithium    | mg/L  | ND     | 0.030     | 01/26/24 18:05 |            |
| Molybdenum | mg/L  | ND     | 0.010     | 01/26/24 18:05 |            |
| Selenium   | mg/L  | ND     | 0.0050    | 01/26/24 18:05 |            |
| Thallium   | mg/L  | ND     | 0.0010    | 01/26/24 18:05 |            |

| LABORATORY CONTROL SAMPLE: | 4280990 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Antimony                   | mg/L    | 0.1   | 0.10   | 101   | 80-120 |            |
| Arsenic                    | mg/L    | 0.1   | 0.098  | 98    | 80-120 |            |
| Barium                     | mg/L    | 0.1   | 0.098  | 98    | 80-120 |            |
| Beryllium                  | mg/L    | 0.1   | 0.097  | 97    | 80-120 |            |
| Cadmium                    | mg/L    | 0.1   | 0.095  | 95    | 80-120 |            |
| Chromium                   | mg/L    | 0.1   | 0.094  | 94    | 80-120 |            |
| Cobalt                     | mg/L    | 0.1   | 0.094  | 94    | 80-120 |            |
| Lead                       | mg/L    | 0.1   | 0.098  | 98    | 80-120 |            |
| Lithium                    | mg/L    | 0.1   | 0.10   | 101   | 80-120 |            |
| Molybdenum                 | mg/L    | 0.1   | 0.096  | 96    | 80-120 |            |
| Selenium                   | mg/L    | 0.1   | 0.10   | 100   | 80-120 |            |
| Thallium                   | mg/L    | 0.1   | 0.098  | 98    | 80-120 |            |

| MATRIX SPIKE & MATRIX SF | PIKE DUPLI | CATE: 4280  | 991         |              | 4280992 |        |       |       |        |     |     |      |
|--------------------------|------------|-------------|-------------|--------------|---------|--------|-------|-------|--------|-----|-----|------|
|                          | 9          | 92709790003 | MS<br>Spike | MSD<br>Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                | Units      | Result      | Conc.       | Conc.        | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Antimony                 | mg/L       | ND          | 0.1         | 0.1          | 0.095   | 0.096  | 95    | 96    | 75-125 | 1   | 20  |      |
| Arsenic                  | mg/L       | ND          | 0.1         | 0.1          | 0.093   | 0.096  | 92    | 96    | 75-125 | 4   | 20  |      |
| Barium                   | mg/L       | 0.031       | 0.1         | 0.1          | 0.12    | 0.13   | 93    | 95    | 75-125 | 2   | 20  |      |
| Beryllium                | mg/L       | ND          | 0.1         | 0.1          | 0.093   | 0.093  | 93    | 93    | 75-125 | 0   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92709790

Date: 01/31/2024 10:52 AM

| MATRIX SPIKE & MATRIX | OF INCE DOT ET | CATE: 4280  | MS    | MSD   | 4280992 |        |       |       |        |     |     |      |
|-----------------------|----------------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                       | 9              | 92709790003 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter             | Units          | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Cadmium               | mg/L           | ND          | 0.1   | 0.1   | 0.094   | 0.095  | 94    | 95    | 75-125 | 1   | 20  |      |
| Chromium              | mg/L           | ND          | 0.1   | 0.1   | 0.093   | 0.095  | 91    | 94    | 75-125 | 3   | 20  |      |
| Cobalt                | mg/L           | ND          | 0.1   | 0.1   | 0.093   | 0.095  | 92    | 94    | 75-125 | 2   | 20  |      |
| Lead                  | mg/L           | ND          | 0.1   | 0.1   | 0.093   | 0.096  | 92    | 95    | 75-125 | 3   | 20  |      |
| Lithium               | mg/L           | ND          | 0.1   | 0.1   | 0.098   | 0.097  | 97    | 96    | 75-125 | 0   | 20  |      |
| Molybdenum            | mg/L           | ND          | 0.1   | 0.1   | 0.091   | 0.094  | 90    | 94    | 75-125 | 4   | 20  |      |
| Selenium              | mg/L           | ND          | 0.1   | 0.1   | 0.091   | 0.098  | 91    | 97    | 75-125 | 7   | 20  |      |
| Thallium              | mg/L           | ND          | 0.1   | 0.1   | 0.092   | 0.094  | 92    | 94    | 75-125 | 2   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92709790

Mercury

Mercury

Date: 01/31/2024 10:52 AM

QC Batch: 828685 Analysis Method: EPA 7470A

QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92709790001, 92709790002, 92709790003, 92709790004, 92709790005, 92709790006

METHOD BLANK: 4283589 Matrix: Water

Associated Lab Samples: 92709790001, 92709790002, 92709790003, 92709790004, 92709790005, 92709790006

Blank Reporting

 Parameter
 Units
 Result
 Limit
 Analyzed
 Qualifiers

 mg/L
 ND
 0.00020
 01/30/24 10:58

LABORATORY CONTROL SAMPLE: 4283590

Spike LCS LCS % Rec Result % Rec Limits Qualifiers Parameter Units Conc. mg/L 0.0025 0.0025 98 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4283591

MSD MS 92709790001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. **RPD** RPD Qual Result Conc. Result Result % Rec % Rec Limits 0.0025 Mercury mg/L ND 0.0025 0.0026 0.0027 105 107 75-125 2 20

4283592

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92709790

QC Batch: 827796 Analysis Method: SM 2540C-2015

QC Batch Method: SM 2540C-2015 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92709790001, 92709790002, 92709790003, 92709790004, 92709790005, 92709790006

METHOD BLANK: 4279830 Matrix: Water

Associated Lab Samples: 92709790001, 92709790002, 92709790003, 92709790004, 92709790005, 92709790006

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L ND 25.0 01/25/24 12:53

LABORATORY CONTROL SAMPLE: 4279831

ParameterUnitsSpike<br/>Conc.LCS<br/>ResultLCS<br/>% Rec<br/>% RecLimits<br/>LimitsQualifiers

Total Dissolved Solids mg/L 400 367 92 80-120

SAMPLE DUPLICATE: 4279832

92709952001 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 26.0 **Total Dissolved Solids** 10 D6 mg/L 29.0 11

SAMPLE DUPLICATE: 4279833

Date: 01/31/2024 10:52 AM

92709793004 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 85.0 103 10 D6 mg/L 19

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92709790

QC Batch: 827797 Analysis Method: SM 2320B-2011
QC Batch Method: SM 2320B-2011 Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92709790001, 92709790002, 92709790003, 92709790004, 92709790005, 92709790006

METHOD BLANK: 4279859 Matrix: Water

Associated Lab Samples: 92709790001, 92709790002, 92709790003, 92709790004, 92709790005, 92709790006

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed Alkalinity, Total as CaCO3 ND 5.0 01/25/24 12:03 mg/L Alkalinity, Bicarbonate (CaCO3) mg/L ND 5.0 01/25/24 12:03

LABORATORY CONTROL SAMPLE: 4279860

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Alkalinity, Total as CaCO3 50.9 102 80-120 mg/L 50

LABORATORY CONTROL SAMPLE: 4279861

Date: 01/31/2024 10:52 AM

LCS Spike LCS % Rec Conc. Limits Qualifiers Parameter Units Result % Rec 51.7 103 80-120 Alkalinity, Total as CaCO3 mg/L 50

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4279863 4279864 MS MSD 92709794006 MS MSD MS MSD Spike Spike % Rec Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD

Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual Alkalinity, Total as CaCO3 mg/L 38.4 50 50 87.1 89.3 97 102 80-120 2 25

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4279885 4279886 MSD MS 92709794004 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec **RPD** RPD Qual Limits Alkalinity, Total as CaCO3 mg/L 42.4 50 50 94.3 95.6 104 106 80-120 1 25

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: Plant Arkwright-CCR Ash Pond

LABORATORY CONTROL CAMPLE: 4270220

Date: 01/31/2024 10:52 AM

Pace Project No.: 92709790

QC Batch: 827647 Analysis Method: EPA 9056A

QC Batch Method: EPA 9056A Analysis Description: 9056 IC anions 28 Days

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92709790001, 92709790002, 92709790003, 92709790004, 92709790005, 92709790006

METHOD BLANK: 4279328 Matrix: Water

Associated Lab Samples: 92709790001, 92709790002, 92709790003, 92709790004, 92709790005, 92709790006

|           |       | Blank  | Reporting |                |            |
|-----------|-------|--------|-----------|----------------|------------|
| Parameter | Units | Result | Limit     | Analyzed       | Qualifiers |
| Chloride  | mg/L  | ND     | 1.0       | 01/24/24 21:23 |            |
| Fluoride  | mg/L  | ND     | 0.10      | 01/24/24 21:23 |            |
| Sulfate   | mg/L  | ND     | 1.0       | 01/24/24 21:23 |            |

| LABORATORY CONTROL SAMPLE: | 4279329 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Chloride                   | mg/L    | 50    | 50.3   | 101   | 90-110 |            |
| Fluoride                   | mg/L    | 2.5   | 2.4    | 95    | 90-110 |            |
| Sulfate                    | mg/L    | 50    | 50.4   | 101   | 90-110 |            |

| MATRIX SPIKE & MATRIX SP | IKE DUPL | ICATE: 4279 | 330   |       | 4279331 |        |       |       |        |     |     |      |
|--------------------------|----------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                          |          |             | MS    | MSD   |         |        |       |       |        |     |     |      |
|                          |          | 92709790001 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                | Units    | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Chloride                 | mg/L     | 8.4         | 50    | 50    | 58.7    | 60.0   | 101   | 103   | 90-110 | 2   | 10  |      |
| Fluoride                 | mg/L     | ND          | 2.5   | 2.5   | 2.6     | 2.7    | 101   | 105   | 90-110 | 4   | 10  |      |
| Sulfate                  | mg/L     | 7.7         | 50    | 50    | 58.3    | 59.6   | 101   | 104   | 90-110 | 2   | 10  |      |

| MATRIX SPIKE & MATRIX SP | IKE DUPL | ICATE: 4279 | 332   |       | 4279333 |        |       |       |        |     |     |      |
|--------------------------|----------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                          |          |             | MS    | MSD   |         |        |       |       |        |     |     |      |
|                          |          | 92709793005 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                | Units    | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Chloride                 | mg/L     | 8.3         | 50    | 50    | 58.6    | 60.2   | 101   | 104   | 90-110 | 3   | 10  |      |
| Fluoride                 | mg/L     | ND          | 2.5   | 2.5   | 2.6     | 2.7    | 104   | 108   | 90-110 | 4   | 10  |      |
| Sulfate                  | mg/L     | 7.6         | 50    | 50    | 58.0    | 59.7   | 101   | 104   | 90-110 | 3   | 10  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALIFIERS**

Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92709790

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### **ANALYTE QUALIFIERS**

Date: 01/31/2024 10:52 AM

D6 The precision between the sample and sample duplicate exceeded laboratory control limits.



## **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92709790

Date: 01/31/2024 10:52 AM

| Lab ID      | Sample ID   | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|-------------|-----------------|----------|-------------------|---------------------|
| 92709790001 | ARK-BC-0.3  | EPA 3010A       | 827606   | EPA 6010D         | 827842              |
| 92709790002 | ARK-BC-0.1  | EPA 3010A       | 827606   | EPA 6010D         | 827842              |
| 92709790003 | ARK-OR-0.8  | EPA 3010A       | 827606   | EPA 6010D         | 827842              |
| 92709790004 | ARK-OR-0.1  | EPA 3010A       | 827606   | EPA 6010D         | 827842              |
| 92709790005 | ARK-OR-0.3  | EPA 3010A       | 827606   | EPA 6010D         | 827842              |
| 92709790006 | ARK-OR+0.25 | EPA 3010A       | 827606   | EPA 6010D         | 827842              |
| 2709790001  | ARK-BC-0.3  | EPA 3005A       | 827976   | EPA 6020B         | 828246              |
| 2709790002  | ARK-BC-0.1  | EPA 3005A       | 827976   | EPA 6020B         | 828246              |
| 2709790003  | ARK-OR-0.8  | EPA 3005A       | 827976   | EPA 6020B         | 828246              |
| 2709790004  | ARK-OR-0.1  | EPA 3005A       | 827976   | EPA 6020B         | 828246              |
| 2709790005  | ARK-OR-0.3  | EPA 3005A       | 827976   | EPA 6020B         | 828246              |
| 92709790006 | ARK-OR+0.25 | EPA 3005A       | 827976   | EPA 6020B         | 828246              |
| 2709790001  | ARK-BC-0.3  | EPA 7470A       | 828685   | EPA 7470A         | 828766              |
| 2709790002  | ARK-BC-0.1  | EPA 7470A       | 828685   | EPA 7470A         | 828766              |
| 2709790003  | ARK-OR-0.8  | EPA 7470A       | 828685   | EPA 7470A         | 828766              |
| 2709790004  | ARK-OR-0.1  | EPA 7470A       | 828685   | EPA 7470A         | 828766              |
| 2709790005  | ARK-OR-0.3  | EPA 7470A       | 828685   | EPA 7470A         | 828766              |
| 2709790006  | ARK-OR+0.25 | EPA 7470A       | 828685   | EPA 7470A         | 828766              |
| 2709790001  | ARK-BC-0.3  | SM 2540C-2015   | 827796   |                   |                     |
| 2709790002  | ARK-BC-0.1  | SM 2540C-2015   | 827796   |                   |                     |
| 2709790003  | ARK-OR-0.8  | SM 2540C-2015   | 827796   |                   |                     |
| 2709790004  | ARK-OR-0.1  | SM 2540C-2015   | 827796   |                   |                     |
| 2709790005  | ARK-OR-0.3  | SM 2540C-2015   | 827796   |                   |                     |
| 2709790006  | ARK-OR+0.25 | SM 2540C-2015   | 827796   |                   |                     |
| 2709790001  | ARK-BC-0.3  | SM 2320B-2011   | 827797   |                   |                     |
| 2709790002  | ARK-BC-0.1  | SM 2320B-2011   | 827797   |                   |                     |
| 2709790003  | ARK-OR-0.8  | SM 2320B-2011   | 827797   |                   |                     |
| 2709790004  | ARK-OR-0.1  | SM 2320B-2011   | 827797   |                   |                     |
| 2709790005  | ARK-OR-0.3  | SM 2320B-2011   | 827797   |                   |                     |
| 2709790006  | ARK-OR+0.25 | SM 2320B-2011   | 827797   |                   |                     |
| 2709790001  | ARK-BC-0.3  | EPA 9056A       | 827647   |                   |                     |
| 2709790002  | ARK-BC-0.1  | EPA 9056A       | 827647   |                   |                     |
| 2709790003  | ARK-OR-0.8  | EPA 9056A       | 827647   |                   |                     |
| 2709790004  | ARK-OR-0.1  | EPA 9056A       | 827647   |                   |                     |
| 2709790005  | ARK-OR-0.3  | EPA 9056A       | 827647   |                   |                     |
| 92709790006 | ARK-OR+0.25 | EPA 9056A       | 827647   |                   |                     |

# CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

| 92     |                       | Σ                          | ARK-CCI              | T       | App. N                                                        |                               | 12       | 11           | 10           | 6            | 60       | 7            | 0           | 5                                                |                                                  | ω         | 2          | -                                                | ITEM#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                | Reques              | Phone:                               | Atlanta,<br>Email:                                     | Address                  | Company:                      | Required                      |                  |
|--------|-----------------------|----------------------------|----------------------|---------|---------------------------------------------------------------|-------------------------------|----------|--------------|--------------|--------------|----------|--------------|-------------|--------------------------------------------------|--------------------------------------------------|-----------|------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------|--------------------------------------------------------|--------------------------|-------------------------------|-------------------------------|------------------|
| 709780 |                       | MO#:92709790               | ARK-CCR-ASSMT-2024S1 |         | App. IV - Sb, As, Ba, Be, Cd, Cr, Co, Pb, Li, Mo, Se, Tl + Hg | ADDITIONAL COMMENTS           |          |              |              |              |          |              | ARK-OR+0.25 | ARK-OR-03                                        | ARK-OR-0.1                                       | ARK-OR-OB | ARK-BC-0.1 | ARK-BC-0.3                                       | SAMPLE ID  One Character per box.  (A-2, 0-9 / , -)  Sample ids must be unique  One Character per box.  (A-2, 0-9 / , -)  Sample ids must be unique  One Character per box.  O |                                                                                                                | Requested Due Date: | (770)384-6584 Fax:                   | Allanta, GA 30339<br>Email: kellov sharpadjarpadja.com | 1                        | y: ARCADIS - Allanta          | Required Client Information:  | WWW.PACELASS.COM |
|        |                       |                            | +                    | H       |                                                               | <b>医</b>                      |          |              |              |              |          | Manager Park |             |                                                  |                                                  |           |            |                                                  | Water DWY Water WY WATER WW WT WATER AR AR AR AR T8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                | Project #           | Project Name:                        | Purchase Order #:                                      | Copy To:                 | Report To:                    | Required Project Information: |                  |
|        |                       |                            |                      |         | S                                                             | 2                             | H        |              |              |              |          | 200          | 8           | ¥<br>G                                           | 8                                                | 8         | ¥<br>G     | WG                                               | MATRIX CODE (see valid codes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | to left)                                                                                                       | ı                   | 3                                    |                                                        |                          |                               | Poje                          |                  |
|        |                       |                            |                      |         | 12                                                            | NOU                           | ┢        | +            | ╁            | ╁            |          | <del> </del> | wGG         | <u>ନ</u>                                         | WGG                                              | WGG       | <u>ဂ</u>   | <u>ର</u><br>ଜ                                    | SAMPLE TYPE (G=GRAB C=C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                              | Т                   | 밁                                    | *                                                      | 동                        | lley S                        | 표                             |                  |
|        |                       |                            |                      |         | ARC-S-WAY                                                     | SHED BY                       | ļ        |              |              |              |          |              | 1/23        | 1/23                                             | 1/23                                             | 1/23      | 1/23       | 1/23                                             | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |                     | Arkw                                 | ap Ca                                                  | dges, lo                 | inarpe,                       | ormation                      |                  |
|        | <b>(</b>              | - SE                       |                      | 1       | 100                                                           | RELINGUISHED BY / AFFILIATION | ┢        |              | H            |              |          |              | 31208       | 11/2                                             | 153                                              | 150       | t          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8  <br>8                                                                                                       |                     | gh/CCF                               | GPC82474-0003                                          | Ben Hodges, Joju Abraham | Kelley Sharpe, Warren Johnson | 5                             |                  |
|        | JGNATU                | ER NA                      |                      |         | 1/2                                                           | MOLL                          | ┝        |              | -            | -            |          |              | $\infty$    |                                                  | W                                                | 7         | Dy.        | <u>00</u>                                        | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | COLLECTED                                                                                                      |                     | ₹-Ash Po                             | ا                                                      | Į                        | thrison                       |                               | ;                |
|        | SIGNATURE of SAMPLER: | SAMPLER NAME AND SIGNATURE |                      | +       |                                                               |                               | $\vdash$ | -            | -            | ļ            | _        |              |             |                                                  |                                                  |           | -          | $\vdash$                                         | <u>"</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | "                                                                                                              |                     | Plant Arkwright/CCR-Ash Pond Closure |                                                        |                          |                               |                               |                  |
|        |                       | Seg                        |                      |         | 1/24/25                                                       | DATE                          |          |              | L            |              |          |              |             | _                                                |                                                  |           |            |                                                  | T N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                |                     | 8                                    |                                                        |                          |                               |                               |                  |
| A      | F .                   | 휘칠                         | er ye.               | _       | 100                                                           | 100                           | <u> </u> | -            | ļ            | <del> </del> | _        | ļ            | is .        | 55                                               | 5                                                | 5         | I On       | 5                                                | SAMPLE TEMP AT COLLECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                | F                   | H                                    | - N                                                    | <br> -                   | Ļ                             | <b>=</b> 0                    |                  |
| 1      | In k                  | 10000000                   | ŀ                    |         | 100                                                           | TIME                          | ⊢        | $\vdash$     | ⊢            | ├            |          | -            | ×           | ×                                                | ×                                                | ×         | ×          | ×                                                | # OF CONTAINERS Unpreserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\dashv$                                                                                                       | Pace Profile #:     | Pace Project Manager                 | Address<br>Pace Quote:                                 | Company Name:            | Attention:                    | nvoice information:           |                  |
| 1      |                       |                            |                      | ١,      | 6                                                             | in                            |          | $\vdash$     | $\vdash$     | ╁            |          | ╁            | ╁           | $\vdash$                                         | ┢                                                | -         | -          | ├                                                | H2SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                | ğ                   | <b>क</b>                             |                                                        | 캋                        | 3                             |                               | , ;              |
| - 1    | וו ראו                | 223080                     |                      | +       | 4                                                             | 100                           | $\vdash$ | $\vdash$     |              | ┢            |          |              | ×           | ×                                                | ×                                                | ×         | ×          | ×                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , I                                                                                                            | *                   | X S                                  |                                                        | 3                        | H                             | mat                           | Ġ                |
|        | Ma                    |                            |                      | 1.      | M/                                                            |                               |          |              |              |              |          |              |             |                                                  |                                                  |           |            |                                                  | HCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Preservatives                                                                                                  | 15836               | ğ                                    |                                                        |                          | H                             | 9                             | ġ                |
|        | 1 8                   |                            |                      |         | 'N                                                            |                               | L        | ļ            |              | _            |          | <u> </u>     |             | _                                                | _                                                |           |            |                                                  | NaOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                | - 1                 |                                      |                                                        |                          | H                             |                               |                  |
|        | 1 5                   | 5.65                       |                      | 1       | W,                                                            | OCEP                          | -        | $\vdash$     | ├            |              |          | -            | -           | ┢                                                | -                                                | ⊢         | -          | -                                                | Na2S2O3<br>Methanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8                                                                                                              | П                   | naiya.                               |                                                        |                          | H                             |                               | į                |
|        | arsolu                |                            |                      |         | \                                                             | TEDE                          | ⊢        | ╁            | $\vdash$     | $\vdash$     | $\vdash$ | ⊢            | $\vdash$    | -                                                |                                                  | $\vdash$  | $\vdash$   | $\vdash$                                         | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                |                     | Parks                                | 1                                                      | П                        | H                             |                               |                  |
|        | ۱ /                   |                            |                      |         |                                                               | YIN                           |          | 100          |              |              |          |              |             |                                                  |                                                  |           |            | - 10                                             | Analyses Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y/N                                                                                                            |                     |                                      |                                                        |                          | $  \  $                       |                               | į                |
|        |                       |                            |                      | 1       |                                                               | NOCEPTED BY ! AFFILIATION     |          |              |              |              |          |              | ×           | ×                                                | ×                                                | ×         | ×          | ×                                                | Total/Bicarb Alkalinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |                     | maiya.parks@pacelabs.com             |                                                        |                          | H                             |                               | 9                |
|        | DATE Signed:          |                            |                      | 1       |                                                               | NOE                           | L        | _            | _            | _            | _        | <u> </u>     | ×           | ×                                                | ×                                                | ×         | ×          | ×                                                | CI, F, \$04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                                                                                              | 2                   | 8                                    |                                                        |                          | H                             |                               | Š                |
|        | Sign                  | 1                          |                      | 1       |                                                               |                               | <u> </u> | -            | ├            | -            |          | ├            | ×           | ×                                                | ×                                                | ×         | ×          | ×                                                | TDS<br>App. III Metals - B, Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\dashv$                                                                                                       | Ĭ                   | П                                    |                                                        |                          |                               |                               |                  |
|        | , i                   | 1                          |                      |         |                                                               | 7                             | $\vdash$ | ╁            | $\vdash$     | ╁            |          | <b></b> -    | ×           | ×                                                | ×                                                | ×         | ×          | ×                                                | App. IV Metals (Client List)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                | <u>8</u>            | П                                    |                                                        |                          | П                             |                               |                  |
|        | 0                     |                            |                      |         | N                                                             | 瓣                             |          |              |              |              |          |              | ×           | ×                                                | ×                                                | ×         | ×          | ×                                                | Metals - Mg, Na, K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                | 1                   | Н                                    |                                                        | ļ                        | Н                             |                               |                  |
|        | $\mathcal{F}$         |                            |                      |         | K                                                             | DATE                          | L        | $oxed{oxed}$ |              |              |          |              | ×           | ×                                                | <u>×</u>                                         | ×         | ×          | ×                                                | Radium 226/228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                | <u> </u>            |                                      | -                                                      | L                        |                               |                               | 1                |
|        | 72                    |                            | -                    | -       | $\downarrow$                                                  | 100                           | L        | ╀            | ⊢            | ├            |          |              | -           | ļ                                                | <del> </del>                                     | -         | ├          | <b>.</b>                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | 2                   |                                      | 100                                                    |                          |                               |                               | 1                |
|        |                       | 1                          |                      |         | 11/6                                                          | TIME                          | ┝        | ┼            | ╁─╴          | ╁            | $\vdash$ | ╁            | ┢           | <del> </del>                                     | $\vdash$                                         | -         | ├          | ╁                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\dashv$                                                                                                       | 3                   |                                      |                                                        | ı                        |                               |                               |                  |
|        |                       | 100                        |                      |         |                                                               |                               | Н        | +            | <del> </del> | $\vdash$     |          | t            | ┢           | <del>                                     </del> | <del>                                     </del> | $\vdash$  | $\vdash$   | <del>                                     </del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                     |                                      |                                                        | ı                        | ſ                             | 70                            | ٦ إ              |
|        | TEMP in               | ٦                          |                      |         | Τ                                                             | 200                           |          |              |              |              |          |              |             |                                                  |                                                  |           |            |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                     | 9                                    | 27                                                     |                          | ŀ                             | Page :                        | Ι,               |
|        | I SIVIE II            |                            | $\perp$              | $\perp$ | $\perp$                                                       | Sep.                          |          | 19,000       |              |              |          | -            |             | 2300                                             |                                                  |           |            |                                                  | Residual Chlorine (Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |                     | tate / Loca                          | Wieto                                                  |                          |                               | ••                            |                  |
|        | Receive<br>Ice        | d on                       |                      |         |                                                               | SAMP                          |          |              |              | ł            |          |              |             |                                                  |                                                  | ]         |            |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | æ                   | Local                                | ulatory Agency                                         |                          |                               | _                             |                  |
|        | (Y/N)<br>Custody      |                            | $\perp$              | +       | $\perp$                                                       | BAMPLE CONDITIONS             |          |              |              |              |          |              |             |                                                  |                                                  |           |            |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | 1                   | rtion                                | ASU                                                    |                          |                               |                               |                  |
|        | Sealed<br>Cooler      |                            |                      |         |                                                               | HOTT                          |          |              |              |              |          |              |             |                                                  |                                                  |           |            |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | 1                   |                                      |                                                        |                          | -                             | Q                             |                  |
|        | (Y/N)                 |                            | _                    |         | +                                                             | 8140                          |          |              |              |              |          |              |             |                                                  |                                                  |           |            |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                     |                                      | 100                                                    |                          |                               | -                             |                  |
|        | Sample:<br>Intact     | •                          |                      |         |                                                               | 1                             |          |              |              |              |          |              |             |                                                  |                                                  |           |            |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | 200                 | 機能                                   | Ser Birth                                              |                          |                               | <u> </u>                      |                  |
| 1      | (Y/N)                 | L                          |                      |         |                                                               |                               | _        | <u> </u>     |              |              |          | <u> </u>     | <u> </u>    | L                                                | <u></u>                                          |           | <u> </u>   | 1                                                | 20-108 52 22 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100 St. 100 St. 100 St. 100 St. 100 St. 100 St. 100 St. 100 St. 100 St. 100 St. 100 St. 100 St. 100 St. 100 St |                     | 靈                                    | 100                                                    | ı                        | Į                             |                               | L                |
|        |                       |                            |                      |         |                                                               |                               |          |              |              |              |          |              |             |                                                  |                                                  |           |            |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                     |                                      |                                                        |                          |                               | ı                             | Page             |

| 0                   | DC#_Title: ENV-FRM-HUN1-0083 v03_Sample Condition Upon Receipt |
|---------------------|----------------------------------------------------------------|
| Pace                | •                                                              |
| ANALYTICAL SERVICES | Effective Date: 11/29/2023                                     |

| Laboratory receiving samples:  Asheville                                                           | luntersville [    | Raleigh[             | ☐ Mechanicsville☐ Atlanta☐ Kernersville☐                                                                      |
|----------------------------------------------------------------------------------------------------|-------------------|----------------------|---------------------------------------------------------------------------------------------------------------|
| Sample Condition Client Name:                                                                      |                   |                      | Project #: WO#: 92709790                                                                                      |
| Courier: Fed Ex UPS  Commercial Pace                                                               | USPS Other:       | Clien                | PM: MP Due Date: 01/31/24 CLIENT: GA-ArcadAtl                                                                 |
| Custody Seal Present?                                                                              | Intact?           | ₫Yes □No             | N/A Date/Initials Person Examining Contents: 1/24/14/5/                                                       |
|                                                                                                    | ble Bags          | None 🗌 Oti           | ther Biological Tissue Frozen?  Yes No N/A                                                                    |
| Thermometer:                                                                                       |                   | Wet □Ble             | lue                                                                                                           |
| Cooler Temp: Correction Factor Add/Subtract (°C): USDA Regulated Soil ( \bigcap N/A, water sample) | 10.1              |                      | Temp should be above freezing to 6°C  Samples out of temp criteria. Samples on ice, cooling process has begun |
| Did samples originate in a quarantine zone within the                                              | United States: CA | A, NY, or SC         | Did samples originate from a foreign source (internationally,                                                 |
| (check maps)? Yes No                                                                               |                   |                      | including Hawaii and Puerto Rico)?  Yes No  Comments/Discrepancy:                                             |
|                                                                                                    |                   |                      | 1.                                                                                                            |
| Chain of Custody Present?                                                                          |                   | No N/A               | 2.                                                                                                            |
| Samples Arrived within Hold Time?                                                                  |                   | □No □N/A             |                                                                                                               |
| Short Hold Time Analysis (<72 hr.)?                                                                |                   | ⊒Ńo □N/A             | 3.                                                                                                            |
| Rush Turn Around Time Requested?                                                                   |                   | ⊿no □n/a             | 4.                                                                                                            |
| Sufficient Volume?                                                                                 | <b>⊉</b> ∜es [    | □No □N/A             | 5                                                                                                             |
| Correct Containers Used? -Pace Containers Used?                                                    |                   | □No □N/A<br>□No □N/A | 6.                                                                                                            |
| Containers Intact?                                                                                 |                   | □No □N/A             | 7.                                                                                                            |
| Dissolved analysis: Samples Field Filtered?                                                        | □Yes              | □No →□N/A            | 8,                                                                                                            |
| Sample Labels Match COC?                                                                           | 2000              | □No □N/A             | 9.                                                                                                            |
| -Includes Date/Time/ID/Analysis Matrix:                                                            | n                 |                      |                                                                                                               |
| Headspace in VOA Vials (>5-6mm)?                                                                   | Yes               | □No □N/A             |                                                                                                               |
| Trip Blank Present?                                                                                | Yes               | □No □M/A             | 11.                                                                                                           |
| Trip Blank Custody Seals Present?                                                                  | ☐Yes              | □No ØN/A             |                                                                                                               |
| COMMENTS/SAMPLE DISCREPANCY                                                                        |                   |                      | Field Data Required? ☐ Yes ☐ No                                                                               |
|                                                                                                    |                   |                      | Lot ID of split containers:                                                                                   |
| CLIENT NOTIFICATION/RESOLUTION                                                                     |                   |                      |                                                                                                               |
|                                                                                                    |                   |                      |                                                                                                               |
| Person contacted:                                                                                  |                   | Date/Tim             | me:                                                                                                           |
|                                                                                                    |                   |                      | Date:                                                                                                         |
|                                                                                                    | _                 |                      | Dates                                                                                                         |
| Project Manager SRF Review:                                                                        |                   |                      |                                                                                                               |

Page 22 of 23



DC#\_Title: ENV-FRM-HUN1-0083 v03\_Sample Condition Upon Receipt

Effective Date: 11/29/2023

\*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

-

Project #

WO#: 92709790

PM: 11P

Due Date: 01/31/24

CLIENT: GA-ArcadAtl

\*\*Bottom half of box is to list number of bottles

\*\*\*Check all unpreserved Nitrates for chlorine

| Item# | BP4U-125 mL Plastic Unpreserved (N/A) (Cl-) | BP3U-250 mL Plastic Unpreserved (N/A) | BP2U-500 mL Plastic Unpreserved (N/A) | BP1U-1 liter Plastic Unpreserved (N/A) | BP45-125 mL Plastic H2SO4 (pH < 2) (CI-) | BP3N-250 mL plastic HNO3 (pH < 2) | BP42-125 mL Plastic ZN Acetate & NaOH (>9) | BP48-125 mL Plastic NaOH (pH > 12) (CI-) | WGFU-Wide-mouthed Glass jar Unpreserved | AG1U-1 liter Amber Unpreserved (N/A) (Cl-) | AG1H-1 liter Amber HCl (pH < 2) | AG3U-250 mL Amber Unpreserved (N/A) (CI-) | AG1S-1 liter Amber H2SO4 (pH < 2) | AG3S-250 mL Amber H2SO4 (pH < 2) | DG94-40 mL Amber NH4Cl (N/A)(Cl-) | DG9H-40 mL VOA HCI (N/A) | VG9T-40 mL VOA Na2S2O3 (N/A) | VG9U-40 mL VOA Unpreserved (N/A) | DG9V-40 mL VOA H3PO4 (N/A) | KP7U-50 mL Plastic Unpreserved (N/A) | V/GK (3 vials per kit)-VPH/Gas kit (N/A) | SP5T-125 mL Sterile Plastic (N/A – lab) | SP2T-250 mL Sterile Plastic (N/A — lab) | 3PIN      | BP3R-250 mL Plastic (NH2)25O4 (9.3-9.7) | AG0U-100 mL Amber Unpreserved (N/A) (CI-) | VSGU-20 mt. Scintillation vials (N/A) | DG9U-40 mL Amber Unpreserved vials (N/A) |
|-------|---------------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|------------------------------------------|-----------------------------------|--------------------------------------------|------------------------------------------|-----------------------------------------|--------------------------------------------|---------------------------------|-------------------------------------------|-----------------------------------|----------------------------------|-----------------------------------|--------------------------|------------------------------|----------------------------------|----------------------------|--------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|-----------|-----------------------------------------|-------------------------------------------|---------------------------------------|------------------------------------------|
| 1     |                                             |                                       | 2                                     |                                        |                                          | $\setminus$                       |                                            |                                          |                                         |                                            |                                 | ,                                         |                                   |                                  |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         | Ž         |                                         |                                           |                                       |                                          |
| 2     | $\triangle$                                 |                                       | 7                                     |                                        |                                          | $\times$                          |                                            |                                          |                                         |                                            |                                 |                                           |                                   |                                  |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         | Z         | $\bigvee$                               |                                           |                                       |                                          |
| 3     |                                             |                                       | 7                                     |                                        |                                          | X                                 |                                            |                                          |                                         |                                            |                                 |                                           |                                   |                                  |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         | X         |                                         |                                           |                                       |                                          |
| 4     |                                             |                                       | 7                                     |                                        |                                          | /                                 |                                            |                                          |                                         |                                            |                                 |                                           |                                   | abla                             | abla                              |                          |                              |                                  |                            |                                      |                                          |                                         |                                         | Z         |                                         |                                           |                                       | $\neg$                                   |
| 5     |                                             |                                       | て                                     |                                        |                                          | 7                                 |                                            |                                          |                                         |                                            |                                 |                                           |                                   |                                  |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         | Z         |                                         |                                           |                                       | $\neg$                                   |
| 6     |                                             |                                       | Σ                                     |                                        |                                          | X                                 |                                            |                                          |                                         |                                            |                                 |                                           |                                   |                                  |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         | R         |                                         |                                           | $\dashv$                              | $\neg$                                   |
| 7     |                                             |                                       |                                       |                                        |                                          |                                   |                                            |                                          |                                         |                                            | $\setminus$                     |                                           | abla                              | J                                | $\bigcup$                         |                          |                              |                                  |                            |                                      |                                          |                                         |                                         |           |                                         |                                           |                                       | $\dashv$                                 |
| 8     |                                             | Ĩ                                     |                                       |                                        |                                          |                                   |                                            |                                          |                                         |                                            |                                 |                                           |                                   | J                                | $\bigcup$                         |                          |                              | -                                |                            |                                      |                                          |                                         |                                         | $\bigvee$ |                                         |                                           |                                       | _                                        |
| 9     |                                             |                                       |                                       |                                        | abla                                     |                                   |                                            | $\bigvee$                                |                                         |                                            |                                 |                                           |                                   |                                  |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         | 1         |                                         |                                           |                                       | $\dashv$                                 |
| 10    |                                             |                                       |                                       |                                        |                                          |                                   |                                            | 7                                        |                                         |                                            |                                 |                                           | abla                              | J                                | 7                                 |                          |                              |                                  |                            |                                      |                                          |                                         |                                         | 1         | $ egthinspace{1.5em} $                  |                                           | _                                     | $\dashv$                                 |
| 11    |                                             |                                       |                                       |                                        |                                          |                                   |                                            |                                          |                                         |                                            |                                 |                                           |                                   | 7                                |                                   |                          |                              |                                  |                            |                                      |                                          |                                         |                                         | 7         |                                         |                                           |                                       | -                                        |
| 12    |                                             |                                       |                                       |                                        |                                          |                                   | $\bigvee$                                  |                                          |                                         | -                                          |                                 |                                           |                                   |                                  | J                                 | -                        |                              |                                  |                            |                                      |                                          |                                         |                                         | 7         | 7                                       |                                           | _                                     | $\dashv$                                 |

| Sample ID Type of Preservative pH upon receipt Date preservation adjusted Time preservation adjusted adjusted added | pH Adjustment Log for Preserved Samples |                      |                            |     |                                                                                   |                                                                                                          |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------|----------------------------|-----|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                                     | Type of Preservative                    | pH upon receipt      | Date preservation adjusted | · · |                                                                                   | Lot #                                                                                                    |  |  |  |
|                                                                                                                     |                                         |                      |                            |     |                                                                                   | <del></del> ,                                                                                            |  |  |  |
|                                                                                                                     |                                         |                      |                            |     |                                                                                   |                                                                                                          |  |  |  |
| -+                                                                                                                  |                                         | Type of Preservative |                            |     | Type of Preservative pH upon receipt Date preservation adjusted Time preservation | Type of Preservative pH upon receipt Date preservation adjusted Time preservation Amount of Preservative |  |  |  |

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DENR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

# **B.4** Data Quality Evaluation

# **DATA USABILITY SUMMARY**

Steven Elliott (Stantec) reviewed two data packages from GEL Laboratories (GEL) for the analysis of water samples collected August 9 through August 11, 2023, at the Georgia Power Arkwright Plant AP1 site. Samples were collected according to the Field Sampling Plan – Plant Arkwright (Amec Foster Wheeler, 2016).

## Analyses requested included:

- SW-846 6020B Total Metals by inductively coupled plasma mass spectrometry (ICP/MS)
- SW-846 7470A Mercury by manual cold-vapor
- EPA 300 Rev 2.1 Chloride, fluoride, and sulfate by ion chromatography
- SM 2540C 2015 Total dissolved solids (TDS)
- EPA Method 904/ SW846 9320 Modified Radium 228 by Gas Flow Proportional Counting
- EPA Method 903.1 Mod Radium 226

Data were reviewed and validated as described in the field sampling plan and the *National Functional Guidelines for Inorganic Superfund Methods Data Review* (November 2020). The results of the review/validation are discussed in this Data Usability Summary (DUS) and the associated Laboratory Data Review Checklists.

# **DATA REVIEW/VALIDATION RESULTS**

#### Introduction

Eleven (11) groundwater samples, two (2) field blanks, two (2) equipment blank, and two (2) field duplicate samples were analyzed for one or more of the analyses listed above. Table 1 lists the field identifications cross-referenced to laboratory identifications. Table 2 is a summary of qualified data. Tables 3a through 3e summarize field duplicate results.

## **Analytical Results**

The data packages contain a minimum of one quality control batch per analytical method analyzed. The quality control batch identifies the laboratory QC samples that correspond to the designated field samples. Not detected results are reported as less than the value of the method detection limit (MDL).

## Preservation and Holding Times

The samples were evaluated for agreement with the chain-of-custody forms. The samples were received in the appropriate containers with the paperwork filled out properly. The laboratory sample condition upon receipt forms indicates all samples were received at temperature ranges of 0.0 to 2.0°C. All samples were analyzed within the technical holding time. No data were qualified.

#### Calibrations

Case narratives indicate Initial and continuing calibration verification data were within method acceptance criteria.

#### Blanks

• <u>Laboratory Method Blanks</u>. No contamination was detected in any of the laboratory method blanks.

<u>Field Blanks</u>. Field blanks were analyzed for the full suite of sample analyses and all analytes were not detected with the following exceptions:

#### SDG 640869

- Chloride was detected in the blanks ARK-AP1-FB-01,ARK-AP1-EB-01 (10/09/2023), and ARK-AP1-EB-02 (10/10/2023) at a concentration above the laboratory RL. No qualification was required for associated sample results reported as greater than 10 times the blank concentration. Associated samples reported with detected concentrations less than 10 times the blank concentration have been qualified as estimated.
- Arsenic was detected in the blank ARK-AP1-FB-01, ARK-AP1-EB-01 (10/09/2023), and ARK-AP1-FB-02 (10/10/2023) at a concentration below the laboratory RL. No qualification was required for associated sample results reported as greater than 10 times the blank concentration. Associated samples reported with detected concentrations less than 10 times the blank concentration have been qualified as estimated.
- Calcium and molybdenum were detected in the blank ARK-AP1-EB-02 (10/10/2023) at a concentration below the laboratory RL. No qualification was required for associated sample results reported as greater than 10 times the blank concentration. Associated samples reported with detected concentrations less than 10 times the blank concentration have been qualified as estimated.

#### SDG 640870

- Radium 226 was detected in the blank ARK-AP1-FB-01 (10/09/2023) at a concentration above the laboratory Reporting Limit (RL). No qualification was required for associated sample results reported as greater than 10 times the blank concentration.
- Radium 228 was detected in the blank ARK-AP1-FB-02 (10/10/2023) at a concentration below the laboratory Reporting Limit (RL). No qualification was required for associated sample results reported as greater than 10 times the blank concentration.

## **Laboratory Control Samples**

Laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) recoveries met the laboratory acceptance criteria for all analyses.

## Matrix Spike/Matrix Spike Duplicates

Site-specific MS/MSD precision and accuracy results were within the laboratory acceptance criteria.

## **Laboratory Duplicates**

Appropriate analytical duplicates were analyzed and RPDs were within the laboratory acceptance criteria with the following exception.

#### SDG 640870

• The laboratory duplicate for radium 228 in sample ARK-AP1GWA-1 had a high RPD and has been qualified as estimated.

## Field Precision

Two sets of field duplicate samples were collected for this sampling event (see Table 3a and 3b for

sample/duplicate identification and precision calculations). The calculated RPDs between sample and duplicate were within the QAPP acceptance criteria of 25% for all analytes detected above five times the RL. For results reported less than five times the RL, with a difference between sample and duplicate less than two times the RL are also considered acceptable (qualified "A\*"). All field duplicate precision was considered acceptable.

# Summary

The groundwater analytical data are usable for the purpose of determining current concentrations of COCs in this medium at the affected property. A summary of qualified data is presented in Table 2 below.

## References:

Amec Foster Wheeler, 2016. Arkwright Field Sampling Plan. October.

United State Environmental Protection Agency (USEPA), 2020. National Functional Guidelines for Superfund Inorganic Methods Data Review. November.

Table 1 – Cross-Reference between Laboratory and Field Identifications

| Field Identification | Laboratory<br>Identification | SDG    | Analyses                 | Sample Date |
|----------------------|------------------------------|--------|--------------------------|-------------|
| ARK-AP1GWA-1         | 640869001                    | 640869 | 6020B, 7470A, 300, 2540C | 10/09/2023  |
| ARK-AP1-FB-01        | 640869002                    | 640869 | 6020B, 7470A, 300, 2540C | 10/09/2023  |
| ARK-AP1GWA-2         | 640869003                    | 640869 | 6020B, 7470A, 300, 2540C | 10/09/2023  |
| ARK-AP1-EB-01        | 640869004                    | 640869 | 6020B, 7470A, 300, 2540C | 10/09/2023  |
| ARK-AP1PZ-1          | 640869005                    | 640869 | 6020B, 7470A, 300, 2540C | 10/09/2023  |
| ARK-AP1PZ-2          | 640869006                    | 640869 | 6020B, 7470A, 300, 2540C | 10/09/2023  |
| ARK-AP1-FD-01        | 640869007                    | 640869 | 6020B, 7470A, 300, 2540C | 10/09/2023  |
| ARK-AP1PZ-4          | 640869008                    | 640869 | 6020B, 7470A, 300, 2540C | 10/10/2023  |
| ARK-AP1-FB-02        | 640869009                    | 640869 | 6020B, 7470A, 300, 2540C | 10/10/2023  |
| ARK-AP1PZ-3          | 640869010                    | 640869 | 6020B, 7470A, 300, 2540C | 10/10/2023  |
| ARK-AP1PZ-8          | 640869011                    | 640869 | 6020B, 7470A, 300, 2540C | 10/10/2023  |
| ARK-AP1PZ-5          | 640869012                    | 640869 | 6020B, 7470A, 300, 2540C | 10/10/2023  |
| ARK-AP1-EB-02        | 640869013                    | 640869 | 6020B, 7470A, 300, 2540C | 10/10/2023  |
| ARK-AP1PZ-7          | 640869014                    | 640869 | 6020B, 7470A, 300, 2540C | 10/10/2023  |
| ARK-AP1PZ-10         | 640869015                    | 640869 | 6020B, 7470A, 300, 2540C | 10/10/2023  |
| ARK-AP1PZ-11         | 640869016                    | 640869 | 6020B, 7470A, 300, 2540C | 10/10/2023  |

| Field Identification | Laboratory<br>Identification | SDG    | Analyses                 | Sample Date |
|----------------------|------------------------------|--------|--------------------------|-------------|
| ARK-AP1-FD-02        | 640869017                    | 640869 | 6020B, 7470A, 300, 2540C | 10/10/2023  |
| ARK-AP1PZ-11         | 640869018                    | 640869 | 6020B, 7470A, 300, 2540C | 10/11/2023  |
| ARK-AP1GWA-1         | 640870001                    | 640870 | 903.1, 904               | 10/09/2023  |
| ARK-AP1-FB-01        | 640870002                    | 640870 | 903.1, 904               | 10/09/2023  |
| ARK-AP1GWA-2         | 640870003                    | 640870 | 903.1, 904               | 10/09/2023  |
| ARK-AP1-EB-01        | 640870004                    | 640870 | 903.1, 904               | 10/09/2023  |
| ARK-AP1PZ-1          | 640870005                    | 640870 | 903.1, 904               | 10/09/2023  |
| ARK-AP1PZ-2          | 640870006                    | 640870 | 903.1, 904               | 10/09/2023  |
| ARK-AP1-FD-01        | 640870007                    | 640870 | 903.1, 904               | 10/09/2023  |
| ARK-AP1PZ-4          | 640870008                    | 640870 | 903.1, 904               | 10/10/2023  |
| ARK-AP1-FB-02        | 640870009                    | 640870 | 903.1, 904               | 10/10/2023  |
| ARK-AP1PZ-3          | 640870010                    | 640870 | 903.1, 904               | 10/10/2023  |
| ARK-AP1PZ-8          | 640870011                    | 640870 | 903.1, 904               | 10/10/2023  |
| ARK-AP1PZ-5          | 640870012                    | 640870 | 903.1, 904               | 10/10/2023  |
| ARK-AP1-EB-02        | 640870013                    | 640870 | 903.1, 904               | 10/10/2023  |
| ARK-AP1PZ-7          | 640870014                    | 640870 | 903.1, 904               | 10/10/2023  |
| ARK-AP1PZ-10         | 640870015                    | 640870 | 903.1, 904               | 10/10/2023  |
| ARK-AP1PZ-11         | 640870016                    | 640870 | 903.1, 904               | 10/10/2023  |
| ARK-AP1-FD-02        | 640870017                    | 640870 | 903.1, 904               | 10/10/2023  |
| ARK-AP1PZ-11         | 640870018                    | 640870 | 903.1, 904               | 10/11/2023  |

# Table 2 – Qualified Analytical Data

| Field Identification | Analyte    | Qualification /<br>Code | Reason for Qualification |
|----------------------|------------|-------------------------|--------------------------|
| ARK-AP1GWA-2         | Chloride   | J+ / BFH                | Detected in FB           |
| ARK-AP1PZ-1          | Chloride   | J+ / BFH                | Detected in FB           |
| ARK-AP1PZ-2          | Chloride   | J+ / BFH                | Detected in FB           |
| ARK-AP1-FD-01        | Chloride   | J+ / BFH                | Detected in FB           |
| ARK-AP1GWA-1         | Chloride   | J+ / BFH                | Detected in FB           |
| ARK-AP1PZ-11         | Chloride   | J+ / BEH                | Detected in EB           |
| ARK-AP1-FD-02        | Chloride   | J+ / BEH                | Detected in EB           |
| ARK-AP1GWA-2         | Arsenic    | J+ / BEH                | Detected in EB           |
| ARK-AP1PZ-1          | Arsenic    | J+ / BEH                | Detected in EB           |
| ARK-AP1GWA-1         | Arsenic    | J+ / BEH                | Detected in EB           |
| ARK-AP1PZ-4          | Arsenic    | J+ / BEH                | Detected in EB           |
| ARK-AP1PZ-3          | Arsenic    | J+ / BEH                | Detected in EB           |
| ARK-AP1PZ-8          | Arsenic    | J+ / BEH                | Detected in EB           |
| ARK-AP1PZ-5          | Arsenic    | J+ / BEH                | Detected in EB           |
| ARK-AP1PZ-7          | Arsenic    | J+ / BEH                | Detected in EB           |
| ARK-AP1PZ-10         | Arsenic    | J+ / BEH                | Detected in EB           |
| ARK-AP1PZ-11         | Arsenic    | J+ / BEH                | Detected in EB           |
| ARK-AP1-FD-02        | Arsenic    | J+ / BEH                | Detected in EB           |
| ARK-AP1PZ-3          | Molybdenum | J+ / BEH                | Detected in EB           |
| ARK-AP1PZ-11         | Molybdenum | J+ / BEH                | Detected in EB           |
| ARK-AP1-FD-02        | Molybdenum | J+ / BEH                | Detected in EB           |
| ARK-AP1GWA-1         | Radium 226 | J+ / BFH                | Detected in FB           |
| ARK-AP1GWA-2         | Radium 226 | J+ / BFH                | Detected in FB           |
| ARK-AP1PZ-1          | Radium 226 | J+ / BFH                | Detected in FB           |
| ARK-AP1PZ-2          | Radium 226 | J+ / BFH                | Detected in FB           |
| ARK-AP1-FD-01        | Radium 226 | J+ / BFH                | Detected in FB           |

## Table 2 – Qualified Analytical Data

| Field Identification | Analyte    | Qualification /<br>Code | Reason for Qualification |
|----------------------|------------|-------------------------|--------------------------|
| ARK-AP1PZ-4          | Radium 228 | J+ / BFH                | Detected in FB           |
| ARK-AP1-FB-02        | Radium 228 | J+ / BFH                | Detected in FB           |
| ARK-AP1PZ-3          | Radium 228 | J+ / BFH                | Detected in FB           |
| ARK-AP1PZ-8          | Radium 228 | J+ / BFH                | Detected in FB           |
| ARK-AP1PZ-5          | Radium 228 | J+ / BFH                | Detected in FB           |
| ARK-AP1-EB-02        | Radium 228 | J+ / BFH                | Detected in FB           |
| ARK-AP1PZ-7          | Radium 228 | J+ / BFH                | Detected in FB           |
| ARK-AP1PZ-10         | Radium 228 | J+ / BFH                | Detected in FB           |
| ARK-AP1PZ-11         | Radium 228 | J+ / BFH                | Detected in FB           |
| ARK-AP1-FD-02        | Radium 228 | J+ / BFH                | Detected in FB           |
| ARK-AP1GWA-1         | Radium 228 | J/LD1                   | High LD RPD              |

 $\ensuremath{\mathsf{BFH}}-\ensuremath{\mathsf{Blank}}$  Field High – detected in the field blank (FB) above the RL

BLL – Blank Lab Low – detected in the lab method blank (MB) less than the RL

J+ – The analyte was detected in an associated blank; estimated data with a high bias.

## Table 3a - Field Precision

| Field          |          | Sample Result | Duplicate     |                  |           |
|----------------|----------|---------------|---------------|------------------|-----------|
| Identification | Analyte  | (mg/L)        | Result (mg/L) | RPD <sup>a</sup> | Qualified |
| ARK-AP1PZ-2/   | Sulfate  | 801           | 804           | 0.4%             | А         |
| ARK-AP1-FD-01  | Chloride | 2.98          | 3.06          | 2.6%             | А         |
|                | Fluoride | 0.262         | 0.283         | 7.7%             | А         |
|                | Calcium  | 205           | 218           | 6.1%             | А         |
|                | Barium   | 0.0300        | 0.0313        | 4.2%             | А         |
|                | Cadmium  | 0.000689 J    | 0.000635 J    | <5*RL, <2*RL     | A*        |
|                | Cobalt   | 0.169         | 0.192         | 12.7%            | А         |
|                | Lithium  | 0.0214        | 0.0238        | <5*RL, <2*RL     | A*        |
|                | Boron    | 0.470         | 0.492         | 4.6%             | А         |
|                | TDS      | 1170          | 1210          | 3.4%             | А         |

a RPD = ((SR - DR)\*200)/(SR + DR)

Table 3b - Field Precision

| Field          |            | Sample Result | Duplicate     |                  |           |
|----------------|------------|---------------|---------------|------------------|-----------|
| Identification | Analyte    | (mg/L)        | Result (mg/L) | RPD <sup>a</sup> | Qualified |
| ARK-AP1PZ-11/  | Sulfate    | 54.3          | 80.1          | <5*RL, <2*RL     | A*        |
| ARK-AP1-FD-02  | Chloride   | 1.20          | 1.21          | 0.8%             | А         |
|                | Fluoride   | 0.202         | 0.297         | <5*RL, <2*RL     | A*        |
|                | Arsenic    | 0.00303 J     | 0.00319 J     | <5*RL, <2*RL     | A*        |
|                | Boron      | 0.143         | 0.146         | 2.1%             | А         |
|                | Calcium    | 27.6          | 28.0          | 1.4%             | A         |
|                | Barium     | 0.0234        | 0.0242        | 3.4%             | A         |
|                | Molybdenum | 0.000342 J    | 0.000326 J    | <5*RL, <2*RL     | A*        |
|                | TDS        | 198           | 197           | 0.5%             | А         |

a RPD = ((SR - DR)\*200)/(SR + DR)

A - Acceptable Data.

 $A^*$  - Acceptable data where results were less than 5X the RDL and the difference between sample and duplicate was less than 2X the RDL.

J – Estimated detected.

A - Acceptable Data.

 $A^*$  - Acceptable data where results were less than 5X the RDL and the difference between sample and duplicate was less than 2X the RDL.

J – Estimated detected.

# **DATA USABILITY SUMMARY**

Steven Elliott (Stantec) reviewed one data package from GEL Laboratories (GEL) for the analysis of water samples collected January 22 and 23, 2024, at the Georgia Power Arkwright Plant AP1 site. Samples were collected according to the Field Sampling Plan – Plant Arkwright (Amec Foster Wheeler, 2016).

## Analyses requested included:

- SW-846 6020B Total Metals by inductively coupled plasma mass spectrometry (ICP/MS)
- SW-846 7470A Mercury by manual cold-vapor
- EPA 300 Rev 2.1 Chloride, fluoride, and sulfate by ion chromatography
- SM 2540C 2015 Total dissolved solids (TDS)
- EPA Method 904/ SW846 9320 Modified Radium 228 by Gas Flow Proportional Counting
- EPA Method 903.1 Mod Radium 226

Data were reviewed and validated as described in the field sampling plan and the *National Functional Guidelines for Inorganic Superfund Methods Data Review* (November 2020). The results of the review/validation are discussed in this Data Usability Summary (DUS) and the associated Laboratory Data Review Checklists.

# **DATA REVIEW/VALIDATION RESULTS**

## Introduction

Eleven (11) groundwater samples, two (2) field blanks, two (2) equipment blank, and two (2) field duplicate samples were analyzed for one or more of the analyses listed above. Table 1 lists the field identifications cross-referenced to laboratory identifications. Table 2 is a summary of qualified data. Tables 3a through 3e summarize field duplicate results.

## **Analytical Results**

The data packages contain a minimum of one quality control batch per analytical method analyzed. The quality control batch identifies the laboratory QC samples that correspond to the designated field samples. Not detected results are reported as less than the value of the method detection limit (MDL).

## Preservation and Holding Times

The samples were evaluated for agreement with the chain-of-custody forms. The samples were received in the appropriate containers with the paperwork filled out properly. The laboratory sample condition upon receipt forms indicates all samples were received at a temperature of 7.0°C. Chloride, fluoride, and sulfate have been qualified as estimated due to the cooler temperature exceeding 6°C. All samples were analyzed within the technical holding time. No data were qualified.

## Calibrations

Case narratives indicate Initial and continuing calibration verification data were within method acceptance criteria.

#### Blanks

<u>Laboratory Method Blanks</u>. No contamination was detected in any of the laboratory method blanks with the following exception:

#### SDG 652703

• Chloride was detected in the method blank (QC1205633068) in batch 2559394. All associated sample results were reported as either not detected or with results greater than 10 times the blank concentration and therefore no qualification was necessary.

<u>Field Blanks</u>. Field blanks were analyzed for the full suite of sample analyses and all analytes were not detected with the following exceptions:

#### SDG 652703

- Chloride was detected in the blanks ARK-AP1-EB-01 (01/22/2024), ARK-AP1-EB-02 (01/23/2024), and ARK-AP1-FB-02 (01/23/2024) at concentrations below the laboratory Reporting Limit (RL). No qualification was required for associated sample results reported as not detected or greater than 10 times the blank concentration. Associated samples reported with detected concentrations less than 10 times the blank concentration have been qualified as estimated with a high bias (J+).
- TDS was detected in the blank ARK-AP1-FB-02 (4.0J, at a concentration below the laboratory RL. All associated sample results were reported with results greater than 10 times the blank concentration and therefore no qualification was necessary.

#### SDG 652704

- Radium 226 was detected in the blank ARK-AP1-FB-01 (01/22/2024) and ARK-AP1-FB-02 (01/23/2024) at concentrations below the laboratory RL. No qualification was required for associated sample results reported as not detected or greater than 10 times the blank concentration. Associated samples reported with detected concentrations less than 10 times the blank concentration have been qualified as estimated with a high bias.
- Radium 228 was detected in the blank ARK-AP1-FB-01 (01/22/2024), ARK-AP1-EB-02 (01/23/2024) 1.19 and ARK-AP1-FB-02 (01/23/2024) 1.80 at a concentration below the laboratory RL. No qualification was required for associated sample results reported as not detected or greater than 10 times the blank concentration. Associated samples reported with detected concentrations less than 10 times the blank concentration have been qualified as estimated with a high bias.

## **Laboratory Control Samples**

Laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) recoveries met the laboratory acceptance criteria for all analyses.

## Matrix Spike/Matrix Spike Duplicates

Site-specific MS/MSD precision and accuracy results were within the laboratory acceptance criteria with the following exception:

## SDG 652703

• The MS recovery of chloride in sample ARK-AP1PZ-10 exceeded the lab upper acceptance limit. Chloride in this sample has been qualified as estimated.

## **Laboratory Duplicates**

Appropriate analytical duplicates were analyzed and RPDs were within the laboratory acceptance criteria.

## Field Precision

Two sets of field duplicate samples were collected for this sampling event (see Table 3a and 3b for sample/duplicate identification and precision calculations). The calculated RPDs between sample and duplicate were within the QAPP acceptance criteria of 25% for all analytes detected above five times the RL. For results reported less than five times the RL, with a difference between sample and duplicate less than two times the RL are also considered acceptable (qualified "A\*"). All field duplicate precision was considered acceptable with the following exception:

#### SDG 652704

Results for radium 226 in the field duplicate pair ARK-AP1PZ-11 / ARK-AP1-FD-02 had a
difference between sample and duplicate greater than two times the RL and have been qualified
as estimated.

# Summary

The groundwater analytical data are usable for the purpose of determining current concentrations of COCs in this medium at the affected property. A summary of qualified data is presented in Table 2 below.

## References:

Amec Foster Wheeler, 2016. Arkwright Field Sampling Plan. October.

United State Environmental Protection Agency (USEPA), 2020. National Functional Guidelines for Superfund Inorganic Methods Data Review. November.

| Table 1 – Cross-Reference between Laboratory and Field Identifications |                              |        |                          |             |  |  |  |  |
|------------------------------------------------------------------------|------------------------------|--------|--------------------------|-------------|--|--|--|--|
| Field Identification                                                   | Laboratory<br>Identification | SDG    | Analyses                 | Sample Date |  |  |  |  |
| ARK-AP1GWA-1                                                           | 652703001                    | 652703 | 6020B, 7470A, 300, 2540C | 01/22/2024  |  |  |  |  |
| ARK-AP1GWA-2                                                           | 652703002                    | 652703 | 6020B, 7470A, 300, 2540C | 01/22/2024  |  |  |  |  |
| ARK-AP1PZ-1                                                            | 652703003                    | 652703 | 6020B, 7470A, 300, 2540C | 01/22/2024  |  |  |  |  |
| ARK-AP1PZ-2                                                            | 652703004                    | 652703 | 6020B, 7470A, 300, 2540C | 01/22/2024  |  |  |  |  |
| ARK-AP1-FB-01                                                          | 652703005                    | 652703 | 6020B, 7470A, 300, 2540C | 01/22/2024  |  |  |  |  |
| ARK-AP1-FD-01                                                          | 652703006                    | 652703 | 6020B, 7470A, 300, 2540C | 01/22/2024  |  |  |  |  |
| ARK-AP1-ED-01                                                          | 652703007                    | 652703 | 6020B, 7470A, 300, 2540C | 01/22/2024  |  |  |  |  |
| ARK-AP1PZ-3                                                            | 652703008                    | 652703 | 6020B, 7470A, 300, 2540C | 01/23/2024  |  |  |  |  |
| ARK-AP1PZ-4                                                            | 652703009                    | 652703 | 6020B, 7470A, 300, 2540C | 01/23/2024  |  |  |  |  |
| ARK-AP1PZ-5                                                            | 652703010                    | 652703 | 6020B, 7470A, 300, 2540C | 01/23/2024  |  |  |  |  |
| ARK-AP1PZ-7                                                            | 652703011                    | 652703 | 6020B, 7470A, 300, 2540C | 01/23/2024  |  |  |  |  |
| ARK-AP1PZ-8                                                            | 652703012                    | 652703 | 6020B, 7470A, 300, 2540C | 01/23/2024  |  |  |  |  |
| ARK-AP1PZ-9                                                            | 652703013                    | 652703 | 6020B, 7470A, 300, 2540C | 01/23/2024  |  |  |  |  |
| ARK-AP1PZ-10                                                           | 652703014                    | 652703 | 6020B, 7470A, 300, 2540C | 01/23/2024  |  |  |  |  |
| ARK-AP1PZ-11                                                           | 652703015                    | 652703 | 6020B, 7470A, 300, 2540C | 01/23/2024  |  |  |  |  |
| ARK-AP1-EB-02                                                          | 652703016                    | 652703 | 6020B, 7470A, 300, 2540C | 01/23/2024  |  |  |  |  |
| ARK-AP1-FD-02                                                          | 652703017                    | 652703 | 6020B, 7470A, 300, 2540C | 01/23/2024  |  |  |  |  |
| ARK-AP1-FB-02                                                          | 652703018                    | 652703 | 6020B, 7470A, 300, 2540C | 01/23/2024  |  |  |  |  |
| ARK-AP1GWA-1                                                           | 652704001                    | 652704 | 903.1, 904               | 01/22/2024  |  |  |  |  |
| ARK-AP1GWA-2                                                           | 652704002                    | 652704 | 903.1, 904               | 01/22/2024  |  |  |  |  |
| ARK-AP1PZ-1                                                            | 652704003                    | 652704 | 903.1, 904               | 01/22/2024  |  |  |  |  |
| ARK-AP1PZ-2                                                            | 652704004                    | 652704 | 903.1, 904               | 01/22/2024  |  |  |  |  |
| ARK-AP1-FB-01                                                          | 652704005                    | 652704 | 903.1, 904               | 01/22/2024  |  |  |  |  |
| ARK-AP1-FD-01                                                          | 652704006                    | 652704 | 903.1, 904               | 01/22/2024  |  |  |  |  |
| ARK-AP1-ED-01                                                          | 652704007                    | 652704 | 903.1, 904               | 01/22/2024  |  |  |  |  |
| ARK-AP1PZ-3                                                            | 652704008                    | 652704 | 903.1, 904               | 01/23/2024  |  |  |  |  |
| ARK-AP1PZ-4                                                            | 652704009                    | 652704 | 903.1, 904               | 01/23/2024  |  |  |  |  |

| Field Identification | Laboratory<br>Identification | SDG    | Analyses   | Sample Date |
|----------------------|------------------------------|--------|------------|-------------|
| ARK-AP1PZ-5          | 652704010                    | 652704 | 903.1, 904 | 01/23/2024  |
| ARK-AP1PZ-7          | 652704011                    | 652704 | 903.1, 904 | 01/23/2024  |
| ARK-AP1PZ-8          | 652704012                    | 652704 | 903.1, 904 | 01/23/2024  |
| ARK-AP1PZ-9          | 652704013                    | 652704 | 903.1, 904 | 01/23/2024  |
| ARK-AP1PZ-10         | 652704014                    | 652704 | 903.1, 904 | 01/23/2024  |
| ARK-AP1PZ-11         | 652704015                    | 652704 | 903.1, 904 | 01/23/2024  |
| ARK-AP1-EB-02        | 652704016                    | 652704 | 903.1, 904 | 01/23/2024  |
| ARK-AP1-FD-02        | 652704017                    | 652704 | 903.1, 904 | 01/23/2024  |
| ARK-AP1-FB-02        | 652704018                    | 652704 | 903.1, 904 | 01/23/2024  |

Table 2 – Qualified Analytical Data

| Field Identification | Analyte    | Qualification /<br>Code | Reason for Qualification    |
|----------------------|------------|-------------------------|-----------------------------|
| All samples          | Chloride   | J/SP1                   | Exceeded cooler temperature |
| All samples          | Fluoride   | J/SP1                   | Exceeded cooler temperature |
| All samples          | Sulfate    | J/SP1                   | Exceeded cooler temperature |
| ARK-AP1GWA-1         | Chloride   | J+ / BFL                | Detected in FB              |
| ARK-AP1GWA-2         | Chloride   | J+ / BFL                | Detected in FB              |
| ARK-AP1PZ-11         | Chloride   | J+ / BFL                | Detected in FB              |
| ARK-AP1-FD-02        | Chloride   | J+ / BFL                | Detected in FB              |
| ARK-AP1PZ-10         | Chloride   | J / MS1                 | High MS %R                  |
| ARK-AP1GWA-1         | Radium 226 | J+ / BFL                | Detected in FB              |
| ARK-AP1GWA-2         | Radium 226 | J+ / BFL                | Detected in FB              |
| ARK-AP1PZ-1          | Radium 226 | J+ / BFL                | Detected in FB              |
| ARK-AP1PZ-2          | Radium 226 | J+ / BFL                | Detected in FB              |

## **Table 2 – Qualified Analytical Data**

| Field Identification | Analyte    | Qualification /<br>Code | Reason for Qualification         |
|----------------------|------------|-------------------------|----------------------------------|
| ARK-AP1-FD-01        | Radium 226 | J+ / BFL                | Detected in FB                   |
| ARK-AP1PZ-3          | Radium 226 | J+ / BFL                | Detected in FB                   |
| ARK-AP1PZ-4          | Radium 226 | J+ / BFL                | Detected in FB                   |
| ARK-AP1PZ-5          | Radium 226 | J+ / BFL                | Detected in FB                   |
| ARK-AP1PZ-7          | Radium 226 | J+ / BFL                | Detected in FB                   |
| ARK-AP1PZ-10         | Radium 226 | J+ / BFL                | Detected in FB                   |
| ARK-AP1PZ-2          | Radium 228 | J+ / BFL                | Detected in FB                   |
| ARK-AP1PZ-5          | Radium 228 | J+ / BFL                | Detected in FB and EB            |
| ARK-AP1PZ-8          | Radium 228 | J+ / BFL                | Detected in FB and EB            |
| ARK-AP1PZ-9          | Radium 228 | J+ / BFL                | Detected in FB and EB            |
| ARK-AP1PZ-10         | Radium 228 | J+ / BFL                | Detected in FB and EB            |
| ARK-AP1PZ-11         | Radium 226 | J / FD2                 | FD result<5xRL, difference >2xRL |
| ARK-AP1-FD-02        | Radium 226 | J / FD2                 | FD result<5xRL, difference >2xRL |

BFL – Blank Field High – detected in the field blank (FB) below the RL

FD2 - Field duplicate absolute difference does not meet quality control criteria

J – estimated result

J+ – The analyte was detected in an associated blank; estimated data with a high bias

MS1 - Matrix spike %R does not meet quality control criteria

SP1 - Sample preservation does not meet quality control criteria (temperature)

## **Table 3a – Field Precision**

| Field<br>Identification        | Analyte    | Sample Result<br>(mg/L) | Duplicate<br>Result (mg/L) | RPD <sup>a</sup> | Qualified |
|--------------------------------|------------|-------------------------|----------------------------|------------------|-----------|
| ARK-AP1GWA-1/<br>ARK-AP1-FD-01 | Sulfate    | 46.0                    | 46.5                       | 1.1%             | A         |
|                                | Chloride   | 1.75                    | 1.86                       | <5*RL, <2*RL     | A*        |
|                                | Fluoride   | 0.339                   | 0.366                      | <5*RL, <2*RL     | A*        |
|                                | Boron      | 0.108                   | 0.109                      | 0.9%             | Α         |
|                                | Barium     | 0.0551                  | 0.0518                     | 6.2%             | Α         |
|                                | Beryllium  | 0.00204                 | 0.00191                    | <5*RL, <2*RL     | A*        |
|                                | Cadmium    | 0.000354 J              | 0.00031 J                  | <5*RL, <2*RL     | A*        |
|                                | Calcium    | 16.5                    | 16.3                       | 1.2%             | А         |
|                                | Chromium   | 0.00447 J               | 0.00429 J                  | <5*RL, <2*RL     | A*        |
|                                | Cobalt     | 0.0065                  | 0.00615                    | 5.5%             | А         |
|                                | Lithium    | 0.0101                  | 0.0094 J                   | <5*RL, <2*RL     | A*        |
|                                | Selenium   | 0.00243 J               | 0.002 J                    | <5*RL, <2*RL     | A*        |
|                                | TDS        | 139                     | 130                        | 6.7%             | А         |
|                                | Radium 226 | 1.06                    | 0.738                      | <5*RL, <2*RL     | A*        |

 $<sup>^{</sup>a}$  RPD = ((SR - DR)\*200)/(SR + DR)

Table 3b - Field Precision

| Field                          |            | Sample Result | Duplicate     |                  |           |
|--------------------------------|------------|---------------|---------------|------------------|-----------|
| Identification                 | Analyte    | (mg/L)        | Result (mg/L) | RPD <sup>a</sup> | Qualified |
| ARK-AP1PZ-11/<br>ARK-AP1-FD-02 | Sulfate    | 46.5          | 46.8          | 0.6%             | Α         |
|                                | Chloride   | 1.15          | 1.16          | 0.9%             | Α         |
|                                | Fluoride   | 0.146         | 0.142         | <5*RL, <2*RL     | A*        |
|                                | Boron      | 0.161         | 0.158         | 1.9%             | Α         |
|                                | Barium     | 0.0192        | 0.0191        | <5*RL, <2*RL     | A*        |
|                                | Calcium    | 25.1          | 25.0          | 0.4%             | Α         |
|                                | Molybdenum | 0.000629 J    | 0.000757 J    | <5*RL, <2*RL     | A*        |
|                                | TDS        | 187           | 198           | 5.7%             | А         |
|                                | Radium 226 | 0.357 U       | 2.22          | <5*RL, >2*RL     | J         |

 $<sup>^{</sup>a}$  RPD = ((SR - DR)\*200)/(SR + DR)

A - Acceptable Data.

 $A^*$  - Acceptable data where results were less than 5X the RDL and the difference between sample and duplicate was less than 2X the RDL.

J – Estimated detected.

A - Acceptable Data.

 $A^*$  - Acceptable data where results were less than 5X the RDL and the difference between sample and duplicate was less than 2X the RDL.

J – Estimated detected.