

2024 SEMI-ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

Plant Arkwright Ash Pond 2 Dry Ash Stockpile Macon, Georgia

February 28, 2025

Prepared for:

Prepared by: Stantec Consulting Services Inc. 10745 Westside Way, Suite 250 Alpharetta, Georgia 30009-7640

2024 Semi-Annual Groundwater Monitoring and Corrective Action Report Plant Arkwright Ash Pond 2 Dry Ash Stockpile

CERTIFICATION STATEMENT

This 2024 Semi-Annual Groundwater Monitoring and Corrective Action Report, Plant Arkwright, Ash Pond 2 Dry Ash Stockpile has been prepared in accordance with the Georgia Environmental Protection Division Rules for Solid Waste Management 391-3-4-.10 and 391-3-4.14 by a qualified groundwater scientist or engineer with Stantec Consulting Services, Inc. I hereby certify that I am a qualified groundwater scientist, in accordance with the Georgia Rules of Solid Waste Management 391-3-4-.01.

Jennifer Kolbe, Fh.D., P.E. Senior Principal

2/28/2025

Date

Katie Ross, P.G. Senior Principal BEOREI NO. 1775

2/28/2025

Date

Table of Contents

EXEC	UTIVE SUMMARY	III
ACRO	NYMS / ABBREVIATIONS	V
1.0	INTRODUCTION	1
1.1	Site Description and Background	2
1.2	Regional Geology & Hydrogeologic Setting	2
1.2.1	Site Geology	
1.2.2	Site Hydrogeology	
1.3	Groundwater Monitoring System	3
2.0	GROUNDWATER MONITORING ACTIVITIES	4
2.1	Monitoring Well Installation and Maintenance	
2.2	Assessment Monitoring	
2.3	Surface Water Sampling and Additional Groundwater Sampling	4
3.0	SAMPLE METHODOLOGY & ANALYSES	6
3.1	Groundwater Elevation Measurements and Flow Direction	6
3.2	Groundwater Gradient and Flow Velocity	
3.3	Groundwater Sampling	
3.4	Surface Water Sampling	
3.5	Laboratory Analyses	
3.6	Quality Assurance & Quality Control	8
4.0	STATISTICAL ANALYSES	9
4.1	Statistical Method	
4.2	Appendix I and Appendix III Statistical Method	
4.3	Appendix IV Statistical Method	
4.4 4.5	Statistical Analyses Results – Appendix I and Appendix III	
	Statistical Analyses Results – Appendix IV	
5.0	NATURE AND EXTENT	12
6.0	MONITORING PROGRAM STATUS	13
6.1	Assessment of Corrective Measures	13
7.0	CONCLUSIONS & FUTURE ACTIONS	14
8.0	REFERENCES	15

2024 Semi-Annual Groundwater Monitoring and Corrective Action Report Plant Arkwright Ash Pond 2 Dry Ash Stockpile

LIST OF TABLES

Table 1	Summary of Monitoring Well Construction
Table 2	Groundwater Sampling Event Summary
Table 3	Summary of Groundwater Elevations
Table 4	Groundwater Flow Velocity Calculations
Table 5	Analytical Data Summary - Groundwater, August/December 2024
Table 6	Analytical Data Summary – Surface Water, August 2024
Table 7	Summary of Groundwater Protection Standards

LIST OF FIGURES

Figure 1	Site Location Map
Figure 2	Detection Monitoring Network Well, Assessment Monitoring Well, Piezometer, and Sampling
	Locations Map
Figure 3	Potentiometric Surface Contour Map, Ash Pond 2 DAS – August 19, 2024
Figure 4	Isoconcentration Map for Cobalt, AP-2 DAS – August 2024
Figure 5	Isoconcentration Map for Lithium, AP-2 DAS – August 2024
Figure 6	Isoconcentration Map for Molybdenum, AP-2 DAS – August 2024

LIST OF APPENDICES

Appendix A Well Inspections and Maintenance Records Appendix B Field Sampling Data and Analytical Data Reports

- B.1 Well Redevelopment Logs
- B.2 Field Sampling Data
- B.3 Calibration Data
- B.4 Groundwater and Surface Water Laboratory Analytical Reports
- B.5 Data Quality Evaluation

Appendix C Well Installation Report

Appendix D Statistical Analyses

Executive Summary

This summary of the 2024 Semi-Annual Groundwater Monitoring and Corrective Action Report provides the status of the groundwater monitoring and corrective action program from July 2024 through December 2024 at the Georgia Power Company (Georgia Power) former Plant Arkwright Ash Pond 2 Dry Ash Stockpile (AP-2 DAS). This summary was prepared by Stantec Consulting Services Inc. (Stantec) on behalf of Georgia Power to meet the requirements listed in Georgia Environmental Protection Division (GA EPD) Rules of Solid Waste Management 391-3-4-.10(6)(a)-(c) and 391-3-4-.14.

Plant Arkwright is located in Bibb County, Georgia, approximately 6 miles northwest of the city of Macon. The plant address is 5241 Arkwright Road, Macon, Georgia, 31210. The 11-acre AP-2 DAS is located between Arkwright Road to the north and Beaverdam Creek to the south. When in operation, the coal-fired Plant Arkwright power plant consisted of four 40-megawatt units. In the years before retirement, the plant was used primarily to provide peaking power and operated approximately 40 to 60 days per year. Plant Arkwright was retired in 2002 and decommissioned in 2003. Georgia Power officially closed the AP-2 DAS in 2010, with GA EPD's approval and in accordance with the solid waste landfill regulations in effect at the time of its closure.

Plant Arkwright Ash Pond 2 Dry Ash Stockpile

The groundwater monitoring program for AP-2 DAS is managed in accordance with Georgia Solid Waste Management Rules for Groundwater Monitoring and Corrective Action of a municipal solid waste landfill, Rule 391-3-4-.14, per GA EPD Permit No. 011-031D(LI). AP-2 DAS is also subject to the GA EPD Rules for Solid Waste Management 391-3-4-.10 for coal combustion residuals (CCR) management. Georgia Power submitted a CCR permit application to GA EPD in 2018 proposing closure by removal of AP-2 DAS to a lined landfill. Groundwater at AP-2 DAS is monitored using a comprehensive groundwater monitoring system that meets GA EPD requirements. Groundwater sampling and reporting for compliance to meet requirements of Rule 391-3-4.10 began after baseline upgradient groundwater conditions were established between August 2016 and October 2018. Based on groundwater conditions at AP-2 DAS, an assessment monitoring program was initiated on November 13, 2019, and assessment of corrective measures began on July 9, 2020. During the 2024 semi-annual reporting period, AP-2 DAS remained in assessment monitoring as corrective measures were evaluated. A Draft Remedy Selection Report, which summarizes the evaluation and proposed selection of a corrective measure, or measures, was submitted to GA EPD on February 28, 2024.

During the 2024 semi-annual reporting period, Stantec conducted one groundwater sampling event in August 2024. As part of a pre-design investigation for corrective action at AP-2, two piezometers, ARAMW-10 and ARAMW-11, were installed in November 2024 to evaluate cobalt and lithium concentrations and to potentially use these piezometers for future pilot testing at the Site. Additionally, piezometer ARAMW-12 was installed in November 2024 to evaluate molybdenum concentration with

2024 Semi-Annual Groundwater Monitoring and Corrective Action Report Plant Arkwright Ash Pond 2 Dry Ash Stockpile

depth in the vicinity of well ARGWC-23. The three new piezometers were sampled in December 2024. Samples collected in August and December 2024 were analyzed for the full suites of Appendix III¹ and Appendix IV² constituents listed in Title 40, Code of Federal Regulations Part 257 (CCR Rule) and the GA EPD Appendix I constituent silver. Per the CCR Rule, groundwater results for the August 2024 data were evaluated in accordance with the certified statistical methods. Statistical analyses indicate statistically significant increases (SSIs) for Appendix III constituents above the statistical limits and statistically significant levels (SSLs) of Appendix IV constituents above the groundwater protection standards as summarized below. Cobalt and lithium SSLs were identified in well, ARAMW-7, and an SSL of lithium was identified in ARGWC-23, similar to recent reports for AP-2-DAS. Additionally, a new SSL of molybdenum was identified in ARAMW-8, at AP-2 DAS.

Appendix III Constituents	August 2024
Boron	ARGWC-21, ARGWC-22, ARGWC-23
Calcium	ARGWC-21, ARGWC-22, ARGWC-23
Fluoride	ARGWC-23
pH	ARGWC-21, ARGWC-23
Sulfate	ARGWC-21, ARGWC-22, ARGWC-23
TDS	ARGWC-21, ARGWC-22, ARGWC-23
Appendix IV Constituents	August 2024
Cobalt	ARAMW-7
Lithium	ARAMW-7, ARGWC-23
Molybdenum	ARAMW-8

Based on review of the CCR Rule Appendix III and Appendix IV statistical results completed for the groundwater monitoring and corrective action program from July 2024 through December 2024, assessment monitoring will continue along with assessment of corrective measures. Georgia Power will continue routine groundwater monitoring and reporting at AP-2 DAS. Reports will be submitted to GA EPD semi-annually.

² Antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, fluoride, lead, lithium, mercury, molybdenum, selenium, thallium, and radium 226 + 228

noiy

¹ Boron, calcium, chloride, fluoride, pH, sulfate, and total dissolved solids (TDS)

Acronyms / Abbreviations

40 CFR Title 40 Code of Federal Regulations
ACM Assessment of Corrective Measures

AP-2 Ash Pond 2

AP-2 DAS Ash Pond 2 Dry Ash Stockpile
CCR Coal Combustion Residuals
CCR Rule 40 CFR § 257 Subpart D
District Washington Slope District

DO Dissolved Oxygen

GA EPD Georgia Environmental Protection Division

GEL GEL Laboratories LLC
Georgia Power Georgia Power Company

GSC Groundwater Stats Consulting LLC
GWPS Groundwater Protection Standards

MCL Maximum Contaminant Level

mg/L Milligrams per Liter

NAVD88 North American Vertical Datum of 1988

NELAP National Environmental Laboratory Accreditation Program

NTU Nephelometric Turbidity Units
ORP Oxidation-Reduction Potential
Pace Pace Analytical Services LLC
PWR Partially Weathered Rock

QA/QC Quality Assurance/Quality Control

Site Former Plant Arkwright Ash Pond 2 Dry Ash Stockpile

SSI Statistically Significant Increase
SSL Statistically Significant Level
Stantec Stantec Consulting Services, Inc.

TDS Total Dissolved Solids

Unified Guidance Statistical Analysis of Groundwater Data at RCRA Facilities, Unified Guidance,

March 2009

UPL Upper Prediction Limit

US EPA United States Environmental Protection Agency

UTL Upper Tolerance Limit

1.0 Introduction

In accordance with the Georgia Environmental Protection Division (GA EPD) Rules of Solid Waste Management 391-3-4-.10(6)(a)-(c) and 391-3-4-.14, this 2024 Semi-Annual Groundwater Monitoring and Corrective Action Report has been prepared to document groundwater monitoring activities conducted at the Georgia Power Company (Georgia Power) former Plant Arkwright Ash Pond 2 (AP-2) Dry Ash Stockpile (AP-2 DAS) Site (Site). To specify groundwater monitoring requirements, GA EPD Rule 391-3-4-.10(6)(a) incorporates by reference the United States Environmental Protection Agency (US EPA) Title 40 Code of Federal Regulations (40 CFR) § 257 Subpart D - Standards for the Disposal of Coal Combustion Residuals (CCR) in Landfills and Surface Impoundments (CCR Rule). For ease of reference, the applicable CCR Rule references are cited within this report.

Groundwater monitoring and reporting for Plant Arkwright AP-2 DAS are performed in accordance with the monitoring requirements of 40 CFR § 257.90 through § 257.96. This semi-annual report documents the activities completed between July 2024 and December 2024. One semi-annual assessment monitoring event was conducted during this reporting period in August 2024. Additionally, a sampling event was performed in December 2024 to collect baseline samples from piezometers installed in November 2024 (ARAMW-10, ARAMW-11, and ARAMW-12).

Due to statistically significant levels (SSLs) of certain CCR Rule Appendix IV constituents identified in the 2020 Annual Groundwater Monitoring and Corrective Action Report (Wood, 2020a), Georgia Power initiated an assessment of corrective measures (ACM) for AP-2 DAS on July 9, 2020, pursuant to 40 CFR § 257.96(b), and an ACM Report for cobalt was prepared and submitted to GA EPD in December 2020 (Wood, 2020b). Based on statistical analyses on the recent semi-annual sampling events, cobalt and lithium show SSLs at well ARAMW-7, lithium is an SSL at ARGWC-23, and molybdenum is an SSL at ARAMW-8 at AP-2 DAS. A Draft Remedy Section Report was submitted to GA EPD on February 28, 2024, proposing in-situ injections with monitored natural attenuation as a remedy to address the cobalt and lithium SSLs at ARAMW-7. SSLs for lithium at ARGWC-23 and molybdenum at ARAMW-8, which occurred after submittal of the Draft Remedy Selection Report, are currently under evaluation.

Well ARAMW-7 is screened between shallow well ARGWC-22 and deep well ARAMW-9. Both ARGWC-22 and ARAMW-9 do not show an SSL for cobalt or lithium establishing vertical delineation of the SSLs at ARAMW-7.

Vertical delineation for lithium in ARGWC-23 is completed by the adjacent deep well ARAMW-8, which does not show an SSL for lithium.

Vertical delineation is in progress for the newly identified SSL of molybdenum in ARAMW-8. The installation of well ARAMW-12 in November 2024 intends to vertically delineate molybdenum in well ARAMW-8.

The cobalt, lithium, and molybdenum SSLs at AP-2 DAS are horizontally delineated by downgradient surface water samples with constituents being below analytical laboratory method detection limits, which are well below the Groundwater Protection Standard (GWPS).

1.1 Site Description and Background

Plant Arkwright is located in Bibb County, Georgia, approximately 6 miles northwest of the city of Macon (Figure 1). The physical address of the plant is 5241 Arkwright Road, Macon, Georgia 31210. The 11-acre AP-2 DAS is located between Arkwright Road to the north and Beaverdam Creek to the south. When in operation, the coal-fired Plant Arkwright power plant consisted of four 40-megawatt units. In the years before retirement, the plant was used primarily to provide peaking power and operated approximately 40 to 60 days per year. Plant Arkwright was retired in 2002 and decommissioned in 2003.

Plant Arkwright AP-2 DAS was used as a storage area for CCR beginning in the 1950s and was estimated to have been closed in-place in the late 1970s to early 1980s. Georgia Power officially closed AP-2 DAS in 2010 with GA EPD's approval and in accordance with the solid waste landfill regulations specified by GA EPD Rule 391-3-4, in effect at the time of its closure. A Closure Certificate was issued by GA EPD for AP-2 DAS on June 30, 2010. The Closure Certificate initiated the post-closure care period for the CCR unit, which has been performed in accordance with the GA EPD Permit No. 011-031D(LI) following closure. Georgia Power submitted a CCR permit application to GA EPD in 2018 proposing closure by removal of AP-2 DAS to a lined landfill, and is currently under review.

Semi-annual groundwater monitoring at AP-2 DAS is performed for an approved list of analytes in accordance with the post-closure care period requirements of GA EPD Permit No. 011-031D(LI). The permit lists GA EPD 391-3-4-.10 Appendix I constituents as arsenic, barium, cadmium, chloride, lead, selenium, silver, and sulfate. A minor modification approved by GA EPD on August 9, 2017, added the CCR Rule Appendix III and IV constituents to the groundwater monitoring plan. The GA EPD Appendix I constituents overlap with the CCR Rule Appendix III and IV constituents, with the exception of silver.

1.2 Regional Geology & Hydrogeologic Setting

The geology and hydrogeology of the Plant Arkwright Site are summarized below. The Plant Arkwright Site is located along the southern edge of the Washington Slope District (the District) within the Piedmont Physiographic Province (Clark and Zisa, 1976). The District is characterized by a gently undulating surface, which generally slopes to the south and southeast toward the Coastal Plain Physiographic Province located approximately 3.8 miles to the southeast of the Site.

Topography of the District ranges from approximately 700 feet above mean sea level in the areas of southern Atlanta and Athens to approximately 500 feet above mean sea level at its southern limit along the Georgia Fall Line. Streams follow the surface topography of the underlying crystalline rocks eastward toward the Ocmulgee River. Typically, relief throughout the District ranges between 50 and 100 feet. However, the greatest relief occurs along the Ocmulgee River where the elevation changes from 150 to 200 feet due to steep walled valleys (Clark and Zisa, 1976). Ultimately, the area surface water flow is directed toward the Ocmulgee River.

Bedrock in the region is composed of moderate to high-grade metamorphic rocks, consisting of biotite-granite gneiss, schist, amphibolite, and igneous rocks like granite. In the southernmost Piedmont, around the Site, bedrock is predominantly composed of biotite gneiss. Major geologic structures in the region include the Ocmulgee fault, located approximately 7 miles northwest of the Site, which strikes mostly

2024 Semi-Annual Groundwater Monitoring and Corrective Action Report Plant Arkwright Ash Pond 2 Dry Ash Stockpile 1.0 Introduction

northeast – southwest. The top of bedrock surface is highly weathered and, where exposed, is generally soft and friable (LeGrand, 1962).

1.2.1 Site Geology

The general geology beneath Plant Arkwright consists of clays, silty and sandy clays, silty sands, sandy silts, and minor gravel at depth, underlain by a silty sand saprolite and bedrock. Historical borings advanced at the Site indicate bedrock occurs at depths ranging from approximately 14 to 63 feet below ground surface and consists of weathered quartzofeldspathic gneiss, hornblende gneiss, and schist. Boring logs also indicate a relatively thin zone of partially weathered rock (PWR) above a more competent bedrock, which ranges in thickness from 1 to 4 feet in the southern and eastern portions of the Site, and up to 14 feet in the northeastern portion of the Site.

1.2.2 Site Hydrogeology

The uppermost aquifer at the Site consists of two hydrostratigraphic units: the water table (overburden) hydrostratigraphic unit and the underlying shallow fractured bedrock hydrostratigraphic unit. The water table (overburden) unit is composed of unconsolidated silty sands and sandy silts with clays and variable thicknesses of PWR mantling the bedrock surface, whereas the bedrock unit is a zone comprised of weathered and fractured bedrock.

The water table unit is hydraulically connected to the underlying bedrock through fractures in the partially weathered and fractured bedrock (Southern Company Services, 2005) and is considered to be under unconfined conditions. The monitoring well network for AP-2 DAS (Figure 2) monitors the uppermost aquifer at the Site.

Slug testing data from the Site reflects a range of hydraulic conductivities from 10⁻⁶ to 10⁻³ centimeters per second (0.0028 to 2.835 feet per day) in the water table hydrostratigraphic unit (Southern Company Services, 2005). Groundwater level gauging data from the Site show stable water level trends and the potentiometric surface map depicts groundwater generally flowing to the south across AP-2 DAS (Figure 3).

1.3 Groundwater Monitoring System

Pursuant to 40 CFR § 257.91, Georgia Power installed a groundwater monitoring system within the uppermost aquifer at AP-2 DAS. The groundwater monitoring system is designed to monitor groundwater passing the waste boundary of AP-2 DAS within the uppermost aquifer. Wells were located to serve as upgradient or downgradient monitoring points based on the groundwater flow direction (Table 1). The monitoring well locations are depicted in Figure 2.

2.0 Groundwater Monitoring Activities

The following describes monitoring-related activities performed between July 2024 and December 2024. Samples were collected from each of the wells in the groundwater monitoring system depicted in Figure 2. In accordance with 40 CFR § 257.93, Table 2 presents a summary of the groundwater sampling events completed for AP-2 DAS during this monitoring period.

2.1 Monitoring Well Installation and Maintenance

Monitoring wells are inspected semi-annually to determine if repairs or corrective actions are necessary to meet the requirements of the Georgia Water Well Standards Act (O.C.G.A. § 12-5-134(5)(d)(vii)). In August 2024, the monitoring wells were inspected. No needed corrective actions were identified, as documented in Appendix A.

Assessment monitoring wells ARGWC-21, ARGWC-22, ARGWC-23, ARAMW-1, ARAMW-2, ARAMW-7, ARAMW-8 were redeveloped between August 13, 2024, and August 14, 2024. The wells, located along the northern bank of Beaver Dam Creek, were redeveloped due to flooding that led to the inundation of well protective casings. Field logs recording the redevelopment of the assessment monitoring wells are provided in Appendix B.

In November 2024, as part of PDI and delineation activities, piezometers ARAMW-10 (bedrock) and ARAMW-11 (overburden) were installed south of AP-2 DAS, and piezometer ARAMW-12 (bedrock) was installed southeast of AP-2 DAS. The piezometer installation report was submitted under separate cover (Stantec, 2025) and is included in Appendix C.

During the November 2024 drilling event, the elevations of monitoring wells were altered, either to facilitate drilling access or as part of repairs made following the event. A summary of well maintenance and repairs is included in Appendix A. The wells were re-surveyed on December 9, 2024. The surveying results are included with the well installation report (Appendix C) and elevations will be updated for future gauging events.

2.2 Assessment Monitoring

Georgia Power implemented assessment monitoring in accordance with 40 CFR § 257.95 in November 2019. During the 2024 semi-annual reporting period, a semi-annual assessment monitoring event at AP-2 DAS was conducted from August 20 to 21, 2024. Groundwater samples were collected from each well in the certified groundwater monitoring system and analyzed for the full suites of CCR Rule Appendix III and Appendix IV constituents and the GA EPD Appendix I constituent, silver. Laboratory and field data reports for the August 2024 monitoring event are included in Appendix B.

2.3 Surface Water Sampling and Additional Groundwater Sampling

Due to the close proximity of Beaverdam Creek in the downgradient direction of ARAMW-7, further well installation was infeasible. Instead, five surface water samples were collected on August 12, 2024, from locations along Beaverdam Creek near AP-2 DAS, as shown on Figure 2.

2024 Semi-Annual Groundwater Monitoring and Corrective Action Report Plant Arkwright Ash Pond 2 Dry Ash Stockpile 2.0 Groundwater Monitoring Activities

Surface water samples were analyzed for the full suites of 40 CFR Part 257 Appendix III and targeted SSL Appendix IV constituents. Surface water samples were also submitted for analysis of total alkalinity, bicarbonate alkalinity, magnesium, potassium, and sodium. The laboratory reports associated with the August 2024 sampling event are provided in Appendix B.

During the August 2024 semi-annual sampling event, groundwater samples were analyzed for dissolved iron and manganese in addition to the parameters described in Section 2.2. Dissolved iron and manganese concentrations provide information regarding the oxidation-reduction conditions, which is a key factor influencing the behavior of cobalt in the subsurface. Results are included in the laboratory analytical reports in Appendix B.

Piezometers ARAMW-10 and ARAMW-11 were installed in November 2024 and sampled in December 2024. Piezometer ARAMW-12 could not be sampled during the December 2024 sampling event due to lack of recharge. Groundwater samples were analyzed for the parameters described in Section 2.2 and dissolved iron and manganese. Results are included in the laboratory analytical reports in Appendix B.

3.0 Sample Methodology & Analyses

The semi-annual groundwater sampling event completed in August 2024 for AP-2 DAS included sampling for the constituents listed in CCR Rule Appendix III and Appendix IV, with the addition of silver, which is a constituent in GA EPD Appendix I. Groundwater analytical data and chain-of-custody records are located in Appendix B. The following sections describe methods used to conduct the groundwater monitoring activities at AP-2 DAS.

3.1 Groundwater Elevation Measurements and Flow Direction

Prior to each sampling event, the static groundwater levels were measured in each monitoring well at AP-2 DAS. The water level indicator was properly decontaminated between each monitoring well. Groundwater elevations are summarized in Table 3. The recorded water level data were used to determine the groundwater elevations in each well and develop a potentiometric surface elevation contour map (Figure 3). Review of the figure indicates that the apparent groundwater flow direction in the uppermost aquifer is to the south in the direction of Beaverdam Creek. This groundwater flow pattern is consistent with historical groundwater flow patterns.

3.2 Groundwater Gradient and Flow Velocity

The groundwater flow velocity at AP-2 DAS was calculated using a derivation of Darcy's Law. Specifically,

$$V = \frac{K*i}{n_{e}}$$
 Where:
$$V = \text{Groundwater flow velocity}\left(\frac{f^{eet}}{day}\right)$$

$$K = \text{Average hydraulic conductivity of the aquifer}\left(\frac{f^{eet}}{day}\right)$$

$$i = \text{Horizontal hydraulic gradient}\left(\frac{f^{eet}}{f^{oot}}\right)$$

$$n_{e} = \text{Effective porosity (unitless)}$$

The general groundwater flow velocities were calculated for AP-2 DAS based on hydraulic gradients, average hydraulic conductivity based on previous slug test data, and an estimated effective porosity of 0.20 (based on a review of several sources, including Driscoll, 1986; US EPA, 1989; Freeze and Cherry, 1979). The general groundwater flow velocity values based on August 19, 2024 groundwater elevations are presented in Table 4. The results for groundwater flow velocity through the central portion of AP-2 DAS was 0.092 feet/day (34 feet/year) in August 2024. Groundwater flow velocity through the eastern portion was 0.082 feet/day (30 feet/year) in August 2024. The observed groundwater flow velocities calculated for this monitoring event are generally consistent with expected velocities in the regolith-upper bedrock aquifers of the Georgia Piedmont.

3.3 Groundwater Sampling

Groundwater samples were collected in August 2024 and December 2024 (ARAMW-10 and ARAMW-11 only). Sampling procedures were conducted in accordance with US EPA Region 4 *Laboratory Services and Applied Science Division Operating Procedures for Groundwater Sampling* (LSASDPROC-301-R6, April 22, 2023). Monitoring wells were purged and sampled using low-flow sampling procedures. Dedicated or non-dedicated low-flow pneumatic bladder or peristaltic pumps were used to purge and sample the wells. An In-Situ Aqua TROLL® 400 field instrument was used to monitor and record field water quality parameters (pH, conductivity, dissolved oxygen [DO], temperature, and oxidation-reduction potential [ORP]) and a Hach 2100Q was used to measure turbidity during well purging to verify stabilization prior to sampling.

Groundwater samples were collected when the following stabilization criteria were met for three consecutive readings measured at five-minute intervals:

- pH ± 0.1 Standard Units
- Specific conductance ± 5 %
- ± 10% for DO where DO > 0.5 milligrams per liter (mg/L). No criterion applies if DO < 0.5 mg/L
- Turbidity measurements less than five Nephelometric Turbidity Units (NTU)
- Temperature Record only, not used for stabilization criteria
- ORP Record only, not used for stabilization criteria

Once stabilization was achieved, samples were collected into appropriately preserved laboratory-supplied sample containers. If turbidity readings were greater than 10 NTU at the time of sampling and after 3 hours of purging, a dissolved metals sample would be collected by filtering the water with a 0.45-micron water filter. Turbidity readings were below 10 NTUs during the August and December 2024 sampling events, and no filtered samples were collected. Sample bottles were placed in ice-packed coolers and submitted to GEL Laboratories LLC (GEL) in Charleston, South Carolina following chain-of-custody protocols. Stabilization logs and equipment calibration forms are included in Appendix B.

3.4 Surface Water Sampling

Surface water samples were collected in August 2024. Sampling was performed in accordance with US EPA Region 4 *Laboratory Services and Applied Science Division Operating Procedures for Surface Water Sampling* (LSASDPROC-201-R6, April 22, 2023).

Surface water samples were analyzed for the full suite of 40 CFR Part 257 Appendix III and targeted SSL Appendix IV constituents. Surface water samples were also submitted for analysis of total alkalinity, bicarbonate alkalinity, magnesium, potassium, and sodium.

Sample bottles were placed in ice-packed coolers and submitted to Pace Analytical Services, LLC (Pace) of Peachtree Corners, Georgia, following chain-of-custody protocol.

3.5 Laboratory Analyses

The groundwater samples were analyzed for CCR Rule Appendix III and Appendix IV constituents, as well as the GA EPD Appendix I constituent, silver. The samples were analyzed for additional parameters³ to assist with ongoing remedy evaluation. Laboratory analyses of the groundwater were performed by GEL, which is accredited by the National Environmental Laboratory Accreditation Program (NELAP) and maintains the NELAP accreditation for the constituents analyzed for this project. Table 5 summarizes the August and December 2024 groundwater analytical results, and the corresponding formal analytical reports are in Appendix B.

The August 2024 surface water samples were also analyzed for CCR Rule Appendix III and Appendix IV constituents. Laboratory analyses of the surface water samples were performed by Pace, which is also a NELAP accredited laboratory. Table 6 summarizes the surface water analytical results, and the corresponding formal analytical reports can be found in Appendix B.

3.6 Quality Assurance & Quality Control

During each sampling event, various quality assurance/quality control (QA/QC) samples were collected. Equipment blanks (where non-dedicated sampling equipment was used) were collected at a rate of one QA/QC sample per 10 groundwater samples to assess the adequacy of the decontamination process. Blind field duplicate samples were collected by filling additional containers at the same location during the sampling events at a rate of one QA/QC sample per 10 groundwater samples. Field blanks were also collected to evaluate ambient conditions at the sampling locations at a rate of one QA/QC sample per 10 groundwater samples.

QA/QC of the groundwater data were assessed by performing a data quality evaluation of the laboratory results reported. A data quality evaluation was conducted on the data using laboratory precision and accuracy, and analytical method requirements (US EPA, 2002). The data quality evaluations are included in Appendix B.

The analytical results provided in Tables 5 and 6 provide concentrations from the August 2024 groundwater assessment monitoring and surface water sampling event as reported by the laboratories. When values are followed by a "J" flag, this indicates that the value is an estimated analyte concentration detected between the method detection limit and the laboratory reporting limit. The estimated value is positively identified but is below the lowest level that can be reliably achieved within specified limits of precision and accuracy under routine laboratory operating conditions. Radium values followed by a "U" flag indicate that the constituent was not detected above the analytical minimum detectable concentration. The data are considered usable for meeting project objectives and the results are considered valid.

³ Total alkalinity, bicarbonate alkalinity, carbonate alkalinity, total iron, manganese, total magnesium, potassium, and sodium

4.0 Statistical Analyses

Statistical analyses of GA EPD Appendix I (silver) and CCR Rule Appendix III and Appendix IV constituents were performed on samples collected from the groundwater monitoring system pursuant to 40 CFR § 257.93(f) and following the statistical method for AP-2 DAS. In addition, pursuant to 40 CFR § 257.95(d)(2), GWPS were established for the Appendix IV constituents from the assessment monitoring event. The groundwater data were statistically analyzed by Groundwater Stats Consulting, LLC (GSC). The reports generated from the analyses are provided in Appendix D.

The following sections provide an overview of the statistical methods used to evaluate the GA EPD Appendix I and CCR Rule Appendix III and Appendix IV constituents and statistical analyses results.

4.1 Statistical Method

The statistical analysis method used at AP-2 DAS was developed by GSC using methodology presented in the *Statistical Analysis of Groundwater Data at RCRA Facilities, Unified Guidance, March 200*9, EPA 530/R-09-007 (US EPA, 2009) (Unified Guidance). Sanitas™ Statistical Software is a commercially available decision support software package that incorporates the statistical tests required of Subtitle C and D facilities by US EPA regulations and guidance as recommended in the Unified Guidance. Specific methodology information is described in the following paragraphs.

4.2 Appendix I and Appendix III Statistical Method

Interwell prediction limits were used for the analysis of the six GA EPD Appendix I constituents (arsenic, barium, cadmium, lead, selenium, and silver) and the full suite of CCR Rule Appendix III constituents. A comparison of confidence intervals to GWPS was also used to evaluate the GA EPD Appendix I constituents. When using the interwell method, upgradient well data are pooled to establish a background statistical limit (upper prediction limit [UPL] or in the case of pH, prediction interval) for each constituent. Individual sample results are then compared to the UPL, or prediction interval for pH, to determine if an SSI has occurred for the constituent/well pair. When an initial SSI is identified, a second sample may be collected to verify the initial result.

The interwell prediction limit assumed a 1-of-2 verification resample plan. If data from a sampling event initially indicate an SSI, then a resample may be collected to verify the initial result. In 1-of-2 resampling, one independent resample is collected and evaluated within 90 days to determine whether the initial SSI is verified. If the resample concentration is above the UPL or a resample is not collected, then the initial SSI is verified. If the resample concentration is less than the UPL, then an SSI is not declared.

Data from groundwater samples from downgradient wells collected in the August 2024 monitoring event were compared to the UPLs to evaluate whether SSIs exist. No resampling was conducted for the 2024 annual monitoring period.

4.3 Appendix IV Statistical Method

The assessment monitoring program statistics for CCR Rule Appendix IV and GA EPD Appendix I constituents were conducted in two parts. The first part was to establish the GWPS for each CCR Rule Appendix IV constituent and GA EPD Appendix I constituent (silver). The second part was the calculation of confidence intervals for individual downgradient well/constituent pairs and then comparing them to the GWPS.

Upper Tolerance Limits (UTLs) were calculated from pooled upgradient well data for Appendix IV constituents. Parametric UTLs were calculated when data followed a normal or transformed-normal distribution. When data contained greater than 50% non-detects or were not in a normal or transformed-normal distribution, non-parametric tolerance limits were used. When parametric methods were appropriate, a 95% UTL with 95% coverage was calculated. When non-parametric UTLs were appropriate, the level of confidence could not be pre-specified and was a function of the size of the data set. The level of confidence for the non-parametric UTLs is provided in the GSC August 2024 report (Appendix D). The background limits were evaluated when determining the GWPS under 40 CFR § 257.95(h).

Table 7 summarizes the background limits established for each CCR Rule Appendix IV constituent and GA EPD Appendix I constituent (silver) and the GWPS established under GA EPD Rules.

To complete the statistical evaluation, confidence intervals were constructed for each downgradient well/constituent pair and compared to the GWPS. In assessment monitoring, an SSL is identified only when the entire confidence interval is above a GWPS in the downgradient well/constituent pair.

4.4 Statistical Analyses Results – Appendix I and Appendix III

Based on review of the GA EPD CCR Rule Appendix III statistical analysis from the August 2024 sampling event, groundwater conditions have not returned to background concentrations and assessment monitoring will continue. Note that GA EPD Appendix I constituent, silver, was not identified as an SSI during the semi-annual sampling event. The statistical analyses and comparisons to prediction limits are included in Appendix D. Additionally, tables contained in Appendix D summarize the various SSIs identified based on the statistical analyses performed on the recent groundwater analytical results.

4.5 Statistical Analyses Results – Appendix IV

The August 2024 GWPS are based on MCLs, the GA EPD adopted Federal GWPS (cobalt, molybdenum, lithium, and lead), and site-specific background concentrations, as required by GA EPD. Appendix D shows the individual well/constituent pairs for CCR Rule Appendix IV constituents and GA EPD constituent (silver) with their respective confidence intervals in comparison to the respective constituent GWPS. Based on the statistical results presented in Appendix D, the identified SSLs include:

August 2024:

o Lithium: ARAMW-7, ARGWC-23

Cobalt: ARAMW-7

o Molybdenum: ARAMW-8

When GWPSs were exceeded, data were further evaluated for trend. Trend testing utilizing the Sen's Slope/Mann Kendall method at the 95% confidence level was used to determine whether concentrations were statistically increasing, decreasing, or stable. Upgradient well data were included in the trend analyses for parameters found to exceed their GWPSs in downgradient wells to identify whether similar patterns exist upgradient of the site. Statistically significant trends were identified for the following:

Statistically significant trends were identified for the following:

August 2024:

Increasing

o Lithium: ARGWC-23

Molybdenum: ARAMW-8

Decreasing

Molybdenum: ARGWC-19 (upgradient)

5.0 Nature and Extent

Based on statistical analysis of Appendix IV groundwater data, SSLs have been identified for cobalt (ARAMW-7) lithium (ARAMW-7 and ARGWC-23) and molybdenum (ARAMW-8). Concentrations of cobalt, lithium, and molybdenum SSLs detected in these wells are less than an order of magnitude above their respective GWPSs and the affected area is limited in extent, as described below.

The cobalt and lithium SSLs identified in the compliance well ARAMW-7 and the lithium SSL identified in ARGWC-23 are horizontally and vertically delineated to levels below GWPS. Vertical delineation is completed by sampling adjacent monitoring wells. The SSLs at ARAMW-7 are vertically delineated by deep well ARAMW-9. The SSL at ARGWC-23 is vertically delineated by deep well ARAMW-8.

To vertically delineate the newly identified SSL of molybdenum in ARAMW-8, a deeper piezometer ARAMW-12 was installed adjacent to ARAMW-8, which was previously installed for the vertical delineation of detection well ARGWC-23 for molybdenum. Since 2022, molybdenum concentrations have been lower than the GWPS in well ARGWC-23. Observation of rock cores collected from ARAMW-12 and results of downhole geophysics indicate competent rock with limited to no water-bearing fractures. Results of geophysical analysis indicate possible water-bearing fractures in the range of 44 – 46 feet below ground surface (similar depth to the screened interval of ARAMW-8) and 62 – 64 feet below ground surface (within the screened interval of ARAMW-12) with competent rock between. An attempt was made to sample ARAMW-12 during the December 2024 sampling event; however, a sample could not be collected due to lack of recharge in the well. Sampling of ARAMW-12 will be attempted during the next sitewide sampling event in February 2025.

Groundwater elevations measured in newly installed piezometers ARAMW-10 and ARAMW-11 are comparable (approximately 296 ft NAVD88) with most nearby wells downgradient of AP-2. However, groundwater elevation in newly installed piezometer ARAMW-12 is approximately 45 feet lower (about 250 ft NAVD88), which would indicate that this piezometer, screened between 50 and 65-ft below land surface and approximately 30-ft into upper bedrock, is likely below the uppermost aquifer at the Site. In contrast, well ARAMW-9 which is a deep bedrock well screened 93 to 102-ft below land surface, shows water elevation higher than the detection wells at the Site. Taken together, the uppermost aquifer at the Site is limited to depths less than 30-ft of upper bedrock. Based on groundwater elevation data, the deeper wells ARAMW-9 and ARAMW-12 are not in direct hydraulic communication with the shallow aquifer.

Due to the presence of Beaverdam Creek in the downgradient direction of ARAMW-7 and ARGWC-23 and the topography in this area, installation of additional wells to horizontally characterize this area is infeasible. Based on cobalt and lithium data collected from Beaverdam Creek to date, horizontal delineation is complete. The lateral extent of the cobalt and lithium SSLs in ARAMW-7 and the lithium SSL in ARGWC-23 are limited to areas less than approximately 100 feet wide, as shown on the isoconcentration maps for cobalt, lithium, presented as Figures 4 and 5, respectively.

Similarly to the SSLs for cobalt and lithium, molybdenum is not detected in surface water samples from Beaverdam Creek, indicating that the horizontal extent of molybdenum impact is limited. The approximate extent of the lithium SSL is presented on Figure 6.

6.0 Monitoring Program Status

Pursuant to 40 CFR § 257.96(b), Georgia Power will continue to monitor the groundwater at AP-2 DAS in accordance with the assessment monitoring program regulations in 40 CFR § 257.95 while ACM efforts continue to be evaluated. Pursuant to 40 CFR § 257.95(g)(1)(iv), the assessment monitoring wells will continue to be sampled as part of the ongoing groundwater monitoring program.

6.1 Assessment of Corrective Measures

A Draft Remedy Selection Report (Stantec, 2024) was submitted to GA EPD on February 28, 2024. This report includes:

- The current groundwater conceptual site model applicable to evaluating groundwater corrective measures proposed in the ACM Report (Wood, 2020b).
- An evaluation of each corrective measure retained for further consideration following the completed investigations.
- An evaluation of corrective measure options using the comparative criteria such as long- and shortterm effectiveness and protectiveness, source control effectiveness, and ease of implementation.
 The Draft Remedy Selection Report presents geochemical approaches (in-situ injections) coupled with monitored natural attenuation as the proposed groundwater remedy for AP-2 DAS.

In the interim of GA EPD's review of the Draft Remedy Selection Report, Georgia Power continues to make progress towards selection of a remedy through updating routine sampling data and lab treatability testing in preparation for future pilot testing at the Site. The Draft Remedy Selection Report proposed in-situ injections with monitored natural attenuation as a remedy, and a Pilot Test Workplan is being prepared to further evaluate and optimize the injection plan. In addition, treatability studies have been completed to determine injectate materials and to identify proper dosage information.

SSLs for lithium at ARGWC-23 and molybdenum at ARAMW-8, which occurred after submittal of the Draft Remedy Selection Report, are currently under evaluation.

7.0 Conclusions & Future Actions

This 2024 Semi-Annual Groundwater Monitoring and Corrective Action Report was prepared to fulfill the requirements of US EPA's 40 CFR §257.95 and GA EPD Rules for Solid Waste Management 391-3-4-.10. Review of analytical results and statistical analyses indicate SSLs of cobalt and lithium in well ARAMW-7, an SSL of lithium in well ARGWC-23, and an SSL of molybdenum in well ARAMW-8, which are above the established GWPS.

Horizontal delineation of cobalt and lithium SSLs is considered complete by surface water sampling in Beaverdam Creek, and vertical delineation has been achieved by sampling of adjacent monitoring wells. The SSLs at ARAMW-7 are vertically delineated by deep well ARAMW-9. The SSL at ARGWC-23 is vertically delineated by deep well ARAMW-8. Thus, horizontal and vertical delineations of the cobalt and lithium SSLs in well ARAMW-7 and ARGWC-23 are completed at AP-2 DAS.

Vertical delineation is in progress for the newly identified SSL of molybdenum in ARAMW-8; The installation of well ARAMW-12 in November 2024 intends to vertically delineate molybdenum in this area. Observation of rock cores collected from ARAMW-12 and results of downhole geophysics indicate competent rock with limited fractures. An attempt was made to sample ARAMW-12 during the December 2024 sampling event; however, a sample could not be collected due to lack of recharge in the well. Similarly to the SSLs for cobalt and lithium, molybdenum is not detected in surface water samples from Beaverdam Creek, indicating that the horizontal extent of molybdenum impact is limited.

Georgia Power will continue to monitor AP-2 DAS under the assessment monitoring program pursuant to 40 CFR §257.95. A Draft Remedy Selection Report, which includes additional data collected in support of ACM efforts and summarizes the evaluation and selection of a proposed corrective measure, or measures, was submitted to GA EPD under separate cover on February 28, 2024. The Draft Remedy Selection Report proposed in-situ injections with monitored natural attenuation as a remedy, and a Pilot Test Workplan is being prepared to further evaluate and optimize the injection plan. SSLs for lithium at ARGWC-23 and molybdenum at ARAMW-8, which occurred after submittal of the Draft Remedy Selection Report, are currently under evaluation.

The next semi-annual sampling event is planned for February 2025 and will include sampling and analysis of CCR Rule Appendix III and Appendix IV constituents, as well as permit-specific GA EPD Appendix I constituents.

8.0 References

- Clark, W.Z. and Zisa A.C., 1976, Physiographic Map of Georgia, Georgia Department of Natural Resources.
- Driscoll, F.G. 1986, *Ground Water and Wells*, 2nd Edition, Johnson Filtration Systems, Inc., St. Paul. Minnesota, 1089p.
- Freeze, R.A. and Cherry, JA. 1979, *Groundwater*, Prentice-Hall, Englewood Cliffs, New Jersey, 604 pp.
- LeGrand, H. E. 1962, *Geology and Ground-water Resources of the Macon Area, Georgia*. The Geological Survey Bulletin No. 72.
- Southern Company Services, Inc., 2005, *Plant Arkwright Ash Ponds 2 and 3 and Ash Monofill Site Acceptability Report*, Revision 1.
- Sanitas: Groundwater Statistical Software, Sanitas Technologies, Shawnee, KS, 2007. www.sanitastech.com
- Stantec, 2024. Stantec Consulting Services, Inc., *Draft Remedy Selection Report* Plant Arkwright Ash Pond 2 Dry Ash Stockpile, February 28, 2024.
- Stantec, 2025. Monitoring Well Installation Report Plant Arkwright Ash Pond 2 Dry Ash Stockpile, February 7, 2025
- US EPA, 1989. US EPA 530/SW-89-031 Interim Final RCRA Investigation (RFI) Guidance, Volume I and II.
- US EPA, November 2002, Data Validation Standard Operating Procedures and Quality Assurance Manual.
- US EPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance.

 Office of Resource Conservation and Recovery Program Implementation and Information
 Division. March.
- US EPA. 2015. Federal Register. Volume 80. No. 74. Friday April 17, 2015. Part II. Environmental Protection Agency. 40 CFR Parts 257and 261. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. [EPAHQRCRA–2009–0640; FRL–9919–44–OSWER]. RIN–2050–AE81. April.
- US EPA, 2023, Laboratory Services and Applied Science Division *Operating Procedures for Surface Water Sampling LSASDPROC-201-R6*, April 22, 2023.
- US EPA, 2023, Laboratory Services and Applied Science Division *Operating Procedures for Groundwater Sampling LSASDPROC-301-R6*, April 22, 2023.
- Wood Environment & Infrastructure Solutions, Inc., 2020a. 2020 Annual Groundwater Monitoring and Corrective Action Report Georgia Power Company Plant Arkwright Ash Pond 2 Dry Ash Stockpile, July 31, 2020.

2024 Semi-Annual Groundwater Monitoring and Corrective Action Report Plant Arkwright Ash Pond 2 Dry Ash Stockpile 8.0 References

Wood Environment & Infrastructure Solutions, Inc., 2020b. *Assessment of Corrective Measures* – Georgia Power Company Plant Arkwright Ash Pond 2 Dry Ash Stockpile, December 4, 2020.

Wood Environment & Infrastructure Solutions, Inc., 2021a. Semi-Annual Remedy Selection and Design Progress Report – Georgia Power Company Plant Arkwright Ash Pond 2 Dry Ash Stockpile, July 30, 2021.

SUMMARY OF MONITORING WELL CONSTRUCTION

Georgia Power Company - Plant Arkwright Ash Pond 2 Dry Ash Stockpile

Macon, Georgia

Well	Installation Date	Northing ⁽¹⁾	Easting ⁽¹⁾	Top of Casing Elevation (feet NAVD88) ⁽²⁾⁽³⁾	Ground Surface Elevation (feet NAVD88) ⁽²⁾⁽³⁾	Top of Screen Elevation (feet NAVD88) ⁽⁴⁾	Screen Bottom Elevation (feet NAVD88) ⁽⁴⁾	Screen Length (feet)	Total Well Depth on Construction Log (feet below land surface)	Groundwater Zone Screened	Hydraulic Location
					Detection M	onitoring Wells				'	
ARGWA-19	12/16/2008	1063774.45	2439488.71	343.30	339.86	300.18	290.18	10.0	49.98	Bedrock	Upgradient
ARGWA-20	12/4/2008	1063732.73	2439088.01	331.28	327.73	303.18	293.18	10.0	34.85	Overburden	Upgradient
ARGWC-21	12/2/2008	1062941.24	2439112.52	309.15	305.97	291.70	281.70	10.0	24.57	Overburden	Downgradient
ARGWC-22	11/19/2019	1063039.36	2438925.04	309.95	307.01	292.01	282.01	10.0	25.00	Overburden	Downgradient
ARGWC-23	11/20/2019	1062884.38	2439202.38	307.70	304.29	289.29	279.29	10.0	25.00	Overburden	Downgradient
					Assessment I	Monitoring Wells					
ARAMW-1	11/20/2019	1062938.38	2439120.01	308.51	305.07	271.07	261.07	10.0	44.00	Bedrock	Downgradient
ARAMW-2	11/20/2019	1062925.96	2439114.97	308.27	305.12	293.12	283.12	10.0	22.00	Overburden	Downgradient
ARAMW-7 ⁽⁵⁾	11/14/2020	1063049.07	2438913.27	309.81	307.13	269.43	259.43	10.0	48.00	Bedrock	Downgradient
ARAMW-8 ⁽⁵⁾	11/13/2020	1062895.98	2439197.40	307.36	304.53	267.83	257.83	10.0	47.00	Bedrock	Downgradient
ARAMW-9 ⁽⁶⁾	10/7/2022	1063022.92	2438935.47	309.28	306.31	213.91	203.91	10.0	102.90	Bedrock	Downgradient
					Piezo	ometers					
ARAMW-10 ⁽⁷⁾	11/9/2024	1063082.33	2438902.85	308.49	308.39	260.89	250.89	10.0	58.00	Bedrock	Downgradient
ARAMW-11 ⁽⁷⁾	11/10/2024	1063077.03	2438902.96	308.09	308.02	278.02	268.02	10.0	40.50	Overburden	Downgradient
ARAMW-12 ⁽⁷⁾	11/21/2024	1062906.98	2439199.15	309.08	305.80	255.90	240.90	15.0	65.40	Bedrock	Downgradient

Notes:

- 1. Horizontal locations referenced to Georgia State Plane West, North American Datum (NAD) of 1983 surveyed in June 26, 2020.
- 2. Vertical elevations are feet referenced to North American Vertical Datum of 1988 (NAVD88).
- 3. Elevations updated with revised survey certified by Donaldson & Garrett Associates on June 26, 2020.
- 4. Screen elevations calculated using Ground Surface Elevation surveyed on June 26, 2020.
- 5. ARAMW-7 and ARAMW-8 were surveyed by Donaldson & Garrett Associates and certified on December 18, 2020.
- 6. ARAMW-9 was surveyed by Metro Engineering & Surveying CO., Inc. on November 22, 2022.
- 7. ARAMW-10, ARAMW-11, and ARAMW-12 were surveyed on December 9, 2024.

TABLE 2 GROUNDWATER SAMPLING EVENT SUMMARY

Georgia Power Company - Plant Arkwright Ash Pond 2 Dry Ash Stockpile Macon, Georgia

		_	of Sampling ents	
Well ID	Hydraulic Location	August 20 - 21, 2024	December 12, 2024	Status of Monitoring Well
ASH POND 2 DRY AS	H STOCKPILE MONITORING WEL	L NETWORK		
ARGWA-19	Upgradient	X		Assessment Monitoring
ARGWA-20	Upgradient	X		Assessment Monitoring
ARGWC-21	Downgradient	Х		Assessment Monitoring
ARGWC-22	Downgradient	Х		Assessment Monitoring
ARGWC-23	Downgradient	Х		Assessment Monitoring
ARAMW-1	Delineation Piezometer	Х		Assessment Monitoring
ARAMW-2	Delineation Piezometer	Х		Assessment Monitoring
ARAMW-7	Delineation Piezometer	Х		Assessment Monitoring
ARAMW-8	Delineation Piezometer	Х		Assessment Monitoring
ARAMW-9	Delineation Piezometer	Х		Assessment Monitoring
ARAMW-10	Delineation Piezometer		Х	Assessment Monitoring
ARAMW-11	Delineation Piezometer		Х	Assessment Monitoring
ARAMW-12	Delineation Piezometer			Assessment Monitoring

Notes:

X - Indicates well sampled during monitoring event

ARAMW-10 and ARAMW-11 were installed in November 2024 and sampled in December 2024

ARAMW-12 was installed in November 2024 but could not be sampled in December 2024 due to lack of recharge and high turbidity.

TABLE 3 SUMMARY OF GROUNDWATER ELEVATIONS Georgia Power Company - Plant Arkwright

Ash Pond 2 Dry Ash Stockpile Macon, Georgia

Well ID	Top of Casing Elevation (feet NAVD88) ⁽¹⁾⁽²⁾	Depth to Water (feet below TOC) ⁽²⁾	Groundwater Elevation (feet NAVD88) ⁽¹⁾	
Measurement Date		August	19, 2024	
ARGWA-19	343.30	29.31	313.99	
ARGWA-20	331.28	16.86	314.42	
ARGWC-21	309.15	14.40	294.75	
ARGWC-22	309.95	14.25	295.70	
ARGWC-23	307.70	12.67	295.03	
ARAMW-1	308.51	13.76	294.75	
ARAMW-2	308.27	13.76	294.51	
ARAMW-7	309.81	13.26	296.55	
ARAMW-8	307.36	12.27	295.09	
ARAMW-9	ARAMW-9 309.28		300.64	

Notes:

- 1. Groundwater elevations are feet referenced to North American Vertical Datum of 1988 (NAVD88).
- 2. Groundwater elevations were measured as depth to water from the top of casing (TOC).

GROUNDWATER FLOW VELOCITY CALCULATIONS

Georgia Power Company - Plant Arkwright Ash Pond 2 Dry Ash Stockpile

Macon, Georgia

Potentiometric Map Date	Location	Groundwater Elevations in Well Pairs (h ₁ , h ₂) (feet)		Change in Elevation (Δh) (feet)	Distance Measured (L) (feet)	Hydraulic Gradient (i) (feet/foot)	Average Hydraulic Conductivity (K) (feet/day)	Estimated Effective Porosity (n _e)	Calculated Groundwater Flow Velocity (V) (feet/day)	Calculated Groundwater Flow Velocity (V) (feet/year)
August 10, 2024	ARGWA-20 to ARGWC-21	314.42	294.75	19.67	792	0.025	0.74	0.20	0.092	34
August 19, 2024	ARGWA-19 to ARAMW-1	313.99	294.75	19.24	907	0.021	0.77	0.20	0.082	30

Notes:

- 1. Effective porosity of 20% was selected for the silty sands/sandy silts overburden based on a review of several sources, including Driscoll, 1986; US EPA, 1989; Freeze and Cherry, 1979.
- 2. Hydraulic conductivity (K) for the ARGWA-20 to ARGWC-21 well pair is the geometric mean value determined via slug testing three overburden wells in the AP-2 groundwater monitoring system
- 3. Hydraulic conductivity (K) for the ARGWA-19 to ARAMW-1 well pair is the geometric mean value determined via slug testing three bedrock wells in the AP-2 groundwater monitoring system

ANALYTICAL DATA SUMMARY - GROUNDWATER, AUGUST/DECEMBER 2024

Georgia Power Company - Plant Arkwright
Ash Pond 2 Dry Ash Stockpile
Macon, GA

Samp	ole Location	ARGWA-19	ARGWA-20	ARGWC-21	ARGWC-22	ARGWC-23	ARAMW-1	ARAMW-2	ARAMW-7	ARAMW-8	ARAMW-9	ARAMW-10	ARAMW-11
S	Sample Date	08/20/2024	08/20/2024	08/20/2024	08/20/2024	08/20/2024	08/20/2024	08/20/2024	08/20/2024	08/20/2024	08/20/2024	12/12/2024	12/12/2024
ANALYTE	UNITS												
APPENDIX III													
Boron	mg/L	0.0236	0.0537	1.13	3.09	0.434	1.49	1.28	2.44	0.675	0.0490	2.84	2.30
Calcium	mg/L	8.29	10.6	78.0	194	79.6	85.4	85.2	284	79.2	160	363	296
Chloride	mg/L	4.89	7.63	3.18	7.25	3.68	3.27	3.24	5.13	4.54	35.2	6.02	5.22
Fluoride	mg/L	0.0679 J	0.0488 J	0.124	0.0660 J	0.365	0.169	0.123	0.118 J	0.199	0.889	0.114	< 0.0670
pH, Field	SU	5.93	5.83	6.2	5.76	6.34	6.13	6.08	5.62	6.47	7.95	5.84	5.46
Sulfate	mg/L	7.07	16.4	219	674	80.1	211	232	1010	109	416	1080	960
TDS	mg/L	91.0	113	520	1180	328	538	564	1590	422	670	1790	1540
APPENDIX IV													
Antimony	mg/L	< 0.00100	< 0.00100	< 0.00100	< 0.00100	< 0.00100	< 0.00100	< 0.00100	< 0.00100	< 0.00100	< 0.00100	< 0.00100	< 0.00100
Arsenic	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200	< 0.00200	< 0.00200	0.00392 J	< 0.00200	< 0.00200	< 0.00200	0.00360 J	0.00314 J
Barium	mg/L	0.0293	0.0863	0.0431	0.0223	0.105	0.0389	0.0560	0.0277	0.112	0.0105	0.0550	0.0252
Beryllium	mg/L	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200	0.000318 J	< 0.000200	< 0.000200	0.000204 J	< 0.000200
Cadmium	mg/L	< 0.000300	< 0.000300	< 0.000300	< 0.000300	< 0.000300	< 0.000300	< 0.000300	< 0.000300	< 0.000300	< 0.000300	0.000327 J	< 0.000300
Chromium	mg/L	< 0.00300	0.00598 J	< 0.00300	< 0.00300	< 0.00300	< 0.00300	< 0.00300	< 0.00300	< 0.00300	< 0.00300	< 0.00300	< 0.00300
Cobalt	mg/L	< 0.000300	< 0.000300	0.000769 J	0.00279	0.000484 J	< 0.000300	0.00166	0.0702	0.00277	< 0.000300	0.0186	0.0394
Lead	mg/L	< 0.000500	< 0.000500	< 0.000500	< 0.000500	< 0.000500	< 0.000500	< 0.000500	< 0.000500	< 0.000500	< 0.000500	< 0.000500	< 0.000500
Lithium	mg/L	0.00376 J	< 0.00300	0.0119	0.0200	0.0469	0.00934 J	0.0145	0.0585	0.00586 J	0.00958 J	0.0631	0.0471
Mercury	mg/L	< 0.0000670	< 0.0000670	< 0.0000670	< 0.0000670	< 0.0000670	< 0.0000670	< 0.0000670	< 0.0000670	< 0.0000670	< 0.0000670	< 0.0000670	< 0.0000670
Molybdenum	mg/L	0.000375 J	< 0.000200	< 0.000200	0.000406 J	0.0740	0.00873	0.000585 J	0.000257 J	0.195	0.00237	0.00148	0.000630 J
Combined Radium 226 + 228	pCi/L	2.65	0.969 U	1.02 U	1.04 U	2.10	2.47	2.98	3.47	0.801 U	2.80	8.18	2.91
Selenium	mg/L	< 0.00150	< 0.00150	< 0.00150	< 0.00150	< 0.00150	< 0.00150	< 0.00150	< 0.00150	< 0.00150	< 0.00150	< 0.00150	< 0.00150
Thallium	mg/L	< 0.000600	< 0.000600	< 0.000600	< 0.000600	< 0.000600	< 0.000600	< 0.000600	< 0.000600	< 0.000600	< 0.000600	< 0.000600	< 0.000600
APPENDIX I													
Silver	mg/L	< 0.000300	< 0.000300	< 0.000300	< 0.000300	< 0.000300	< 0.000300	< 0.000300	< 0.000300	< 0.000300	< 0.000300	< 0.000300	< 0.000300
Additional Parameters													_
Bicarbonate Alkalinity as CaCO3	mg/L	37.5	41.2	160	136	185	178	158	58.6	251	91.9	113	48.4
Carbonate Alkalinity as CaCO3	mg/L	< 0.725	< 0.725	< 0.725	< 0.725	< 0.725	< 0.725	< 0.725	< 0.725	< 0.725	< 0.725	< 0.725	< 0.725
Total Alkalinity as CaCO3	mg/L	37.5	41.2	160	136	185	178	158	58.6	251	91.9	113	48.4
Aluminum	mg/L	< 0.0193	0.0748	< 0.0193	0.0230 J	< 0.0193	< 0.0193	< 0.0193	0.0935	0.0279 J	0.0744	0.0460 J	0.0857
Iron	mg/L	< 0.0330	0.110	0.579	6.00	< 0.0330	0.0976 J	2.62	4.83	0.244	0.653	0.966	0.285
Iron, Dissolved	mg/L	< 0.0330	< 0.0330	0.483	6.31	< 0.0330	0.0961 J	1.83	4.98	< 0.0330	0.428	0.973	0.191
Magnesium	mg/L	3.52	5.83	39.4	80.2	14.7	39.2	36.2	79.7	33.7	11.1	80.5	86.9
Manganese	mg/L	< 0.00100	0.00343 J	0.322	17.2	0.281	0.133	0.475	13.7	0.187	0.140	22.0	16.2
Manganese, Dissolved	mg/L	< 0.00100	0.00164 J	0.307	18.0	0.239	0.131	0.348	14.9	0.187	0.136	22.6	15.6
Nitrate Nitrite	mg/L	1.74	0.835	< 0.00700	0.122	0.975	< 0.00700	0.0150 J	< 0.00700	2.98	< 0.00700	< 0.00700	< 0.00700
Potassium	mg/L	2.03	1.51	6.12	4.45	2.08	5.38	6.25	9.23	6.91	6.00	8.49	7.21
Sodium	mg/L	9.61	11.5	20.2	26.6	16.1	20.0	19.0	27.6	17.7	75.0	39.0	29.5

mg/L - milligrams per liter pCi/L - picocuries per liter

SU - Standard Units

NA - Indicates not analyzed

Radium data are a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurement.

2024 Semi-Annual Groundwater and Corrective Action Report

J - The result is an estimated concentration. "J" qualifiers are applied by the laboratory when the concentration reported is above the method detection limit, but below the laboratory reporting limit.

H - Sample analysis performed beyond the recognized method holding time.

ANALYTICAL DATA SUMMARY - SURFACE WATER, AUGUST 2024

Georgia Power Company - Plant Arkwright Ash Pond 2 Dry Ash Stockpile Macon, GA

Sample	Location	BC-0.8a	BC-0.5.7	BC-0.5.6	BC-0.5.5	BC-BR
Sa	mple Date	08/12/2024	08/12/2024	08/12/2024	08/12/2024	08/12/2024
ANALYTE	UNITS					
APPENDIX III						
Boron	mg/L	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040
Calcium	mg/L	10.8	11.7	12.3	12.2	11.4
Chloride	mg/L	7.6	7.5	7.6	7.6	7.6
luoride	mg/L	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
oH, Field	SU	7.35	7.51	7.43	7.45	7.55
Sulfate	mg/L	3.8	8.7	7.6	7.6	7.5
rds .	mg/L	106	127	141	113	130
APPENDIX IV						
Cobalt	mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
_ithium	mg/L	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030
Molybdenum	mg/L	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Additional Parameters						
Alkalinity Total as CaCO3	mg/L	55.9	58.1	57.2	56.3	56.9
Bicarbonate Alkalinity as CaCO3	mg/L	55.9	58.1	57.2	56.3	56.9
Magnesium	mg/L	4.8	5.0	5.2	5.2	4.9
Potassium	mg/L	2.4	2.3	2.5	2.4	2.3
Sodium	mg/L	8.8	8.5	8.9	9.0	8.4

Notes:

mg/L - milligrams per liter

pCi/L - picocuries per liter

SU - Standard Units

NA - Indicates not analyzed

< indicates the substance was not detected above the reporting limit (RL). The value displayed is the RL.

- J The result is an estimated concentration. "J" qualifiers are applied by the laboratory when the concentration reported is above the method detection limit, but below the laboratory reporting limit.
- H Sample analysis performed beyond the recognized method holding time.

Radium data are a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurement.

SUMMARY OF GROUNDWATER PROTECTION STANDARDS

Georgia Power Company - Plant Arkwright Ash Pond 2 Dry Ash Stockpile Macon, Georgia

PLANT ARKWRIGHT AP-2 DAS GWPS									
Constituent Name	UNITS	MCL	CCR-Rule Specified ^[1]	Site Specific Background Limit ^[2] August 2024	State GWPS August 2024				
Antimony	mg/L	0.006		0.003	0.006				
Arsenic	mg/L	0.01		0.005	0.01				
Barium	mg/L	2		0.11	2				
Beryllium	mg/L	0.004		0.0005	0.004				
Cadmium	mg/L	0.005		0.001	0.005				
Chromium	mg/L	0.1		0.01	0.1				
Cobalt	mg/L	n/a	0.006	0.001	0.006				
Combined Radium	pCi/L	5		2.65	5				
Fluoride	mg/L	4		0.15	4				
Lead	mg/L	n/a	0.015	0.002	0.015				
Lithium	mg/L	n/a	0.04	0.013	0.04				
Mercury	mg/L	0.002		0.0002	0.002				
Molybdenum	mg/L	n/a	0.1	0.001	0.1				
Selenium	mg/L	0.05		0.005	0.05				
Silver	mg/L	n/a		0.001	0.001				
Thallium	mg/L	0.002		0.002	0.002				

Notes:

mg/L - milligrams per liter

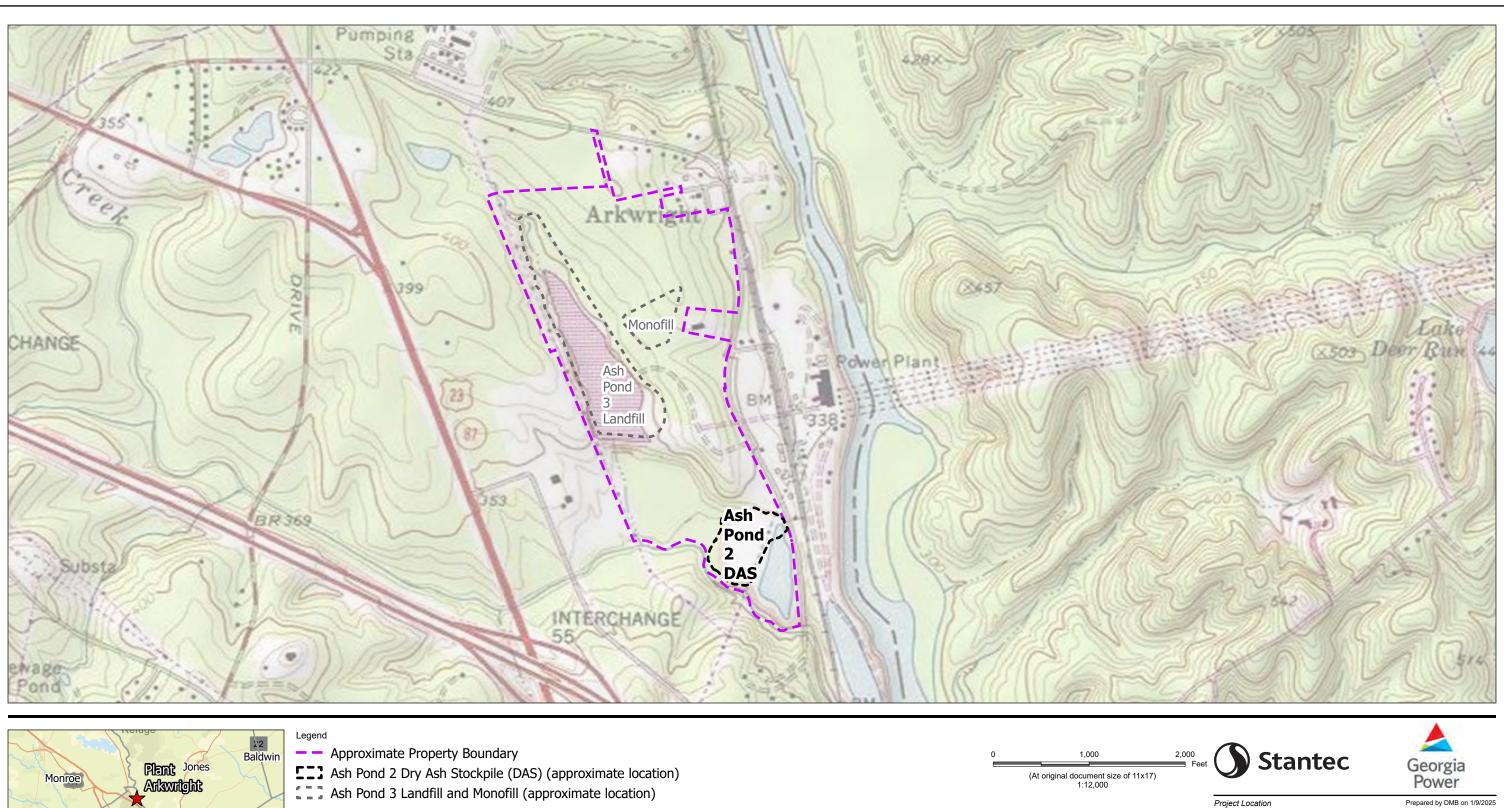
piC/L - picoCuries per liter

n/a - constituent does not have an established MCL

MCL - Maximum Contaminant Level

GWPS - Groundwater Protection Standard

CCR - Coal Combustion Residuals


GA EPD = Georgia Environmental Protection Division

AP-2 DAS = Ash Pond 2 Dry Ash Stockpile

[1] GA EPD incorporated the US EPA GWPS into the current GA EPD Rules for Solid Waste Management 391-3-4-.10(6)(a) on February 22, 2022.

[2] The background limits are evaluated when determining the GWPS under 40 CFR § 257.95(h) and 391-3-4-.10(6)(a).

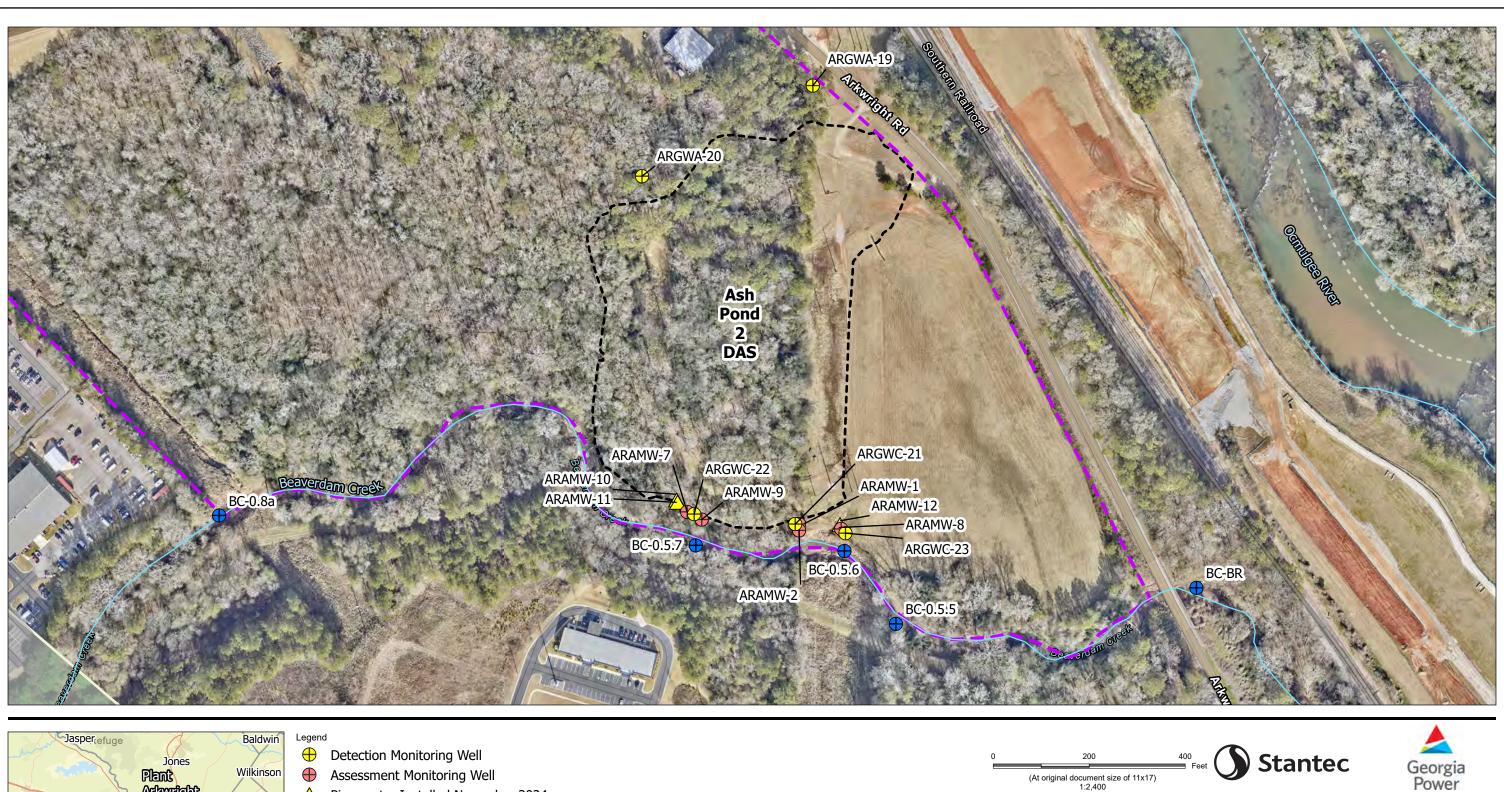
FIGURES

Notes

1. Coordinate System: NAD 1983 StatePlane Georgia West FIPS 1002 Feet

2. Data Sources: Tax Parcel and AP-2 Landfill Boundary provided by Southern Company Services and Wood Environment & Infrastructure Solutions

3. Background: Copyright:© 2013 National Geographic Society, I-cubed, Esri, TomTom, Garmin, SafeGraph, FAO, METI/NASA, USGS, EPA, NPS, USFWS


Macon, Georgia

Prepared by DMB on 1/9/2025 TR by CS on 1/9/2025 IR by JK on 1/9/2025

Client/Project

Georgia Power 2024 Semi-Annual Groundwater Monitoring and Corrective Action Report - Plant Arkwright Ash Pond 2 Dry Ash Stockpile

Site Location Map

Notes
1. Coordinate System: NAD 1983 StatePlane Georgia West FIPS 1002 Feet
2. Data Sources: Ash Pond Boundaries, Surface Water Samples, Monitoring Wells, Piezometers, Property Boundary, and Beaverdam Creek locations provided by Southern Company Services and Wood Environment & Infrastructure Solutions
3. Background: Source: Esri, Maxar, Earthstar Geographics, and the GIS User Community, Esri, TomTom, Garmin, SafeGraph, FAO, METINASA, USGS, EPA, NPS, USFWS, Esri Community Maps Contributors, © OpenStreetMap, Microsoft, Esri, TomTom, Garmin, SafeGraph, GeoTechnologies, Inc., METINASA, USGS, EPA, NPS, US Census Bureau, USDA, USGN, MEDISTRUCTURED, STATEM ST

Piezometer Installed November 2024

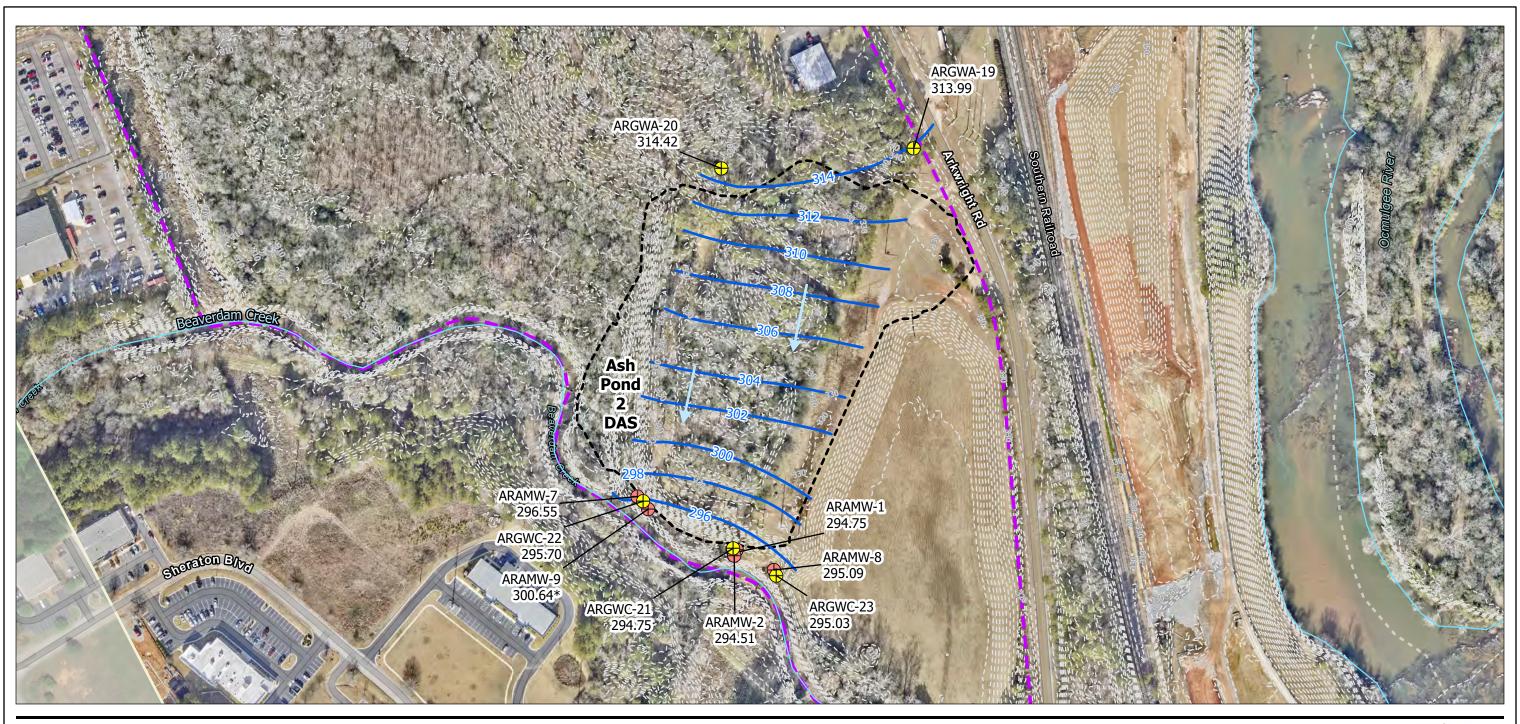
Surface Water Sampling Location

Beaverdam Creek/Ocmulgee River (Approximate)

Approximate Property Boundary

___ Ash Pond 2 Dry Ash Stockpile (DAS) (approximate location)

Limit of Client Imagery (dated 1/22/2024)


Piezometers ARAMW-10, ARAMW-11 and ARAMW-12 were installed in November 2024.

Project Location

Prepared by DMB on 2/10/2025 TR by CS on 2/10/2025 IR by JK on 2/10/2025

Georgia Power 2024 Semi-Annual Groundwater Monitoring and Corrective Action Report - Plant Arkwright Ash Pond 2 Dry Ash Stockpile

Detection Monitoring Network Well, Assessment Monitoring Well, Piezometer, and **Sampling Locations Map**

Notes

1. Coordinate System: NAD 1983 StatePlane Georgia West FIPS 1002 Feet

2. Data Sources: Ash Pond Boundaries, Monitoring Wells, Property Boundary, Topography, and Beaverdam Creek provided by Southern Company Services and Wood Environment & Infrastructure Solutions; Contours, Flow Arrow, and Ocmulgee River provided by Stantec

3. Background: Source: Esri, Maxar, Earthstar Geographics, and the GIS User Community, Esri, Tom Tom, Garmin, SafeGraph, FAO, METI/NASA, USGS, EPA, NPS, USFWS, Esri Community Maps Contributors, © OpenStreetMap, Microsoft, Esri, TomTom, Garmin, SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau, LISEWS, Plant imagery provided by client and is dated 1/22/2024.

Detection Monitoring Well

Assessment Monitoring Well

Interpreted Groundwater Flow Direction

Potentiometric Surface Contour (feet (ft) NAVD88) Beaverdam Creek/Ocmulgee River (Approximate)

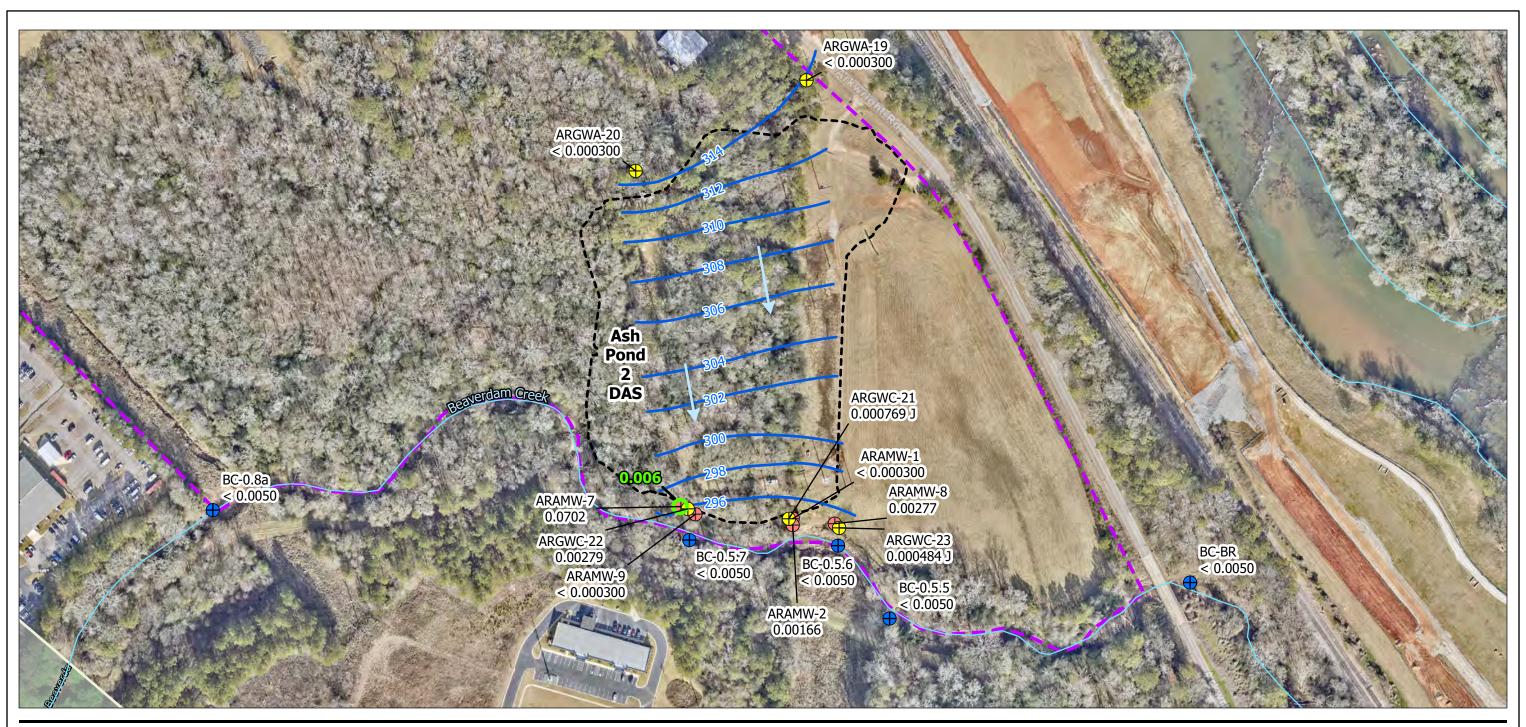
Topographic Contour 2024 (2 ft interval)


Approximate Property Boundary

L Ash Pond 2 Dry Ash Stockpile (DAS) (approximate location)

Limit of Client Imagery (dated 1/22/2024)

294.75 Groundwater Elevation (ft NAVD88) An "*" indicates groundwater elevation for ARAMW-9 was not used in contouring. NAVD88 - North American Vertical Datum of 1988


Georgia Power

Project Location

Prepared by DMB on 2/10/2025 TR by CS on 2/10/2025 IR by JK on 2/10/2025

Georgia Power
2024 Semi-Annual Groundwater Monitoring and Corrective Action
Report - Plant Arkwright Ash Pond 2 Dry Ash Stockpile

Potentiometric Surface Contour Map Ash Pond 2 DAS - August 19, 2024

Notes

1. Coordinate System: NAD 1983 StatePlane Georgia West FIPS 1002 Feet
2. Data Sources: Ash Pond Boundaries, Monitoring Wells, Property Boundary, Topography, and Beaverdam Creek provided by Southern Company Services and Wood Environment & Infrastructure Solutions: Contours, Filow Arrow, and Ocmulgee River provided by Stantec
3. Background: Source: Esri, Maxar, Earthstar Geographics, and the GIS User Community, Esri, TomTom, Garmin, SafeGraph, FAO, METUNASA, USGS, EPA, NPS, USFWS, Esri Community Maps Contributors, © OpenStreetMap, Microsoft, Esri, TomTom, Garmin, SafeGraph, Geofechnologies, Inc, METUNASA, USGS, EPA, NPS, US Census Bureau, ISPA I ISFWS Plant Imagenz provided by client and is dated 1722/2024.

Legend

Detection Monitoring Well

Assessment Monitoring Well

Surface Water Sampling Location

Cobalt Concentration Contour Aug 2024 (mg/L)

Potentiometric Surface Contour (feet (ft) NAVD88)

Interpreted Groundwater Flow DirectionBeaverdam Creek/Ocmulgee River (Approximate)

Approximate Property Boundary

Ash Pond 2 Dry Ash Stockpile (DAS) (approximate location)

Limit of Client Imagery (dated 1/22/2024)

0.0702 Cobalt Concentration milligrams per Liter (mg/L)

Isoconcentration Notes:

Cobalt concentration data from groundwater and surface water samples collected during the August 2024 monitoring event.

J indicates the constituent was detected between the analytical method detection limit and the laboratory reporting limit. The value followed by J is qualified by the laboratory as estimated.

GWPS - Groundwater Protection Standard

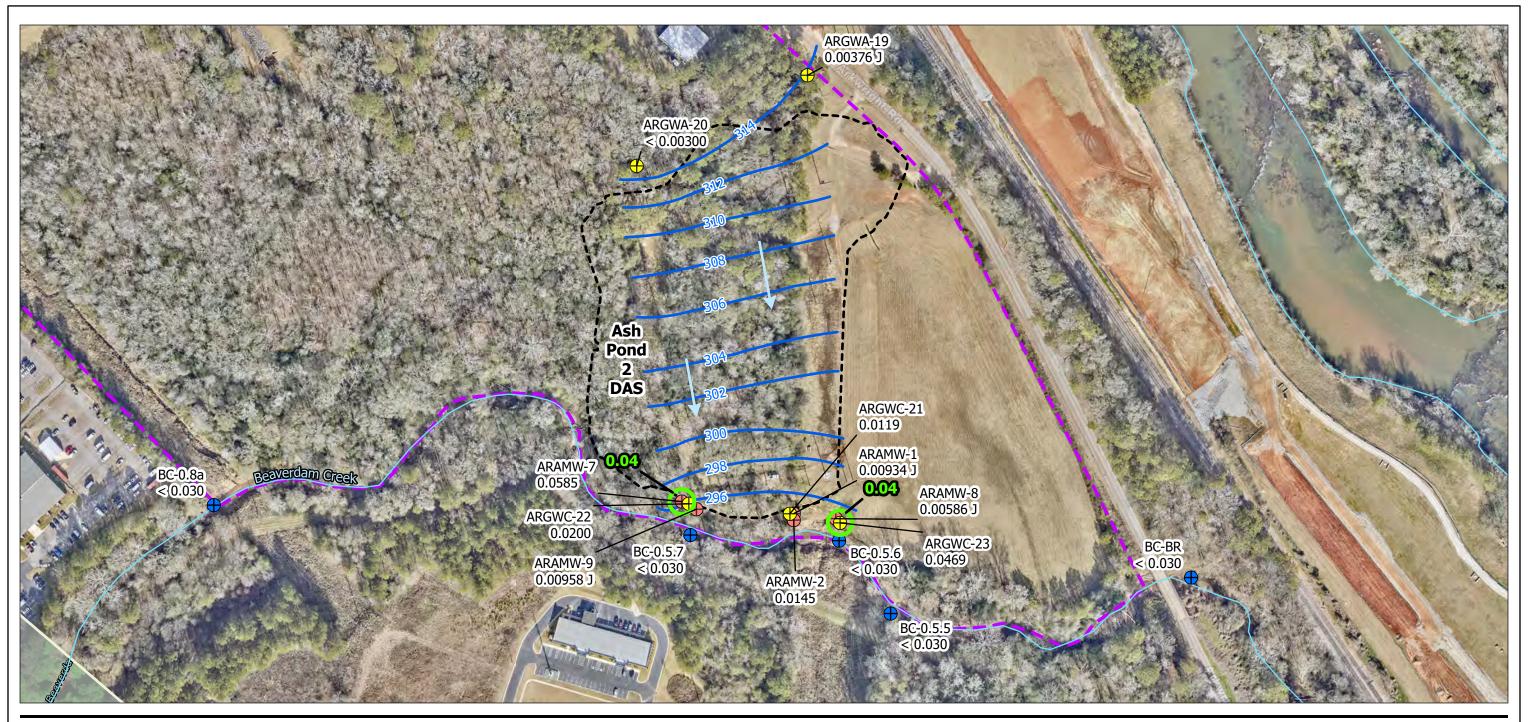
mg/L - milligrams per liter

ſ	Analyte	Units	GWPS
	Cobalt	mg/L	0.006

Project Location

Macon, Georgia

Prepared by DMB on 2/10/2025 TR by RM on 2/10/2025 IR by JK on 2/10/2025


Client/Project Georgia Power

2024 Semi-Annual Groundwater Monitoring and Corrective Action Report - Plant Arkwright Ash Pond 2 Dry Ash Stockpile

igure No.

4 itle

Isoconcentration Map for Cobalt AP-2 DAS – August 2024

Notes

1. Coordinate System: NAD 1983 StatePlane Georgia West FIPS 1002 Feet

2. Data Sources: Ash Pond Boundaries, Monitoring Wells, Property Boundary, Topography, and Beaverdam Creek provided by Southern Company Services and Wood Environment & Infrastructure Solutions; Contours, Flow Arrow, and Comulgee River provided by Statec

3. Background: Source: Esri, Maxar, Earthstar Geographics, and the GIS User Community, Esri, TomTom, Garmin, SafeGraph, FAO, METINASA, USGS, EPA, NPS, USFWS, Esri Community Maps Contributors, © OpenStreetMap, Microsoft, Esri, TomTom, Garmin, SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau, USBA LISBA LISBA Seatons of the Community May of

Legend

Detection Monitoring Well

Assessment Monitoring Well

Surface Water Sampling Location

Lithium Concentration Contour Aug 2024 (mg/L)

Potentiometric Surface Contour (feet (ft) NAVD88)

Interpreted Groundwater Flow Direction

Beaverdam Creek/Ocmulgee River (Approximate)

0.00934 (J) Lithium Concentration milligrams per Liter (mg/L)

Approximate Property Boundary

Ash Pond 2 Dry Ash Stockpile (DAS) (approximate location)

Limit of Client Imagery (dated 1/22/2024)

Isoconcentration Notes:

Lithium concentration data from groundwater and surface water samples collected during the August 2024 monitoring event.

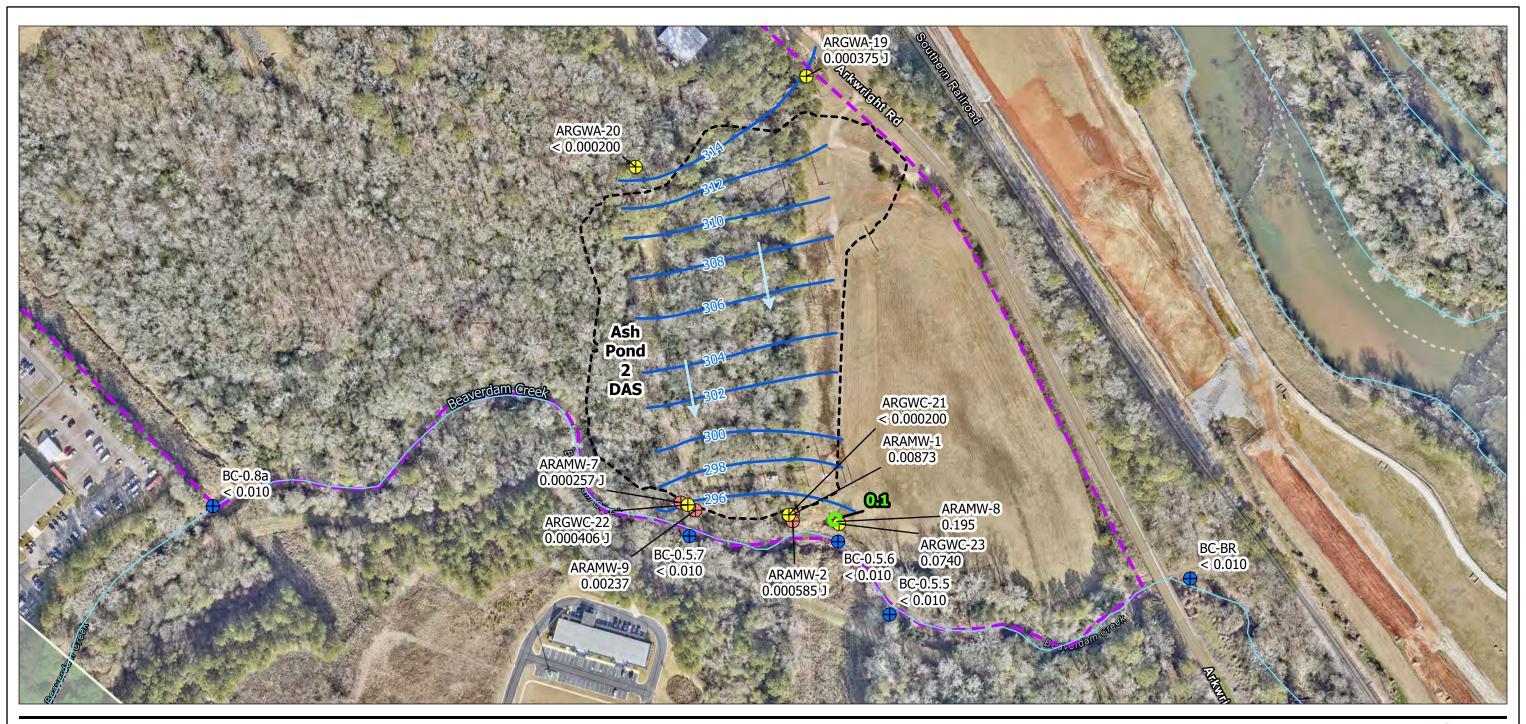
J indicates the constituent was detected between the analytical method detection limit and the laboratory reporting limit. The value followed by J is qualified by the laboratory as estimated.

GWPS - Groundwater Protection Standard

mg/L - milligrams per liter

Analyte	Units	GWPS
Lithium	mg/L	0.04

Georgia Power


Project Location Macon, Georgia

Prepared by DMB on 2/10/2025 TR by RM on 2/10/2025 IR by JK on 2/10/2025

Georgia Power

2024 Semi-Annual Groundwater Monitoring and Corrective Action Report - Plant Arkwright Ash Pond 2 Dry Ash Stockpile

Isoconcentration Map for Lithium AP-2 DAS – August 2024

Notes

1. Coordinate System: NAD 1983 StatePlane Georgia West FIPS 1002 Feet

2. Data Sources: Ash Pond Boundaries, Monitoring Wells, Property Boundary, Topography, and Beaverdam Creek provided by Southern Company Services and Wood Environment & Infrastructure Solutions; Contours, Flow Arrow, and Comulgee River provided by Statec

3. Background: Source: Esri, Maxar, Earthstar Geographics, and the GIS User Community, Esri, TomTom, Garmin, SafeGraph, FAO, METINASA, USGS, EPA, NPS, USFWS, Esri Community Maps Contributors, © OpenStreetMap, Microsoft, Esri, TomTom, Garmin, SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau, USBA LISBA LISBA Seatons of the Community May of

Legend Detection Monitoring Well

Assessment Monitoring Well

Surface Water Sampling Location

Molybdemum Concentration Contour Aug 2024 (mg/L)

Potentiometric Surface Contour (feet (ft) NAVD88)

Interpreted Groundwater Flow DirectionBeaverdam Creek/Ocmulgee River (Approximate)

Approximate Property Boundary

Ash Pond 2 Dry Ash Stockpile (DAS) (approximate location)

Limit of Client Imagery (dated 1/22/2024)

0.00873 (J) Molybdenum Concentration milligrams per Liter (mg/L)

Isoconcentration Notes:

Molybdenum concentration data from groundwater and surface water samples collected during the August 2024 monitoring event.

J indicates the constituent was detected between the analytical method detection limit and the laboratory reporting limit. The value followed by J is qualified by the laboratory as estimated.

GWPS - Groundwater Protection Standard

mg/L - milligrams per liter

Analyte	Units	GWPS
Molybdenum	mg/L	0.1

tec Georgia Power

Project Location
Macon, Georgia

Prepared by DMB on 2/10/2025 TR by RM on 2/10/2025 IR by JK on 2/10/2025

Client/Project Georgia Power

2024 Semi-Annual Groundwater Monitoring and Corrective Action Report - Plant Arkwright Ash Pond 2 Dry Ash Stockpile

igure No.

6

Isoconcentration Map for Molybdenum AP-2 DAS – August 2024

Appendix A Well Inspections and Maintenance Records

		Locati	on/Identification				Protective Casing		
		Properly identified with correct well ID	require protection from	Acceptable drainage around well (no standing water, not located in obvious drainage flow path)	damage and able to be	No degradation or deterioration	Functioning weep hole	Annular space clear of debris and water, or filled with pea gravel/sand	Locked and is the lock in good condition
Well ID:									
AP-2									
ARGWA-19	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes
ARGWA-20	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes
ARGWC-21	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes
ARGWC-22	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes
ARGWC-23	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes
ARAMW-1	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes
ARAMW-2	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes
ARAMW-7	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes
ARAMW-8	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes
ARAMW-9	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes

Completed by ZL/JB 8/19/24 Checked by AS 8/22/24

		Surface Pad			Internal Casing		
Well ID:	Good condition (not cracked/ broken)	Sloped away from the protective casing	with the ground surface	Cap prevents entry of		Properly vented for equilibration of air pressure	Corrective actions as needed, by date:
AP-2							
ARGWA-19	Yes	Yes	Yes	Yes	Yes	Yes	NA
ARGWA-20	Yes	Yes	Yes	Yes	Yes	Yes	NA
ARGWC-21	Yes	Yes	Yes	Yes	Yes	Yes	NA
ARGWC-22	Yes	Yes	Yes	Yes	Yes	Yes	NA
ARGWC-23	Yes	Yes	Yes	Yes	Yes	Yes	NA
ARAMW-1	Yes	Yes	Yes	Yes	Yes	Yes	NA
ARAMW-2	Yes	Yes	Yes	Yes	Yes	Yes	NA
ARAMW-7	Yes	Yes	Yes	Yes	Yes	Yes	NA
ARAMW-8	Yes	Yes	Yes	Yes	Yes	Yes	NA
ARAMW-9	Yes	Yes	Yes	Yes	Yes	Yes	NA

MEMORANDUM

Date: January 31, 2025

To: Joju Abraham – Southern Company Services

CC: Ben Hodges – Georgia Power Company

From: Stantec Consulting Services Inc.

Subject: Plant Arkwright Ash Pond 2 Dry Ash Stockpile (DAS)

Well Maintenance and Repair Documentation

Georgia Power Company

Stantec Consulting Services Inc. (Stantec) has prepared this memorandum to provide documentation of groundwater monitoring well maintenance and/or repair performed at Plant Arkwright during the semi-annual reporting period. All repairs and maintenance were completed in accordance with the Georgia Environmental Protection Division (GAEPD) guidance on routine visual inspections of groundwater monitoring wells.

Georgia Power Site/Unit	Date Performed	Well ID	Maintenance/ Repair Performed
AP-2 DAS	11/20/2024	ARAMW-1	Damaged well pad was replaced
AP-2 DAS	11/20/2024	ARAMW-2	Damaged well pad was replaced
AP-2 DAS	11/21/2024	ARAMW-7	Damaged well pad was replaced, stick-up well was converted to flush-mount completion
AP-2 DAS	11/21/2024	ARAMW-9	Damaged well pad was replaced, stick-up well was converted to flush-mount completion
AP-2 DAS	11/20/2024	ARGWC-21	Damaged well pad was replaced, bent portion of PVC well riser above grade was replaced and new stick-up protective cover was installed
AP-2 DAS	11/21/2024	ARGWC-22	Damaged well pad was replaced, stick-up well was converted to flush-mount completion

Maintenance and repairs are also documented in the 2024 Semi-Annual Groundwater Monitoring Report.

Appendix B Field Sampling Data and Analytical Data Reports

B.1 Well Redevelopment Logs

Test Date / Time: 8/14/2024 8:49:39 AM **Project:** Arkwright AP-2 development

Operator Name: Zach Levy

Location Name: Arkwright, AP-2,

ARAMW-1

Latitude: 32.91276931000096 Longitude: -83.69873045999931

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 37.4 ft Total Depth: 47.4 ft

Initial Depth to Water: 13.74 ft

Pump Type: Reclaimer pump

Tubing Type: LDPE

Pump Intake From TOC: 45.28 ft Estimated Total Volume Pumped:

84087.5 ml

Flow Cell Volume: 90 ml Final Flow Rate: 450 ml/min Final Draw Down: 0.75 ft Instrument Used: Aqua TROLL 400

Serial Number: 968202

Test Notes:

Redevelopment by over-pumping. Pump was placed at the bottom of the screen then pump was moved to top of screen, followed by the screen mid point.and pumped until stability was achieved.5 buckets pumped plus 2 gallons

Weather Conditions:

Cloudy

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 10 %	+/- 10 %	+/- 10	+/- 0.33	
8/14/2024 8:49 AM	00:00	6.14 pH	22.30 °C	643.39 μS/cm	1.77 mg/L	8.79 NTU	116.2 mV	14.55 ft	750.00 ml/min
8/14/2024 8:59 AM	10:00	6.12 pH	19.94 °C	732.02 µS/cm	1.03 mg/L	5.55 NTU	97.0 mV	14.45 ft	750.00 ml/min
8/14/2024 9:09 AM	20:00	6.12 pH	19.81 °C	735.36 µS/cm	0.93 mg/L	13.50 NTU	98.3 mV	14.75 ft	750.00 ml/min
8/14/2024 9:19 AM	30:00	6.11 pH	19.98 °C	736.00 µS/cm	0.94 mg/L	16.60 NTU	97.4 mV	14.45 ft	750.00 ml/min
8/14/2024 9:24 AM	35:07	6.12 pH	20.05 °C	726.08 µS/cm	1.03 mg/L	16.90 NTU	115.4 mV	14.60 ft	750.00 ml/min
8/14/2024 9:29 AM	40:07	6.12 pH	19.98 °C	726.79 µS/cm	1.03 mg/L	15.80 NTU	99.0 mV	14.45 ft	750.00 ml/min
8/14/2024 9:34 AM	45:07	6.12 pH	19.89 °C	734.09 µS/cm	1.01 mg/L	13.10 NTU	117.4 mV	14.54 ft	750.00 ml/min
8/14/2024 9:39 AM	50:07	6.12 pH	19.80 °C	733.65 µS/cm	0.91 mg/L	12.20 NTU	99.6 mV	14.42 ft	750.00 ml/min
8/14/2024 9:44 AM	55:07	6.12 pH	19.87 °C	735.25 µS/cm	0.91 mg/L	11.30 NTU	99.0 mV	14.35 ft	750.00 ml/min
8/14/2024 9:49 AM	01:00:07	6.12 pH	19.89 °C	735.13 µS/cm	0.98 mg/L	11.10 NTU	117.9 mV	14.55 ft	750.00 ml/min
8/14/2024 9:54 AM	01:05:07	6.12 pH	19.71 °C	732.65 µS/cm	0.95 mg/L	11.60 NTU	99.9 mV	14.43 ft	750.00 ml/min
8/14/2024 9:59 AM	01:10:07	6.11 pH	20.20 °C	733.26 µS/cm	0.90 mg/L	12.00 NTU	99.6 mV	14.56 ft	450.00 ml/min

8/14/2024	01:15:07	6 10 nH	20.21 °C	722 44 uC/om	0.61 ma/l	10.90 NTU	119.7 mV	14.61 ft	450.00 ml/min	
10:04 AM	01:15:07	6.10 pH	20.21 °C	733.14 µS/cm	0.61 mg/L	10.90 NTO	119.7 mV	14.61 π	450.00 mi/min	
8/14/2024	01:20:07	6.10 pH	20.23 °C	731.18 µS/cm	0.70 mg/L	10.70 NTU	100.8 mV	14.47 ft	450.00 ml/min	
10:09 AM	01.20.07	0.10 pm	20.23 0	731.10 до/сп	0.70 mg/L	10.70 1410	100.01111	14.47 10	450.00 111/111111	
8/14/2024	01:25:07	6.10 pH	20.03 °C	732.65 µS/cm	0.67 mg/L	7.76 NTU	100.8 mV	14.51 ft	450.00 ml/min	
10:14 AM		,		p						
8/14/2024	01:30:07	6.10 pH	20.03 °C	730.61 µS/cm	0.63 mg/L	3.60 NTU	100.6 mV	14.46 ft	450.00 ml/min	
10:19 AM		-		·						
8/14/2024	01:35:07	6.09 pH	20.15 °C	730.25 µS/cm	0.59 mg/L	2.35 NTU	100.3 mV	14.52 ft	450.00 ml/min	
10:24 AM 8/14/2024										
10:29 AM	01:40:07	6.08 pH	20.34 °C	733.53 µS/cm	0.72 mg/L	1.61 NTU	100.9 mV	14.40 ft	450.00 ml/min	
8/14/2024										
10:34 AM	01:45:07	01:45:07	6.08 pH	20.40 °C	730.08 µS/cm	0.73 mg/L	2.53 NTU	124.4 mV	14.55 ft	450.00 ml/min
8/14/2024	04.50.07	0.00 11	00.50.00	700.04.04	0.70 "	0.74 N.T.	100.0 1/	4.4.40.6	450.00 1/ :	
10:39 AM	01:50:07	6.09 pH	20.53 °C	729.24 µS/cm	0.78 mg/L	3.71 NTU	103.8 mV	14.48 ft	450.00 ml/min	
8/14/2024	01:55:07	6.08 pH	20.66 °C	729.79 µS/cm	0.69 mg/L	4.79 NTU	104.3 mV	14.39 ft	450.00 ml/min	
10:44 AM	01.55.07	6.06 рп	20.66 C	729.79 μ3/cm	0.69 mg/L	4.79 NTO	104.5 1117	14.59 11	450.00 111/111111	
8/14/2024	02:00:07	6.09 pH	20.51 °C	729.44 µS/cm	0.66 mg/L	4.70 NTU	104.3 mV	14.45 ft	450.00 ml/min	
10:49 AM	02.00.07	0.00 pi i	20.01	720.11 μο/οιιι	0.00 mg/L		101.0111	o	100.00 1111/11111	
8/14/2024	02:05:07	6.08 pH	20.61 °C	730.39 µS/cm	0.69 mg/L	4.84 NTU	104.4 mV	14.52 ft	450.00 ml/min	
10:54 AM		1					-			
8/14/2024	02:10:07	6.07 pH	20.41 °C	728.65 µS/cm	0.70 mg/L	4.51 NTU	126.5 mV	14.55 ft	450.00 ml/min	
10:59 AM	02.10101	•		,						
8/14/2024	02:15:07	6.07 pH	20.38 °C	730.04 µS/cm	0.71 mg/L	4.50 NTU	105.5 mV	14.49 ft	450.00 ml/min	
11:04 AM		•		·						
8/14/2024	02:20:07	6.06 pH	20.51 °C	732.08 µS/cm	0.70 mg/L	4.49 NTU	105.3 mV	14.49 ft	450.00 ml/min	
11:09 AM										

Sample ID:	Description:

Test Date / Time: 8/13/2024 2:50:05 PM

Project: Arkwright AP-2

Operator Name: Dylan Quintal

Location Name: Arkwright, AP-2,

ARAMW-2

Latitude: 32.921468802958174 Longitude: -83.7021274807793

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 15.2 ft Total Depth: 25.2 ft

Initial Depth to Water: 13.81 ft

Pump Type: Reclaimer Pump

Tubing Type: LDPE

Pump Intake From TOC: 24.8 ft Estimated Total Volume Pumped:

71300 ml

Flow Cell Volume: 90 ml Final Flow Rate: 380 ml/min Final Draw Down: 0.18 ft Instrument Used: Aqua TROLL 400

Serial Number: 965586

Test Notes:

Low-Flow Test Report 1/2. Redevelopment by over-pumping. lowered pump to bottom of screen and pumped at 1000 mL per minute. Brought to the top of the screen and then slowly lowered. Finished in the middle of the screen and lowered purge rate.

Weather Conditions:

Sunny, 92F

.OW-1 10W 10										
Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow	
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 10 %	+/- 10 %	+/- 10	+/- 0.3		
		17- 0.1	17- 0.5	17- 3-70	17- 10 70	17- 10 70	17- 10	17- 0.5		
8/13/2024	00:00	6.04 pH	21.01 °C	839.79 µS/cm	0.33 mg/L	26.10 NTU	-55.1 mV	13.99 ft	1,000.00	
2:50 PM		·		-	-				ml/min	
8/13/2024	05:00	05:00 6.05 pH	20.48 °C	872.91 μS/cm	0.42 mg/L	21.00 NTU	-78.6 mV	13.99 ft	1,000.00	
2:55 PM		·		·	· ·				ml/min	
8/13/2024	1 10.00	6.06 pH	20.35 °C	898.22 µS/cm	0.46 mg/L	20.90 NTU	-43.5 mV	13.99 ft	1,000.00	
3:00 PM		<u> </u>		'	o d				ml/min	
8/13/2024	15:00	6.06 pH	20.43 °C	926.05 µS/cm	0.44 mg/L	18.00 NTU	-38.9 mV	13.99 ft	1,000.00	
3:05 PM				0_000	511111g/ =				ml/min	
8/13/2024	20:00	20:00 6.07 pH	20.40 °C	946.80 µS/cm	0.48 mg/L	16.10 NTU	-38.7 mV	13.99 ft	1,000.00	
3:10 PM	20.00	0.07 pm	20.40 0	0-10.00 μο/οπ	0.40 mg/L	10.101110	00.7 1117	10.00 10	ml/min	
8/13/2024	25:00	PM 25:00	6.08 pH	20.30 °C	967.11 µS/cm	0.44 mg/L	14.90 NTU	-36.0 mV	13.99 ft	1,000.00
3:15 PM			PM	0.00 pr i	20.50 0	307.11 ро/сп	0.44 mg/L	14.50 1410	30.0 111	15.55 10
8/13/2024	30:00	6.08 pH	20.32 °C	985.19 µS/cm	0.47 mg/L	13.90 NTU	-34.6 mV	13.99 ft	1,000.00	
3:20 PM	30.00	0.00 pi i	20.32 0	905.19 μ5/611	0.47 Hig/L	13.90 1110	-34.01117	13.33 11	ml/min	
8/13/2024	35:00	6.08 pH	20.23 °C	994.44 µS/cm	0.42 mg/L	13.30 NTU	-34.9 mV	13.99 ft	1,000.00	
3:25 PM	35.00	0.00 рп	20.23 C	994.44 μ3/611	0.42 IIIg/L	13.30 1410	-34.9 1110	13.99 11	ml/min	
8/13/2024	40:00	6.00 =1.1	20.22.00	1,005.2	0.45 mg/l	12.00 NTU	-33.3 mV	12 00 #	1,000.00	
3:30 PM	40.00	6.09 pH	20.22 °C	μS/cm	0.45 mg/L	12.00 NTO	-33.3 1117	13.99 ft	ml/min	
8/13/2024	45.00	0.00 -11	20.20.90	1,016.1	0.44//	0.70 NTU	22.7 \/	42.00#	1,000.00	
3:35 PM	45:00	6.09 pH	20.39 °C	μS/cm	0.44 mg/L	9.79 NTU	-33.7 mV	13.99 ft	ml/min	
8/13/2024	50.00	0.0011	00.00.00	1,024.2	0.44	44.00 NTU	00.0 1/	40.00.0	1,000.00	
3:40 PM	50:00	50:00 6.09 pH	20.32 °C	μS/cm	0.44 mg/L	11.00 NTU	-33.0 mV	13.99 ft	ml/min	
8/13/2024	55:00 6.09 p		00.00.00	1,033.0	0.45 (1				1,000.00	
3:45 PM		55:00	55:00 6.09 pH 20.30 °C µS/cm	0.45 mg/L	9.37 NTU	-31.6 mV	13.99 ft	ml/min		

8/13/2024	01:00:00	6.09 pH	20.33 °C	1,038.8	0.43 mg/L	8.94 NTU	-31.4 mV	13.99 ft	1,000.00	
3:50 PM	01.00.00	0.09 pm	20.33 C	μS/cm	0.45 mg/L	0.94 1110	-31.41110	13.99 11	ml/min	
8/13/2024	01:05:00	6.10 pH	20.30 °C	1,040.6	0.46 mg/L	9.41 NTU	-55.7 mV	13.99 ft	500.00 ml/min	
3:55 PM		0.10 pm	20.30 C	μS/cm		5.411110	-33.7 1110	13.99 11		
8/13/2024	01:10:00	01:10:00	6.07 pH	21.50 °C	1,046.7	0.15 mg/L	10.10 NTU	-68.1 mV	13.99 ft	380.00 ml/min
4:00 PM		ο.υ/ μπ	21.50 C	μS/cm	0.13 mg/L	10.101410	-00.1 1110	13.99 11	300.00 111/111111	
8/13/2024	01:15:00	.00 6.07 pH	21.41 °C	1,038.8	0.06 mg/L	12.50 NTU	-74.4 mV	13.99 ft	380.00 ml/min	
4:05 PM	01.15.00	0.07 pm		μS/cm	0.00 mg/L	12.50 1410	-74.41110		300.00 1111/111111	
8/13/2024	01:20:00	6 13 nH	6.13 pH 21.55 °C	1,039.5	0.05 mg/L	15.00 NTU	-43.2 mV	13.99 ft	380.00 ml/min	
4:10 PM	01.20.00	01:20:00 6.13 pH		μS/cm					300.00 111/111111	

Sample ID:	Description:
•	·

Test Date / Time: 8/14/2024 9:00:06 AM

Project: Arkwright AP-2

Operator Name: Dylan Quintal

Location Name: Arkwright, AP-2,

ARAMW-2

Latitude: 32.921468802958174 Longitude: -83.7021274807793

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 15.2 ft Total Depth: 25.2 ft

Initial Depth to Water: 13.83 ft

Pump Type: Reclaimer Pump

Tubing Type: LDPE

Pump Intake From TOC: 24.8 ft Estimated Total Volume Pumped:

71991.5 ml

Flow Cell Volume: 90 ml Final Flow Rate: 430 ml/min Final Draw Down: 0.12 ft Instrument Used: Aqua TROLL 400

Serial Number: 965586

Test Notes:

Log 2/2. Redevelopment by over-pumping. Lowered pump to bottom and pumped at 670 mL/min. Brought to the top of the screen and slowly lowered. Finished mid-screen and lowered purge rate. Missing RDO readings associated with probe communication issue.

Weather Conditions:

Overcast, 77F

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 10 %	+/- 10 %	+/- 10	+/- 0.3	
8/14/2024 9:00 AM	00:00	6.10 pH	20.25 °C	960.38 μS/cm	0.69 mg/L	14.60 NTU	16.7 mV	13.89 ft	670.00 ml/min
8/14/2024 9:10 AM	10:01	6.10 pH	20.30 °C	980.98 μS/cm	0.52 mg/L	10.90 NTU	14.9 mV	13.89 ft	670.00 ml/min
8/14/2024 9:15 AM	15:01	6.10 pH	20.35 °C	995.18 μS/cm	0.47 mg/L	8.89 NTU	13.7 mV	13.89 ft	670.00 ml/min
8/14/2024 9:20 AM	20:01	6.11 pH	20.55 °C	1,005.8 μS/cm	0.48 mg/L	9.48 NTU	8.6 mV	13.89 ft	670.00 ml/min
8/14/2024 9:25 AM	25:01	6.16 pH	20.57 °C	1,006.7 μS/cm	3.97 mg/L	189.00 NTU	16.4 mV	13.89 ft	670.00 ml/min
8/14/2024 9:30 AM	30:01	6.11 pH	20.48 °C	1,041.7 μS/cm	1.09 mg/L	123.00 NTU	8.8 mV	13.89 ft	670.00 ml/min
8/14/2024 9:35 AM	35:01	6.11 pH	20.47 °C	1,060.2 μS/cm	0.98 mg/L	75.70 NTU	15.3 mV	13.89 ft	670.00 ml/min
8/14/2024 9:40 AM	40:03	6.10 pH	20.39 °C	1,063.2 μS/cm	0.87 mg/L	53.80 NTU	14.7 mV	13.89 ft	670.00 ml/min
8/14/2024 9:50 AM	50:03	6.11 pH	20.30 °C	1,083.9 μS/cm	0.56 mg/L	16.70 NTU	12.1 mV	12.10 ft	670.00 ml/min
8/14/2024 10:00 AM	01:00:03	6.11 pH	20.88 °C	1,097.1 μS/cm	0.41 mg/L	21.40 NTU	5.6 mV	13.95 ft	670.00 ml/min
8/14/2024 10:10 AM	01:10:03	6.10 pH	20.96 °C	1,099.3 μS/cm	0.25 mg/L	13.60 NTU	9.0 mV	13.95 ft	670.00 ml/min
8/14/2024 10:20 AM	01:20:03	6.09 pH	21.01 °C	1,105.0 μS/cm	0.25 mg/L	8.88 NTU	10.9 mV	13.95 ft	670.00 ml/min

8/14/2024	01:22:27	6.10 pH	21.58 °C	1,111.7	0.28 mg/L	8.15 NTU	8.7 mV	13.95 ft	670.00 ml/min
10:22 AM	01.22.27	0.10 pri	21.36 C	μS/cm	0.28 mg/L	8.13 N10	0.7 1110	13.93 11	070.00 1111/111111
8/14/2024	01:27:27	6.10 pH	21.48 °C	1,105.2	0.23 mg/L	6.96 NTU	13.6 mV	13.95 ft	670.00 ml/min
10:27 AM	01.27.27	0.10 pr1	21.40 C	μS/cm	0.23 mg/L	0.90 1110	13.0 1110	13.93 11	070.00 1111/111111
8/14/2024	01:32:27	6.09 pH	21.64 °C	1,106.4	0.20 mg/L	5.37 NTU	13.7 mV	13.95 ft	430.00 ml/min
10:32 AM	01.32.27	0.09 pri	21.04 0	μS/cm	0.20 mg/L	3.37 1110	13.7 1110	13.95 11	430.00 111/111111
8/14/2024	01:37:27	6.10 pH	21.49 °C	1,112.1	0.20 mg/L	4.66 NTU	13.4 mV	13.95 ft	430.00 ml/min
10:37 AM	01.57.27	0.10 pm	21.49 0	μS/cm	0.20 mg/L	4.00 N I U	13.4 1110	13.95 10	430.00 111/111111
8/14/2024	01:42:27	6.09 pH	22.19 °C	1,110.7		4.84 NTU	15.2 mV	13.95 ft	430.00 ml/min
10:42 AM	01.42.27	0.09 pm	22.19 0	μS/cm		4.04 1110	13.2 1110	13.95 10	430.00 111/111111
8/14/2024	01:47:27	6 10 pH	21.74 °C	1,108.4		4 17 NITLI	12.6 m\/	12.05.ft	430.00 ml/min
10:47 AM	01.47.27	6.10 pH	21.74 0	μS/cm		4.17 NTU	13.6 mV	13.95 ft	430.00 111/111111

Sample ID:

Test Date / Time: 8/14/2024 12:18:20 PM **Project:** Arkwright AP-2 development

Operator Name: Zach Levy

Location Name: Arkwright, AP-2,

ARAMW-7

Latitude: 32.92168457962877 Longitude: -83.70282886021718

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 40.4 ft Total Depth: 50.75 ft

Initial Depth to Water: 13.34 ft

Pump Type: Reclaimer pump

Tubing Type: LDPE

Pump Intake From TOC: 50.75 ft Estimated Total Volume Pumped:

35245 ml

Flow Cell Volume: 90 ml Final Flow Rate: 700 ml/min Final Draw Down: 1.9 ft Instrument Used: Aqua TROLL 400

Serial Number: 968202

Test Notes:

Redevelopment by over-pumping. Pump was set at the bottom of the screen, then moved to top of screen, finally moved to mid screen and stability was reached. 3 x 5 gal buckets pumped plus 2 gallons

Weather Conditions:

Cloudy, 77F

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 10 %	+/- 10 %	+/- 10	+/- 0.33	
8/14/2024 12:18 PM	00:00	5.70 pH	21.95 °C	1,606.2 μS/cm	1.51 mg/L	6.61 NTU	88.2 mV	15.00 ft	700.00 ml/min
8/14/2024 12:28 PM	10:00	5.61 pH	19.09 °C	1,741.8 μS/cm	1.02 mg/L	4.05 NTU	92.1 mV	15.01 ft	700.00 ml/min
8/14/2024 12:33 PM	15:21	5.61 pH	19.07 °C	1,755.0 μS/cm	1.11 mg/L	3.44 NTU	104.0 mV	15.05 ft	700.00 ml/min
8/14/2024 12:38 PM	20:21	5.60 pH	19.19 °C	1,766.9 μS/cm	1.08 mg/L	2.49 NTU	93.7 mV	15.25 ft	700.00 ml/min
8/14/2024 12:43 PM	25:21	5.53 pH	19.14 °C	1,750.8 μS/cm	1.29 mg/L	7.19 NTU	120.3 mV	15.20 ft	700.00 ml/min
8/14/2024 12:48 PM	30:21	5.56 pH	19.14 °C	1,752.6 μS/cm	0.97 mg/L	4.94 NTU	113.4 mV	15.23 ft	700.00 ml/min
8/14/2024 12:53 PM	35:21	5.58 pH	19.09 °C	1,768.5 μS/cm	0.99 mg/L	2.18 NTU	96.5 mV	15.29 ft	700.00 ml/min
8/14/2024 12:58 PM	40:21	5.58 pH	19.09 °C	1,773.6 μS/cm	0.93 mg/L	1.92 NTU	107.6 mV	15.35 ft	700.00 ml/min
8/14/2024 1:03 PM	45:21	5.59 pH	19.16 °C	1,775.9 μS/cm	0.89 mg/L	1.61 NTU	107.0 mV	15.21 ft	700.00 ml/min
8/14/2024 1:08 PM	50:21	5.58 pH	19.26 °C	1,781.4 μS/cm	0.94 mg/L	1.66 NTU	107.1 mV	15.24 ft	700.00 ml/min

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/13/2024 9:50:55 AM **Project:** Arkwright AP-2 development

Operator Name: Zach Levy

Location Name: Arkwright

ARAMW-8

Latitude: 32.91246794999996 Longitude: -83.69824980999995

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 39.5 ft Total Depth: 49.55 ft

Initial Depth to Water: 12.34 m

Pump Type: Reclaimer pump

Tubing Type: LDPE

Pump Intake From TOC: 49.5 ft Estimated Total Volume Pumped:

36060 ml

Flow Cell Volume: 90 ml Final Flow Rate: 300 ml/min Final Draw Down: 1.202 m Instrument Used: Aqua TROLL 400

Serial Number: 968202

Test Notes:

Redevelopment by over-pumping. Started pump at bottom. Moved to top of screen and finished in the middle. Total pumped: approximately 12.5 gals

Weather Conditions:

Clear, 80F

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 10 %	+/- 10 %	+/- 10	+/- 0.33	
8/13/2024 9:50 AM	00:00	6.33 pH	23.91 °C	165.58 μS/cm	3.62 mg/L	36.50 NTU	80.2 mV	36.95 ft	650.00 ml/min
8/13/2024 10:00 AM	10:00	6.44 pH	21.18 °C	266.05 μS/cm	3.21 mg/L	22.40 NTU	59.3 mV	39.72 ft	650.00 ml/min
8/13/2024 10:10 AM	20:00	6.48 pH	21.11 °C	352.33 μS/cm	2.87 mg/L	18.30 NTU	49.2 mV	40.32 ft	400.00 ml/min
8/13/2024 10:12 AM	21:54	6.49 pH	21.19 °C	362.98 μS/cm	2.75 mg/L	18.30 NTU	51.9 mV	40.32 ft	400.00 ml/min
8/13/2024 10:22 AM	31:54	6.50 pH	21.14 °C	522.96 μS/cm	1.85 mg/L	11.80 NTU	33.9 mV	41.15 ft	400.00 ml/min
8/13/2024 10:23 AM	32:39	6.50 pH	21.12 °C	533.49 μS/cm	1.73 mg/L	11.80 NTU	33.6 mV	41.15 ft	350.00 ml/min
8/13/2024 10:28 AM	37:39	6.52 pH	21.11 °C	583.94 μS/cm	1.42 mg/L	6.92 NTU	31.8 mV	41.95 ft	350.00 ml/min
8/13/2024 10:33 AM	42:39	6.53 pH	21.18 °C	611.35 μS/cm	1.16 mg/L	5.50 NTU	32.1 mV	42.15 ft	350.00 ml/min
8/13/2024 10:38 AM	47:39	6.55 pH	21.14 °C	628.49 μS/cm	1.13 mg/L	4.46 NTU	30.8 mV	42.97 ft	350.00 ml/min
8/13/2024 10:43 AM	52:39	6.56 pH	21.21 °C	638.66 µS/cm	1.25 mg/L	2.82 NTU	30.8 mV	43.49 ft	350.00 ml/min
8/13/2024 10:48 AM	57:39	6.58 pH	21.29 °C	644.23 μS/cm	1.62 mg/L	3.06 NTU	32.0 mV	43.90 ft	350.00 ml/min
8/13/2024 10:53 AM	01:02:39	6.59 pH	21.36 °C	659.99 μS/cm	2.62 mg/L	3.48 NTU	33.1 mV	44.35 ft	300.00 ml/min

8/13/2024	01:07:39	6.55 pH	22.03 °C	643.15 µS/cm	2.10 mg/L	6.14 NTU	53.4 mV	44.40 ft	300.00 ml/min
10:58 AM	01.01.00	οισο μ	22.00	σ .σσ μσ, σ	g, _	3111110	3311111		00010011111111111
8/13/2024	04.40.20	6.54 ml l	22.07 °C	642 04 uC/om	4.76 ma/l	2 77 NITH	50.0 m\/	44 44 f t	200.00 ml/min
11:03 AM	01:12:39	6.54 pH	22.07	642.91 μS/cm	1.76 mg/L	3.77 NTU	59.0 mV	44.41 ft	300.00 ml/min
8/13/2024	01:17:39	6 EE 24	22.08 °C	642.79 µS/cm	2.19 mg/L	2.79 NTU	59.5 mV	44.41 ft	300.00 ml/min
11:08 AM	01.17.39	6.55 pH	22.00 C	042.79 μ3/6111	2.19 mg/L	2.79 1110	39.3 111	44.4111	300.00 111/111111
8/13/2024	01:22:39	6.58 pH	22.39 °C	643.78 µS/cm	2.68 mg/L	2.77 NTU	54.0 mV	44.43 ft	300.00 ml/min
11:13 AM	01.22.39	0.36 pri	22.39 0	043.76 μ3/611	2.00 Hig/L	2.77 1010	34.0 1110	44.45 11	300.00 1111/111111
8/13/2024	01:27:39	6.61 pH	22.48 °C	651.35 µS/cm	3.01 mg/L	2.46 NTU	39.9 mV	44.43 ft	300.00 ml/min
11:18 AM	01.27.39	0.01 pH	22.40 C	051.55 μ5/cm	3.01 Hig/L	2.40 NTU	39.9 1110	44.43 11	300.00 1111/111111

Sample ID:	Description:
•	·

Test Date / Time: 8/13/2024 12:35:40 PM **Project:** Arkwright AP-2 development

Operator Name: Zach Levy

Location Name: Arkwright, AP-2,

ARGWC-21

Latitude: 32.921465831757004 Longitude: -83.70213453662315

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 17.4 ft Total Depth: 27.8 ft

Initial Depth to Water: 14.47 m

Pump Type: Reclaimer pump

Tubing Type: LDPE

Pump Intake From TOC: 27.4 ft Estimated Total Volume Pumped:

43991.668 ml

Flow Cell Volume: 90 ml Final Flow Rate: 300 ml/min Final Draw Down: -6.85 ft Instrument Used: Aqua TROLL 400

Serial Number: 968202

Test Notes:

Redevelopment by over-pumping. Started with pump at bottom of screen, then moved to top of screen, finally moved to mid point of screen. Pumped appropriately 17.5 gallons, 3.5 x 5 gal buckets

Weather Conditions:

Clear, 89F

Low-Flow R	eadings:								
Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 10 %	+/- 10 %	+/- 10	+/- 0.33	
8/13/2024 12:35 PM	00:00	6.10 pH	21.60 °C	713.39 µS/cm	2.49 mg/L	75.10 NTU	66.7 mV	25.00 ft	500.00 ml/min
8/13/2024 12:45 PM	10:00	6.13 pH	20.65 °C	732.65 µS/cm	3.55 mg/L	36.40 NTU	76.6 mV	25.00 ft	500.00 ml/min
8/13/2024 12:55 PM	20:00	6.11 pH	20.40 °C	746.57 µS/cm	3.37 mg/L	25.10 NTU	78.1 mV	25.00 ft	500.00 ml/min
8/13/2024 1:05 PM	29:59	6.09 pH	20.61 °C	763.96 µS/cm	3.12 mg/L	20.90 NTU	82.7 mV	25.00 ft	500.00 ml/min
8/13/2024 1:10 PM	34:59	6.08 pH	20.47 °C	775.74 μS/cm	2.84 mg/L	17.20 NTU	74.1 mV	25.00 ft	500.00 ml/min
8/13/2024 1:15 PM	39:59	6.08 pH	20.53 °C	780.04 μS/cm	2.55 mg/L	15.20 NTU	72.8 mV	25.00 ft	500.00 ml/min
8/13/2024 1:20 PM	44:59	6.06 pH	20.92 °C	782.72 μS/cm	2.32 mg/L	11.80 NTU	72.1 mV	25.00 ft	400.00 ml/min
8/13/2024 1:25 PM	49:59	6.05 pH	20.83 °C	783.36 μS/cm	2.19 mg/L	8.60 NTU	76.8 mV	25.00 ft	400.00 ml/min
8/13/2024 1:30 PM	54:59	6.05 pH	20.73 °C	796.70 μS/cm	2.17 mg/L	7.58 NTU	69.8 mV	25.00 ft	400.00 ml/min
8/13/2024 1:35 PM	59:59	6.05 pH	20.85 °C	802.47 μS/cm	2.09 mg/L	6.79 NTU	68.4 mV	25.00 ft	400.00 ml/min
8/13/2024 1:40 PM	01:04:59	6.03 pH	21.20 °C	809.07 μS/cm	1.97 mg/L	4.93 NTU	67.3 mV	25.00 ft	300.00 ml/min
8/13/2024 1:45 PM	01:09:59	6.03 pH	21.21 °C	811.06 μS/cm	1.76 mg/L	4.28 NTU	65.5 mV	25.00 ft	300.00 ml/min

8/13/2024	01:14:59	6.03 pH	21.58 °C	808.48 µS/cm	1.62 mg/L	3.36 NTU	64.2 mV	25.00 ft	300.00 ml/min
1:50 PM	01.14.59	0.03 pri	21.50 C	000.40 μο/cm	1.02 Hig/L	3.30 1110	04.2 1117	25.00 10	300.00 1111/111111
8/13/2024	01:19:59	6.03 pH	21.32 °C	814.26 µS/cm	1.70 mg/L	4.01 NTU	63.3 mV	25.00 ft	300.00 ml/min
1:55 PM	01.19.59	0.03 pri	21.32 0	014.20 μο/οπ	1.70 Hig/L	4.01 1010	05.5 1117	25.00 10	300.00 111/111111
8/13/2024	01:24:59	6.03 pH	21.45 °C	822.14 µS/cm	1.92 mg/L	10.40 NTU	69.7 mV	25.00 ft	300.00 ml/min
2:00 PM	01.24.39	0.03 pri	21.45 0	022.14 μ0/0111	1.92 mg/L	10.40 1110	09.7 1110	25.00 10	300.00 1111/111111
8/13/2024	01:29:59	6.02 pH	21.45 °C	830.71 µS/cm	1.72 mg/L	11.70 NTU	63.3 mV	25.00 ft	300.00 ml/min
2:05 PM	01.25.55	0.02 pri	21.40 0	000.7 1 до/от	2g, 2	11.701410	03.5 111	25.00 10	000.00 111/11111
8/13/2024	01:34:59	6.02 pH	21.44 °C	829.86 µS/cm	1.53 mg/L	7.65 NTU	60.5 mV	25.00 ft	300.00 ml/min
2:10 PM	01.04.00	0.02 pri	21.44 0	020.00 μο/οιτί	1.00 mg/2	7.051110	00.5 1110	25.00 π	300.00 1111/111111
8/13/2024	01:39:59	6.01 pH	21.72 °C	829.10 µS/cm	1.42 mg/L	4.63 NTU	59.0 mV	25.00 ft	300.00 ml/min
2:15 PM	01.59.59	0.01 pm	21.72 0	029.10 μ3/0111	1.42 mg/L	4.03 1410	39.0 1110	25.00 10	300.00 1111/111111
8/13/2024	01:44:59	6.00 pH	21.63 °C	826.67 µS/cm	1.28 mg/L	2.47 NTU	58.7 mV	25.00 ft	300.00 ml/min
2:20 PM	01.44.39	0.00 pr i	21.03 C	020.07 μ3/011	1.20 Hig/L	2.47 NTO	30.7 1110	25.00 It	300.00 1111/111111
8/13/2024	01:49:59	6.01 pH	21.65 °C	828.47 µS/cm	1.19 mg/L	2.04 NTU	57.1 mV	25.00 ft	300.00 ml/min
2:25 PM	01.49.59	0.01 pi i	21.05 °C	020.47 μ0/611	1.15 Hig/L	2.04 1010	37.1 1110	25.50 10	300.00 111/111111

Sample ID:	Description:

Test Date / Time: 8/14/2024 12:25:04 PM

Project: Arkwright AP-2 **Operator Name:** Dylan Quintal

Location Name: Arkwright, AP-2,

ARGWC-22

Latitude: 32.9217536921101 Longitude: -83.7028370797634

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 17.71 ft Total Depth: 27.71 ft

Initial Depth to Water: 14.32 ft

Pump Type: Reclaimer Pump

Tubing Type: LDPE

Pump Intake From TOC: 27.7 ft Estimated Total Volume Pumped:

57300 ml

Flow Cell Volume: 90 ml Final Flow Rate: 180 ml/min Final Draw Down: 0.19 ft Instrument Used: Aqua TROLL 400

Serial Number: 965586

Test Notes:

Redevelopment by over-pumping. Pumped at 265 mL/min at bottom of screen. Brought to top of screen, then slowly lowered. Finished mid-screen and lowered flow rate to 180 mL/min. pH did not stabilize due to suspected fault in probe. Missing of RDO readings also associated with probe communication issue.

Weather Conditions:

Mostly sunny, 82F

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 10 %	+/- 10 %	+/- 10	+/- 0.3	
8/14/2024 12:25 PM	00:00	5.75 pH	19.79 °C	1,437.2 μS/cm	0.11 mg/L	5.34 NTU	64.2 mV	14.85 ft	265.00 ml/min
8/14/2024 12:30 PM	05:00	5.74 pH	19.50 °C	1,427.0 μS/cm	0.09 mg/L	5.63 NTU	63.1 mV	14.85 ft	265.00 ml/min
8/14/2024 12:35 PM	10:00	5.76 pH	19.54 °C	1,423.7 μS/cm	0.09 mg/L	5.14 NTU	57.0 mV	14.85 ft	265.00 ml/min
8/14/2024 12:40 PM	15:00	5.78 pH	19.87 °C	1,431.9 μS/cm	0.10 mg/L	2.92 NTU	51.6 mV	14.85 ft	265.00 ml/min
8/14/2024 12:45 PM	20:00	5.98 pH	19.18 °C	1,418.6 μS/cm		77.60 NTU	36.6 mV	17.70 ft	265.00 ml/min
8/14/2024 12:50 PM	25:00	6.30 pH	19.34 °C	1,411.6 μS/cm		34.90 NTU	1.0 mV	17.70 ft	265.00 ml/min
8/14/2024 12:55 PM	30:00	5.82 pH	19.47 °C	1,403.4 μS/cm		21.40 NTU	39.0 mV	17.70 ft	265.00 ml/min
8/14/2024 1:00 PM	35:00	6.28 pH	19.43 °C	1,406.5 μS/cm		11.40 NTU	-7.5 mV	17.70 ft	265.00 ml/min
8/14/2024 1:05 PM	40:00	6.44 pH	19.50 °C	1,404.3 μS/cm		10.20 NTU	-10.4 mV	17.70 ft	265.00 ml/min
8/14/2024 1:10 PM	45:00	6.52 pH	20.07 °C	1,420.0 μS/cm		7.76 NTU	-13.8 mV	14.95 ft	265.00 ml/min
8/14/2024 1:15 PM	50:00	5.79 pH	19.85 °C	1,409.0 μS/cm		8.01 NTU	41.6 mV	14.95 ft	265.00 ml/min
8/14/2024 1:20 PM	55:00	6.44 pH	19.50 °C	1,413.1 μS/cm		10.70 NTU	-6.2 mV	14.95 ft	265.00 ml/min

11-25 PM	0/4.4/000.4				4 400 0				
BIFFACIZED 01:05:00 5:80 ph 20:28 °C 1:421.3	8/14/2024 1:25 PM	01:00:00	5.89 pH	19.45 °C	1,426.2 uS/cm	9.09 NTU	39.4 mV	14.95 ft	265.00 ml/min
1.00 PM 0.10500 5.80 pH 20.28°C 9.80cm 14.00 NTU 59.0 nW 14.55 kt 265.00 mirrina 14.00 NTU 14.71 kt 26									
1.15 PM 11-10:00		01:05:00	5.80 pH	20.28 °C		14.00 NTU	59.0 mV	14.95 ft	265.00 ml/min
13-15 PM	8/14/2024	01:10:00	6.07 nH	10.12 °C	1,414.7	60 40 NTU	39.3 m\/	1.4.91 ft	265 00 ml/min
140 PM 011500 5.82 pH 19.46 °C pScm 20.30 NTU 68.8 mV 14.76 kt 255.00 m/mm 14.77 kt 255.00 m/mm 1		01.10.00	0.07 pm	19.12 C		00.40 NTO	36.3 111	14.0111	203.00 111/111111
140 PM		01:15:00	5.82 pH	19.46 °C		30.30 NTU	68.8 mV	14.76 ft	255.00 ml/min
1.45 PM 01.25.00 5.87 pH 20.58°C 1.425.7 14.00 NTU 51.0 mV 14.71 ft 255.00 m/mm 14.00 NTU 17.8 mV 14.71 ft 255.00 m/mm 14.00 NTU 17.8 mV 14.71 ft 255.00 m/mm 14.00 NTU 17.8 mV 14.71 ft 255.00 m/mm 14.00 NTU 17.0 mV 14.71 ft 255.00 m/mm 14.00 NTU			•		-				
B142024		01:20:00	5.87 pH	20.18 °C		20.20 NTU	57.1 mV	14.71 ft	255.00 ml/min
1:50 PM 01:25:00 5.89 PH 20:53 °C									
1.55 PM 01:30:00 5.80 pH 20:31 °C		01:25:00	5.89 pH	20.53 °C	μS/cm	14.00 NTU	51.0 mV	14.71 ft	255.00 ml/min
1.55 PM 1.45 PM 2.030 PM 20.30 °C 1.426.1 1.	8/14/2024	01:30:00	5.80 nH	20.31 °C	1,425.2	10 00 NTU	54.4 m\/	1.4.71 ft	255 00 ml/min
2.00 PM 01:59:00 6.00 pH 20:30 °C μS/cm 9.85 NTU 34.2 mV 14.71 ft 255.00 m/min 814/2024 2.05 PM 01:40:00 6.03 pH 20:57 °C 1.422.5 μS/cm 8.75 NTU 28.5 mV 14.71 ft 255.00 m/min 814/2024 2.10 PM 20:50 °C 1.424.2 8.75 NTU 20.8 mV 14.71 ft 255.00 m/min 814/2024 2.20 PM 20:50 °C 1.410.6 μS/cm 8.86 NTU 56.9 mV 14.71 ft 255.00 m/min 814/2024 2.20 PM 20:50 °C 1.410.6 μS/cm 10.40 NTU 17.8 mV 14.71 ft 255.00 m/min 814/2024 2.25 PM 20:00 °C 1.410.6 μS/cm 10.40 NTU 17.8 mV 14.71 ft 255.00 m/min 814/2024 2.25 PM 20:00 °C μS/cm μS/cm 9.86 NTU 13.8 mV 14.71 ft 255.00 m/min 814/2024 2.25 PM 20:00 °C μS/cm μS/cm 9.86 NTU 13.8 mV 14.71 ft 255.00 m/min 814/2024 2.25 PM 20:00 °C μS/cm μS/cm 9.86 NTU 14.77 mV 14.71 ft 255.00 m/min 814/2024 2.25 PM 20:10:00 5.74 pH 21.11 °C μS/cm 9.75 NTU 55.5 mV 14.71 ft 255.00 m/min 814/2024 2.25 PM 20:10:00 5.74 pH 21.49 °C μS/cm 9.75 NTU 55.5 mV 14.71 ft 255.00 m/min 814/2024 2.25 PM 20:20 °C 5.74 pH 21.42 °C μS/cm 8.63 NTU 9.3 mV 14.71 ft 255.00 m/min 814/2024 2.25 PM 22.25 °C 6.15 pH 21.79 °C μS/cm 7.85 NTU 2.1 mV 14.71 ft 255.00 m/min 814/2024 2.25 PM 2.25 °C μS/cm 7.85 NTU 2.1 mV 14.71 ft 255.00 m/min 814/2024 2.25 °C 6.15 pH 21.59 °C μS/cm 7.85 NTU 2.1 mV 14.71 ft 255.00 m/min 814/2024 2.25 °C 6.15 pH 21.59 °C μS/cm 7.35 NTU 2.1 mV 14.71 ft 255.00 m/min 814/2024 2.25 °C 6.15 pH 21.32 °C μS/cm 7.35 NTU -3.7 mV 14.71 ft 255.00 m/min 814/2024 2.25 °C 6.25 PH 21.32 °C μS/cm 7.35 NTU -3.7 mV 14.71 ft 255.00 m/min 814/2024 2.25 °C 6.25 PH 21.32 °C μS/cm 7.35 NTU -3.7 mV 14.71 ft 255.00 m/min 814/2024 2.25 °C 6.25 PH 21.32 °C μS/cm 7.35 NTU -3.7 mV 14.71 ft 255.00 m/min 814/2024 2.25 °C 6.25 PH 21.32 °C μS/cm 6.67 NTU -3.4		01.50.00	3.00 pm	20.51		10.00 1410	34.4 1117	14.7110	255.00 111/111111
Brit		01:35:00	6.00 pH	20.30 °C		9.83 NTU	34.2 mV	14.71 ft	255.00 ml/min
2.05 PM			-						
Britanger Bri		01:40:00	6.03 pH	20.57 °C		7.62 NTU	28.5 mV	14.71 ft	255.00 ml/min
2-10 PM 01-50-00 5.76 pH 20.0° C μS/cm 1,410.6 μS/cm 10.40 NTU 17.8 mV 14.71 ft 255.00 ml/min 8/14/2024 2.25 PM 01-50-00 6.10 pH 20.56 °C μS/cm 10.40 NTU 17.8 mV 14.71 ft 255.00 ml/min 8/14/2024 2.25 PM 02-20.00 6.11 pH 20.79 °C μS/cm 10.40 NTU 17.8 mV 14.71 ft 255.00 ml/min 8/14/2024 2.25 PM 02-20.00 6.09 pH 20.88 °C μS/cm 10.40 NTU 13.6 mV 14.71 ft 255.00 ml/min 8/14/2024 2.30 PM 02-20.00 6.09 pH 20.88 °C μS/cm 14.418.3 μS/cm 14.77 mV 14.71 ft 255.00 ml/min 8/14/2024 2.30 PM 02-20.00 6.15 pH 21.49 °C μS/cm 14.420.1 μS/cm 14.70 μS/cm 14.71 ft 255.00 ml/min 8/14/2024 2.30 PM 02-20.00 6.15 pH 21.49 °C μS/cm 14.420.1 μS/cm 14.70 μS/cm 14.71 ft 255.00 ml/min 8/14/2024 2.30 PM 02-25.00 6.15 pH 21.49 °C μS/cm 14.420.1 μS/cm 14.70 μS/cm 14.71 ft 255.00 ml/min 8/14/2024 2.30 PM 02-25.00 6.15 pH 21.79 °C μS/cm 14.70 μ									
2-15 PM 01:50:00 01:70:00 01:70:70:70	2:10 PM	01:45:00	6.08 pH	20.70 °C		8.75 NTU	20.8 mV	14.71 ft	255.00 ml/min
## 255.00 ml/min ## 255.00 ml		01:50:00	5 76 pH	20.66 °C		9 86 NTU	56.9 mV	14 71 ft	255 00 ml/min
2:20 PM 01:55:00 6:10 pH 20:56 °C μS/cm 10:40 NTU 17:8 mV 14:71 ft 25:00 ml/min 8/14/2024 2:25 PM 02:00:00 6:11 pH 20:79 °C 1.425.2 μS/cm 10:40 NTU 13:6 mV 14:71 ft 25:500 ml/min 8/14/2024 2:30 PM 02:05:00 6:09 pH 20:88 °C μS/cm μS/cm 9:86 NTU 14:7 mV 14:71 ft 25:500 ml/min 8/14/2024 2:35 PM 02:10:00 5:74 pH 21:11 °C μS/cm μS/cm 9:75 NTU 55:5 mV 14:71 ft 25:500 ml/min 8/14/2024 2:55 PM 02:10:00 5:74 pH 21:49 °C μS/cm 9:75 NTU 55:5 mV 14:71 ft 25:500 ml/min 8/14/2024 2:50 PM 02:20:00 5:74 pH 21:42 °C μS/cm 7:82 NTU 47:8 mV 14:71 ft 25:500 ml/min 8/14/2024 2:50 PM 02:20:00 5:74 pH 21:42 °C μS/cm 7:82 NTU 47:8 mV 14:71 ft 25:500 ml/min 8/14/2024 2:50 PM 02:20:00 6:15 pH 21:79 °C μS/cm μS/cm 7:82 NTU 47:8 mV 14:71 ft 25:500 ml/min 8/14/2024 2:50 PM 02:30:00 6:19 pH 21:59 °C μS/cm 9:7.85 NTU 2:1 mV 14:71 ft 25:500 ml/min 8/14/2024 2:55 PM 02:30:00 6:19 pH 21:59 °C μS/cm 9:30:00 8:19 pH 21:32 °C μS/cm 9:30:00 8:20 pH 21:32 °C μS/cm 9:30:00 8:30:00 8:20 pH 21:32 °C μS/cm 9:30:00 8:30:00 8:20 pH 21:32 °C μS/cm 9:30:00 8:3		01100100	ол о р	20.00			00.0		200100 1111/111111
8/14/2024 22.5 PM 20.00.00 6.11 pH 20.79 °C 1.425.2 µS/cm 10.40 NTU 13.6 mV 14.71 ft 255.00 ml/min 8/14/2024 2.30 PM 20.88 °C 1.418.3 µS/cm 9.86 NTU 14.7 mV 14.71 ft 255.00 ml/min 8/14/2024 2.30 PM 20:10:00 5.74 pH 21.11 °C 1.418.8 µS/cm 9.75 NTU 55.5 mV 14.71 ft 255.00 ml/min 8/14/2024 2.40 PM 21.50 6.15 pH 21.49 °C 1.421.7 µS/cm 8.63 NTU 9.3 mV 14.71 ft 255.00 ml/min 8/14/2024 2.45 PM 02:20:00 5.74 pH 21.42 °C 1.421.2 µS/cm 7.82 NTU 47.8 mV 14.71 ft 255.00 ml/min 8/14/2024 2.50 PM 02:25:00 6.15 pH 21.79 °C 1.421.2 µS/cm 7.86 NTU 2.1 mV 14.71 ft 255.00 ml/min 8/14/2024 2.55 PM 20:30:00 6.19 pH 21.59 °C 1.418.7 µS/cm 7.85 NTU 2.1 mV 14.71 ft 255.00 ml/min 8/14/2024 3.00 PM 02:40:00 6.22 pH 21.32 °C 1.418.7 µS/cm 7.35 NTU -1.3 mV 14.71 ft 255.00 ml/min 8/14/2024 3.15 PM 02:40:00 6.23 pH 21.30 °C 1.418.6 µS/cm 7.35 NTU -3.7 mV 14.71 ft 255.00 ml/min 8/14/2024 3.15 PM 02:50:00 6.23 pH 21.40 °C 1.418.6 µS/cm 7.35 NTU -3.7 mV 14.71 ft 255.00 ml/min 8/14/2024 3.15 PM 02:50:00 6.23 pH 21.40 °C 1.418.6 µS/cm 7.35 NTU -3.7 mV 14.71 ft 255.00 ml/min 8/14/2024 3.15 PM 02:50:00 6.23 pH 21.40 °C 1.418.7 µS/cm 7.35 NTU -3.7 mV 14.71 ft 255.00 ml/min 8/14/2024 3.15 PM 03:00:00 6.44 pH 21.54 °C 1.418.7 µS/cm 6.67 NTU -9.4 mV 14.71 ft 255.00 ml/min 8/14/2024 3.30 PM 03:00:00 6.54 pH 21.43 °C 1.418.7 µS/cm 5.93 NTU -11.2 mV 14.71 ft 255.00 ml/min 8/14/2024 3.30 PM 03:00:00 6.54 pH 21.43 °C 1.418.7 µS/cm 5.05 NTU -12.0 mV 14.71 ft 255.00 ml/min 8/14/2024 3.30 PM 03:00:00 6.54 pH 21.40 °C 1.418.7 µS/cm 5.05 NTU -12.0 mV 14.71 ft 180.00 ml/min 8/14/2024 03:00:00 6.58 pH 21.40 °C 1.421.3 1.421.3 1.425 mV 1.425		01:55:00	6.10 pH	20.56 °C		10.40 NTU	17.8 mV	14.71 ft	255.00 ml/min
2:25 PM 02:00:00 6.11 pH 20.79 °C μS/cm 10.40 NTU 13.6 mV 14.71 ft 255.00 ml/min 2.30 PM 02:05:00 6.09 pH 20.88 °C 1.418.3 μS/cm 8/14/2024 2:35 PM 02:10:00 5.74 pH 21.11 °C μS/cm 1.418.8 μS/cm 9.75 NTU 55.5 mV 14.71 ft 255.00 ml/min 2.40 PM 02:15:00 6.15 pH 21.49 °C 1.420.1 μS/cm 8.63 NTU 9.3 mV 14.71 ft 255.00 ml/min 2.45 PM 02:20:00 5.74 pH 21.42 °C 1.420.1 7.82 NTU 47.8 mV 14.71 ft 255.00 ml/min 2.45 PM 02:25:00 6.15 pH 21.79 °C μS/cm 7.82 NTU 47.8 mV 14.71 ft 255.00 ml/min 2.55 PM 02:30:00 6.19 pH 21.59 °C 1.413.9 μS/cm 8.05 NTU 1.0 mV 14.71 ft 255.00 ml/min 2.55 PM 02:30:00 6.19 pH 21.14 °C μS/cm 9.5 NTU 1.0 mV 14.71 ft 255.00 ml/min 2.55 PM 02:30:00 6.19 pH 21.14 °C μS/cm 1.418.7 μS/cm 8.05 NTU 1.0 mV 14.71 ft 255.00 ml/min 2.55 PM 02:30:00 6.19 pH 21.13 °C μS/cm 1.418.7 μS/cm 1.418.7 μS/cm 1.418.7 μS/cm 1.418.1 μS/cm 1.418.3 μS/cm 1.418.3 μS/cm 1.418.3 μS/cm 1.418.3 μS/cm 1.418.3 μS/cm 1.418.4 μS/cm 1.448.4 μS/cm 1.448.4 μS/cm 1.448.4 μS/cm 1.448.4 μS/cm 1.448.4 μS/cm 1.448.4 μS/cm 1.448					·				
8/14/2024 2:30 PM 02:05:00 6.09 pH 20.88 °C 1,418.3 µS/cm 9.86 NTU 14.71 ft 255:00 ml/min 8/14/2024 2:35 PM 02:10:00 5.74 pH 21.11 °C 1,418.8 µS/cm 9.75 NTU 55.5 mV 14.71 ft 255.00 ml/min 8/14/2024 2:40 PM 02:15:00 6.15 pH 21.49 °C 1,421.7 µS/cm 8.63 NTU 9.3 mV 14.71 ft 255.00 ml/min 8/14/2024 2:45 PM 02:20:00 5.74 pH 21.42 °C 1,420.1 µS/cm 7.82 NTU 47.8 mV 14.71 ft 255.00 ml/min 8/14/2024 2:50 PM 02:25:00 6.15 pH 21.79 °C 1,421.2 µS/cm 7.68 NTU 47.8 mV 14.71 ft 255.00 ml/min 8/14/2024 2:50 PM 02:30:00 6.19 pH 21.59 °C 1,418.7 µS/cm 8.05 NTU 1.0 mV 14.71 ft 255.00 ml/min 8/14/2024 3:00 PM 02:40:00 6.22 pH 21.32 °C 1,418.7 µS/cm 8.05 NTU 1.0 mV 14.71 ft 255.00 ml/min 8/14/2024 3:15 PM 02:40:00 6.22 pH 21.32 °C 1,418.3 µS/cm 7.35 NTU		02:00:00	6.11 pH	20.79 °C		10.40 NTU	13.6 mV	14.71 ft	255.00 ml/min
2.35 PM 8/14/2024 2:35 PM 02:10:00 5.74 pH 21.11 °C 1.418.8 μS/cm 9.75 NTU 55.5 mV 14.71 ft 255.00 ml/min 8/14/2024 2:35 PM 02:20:00 6.15 pH 21.49 °C μS/cm 9.75 NTU 55.5 mV 14.71 ft 255.00 ml/min 8/14/2024 2:45 PM 02:20:00 5.74 pH 21.42 °C 1.420.1 μS/cm 9.782 NTU 47.8 mV 14.71 ft 255.00 ml/min 9/14/2024 2:55 PM 8/14/2024 2:55 PM 8/14/2024 2:55 PM 8/14/2024 2:55 PM 8/14/2024 3:00 PM 02:35:00 6.19 pH 21.59 °C 1.431.9 μS/cm 9.785 NTU 2.1 mV 14.71 ft 255.00 ml/min 9/14/2024 3:00 PM 02:35:00 6.19 pH 21.14 °C μS/cm 9.785 NTU 1.0 mV 14.71 ft 255.00 ml/min 9/14/2024 3:05 PM 02:40:00 6.22 pH 21.32 °C μS/cm 7.35 NTU 1.0 mV 14.71 ft 255.00 ml/min 9/14/2024 3:10 PM 02:45:00 6.21 pH 21.37 °C 1.418.1 μS/cm 7.35 NTU 1.1 mV 14.71 ft 255.00 ml/min 9/14/2024 3:10 PM 02:45:00 6.21 pH 21.37 °C 1.418.3 μS/cm 7.39 NTU 1.1 mV 14.71 ft 255.00 ml/min 9/14/2024 3:20 PM 8/14/2024 3:30 PM 03:05:00 6.54 pH 21.60 °C μS/cm μS/cm 7.35 NTU -9.4 mV 14.71 ft 255.00 ml/min 9/14/2024 3:30 PM 03:05:00 6.54 pH 21.63 °C μS/cm 1.418.7 μS/cm 1.4	8/14/2024	00.05.00	0.00 =11	20.00.00		O OC NITH	447 \/	44744	255 001/
2:35 PM 02:10:00 5.74 pH 21.11 °C μS/cm 9.76 NTU 55.5 mV 14.71 ft 255.00 ml/min 8/14/2024 2:45 PM 02:25:00 6.15 pH 21.42 °C μS/cm 1,420.1 μS/cm 2:50 PM 02:25:00 6.15 pH 21.79 °C μS/cm 1,420.1 μS/cm 1,420.24 2:55 PM 8/14/2024 2:55 PM 8/14/2024 3:00 PM 02:35:00 6.19 pH 21.59 °C 1,413.9 μS/cm 8/14/2024 3:00 PM 02:40:00 6.22 pH 21.32 °C μS/cm 1,418.1 μS	2:30 PM	02:05:00	6.09 pH	20.88 °C	μS/cm	9.86 NTU	14.7 mV	14./1 π	255.00 mi/min
β3/cm β3/		02:10:00	5.74 pH	21.11 °C		9.75 NTU	55.5 mV	14.71 ft	255.00 ml/min
2:40 PM			- '	_	-				
8/14/2024 2.45 PM 22.20:00 5.74 pH 21.42 °C 1,420.1 µS/cm 7.82 NTU 47.8 mV 14.71 ft 255.00 m/min 8/14/2024 2.55 PM 02:25:00 6.15 pH 21.79 °C 1,421.2 µS/cm 7.85 NTU 6.4 mV 14.71 ft 255.00 m/min 8/14/2024 2.55 PM 02:30:00 6.19 pH 21.59 °C 1,413.9 µS/cm 8.05 NTU 2.1 mV 14.71 ft 255.00 m/min 8/14/2024 3:05 PM 02:35:00 6.19 pH 21.32 °C 1,418.1 µS/cm 8.05 NTU 1.0 mV 14.71 ft 255.00 m/min 8/14/2024 3:05 PM 02:40:00 6.22 pH 21.32 °C 1,418.1 µS/cm 8/14/2024 3:15 PM 02:50:00 6.21 pH 21.37 °C 1,413.6 µS/cm 7.35 NTU -1.1 mV 14.71 ft 255.00 m/min 8/14/2024 3:15 PM 02:50:00 6.23 pH 21.40 °C 1,413.6 µS/cm 7.35 NTU -3.7 mV 14.71 ft 255.00 m/min 8/14/2024 3:20 PM 02:50:00 6.41 pH 21.54 °C µS/cm µS/cm 6.84 NTU -8.5 mV 14.71 ft 255.00 m/min 8/14/2024 3:25 PM 03:00:00 6.44 pH 21.60 °C 1,418.7 µS/cm 6.67 NTU -9.4 mV 14.71 ft 255.00 m/min 8/14/2024 3:35 PM 03:10:00 6.53 pH 21.43 °C µS/cm µS/cm 5.93 NTU -11.2 mV 14.71 ft 255.00 m/min 8/14/2024 3:35 PM 03:10:00 6.58 pH 21.31 °C µS/cm µS/cm 5.93 NTU -11.2 mV 14.71 ft 180.00 m/min 8/14/2024 3:35 PM 03:10:00 6.58 pH 21.81 °C µS/cm S/cm		02:15:00	6.15 pH	21.49 °C		8.63 NTU	9.3 mV	14.71 ft	255.00 ml/min
2:45 PM					-				
2:50 PM		02:20:00	5.74 pH	21.42 °C		7.82 NTU	47.8 mV	14.71 ft	255.00 ml/min
2:56 PM 8/14/2024 2:55 PM 02:30:00 6.19 pH 21.59 °C 1,413.9 μS/cm 8/14/2024 3:00 PM 8/14/2024 3:00 PM 02:35:00 6.19 pH 21.14 °C μS/cm 8/14/2024 3:05 PM 02:40:00 6.22 pH 21.32 °C 1,418.1 μS/cm 8/14/2024 3:05 PM 02:45:00 6.21 pH 21.37 °C 1,418.3 μS/cm 8/14/2024 3:10 PM 8/14/2024 3:15 PM 8/14/2024 3:15 PM 02:50:00 6.23 pH 21.40 °C 1,413.6 μS/cm 8/14/2024 3:20 PM 02:55:00 6.41 pH 21.54 °C 1,418.4 μS/cm 8/14/2024 3:25 PM 03:00:00 6.44 pH 21.60 °C 1,418.7 μS/cm 8/14/2024 3:35 PM 03:00:00 6.54 pH 21.43 °C 1,418.3 μS/cm 8/14/2024 3:35 PM 03:00:00 6.54 pH 21.43 °C 1,418.3 μS/cm 8/14/2024 3:35 PM 03:00:00 6.54 pH 21.43 °C 1,418.3 μS/cm 8/14/2024 3:35 PM 03:00:00 6.54 pH 21.43 °C 1,418.3 μS/cm 8/14/2024 3:35 PM 03:00:00 6.54 pH 21.43 °C 1,418.3 μS/cm 8/14/2024 3:35 PM 03:10:00 6.58 pH 21.43 °C 1,418.4 μS/cm 8/14/2024 3:35 PM 03:10:00 6.58 pH 21.43 °C μS/cm 1,418.4 μS/cm 5.93 NTU -11.2 mV 14.71 ft 255.00 ml/min	8/14/2024	02:25:00	6 15 pH	21.70 °€	1,421.2	7 68 NTH	6.4 mV	1.4.71 ft	255 00 ml/min
2:55 PM 02:30:00 6.19 pH 21.59 °C μS/cm 7.85 NTU 14.71 ft 255.00 ml/min 14.71 ft 255.00 ml/min 25.00 PM 02:35:00 6.19 pH 21.14 °C μS/cm 8.05 NTU 1.0 mV 14.71 ft 255.00 ml/min 14.71 f		02.23.00	0.15 pm	21.79 0	-	7.00 1410	0.4 1117	14.7110	255.00 111/111111
8/14/2024 3:00 PM 8/14/2024 3:00 PM 8/14/2024 3:05 PM 02:40:00 6.22 pH 21.32 °C 1,418.1 μS/cm 8.05 NTU 1.0 mV 14.71 ft 255.00 ml/min 14		02:30:00	6.19 pH	21.59 °C		7.85 NTU	2.1 mV	14.71 ft	255.00 ml/min
3:00 PM									
8/14/2024 3:05 PM 8/14/2024 3:10 PM 8/14/2024 3:10 PM 8/14/2024 3:10 PM 8/14/2024 3:20 PM 8/14/2024 3:20 PM 8/14/2024 3:20 PM 8/14/2024 3:35 PM 8/14/2024 3:40 PM 8/14/2024 3:		02:35:00	6.19 pH	21.14 °C		8.05 NTU	1.0 mV	14.71 ft	255.00 ml/min
8/14/2024 3:30 PM 02:45:00 6.21 pH 21.37 °C 1,413.3 μS/cm 7.39 NTU -1.1 mV 14.71 ft 255.00 ml/min 255									
3:10 PM	3:05 PM	02:40:00	6.22 pH	21.32 °C	μS/cm	7.35 NTU	-1.3 mV	14./1 ft	255.00 ml/min
3:10 PM 8/14/2024 3:15 PM 02:50:00 6.23 pH 21.40 °C 1,413.6 μS/cm 8/14/2024 3:20 PM 03:00:00 6.41 pH 21.54 °C 1,418.4 μS/cm 8/14/2024 3:25 PM 03:00:00 6.44 pH 21.60 °C 1,418.7 μS/cm 8/14/2024 3:30 PM 03:05:00 6.54 pH 21.43 °C 1,418.3 μS/cm 8/14/2024 3:35 PM 03:10:00 6.53 pH 21.31 °C 1,418.4 μS/cm 8/14/2024 3:35 PM 03:15:00 6.58 pH 21.48 °C 1,417.2 μS/cm 8/14/2024 3:40 PM 03:20:00 6.58 pH 21.48 °C 1,417.2 μS/cm 8/14/2024 3:40 PM 03:20:00 6.58 pH 21.28 °C 1,421.3 4.98 NTU -14.5 mV 14.71 ft 180.00 ml/min 180.00 ml/min 180.00 ml/min 180.00 ml/min		02:45:00	6,21 pH	21.37 °C		7.39 NTU	-1.1 mV	14.71 ft	255.00 ml/min
3:15 PM		02.10.00	0.2.1 p	2.10. 0	-				200100 1111/111111
8/14/2024 3:20 PM 02:55:00 6.41 pH 21.54 °C 1,418.4 μS/cm 6.84 NTU -8.5 mV 14.71 ft 255.00 ml/min 8/14/2024 3:25 PM 03:00:00 6.44 pH 21.60 °C 1,418.7 μS/cm 6.67 NTU -9.4 mV 14.71 ft 255.00 ml/min 8/14/2024 3:30 PM 03:05:00 6.54 pH 21.43 °C 1,418.3 μS/cm 5.93 NTU -11.2 mV 14.71 ft 255.00 ml/min 8/14/2024 3:35 PM 03:10:00 6.53 pH 21.31 °C 1,418.4 μS/cm 5.24 NTU -11.2 mV 14.71 ft 180.00 ml/min 8/14/2024 3:40 PM 03:15:00 6.58 pH 21.48 °C 1,417.2 μS/cm 5.05 NTU -12.0 mV 14.51 ft 180.00 ml/min 8/14/2024 3:40 PM 03:20:00 6.58 pH 21.28 °C 1,421.3 4.98 NTU -14.5 mV 14.51 ft 180.00 ml/min		02:50:00	6.23 pH	21.40 °C		7.35 NTU	-3.7 mV	14.71 ft	255.00 ml/min
3:20 PM					_				
8/14/2024 3:25 PM 03:00:00 6.44 pH 21.60 °C 1,418.7 μS/cm 6.67 NTU -9.4 mV 14.71 ft 255.00 ml/min 8/14/2024 3:30 PM 03:05:00 6.54 pH 21.43 °C 1,418.3 μS/cm 5.93 NTU -11.2 mV 14.71 ft 255.00 ml/min 8/14/2024 3:35 PM 03:10:00 6.53 pH 21.31 °C 1,418.4 μS/cm 5.24 NTU -11.2 mV 14.71 ft 180.00 ml/min 8/14/2024 3:40 PM 03:15:00 6.58 pH 21.48 °C 1,417.2 μS/cm 5.05 NTU -12.0 mV 14.51 ft 180.00 ml/min 8/14/2024 3:40 PM 03:20:00 6.58 pH 21.28 °C 1,421.3 4.98 NTU -14.5 mV 14.51 ft 180.00 ml/min		02:55:00	6.41 pH	21.54 °C		6.84 NTU	-8.5 mV	14.71 ft	255.00 ml/min
3:25 PM 8/14/2024 3:30 PM 03:05:00 6.54 pH 21.43 °C 1,418.3 μS/cm 8/14/2024 3:35 PM 03:10:00 6.53 pH 21.31 °C 1,418.4 μS/cm 8/14/2024 3:40 PM 03:15:00 6.58 pH 21.48 °C 1,417.2 μS/cm 8/14/2024 03:20:00 6.58 pH 21.28 °C 1,421.3 4 98 NTU -14.5 mV 14.71 ft 180.00 ml/min		03:00:00	6.44.54	21 60 °C	-	6 67 NTI I	0.4 m\/	11714	255 00 ml/min
3:30 PM		03.00.00	υ.44 μπ	21.00 0		0.07 NTU	-3.4 IIIV	14.7 1 11	200.00 III/IIIIN
3:30 PM 8/14/2024 3:35 PM 03:10:00 6.53 pH 21.31 °C 1,418.4 μS/cm 5.24 NTU -11.2 mV 14.71 ft 180.00 ml/min 8/14/2024 3:40 PM 03:15:00 6.58 pH 21.48 °C μS/cm 1,417.2 μS/cm 8/14/2024 03:20:00 6.58 pH 21.28 °C 1,421.3 4.98 NTU -14.5 mV 14.51 ft 180.00 ml/min		03:05:00	6.54 pH	21.43 °C		5.93 NTU	-11.2 mV	14.71 ft	255.00 ml/min
3:35 PM 8/14/2024 3:40 PM 8/14/2024 03:20:00 6.53 pH 21.31 °C μS/cm μS/cm 14.71 ft 180.00 ml/min 5.24 NTU -11.2 mV 14.71 ft 180.00 ml/min 5.05 NTU -12.0 mV 14.51 ft 180.00 ml/min 14.71 ft 180.00 ml/min									
8/14/2024 3:40 PM 03:15:00 6.58 pH 21.48 °C μS/cm 5.05 NTU -12.0 mV 14.51 ft 180.00 ml/min 8/14/2024 03:20:00 6.58 pH 21.28 °C 1,417.2 μS/cm 4.98 NTU -14.5 mV 14.51 ft 180.00 ml/min		03:10:00	6.53 pH	21.31 °C		5.24 NTU	-11.2 mV	14.71 ft	180.00 ml/min
3:40 PM 03:15:00 6.58 pH 21.48 °C μS/cm 5.05 NTU -12.0 mV 14.51 ft 180.00 ml/min 8/14/2024 03:20:00 6.58 pH 21.28 °C 1,421.3 4.98 NTU -14.5 mV 14.51 ft 180.00 ml/min		00.15	0 = 0	04.10.55	-	5 0 - 1 III .	40.0	4	400.00
03:20:00 6.58 pH 21.28 °C 4.98 NTU -14.5 mV 14.51 ft 180.00 ml/min		03:15:00	6.58 pH	21.48 °C		5.05 NTU	-12.0 mV	14.51 ft	180.00 ml/min
3:45 PM μS/cm μS/cm		03:20:00	6.58 pH	21.28 °C		4.98 NTI I	-14.5 mV	14.51 ft	180.00 ml/min
	3:45 PM	33.20.00	2,00 pr		μS/cm				

8/14/2024	03:25:00	6.62 pH	21.41 °C	1,421.1		4.47 NTU	-14.8 mV	14.51 ft	180.00 ml/min
3:50 PM	03.25.00	6.62 μπ	21.41 C	μS/cm		4.47 NTO	-14.01110	14.5111	180.00 111/111111
8/14/2024	03:30:00	6.51 pH	21.37 °C	1,413.8		4.51 NTU	-17.4 mV	14.51 ft	180.00 ml/min
3:55 PM	03.30.00	0.51 pm	21.37	μS/cm		4.51 1010	-17.41110	14.5111	180.00 1111/111111
8/14/2024	03:35:00	6.62 pH	21.19 °C	1,417.0		4.17 NTU	-20.5 mV	14.51 ft	180.00 ml/min
4:00 PM	03.33.00	0.02 μπ	21.19 C	μS/cm		4.17 1010	20.5 111	14.5111	100.00 1111/111111
8/14/2024	03:40:00	6.64 pH	21.28 °C	1,416.7		4.11 NTU	-21.5 mV	14.51 ft	180.00 ml/min
4:05 PM	03.40.00			μS/cm					
8/14/2024	03:45:00	00 6.53 pH	21.57 °C	1,417.8		4.14 NTU	-23.4 mV	14.51 ft	180.00 ml/min
4:10 PM	03.43.00	0.55 pri		μS/cm		4.14 1010	-23.4 1110	14.5111	180.00 1111/111111
8/14/2024	03:50:00	5.75 pH	21.38 °C	1,407.6		3.91 NTU	36.6 mV	14.51 ft	180.00 ml/min
4:15 PM	03.50.00	5.75 pm	21.38 °C	μS/cm		3.911110	30.0 111	14.5111	180.00 1111/111111
8/14/2024	03:55:00	3:55:00 6.67 pH	21.24 °C	1,412.7		4 12 NITH	-20.8 mV	1.4.5.1 ft	180.00 ml/min
4:20 PM	03.35.00			μS/cm		4.12 NTU	-20.8 1117	14.51 ft	100.00 1111/111111

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/13/2024 9:55:04 AM

Project: Arkwright AP-2

Operator Name: Dylan Quintal

Location Name: Arkwright, AP-2,

ARGWC-23

Latitude: 32.921245532411625 Longitude: -83.7017968104718

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 18.4 ft Total Depth: 28.4 ft

Initial Depth to Water: 12.7 ft

Pump Type: Reclaimer Pump

Tubing Type: LDPE

Pump Intake From TOC: 28.3 ft Estimated Total Volume Pumped:

25 gal

Flow Cell Volume: 90 ml Final Flow Rate: 650 ml/min Final Draw Down: 9.3 ft Instrument Used: Aqua TROLL 400

Serial Number: 965586

Test Notes:

Redevelopment by over-pumping. Lowered pump to bottom and began purging at 1000 mL per minute. Lowered flow rate to 500 mL/min at 1005. Surged bottom of screen at 1020. Brought to the top of the screen and then slowly lowered. Finished in the middle of the screen.

Weather Conditions:

Sunny, 80F

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 10 %	+/- 10 %	+/- 10	+/- 0.3	
8/13/2024 9:55 AM	00:00	6.40 pH	20.52 °C	525.57 μS/cm	0.96 mg/L	56.10 NTU	162.4 mV	12.70 ft	1,000.00 ml/min
8/13/2024 10:05 AM	10:00	6.45 pH	20.77 °C	524.30 μS/cm	3.22 mg/L	72.10 NTU	139.6 mV	22.00 ft	500.00 ml/min
8/13/2024 10:15 AM	20:00	6.44 pH	21.28 °C	524.78 μS/cm	2.65 mg/L	31.80 NTU	137.4 mV	22.00 ft	500.00 ml/min
8/13/2024 10:22 AM	27:53	6.41 pH	21.01 °C	528.63 μS/cm	2.29 mg/L	75.90 NTU	165.6 mV	22.00 ft	500.00 ml/min
8/13/2024 10:25 AM	29:57	6.41 pH	21.01 °C	528.75 μS/cm	2.58 mg/L	1,000.00 NTU	156.1 mV	22.00 ft	500.00 ml/min
8/13/2024 10:25 AM	30:26	6.41 pH	21.01 °C	529.01 μS/cm	2.62 mg/L	1,000.00 NTU	154.0 mV	22.00 ft	500.00 ml/min
8/13/2024 10:25 AM	30:40	6.41 pH	21.01 °C	529.29 μS/cm	2.63 mg/L	1,000.00 NTU	152.5 mV	22.00 ft	500.00 ml/min
8/13/2024 10:35 AM	40:40	6.41 pH	20.90 °C	528.50 μS/cm	1.81 mg/L	85.80 NTU	113.6 mV	22.00 ft	500.00 ml/min
8/13/2024 10:45 AM	50:40	6.39 pH	20.88 °C	530.69 μS/cm	1.80 mg/L	32.20 NTU	121.0 mV	22.00 ft	500.00 ml/min
8/13/2024 10:55 AM	01:00:40	6.39 pH	21.03 °C	528.86 μS/cm	1.59 mg/L	29.90 NTU	120.5 mV	22.00 ft	500.00 ml/min
8/13/2024 11:05 AM	01:10:40	6.42 pH	21.71 °C	527.22 µS/cm	3.75 mg/L	53.40 NTU	132.1 mV	22.00 ft	500.00 ml/min

8/13/2024 11:15 AM	01:20:40	7.76 pH	23.65 °C	534.03 μS/cm	8.89 mg/L	175.00 NTU	141.7 mV	22.00 ft	300.00 ml/min
8/13/2024 11:25 AM	01:30:40	6.33 pH	23.70 °C	531.68 μS/cm	3.93 mg/L	65.30 NTU	204.0 mV	22.00 ft	300.00 ml/min
8/13/2024 11:35 AM	01:40:40	6.33 pH	23.55 °C	533.15 μS/cm	2.87 mg/L	78.60 NTU	143.0 mV	22.00 ft	300.00 ml/min
8/13/2024 11:45 AM	01:50:40	6.34 pH	23.69 °C	532.06 μS/cm	2.38 mg/L	55.30 NTU	139.7 mV	22.00 ft	300.00 ml/min
8/13/2024 11:55 AM	02:00:40	6.35 pH	23.66 °C	531.55 μS/cm	2.05 mg/L	31.40 NTU	140.3 mV	22.00 ft	300.00 ml/min
8/13/2024 12:05 PM	02:10:40	6.33 pH	23.97 °C	530.22 μS/cm	1.74 mg/L	20.60 NTU	140.4 mV	22.00 ft	300.00 ml/min
8/13/2024 12:15 PM	02:20:40	6.34 pH	23.87 °C	529.45 μS/cm	1.54 mg/L	14.20 NTU	196.7 mV	22.00 ft	300.00 ml/min
8/13/2024 12:25 PM	02:30:40	6.35 pH	24.37 °C	529.94 μS/cm	1.35 mg/L	12.30 NTU	149.2 mV	22.00 ft	300.00 ml/min
8/13/2024 12:35 PM	02:40:40	6.35 pH	24.42 °C	530.62 μS/cm	1.18 mg/L	6.91 NTU	149.0 mV	22.00 ft	300.00 ml/min
8/13/2024 12:40 PM	02:45:10	6.35 pH	24.41 °C	529.39 μS/cm	1.14 mg/L	5.16 NTU	195.2 mV	22.00 ft	300.00 ml/min
8/13/2024 12:45 PM	02:50:10	6.35 pH	24.46 °C	529.32 μS/cm	1.09 mg/L	4.46 NTU	147.7 mV	22.00 ft	300.00 ml/min
8/13/2024 12:50 PM	02:55:10	6.34 pH	24.50 °C	530.24 μS/cm	1.03 mg/L	4.11 NTU	145.5 mV	22.00 ft	300.00 ml/min
8/13/2024 12:55 PM	03:00:10	6.33 pH	24.50 °C	529.51 μS/cm	0.98 mg/L	4.47 NTU	149.4 mV	22.00 ft	300.00 ml/min
8/13/2024 1:00 PM	03:05:10	6.34 pH	24.77 °C	533.68 μS/cm	0.93 mg/L	46.70 NTU	142.5 mV	22.00 ft	300.00 ml/min
8/13/2024 1:05 PM	03:10:10	6.36 pH	26.15 °C	531.04 μS/cm	0.97 mg/L	17.40 NTU	140.9 mV	22.00 ft	300.00 ml/min
8/13/2024 1:10 PM	03:15:10	6.38 pH	25.98 °C	527.16 μS/cm	0.81 mg/L	15.20 NTU	161.4 mV	22.00 ft	300.00 ml/min
8/13/2024 1:15 PM	03:20:10	6.38 pH	25.79 °C	527.07 μS/cm	0.75 mg/L	26.30 NTU	113.4 mV	22.00 ft	300.00 ml/min
8/13/2024 1:20 PM	03:25:10	6.38 pH	26.15 °C	526.39 μS/cm	0.73 mg/L	34.70 NTU	38.7 mV	22.00 ft	300.00 ml/min
8/13/2024 1:25 PM	03:30:10	6.37 pH	26.02 °C	526.64 μS/cm	0.71 mg/L	36.60 NTU	-2.6 mV	22.00 ft	300.00 ml/min
8/13/2024 1:30 PM	03:35:10	6.38 pH	22.30 °C	521.53 μS/cm	1.20 mg/L	21.00 NTU	-42.9 mV	22.00 ft	650.00 ml/min
8/13/2024 1:35 PM	03:40:10	6.38 pH	21.86 °C	527.54 μS/cm	0.97 mg/L	13.20 NTU	10.5 mV	22.00 ft	650.00 ml/min
8/13/2024 1:40 PM	03:45:10	6.37 pH	21.63 °C	528.41 μS/cm	0.91 mg/L	8.28 NTU	10.0 mV	22.00 ft	650.00 ml/min
8/13/2024 1:45 PM	03:50:10	6.35 pH	22.04 °C	528.55 μS/cm	0.83 mg/L	6.68 NTU	10.8 mV	22.00 ft	650.00 ml/min
8/13/2024 1:50 PM	03:55:10	6.36 pH	21.99 °C	528.17 μS/cm	0.75 mg/L	4.68 NTU	-6.1 mV	22.00 ft	650.00 ml/min
8/13/2024 1:57 PM	04:02:43	6.38 pH	22.03 °C	527.88 μS/cm	0.75 mg/L	3.79 NTU	-14.2 mV	22.00 ft	650.00 ml/min
8/13/2024 2:02 PM	04:07:43	6.37 pH	22.17 °C	528.96 μS/cm	0.75 mg/L	2.98 NTU	0.1 mV	22.00 ft	650.00 ml/min

Sample ID:	Description:
------------	--------------

B.2 Field Sampling Data

Test Date / Time: 8/20/2024 12:43:03 PM

Project: Arkwright **Operator Name:** Z Levy

Location Name: ARAMW-1 Latitude: 32.92146483904961 Longitude: -83.70217323311017

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 37.44 ft Total Depth: 47.44 ft

Initial Depth to Water: 13.7 ft

Pump Type: Peristaltic Pump

Tubing Type: LDPE

Pump Intake From TOC: 42 ft Estimated Total Volume Pumped:

9000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 300 ml/min Final Draw Down: 0.35 ft Instrument Used: Aqua TROLL 400

Serial Number: 989619

Test Notes:

HS: 0.0 mg/l

Weather Conditions:

Clear 30 degrees Celsius

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 10 %	+/- 10 %	+/- 10	+/- 0.33	
8/20/2024 12:43 PM	00:00	6.28 pH	27.97 °C	631.33 μS/cm	0.56 mg/L	3.84 NTU	60.7 mV	14.02 ft	300.00 ml/min
8/20/2024 12:48 PM	05:00	6.25 pH	21.52 °C	697.50 μS/cm	0.12 mg/L	4.84 NTU	44.7 mV	14.04 ft	300.00 ml/min
8/20/2024 12:53 PM	10:00	6.30 pH	20.87 °C	697.76 μS/cm	0.10 mg/L	4.87 NTU	38.3 mV	14.05 ft	300.00 ml/min
8/20/2024 12:58 PM	15:00	6.28 pH	20.67 °C	700.31 μS/cm	0.08 mg/L	3.63 NTU	36.5 mV	14.05 ft	300.00 ml/min
8/20/2024 1:03 PM	20:00	6.15 pH	20.82 °C	698.54 μS/cm	0.08 mg/L	3.40 NTU	36.4 mV	14.05 ft	300.00 ml/min
8/20/2024 1:08 PM	25:00	6.15 pH	20.83 °C	696.21 μS/cm	0.08 mg/L	2.75 NTU	36.9 mV	14.05 ft	300.00 ml/min
8/20/2024 1:13 PM	30:00	6.13 pH	20.83 °C	704.19 µS/cm	0.07 mg/L	2.27 NTU	37.6 mV	14.05 ft	300.00 ml/min

Samples

Sample ID:	Description:
------------	--------------

	@ 1315
	9 bottles
	Radium
	TDS
ARK-ARAMW-1	Metals
	Dissolved metals
	Nitrate/nitrite
	Alkalinity
	Anions

Test Date / Time: 8/20/2024 11:11:50 AM

Project: Arkwright **Operator Name:** Z Levy

Location Name: ARAMW-2 Latitude: 32.92137481740955 Longitude: -83.70216233663605

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 15.2 ft Total Depth: 25.2 ft

Initial Depth to Water: 13.82 ft

Pump Type: Peristaltic Pump

Tubing Type: LDPE

Pump Intake From TOC: 20 ft Estimated Total Volume Pumped:

6000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.03 ft Instrument Used: Aqua TROLL 400

Serial Number: 989619

Test Notes: Sulfide: 0.0 mg/l

Weather Conditions: Clear 27 degrees Celsius

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 10 %	+/- 10 %	+/- 10	+/- 0.33	
8/20/2024 11:11 AM	00:00	6.09 pH	21.72 °C	700.19 μS/cm	0.12 mg/L	11.20 NTU	46.2 mV	13.84 ft	200.00 ml/min
8/20/2024 11:16 AM	05:00	6.08 pH	21.63 °C	698.41 μS/cm	0.11 mg/L	10.40 NTU	44.0 mV	13.85 ft	200.00 ml/min
8/20/2024 11:21 AM	10:00	6.09 pH	21.58 °C	695.94 μS/cm	0.12 mg/L	8.29 NTU	44.4 mV	13.85 ft	200.00 ml/min
8/20/2024 11:26 AM	15:00	6.08 pH	21.58 °C	689.11 μS/cm	0.12 mg/L	7.50 NTU	44.6 mV	13.85 ft	200.00 ml/min
8/20/2024 11:31 AM	20:00	6.09 pH	21.58 °C	698.81 μS/cm	0.13 mg/L	4.70 NTU	43.8 mV	13.85 ft	200.00 ml/min
8/20/2024 11:36 AM	25:00	6.08 pH	21.61 °C	693.87 μS/cm	0.13 mg/L	2.85 NTU	44.2 mV	13.85 ft	200.00 ml/min
8/20/2024 11:41 AM	30:00	6.08 pH	21.67 °C	701.90 μS/cm	0.12 mg/L	2.55 NTU	44.4 mV	13.85 ft	200.00 ml/min

Samples

Sample ID:	Description:
------------	--------------

	@ 1145
	9 bottles
	Alkalinity
	Anions
ARK-ARAMW-2	TDS
	Nitrate/nitrite
	Radium
	Metals
	Dissolved metals

Test Date / Time: 8/20/2024 12:30:04 PM

Project: Arkwright

Operator Name: Dylan Quintal

Location Name: Arkwright, AP-2,

ARAMW-7

Latitude: 32.93105095141628 Longitude: -83.70962745418582

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 40.4 ft Total Depth: 50.7 ft

Initial Depth to Water: 13.29 ft

Pump Type: Peristaltic Pump

Tubing Type: LDPE

Pump Intake From TOC: 45.4 ft Estimated Total Volume Pumped:

4500 ml

Flow Cell Volume: 90 ml Final Flow Rate: 150 ml/min Final Draw Down: 0.2 ft Instrument Used: Aqua TROLL 400

Serial Number: 1080302

Test Notes:

Pump speed: 1

Hydrogen sulfide: 0.0 mg/L

Weather Conditions:

Sunny, 85F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 10 %	+/- 10 %	+/- 10	+/- 0.3	
8/20/2024	00:00	5.65 pH	20.61 °C	1,799.4	0.82 mg/L	7.17 NTU	91.4 mV	13.29 ft	150.00 ml/min
12:30 PM	00.00	3.03 pm	20.01 0	μS/cm	0.02 mg/L	7.17 1010	91.41110	13.2910	130.00 111/111111
8/20/2024	05:00	5.64 pH	20.66 °C	1,801.1	0.74 mg/L	4.89 NTU	97.4 mV	13.29 ft	150.00 ml/min
12:35 PM	03.00	3.04 pri	20.00 C	μS/cm 0.74	0.74 mg/L	0.74 Hig/L 4.89 NTO	97.41110	13.29 11	
8/20/2024	10:00	10:00 5.64 pH 20.48 °C	1,781.8	0.66 mg/L	3.77 NTU	88.1 mV	13.29 ft	150.00 ml/min	
12:40 PM	10.00	3.04 pm	20.40 0	μS/cm	0.00 mg/L	0.77 1410	00.11111	10.20 10	100.00 1117111111
8/20/2024	15:00	15:00 5.64 pH	20.39 °C	1,781.5	0.59 mg/L	3.79 NTU	87.2 mV	13.29 ft	150.00 ml/min
12:45 PM	13.00			μS/cm	0.55 mg/L	3.73 1410	07.2 1117	13.23 11	130.00 111/111111
8/20/2024	20:00	20:00 5.63 pH	20.42 °C	1,793.7	0.30 mg/L	2.84 NTU	86.0 mV	13.29 ft	150.00 ml/min
12:50 PM	20.00	3.03 pri	20.42 0	μS/cm	0.30 mg/L	2.04 1110	00.0 111	13.2911	130.00 1111/111111
8/20/2024	25:00	5.63 pH	20.21 °C	1,784.3	0.29 mg/L	2.13 NTU	85.8 mV	13.29 ft	150.00 ml/min
12:55 PM	23.00	5.63 pri	20.21 0	μS/cm	0.29 Hig/L	2.13 N10	00.0 1110	13.2911	130.00 1111/111111
8/20/2024	30:00	5.62 pH	20.38 °C	1,782.2	0.28 mg/L	2.95 NTU	86.2 mV	13 20 ft	150.00 ml/min
1:00 PM	30.00	5.02 pri	20.38 C	μS/cm	0.20 Hig/L	2.95 N I U	86.2 MV	13.29 ft	130.00 111/111111

Samples

Sample ID:	Description:
ARK-ARAMW-7	9 bottles at 1305: Metals, field filtered dissolved metals, anions, TDS, nitrate/nitrite, alkalinity, radium.

Test Date / Time: 8/20/2024 9:04:18 AM

Project: Arkwright

Operator Name: J. Bankston

Location Name: Arkwright

ARAMW-8

Latitude: 32.921361374918874 Longitude: -83.7019107713522

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 39.54 ft Total Depth: 49.54 ft

Initial Depth to Water: 12.33 ft

Pump Type: Peristaltic pump

Tubing Type: LDPE

Pump Intake From TOC: 44.5 ft Estimated Total Volume Pumped:

2500 ml

Flow Cell Volume: 90 ml Final Flow Rate: 100 ml/min Final Draw Down: 3.4 ft Instrument Used: Aqua TROLL 400

Serial Number: 1080306

Test Notes:

Heron dipper-T SN 11DF2206168HB

H2S: 0.0 mg/L

Weather Conditions:

Sunny 80F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 10 %	+/- 10 %	+/- 10	+/- 0.3	
8/20/2024 9:04 AM	00:00	6.47 pH	22.53 °C	672.33 μS/cm	4.66 mg/L	7.05 NTU	238.8 mV	12.97 ft	100.00 ml/min
8/20/2024 9:09 AM	05:00	6.49 pH	22.53 °C	678.49 μS/cm	4.18 mg/L	2.95 NTU	251.3 mV	13.52 ft	100.00 ml/min
8/20/2024 9:14 AM	10:00	6.48 pH	22.75 °C	665.06 μS/cm	3.51 mg/L	14.16 NTU	306.6 mV	13.52 ft	100.00 ml/min
8/20/2024 9:19 AM	15:00	6.48 pH	23.00 °C	663.83 μS/cm	3.13 mg/L	4.11 NTU	301.5 mV	14.68 ft	100.00 ml/min
8/20/2024 9:24 AM	20:00	6.47 pH	23.29 °C	662.11 μS/cm	2.93 mg/L	3.67 NTU	223.7 mV	15.04 ft	100.00 ml/min
8/20/2024 9:29 AM	25:00	6.47 pH	23.46 °C	654.96 μS/cm	2.84 mg/L	2.79 NTU	254.3 mV	15.73 ft	100.00 ml/min

Samples

Sample ID:

ARK-ARAMW-8	Sample Time:0935 ; 9 bottles: Metals, Radiologicals, Anions, TDS, Alkalinity, Nitrate/Nitrite Fe2+/Mn2+
ARK-AP2-FD-03	7 bottles: Metals, Radiologicals, Anions, TDS, Alkalinity, Nitrate/Nitrite Fe2+/Mn2+

Test Date / Time: 8/20/2024 11:24:33 AM

Project: Arkwright **Operator Name:** J.Myer

Location Name: AP2-ARAMW-9

Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 94.5 ft
Total Depth: 105.55 ft
Initial Depth to Water: 7.9 ft

Pump Type: Peristaltic Pump

Tubing Type: LDPE

Pump Intake From TOC: 100.4 ft Estimated Total Volume Pumped:

2000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 100 ml/min Final Draw Down: 3.6 ft Instrument Used: Aqua TROLL 400

Serial Number: 1082817

Test Notes:

Turbidimeter S/N: 22990D000345 WL S/N: T11DF2106090ML

Weather Conditions:

Sunny 82 F

Low-Flow Readings:

Date Time	Elapsed Time	pН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 10 %	+/- 10 %	+/- 10	+/- 0.5	
8/20/2024 11:24 AM	00:00	6.79 pH	24.96 °C	997.66 μS/cm	3.17 mg/L	3.46 NTU	-126.2 mV	8.80 ft	100.00 ml/min
8/20/2024 11:29 AM	05:00	7.72 pH	21.77 °C	1,052.3 μS/cm	0.48 mg/L	2.39 NTU	-142.9 mV	9.60 ft	100.00 ml/min
8/20/2024 11:34 AM	10:00	7.89 pH	21.44 °C	1,061.9 μS/cm	0.35 mg/L	1.47 NTU	-199.6 mV	10.20 ft	100.00 ml/min
8/20/2024 11:39 AM	15:00	7.94 pH	21.31 °C	1,059.6 μS/cm	0.27 mg/L	3.48 NTU	-153.7 mV	10.90 ft	100.00 ml/min
8/20/2024 11:44 AM	20:00	7.95 pH	21.20 °C	1,058.8 μS/cm	0.24 mg/L	3.35 NTU	-154.4 mV	11.50 ft	100.00 ml/min

Samples

Sample ID:	Description:
------------	--------------

	9 bottles filled at 1150
	1 Metals
	1 Dissolved Metals
	1 TDS
ARK-ARAMW-9	1 Nitrate/Nitrite
	1 Anions
	1 Alkalinity
	3 Ra-226/Ra-228

Test Date / Time: 8/20/2024 8:45:05 AM

Project: Arkwright

Operator Name: Dylan Quintal

Location Name: Arkwright, AP-2,

ARGWA-19

Latitude: 32.9237420103943 Longitude: -83.7009420990944

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 43.1 ft Total Depth: 53.4 ft

Initial Depth to Water: 29.31 ft

Pump Type: Dedicated Bladder

Pump

Tubing Type: LDPE

Pump Intake From TOC: 47.7 ft Estimated Total Volume Pumped:

9000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 450 ml/min

Final Draw Down: 0 ft

Instrument Used: Aqua TROLL 400

Serial Number: 1080302

Test Notes:

MP-50 S/N: 12 ID: 103 Pressure: 35 psi Hydrogen

sulfide: 0.0 mg/L

Weather Conditions:

Clear, 73F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 10 %	+/- 10 %	+/- 10	+/- 0.3	
8/20/2024	00:00	5.94 pH	19.94 °C	120.25 µS/cm	4.03 mg/L	1.14 NTU	104.3 mV	29.31 ft	450.00 ml/min
8:45 AM	00.00	3.54 pm	13.54 0	120.25 μο/οπ	4.03 mg/L	1.141010	104.5111	25.51 10	450.00 111/111111
8/20/2024	05:00	5.92 pH	20.05 °C	120.49 µS/cm	4.08 mg/L	0.69 NTU	93.8 mV	29.31 ft	450.00 ml/min
8:50 AM	05.00	5.92 pm	20.05 C	120.49 μ3/611	4.06 Hig/L	0.69 1410	93.0 1110	29.3111	450.00 111/111111
8/20/2024	10:00	5.92 pH	20.14 °C	120.12 µS/cm	4.11 mg/L	0.90 NTU	89.0 mV	29.31 ft	450.00 ml/min
8:55 AM	10.00	5.92 pm	20.14 C	120.12 μ3/611	4.11111g/L	0.90 1410	69.0 IIIV	29.31 11	450.00 1111/111111
8/20/2024	15:00	5.93 pH	20.25 °C	119.86 µS/cm	4.13 mg/L	0.60 NTU	91.5 mV	29.31 ft	450.00 ml/min
9:00 AM	15.00	15.00 5.95 pm 20.25 °C	119.00 μ3/011	4.13 Hig/L	0.60 1410	91.51110	29.3111	450.00 mi/min	
8/20/2024	20:00	5.93 pH	20.32 °C	121.05 µS/cm	4.15 mg/L	0.48 NTU	119.7 mV	29.31 ft	450.00 ml/min
9:05 AM	20.00	ა.ყა рп	20.32 C	121.05 μ3/cm	4.15 Hig/L	0.46 NTO	119.7 1110	29.3111	450.00 111/111111

Samples

Sample ID:	Description:
ARK-ARGWA-19	9 bottles at 0910: Metals, dissolved metals, anions, TDS, Nitrate/Nitrite, Alkalinity, Radium

Test Date / Time: 8/20/2024 8:54:59 AM

Project: Arkwright
Operator Name: Z Levy

Location Name: ARGWA-20 Latitude: 32.912241627008285 Longitude: -83.69827996805736

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 28.1 ft Total Depth: 38.4 ft

Initial Depth to Water: 16.86 ft

Pump Type: Dedicated Bladder Pump

Tubing Type: LDPE

Pump Intake From TOC: 32.6 ft Estimated Total Volume Pumped:

7000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.14 ft Instrument Used: Aqua TROLL 400

Serial Number: 989619

Test Notes:

MP50: 21 CPM:4 ID: 103 PSI: 20 HS: 0.0 mg/l

Weather Conditions:

Clear 22 degrees Celsius

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 10 %	+/- 10 %	+/- 10	+/- 0.33	
8/20/2024 8:54 AM	00:00	5.87 pH	19.01 °C	144.32 μS/cm	5.46 mg/L	12.60 NTU	168.5 mV	17.00 ft	200.00 ml/min
8/20/2024 8:59 AM	05:00	5.85 pH	18.75 °C	145.89 μS/cm	5.34 mg/L	11.40 NTU	147.4 mV	17.00 ft	200.00 ml/min
8/20/2024 9:04 AM	10:00	5.85 pH	18.73 °C	146.26 μS/cm	5.22 mg/L	9.01 NTU	108.2 mV	17.00 ft	200.00 ml/min
8/20/2024 9:09 AM	15:00	5.84 pH	18.73 °C	145.40 μS/cm	5.17 mg/L	6.77 NTU	136.7 mV	17.00 ft	200.00 ml/min
8/20/2024 9:14 AM	20:00	5.84 pH	18.73 °C	144.18 μS/cm	5.15 mg/L	5.86 NTU	137.3 mV	17.00 ft	200.00 ml/min
8/20/2024 9:19 AM	25:00	5.83 pH	18.73 °C	144.00 μS/cm	5.10 mg/L	4.61 NTU	137.2 mV	17.00 ft	200.00 ml/min
8/20/2024 9:24 AM	30:00	5.83 pH	18.75 °C	143.95 μS/cm	5.08 mg/L	4.13 NTU	136.9 mV	17.00 ft	200.00 ml/min
8/20/2024 9:29 AM	35:00	5.83 pH	18.78 °C	144.34 μS/cm	5.09 mg/L	4.25 NTU	137.0 mV	17.00 ft	200.00 ml/min

Samples

Sample ID:	Description:
	@ 0935
	9 bottles
	Alkalinity
	Anions
ARK-ARGWA-20	TDS
ARR-ARGWA-20	Nitrate/nitrite
	Radium
	Metals
	Dissolved metals

Test Date / Time: 8/20/2024 2:50:17 PM

Project: Arkwright
Operator Name: Z Levy

Location Name: ARGWC-21 Latitude: 32.921529295885

Longitude: -83.70217080235825

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 17.45 ft Total Depth: 27.75 ft

Initial Depth to Water: 14.48 ft

Pump Type: Peristaltic Pump

Tubing Type: LDPE

Pump Intake From TOC: 22.5 ft Estimated Total Volume Pumped:

4000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.95 ft Instrument Used: Aqua TROLL 400

Serial Number: 989619

Test Notes:

HS: 0.0 mg/l

Weather Conditions:

Clear 32 degrees Celsius

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 10 %	+/- 10 %	+/- 10	+/- 0.33	
8/20/2024 2:50 PM	00:00	6.16 pH	27.87 °C	644.63 μS/cm	0.47 mg/L	2.39 NTU	86.9 mV	15.40 ft	200.00 ml/min
8/20/2024 2:55 PM	05:00	6.17 pH	22.11 °C	710.02 μS/cm	0.10 mg/L	2.30 NTU	85.7 mV	15.43 ft	200.00 ml/min
8/20/2024 3:00 PM	10:00	6.18 pH	21.30 °C	714.11 µS/cm	0.09 mg/L	2.06 NTU	68.6 mV	15.43 ft	200.00 ml/min
8/20/2024 3:05 PM	15:00	6.18 pH	21.27 °C	716.43 µS/cm	0.09 mg/L	2.24 NTU	65.8 mV	15.43 ft	200.00 ml/min
8/20/2024 3:10 PM	20:00	6.20 pH	21.00 °C	705.79 μS/cm	0.08 mg/L	2.01 NTU	65.0 mV	15.43 ft	200.00 ml/min

Samples

Sample ID:	Description:
------------	--------------

	@ 1515
	9 bottles
	Radium
	TDS
ARK-ARGWC-21	Anions
ARK-ARGWC-21	Metals
	dissolved metals
	Nitrate/nitrite
	Alkalinity

Test Date / Time: 8/20/2024 1:35:01 PM

Project: Arkwright **Operator Name:** J.Myer

Location Name: ARGWC-22 Latitude: 32.919994493196626 Longitude: -83.70404855901411

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 17.71 ft Total Depth: 27.71 ft

Initial Depth to Water: 14.33 ft

Pump Type: Peristaltic Pump

Tubing Type: LDPE

Pump Intake From TOC: 22.7 ft Estimated Total Volume Pumped:

3750 ml

Flow Cell Volume: 90 ml Final Flow Rate: 150 ml/min Final Draw Down: 0.12 ft Instrument Used: Aqua TROLL 400

Serial Number: 1082817

Test Notes:

MP-50 S/N: 22

ID: 103 PSI: 30

Turbidimeter S/N: 22990D000345

WL S/N: T11DF2106090ML

HS: 0.0 mg/L

Weather Conditions:

Sunny 88 F

Low-Flow Readings:

Date Time	Elapsed Time	pН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 10 %	+/- 10 %	+/- 10	+/- 0.5	
8/20/2024 1:35 PM	00:00	5.76 pH	28.55 °C	1,245.5 μS/cm	0.95 mg/L	7.70 NTU	47.6 mV	14.45 ft	150.00 ml/min
8/20/2024 1:40 PM	05:00	5.75 pH	21.21 °C	1,387.3 μS/cm	0.13 mg/L	5.85 NTU	49.3 mV	14.45 ft	150.00 ml/min
8/20/2024 1:45 PM	10:00	5.75 pH	20.66 °C	1,397.8 μS/cm	0.10 mg/L	4.14 NTU	38.7 mV	14.45 ft	150.00 ml/min
8/20/2024 1:50 PM	15:00	5.75 pH	20.41 °C	1,394.1 μS/cm	0.09 mg/L	3.60 NTU	34.9 mV	14.45 ft	150.00 ml/min
8/20/2024 1:55 PM	20:00	5.75 pH	20.37 °C	1,390.3 μS/cm	0.08 mg/L	2.68 NTU	32.7 mV	14.45 ft	150.00 ml/min
8/20/2024 2:00 PM	25:00	5.76 pH	20.17 °C	1,381.3 μS/cm	0.08 mg/L	2.72 NTU	30.3 mV	14.45 ft	150.00 ml/min

Samples

Sample ID: Description:

	9 bottles filled at 1405
	1 Metals
	1 Dissolved Metals
ADK ADOMO 22	1 Alkalinity
ARK-ARGWC-22	1 Anions
	1 TDS
	1 Nitrate/Nitrite
	3 Ra-226/Ra-228

Test Date / Time: 8/20/2024 12:20:30 PM

Project: Arkwright

Operator Name: J. Bankston

Location Name: ARGWC-23 Latitude: 32.92138843057751 Longitude: -83.70193057462276

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 18.4 ft Total Depth: 28.4 ft

Initial Depth to Water: 12.75 ft

Pump Type: Peristaltic Pump

Tubing Type: LDPE

Pump Intake From TOC: 23.0 ft Estimated Total Volume Pumped:

2000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 100 ml/min Final Draw Down: 0.91 ft Instrument Used: Aqua TROLL 400

Serial Number: 1080306

Test Notes:

Peristaltic S/N: 108038

ID: 43 65 PSI

Heron dipper-T SN 11DF2206168HB

H2S: 0.0 mg/L

Weather Conditions:

Sunny 85

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 10 %	+/- 10 %	+/- 10	+/- 0.3	
8/20/2024	00:00	6.36 pH	28.74 °C	515.85 µS/cm	0.52 mg/L	3.84 NTU	106.5 mV	13.37 ft	100.00 ml/min
12:20 PM	00.00	0.30 pri	20.74 0	313.03 μ3/6/11	0.52 Hig/L	3.04 1110	100.5 111	13.57 10	100.00 111/111111
8/20/2024	05:00	6.34 pH	27.78 °C	513.71 µS/cm	0.39 mg/L	1.83 NTU	98.7 mV	13.59 ft	100.00 ml/min
12:25 PM	05.00	0.54 pri	27.70 0	313.71 μ3/6/11	0.59 Hig/L	1.03 1410	90.7 IIIV	13.39 11	100.00 111/111111
8/20/2024	10:00	6.33 pH	27.35 °C	513.96 µS/cm	0.28 mg/L	1.52 NTU	73.6 mV	13.62 ft	100.00 ml/min
12:30 PM	10.00	0.00 pm	27.55 0	313.30 μο/οπ	0.20 mg/L	1.52 1410	70.01117	10.02 10	100.00 111/111111
8/20/2024	15:00	6.33 pH	26.93 °C	514.81 µS/cm	0.34 mg/L	1.36 NTU	67.3 mV	13.65 ft	100.00 ml/min
12:35 PM	15.00	0.00 pri	20.55 0	ο 14.01 μο/οπ	0.54 Hig/L	1.55 1410	07.51110	15.55 10	100.00 111/111111
8/20/2024	20:00	6.34 pH	27.22 °C	513.79 µS/cm	0.31 mg/L	1.23 NTU	64.4 mV	13.66 ft	100.00 ml/min
12:40 PM	20.00	0.54 pri	21.22 0	υ 13.79 μ3/611	0.51 Hig/L	1.23 1410	04.4 1110	13.00 11	100.00 111/111111

Samples

Sample ID:	Description:
ARK-ARGWC-23	Sample Time: 1250; 9 bottles: Metals, Anions, TDS, Radium, Nitrate/Nitrate, Alkalinity,Fe2+/Mn2+

Test Date / Time: 8/21/2024 9:21:22 AM

Project: Arkwright

Operator Name: Dylan Quintal

Location Name: Arkwright, AP-2,

STN-TW22

Latitude: 32.921682770378 Longitude: -83.7020793557167

Well Diameter: 2 in Casing Type: PVC Screen Length: 5 ft Top of Screen: 30.38 ft Total Depth: 35.38 ft

Initial Depth to Water: 34.22 ft

Pump Type: Peristaltic Pump

Tubing Type: HDPE

Pump Intake From TOC: 35.25 ft Estimated Total Volume Pumped:

0 ml

Flow Cell Volume: 90 ml Final Flow Rate: 100 ml/min Final Draw Down: 1.18 ft Instrument Used: Aqua TROLL 400

Serial Number: 1080302

Test Notes:

Final parameters for second day purge. collected purge water in calibration cup for low flow reading. Well purged dry and final purge water sample collected.

Weather Conditions:

Mostly sunny, 74F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 10 %	+/- 10 %	+/- 10	+/- 0.3	
8/21/2024 9:21 AM	00:00	6.82 pH	24.68 °C	1,626.3 μS/cm	7.60 mg/L	173.00 NTU	-114.3 mV	34.22 ft	100.00 ml/min

Samples

Sample ID:	Description:
ARK-STN-TW22	6 bottles collected at 0845: Metals, field filtered dissolved metals, anions, TDS, alkalinity, nitrate/nitrite.

Test Date / Time: 8/21/2024 8:42:04 AM

Project: Arkwright

Operator Name: Dylan Quintal

Location Name: Arkwright, AP-2,

STN-TW22

Latitude: 32.921682770378 Longitude: -83.7020793557167

Well Diameter: 2 in Casing Type: PVC Screen Length: 5 ft Top of Screen: 29.9 ft Total Depth: 35.4 ft

Initial Depth to Water: 34.22 ft

Pump Type: Peristaltic Pump

Tubing Type: LDPE

Pump Intake From TOC: 35.25 ft Estimated Total Volume Pumped:

0 ml

Flow Cell Volume: 90 ml Final Flow Rate: 100 ml/min

Final Draw Down: 0 ft

Instrument Used: Aqua TROLL 400

Serial Number: 1080302

Test Notes:

Initial parameters for second day purge. collected purge water in calibration cup for low flow reading. Well purged dry and final purge water sample collected.

Weather Conditions:

Mostly sunny, 72F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 10 %	+/- 10 %	+/- 10	+/- 0.3	
8/21/2024 8:42 AM	00:00	6.41 pH	23.32 °C	1,682.8 μS/cm	4.10 mg/L	142.00 NTU	-74.8 mV	34.22 ft	100.00 ml/min

Samples

Sample ID: Description:				
ARK-STN-TW22	6 bottles collected at 0845: Metals, field filtered dissolved metals, anions, TDS, alkalinity, nitrate/nitrite.			

Test Date / Time: 12/12/2024 12:36:52 PM

Project: Arkwright

Operator Name: B. Pennell

Location Name: Arkwright, AP-2,

ARAMW-10

Latitude: 32.92168737817932

Longitude: -83.7027525120802

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 48 ft Total Depth: 58 ft

Initial Depth to Water: 7.4 ft

Pump Type: Peristaltic Tubing Type: LDPE

Tubing Inner Diameter: 0.17 in

Tubing Length: 58 ft

Pump Intake From TOC: 53 ft Estimated Total Volume Pumped:

6875 ml

Flow Cell Volume: 90 ml Final Flow Rate: 275 ml/min Final Draw Down: 0.41 ft Instrument Used: Aqua TROLL 400

Serial Number: 1082822

Test Notes:

Sample time: 13:10.

Sulfurous odor noted during initial purge. Pre-purged well for approximately 7 mins at 275 ml/min (1.925 L).

Weather Conditions:

Sunny, 9 C

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 10 %	+/- 10 %	+/- 10	+/- 0.33	
12/12/2024	00:00	5.84 pH	18.03 °C	1,985.9	0.42 mg/L	1.43 NTU	-55.8 mV	7.40 ft	275.00 ml/min
12:36 PM	00.00	0.04 pm	10.00	μS/cm	0.42 mg/L	1.101110	00.0 111	7.4010	270.00 111,111111
12/12/2024	05:00	5.84 pH	17.97 °C	1,964.7	0.29 mg/L	0.85 NTU	-132.8 mV	7.79 ft	275.00 ml/min
12:41 PM	05.00	3.04 pri	17.97 C	μS/cm	0.29 mg/L	0.03 1410	132.0111	7.7510	27 5.00 111/111111
12/12/2024	10:00	5.84 pH	17.92 °C	1,942.3	0.27 mg/L	0.68 NTU	-100.1 mV	7.80 ft	275.00 ml/min
12:46 PM	10.00			μS/cm	0.27 mg/L	0.001110			273.00 111/111111
12/12/2024	15:00	5.85 pH	17.91 °C	1,920.7	0.26 mg/L	0.79 NTU	-99.7 mV	7.80 ft	275.00 ml/min
12:51 PM	15.00	3.03 pri	17.91 0	μS/cm	0.20 mg/L	0.79 1410	-99.7 IIIV	7.00 10	27 3.00 111/111111
12/12/2024	20:00	5 04 nU	17.89 °C	1,894.3	0.25 mg/L	0.60 NTU	-95.3 mV	7.81 ft	075 001/
12:56 PM	20.00	5.84 pH	17.69 C	μS/cm	0.25 Hig/L	0.60 1410	-95.5 1110	7.0111	275.00 ml/min
12/12/2024	25:00	5.84 pH	17.87 °C	1,884.4	0.25 mg/l	0.82 NTU	02.4 m\/	7 01 ft	275.00 ml/min
1:01 PM	25.00	5.04 рп		μS/cm	0.25 mg/L	0.62 NTU	-92.4 mV	7.81 ft	27 3.00 111/111111

Samples

Sample ID:	Description:
ARK-ARAMW-10	9 bottles: 3 radium, TDS, anions, total metals, nitrate/nitrite, alkalinity, dissolved metals

Test Date / Time: 12/12/2024 2:39:48 PM

Project: Plant Arkwright

Operator Name: Jaiden Stidston

Location Name: Arkwright, AP-2,

ARAMW-11

Latitude: 32.9218251458034 Longitude: -83.70279251620126

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 30.5 ft Total Depth: 40.5 ft

Initial Depth to Water: 7.36 ft

Pump Type: Peristaltic

Tubing Type: LDPE

Tubing Inner Diameter: 0.17 in

Tubing Length: 40.5 ft

Pump Intake From TOC: 35.5 ft Estimated Total Volume Pumped:

7950 ml

Flow Cell Volume: 90 ml Final Flow Rate: 265 ml/min Final Draw Down: 0.3 ft Instrument Used: Aqua TROLL 400

Serial Number: 1082822

Test Notes:

Sample time: 15:15.

Pre-purged well for approximately 14 mins at 265 ml/min (3.71 L).

Weather Conditions:

Sunny 12C

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 10 %	+/- 10 %	+/- 10	+/- 0.33	
12/12/2024 2:39 PM	00:00	5.49 pH	17.26 °C	1,801.7 μS/cm	0.52 mg/L		72.9 mV	7.36 ft	265.00 ml/min
12/12/2024 2:44 PM	05:00	5.47 pH	17.81 °C	1,771.6 μS/cm	0.30 mg/L	5.16 NTU	39.6 mV	7.66 ft	265.00 ml/min
12/12/2024 2:49 PM	10:00	5.46 pH	18.00 °C	1,763.9 μS/cm	0.27 mg/L	4.72 NTU	24.2 mV	7.66 ft	265.00 ml/min
12/12/2024 2:54 PM	15:00	5.46 pH	17.88 °C	1,760.6 μS/cm	0.26 mg/L	4.82 NTU	20.5 mV	7.66 ft	265.00 ml/min
12/12/2024 2:59 PM	20:00	5.46 pH	17.85 °C	1,749.9 μS/cm	0.25 mg/L	3.57 NTU	18.3 mV	7.66 ft	265.00 ml/min
12/12/2024 3:04 PM	25:00	5.46 pH	17.85 °C	1,740.0 μS/cm	0.24 mg/L	3.77 NTU	16.9 mV	7.66 ft	265.00 ml/min
12/12/2024 3:09 PM	30:00	5.46 pH	17.82 °C	1,732.1 µS/cm	0.24 mg/L	3.83 NTU	16.4 mV	7.66 ft	265.00 ml/min

Samples

Sample ID:	Description:
ARK-ARAMW-11	9 bottles: 3 radium, TDS, anions, total metals, nitrates/nitrite, alkalinity, dissolved metals

Plant Arkwright AP-2 Surface Water Samples August 12, 2024

Sample ID	Date	Time	Temp(°C)	рН	OPR (mV)	DO (mg/L)	Turbidity (NTU)	Conductance (mS/cm)	Coordinates
ARK-BC-0.8a	8/12/2024	1150	25.7	7.35	64.8	7.39	2.69	0.142	32.922739, -83.705772
ARC-BC-0.5.5	8/12/2024	1211	27.1	7.45	158.2	8.09	14.42	0.147	32.920558,-83.701663
ARC-BC-0.5.6	8/12/2024	1217	26.9	7.43	116.2	8.09	5.75	0.157	32.921139, -83.701900
ARC-BC-0.5.7	8/12/2024	1116	25.6	7.51	64.0	7.60	2.78	0.164	32.921547, -83.702854
ARC-BC-BR	8/12/2024	1043	25.1	7.55	166.1	8.45	2.20	0.156	32.920236,-83.699817

B.3 Calibration Data

Site Name: GPC Plant Arkwright

Date: 08/20/2024

Calibrated By: <u>Dylan Quintal</u> Field Conditions: <u>Clear, 69F</u>

Instrument	Manufactuer/ Model	Serial Number
Water Quality Meter	In-Situ AquaTroll 400	1080302
Turbidity Meter	Hach 2100Q	23060D000344

Calibration Standard Information									
Parameter	Standard	Lot #	Date of Expiration	Brand					
Specific Conductance (µS/cm)	4,490	24005593	Dec-24	AIR					
pH (SU)	4.00	2405593	Dec-24	AIR					
pH (SU)	7.00	24004517	Dec-24	AIR					
pH (SU)	10.00	24000085	Dec-24	AIR					
D.O. (%)	N/A	N/A	N/A	N/A					
ORP (mV)	228.0	24006903	Dec-24	AIR					

Calibration						
Time Start	07:20	Time Finish	07:40			
			Calibration Solution			
Parameter	Standard	Calibration Value	Temperature (°C)	Acceptance Criteria	Reference	
Specific Conductance (µS/cm)	4,490	4497.2	24.64	± 10% of standard	EPA 2023	
pH (SU)	4.00	4.06	24.45	± 0.1	GWMP	
pH (SU)	7.00	7.03	23.90	± 0.1	GWMP	
pH (SU)	10.00	10.04	25.06	± 0.1	GWMP	
D.O. (%)	N/A	98.91	22.25	± 10%	NA	
ORP (mV)	228.0	224.8	24.55	± 10	EPA 2023	

	Standard	Calibration Value	Acceptance Criteria	Reference
	20	20.2		
Turbidity (NTU)	100	101	± 10% of standard	EPA 2023
	800	823	± 10 % of standard	LFA 2023
	10	9.02		

Calibration Check						
Time Start	14:20 Time Finish 14:30					
		Calibration Solution				
Parameter	Standard	Calibration Value	Temperature (°C)	Acceptance Criteria	Reference	
Specific Conductance (µS/cm)	4,490	4622.0	35.79	± 10% of standard	EPA 2023	
pH (SU)	4.00	4.16	37.21	± 0.1	GWMP	
pH (SU)	7.00	7.12	37.1	± 0.1	GWMP	
pH (SU)	10.00	9.94	37.74	± 0.1	GWMP	

	Standard	Calibration Value	Acceptance Criteria	Reference
Turbidity (NTU)	20	20.3		
Turblaity (NTO)	100	101	± 10% of standard	EPA 2023
	800	792	± 10 % of standard	LFA 2023
	10	10.3		

Notes:

Completed by DQ 08/20/2024 Checked by AS 08/23/2024

Date: 08/20/2024

Site Name: GPC Plant Arkwright

Calibrated By: <u>Jackson Bankston</u> Field Conditions: <u>Sunny 70F</u>

Instrument	Manufactuer/ Model	Serial Number
Water Quality Meter	In-Situ AquaTroll 400	1080306
Turbidity Meter	Hack 2100Q	22090D000235

Calibration Standard Information						
Parameter	Standard	Lot #	Date of Expiration	Brand		
Specific Conductance (µS/cm)	4,490	24005593	Dec-24	AIR		
pH (SU)	4.00	24005593	Dec-24	AIR		
pH (SU)	7.00	240004517	Dec-24	AIR		
pH (SU)	10.00	24000085	Dec-24	AIR		
D.O. (%)	N/A	N/A	N/A	N/A		
ORP (mV)	228.0	24006903	Dec-24	AIR		

Calibration						
Time Start	7:48	Time Finish	7:57			
			Calibration Solution			
Parameter	Standard	Calibration Value	Temperature (°C)	Acceptance Criteria	Reference	
Specific Conductance (µS/cm)	4,490	4,465	24.88	± 10% of standard	EPA 2023	
pH (SU)	4.00	4.01	24.90	± 0.1	GWMP	
pH (SU)	7.00	7.02	29.94	± 0.1	GWMP	
pH (SU)	10.00	10.01	29.27	± 0.1	GWMP	
D.O. (%)	N/A	99.82	22.88	± 10%	NA	
ORP (mV)	228.0	230.2	23.73	± 10	EPA 2023	

	Standard	Calibration Value	Acceptance Criteria	Reference
	20	20.3		
Turbidity (NTU)	100	100	± 10% of standard	EPA 2023
	800	791	± 10 % of standard	LFA 2023
	10	9.58		

Calibration Check						
Time Start 14:50 Time Finish 15:15						
			Calibration Solution			
Parameter	Standard	Calibration Value	Temperature (°C)	Acceptance Criteria	Reference	
Specific Conductance (µS/cm)	4,490	4,521.6	28.72	± 10% of standard	EPA 2023	
pH (SU)	4.00	4.06	28.77	± 0.1	GWMP	
pH (SU)	7.00	7.05	28.65	± 0.1	GWMP	
pH (SU)	10.00	10.05	28.39	± 0.1	GWMP	

	Standard	Calibration Value	Acceptance Criteria	Reference
Turbidity (NTU)	20	19.6		
Turblaity (1410)	100	95.6	± 10% of standard	EPA 2023
	800	812	± 10 % of standard	LFA 2023
	10	9.8		

Notes:

Completed by JB 08/20/2024 Checked by AS 08/23/2024 Site Name: GPC Plant Arkwright

Calibrated By: <u>John Myer</u> Field Conditions: <u>Sunny, 70F</u>

Date: 08/20/2024

Instrument	Manufactuer/ Model	Serial Number
Water Quality Meter	In-Situ AquaTroll 400	1082817
Turbidity Meter	Hach 2100Q	22090D000345

Calibration Standard Information						
Parameter	Standard	Lot #	Date of Expiration	Brand		
Specific Conductance (µS/cm)	4,490	24005593	Dec-24	AIR		
pH (SU)	4.00	24005593	Dec-24	AIR		
pH (SU)	7.00	24004517	Dec-24	AIR		
pH (SU)	10.00	24000085	Dec-24	AIR		
D.O. (%)	N/A	N/A	N/A	N/A		
ORP (mV)	228.0	24006903	Dec-24	AIR		

Calibration						
Time Start	8:30	Time Finish	8:50			
			Calibration Solution			
Parameter	Standard	Calibration Value	Temperature (°C)	Acceptance Criteria	Reference	
Specific Conductance (µS/cm)	4,490	4455	24.5	± 10% of standard	EPA 2023	
pH (SU)	4.00	4.00	25.0	± 0.1	GWMP	
pH (SU)	7.00	7.00	24.9	± 0.1	GWMP	
pH (SU)	10.00	10.00	25.1	± 0.1	GWMP	
D.O. (%)	N/A	99.9	24.1	± 10%	NA	
ORP (mV)	228.0	228.1	24.4	± 10	EPA 2023	

	Standard	Calibration Value	Acceptance Criteria	Reference
	20	20.6		
Turbidity (NTU)	100	101	± 10% of standard	EPA 2023
	800	816	1 10 % of Standard	LFA 2023
	10	10.1		

Calibration Check						
Time Start 15:05 Time Finish 15:15						
			Calibration Solution			
Parameter	Standard	Calibration Value	Temperature (°C)	Acceptance Criteria	Reference	
Specific Conductance (µS/cm)	4,490	4608	35.7	± 10% of standard	EPA 2023	
pH (SU)	4.00	4.03	35.7	± 0.1	GWMP	
pH (SU)	7.00	6.99	35.5	± 0.1	GWMP	
pH (SU)	10.00	9.91	34.5	± 0.1	GWMP	

	Standard	Calibration Value	Acceptance Criteria	Reference
Turbidity (NTU)	20	20.2		
Turblaity (1410)	100	101	± 10% of standard	EPA 2023
	800	806	± 10 % of standard	LFA 2023
	10	9.66		

Notes:

Completed by JM 08/20/2024 Checked by AS 08/23/2024

Date: 08/20/2024

Site Name: GPC Plant Arkwright

Calibrated By: Z. Levy Field Conditions: Clear, 70F

Instrument	Manufactuer/ Model	Serial Number
Water Quality Meter	In-Situ AquaTroll 400	24005593
Turbidity Meter	Hach 2100Q	23080D000159

Calibration Standard Information						
Parameter	Standard	Lot #	Date of Expiration	Brand		
Specific Conductance (µS/cm)	4,490	24005593	Dec-24	AIR		
pH (SU)	4.00	24005593	Dec-24	AIR		
pH (SU)	7.00	240045517	Dec-24	AIR		
pH (SU)	10.00	24000085	Dec-24	AIR		
D.O. (%)	N/A	N/A	N/A	N/A		
ORP (mV)	228.0	24006903	Dec-24	AIR		

Calibration						
Time Start 7:05 Time Finish 7:15						
Calibration Solution						
Parameter	Standard	Calibration Value	Temperature (°C)	Acceptance Criteria	Reference	
Specific Conductance (µS/cm)	4,490	4,461	25.77	± 10% of standard	EPA 2023	
pH (SU)	4.00	4.19	26.04	± 0.1	GWMP	
pH (SU)	7.00	7.07	26.68	± 0.1	GWMP	
pH (SU)	10.00	10.16	26.68	± 0.1	GWMP	
D.O. (%)	N/A	99.98	24.96	± 10%	NA	
ORP (mV)	228.0	226.8	26.20	± 10	EPA 2023	

	Standard	Calibration Value	Acceptance Criteria	Reference
	20	20		
Turbidity (NTU)	100	101	± 10% of standard	EPA 2023
	800	803	± 10 % of Standard	LFA 2023
	10	9.6		

Calibration Check						
Time Start	Time Start 14:09 Time Finish 14:19					
			Calibration Solution			
Parameter	Standard	Calibration Value	Temperature (°C)	Acceptance Criteria	Reference	
Specific Conductance (µS/cm)	4,490	4,285.8	29.43	± 10% of standard	EPA 2023	
pH (SU)	4.00	4.00	29.43	± 0.1	GWMP	
pH (SU)	7.00	7.05	28.16	± 0.1	GWMP	
pH (SU)	10.00	10.09	27.51	± 0.1	GWMP	

	Standard	Calibration Value	Acceptance Criteria	Reference
Turbidity (NTU)	10	10		
raibiaity (NTO)	20	20.8	± 10% of standard	EPA 2023
	100	101	± 10 % of standard	LFA 2023
	800	780		

Notes:

 Completed by
 ZL 08/20/2024

 Checked by
 AS 08/23/2024

Field Instrumentation Calibration Form

Site Name:Ark	wright		Date: _	_12/12/2024
Calibrated Bv: A	undreas S. Jaiden S.	Field Conditions:	Sunnv	7.22 °C

Instrument	Manufactuer/ Model	Serial Number
Water Quality Meter	IS AQUATROLL	1082822
Turbidity Meter	HACH 2100Q	231000000373

Calibration Standard Information												
Parameter	Standard	Lot #	Date of Expiration	Brand								
Specific Conductance (µS/cm)	4,490	24010943	May-25	AIR								
pH (SU)	4.00	24010943	May-25	AIR								
pH (SU)	7.00	24008587	Jun-25	AIR								
pH (SU)	10.00	24004996	Jun-25	AIR								
D.O. (%)												
ORP (mV)	228.0	24011792	Jun-25	AIR								

	Calibration												
Time Start	750	Time Finish	825										
			Calibration Solution										
Parameter	Standard	Calibration Value	Temperature (°C)	Acceptance Criteria	Reference								
Specific Conductance (µS/cm)	4,490	4.489	19.58	± 10% of standard	EPA 2023								
pH (SU)	4.00	4.08	19.58	± 0.1	GWMP								
pH (SU)	7.00	7.08	19.33	± 0.1	GWMP								
pH (SU)	10.00	10.13	19.22	± 0.1	GWMP								
D.O. (%)	N/A	100	19.73	± 10%	NA								
ORP (mV)	228.0	227.4	19.26	± 10	EPA 2023								

	Standard	Calibration Value	Acceptance Criteria	Reference
	10	9.82		
Turbidity (NTU)	20	19.6	± 10% of standard	EPA 2023
	100	96.8	± 10% of Standard	EPA 2023
	800	780		

Calibration Check											
Time Start	1150	Time Finish	1220								
			Calibration Solution								
Parameter	Standard	Calibration Value	Temperature (°C)	Acceptance Criteria	Reference						
Specific Conductance (µS/cm)	4,490	4433.5	22.19	± 10% of standard	EPA 2023						
pH (SU)	4.00	4.03	22.20	± 0.1	GWMP						
pH (SU)	7.00	7.03	21.29	± 0.1	GWMP						
pH (SU)	10.00	10.09	21.77	± 0.1	GWMP						

	Standard	Calibration Value	Acceptance Criteria	Reference
Turbidity (NTU)			± 10% of standard	EPA 2023
			± 10% of Standard	EPA 2023
	1	1		

Notes:

Did not complete the calibration check for the turbidity meter due to it having been unknowingly picked up by Atlanta Instrument Rentals (AIR) during the calibration check of the AQUATROLL.

B.4 Groundwater and Surface Water Laboratory Analytical Reports

gel.com

a member of The GEL Group INC

September 05, 2024

Joju Abraham Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

Re: Arkwright CCR Groundwater Compliance 175569434

Work Order: 682093

Dear Joju Abraham:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on August 21, 2024. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. Two of the containers for sample ID 682093009(ARK-ARAMW-8) are labeled with the collection date 8/19. Collection date was used from chain of custody. The laboratory received the following sample(s):

Laboratory ID	Client ID	Matrix	Date Collected	Date Received
682093001	ARK-ARGWA-19	Ground Water	08/20/24 09:10	08/21/24 14:00
682093002	ARK-ARGWA-20	Ground Water	08/20/24 09:35	08/21/24 14:00
682093003	ARK-ARGWC-21	Ground Water	08/20/24 15:15	08/21/24 14:00
682093004	ARK-ARGWC-22	Ground Water	08/20/24 14:05	08/21/24 14:00
682093005	ARK-ARGWC-23	Ground Water	08/20/24 12:50	08/21/24 14:00
682093006	ARK-ARAMW-1	Ground Water	08/20/24 13:15	08/21/24 14:00
682093007	ARK-ARAMW-2	Ground Water	08/20/24 11:45	08/21/24 14:00
682093008	ARK-ARAMW-7	Ground Water	08/20/24 13:05	08/21/24 14:00
682093009	ARK-ARAMW-8	Ground Water	08/20/24 09:35	08/21/24 14:00
682093010	ARK-ARAMW-9	Ground Water	08/20/24 11:50	08/21/24 14:00
682093011	ARK-AP2-EB-03	Water	08/20/24 14:40	08/21/24 14:00
682093012	ARK-AP2-FD-03	Water	08/20/24 12:00	08/21/24 14:00
682093013	ARK-AP2-FB-03	Water	08/20/24 12:00	08/21/24 14:00

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Prep Methods and Prep Dates

Method	Run Date ID
SW846 3005A	23-AUG-2024
SW846 7470A Prep	22-AUG-2024
SW846 7470A Prep	23-AUG-2024

Analysis Methods and Analysis Dates

Method	Run Date ID
EPA 300.0	24-AUG-2024
EPA 300.0	25-AUG-2024
EPA 300.0	26-AUG-2024
EPA 353.2 Low Level	23-AUG-2024
SM 2320B	22-AUG-2024
SM 2540C	27-AUG-2024
SW846 3005A/6020B	01-SEP-2024
SW846 3005A/6020B	31-AUG-2024
SW846 7470A	23-AUG-2024
SW846 7470A	26-AUG-2024

Page 2 of 57 SDG: 682093

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4443.

Sincerely,

Alaina Pinnick Project Manager

Alaina Pinnick

Purchase Order: GPC82177-0005

Enclosures

Page 3 of 57 SDG: 682093

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

GPCC001 Georgia Power Company Client SDG: 682093 GEL Work Order: 682093

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- B Either presence of analyte detected in the associated blank, or MDL/IDL < sample value < PQL
- J Value is estimated

N/A RPD or %Recovery limits do not apply.

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Alaina Pinnick.

Reviewed by

Page 4 of 57 SDG: 682093

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 5, 2024

GPCC00100

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance 175569434

Client Sample ID: ARK-ARGWA-19

Sample ID: 682093001

Matrix:

Collect Date: 21-AUG-24 Receive Date: Collector: Client

Client ID: GPCC001 WG 20-AUG-24 09:10

Project:

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liq	quid "As Recei	ived"									
Chloride	•	4.89	0.0670	0.200	mg/L		1	CH6	08/24/24	1904 2662125	5 1
Fluoride	J	0.0679	0.0330	0.100	mg/L		1				
Sulfate		7.07	0.133	0.400	mg/L		1				
Mercury Analysis-CV	AA										
7470 Cold Vapor Merc	cury, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	08/23/24	1110 2660787	2
Metals Analysis-ICP-N	MS				C						
SW846 3005A/6020B		"									
Aluminum	U	ND	0.0193	0.0500	mg/L	1.00	1	BAJ	09/01/24	1312 2661534	3
Beryllium	Ü	ND	0.000200	0.000500	mg/L	1.00	1				
Boron		0.0236	0.00520	0.0150	mg/L	1.00					
Calcium		8.29	0.0800	0.200	mg/L	1.00					
Lithium	J	0.00376	0.00300	0.0100	mg/L	1.00	1				
Manganese	U	ND	0.00100	0.00500	mg/L	1.00	1				
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	08/31/24	1739 2661534	4
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium		0.0293	0.000670	0.00400	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00					
Iron	U	ND	0.0330	0.100	mg/L	1.00					
Lead	U	ND	0.000500	0.00200	mg/L	1.00					
Magnesium		3.52	0.0100	0.0300	mg/L	1.00					
Molybdenum	J	0.000375	0.000200	0.00100	mg/L	1.00					
Potassium		2.03	0.0800	0.300	mg/L	1.00					
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1				
Silver	U	ND	0.000300	0.00100	mg/L	1.00					
Sodium		9.61	0.0800	0.250	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Nutrient Analysis											
EPA 353.2 Nitrogen, N	Nitrate/Nitrite	"As Received"									
Nitrogen, Nitrate/Nitrite		1.74	0.0350	0.100	mg/L		5	AXH3	08/23/24	0715 2660961	. 5
Solids Analysis											
CM0540CD: 1 16	1 1' 1 U A D	. 10									

SM2540C Dissolved Solids "As Received"

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 5, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance175569434

Client Sample ID: ARK-ARGWA-19 Project: GPCC00100
Sample ID: 682093001 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Anal	yst Date	Time Ba	atch	Method
Solids Analysis											
SM2540C Dissolved Se	olids "As Rec	eived"									
Total Dissolved Solids		91.0	2.38	10.0	mg/L		KLP1	08/27/24	1058 266	53138	6
Titration and Ion Analy	vsis										
SM 2320B Total Alkal	inity "As Rece	eived"									
Alkalinity, Total as CaCO3		37.5	0.725	2.00	mg/L		JW2	08/22/24	1105 266	51203	7
Bicarbonate alkalinity (CaCC	03)	37.5	0.725	2.00	mg/L						
Carbonate alkalinity (CaCO3) U	ND	0.725	2.00	mg/L						
The following Prep Me	thods were pe	erformed:									
Method	Description	n		Analyst	Date		Time P	rep Batch			
SW846 3005A	ICP-MS 3005	SA PREP		BB2	08/23/24		1445 2	561533			
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		JM13	08/22/24		1110 20	560785			

The following Analytical Methods were performed:

Method	Description	Analyst Comments
1	EPA 300.0	•
2	SW846 7470A	
3	SW846 3005A/6020B	
4	SW846 3005A/6020B	
5	EPA 353.2 Low Level	
6	SM 2540C	
7	SM 2320B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 57 SDG: 682093

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 5, 2024

09/01/24 1318 2661534

AXH3 08/23/24 0716 2660961

2

3

GPCC00100

GPCC001

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance175569434

Client Sample ID: ARK-ARGWA-20

Sample ID: 682093002

Matrix: WG

Collect Date: 20-AUG-24 09:35 Receive Date: 21-AUG-24

Collector: Client Parameter **Oualifier** DL RL Units PF DF Analyst Date Time Batch Method Result Ion Chromatography EPA 300.0 Anions Liquid "As Received" Chloride 7.63 0.0670 0.200 mg/L 1 CH6 08/24/24 1935 2662125 1 Fluoride 0.0488 0.0330 0.100 mg/L 1 Sulfate 16.4 0.133 0.400 mg/L Mercury Analysis-CVAA

7470 Cold Vapor Mercury, Liquid "As Received"

Mercury U ND 0.0000670 0.000200 mg/L 1.00 1 JP2 08/23/24 1112 2660787

Metals Analysis-ICP-MS

SW846 3005A/6020B "As Received"

0.0193

0.0350

0.100

Beryllium U ND 0.000200 0.000500 mg/L 1.00 1 Boron 0.0537 0.005200.0150 mg/L 1.00 1 0.200 Calcium 10.6 0.0800 mg/L 1.00 1 Lithium U ND 0.00300 0.0100 mg/L1.00 1 0.00343 0.00100 0.00500 mg/L1.00 1 Manganese J 08/31/24 1813 2661534 Antimony U ND 0.00100 0.00300mg/L 1.00 1 BAJ U 0.00500 1.00 Arsenic ND 0.00200mg/L

0.0500

mg/L

mg/L

1.00 1 BAJ

Barium 0.0863 0.000670 0.00400mg/L 1.00 1 U Cadmium ND 0.000300 0.00100 mg/L 1.00 1 0.00598 0.0100 1.00 Chromium T 0.00300 mg/L 1 U 0.00100 mg/L Cobalt ND 0.000300 1.00 1 Iron 0.110 0.0330 0.100 mg/L 1.00 1 U Lead ND 0.000500 0.00200mg/L 1.00 1 5.83 0.0100 0.0300 1.00 Magnesium mg/L 1

0.0748

Molybdenum U ND 0.0002000.00100mg/L 1.00 1 1.51 Potassium 0.0800 0.300 mg/L 1.00 1 Selenium U ND 0.00150 0.00500 mg/L 1.00 1 Silver U ND 0.000300 0.00100 1.00 1 mg/L mg/L Sodium 11.5 0.08000.250 1.00 1 U ND 0.0006000.00200Thallium mg/L 1.00 1

Nutrient Analysis
EPA 353.2 Nitrogen, Nitrate/Nitrite "As Received"
Nitrogen, Nitrate/Nitrite 0.835

Solids Analysis

SM2540C Dissolved Solids "As Received"

Aluminum

Page 7 of 57 SDG: 682093

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 5, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance175569434

Client Sample ID: ARK-ARGWA-20 Project: GPCC00100 Sample ID: 682093002 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF]	DF Analy	st Date	Time	Batch	Method
Solids Analysis											
SM2540C Dissolved S	Solids "As Rec	eived"									
Total Dissolved Solids		113	2.38	10.0	mg/L		KLP1	08/27/24	1058	2663138	6
Titration and Ion Anal	lysis										
SM 2320B Total Alka	linity "As Rec	eived"									
Alkalinity, Total as CaCO3		41.2	0.725	2.00	mg/L		JW2	08/22/24	1106	2661203	7
Bicarbonate alkalinity (CaC	CO3)	41.2	0.725	2.00	mg/L						
Carbonate alkalinity (CaCC	03) U	ND	0.725	2.00	mg/L						
The following Prep M	lethods were p	erformed:									
Method	Descriptio	n		Analyst	Date	T	ime Pı	ep Batch			
SW846 3005A	ICP-MS 300:	5A PREP		BB2	08/23/24	14	145 26	61533			
SW846 7470A Prep	EPA 7470A	Mercury Prep Liquid		JM13	08/22/24	1	110 26	60785			
TT1 C 11 : A 1	. 136.1.1	6 1									

The following Analytical Methods were performed:

Method	Description	Analyst Comments
1	EPA 300.0	•
2	SW846 7470A	
3	SW846 3005A/6020B	
4	SW846 3005A/6020B	
5	EPA 353.2 Low Level	
6	SM 2540C	
7	SM 2320B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 57 SDG: 682093

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 5, 2024

GPCC00100

GPCC001

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance 175569434

Client Sample ID: ARK-ARGWC-21

Sample ID: 682093003

Matrix: WG

Collect Date: 20-AUG-24 15:15
Receive Date: 21-AUG-24
Collector: Client

Parameter **Oualifier** DL RL Units PF DF Analyst Date Time Batch Method Result Ion Chromatography EPA 300.0 Anions Liquid "As Received" Sulfate 219 2.66 8.00 mg/L 20 CH6 08/26/24 1539 2662125 1 Chloride 3.18 0.0670 0.200 mg/L 1 CH6 08/24/24 2005 2662125 2 Fluoride 0.124 0.0330 0.100 mg/L Mercury Analysis-CVAA 7470 Cold Vapor Mercury, Liquid "As Received" Mercury ND 0.0000670 0.000200 mg/L 1.00 1 JP2 08/23/24 1114 2660787 3 Metals Analysis-ICP-MS SW846 3005A/6020B "As Received" ND 0.0193 0.0500 1359 2661534 Aluminum U mg/L 1.00 1 BAJ 09/01/24 Beryllium U ND 0.000200 0.000500 mg/L 1.00 1 Lithium 0.0119 0.003000.0100 mg/L 1.00 1 0.00500 Manganese 0.322 0.00100mg/L 1.00 1 0.0520 0.150 mg/L1.00 10 BAJ 09/01/24 1335 2661534 5 Boron 1.13 Calcium 0.800 2.00 mg/L1.00 10 78.0 mg/L Antimony U ND 0.00100 0.00300 1.00 1 BAJ 08/31/24 1818 2661534 U 0.00500 1.00 Arsenic ND 0.00200mg/L Barium 0.0431 0.000670 0.00400mg/L 1.00 1 U Cadmium ND 0.000300 0.00100 mg/L 1.00 1 U ND 0.0100 1.00 Chromium 0.00300 mg/L 1 0.000769 0.00100 mg/L Cobalt J 0.000300 1.00 1 Iron 0.579 0.0330 0.100 mg/L 1.00 1 U Lead ND 0.0005000.00200mg/L 1.00 1 39.4 0.0100 0.0300 1.00 Magnesium mg/L Molybdenum U ND 0.0002000.00100mg/L 1.00 1 Potassium 6.12 0.0800 0.300 mg/L 1.00 1 Selenium U ND 0.00150 0.00500 mg/L 1.00 1 Silver U ND 0.000300 0.00100 1.00 mg/L 1 mg/L Sodium 20.2 0.08000.250 1.00 1 U ND 0.0006000.00200Thallium mg/L 1.00 1 **Nutrient Analysis** EPA 353.2 Nitrogen, Nitrate/Nitrite "As Received" Nitrogen, Nitrate/Nitrite ND 0.00700 0.0200 mg/L AXH3 08/23/24 0718 2660961 Solids Analysis SM2540C Dissolved Solids "As Received"

Page 9 of 57 SDG: 682093

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 5, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance175569434

Client Sample ID: ARK-ARGWC-21 Project: GPCC00100 Sample ID: 682093003 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Solids Analysis										
SM2540C Dissolved	Solids "As Rec	eived"								
Total Dissolved Solids		520	2.38	10.0	mg/L		KLP1	08/27/24	1058 2663138	8
Titration and Ion Ana	alysis									
SM 2320B Total Alk	alinity "As Rece	eived"								
Alkalinity, Total as CaCO	3	160	0.725	2.00	mg/L		JW2	08/22/24	1107 2661203	9
Bicarbonate alkalinity (Ca	CO3)	160	0.725	2.00	mg/L					
Carbonate alkalinity (CaCo	O3) U	ND	0.725	2.00	mg/L					
The following Prep N	Methods were pe	erformed:								
Method	Description	n		Analyst	Date		Time P	rep Batch		
SW846 3005A	ICP-MS 3005	5A PREP		BB2	08/23/24		1445 20	561533		
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		JM13	08/22/24		1110 20	560785		

The following Analytical Methods were performed:

Method	Description	Analyst Comments
1	EPA 300.0	·
2	EPA 300.0	
3	SW846 7470A	
4	SW846 3005A/6020B	
5	SW846 3005A/6020B	
6	SW846 3005A/6020B	
7	EPA 353.2 Low Level	
8	SM 2540C	
9	SM 2320B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 57 SDG: 682093

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 5, 2024

GPCC00100

GPCC001

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance 175569434

Client Sample ID: ARK-ARGWC-22

Sample ID: 682093004

Matrix: WG

Collect Date: 20-AUG-24 14:05 Receive Date: 21-AUG-24 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Lie	quid "As Recei	ived"									
Sulfate	•	674	6.65	20.0	mg/L		50	CH6	08/26/24	1610 2662125	1
Chloride		7.25	0.0670	0.200	mg/L		1	CH6	08/24/24	2036 2662125	2
Fluoride	J	0.0660	0.0330	0.100	mg/L		1				
Mercury Analysis-CV	/AA										
7470 Cold Vapor Mer	rcury, Liquid ".	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	08/23/24	1115 2660787	3
Metals Analysis-ICP-	MS										
SW846 3005A/6020B	3 "As Received	."									
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	08/31/24	1824 2661534	4
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium		0.0223	0.000670	0.00400	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt		0.00279	0.000300	0.00100	mg/L	1.00	1				
Iron		6.00	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Molybdenum	J	0.000406	0.000200	0.00100	mg/L	1.00	1				
Potassium		4.45	0.0800	0.300	mg/L	1.00	1				
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1				
Silver	U	ND	0.000300	0.00100	mg/L	1.00	1				
Sodium		26.6	0.0800	0.250	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Aluminum	J	0.0230	0.0193	0.0500	mg/L	1.00	1	BAJ	09/01/24	1400 2661534	5
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1				
Lithium		0.0200	0.00300	0.0100	mg/L	1.00	1				
Boron		3.09	0.130	0.375	mg/L	1.00		BAJ	09/01/24	1336 2661534	6
Calcium		194	2.00	5.00	mg/L	1.00					
Manganese		17.2	0.0250	0.125	mg/L	1.00					
Magnesium		80.2	0.0500	0.150	mg/L	1.00	5	BAJ	08/31/24	1827 2661534	7
Nutrient Analysis											
EPA 353.2 Nitrogen,	Nitrate/Nitrite	"As Received"									
Nitrogen, Nitrate/Nitrite		0.122	0.00700	0.0200	mg/L		1	JLD1	08/23/24	1005 2660961	8
Solids Analysis					-						
SM2540C Dissolved	Solids "As Rec	eived"									
51112540C D15501VCd 1	5011us 11s RCC	C1 7 Cu									

Page 11 of 57 SDG: 682093

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 5, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance 175569434

Client Sample ID: ARK-ARGWC-22 Project: GPCC00100 Sample ID: 682093004 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF 1	DF Analy	st Date	Time Bate	h Method
Solids Analysis										
SM2540C Dissolved So	olids "As Rec	eived"								
Total Dissolved Solids		1180	2.38	10.0	mg/L		KLP1	08/27/24	1058 2663	38 9
Titration and Ion Analy	sis									
SM 2320B Total Alkali	nity "As Rec	eived"								
Alkalinity, Total as CaCO3		136	0.725	2.00	mg/L		JW2	08/22/24	1110 26612	03 10
Bicarbonate alkalinity (CaCC	3)	136	0.725	2.00	mg/L					
Carbonate alkalinity (CaCO3) U	ND	0.725	2.00	mg/L					
The following Prep Me	thods were pe	erformed:								
Method	Description	n		Analyst	Date	T	ime Pr	ep Batch		
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		JM13	08/22/24	11	110 26	60785		
SW846 3005A	ICP-MS 3005	SA PREP		BB2	08/23/24	14	145 26	61533		

The following Analytical Methods were performed:

Method	Description	Analyst Comments	
1	EPA 300.0	•	
2	EPA 300.0		
3	SW846 7470A		
4	SW846 3005A/6020B		
5	SW846 3005A/6020B		
6	SW846 3005A/6020B		
7	SW846 3005A/6020B		
8	EPA 353.2 Low Level		
9	SM 2540C		
10	SM 2320B		

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 12 of 57 SDG: 682093

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

mg/L

mg/L

mg/L

1.00 1

1.00 1

AXH3 08/23/24 0721 2660961

0.250

0.00200

Client ID:

Report Date: September 5, 2024

GPCC00100

GPCC001

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance 175569434

Client Sample ID: ARK-ARGWC-23

Sample ID: 682093005

Matrix: WG

Collect Date: 20-AUG-24 12:50
Receive Date: 21-AUG-24
Collector: Client

Collector: Client Parameter **Oualifier** DL RL Units PF DF Analyst Date Time Batch Method Result Ion Chromatography EPA 300.0 Anions Liquid "As Received" Sulfate 80.1 1.33 4.00 mg/L 10 CH6 08/26/24 1641 2662125 1 Chloride 3.68 0.0670 0.200 mg/L 1 CH6 08/24/24 2107 2662125 2 Fluoride 0.365 0.0330 0.100 mg/L 1 Mercury Analysis-CVAA 7470 Cold Vapor Mercury, Liquid "As Received" Mercury ND 0.0000670 0.000200 mg/L 1.00 1 JP2 08/26/24 1200 2661395 3

Metals Analysis-ICP-MS SW846 3005A/6020B "As Received" ND 0.0193 0.0500 1407 2661534 Aluminum U mg/L 1.00 1 BAJ 09/01/24 Beryllium U ND 0.000200 0.000500 mg/L 1.00 1 Lithium 0.0469 0.003000.0100 mg/L 1.00 1 0.00500 1.00 Manganese 0.281 0.00100 mg/L 1 0.0260 0.0750 mg/L1.00 5 BAJ 09/01/24 1329 2661534 5 Boron 0.434 Calcium 0.400 1.00 mg/L1.00 5 79.6 0.00300 mg/L Antimony U ND 0.00100 1.00 1 BAJ 08/31/24 1830 2661534 U 0.00500 1.00 Arsenic ND 0.00200mg/L Barium 0.105 0.000670 0.00400mg/L 1.00 1

0.0800

0.000600

U Cadmium ND 0.000300 0.00100 mg/L 1.00 1 U ND 0.0100 1.00 Chromium 0.00300 mg/L 1 0.000484 0.00100 mg/L 1.00 Cobalt J 0.000300 1 Iron U ND 0.0330 0.100 mg/L 1.00 1 U Lead ND 0.000500 0.00200mg/L 1.00 1 14.7 0.0100 0.0300 1.00 Magnesium mg/L 1 Molybdenum 0.07400.0002000.00100mg/L 1.00 1 2.08 Potassium 0.0800 0.300 mg/L 1.00 1 U Selenium ND 0.00150 0.00500 mg/L 1.00 1 Silver U ND 0.000300 0.00100 1.00 1 mg/L

EPA 353.2 Nitrogen, Nitrate/Nitrite "As Received"

Nitrogen, Nitrate/Nitrite 0.975 0.0350 0.100 Solids Analysis

U

16.1

ND

Solius Alialysis

Nutrient Analysis

Sodium

Thallium

SM2540C Dissolved Solids "As Received"

Page 13 of 57 SDG: 682093

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 5, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance 175569434

Client Sample ID: ARK-ARGWC-23 GPCC00100 Project: Sample ID: 682093005 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Solids Analysis										
SM2540C Dissolved So	olids "As Rec	eived"								
Total Dissolved Solids		328	2.38	10.0	mg/L		KLP1	08/27/24	1058 2663138	8
Titration and Ion Analy	vsis									
SM 2320B Total Alkali	inity "As Rec	eived"								
Alkalinity, Total as CaCO3		185	0.725	2.00	mg/L		JW2	08/22/24	1112 2661203	9
Bicarbonate alkalinity (CaCC	03)	185	0.725	2.00	mg/L					
Carbonate alkalinity (CaCO3) U	ND	0.725	2.00	mg/L					
The following Prep Me	thods were pe	erformed:								
Method	Description	n		Analyst	Date		Time P	rep Batch	l	
SW846 3005A	ICP-MS 3005	5A PREP		BB2	08/23/24		1445 20	561533		
SW846 7470A Prep	EPA 7470A I	Mercury Prep Liquid		JM13	08/23/24		1030 20	561392		

The following Analytical Methods were performed:

Method	Description	Analyst Comments
1	EPA 300.0	•
2	EPA 300.0	
3	SW846 7470A	
4	SW846 3005A/6020B	
5	SW846 3005A/6020B	
6	SW846 3005A/6020B	
7	EPA 353.2 Low Level	
8	SM 2540C	
9	SM 2320B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 14 of 57 SDG: 682093

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 5, 2024

GPCC00100

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance 175569434

Client Sample ID: ARK-ARAMW-1

Sample ID:

Matrix:

Collect Date: 20-AUG-24 13:15 21-AUG-24 Receive Date: Collector: Client

682093006 Client ID: GPCC001 WG

Project:

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time E	Batch	Method
Ion Chromatography												
EPA 300.0 Anions Li	iquid "As Recei	ived"										
Sulfate	_	211	2.66	8.00	mg/L		20	CH6	08/26/24	1813 26	662125	1
Chloride		3.27	0.0670	0.200	mg/L		1	CH6	08/24/24	2138 26	662125	2
Fluoride		0.169	0.0330	0.100	mg/L		1					
Mercury Analysis-CV	VAA											
7470 Cold Vapor Me	rcury, Liquid ".	As Received"										
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	08/26/24	1206 26	661395	3
Metals Analysis-ICP-	-MS											
SW846 3005A/6020I	B "As Received	!"										
Boron		1.49	0.130	0.375	mg/L	1.00	25	BAJ	09/01/24	1332 26	661534	4
Calcium		85.4	2.00	5.00	mg/L	1.00	25					
Aluminum	U	ND	0.0193	0.0500	mg/L	1.00	1	BAJ	09/01/24	1402 26	661534	5
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1					
Lithium	J	0.00934	0.00300	0.0100	mg/L	1.00	1					
Manganese		0.133	0.00100	0.00500	mg/L	1.00	1					
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	08/31/24	1841 26	561534	6
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00						
Barium		0.0389	0.000670	0.00400	mg/L	1.00						
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00						
Chromium	U	ND	0.00300	0.0100	mg/L	1.00						
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00						
Iron	J	0.0976	0.0330	0.100	mg/L	1.00						
Lead	U	ND	0.000500	0.00200	mg/L	1.00						
Magnesium		39.2	0.0100	0.0300	mg/L	1.00						
Molybdenum		0.00873	0.000200	0.00100	mg/L	1.00						
Potassium		5.38	0.0800	0.300	mg/L	1.00						
Selenium	U	ND	0.00150	0.00500	mg/L	1.00						
Silver	U	ND	0.000300	0.00100	mg/L	1.00						
Sodium		20.0	0.0800	0.250	mg/L	1.00						
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1					
Nutrient Analysis												
EPA 353.2 Nitrogen,	Nitrate/Nitrite	"As Received"										
Nitrogen, Nitrate/Nitrite	U	ND	0.00700	0.0200	mg/L		1	AXH3	08/23/24	0722 26	560961	7
Solids Analysis												
SM2540C Dissolved	Solids "As Rec	ceived"										

Page 15 of 57 SDG: 682093

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 5, 2024

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance175569434

Client Sample ID: ARK-ARAMW-1 Project: GPCC00100 Sample ID: 682093006 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Solids Analysis										
SM2540C Dissolved So	olids "As Rec	eived"								
Total Dissolved Solids		538	2.38	10.0	mg/L		KLP1	08/27/24	1058 2663138	8
Titration and Ion Analys	sis									
SM 2320B Total Alkali	nity "As Reco	eived"								
Alkalinity, Total as CaCO3		178	0.725	2.00	mg/L		JW2	08/22/24	1114 2661203	9
Bicarbonate alkalinity (CaCO	3)	178	0.725	2.00	mg/L					
Carbonate alkalinity (CaCO3)) U	ND	0.725	2.00	mg/L					
The following Prep Met	thods were pe	erformed:								
Method	Description	1		Analyst	Date	T	ime Pr	ep Batch		
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		JM13	08/23/24	1	030 26	61392		
SW846 3005A	ICP-MS 3005	A PREP		BB2	08/23/24	1	445 26	61533		

The following Analytical Methods were performed:

Method	Description	Analyst Comments
1	EPA 300.0	•
2	EPA 300.0	
3	SW846 7470A	
4	SW846 3005A/6020B	
5	SW846 3005A/6020B	
6	SW846 3005A/6020B	
7	EPA 353.2 Low Level	
8	SM 2540C	
9	SM 2320B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 16 of 57 SDG: 682093

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Report Date: September 5, 2024

GPCC00100

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance 175569434

Client Sample ID: ARK-ARAMW-2

Sample ID:

Collect Date: 20-AUG-24 11:45 Receive Date: 21-AUG-24 Collector: Client

682093007 Client ID: GPCC001 Matrix: WG

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Lic	quid "As Recei	ved"									
Chloride		3.24	0.0670	0.200	mg/L		1	CH6	08/24/24	2209 2662125	1
Fluoride		0.123	0.0330	0.100	mg/L		1				
Sulfate		232	2.66	8.00	mg/L		20	CH6	08/26/24	1844 2662125	2
Mercury Analysis-CV	AA										
7470 Cold Vapor Mer	cury, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	08/26/24	1207 2661395	3
Metals Analysis-ICP-N	MS										
SW846 3005A/6020B	"As Received	"									
Boron		1.28	0.130	0.375	mg/L	1.00	25	BAJ	09/01/24	1334 2661534	4
Calcium		85.2	2.00	5.00	mg/L	1.00	25				
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	08/31/24	1846 2661534	5
Arsenic	J	0.00392	0.00200	0.00500	mg/L	1.00	1				
Barium		0.0560	0.000670	0.00400	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00					
Chromium	U	ND	0.00300	0.0100	mg/L	1.00					
Cobalt		0.00166	0.000300	0.00100	mg/L	1.00					
Iron		2.62	0.0330	0.100	mg/L	1.00					
Lead	U	ND	0.000500	0.00200	mg/L	1.00					
Magnesium		36.2	0.0100	0.0300	mg/L	1.00					
Molybdenum	J	0.000585	0.000200	0.00100	mg/L	1.00					
Potassium		6.25	0.0800	0.300	mg/L	1.00					
Selenium	U	ND	0.00150	0.00500	mg/L	1.00					
Silver	U	ND	0.000300	0.00100	mg/L	1.00					
Sodium		19.0	0.0800	0.250	mg/L	1.00					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00					
Aluminum	U	ND	0.0193	0.0500	mg/L	1.00		BAJ	09/01/24	1403 2661534	6
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00					
Lithium		0.0145	0.00300	0.0100	mg/L	1.00					
Manganese		0.475	0.00100	0.00500	mg/L	1.00	1				
Nutrient Analysis											
EPA 353.2 Nitrogen, N	Nitrate/Nitrite	"As Received"									
Nitrogen, Nitrate/Nitrite	J	0.0150	0.00700	0.0200	mg/L		1	AXH3	08/23/24	0724 2660961	7
Solids Analysis											
SM2540C Dissolved S	Solids "As Rec	eived"									
51412540C D15501VCd L	Jonus 115 RCC	01100									

Page 17 of 57 SDG: 682093

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 5, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance175569434

Client Sample ID: ARK-ARAMW-2 Project: GPCC00100 Sample ID: 682093007 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF D	F Analy	st Date	Time Batc	h Method
Solids Analysis										
SM2540C Dissolved So	lids "As Rec	eived"								
Total Dissolved Solids		564	2.38	10.0	mg/L		KLP1	08/27/24	1058 26631	38 8
Titration and Ion Analys	sis									
SM 2320B Total Alkalii	nity "As Reco	eived"								
Alkalinity, Total as CaCO3		158	0.725	2.00	mg/L		JW2	08/22/24	1115 26612	9
Bicarbonate alkalinity (CaCO	3)	158	0.725	2.00	mg/L					
Carbonate alkalinity (CaCO3)	U	ND	0.725	2.00	mg/L					
The following Prep Met	hods were pe	erformed:								
Method	Description	n		Analyst	Date	Ti	me Pı	ep Batch		
SW846 3005A	ICP-MS 3005	SA PREP		BB2	08/23/24	14	45 26	61533		
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		JM13	08/23/24	10	30 26	61392		

The following Analytical Methods were performed:

Method	Description	Analyst Comments
1	EPA 300.0	•
2	EPA 300.0	
3	SW846 7470A	
4	SW846 3005A/6020B	
5	SW846 3005A/6020B	
6	SW846 3005A/6020B	
7	EPA 353.2 Low Level	
8	SM 2540C	
9	SM 2320B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 18 of 57 SDG: 682093

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Units

Client ID:

PF

Report Date: September 5, 2024

GPCC00100

GPCC001

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance 1755 69434

Client Sample ID: ARK-ARAMW-7

Sample ID: 682093008

Matrix: WG

Parameter

Collect Date: 20-AUG-24 13:05 Receive Date: 21-AUG-24 Collector: Client

Oualifier DF Analyst Date Time Batch Method Result Ion Chromatography EPA 300.0 Anions Liquid "As Received" Sulfate 1010 13.3 40.0 mg/L 100 CH6 08/24/24 2240 2662125 1 0.400 Chloride 5.13 0.134 mg/L 2 CH6 08/26/24 1915 2662125 2 Fluoride 0.118 0.0660 0.200 2 mg/L Mercury Analysis-CVAA 7470 Cold Vapor Mercury, Liquid "As Received" Mercury ND 0.0000670 0.000200 mg/L 1.00 1 JP2 08/26/24 1209 2661395 3 Metals Analysis-ICP-MS SW846 3005A/6020B "As Received" 0.0935 0.0193 0.0500 Aluminum mg/L 1.00 1 BAJ 09/01/24 1404 2661534 Beryllium 0.000318 0.000200 0.000500 mg/L 1.00 1 Lithium 0.0585 0.003000.0100 mg/L 1.00 1 1.00 1855 2661534 Magnesium 79.7 0.0500 0.150 mg/L 5 BAJ 08/31/24 5 50 0.260 0.750 mg/L1.00 BAJ 09/01/24 1346 2661534 Boron 2.44 6 Calcium 284 10.0 mg/L1.00 50 4.00 mg/L Manganese 13.7 0.0500 0.250 1.00 50 U 0.00300 1.00 08/31/24 1852 2661534 Antimony ND 0.00100mg/L 1 BAJ U ND 0.00200 0.00500mg/L 1.00 Arsenic 1 Barium 0.0277 0.000670 0.00400 mg/L 1.00 1 U 0.00100 1.00 Cadmium ND 0.000300 mg/L 1 U Chromium ND 0.0100 mg/L 1.00 0.00300 1 Cobalt 0.0702 0.000300 0.00100 mg/L 1.00 1 Iron 4.83 0.0330 0.100 mg/L 1.00 1 U ND 0.000500 0.00200 Lead mg/L 1.00 Molybdenum J 0.000257 0.0002000.00100mg/L 1.00 1 Potassium 9.23 0.0800 0.300 mg/L 1.00 1 U Selenium ND 0.00150 0.00500 mg/L1.00 1 Silver U ND 0.000300 0.00100 1.00 1 mg/L mg/L Sodium 27.6 0.08000.250 1.00 1 U ND 0.0006000.00200Thallium mg/L 1.00 1 **Nutrient Analysis** EPA 353.2 Nitrogen, Nitrate/Nitrite "As Received" Nitrogen, Nitrate/Nitrite ND 0.00700 0.0200 mg/L AXH3 08/23/24 0725 2660961

DL

RL

SM2540C Dissolved Solids "As Received"

Page 19 of 57 SDG: 682093

Solids Analysis

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 5, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance 175569434

Client Sample ID: ARK-ARAMW-7 Project: GPCC00100
Sample ID: 682093008 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Solids Analysis										
SM2540C Dissolved So	olids "As Rec	eived"								
Total Dissolved Solids		1590	23.8	100	mg/L		KLP1	08/27/24	1058 2663138	9
Titration and Ion Analy	vsis									
SM 2320B Total Alkali	inity "As Rec	eived"								
Alkalinity, Total as CaCO3		58.6	0.725	2.00	mg/L		JW2	08/22/24	1117 2661203	3 10
Bicarbonate alkalinity (CaCC	03)	58.6	0.725	2.00	mg/L					
Carbonate alkalinity (CaCO3	U U	ND	0.725	2.00	mg/L					
The following Prep Me	thods were pe	erformed:								
Method	Description	n		Analyst	Date	7	Γime P	rep Batch		
SW846 3005A	ICP-MS 3005	5A PREP		BB2	08/23/24	1	1445 2	661533		
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		JM13	08/23/24	1	1030 2	661392		

The following Analytical Methods were performed:

Method	Description	Analyst Comments	
1	EPA 300.0	·	
2	EPA 300.0		
3	SW846 7470A		
4	SW846 3005A/6020B		
5	SW846 3005A/6020B		
6	SW846 3005A/6020B		
7	SW846 3005A/6020B		
8	EPA 353.2 Low Level		
9	SM 2540C		
10	SM 2320B		

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 20 of 57 SDG: 682093

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 5, 2024

GPCC00100

GPCC001

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance 175569434

Client Sample ID: ARK-ARAMW-8

Sample ID: 682093009

Matrix: WG

Collect Date: 20-AUG-24 09:35

Receive Date: 21-AUG-24

Collector: Client

Project:

Client ID:

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liq	uid "As Recei	ived"									
Sulfate	•	109	1.33	4.00	mg/L		10	CH6	08/26/24	1946 2662125	1
Chloride		4.54	0.0670	0.200	mg/L		1	CH6	08/24/24	2311 2662125	2
Fluoride		0.199	0.0330	0.100	mg/L		1				
Mercury Analysis-CV	AA										
7470 Cold Vapor Merc	cury, Liquid ".	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	08/26/24	1210 2661395	3
Metals Analysis-ICP-N	MS				Ü						
SW846 3005A/6020B		"									
Boron		0.675	0.0260	0.0750	mg/L	1.00	5	BAJ	09/01/24	1330 2661534	4
Calcium		79.2	0.400	1.00	mg/L	1.00					
Antimony	U	ND	0.00100	0.00300	mg/L	1.00		BAJ	08/31/24	1858 2661534	5
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium		0.112	0.000670	0.00400	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt		0.00277	0.000300	0.00100	mg/L	1.00	1				
Iron		0.244	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Magnesium		33.7	0.0100	0.0300	mg/L	1.00	1				
Molybdenum		0.195	0.000200	0.00100	mg/L	1.00	1				
Potassium		6.91	0.0800	0.300	mg/L	1.00	1				
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1				
Silver	U	ND	0.000300	0.00100	mg/L	1.00					
Sodium		17.7	0.0800	0.250	mg/L	1.00					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00					
Aluminum	J	0.0279	0.0193	0.0500	mg/L	1.00		BAJ	09/01/24	1408 2661534	6
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00					
Lithium	J	0.00586	0.00300	0.0100	mg/L	1.00					
Manganese		0.187	0.00100	0.00500	mg/L	1.00	1				
Nutrient Analysis											
EPA 353.2 Nitrogen, N	Nitrate/Nitrite	"As Received"									
Nitrogen, Nitrate/Nitrite	U	ND	0.00700	0.0200	mg/L		1	AXH3	08/23/24	0727 2660961	7
Solids Analysis											
SM2540C Dissolved S	olide "Ac Doo	oivod"									

SM2540C Dissolved Solids "As Received"

Page 21 of 57 SDG: 682093

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 5, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance 175569434

Client Sample ID: ARK-ARAMW-8 Project: GPCC00100
Sample ID: 682093009 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF D	F Analy	st Date	Time Bate	h Method
Solids Analysis										
SM2540C Dissolved So	olids "As Rec	eived"								
Total Dissolved Solids		422	2.38	10.0	mg/L		KLP1	08/27/24	1058 26631	38 8
Titration and Ion Analy	sis									
SM 2320B Total Alkali	nity "As Reco	eived"								
Alkalinity, Total as CaCO3		251	0.725	2.00	mg/L		JW2	08/22/24	1118 26612	03 9
Bicarbonate alkalinity (CaCO	3)	251	0.725	2.00	mg/L					
Carbonate alkalinity (CaCO3)) U	ND	0.725	2.00	mg/L					
The following Prep Met	thods were pe	erformed:								
Method	Description	1		Analyst	Date	Tiı	ne Pi	ep Batch		
SW846 3005A	ICP-MS 3005	A PREP		BB2	08/23/24	144	5 26	61533		
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		JM13	08/23/24	103	30 26	61392		

The following Analytical Methods were performed:

Method	Description	Analyst Comments
1	EPA 300.0	•
2	EPA 300.0	
3	SW846 7470A	
4	SW846 3005A/6020B	
5	SW846 3005A/6020B	
6	SW846 3005A/6020B	
7	EPA 353.2 Low Level	
8	SM 2540C	
9	SM 2320B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 22 of 57 SDG: 682093

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 5, 2024

GPCC00100

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance175569434

Client Sample ID: ARK-ARAMW-9

Sample ID: 682093010

Matrix: WG

Collect Date: 20-AUG-24 11:50
Receive Date: 21-AUG-24
Collector: Client

93010 Client ID: GPCC001

Project:

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date		Time Batch	Method	
Ion Chromatography											
EPA 300.0 Anions Liqu	id "As Recei	ved"									
Chloride		35.2	3.35	10.0	mg/L		50	CH6	08/26/24	2017 2662125	1
Sulfate		416	6.65	20.0	mg/L		50				
Fluoride		0.889	0.0330	0.100	mg/L		1	CH6	08/24/24	2342 2662125	2
Mercury Analysis-CVA	.A										
7470 Cold Vapor Mercu	ıry, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	08/26/24	1212 2661395	3
Metals Analysis-ICP-M	S										
SW846 3005A/6020B ".	As Received	"									
Aluminum		0.0744	0.0193	0.0500	mg/L	1.00	1	BAJ	09/01/24	1354 2661534	4
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1				
Boron		0.0490	0.00520	0.0150	mg/L	1.00	1				
Lithium	J	0.00958	0.00300	0.0100	mg/L	1.00	1				
Manganese		0.140	0.00100	0.00500	mg/L	1.00	1				
Calcium		160	0.400	1.00	mg/L	1.00	5	BAJ	09/01/24	1347 2661534	5
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	08/31/24	1909 2661534	6
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium		0.0105	0.000670	0.00400	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00					
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1				
Iron		0.653	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00					
Magnesium		11.1	0.0100	0.0300	mg/L	1.00	1				
Molybdenum		0.00237	0.000200	0.00100	mg/L	1.00	1				
Potassium		6.00	0.0800	0.300	mg/L	1.00	1				
Selenium	U	ND	0.00150	0.00500	mg/L	1.00					
Silver	U	ND	0.000300	0.00100	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Sodium		75.0	0.400	1.25	mg/L	1.00	5	BAJ	08/31/24	1912 2661534	7
Nutrient Analysis											
EPA 353.2 Nitrogen, Ni	itrate/Nitrite	"As Received"									
Nitrogen, Nitrate/Nitrite	U	ND	0.00700	0.0200	mg/L		1	AXH3	08/23/24	0728 2660961	8
Solids Analysis											
SM2540C Dissolved So	olids "As Rec	eived"									

Page 23 of 57 SDG: 682093

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 5, 2024

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance 175569434

Client Sample ID: ARK-ARAMW-9 Project: GPCC00100 Sample ID: 682093010 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analy	yst Date	Time Batch	Method
Solids Analysis										
SM2540C Dissolved	Solids "As Rec	eived"								
Total Dissolved Solids		670	23.8	100	mg/L		KLP1	08/27/24	1058 2663138	9
Titration and Ion Ana	lysis									
SM 2320B Total Alka	alinity "As Rec	eived"								
Alkalinity, Total as CaCO3	3	91.9	0.725	2.00	mg/L		JW2	08/22/24	1120 2661203	10
Bicarbonate alkalinity (CaC	CO3)	91.9	0.725	2.00	mg/L					
Carbonate alkalinity (CaCO	O3) U	ND	0.725	2.00	mg/L					
The following Prep M	lethods were p	erformed:								
Method	Description	n		Analyst	Date		Time Pi	rep Batch		
SW846 7470A Prep	EPA 7470A	Mercury Prep Liquid		JM13	08/23/24		1030 26	61392		
SW846 3005A	ICP-MS 3005	5A PREP		BB2	08/23/24		1445 26	61533		

The following Analytical Methods were performed:

Method	Description	Analyst Comments
1	EPA 300.0	•
2	EPA 300.0	
3	SW846 7470A	
4	SW846 3005A/6020B	
5	SW846 3005A/6020B	
6	SW846 3005A/6020B	
7	SW846 3005A/6020B	
8	EPA 353.2 Low Level	
9	SM 2540C	
10	SM 2320B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 24 of 57 SDG: 682093

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 5, 2024

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance 175569434

Client Sample ID: ARK-AP2-EB-03

Sample ID: 682093011

Matrix: WQ

Collect Date: 20-AUG-24 14:40 Receive Date: 21-AUG-24 Collector: Client Project: GPCC00100 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Ion Chromatography												
EPA 300.0 Anions Liq	uid "As Recei	ived"										
Chloride	J	0.187	0.0670	0.200	mg/L		1	CH6	08/25/24	0114	2662125	1
Fluoride	U	ND	0.0330	0.100	mg/L		1					
Sulfate	U	ND	0.133	0.400	mg/L		1					
Mercury Analysis-CVA	AA											
7470 Cold Vapor Merc	ury, Liquid "	As Received"										
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	08/26/24	1141	2661400	2
Metals Analysis-ICP-M	4S											
SW846 3005A/6020B	"As Received	"										
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1	BAJ	09/01/24	1344	2661534	3
Boron	U	ND	0.00520	0.0150	mg/L	1.00	1					
Calcium	U	ND	0.0800	0.200	mg/L	1.00	1					
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	08/31/24	1915	2661534	4
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1					
Barium	U	ND	0.000670	0.00400	mg/L	1.00	1					
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00						
Chromium	U	ND	0.00300	0.0100	mg/L	1.00						
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00						
Lead	U	ND	0.000500	0.00200	mg/L	1.00						
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00						
Selenium	U	ND	0.00150	0.00500	mg/L	1.00						
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1					
Nutrient Analysis												
EPA 353.2 Nitrogen, N	Vitrate/Nitrite	"As Received"										
Nitrogen, Nitrate/Nitrite	U	ND	0.00700	0.0200	mg/L		1	AXH3	08/23/24	0739	2660961	5
Solids Analysis												
SM2540C Dissolved S	olids "As Rec	eived"										
Total Dissolved Solids	U	ND	2.38	10.0	mg/L			KLP1	08/27/24	1058	2663138	6
The following Prep Me	ethods were pe	erformed:										
Method	Description			Analyst	Date	,	Time	e Pr	ep Batch			
SW846 3005A	ICP-MS 3005			BB2	08/23/24		1445	26	61533			
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		JM13	08/23/24		1030	26	61398			

Page 25 of 57 SDG: 682093

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 5, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance 175569434

Client Sample ID: ARK-AP2-EB-03 Project: GPCC00100 Sample ID: 682093011 Client ID: GPCC001

Parameter	Qualifier Result	DL	RL	Units	PF	DF Analyst Date	Time Batch	Method
The following Analyti	cal Methods were performed:							
Method	Description			A	Analys	t Comments		
1	EPA 300.0							
2	SW846 7470A							
3	SW846 3005A/6020B							
4	SW846 3005A/6020B							
5	EPA 353.2 Low Level							
6	SM 2540C							

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 26 of 57 SDG: 682093

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 5, 2024

GPCC00100

GPCC001

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance 175569434

Client Sample ID: ARK-AP2-FD-03

Sample ID: 682093012

Matrix: WQ

Collect Date: 20-AUG-24 12:00
Receive Date: 21-AUG-24
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Ion Chromatography												
EPA 300.0 Anions Lic	quid "As Recei	ived"										
Sulfate	•	108	1.33	4.00	mg/L		10	CH6	08/26/24	2047	2662125	1
Chloride		4.53	0.0670	0.200	mg/L		1	CH6	08/25/24	0145	2662125	2
Fluoride		0.198	0.0330	0.100	mg/L		1					
Mercury Analysis-CV	AA											
7470 Cold Vapor Mer	cury, Liquid "A	As Received"										
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	08/26/24	1146	2661400	3
Metals Analysis-ICP-N	MS											
SW846 3005A/6020B	"As Received	"										
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	08/31/24	1920	2661534	4
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1					
Barium		0.111	0.000670	0.00400	mg/L	1.00	1					
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1					
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Cobalt		0.00298	0.000300	0.00100	mg/L	1.00	1					
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1					
Molybdenum		0.187	0.000200	0.00100	mg/L	1.00	1					
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1					
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1	BAJ	09/01/24	1405	2661534	5
Lithium	J	0.00550	0.00300	0.0100	mg/L	1.00	1					
Boron		0.657	0.0260	0.0750	mg/L	1.00	5	BAJ	09/01/24	1331	2661534	6
Calcium		77.4	0.400	1.00	mg/L	1.00	5					
Nutrient Analysis												
EPA 353.2 Nitrogen, N	Nitrate/Nitrite	"As Received"										
Nitrogen, Nitrate/Nitrite		2.98	0.0350	0.100	mg/L		5	AXH3	08/23/24	0740	2660961	7
Solids Analysis												
SM2540C Dissolved S	Solids "As Rec	eived"										
Total Dissolved Solids		438	2.38	10.0	mg/L			KLP1	08/27/24	1058	2663138	8
The following Prep M	ethods were pe	erformed:										
Method	Description	n		Analyst	Date	-	Гimе	e Pro	ep Batch		·	
SW846 3005A	ICP-MS 3005	5A PREP		BB2	08/23/24	1	1445	266	51533			
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		JM13	08/23/24	1	1030	266	51398			

Page 27 of 57 SDG: 682093

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 5, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance 175569434

Client Sample ID: ARK-AP2-FD-03 Project: GPCC00100 Sample ID: 682093012 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date	Time Batch	Method
The following Analytic	cal Methods w	vere performed:							
Method	Description				1	Analys	st Comments		
1	EPA 300.0								
2	EPA 300.0								
3	SW846 7470A								
4	SW846 3005A	/6020B							
5	SW846 3005A	/6020B							
6	SW846 3005A	/6020B							
7	EPA 353.2 Lov	w Level							
8	SM 2540C								

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 28 of 57 SDG: 682093

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 5, 2024

GPCC00100

GPCC001

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance175569434

Client Sample ID: ARK-AP2-FB-03

Sample ID: 682093013

Matrix: WQ

Collect Date: 20-AUG-24 12:00 Receive Date: 21-AUG-24

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Ion Chromatography												
EPA 300.0 Anions Li	quid "As Recei	ved"										
Chloride	U	ND	0.0670	0.200	mg/L		1	CH6	08/25/24	0216	2662125	1
Fluoride	U	ND	0.0330	0.100	mg/L		1					
Sulfate	U	ND	0.133	0.400	mg/L		1					
Mercury Analysis-CV	/AA											
7470 Cold Vapor Mei	rcury, Liquid "A	As Received"										
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	08/26/24	1147	2661400	2
Metals Analysis-ICP-	MS				C							
SW846 3005A/6020E		"										
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1	BAJ	09/01/24	1345	2661534	3
Boron	Ü	ND	0.00520	0.0150	mg/L	1.00	1	2110	02/01/21	10.0	200100.	
Calcium	Ü	ND	0.0800	0.200	mg/L		1					
Lithium	Ü	ND	0.00300	0.0100	mg/L	1.00	1					
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	08/31/24	1926	2661534	4
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1					
Barium	U	ND	0.000670	0.00400	mg/L	1.00	1					
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1					
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1					
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1					
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1					
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1					
Nutrient Analysis												
EPA 353.2 Nitrogen,	Nitrate/Nitrite	"As Received"										
Nitrogen, Nitrate/Nitrite		0.0810	0.00700	0.0200	mg/L		1	AXH3	08/23/24	0742	2660961	5
Solids Analysis												
SM2540C Dissolved	Solids "As Rec	eived"										
Total Dissolved Solids	U	ND	2.38	10.0	mg/L			KLP1	08/27/24	1058	2663138	6
The following Prep M	lethods were pe	erformed:			Č							
Method	Description			Analyst	Date	-	Гіте	Pr	ep Batch			
SW846 7470A Prep		Mercury Prep Liquid		JM13	08/23/24		1030		61398			
SW846 3005A	ICP-MS 3005			BB2	08/23/24		1445		61533			

Page 29 of 57 SDG: 682093

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 5, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance 175569434

Client Sample ID: ARK-AP2-FB-03 Project: GPCC00100 Sample ID: 682093013 Client ID: GPCC001

Parameter	Qualifier Result	DL	RL	Units	PF	DF Analyst Date Time Batch Method
The following Analyti	cal Methods were performed:					
Method	Description				Analys	st Comments
1	EPA 300.0					
2	SW846 7470A					
3	SW846 3005A/6020B					
4	SW846 3005A/6020B					
5	EPA 353.2 Low Level					
6	SM 2540C					

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 30 of 57 SDG: 682093

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: September 5, 2024

Page 1 of 13

Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia

Contact: Joju Abraham

Workorder: 682093

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range Ai	ılst	Date Time
Ion Chromatography Batch 2662125										
QC1205833347 682055001 DUP Chloride		86.5		86.9	mg/L	0.448		(0%-20%)	СН6	08/26/24 11:32
Fluoride	J	0.0610	J	0.0568	mg/L	7.13	Λ.	(+/-0.100)		08/24/24 14:26
Sulfate		2.76		2.72	mg/L	1.47		(0%-20%)		
QC1205833349 682055003 DUP Chloride		53.0		53.0	mg/L	0.0566 ′	Λ.	(+/-20.0)		08/24/24 15:59
Fluoride	J	0.0768	J	0.0649	mg/L	16.8 ′	\	(+/-0.100)		08/26/24 13:05
Sulfate		734		737	mg/L	0.362		(0%-20%)		08/24/24 15:59
QC1205833346 LCS Chloride	5.00			4.73	mg/L		94.5	(90%-110%)		08/24/24 13:24
Fluoride	2.50			2.42	mg/L		96.7	(90%-110%)		
Sulfate	10.0			9.55	mg/L		95.5	(90%-110%)		
QC1205833345 MB Chloride			U	ND	mg/L					08/24/24 12:54
Fluoride			U	ND	mg/L					
Sulfate			U	ND	mg/L					

Page 31 of 57 SDG: 682093

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 682093 Page 2 of 13 Parmname **NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Ion Chromatography Batch 2662125 QC1205833348 682055001 PS 4.32 9.65 mg/L 106 (90%-110%) CH6 08/26/24 12:03 Chloride 5.00 Fluoride 2.50 J 0.0610 2.45 95.6 (90%-110%) 08/24/24 14:57 mg/LSulfate 10.0 2.76 12.5 97.5 (90%-110%) mg/L OC1205833350 682055003 PS Chloride 5.00 0.530 5.20 93.3 (90%-110%) 08/24/24 16:29 mg/L 0.0768 2.67 Fluoride 2.50 J 104 (90%-110%) 08/26/24 13:36 mg/L Sulfate 10.0 7.34 17.2 99.1 (90%-110%) 08/24/24 16:29 mg/L Metals Analysis - ICPMS 2661534 Batch QC1205831833 LCS BAJ 09/01/24 13:10 Aluminum 2.00 2.05 102 (80%-120%) mg/LAntimony 0.0500 0.0488 mg/L 97.5 (80% - 120%)08/31/24 17:31 0.0500 0.0477 95.4 Arsenic mg/L (80%-120%) 0.0489 Barium 0.0500 mg/L 97.9 (80%-120%) Beryllium 0.0500 0.0502 mg/L 100 (80%-120%) 09/01/24 13:10 Boron 0.100 0.0999 99.9 (80%-120%) mg/L 0.0500 0.0495 08/31/24 17:31 Cadmium 99 (80% - 120%)mg/L

Page 32 of 57 SDG: 682093

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 3 of 13 QC Parmname **NOM** Sample Qual Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS Batch 2661534 Calcium 2.00 2.09 mg/L104 (80%-120%) BAJ 09/01/24 13:10 Chromium 0.0500 0.0483 96.5 (80%-120%) 08/31/24 17:31 mg/L 0.0484 Cobalt 0.0500 mg/L96.8 (80%-120%) 1.92 Iron 2.00 mg/L 95.9 (80%-120%) 0.0496 99.1 Lead 0.0500 (80%-120%) mg/L Lithium 0.0500 0.0491 mg/L 98.2 (80%-120%) 09/01/24 13:10 2.00 2.07 103 (80%-120%) 08/31/24 17:31 Magnesium mg/LManganese 0.0500 0.0493 mg/L 98.7 (80%-120%) 09/01/24 13:10 Molybdenum 0.0500 0.0492 mg/L98.3 (80%-120%) 08/31/24 17:31 Potassium 2.00 1.99 99.3 mg/L (80%-120%) 0.0500 0.0479 Selenium mg/L 95.7 (80%-120%) Silver 0.0500 0.0506 101 (80%-120%) mg/L Sodium 2.00 2.06 103 mg/L (80%-120%) Thallium 0.0500 0.0462 mg/L92.4 (80%-120%)

Workorder:

682093

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 682093 Page 4 of 13 NOM QC RPD% REC% Parmname Sample Qual Units Range Anlst Date Time **Metals Analysis - ICPMS** 2661534 Batch QC1205831832 MB U ND BAJ 09/01/24 13:09 Aluminum mg/LAntimony U ND mg/L 08/31/24 17:28 U Arsenic ND mg/LU Barium ND mg/LBeryllium U ND mg/L09/01/24 13:09 U ND mg/LBoron U ND 08/31/24 17:28 Cadmium mg/LCalcium U ND 09/01/24 13:09 mg/L U ND 08/31/24 17:28 Chromium mg/L U ND Cobalt mg/LU ND mg/L Iron ND U mg/LLead Lithium U ND mg/L09/01/24 13:09 Magnesium U ND mg/L08/31/24 17:28

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

682093 Page 5 of 13 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2661534 Batch Manganese U ND mg/L BAJ 09/01/24 13:09 U ND 08/31/24 17:28 Molybdenum mg/L U ND Potassium mg/L U ND Selenium mg/L U ND Silver mg/L Sodium U ND mg/L U Thallium ND mg/L QC1205831834 682093001 MS 2.00 U ND 2.10 105 Aluminum (75%-125%) 09/01/24 13:13 mg/L ND 0.0501 0.0500 U 100 08/31/24 17:42 Antimony mg/L (75% - 125%)Arsenic 0.0500 U ND 0.0497 mg/L99.3 (75%-125%) 0.0500 0.0293 0.0793 Barium 100 (75%-125%)mg/L 0.0500 U ND 0.0510 09/01/24 13:13 Beryllium mg/L102 (75%-125%) Boron 0.100 0.0236 0.118 mg/L 94.2 (75%-125%)Cadmium 0.0500 U ND 0.0501 mg/L 100 (75%-125%) 08/31/24 17:42

Page 35 of 57 SDG: 682093

Workorder:

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 682093 Page 6 of 13 **Parmname** NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2661534 Batch Calcium 2.00 8.29 10.7 mg/LN/A (75%-125%) BAJ 09/01/24 13:13 0.0500 U ND 0.0510 99.4 (75%-125%) 08/31/24 17:42 Chromium mg/L ND 0.0487 Cobalt 0.0500 U mg/L 97.4 (75%-125%) U ND 1.94 2.00 mg/L 96.2 (75%-125%) Iron ND 0.0500 U 0.0493 98.6 Lead mg/L (75% - 125%)Lithium 0.0500 0.00376 0.0545 102 (75%-125%) 09/01/24 13:13 mg/L 2.00 3.52 5.76 08/31/24 17:42 Magnesium mg/L 112 (75% - 125%)Manganese 0.0500 U ND 0.0502 mg/L 99.4 (75% - 125%)09/01/24 13:13 Molybdenum 0.0500 J 0.000375 0.0527 mg/L 105 (75% - 125%)08/31/24 17:42 2.00 2.03 4.10 104 Potassium mg/L (75% - 125%)ND Selenium 0.0500 U 0.0486 mg/L 97 (75% - 125%)Silver 0.0500 U ND 0.0516 103 (75%-125%) mg/L 2.00 9.61 Sodium 11.8 N/A (75%-125%) mg/L Thallium 0.0500 U ND 0.0466 mg/L 93.3 (75%-125%)

Page 36 of 57 SDG: 682093

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 682093 Page 7 of 13 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2661534 Batch QC1205831835 682093001 MSD ND 2.00 U 2.15 mg/L 107 BAJ 09/01/24 13:14 Aluminum 2.29 (0%-20%)0.0500 U ND 0.0447 11.2 89.4 (0%-20%)08/31/24 17:45 Antimony mg/L 0.0500 U ND 0.0502 1.18 100 (0%-20%)Arsenic mg/L Barium 0.0500 0.0293 0.0804 mg/L 1.38 102 (0%-20%)Beryllium 0.0500 U ND 0.0520 mg/L 1.89 104 (0%-20%)09/01/24 13:14 0.100 0.0236 0.123 99.1 mg/L 4.03 (0%-20%)Boron Cadmium 0.0500 U ND 0.0509 1.51 102 (0%-20%)08/31/24 17:45 mg/L Calcium 2.00 8.29 10.8 1.21 N/A (0%-20%)09/01/24 13:14 mg/L U ND Chromium 0.0500 0.0517 1.45 101 (0%-20%)08/31/24 17:45 mg/L Cobalt 0.0500 U ND 0.0501 mg/L 2.7 100 (0%-20%)U ND 2.02 mg/L 101 2.00 (0%-20%)Iron 4.4 0.0500 U ND 0.0508 Lead mg/L 3.07 102 (0%-20%)mg/L 0.755 Lithium 0.0500 0.00376 0.0549 102 (0%-20%)09/01/24 13:14 Magnesium 2.00 3.52 5.81 mg/L 0.904 114 (0%-20%)08/31/24 17:45

Page 37 of 57 SDG: 682093

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 8 of 13 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2661534 Batch Manganese 0.0500 ND 0.0515 mg/L 2.54 102 (0%-20%)BAJ 09/01/24 13:14 0.05000.000375 0.0470 93.2 (0%-20%)08/31/24 17:45 Molybdenum J mg/L 11.4 Potassium 2.00 2.03 4.24 mg/L 3.18 111 (0%-20%)ND 0.0501 Selenium 0.0500 U mg/L 3.03 100 (0%-20%) ND Silver 0.0500 U 0.0527 2.21 105 mg/L (0%-20%)Sodium 2.00 9.61 12.0 1.61 N/A (0%-20%)mg/L Thallium 0.0500 U ND 0.0481 96.2 (0%-20%)mg/L 3.04 OC1205831836 682093001 SDILT U ND U Aluminum ND ug/L N/A (0%-20%)09/01/24 13:17 U ND U ND 08/31/24 17:50 Antimony ug/L N/A (0%-20%)ug/L U ND U ND N/A (0%-20%) Arsenic 29.3 5.98 Barium ug/L 1.93 (0%-20%)U ND U ND 09/01/24 13:17 Beryllium ug/L N/A (0%-20%)Boron 23.6 9.75 ug/L 106 (0%-20%)Cadmium U ND U ND ug/L N/A (0%-20%)08/31/24 17:50

Page 38 of 57 SDG: 682093

Workorder:

682093

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 682093 Page 9 of 13 QC REC% **Parmname** NOM Sample Qual Units RPD% Range Anlst Date Time Metals Analysis - ICPMS 2661534 Batch Calcium 8290 1700 ug/L 2.85 (0%-20%)BAJ 09/01/24 13:17 Chromium U ND U ND N/A (0%-20%)08/31/24 17:50 ug/L U ND U ND Cobalt ug/L N/A (0%-20%)U ND U ND ug/L N/A (0%-20%) Iron U ND ND U N/A (0%-20%)Lead ug/L Lithium J 3.76 U ND ug/L N/A (0%-20%)09/01/24 13:17 3520 737 ug/L (0%-20%)08/31/24 17:50 Magnesium 4.66 U Manganese U ND ND ug/L N/A (0%-20%)09/01/24 13:17 (0%-20%) Molybdenum J 0.375 U ND ug/L N/A 08/31/24 17:50 2030 410 Potassium ug/L 1.27 (0%-20%)U U ND Selenium ND ug/L N/A (0%-20%)Silver U ND U ND ug/L N/A (0%-20%)9610 2060 Sodium ug/L 6.95 (0%-20%)U Thallium ND U ND ug/L N/A (0%-20%)

Page 39 of 57 SDG: 682093

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

682093 Page 10 of 13 **Parmname** NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis-Mercury 2660787 Batch QC1205830153 681888001 DUP U ND U ND mg/L JP2 08/23/24 10:41 Mercury N/A QC1205830149 LCS 0.00193 0.00200 08/23/24 10:23 Mercury mg/L96.6 (80%-120%) QC1205830148 MB U ND 08/23/24 10:21 Mercury mg/L QC1205830154 681888001 MS 0.00200 U ND 0.00195 97.7 (75%-125%) 08/23/24 10:43 Mercury mg/L QC1205830155 681888001 SDILT U ND U ND (0%-10%)08/23/24 10:44 Mercury ug/L N/A 2661395 QC1205831541 682123001 DUP U ND Mercury U ND mg/L N/A JP2 08/26/24 12:15 QC1205831540 LCS 0.00200 0.00205 mg/L102 (80%-120%) 08/26/24 11:59 Mercury QC1205831539 MB U ND 08/26/24 11:57 Mercury mg/L QC1205831542 682123001 MS 0.00200 U ND 0.00196 08/26/24 12:17 (75%-125%) Mercury mg/L QC1205831543 682123001 SDILT ug/L Mercury U ND U ND N/A (0%-10%)08/26/24 12:18

Page 40 of 57 SDG: 682093

Workorder:

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 682093 Page 11 of 13 **Parmname** NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis-Mercury Batch 2661400 QC1205831549 681947004 DUP U ND U ND mg/L JP2 08/26/24 11:18 Mercury N/A QC1205831548 LCS 0.00209 0.00200 Mercury mg/L 104 (80%-120%) 08/26/24 11:10 QC1205831547 MB U ND 08/26/24 11:08 Mercury mg/L QC1205831550 681947004 MS 0.00200 U ND 0.00212 106 (75%-125%) 08/26/24 11:20 Mercury mg/L QC1205831551 681947004 SDILT U ND U ND (0%-10%)08/26/24 11:21 Mercury ug/L N/A **Nutrient Analysis** 2660961 Batch QC1205830578 681878004 DUP 3.65 3.65 mg/L 0.137 (0%-20%) AXH3 08/23/24 06:55 Nitrogen, Nitrate/Nitrite QC1205830577 LCS 1.00 1.02 102 (90%-110%) 08/23/24 06:52 Nitrogen, Nitrate/Nitrite mg/L QC1205830576 U ND 08/23/24 06:51 Nitrogen, Nitrate/Nitrite mg/L QC1205830579 681878004 PS Nitrogen, Nitrate/Nitrite 1.00 0.730 1.72 mg/L 98.7 (90%-110%) 08/23/24 06:57 Solids Analysis Batch 2663138 OC1205835765 681869001 DUP Total Dissolved Solids 11000 10600 mg/L 3.42 (0%-5%) KLP1 08/27/24 10:58

Page 41 of 57 SDG: 682093

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 682093									Page 12 of 13
Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Solids Analysis Batch 2663138									
QC1205835764 LCS Total Dissolved Solids	300		296	mg/L		98.7	(95%-105%)	KLP1	08/27/24 10:58
QC1205835763 MB Total Dissolved Solids		U	ND	mg/L					08/27/24 10:58
Titration and Ion Analysis Batch 2661203									
QC1205831115 LCS Alkalinity, Total as CaCO3	50.0		52.9	mg/L		106	(90%-110%)	JW2	08/22/24 11:01
QC1205831120 LCS Alkalinity, Total as CaCO3	15.0		14.5	mg/L		96.7	(90%-110%)		08/22/24 11:03
QC1205831121 LCSD Alkalinity, Total as CaCO3	50.0		53.3	mg/L	0.753	107	(0%-20%)		08/22/24 11:02
QC1205831122 LCSD Alkalinity, Total as CaCO3	15.0		14.9	mg/L	2.72	99.3	(0%-20%)		08/22/24 11:04

Notes:

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- N Metals--The Matrix spike sample recovery is not within specified control limits
- H Analytical holding time was exceeded
- < Result is less than value reported
- > Result is greater than value reported
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- Z Paint Filter Test--Particulates passed through the filter, however no free liquids were observed.
- d 5-day BOD--The 2:1 depletion requirement was not met for this sample

Page 42 of 57 SDG: 682093

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 13 of 13 Pa

Parmname	NOM	Sample (Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time

- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.

682093

- ND Analyte concentration is not detected above the detection limit
- % difference of sample and SD is >10%. Sample concentration must meet flagging criteria Е
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- E General Chemistry--Concentration of the target analyte exceeds the instrument calibration range
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- FB Mercury was found present at quantifiable concentrations in field blanks received with these samples. Data associated with the blank are deemed invalid for reporting to regulatory agencies
- N1See case narrative

Workorder:

- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- Per section 9.3.4.1 of Method 1664 Revision B, due to matrix spike recovery issues, this result may not be reported or used for regulatory compliance R purposes.
- The target analyte was detected in the associated blank. R
- 5-day BOD--Test replicates show more than 30% difference between high and low values. The data is qualified per the method and can be used for e reporting purposes
- See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 43 of 57 SDG: 682093

Technical Case Narrative Georgia Power Company SDG #: 682093

Metals

<u>Product:</u> Determination of Metals by ICP-MS <u>Analytical Method:</u> SW846 3005A/6020B <u>Analytical Procedure:</u> GL-MA-E-014 REV# 36

Analytical Batch: 2661534

Preparation Method: SW846 3005A

Preparation Procedure: GL-MA-E-006 REV# 15

Preparation Batch: 2661533

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
682093001	ARK-ARGWA-19
682093002	ARK-ARGWA-20
682093003	ARK-ARGWC-21
682093004	ARK-ARGWC-22
682093005	ARK-ARGWC-23
682093006	ARK-ARAMW-1
682093007	ARK-ARAMW-2
682093008	ARK-ARAMW-7
682093009	ARK-ARAMW-8
682093010	ARK-ARAMW-9
682093011	ARK-AP2-EB-03
682093012	ARK-AP2-FD-03
682093013	ARK-AP2-FB-03
1205831832	Method Blank (MB)ICP-MS
1205831833	Laboratory Control Sample (LCS)
1205831836	682093001(ARK-ARGWA-19L) Serial Dilution (SD)
1205831834	682093001(ARK-ARGWA-19S) Matrix Spike (MS)
1205831835	682093001(ARK-ARGWA-19SD) Matrix Spike Duplicate (MSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Calibration Information

ICSA/ICSAB Statement

For the ICP-MS analysis, the ICSA solution contains analyte concentrations which are verified trace impurities indigenous to the purchased standard.

Technical Information

Sample Dilutions

Page 44 of 57 SDG: 682093

Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range. Samples 682093003 (ARK-ARGWC-21), 682093004 (ARK-ARGWC-22), 682093005 (ARK-ARGWC-23), 682093006 (ARK-ARAMW-1), 682093007 (ARK-ARAMW-2), 682093008 (ARK-ARAMW-7), 682093009 (ARK-ARAMW-8), 682093010 (ARK-ARAMW-9) and 682093012 (ARK-AP2-FD-03) were diluted to ensure that the analyte concentrations were within the linear calibration range of the instrument.

Amalasta	682093								
Analyte	003	004	005	006	007	008	009	010	012
Boron	10X	25X	5X	25X	25X	50X	5X	1X	5X
Calcium	10X	25X	5X	25X	25X	50X	5X	5X	5X
Magnesium	1X	5X	1X	1X	1X	5X	1X	1X	
Manganese	1X	25X	1X	1X	1X	50X	1X	1X	
Sodium	1X	1X	1X	1X	1X	1X	1X	5X	

Product: Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer

Analytical Method: SW846 7470A

Analytical Procedure: GL-MA-E-010 REV# 40

Analytical Batch: 2660787

Preparation Method: SW846 7470A Prep

Preparation Procedure: GL-MA-E-010 REV# 40

Preparation Batch: 2660785

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
682093001	ARK-ARGWA-19
682093002	ARK-ARGWA-20
682093003	ARK-ARGWC-21
682093004	ARK-ARGWC-22
1205830148	Method Blank (MB)CVAA
1205830149	Laboratory Control Sample (LCS)
1205830155	681888001(NonSDGL) Serial Dilution (SD)
1205830153	681888001(NonSDGD) Sample Duplicate (DUP)
1205830154	681888001(NonSDGS) Matrix Spike (MS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer

Analytical Method: SW846 7470A

Analytical Procedure: GL-MA-E-010 REV# 40

Analytical Batch: 2661395

Preparation Method: SW846 7470A Prep

Preparation Procedure: GL-MA-E-010 REV# 40

Preparation Batch: 2661392

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
682093005	ARK-ARGWC-23
682093006	ARK-ARAMW-1
682093007	ARK-ARAMW-2
682093008	ARK-ARAMW-7
682093009	ARK-ARAMW-8
682093010	ARK-ARAMW-9
1205831539	Method Blank (MB)CVAA
1205831540	Laboratory Control Sample (LCS)
1205831543	682123001(NonSDGL) Serial Dilution (SD)
1205831541	682123001(NonSDGD) Sample Duplicate (DUP)
1205831542	682123001(NonSDGS) Matrix Spike (MS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer

Analytical Method: SW846 7470A

Analytical Procedure: GL-MA-E-010 REV# 40

Analytical Batch: 2661400

Preparation Method: SW846 7470A Prep

Preparation Procedure: GL-MA-E-010 REV# 40

Preparation Batch: 2661398

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
682093011	ARK-AP2-EB-03
682093012	ARK-AP2-FD-03
682093013	ARK-AP2-FB-03
1205831547	Method Blank (MB)CVAA
1205831548	Laboratory Control Sample (LCS)
1205831551	681947004(NonSDGL) Serial Dilution (SD)
1205831549	681947004(NonSDGD) Sample Duplicate (DUP)
1205831550	681947004(NonSDGS) Matrix Spike (MS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

General Chemistry

Product: Ion Chromatography **Analytical Method:** EPA 300.0

Analytical Procedure: GL-GC-E-086 REV# 35

Analytical Batch: 2662125

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
682093001	ARK-ARGWA-19
682093002	ARK-ARGWA-20
682093003	ARK-ARGWC-21
682093004	ARK-ARGWC-22
682093005	ARK-ARGWC-23
682093006	ARK-ARAMW-1
682093007	ARK-ARAMW-2
682093008	ARK-ARAMW-7
682093009	ARK-ARAMW-8
682093010	ARK-ARAMW-9
682093011	ARK-AP2-EB-03
682093012	ARK-AP2-FD-03
682093013	ARK-AP2-FB-03
1205833345	Method Blank (MB)
1205833346	Laboratory Control Sample (LCS)
1205833347	682055001(NonSDG) Sample Duplicate (DUP)
1205833348	682055001(NonSDG) Post Spike (PS)
1205833349	682055003(NonSDG) Sample Duplicate (DUP)
1205833350	682055003(NonSDG) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Sample Dilutions

The following samples 1205833347 (Non SDG 682055001DUP), 1205833348 (Non SDG 682055001PS), 682093003 (ARK-ARGWC-21), 682093004 (ARK-ARGWC-22), 682093005 (ARK-ARGWC-23), 682093006 (ARK-ARAMW-1), 682093007 (ARK-ARAMW-2), 682093008 (ARK-ARAMW-7), 682093009 (ARK-ARAMW-8), 682093010 (ARK-ARAMW-9) and 682093012 (ARK-AP2-FD-03) were diluted because target analyte concentrations exceeded the calibration range. Sample 682093008 (ARK-ARAMW-7) was diluted to minimize matrix effects on instrument performance. Samples 1205833349 (Non SDG 682055003DUP), 1205833350 (Non SDG 682055003PS) and 682093008 (ARK-ARAMW-7) were diluted based on historical data. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte

Page 47 of 57 SDG: 682093

concentrations into the linear calibration range.

A lt -	682093								
Analyte	003	004	005	006	007	008	009	010	012
Chloride	1X	1X	1X	1X	1X	2X	1X	50X	1X
Fluoride	1X	1X	1X	1X	1X	2X	1X	1X	1X
Sulfate	20X	50X	10X	20X	20X	100X	10X	50X	10X

Miscellaneous Information

Manual Integrations

Samples 682093001 (ARK-ARGWA-19), 682093002 (ARK-ARGWA-20), 682093003 (ARK-ARGWC-21), 682093004 (ARK-ARGWC-22), 682093005 (ARK-ARGWC-23), 682093006 (ARK-ARAMW-1), 682093007 (ARK-ARAMW-2), 682093008 (ARK-ARAMW-7), 682093009 (ARK-ARAMW-8), 682093010 (ARK-ARAMW-9) and 682093012 (ARK-AP2-FD-03) were manually integrated to correctly position the baseline as set in the calibration standards.

<u>Product:</u> Nitrate/Nitrite Cad Redux Low Level <u>Analytical Method:</u> EPA 353.2 Low Level <u>Analytical Procedure:</u> GL-GC-E-128 REV# 15

Analytical Batch: 2660961

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
682093001	ARK-ARGWA-19
682093002	ARK-ARGWA-20
682093003	ARK-ARGWC-21
682093004	ARK-ARGWC-22
682093005	ARK-ARGWC-23
682093006	ARK-ARAMW-1
682093007	ARK-ARAMW-2
682093008	ARK-ARAMW-7
682093009	ARK-ARAMW-8
682093010	ARK-ARAMW-9
682093011	ARK-AP2-EB-03
682093012	ARK-AP2-FD-03
682093013	ARK-AP2-FB-03
1205830576	Method Blank (MB)
1205830577	Laboratory Control Sample (LCS)
1205830578	681878004(NonSDG) Sample Duplicate (DUP)
1205830579	681878004(NonSDG) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Page 48 of 57 SDG: 682093

Sample Dilutions

The following samples 1205830578 (Non SDG 681878004DUP), 1205830579 (Non SDG 681878004PS), 682093001 (ARK-ARGWA-19) and 682093012 (ARK-AP2-FD-03) were diluted because target analyte concentrations exceeded the calibration range. The following samples 682093002 (ARK-ARGWA-20) and 682093005 (ARK-ARGWC-23) in this sample group were diluted due to matrix interference. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

Amaluta		682	093	
Analyte	001	002	005	012
Nitrogen, Nitrate/Nitrite	5X	5X	5X	5X

Sample Re-analysis

Sample was re-analyzed due to over dilution. 682093004 (ARK-ARGWC-22).

Product: Solids, Total Dissolved **Analytical Method:** SM 2540C

Analytical Procedure: GL-GC-E-001 REV# 21

Analytical Batch: 2663138

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
682093001	ARK-ARGWA-19
682093002	ARK-ARGWA-20
682093003	ARK-ARGWC-21
682093004	ARK-ARGWC-22
682093005	ARK-ARGWC-23
682093006	ARK-ARAMW-1
682093007	ARK-ARAMW-2
682093008	ARK-ARAMW-7
682093009	ARK-ARAMW-8
682093010	ARK-ARAMW-9
682093011	ARK-AP2-EB-03
682093012	ARK-AP2-FD-03
682093013	ARK-AP2-FB-03
1205835763	Method Blank (MB)
1205835764	Laboratory Control Sample (LCS)
1205835765	681869001(NonSDG) Sample Duplicate (DUP)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Miscellaneous Information

Additional Comments

Page 49 of 57 SDG: 682093

A reduced aliquot was used due to historical information. 1205835765 (Non SDG 681869001DUP), 682093008 (ARK-ARAMW-7) and 682093010 (ARK-ARAMW-9).

Product: Alkalinity

Analytical Method: SM 2320B

Analytical Procedure: GL-GC-E-033 REV# 16

Analytical Batch: 2661203

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
682093001	ARK-ARGWA-19
682093002	ARK-ARGWA-20
682093003	ARK-ARGWC-21
682093004	ARK-ARGWC-22
682093005	ARK-ARGWC-23
682093006	ARK-ARAMW-1
682093007	ARK-ARAMW-2
682093008	ARK-ARAMW-7
682093009	ARK-ARAMW-8
682093010	ARK-ARAMW-9
1205831115	Laboratory Control Sample (LCS)
1205831120	Laboratory Control Sample (LCS)
1205831121	Laboratory Control Sample Duplicate (LCSD)
1205831122	Laboratory Control Sample Duplicate (LCSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Laboratory Control Sample Duplicate (LCSD)

An LCSD was used in place of matrix QC due to limited sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 50 of 57 SDG: 682093

Ba = Barium

Pb = Lead

Se= Selenium

TSCA Regulated
PCB = Polychlorinated biphenyls

Cd = Cadmium Ag= Silver
Cr = Chromium MR= Misc. RCRA metals

								1												
Page: 1 of 2 Project # 175569434 GEL Quote #:		FEL				ries		l Spec	ialty A	natytic	s				2040	Sava	ige Ro	ies, LL oad 2940'		185003
COC Number (11): 2 Sample Cooler(s): 5		Chain				alytica					50%				Phon	ie: (84	13) 55	56-81	71	
	GEL Work Order Number	r:		GEL	Project	Manage.											766-			
Client Name: Georgia Power		Phone # (9	37-344-	6533)			Sai	mple	Ana	lysis	Requ	ieste	d (5)	(Fill	in th	e nur	nber	of co	ntain	ers for each test)
Project/Site Name: Plant Arkwright Ash Pond _2_		Fax: N/A				Shoul		513	Z	Z				Z	Z	Z	Z	Z	SA	< Preservative Type (6)
Address: 241 Ralph McGill Blvd SE, Atlanta, GA 3	0308					samp consid		of containe	(B)	Ca)	(2.1) narks	340C)	fate) 93)	20B) rarks	pqı	8	a. Fe.	0B)	(7)	
Collected By: Jackson Bankston, Zach Levy, John Myer, Dylan Quintal	Send Results To: jabraham@sou cassidy.sutherland@stantec.com		EDD@st	antec.com		e (If supply 0.)	or ızards	oer of co	Ag (App. I) (6020B)	p. III (B,	(300.0 R onal Ren	1ethod 2	1, Fl, Sulfate) 3v. 2.1 1993)	p. IV (60 onal Ren	5-228 Сп	Mercury (7470B)	K, Mg, N 6020B)	12+ (602 Filtered	e/ Nitrite	Comments (task code: ARK-CCR-
Sample ID * For composites - indicate start and stop date!	*Date Collected ime (mm-dd-yy)	*Time Collected (Military) (hhmm)	QC Code (2)	Field Filtered ⁽³⁾	Sample Matrix ⁽⁴⁾	Radioactive (If yes, please supply isotopic info.)	(7) Known or possible Hazards	Total number	Ag (App	Metals App. III (B, C (6020B)	Alkalinity (300.0 R2.1) see Additional Remarks	TDS (SM Method 2540C)	Anions (Cl, I (300.0 Rev.	Metals App. IV (6020B) see Additional Remarks	RAD 226-228 Cmbd	Mercur	Metals Al, K, Mg, Na, Fe Mn (6020B)	Fe2+/ Mr Field	Nitrate/ Nitrite (EPA Method 353.2	ASSMT-2024S2)
ARK-ARGWA-19	08-20-24	0910	N	N	WG			8	Х	Х	Х	X	Х	Х	Х	Х	Х		Х	
ARK-ARGWA-20	08-20-24	0935	N	N	WG			8	Х	Х	Х	Х	х	Х	Х	Х	Х		Х	
ARK-ARGWC-21	08-20-24	1515	N	N	WG		T _i	8	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	
ARK-ARGWC-22	08-20-24	1405	N	N	WG			8	х	х	Х	Х	Х	х	х	Х	х		Х	
ARK-ARGWC-23	08-20-24	12:50	N	N	WG			8	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	
ARK-ARAMW-1	08-20-24	1315	N	N	WG			8	Х	Х	Х	Х	х	Х	X	Х	Х		Х	
ARK-ARAMW-2	08-20-24	1145	N	N	WG			8	Х	Х	Х	X	Х	Х	Х	Х	Х		X	
ARK-ARAMW-7	08-20-24	1305	N	N	WG			8	Х	X	Х	X	Х	Х	Х	Х	Х		X	
ARK-ARAMW-8	08-20-24	0935	N	N	WG			8	Х	Х	Х	X	Х	Х	Х	X	Х	\perp	X	
ARK-ARAMW-9	08-20-24	1150	N	N	WG			8	Х	Х	Х	Х	Х	X	Х	X	X		X	
Ch	ain of Custody Signatures	1				1/4	TA	T Re	quest	ed:	Norn	ıal: _	X	Rus	h:	s	pecif	y:		(Subject to Surcharge)
Relinquished By (Signed) Print Name	Date Received by (si	gned)	Print Na	ne	Date		Fax Res	sults:	[]Y	es	[X]	No								
1 gram Stantec 9	21/29 1	20	8/2	1/24			Select I				C of A		QC S	Summ	ary	[] le	vel 1	[X]	Leve Mo. Se.	12 [] Level 3 [] Level 4
2	2 Ch	enne	Rie	m	Phi	24 4	Additio	nal R	emari	ks:	1772-0	Alkali								l as CaCO3
3	3						For La				Only	: Cu.	stody	Seal .	ntact	?[]	Yes	[]/	No (Cooler Temp: O_°C
> For sample shipping and delivery details, see Sa	mple Receipt & Review form	(SRR.)				Sample	Collectio	n Tin	ne Zo	ne:	[X]I	aster	n [] Pac	ific	[]	Centr	al [] Mo	ountain [] Other:
1.) Chain of Custody Number = Client Determined																				
2.) QC Codes: N = Normal Sample, TB = Trip Blank, FD = Fig	eld Duplicate, EB = Equipment Blan	k, MS = Matri	x Spike S	ample, MSI) = Matrix	Spike Dupli	cate Samp	le, G =	Grab,	$\mathbf{C} = \mathbf{C}($	omposi	le								
3.) Field Filtered: For liquid matrices, indicate with a - Y - for																				
4.) Matrix Codes: DW =Drinking Water, GW =Groundwater, SW								SS=Sc	olid Wa	aste, O	=Oil, F	=Filte	r. P=W	ipe, U	=Urine	, F=Fe	cal, N=	=Nasal		
5.) Sample Analysis Requested: Analytical method requested (1	- 6-14						
6.) Preservative Type. HA = Hydrochloric Acid. NI = Nitric Ac				rbic Acid, F	IX = Hexa	ne. ST = Soc	Other	sullate,	11 no p	oreserv	auve is	added	= leav	e neid	orank		Dias	ica n=	ovida	any additional details below
7.) KNOWN OR POSSIBLE HAZARDS RCRA Metals	Characteristic Hazards FL = Flammable/Ignitable CO = Corrosive	LW=	Waste Listed V and U-	Vaste listed wa:	stes.)	1	OT= O				⊥ estos,	beryl	lium,	irrita	nts, o	ther	rega	ırding	g hand	tling and/or disposal concerns. sample(s), type of site collected
As = Arsenic Hg= Mercury	Waste	code(s)	:			misc. health hazards, etc.)								from, odd matrices, etc.)						

Description:

of

175569434

2 Sample Cooler(s): 5

GEL	Laboratories LLC
gei com	Chemistry Radiochemistry Radiobioassay

ay | Specialty Analytics

Chain of Custody and Analytical Request

GEL Work Order Number: GEL Project Manager: Alaina Pinnick

GEL Laboratories, LLC 2040 Savage Road Charleston, SC 29407

Phone: (843) 556-8171 Fax: (843) 766-1178

PO Number, GPC 82177-0003	O Number, GPC 82177-0005 GEE WORK Officer Namber. GEE Project									AND THE REAL PROPERTY.		10.51	-) 100-			
Client Name: Georgia Power		Phone # (9	37-344-	6533)			Sa	mple	Ana	alysi	Req	ueste	ed (5)	(Fill	in th	ie nui	mber	of co	ntain	ers for each test)
Project/Site Name: Plant Arkwright Ash Pond _2_	-	Fax: N/A				Shoul		rs	Z	Z				Z	Z	Z	Z	Z	SA	< Preservative Type (6)
Address: 241 Ralph McGill Blvd SE, Atlanta, GA	30308					samp consid		taine	B)	Ca)	2.1) arks	40C)	ate)	OB) arks	pq		1, Fe.	B	2)	
Collected By: Jackson Bankston, Zach Levy, John Myer, Dylan Quintal	Send Results To: jabraham@socassidy.sutherland@stantec.com		EDD@st	antec.com		(If upply)	or azards	ards :		App. III (B,	(300.0 R.	ethod 25	, FI, Sulf	als App. IV (6020B) Additional Remarks	-228 Cm	Mercury (7470B)	C, Mg, Na 5020B)	2+ (6020 Filtered	/ Nitrite thod 353.	Comments (task code: ARK-CCR-
Sample ID * For composites - indicate start and stop data	*Date Collected (mm-dd-yy)	*Time Collected (Military) (hhmm)	QC Code	Filtered (3	Sample Matrix (4		(7) Known or possible Hazards	Total number	Ag (App. I) (6020B)	Metals App. III (B, Ca)	Alkalinity (300.0 R2.1 see Additional Remark	TDS (SM Method 2540C)	Anions (Cl, Fl, Sulfate) (300.0 Rev. 2.1 1993)	Metals App. IV (6020B) see Additional Remarks	RAD 226-228 Cmbd	Mercun	Metals Al, K, Mg, Na, Mn (6020B)	Fe2+/ Mn2+ (6020B) Field Filtered	Nitrate (EPA Me	ASSMT-2024S2)
ARK-AP2-EB-03	08-20-24	1440	EB	N	WQ			7		X		Х	Х	X	X	X			X	
ARK-AP2-FD-03	08-20-24	NA	FD	N	WQ			7		X		X	X	X	X	X			X	
ARK-AP2-FB-03	08-20-24	1200	FB	N	WQ			7		X		X	X	Х	X	X			X	
											1									
											T				\vdash		\vdash			
			8 11:5 11:11:	- Lilling bed and									-			_	_		_	
											-		-				\vdash	\vdash		
					ļ				-				_			_	\vdash	-		
					ļ		Selection:		-	-	-		-			\vdash	\vdash	\vdash		
	L.					<u> </u>		ni Photes	ministanna	Marie, san	Scharless	apdisaskii	Addition to	Sittle Co.	Sile is	arrana	- 40 - 10	ecianity and		suduk il videolingi utt. 2014/00/1945 il 1451
C	hain of Custody Signature	s					TA	Γ Rec	quest	ed:	Norr	nal: _	X	Rus	h:	s	Specify	y:		(Subject to Surcharge)
Relinquished By (Signed) Print Name	Date Received by (s	igned)	Print Nan	ne	Date		Fax Res	sults:	[] Y	Yes	[X]	No								
1 MMW/V Stantec &	3/2/12/2019	1/ 3	1/21				Select Deliverable: [] C of A [] QC Summary [] level 1 [X] Level 2 [] Level 3 [] Level 4													
2	2 Com	ema	hox	181	अ/३4	400	Additional Remarks: Alkalinity: bicarbonate as CaCO3, carbonate as CaCO3, total as CaCO3													
3	3						For Lab Receiving Use Only: Custody Seal Intact? [] Yes [] No Cooler Temp:													
> For sample shipping and delivery details, see	Sample Receipt & Review fort	n (SRR.)				Sample	Collectio	n Tin	ne Zo	one:	[X]	Easte	rn	[] Pa	acific	[]	Cent	ral	[]M	Iountain [] Other:
1.) Chain of Custody Number = Client Determined																				
2.) QC Codes: N = Normal Sample, TB = Trip Blank, FD = F	ield Duplicate, EB = Equipment Blank	, MS = Matrix	Spike San	nple, MSD	= Matrix S	oike Duplica	e Sample,	$G = G_1$	rab, C	= Corr	posite									
3.) Field Filtered: For liquid matrices, indicate with a - Y - for																				
4.) Matrix Codes: DW=Drinking Water, GW=Groundwater, S	SW=Surface Water, WW=Waste Water	r, W=Water, N	IL=Misc L	iquid, SO=	Soil, SD =S	ediment, SL	=Sludge, S	S=Soli	d Wast	te, O=	Oil, F=	Filter, 1	P=Wip	e, U=U	Jrine, F	=Feca	1, N =Ne	asal		
5.) Sample Analysis Requested: Analytical method requested	(i.e. 8260B, 6010B/7470A) and numb	er of containers	provided	for each (i.e	. 8260B -	3, 6010B 747	70A - 1).													
6.) Preservative Type: HA = Hydrochloric Acid, NI = Nitric A		ılfuric Acid, A	A = Ascorb	oic Acid, H	ζ = Hexane	, ST = Sodiu		fate, If	no pre	servat	ive is a	dded =	leave f	ield bla	ank					
7.) KNOWN OR POSSIBLE HAZARDS	Characteristic Hazards FL = Flammable/Ignitable		Waste Listed W	lacta			Other	ther /	Unkr	nown										any additional details below
RCRA Metals	CO = Corrosive	(F, K, F		OT= Other / Unknown (i.e.: High/low pH, asbestos, beryllium, irritants, other (i.e.: Origin of sample(s), type of site collected																
As = Arsenic $Hg = Mercury$	RE = Reactive		code(s).				misc. he			rds, e	tc.)						from	, odd	matri	ces, etc.)
Ba = Barium Se= Selenium Cd = Cadmium Ag= Silver	TSCA Regulated	1				-	Descrip	tion:												
Cr = Chromium Ag= Silver Results Ag= Silver Results Ag= Silver Results Ag= Silver Results Ag= Silver	PCB = Polychlorinated					- .0										đ		2 = #1		
Pb = Lead	biphenyls	biphenyls																		

682138 682097 682084 682142 682098 AP 682093 682097

GEL Laboratories LLC SAMPLE RECEIPT & REVIEW FORM SDG/AR/COC/Work Order: Date Received: Received By: CLM FedEx Express FedEx Ground UPS Field Services Courier Carrier and Tracking Number No No *If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation. Suspected Hazard Information Hazard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes___No___ A)Shipped as a DOT Hazardous? B) Did the client designate the samples are to be COC notation or radioactive stickers on containers equal client designation. received as radioactive? CPM/mR/Hr Maximum Net Counts Observed* (Observed Counts - Area Background Counts): C) Did the RSO classify the samples as Classified as: Rad 1 Rad 2 Rad 3 radioactive? COC notation or hazard labels on containers equal client designation. D) Did the client designate samples are hazardous? If D or E is yes, select Hazards below. Foreign Soil RCRA Asbestos Beryllium PCB's Flammable E) Did the RSO identify possible hazards? No No Sample Receipt Criteria Comments/Qualifiers (Required for Non-Conforming Items) Circle Applicable: Seals broken Damaged container Leaking container Other (describe) Shipping containers received intact and sealed? Circle Applicable: Client contacted and provided COC COC created upon receipt Chain of custody documents included with shipment? Preservation Method: Wet Ice Ice Packs Dry ice None Other: Samples requiring cold preservation *all temperatures are recorded in Celsius within $(0 \le 6 \text{ deg. C})$? Temperature Device Serial #: IR5-23 Daily check performed and passed on IR Secondary Temperature Device Serial # (If Applicable): temperature gun? Circle Applicable: Seals broken Damaged container Leaking container Other (describe) Sample containers intact and sealed? Sample ID's and Containers Affected: Samples requiring chemical preservation at proper pH? If Preservation added, Lot#: If Yes, are Encores or Soil Kits present for solids? Yes__ No__ NA__(If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? Yes___ No___ NA___(If unknown, select No) Do any samples require Volatile Are liquid VOA vials free of headspace? Yes___ No___ NA___ Analysis? Sample ID's and containers affected: ID's and tests affected: Samples received within holding time? ID's and containers affected: Sample ID's on COC match ID's on 9 bottles? Circle Applicable: No dates on containers No times on containers COC missing info Other (describe) Date & time on COC match date & time 10 on bottles? Circle Applicable: No container count on COC Other (describe) Number of containers received match number indicated on COC? Are sample containers identifiable as GEL provided by use of GEL labels? Circle Applicable: Not relinquished Other (describe) COC form is properly signed in relinquished/received sections? wrote on samples, per COC it should be 8/20/24. Comments (Use Continuation Form if needed):

Date _

GL-CHL-SR-001 Rev 7

PM (or PMA) review: Initials

UI I Ba	GEL Laboratories LLC										GEL Laboratories, LLC 2040 Savage Road \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\						
gel.com Chemistry Radiochemistry Radiobioassay Specialty Analytics													-		_	(1000)	
Chain of Custody and Analytical Request														2940			
		Managei			nnicl	·					Phone: (843) 556-8171 Fax: (843) 766-1178						
	rojeci	- Inninger					Rea	ueste	d (5)		in the number of containers for each test)						
Fax: N/A Should this 7 7 7 7										Z	Z	Z	Z	SA	< Preservative Type (6)		
GA 30308 sample conside									(S)		_		Fe	_			
Collected By: Jackson Bankston, Zach Levy, John Myer, Dylan Quintal Send Results To: jabraham@southernco.com EDD@stantec.com cassidy.sutherland@stantec.com								ethod 254	(Cl, Fl, Sulfate) Rev. 2.1 1993)	. IV (6020 nal Rema	-228 СтЬ	Mercury (7470B)	. Mg. Na.	2+ (6020F Filtered	/ Nitrite hod 353.7	Comments (task code: ARK-CCR	
ld ed ⁽³⁾	Sample Matrix ⁽⁴⁾	Radioactive (I yes, please supply isotopic info.)	(7) Known or possible Hazards	Total number of containers	Ag (App. I) (6020B)	Metals App. III (B, Ca) (6020B)	Alkalinity (300.0 R2.1) see Additional Remarks	TDS (SM Method 2540C)	Anions (Cl (300.0 Rev	Metals App. IV (6020B) see Additional Remarks	RAD 226-228 Cmbd	Mercury	Metals Al, K. Mg. Na. Mn (6020B)	Fe2+/ Mn2+ (6020B) Field Filtered	Nitrate/ Nitrite (EPA Method 353.2	ASSMT-2024S2)	
1	WG			8	Х	х	Х	Х	Х	Х	Х	Х	Х		Х		
1	WG			8	Х	Х	х	х	х	х	Х	Х	Х		Х		
1	WG			8	Х	Х	Х	Х	Х	Х	Х	Х	Х		X		
1	WG			8	х	Х	х	х	Х	Х	Х	Х	Х		Х		
1	WG			8	Х	Х	Х	Х	Х	Х	Х	Х	Х		X		
1	WG			8	Х	х	Х	Х	х	Х	Х	Х	Х		Х		
1	WG			8	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х		
1	WG			8	х	х	х	Х	Х	Х	Х	Х	х		Х		
1	WG			8	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х		
1	WG			8	Х	Х	Х	Х	х	Х	X	Х	Х		Х		
			TA	T Re	quest	ed:	Norn	nal: _	X	Rusi	n:	s	pecif	fy:		(Subject to Surcharge)	
I	Date		Fax Re	sults:	[]Y	es	[X]	No									
4	-						C of A		QC S	umm	ary	[] le	vel 1	[X]	Level	2 []Level 3 []Level 4	
2 Chemilian Gally Madditional Remarks: Metals App. IV: Sb, As, Ba, Be, Cd, Cr, Co, Pb, Li, Mo, Se, II Alkalimity: bicarbonate as CaCO3, carbonate as CaCO3, total as CaCO3																	
																Cooler Temp: O°C	
		Sample (Collectio	n Tin	ne Zo	ne:	[X]I	Easter	n [] Pac	ific	[]	Centr	al [] Mo	untain [] Other:	
MSD	= Matrix S	Spike Duplic	ate Samp	le, G =	Grab,	$\mathbf{C} = \mathbf{C}$	omposi	te									
red.																	
	red.	red.	red.	red.	red.	red.	red.	red.		red.	red.	red.	red.	red.		red.	

- 5.) Sample Analysis Requested: Analytical method requested (i.e. 8260B, 6010B/7470A) and number of containers provided for each (i.e. 8260B 3, 6010B 7470A 1).
- 6.) Preservative Type, HA = Hydrochloric Acid, NI = Nitric Acid, SH = Sodium Hydroxide, SA = Sulfuric Acid, AA = Ascorbic Acid, HX = Hexane, ST = Sodium Thiosulfate, If no preservative is added = leave field blank

7.) KNOWN OR POSSIBLE HAZARDS	Characteristic Hazards FL = Flammable/Ignitable	Listed Waste LW= Listed Waste		Please provide any additional details below regarding handling and/or disposal concerns
RCRA Metals As = Arsenic Ba = Barium Cd = Cadmium Cr = Chromium Pb = Lead Rg= Mercury Se= Selenium Ag= Silver MR= Misc. RCRA metals	CO = Corrosive RE = Reactive TSCA Regulated PCB = Polychlorinated biphenyls	(F,K,P and U-listed wastes.) Waste code(s):	(i.e.: High/low pH, asbestos, beryllium, irritants, other	

GEL	Laboratories LLC
	Chemistry Radiochemistry Radiobioassay Specialty Analytics
	Custody and Analytical Request

GEL Work Order Number: GEL Project Manager: Alaina Pinnick GEL Laboratories, LLC 2040 Savage Road Charleston, SC 29407

Phone: (843) 556-8171

Fax: (843) 766-1178

Client Name: Georgia Power	Phone # (937-344-6533)						Sa	mple	e Ana	alysis	s Req	uesto	ed (5)	(Fill	l in th	e nu	mber	of co	ntain	ers for each test)
Project/Site Name: Plant Arkwright Ash Pond _2_		Fax: N/A				Shoul		rs	Z	Z				Z	Z	Z	Z	Z	SA	< Preservative Type (6)
Address: 241 Ralph McGill Blvd SE, Atlanta, GA 30308						PARTY DESCRIPTION	le be lered:	taine	<u>\$</u>	(a)	C sk	10C)	ite)	OB)	P		, Fe,	<u>@</u>	5)	
Collected By: Jackson Bankston, Zach Levy, John Send F Myer, Dylan Quintal cassid	Results To: jabraham@sou y.sutherland@stantec.com		EDD@st	tantec.com		(If		er of con	I) (6020F	5. III (B, C	(300.0 R2	ethod 25 ²	FI, Sulfa	. IV (602) nal Rema	-228 Cmb	Mercury (7470B)	., Mg, Na	2+ (6020) Filtered	/ Nitrite hod 353.	Comments (task code: ARK-CCR-
Sample ID *For composites - indicate start and stop date/time	*Date Collected (mm-dd-yy)	*Time Collected (Military) (hhmm)	QC Code	e Field Filtered ⁽³⁾	Sample Matrix (4)	lioactiv please opic inf	(7) Known or possible Hazards	Total number of container	Ag (App. I) (6020B)	Metals App. III (B, Ca)	Alkalinity (300.0 R	TDS (SM Method 2540C)	Anions (Cl, Fl, Sulfate) (300.0 Rev. 2.1 1993)	Metals App. IV (6020B) see Additional Remarks	RAD 226-228 Cmbd	Mercury	Metals Al, K, Mg, Na, Fe, Mn (6020B)	Fe2+/ Mn2+ (6020B) Field Filtered	Nitrate/ Nitrite (EPA Method 353.	ASSMT-2024S2)
ARK-AP2-EB-03	08-20-24	1440	EB	N	WQ			7		X		Х	X	X	X	X			Х	
ARK-AP2-FD-03	08-20-24	NA	FD	N	WQ			7		X		X	X	X	X	X			X	
ARK-AP2-FB-03	08-20-24	1200	FB	N	WQ			7		Х		Х	X	X	X	X			X	
														-		_				
Chain of	Custody Signatures						TA	Γ Rec	quest	ed:	Norn	nal: _	X	Rus	h:	s	Specify	y:		(Subject to Surcharge)
Relinquished By (Signed) Print Name Date	Received by (si	gned)	Print Nan	ne	Date		Fax Results: [] Yes [X] No													
1 mmm/ Stanter 8/2	121009	10 8	691	24			Select Deliverable: [] C of A [] QC Summary [] level 1 [X] Level 2 [] Level 3 [] Level 4													
2	2 Come	ema	hor	1 81	31/34	1400	Addition	nal R	emari	ks:										l as CaCO3
3	3						For La	b Rec	eivin	g Use	? Only	: Cu	stody	Seal	Intac	t? []] Yes	[]	No	Cooler Temp: <u></u> ○ °C
> For sample shipping and delivery details, see Sample	Receipt & Review forn	ı (SRR.)				Sample	Collectio	n Tin	ne Zo	one:	[X]	Easte	rn	[] Pa	acific	[]] Centi	ral	[]M	fountain [] Other:
1.) Chain of Custody Number = Client Determined			M																	
2.) QC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Dupli	cate, EB = Equipment Blank,	MS = Matrix	Spike San	nple, MSD =	Matrix Sp	oike Duplica	te Sample,	$G = G_1$	rab, C	= Com	posite									
3.) Field Filtered. For liquid matrices, indicate with a - Y - for yes the s	ample was field filtered or - N	- for sample v	vas not fiel	ld filtered.																
4.) Matrix Codes: DW=Drinking Water, GW=Groundwater, SW=Surfa	ce Water, WW=Waste Water	, W=Water, M	L=Misc L	iquid, SO=	Soil, SD =S	ediment, SL	=Sludge, S	S=Soli	d Wast	te, O =0	Oil, F=I	Filter, I	P=Wip	e, U=U	Jrine, F	=Feca	I, N=Na	asal		
5.) Sample Analysis Requested: Analytical method requested (i.e. 8260	B, 6010B/7470A) and number	r of containers	provided	for each (i.e	. 8260B - 3	3, 6010B 74	70A - 1).													
6.) Preservative Type: HA = Hydrochloric Acid, NI = Nitric Acid, SH =	Sodium Hydroxide, SA = Su	lfuric Acid, A	= Ascorb	oic Acid, HX	ζ = Hexane	e, ST = Sodii		fate, If	по рге	servati	ve is ac	lded =	leave f	ield bla	ank					
	acteristic Hazards Flammable/Ignitable		Other OT= Other / Unknown Please provide any additional details below regarding handling and/or disposal concern																	
RCRA Metals CO =	Corrosive Reactive	orrosive (F,K,P and U-listed wastes.)							(i.e.: High/low pH, asbestos, beryllium, irritants, other misc, health hazards, etc.) Description: (i.e.: Origin of sample(s), type of site colle from, odd matrices, etc.)										sample(s), type of site collected	
Cd = Cadmium Ag= Silver TSCA	A Regulated = Polychlorinated	1				-														
Pb = Lead	biphenyls							Constitution								•				

682138 682097 682084 682142 682098 AP

GL-CHL-SR-001 Rev 7

GEL Laboratories LLC				682093 6820	97
Laboratories LLC				SAMPLE RECEIPT & REVIEW FORM	WT 8/
Client: 6 CC			SD	G/AR/COC/Work Order:	•
Received By: CLM			Da	te Received: 8/21/24	
Carrier and Tracking Number				FedEx Express FedEx Ground UPS Field Services Courier Other 2-0° 4-0° 6-0° 8-1° 10-0°	1° 11-
Suspected Hazard Information	Yes	No	*If	Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.	
A)Shipped as a DOT Hazardous?		V	Ha	ard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes No	
B) Did the client designate the samples are to be received as radioactive?		/	CO	C notation or radioactive stickers on containers equal client designation.	
C) Did the RSO classify the samples as radioactive?		1	Ma	ximum Net Counts Observed* (Observed Counts - Area Background Counts): CPM mR/Hr Classified as: Rad 1 Rad 2 Rad 3	
D) Did the client designate samples are hazardous?			CC	C notation or hazard labels on containers equal client designation.	
E) Did the RSO identify possible hazards?		1	If I	O or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:	
Sample Receipt Criteria	Yes	VY/	°Z,	Comments/Qualifiers (Required for Non-Conforming Items)	
1 Shipping containers received intact and sealed?				Circle Applicable: Seals broken Damaged container Leaking container Other (describe)	
2 Chain of custody documents included with shipment?	0			Circle Applicable: Client contacted and provided COC COC created upon receipt	6
3 Samples requiring cold preservation within (0 ≤ 6 deg. C)?*				Preservation Method: Wet Ice Ice Packs Dry ice None Other: *all temperatures are recorded in Celsius TEMP: Le about	ve with
4 Daily check performed and passed on IR temperature gun?				Temperature Device Serial #: IR5-23 Secondary Temperature Device Serial # (If Applicable):	No.
5 Sample containers intact and sealed?	/			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)	
6 Samples requiring chemical preservation at proper pH?	/			Sample ID's and Containers Affected: If Preservation added, Lot#:	
7 Do any samples require Volatile Analysis?			V	If Yes, are Encores or Soil Kits present for solids? YesNoNA(If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA Sample ID's and containers affected:	
8 Samples received within holding time?	/			ID's and tests affected:	
9 Sample ID's on COC match ID's on bottles?	/			ID's and containers affected:	
10 Date & time on COC match date & time on bottles?		/	V	Circle Applicable: No dates on containers No times on containers COC missing info Other (describe) ACX - A RAMW-8 (2 08 3) play-tic 1,000 has 8119	124
Number of containers received match number indicated on COC?	/			Circle Applicable: No container count on COC Nother (describe)	
Are sample containers identifiable as GEL provided by use of GEL labels? COC form is properly signed in	/			Circle Applicable: Not relinquished Other (describe)	
relinguished/received sections?	1				
Comments (Use Continuation Form if needed):	e!	i 2) 1	per COC it should be 8/20/24.	
				tials 124 2 Page Lof	

List of current GEL Certifications as of 05 September 2024

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	KY90129
Kentucky Wastewater	KY90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2023019
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	NV-C24-00175
New Hampshire NELAP	205424
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2023-152
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235
Utah NELAP	SC000122024-41
Vermont	VT87156
Virginia NELAP	460202
Washington	C780
	1 2,00

gel.com

a member of The GEL Group INC

September 19, 2024

Joju Abraham Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

Re: Arkwright CCR Groundwater Compliance Relog: Radiochemistry

Work Order: 682097

Dear Joju Abraham:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on August 21, 2024. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. The sample containers (2 of 3) for sample ID "ARK0-ARAMW-8" had a collection date of 8/19/24 while the chain of custody documents the collection date as 8/20/24682097009(ARK-ARAMW-8). The laboratory received the following sample(s):

Laboratory ID	Client ID	<u>Matrix</u>	Date Collected	Date Received
682097001	ARK-ARGWA-19	Ground Water	08/20/24 09:10	08/21/24 14:00
682097002	ARK-ARGWA-20	Ground Water	08/20/24 09:35	08/21/24 14:00
682097003	ARK-ARGWA-21	Ground Water	08/20/24 15:15	08/21/24 14:00
682097004	ARK-ARGWA-22	Ground Water	08/20/24 14:05	08/21/24 14:00
682097005	ARK-ARGWA-23	Ground Water	08/20/24 12:50	08/21/24 14:00
682097006	ARK-ARAMW-1	Ground Water	08/20/24 13:15	08/21/24 14:00
682097007	ARK-ARAMW-2	Ground Water	08/20/24 11:45	08/21/24 14:00
682097008	ARK-ARAMW-7	Ground Water	08/20/24 13:05	08/21/24 14:00
682097009	ARK-ARAMW-8	Ground Water	08/20/24 09:35	08/21/24 14:00
682097010	ARK-ARAMW-9	Ground Water	08/20/24 11:50	08/21/24 14:00
682097011	ARK-AP2-EB-03	Water	08/20/24 14:40	08/21/24 14:00
682097012	ARK-AP2-FD-03	Water	08/20/24 12:00	08/21/24 14:00
682097013	ARK-AP2-FB-03	Water	08/20/24 12:00	08/21/24 14:00

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Prep Methods and Prep Dates

Not Applicable

Analysis Methods and Analysis Dates

<u>Method</u>	Run Date ID
Calculation	19-SEP-2024
EPA 903.1 Modified	18-SEP-2024
EPA 904.0/SW846 9320 Modified	17-SEP-2024

Page 2 of 29 SDG: 682097

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4443.

Sincerely,

Alaina Pinnick Project Manager

Alaina Pinnick

Purchase Order: GPC82177-0005

Enclosures

Page 3 of 29 SDG: 682097

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

GPCC001 Georgia Power Company Client SDG: 682097 GEL Work Order: 682097

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Alaina Pinnick.

Page 4 of 29 SDG: 682097

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 19, 2024

GPCC00100 GPCC001

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceRelog: Radiochemistry

Client Sample ID: ARK-ARGWA-19 Project: Sample ID: 682097001 Client ID:

Sample ID: 682097001 Matrix: WG

Collect Date: 20-AUG-24 Receive Date: 21-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analyst	Date	Time	Batch	Mtd.
Rad Gas Flow Proport GFPC Ra228, Liquid		0												
Radium-228	U	1.83	+/-1.31	2.06	+/-1.39	3.00	pCi/L			KP1	09/17/24	1252	2661778	1
Radium-226+Radium	n-228 Calculat	tion "See Pa	rent Produci	ts"										
Radium-226+228 Sum		2.65	+/-1.36	2.06	+/-1.45		pCi/L		1	NXL1	09/19/24	1325	2665106	, 2
Rad Radium-226 Lucas Cell, Ra226, L	iquid "As Rece	eived"												
Radium-226		0.815	+/-0.376	0.418	+/-0.394	1.00	pCi/L			MJ2	09/18/24	1010	2661719	3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2661778	84.9	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method
DL: Detection Limit PF: Prep Factor
Lc/LC: Critical Level RL: Reporting Limit

MDA: Minimum Detectable Activity

TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 5 of 29 SDG: 682097

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 19, 2024

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceRelog: Radiochemistry

Client Sample ID: ARK-ARGWA-20 Project: GPCC00100 Sample ID: GPCC001 Client ID: 682097002

Matrix: WG

Collect Date: 20-AUG-24 Receive Date: 21-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date Time	Batch	Mtd.
Rad Gas Flow Proportional Counting GFPC Ra228, Liquid "As Received"												
Radium-228	U	0.283	+/-0.817	1.50	+/-0.820	3.00	pCi/L		KP1	09/17/24 1252	2661778	1
Radium-226+Radium-	228 Calculat	ion "See Pa	rent Product	s"								
Radium-226+228 Sum	U	0.969	+/-0.869	1.50	+/-0.880		pCi/L		1 NXL1	09/19/24 1325	2665106	2
Rad Radium-226 Lucas Cell, Ra226, Liquid "As Received"												
Radium-226		0.686	+/-0.296	0.274	+/-0.319	1.00	pCi/L		MJ2	09/18/24 1010	2661719	3

The following Analytical Methods were performed Description

1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2661778	81.1	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 6 of 29 SDG: 682097

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 19, 2024

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceRelog: Radiochemistry

Client Sample ID: ARK-ARGWA-21 Project: GPCC00100 GPCC001 Sample ID: Client ID: 682097003

Matrix: WG

Collect Date: 20-AUG-24 Receive Date: 21-AUG-24 Client Collector:

Parameter	Qualifier	Result U	ncertainty	MDC_	TPU	RL	Units	PF	DF Analy	st Date Tim	e Batch	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		0										
Radium-228	U	0.868	+/-1.82	3.22	+/-1.84	3.00	pCi/L		KP1	09/17/24 1252	2661778	1
Radium-226+Radium-	228 Calculo	ation "See Pa	rent Produci	ts"								
Radium-226+228 Sum	U	1.02	+/-1.83	3.22	+/-1.85		pCi/L		1 NXL1	09/19/24 1325	2665106	2
Rad Radium-226 Lucas Cell, Ra226, Lia	quid "As Rec	ceived"										
Radium-226	U	0.151	+/-0.157	0.231	+/-0.161	1.00	pCi/L		MJ2	09/18/24 1010	2661719	3

The following Analytical Methods were performed **Description**

	•	
1	EPA 904.0/SW846 9320 Modified	
2	Calculation	
3	EPA 903.1 Modified	

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2661778	52.7	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 7 of 29 SDG: 682097

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 19, 2024

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceRelog: Radiochemistry

Client Sample ID: ARK-ARGWA-22 Project: GPCC00100 Sample ID: GPCC001 Client ID: 682097004

Matrix: WG

Collect Date: 20-AUG-24 Receive Date: 21-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analys	t Date	Time	Batch 1	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		0												
Radium-228	U	-0.369	+/-0.966	1.92	+/-0.966	3.00	pCi/L			KP1	09/17/24	1252	2661778	1
Radium-226+Radium-	228 Calcular	tion "See Pa	arent Product	s"										
Radium-226+228 Sum	U	1.04	+/-1.03	1.92	+/-1.05		pCi/L		1	NXL1	09/19/24	1325	2665106	2
Rad Radium-226 Lucas Cell, Ra226, Lid	quid "As Reco	eived"												
Radium-226		1.04	+/-0.349	0.313	+/-0.401	1.00	pCi/L			MJ2	09/18/24	1010	2661719	3

The following Analytical Methods were performed Description

1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2661778	79	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 8 of 29 SDG: 682097

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 19, 2024

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceRelog: Radiochemistry

Client Sample ID: ARK-ARGWA-23 Project: GPCC00100 Sample ID: GPCC001 Client ID: 682097005

Matrix: WG

Collect Date: 20-AUG-24 Receive Date: 21-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analys	t Date	Time	Batch 1	Mtd.
Rad Gas Flow Proporti GFPC Ra228, Liquid		U												
Radium-228		1.66	+/-0.917	1.28	+/-1.01	3.00	pCi/L			KP1	09/17/24	1252	2661778	1
Radium-226+Radium	-228 Calculo	ation "See Pa	rent Produci	ts"										
Radium-226+228 Sum		2.10	+/-0.970	1.28	+/-1.06		pCi/L		1	NXL1	09/19/24	1325	2665106	2
Rad Radium-226 Lucas Cell, Ra226, Li	quid "As Red	ceived"												
Radium-226	U	0.438	+/-0.316	0.451	+/-0.326	1.00	pCi/L			MJ2	09/18/24	1010	2661719	3

The following Analytical Methods were performed Description

1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2661778	87.1	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 9 of 29 SDG: 682097

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 19, 2024

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceRelog: Radiochemistry

Client Sample ID: ARK-ARAMW-1 Project: GPCC00100 Sample ID: 682097006 Client ID: GPCC001

Matrix: WG

Collect Date: 20-AUG-24
Receive Date: 21-AUG-24
Collector: Client

Parameter	Qualifier	Result Ur	ncertainty	MDC	TPU	RL	Units	PF	DF	Analyst	Date 7	Гime	Batch	Mtd.
Rad Gas Flow Proporti GFPC Ra228, Liquid		0												
Radium-228		1.96	+/-1.27	1.95	+/-1.36	3.00	pCi/L			KP1	09/17/24 1	1252	2661778	1
Radium-226+Radium-	-228 Calculat	ion "See Pa	rent Product	s"										
Radium-226+228 Sum		2.47	+/-1.30	1.95	+/-1.40		pCi/L		1	NXL1	09/19/24 1	1325	2665106	2
Rad Radium-226 Lucas Cell, Ra226, Lia	quid "As Rece	eived"												
Radium-226		0.508	+/-0.304	0.374	+/-0.314	1.00	pCi/L			MJ2	09/18/24 1	1010	2661719	3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2661778	82.3	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method
DL: Detection Limit PF: Prep Factor
Lc/LC: Critical Level RL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 10 of 29 SDG: 682097

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 19, 2024

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceRelog: Radiochemistry

Client Sample ID: ARK-ARAMW-2 Project: GPCC00100 Sample ID: Client ID: GPCC001 682097007

Matrix: WG

Collect Date: 20-AUG-24 Receive Date: 21-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analyst	Date	Time	Batch	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		0												
Radium-228		2.63	+/-1.47	2.25	+/-1.62	3.00	pCi/L			KP1	09/17/24	1252	2661778	1
Radium-226+Radium-	-228 Calculat	ion "See Pa	rent Product	s"										
Radium-226+228 Sum		2.98	+/-1.49	2.25	+/-1.63		pCi/L		1	NXL1	09/19/24	1325	2665106	2
Rad Radium-226 Lucas Cell, Ra226, Lic	quid "As Rece	eived"												
Radium-226		0.355	+/-0.245	0.336	+/-0.251	1.00	pCi/L			MJ2	09/18/24	1044	2661719	3

The following Analytical Methods were performed Description

1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2661778	84.4	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 11 of 29 SDG: 682097

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 19, 2024

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceRelog: Radiochemistry

Client Sample ID: ARK-ARAMW-7 Project: GPCC00100 Sample ID: GPCC001 Client ID: 682097008

Matrix: WG

Collect Date: 20-AUG-24 Receive Date: 21-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analyst	Date 7	<u> Fime</u>	Batch	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		0												
Radium-228		2.84	+/-1.52	2.29	+/-1.68	3.00	pCi/L			KP1	09/17/24	1252	2661778	1
Radium-226+Radium-	228 Calculat	tion "See Pa	rent Product	s"										
Radium-226+228 Sum		3.47	+/-1.54	2.29	+/-1.70		pCi/L		1	NXL1	09/19/24	1325	2665106	2
Rad Radium-226 Lucas Cell, Ra226, Liq	uid "As Rece	eived"												
Radium-226		0.635	+/-0.262	0.234	+/-0.279	1.00	pCi/L			MJ2	09/18/24	1044	2661719	3

The following Analytical Methods were performed Description

a	. (700	ъ т			
3		EPA 903.1 Modified			
2		Calculation			
1		EPA 904.0/SW846 9320	0 Modified		

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2661778	79.7	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 12 of 29 SDG: 682097

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 19, 2024

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceRelog: Radiochemistry

Client Sample ID: ARK-ARAMW-8 Project: GPCC00100 Sample ID: 682097009 Client ID: GPCC001

Matrix: WG

Collect Date: 20-AUG-24
Receive Date: 21-AUG-24
Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analys	Date	Time	Batch	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		U												
Radium-228	U	0.657	+/-1.20	2.09	+/-1.21	3.00	pCi/L			KP1	09/17/24	1252	2661778	1
Radium-226+Radium-	228 Calculat	tion "See Pa	rent Product	's"										
Radium-226+228 Sum	U	0.801	+/-1.24	2.09	+/-1.25		pCi/L		1	NXL1	09/19/24	1325	2665106	2
Rad Radium-226 Lucas Cell, Ra226, Lie	quid "As Rece	eived"												
Radium-226	U	0.144	+/-0.316	0.582	+/-0.317	1.00	pCi/L			MJ2	09/18/24	1044	2661719	3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903 1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2661778	84.7	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method
DL: Detection Limit PF: Prep Factor
Lc/LC: Critical Level RL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 13 of 29 SDG: 682097

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 19, 2024

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceRelog: Radiochemistry

ARK-ARAMW-9 Client Sample ID: Project: GPCC00100 Sample ID: GPCC001 Client ID: 682097010

Matrix: WG

Collect Date: 20-AUG-24 Receive Date: 21-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analys	Date	Time	Batch	Mtd.
Rad Gas Flow Proportion		0												
Radium-228	U	1.82	+/-1.53	2.49	+/-1.60	3.00	pCi/L			KP1	09/17/24	1252	2661778	1
Radium-226+Radium-	228 Calculat	ion "See Pa	rent Product	s"										
Radium-226+228 Sum		2.80	+/-1.57	2.49	+/-1.65		pCi/L		1	NXL1	09/19/24	1325	2665106	2
Rad Radium-226 Lucas Cell, Ra226, Liq	juid "As Rece	rived"												
Radium-226		0.979	+/-0.327	0.247	+/-0.378	1.00	pCi/L			MJ2	09/18/24	1044	2661719	3

The following Analytical Methods were performed **Description**

	•
1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2661778	74.5	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 14 of 29 SDG: 682097

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 19, 2024

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceRelog: Radiochemistry

GPCC00100 GPCC001 Client Sample ID: ARK-AP2-EB-03 Project: Client ID:

Sample ID: Matrix: 682097011 WO

Collect Date: 20-AUG-24 Receive Date: 21-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analyst	Date	Time	Batch	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		0												
Radium-228	U	1.18	+/-1.17	1.93	+/-1.21	3.00	pCi/L			KP1	09/17/24	1252	2661778	1
Radium-226+Radium-	228 Calculat	ion "See Pa	rent Produci	ts"										
Radium-226+228 Sum	U	1.52	+/-1.20	1.93	+/-1.24		pCi/L		1	NXL1	09/19/24	1325	2665106	2
Rad Radium-226 Lucas Cell, Ra226, Lia	quid "As Rece	eived"												
Radium-226	U	0.339	+/-0.247	0.347	+/-0.252	1.00	pCi/L			MJ2	09/18/24	1044	2661719	3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2661778	71.2	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor **RL**: Reporting Limit Lc/LC: Critical Level

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 15 of 29 SDG: 682097

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 19, 2024

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceRelog: Radiochemistry

ARK-AP2-FD-03 Client Sample ID: Project: GPCC00100 Sample ID: Client ID: GPCC001 682097012

Matrix: WQ

20-AUG-24 Collect Date: Receive Date: 21-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analys	<u>Date</u>	Time	Batch 1	Mtd.
Rad Gas Flow Proportional Counting GFPC Ra228, Liquid "As Received"														
Radium-228	U	-0.0196	+/-1.19	2.19	+/-1.19	3.00	pCi/L			KP1	09/17/24	1252	2661778	1
Radium-226+Radium	-228 Calcula	tion "See Pa	rent Products	s"										
Radium-226+228 Sum	U	0.595	+/-1.21	2.19	+/-1.22		pCi/L		1	NXL1	09/19/24	1325	2665106	2
Rad Radium-226 Lucas Cell, Ra226, Liquid "As Received"														
Radium-226		0.595	+/-0.260	0.207	+/-0.276	1.00	pCi/L			MJ2	09/18/24	1044	2661719	3

The following Analytical Methods were performed **Description**

1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2661778	83.2	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 16 of 29 SDG: 682097

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 19, 2024

Project:

Client ID:

GPCC00100

GPCC001

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceRelog: Radiochemistry

Client Sample ID: ARK-AP2-FB-03 Sample ID: 682097013

Matrix: WQ

Collect Date: 20-AUG-24
Receive Date: 21-AUG-24
Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analys	t Date	Time	Batch 1	Mtd.
Rad Gas Flow Proportional Counting GFPC Ra228, Liquid "As Received"														
Radium-228	U	0.487	+/-0.843	1.49	+/-0.852	3.00	pCi/L			KP1	09/17/24	1252	2661778	1
Radium-226+Radium	-228 Calcular	tion "See Pa	rent Produc	ts"										
Radium-226+228 Sum	U	0.551	+/-0.870	1.49	+/-0.879		pCi/L		1	NXL1	09/19/24	1325	2665106	2
Rad Radium-226 Lucas Cell, Ra226, Liquid "As Received"														
Radium-226	U	0.0635	+/-0.216	0.426	+/-0.216	1.00	pCi/L			MJ2	09/18/24	1044	2661719	3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2661778	76.7	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method
DL: Detection Limit PF: Prep Factor
Lc/LC: Critical Level RL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 17 of 29 SDG: 682097

Radiochemistry Technical Case Narrative Georgia Power Company SDG #: 682097

Product: Radium-226+Radium-228 Calculation

Analytical Method: Calculation

Analytical Procedure: GL-RAD-D-003 REV# 45

Analytical Batch: 2665106

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
682097001	ARK-ARGWA-19
682097002	ARK-ARGWA-20
682097003	ARK-ARGWA-21
682097004	ARK-ARGWA-22
682097005	ARK-ARGWA-23
682097006	ARK-ARAMW-1
682097007	ARK-ARAMW-2
682097008	ARK-ARAMW-7
682097009	ARK-ARAMW-8
682097010	ARK-ARAMW-9
682097011	ARK-AP2-EB-03
682097012	ARK-AP2-FD-03
682097013	ARK-AP2-FB-03

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: GFPC Ra228, Liquid

Analytical Method: EPA 904.0/SW846 9320 Modified **Analytical Procedure:** GL-RAD-A-063 REV# 5

Analytical Batch: 2661778

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
682097001	ARK-ARGWA-19
682097002	ARK-ARGWA-20
682097003	ARK-ARGWA-21
682097004	ARK-ARGWA-22
682097005	ARK-ARGWA-23
682097006	ARK-ARAMW-1
682097007	ARK-ARAMW-2
682097008	ARK-ARAMW-7
682097009	ARK-ARAMW-8

Page 18 of 29 SDG: 682097

682097010	ARK-ARAMW-9
682097011	ARK-AP2-EB-03
682097012	ARK-AP2-FD-03
682097013	ARK-AP2-FB-03
1205832458	Method Blank (MB)
1205832459	682097001(ARK-ARGWA-19) Sample Duplicate (DUP)
1205832460	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

RDL Met

The following RDL was met with rounding.

Sample	Analyte	Value
682097003 (ARK-ARGWA-21)	Radium-228	Result 0.868 < MDA 3.22 > RDL 3 pCi/L

Product: Lucas Cell, Ra226, Liquid Analytical Method: EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2661719

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
682097001	ARK-ARGWA-19
682097002	ARK-ARGWA-20
682097003	ARK-ARGWA-21
682097004	ARK-ARGWA-22
682097005	ARK-ARGWA-23
682097006	ARK-ARAMW-1
682097007	ARK-ARAMW-2
682097008	ARK-ARAMW-7
682097009	ARK-ARAMW-8
682097010	ARK-ARAMW-9
682097011	ARK-AP2-EB-03
682097012	ARK-AP2-FD-03
682097013	ARK-AP2-FB-03
1205832284	Method Blank (MB)
1205832285	682059001(NonSDG) Sample Duplicate (DUP)
1205832286	682059001(NonSDG) Matrix Spike (MS)
1205832287	Laboratory Control Sample (LCS)

Page 19 of 29 SDG: 682097

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Miscellaneous Information

Additional Comments

The matrix spike, 1205832286 (Non SDG 682059001MS), aliquot was reduced to conserve sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 20 of 29 SDG: 682097

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Report Date: September 19, 2024

Page 1 of 2

QC Summary

Client: Georgia Power Company, Southern Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia

Contact: Joju Abraham

Workorder: 682097

Parmname		NOM	Sample (Qual	QC	Units	RPD%	REC%	Range A	nlst	Date Time
Rad Gas Flow											
Batch 2	661778										
QC1205832459 6	582097001 DUP										
Radium-228		U	1.83	U	0.527	pCi/L	0		N/A	KP1	09/17/2412:52
		Uncert:	+/-1.31		+/-1.23						
		TPU:	+/-1.39		+/-1.24						
•	LCS										
Radium-228		70.5			55.7	pCi/L		79	(75%-125%)	KP1	09/17/2412:52
		Uncert:			+/-4.20						
		TPU:			+/-14.9						
QC1205832458	MB					G1.7					
Radium-228		**		U	0.570	pCi/L				KP1	09/17/2412:52
		Uncert:			+/-0.923						
D 1D 44/		TPU:			+/-0.934						
Rad Ra-226 Batch 2	.661719 —										
•	582059001 DUP										
Radium-226			1.86		1.85	pCi/L	.352		(0% - 100%)	MJ2	09/18/2411:18
		Uncert:	+/-0.519		+/-0.524						
		TPU:	+/-0.617		+/-0.623						
•	LCS					G1.7				3.570	
Radium-226		27.1			24.1	pCi/L		88.7	(75%-125%)	MJ2	09/18/2411:18
		Uncert:			+/-1.64						
0.01005000004		TPU:			+/-4.66						
QC1205832284	MB				0.274	C: /I				3.410	00/10/0411 10
Radium-226		I I		U	0.274	pCi/L				MJ2	09/18/2411:18
		Uncert:			+/-0.231						
0.01205922220	C02050001 MC	TPU:			+/-0.236						
QC1205832286 6 Radium-226	582059001 MS	128	1.86		121	nC:/I		0.2	(750/ 1250/)	MIO	00/10/0411.10
Radium-220		Uncert:	+/-0.519		121 +/-7.58	pCi/L		93	(75%-125%)	IVIJ∠	09/18/2411:18
		Uncert: TPU:	+/-0.519 +/-0.617		+/-7.58 +/-20.9						
		IPU:	+/-0.01/		+/-20.9						

Notes:

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- H Analytical holding time was exceeded
- < Result is less than value reported
- > Result is greater than value reported

Page 21 of 29 SDG: 682097

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 682097 Page 2 of 2 **Parmname** NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time UI Gamma Spectroscopy--Uncertain identification BDResults are either below the MDC or tracer recovery is low Preparation or preservation holding time was exceeded h R Sample results are rejected RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry. N/A RPD or %Recovery limits do not apply. Analyte concentration is not detected above the detection limit ND M M if above MDC and less than LLD Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier NJ

- FA Failed analysis.UJ Gamma Spectroscopy--Uncertain identification
- One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ** Analyte is a Tracer compound
- M REMP Result > MDC/CL and < RDL
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ** Indicates analyte is a surrogate/tracer compound.
- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 22 of 29 SDG: 682097

Page: 1 of 2		TAX NOTES TO SECURITY OF THE PARTY OF THE PA	m I												GEL.	Labo	ratori	es, LI	.C	
Page: 1 of 2 Project # 175569434		AII		ahn	ratn	ries	10								200000000000000000000000000000000000000	Sava				1
GEL Quote #:		get co	Che	mistry I Ba	diochem	istry Radio	LLU bioassav l	Spec	ialty A	natytic	S				house .		~	2940	7	682097
COC Number (1); 2 Sample Cooler(s): 5		Chair	of Cu	stody	and Ar	nalytical	Requ	est							Phon	ie: (84	3) 55	6-81	71	0000 ,,
PO Number: GPC82177-0005	GEL Work Order Numbe	r:		GEL	Project	Manage									Fax:					
Client Name: Georgia Power		Phone # (9	37-344-6	5533)			Sar	nple	Ana	-	Requ	ieste	d ⁽⁵⁾	_						ers for each test)
Project/Site Name: Plant Arkwright Ash Pond _2_ Fax: N/A									Z	Z				Z	Z	Z	Z	Z	SA	< Preservative Type (6)
Address: 241 Ralph McGill Blvd SE, Atlanta, GA 3						samp consid	The second section is	of containers	B)	Ca)	(2.1) rarks	540C)	fate)	20B) narks	pqı	<u>@</u>	la, Fe,	0B)	3.2)	Marine Control
Collected By: Jackson Bankston, Zach Levy, John Myer, Dylan Quintal	Send Results To: jabraham@soc cassidy.sutherland@stantec.com		EDD@st	antec.com		e (If supply 3.)	or zards		Ag (App. I) (6020B)	p. III (B.	(300.0 R	Tethod 2:	I, Fl, Sulfate) v. 2.1 1993)	p. IV (60 onal Ren	6-228 Cn	Mercury (7470B)	K, Mg, N 6020B)	12+ (602 Filtered	e/ Nitrite sthod 35.	Comments (task code: ARK-CCR-
Sample ID * For composites - indicate start and stop date	*Date Collected	*Time Collected (Military) (hhmm)	QC Code (2)	Field Filtered ⁽³	Sample Matrix ⁽⁴	Radioactive (If yes, please supply isotopic info.)	(7) Known or possible Hazards	Total number	Ag (App	Metals App. III (B, Ca) (6020B)	Alkalinity (300.0 R2.1) see Additional Remarks	TDS (SM Method 2540C)	Anions (Cl. I (300.0 Rev.	Metals App. IV (6020B) see Additional Remarks	RAD 226-228 Cmbd	Mercur	Metals Al, K, Mg, Na, Mn (6020B)	Fe2+/ Mr Field	Nitrate/ Nitrite (EPA Method 353.2)	ASSMT-2024S2)
ARK-ARGWA-19	08-20-24	0910	N	N	WG			8	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	
ARK-ARGWA-20	08-20-24	0935	N	N	WG			8	х	Х	х	х	х	Х	Х	Х	Х		Х	
ARK-ARGWC-21	08-20-24	1515	N	N	WG			8	X	Х	Х	Х	Х	Х	Х	Х	Х		Х	
ARK-ARGWC-22	08-20-24	1405	N	N	WG			8	х	х	Х	Х	Х	Х	Х	х	х		Х	
ARK-ARGWC-23	08-20-24	12:50	N	N	WG			8	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	
ARK-ARAMW-1	08-20-24	1315	N	N	WG			8	х	х	Х	х	х	Х	Х	Х	Х		Х	
ARK-ARAMW-2	08-20-24	1145	N	N	WG			8	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	
ARK-ARAMW-7	08-20-24	1305	N	N	WG			8	Х	х	Х	Х	Х	Х	Х	X	Х		Х	
ARK-ARAMW-8	08-20-24	0935	N	N	WG			8	Х	Х	Х	Х	Х	Х	Х	Х	Х		Χ	
ARK-ARAMW-9	08-20-24	1150	N	N	WG			8	X	Х	Х	Х	х	Х	Х	Х	Х		Х	
Ch	ain of Custody Signature	s					TAT Requested: Normal: X Rush: Specify: (Subject to Surcharge)													
Relinquished By (Signed) Print Name	Date Received by (s	igned)	Print Nar	ne	Date		Fax Res	ults:	[]Y	'es	[X]	No								
1 gwww Stantec B	(11/21/20)	3/8	<u> 121/13</u>	24	1 ./		Select I	Delive	erable	:[]	C of A	[]	QC S	Summ	ary As, Ba,	[] le Be, Cd,	vel 1 Cr. Co.	[X] Pb, Li,	Leve Mo, Se,	12 [] Level 3 [] Level 4
2	2 (m	enso	Ma	-81	2113	4140	Additio	nal R	emar	ks:		Alkali	nity: bic	arbonat	e as Ca	CO3, ca	rbonate	as CaC	O3, total	l as CaCO3
3	3	alicavinae mae	A		on base	Total or an annual services														Cooler Temp:°C
> For sample shipping and delivery details, see Sa	ample Receipt & Review forn	ı (SRR.)				Sample	Collectio	n Tir	me Zo	ne:	XJE	easter	n [] Pa	CIFIC	l, J	Centr	aı [JIMC	ountain [] Other:
1.) Chain of Custody Number = Client Determined																				
2.) QC Codes: N = Normal Sample, TB = Trip Blank, FD = F	ield Duplicate, EB = Equipment Blan	nk, MS = Matr	ix Spike Sa	ımple. MSI) = Matrix	Spike Dupli	cate Sampl	e, G =	Grab,	$\mathbf{C} = \mathbf{C}$	omposi	le								
3.) Field Filtered: For liquid matrices, indicate with a - Y - for																				
4.) Matrix Codes: DW =Drinking Water, GW =Groundwater, S								SS=S	olid Wa	aste, O	=Oil, F	=Filte	r, P=W	ipe, U	=Urine	, F=Fe	cal, N=	=Nasal		
5.) Sample Analysis Requested: Analytical method requested									1512		12 2	92.3								
6.) Preservative Type: HA = Hydrochloric Acid, NI = Nitric A	cid, SH = Sodium Hydroxide, SA = 5	Sulfuric Acid, A	A = Asco	rbic Acid, I	IX = Hexa	ine. ST = Soc	lium Thios	ulfate.	, If no p	reserv	ative is	added	= leav	e field	blank		land and the	100000000000000000000000000000000000000		

6.) Preservative Type: HA	= Hydrochloric Acid, NI = Nitric Ac	d, SH = Sodium Hydroxide, SA = Sulfur	ic Acid, $AA = Ascorbic Acid, HX = Hexane, ST$	= Sodium Thiosulfate, If no preservative is added = leave field offank	
7.) KNOWN OR PO		Characteristic Hazards FL = Flammable/Ignitable	Listed Waste LW= Listed Waste	OT= Other / Unknown	Please provide any additional details below regarding handling and/or disposal concerns.
A AME	g= Mercury e= Selenium	CO = Corrosive RE = Reactive	(F,K,P and U-listed wastes.) Waste code(s):	(i.e.: High/low pH, asbestos, beryllium, irritants, other misc. health hazards, etc.) Description:	(i.e.: Origin of sample(s), type of site collected from, odd matrices, etc.)
		TSCA Regulated PCB = Polychlorinated biphenyls			

Page:	2	of	2
Project #		17556943	4
GEL Quote #	#:		

GEL Laboratories, LLC 2040 Savage Road

Charleston, SC 29407

C Number (1): 2 Sample Cooler(s): 5 Chain of Custody and Analytical Request Phone: (843) 556-8171																				
PO Number: GPC82177-0005	GEL Work Order Numbe	r:		GEL I	Project l	Manager.											766-			
Client Name: Georgia Power		Phone # (9	37-344-6	5533)			Sa	mple	e Ana	alysis	s Req	uest	ed ⁽⁵⁾	(Fill	in th	e nur	nber	of co	ntaine	ers for each test)
Project/Site Name: Plant Arkwright Ash Pond _2_		Fax: N/A				Shoul	Seattle Seattle	rs	Z	Z				Z	Z	N	Z	Z	SA	< Preservative Type (6)
Address: 241 Ralph McGill Blvd SE, Atlanta, GA	30308					samp consid		laine	3	Ca)	L)	(OC)	ite)	JB) rks	p		, Fe,	<u>@</u>	2	Communication of the Communica
Collected By: Jackson Bankston, Zach Levy, John Myer, Dylan Quintal		(If tpply		er of con	I) (6020E	. III (B, C	300.0 RZ nal Rema	ethod 254	, FI, Sulfa	IV (602 nal Rema	.228 Cmb	Mercury (7470B)	, Mg, Na 020B)	2+ (6020) Filtered	/ Nitrite hod 353.	Comments (task code: ARK-CCR-				
Sample ID *For composites - indicate start and stop date	*Date Collected	*Time Collected (Military) (hhmm)	QC Code	Field Filtered ⁽³⁾	Sample Matrix (4)	Radioactive yes, please su isotopic info.)	(7) Known or possible Hazards	Total number of containers	Ag (App. I) (6020B)	Metals App	Alkalinity (300.0 R2.1) see Additional Remarks	TDS (SM Method 2540C	Anions (Cl, Fl, Sulfate) (300.0 Rev. 2.1 1993)	Metals App. IV (6020B) see Additional Remarks	RAD 226-228 Cmbd	Mercury	Metals Al, K, Mg, Na, F Mn (6020B)	Fe2+/ Mn7 Field F	Nitrate/ Nitrite (EPA Method 353.2)	ASSMT-2024S2)
ARK-AP2-EB-03	08-20-24	1440	EB	N	WQ			7		X		Х	X	X	X	X			X	
ARK-AP2-FD-03	08-20-24	NA	FD	N	WQ			7		X		X	X	X	X	Х			X	
ARK-AP2-FB-03	08-20-24	1200	FB	N	WQ			7		Х		Х	X	Х	X	Х			Х	
										-	-		-						\vdash	
									-				-						\vdash)
Ch	sin of Custoda Sign stores						TAT	F Day		<u> </u>	Nous	. alı	v	Dust	16165ax	6			81/2	(Subject to Sunch ourse)
Relinquished By (Signed) Print Name	Date Received by (si		Print Nam	ne.	Date					William .	Norn		Δ	Rusi		3	pecify	y:		(Subject to Surcharge)
arman o	121/24 17/1		,	/			Fax Res						1000	,		r 11.	1.1	ΓV	11	12 [] [] [] [] [] []
1 Killion Stantee 91	2 Chi	med	19110		21/24	1400	Select D					Metals	S App. I	V: Sb. A	s, Ba, B	e, Cd, (Cr, Co. I	Pb, Li, N	Mo, Se, T	12 [] Level 3 [] Level 4 as CaCO3
3	3						For La	b Rec	eiving	g Use	Only	: Cu	stody	Seal	Intact	?[]	Yes	[]	No	Cooler Temp:°C
> For sample shipping and delivery details, see So	ample Receipt & Review forn	ı (SRR.)				Sample (Collectio	n Tin	ne Zo	ne:	[X]I	Easte	rn [] Pa	cific	[]	Cent	ral	[]M	ountain [] Other:
1.) Chain of Custody Number = Client Determined																				
2.) QC Codes: N = Normal Sample, TB = Trip Blank, FD = Fie	eld Duplicate, EB = Equipment Blank	MS = Matrix	Spike Sam	ple, MSD =	Matrix Sp	oike Duplicat	e Sample,	$G = G_1$	rab, C =	= Com	posite									
3.) Field Filtered: For liquid matrices, indicate with a - Y - for y	yes the sample was field filtered or - N	- for sample w	as not field	d filtered.																
4.) Matrix Codes: DW=Drinking Water, GW=Groundwater, SW	V=Surface Water, WW=Waste Water	r, W=Water, M	L=Misc Li	quid, SO=S	Soil, SD=S	ediment, SL=	Sludge, S	S=Soli	d Wast	e, O=0	Oil, F =F	ilter, l	P=Wip	e, U=U	rine, F	=Fecal	, N=Na	sal		
5.) Sample Analysis Requested: Analytical method requested (i	.e. 8260B, 6010B/7470A) and number	r of containers	provided f	or each (i.e.	8260B - 3	3 , 6010B 747	0.4 - 1).													
6.) Preservative Type: HA = Hydrochloric Acid, NI = Nitric Ac	id, SH = Sodium Hydroxide, SA = Su	lfuric Acid, AA	= Ascorbi	ic Acid, HX	= Hexane	, ST = Sodiu	m Thiosuli	fate, If	no pres	servati	ve is ad	ded =	leave f	eld bla	nk					
7.) KNOWN OR POSSIBLE HAZARDS	Characteristic Hazards FL = Flammable/Ignitable	Listed	Waste Listed W	acte			Other OT= Ot	ther /	Unkn	own							145775539			any additional details below ling and/or disposal concerns.
RCRA Metals As = Arsenic Hg= Mercury	CO = Corrosive RE = Reactive	(F,K,P)		isted was	ites.)		(i.e.: Hi misc. he	gh/lo ealth	w pH, hazar	, asbe		beryl	lium,	irrita	nts, o	ther	(i.e.:	Orig	in of s	ample(s), type of site collected ces, etc.)
Ba = Barium Se= Selenium Cd = Cadmium Ag= Silver Cr = Chromium MR= Misc. RCRA metals	TSCA Regulated PCB = Polychlorinated					-	Descrip	uon:												
Pb = Lead	biphenyls					ā 9													1 (1)	

					682138 682142	682097 (8208	4
					682142	682093 68208 682093 68209	•
CIL	Laboratories LLC			····	SAMPLE RECEIPT & REVIEW FORM	682093 68209	7 8/
	ent: OCC				G/AR/COC/Work Order:		• •
Rec	eived By: CLM			Da	e Received: XIXIX	ahla:	
	Carrier and Tracking Number			į	Cooler 1-0° 3-1° 2-0° 4-0°	Field Services Courier 9ther 0° 9-1° 6-0° 8-1° 10-0°	11-
Susj	pected Hazard Information	Yes	å	*If	Net Counts > 100cpm on samples not marked "radioactive", contact	the Radiation Safety Group for further investigation	
A)S	hipped as a DOT Hazardous?		ν	7	ard Class Shipped: If UN2910, Is the Radioactive Shipment Survey Compli		
	old the client designate the samples are to be ived as radioactive?		/	ļ	notation or radioactive stickers on containers equal client designa		
	old the RSO classify the samples as pactive?		1	* **:	dmurn Net Counts Observed* (Observed Counts - Area Buckgroun Classifled as: Rad 1 Rad 2 Rad 3	d Counts):	
D) [Did the client designate samples are hazardous?		1		Rotation or hazard labels on containers equal client designation. or E is yes, select Hazards below. PCB's Flammable Foscion Soil RCRA Achiestor		
E) [old the RSO identify possible hazards?				PCB's Flammable Foreign Soil RCRA Asbestos	Beryllium Other:	
	Sample Receipt Criteria	Yes	ź/	ž	Comments/Qualifiers (Required		
1	Shipping containers received intact and sealed?	V			Circle Applicable: Seals broken Damaged container Leaking con	ntainer Other (describe)	
2	Chain of custody documents included with shipment?					ated upon receipt	
3	Samples requiring cold preservation within (0 ≤ 6 deg. C)?* Daily check performed and passed on IR	/			Preservation Method: Wet Ice / Ice Packs Dry ice None (*all temperatures are recorded in Celsius Temperature Device Serial #: IR5-23	Other: TEMP: Se above	With 3
4	temperature gun?				Secondary Temperature Device Serial # (If Applicable):		
5	Sample containers intact and sealed?	/			Circle Applicable: Seals broken Damaged container Leaking co	ntainer Other (describe)	
6	Samples requiring chemical preservation at proper pH?	/			Sample ID's and Containers Affected: If Preservation added, Lottl:		
7	Do any samples require Volatile Analysis?			·/	If Yes, are Enoures or Soil Kits present for solids? YesNoPo liquid VOA vials contain acid preservation? YesNoNA re liquid VOA vials free of headspace? YesNoNASample ID's and containers affected:	_ NA(If yes, take to VOA Freezer) NA(If unknown, select No)	
8	Samples received within holding time?				ID's and tests affected:		
9	Sample ID's on COC match ID's on bottles?	/			ID's and containers affected: Eircle Applicable: No dates on containers No titries on contain		
10	Date & time on COC match date & time on bottles? Number of containers received match	L	4	<u> </u>	ACV - A RAWW & Q OF Circle Applicable: No container count on COC Other (describ	3) plantic 1,000 has 8/9/12	4
11	number indicated on COC? Are sample containers identifiable as	/			·		
13	GEL provided by use of GEL labels? COC form is properly signed in			ŀ	Circle Applicable: Not relinquished Other (describe)		
Com	relinquished/received sections? ments (Use Continuation Form if needed);	_		_			
(o.) whote on sampl	eS	ÀÁ	V	er CCC it should be 81	20(24.	
	A. (.)				als 101) Date 8/16/14		
	PM (or PM)	A) re	view	Initi	Date 8 CO OM 5	Page of	
					U	GL-CHL-SR-001 Rev 7	

Re: Collection Date - GEL WO: 682097

Will James < Will.James@gel.com >

Tue 8/27/2024 9:40 AM

To:Smith, Edgar <Edgar.SmithII@stantec.com>;Joju Abraham <jabraham@southernco.com>;Sutherland, Cassidy

- <Cassidy.Sutherland@stantec.com>;Lieu, Carole <Carole.Lieu@stantec.com>;calli.provenza@stantec.com
- <calli.provenza@stantec.com>;Ross, Katie <katie.ross@stantec.com>;KNJURINK@SOUTHERNCO.COM
- <KNJURINK@SOUTHERNCO.COM>;Smilley, Michael Jay <MJSMILLE@SOUTHERNCO.COM>;NSMUSKUS@SOUTHERNCO.COM
- <NSMUSKUS@SOUTHERNCO.COM>;Ibmidkif@southernco.com <Ibmidkif@southernco.com>

Cc:Team Pinnick <Team.Pinnick@gel.com>;Shoredits, Andreas <Andreas.Shoredits@stantec.com>

Thank you for the confirmation.

Thank you,
Will James
Project Manager Assistant

2040 Savage Road, Charleston, SC 29407 | PO Box 30712, Charleston, SC 29417 Office Direct: 843.769.7371 Ext. 4261 | Office Main: 843.556.8171 | Fax: 843.766.1178

E-Mail: Will.James@gel.com | Website: www.gel.com

Analytical Testing

From: Smith, Edgar < Edgar. Smith II@stantec.com>

Sent: Tuesday, August 27, 2024 9:33 AM

To: Will James <Will.James@gel.com>; Joju Abraham <jabraham@southernco.com>; Sutherland, Cassidy <Cassidy.Sutherland@stantec.com>; Lieu, Carole <Carole.Lieu@stantec.com>; calli.provenza@stantec.com <calli.provenza@stantec.com>; Ross, Katie <katie.ross@stantec.com>; KNJURINK@SOUTHERNCO.COM <KNJURINK@SOUTHERNCO.COM>; Smilley, Michael Jay <MJSMILLE@SOUTHERNCO.COM>; NSMUSKUS@SOUTHERNCO.COM>; lbmidkif@southernco.com <lbmidkif@southernco.com>

Cc: Team Pinnick <Team.Pinnick@gel.com>; Shoredits, Andreas <Andreas.Shoredits@stantec.com>

Subject: RE: Collection Date - GEL WO: 682097

[EXTERNAL EMAIL] DO NOT CLICK links or attachments unless you recognize the sender and know the content is safe.

Will.

I checked the field documents and the Low-Flow report indicates that the well reached stabilization at 09:29 and was sampled at 09:35 on 8/20/24. Based on all that it looks like the correct date is 8/20/24. Regards,

Edgar

Edgar L. Smith, II PG

Senior Associate, Geologic Group Leader

Direct: 770 656 2676 Mobile: 770 656 2676

Page 26 of 29 SDG: 682097

edgar.smithii@stantec.com

Stantec 10745 Westside Way Suite 250 Alpharetta GA 30009-7640

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

Please consider the environment before printing this email.

From: Will James < Will.James@gel.com > Sent: Monday, August 26, 2024 3:52 PM

To: Joju Abraham jabraham@southernco.com; Sutherland, Cassidy casidy.Sutherland@stantec.com; Smith, Edgar casidy.Sutherland@stantec.com; Smith, Edgar casidy.Sutherland@stantec.com; Kostalie.com; KNJURINK@SOUTHERNCO.COM; Smilley, Michael Jay MJSMILLE@SOUTHERNCO.COM;

NSMUSKUS@SOUTHERNCO.COM; lbmidkif@southernco.com

Cc: Team Pinnick < Team.Pinnick@gel.com > **Subject:** Collection Date - GEL WO: 682097

Some people who received this message don't often get email from <u>will.james@gel.com</u>. <u>Learn why this is important</u> **Good morning**,

The sample containers (2 of 3) for sample ID "ARK0-ARAMW-8" had a collection date of 8/19/24 while the chain of custody documents the collection date as 8/20/24. Please advise. Please see attached for reference.

Thank you,

Will James

Project Manager Assistant

2040 Savage Road, Charleston, SC 29407 | PO Box 30712, Charleston, SC 29417 Office Direct: 843.769.7371 Ext. 4261 | Office Main: 843.556.8171 | Fax: 843.766.1178

E-Mail: <u>Will.James@gel.com</u> | Website: <u>www.gel.com</u>

Analytical Testing

CONFIDENTIALITY NOTICE: This e-mail and any files transmitted with it are the property of The GEL Group, Inc. and its affiliates. All rights, including without limitation copyright, are reserved. The proprietary information contained in this e-mail message, and any files transmitted with it, is intended for the use of the recipient(s) named above. If the reader of this e-mail is not the intended recipient, you are hereby notified that you have received this e-mail in error and that any review, distribution or copying of this e-mail or any files transmitted with it is strictly prohibited. If you have received this e-mail or any files transmitted with it is strictly prohibited.

Page 27 of 29 SDG: 682097

mail in error, please notify the sender immediately and delete the original message and any files transmitted. The unauthorized use of this e-mail or any files transmitted with it is prohibited and disclaimed by The GEL Group, Inc. and its affiliates.

Caution: This email originated from outside of Stantec. Please take extra precaution.

Attention: Ce courriel provient de l'extérieur de Stantec. Veuillez prendre des précautions supplémentaires. **Atención:** Este correo electrónico proviene de fuera de Stantec. Por favor, tome precauciones adicionales.

Page 28 of 29 SDG: 682097

List of current GEL Certifications as of 19 September 2024

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	KY90129
Kentucky Wastewater	KY90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2023019
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	NV-C24-00175
New Hampshire NELAP	205424
New Jersey NELAP	SC002
New Mexico	SC002
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2023-152
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235
Utah NELAP	SC000122024-41
Vermont	VT87156
	460202
Virginia NELAP	
Washington	C780

a member of The GEL Group INC

gel.com

September 05, 2024

Joju Abraham Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

Re: Arkwright CCR Groundwater Compliance 175569434

Work Order: 682098

Dear Joju Abraham:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on August 21, 2024. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt. The laboratory received the following sample(s):

<u>Laboratory ID</u>	Client ID	Matrix	Date Collected	Date Received
682098001	ARK-ARGWA-19	Ground Water	08/20/24 09:10	08/21/24 14:00
682098002	ARK-ARGWA-20	Ground Water	08/20/24 09:35	08/21/24 14:00
682098003	ARK-ARGWC-21	Ground Water	08/20/24 15:15	08/21/24 14:00
682098004	ARK-ARGWC-22	Ground Water	08/20/24 14:05	08/21/24 14:00
682098005	ARK-ARGWC-23	Ground Water	08/20/24 12:50	08/21/24 14:00
682098006	ARK-ARAMW-1	Ground Water	08/20/24 13:15	08/21/24 14:00
682098007	ARK-ARAMW-2	Ground Water	08/20/24 11:45	08/21/24 14:00
682098008	ARK-ARAMW-7	Ground Water	08/20/24 13:05	08/21/24 14:00
682098009	ARK-ARAMW-8	Ground Water	08/20/24 09:35	08/21/24 14:00
682098010	ARK-ARAMW-9	Ground Water	08/20/24 11:50	08/21/24 14:00

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Prep Methods and Prep Dates

Method Run Date ID SW846 3005A 27-AUG-2024

Analysis Methods and Analysis Dates

Method Run Date ID

SW846 3005A/6020B 01-SEP-2024

SW846 3005A/6020B 31-AUG-2024

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4443.

Sincerely,

Will James for

Will James

Alaina Pinnick

Project Manager

Purchase Order: GPC82177-0005

Enclosures

Page 3 of 21 SDG: 682098

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

GPCC001 Georgia Power Company Client SDG: 682098 GEL Work Order: 682098

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- B Either presence of analyte detected in the associated blank, or MDL/IDL < sample value < PQL
- J Value is estimated

N/A RPD or %Recovery limits do not apply.

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Alaina Pinnick.

Reviewed by

Page 4 of 21 SDG: 682098

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 5, 2024

GPCC00100

GPCC001

Project:

Client ID:

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance175569434

Client Sample ID: ARK-ARGWA-19

Sample ID: 682098001

Matrix: WG

Collect Date: 20-AUG-24 09:10
Receive Date: 21-AUG-24
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Anal	yst Date	Time Batch	Method
Metals Analysis-ICl	P-MS										
SW846 3005A/6020	B Dissolved Fe	& Mn "As Receiv	ved"								
Iron	U	ND	0.0330	0.100	mg/L	1.00	1	BAJ	08/31/24	2051 2661564	1
Manganese	U	ND	0.00100	0.00500	mg/L	1.00	1				
The following Prep	Methods were pe	erformed:									
Method	Description	1		Analyst	Date		Time	e P	rep Batch	ı	
SW846 3005A	ICP-MS 3005	A PREP		AB5	08/27/24		0805	2	661562		
The following Anal	vtical Methods v	vere performed:									

The following Analytical Methods were performed:

Method Description Analyst Comments

SW846 3005A/6020B

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 21 SDG: 682098

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 5, 2024

GPCC00100

GPCC001

Project:

Client ID:

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance 175569434

Client Sample ID: ARK-ARGWA-20

Sample ID: 682098002

Matrix: WG

Collect Date: 20-AUG-24 09:35
Receive Date: 21-AUG-24
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Anal	lyst Date	Time Batch	Method
Metals Analysis-IC	CP-MS										
SW846 3005A/602	20B Dissolved Fe	& Mn "As Receiv	ved"								
Iron	U	ND	0.0330	0.100	mg/L	1.00	1	BAJ	08/31/24	2056 2661564	1
Manganese	J	0.00164	0.00100	0.00500	mg/L	1.00	1				
The following Prep	Methods were pe	erformed:									
Method	Description	1		Analyst	Date		Time	e P	rep Batch		
SW846 3005A	ICP-MS 3005	A PREP		AB5	08/27/24		0805	2	661562		

The following Analytical Methods were performed:

Method Description Analyst Comments

SW846 3005A/6020B

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 21 SDG: 682098

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 5, 2024

GPCC00100

GPCC001

Georgia Power Company, Southern Company Company: 241 Ralph McGill Blvd NE, Bin 10160 Address:

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance 1755 69434

Client Sample ID: ARK-ARGWC-21

Sample ID: 682098003

Matrix: WG

Collect Date: 20-AUG-24 15:15 Receive Date: 21-AUG-24 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Metals Analysis-I	CP-MS									
SW846 3005A/6020B Dissolved Fe & Mn "As Received"										
Iron		0.483	0.0330	0.100	mg/L	1.00) 1 BAJ	08/31/24	2102 2661564	. 1

mg/L 1 0.307 0.00100 0.00500 1.00 Manganese mg/L

The following Prep Methods were performed:

Method Description Date Prep Batch Analyst Time SW846 3005A ICP-MS 3005A PREP 08/27/24 2661562 AB5 0805

The following Analytical Methods were performed:

Method Description Analyst Comments

SW846 3005A/6020B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 7 of 21 SDG: 682098

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 5, 2024

GPCC00100

GPCC001

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance 175569434

Client Sample ID: ARK-ARGWC-22

Sample ID: 682098004

Matrix: WG

Collect Date: 20-AUG-24 14:05
Receive Date: 21-AUG-24
Collector: Client

Parameter Qualifier Result DL RL Units PF DF Analyst Date Time Batch Method

Project:

Client ID:

Metals Analysis-ICP-MS

SW846 3005A/6020B Dissolved Fe & Mn "As Received"

 Iron
 6.31
 0.0330
 0.100
 mg/L
 1.00
 1
 BAJ
 08/31/24
 2108
 2661564
 1

 Manganese
 18.0
 0.100
 0.500
 mg/L
 1.00
 100
 BAJ
 09/01/24
 1214
 2661564
 2

The following Prep Methods were performed:

MethodDescriptionAnalystDateTimePrep BatchSW846 3005AICP-MS 3005A PREPAB508/27/2408052661562

The following Analytical Methods were performed:

 Method
 Description
 Analyst Comments

 1
 SW846 3005A/6020B

2 SW846 3005A/6020B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 21 SDG: 682098

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 5, 2024

GPCC00100

GPCC001

Project:

Client ID:

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance 175569434

Client Sample ID: ARK-ARGWC-23

Sample ID: 682098005

Matrix: WG

Collect Date: 20-AUG-24 12:50
Receive Date: 21-AUG-24
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analyst Date	Time Batch	Method
Metals Analysis-ICP-	-MS									
SW846 3005A/6020H	B Dissolved Fe	& Mn "As Received"								
Iron	U	ND	0.0330	0.100	mg/L	1.00	1	BAJ 08/31/24	2119 2661564	. 1
Manganese		0.239	0.00100	0.00500	mg/L	1.00	1			
The following Prep M	lethods were pe	rformed:								
Method	Description	l		Analyst	Date		Time	Prep Batch	Į.	
SW846 3005A	ICP-MS 3005.	A PREP		AB5	08/27/24		0805	2661562		

The following Analytical Methods were performed:

Method Description Analyst Comments

SW846 3005A/6020B

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 9 of 21 SDG: 682098

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 5, 2024

GPCC00100

GPCC001

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance 175569434

Client Sample ID: ARK-ARAMW-1

Sample ID: 682098006

Matrix: WG

Collect Date: 20-AUG-24 13:15
Receive Date: 21-AUG-24
Collector: Client

Parameter Qualifier Result DL RL Units PF DF Analyst Date Time Batch Method

Metals Analysis-ICP-MS

SW846 3005A/6020B Dissolved Fe & Mn "As Received"

 Iron
 J
 0.0961
 0.0330
 0.100
 mg/L
 1.00
 1
 BAJ
 08/31/24
 2125
 2661564
 1

 Manganese
 0.131
 0.00100
 0.00500
 mg/L
 1.00
 1

The following Prep Methods were performed:

MethodDescriptionAnalystDateTimePrep BatchSW846 3005AICP-MS 3005A PREPAB508/27/2408052661562

The following Analytical Methods were performed:

Method Description Analyst Comments

SW846 3005A/6020B

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 21 SDG: 682098

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 5, 2024

GPCC00100

GPCC001

Project:

Client ID:

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance 175569434

Client Sample ID: ARK-ARAMW-2

Sample ID: 682098007

Matrix: WG

Collect Date: 20-AUG-24 11:45 Receive Date: 21-AUG-24

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DI	7 An	alyst Date	Time Batch	Method
Metals Analysis-ICF	P-MS										
SW846 3005A/6020	B Dissolved Fe	& Mn "As Receive	ed"								
Iron		1.83	0.0330	0.100	mg/L	1.00) 1	BA.	08/31/24	2130 2661564	1
Manganese		0.348	0.00100	0.00500	mg/L	1.00) 1				
The following Prep	Methods were pe	erformed:									
Method	Description	1		Analyst	Date		Tin	ie	Prep Batch		
SW846 3005A	ICP-MS 3005	A PREP		AB5	08/27/24		0805	5	2661562		
The following Anal	ytical Methods v	vere performed:									

Method Description Analyst Comments

SW846 3005A/6020B

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 11 of 21 SDG: 682098

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 5, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance 175569434

Client Sample ID: ARK-ARAMW-7

Sample ID: 682098008 Matrix: WG

Collect Date: 20-AUG-24 13:05 Receive Date: 21-AUG-24 Collector: Client

Project: Client ID: GPCC001

GPCC00100

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Anal	yst Date	Time	e Batch	Method
Metals Analysis-ICP	P-MS											
SW846 3005A/6020	B Dissolved Fe	& Mn "As Received	"									
Manganese		14.9	0.100	0.500	mg/L	1.00	100	BAJ	09/01/24	1216	2661564	1
Iron		4.98	0.0330	0.100	mg/L	1.00	1	BAJ	08/31/24	2142	2661564	2
The following Prep I	Methods were po	erformed:										
Method	Description	n		Analyst	Date		Time	e P	rep Batch			
SW846 3005A	ICP-MS 3005	SA PREP		AB5	08/27/24		0805	20	661562			

The following Analytical Methods were performed:

Method Description **Analyst Comments** SW846 3005A/6020B

SW846 3005A/6020B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 12 of 21 SDG: 682098

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 5, 2024

GPCC00100

GPCC001

Project:

Client ID:

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance 175569434

Client Sample ID: ARK-ARAMW-8

Sample ID: 682098009 Matrix: WG

Collect Date: 20-AUG-24 09:35 Receive Date: 21-AUG-24

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF :	DF	Analyst Date	Time Batch	Method
Metals Analysis-ICF	P-MS									
SW846 3005A/6020	B Dissolved Fe	& Mn "As Received"								
Iron	U	ND	0.0330	0.100	mg/L	1.00	1	BAJ 08/31/24	2147 2661564	1
Manganese		0.187	0.00100	0.00500	mg/L	1.00	1			
The following Prep	Methods were pe	erformed:								
Method	Description	1		Analyst	Date	T	ime	Prep Batch		
SW846 3005A	ICP-MS 3005	A PREP		AB5	08/27/24	0	805	2661562		

The following Analytical Methods were performed:

Method Description **Analyst Comments**

SW846 3005A/6020B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 13 of 21 SDG: 682098

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 5, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance 175569434

Client Sample ID: ARK-ARAMW-9

Sample ID: 682098010

Matrix: WG

Collect Date: 20-AUG-24 11:50 Receive Date: 21-AUG-24 Collector: Client Project: GPCC00100 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Anal	lyst Date	Time Batch	Method
Metals Analysis-IC	CP-MS										
SW846 3005A/602	20B Dissolved Fe	& Mn "As Receive	ed"								
Iron		0.428	0.0330	0.100	mg/L	1.00	1	BAJ	08/31/24	2153 2661564	1
Manganese		0.136	0.00100	0.00500	mg/L	1.00	1				
The following Prep	p Methods were pe	erformed:									
Method	Description	n		Analyst	Date		Tim	e F	rep Batch		
SW846 3005A	ICP-MS 3005	SA PREP		AB5	08/27/24		0805	2	661562		
FD1 C 11 ' A	1 137 1	c 1									

The following Analytical Methods were performed:

Method Description Analyst Comments

SW846 3005A/6020B

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 14 of 21 SDG: 682098

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Georgia Power Company, Southern Company

Report Date: September 5, 2024

Page 1 of 2

241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia

Contact: Joju Abraham

Workorder: 682098

Parmname	NOM	Sample Q	QC QC	Units	RPD%	REC%	Range	Anlst	Date Time
Metals Analysis - ICPMS Batch 2661564									
QC1205831936 LCS Iron	2.00		1.98	mg/L		98.9	(80%-120%)	BAJ	08/31/24 19:40
Manganese	0.0500		0.0481	mg/L		96.2	(80%-120%)		
QC1205831935 MB Iron			U ND	mg/L					08/31/24 19:37
Manganese			U ND	mg/L					
QC1205831937 682065001 MS Iron	2.00	19.3	20.5	mg/L		N/A	(75%-125%)		08/31/24 19:51
Manganese	0.0500	0.194	0.236	mg/L		83.7	(75%-125%)		
QC1205831938 682065001 MSD Iron	2.00	19.3	20.8	mg/L	1.34	N/A	(0%-20%)		08/31/24 19:54
Manganese	0.0500	0.194	0.238	mg/L	1.13	89.1	(0%-20%)		
QC1205831939 682065001 SDILT Iron		19300	4190	ug/L	8.92		(0%-20%)		08/31/24 20:00
Manganese		194	41.8	ug/L	7.69		(0%-20%)		

Notes:

The Qualifiers in this report are defined as follows:

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

J Value is estimated

Page 15 of 21 SDG: 682098

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 682098 Page 2 of 2 Parmname NOM Sample Qual OCUnits RPD% REC% Range Anlst Date Time Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier X Ν Metals--The Matrix spike sample recovery is not within specified control limits Η Analytical holding time was exceeded < Result is less than value reported Result is greater than value reported Preparation or preservation holding time was exceeded h R Sample results are rejected RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry. N/A RPD or %Recovery limits do not apply. Analyte concentration is not detected above the detection limit ND

- $E \hspace{0.5cm} \text{\% difference of sample and SD is $>$10\%$. Sample concentration must meet flagging criteria}$
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- FB Mercury was found present at quantifiable concentrations in field blanks received with these samples. Data associated with the blank are deemed invalid for reporting to regulatory agencies
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 16 of 21 SDG: 682098

Metals Technical Case Narrative Georgia Power Company SDG #: 682098

<u>Product:</u> Determination of Metals by ICP-MS <u>Analytical Method:</u> SW846 3005A/6020B <u>Analytical Procedure:</u> GL-MA-E-014 REV# 36

Analytical Batch: 2661564

Preparation Method: SW846 3005A

Preparation Procedure: GL-MA-E-006 REV# 15

Preparation Batch: 2661562

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
682098001	ARK-ARGWA-19
682098002	ARK-ARGWA-20
682098003	ARK-ARGWC-21
682098004	ARK-ARGWC-22
682098005	ARK-ARGWC-23
682098006	ARK-ARAMW-1
682098007	ARK-ARAMW-2
682098008	ARK-ARAMW-7
682098009	ARK-ARAMW-8
682098010	ARK-ARAMW-9
1205831935	Method Blank (MB)ICP-MS
1205831936	Laboratory Control Sample (LCS)
1205831939	682065001(NonSDGL) Serial Dilution (SD)
1205831937	682065001(NonSDGS) Matrix Spike (MS)
1205831938	682065001(NonSDGSD) Matrix Spike Duplicate (MSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Calibration Information

ICSA/ICSAB Statement

For the ICP-MS analysis, the ICSA solution contains analyte concentrations which are verified trace impurities indigenous to the purchased standard.

Technical Information

Sample Dilutions

Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range. Samples 682098004 (ARK-ARGWC-22) and 682098008 (ARK-ARAMW-7) were diluted to ensure that the analyte concentrations were within the linear calibration range of the instrument.

Page 17 of 21 SDG: 682098

A1	682	098
Analyte	004	008
Manganese	100X	100X

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 18 of 21 SDG: 682098

Page 19
of 21
SDG:
682098

Pb = Lead

Page:		of1	
Project #		175569434	
GEL Quote #:			
COC Number (1)	3	Sample Cooler(s):	5

GEL Laboratories, LLC 2040 Savage Road

Charleston, SC 29407

Phone: (843) 556-8171

COC Number (1):3 <u>Sample Cooler(s):</u> 5			1 or Cu			lalytica											43) 55			
PO Number: GPC82177-0005	GEL Work Order Number	:		GEL F	Project I	Manager:				WIE - 1500	TIME STORY			Title Aver			766-			
Client Name: Georgia Power		Phone # (9	37-344-6	6533)			Sa	mple	Ana	lysis	Req	uest	ed (5)	(Fill	in the number of containers for each test)					
Project/Site Name: Plant Arkwright Ash Pond _2_		Fax: N/A	ıx: N/A		The Mark Street	Should this		Z	Z				Z	Z	Z	Z	Z	SA	< Preservative Type (6)	
Address: 241 Ralph McGill Blvd SE, Atlanta, GA	30308				samp consid		taine	B)	Ca)	2.1) arks	40C)	ate)	OB) arks	pq	_	ı, Fe,	B)	2)		
Collected By: Jackson Bankston, Zach Levy, John					(If ly	qs	f con	6020	1 (B,	0.0 R Rem	od 25	Sulf.	/ (602 Rem	8 Cm	470B	1g, Ng 0B)	(6020	itrite 1353	Comments	
Myer, Dylan Quintal	cassidy.sutherland@stantec.com	*Time	S PLUM ALIGN	en en en en en	Depte and the	o)	or azar	per (0. 1) (pp. II	/ (30 ional	Meth	71, FI	p. IV	6-22	ry (7	K, N (602	n2+	te/ N	(task_code: ARK-CCR-
Sample ID * For composites - indicate start and stop date	*Date Collected /time (mm-dd-yy)	Collected (Military) (hhmm)	QC Code	Field	Sample Matrix (4)	Radioactive (If yes, please supply isotopic info.)	(7) Known or possible Hazards	Total number of containers	Ag (App. I) (6020B)	Metals A	Alkalinity (300.0 R2.1) see Additional Remarks	TDS (SM Method 2540C)	Anions (Cl, Fl, Sulfate) (300.0 Rev. 2.1 1993)	Metals App. IV (6020B) see Additional Remarks	RAD 226-228 Cmbd	Mercury (7470B)	Metals Al, K, Mg, Na, F Mn (6020B)	Fe2+/ M Field	Nitrate/ Nitrite (EPA Method 353.2)	ASSMT-2024S2)
ARK-ARGWA-19	08-20-24	0910	N	Y	WG			1										X		
ARK-ARGWA-20	08-20-24	0935	N	Y	WG	Line Line		1										X		
ARK-ARGWC-21	08-20-24	1515	N	Y	WG			1										X		
ARK-ARGWC-22	08-20-24	1405	N	Y	WG			1										X		
ARK-ARGWC-23	08-20-24	12:50	N	Y	WG			1										X		
ARK-ARAMW-1	08-20-24	1315	N	Y	WG			1										X		
ARK-ARAMW-2	08-20-24	1145	N	Y	WG			1										X		
ARK-ARAMW-7	08-20-24	1305	N	Y	WG			1										X		
ARK-ARAMW-8	08-20-24	0935	N	Y	WG			1										X		
ARK-ARAMW-9	08-20-24	1150	N	Y	WG			1										X		
CI	nain of Custody Signatures		16.00				TA'	T Re	queste	ed:	Norn	nal: _	X	Rus	h:	s	pecif	f y:		(Subject to Surcharge)
Relinquished By (Signed) Print Name	Date Received by (sig	gned)	Print Nan	ne	Date		Fax Res	sults:	[] Y	/es	[X]	No								
1 gmmmm Stantec &	121124 25/1	15	1/211	24			Select I	Delive	erable:	:[]	C of A	. []	QC S	Summ	ary	[]]	evel 1	[X	[] Leve	el 2 [] Level 3 [] Level 4
2	2 (Jus	nal	and	Phila	14 /	400	Metals App. IV: Sh. As. Ba. Be. Cd. Cr. Co. Ph. Li. Mo. Se. II													
3	3									0										Cooler Temp: <u></u>
> For sample shipping and delivery details, see S	Sample Receipt & Review form	(SRR.)		AUDIT		Sample	Collectio	n Tir	ne Zo	one:	[X]	Easte	rn	[] Pa	cific	[]	Cent	tral	[]M	fountain [] Other:
1.) Chain of Custody Number = Client Determined																				
2.) QC Codes: N = Normal Sample, TB = Trip Blank, FD = Fi	eld Duplicate, EB = Equipment Blank,	MS = Matrix	Spike Sam	nple, MSD =	= Matrix S _I	pike Duplica	te Sample,	G = G	rab, C =	= Con	posite									
3.) Field Filtered: For liquid matrices, indicate with a - Y - for																				
4.) Matrix Codes: DW =Drinking Water, GW =Groundwater, S								S=Soli	d Wast	te, O=	Oil, F=	Filter,	P=Wip	e, U=U	rine, F	=Fecal	i, N=Na	asal		
5.) Sample Analysis Requested: Analytical method requested									•		*****		•	•	20.00					
6.) Preservative Type: HA = Hydrochloric Acid, NI = Nitric A				ic Acid, HX	∠ = Hexane	s, ST = Sodia		fate, If	no pre	servat	ive is a	dded =	leave t	ield bla	ınk	_	Tnr			any additional details below
7.) KNOWN OR POSSIBLE HAZARDS	Characteristic Hazards		Waste Listed W	lacte			Other OT= O	ther /	Unkn	nown	_									any additional delatis below lling and/or disposal concern
DCDA Matala	FL = Flammable/Ignitable CO = Corrosive			isted wa.	stes l		(i.e.: Hi					berv	llium.	irrita	nts, o	other		The same of the sa		sample(s), type of site collecte
RCRA Metals As = Arsenic Hg= Mercury	RE = Reactive	,	code(s):				misc. he										100000000000000000000000000000000000000			ices, etc.)
Ba = Barium Se= Selenium	S2200		, , ,			20	Descrip	tion:												
Cd = Cadmium Ag= Silver	TSCA Regulated]														-				
Cr = Chromium MR= Misc. RCRA metals	PCB = Polychlorinated																			

biphenyls

682138 682097 682084 682142 682098 AP 682093 682097 GEL | Laboratories LLC SAMPLE RECEIPT & REVIEW FORM Client: (A/ SDG/AR/COC/Work Order: Received By: CLM Date Received: SIALIAL FedEx Express FedEx Ground UPS Field Services Courier cooler 1-0° Carrier and Tracking Number X So *If Net Counts > 160cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation. Suspected Hazard Information , Hazard Class Shipped: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes___No___ A)Shipped as a DOT Hazardous? B) Did the client designate the samples are to be COC notation or radioactive stickers on containers equal client designation. received as radioactive? Maximum Net Counts Observed* (Observed Counts - Area Background Counts): CPM/ mR/Hr C) Did the RSO classify the samples as Classified as: Rad 1 Rad 2 Rad 3 radioactive? COC notation or hazard labels on containers equal client designation D) Did the client designate samples are hazardous If D or E is yes, select Hazards below. Foreign Soil RCRA Asbestos Beryllium E) Did the RSO identify possible hazards? \$ 2 2 Sample Receipt Criteria Comments/Qualifiers (Required for Non-Conforming Items) Circle Applicable: Seals broken Damaged container Leaking container Other (describe) Shipping containers received intact and Circle Applicable: Client contacted and provided COC Chain of custody documents included COC created upon receipt with shipment? Preservation Method: Wet Ice Ice Packs Dry ice None Other: Samples requiring cold preservation *all temperatures are recorded in Celsius within $(0 \le 6 \text{ deg. C})$?* Temperature Device Serial #: IR5-23 Daily check performed and passed on IR Secondary Temperature Device Serial # (If Applicable): temperature gun? Circle Applicable: Seals broken Damaged container Leaking container Other (describe) Sample containers intact and sealed? Sample ID's and Containers Affected: Samples requiring chemical preservation at proper pH? If Preservation added, Lot#: If Yes, are Encores or Soil Kits present for solids? Yes No NA (If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? Yes____No__ NA__(II unknown, select No) Do any samples require Volatile 7 Are liquid VOA vials free of headspace? Yes____ No_ Analysis? Sample ID's and containers affected: ID's and tests affected: 8 Samples received within holding time? ID's and containers affected: Sample ID's on COC match ID's on Circle Applicable: No dates on containers No times on containers COC missing info Other (describe) Date & time on COC match date & time 10 L-A RAMW-R on bottles? Martic 1,000 has & 19124 Number of containers received match 11 number indicated on COC? Are sample containers identifiable as GEL provided by use of GEL labels? Circle Applicable: Not relinquished Other (describe) COC form is properly signed in relinquished/received sections? Comments (Use Continuation Form if needed): 10.) wrote on Samples, per COC it should be 8/20/24.

GL-CHL-SR-001 Rev 7

PM (or PMA) review: Initials ____

List of current GEL Certifications as of 05 September 2024

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	KY90129
Kentucky Wastewater	KY90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2023019
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	NV-C24-00175
New Hampshire NELAP	205424
New Jersey NELAP	SC002
New Mexico	SC002 SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2023-152
Pennsylvania NELAP	68-00485
Pennsylvania NELAP Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	
	9255651
South Carolina Chemistry	10120001
Tennessee Texas NELAP	TN 02934
	T104704235
Utah NELAP	SC000122024-41
Vermont	VT87156
Virginia NELAP	460202
Washington	C780

gel.com

a member of The GEL Group INC

September 06, 2024

Joju Abraham Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

Re: Arkwright CCR Groundwater Compliance

Work Order: 682327

Dear Joju Abraham:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on August 22, 2024. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The sample was delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt. The laboratory received the following sample(s):

Laboratory ID	Client ID	<u>Matrix</u>	Date Collected	Date Received
682327001	ARK-STN-TW22	Ground Water	08/21/24 08:45	08/22/24 15:00

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Prep Methods and Prep Dates

Method	Run Date ID
SW846 3005A	26-AUG-2024
SW846 7470A Prep	23-AUG-2024

Analysis Methods and Analysis Dates

Method	Run Date ID
EPA 300.0	24-AUG-2024
EPA 353.2 Low Level	23-AUG-2024
SM 2320B	22-AUG-2024
SM 2540C	28-AUG-2024
SW846 3005A/6020B	01-SEP-2024
SW846 3005A/6020B	31-AUG-2024
SW846 7470A	26-AUG-2024

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4443.

Sincerely,

Alaina Pinnick Project Manager

Alaina Pinnick

Purchase Order: GPC82177-0005

Chain of Custody: 6

Enclosures

Page 2 of 25 SDG: 682327

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

GPCC001 Georgia Power Company Client SDG: 682327 GEL Work Order: 682327

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- B Either presence of analyte detected in the associated blank, or MDL/IDL < sample value < PQL
- J Value is estimated

N/A RPD or %Recovery limits do not apply.

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Alaina Pinnick.

Reviewed by

Page 3 of 25 SDG: 682327

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 6, 2024

GPCC00100

GPCC001

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance

Client Sample ID: ARK-STN-TW22

Sample ID: 682327001

Matrix: WG

Collect Date: 21-AUG-24 08:45
Receive Date: 22-AUG-24
Collector: Client

Parameter **Oualifier** DL RL Units PF DF Analyst Date Time Batch Method Result Ion Chromatography EPA 300.0 Anions Liquid "As Received" Sulfate 693 13.3 40.0 mg/L 100 CWW 08/24/24 2004 2661838 1 Chloride 6.29 0.0670 0.200 mg/L CWW 08/24/24 0354 2661838 2 1 Fluoride 0.399 0.0330 0.100 1 mg/L Mercury Analysis-CVAA 7470 Cold Vapor Mercury, Liquid "As Received" Mercury U ND 0.0000670 0.000200 mg/L 1.00 1 JP2 08/26/24 1331 2661692 3 Metals Analysis-ICP-MS SW846 3005A/6020B "As Received" 0.144 0.00300 0.0100 09/01/24 1254 2661587 Lithium mg/L 1.00 1 BAJ 4 49.6 0.400 1.50 mg/L 1.00 5 BAJ 08/31/24 1708 2661587 5 Potassium 0.0500 Aluminum 0.0742 0.0193 mg/L 1.00 1 BAJ 08/31/24 1705 2661587 6 U 0.00100 0.00300 1.00 Antimony ND mg/L 1 1.00 0.482 0.00200 0.00500 mg/L1 Arsenic Barium 0.0501 0.000670 0.00400 mg/L1.00 1 mg/L Cadmium U ND 0.000300 0.001001.00 1 U 0.0100 1.00 Chromium ND 0.00300 mg/L Cobalt 0.00381 0.000300 0.00100mg/L 1.00 1 Iron 31.2 0.0330 0.100 mg/L 1.00 1 U ND 0.00200 1.00 Lead 0.000500 mg/L 1 24.2 0.0300 mg/L 1.00 Magnesium 0.0100 1 Molybdenum 0.00322 0.000200 0.00100 mg/L 1.00 1 U Selenium ND 0.00150 0.00500mg/L 1.00 1 Silver U ND 0.000300 0.00100 1.00 mg/L 1 Sodium 18.0 0.08000.250 mg/L1.00 1 U ND 0.00200 Thallium 0.000600mg/L 1.00 -1 2.99 0.130 0.375 mg/L1.00 25 BAJ 09/01/24 1239 2661587 7 Boron 311 2.00 5.00 1.00 25 Calcium mg/L mg/LManganese 7.13 0.0250 0.125 1.00 25 Beryllium U ND 0.0002000.000500 PRB 09/01/24 1532 2661587 mg/L 1.00 **Nutrient Analysis** EPA 353.2 Nitrogen, Nitrate/Nitrite "As Received" Nitrogen, Nitrate/Nitrite 0.264 0.00700 0.0200 mg/L JLD1 08/23/24 1108 2661630 Solids Analysis SM2540C Dissolved Solids "As Received"

Page 4 of 25 SDG: 682327

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 6, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance

Client Sample ID: ARK-STN-TW22 Project: GPCC00100 Sample ID: 682327001 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Solids Analysis										
SM2540C Dissolved So	olids "As Rec	eived"								
Total Dissolved Solids		1270	2.38	10.0	mg/L		KLP1	08/28/24	1338 2663921	10
Titration and Ion Analy	vsis									
SM 2320B Total Alkali	inity "As Rece	eived"								
Alkalinity, Total as CaCO3		262	0.725	2.00	mg/L		JW2	08/22/24	1650 2661505	11
Bicarbonate alkalinity (CaCC	03)	262	0.725	2.00	mg/L					
Carbonate alkalinity (CaCO3) U	ND	0.725	2.00	mg/L					
The following Prep Me	thods were pe	erformed:								
Method	Description	n		Analyst	Date	7	Гime Рі	ep Batch		
SW846 3005A	ICP-MS 3005	SA PREP		AB5	08/26/24	(0820 26	61586		
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		JM13	08/23/24	1	1030 26	61691		

The following Analytical Methods were performed:

Method	Description	Analyst Comments
1	EPA 300.0	•
2	EPA 300.0	
3	SW846 7470A	
4	SW846 3005A/6020B	
5	SW846 3005A/6020B	
6	SW846 3005A/6020B	
7	SW846 3005A/6020B	
8	SW846 3005A/6020B	
9	EPA 353.2 Low Level	
10	SM 2540C	
11	SM 2320B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 25 SDG: 682327

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia Joju Abraham

Workorder: 682327

Contact:

Report Date: September 6, 2024

Page 1 of 12

Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	6 Range Anlst	Date Time
Ion Chromatography Batch 2661838								
QC1205832620 682084001 DUP Chloride		1.80	1.81	mg/L	0.725		(0%-20%) CWW	08/23/24 13:35
Fluoride		0.333	0.329	mg/L	1.21	۸	(+/-0.100)	
Sulfate		55.2	54.9	mg/L	0.497		(0%-20%)	08/24/24 05:30
QC1205832622 682084011 DUP Chloride		9.67	9.69	mg/L	0.146		(0%-20%)	08/23/24 21:00
Fluoride		0.464	0.472	mg/L	1.71	^	(+/-0.100)	
Sulfate		253	254	mg/L	0.506		(0%-20%)	08/24/24 17:57
QC1205832619 LCS Chloride	5.00		5.18	mg/L		104	(90%-110%)	08/23/24 12:31
Fluoride	2.50		2.57	mg/L		103	(90%-110%)	
Sulfate	10.0		10.5	mg/L		105	(90%-110%)	08/29/24 15:47
QC1205832618 MB Chloride		U	ND	mg/L				08/23/24 11:59
Fluoride		U	ND	mg/L				
Sulfate		U	ND	mg/L				08/29/24 15:15

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 682327 Page 2 of 12 Parmname NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time Ion Chromatography 2661838 Batch QC1205832621 682084001 PS 1.80 7.03 Chloride 5.00 mg/L 105 (90%-110%) CWW 08/23/24 14:06 Fluoride 2.50 0.333 3.02 107 (90%-110%) mg/LSulfate 10.0 11.0 21.7 106 (90%-110%) 08/24/24 06:02 mg/L OC1205832623 682084011 PS Chloride 5.00 9.67 15.7 (90%-110%) 08/23/24 21:32 120* mg/L 2.50 Fluoride 0.464 3.10 106 (90%-110%) mg/L Sulfate 10.0 10.1 20.7 106 (90%-110%) 08/24/24 18:29 mg/L Metals Analysis - ICPMS 2661587 Batch QC1205832001 LCS Aluminum 2.00 2.19 109 (80%-120%) BAJ 08/31/24 16:15 mg/LAntimony 0.0500 0.0496 mg/L 99.1 (80% - 120%)0.0500 0.0516 103 Arsenic mg/L (80%-120%) 0.0511 Barium 0.0500 mg/L 102 (80%-120%) Beryllium 0.0500 0.0527 mg/L 105 (80%-120%) PRB 09/01/24 15:20 Boron 0.100 0.117 117 (80%-120%) BAJ 09/01/24 12:24 mg/L 0.0500 0.0505 08/31/24 16:15 Cadmium 101 (80%-120%) mg/L

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 682327 Page 3 of 12 QC RPD% REC% Range Parmname NOM Sample Qual Units Anlst Date Time Metals Analysis - ICPMS Batch 2661587 Calcium 2.00 2.13 mg/L106 (80%-120%) BAJ 09/01/24 12:24 Chromium 0.0500 0.0497 99.4 (80%-120%) 08/31/24 16:15 mg/L 0.0500 0.0499 Cobalt mg/L99.7 (80%-120%) 2.02 Iron 2.00 mg/L 101 (80%-120%) 0.0519 Lead 0.0500 104 (80%-120%) mg/L Lithium 0.0500 0.0567 mg/L 113 (80%-120%) 09/01/24 12:24 2.00 2.26 113 08/31/24 16:15 Magnesium mg/L (80%-120%) 0.0487 Manganese 0.0500 mg/L 97.3 (80%-120%) 09/01/24 12:24 Molybdenum 0.0500 0.0521 mg/L104 (80%-120%) 08/31/24 16:15 Potassium 2.00 2.12 106 mg/L (80%-120%) 0.0500 0.0505 Selenium mg/L 101 (80%-120%) Silver 0.0500 0.0525 105 (80%-120%) mg/L Sodium 2.00 2.23 mg/L 112 (80%-120%) Thallium 0.0500 0.0497 mg/L99.4 (80%-120%)

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 4 of 12 NOM QC RPD% REC% Parmname Sample Qual Units Range Anlst Date Time **Metals Analysis - ICPMS** 2661587 Batch QC1205832000 MB U ND BAJ 08/31/24 16:12 Aluminum mg/LAntimony U ND mg/L U Arsenic ND mg/LU Barium ND mg/LBeryllium U ND mg/LPRB 09/01/24 15:18 U ND BAJ 09/01/24 12:23 mg/LBoron U ND 08/31/24 16:12 Cadmium mg/LCalcium U ND 09/01/24 12:23 mg/L U ND 08/31/24 16:12 Chromium mg/L U ND Cobalt mg/LU ND mg/L Iron ND U mg/LLead Lithium U ND mg/L09/01/24 12:23 Magnesium U ND mg/L08/31/24 16:12

Workorder:

682327

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

682327 Page 5 of 12 **P**armname **NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2661587 Batch Manganese U ND mg/L BAJ 09/01/24 12:23 U ND 08/31/24 16:12 Molybdenum mg/L U ND Potassium mg/L U ND Selenium mg/L U ND Silver mg/L Sodium U ND mg/L U Thallium ND mg/L QC1205832002 682324001 MS 2.00 U ND 2.07 103 08/31/24 16:26 Aluminum (75%-125%) mg/L ND 0.0507 0.0500 U 101 Antimony mg/L (75% - 125%)Arsenic 0.0500 U ND 0.0524 mg/L 103 (75%-125%) 0.0500 0.0563 0.105 Barium 96.5 (75%-125%)mg/L 0.0500 U ND 0.0539 Beryllium mg/L 108 (75%-125%) PRB 09/01/24 15:24 Boron 0.100 0.0311 0.137 mg/L 106 (75%-125%) BAJ 09/01/24 12:27 Cadmium 0.0500 U ND 0.0501 mg/L 100 (75%-125%) 08/31/24 16:26

Page 10 of 25 SDG: 682327

Workorder:

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 682327 Page 6 of 12 Parmname **NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2661587 Batch Calcium 2.00 45.3 46.8 mg/LN/A (75%-125%) BAJ 09/01/24 12:27 0.0500 U ND 0.0503 99.2 (75%-125%) 08/31/24 16:26 Chromium mg/L ND 0.0486 Cobalt 0.0500 U mg/L 97.3 (75%-125%) U ND 1.95 2.00 mg/L 97.2 (75%-125%) Iron ND 0.0500 U 0.0487 97.4 Lead mg/L (75% - 125%)Lithium 0.0500 0.00312 0.0572 108 (75%-125%) 09/01/24 12:27 mg/L 2.00 8.55 10.6 08/31/24 16:26 Magnesium mg/L N/A (75% - 125%)Manganese 0.0500 U ND 0.0491 mg/L 96.5 (75%-125%)09/01/24 12:27 Molybdenum 0.0500 J 0.000727 0.0541 mg/L 107 (75% - 125%)08/31/24 16:26 2.00 2.99 5.01 101 Potassium mg/L (75% - 125%)Selenium 0.0500 U ND 0.0504 mg/L 100 (75% - 125%)0.0500 U ND 0.0496 Silver 99.2 (75%-125%) mg/L 2.00 56.0 Sodium 58.4 N/A (75%-125%) 08/31/24 16:40 mg/L Thallium 0.0500 U ND 0.0472 94.5 (75%-125%) 08/31/24 16:26 mg/L

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 682327 Page 7 of 12 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS Batch 2661587 QC1205832003 682324001 MSD ND 2.08 2.00 U mg/L 0.83 104 BAJ 08/31/24 16:29 Aluminum (0%-20%)0.0500 U ND 0.0497 1.9 99.3 (0%-20%) Antimony mg/L 1.49 0.0500 U ND 0.0516 102 (0%-20%)Arsenic mg/L Barium 0.0500 0.0563 0.104 mg/L 0.211 96 (0%-20%)Beryllium 0.0500 U ND 0.0543 mg/L 0.732 109 (0%-20%)PRB 09/01/24 15:26 0.100 0.0311 0.136 105 mg/L 0.562 (0%-20%)BAJ 09/01/24 12:28 Boron Cadmium 0.0500 U ND 0.0496 1.02 99.1 (0%-20%)08/31/24 16:29 mg/L (0%-20%) Calcium 2.00 45.3 46.9 mg/L 0.181 N/A 09/01/24 12:28 ND 0.0500 U 0.0498 mg/L 0.833 98.3 (0%-20%)08/31/24 16:29 Chromium Cobalt 0.0500 U ND 0.0485 mg/L 0.226 97.1 (0%-20%)U ND 1.95 2.00 mg/L 0.419 96.8 Iron (0%-20%)0.0500 U ND 0.0483Lead mg/L 0.791 96.6 (0%-20%)Lithium 0.0500 0.00312 0.0551 mg/L 3.83 104 (0%-20%)09/01/24 12:28 Magnesium 2.00 8.55 10.7 mg/L 0.637 N/A (0%-20%)08/31/24 16:29

Page 12 of 25 SDG: 682327

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 682327 Page 8 of 12 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2661587 Batch Manganese 0.0500 ND 0.0494 mg/L 0.586 97.1 (0%-20%)BAJ 09/01/24 12:28 0.05000.000727 0.0539 106 (0%-20%)08/31/24 16:29 Molybdenum J mg/L 0.369 Potassium 2.00 2.99 5.05 mg/L 0.73 103 (0%-20%)ND 0.0503 Selenium 0.0500 U mg/L 0.157 99.8 (0%-20%) Silver 0.0500 U ND 0.0498 99.7 mg/L 0.475 (0%-20%)Sodium 2.00 56.0 58.5 mg/L 0.131 N/A (0%-20%)08/31/24 16:43 Thallium 0.0500 U ND 0.0465 92.9 08/31/24 16:29 mg/L 1.7 (0%-20%)OC1205832004 682324001 SDILT U ND U 08/31/24 16:35 Aluminum ND ug/L N/A (0%-20%)U ND ND U Antimony ug/L N/A (0%-20%)U ND U ND ug/L N/A (0%-20%) Arsenic 56.3 ug/L Barium 11.4 .925 (0%-20%)U ND Beryllium ND U ug/L N/A (0%-20%)PRB 09/01/24 15:30 Boron 31.1 8.22 ug/L 32.3 (0%-20%)BAJ 09/01/24 12:30 Cadmium U ND U ND ug/L N/A (0%-20%)08/31/24 16:35

Page 13 of 25 SDG: 682327

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 682327 Page 9 of 12 REC% **Parmname NOM** Sample Qual QC Units RPD% Range Anlst Date Time Metals Analysis - ICPMS 2661587 Batch Calcium 45300 9090 ug/L .308 (0%-20%)BAJ 09/01/24 12:30 Chromium U ND U ND N/A (0%-20%)08/31/24 16:35 ug/L U ND U ND Cobalt ug/L N/A (0%-20%)U ND U ND ug/L N/A (0%-20%) Iron U ND ND U N/A (0%-20%)Lead ug/L Lithium J 3.12 U ND ug/L N/A (0%-20%)09/01/24 12:30 2.51 8550 1750 ug/L (0%-20%)08/31/24 16:35 Magnesium U Manganese U ND ND ug/L N/A (0%-20%)09/01/24 12:30 Molybdenum 0.727 U ND ug/L N/A (0%-20%)08/31/24 16:35 2990 601 .492 Potassium ug/L (0%-20%)U U Selenium ND ND ug/L N/A (0%-20%)Silver U ND U ND ug/L N/A (0%-20%)11200 2380 Sodium ug/L 6.14 (0%-20%)08/31/24 16:49 U Thallium ND U ND ug/L N/A (0%-20%)08/31/24 16:35

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 682327 Page 10 of 12 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis-Mercury Batch 2661692 QC1205832230 682203002 DUP U ND U ND mg/L JP2 08/26/24 13:19 Mercury N/A LCS QC1205832229 0.00192 0.00200 Mercury mg/L 96 (80%-120%) 08/26/24 13:16 QC1205832228 MB U ND 08/26/24 13:14 Mercury mg/L QC1205832231 682203002 MS 0.00200 U ND 0.00194 (75%-125%) 08/26/24 13:21 Mercury mg/L QC1205832232 682203002 SDILT U ND U ND (0%-10%)08/26/24 13:22 Mercury ug/L N/A **Nutrient Analysis** 2661630 Batch QC1205832110 682321001 DUP 1.97 1.97 mg/L 0 (0%-20%) JLD1 08/23/24 10:47 Nitrogen, Nitrate/Nitrite QC1205832109 LCS 1.00 0.998 99.8 (90%-110%) 08/23/24 10:44 Nitrogen, Nitrate/Nitrite mg/L QC1205832108 Nitrogen, Nitrate/Nitrite U ND 08/23/24 10:43 mg/L QC1205832111 682321001 PS Nitrogen, Nitrate/Nitrite 1.00 0.394 1.41 mg/L 101 (90%-110%) 08/23/24 10:49 Solids Analysis Batch 2663921 OC1205837525 682330010 DUP Total Dissolved Solids 239 237 mg/L 0.84 (0%-5%) KLP1 08/28/24 13:38

Page 15 of 25 SDG: 682327

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 682327 Page 11 of 12 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Solids Analysis 2663921 Batch QC1205837524 LCS 293 300 mg/L 97.7 (95%-105%) KLP1 08/28/24 13:38 Total Dissolved Solids QC1205837523 MB U ND mg/L 08/28/24 13:38 **Total Dissolved Solids Titration and Ion Analysis** Batch 2661505 QC1205831761 LCS Alkalinity, Total as CaCO3 53.8 50.0 mg/L 108 (90%-110%) JW2 08/22/24 16:44 QC1205831762 LCS Alkalinity, Total as CaCO3 15.0 15.0 100 (90%-110%) 08/22/24 16:46 mg/L QC1205831763 LCSD 53.4 08/22/24 16:45 Alkalinity, Total as CaCO3 50.0 mg/L 0.746 107 (0%-20%)QC1205831764 LCSD 15.0 15.4 103 (0%-20%) 08/22/24 16:47 Alkalinity, Total as CaCO3 mg/L 2.63

Notes:

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- N Metals--The Matrix spike sample recovery is not within specified control limits
- H Analytical holding time was exceeded
- < Result is less than value reported
- > Result is greater than value reported
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- Z Paint Filter Test--Particulates passed through the filter, however no free liquids were observed.
- d 5-day BOD--The 2:1 depletion requirement was not met for this sample

Page 16 of 25 SDG: 682327

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 12 of 12 Pa

Parmname	NOM	Sample (Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time

- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.

682327

- ND Analyte concentration is not detected above the detection limit
- % difference of sample and SD is >10%. Sample concentration must meet flagging criteria Е
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- E General Chemistry--Concentration of the target analyte exceeds the instrument calibration range
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- FB Mercury was found present at quantifiable concentrations in field blanks received with these samples. Data associated with the blank are deemed invalid for reporting to regulatory agencies
- N1See case narrative

Workorder:

- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- Per section 9.3.4.1 of Method 1664 Revision B, due to matrix spike recovery issues, this result may not be reported or used for regulatory compliance R purposes.
- The target analyte was detected in the associated blank. R
- 5-day BOD--Test replicates show more than 30% difference between high and low values. The data is qualified per the method and can be used for e reporting purposes
- See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

* Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 17 of 25 SDG: 682327

Technical Case Narrative Georgia Power Company SDG #: 682327

Metals

<u>Product:</u> Determination of Metals by ICP-MS <u>Analytical Method:</u> SW846 3005A/6020B <u>Analytical Procedure:</u> GL-MA-E-014 REV# 36

Analytical Batch: 2661587

Preparation Method: SW846 3005A

Preparation Procedure: GL-MA-E-006 REV# 15

Preparation Batch: 2661586

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
682327001	ARK-STN-TW22
1205832000	Method Blank (MB)ICP-MS
1205832001	Laboratory Control Sample (LCS)
1205832004	682324001(ARK-ARGWA-14L) Serial Dilution (SD)
1205832002	682324001(ARK-ARGWA-14S) Matrix Spike (MS)
1205832003	682324001(ARK-ARGWA-14SD) Matrix Spike Duplicate (MSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Calibration Information

ICSA/ICSAB Statement

For the ICP-MS analysis, the ICSA solution contains analyte concentrations which are verified trace impurities indigenous to the purchased standard.

Technical Information

Sample Dilutions

Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range. Sample 682327001 (ARK-STN-TW22) was diluted to ensure that the analyte concentration was within the linear calibration range of the instrument.

A l	682327
Analyte	001
Boron	25X
Calcium	25X
Manganese	25X
Potassium	5X

Page 18 of 25 SDG: 682327

Product: Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer

Analytical Method: SW846 7470A

Analytical Procedure: GL-MA-E-010 REV# 40

Analytical Batch: 2661692

Preparation Method: SW846 7470A Prep

Preparation Procedure: GL-MA-E-010 REV# 40

Preparation Batch: 2661691

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
682327001	ARK-STN-TW22
1205832228	Method Blank (MB)CVAA
1205832229	Laboratory Control Sample (LCS)
1205832232	682203002(NonSDGL) Serial Dilution (SD)
1205832230	682203002(NonSDGD) Sample Duplicate (DUP)
1205832231	682203002(NonSDGS) Matrix Spike (MS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

General Chemistry

Product: Ion Chromatography Analytical Method: EPA 300.0

Analytical Procedure: GL-GC-E-086 REV# 35

Analytical Batch: 2661838

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
682327001	ARK-STN-TW22
1205832618	Method Blank (MB)
1205832619	Laboratory Control Sample (LCS)
1205832620	682084001(ARK-AP1GWA-1) Sample Duplicate (DUP)
1205832621	682084001(ARK-AP1GWA-1) Post Spike (PS)
1205832622	682084011(ARK-AP1PZ-10) Sample Duplicate (DUP)
1205832623	682084011(ARK-AP1PZ-10) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the

Page 19 of 25 SDG: 682327

following exceptions.

Quality Control (QC) Information

Matrix Spike (MS)/Post Spike (PS) Recovery Statement

The percent recoveries (%R) obtained from the spike analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. The matrix spike recovered outside of the established acceptance limits due to matrix interference and/or non-homogeneity.

Analyte	Sample	Value
Chloride	1205832623 (ARK-AP1PZ-10PS)	120* (90%-110%)

Technical Information

Sample Dilutions

The following samples 1205832620 (ARK-AP1GWA-1DUP), 1205832621 (ARK-AP1GWA-1PS), 1205832622 (ARK-AP1PZ-10DUP), 1205832623 (ARK-AP1PZ-10PS) and 682327001 (ARK-STN-TW22) were diluted because target analyte concentrations exceeded the calibration range. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

A a la	682327
Analyte	001
Sulfate	100X

Sample Re-analysis

Sample was re-analyzed due to high CVH failure. The reanalysis data with passing instrument QC was reported. 1205832618 (MB) and 1205832619 (LCS).

Miscellaneous Information

Manual Integrations

Samples were manually integrated to correctly position the baseline as set in the calibration standards for the analyte, Fluoride. 1205832620 (ARK-AP1GWA-1DUP), 1205832621 (ARK-AP1GWA-1PS), 1205832622 (ARK-AP1PZ-10DUP) and 1205832623 (ARK-AP1PZ-10PS).

<u>Product:</u> Nitrate/Nitrite Cad Redux Low Level <u>Analytical Method:</u> EPA 353.2 Low Level <u>Analytical Procedure:</u> GL-GC-E-128 REV# 15

Analytical Batch: 2661630

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
682327001	ARK-STN-TW22
1205832108	Method Blank (MB)
1205832109	Laboratory Control Sample (LCS)
1205832110	682321001(NonSDG) Sample Duplicate (DUP)
1205832111	682321001(NonSDG) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Page 20 of 25 SDG: 682327

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Sample Dilutions

The following samples 1205832110 (Non SDG 682321001DUP) and 1205832111 (Non SDG 682321001PS) were diluted because target analyte concentrations exceeded the calibration range. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

Product: Solids, Total Dissolved **Analytical Method:** SM 2540C

Analytical Procedure: GL-GC-E-001 REV# 21

Analytical Batch: 2663921

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#Client Sample Identification682327001ARK-STN-TW221205837523Method Blank (MB)1205837524Laboratory Control Sample (LCS)1205837525682330010(NonSDG) Sample Duplicate (DUP)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: Alkalinity

Analytical Method: SM 2320B

Analytical Procedure: GL-GC-E-033 REV# 16

Analytical Batch: 2661505

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
682327001	ARK-STN-TW22
1205831761	Laboratory Control Sample (LCS)
1205831762	Laboratory Control Sample (LCS)
1205831763	Laboratory Control Sample Duplicate (LCSD)
1205831764	Laboratory Control Sample Duplicate (LCSD)

The samples in this SDG were analyzed on an "as received" basis.

Page 21 of 25 SDG: 682327

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Laboratory Control Sample Duplicate (LCSD)

An LCSD was used in place of matrix QC due to limited sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 22 of 25 SDG: 682327

_			
Pa	Page:	1	of
ge	Project #		1755694
23	GEL Quote		
of	COC Numb	er (1): _6	Sample Co
	PO Number	r: GPC82	177-0005
S	Client Nam	e: Georgi	a Power
SD			lant Arkwrig
$\dot{\Omega}$	Address: 24	11 Ralph	McGill Blvd
6	G 11 + 1F	ъ.	0

GEL Laboratories, LLC 2040 Savage Road U\$2327

GEL Quote #:		get.com Chemistry Radiochemistry Radiobloassay Speciatry Analytics							- 1	Charleston, SC 29407													
COC Number (1): 6 Sample Cooler(s): 1				of Cu			nalytica								_	Phone: (843) 556-8171							
PO Number: GPC82177-0005	GEL Work	Order Number: GEL Project Manager: Alaina Pinnick											Fax: (
Client Name: Georgia Power		Phone # (937-344-6533)					Sa	mple	Ana	lysis	Requ	ieste	d ⁽⁵⁾	Fill i	n the	nun	nber o	of co	ntaine	ers for each test)			
Project/Site Name: Plant Arkwright Ash Pond	1_2_		Fax: N/A				Shoule		ers	Z	Z		_		Z	Z	ž	Z	Z	SA	< Preservative Type (6)		
Address: 241 Ralph McGill Blvd SE, Atlanta	GA 30308						consid		tain	B)	Ca)	2.1) arks	40C	(ate)	20B)	pq		а, Fe)B)	7)			
Collected By: Dylan Quintal		To: jabraham@sou rland@stantec.com	thernco.com	EDD@st	antec.com		(If pply	r ards	r of containers	1) (6020	6. III (B, 20B)	300.0 R	ethod 25	FI, Sull	. IV (60) nal Rem	.228 Cm	(7470B	, Mg, N 020B)	2+ (602(Filtered	/ Nitrite hod 353	Comments (task code: ARK-CCR-		
Sample ID * For composites - indicate start and sto	p date/time	*Date Collected (mm-dd-yy)	*Time Collected (Military) (hhmm)	QC Code (2)	Field Filtered [©]	Sample Matrix ⁽⁴	Radioactive (If yes, please supply isotopic info.)	(7) Known or possible Hazards	Total number	Ag (App. I) (6020B)	Metals App. III (B, Ca) (6020B)	Alkalinity (300.0 R2.1) see Additional Remarks	TDS (SM Method 2540C)	Anions (Cl, Fl, Sulfate) (300.0 Rev. 2.1 1993)	Metals App. IV (6020B) see Additional Remarks	RAD 226-228 Cmbd	Mercury (7470B)	Metals Al, K, Mg, Na, Fe, Mn (6020B)	Fe2+/ Mn2+ (6020) Field Filtered	Nitrate/ Nitrite (EPA Method 353	ASSMT-2024S2)		
ARK-STN-TW22		08-21-24	0845	N	N	WG		12.	5	Х	x	x	X	х	Х		Х	х		х			
					*																		
										-													
							- 1-1-1																
				a service			1,130	0.00		100		30.05	18 30		777								
							 		-	\vdash	-												
			-							-	1	-						Ti					
	Chain of Cust	ody Signatures						TA	TRe	anes	ted:	Norn	nal:	X	Rush	1:	S	pecify	/:		(Subject to Surcharge)		
Relinquished By (Signed) Print Name	Date	Received by (si		Print Nar	ne	Date																	
CANAMANAN	0111114	260	7/	8/2.	1/24	,	Short-more of	Fax Re						OC S	ımma	rv [1 les	vel 1	[X]	Level	2 [] Level 3 [] Level 4		
Stantee	PILALI	7	21	0/000	7 TY		24152					0 0171	Metals	App. IV	: Sb, A:	s, Ba, Bo	e, Cd, (Cr, Co, I	Pb, Li,	Mo, Se,	TI as CaCO3		
2		3	100		- PL	- L	-	For La				Only		20. 77				000			Cooler Temp:°C		
> For sample shipping and delivery details,	see Sample Receir	ot & Review form	(SRR.)			A REST	Sample								_						untain [] Other:		
Chain of Custody Number = Client Determined										ALCOHOLD STREET													
2.) QC Codes: N = Normal Sample, TB = Trip Blank,	FD = Field Duplicate, I	B = Equipment Blan	k, MS = Matri	ix Spike S	ample, MS	D = Matrix	Spike Dupli	cate Samp	le, G =	Grab,	C = C	omposit	e										
3.) Field Filtered: For liquid matrices, indicate with a																							
4.) Matrix Codes: DW =Drinking Water, GW =Ground	water, SW=Surface Wat	er, WW =Waste Wate	r, W=Water, M	AL=Misc	Liquid, SO	=Soil, SD=	Sediment, S	L=Sludge,	SS=So	olid W	aste, O	=Oil, F	=Filter	, P=Wi	pe, U=	Urine, I	F=Fec	al, N=	Nasal				
5.) Sample Analysis Requested: Analytical method rec																							
6.) Preservative Type: HA = Hydrochloric Acid, NI =					rbic Acid, l	HX = Hexa	ne, ST = Soc		sulfate,	If no p	preserv	ative is	added	= leave	field b	lank		l nr	511/1091				
7.) KNOWN OR POSSIBLE HAZARDS		Characteristic Hazards FL = Flammable/Ignitable LW= Listed Waste				_	Other OT= Other / Unknown									Please provide any additional details below regarding handling and/or disposal concerns.							
RCRA Metals		FL = Flammable/Ignitable LW= Listed Waste CO = Corrosive (F,K,P and U-listed wastes.)			stes.)		(i.e.: H					beryl	lium,	rritar	its, oth	her	(i.e.: Origin of sample(s), type of site collected						
As = Arsenic Hg= Mercury	RE = Reac			code(s)				misc. h			rds, e	tc.)						from	from, odd matrices, etc.)				
Ba = Barium Se= Selenium	TSCA Reg	ulated	7				-	Descri	puon:														
Cd = Cadmium Ag= Silver Cr = Chromium MR= Misc. RCRA metal		ychlorinated					-																
Pb = Lead	bip	biphenyls																11.35		F1 (1)			

GEL Laboratories LLC				
1				SAMPLE RECEIPT & REVIEW FORM
Client: GPCC				G/AR/COC/Work Order:
Received By: QG			Da	te Received: 8 22 24 Circle Applicable:
Carrier and Tracking Number				FedEx Express FedEx Ground UPS Field Services Courier Other
Suspected Hazard Information	Yes	o.	*If.	Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
A)Shipped as a DOT Hazardous?			Haz	Eard Class Shipped: If UN2910, Is the Radioactive Shipment Survey Compliant? YesNo
B) Did the client designate the samples are to be received as radioactive?		-	6	C notation or radicactive stickers on containers equal chent designation.
C) Did the RSO classify the samples as radioactive?			Mai	ximum Net Counts Observed* (Observed Counts - Area Background Counts):CPM mR/Hr Classified as: Rad 1 Rad 2 Rad 3
D) Did the client designate samples are hazardous?		-		Contation or hazard labets on containers equal client designation. Our E is yes, select Hazards below.
E) Did the RSO identify possible hazards?			a D	PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
Sample Receipt Criteria	Yes	NA	ςN	Comments/Qualifiers (Required for Non-Conforming Items)
Shipping containers received intact and sealed?				Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
2 Chain of custody documents included with shipment?	مس		S. S	Circle Applicable: Client contacted and provided COC COC created upon receipt
3 Samples requiring cold preservation within $(0 \le 6 \text{ deg. C})$?*	a de la constantina della cons			Preservation Method: Wet Ice Packs Dry ice None Other: *all temperatures are-recorded in Celsius TEMP:
4 Daily check performed and passed on IR temperature gun?	~			Temperature Device Serial #: <u>IR1-23</u> Secondary Temperature Device Serial # (If Applicable):
5 Sample containers intact and sealed?	_		ALCOHOL:	Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
6 Samples requiring chemical preservation at proper pH?	de		Section 1	Sample ID's and Containers Affected: If Preservation added, Lot#:
Do any samples require Volatile Analysis?		· · · · · · · · · · · · · · · · · · ·		If Yes, are Encores or Soil Kits present for solids? YesNoNA (If yes, take to VOA Freezer) Do Hquid VOA vials contain acid preservation? YesNoNA (If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA Sample ID's and containers affected:
8 Samples received within holding time?				"ID's and tests affected:
9 Sample ID's on COC match ID's on bottles?	_			ID's and containers affected:
Date & time on COC match date & time on bottles?	_			Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
11 Number of containers received match number indicated on COC?			-	Circle Applicable: No container count on COC Other (describe)
Are sample containers identifiable as GEL provided by use of GEL labels? COC form is properly signed in			SEE THE	Circle Applicable: Not relinquished Other (describe)
relinquished/received sections? Comments (Use Continuation Form if needed):	_			Ti Com (dellato)

Comments (Use Continuation Form if needed):

COOLET 1-02 4-02

3-12 8-02

4-02

5-02

PM (or PMA) review: Initials Date 8 23 29 Page of 1

List of current GEL Certifications as of 06 September 2024

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	KY90129
Kentucky Wastewater	KY90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2023019
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	NV-C24-00175
New Hampshire NELAP	205424
New Jersey NELAP	SC002
New Mexico	SC002
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2023-152
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235
Utah NELAP	SC000122024-41
Vermont	VT87156
	460202
Virginia NELAP	
Washington	C780

gel.com

a member of The GEL Group INC

September 06, 2024

Joju Abraham Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

Re: Arkwright CCR Groundwater Compliance

Work Order: 682328

Dear Joju Abraham:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on August 22, 2024. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The sample was delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt. The laboratory received the following sample(s):

Laboratory ID	Client ID	<u>Matrix</u>	Date Collected	Date Received
682328001	ARK-STN-TW22	Ground Water	08/21/24 08:45	08/22/24 15:00

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Prep Methods and Prep Dates

Method **Run Date ID** SW846 3005A 26-AUG-2024

Analysis Methods and Analysis Dates

<u>Method</u>	Run Date ID
SW846 3005A/6020B	01-SEP-2024
SW846 3005A/6020B	31-AUG-2024

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4443.

Sincerely,

Alaina Pinnick

Alaina Pinnick

Project Manager

Purchase Order: GPC82177-0005

Chain of Custody: 6

Enclosures

Page 2 of 11 SDG: 682328

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

GPCC001 Georgia Power Company Client SDG: 682328 GEL Work Order: 682328

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- B Either presence of analyte detected in the associated blank, or MDL/IDL < sample value < PQL
- J Value is estimated

N/A RPD or %Recovery limits do not apply.

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Alaina Pinnick.

	Alaina tinnick	
Reviewed by		

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 6, 2024

GPCC00100

GPCC001

Project:

Client ID:

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater Compliance

Client Sample ID: ARK-STN-TW22

Sample ID: 682328001

Matrix: WG

Collect Date: Receive Date: 22-AUG-24 Collector: Client

21-AUG-24 08:45

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Anal	lyst Date	Time	e Batch	Method
Metals Analysis-IO	CP-MS											
SW846 3005A/602	20B Dissolved Fe	& Mn "As Received	l''									
Iron		32.8	0.0330	0.100	mg/L	1.00	1	BAJ	08/31/24	1711	2661587	1
Manganese		7.32	0.0250	0.125	mg/L	1.00	25	BAJ	09/01/24	1242	2661587	2
The following Prep	p Methods were po	erformed:										
Method	Description	n		Analyst	Date	ı	Tim	e P	rep Batch			
SW846 3005A	ICP-MS 3005	SA PREP		AB5	08/26/24		0820	2	661586			
The fellowing An	alvitical Mathada	riana manfannadi										

The following Analytical Methods were performed:

Method Description **Analyst Comments** SW846 3005A/6020B

SW846 3005A/6020B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: September 6, 2024

Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia

Contact: Joju Abraham

Workorder: 682328

Parmname	NO	M	Sample (Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Metals Analysis - ICPMS Batch 2661587											
QC1205832001 LCS Iron	2.00				2.02	mg/L		101	(80%-120%)	BAJ	08/31/24 16:15
Manganese	0.0500				0.0487	mg/L		97.3	(80%-120%)		09/01/24 12:24
QC1205832000 MB Iron				U	ND	mg/L					08/31/24 16:12
Manganese				U	ND	mg/L					09/01/24 12:23
QC1205832002 682324001 Iron	MS 2.00	U	ND		1.95	mg/L		97.2	(75%-125%)		08/31/24 16:26
Manganese	0.0500	U	ND		0.0491	mg/L		96.5	(75%-125%)		09/01/24 12:27
QC1205832003 682324001 Iron	MSD 2.00	U	ND		1.95	mg/L	0.419	96.8	(0%-20%)		08/31/24 16:29
Manganese	0.0500	U	ND		0.0494	mg/L	0.586	97.1	(0%-20%)		09/01/24 12:28
QC1205832004 682324001 Iron	SDILT	U	ND	U	ND	ug/L	N/A		(0%-20%)		08/31/24 16:35
Manganese		U	ND	U	ND	ug/L	N/A		(0%-20%)		09/01/24 12:30

Notes:

The Qualifiers in this report are defined as follows:

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

J Value is estimated

Page 5 of 11 SDG: 682328

Page 1 of 2

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 2 of 2 **Parmname** NOM Sample Qual OCUnits RPD% REC% Range Anlst Date Time Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier X Ν Metals--The Matrix spike sample recovery is not within specified control limits

- Η Analytical holding time was exceeded
- < Result is less than value reported

682328

- Result is greater than value reported
- Preparation or preservation holding time was exceeded h
- R Sample results are rejected

Workorder:

- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- Analyte concentration is not detected above the detection limit ND
- Е % difference of sample and SD is >10%. Sample concentration must meet flagging criteria
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- FB Mercury was found present at quantifiable concentrations in field blanks received with these samples. Data associated with the blank are deemed invalid for reporting to regulatory agencies
- N1See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 6 of 11 SDG: 682328

Metals Technical Case Narrative Georgia Power Company SDG #: 682328

Product: Determination of Metals by ICP-MS Analytical Method: SW846 3005A/6020B **Analytical Procedure:** GL-MA-E-014 REV# 36

Analytical Batch: 2661587

Preparation Method: SW846 3005A

Preparation Procedure: GL-MA-E-006 REV# 15

Preparation Batch: 2661586

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
682328001	ARK-STN-TW22
1205832000	Method Blank (MB) ICP-MS
1205832001	Laboratory Control Sample (LCS)
1205832004	682324001(ARK-ARGWA-14L) Serial Dilution (SD)
1205832002	682324001(ARK-ARGWA-14S) Matrix Spike (MS)
1205832003	682324001(ARK-ARGWA-14SD) Matrix Spike Duplicate (MSD)

The samples in this SDG were analyzed on an "as received" basis.

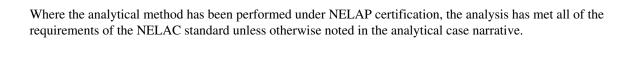
Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Calibration Information

ICSA/ICSAB Statement

For the ICP-MS analysis, the ICSA solution contains analyte concentrations which are verified trace impurities indigenous to the purchased standard.


Technical Information

Sample Dilutions

Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range. Sample 682328001 (ARK-STN-TW22) was diluted to ensure that the analyte concentration was within the linear calibration range of the instrument.

A l t -	682328
Analyte	001
Manganese	25X

Certification Statement

Page: 1 of 1 Pigect # 175569434 GRO Quote #:	GEL LADORATORIES LLC Chemistry Radiochemistry Radiobleassay Specialty Analytics										GEL Laboratories, LLC 2040 Savage Road Charleston, SC 29407 Phone: (843) 556-8171									
C Number (1): _7 <u>Sample Cooler(s):</u> _1 PO Number: GPC82177-0005	Chain of Custody and Analytical Request GEL Work Order Number: GEL Project Manager: Alaina Pinnick										-					/1				
Client Name: Georgia Power														ntoin	ers for each test)					
Project/Site Name: Plant Arkwright Ash Pond 2_		Fax: N/A	77-311-0	,,,,,				mpre	T	T	Keq	uest	L	_			T		_	
		rax: N/A				Shoul- samp		ers	Z	Z	9	_	-	Z	Z	Z	Z	Z	SA	< Preservative Type (6)
Address: 241 Ralph McGill Blvd SE, Atlanta, GA 3						consid		ıtain)B)	Ca)	.1) se	340C	Sulfate) 1 1993)	(6020B) Remarks	pqı	≅	а, Fe)B)	(2)	
Collected By: Dylan Quintal	Send Results To: jabraham@sout cassidy.sutherland@stantec.com		EDD@sta	antec.com	,	e (if supply 6.)	r cards	er of containers	1) (6020	20B)	00.0 R2	ethod 25	, Fl, Sul	. IV (60 mal Rem	-228 Cn	Mercury (7470B)	, Mg, N 5020B)	2+ (602) Filtered	/ Nitrite	Comments (task code: ARK-CCR-
Sample ID *For composites - indicate start and stop date	*Date Collected //time (mm-dd-yy)	*Time Collected (Military) (hhmm)	QC Code ⁽²⁾	Field Filtered ⁽³	Sample Matrix (4)	Radioactive yes, please sup isotopic info.)	isotopic info.) (7) Known or possible Hazards Total number of c	Ag (App. I) (6020B)	Metals App. III (B, Ca) (6020B)	Alkalinity (300.0 R2.1) see Additional Remarks	TDS (SM Method 2540C)	Anions (Cl, Fl, S (300.0 Rev. 2.1	Metals App. IV (6020B see Additional Remarks	RAD 226-228 Cmbd	Mercury	Metals Al, K, Mg, Na, Fe Mn (6020B)	Fe2+/ Mn/ Field	Nitrate (EPA Met	ASSMT-2024S2)	
ARK-STN-TW22	08-21-24	0845	N	Y	WG			1										Х		
																1 1 1 1 1	_			
			-	-					OH H								-			
													10.00							
				 																
				-	-					-	-		-							
													<u></u>	L				<u> </u>		
	hain of Custody Signatures						TA	T Re	quest	ed:	Nori	nal:	X	Rus	h:	s	pecify	y:		(Subject to Surcharge)
Relinquished By (Signed) Print Name	Date Received by (sig	gned)	Print Nan	1	Date		Fax Res	sults:	[]Y	es	[X]	No								
1 Million Stantec 6/	24/24/192	1 8	122	124			Select I	Delive	rable:	[]0	of A	[]	QC S	umma	ary [] lev	vel 1	[X]	Level	2 [] Level 3 [] Level 4
2	27 12	- 8	22	29	1525	2	Addition	nal R	emark	s:										as CaCO3
3	3						For La	b Rec	eiving	g Use	Only	: Cus	stody S	Seal I	ntact?	[]	Yes	[]N	0 (Cooler Temp:°C
> For sample shipping and delivery details, see Sa	ample Receipt & Review form ((SRR.)				Sample 6	Collectio	n Tin	ne Zoi	ne: [X]E	Easter	n [] Pac	ific	[]	Centra	l [] Mo	untain [] Other:
Chain of Custody Number = Client Determined																				
2.) QC Codes: N = Normal Sample, TB = Trip Blank, FD = F	ield Duplicate, EB = Equipment Blank	, MS = Matrix	Spike Sar	nple, MSD	= Matrix S	pike Duplica	te Sample	, G = (Grab, C	= Con	nposite									
3.) Field Filtered: For liquid matrices, indicate with a - Y - for	yes the sample was field filtered or - N	- for sample w	as not fiel	d filtered.																
4.) Matrix Codes: DW =Drinking Water, GW =Groundwater, S '	W=Surface Water, WW=Waste Water,	W=Water, M	L=Misc Li	iquid, SO=	Soil, SD=S	ediment, SL	Sludge, S	S=Soli	d Waste	e, O=0	Oil, F=1	Filter,	P=Wipe	e, U=U	rine, F	=Fecal	, N=Na	isal		
5.) Sample Analysis Requested: Analytical method requested (
6.) Preservative Type: HA = Hydrochloric Acid, NI = Nitric Ac	cid, SH = Sodium Hydroxide, SA = Su	lfuric Acid, AA	= Ascorb	oic Acid, H	K = Hexano	, ST = Sodi	ım Thiosu	lfate, I	f no pre	eservati	ive is a	dded =	leave f	field bla	ank					
7.) KNOWN OR POSSIBLE HAZARDS	Characteristic Hazards	Listed					Other									********	Plea	se pro	vide	any additional details below
	FL = Flammable/Ignitable		isted W				OT= O					• 100 100 4	•		1200			-		lling and/or disposal concerns.
RCRA Metals As = Arsenic Hg= Mercury	CO = Corrosive RE = Reactive	100	and U-l code(s):	isted was	tes.)		(i.e.: Hi misc. he	-				beryli	ium, i	rritan	ts, oth	ier				sample(s), type of site collected ces, etc.)
Ba = Barium Se= Selenium	ALL ROBOTIVE	rr uste	coue(s):				Descrip			, th	,						, om,	, ouu	- Lear L	
Cd = Cadmium Ag= Silver	TSCA Regulated																2743.11 11.3744			
Cr = Chromium MR= Misc. RCRA metals	PCB = Polychlorinated																	11 mm		
Pb = Lead	biphenyls																		- Indian	and the second second second second

GEL Laboratories LLC			SAMPLE RECEIPT & REVIEW FORM
Client: GPCC			SDG/AR/COC/Work Order:
Received By: QG			Date Received: 4/22/24
Carrier and Tracking Number Suspected Hazard Information	Yes	cZ	*If Net Counts > 100cpm on samples not marked "radioactive", cont
A)Shipped as a DOT Hazardous?			Hazard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Com
B) Did the client designate the samples are to be received as radioactive?			COC notation or radioactive stickers on containers equal client design
C) Did the RSO classify the samples as radioactive?		-	Maximum Net Counts Observed* (Observed Counts - Area Backgro Classified as: Rad 1 Rad 2 Rad 3

	1	
Received By: QG	Da	te Received: 8 22 24
Carrier and Tracking Number		FedEx Express FedEx Ground UPS Field Services Courier Other
Suspected Hazard Information	ž *lf	Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
	Hat	Zard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes No
A)Shipped as a DOT Hazardous? (B) Did the client designate the samples are to be	-	C notation or radioactive stickers on containers equal client designation.
received as radioactive?		
C) Did the RSO classify the samples as radioactive?	1	ximum Net Counts Observed* (Observed Counts - Area Background Counts): CPM7 mR/Hr Classified as: Rad 1 Rad 2 Rad 3
D) Did the client designate samples are hazardous?	-	Cuodution or hazard labels on containers equal client designation,
E) Did the RSO identify possible hazards?	If C	O or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
Sample Receipt Criteria	Ž Ž	
Shipping containers received intact and sealed?		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
2 Chain of custody documents included with shipment?		Circle Applicable: Client contacted and provided COC COC created upon receipt
3 Samples requiring cold preservation within (0 ≤ 6 deg. C)?*		Preservation Method: Wet Ice Tee Packs Dry ice None Other: *all temperatures are recorded in Celsius TEMP:
Daily check performed and passed on IR temperature gun?		Temperature Device Serial #: [R1-23 Secondary Temperature Device Serial # (If Applicable):
5 Sample containers intact and sealed?		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
6 Samples requiring chemical preservation at proper pH?		Sample ID's and Containers Affected: If Preservation added, Lot#:
7 Do any samples require Volatile Analysis?		If Yes, are Bncores or Soil Kits present for solids? Yes No NA (If yes, take to VOA Freezer) Dodititied VOA vials contain acid preservation? Yes No NA (If unknown, select No) Are liquid VOA vials free of headspace? Yes No NA Sample ID's and containers affected:
8 Samples received within holding time?		ID's and tests affected:
9 Sample ID's on COC match ID's on bottles?		ID's and containers affected:
Date & time on COC match date & time on bottles?		Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
Number of containers received match number indicated on COC?		Circle Applicable: No container count on COC Other (describe)
Are sample containers identifiable as GEL provided by use of GEL labels?		
COC form is properly signed in relinquished/received sections?		Circle Applicable: Not relinquished Other (describe)
Comments (Use Continuation Form if needed):	- () `&
	- (
	•	o'c.
4-00	٠	
5-02		
PM (or PMA) revie	ew: Init	ials Date \$ 23 24 Page 1 of

Page 10 of 11 SDG: 682328

List of current GEL Certifications as of 06 September 2024

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012 SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kansas NELAT Kentucky SDWA	KY90129
Kentucky Wastewater	KY90129 KY90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2023019

Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	NV-C24-00175
New Hampshire NELAP	205424
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2023-152
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235
Utah NELAP	SC000122024-41
Vermont	VT87156
Virginia NELAP	460202
Washington	C780

a member of The GEL Group INC

gel.com

December 30, 2024

Joju Abraham Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

Re: Arkwright CCR Groundwater Compliance Plant Arkwright Ash Pond 2

Work Order: 700475

Dear Joju Abraham:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on December 13, 2024. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt. The laboratory received the following sample(s):

<u>Laboratory ID</u>	Client ID	<u>Matrix</u>	Date Collected	Date Received
700475001	ARK-ARAMW-10	Ground Water	12/12/24 13:10	12/13/24 09:20
700475002	ARK-ARAMW-10	Ground Water	12/12/24 13:10	12/13/24 09:20
700475003	ARK-ARAMW-11	Ground Water	12/12/24 15:15	12/13/24 09:20
700475004	ARK-ARAMW-11	Ground Water	12/12/24 15:15	12/13/24 09:20

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Prep Methods and Prep Dates

Method	Run Date ID
SW846 3005A	17-DEC-2024
SW846 7470A Prep	16-DEC-2024

Analysis Methods and Analysis Dates

<u>Method</u>	Run Date ID
EPA 300.0	23-DEC-2024
EPA 300.0	25-DEC-2024
EPA 300.0	26-DEC-2024
EPA 353.2 Low Level	16-DEC-2024

SM 2320B	13-DEC-2024
SM 2540C	19-DEC-2024
SW846 3005A/6020B	28-DEC-2024
SW846 3005A/6020B	30-DEC-2024
SW846 7470A	17-DEC-2024

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. .

Sincerely,

Alaina Pinnick

Alaina Pinnick

Project Manager

Purchase Order: GPC82177-0005

Enclosures

Page 3 of 28 SDG: 700475

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

GPCC003 Georgia Power Company Client SDG: 700475 GEL Work Order: 700475

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- B Either presence of analyte detected in the associated blank, or MDL/IDL < sample value < PQL
- J Value is estimated

N/A RPD or %Recovery limits do not apply.

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Alaina Pinnick.

Page 4 of 28 SDG: 700475

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: December 30, 2024

GPCC01924

GPCC003

Client ID:

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater CompliancePlant Arkwright Ash Pond 2

Client Sample ID: ARK-ARAMW-10 Project:

Sample ID: 700475001

Matrix: WG

Collect Date: 12-DEC-24 13:10 Receive Date: 13-DEC-24 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time E	Batch	Method
Ion Chromatography												
EPA 300.0 Anions Liq	juid "As Recei	ived"										
Chloride	•	6.02	0.0670	0.200	mg/L		1	RXB5	12/26/24	1351 27	726006	1
Fluoride		0.114	0.0330	0.100	mg/L		1					
Sulfate		1080	13.3	40.0	mg/L		100	RXB5	12/26/24	1727 27	726006	2
Mercury Analysis-CV	AA											
7470 Cold Vapor Merc	cury, Liquid "A	As Received"										
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	12/17/24	1432 27	721813	3
Metals Analysis-ICP-N	MS				8							
SW846 3005A/6020B		"As Received	"									
Calcium	Total Metals	363	3.20	8.00	mg/L	1.00	40	RM4	12/30/24	1014 27	721530	4
Magnesium		80.5	0.400	1.20	mg/L	1.00	40	IXIVI4	12/30/24	1014 27	121330	4
Aluminum	J	0.0460	0.400	0.0500	mg/L	1.00	1	RM4	12/30/24	1038 27	721530	5
Iron	J	0.966	0.0330	0.100	mg/L mg/L	1.00	1	KWI	12/30/24	1030 27	121330	3
Antimony	U	0.900 ND	0.00100	0.00300	mg/L mg/L	1.00	1	RM4	12/28/24	0421 27	721530	6
Arsenic	J	0.00360	0.00200	0.00500	mg/L mg/L	1.00	1	ICIVI-	12/20/24	0421 27	21330	O
Barium	3	0.0550	0.00200	0.00400	mg/L mg/L	1.00	1					
Beryllium	J	0.000204	0.000200	0.000500	mg/L	1.00	1					
Cadmium	J	0.000327	0.000300	0.00100	mg/L	1.00	1					
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Cobalt	_	0.0186	0.000300	0.00100	mg/L	1.00	1					
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1					
Lithium		0.0631	0.00300	0.0100	mg/L	1.00	1					
Potassium		8.49	0.0800	0.300	mg/L	1.00	1					
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1					
Silver	U	ND	0.000300	0.00100	mg/L	1.00	1					
Sodium		39.0	0.0800	0.250	mg/L	1.00	1					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1					
Boron		2.84	0.208	0.600	mg/L	1.00	40	RM4	12/30/24	1223 27	721530	7
Manganese		22.0	0.0400	0.200	mg/L	1.00	40					
Molybdenum		0.00148	0.000200	0.00100	mg/L	1.00	1	RM4	12/30/24	1246 27	721530	8
Nutrient Analysis												
EPA 353.2 Nitrogen, N	Nitrate/Nitrite	"As Received"										
Nitrogen, Nitrate/Nitrite	U	ND	0.00700	0.0200	mg/L		1	AXH3	12/16/24	0738 27	721689	9
Solids Analysis	_	•			Č							
SM2540C Dissolved S	Solids "As Rec	eived"										
DIVIZOTOC DISSUIVEU S	onus As Nec	Civcu										

Page 5 of 28 SDG: 700475

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: December 30, 2024

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater CompliancePlant Arkwright Ash Pond 2

Client Sample ID: ARK-ARAMW-10 Project: GPCC01924
Sample ID: 700475001 Client ID: GPCC003

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Solids Analysis										
SM2540C Dissolved Sol	lids "As Rece	eived"								
Total Dissolved Solids		1790	2.38	10.0	mg/L		KLP1	12/19/24	1330 2723806	10
Titration and Ion Analysi	is									
SM 2320B Total Alkalin	ity "As Rece	eived"								
Alkalinity, Total as CaCO3		113	0.725	2.00	mg/L		JW2	12/13/24	1233 2721233	11
Bicarbonate alkalinity (CaCO3	3)	113	0.725	2.00	mg/L					
Carbonate alkalinity (CaCO3)	U	ND	0.725	2.00	mg/L					
The following Prep Meth	hods were pe	erformed:								
Method	Description	1		Analyst	Date		Time P	rep Batch		
SW846 7470A Prep	EPA 7470A M	Iercury Prep Liqu	id	JM13	12/16/24		1130 27	721811		
SW846 3005A	ICP-MS 3005	A PREP		BB2	12/17/24		0815 27	721529		

The following Analytical Methods were performed:

Method	Description	Analyst Comments
1	EPA 300.0	•
2	EPA 300.0	
3	SW846 7470A	
4	SW846 3005A/6020B	
5	SW846 3005A/6020B	
6	SW846 3005A/6020B	
7	SW846 3005A/6020B	
8	SW846 3005A/6020B	
9	EPA 353.2 Low Level	
10	SM 2540C	
11	SM 2320B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 28 SDG: 700475

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: December 30, 2024

GPCC01924

GPCC003

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater CompliancePlant Arkwright Ash Pond 2

Client Sample ID: ARK-ARAMW-10

Sample ID: 700475002

Matrix: WG

Collect Date: 12-DEC-24 13:10 Receive Date: 13-DEC-24 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Anal	yst Date	Time Batch	Method
Metals Analysis-IC	P-MS										
SW846 3005A/602	0B Dissolved Fe	& Mn "As Receive	ed"								
Manganese		22.6	0.0400	0.200	mg/L	1.00	40	RM4	12/30/24	1235 2721530	1
Iron		0.973	0.0330	0.100	mg/L	1.00	1	RM4	12/30/24	1050 2721530	2
The following Prep	Methods were pe	erformed:									
Method	Description	n		Analyst	Date		Tim	e P	rep Batch		
SW846 3005A	ICP-MS 3005	SA PREP		BB2	12/17/24		0815	27	721529		

The following Analytical Methods were performed:

Method Description Analyst Comments SW846 3005A/6020B SW846 3005A/6020B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 7 of 28 SDG: 700475

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: December 30, 2024

GPCC01924

GPCC003

Project:

Client ID:

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater CompliancePlant Arkwright Ash Pond 2

Client Sample ID: ARK-ARAMW-11

Sample ID: 700475003

Matrix: WG

Collect Date: 12-DEC-24 15:15 Receive Date: 13-DEC-24 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Ion Chromatography												
EPA 300.0 Anions Lic	quid "As Recei	ived"										
Sulfate	•	960	13.3	40.0	mg/L		100	RXB5	12/26/24	1757	2726006	1
Chloride		5.22	0.0670	0.200	mg/L		1	RXB5	12/26/24	1453	2726006	2
Fluoride	U	ND	0.0330	0.100	mg/L		1					
Mercury Analysis-CV	AA											
7470 Cold Vapor Mer	curv. Liquid "	As Received"										
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	12/17/24	1437	2721813	3
Metals Analysis-ICP-N	MS				8							
SW846 3005A/6020B		"As Received"										
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	RM4	12/28/24	0451	2721530	4
Arsenic	J	0.00314	0.00100	0.00500	mg/L	1.00		IXIVI-	12/20/24	0431	2121330	4
Barium	J	0.0252	0.00200	0.00300	mg/L mg/L	1.00						
Beryllium	U	0.0232 ND	0.000200	0.000500	mg/L mg/L	1.00						
Cadmium	U	ND ND	0.000200	0.000300	mg/L mg/L	1.00						
Chromium	U	ND ND	0.00300	0.0100	mg/L mg/L	1.00						
Cobalt	O	0.0394	0.00300	0.00100	mg/L	1.00						
Lead	U	ND	0.000500	0.00200	mg/L	1.00						
Lithium	C	0.0471	0.00300	0.0100	mg/L	1.00						
Potassium		7.21	0.0800	0.300	mg/L	1.00						
Selenium	U	ND	0.00150	0.00500	mg/L	1.00						
Silver	Ü	ND	0.000300	0.00100	mg/L	1.00						
Sodium		29.5	0.0800	0.250	mg/L	1.00						
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1					
Molybdenum	J	0.000630	0.000200	0.00100	mg/L	1.00	1	RM4	12/30/24	1259	2721530	5
Boron		2.30	0.208	0.600	mg/L	1.00	40	RM4	12/30/24	1237	2721530	6
Manganese		16.2	0.0400	0.200	mg/L	1.00	40					
Aluminum		0.0857	0.0193	0.0500	mg/L	1.00	1	RM4	12/30/24	1053	2721530	7
Iron		0.285	0.0330	0.100	mg/L	1.00	1					
Calcium		296	3.20	8.00	mg/L	1.00	40	RM4	12/30/24	1028	2721530	8
Magnesium		86.9	0.400	1.20	mg/L	1.00	40					
Nutrient Analysis												
EPA 353.2 Nitrogen, N	Nitrate/Nitrite	"As Received"										
Nitrogen, Nitrate/Nitrite	U	ND	0.00700	0.0200	mg/L		1	AXH3	12/16/24	0742	2721689	9
Solids Analysis	J	112	3.00700	0.0200	6/ 12		•		12,10,27	5712	2.21007	
•	1 1' 1 " A T	. 10										
SM2540C Dissolved S	solids "As Rec	eived"										

Page 8 of 28 SDG: 700475

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: December 30, 2024

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater CompliancePlant Arkwright Ash Pond 2

Client Sample ID: ARK-ARAMW-11 Project: GPCC01924
Sample ID: 700475003 Client ID: GPCC003

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Solids Analysis										
SM2540C Dissolved S	Solids "As Rec	eived"								
Total Dissolved Solids		1540	2.38	10.0	mg/L		KLP1	12/19/24	1330 2723806	10
Titration and Ion Anal	ysis									
SM 2320B Total Alka	linity "As Rec	eived"								
Alkalinity, Total as CaCO3		48.4	0.725	2.00	mg/L		JW2	12/13/24	1235 2721233	11
Bicarbonate alkalinity (CaC	O3)	48.4	0.725	2.00	mg/L					
Carbonate alkalinity (CaCO	(3) U	ND	0.725	2.00	mg/L					
The following Prep M	ethods were pe	erformed:								
Method	Description	n		Analyst	Date	-	Гime Pr	ep Batch		
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		JM13	12/16/24	1	1130 27	21811		
SW846 3005A	ICP-MS 3005	5A PREP		BB2	12/17/24	(0815 27	21529		

The following Analytical Methods were performed:

Method	Description	Analyst Comments
1	EPA 300.0	•
2	EPA 300.0	
3	SW846 7470A	
4	SW846 3005A/6020B	
5	SW846 3005A/6020B	
6	SW846 3005A/6020B	
7	SW846 3005A/6020B	
8	SW846 3005A/6020B	
9	EPA 353.2 Low Level	
10	SM 2540C	
11	SM 2320B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 9 of 28 SDG: 700475

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

Report Date: December 30, 2024

GPCC01924

GPCC003

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Arkwright CCR Groundwater CompliancePlant Arkwright Ash Pond 2

Client Sample ID: ARK-ARAMW-11

Sample ID: 700475004

Matrix: WG

Collect Date: 12-DEC-24 15:15 Receive Date: 13-DEC-24 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Anal	yst Date	Time I	Batch	Method
Metals Analysis-IC	P-MS											
SW846 3005A/6026	0B Dissolved Fe	& Mn "As Receive	ed"									
Manganese		15.6	0.0400	0.200	mg/L	1.00	40	RM4	12/30/24	1239 2	721530	1
Iron		0.191	0.0330	0.100	mg/L	1.00	1	RM4	12/30/24	1055 2	721530	2
The following Prep	Methods were pe	erformed:										
Method	Description	n		Analyst	Date		Tim	e Pi	rep Batch			
SW846 3005A	ICP-MS 3005	5A PREP		BB2	12/17/24		0815	27	721529			

The following Analytical Methods were performed:

Method	Description	
1	SW846 3005A/6020B	

SW846 3005A/6020B

Notes:

Column headers are defined as follows:

Lc/LC: Critical Level DF: Dilution Factor DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 28 SDG: 700475

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: December 30, 2024

Page 1 of 11

Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia Joju Abraham

Workorder:

Contact:

700475

Parmname	NOM	Sample Qual	QC	Units	RPD% REC	Range Anlst	Date Time
Ion Chromatography Batch 2726006							
QC1205960542 700495002 DUP Chloride		3.36	3.39	mg/L	0.795	(0%-20%) RXB5	12/24/24 00:12
Fluoride		0.278	0.255	mg/L	8.33 ^	(+/-0.100)	
Sulfate		6.12	6.09	mg/L	0.474	(0%-20%)	
QC1205960539 LCS Chloride	5.00		4.57	mg/L	91.4	(90%-110%)	12/23/24 15:59
Fluoride	2.50		2.31	mg/L	92.2	(90%-110%)	
Sulfate	10.0		9.45	mg/L	94.5	(90%-110%)	
QC1205960538 MB Chloride		U	ND	mg/L			12/23/24 15:28
Fluoride		U	ND	mg/L			
Sulfate		U	ND	mg/L			
QC1205960543 700495002 PS Chloride	5.00	3.36	8.22	mg/L	97.2	(90%-110%)	12/24/24 00:43
Fluoride	2.50	0.278	2.60	mg/L	92.9	(90%-110%)	
Sulfate	10.0	6.12	15.8	mg/L	97.3	(90%-110%)	

GEL LABORATORIES LLC 2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 700475								Page 2 of 11		
Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time
Metals Analysis - ICPMS Batch 2721530										
QC1205951102 LCS Aluminum	2.00		2.08	mg/L		104	(80%-120%)	RM4	12/30/2	4 10:11
Antimony	0.0500		0.0483	mg/L		96.6	(80%-120%)		12/28/2	24 04:17
Arsenic	0.0500		0.0500	mg/L		99.9	(80%-120%)			
Barium	0.0500		0.0501	mg/L		100	(80%-120%)			
Beryllium	0.0500		0.0583	mg/L		117	(80%-120%)			
Boron	0.100		0.109	mg/L		109	(80%-120%)		12/30/2	24 12:21
Cadmium	0.0500		0.0507	mg/L		101	(80%-120%)		12/28/2	24 04:17
Calcium	2.00		2.22	mg/L		111	(80%-120%)		12/30/2	24 10:11
Chromium	0.0500		0.0495	mg/L		99.1	(80%-120%)		12/28/2	24 04:17
Cobalt	0.0500		0.0490	mg/L		98.1	(80%-120%)			
Iron	2.00		2.05	mg/L		102	(80%-120%)		12/30/2	24 10:11
Lead	0.0500		0.0514	mg/L		103	(80%-120%)		12/28/2	24 04:17
Lithium	0.0500		0.0530	mg/L		106	(80%-120%)			
Magnesium	2.00		2.22	mg/L		111	(80%-120%)		12/30/2	24 10:11

GEL LABORATORIES LLC 2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 700475									Page 3 of 11
Parmname	NOM	Sample Qual	QC	Units	RPD% RE	C%	Range A	Anlst	Date Time
Metals Analysis - ICPMS Batch 2721530									
Manganese	0.0500		0.0517	mg/L	10)3 (8	80%-120%)	RM4	12/30/24 12:21
Molybdenum	0.0500		0.0533	mg/L	10)7 (8	80%-120%)		
Potassium	2.00		2.01	mg/L	10	3) 00	80%-120%)		12/28/24 04:17
Selenium	0.0500		0.0499	mg/L	99.	.7 (8	80%-120%)		
Silver	0.0500		0.0528	mg/L	10)6 (8	80%-120%)		
Sodium	2.00		2.16	mg/L	10	8 (8	80%-120%)		
Thallium	0.0500		0.0495	mg/L	98.	.9 (8	80%-120%)		
QC1205951101 MB Aluminum		U	ND	mg/L					12/30/24 10:09
Antimony		U	ND	mg/L					12/28/24 04:13
Arsenic		U	ND	mg/L					
Barium		U	ND	mg/L					
Beryllium		U	ND	mg/L					
Boron		U	ND	mg/L					12/30/24 12:19
Cadmium		U	ND	mg/L					12/28/24 04:13

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 700475 Page 4 of 11 P<u>armname</u> NOM QC RPD% REC% Sample Qual Units Range Anlst Date Time Metals Analysis - ICPMS Batch 2721530 U Calcium ND mg/L RM4 12/30/24 10:09 U Chromium ND mg/L 12/28/24 04:13 U ND mg/L Cobalt U ND 12/30/24 10:09 Iron mg/L U ND 12/28/24 04:13 Lead mg/LLithium U ND mg/L U ND Magnesium mg/L12/30/24 10:09 U ND 12/30/24 12:19 Manganese mg/LMolybdenum U ND mg/L Potassium U ND mg/L 12/28/24 04:13 Selenium U ND mg/LSilver U ND mg/L U ND Sodium mg/LU ND Thallium mg/L

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

700475 Page 5 of 11 Sample Qual **Parmname NOM** QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2721530 Batch QC1205951103 700475001 MS 0.0460 1.98 2.00 mg/L 96.9 12/30/24 10:41 Aluminum J (75% - 125%)RM4 0.0500 U ND 0.0468 93.5 (75%-125%) 12/28/24 04:24 Antimony mg/L 0.0500 J 0.00360 0.0536 100 Arsenic mg/L (75% - 125%)Barium 0.0500 0.0550 0.0995 mg/L 88.9 (75% - 125%)Beryllium 0.0500 J 0.000204 0.0527 mg/L 105 (75%-125%) 0.100 2.84 2.79 Boron mg/L N/A (75% - 125%)12/30/24 12:26 Cadmium 0.0500 J 0.000327 0.0451 mg/L 89.5 (75% - 125%)12/28/24 04:24 Calcium 2.00 363 366 N/A (75%-125%)12/30/24 10:16 mg/L U ND Chromium 0.0500 0.0463 91.8 (75% - 125%)12/28/24 04:24 mg/L Cobalt 0.0500 0.0186 0.0615 mg/L 85.7 (75%-125%) 0.966 2.80 2.00 mg/L 91.8 (75%-125%) 12/30/24 10:41 Iron 0.0500 U ND 0.0439 Lead mg/L 87.7 (75% - 125%)12/28/24 04:24 Lithium 0.0500 0.0631 0.113 mg/L 100 (75%-125%) Magnesium 2.00 80.5 78.3 N/A (75%-125%) 12/30/24 10:16 mg/L

Workorder:

GEL LABORATORIES LLC 2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 700475									Page 6 of 11
Parmname	NOM	Sample	Qual QC	Units	RPD%	REC%	Range	Anlst	Date Time
Metals Analysis - ICPMS Batch 2721530									
Manganese	0.0500	22.0	22.2	mg/L		N/A	(75%-125%)	RM4	12/30/24 12:26
Molybdenum	0.0500	0.00148	0.0578	mg/L		113	(75%-125%)		12/30/24 12:48
Potassium	2.00	8.49	10.3	mg/L		N/A	(75%-125%)		12/28/24 04:24
Selenium	0.0500 U	J ND	0.0532	mg/L		105	(75%-125%)		
Silver	0.0500 U	J ND	0.0435	mg/L		86.9	(75%-125%)		
Sodium	2.00	39.0	39.8	mg/L		N/A	(75%-125%)		
Thallium	0.0500 U	J ND	0.0435	mg/L		87	(75%-125%)		
QC1205951104 700475001 MSD Aluminum	2.00	0.0460	2.01	mg/L	1.13	98	(0%-20%)		12/30/24 10:43
Antimony	0.0500 U	J ND	0.0458	mg/L	2.2	91.4	(0%-20%)		12/28/24 04:28
Arsenic	0.0500	0.00360	0.0556	mg/L	3.74	104	(0%-20%)		
Barium	0.0500	0.0550	0.0997	mg/L	0.218	89.4	(0%-20%)		
Beryllium	0.0500	0.000204	0.0543	mg/L	2.99	108	(0%-20%)		
Boron	0.100	2.84	2.82	mg/L	0.902	N/A	(0%-20%)		12/30/24 12:28
Cadmium	0.0500	0.000327	0.0461	mg/L	2.26	91.6	(0%-20%)		12/28/24 04:28

Page 16 of 28 SDG: 700475

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 700475 Page 7 of 11 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2721530 Batch Calcium 2.00 363 363 mg/L 0.668 N/A (0%-20%)RM4 12/30/24 10:19 0.0500 U ND 0.0468 92.7 (0%-20%)12/28/24 04:28 Chromium mg/L 1.06 0.0186 0.0640 Cobalt 0.0500 mg/L 4.07 90.8 (0%-20%)0.966 2.00 2.81 mg/L 0.162 92 (0%-20%) 12/30/24 10:43 Iron ND 0.0452 0.0500 U 2.85 90.2 12/28/24 04:28 Lead mg/L (0%-20%)Lithium 0.0500 0.0631 0.114 mg/L 0.645 102 (0%-20%)2.00 80.5 78.4 N/A 12/30/24 10:19 Magnesium mg/L 0.0412 (0%-20%)Manganese 0.0500 22.0 21.7 mg/L 2.34 N/A (0%-20%)12/30/24 12:28 Molybdenum 0.0500 0.00148 0.0574 mg/L 0.717 112 (0%-20%)12/30/24 12:50 2.00 8.49 10.2 N/A 12/28/24 04:28 Potassium mg/L 0.926 (0%-20%)Selenium 0.0500 U ND 0.0551 mg/L 3.39 108 (0%-20%)0.0500 U ND 0.0445 Silver 2.43 89.1 (0%-20%)mg/L 2.00 39.0 39.8 Sodium mg/L 0.0103 N/A(0%-20%)Thallium 0.0500 U ND 0.0447 mg/L 89.4 (0%-20%)2.8

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 700475 Page 8 of 11 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2721530 Batch QC1205951105 700475001 SDILT ND 46.0 U J ug/L (0%-20%)12/30/24 10:48 Aluminum N/A RM4 U ND U ND N/A (0%-20%)12/28/24 04:36 Antimony ug/L J 3.60 U ND ug/L N/A (0%-20%)Arsenic Barium 55.0 11.1 ug/L .929 (0%-20%)Beryllium J 0.204 ND ug/L N/A (0%-20%)70.9 15.8 ug/L 12/30/24 12:32 Boron 11.4 (0%-20%)J Cadmium 0.327 U ND ug/L N/A (0%-20%)12/28/24 04:36 9080 1740 Calcium ug/L 4.01 (0%-20%)12/30/24 10:24 U ND U ND Chromium N/A (0%-20%)12/28/24 04:36 ug/L Cobalt 18.6 3.96 ug/L 6.21 (0%-20%)966 205 ug/L 6.23 (0%-20%)12/30/24 10:48 Iron U ND U ND 12/28/24 04:36 Lead ug/L N/A (0%-20%)Lithium 63.1 12.5 ug/L 1.16 (0%-20%)Magnesium 2010 380 ug/L 5.49 (0%-20%)12/30/24 10:24

GEL LABORATORIES LLC 2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 700475		~ .	~ .						Page 9 of 11
Parmname Metals Analysis - ICPMS	NOM	Sample (Qual	QC	Units	RPD%	REC%	Range Anla	st Date Time
Batch 2721530									
Manganese		550		111	ug/L	.794		(0%-20%) R	M4 12/30/24 12:32
Molybdenum		1.48	J	0.295	ug/L	.472		(0%-20%)	12/30/24 12:55
Potassium		8490		1700	ug/L	.08		(0%-20%)	12/28/24 04:36
Selenium	U	ND	U	ND	ug/L	N/A		(0%-20%)	
Silver	U	ND	U	ND	ug/L	N/A		(0%-20%)	
Sodium		39000		7450	ug/L	4.38		(0%-20%)	
Thallium	Ū	ND	U	ND	ug/L	N/A		(0%-20%)	
Metals Analysis-Mercury Batch 2721813 —									
QC1205951827 700240001 DUI Mercury	U	ND	U	ND	mg/L	N/A			JP2 12/17/24 14:22
QC1205951826 LCS Mercury	0.00200			0.00198	mg/L		99.2	(80%-120%)	12/17/24 13:52
QC1205951825 MB Mercury			U	ND	mg/L				12/17/24 13:50
QC1205951828 700240001 MS Mercury	0.00200 U	ND		0.00195	mg/L		97.3	(75%-125%)	12/17/24 14:23
QC1205951829 700240001 SDI Mercury	LT U	ND	U	ND	ug/L	N/A		(0%-10%)	12/17/24 14:25

Page 19 of 28 SDG: 700475

GEL LABORATORIES LLC 2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 700475												Page 10) of 11
Parmname		NON	1	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date 7	Гіте
Nutrient Analysis Batch 2721689													
QC1205951547 700475001 Nitrogen, Nitrate/Nitrite	DUP		U	ND	U	ND	mg/L	N/A			AXH3	12/16/24	+ 07:40
QC1205951546 LCS Nitrogen, Nitrate/Nitrite		1.00				1.00	mg/L		100	(90%-110%)		12/16/24	07:37
QC1205951545 MB Nitrogen, Nitrate/Nitrite					J	0.00883	mg/L					12/16/24	07:36
QC1205951548 700475001 Nitrogen, Nitrate/Nitrite	PS	1.00	U	ND		0.982	mg/L		98	(90%-110%)		12/16/24	07:41
Solids Analysis Batch 2723806													
QC1205956007 700539001 Total Dissolved Solids	DUP			438		430	mg/L	1.84		(0%-5%)	KLP1	12/19/24	13:30
QC1205956005 LCS Total Dissolved Solids		300				290	mg/L		96.7	(95%-105%)		12/19/24	13:30
QC1205956004 MB Total Dissolved Solids					U	ND	mg/L					12/19/24	13:30
Titration and Ion Analysis Batch 2721233													
QC1205950586 LCS Alkalinity, Total as CaCO3		50.0				53.5	mg/L		107	(90%-110%)	JW2	12/13/24	12:28
QC1205950588 LCSD Alkalinity, Total as CaCO3		50.0				53.4	mg/L	0.187	107	(0%-20%)		12/13/24	12:29

Notes:

The Qualifiers in this report are defined as follows:

Page 20 of 28 SDG: 700475

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 700475

Parmname NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- N Metals--The Matrix spike sample recovery is not within specified control limits
- H Analytical holding time was exceeded
- < Result is less than value reported
- > Result is greater than value reported
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- Z Paint Filter Test--Particulates passed through the filter, however no free liquids were observed.
- d 5-day BOD--The 2:1 depletion requirement was not met for this sample
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- E %difference of sample and SD is >10%. Sample concentration must meet flagging criteria
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- E General Chemistry--Concentration of the target analyte exceeds the instrument calibration range
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- FB Mercury was found present at quantifiable concentrations in field blanks received with these samples. Data associated with the blank are deemed invalid for reporting to regulatory agencies
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- R Per section 9.3.4.1 of Method 1664 Revision B, due to matrix spike recovery issues, this result may not be reported or used for regulatory compliance purposes.
- B The target analyte was detected in the associated blank.
- e 5-day BOD--Test replicates show more than 30% difference between high and low values. The data is qualified per the method and can be used for reporting purposes
- x Subaliquot was taken. See Case Narrative for details.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 21 of 28 SDG: 700475

Technical Case Narrative Georgia Power Company SDG #: 700475

Metals

<u>Product:</u> Determination of Metals by ICP-MS <u>Analytical Method:</u> SW846 3005A/6020B <u>Analytical Procedure:</u> GL-MA-E-014 REV# 36

Analytical Batch: 2721530

Preparation Method: SW846 3005A

Preparation Procedure: GL-MA-E-006 REV# 15

Preparation Batch: 2721529

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
700475001	ARK-ARAMW-10
700475002	ARK-ARAMW-10
700475003	ARK-ARAMW-11
700475004	ARK-ARAMW-11
1205951101	Method Blank (MB) ICP-MS
1205951102	Laboratory Control Sample (LCS)
1205951105	700475001(ARK-ARAMW-10L) Serial Dilution (SD)
1205951103	700475001(ARK-ARAMW-10S) Matrix Spike (MS)
1205951104	700475001(ARK-ARAMW-10SD) Matrix Spike Duplicate (MSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Calibration Information

ICSA/ICSAB Statement

For the ICP-MS analysis, the ICSA solution contains analyte concentrations which are verified trace impurities indigenous to the purchased standard.

Technical Information

Sample Dilutions

Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range. Samples 700475001 (ARK-ARAMW-10), 700475002 (ARK-ARAMW-10), 700475003 (ARK-ARAMW-11) and 700475004 (ARK-ARAMW-11) were diluted to ensure that the analyte concentrations were within the linear calibration range of the instrument.

Amalasta	700475											
Analyte	001	002	003	004								
Boron	40X		40X									

Page 22 of 28 SDG: 700475

Calcium	40X		40X	
Magnesium	40X		40X	
Manganese	40X	40X	40X	40X

Product: Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer

Analytical Method: SW846 7470A

Analytical Procedure: GL-MA-E-010 REV# 41

Analytical Batch: 2721813

Preparation Method: SW846 7470A Prep

Preparation Procedure: GL-MA-E-010 REV# 41

Preparation Batch: 2721811

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
700475001	ARK-ARAMW-10
700475003	ARK-ARAMW-11
1205951825	Method Blank (MB)CVAA
1205951826	Laboratory Control Sample (LCS)
1205951829	700240001(NonSDGL) Serial Dilution (SD)
1205951827	700240001(NonSDGD) Sample Duplicate (DUP)
1205951828	700240001(NonSDGS) Matrix Spike (MS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

General Chemistry

Product: Ion Chromatography Analytical Method: EPA 300.0

Analytical Procedure: GL-GC-E-086 REV# 36

Analytical Batch: 2726006

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
700475001	ARK-ARAMW-10
700475003	ARK-ARAMW-11
1205960538	Method Blank (MB)
1205960539	Laboratory Control Sample (LCS)
1205960542	700495002(NonSDG) Sample Duplicate (DUP)
1205960543	700495002(NonSDG) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Page 23 of 28 SDG: 700475

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Sample Dilutions

The following samples 700475001 (ARK-ARAMW-10) and 700475003 (ARK-ARAMW-11) were diluted because target analyte concentrations exceeded the calibration range. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

A a la a	700475								
Analyte	001	003							
Sulfate	100X	100X							

Sample Re-analysis

Samples 700475001 (ARK-ARAMW-10) and 700475003 (ARK-ARAMW-11) were re-analyzed to verify the results.

Miscellaneous Information

Manual Integrations

Sample 700475001 (ARK-ARAMW-10) was manually integrated to correctly position the baseline as set in the calibration standards.

<u>Product:</u> Nitrate/Nitrite Cad Redux Low Level <u>Analytical Method:</u> EPA 353.2 Low Level <u>Analytical Procedure:</u> GL-GC-E-128 REV# 16

Analytical Batch: 2721689

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
700475001	ARK-ARAMW-10
700475003	ARK-ARAMW-11
1205951545	Method Blank (MB)
1205951546	Laboratory Control Sample (LCS)
1205951547	700475001(ARK-ARAMW-10) Sample Duplicate (DUP)
1205951548	700475001(ARK-ARAMW-10) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Page 24 of 28 SDG: 700475

Product: Solids, Total Dissolved **Analytical Method:** SM 2540C

Analytical Procedure: GL-GC-E-001 REV# 22

Analytical Batch: 2723806

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID# Client Sample Identification

700475001 ARK-ARAMW-10 700475003 ARK-ARAMW-11 1205956004 Method Blank (MB)

1205956005 Laboratory Control Sample (LCS)

1205956007 700539001(NonSDG) Sample Duplicate (DUP)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: Alkalinity

Analytical Method: SM 2320B

Analytical Procedure: GL-GC-E-033 REV# 17

Analytical Batch: 2721233

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID# Client Sample Identification

700475001 ARK-ARAMW-10 700475003 ARK-ARAMW-11

1205950586 Laboratory Control Sample (LCS)

1205950588 Laboratory Control Sample Duplicate (LCSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Laboratory Control Sample Duplicate (LCSD)

An LCSD was used in place of matrix QC due to limited sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 25 of 28 SDG: 700475

Project #175569434			HH		ahr	rato	ripe	110			_	70	0	7	15	2040	Savac	a Do	and		
	Lato or attornoon Electrical Participation and the Company of the																				
GES Quote #: Con Number (1): 2 Sample Cooler(s) 1			Chai	n of Cu	stody	and A	nalytica	l Requ	est	oldity /	ii iu iyu	10		V	6	Phone	e: (84.	3) 55	6-817		
PO umber: GPC82177-0005	GEL Work	Order Number	r:	4 14	GEL I	Project N	Manager:	Alaina	Pinn	ick		u	4	(11)	100	Fax: ((843)	766-1	1178		
Client Name: Georgia Power			Phone # (9	37-344-6	533)			Sa	ımpl	e Ana	alysis	Req	uest	ed ⁽⁵⁾	(Fill	in the	num	ber o	of con	ntain	ers for each test)
Project/Site Name: Plant Arkwright Ash Pond _2_ Fax: N/A									, so	Z	Z				Z	Z	Z	SA			< Preservative Type (6)
Aderess: 241 Ralph McGill Blvd SE, Atlanta, GA 3	0308						Service August A	is sample sidered:	tainers		_	rks	()OC)	ite)	po		3)	3)			
Jaiden Stidston	Send Results jennifer.kolbe	Го: jabraham@sou @stantec.com	thernco.com	EDD@sta	ntec.com		ve (If supply fo.)	ırds	r of cont	(6020B)	(6020B	300.0 R2	thod 254	Fl, Sulfa 2.1 199	228 Cmb	(7470B)	+ (6020) iltered	Nitrite od 353.2			Comments
Sample ID *For composites - indicate start and stop date/	time	*Date Collected (mm-dd-yy)	*Time Collected (Military) (hhmm)	QC Code	Field Filtered ^G	Sample Matrix (4	lioactiv please opic in	(7) Known or possible Hazards Total number of con	*Metals (6020B)	**Metals (6020B)	Alkalinity (300.0 R2.1) see Additional Remarks	TDS (SM Method 2540C)	Anions (Cl, Fl, Sulfate) (300.0 Rev. 2.1 1993)	RAD 226-228 Cmbd	Mercury (7470B)	Fe2+/ Mn2+ (6020B) Field Filtered	Nitrate/ Nitrite (EPA Method 353.			(task_code: ARK-CCR- ASSMT-2024S2)	
ARK-ARAMW-10		12-12-24	1310	N	N	WG				X	X	X	X	X	X	X		Х			
ARK-ARAMW-10		12-12-24	1310	N	Y	WG			1114		4	m,				100	X		1200	T.	*Metals: Ag, B, Ca, Al, K, Mg, Na, Fe,
ARK-ARAMW-11		12-12-24	1515	N	Ν	WG				X	X	X	Х	Х	Х	Х		Х			Mn, Sb, As, Ba, Be, Cd, Cr, Co, Pb, Li, Mo, Se, Tl
ARK-ARAMW-11	***************************************	12-12-24	1515	N	Y	WG	The state of			HIIV.	1 112	* ₁				1	X	100	le s	10 B	
		4. 4												1.		e es			1		**Metals: Ag, B, Ca, Sb, As, Ba, Be, Cd, Cr, Co, Pb, Li, Mo, Se, Tl
					The state of	ness.			100				100					- 10 10 Hz	Tur _e		
		100 - 100 -																			
. 12. 11. 12. 12.									201									21			
	ain of Custo	dy Signatures				900, 70		TA	T Re	questo	ed:	Norm	al: _	X	Rush	:	_ Spe	ecify	:		(Subject to Surcharge)
	Date	Received by (sig	gned) F	rint Name	: I	Date		Fax Res	ults:	[] Y	es	[X] N	No								
1 - ANDRESS SHINEDIT	5 12/2/24	42			12/1	3/24	1920	Select D	elive	rable:	[]C	of A	[]	QC S	umma	ry [] leve	el I	[X] I	Level	2 [] Level 3 [] Level 4
2		2				/174		Additional Remarks: Alkalinity: bicarbonate as CaCO3, carbonate as CaCO3, total as CaCO3													
3	:	3																			Cooler Temp: <u> </u>
> For sample shipping and delivery details, see San	mple Receipt	& Review form	(SRR.)				Sample (Collection	ı Tin	ie Zon	1e: [X] E	asteri	n [] Paci	fic	[] C	entral	1 [] Mo	ountain [] Other:
1.) Chain of Custody Number = Client Determined																					
2.) QC Codes: N = Normal Sample, TB = Trip Blank, FD = Field	Duplicate, EB =	Equipment Blank, M	MS = Matrix S _I	oike Sample	, MSD = N	Matrix Spik	e Duplicate	Sample, G	= Grab	$\mathbf{C} = \mathbf{C}$	ompos	ite									
3.) Field Filtered: For liquid matrices, indicate with a - Y - for ye	s the sample was	field filtered or - N -	for sample was	s not field fi	ltered.																
4.) Matrix Codes: DW =Drinking Water, GW =Groundwater, SW	=Surface Water, \	WW =Waste Water, V	W=Water, ML	=Misc Liqu	id, SO =So	il, SD =Sed	iment, SL=S	ludge, SS=5	Solid V	Vaste, C	O=Oil,	F=Filte	er, P =V	Vipe, U	=Urine,	F=Fec	al, N=N	Nasal			
5.) Sample Analysis Requested: Analytical method requested (i.e.	. 8260B, 6010B/7	7470A) and number of	of containers pr	ovided for e	each (i.e. 8	260B - 3, 0	6010B 74702	4 - 1).													
6.) Preservative Type: HA = Hydrochloric Acid, NI = Nitric Acid	, SH = Sodium H	ydroxide, SA = Sulfu	ıric Acid, AA =	Ascorbic A	Acid, HX =	Hexane, S	ST = Sodium	Thiosulfate	e, If no	preserv	vative i	s added	l = leav	ve field	blank						
	Characterist		Listed					Other													any additional details below
	FL = Flamma CO = Corrosi		300000000000000000000000000000000000000	isted Wa and U-lis	70000	tes.)		OT= Oth				itos h	ervlli	ium i	ritant	s. oth					ling and/or disposal concerns. ample(s), type of site collected
As = Arsenic $Hg = Mercury$	RE = Reactiv		Anna Caraca Albana	code(s):				misc. hed					<i>cr,</i> y	,	, , , , , , ,	5, OIII	100				ces, etc.)
Ba = Barium Se= Selenium Cd = Cadmium Ag= Silver	TSCA Regula	ated						Descript	ion:												
Cr = Chromium $MR = Misc. RCRA metals$	PCB = Polycl	hlorinated																			
$\mathbf{Pb} = \mathbf{Lead}$	biphe	nyls														_		30 100			
*																	188		TO WELL	THAT	

GEL Laboratories LLC

				-1	SAMPLE RECEIPT & REVIEW FORM
	ent: GPCC			SL	G/AR/COC/Work Order:
Re	ceived By: QG			Da	ite Received: 2 13 24
	Carrier and Tracking Number				Circle Applicable: FedEx Express FedEx Ground UPS Field Services Courier Other
L			, .	6	2831 9572 2650
Sus	pected Hazard Information	Yes	ž	*If	Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
A)S	hipped as a DOT Hazardous?		X	Ha	zard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes No
	Did the client designate the samples are to be vived as radioactive?		>	ξ cc	Constation or radioactive stickers on confainers equal client designation.
	Oid the RSO classify the samples as oactive?		,	∠ ^{Ma}	ximum Net Counts Observed* (Observed Counts - Area Background Counts):
D) I	Did the client designate samples are hazardous?		¥		C nonition of he zard labels on containers equal elegate lengthesignation.
E) I	Did the RSO identify possible hazards?		×		PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
	Sample Receipt Criteria	Yes	Ž	ŝ	Comments/Qualifiers (Required for Non-Conforming Items)
1	Shipping containers received intact and sealed?	X			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
2	Chain of custody documents included with shipment?	X			Circle Applicable: Client contacted and provided COC COC created upon receipt
3	Samples requiring cold preservation within $(0 \le 6 \text{ deg. C})$?*	X			Preservation Method Wet Ice De Packs Dry ice None Other: *all temperatures are recorded in Colsius TEMP:
4	Daily check performed and passed on IR temperature gun?	~			Temperature Device Serial #; <u>IR1-23</u> Secondary Temperature Device Serial # (If Applicable):
5	Sample containers intact and sealed?	X			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
6	Samples requiring chemical preservation at proper pH?	X			Sample ID's and Containers Affected: If Preservation added, Lot#:
7	Do any samples require Volatile Analysis?			y	If Yes, are Encores or Soil Kits present for solids? YesNoNA(If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA Sample ID's and containers affected:
8	Samples received within holding time?	X			ID's and tests affected:
9	Sample ID's on COC match ID's on bottles?	X			ID's and containers affected:
10	Date & time on COC match date & time on bottles?	X			Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
11	Number of containers received match number indicated on COC?			×	Circle Applicable: No container count for COC Other (describe)
12	Are sample containers identifiable as GEL provided by use of GEL labels?	۲			Challe Applicables New Provided Color (1 - 2)
13 Corr	COC form is properly signed in relinquished/received sections?	X			Circle Applicable: Not relinquished Other (describe)
	(Car Community of the Record).				

Page 27 of 28 SDG: 700475

List of current GEL Certifications as of 30 December 2024

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	KY90129
Kentucky Wastewater	KY90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2023019
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	NV-C24-00175
New Hampshire NELAP	205424
New Jersey NELAP	SC002
New Mexico	SC002
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2023-152
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235
Utah NELAP	SC000122024-45
	VT87156
Vermont Virginia NEL AD	460202
Virginia NELAP	
Washington	C780

a member of The GEL Group INC

gel.com

January 08, 2025

Joju Abraham Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

Re: Arkwright CCR Groundwater Compliance Relog:

Work Order: 700476

Dear Joju Abraham:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on December 13, 2024. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt. The laboratory received the following sample(s):

<u>Laboratory ID</u>	Client ID	<u>Matrix</u>	Date Collected	Date Received
700476001	ARK-ARAMW-10	Ground Water	12/12/24 13:10	12/13/24 09:20
700476002	ARK-ARAMW-11	Ground Water	12/12/24 15:15	12/13/24 09:20

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Prep Methods and Prep Dates

Not Applicable

Analysis Methods and Analysis Dates

Method	Run Date ID
Calculation	08-JAN-2025
EPA 903.1 Modified	03-JAN-2025
EPA 904.0/SW846 9320 Modified	02-JAN-2025

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. .

Sincerely,

Kierra McKnight for Alaina Pinnick

Project Manager

Purchase Order: GPC82177-0005

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

GPCC003 Georgia Power Company Client SDG: 700476 GEL Work Order: 700476

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Alaina Pinnick.

Page 3 of 13 SDG: 700476

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: January 8, 2025

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceRelog:

Client Sample ID: ARK-ARAMW-10 Project: GPCC01924 GPCC003 Client ID:

Sample ID: 700476001 Matrix: WG

Collect Date: 12-DEC-24 Receive Date: 13-DEC-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date Time	Batch	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		0										
Radium-228		4.45	+/-1.38	1.62	+/-1.79	3.00	pCi/L		ST2	01/02/25 1314	2721613	1
Radium-226+Radium-	228 Calculat	tion "See Pa	rent Product	s"								
Radium-226+228 Sum		8.18	+/-1.58	1.62	+/-2.04		pCi/L		NXL1	$01/08/25 \ 1045$	2721917	2
Rad Radium-226 Lucas Cell, Ra226, Lic	quid "As Rece	eived"										
Radium-226		3.73	+/-0.766	0.307	+/-0.981	1.00	pCi/L		MJ2	01/03/25 1108	2723181	3

The following Analytical Methods were performed Description

1 EPA 904.0/SW846 9320 Modified Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2721613	84.4	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor **RL**: Reporting Limit Lc/LC: Critical Level

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 4 of 13 SDG: 700476

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: January 8, 2025

Contact: Joju Abraham

Project: Arkwright CCR Groundwater ComplianceRelog:

Client Sample ID: ARK-ARAMW-11 Project: GPCC01924 Sample ID: GPCC003 Client ID: 700476002

Matrix: WG

Collect Date: 12-DEC-24 Receive Date: 13-DEC-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date Time	Batch	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		0										
Radium-228	U	1.17	+/-0.887	1.37	+/-0.937	3.00	pCi/L		ST2	01/02/25 1314	2721613	1
Radium-226+Radium-	-228 Calculat	ion "See Pa	rent Product	s"								
Radium-226+228 Sum		2.91	+/-1.00	1.37	+/-1.12		pCi/L		NXL1	01/08/25 1045	2721917	2
Rad Radium-226 Lucas Cell, Ra226, Lic	quid "As Rece	rived"										
Radium-226		1.74	+/-0.470	0.331	+/-0.611	1.00	pCi/L		MJ2	01/03/25 1108	2723181	. 3

The following Analytical Methods were performed **Description**

	*
1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2721613	91.4	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 5 of 13 SDG: 700476

Radiochemistry Technical Case Narrative Georgia Power Company SDG #: 700476

Product: Radium-226+Radium-228 Calculation

Analytical Method: Calculation

Analytical Procedure: GL-RAD-D-003 REV# 45

Analytical Batch: 2721917

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID# Client Sample Identification

700476001 ARK-ARAMW-10 700476002 ARK-ARAMW-11

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: GFPC Ra228, Liquid

Analytical Method: EPA 904.0/SW846 9320 Modified **Analytical Procedure:** GL-RAD-A-063 REV# 5

Analytical Batch: 2721613

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID# Client Sample Identification

700476001 ARK-ARAMW-10 700476002 ARK-ARAMW-11 1205951331 Method Blank (MB)

1205951332 700476001(ARK-ARAMW-10) Sample Duplicate (DUP)

1205951333 Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

RDL Met

The following RDL was met with rounding.

Page 6 of 13 SDG: 700476

Sample	Analyte	Value
1205951332 (ARK-ARAMW-10DUP)	Radium-228	Result 2.79 < MDA 3.06 > RDL 3 pCi/L

Technical Information

Recounts

Sample 1205951332 (ARK-ARAMW-10DUP) was recounted to verify sample results. Recount is reported.

<u>Product:</u> Lucas Cell, Ra226, Liquid Analytical Method: EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2723181

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
700476001	ARK-ARAMW-10
700476002	ARK-ARAMW-11
1205954780	Method Blank (MB)
1205954781	700252001(NonSDG) Sample Duplicate (DUP)
1205954782	700252001(NonSDG) Matrix Spike (MS)
1205954783	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Duplication Criteria between QC Sample and Duplicate Sample

The Sample and the Duplicate, (See Below), did not meet the relative percent difference requirement; however, they do meet the relative error ratio requirement with the value listed below.

Sample	Analyte	Value
1205954781 (Non SDG 700252001DUP)	Radium-226	RPD 52.4* (0.00%-20.00%) RER 1.84 (0-3)

Technical Information

Recounts

Sample 1205954783 (LCS) was recounted due to low recovery. The recount is reported.

Miscellaneous Information

Additional Comments

The matrix spike, 1205954782 (Non SDG 700252001MS), aliquot was reduced to conserve sample volume.

Page 7 of 13 SDG: 700476

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 8 of 13 SDG: 700476

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Report Date: January 8, 2025

Page 1 of 2

QC Summary

Client: Georgia Power Company, Southern Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia

Contact: Joju Abraham

Workorder: 700476

Parmname		NOM	Sample (Qual	QC	Units	RPD%	REC%	Range A	nlst	Date Time
Rad Gas Flow											
Batch	2721613 —										
QC1205951332	700476001 DUP										
Radium-228			4.45	U	2.79	pCi/L	45.9		(0% - 100%)	ST2	01/02/2515:32
		Uncert:	+/-1.38		+/-1.94						
		TPU:	+/-1.79		+/-2.06						
QC1205951333	LCS										
Radium-228		80.1			78.8	pCi/L		98.4	(75%-125%)	ST2	01/02/2513:14
		Uncert:			+/-4.58						
0.01005051001		TPU:			+/-20.6						
QC1205951331	MB				1.10	C: /I				OTTO	01/02/2512 12
Radium-228		Uncert:		U	1.10 +/-1.19	pCi/L				ST2	01/02/2513:13
		TPU:			+/-1.19						
Rad Ra-226		IPU:			T/-1.22						
Batch	2723181 —										
QC1205954781	700252001 DUP										
Radium-226	700232001 DUF		1.62		0.945	pCi/L	52.4*		(0%-20%)	MI2	01/03/2512:00
Radium-220		Uncert:	+/-0.465		+/-0.375	pci/L	32.4		(070-2070)	10132	01/03/2312.00
		TPU:	+/-0.572		+/-0.430						
QC1205954783	LCS	110.			.,						
Radium-226		27.2			21.3	pCi/L		78.2	(75%-125%)	MJ2	01/03/2516:35
		Uncert:			+/-1.59	1					
		TPU:			+/-4.33						
QC1205954780	MB										
Radium-226				U	0.491	pCi/L				MJ2	01/03/2512:00
		Uncert:			+/-0.393						
		TPU:			+/-0.402						
QC1205954782	700252001 MS										
Radium-226		135	1.62		107	pCi/L		78.4	(75%-125%)	MJ2	01/03/2512:00
		Uncert:	+/-0.465		+/-8.39						
		TPU:	+/-0.572		+/-19.2						

Notes:

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- H Analytical holding time was exceeded
- < Result is less than value reported
- > Result is greater than value reported

Page 9 of 13 SDG: 700476

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 700476 Page 2 of 2 **Parmname** NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time UI Gamma Spectroscopy--Uncertain identification BDResults are either below the MDC or tracer recovery is low Preparation or preservation holding time was exceeded h R Sample results are rejected RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry. N/A RPD or %Recovery limits do not apply. Analyte concentration is not detected above the detection limit ND M M if above MDC and less than LLD Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier NJ FA Failed analysis. UJ Gamma Spectroscopy--Uncertain identification 0 One or more quality control criteria have not been met. Refer to the applicable narrative or DER. Analyte present. Reported value may be biased high. Actual value is expected to be lower. K UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.

- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.

Analyte present. Reported value may be biased low. Actual value is expected to be higher.

- ** Analyte is a Tracer compound
- M REMP Result > MDC/CL and < RDL
- x Subaliquot was taken. See Case Narrative for details.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ** Indicates analyte is a surrogate/tracer compound.
- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 10 of 13 SDG: 700476

Project #		GEL	Ch	abo nemistry F	rato	nistry Radi	LLC obioassay	l Spec	cialty A	nalyti	70	20	4	15	2040 Chai) Sava		oad 29407	7	
	Work Order Numbe		n of Cu			nalytica <i>Ianager:</i>								20	1			56-817	1	
Clont Name: Georgia Power	TOTA OTHER PURINDE	Phone # (9	37-344-6		rojeci n	Tunuger.			1000000	alvei	Rea	mest	ed ⁽⁵⁾	Œill		(843)			ntain	ers for each test)
Project/Site Name: Plant Arkwright Ash Pond _2_		Fax: N/A					<u> </u>		Z	Z	- Recy	uest	- Cu	Z	Z	Z	SA	51 001	панк	< Preservative Type (6)
Addeess: 241 Ralph McGill Blvd SE, Atlanta, GA 30308							is sample	tainers	_	_	~ s	0	0.0	-			S			· Treservative Type (0)
Competed By: Andreas Shoredits, Bryan Pennell, Jaiden Stidston Send R jennife	esults To: jabraham@so .kolbe@stantec.com	uthernco.com	EDD@sta	intec.com		be cons			6020B)	(6020B)	al Remark	thod 2540	Fl, Sulfate 2.1 1993	228 Cmbd	7470B)	+ (6020B) Itered	Nitrite od 353.2)			Comments
Sample ID *For composites - indicate start and stop date/time	*Date Collected (mm-dd-yy)	*Time Collected (Military) (hhmm)	QC Code	Field Filtered ⁽³⁾	Sample Matrix ⁽⁴	Radioactive (If yes, please supply isotopic info.)	(7) Known or possible Hazards	Total number of con	*Metals (6020B)	**Metals (6020B)	Alkalinity (300.0 R2.1 see Additional Remark:	TDS (SM Method 2540C)	Anions (Cl, Fl, Sulfate) (300.0 Rev. 2.1 1993)	RAD 226-228 Cmbd	Mercury (7470B)	Fe2+/ Mn2+ (6020B) Field Filtered	Nitrate/ Nitrite (EPA Method 353.2			(task_code: ARK-CCR- ASSMT-2024S2)
ARK-ARAMW-10	12-12-24	1310	N	N	WG				X	X	X	X	X	X	Х		X			
ARK-ARAMW-10	12-12-24	1310	N	Y	WG					h.		l veri			14.	X				*Metals: Ag, B, Ca, Al, K, Mg, Na, Fe,
ARK-ARAMW-11	12-12-24	1515	N	N	WG				X	Х	Х	Х	Х	Х	Х		Х			Mn, Sb, As, Ba, Be, Cd, Cr, Co, Pb, Li, Mo, Se, Tl
ARK-ARAMW-11	12-12-24	1515	N	Y	WG							•	100			X		*8 59	1	
					1 154	1000									1 m	5 10				**Metals: Ag, B, Ca, Sb, As, Ba, Be, Cd, Cr, Co, Pb, Li, Mo, Se, Tl
								100							7.5			5	Ton y	
Chain of	Custody Signatures	8					TA	Г Re	questo	ed:	Norn	al: _	X	Rusi	1:	S	ecify	/ :		(Subject to Surcharge)
Relinquished By (Signed) Print Name Date	Received by (si	gned) I	rint Name	е Е	ate		Fax Res													
1 - ANDREAS STUNEDE TO 12/18	1/24/2 1	_		12/1	3/24	1920							QC S	umma	ary [] lev	el 1	[X] I	Level	2 [] Level 3 [] Level 4
2	2						Addition	al Re	mark	s:		Alkali	nity: bi	carbon	ate as C	CaCO3,	carbor	nate as (CaCO:	3, total as CaCO3
3	3						For Lab	Rece	eiving	Use	Only:	Cus	tody S	Seal In	ntact?	[]	'es	[] No	o (Cooler Temp: <u> </u>
> For sample shipping and delivery details, see Sample Re	ceipt & Review form	(SRR.)				Sample (Collection	1 Tim	e Zon	1e: [X] E	asteri	n [] Pac	ific	[](entra	1 [] Mo	untain [] Other:
 Chain of Custody Number = Client Determined OC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicat Field Filtered: For liquid matrices, indicate with a - Y - for yes the sam Matrix Codes: DW=Drinking Water, GW=Groundwater, SW=Surface Sample Analysis Requested: Analytical method requested (i.e. 8260B, 	ole was field filtered or - N Water, WW=Waste Water,	- for sample wa	s not field f =Misc Liqu	iltered.	l, SD =Sed	iment, SL=S	ludge, SS=5					er, P =\	Vipe, U	=Urine	e, F =Fe	cal, N =	Nasal			
6.) Preservative Type: HA = Hydrochloric Acid, NI = Nitric Acid, SH = So								If no	preserv	vative i	s added	l = lea	ve field	hlank						
	teristic Hazards				Tremane, c		Other	, 11 110	preser		5 addec	ı icu	ve mere	Oldink			Pleas	e prov	ride a	ny additional details below
RCRA Metals As = Arsenic Hg= Mercury Ba = Barium Se= Selenium	ammable/Ignitable 'orrosive eactive Regulated	Listed Waste LW= Listed Waste (F,K,P and U-listed wastes.) Waste code(s):				OT= Otl (i.e.: Hig misc. hed Descript	th/lov alth h	νpH,	asbes		erylli	ium, i	ritan	ts, otl	ner	regar (i.e.: (ding h Origin	handl n of so	ling and/or disposal concerns. ample(s), type of site collected res, etc.)	
	Polychlorinated biphenyls			1																

GEL Laboratories LLC

	<u> </u>				SAMPLE RECEIPT & REVIEW FORM
	ent: GPCC			SD	G/AR/COC/Work Order:
Rec	eived By: QG			Da	te Received: 2 13 24
	Carrier and Tracking Number				Circle Applicable: FedEx Express FedEx Ground UPS Field Services Courier Other
			,	2	1831 9572 2650
Sus	pected Hazard Information	Yes	ž	*If	Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
A)S	hipped as a DOT Hazardous?		X	Haz	ard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes No
	old the client designate the samples are to be ived as radioactive?		У	Co	I notation or nadioactive stickers on containers equal client designation.
	Did the RSO classify the samples as		>	(Max	timum Net Counts Observed* (Observed Counts - Area Background Counts):OM/ mR/Hr Classified as: Rad 1
D) I	Did the client designate samples are hazardous?		×	/ co	Trichtion or hazard labels on containers equal client designation at the second
E) [old the RSO identify possible hazards?		×	If D	or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
	Sample Receipt Criteria	Yes	¥	å	Comments/Qualifiers (Required for Non-Conforming Items)
1	Shipping containers received intact and sealed?	X			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
2	Chain of custody documents included with shipment?	X			Circle Applicable: Client contacted and provided COC COC created upon receipt
3	Samples requiring cold preservation within $(0 \le 6 \text{ deg. C})$?*	X			Preservation Method: Wet Ice Dee Packs Dry ice None Other: *all temperatures are recorded in Celsius TEMP:
4	Daily check performed and passed on IR temperature gun?	~			Temperature Device Serial #: IR1-23 Secondary Temperature Device Serial # (If Applicable):
5	Sample containers intact and sealed?	X			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
6	Samples requiring chemical preservation at proper pH?	X	_		Sample ID's and Containers Affected: If Preservation added, Lot#:
7	Do any samples require Volatile Analysis?			×	If Yes, are Encores or Soil Kits present for solids? YesNoNA(If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA Sample ID's and containers affected:
8	Samples received within holding time?	X			ID's and tests affected:
9	Sample ID's on COC match ID's on bottles?	X			ID's and containers affected:
10	Date & time on COC match date & time on bottles?	X			Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
	Number of containers received match number indicated on COC?			Х	Circle Applicable: No container count on COC Other (describe)
12	Are sample containers identifiable as GEL provided by use of GEL labels? COC form is properly signed in	X			Circle Applicable: Not relinquished Other (describe)
	relinquished/received sections?	X			Cited Applicable. 140t fellinquismed Offici (describe)
Com	ments (Use Continuation Form if needed):				

Page 12 of 13 SDG: 700476

List of current GEL Certifications as of 08 January 2025

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	525-24-281-19660
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012 SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	KY90129
Kentucky Wastewater	KY90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2023019
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	NV-C24-00175
New Hampshire NELAP	205424
New Jersey NELAP	SC002
New Mexico	SC002 SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2023-152
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Tennessee Texas NELAP	T104704235
Utah NELAP	SC000122024-45
	VT87156
Vermont	V 18/156 460202
Virginia NELAP	
Washington	C780

August 20, 2024

Kelley Sharpe ARCADIS - Atlanta 2839 Paces Ferry Rd STE 900 Atlanta, GA 30339

RE: Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92747267

Dear Kelley Sharpe:

Enclosed are the analytical results for sample(s) received by the laboratory on August 13, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Peachtree Corners, GA

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Maiya Parks

maiya.parks@pacelabs.com

770-734-4205

Project Manager

Enclosures

cc: Joju Abraham, Georgia Power-CCR Jordan Gamble, ARCADIS - Atlanta Ben Hodges, Southern Company Priya Jacob, ARCADIS - Atlanta Jennifer Kolbe, Stantec Consulting Laura Midkiff, Southern Company Noelia Muskus Ruiz, Georgia Power Tina Sullivan, ERM

CERTIFICATIONS

Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92747267

Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 North Carolina Drinking Water Certification #: 37712

North Carolina Wastewater Certification #: 40

South Carolina Laboratory ID: 99030 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

Pace Analytical Services Peachtree Corners

110 Technology Pkwy, Peachtree Corners, GA 30092

Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812 North Carolina Certification #: 381 South Carolina Certification #: 98011001

Virginia Certification #: 460204

SAMPLE SUMMARY

Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92747267

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92747267001	ARK-BC-0.8a	Water	08/12/24 11:50	08/13/24 13:25
92747267002	ARK-BC-0.5.5	Water	08/12/24 12:11	08/13/24 13:25
92747267003	ARK-BC-0.5.6	Water	08/12/24 12:17	08/13/24 13:25
92747267004	ARK-BC-0.5.7	Water	08/12/24 11:16	08/13/24 13:25
92747267005	ARK-BC-BR	Water	08/12/24 10:43	08/13/24 13:25

SAMPLE ANALYTE COUNT

Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92747267

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92747267001	ARK-BC-0.8a	EPA 6010D	AJM	5	PASI-GA
		EPA 6020B	CW1	3	PASI-GA
		SM 2540C-2015	DL1	1	PASI-GA
		SM 2320B-2011	SMS	2	PASI-A
		EPA 9056A	CDC	3	PASI-A
92747267002	ARK-BC-0.5.5	EPA 6010D	AJM	5	PASI-GA
		EPA 6020B	CW1	3	PASI-GA
		SM 2540C-2015	DL1	1	PASI-GA
		SM 2320B-2011	SMS	2	PASI-A
		EPA 9056A	CDC	3	PASI-A
92747267003	ARK-BC-0.5.6	EPA 6010D	AJM	5	PASI-GA
		EPA 6020B	CW1	3	PASI-GA
		SM 2540C-2015	DL1	1	PASI-GA
		SM 2320B-2011	SMS	2	PASI-A
		EPA 9056A	CDC	3	PASI-A
92747267004	ARK-BC-0.5.7	EPA 6010D	AJM	5	PASI-GA
		EPA 6020B	CW1	3	PASI-GA
		SM 2540C-2015	DL1	1	PASI-GA
		SM 2320B-2011	SMS	2	PASI-A
		EPA 9056A	CDC	3	PASI-A
92747267005	ARK-BC-BR	EPA 6010D	AJM	5	PASI-GA
		EPA 6020B	CW1	3	PASI-GA
		SM 2540C-2015	DL1	1	PASI-GA
		SM 2320B-2011	SMS	2	PASI-A
		EPA 9056A	CDC	3	PASI-A

PASI-A = Pace Analytical Services - Asheville

PASI-GA = Pace Analytical Services - Peachtree Corners, GA

Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92747267

Date: 08/20/2024 06:00 PM

Sample: ARK-BC-0.8a	Lab ID: 9274	47267001	Collected: 08/12/2	4 11:50	Received: 08	/13/24 13:25 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010D ATL ICP	Analytical Meth	od: EPA 60	10D Preparation Me	thod: E	PA 3010A			
	Pace Analytica	l Services -	Peachtree Corners,	GA				
Boron	ND	mg/L	0.040	1	08/15/24 16:46	08/19/24 14:42	7440-42-8	
Potassium	2.4	mg/L	0.50	1	08/15/24 16:46	08/19/24 14:42	7440-09-7	
Sodium	8.8	mg/L	1.0	1	08/15/24 16:46	08/19/24 14:42	7440-23-5	
Calcium	10.8	mg/L	1.0	1	08/15/24 16:46	08/19/24 14:42	7440-70-2	
Magnesium	4.8	mg/L	0.050	1	08/15/24 16:46	08/19/24 14:42	7439-95-4	
6020 MET ICPMS	Analytical Meth	od: EPA 60	20B Preparation Me	thod: E	PA 3005A			
	Pace Analytica	l Services -	Peachtree Corners,	GA				
Cobalt	ND	mg/L	0.0050	1	08/14/24 09:52	08/14/24 16:48	7440-48-4	
_ithium	ND	mg/L	0.030	1	08/14/24 09:52	08/14/24 16:48	7439-93-2	
Molybdenum	ND	mg/L	0.010	1	08/14/24 09:52	08/14/24 16:48	7439-98-7	
2540C Total Dissolved Solids	Analytical Meth	od: SM 254	10C-2015					
	Pace Analytica	l Services -	Peachtree Corners,	GA				
Total Dissolved Solids	106	mg/L	25.0	1		08/15/24 10:50		
2320B Alkalinity	Analytical Meth	od: SM 232	20B-2011					
•	Pace Analytica	l Services -	Asheville					
Alkalinity,Bicarbonate (CaCO3)	55.9	mg/L	5.0	1		08/14/24 17:49		
Alkalinity, Total as CaCO3	55.9	mg/L	5.0	1		08/14/24 17:49		
9056 IC anions 28 Days	Analytical Meth	od: EPA 90	56A					
•	Pace Analytica	l Services -	Asheville					
Chloride	7.6	mg/L	1.0	1		08/14/24 15:31	16887-00-6	
=luoride	ND	mg/L	0.10	1		08/14/24 15:31	16984-48-8	
Sulfate	3.8	mg/L	1.0	1		08/14/24 15:31	14808-79-8	

Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92747267

Date: 08/20/2024 06:00 PM

Sample: ARK-BC-0.5.5	Lab ID: 9274	47267002	Collected: 08/12/2	24 12:11	Received: 08	/13/24 13:25 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010D ATL ICP	Analytical Meth	nod: EPA 60	110D Preparation Me	ethod: E	PA 3010A			
	Pace Analytica	l Services -	Peachtree Corners,	GA				
Boron	ND	mg/L	0.040	1	08/15/24 16:46	08/19/24 14:46	7440-42-8	
Potassium	2.4	mg/L	0.50	1	08/15/24 16:46	08/19/24 14:46	7440-09-7	
Sodium	9.0	mg/L	1.0	1	08/15/24 16:46	08/19/24 14:46	7440-23-5	
Calcium	12.2	mg/L	1.0	1	08/15/24 16:46	08/19/24 14:46	7440-70-2	
Magnesium	5.2	mg/L	0.050	1	08/15/24 16:46	08/19/24 14:46	7439-95-4	
6020 MET ICPMS	Analytical Meth	nod: EPA 60	20B Preparation Me	thod: E	PA 3005A			
			Peachtree Corners,					
Cobalt	ND	mg/L	0.0050	1	08/14/24 09:52	08/14/24 16:53	7440-48-4	
_ithium	ND	mg/L	0.030	1	08/14/24 09:52	08/14/24 16:53	7439-93-2	
Molybdenum	ND	mg/L	0.010	1	08/14/24 09:52	08/14/24 16:53	7439-98-7	
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	40C-2015					
	Pace Analytica	l Services -	Peachtree Corners,	GA				
Total Dissolved Solids	113	mg/L	25.0	1		08/15/24 10:50		
2320B Alkalinity	Analytical Meth	nod: SM 232	20B-2011					
•	Pace Analytica	l Services -	Asheville					
Alkalinity,Bicarbonate (CaCO3)	56.3	mg/L	5.0	1		08/14/24 17:56		
Alkalinity, Total as CaCO3	56.3	mg/L	5.0	1		08/14/24 17:56		
9056 IC anions 28 Days	Analytical Meth	nod: EPA 90	956A					
•	Pace Analytica	l Services -	Asheville					
Chloride	7.6	mg/L	1.0	1		08/14/24 15:45	16887-00-6	
Fluoride	ND	mg/L	0.10	1		08/14/24 15:45	16984-48-8	
Sulfate	7.6	mg/L	1.0	1		08/14/24 15:45	14808-79-8	

Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92747267

Date: 08/20/2024 06:00 PM

Sample: ARK-BC-0.5.6	Lab ID: 9274	47267003	Collected: 08/12/2	24 12:17	Received: 08	/13/24 13:25 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010D ATL ICP	Analytical Meth	nod: EPA 60	10D Preparation Me	ethod: E	PA 3010A			
	Pace Analytica	l Services -	Peachtree Corners,	GA				
Boron	ND	mg/L	0.040	1	08/15/24 16:46	08/19/24 14:49	7440-42-8	
Potassium	2.5	mg/L	0.50	1	08/15/24 16:46	08/19/24 14:49	7440-09-7	
Sodium	8.9	mg/L	1.0	1	08/15/24 16:46	08/19/24 14:49	7440-23-5	
Calcium	12.3	mg/L	1.0	1	08/15/24 16:46	08/19/24 14:49	7440-70-2	
Magnesium	5.2	mg/L	0.050	1	08/15/24 16:46	08/19/24 14:49	7439-95-4	
6020 MET ICPMS	Analytical Meth	nod: EPA 60	20B Preparation Me	thod: E	PA 3005A			
	Pace Analytica	l Services -	Peachtree Corners,	GA				
Cobalt	ND	mg/L	0.0050	1	08/14/24 09:52	08/14/24 16:57	7440-48-4	
_ithium	ND	mg/L	0.030	1	08/14/24 09:52	08/14/24 16:57	7439-93-2	
Molybdenum	ND	mg/L	0.010	1	08/14/24 09:52	08/14/24 16:57	7439-98-7	
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	10C-2015					
	Pace Analytica	l Services -	Peachtree Corners,	GA				
Total Dissolved Solids	141	mg/L	25.0	1		08/16/24 14:10		
2320B Alkalinity	Analytical Meth	nod: SM 232	20B-2011					
•	Pace Analytica	l Services -	Asheville					
Alkalinity,Bicarbonate (CaCO3)	57.2	mg/L	5.0	1		08/14/24 18:02		
Alkalinity, Total as CaCO3	57.2	mg/L	5.0	1		08/14/24 18:02		
9056 IC anions 28 Days	Analytical Meth	nod: EPA 90	56A					
•	Pace Analytica	l Services -	Asheville					
Chloride	7.6	mg/L	1.0	1		08/14/24 15:59	16887-00-6	
Fluoride	ND	mg/L	0.10	1		08/14/24 15:59	16984-48-8	
Sulfate	7.6	mg/L	1.0	1		08/14/24 15:59	14808-79-8	

Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92747267

Date: 08/20/2024 06:00 PM

Sample: ARK-BC-0.5.7	Lab ID: 927	47267004	Collected: 08/12/2	24 11:16	Received: 08	/13/24 13:25 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010D ATL ICP	Analytical Meth	nod: EPA 60	10D Preparation Me	ethod: E	PA 3010A			
	Pace Analytica	l Services -	Peachtree Corners,	GA				
Boron	ND	mg/L	0.040	1	08/15/24 16:46	08/19/24 14:53	7440-42-8	
Potassium	2.3	mg/L	0.50	1	08/15/24 16:46	08/19/24 14:53	7440-09-7	
Sodium	8.5	mg/L	1.0	1	08/15/24 16:46	08/19/24 14:53	7440-23-5	
Calcium	11.7	mg/L	1.0	1	08/15/24 16:46	08/19/24 14:53	7440-70-2	
Magnesium	5.0	mg/L	0.050	1	08/15/24 16:46	08/19/24 14:53	7439-95-4	
6020 MET ICPMS	Analytical Meth	nod: EPA 60	20B Preparation Me	thod: E	PA 3005A			
	Pace Analytica	l Services -	Peachtree Corners,	GA				
Cobalt	ND	mg/L	0.0050	1	08/14/24 09:52	08/14/24 17:01	7440-48-4	
Lithium	ND	mg/L	0.030	1	08/14/24 09:52	08/14/24 17:01	7439-93-2	
Molybdenum	ND	mg/L	0.010	1	08/14/24 09:52	08/14/24 17:01	7439-98-7	
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	IOC-2015					
	Pace Analytica	l Services -	Peachtree Corners,	GA				
Total Dissolved Solids	127	mg/L	25.0	1		08/16/24 14:11		
2320B Alkalinity	Analytical Meth	nod: SM 232	20B-2011					
•	Pace Analytica	l Services -	Asheville					
Alkalinity,Bicarbonate (CaCO3)	58.1	mg/L	5.0	1		08/14/24 18:09		
Alkalinity, Total as CaCO3	58.1	mg/L	5.0	1		08/14/24 18:09		
9056 IC anions 28 Days	Analytical Meth	nod: EPA 90	56A					
•	Pace Analytica							
Chloride	7.5	mg/L	1.0	1		08/14/24 16:13	16887-00-6	
Fluoride	ND	mg/L	0.10	1		08/14/24 16:13	16984-48-8	
Sulfate	8.7	mg/L	1.0	1		08/14/24 16:13	14808-79-8	

ANALYTICAL RESULTS

Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92747267

Date: 08/20/2024 06:00 PM

Sample: ARK-BC-BR	Lab ID: 9274	47267005	Collected: 08/12/2	24 10:43	Received: 08/13/24 13:25 Matrix: Water					
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
6010D ATL ICP	Analytical Meth	nod: EPA 60	10D Preparation Me	ethod: E	PA 3010A					
	Pace Analytica	l Services -	Peachtree Corners,	GA						
Boron	ND	mg/L	0.040	1	08/15/24 16:46	08/19/24 14:57	7440-42-8			
Potassium	2.3	mg/L	0.50	1	08/15/24 16:46	08/19/24 14:57	7440-09-7			
Sodium	8.4	mg/L	1.0	1	08/15/24 16:46	08/19/24 14:57	7440-23-5			
Calcium	11.4	mg/L	1.0	1	08/15/24 16:46	08/19/24 14:57	7440-70-2			
Magnesium	4.9	mg/L	0.050	1	08/15/24 16:46	08/19/24 14:57	7439-95-4			
6020 MET ICPMS	Analytical Meth	nod: EPA 60	20B Preparation Me	thod: El	PA 3005A					
	Pace Analytica	l Services -	Peachtree Corners,	GA						
Cobalt	ND	mg/L	0.0050	1	08/14/24 09:52	08/14/24 17:05	7440-48-4			
Lithium	ND	mg/L	0.030	1	08/14/24 09:52	08/14/24 17:05	7439-93-2			
Molybdenum	ND	mg/L	0.010	1	08/14/24 09:52	08/14/24 17:05	7439-98-7			
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	10C-2015							
	Pace Analytica	l Services -	Peachtree Corners,	GA						
Total Dissolved Solids	130	mg/L	25.0	1		08/16/24 14:11				
2320B Alkalinity	Analytical Meth	nod: SM 232	20B-2011							
•	Pace Analytica	l Services -	Asheville							
Alkalinity,Bicarbonate (CaCO3)	56.9	mg/L	5.0	1		08/14/24 18:16				
Alkalinity, Total as CaCO3	56.9	mg/L	5.0	1		08/14/24 18:16				
9056 IC anions 28 Days	Analytical Meth	nod: EPA 90	56A							
•	Pace Analytica	l Services -	Asheville							
Chloride	7.6	mg/L	1.0	1		08/14/24 16:27	16887-00-6			
Fluoride	ND	mg/L	0.10	1		08/14/24 16:27	16984-48-8			
Sulfate	7.5	mg/L	1.0	1		08/14/24 16:27	14808-79-8			

Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92747267

Date: 08/20/2024 06:00 PM

QC Batch: 875955 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010D ATL

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92747267001, 92747267002, 92747267003, 92747267004, 92747267005

METHOD BLANK: 4512090 Matrix: Water

Associated Lab Samples: 92747267001, 92747267002, 92747267003, 92747267004, 92747267005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Boron	mg/L	ND	0.040	08/19/24 13:54	
Calcium	mg/L	ND	1.0	08/19/24 13:54	
Magnesium	mg/L	ND	0.050	08/19/24 13:54	
Potassium	mg/L	ND	0.50	08/19/24 13:54	
Sodium	mg/L	ND	1.0	08/19/24 13:54	

LABORATORY CONTROL SAMPLE:	4512091	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	% Rec Limits	Qualifiers
Boron	mg/L		1.0	101	80-120	
Calcium	mg/L	1	1.0	105	80-120	
Magnesium	mg/L	1	1.0	104	80-120	
Potassium	mg/L	1	1.1	107	80-120	
Sodium	mg/L	1	1.1	106	80-120	

MATRIX SPIKE & MATRIX SI	PIKE DUPL	ICATE: 4512		4512093								
			MS	MSD								
		92747247001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	mg/L		1	1	1.1	1.1	105	103	75-125	2	20	
Calcium	mg/L	11.5	1	1	13.1	13.1	155	159	75-125	0	20	M1
Magnesium	mg/L	4.9	1	1	6.1	6.2	118	126	75-125	1	20	M1
Potassium	mg/L	2.3	1	1	3.5	3.5	113	112	75-125	0	20	
Sodium	mg/L	8.5	1	1	9.7	9.8	126	134	75-125	1	20	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92747267

Date: 08/20/2024 06:00 PM

QC Batch: 875521 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92747267001, 92747267002, 92747267003, 92747267004, 92747267005

METHOD BLANK: 4509771 Matrix: Water

Associated Lab Samples: 92747267001, 92747267002, 92747267003, 92747267004, 92747267005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Cobalt	mg/L	ND	0.0050	08/14/24 15:37	
Lithium	mg/L	ND	0.030	08/14/24 15:37	
Molybdenum	mg/L	ND	0.010	08/14/24 15:37	

LABORATORY CONTROL SAMPLE: 4509772 LCS Spike LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Cobalt 0.1 0.10 101 80-120 mg/L Lithium 0.1 108 80-120 mg/L 0.11 Molybdenum 0.1 80-120 mg/L 0.11 106

MATRIX SPIKE & MATRIX SP		4509774										
		MS MSD										
		92746959001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Cobalt	mg/L	ND	0.1	0.1	0.10	0.097	102	97	75-125	4	20	-
Lithium	mg/L	ND	0.1	0.1	0.11	0.11	108	106	75-125	2	20	
Molybdenum	mg/L	ND	0.1	0.1	0.11	0.11	103	105	75-125	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92747267

QC Batch: 875851 Analysis Method: SM 2540C-2015

QC Batch Method: SM 2540C-2015 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92747267001, 92747267002

METHOD BLANK: 4511546 Matrix: Water

Associated Lab Samples: 92747267001, 92747267002

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L ND 25.0 08/15/24 10:43

LABORATORY CONTROL SAMPLE: 4511547

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** 400 396 99 80-120 mg/L

SAMPLE DUPLICATE: 4511548

92747047013 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 250 **Total Dissolved Solids** 250 0 mg/L 10

SAMPLE DUPLICATE: 4511549

Date: 08/20/2024 06:00 PM

92746783020 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 162 154 5 10 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92747267

QC Batch: 876190 Analysis Method: SM 2540C-2015

QC Batch Method: SM 2540C-2015 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92747267003, 92747267004, 92747267005

METHOD BLANK: 4513596 Matrix: Water

Associated Lab Samples: 92747267003, 92747267004, 92747267005

Blank Reporting
Parameter Units Result Limit Analyzed

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L ND 25.0 08/16/24 14:10

LABORATORY CONTROL SAMPLE: 4513597

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 400 415 104 80-120

SAMPLE DUPLICATE: 4513598

92747267003 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 141 **Total Dissolved Solids** 141 0 mg/L 10

SAMPLE DUPLICATE: 4513599

Date: 08/20/2024 06:00 PM

92747305002 Dup Max Parameter RPD RPD Units Result Result Qualifiers Total Dissolved Solids 93.0 87.0 7 10 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92747267

QC Batch: 875570 Analysis Method: SM 2320B-2011
QC Batch Method: SM 2320B-2011 Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92747267001, 92747267002, 92747267003, 92747267004, 92747267005

METHOD BLANK: 4509947 Matrix: Water

Associated Lab Samples: 92747267001, 92747267002, 92747267003, 92747267004, 92747267005

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed Alkalinity, Total as CaCO3 ND 5.0 08/14/24 16:17 mg/L Alkalinity, Bicarbonate (CaCO3) ND 5.0 08/14/24 16:17 mg/L

LABORATORY CONTROL SAMPLE: 4509948

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Alkalinity, Total as CaCO3 50 52.4 105 80-120 mg/L

LABORATORY CONTROL SAMPLE: 4509949

Date: 08/20/2024 06:00 PM

LCS Spike LCS % Rec Conc. % Rec Limits Qualifiers Parameter Units Result 107 80-120 Alkalinity, Total as CaCO3 mg/L 50 53.6

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4509950 4509951

MS MSD 92747247001 MS MSD MS MSD Spike Spike % Rec Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual 50 50 25 Alkalinity, Total as CaCO3 55.7 106 107 101 103 80-120 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4509952 4509953

MSD MS 92747247002 Spike Spike MS MSD MS MSD % Rec Max % Rec Parameter Units Result Conc. Result Result % Rec Limits **RPD** RPD Conc. Qual Alkalinity, Total as CaCO3 mg/L 59.3 50 50 108 110 98 101 80-120 1 25

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Plant Arkwright-CCR Ash Pond

LABORATORY CONTROL SAMPLE: 4500640

Date: 08/20/2024 06:00 PM

Pace Project No.: 92747267

QC Batch: 875472 Analysis Method: EPA 9056A

QC Batch Method: EPA 9056A Analysis Description: 9056 IC anions 28 Days

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92747267001, 92747267002, 92747267003, 92747267004, 92747267005

METHOD BLANK: 4509648 Matrix: Water

Associated Lab Samples: 92747267001, 92747267002, 92747267003, 92747267004, 92747267005

	Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Ch	lloride	mg/L	ND ND	1.0	08/14/24 12:44	
Flu	uoride	mg/L	ND	0.10	08/14/24 12:44	
Su	lfate	mg/L	ND	1.0	08/14/24 12:44	

LABORATORY CONTROL SAMPLE.	4509649					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	50.7	101	90-110	
Fluoride	mg/L	2.5	2.6	103	90-110	
Sulfate	mg/L	50	51.1	102	90-110	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4509650						4509651											
			MS	MSD													
		92747247001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max						
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual					
Chloride	mg/L	7.5	50	50	58.2	59.1	101	103	90-110	2	10						
Fluoride	mg/L	ND	2.5	2.5	2.6	2.7	101	103	90-110	2	10						
Sulfate	mg/L	7.6	50	50	58.6	59.6	102	104	90-110	2	10						

MATRIX SPIKE & MATRIX SF		4509653										
			MS	MSD								
		92747267005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	7.6	50	50	58.0	58.6	101	102	90-110	1	10	
Fluoride	mg/L	ND	2.5	2.5	2.6	2.6	101	102	90-110	1	10	
Sulfate	mg/L	7.5	50	50	58.4	58.9	102	103	90-110	1	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92747267

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 08/20/2024 06:00 PM

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Plant Arkwright-CCR Ash Pond

Pace Project No.: 92747267

Date: 08/20/2024 06:00 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92747267001	ARK-BC-0.8a	EPA 3010A	875955	EPA 6010D	876037
92747267002	ARK-BC-0.5.5	EPA 3010A	875955	EPA 6010D	876037
92747267003	ARK-BC-0.5.6	EPA 3010A	875955	EPA 6010D	876037
92747267004	ARK-BC-0.5.7	EPA 3010A	875955	EPA 6010D	876037
92747267005	ARK-BC-BR	EPA 3010A	875955	EPA 6010D	876037
92747267001	ARK-BC-0.8a	EPA 3005A	875521	EPA 6020B	875636
92747267002	ARK-BC-0.5.5	EPA 3005A	875521	EPA 6020B	875636
92747267003	ARK-BC-0.5.6	EPA 3005A	875521	EPA 6020B	875636
92747267004	ARK-BC-0.5.7	EPA 3005A	875521	EPA 6020B	875636
92747267005	ARK-BC-BR	EPA 3005A	875521	EPA 6020B	875636
92747267001	ARK-BC-0.8a	SM 2540C-2015	875851		
92747267002	ARK-BC-0.5.5	SM 2540C-2015	875851		
92747267003	ARK-BC-0.5.6	SM 2540C-2015	876190		
92747267004	ARK-BC-0.5.7	SM 2540C-2015	876190		
92747267005	ARK-BC-BR	SM 2540C-2015	876190		
92747267001	ARK-BC-0.8a	SM 2320B-2011	875570		
92747267002	ARK-BC-0.5.5	SM 2320B-2011	875570		
92747267003	ARK-BC-0.5.6	SM 2320B-2011	875570		
92747267004	ARK-BC-0.5.7	SM 2320B-2011	875570		
92747267005	ARK-BC-BR	SM 2320B-2011	875570		
92747267001	ARK-BC-0.8a	EPA 9056A	875472		
92747267002	ARK-BC-0.5.5	EPA 9056A	875472		
92747267003	ARK-BC-0.5.6	EPA 9056A	875472		
92747267004	ARK-BC-0.5.7	EPA 9056A	875472		
92747267005	ARK-BC-BR	EPA 9056A	875472		

Pace® Location Requested (Cit Pace Analytical Peachtree Corners 110 Technology Pkwy, Peachtree Col			CHAIN-OF-CUSTODY Analytical Request Document Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevant fields					4	10	#:	9	27	74	72	26	7	rell odi	in I ahel Here		of 20	5 		
Company Name: ARCADIS - Atlanta			Contact/Report To	: Kelley Sh	arpe							111		101	1111	11						2	2
treet Address: 2839 Paces Ferry Rd, Atlanta, GA	\ 30339		Phone #:	(770)547						Ш	Ш	Ш	Ш	Ш								Page	, l
			E-Mail:	kelley.sh	arpe@arcadis.co	m				92	747	267		181	ш	Щ						D.	.
			Cc E-Mail:		Atl + GA Power Di		ist			-													- 1
ustomer Project #:		-	Vi-Tellicon (VIV)						1				Speci	fy Cont	ainer Siz	e **			1	**Container Size: (1)	1L, (2) 500mL, (3) 250mL ((4)
roject Name: Plant Arkwright-CCR Ash Pond			Invoice To:	Accounts	Payable				_	\neg		1	-	.,	The total			— T		125mL, (5) 100mL, (6	6) 40mL vial, (7) Er		
			Invoice E-Mail:		owerinvoices@s	outhernco.co	om					Identii	v Cont	ainer P	esenuat	lve Type	***			TerraCore, (9) 90mL,			_
ite Collection Info/Facility ID (as applicable):			Purchase Order # (T	y come	anner r	CSCIVAL	ve Type				*** Preservative Typ H25O4, (4) HCl, (5) N			
- AA			applicable):	01 002-17	4 0003					-			Δ.	alveie D	equeste	<u>_</u>		\rightarrow	H2SO4, (4) HCl, (5) NaOH, (6) Zn Acetate, (7) NaHSO4, (8) Sod. Thiosulfate, (9) Ascorbic Acid, (10)			(10)	
Plant Arkwright St	<i>u</i> 5		Quote #:										A	alysis N	equeste	<u> </u>	-			MeOH, (11) Other			_
	[]CT []ET		County / State orig	in of sample(s): Georgia													- 1		Proj. Mgr. Maiya Park		3	₽
	tory Program (DW,	RCRA, et		Reportabl		l No				_										AcctNum / Cli			i I
					8.8					only										≥	ciicib.	1	<u> </u>
[] Level II [] Level IV	Rus	sh (Pre-a	approval required	1):	DW PWS	ID # or WW Per	rmit # as	applicable	\$:	9									J	Table #:			<u>.</u>
[] EQUIS	Same Day [] 1 Da	ay [] 2	Day [] 3 Day []	Other						ΞŢ	g		arb)							SO S			분행
Date R	tesults	De	W TAT		Field Filtered (if ap	oplicable): [] Yes	[] No		°,	9	a Z	BiC					- 1	1	Profile / Temp	olate:		Sam
[] Other Request Matrix Codes (Insert in Matrix box below): Drinking Wat				W. Denduct II	Analysis:	11/01/11/5/	MAIN! T	(Pet		SE	35	Mg,	otal/							15836	=" =		į
B), Vapor (V), Surface Water (SW), Sediment (SED), Sludge), soll/solia (ss), C	ii (OL), wipe (WP), 11	ssue (15),	Bioassay	Metals	Metals	χ.	Ĕ	4				- 1		Prelog / Bottle			<u>.</u>
		Comp /	Composite		Collected or Cor	nposite End	#	Res. Cl	hlorine	≥	=	<u>'</u>	ij	804		- 1		- 1	1	EZ 31447	30		غ ڏ
Customer Sample ID	Matrix *	Grab	Date	Time	Date	Time	Cont.	Results		Арр.	Арр.	Metals	Alkalinity (Total/BiCarb)	CI, F,	TDS					Sample	Comment		Preservation non-conformance identified sample.
ARK-BC-0.8a	ws	G	8/14/24	1150			3			X	Х	Х	X	X	X								
ARK-BC-0.5.5	ws	G	8/12/24	1211			3			X	X	Х	X	Х	Х								
ARK-BC-0.5.6	ws	G	8/12/24	1217			3			Х	Х	Х	X	Х	Х								
ARK-BC-0.5.7	ws	G	8/12/24	1116			3			Х	Х	Х	Х	Х	Х								
ARK-BC-BR	ws	G	8/12/24	1043			3			х	х	х	Х	Х	Х								\neg
																			111				
						L,																	4
Additional Instructions from Pace®: ARK-CSURF-ASSMT-2024S2				Collected By:	C	1 /	,			Custor	ner Rer	narks / s	special	Condit	ons / Po	ssible H	lazards:	:					
ARR-CSURF-ASSIVI1-202452				Signature:	e) Gracely	4 G N				# Co	olers:		Thermo	meter ID		Correction	on Factor	r (°C):	Obs. 1	Temp. (°C) Cor	rrected Temp. (°C)) On	lce:
Relinquished by/Company: (Signature) AVCo	7013	Date/Time	S/13/24 1325 Received by/Company: (Signature)							Date/T	13	24	, ,	25		Tracking	Number:						
Relinquished by/Company: (Signature)	1-1-	Date/Time	Date/Time: Received by/Company: (Signature)				-			Date/Ti		(13	رے		Delivere	ed by: [] In- Per	rson [] Cou	rler				
Relinquished by/Company: (Signature)	Date/Time: Received by/Company: (Signature)								Date/Ti	me:					[] FedEX [] UPS [] Other			= 1					
Relinquished by/Company: (Signature) Date/Time:			e:	Received by/Company: (Signature)				Date/Time:						Page: 1 of 1									

Pace	DC#_Title: ENV-FRM-HUN1-0083 v05_Sample Condition
analytical services	Effective Date: 05/24/2024
Laboratory red	eiving samples:

Laboratory receiving samples: Asheville	ntersvi	lle 🗌	Raleigh[echanicsv	lle Atlanta Kernersville
Sample Condition Client Name:					WO#	<i>‡</i> : 92747267
Upon Receipt Accounts - Alkanta			P	roject	PM: MF	Due Date: 08/20/24
Courier: Fed Ex UPS	USPS		 ∠ Clie	ent	CLIENT	: GA-ArcadAtl
☐ Commercial ☐ Pace	Othe	r:				
Custody Seal Present? Yes No Seals Inte	act?	Yes	∏No			als Person Examining Contents: Size ow
Packing Material:	Bags	□None	Otl	her		Biological Tissue Frozen? Yes No No NA
Thermometer: ☐IR Gun ID: 270		. 1215	v Date		INana	
Correction Eactors	Type of Ice	e: 🔼 V	Vet ∐Bl	ue	None	5) 5) Y
Cooler Temp: 5. 4 Correction Factor. Add/Subtract (°C)	U			٦		e above freezing to 6°C ut of temp criteria. Samples on ice, cooling process
Cooler Temp Corrected (°C):					has begun	•
USDA Regulated Soil (N/A, water sample)						for the same of the same time the
Did samples originate in a quarantine zone within the Uni (check maps)? ☐ Yes ☐ No	ted States	:: CA, NY, c	or SC			inate from a foreign source (internationally, and Puerto Rico)?
(check maps)? Tes No						Comments/Discrepancy:
Chain of Custody Present?	✓Yes	□No	□n/a	1.		
Samples Arrived within Hold Time?	∠ Yes	□No	□N/A	2.		
Short Hold Time Analysis (<72 hr.)?	∠ Yes	□No	□N/A	3,		
Rush Turn Around Time Requested?	∠ Yes	□No	□N/A	4.	5 DAY TO	41
Sufficient Volume?	Yes	□No	□N/A	5.	•	
Correct Containers Used?	☑Yes ☑Yes	□No □No	□n/a □n/a	6.		San
-Pace Containers Used?	☑ Yes	□No	□N/A	7.		
Containers Intact?	□Yes	No	□N/A	8.		
Dissolved analysis: Samples Field Filtered? Sample Labels Match COC?	Yes	□No	□N/A	9.		
Sample Labels Water See.	_					
-Includes Date/Time/ID/Analysis Matrix: WS	<u> </u>					
Headspace in VOA Vials (>5-6mm)?	□Yes	□No	☑N/A	10.		
Trip Blank Present?	Yes	□No	Ø N/A	11.		
Trip Blank Custody Seals Present?	□Yes	□No	⊿ N/A			#
COMMENTS/SAMPLE DISCREPANCY						Field Data Required? Yes No
			Lo	ot ID o	olit containe	rs: %
CLIENT NOTIFICATION/RESOLUTION						
						187
				ě		
		_	Data /Timos			W.
Person contacted:		====	Date/Time:			
Project Manager SCURF Review:					Date:	γ.
Project Manager SRF Review:					Date:	(47

Upon Receipt

DC#_Title: ENV-FRM-HUN1-0083 v05_Sample Condition Upon Receipt

Effective Date: 05/24/2024

WO#: 92747267

Project #

PM: MP

Due Date: 08/20/24

CLIENT: GA-ArcadAtl

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

***Check all unpreserved Nitrates for chlorine

	atory							Eden[vood [☐ F	taleigh	<u> </u>	Mech	anics	ville _	At	lanta[Z k	Gerner	sville[_
Client	ARC	AD I	- 4	HA	7 16	P	rofile/	EZ (Ci	rcle or	ne)_ 5	144	130	N	otes_															
ltem#	BP4U-125 mL Plastic Unpreserved (N/A) (Cl-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)		BP45-125 mL Plastic H2SO4 (pH < 2) (Cl-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP42-125 mL Plastic ZN Acetate & NaOH (>9)	BP4B-125 mL Plastic NaOH (pH > 12) (Cl-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2SO4 (pH < 2)	DG94-40 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unpreserved (N/A)	DG9V-40 mL VOA H3PO4 (N/A)	KP7U-50 mL Plastic Unpreserved (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3R-250 mL Plastic (NH2)2504 (9.3-9.7)	AGOU-100 mL Amber Unpreserved (N/A) (CI-)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mt Amber Unpreserved vials (N/A)
сс																													
1			2				X																						_
2			2				X																						
3			2				X																						
4	1		2				X													22									
5	/		9				X																						
6	/																												
7	/																												
8							/																						
9	/				/			7	/																				
10	/				/	(/																					
11					/			/	7																				
12					/	/		/																					

		рН Ас	ljustment Log for Pres	served Samples	ia	
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot#

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DENR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

B.5 Data Quality Evaluation

DATA USABILITY SUMMARY

Steven Elliott (Stantec) reviewed three data packages from GEL Laboratories (GEL) for the analysis of water samples collected August 20, 2024, at the Georgia Power Arkwright Plant AP2 site. Samples were collected according to the Field Sampling Plan – Plant Arkwright (Amec Foster Wheeler, 2016).

Analyses requested included:

- SW-846 6020B Metals, total and dissolved, by inductively coupled plasma mass spectrometry (ICP/MS)
- SW-846 7470A Mercury by manual cold-vapor
- EPA 300 Rev 2.1 Chloride, fluoride, and sulfate by ion chromatography
- SM 2540C 2015 Total dissolved solids (TDS)
- EPA 353.2 Nitrate/nitrite as nitrogen
- SM 2320B Alkalinity, total, bicarbonate, carbonate
- EPA Method 904/ SW846 9320 Modified Radium 228 by Gas Flow Proportional Counting
- EPA Method 903.1 Mod Radium 226

Data were reviewed and validated as described in the field sampling plan and the *National Functional Guidelines for Inorganic Superfund Methods Data Review* (November 2020). The results of the review/validation are discussed in this Data Usability Summary (DUS) and the associated Laboratory Data Review Checklists.

DATA REVIEW/VALIDATION RESULTS

Introduction

Ten (10) groundwater samples, one (1) field blank, one (1) equipment blank, and one (1) field duplicate sample were analyzed for one or more of the analyses listed above. Table 1 lists the field identifications cross-referenced to laboratory identifications. Table 2 is a summary of qualified data. Tables 3a through 3e summarize field duplicate results.

Analytical Results

The data packages contain a minimum of one quality control batch per analytical method analyzed. The quality control batch identifies the laboratory QC samples that correspond to the designated field samples. Not detected results are reported as less than the value of the method detection limit (MDL).

Preservation and Holding Times

The samples were evaluated for agreement with the chain-of-custody forms. The samples were received in the appropriate containers with the paperwork filled out properly. The laboratory sample condition upon receipt forms indicates all samples were received at a temperature of 2.0°C. All samples were analyzed within the technical holding time. No data were qualified.

Calibrations

Case narratives indicate Initial and continuing calibration verification data were within method acceptance criteria.

Blanks

<u>Laboratory Method Blanks</u>. No contamination was detected in any of the laboratory method blanks.

<u>Field Blanks</u>. Field blanks were analyzed for the full suite of sample analyses and all analytes were not detected with the following exceptions:

SDG 682093

- Chloride was detected in the blank ARK-AP2-EB-03 at a concentration below the laboratory Reporting Limit (RL). All associated sample results were reported with results greater than 10 times the blank concentration and therefore no qualification was necessary.
- Nitrate/nitrite was detected in the blank ARK-AP2-FB-03 at a concentration above the laboratory RL. Detected sample results reported with results less than 10 times the blank concentration have been qualified as estimated (J).

Laboratory Control Samples

Laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) recoveries met the laboratory acceptance criteria for all analyses.

Matrix Spike/Matrix Spike Duplicates

Site-specific MS/MSD precision and accuracy results were within the laboratory acceptance criteria.

Laboratory Duplicates

Appropriate analytical duplicates were analyzed and RPDs were within the laboratory acceptance criteria.

Field Precision

One set of field duplicate samples was collected for this sampling event (see Table 3a for sample/duplicate identification and precision calculations). The calculated RPDs between sample and duplicate were within the QAPP acceptance criteria of 25% for all analytes detected above five times the RL. For results reported less than five times the RL, with a difference between sample and duplicate less than two times the RL are also considered acceptable (qualified "A*"). All field duplicate precision was considered acceptable with the following exception:

SDG 652690

• Results for nitrate/nitrate in the field duplicate pair ARK-ARAMW-8/ ARK-AP2-FD-03 were less than five times the RL and the difference between the two results was greater than two times the RL. Nitrate/nitrite has been qualified as estimated (J) in these sample.

Summary

The groundwater analytical data are usable for the purpose of determining current concentrations of COCs in this medium at the affected property. A summary of qualified data is presented in Table 2 below.

References:

Amec Foster Wheeler, 2016. Arkwright Field Sampling Plan. October.

United State Environmental Protection Agency (USEPA), 2020. National Functional Guidelines for Superfund Inorganic Methods Data Review. November.

Table 1 – Cross-Reference between Laboratory and Field Identifications

	Laboratory		Laboratory and Field Identifica	
Field Identification	Identification	SDG	Analyses	Sample Date
ARK-ARGWA-19	682093001	682093	6020B, 7470A, 300, 2540C, 353.2, 2320B	08/20/2024
ARK-ARAMW-9	682093010	682093	6020B, 7470A, 300, 2540C, 353.2, 2320B	08/20/2024
ARK-ARGWA-20	682093002	682093	6020B, 7470A, 300, 2540C, 353.2, 2320B	08/20/2024
ARK-ARAMW-7	682093008	682093	6020B, 7470A, 300, 2540C, 353.2, 2320B	08/20/2024
ARK-ARGWC-22	682093004	682093	6020B, 7470A, 300, 2540C, 353.2, 2320B	08/20/2024
ARK-ARGWC-21	682093003	682093	6020B, 7470A, 300, 2540C, 353.2, 2320B	08/20/2024
ARK-ARGWC-23	682093005	682093	6020B, 7470A, 300, 2540C, 353.2, 2320B	08/20/2024
ARK-ARAMW-1	682093006	682093	6020B, 7470A, 300, 2540C, 353.2, 2320B	08/20/2024
ARK-ARAMW-2	682093007	682093	6020B, 7470A, 300, 2540C, 353.2, 2320B	08/20/2024
ARK-ARAMW-8	682093009	682093	6020B, 7470A, 300, 2540C, 353.2, 2320B	08/20/2024
ARK-AP2-EB-03	682093011	682093	6020B, 7470A, 300, 2540C, 353.2	08/20/2024
ARK-AP2-FD-03	682093012	682093	6020B, 7470A, 300, 2540C, 353.2	08/20/2024
ARK-AP2-FB-03	682093013	682093	6020B, 7470A, 300, 2540C, 353.2	08/20/2024
ARK-ARGWA-19	682097001	682097	903.1, 904	08/20/2024
ARK-ARAMW-9	682097010	682097	903.1, 904	08/20/2024
ARK-ARGWA-20	682097002	682097	903.1, 904	08/20/2024
ARK-ARAMW-7	682097008	682097	903.1, 904	08/20/2024
ARK-ARGWC-22	682097004	682097	903.1, 904	08/20/2024
ARK-ARGWC-21	682097003	682097	903.1, 904	08/20/2024
ARK-ARGWC-23	682097005	682097	903.1, 904	08/20/2024
ARK-ARAMW-1	682097006	682097	903.1, 904	08/20/2024
ARK-ARAMW-2	682097007	682097	903.1, 904	08/20/2024
ARK-ARAMW-8	682097009	682097	903.1, 904	08/20/2024
ARK-AP2-EB-03	682097011	682097	903.1, 904	08/20/2024

Field Identification	Laboratory Identification	SDG	Analyses	Sample Date
ARK-AP2-FD-03	682097012	682097	903.1, 904	08/20/2024
ARK-AP2-FB-03	682097013	682097	903.1, 904	08/20/2024
ARK-ARGWA-19	682098001	682098	6020B (D) (Mg, Fe)	08/20/2024
ARK-ARAMW-9	682098010	682098	6020B (D) (Mg, Fe)	08/20/2024
ARK-ARGWA-20	682098002	682098	6020B (D) (Mg, Fe)	08/20/2024
ARK-ARAMW-7	682098008	682098	6020B (D) (Mg, Fe)	08/20/2024
ARK-ARGWC-22	682098004	682098	6020B (D) (Mg, Fe)	08/20/2024
ARK-ARGWC-21	682098003	682098	6020B (D) (Mg, Fe)	08/20/2024
ARK-ARGWC-23	682098005	682098	6020B (D) (Mg, Fe)	08/20/2024
ARK-ARAMW-1	682098006	682098	6020B (D) (Mg, Fe)	08/20/2024
ARK-ARAMW-2	682098007	682098	6020B (D) (Mg, Fe)	08/20/2024
ARK-ARAMW-8	682098009	682098	6020B (D) (Mg, Fe)	08/20/2024

Table 2 – Qualified Analytical Data

Field Identification	Analyte	Qualification / Code	Reason for Qualification
ARK-ARAMW-8	Nitrate/nitrite	J / FD2	High FD absolute difference
ARK-AP2-FD-03	Nitrate/nitrite	J / FD2	High FD absolute difference
ARK-ARGWC-22	Nitrate/nitrite	J+ / BFH	Detected in FB
ARK-ARAMW-2	Nitrate/nitrite	J+ / BFH	Detected in FB

 $\ensuremath{\mathsf{BFH}}-\ensuremath{\mathsf{Blank}}$ Field High – detected in the field blank (FB) above the RL

FD2 - Field duplicate absolute difference does not meet quality control criteria

J – estimated result

J+ – The analyte was detected in an associated blank; estimated data with a high bias

Table 3a - Field Precision

		Table 3a Tiel	_		
Field		Sample Result	Duplicate		
Identification	Analyte	(mg/L)	Result (mg/L)	RPD ^a	Qualified
ARK-ARAMW-8/	Chloride	4.54	4.53	0.2%	Α
ARK-AP2-FD-03	Fluoride	0.199	0.198	<5*RL, <2*RL	A*
	Sulfate	109	108	0.9%	Α
	Boron	0.675	0.657	<5*RL, <2*RL	A*
	Barium	0.112	0.111	0.9%	Α
	Calcium	79.2	77.4	2.3%	Α
	Cobalt	0.00277	0.00298	<5*RL, <2*RL	A*
	Lithium	0.00586 J	0.0055 J	<5*RL, <2*RL	A*
	Iron	0.244	NA	NC	None
	Magnesium	33.7	NA	NC	None
	Molybdenum	0.195	0.187	<5*RL, <2*RL	A*
	Sodium	17.7	NA	NC	None
	Potassium	6.91	NA	NC	None
	Aluminum	0.0279 J	NA	NC	None
	Manganese	0.187	NA	NC	None
	Nitrate/nitrite	0.007 U	2.98	<5*RL, >2*RL	J
	TDS	422	438	3.7%	Α
	Total Alkalinity	251	NA	NC	None
	Bicarbonate	251	NA	NC	None
	Radium 226	0.595	1.44 U	<5*RL, <2*RL	A*

a RPD = ((SR - DR)*200)/(SR + DR)

A - Acceptable Data.

A* - Acceptable data where results were less than 5X the RDL and the difference between sample and duplicate was less than 2X the RDL.

J – Estimated detected.

NA – not analyzed

NC - not calculated

Appendix C Well Installation Report

February 7, 2025

Attention: Mr. Joju Abraham, PG Southern Company Services 241 Ralph McGill Blvd NE Atlanta, GA 30308

Reference: Piezometer Installation (ARAMW-10, ARAMW-11, and ARAMW-12) Report

Georgia Power Company - Plant Arkwright, Ash Pond 2 Dry Ash Stockpile

Macon, Georgia

Dear Mr. Abraham,

Stantec Consulting Services Inc. (Stantec) is submitting this Piezometer Installation Report to Southern Company Services, Inc. (SCS) and Georgia Power Company (Georgia Power), which documents the construction of three piezometers at Plant Arkwright in Macon, Georgia (Site). The well installation was completed to meet the requirements promulgated in the United States Environmental Protection Agency (US EPA) coal combustion residuals (CCR) rule [40 Code of Federal Regulations (CFR) Part 257, Subpart D], specifically 40 CFR §257.91(e)(1) and Georgia Environmental Protection Division (GA EPD) Rules for Solid Waste Management 391-3-4-.10. The installation of the piezometers was conducted under the oversight and direction of Andreas Shoredits, a Georgia Registered Professional Geologist (PG) and completed between October and December 2024.

Piezometers were installed downgradient of Ash Pond 2 Dry Ash Stockpile (AP-2 DAS) near existing wells ARAMW-7 and ARAMW-8. Piezometer ARAMW-10 was installed approximately 35 feet to the west northwest of ARAMW-7, and ARAMW-11 was installed approximately 30 feet to the west northwest of ARAMW-7. Piezometer ARAMW-12 was installed approximately 12 feet to the north northwest of ARAMW-8. The piezometer construction details are included in Table 1 and the locations are shown on Figure 1. This report provides a summary of the drilling and installation activities for piezometers ARAMW-10, ARAMW-11, and ARAMW-12.

Piezometer Drilling Activities

Piezometers ARAMW-10, ARAMW-11, and ARAMW-12 were drilled and installed by SCS Civil Field Services (CFS) at the Site, between October 22 and December 5, 2024.

An experienced Stantec geologist was present on Site to oversee and record the drilling and piezometer construction activities under the supervision of a professional geologist registered to practice in Georgia. Drilling methods employed for borehole advancement included hollow stem auger (HSA) and wireline drilling techniques. The drilling equipment consisted of a CME 550 wheel-mounted drilling rig, equipped with 2.25-inch hollow stem augers and wireline PQ sized barrels for bedrock and fractured rock drilling. A 5.5-inch diameter steel outer-casing was installed into the overburden with the transition of boring advancement from unconsolidated materials into underlying bedrock. For boring ARAMW-11, no outer casing was utilized due to the boring terminating in overburden material and drilling was conducted using HSA technology. During drilling in overburden, unconsolidated material disturbed samples were collected using split spoon samplers. For drilling in partially weathered rock and competent rock continuous core

February 7, 2025
Piezometer Installation (ARAMW-10, ARAMW-11, and ARAMW-12) Report
Georgia Power Company – Plant Arkwright, Ash Pond 2 Dry Ash Stockpile
Page 2 of 5

samples were collected. Samples were logged and photographed in the field for lithologic and soil strength properties. Subsurface boring logs are provided in Appendix A.

Borehole Geophysics

Borehole geophysics was conducted in the open hole interval of piezometer ARAMW-12 by ARM Geophysics (ARM). The purpose of the geophysical investigation was to identify the depth, foliation, and orientation of rock fractures as related to potential water-bearing zones to aid in determination of well screen length and placement for this boring. The geophysical logging was performed on November 14, 2024, and included the following methods: optical and acoustic televiewers (OTV and ATV), 3-arm caliper, and electromagnetic flowmeter (EMFM) under ambient condition. The results of logging the open bedrock borehole interval of 39.2-65.4 feet below ground surface (bgs) showed that water producing fractures may occur only within a narrow range of depth, at approximately 62-64 feet bgs, and with a low measurable flow rate between 0.078 to 0.095 gallons per minute. The report summarizing the results of geophysical borehole logging is included in Appendix B.

Piezometer Construction Activities

Piezometers were installed in the boreholes for ARAMW-10 and ARAMW-11 using factory-cleaned and sealed Schedule 40 polyvinyl chloride (PVC) products. Each well was constructed with a 10-foot section of 4-inch outer diameter (OD) and 2-inch inner diameter (ID), flush-threaded, 0.010-inch factory-slotted PVC U-Pack screen. The annulus of each U-Pack screen section was filled with No. 1 filter sand. The screen was placed at the target depth, with the remainder of the piezometer being constructed from 10-foot sections of 2-inch ID, flush-threaded, PVC casing riser. For ARAMW-10, the well bottom was installed approximately 16.7 feet above the borehole termination depth and the borehole sump was filled with 1/4" diameter coated bentonite pellets. A flush-threaded PVC end cap was placed on the bottom of each piezometer to provide a 0.5-foot sump/sediment trap. and the top of each piezometer extended to above grade.

For the ARAMW-12 boring, a piezometer was installed using a factory-cleaned and sealed Schedule 40 polyvinyl chloride (PVC) product constructed with 15 feet of 2-inch inner diameter (ID), flush-threaded, 0.010-inch factory-slotted PVC screen. The screen was placed near the bottom of the borehole, with the remainder of the piezometer being constructed from 10-foot sections of 2-inch ID, flush-threaded, PVC casing riser. A flush-threaded PVC end cap was placed on the bottom of the piezometer to provide a 0.5-foot sump/sediment trap, and the top of the piezometer extended above grade.

Following placement of the screen and casing, the annular space in each borehole adjacent to the screen was filled with US Standard Sieve size No. 1 filter pack sand as appropriate for the formation. The filter pack sand was added to each borehole and extended a minimum of 2 feet above the depth of the tops of the screens. A filter pack seal, composed of hydrated 1/4" diameter coated bentonite pellets, was placed on top of each filter pack. Sand pack/ filter pack material and bentonite pellets were tremied in place through the 6-inch steel outer casing for the bedrock piezometers ARAMW-10 and ARAMW-12, and through the hollow stem auger for the overburden piezometer ARAMW-11. Each bentonite seal was hydrated using potable water and allowed to cure for approximately two hours prior to any further well construction activities. After hydration of each bentonite seal, the remaining annular space was grouted with an AquaGuard® bentonite grout 30% solids mixture to approximately 2 feet below ground surface using a tremie method.

February 7, 2025
Piezometer Installation (ARAMW-10, ARAMW-11, and ARAMW-12) Report
Georgia Power Company – Plant Arkwright, Ash Pond 2 Dry Ash Stockpile
Page 3 of 5

The surface completions for ARAMW-10 and ARAMW-11 consist of a flush-mounted manhole with an 8-in diameter bolt-down steel cover that is set into a 3-foot by 3-foot wide by 4-inch-thick concrete well pad. The well head is capped with a locking well plug.

The surface completion for ARAMW-12 consists of a locked, 6-inch diameter aluminum protective casing and a 3-foot by 3-foot wide by 4-inch-thick concrete well pad with an engraved tag showing the piezometer name. The annular space of the aluminum protective casing was filled with pea gravel to approximately 2 inches from top of PVC. A weep hole was drilled into the lower side of the protective casing and a vent hole was drilled in the PVC riser near the locking plug placed on the well head. Construction details for the piezometers are shown on the piezometer installation logs in Appendix C.

Piezometer Development Activities

Development activities for the newly installed piezometers ARAMW-10 and ARAMW-11 was initiated on November 11, 2024, and completed on November 12, 2024. Well Development activities were performed by Stantec in general accordance with the Piezometer Development Procedures prepared by SCS (March 2016), and the US EPA Science and Ecosystem Support Division (SESD) Design and Installation of Piezometers (SESDGUID-101-R2, January 2018). The piezometer sump was initially surged to resuspend any settled material at the bottom of the well, after which the length of the screen interval was over-pumped using a Reclaimer pump system.

Development of well ARAMW-12 was attempted on December 11, 2024, by over-pumping and surging using a submersible Proactiv Tornado pump. The well, however, did not sufficiently recharge for development. Standard development practices were not possible due to lack of recharge, but water quality readings were collected.

During development activities, water quality measurements of pH, temperature, specific conductance, oxidation reduction potential (ORP), and dissolved oxygen (DO) were conducted utilizing a calibrated In-Situ AquaTroll® 400 multiparameter probe. Turbidity was measured using a Hach 2100Q portable turbidimeter. Final turbidity values below 5 nephelometric turbidity units (NTUs) were achieved during development of ARAMW-10 and ARAMW-11 and an adequate volume of groundwater had been removed to achieve stable water chemistry parameters. Water level measurements were collected using a decontaminated electronic water level indicator, referenced to a permanent marking at the top of the casing (black mark) and recorded to within 0.01 foot. Well development forms and calibration logs are included in Appendix D and geochemical data are summarized in Table 2.

Piezometer Survey

The newly installed piezometers along with existing AP-2 piezometers were surveyed on December 9, 2024, by an SCS CFS land surveyor registered in the state Georgia. The survey was completed with a positional tolerance of 0.10-foot for horizontal and 0.01-foot for vertical measurements. The top of the PVC casing was surveyed to 0.001-foot vertical tolerance and a marking was made on the PVC to use for reference during future measurements. Surveyed coordinates and elevations are presented on the subsurface boring log and piezometer installation log and in Table 1. The certified surveyor's report is attached as Appendix E.

February 7, 2025 Piezometer Installation (ARAMW-10, ARAMW-11, and ARAMW-12) Report Georgia Power Company – Plant Arkwright, Ash Pond 2 Dry Ash Stockpile Page 4 of 5

Closing

Stantec appreciates the opportunity to assist SCS and Georgia Power with this project. Should you have any questions or require additional information, please contact the undersigned.

Respectfully,

Stantec Consulting Services Inc.

Andreas Shoredits, P.G.

Geologist

Andreas.Shoredits@stantec.com

(470) 371-9727

Jennifer L Kolbe, Ph.D., P.E.

Senior Principal

jennifer.kolbe@stantec.com

(765) 418-8953

Attachments:

Figure 1 – 2024 Monitoring Well and Piezometer Location Map

Table 1 – Summary of Piezometer Construction

Table 2 – Piezometer Development Summary

Appendix A - Subsurface Boring Logs

Appendix B – Geophysical Record of Borehole ARAMW-12

Appendix C – Piezometer Installation Logs

Appendix D – Piezometer Development Forms

Appendix E – Certified Piezometer Survey

Appendix F – SCS Drilling Bond

February 7, 2025 Piezometer Installation (ARAMW-10, ARAMW-11, and ARAMW-12) Report Georgia Power Company – Plant Arkwright, Ash Pond 2 Dry Ash Stockpile Page 5 of 5

CERTIFICATION STATEMENT

I certify that I am a qualified ground-water scientist who has received a baccalaureate or post-graduate degree in the natural sciences and have sufficient training and experience in groundwater hydrology and related fields, as demonstrated by state registration and completion of accredited university courses, that enable me to make sound professional judgements regarding groundwater monitoring and containment fate and transport. I further certify that this report was prepared by myself or by a subordinate working under my direction. We certify that the information included is to the best of our knowledge and belief, true, accurate and complete.

Andreas Shoredits, P.G.

Geologist

February 7, 2025

Date

ATTACHMENTS

TABLES

Table 1 – Piezometer Construction Details

Table 2 – Piezometer Development Summary

TABLE 1

SUMMARY OF PIEZOMETER CONSTRUCTION

Georgia Power Company - Plant Arkwright Ash Pond 2 Dry Ash Stockpile Macon, Georgia

Well	Installation Date	Northing ⁽¹⁾	Easting ⁽¹⁾	Top of Casing Elevation (feet) ⁽²⁾	Ground Surface Elevation (feet) ⁽²⁾	Top of Screen Elevation (feet) ⁽³⁾	Screen Bottom Elevation (feet) ⁽³⁾	Screen Length (feet)	Total Well Depth (feet bls) ⁽⁴⁾	Groundwater Zone Screened	Hydraulic Location
					Assessment Mo	onitoring Wells					
ARAMW-10	11/9/2024	1063082.33	2438902.85	308.49	308.39	260.89	250.89	10.0	58.00	Bedrock	Downgradient
ARAMW-11	11/10/2024	1063077.03	2438902.96	308.09	308.02	278.02	268.02	10.0	40.50	Overburden	Downgradient
ARAMW-12	11/21/2024	1062906.98	2439199.15	309.08	305.80	255.90	240.90	15.0	65.40	Bedrock	Downgradient

Notes:

Well top of casing and ground surface surveyed by Southern Company Services Civil Field Services land surveyor on December 16, 2024.

bls - Below land surface

- 1. Horizontal locations referenced to Georgia State Plane West, North American Datum of 1983 (NAD83).
- 2. Vertical elevations are referenced to North American Vertical Datum of 1988 (NAVD88).
- 3. Screen elevations calculated using surveyed Ground Surface Elevations together with well drilling and construction logs.
- 4. Well depth based on well drilling and construction logs.

Table 2 PIEZOMETER DEVELOPMENT SUMMARY Georgia Power Company - Plant Arkwright Ash Pond 2 Dry Ash Stockpile Macon, Georgia

Well	Date Started	Date Finished	Development Method	Measured Total Depth of Well (feet bTOC)	Initial Water level (feet bTOC)	Final Water Level (feet bTOC)	Total Volume Removed (gal)	pH (SU)	Specific Conductance (µS/cm)	Temp (°C)	Turbidity (NTU)	ORP (mV)	DO (mg/L)
ARAMW-10	11/11/2024	11/12/2024	Reclaimer Pump	57.90	11.20	11.80	18.18ª	5.86	1,696	18.79	1.11	-17.4	0.29
ARAMW-11	11/12/2024	11/12/2024	Reclaimer Pump	40.50	11.27	11.80	12.84	5.63	1,770	19.22	4.03	-169.5	0.50
ARAMW-12	11/11/2024	11/11/2024	Proactive Tornado/ Bailer	68.82	13.04	68.80	9.00 ^b	7.48	290.27	17.53	132	-188.9	1.29

Notes:

^a On the initial development attempt of ARAMW-10 on 11/11/2024, 13.42 gallons of water were removed from the well.

^b Well water was evacuated

bTOC - below Top of Casing mV - millivolts

gal - gallons mg/L - milligrams per liter

SU - Standard Units ORP - oxidation-reduction potential

uS/cm - microsiemens per centimeter DO - dissolved oxygen °C - degrees Celsius Temp - Tempeature

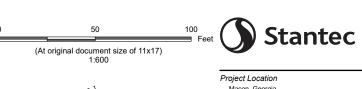
NTU - nephelometric turbidity units

FIGURE

Notes

1. Coordinate System: NAD 1983 StatePlane Georgia West FIPS 1002 Feet

2. Data Sources: Ash Pond Boundaries, Monitoring Wells, Property Boundary, and
Beaverdam Creek locations provided by Southern Company Services, Wood Environment 8
Infrastructure Solutions, and Stantec.


3. Background: Esri, TomTom, Garmin, SafeGraph, FAO, METI/NASA, USGS, EPA, NPS,
USFWS, Esri Community Maps Contributors, @ OpenStreetMap, Microsoft, Esri, TomTom,
Garmin, SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census
Bureau, USDA, USFWSPlant imagery provided by client and is dated 1/22/2024.

Detection Monitoring Well Assessment Monitoring Well Piezometer

Beaverdam Creek (Approximate)

Approximate Property Boundary

___ Ash Pond 2 Dry Ash Stockpile (DAS) (approximate location)

Prepared by DMB on 2/6/2025 TR by AS on 2/6/2025 IR by JK on 2/6/2025

Georgia Power

Plant Arkwright Ash Pond 2 Dry Ash Stockpile

2024 Monitoring Well and Piezometer **Location Map**

APPENDIX A

Subsurface Boring Logs

PROJECT NUMBER 175569434 PROJECT NAME Plant Arkwright **CLIENT** Georgia Power ADDRESS 5241 Arkwright Road, Macon, Ga LOCATION AP-2. Lower bench

DRILLER S. Denty RIG TYPE/ METHOD CME 550/ HSA & wireline TOOL DIA. 5.63-in OD/ 2.25-in ID Aug, PQ core **BORING DEPTH** 74.8 ft

DRILLING COMPANY Southern Company C.F.S. BORING LOCATION N1063082.33, E2438902.85 COMPLETION Flush-mount with 3 ft x 3 ft pad SURFACE ELEVATION 308.39 ft **WELL TOC** 308.49 ft COORD SYS NAD83, NAVD88

COMMENTS Started drilling on 10/22/2024 and completed drilling on 10/26/2024. Well construction LOGGED BY A. Shoredits completed on 11/21/2024 with installation of manhole, locking cover and concrete pad.

CHECKED BY E. Smith

	CHECKED BY E. SHIRLI											
Depth (ft)	Samples (ft)	Soil sample ID & depth taken (ft)	Blow counts	Recovery (ft)	Drilling Method	RQD (%)	Graphic Log	Material Description	nscs	v	Vell Diagram	Elevation (ft)
	0-1.5 (SPT01)		1-1-1	0.95	HSA w/ SPT			0.3-0.5 ft: CCR fly ash, blue grey Silty SAND, red, loose, moist, rootlets	SM			308
2												- 307 - - - - 306
- 3 4	3.5-5.0 (SPT02)		3-2-2	1.35				SAA - No CCR, loose, moist				- 305
5												304
6												302
-7 - - - - - - 8											Bentonite grout	- 301
_	8.5-10		2-4-4	1.4								300
9	(SPT03)							CLAY trace fine grained sand, dark brown, non-plastic to low plasticity, soft, moist	CL			_ 299
10 11												- 298
- - - - - 12								<u>¥</u>				297
13												- 296 - - - - - 295
- - 14 - - -	13.5- 15.0 (SPT04)		WH-2-4	1.5				Sandy CLAY, grey, soft to medium stiff, medium plasticity, moist	CL- SC			- - - - 294

ر Depth (ft)	Samples (ft)	Soil sample ID & depth taken (ft)	Blow counts	Recovery (ft)	Drilling Method	RQD (%)	Graphic Log	Material Description	nscs	Well Diagram	Elevation (ft)
- 16 - 16 											293 292 291
- 18 19 	18.5- 20.0 (SPT05)		8-10-8	1.4				Silty SAND trace sub-rounded gravel and silt, brown/ grey/ tan, loose, wet, fine to coarse grained, micaceous, saprolitic	SP		- 290 - 289 - 289
- - - - - - - - - - - - - - - - - - -											- 288 - 287 - 286
- 23 - 23 24 - 24 25	23.5- 25.0 (SPT06)		21-50/5	0.92				Silty gravelly SAND, brown/ white, loose, dry, fine to		Bentonite grout	- - 285 - - - - 284 - -
- - - 26 - - - - - - 27	27.0 (SPT07) 27.0- 29.0		50/5	0.42				coarse grained, saprolitic	SP- SM		- 283 - 282 - 282 - 281
- 28 - 28 29 29	29.0- 31.0 (SPT09)	ARAMW -10 -SOIL (29.0-	50/5	0.42				Saprolite with very weathered rock lenses, dry			- - - 280 - - - - - - 279
- 30 - 31 - 31 - 32	31.0- 33.0 (SPT10)	31.0 ft) ARAMW -10 -SOIL (31.0- 33.0 ft)	28-50/3	0.75				31.6 ft: Very weathered rock lens, dry			- 278 - 278 277 - 277

Depth (ft)	Samples (ft)	Soil sample ID & depth taken (ft)	Blow counts	Recovery (ft)	Drilling Method	RQD (%)	Graphic Log	Material Description	nscs	w	Well Diagram	
33	33.0- 35.0 (SPT11)		50/2	0.0								275
35	NS											274
36												273
37												271
38											Bentonite grout	270
39												269
40												268
- - 41 - -												267
42	NS							Weathered rock, auger refusal at 42.5 ft.	PWF			266
- 43 - - -					WL w/ PQ core							265
- 44 - - - -	44.0			5.0		70		Temporary steel surface casing set to 44.1 ft. Gravel, sub-angular, fine to coarse grained			Bentonite plug	264
45 - - - 46	44.8- 49.8 (P01)					76		Biotite gneiss, black/grey/white, mod to intensely fractured, 45° mineral banding, alternating qtz veins with dark biotite/hornfels zones, mod weathering 45.0-45.8 ft: 70° fracture, brown surface staining, mod weathering	-		plug	263
40		ARAMW						46.0 ft: 45° fracture, med decomp, slight staining 46.5-46.8 ft: 2x45° bisecting fractures, staining, slight		/// · · · · · ·		262
48		-ROCK (47.7- 47.9 ft) (545 g)						decomp 47.4-47.8 ft: 45° fracture, highly weathered zone, qtz veins w/ coarse sand on planes				261
49								48.0-48.1 ft: 45° fracture wide, mod weathering, coarse gravel SAA, slight to mod fracturing	-		· U-pack & annular sand pack	260
50	49.8-			4.8		96		49.1-49.6 ft: 80° healed fracture			 	259
	54.8 (P02)							50.6-52.0 ft: 80° healed fracture				258

Depth (ft)	Samples (ft)	Soil sample ID & depth taken (ft)	Blow counts	Recovery (ft)	Drilling Method	RQD (%)	Graphic Log	Material Description		Well Diagram		Elevation (ft)
- 51 - 52 - 53 - 53								52.0 ft: 45° fracture, metallic red/ bn minerl inclusions 0.75-in dia				257 - 256 - 255
54 - 55	54.8-		2.2		100		54.1 ft: 45° fracture, metallic minerals, slight weathering			U-pack & annular sand pack	254 	
- 56	56.8 (P03)	(55.7- 55.9 ft) (545 g)						55.7 ft: 45° fractures, black fracture surface, micaceous fine sand on plane, slightly weathered 56.4 ft: Sub-horizontal fracture, brown/red staining,				253
- 57 - 57	56.8- 59.8 (P04)	9.8 P04) 9.8- 4.8		2.9		87		slight to mod weathering, very narrow aperture 57.1 ft: 45° fracture, green minerals, mod disintegration 57.6 ft: 45° fracture, green minerals, slight weathering				- 252 - - - - 251 -
- 58 - - - - - 59							58.8 ft: 45° fracture, green minerals, mod disintegration 59.2 ft: Partial 45° fracture, brown staining along				250 	
60	59.8- 64.8			5.1		89		edge 59.9-60.0 ft: qtz vein				249 - - - 248
61 62	(P05)							61.1 ft: 45° fracture, slight brown staining				- - - 247 -
63		ARAMW						62.4 & 62.6 ft: 45° fracture, slight brown staining			Bentonite –sump	246
64		-10 -ROCK (64.3- 64.5 ft) (480 g)						63.9 ft: 45° fracture, slight brown staining 64.4 ft: 45° fracture, slight brown staining, metallic minerals present			backfill	- - - - 244
65	64.8- 69.8 (P06)			5.0		91		64.6-64.8 ft: qtz vein				243
- - - - - 67								66.1 & 66.4 ft: 45° fracture, slight brown staining				242 241
68								67.6 ft: 45° fracture, slight brown staining, slight decomp.				- 241 - - - 240

Depth (ft)	Samples (ft)	Soil sample ID & depth taken (ft)	Blow counts	Recovery (ft)	Drilling Method	RQD (%)	Graphic Log	Material Description	sosn	Well Di	iagram	Elevation (ft)
- 69 - 70 - 71 - 71	69.8- 74.8 (P07)			4.7		100		70.6 ft: Partial 45° fracture, metallic minerals present			Bentonite	- 239 - 238 - 237
- - - - - - - - - - - - - - - - - - -								73.0-73.8 ft: 70° healed fracture, dark fine grained crystals w/ intense foliation, metallic minerals present		<i>V//////</i>	sump backfill	- 236 - 235 - 234
75							<u> </u>	BOH 74.8 ft bgs. Boring terminated at a predetermined depth.				233
- 76 - - - 77												- 232 - 231
78 78												
- 79 - - - 80												- - 229 - - -
- - - - 81												228 227
- 82 - 83												- - 226 - -
84												- 225 - - - - - 224
85 - - - - - 86												- - - - 223 - -

PROJECT NUMBER 175569434 PROJECT NAME Plant Arkwright **CLIENT** Georgia Power ADDRESS 5241 Arkwright Road, Macon, Ga LOCATION AP-2. Lower bench

DRILLER A. Castleberry RIG TYPE/ METHOD CME 550/ HSA TOOL DIA. 5.63-in OD/ 2.25-in ID Augers **BORING DEPTH** 40.5 ft

DRILLING COMPANY Southern Company C.F.S. BORING LOCATION N1063077.03, E2438902.96 COMPLETION Flush-mount with 3 ft x 3 ft pad SURFACE ELEVATION 308.02 ft WELL TOC 308.09 ft COORD SYS NAD83, NAVD88

COMMENTS Started and completed drilling on 11/10/2024. Well construction completed on 11/21/2024 with installation of manhole, locking cover and concrete pad. Lithologic description from 0.0 to 33.5 based on adjacent boring ARAMW-10.

LOGGED BY A. Shoredits CHECKED BY E. Smith

Depth (ft)	Samples (ft)	Soil sample ID & depth taken (ft)	Blow counts	Recovery (ft)	Drilling Method	RQD (%)	Graphic Log	Material Description	nscs	w	ell Diagram	Elevation (ft)
					HSA w/ SPT			0.3-0.5 ft: CCR fly ash, blue grey Silty SAND, red, loose, moist, rootlets	SM		Bentonite grout	- 306 - 305 - 304 - 303 - 302 - 301
_ 9 _ _ _ _ 10								CLAY, dark brown, non plastic to low plasticity, soft, moist, fine grained sand mixed in	CL			- 299 - 298
11 11 12								Z				297 - 297 - 296
- - - - - 13								Sandy CLAY, grey, soft to medium stiff, medium plasticity, moist	CL- SC			- - - 295 - -
- 14 - - - - - -								patient, most				294

Depth (ft)	Samples (ft)	Soil sample ID & depth taken (ft)	Blow counts	Recovery (ft)	Drilling Method	RQD (%)	Graphic Log	Material Description	nscs	v	Vell Di	agram	Elevation (ft)
16													
- - 17 -													291
- 18 													_ 290
19								Silty SAND trace sub-rounded gravel and silt, brown/ grey/ tan, loose, wet, fine to coarse grained, micaceous, saprolitic	SP				_ _ 289 _ _
20 												Bentonite grout	288
- 21 - -													287
22													286
- - 23 -													285
_ _ 24 _													284
25 								Silty gravelly SAND, brown/ white, loose, dry, fine to coarse grained, saprolitic	SM				283
_ _ 26													282
_ _ 27 _												Bentonite plug	- - - 281 -
_ _ 28 _													280
29 								Saprolite with very weathered rock lenses, dry					279
30											1 L	U-pack & annular sand	278
31 								31.6 ft: Very weathered rock lens, dry				pack	_ 277
32 													276

Depth (ft)	Samples (ft)	Soil sample ID & depth taken (ft)	Blow counts	Recovery (ft)	Drilling Method	RQD (%)	Graphic Log	Material Description	nscs	Well Diagram	Elevation (ft)
- 33 - - - - - - - - - - - - - - - - - -	33.5- 35.0 (SPT01)	ARAMW -11 -SOIL (33.5- 35.0 ft)	44- 50/2	0.67				Silty SAND with sub-rounded to sub-angular gravel, brown/ black, dense, wet, fine gravel to fine sand			275
36										U-pack & annular sand	- 273 - 272 - 271
- 38 - 38 - 39	38.5- 40.0		50/2	0.0						pack	270
40	(SPT02)				-			BOH 40.5 ft bgs. Boring terminated at auger refusal depth.			268
42											266
- 44 - 45											- - - 264 -
46											- 263 - 262
- 47 - - - 48											- 261 - 260
_ 49 _ _ 50											_ 259 _ _ _ 258

PROJECT NUMBER 175569434 PROJECT NAME Plant Arkwright **CLIENT** Georgia Power ADDRESS 5241 Arkwright Road, Macon, Ga LOCATION AP-2. Lower bench

DRILLER S. Denty RIG TYPE/ METHOD CME 550/ HSA & wireline TOOL DIA. 5.63-in OD/ 2.25-in ID Aug, PQ core **BORING DEPTH** 65.4 ft

DRILLING COMPANY Southern Company C.F.S. BORING LOCATION N1062906.98, E2439199.15 $\textbf{COMPLETION} \ \ \text{Stick-up with 3 ft x 3 ft pad}$ SURFACE ELEVATION 305.80 ft **WELL TOC** 309.08 ft COORD SYS NAD83, NAVD88

COMMENTS Started drilling on 10/28/2024 and completed drilling on 11/8/2024. Well construction completed on 11/21/2024 with installation of 6-in stick-up protective cover and concrete pad.

LOGGED BY A. Shoredits CHECKED BY E. Smith

Depth (ft)	Samples (ft)	Soil sample ID & depth taken (ft)	Blow counts	Recovery (ft 0	Drilling Method	RQD (%)	Graphic Log	Material Description	nscs	Well Diagram	Elevation (ft)
1	0-1.5 (SPT01)		3-4-4	1.3	HSA w/ SPT			Silty SAND (Fill), red/ brown, loose, moist, rootlets, fine grained, grass cover 0.7-0.8 ft: Gravel seam Silty SAND (Fill), red/ brown, loose, dry, trace clay	SM /GS SM- CL		305
2								Medium dense with some clay			304
3	3.5- 5.0		4-4-6	0.5							300
4	(SPT02)		4-4-0	0.5							- 302 - - -
5											- 30°
6											30
7										Bentonite grout	- 29 - - - - - 29
9	8.5- 10 (SPT03)		1-1-1	1.4	_			Sandy CLAY, dark grey, soft, medium to high plasticity, moist, fine grained	CL- SC		29
10											296
11											29
12											29
13								₹			29
14	13.5- 15.0 (SPT04)		3-5-6	1.5			90°00	Gravelly SAND, brown/ grey, loose, wet, coarse grained CLAY, grey, medium stiff, high plasticity, wet Gravel, brown/ tan, loose, wet, angular, fine grained	SW CH GS		29
15							75 GO Q	with medium sand mixed in Silty gravelly SAND, brown/ white, loose, moist, fine to coarse grained, micaceous, saprolitic	SM		29

Depth (ft)	Samples (ft)	Soil sample ID & depth taken (ft)	Blow counts	Recovery (ft 0	Drilling Method	RQD (%)	Graphic Log	Material Description	nscs	Well Diagram	Elevation (ft)
- 16 - 17 - 18											290 289 288
- 19 - 20	18.5- 20.0 (SPT05)	ARAMW -12 -SOIL (18.5- 20.0 ft) (202 g)	30-25 -50/3	1.2							287 - 286
- 21 - 22 - 22 - 23											285 - 284 - 283
- - - 24 - - - 25	23.5- 25.0 (SPT06)		20-49 -50/1	1.1						Bentonite grout	- - - - - - - - - 281
- - 26 - - - - - 27											- 280 - 279
- 28 - 29 - 29	28.5- 30.0 (SPT07)		16-34 -29	1.5				29.2-29.4 ft: Qtz gravel lens, white, loose, fine grained, micaceous, saprolitic			- 278 - 277 - 277 - 276
- 30 31 31 32											275 274
33											_ 273

Depth (ft)	Samples (ft)	Soil sample ID & depth taken (ft)	Blow counts	Recovery (ft 0	Drilling Method	RQD (%)	Graphic Log	Material Description	nscs	Well Diagram	Elevation (ft)
34	33.5- 35.0 (SPT08)		6-20 -50/4	1.3							272
36								Weathered rock (drilling response)	PWF		270
- - - - - - - - - - - - - - - - - - -	36.9- 42.1 (P01)			5.2		100		Auger refusal depth Biotite gneiss, black/ grey/ white, slightly weathered, 45° mineral banding, alternating quartz veins with dark biotite/ hornfels zones	-		- 269 - - - - - - 268
39		ARAMW -12 -ROCK (39.1- 39.6 ft) (500 g)			WL w/ PQ core			39.0-39.6 ft: 70° frac, brown surface staining, moderate weathering, dark brown to black weathered nodules, adjacent re-mineralized healed		Bentonite grout	267
								fractured			_ 266 _ _ _ _ 265
 42 	42.1- 46.9			4.7		100					264
43	(P02)							43.0-43.3 ft: Quartz vein, 0.1 ft thick			- 263 - - - - 262
- - - - - - -										Bentonite	261
46 47	46.9-			4.8		100				plug	260 - - - - 259
	51.9 (P03)										258
49 										U-pack & annular sand	257 - - - 256
- - - - - - 51										pack	255 2

Depth (ft)	Samples (ft)	Soil sample ID & depth taken (ft)	Blow counts	Recovery (ft 0	Drilling Method	RQD (%)	Graphic Log	Material Description	nscs	Well Diagram	Elevation (ft)
52	51.9- 56.9 (P04)	_		5.3		100		Amphibolite biotite gneiss, black/ dark grey, fine crystalline			254 - - - - 253
54											- - - - 252 -
55											251
56											- 250 - - - - - - 249
- 57 - - - - - - - - - - - - - - - - - - -	56.9- 61.9 (P05)			4.8		100		57.0-57.6 ft: Quartz vein, white, 0.1-0.3 ft wide, green mineral discoloration, pocked surface features			- - - - 248
59		ARAMW -12 -ROCK (59.6- 59.9 ft)								annular sand	- 247
60		J 59.9 ft) L (608 g)									246
61	61.9-	-		3.7		100		61.8-62.4 ft: 70° Partial to fully healed fracture			245 244
63	65.4 (P06)	ARAMW		3.7		100					- - - - 243 -
64		-12 -ROCK (64.3- 64.4 ft) (493 g)						64.2 ft: Mineral foliation direction change, possible joint			- - 242 - - -
65								65.4 ft green mineral discoloration			241
- 66								BOH 65.4 ft bgs. Boring terminated at a predetermined depth.			240
67											239
- - - - 68											_ 238
69											237
											- - - - 236

APPENDIX B

Geophysical Record of Borehole ARAMW-12

December 17, 2024

Ms. Jennifer L. Kolbe Stantec 10745 Westside Way Suite 250 Alpharetta, GA 30009-7640

> Subject: Results of Geophysical Borehole Logging One Borehole (ARAMW-12) 5241 Arkwright Road Macon, Georgia 31210 ARM Project: 24012142

Dear Ms. Kolbe,

ARM Geophysics (ARM) is pleased to present this letter report that summarizes the results of geophysical borehole logging performed at the above referenced site on November 14, 2024. The objective of the logging was to identify and measure the depth and orientation of fractures and foliation planes and possible water-bearing zones in the above-mentioned borehole. To achieve these objectives, ARM acquired standard borehole logs and images.

LOGGING METHODS

The logs that ARM completed for this investigation include:

Optical Televiewer (OTV) 3-Arm Caliper

Acoustic Televiewer (ATV) Electromagnetic Flowmeter - EMFM (Ambient)

ARM has provided a summary of these logging methods in Attachment A. ARM acquired the televiewer images and standard logs using a Matrix acquisition system manufactured by Mount Sopris Instrument Company. The EM flowmeter was collected using a System VI acquisition system manufactured by Century Geophysical, LLC.

INTERPRETATION

BASIC LOG DESCRIPTIONS

The geophysical borehole logs acquired during this investigation are presented in Attachment B. All log depths are referenced to ground surface as indicated in the header of each log. Much of the acquired data are presented as standard curves that represent the change in measured parameter with depth. The format of the televiewer logs is discussed in the following paragraphs.

ARM Project Number: 24012142

The televiewer logs contain borehole images and structural information obtained from both the OTV and ATV tools. The *Optical Image, Acoustic Amplitude, and Acoustic Travel Time* tracks are "unwrapped" photographic images of the borehole wall (Figure 1). In this case, the cylindrical borehole surface is unzipped along the north azimuth and unrolled to a flat strip. The compass orientation (with respect to true north) is presented at the top of the log. The unwrapped format is distorted like any projection of a curved surface on a flat one. Horizontal and vertical planes will be undistorted. However, dipping planes will be represented as a sine wave: the greater the dip, the greater the wave amplitude.

The Plane Projection track presents the fracture signatures that are digitized from the unwrapped *Optical Image, Acoustic Amplitude, and Acoustic Travel Time* tracks. The *Dip & Dip Direction* log is a presentation in which the vertical axis is depth and the horizontal is dip angle from 0° to 90°. As shown in Figure 2, the dip direction is indicated by the orientation of the tadpole tail, measured in a clockwise direction from north.

INTERPRETATION OF STRUCTURAL DIAGRAMS

The structural data are presented on polar and rose diagrams for statistical analysis and pattern visualization. Polar diagrams are used in this report to plot the dip and dip direction of planar features. Zero-degree dip is represented at the center of the diagram and 90° at the circumference. The dip direction is indicated by the compass azimuth, measured clockwise from north (0°), as shown in Figure 3. This format is sometimes referred to as a dip vector plot, but it is essentially the same as a stereonet with an upper hemisphere projection.

The rose diagram graphically illustrates the strike distribution of a set of planes. Radiating rays are drawn with lengths proportional to number of strike measurements within each 10° sector. It is important to recognize that in this report, the polar diagram represents dip and dip direction, whereas the rose diagram represents strike. Using the right-hand-rule convention, strike equals the dip direction minus 90°.

RESULTS AND DISCUSSION

ORIENTATION ANALYSIS OF PLANAR FEATURES

Both optical and acoustic televiewer images were used to measure the depth and orientations fracture planes. The digitized planar features were corrected for borehole deviation and magnetic declination. The measured plane projections and orientations are shown in the plane projection log. A tabulated listing of the fracture orientations is presented in Attachment C. Stereographic analysis was performed on the planar orientation data acquired from the image log. A listing of the calculated mean orientations of all fracture planes are presented in Table 1. The results from the borehole are presented in the polar and rose diagrams, and charts shown in Figures 4 through 8. Predominant groups or "sets" are indicated by the clustering of data points in the polar diagrams.

Figure 4 presents polar diagrams showing the dip and dip direction of all planes measured during this investigation. ARM has classified the planes by symbols corresponding to foliation and fracture plane sets.

ARM used statistical contouring to identify windows in which to calculate the mean orientation of all foliation and fracture planes. Figures 5 present polar diagrams with statistical contouring of all fracture plane orientations. The mean fracture plane dip/dip directions are shown to the right of the diagram. The rose diagrams in Figures 6 show a predominant ENE/WSW strike direction.

Figures 7 present polar diagrams with statistical contouring of all fracture plane orientations. The mean fracture plane dip/dip directions are shown to the right of the diagram. Similarity in the foliation set and fracture set orientations suggest the latter may be foliation partings. The rose diagrams in Figures 8 show a predominant ENE/WSW strike direction.

The mean orientations for all foliation and fracture planes are shown in Table 1.

ARM Project Number: 24012142

Table 1: Statistical mean of dip and dip direction of foliation and fracture planes.

Planes	Dip	Dip Direction	Strike/Dip
Foliation Set	7	156	N66E/7SE
Fracture Set	8	134	N44E/8SE

INTERPRETATION OF WATER PRODUCING OR RECEIVING ZONES

Water producing or receiving zones are typically identified in the acquired logs by a combination of the following parameters:

- A. Start or increase in upward or downward fluid flow identified by heat pulse flowmeter data suggests water-producing zone.
- B. End or decrease in upward or downward fluid flow identified by heat pulse flowmeter data suggests water-receiving zone.
- C. Open fractures observed in televiewer data.
- D. Deflections in caliper curve (suggests fractures).

Table 2 presents the interpreted flow zones (under ambient conditions) based on the indicators above. The most convincing evidence of water producing or receiving zones are flowmeters, fluid temperature, and fluid resistivity deflections since they can indicate flow in the borehole. Fractures observed in televiewer images or caliper curves can indicate water-bearing zones although the evidence is more indirect. A fracture may be observed in the borehole wall that may have been opened or enlarged during the drilling process but may be tight and contain little or no water a short distance into the formation. A combination of the above indicators provides the highest level of confidence for identifying water-bearing zones.

Table 2: Interpreted water producing or receiving zones and indicators under ambient conditions. Letters in the Indicators column correspond to the selection parameters shown above.

Borehole	Depth (Feet)	Indicators	Туре
ARAMW-12	44-46	В, С	Receiving zone
ARAMW-12	62-64	A, C	Producing zone

ARM Project Number: 24012142

Table 3 presents the directional flow of each borehole using the electromagnetic flowmeter.

Table 3: Observed directional flow in ARAMW-12 under ambient conditions.

Borehole	Upward Flow (Ambient)	Downward Flow (Ambient)
ARAMW-12		Х

CLOSING

The data collection and interpretation methodologies used in this investigation are consistent with standard practices applied to similar geophysical investigations. The correlation of geophysical responses with probable subsurface features is based on the past results of similar surveys although it is possible that some variation could exist at this site.

Please contact us if you have any questions regarding this survey. We appreciate your business and look forward to working with you again.

Kind regards, ARM Geophysics

Duro Rajkovic, P.G. Senior Geophysicist

Duno Rajhorić

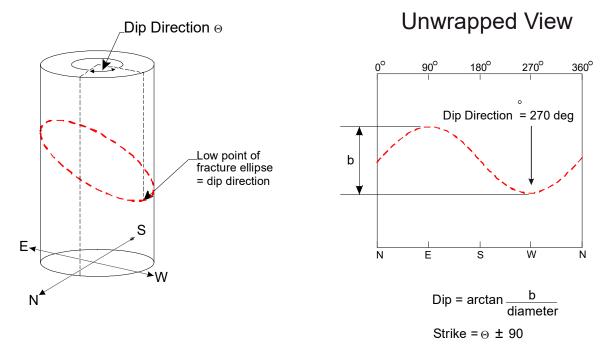


Figure 1: Diagram illustrating unwrapped view of fracture signature.

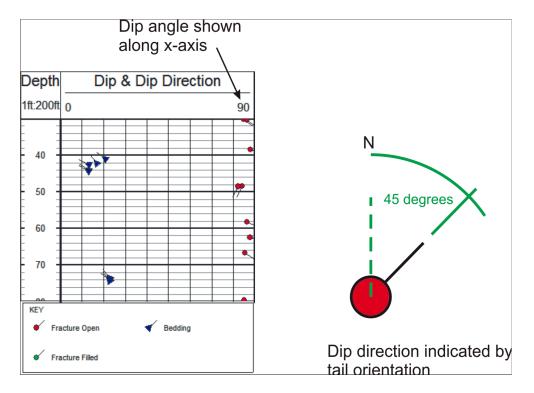


Figure 2: Dip & dip direction determination from the tadpole plot.

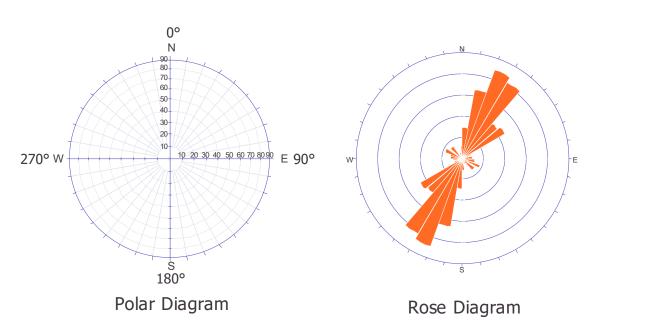
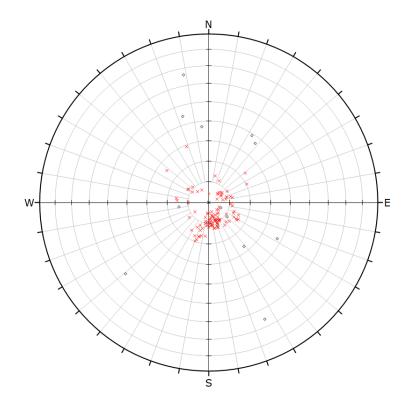



Figure 3: Example polar and rose diagrams. Polar diagram is used in this report for plotting dip and dip direction. Rose diagrams are used for plotting the frequency or number of strike measurements per sector.

0,111001			- daniery
\$	Discontinuous Fract		12
×	Foliation		107
Δ	Open Fracture		2
+	Part. Open Fract		3
	Plot Mode	Pole Vectors	
	Vector Count	124 (124 Entries)	
	Hemisphere	Upper	
	Projection	Equal Area	

Figure 4: A polar diagram plotting dip and dip direction of all planes categorized by plane type.

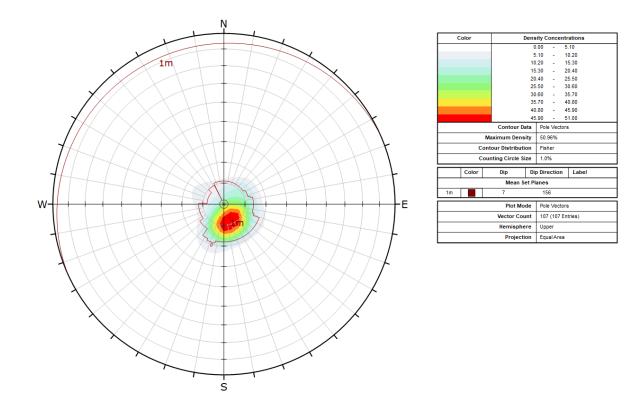
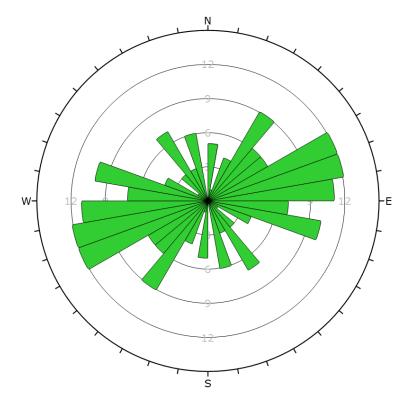



Figure 5: A polar diagram with statistical contouring of all foliation planes. The calculated mean dip angle and direction is shown at the right of the diagram.

Plot Mode	Rosette
Plot Data	Apparent Strike
Face Normal Trend	0.0
Face Normal Plunge	90.0
Bin Size	10°
Outer Circle	15 planes per arc
Planes Plotted	107
Minimum Angle To Plot	0.0°
Maximum Angle To Plot	90.0*

Figure 6: A rose diagram illustrating strike distribution of all foliation planes.

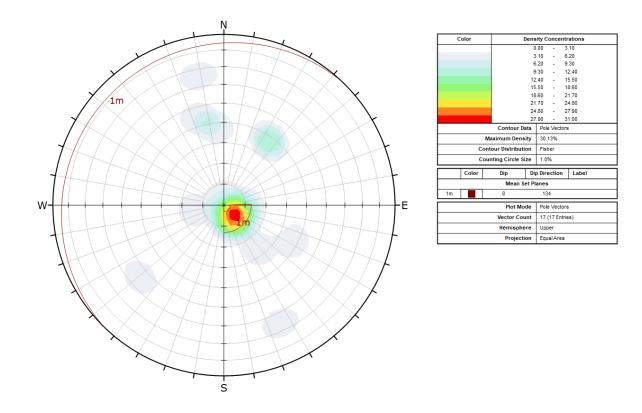
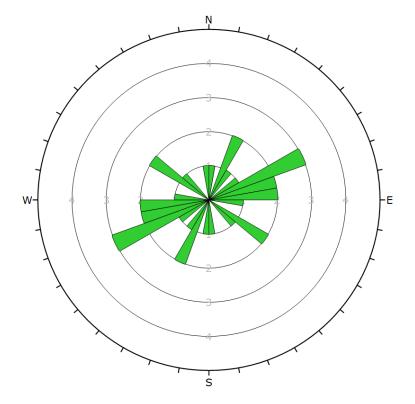
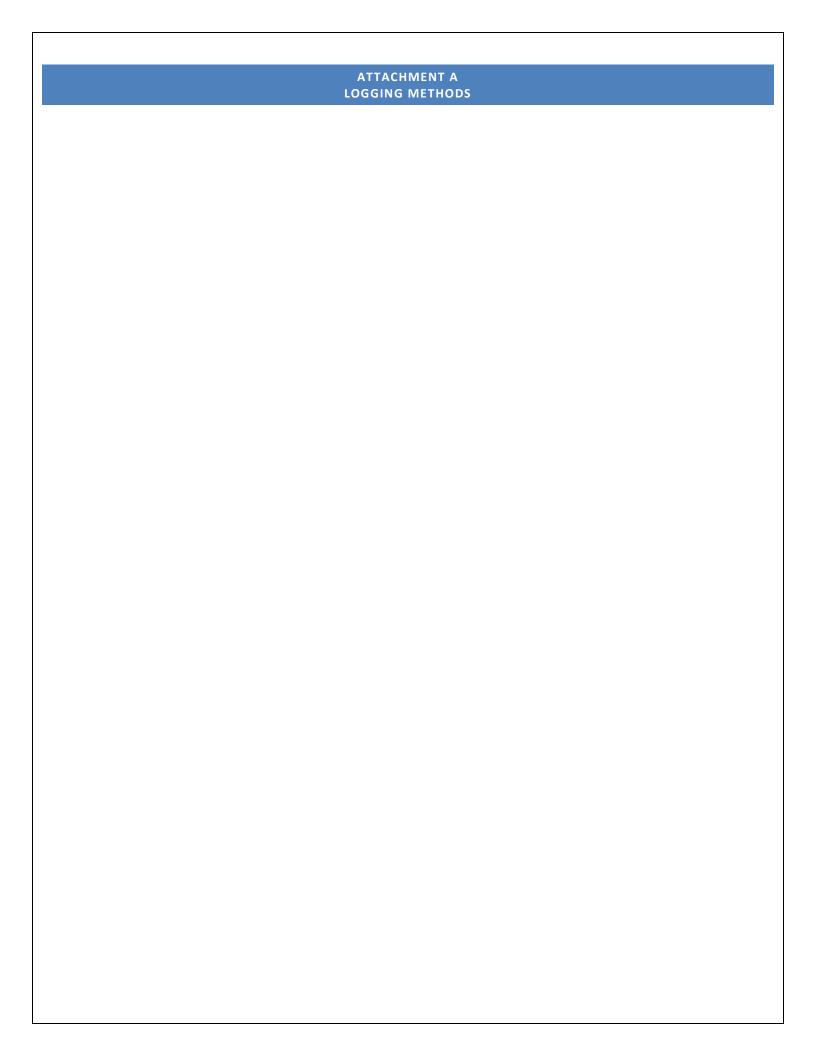




Figure 7: A polar diagram with statistical contouring of all fracture planes. The calculated mean dip angle and direction is shown at the right of the diagram.

Plot Mode	Rosette
Plot Data	Apparent Strike
Face Normal Trend	0.0
Face Normal Plunge	90.0
Bin Size	10°
Outer Circle	5 planes per arc
Planes Plotted	17
Minimum Angle To Plot	0.0°
Maximum Angle To Plot	90.0*

Figure 8: A rose diagram illustrating strike distribution of all fractures.

Voice: (717) 533 - 8600 Fax: (717) 533 - 8605

APPENDIX A: OVERVIEW OF LOGGING METHODS

CALIPER LOGS

The caliper log measures variations in borehole size as a function of depth in a well. Some example responses of in a caliper log is shown in Figure A- 1 (Rider, 2002^{1.}) The log data enables (a) the detection of competent or fractured geologic units, (b) the location of washouts or tight zones, (c) the optimal placement of well screen, sand, and bentonite, and (d) the establishment of appropriate borehole correction factors to be applied to other well log curves. Further, when run in combination with other logs, the caliper log may be an indicator of lithologic makeup and degree of consolidation. The typical caliper response in a fractured, weathered, or karstic unit is a relatively abrupt increase in borehole size.

SPONTANEOUS POTENTIAL (SP) LOGS

The SP log measures the natural voltages that are created within the borehole due to the presence of borehole fluids, formation fluids, and formation matrix materials. It is recorded by measuring the difference in electrical potential in millivolts between an electrode in the borehole and a grounded electrode at the surface. The SP log is commonly used to 1) detect permeable beds, 2) detect boundaries of permeable beds, 3) determine formation water resistivity, and 4) determine the volume of shale in permeable beds. The constant SP readings observed in thicker shale units define the shale base line, a reference line from which further formation matrix and formation fluid property calculations may be completed. Although this log is consistently used in oil and gas applications, its effectiveness in water wells is limited since the method requires a contrast in salinity between borehole and formation fluids (Figure A- 2). This condition is often not met in ground water wells.

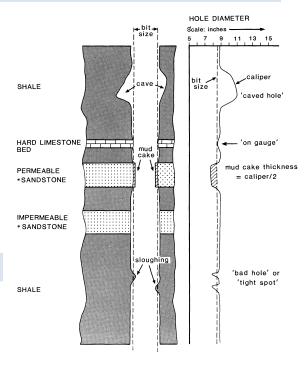


Figure A-1: The caliper log showing some typical responses. (From Rider, 2002).

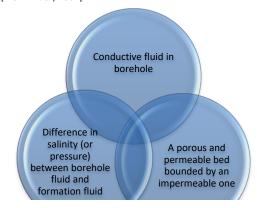


Figure A- 2: Conditions required to produce an SP response.

¹ Rider, M. (2006) The Geological Interpretation of Well Logs, Rider-French Consulting, Ltd., 280pp.

The SP log can be qualitatively used for permeability recognition. SP deflections from the shale base line commonly indicate the presence of a permeable bed. The magnitude and direction of the deflection is dependent upon the relative resistivity (or salinity) values of the borehole fluid and the formation fluid. If the formation fluid resistivity is less than the borehole fluid resistivity, then the relative SP values will decrease in a porous, coarse-grained unit. Alternately, if the formation fluid resistivity is greater than the borehole fluid resistivity, the relative SP values will increase in the same body, and the curve shape is referred to as a "reversed SP". If both fluid resistivities are equal, no SP deflection will occur.

GAMMA RAY LOGS

The gamma ray log is a passive instrument that measures the amount of naturally occurring radioactivity from geologic units within the borehole. Commonly occurring radioelements include potassium, thorium, and uranium; the two former elements are predominant within a common fine-grained rock sequence. The gamma ray log is also an excellent lithologic indicator because fine-grained clays and shales contain a higher radioelement concentration than limestones or sands. Gamma ray values are often used to assess the percentage of clay materials (indurated or non-indurated) that are present within a formation by utilizing empirically derived equations and sand-shale base line information.

NORMAL RESISTIVITY LOGS

Resistivity is a measure of how well an electric current passes through a material. Formation resistivity is an intrinsic property of rocks and depends on the porosity and resistivity of the interstitial fluid and rock matrix. The spacing between the transmitter and receiver on the tool determines the depth of investigation into the surrounding formation; the greater the spacing, the deeper the penetration of electrical current into the formation.

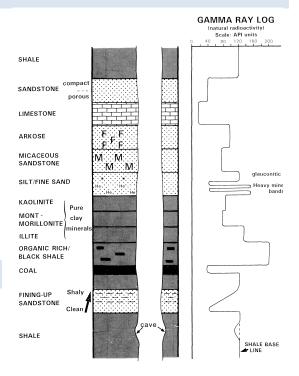


Figure A- 3: Characteristic gamma ray responses. (From Rider, 2002).

In sedimentary rocks, the resistivity values of shales (5 - 30 ohm-m) is generally lower than the resistivity of sandstone (30 - 100 ohm-m), which is lower than the resistivity limestone (75 - 300 ohm-m). The resistivity log often shows a picture of the overall depositional sequence in sedimentary environment. Resistivity of igneous and metamorphic rocks is extremely high when compared to resistivity in sedimentary rocks, with values that are commonly thousands of ohm-meters. Example resistivity log responses are shown in Figure A- 4.

FLUID RESISTIVITY LOGS

Fluid resistivity, which is the reciprocal of fluid conductivity, provides data related to the concentration of dissolved solids in the fluid column. Although the quality of the fluid column may not reflect the quality of adjacent

RESISTIVITY LOGS

interstitial fluids, information can be quite useful when combined with other logs. For example, change in fluid resistivity associated with a water-producing zone that is corroborated by other logs may indicate the inflow of ground water.

SINGLE-POINT RESISTANCE LOGS

Single point resistance measurements are made by passing a constant current between two electrodes and recording the voltage fluctuations as the probe is moved up the borehole. The resistance variations measured in the borehole is primarily due to variations in the immediate vicinity of the downhole electrode.

The resistance log is strongly affected by the resistance of the drilling fluid and variations in borehole diameter. It is extremely useful for detecting fractures in boreholes with relatively constant diameter. In sedimentary environments, the resistance log generally follows the variations in resistivity of the formation. Shales in clay generally exhibit low values, sandstones have intermediate values, while coal and limestone beds have high resistance values.

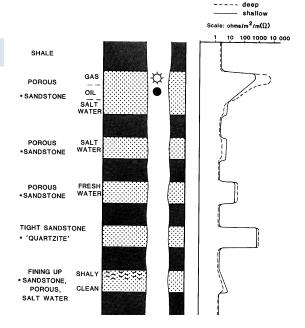
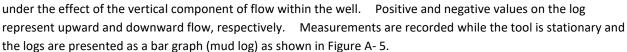


Figure A- 4: Characteristic resistivity responses. (From Rider, 2002)


TEMPERATURE LOGS

Temperature logs measure the change in fluid temperature within the borehole as a function of depth. This log can indicate the location of water- producing strata or fracture zones within the well. The inherent assumption

of this technique is that the fluids entering the borehole from water producing zones are either cooler or warmer than the fluid in the borehole. In this case, it is possible to relate a temperature anomaly to a depth range in which waters of different temperature are emanating from a water-producing/receiving or fractured lithologic unit.

HEAT PULSE FLOWMETER (HPFM) LOGS

The heat pulse flowmeter measures the vertical flow rates within a borehole. The log may be used to identify contributing fracture zones under natural and pumping conditions. The system operates by heating a wire grid that is located between two thermistors. The heated body of water moves toward one of the thermistors

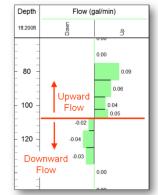


Figure A- 5: Example heat pulse flowmeter log.

A number of techniques have been attempted for measuring horizontal flow in wells without much success. The techniques may not represent the true hydrogeologic conditions due to variations in flow caused by the well.

OPTICAL TELEVIEWER (OTV) LOGS

The optical televiewer probe combines the axial view of a downward looking digital imaging system with a precision ground hyperbolic mirror to obtain an undistorted 360° view of the borehole wall. The probe records one 360° line of pixels at 0.003-ft depth intervals. The sample circle can be divided into 720 or 360 radial samples to give 0.5° or 1° radial resolution. For this investigation, the highest radial resolution (0.5°) was used. The line of pixels is aligned with respect to True North and digitally stacked to construct a complete, undistorted, and oriented image of the borehole walls. The data are 24 -bit true color and may be used for lithologic determination as part of the interpretation. Since the acquired image is digitized and properly oriented with respect to borehole deviation and tool rotation, it allows data processing to provide accurate strike and dip information of structural features. The borehole image is often shown as an "unwrapped" 360° image in which the cylindrical borehole image is sliced down the northern axis and flattened out as shown in Figure A- 6.

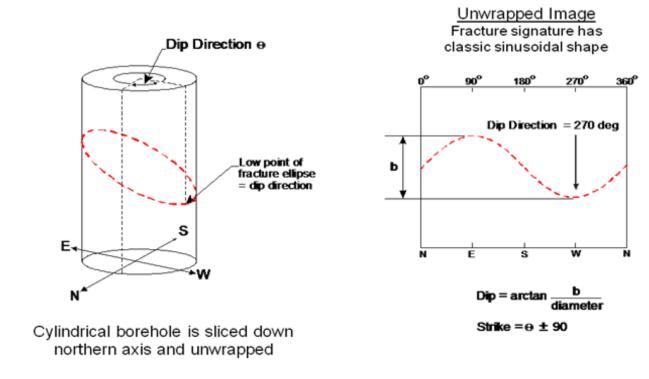


Figure A- 6: Schematic showing the sinusoidal fracture signature in the unwrapped borehole view.

ACOUSTIC TELEVIEWER (ATV) LOGS

Acoustic televiewer provides a 360° acoustic image of the borehole walls that can be used to identify and determine the orientation of planar features such as bedding and fractures. The data can also indicate the

relative degree of hardness of formation materials. As shown in Figure A-7, Ultrasonic pulses are transmitted from a rotating transducer inside the tool. The transmitted pulses reflect off the borehole wall and return to the tool where the travel time and amplitude of the acoustic signal are measured. In order for the acoustic waves to travel to and from the borehole wall, the well must be fluid filled. Greater travel time can indicate openings in the rock. Strong amplitude suggests smooth, competent rock. Weaker amplitudes suggest rough or less competent rock.

In addition to the features above, an acoustic caliper log can be calculated using travel time data parameters. Combining ATV diameter, two way traveltime of acoustic window reflection (time window – μ sec), and borehole fluid velocity/slowness, a continuous borehole diameter log can be produced without the need for a mechanical caliper tool.

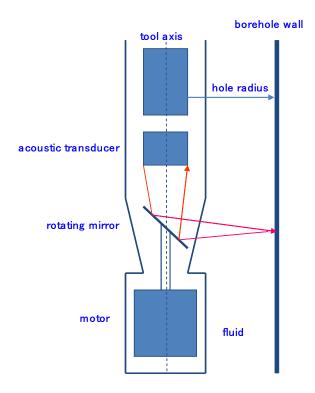
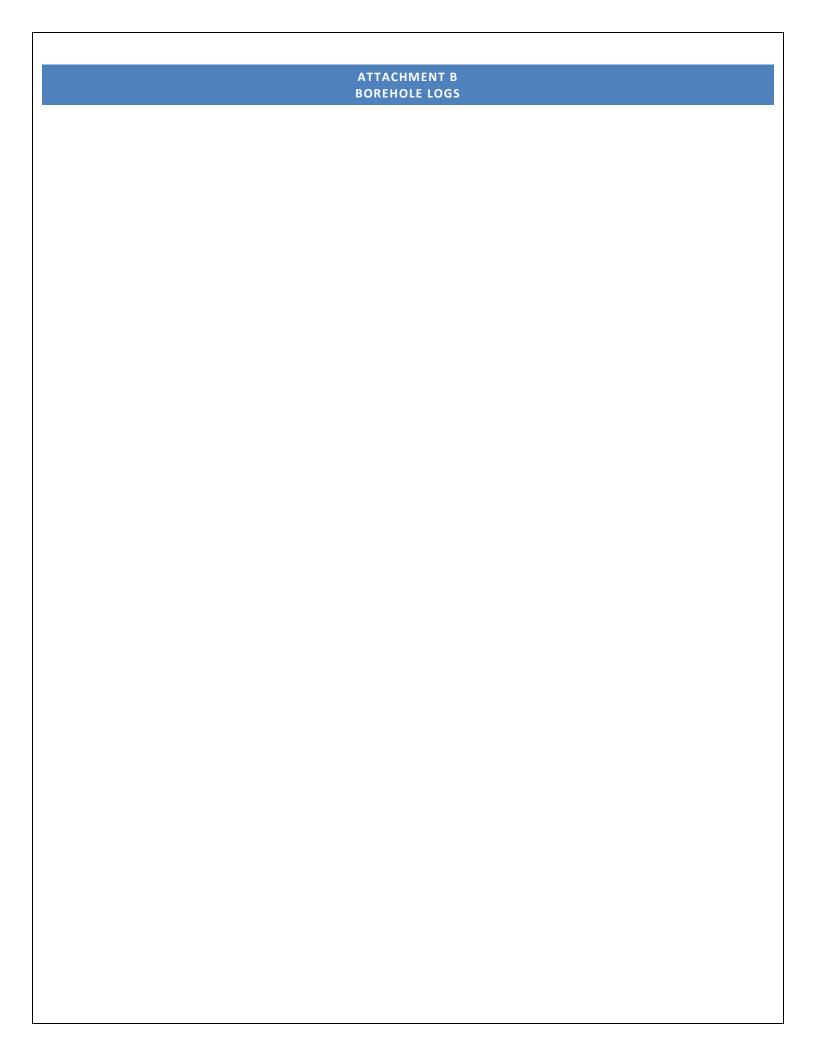
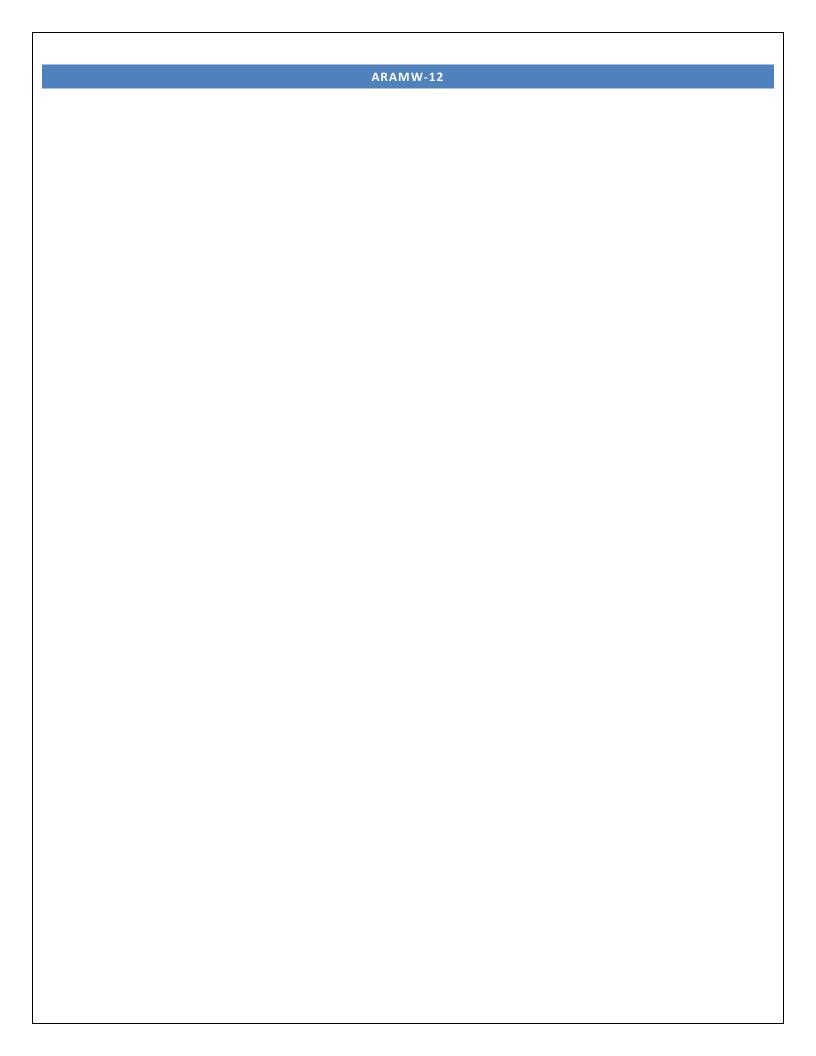
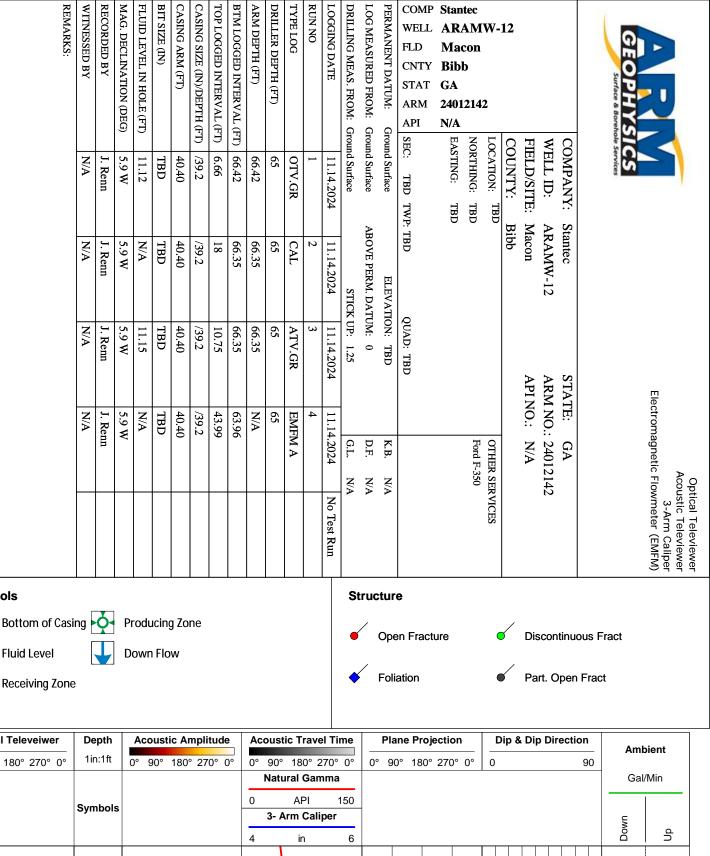
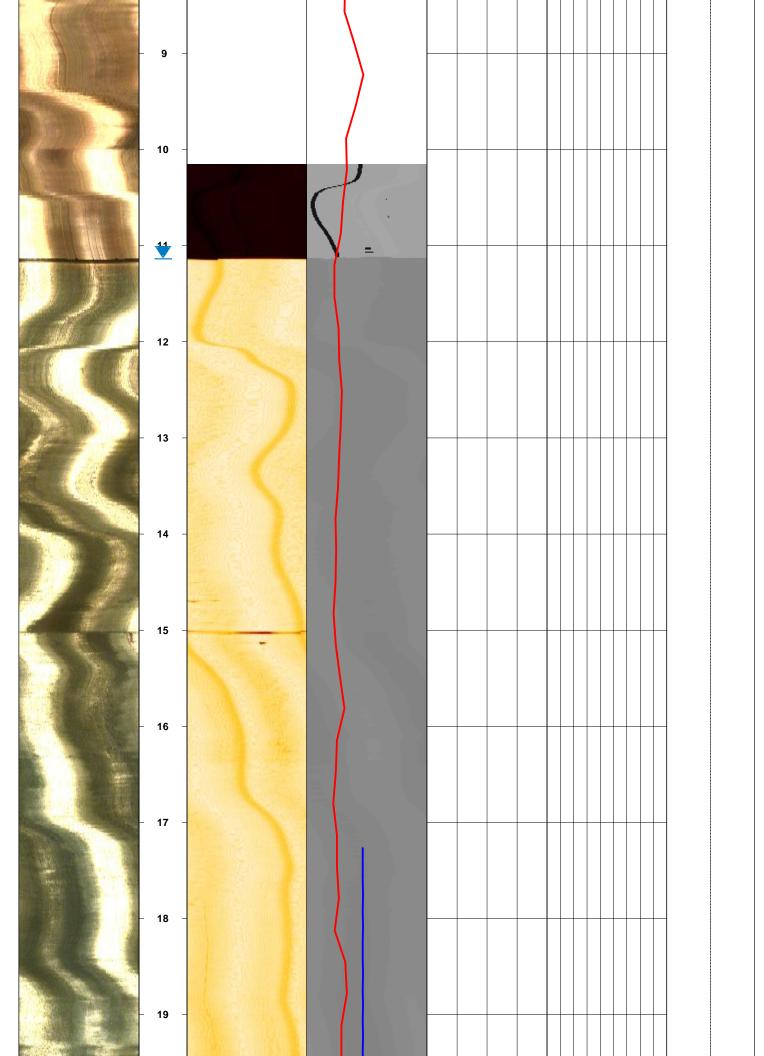
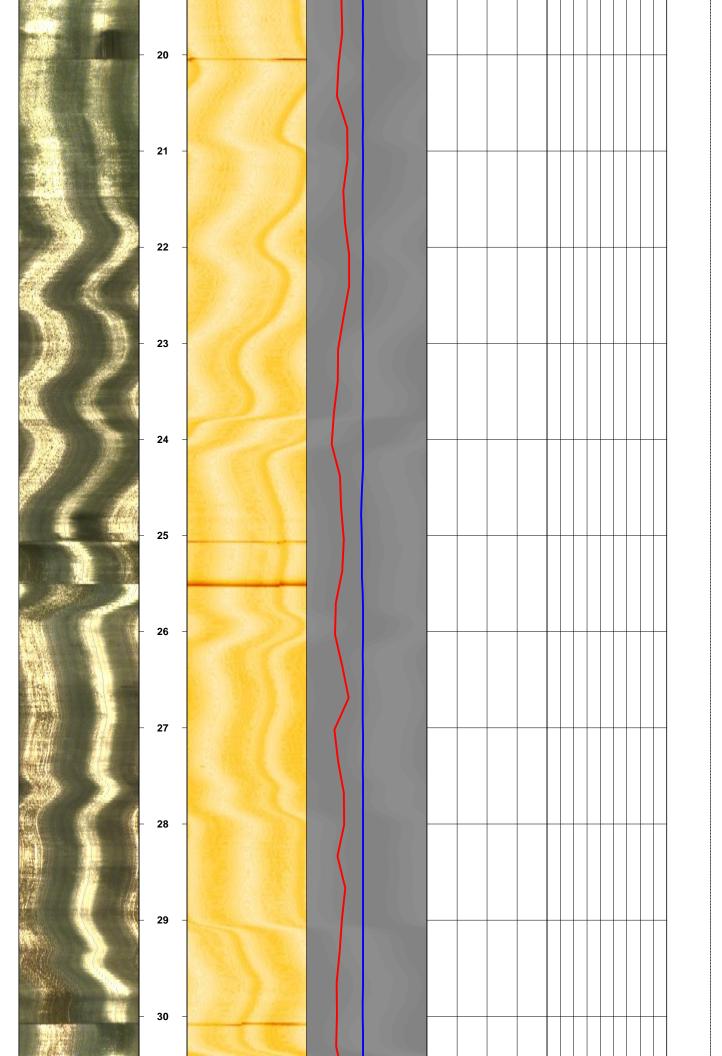
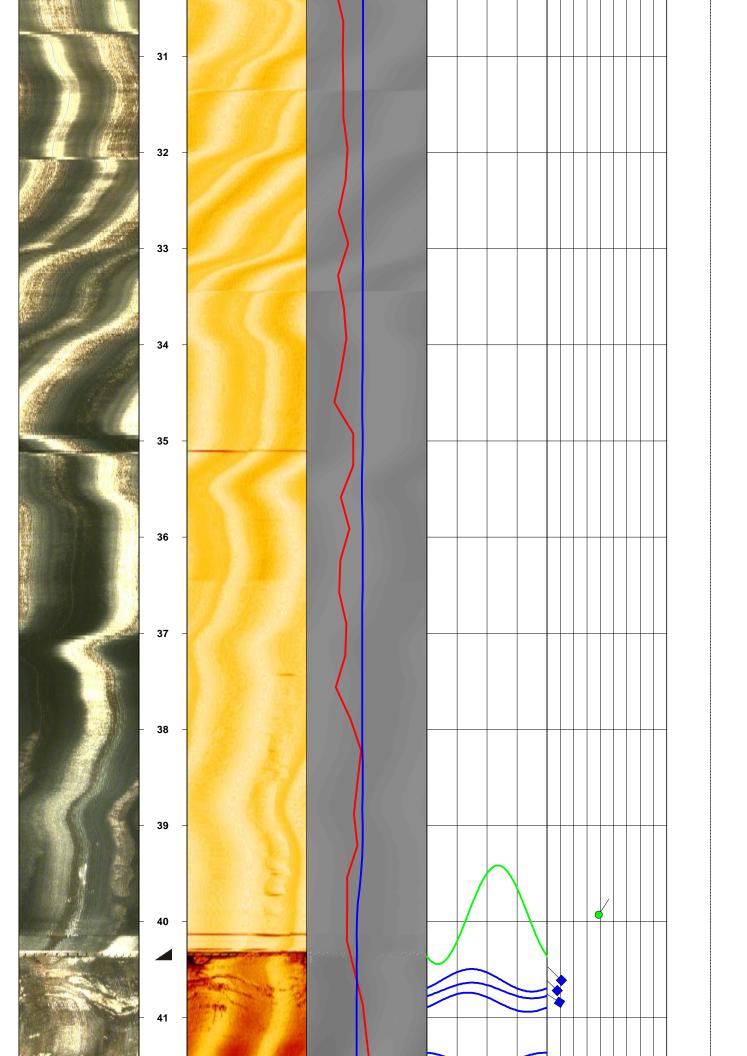
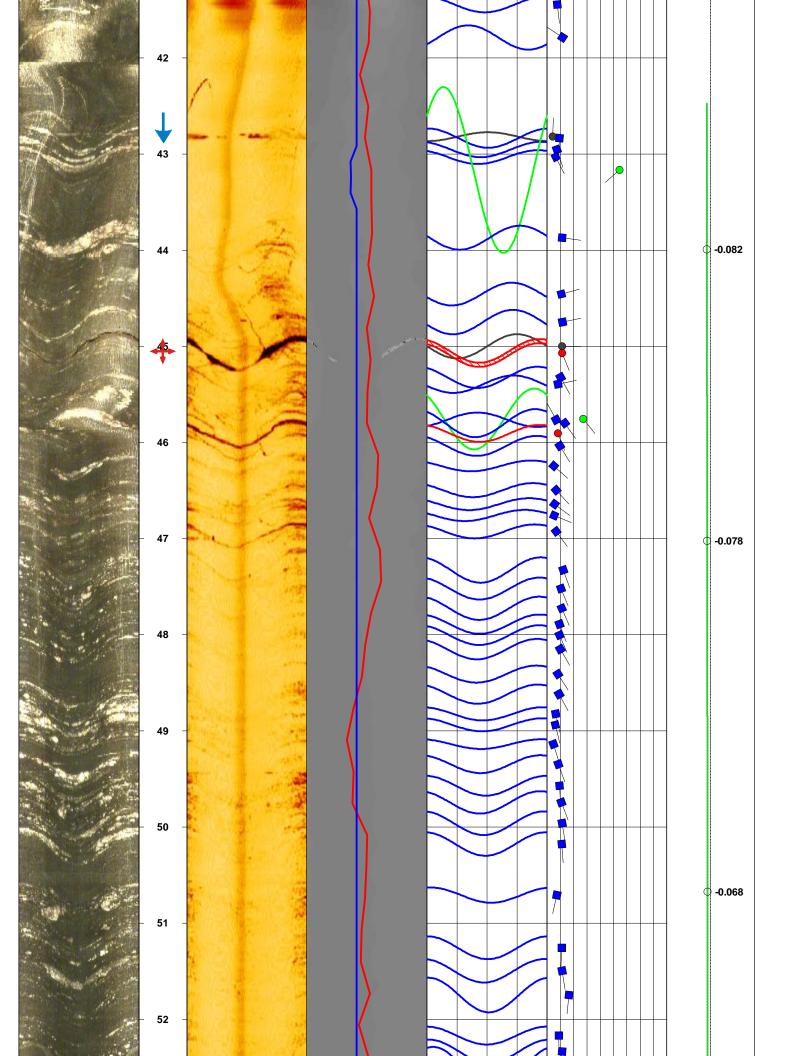





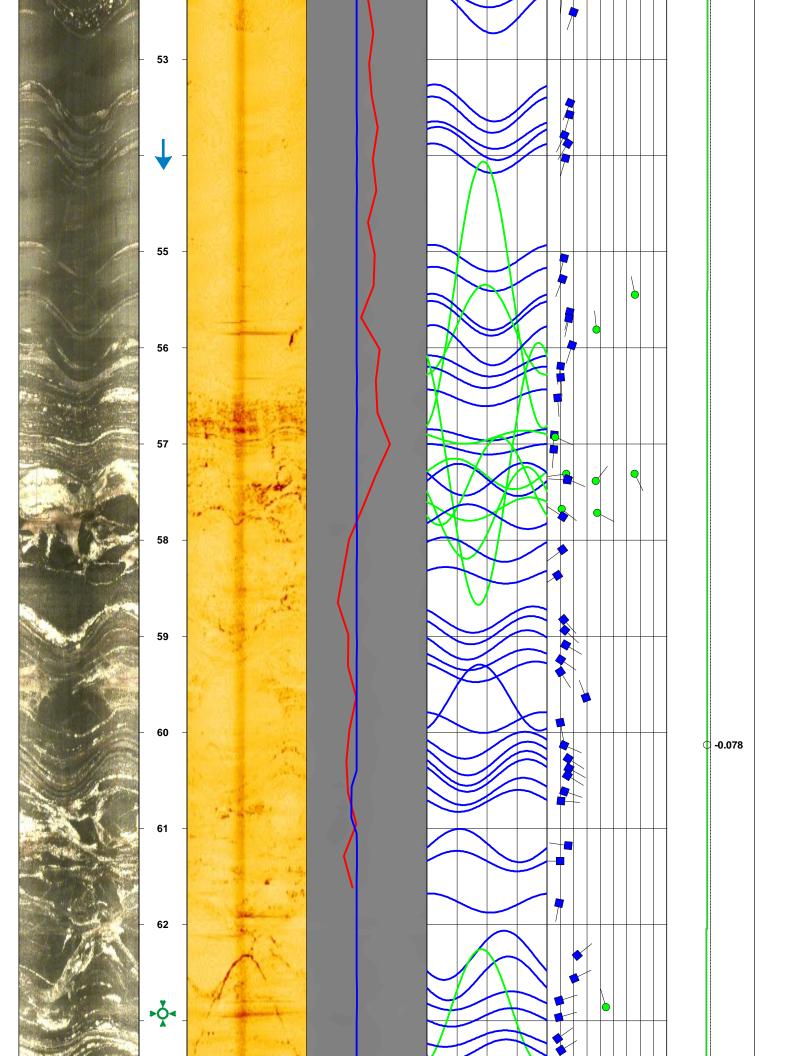
Figure A-7: Schematic of the acoustic televiewer tool.

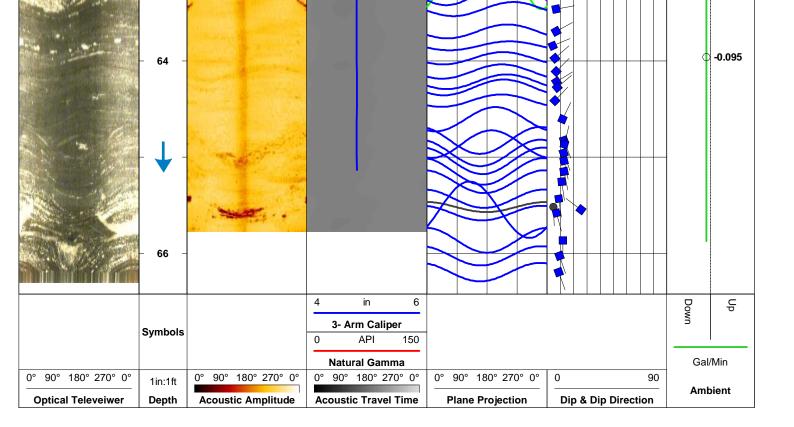


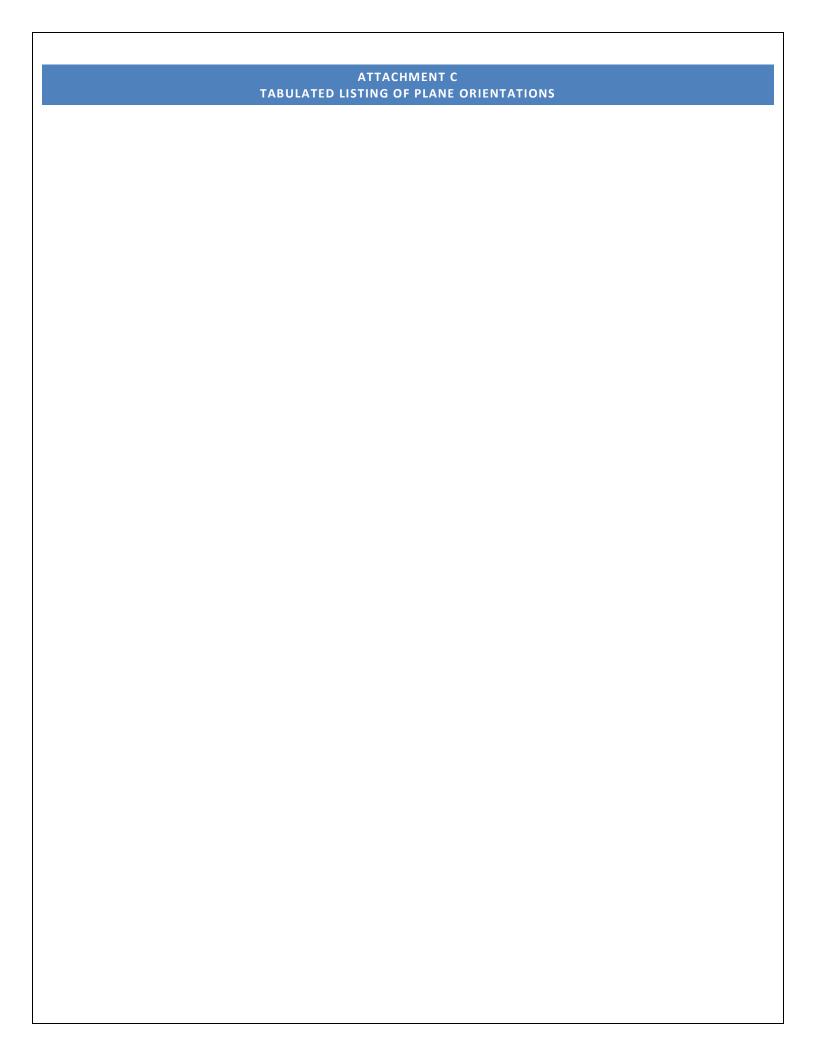

COMP Stantec


WELL ARAMW-12


Optical Televeiwer	Depth	Acoustic Amplitude	Acou	stic Trav	/el Time	Р	lane P	rojectio	n	Dip & Dip Direction		Δm	Ambient			
0° 90° 180° 270° 0°	1in:1ft	0° 90° 180° 270° 0°	0° 90)° 180°	270° 0°	0° :	90° 18	30° 270	° 0°	0				90	Aiii	Jient
			Na	tural Ga	mma										Ga	/Min
	Cumbala		0	API	150											
	Symbols		3-	Arm Ca	liper										Z.	
			4	in	6										Down	J d
				1												
	- 7 -											Н			_	
				/												
	- 8 -														_	
				1												


Symbols





Planar Orientations

Well ID	Depth	Dip Dir.	Dip	Aperture	Туре	Strike/Dip
	(feet)	(deg)	(deg)	(mm)	,,	(Quadrant)
ARAMW-12	39.93				Discontinuous Fract	N57W/39NE
ARAMW-12	40.61	314			Foliation	N44E/11NW
ARAMW-12	40.71	314.64			Foliation	N45E/8NW
ARAMW-12	40.84	302.76		0	Foliation	N33E/9NW
ARAMW-12	41.45	173.24	7.53	0	Foliation	N83E/8SE
ARAMW-12	41.78	303.78	11.64	0	Foliation	N34E/12NW
ARAMW-12	42.82	2.53	4.28	0	Part. Open Fract	N87W/4NE
ARAMW-12	42.83	183.98	9.23		Foliation	N86W/9SW
ARAMW-12	42.95	161.42	7.42	0	Foliation	N71E/7SE
ARAMW-12	43.03	152.88	6.62	0	Foliation	N63E/7SE
ARAMW-12	43.16	229.36	54.61		Discontinuous Fract	N41W/55SW
ARAMW-12	43.87	97.96	11.49		Foliation	N8E/11SE
ARAMW-12	44.45	74.54	10.85		Foliation	N15W/11NE
ARAMW-12	44.75	78.02	11.66	0	Foliation	N12W/12NE
ARAMW-12	45	90.56			Part. Open Fract	N1E/12SE
ARAMW-12	45.07	157.32	11.28		Open Fracture	N67E/11SE
ARAMW-12	45.32	151.17			Foliation	N61E/10SE
ARAMW-12	45.39	78.87			Foliation	N11W/8NE
ARAMW-12	45.76	141.36	27.27		Discontinuous Fract	N51E/27SE
ARAMW-12	45.76	330.99			Foliation	N61E/7NW
ARAMW-12	45.8	144.78	13.33		Foliation	N55E/13SE
ARAMW-12	45.9	158.31	8.19		Open Fracture	N68E/8SE
ARAMW-12	46.04	148.24	9.65		Foliation	N58E/10SE
ARAMW-12	46.24	131.74			Foliation	N42E/5SE
ARAMW-12	46.5	137.49			Foliation	N47E/7SE
ARAMW-12	46.64	126.19			Foliation	N36E/6SE
ARAMW-12	46.76	112.89	5.39		Foliation	N23E/5SE
ARAMW-12	46.92	142.7	6.77		Foliation	N53E/7SE
ARAMW-12	47.32	160.63	12.15		Foliation	N71E/12SE
ARAMW-12	47.52	157.94	10.55		Foliation	N68E/11SE
ARAMW-12	47.72	156.71	11.14		Foliation	N67E/11SE
ARAMW-12	47.89	158.44	9.3		Foliation	N68E/9SE
ARAMW-12	48	156.77			Foliation	N67E/9SE
ARAMW-12	48.15	149.76 147.96			Foliation Foliation	N60E/10SE N58E/8SE
ARAMW-12 ARAMW-12	48.41 48.62				Foliation	N62E/9SE
ARAMW-12	48.82	151.91 167.1			Foliation	N77E/6SE
ARAMW-12 ARAMW-12	48.94	165.94			Foliation	N76E/6SE
ARAMW-12	49.13	162.26			Foliation	N70E/03E N72E/5SE
ARAMW-12	49.13	160.52			Foliation	N71E/9SE
ARAMW-12	49.57	176.33			Foliation	N86E/10SE
ARAMW-12	49.74	158.93			Foliation	N69E/11SE
ARAMW-12	49.96	170.34			Foliation	N80E/11SE
ARAMW-12	50.17	175.01			Foliation	N85E/11SE
ARAMW-12	50.7	192.89			Foliation	N77W/7SW
ARAMW-12	51.25	181.96			Foliation	N88W/11SW
ARAMW-12	51.5	170.46			Foliation	N80E/11SE
ARAMW-12	51.75	186.01	16.33		Foliation	N84W/16SW
ARAMW-12	52.17	178.64			Foliation	N89E/9SE
ARAMW-12	52.33	186.24			Foliation	N84W/11SW
ARAMW-12	52.51	199.42			Foliation	N71W/20SW
ARAMW-12	53.45	202.84			Foliation	N67W/17SW
ARAMW-12	53.57	196.34			Foliation	N74W/17SW

Planar Orientations

Well ID	Depth	Dip Dir.	Dip	Aperture	Туре	Strike/Dip
	(feet)	(deg)	(deg)	(mm)	71-	(Quadrant)
ARAMW-12	53.79	204.79		0	Foliation	N65W/13SW
ARAMW-12	53.87	211.78	15.7	0	Foliation	N58W/16SW
ARAMW-12	54.03	196.77	14.04	0	Foliation	N73W/14SW
ARAMW-12	55.06	193.89	12.83	0	Foliation	N76W/13SW
ARAMW-12	55.28	200.53	11.64	0	Foliation	N69W/12SW
ARAMW-12	55.45	348.83	66.17	0	Discontinuous Fract	N79E/66NW
ARAMW-12	55.62	195.41	17.09	0	Foliation	N75W/17SW
ARAMW-12	55.69	192.62	16.43		Foliation	N77W/16SW
ARAMW-12	55.81	354.74			Discontinuous Fract	N85E/37NW
ARAMW-12	55.97	197.88			Foliation	N72W/19SW
ARAMW-12	56.19	189.33			Foliation	N81W/10SW
ARAMW-12	56.3	175.72	10.29		Foliation	N86E/10SE
ARAMW-12	56.52	175.8			Foliation	N86E/8SE
ARAMW-12	56.9	186.62			Foliation	N83W/5SW
ARAMW-12	56.93	113.68			Discontinuous Fract	N24E/6SE
ARAMW-12	57.05	184.91			Foliation	N85W/5SW
ARAMW-12	57.31	261.67			Discontinuous Fract	N8W/14SW
ARAMW-12	57.31	154.41	65.74		Discontinuous Fract	N64E/66SE
ARAMW-12	57.37	113.04			Foliation	N23E/16SE
ARAMW-12	57.37	273.93			Foliation	N4E/15NW
ARAMW-12	57.38	38.02	36.73		Discontinuous Fract	N52W/37NE
ARAMW-12	57.67	127.84			Discontinuous Fract	N38E/11SE
ARAMW-12	57.72	117.91	37.81		Discontinuous Fract	N28E/38SE
ARAMW-12	57.75	302.37			Foliation	N32E/12NW
ARAMW-12	58.1	232.58	11.77		Foliation	N37W/12SW
ARAMW-12	58.37	236.19			Foliation	N34W/8SW
ARAMW-12	58.83	138.07			Foliation	N48E/13SE
ARAMW-12	58.94	132.37 120.06	13.41		Foliation Foliation	N42E/13SE
ARAMW-12	59.09				Foliation	N30E/14SE
ARAMW-12 ARAMW-12	59.24 59.37	123.95 146.71	9.86		Foliation	N34E/10SE N57E/10SE
ARAMW-12	59.64	338.36			Foliation	N68E/29NW
ARAMW-12	59.04	169.4			Foliation	N79E/10SE
ARAMW-12	60.13	113.54			Foliation	N24E/13SE
ARAMW-12	60.13	122.16			Foliation	N32E/16SE
ARAMW-12	60.37	119.44			Foliation	N29E/16SE
ARAMW-12	60.45	120.85			Foliation	N31E/15SE
ARAMW-12	60.61	109.2			Foliation	N19E/13SE
ARAMW-12	60.71	94.1			Foliation	N4E/11SE
ARAMW-12	61.18	277.64			Foliation	N8E/16NW
ARAMW-12	61.34	270.08			Foliation	NOE/10NW
ARAMW-12	61.77	189.81			Foliation	N80W/9SW
ARAMW-12	62.32	51.03			Foliation	N39W/23NE
ARAMW-12	62.56	64.09			Foliation	N26W/20NE
ARAMW-12	62.79	72.86		0	Foliation	N17W/9NE
ARAMW-12	62.86	343.22	44.33	0	Discontinuous Fract	N73E/44NW
ARAMW-12	62.96	73.47	8.9	0	Foliation	N17W/9NE
ARAMW-12	63.18	54.48	7.93	0	Foliation	N36W/8NE
ARAMW-12	63.31	58.12		0	Foliation	N32W/10NE
ARAMW-12	63.46	79.17			Foliation	N11W/7NE
ARAMW-12	63.69	61.44			Foliation	N29W/7NE
ARAMW-12	63.84	67.37			Foliation	N23W/4NE
ARAMW-12	63.97	48.41	5.98	0	Foliation	N42W/6NE

Planar Orientations

Well ID	Depth	Dip Dir.	Dip	Aperture	Туре	Strike/Dip
	(feet)	(deg)	(deg)	(mm)		(Quadrant)
ARAMW-12	64.11	45.1	6.91	0	Foliation	N45W/7NE
ARAMW-12	64.22	58.82	7.07	0	Foliation	N31W/7NE
ARAMW-12	64.28	50.14	7.64	0	Foliation	N40W/8NE
ARAMW-12	64.41	43.21	6.01	0	Foliation	N47W/6NE
ARAMW-12	64.61	25.55	11.59	0	Foliation	N64W/12NE
ARAMW-12	64.82	159.14	12.84	0	Foliation	N69E/13SE
ARAMW-12	64.86	13.53	13.2	0	Foliation	N76W/13NE
ARAMW-12	64.95	160.22	12.61	0	Foliation	N70E/13SE
ARAMW-12	65.04	166.92	12.65	0	Foliation	N77E/13SE
ARAMW-12	65.15	168.5	12.67	0	Foliation	N79E/13SE
ARAMW-12	65.25	171.97	10.96	0	Foliation	N82E/11SE
ARAMW-12	65.43	171.61	8.86	0	Foliation	N82E/9SE
ARAMW-12	65.52	177.24	4.89	0	Part. Open Fract	N87E/5SE
ARAMW-12	65.54	307.46	25.5	0	Foliation	N37E/26NW
ARAMW-12	65.58	164.84	7.13	0	Foliation	N75E/7SE
ARAMW-12	65.86	179.52	11.84	0	Foliation	N90E/12SE
ARAMW-12	66.02	161.6	9.29	0	Foliation	N72E/9SE
ARAMW-12	66.19	159.55	8.93	0	Foliation	N70E/9SE

APPENDIX C

Piezometer Installation Logs

Well Installation Field Log

Project Name:	Plant Arkwright PDI Pilot Test
Borehole/Well No:	ARAMW-10
Plant Name:	Arkwright
Plant Address:	5241 Arkwright Road, Macon, Georgia, 31210
Project & Task Number:	175569434
Goals/Task:	AP-2 ARAMW-10 Well Installation
Drilling Company:	Southern Company Services C.F.S.
Drilling Equipment/Rig Type:	CME 550
Drilling Method:	HSA (5.63" OD/ 2.25" ID) & Wireline (PQ core)
Sampling Method:	SPT & 4.83" core barrel (3.35" core)
Prepared By:	Andreas Shoredits
Review By:	Edgar Smith

Date Started: 11/9/2024

Northing (ft): 1063082.33

Latitude: 32.921828

Location Datum: NAD83

Surface/ Ground Elevation (ft): 308.39
5.63 to 44.1¹,
Borehole Diameter (in): 4.88 to 74.8¹

Well Casing Diameter (in): 2.00

Top of Casing elev (ft): 308.49

DTW at Development - 11/12/24 (ft, toc): 11.20

**Static DTW - 12/12/24 (ft, toc): 7.40

Date Completed: 11/21/2024

Easting (ft): 2438902.85

Longitude: -83.702851

Elevation Datum: NAVD88

Stickup (ft, ags): N/A

Borehole Depth (ft, bgs): 74.8

Well Depth (ft, bgs): 58.0

Screen length (ff): 10.0

*Depth (feet)		Well Co	Materials Inventory	
., (,			8" Manhole	
_	Stick up	N/A	Cover with Locking Lid	Stick up: N/A ft, ags
_	_		-	
_	Ground surface - 0.0'		5.5" Steel outer casing	
I				Outer Casing Type (steel or PVC, schedule 40 or 80):
_				5.5" OD steel outer, 2.0" OD Sch 40 PVC well
+				Outer Casing
+				Top: ~10.0 ft, bgs Bottom: 44.1 ft, bg
土				.,,,,,
<u></u>	Bottom of Grout	43.5	264.9 Top of Bentonite	Screen Type:
+	Top of Bentonite		Elevation	PVC U-Pack Type II
+				Screen Slot Size:
+			2-in inch PVC casing	0.010
I				
				Screen
+				Top: <u>47.5</u> ft, bgs Bottom: <u>57.5</u> ft, bg
+	Bottom of Bentonite	46.1	262.3 Top of Filter pack	Sump/end cap
+	Top of Filter Pack	40.1	Elevation	Top: 57.5 ft, bgs Bottom: 58.0 ft, bg
I				
				Grout Quantity:
+	Top of Screen _	47.5	260.9 Top of Screen Elevati	on 4 (50 lb) bags of Aqua Guard and 60 gallons water
+			-	Grout Type:
			0.010 Slot screen	Baroid Aqua Guard 30% Solids Grout
Ĭ				
_				Grout
+				Top: <u>0.0</u> ft, bgs Bottom: <u>43.5</u> ft, b
+				Bentonite Type:
土				Pel-Plug 1/4" PDS TR30 pellets
				<u> </u>
+				Bentonite Quantity:
+				0.50 buckets (approx. 2.5 gal) - seal 3.50 buckets (approx. 17.5 gal) - sump backfill
+			7	Bentonite Seal
T				Top: 43.5 ft, bgs Bottom: 46.1 ft, b
+				
+			_	Filter Pack - Annular Space
+			-	Type (manufacturer, size): Covia Filtersil Industrial Sand Type 0.85. Used 3 x 50 lbs I
+				Filter pack volume approx. 3.52 gal
土				Filter Pack:
_	1			Top: <u>46.1</u> ft, bgs Bottom: <u>58.1</u> ft, b
+	Della se eference	57.5	Bottom of Screen	Nistan
+	Bottom of screen	57.5	250.9 Elevation	Notes:
+	Sump/end cap	58.0	250.4 Sump/end cap eleve	tion Bentonite seal hydrated 2-hours prior to grout backfill placement.
+	Top of backfill below		Base of filter pack	Backfill of borehole sump from 74.8 to 58.1 ft bgs using
土	filter pack (see notes)	58.1	250.3 Elevation	bentonite TR pellets
+	1			
+	T	740		Elevation in feet NAVD88 (North American Vertical Datum 19
	Terminus of borehole	74.8		** Beaverdam Creek stage was elevated

Well Installation Field Log

Project Name: Plant Arkwright PDI Pilot Test	Date Started: 11/10/2024	Date Completed: 11/21/2024
Borehole/Well No: ARAMW-11	Northing (ft): 1063077.03	Easting (ft): 2438902.96
Plant Name: Arkwright	Latitude: <u>32.921814</u>	Longitude: <u>-83.702851</u>
Plant Address: 5241 Arkwright Road, Macon, Georgia, 31210	Location Datum: NAD83	Elevation Datum: NAVD88
Project & Task Number: 175569434	Surface/ Ground Elevation (ft): 308.02	Stickup (ft, ags): N/A
Goals/Task: AP-2 ARAMW-11 Well Installation	Borehole Diameter (in): 5.63	Borehole Depth (ft, bgs): 40.5
Drilling Company: Southern Company Services C.F.S.	Well Casing Diameter (in): 2.00	Well Depth (ft, bgs): 40.5
Drilling Equipment/Rig Type: CME 550	Top of Casing elev (ft): <u>308.09</u>	Screen length (ft): 10
Drilling Method: HSA (5.63" OD/ 2.25" ID)	DTW at Development - 11/12/24 (ft, toc): 11.27	
Sampling Method: SPT	**Static DTW - 12/12/24 (ft, toc): 7.36	
Prepared By: Andreas Shoredits		_

	w By: Edgar Smith			Mistas Con
*Depth (feet)		Well Construc	tion	*Not to Sca Materials Inventory
200 (100.)			8" Inch Manhole	maiorial in one sy
	Ctick up	NI/A	Cover with Locking Lid	Stick up: N/A ft, ags
	Stick up	N/A	Cover with Locking Lid	Slick up. N/A II, dgs
	Ground surface - 0.0'			
+				Outer Casing Type (steel or PVC, schedule 40 or 80):
+				N/A
+				Outer Casing
+				Top: N/A ft, bgs Bottom: N/A ft, bgs
+				TopTI, bgsTI, bgs
+	Bottom of Grout	25.7	282.3 Top of Bentonite	Screen Type:
十	Top of Bentonite		Elevation	PVC U-Pack Type II
T				
工				Screen Slot Size:
			2-in inch casing	0.010
+				Screen
+				Top: <u>30.0</u> ft, bgs Bottom: <u>40.0</u> ft, bgs
+	I			
+	Bottom of Bentonite	27.9	280.1 Top of Filter pack	Sump/end cap
	Top of Filter Pack		Elevation	Top: <u>40.0</u> ft, bgs Bottom: <u>40.5</u> ft, bgs
+				Grout Quantity:
+	Tan at Care as	20.0	278.0 Top of Screen Elevation	
+	Top of Screen _	30.0	278.0 Top of Screen Elevation	2 (30 lb) bags of Aqua Goala and 30 gallons water
+				Grout Type:
+			0.010 Slot screen	Baroid Aqua Guard 30% Solids Grout
+			3013616611	Barola / (qua Obara 30/8 30/183 Oroof
+				Grout
十				Top: 0.0 ft, bgs Bottom: 25.7 ft, bgs
T				7.00
I				Bentonite Type:
\perp				Pel-Plug 1/4" PDS TR30 pellets
				Bentonite Quantity:
+				0.50 buckets (approx. 2.5 gal)
				Double with Color
+				Bentonite Seal
+				Top: <u>25.7</u> ft, bgs Bottom: <u>27.9</u> ft, bgs
+				Filter Pack - Annular Space
+				Type (manufacturer, size):
+				Covia Filtersil Industrial Sand Type 0.85. Used 3 x 50 lbs bag
+				Filter pack volume approx. 3.69 gal
+				Filter Pack:
+				Top: <u>27.9</u> ft, bgs Bottom: <u>40.5</u> ft, bgs
T			Bottom of Screen	
T	Bottom of screen	40.0	268.0 Elevation	Notes:
+	Sump/end cap	40.5	2/7 5	Pontonito soal budgated 2 hours prior to grout backfill
T			Sump/end cap elevation	backfill placement.
T			Base of filter pack	Backfill of borehole sump was not necessary.
士	Terminus of borehole	40.5	267.5 Elevation	
工				
				Elevation in feet NAVD88 (North American Vertical Datum 1988)
	l			** Beaverdam Creek stage was elevated

Well Installation Field Log

Project Name: Plant Arkwright Vertical Groundwater Delineation
Borehole/Well No: ARAMW-12

Plant Name: 5241 Arkwright Road, Macon, Georgia, 31210

Project & Task Number: 175569434

Goals/Task: AP-2 ARAMW-12 Well Installation
Drilling Company: Southern Company Services C.F.S,

Drilling Equipment/Rig Type: CME 550

Drilling Method: HSA (5.63" OD/ 2.25" ID) & Wireline (PQ core)

Sampling Method: SPT & 4.83" core barrel (3.35" core)

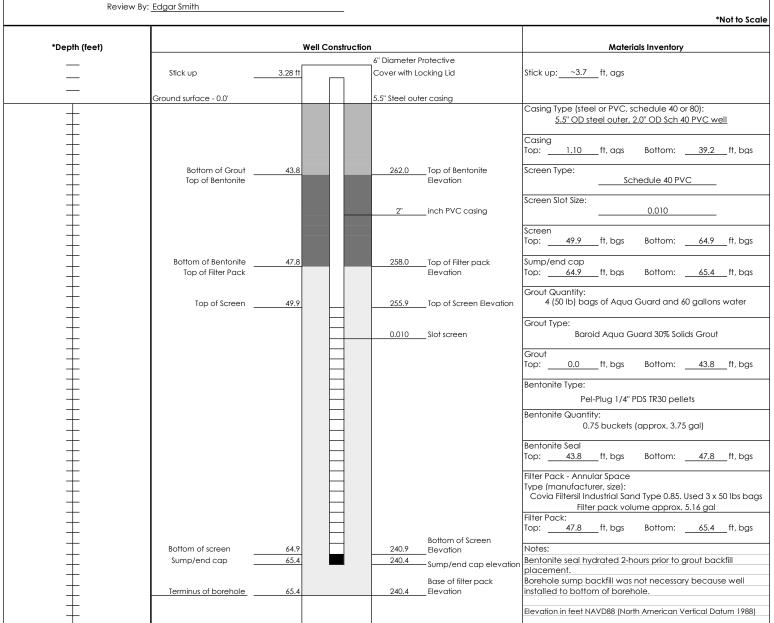
Prepared By: Andreas Shoredits

| Date Started: 11/21/2024 |
| Northing (ft): 1062906.98 |
| Latitude: 32.921343 |
| Location Datum: NAD83 |
| Surface/ Ground Elevation (ft): 305.80 |
| 5.63 to 39.2', |
| Borehole Diameter (in): 4.88 to 65.4' |
| Well Casing Diameter (in): 2.00 |
| Top of Casing elev (ft): 309.08 |
| DTW at Development - 12/11/24 (ft, toc): 13.04 |
| Static DTW - 11/5/24 (ft, bgs): 11.20 |

Date Completed: 12/5/2024

Easting (ft): 2439199.15

Longitude: -83.701888


Elevation Datum: NAVD88

Stickup (ft, ags): 3.28

Borehole Depth (ft, bgs): 65.4

Well Depth (ft, bgs): 65.4

Screen length (ft): 15.0

APPENDIX D

Piezometer Development Forms

Calibration Report

Instrument Aqua TROLL 400

Serial Number 1082822 Created 11/12/2024

Sensor RDO

Serial Number 1079619 Last Calibrated 11/12/2024

Calibration Details

Slope 0.9295201 Offset -0.00 mg/L

Calibration point 100%

Concentration 10.83 mg/L
Temperature 14.79 °C
Barometric Pressure 1,007.0 mbar

Sensor Conductivity

Serial Number 1082822 Last Calibrated 11/12/2024

Calibration Details

Offset 0.00 µS/cm
Cell Constant 1.103
Reference Temperature 25.00 °C
TDS Conversion Factor (ppm) 0.65

Sensor Level

Serial Number 1081452

Last Calibrated Factory Defaults

Sensor pH/ORP

Serial Number 22528 Last Calibrated 11/12/2024

Calibration Details

Total Calibration Points 3

Calibration Point 1

pH of Buffer 4.00 pH pH mV 163.4 mV Temperature 15.75 °C

Calibration Point 2

pH of Buffer 7.00 pH pH mV -3.8 mV Temperature 16.06 °C

Calibration Point 3

pH of Buffer 10.00 pH pH mV -173.7 mV Temperature 16.18 °C

Slope and Offset 1

Slope -55.75 mV/pH Offset -3.8 mV

Slope and Offset 2

Slope -56.61 mV/pH Offset -3.8 mV

ORP

ORP Solution ORP Standard
Offset -13.1 mV
Temperature 15.79 °C

Low-Flow Test Report:

Test Date / Time: 11/12/2024 9:01:19 AM

Project: Arkwright AP2 PDI **Operator Name:** Cynthia Hansen

Location Name: ARAMW-11, AP-2 Latitude: 32.92182103732442 Longitude: -83.70287896706324

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 30.5 ft Total Depth: 40.5 ft

Initial Depth to Water: 11.27 ft

Pump Type: Reclaimer pump

Tubing Type: LDPE

Pump Intake From TOC: 35 ft Estimated Total Volume Pumped:

48615 ml

Flow Cell Volume: 90 ml

Final Flow Rate: 300 ml/min Final

Final Draw Down: 0.53 ft

Instrument Used: Aqua TROLL 400 Serial Number: 1082822

Test Notes:

Redevelopment by over-pumping. Pump was placed at the bottom of the screen then pump was moved to top of screen, followed by the screen mid point.and pumped until stability was achieved.

Weather Conditions:

Sunny, 65F

Low-Flow Readings:

LOW-FIOW K	oudingo.								
Date Time	Elapsed Time	рН	Temperature	Specific	RDO	Turbidity	ORP	Depth to	Flow
Date Time	Liapood Timo	ρ	Tomporataro	Conductivity	Concentration	Taibiaity		Water	11011
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 10 %	+/- 10	+/- 10	+/- 0.33	
11/12/2024	00:00	5.75 pH	17.97 °C	1,692.6	0.85 mg/L	311.00 NTU	-269.0 mV	11.80 ft	300.00 ml/min
9:01 AM	00.00	0.70 pri	17.57	μS/cm	0.00 mg/L	011.001410	200.0 111	11.0010	000:00 111/111111
11/12/2024	10:00	5.71 pH	18.03 °C	1,730.9	0.69 mg/L	193.00 NTU	-258.9 mV	11.80 ft	300.00 ml/min
9:11 AM				μS/cm					
11/12/2024	20:00	5.71 pH	18.06 °C	1,735.7	0.63 mg/L	76.90 NTU	-298.8 mV	11.80 ft	300.00 ml/min
9:21 AM				μS/cm					
11/12/2024	30:00	5.70 pH	18.12 °C	1,726.9	0.61 mg/L	40.80 NTU	-244.3 mV	11.80 ft	300.00 ml/min
9:31 AM	55.55			μS/cm					
11/12/2024	40:00	5.70 pH	18.15 °C	1,726.9	0.59 mg/L	30.40 NTU	-237.5 mV	11.80 ft	300.00 ml/min
9:41 AM		о о р		μS/cm	J				
11/12/2024	50:00	5.69 pH	18.20 °C	1,719.0	0.57 mg/L	26.10 NTU	-230.4 mV	11.80 ft	300.00 ml/min
9:51 AM	55.55			μS/cm					
11/12/2024	01:00:00	5.68 pH	18.28 °C	1,726.4	0.56 mg/L	24.00 NTU	-222.5 mV	11.80 ft	300.00 ml/min
10:01 AM	01.00.00		10.20 0	μS/cm	0.00 mg/L			11.0011	000.00 1111/111111
11/12/2024	01:10:00	5.69 pH	18.37 °C	1,707.7	0.55 mg/L	16.80 NTU	-222.2 mV	11.80 ft	300.00 ml/min
10:11 AM	01110100	олоо р		μS/cm	0.00g, <u></u>				
11/12/2024	01:20:00	5.67 pH	18.45 °C	1,713.3	0.57 mg/L	16.00 NTU	-208.0 mV	11.80 ft	300.00 ml/min
10:21 AM	01120100		.00	μS/cm	0.01g, _	10.00 1410	200.0 111	11.00 10	550.00 111/111111
11/12/2024	01:30:00	5.66 pH	18.47 °C	1,732.3	0.54 mg/L	12.60 NTU	-201.9 mV	11.80 ft	300.00 ml/min
10:31 AM	01.00.00	0.00 pi i	10.17	μS/cm	0.011119/2	12.001110	201.0111	11.0010	
11/12/2024	01:40:00	5.67 pH	18.55 °C	1,736.2	0.52 mg/L	11.20 NTU	-206.8 mV	11.80 ft	300.00 ml/min
10:41 AM	01.40.00		10.55 C	μS/cm	0.02 mg/L	11.201110	200.0 1114	11.0011	000:00 111//11111
11/12/2024	01:50:00	5.66 pH	18.82 °C	1,767.1	0.51 mg/L	9.35 NTU	-196.5 mV	11.80 ft	300.00 ml/min
10:51 AM	01.00.00		10.02 C	μS/cm	0.51 Hig/L	9.55 1110	100.01114	11.0010	300.00 111/111111
11/12/2024	02:00:00	5.66 pH	18.87 °C	1,797.4	0.52 mg/L	7.65 NTU	-247.2 mV	11.80 ft	300.00 ml/min
11:01 AM	02.00.00		10.0.	μS/cm	0.02 mg/L			11.001	230.00 111,11111

11/12/2024	02:10:00	5.64 pH	19.10 °C	1,796.4	0.52 mg/L	6.21 NTU	-180.7 mV	11.80 ft	300.00 ml/min
11:11 AM	02.10.00	5.64 pH	19.10 C	μS/cm	0.52 Hig/L	6.21 N10	-100.7 1110	11.0011	300.00 1111/111111
11/12/2024	02:20:00	5.64 pH	19.37 °C	1,798.6	0.51 mg/L	4.92 NTU	-175.6 mV	11.80 ft	300.00 ml/min
11:21 AM	02.20.00	5.04 pm	19.57	μS/cm	0.51 mg/L	4.92 1110	-175.01110	11.0010	300.00 111/111111
11/12/2024	02:30:00	5.64 pH	19.34 °C	1,791.0	0.51 mg/L	4.63 NTU	-173.7 mV	11.80 ft	300.00 ml/min
11:31 AM	02.30.00	5.04 pm	19.54	μS/cm	0.51 mg/L	4.03 1110	-175.7 1110	11.00 10	300.00 1111/111111
11/12/2024	02:40:00	5.64 pH	19.23 °C	1,776.6	0.49 mg/L	4.06 NTU	-176.8 mV	11.80 ft	300.00 ml/min
11:41 AM	02.40.00	5.04 pm	19.25	μS/cm	0.49 Hig/L	4.00 1110	-170.01110	11.00 10	300.00 111/111111
11/12/2024	02:42:03	5.63 pH	19.22 °C	1,770.0	0.50 mg/L	4.03 NTU	-169.5 mV	11.80 ft	300.00 ml/min
11:43 AM	02.42.03	3.03 pr i	15.22 0	μS/cm	0.50 Hig/L	4.05 1110	100.5111	11.0010	300.00 111/111111

Samples

Sample ID:	Description:
•	·

Created using VuSitu from In-Situ, Inc.

Low-Flow Test Report:

Test Date / Time: 11/12/2024 12:02:49 PM

Project: Arkwright AP-2 PDI **Operator Name:** Cynthia Hansen

Location Name: ARAMW-10, AP-2 Latitude: 32.921865050725714 Longitude: -83.70277573721029

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 48 ft Total Depth: 58 ft

Initial Depth to Water: 11.20 ft

Pump Type: Reclaimer pump

Tubing Type: LDPE

Pump Intake From TOC: 53 ft Estimated Total Volume Pumped:

18000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 300 ml/min Final Draw Down: 0.60 ft Instrument Used: Aqua TROLL 400

Serial Number: 1082822

Test Notes:

Redevelopment by over-pumping was performed on 11/11/2024. Pump was deployed to screen mid point and purged until stability was achieved.

Weather Conditions:

Sunny, 72F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 10 %	+/- 10	+/- 10	+/- 0.33	
11/12/2024 12:02 PM	00:00	6.64 pH	19.59 °C	329.55 μS/cm	9.52 mg/L	11.40 NTU	140.6 mV	11.80 ft	300.00 ml/min
11/12/2024 12:12 PM	10:00	6.07 pH	19.13 °C	1,321.1 μS/cm	1.85 mg/L	10.20 NTU	63.7 mV	11.80 ft	300.00 ml/min
11/12/2024 12:22 PM	20:00	5.95 pH	19.05 °C	1,570.6 μS/cm	0.42 mg/L	9.12 NTU	-76.3 mV	11.80 ft	300.00 ml/min
11/12/2024 12:32 PM	30:00	5.92 pH	19.00 °C	1,608.3 μS/cm	0.34 mg/L	5.47 NTU	-69.8 mV	11.80 ft	300.00 ml/min
11/12/2024 12:42 PM	40:00	5.89 pH	18.88 °C	1,640.6 μS/cm	0.32 mg/L	4.39 NTU	-37.0 mV	11.80 ft	300.00 ml/min
11/12/2024 12:52 PM	50:00	5.88 pH	18.82 °C	1,670.9 μS/cm	0.30 mg/L	3.62 NTU	-25.2 mV	11.80 ft	300.00 ml/min
11/12/2024 1:02 PM	01:00:00	5.86 pH	18.79 °C	1,695.6 μS/cm	0.29 mg/L	1.11 NTU	-17.4 mV	11.80 ft	300.00 ml/min

Samples

Sample ID:

Calibration Report

Instrument

Aqua TROLL 400

Serial Number

1082822

Created

12/10/2024

Sensor

RDO

Serial Number

1079619

Last Calibrated

12/10/2024

Calibration Details

Slope

0.9234736

Offset

-0.00 mg/L

Calibration point 100%

Concentration

9.54 mg/L

Temperature

19.87 °C

Barometric Pressure

979.71 mbar

Sensor

Conductivity

Serial Number

1082822

Last Calibrated

12/10/2024

Calibration Details

Offset

 $0.00 \,\mu\text{S/cm}$

Cell Constant

1.004

Och Ochsiani

Reference Temperature

25.00 °C

TDS Conversion Factor (ppm)

0.65

Sensor

Level

Serial Number

1081452

Last Calibrated

Factory Defaults

3611301	privone
Serial Number	22528
Last Calibrated	12/10/2024
Calibration De	otaile.
Total Calibration	
iolai Calibralio	JII FOII IIS 3
Calibration Po	oint 1
pH of Buffer	4.00 pH
pH mV	171.5 mV
Temperature	19.30 °C
Calibration Po	oint 2
pH of Buffer	7.02 pH
pH mV	-3.6 mV
Temperature	19.22 °C
Calibration Po	
pH of Buffer	10.05 pH
pH mV	-174.2 mV
Temperature	19.31 °C
Clara and Off	in a to d
Slope and Off	
Slope -57	
Offset -2.5	5 mV
Slope and Off	set 2
	.3 mV/pH
	5 mV
ORP	
ORP Solution	ORP Standard
Offset	-5.7 mV
	10.07.00

-5.7 mV 19.67 °C

Temperature

pH/ORP

Sensor

WELL DEVELOPMENT FORM

Project Name:	Southern Company Arkwright		
Plant Name:	Plant Arkwright		
Plant Address: 5001 Arkwright Road, Macon, GA 31210			
Project Number:	175569434		
Goal/Task:	Initial Development		
Well ID:	ARAMW-12		
Development Methods:	Over-pumping and Surging using Proactive Tornado Pump		
Developed By: Andreas Shoredits			

Page_	1	of	1
Well Type:		Stick-up	
Well Diameter (inches):		2	
Initial Depth to Water (Feet BTOC):		13.04	
Total Depth of Well (Feet BTOC):		68.82	
Development Start Date:		12/11/2024	
Development End Date:		12/11/2024	
Recorded by:	Ar	ndreas Shroed	dits

Time	Depth to Water (feet btoc)	Flow Rate (mL/min)	Cumulative Vol. Purged (gal)	Temp. (°C)	pH (SU)	Specific Conductance (µS/cm)	Turbidity (NTU)	Color (visual)	Comments/Observations During Purging	
	Stabilization Crit	eria	•	N/A	± 0.1	± 5%	< 5 NTUs		(sediment, odor, etc.)	
17:42	16.00	3785	3.00	15.9	6.84	329.86	24.8	Light Brown	RDO 2.09 mg/L ORP -240.6 mV	
17:45	40.00	4950	6.00	17.7	7.37	351.61	94.8	Brown	RDO 2.00 mg/L ORP -253.6 mV	
17:50	68.70	3800	9.00	17.5	7.48	290.27	132	Dark Brown	RDO 1.29 mg/L ORP -188.9 mV	
Final Values:		17:50	9.00	17.5	7.48	290.3	132	Dark Brown		
						·	·		Auly	

APPENDIX E

Certified Piezometer Survey

PLANT ARKWRIGHT AS-Built Wells 12-09-2024

FL Bullard - Surveyor, Southern Company CFS

WELL ID	NORTHING	EASTING	GROUND	TOP REFERENCE NAIL	BLACK MARK AT TOP CASING
ARAMW - 1	1062937.58	2439119.98	305.33	305.63	308.35
		212211221		1 227.12	
ARAMW - 2	1062926.40	2439115.34	305.08	305.48	308.28
ARAMW - 7	1063048.60	2438912.71	306.83	307.13	306.95
7 11 0 11111 7	1000010.00	2100012.71	000.00	007.10	000.00
ARAMW - 8	1062885.53	2439112.34	304.90	305.20	307.62
ARAMW - 9	1063023.25	2438935.02	306.54	306.83	306.72
ADAMA/ 40	4000000 22	0420000 05	200.20	200.00	200.40
ARAMW - 10	1063082.33	2438902.85	308.39	308.69	308.49
ARAMW - 11	1063077.03	2438902.96	308.02	308.32	308.09
<u> </u>					
ARAMW - 12	1062906.98	2439199.15	305.80	306.13	309.08
		2 / 2 2 / 2 2 2 2			
GWA - 19	1063774.24	2439488.29	340.24	340.53 (Top slab no nail))	343.35
GWA - 20	1063726.52	2439080.28	327.48	327.78 (Top slab no nail)	330.63
OWA-20	1003720.02	2+33000.20	327.40	321.10 (10p 3lab 110 1lall)	330.03
GWC - 21	1062940.78	2439112.34	305.47	305.76	308.46
ARAMW - 22	1063038.84	2438924.29	306.74	307.04	306.80
A D O M O . 00	4000005 50	0400004.00	1 204.40	1 204.70	207.72
ARGWC - 23	1062885.59	2439201.99	304.42	304.72	307.73

CEORGINAL No.2269

PROFESSIONAL SURVEY

BULLARO

PROFESSIONAL SURVEY

BULLARO

SURVEY DATA CERTIFICATION
REFERENCE NAIL VERTICAL 0.01' HORIZ 0.10'
BLACK MARK ON PVC CASING 0.001'

Horizontal Datum is Georgia State Plane West Zone Coordinate System, North American Datum of 1983 (NAD83) Elevation Datum referenced to NGVD 1988 Both measured in US Feet

APPENDIX F SCS Drilling Bond

CONTINUATION CERTIFICATE

SAFECO Insurance Company of America

, Surety upon

a certain Bond No. 4993104

dated effective June 30, 1987

(MONTH-DAY-YEAR)

on behalf of Southern Company Services, Inc.

(PRINCIPAL)

and in favor of Georgia Department of Natural Resources, Environmental Protection Division

(OBLIGEE)

does hereby continue said bond in force for the further period

beginning on June 30, 2024

(MONTH-DAY-YEAR)

and ending on June 30, 2025

(MONTH-DAY-YEAR)

Amount of bond Fifteen Thousand Dollars and 00/100 (\$15,000.00)

Description of bond Water Well Contractors & Drillers

Premium: \$100.00

PROVIDED: That this continuation certificate does not create a new obligation and is executed upon the express condition and provision that the Surety's liability under said bond and this and all Continuation Certificates issued in connection therewith shall not be cumulative and that the said Surety's aggregate liability under said bond and this and all such Continuation Certificates on account of all defaults committed during the period (regardless of the number of years) said bond had been and shall be in force, shall not in any event exceed the amount of said bond as hereinbefore set forth.

Signed and dated on

05/31/2023

(MONTH-DAY-YEAR)

SAFECO Insurance Company of America

175 Berkeley Street, Boston, MA 02116

By

Attorney-in-Fact Jeffrey M. Wilson, Attorney-in-Fact

McGriff Insurance Services, LLC

Agent

2211 7th Avenue South, Birmingham, AL 35233

Address of Agent

(205) 252-9871

Telephone Number of Agent

Travelers Casualty and Surety Company of America Travelers Casualty and Surety Company St. Paul Fire and Marine Insurance Company

POWER OF ATTORNEY

KNOW ALL MEN BY THESE PRESENTS: That Travelers Casualty and Surety Company of America, Travelers Casualty and Surety Company, and St. Paul Fire and Marine Insurance Company are corporations duly organized under the laws of the State of Connecticut (herein collectively called the "Companies"), and that the Companies do hereby make, constitute and appoint Jeffrey M Wilson of BIRMINGHAM , Alabama , their true and lawful Attorney(s)-in-Fact to sign, execute, seal and acknowledge any and all bonds, recognizances, conditional undertakings and other writings obligatory in the nature thereof on behalf of the Companies in their business of guaranteeing the fidelity of persons, guaranteeing the performance of contracts and executing or guaranteeing bonds and undertakings required or permitted in any actions or proceedings allowed by law.

IN WITNESS WHEREOF, the Companies have caused this instrument to be signed, and their corporate seals to be hereto affixed, this 21st day of April, 2021.

State of Connecticut

City of Hartford ss.

On this the 21st day of April, 2021, before me personally appeared Robert L. Raney, who acknowledged himself to be the Senior Vice President of each of the Companies, and that he, as such, being authorized so to do, executed the foregoing instrument for the purposes therein contained by signing on behalf of said Companies by himself as a duly authorized officer.

IN WITNESS WHEREOF, I hereunto set my hand and official seal.

My Commission expires the 30th day of June, 2026

Anna P. Nowik, Notary Public

Senior Vice President

This Power of Attorney is granted under and by the authority of the following resolutions adopted by the Boards of Directors of each of the Companies, which resolutions are now in full force and effect, reading as follows:

RESOLVED, that the Chairman, the President, any Vice Chairman, any Executive Vice President, any Senior Vice President, any Vice President, any Second Vice President, the Treasurer, any Assistant Treasurer, the Corporate Secretary or any Assistant Secretary may appoint Attorneys-in-Fact and Agents to act for and on behalf of the Company and may give such appointee such authority as his or her certificate of authority may prescribe to sign with the Company's name and seal with the Company's seal bonds, recognizances, contracts of indemnity, and other writings obligatory in the nature of a bond, recognizance, or conditional undertaking, and any of said officers or the Board of Directors at any time may remove any such appointee and revoke the power given him or her; and it is

FURTHER RESOLVED, that the Chairman, the President, any Vice Chairman, any Executive Vice President, any Senior Vice President or any Vice President may delegate all or any part of the foregoing authority to one or more officers or employees of this Company, provided that each such delegation is in writing and a copy thereof is filed in the office of the Secretary; and it is

FURTHER RESOLVED, that any bond, recognizance, contract of indemnity, or writing obligatory in the nature of a bond, recognizance, or conditional undertaking shall be valid and binding upon the Company when (a) signed by the President, any Vice Chairman, any Executive Vice President, any Senior Vice President or any Vice President, any Second Vice President, the Treasurer, any Assistant Treasurer, the Corporate Secretary or any Assistant Secretary and duly attested and sealed with the Company's seal by a Secretary or Assistant Secretary; or (b) duly executed (under seal, if required) by one or more Attorneys-in-Fact and Agents pursuant to the power prescribed in his or her certificate or their certificates of authority or by one or more Company officers pursuant to a written delegation of authority; and it is

FURTHER RESOLVED, that the signature of each of the following officers: President, any Executive Vice President, any Senior Vice President, any Secretary, any Assistant Secretary, and the seal of the Company may be affixed by facsimile to any Power of Attorney or to any certificate relating thereto appointing Resident Vice Presidents, Resident Assistant Secretaries or Attorneys-in-Fact for purposes only of executing and attesting bonds and undertakings and other writings obligatory in the nature thereof, and any such Power of Attorney or certificate bearing such facsimile signature or facsimile seal shall be valid and binding upon the Company and any such power so executed and certified by such facsimile signature and facsimile seal shall be valid and binding on the Company in the future with respect to any bond or understanding to which it is attached.

I, Kevin E. Hughes, the undersigned, Assistant Secretary of each of the Companies, do hereby certify that the above and foregoing is a true and correct copy of the Power of Attorney executed by said Companies, which remains in full force and effect.

Dated this 31st day of May

2023


Kevin E. Hughes, Assistant Secretary

Appendix D Statistical Analyses

GROUNDWATER STATS CONSULTING

February 28, 2025

Southern Company Services Attn: Mr. Joju Abraham 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308-3374

Re: Plant Arkwright Ash Pond 2/Dry Ash Stockpile August 2024 Semi-Annual Sample Event

Dear Mr. Abraham,

Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the August 2024 Semi-Annual Groundwater Monitoring Detection and Assessment statistical analysis of monitoring data for Georgia Power Company's Plant Arkwright Ash Pond 2/Dry Ash Stockpile. The analysis complies with the Georgia Environmental Protection Division (EPD) Rules for Solid Waste Management Chapter 391-3-4-.10 and follows the United States Environmental Protection Agency (USEPA) Unified Guidance (2009).

Semi-annual sampling is conducted for USEPA's Coal Combustion Residuals (CCR) Appendix III and IV parameters, in addition to Appendix I parameters, in accordance with the Georgia Department of Natural Resources, Environmental Protection Division groundwater monitoring regulations. The monitoring well network, as provided by Southern Company Services, consists of the following:

- Upgradient wells: ARGWA-19 and ARGWA-20
- o **Downgradient wells:** ARGWC-21, ARGWC-22, and ARGWC-23
- Assessment wells: ARAMW-1, ARAMW-2, ARAMW-7, ARAMW-8, and ARAMW-9

Assessment wells ARAMW-1 and ARAMW-2 were installed in 2019; wells ARAMW-7 and ARAMW-8 were installed in 2020; and well ARAMW-9 was installed in 2022 and first sampled in January 2023. All Assessment wells have a minimum of 4 samples and are, therefore, evaluated using confidence intervals for Appendix I and IV constituents.

Assessment wells do not require statistical analyses for Appendix I and III Detection monitoring constituents.

Data were sent electronically to Groundwater Stats Consulting, and the statistical analysis was reviewed by Andrew Collins, Project Manager for Groundwater Stats Consulting.

The CCR program consists of the following constituents:

- o Georgia EPD Appendix I: arsenic, barium, cadmium, lead, selenium, and silver
- CCR Appendix III: boron, calcium, chloride, fluoride, pH, sulfate, and total dissolved solids (TDS)
- CCR Appendix IV: antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 + 228, fluoride, lithium, lead, mercury, molybdenum, selenium, and thallium

Downgradient well data for Appendix I constituents were analyzed using interwell prediction limits and confidence intervals; downgradient well data for Appendix III constituents were analyzed using interwell prediction limits; and downgradient well data for Appendix IV were analyzed using confidence intervals. Note that when there are no detections present in downgradient wells for a given constituent, statistical analyses are not required. Summaries of well/constituent pairs containing 100% non-detects for Appendix I Detection monitoring constituents at downgradient wells and for Appendix I and IV Assessment monitoring constituents at downgradient and assessment wells follow this letter. For all constituents, a substitution of the most recent reporting limit is used for non-detect data.

Time series plots for all well/constituent pairs are provided and are particularly useful for screening parameters detected in downgradient wells which require statistical analyses (Figure A). Additionally, a separate section of box plots is included for all constituents at upgradient and downgradient wells (Figure B). The time series plots are used to initially screen for suspected outliers and trends, while the box plots provide visual representation of variation within individual wells and between all wells. Values in background which have been flagged as outliers may be seen in a lighter font and as a disconnected symbol on the graphs. A summary of flagged outliers follows this report (Figure C).

Based on the previous screening described below, data at all wells for constituents detected in downgradient wells were evaluated for the following: 1) outliers; 2) trends; 3) most appropriate statistical method based on site characteristics of groundwater data upgradient of the facility; and 4) eligibility of downgradient wells when intrawell statistical methods are recommended. Power curves were previously provided to demonstrate that

the selected statistical methods for the parameters listed above comply with the USEPA Unified Guidance and the Georgia Environmental Protection Division Rules for Solid Waste Management Chapter 391-3-4-.10. The EPA suggests the selected statistical method should provide at least 55% power at 3 standard deviations or at least 80% power at 4 standard deviations. Power curves were based on the following:

Georgia EPD Appendix I Constituents:

- Semi-Annual Sampling
- Interwell Prediction Limits with 1-of-2 resample plan (all parameters)
- # Constituents: 5 (cadmium is 100% non-detect in downgradient wells)
- # Downgradient wells: 3

CCR Appendix III Constituents:

- Semi-Annual Sampling
- Interwell Prediction Limits with 1-of-2 resample plan (all parameters)
- # Constituents: 7
- # Downgradient wells: 3

The distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. Parametric prediction limits (or tolerance limits or confidence intervals, as applicable) are utilized when the screened historical data follow a normal or transformed-normal distribution. When data cannot be normalized or the majority of data are non-detects, a nonparametric test is utilized. While the false positive rate associated with parametric limits is based on an annual 10% (5% per semi-annual event) as recommend by the EPA Unified Guidance (2009), the false positive rate associated with the nonparametric limits is dependent upon the available background sample size, number of future comparisons, and verification resample plan. The following approaches are used for handling non-detects (USEPA, 2009).

- No statistical analyses are required on wells and analytes containing 100% non-detects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% non-detects, simple substitution of one-half the reporting limit is utilized in the statistical analysis. The reporting limit utilized for non-detects is the most recent practical quantification limit (PQL) as reported by the laboratory.
- When data contain between 15-50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data for parametric limits. This technique

- adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric prediction limits are used on data containing greater than 50% non-detects.

Natural systems continuously evolve due to physical changes made to the environment. Examples include capping a landfill, paving areas near a well, or lining a drainage channel to prevent erosion. Periodic updating of background statistical limits is necessary to accommodate these types of changes. In the interwell case, prediction limits are updated with upgradient well data during each event after screening for any new outliers. In some cases, the earlier portion of data may require deselection prior to construction of limits to provide sensitive limits that will rapidly detect changes in groundwater quality. Even though the data are excluded from the calculation, the values will continue to be reported and shown in tables and graphs.

Summary of Background Screening – Conducted in 2019

Outlier Analysis

Time series plots were used to identify suspected outliers, or extreme values that would result in limits that are not representative of the current background data population. Suspected outliers at wells ARGWA-19, ARGWA-20, and ARGWC-21 for Appendix I, Appendix III, and Appendix IV parameters were formally tested using Tukey's box plot method and, when identified, flagged in the computer database with "o" and deselected prior to construction of statistical limits. Outliers were flagged in downgradient wells, though there are no intrawell statistical analyses in the current report. This improves the estimate of downgradient confidence intervals and provides for possible future application of intrawell statistics. As noted below, current values that could result in exceedances were not flagged.

When the most recent values are identified as outliers in upgradient wells, those values are typically not flagged in the database (except in cases where they would cause background limits to be elevated) as they may represent a possible trend in an upgradient well. If future values do not remain at similar concentrations, these values will be flagged as outliers and deselected. Several low values exist in the data sets and appear on the graphs as possible low outliers relative to the laboratory's Practical Quantitation Limit. However, these values are observed trace values (i.e., measurements reported by the laboratory between the Method Detection Limit and the Practical Quantitation Limit) and, therefore, were not flagged as outliers. Due to changing reporting limits, when non-detects are replaced with the most recent reporting limit, previously flagged "J" values (or

estimated values) may be flagged as outliers if they are much higher than current reporting limits.

Additionally, when any values are flagged in the database as outliers, they are plotted in a disconnected and lighter symbol on the time series graph. The accompanying data pages display the flagged value in a lighter font as well. A substitution of the most recent reporting limit was applied when varying detection limits existed in data. A summary of flagged values is included in Figure C.

Seasonality

No obvious seasonal patterns were observed on the time series plots for any of the detected data; therefore, no deseasonalizing adjustments were made to the data. When seasonal patterns are observed, data may be deseasonalized so that the resulting limits will correctly account for the seasonality as a predictable pattern rather than random variation or a release.

Trend Test Evaluation

While trends may be identified by visual inspection, a quantification of the trend and its significance is needed. The Sen's Slope/Mann Kendall trend test was used to evaluate all data at wells ARGWA-19, ARGWA-20, and ARGWC-21 to identify statistically significant increasing or decreasing trends. In the absence of suspected contamination, significant trending data are typically not included as part of the background data used for construction of prediction limits. This step serves to eliminate the trend and, thus, reduce variation in background. When statistically significant decreasing trends are present, all available data are evaluated to determine whether earlier concentration levels are significantly different than current reported concentrations and will be deselected as necessary. When any records of data are truncated for the reasons above, a summary report will be provided to show the date ranges used in construction of the statistical limits.

The results of the trend analyses were included with the previous screenings and showed a few statistically significant trends, both increasing and decreasing. No adjustments to the background period were made because the overall changes were relatively small. Since intrawell tests are not used in this current analysis, the background levels are not affected by trends in downgradient wells.

<u>Appendix III – Determination of Spatial Variation</u>

The Analysis of Variance (ANOVA) was used to statistically evaluate differences in average concentrations among upgradient wells, which assists in identifying the most appropriate statistical approach. Interwell tests, which compare downgradient well data to statistical limits constructed from pooled upgradient well data, are appropriate when average concentrations are similar across upgradient wells. Intrawell tests, which compare compliance data from a single well to screened historical data within the same well, are appropriate when upgradient wells exhibit spatial variation; when statistical limits constructed from upgradient wells are not representative of the current background data population; and when downgradient water quality is unimpacted compared to upgradient water quality for the same parameter.

The ANOVA identified significant differences among upgradient well data for several constituents. While data were further tested for intrawell eligibility during the screening, interwell methods will be used for all Appendix I and Appendix III constituents in accordance with Georgia EPD requirements.

Prediction Limit Analysis of Appendix I & III Parameters – August 2024

All Appendix I and III parameters are analyzed using interwell prediction limits. Upgradient well data were reassessed for potential outliers during this analysis using visual screening. No additional values were flagged and previously flagged values were confirmed. A summary of flagged outliers follows this report (Figure C).

Interwell Prediction Limits

Interwell prediction limits, combined with a 1-of-2 resample plan, were constructed using all historical upgradient well data through August 2024 for Appendix I and III constituents (Figures D & E, respectively). As mentioned above, downgradient wells containing 100% non-detects did not require statistical analyses. Interwell prediction limits pool upgradient well data to establish a background limit for an individual constituent. The August 2024 sample from each downgradient well is compared to the background limit to determine whether initial exceedances are present.

In the event of an initial exceedance of compliance well data, the 1-of-2 resample plan allows for collection of one additional sample to determine whether the initial exceedance is confirmed. When a resample confirms the initial exceedance, a statistically significant increase is identified and further research would be required to identify the cause of the exceedance (i.e., impact from the site, natural variation, or an off-site source). If the resample falls within the statistical limit, the initial exceedance is considered to be a false

positive result; therefore, no exceedance is noted, and no further action is necessary. If no resample is collected, the original result is considered a confirmed exceedance. Summary tables and graphical results for the interwell prediction limits for Appendix I and III constituents limits follow this letter. No exceedances were identified for Appendix I well/constituent pairs. The following exceedances were identified for Appendix III well/constituent pairs:

Boron: ARGWC-21, ARGWC-22, and ARGWC-23
 Calcium: ARGWC-21, ARGWC-22, and ARGWC-23

• Fluoride: ARGWC-23

• pH (upper limit): ARGWC-21 and ARGWC-23

Sulfate: ARGWC-21, ARGWC-22, and ARGWC-23
 TDS ARGWC-21, ARGWC-22, and ARGWC-23

<u>Trend Tests – Appendix III</u>

When prediction limit exceedances are identified in downgradient wells, data are further evaluated using the Sen's Slope/Mann Kendall trend test at the 99% confidence level to determine whether concentrations are statistically increasing, decreasing, or stable (Figure F). Upgradient well data are included in the trend analyses for all parameters found to exceed their prediction limit in downgradient wells to identify whether similar patterns exist upgradient of the site. Upgradient trends are an indication of variability in groundwater quality unrelated to practices at the site. Both a summary and graphical display of the trend test results follows this letter. Statistically significant trends were identified for the following well/constituent pairs:

Increasing:

Boron: ARGWC-21

Calcium: ARGWA-20 (upgradient) and ARGWC-21

Fluoride: ARGWC-23Sulfate: ARGWC-21TDS: ARGWC-21

Decreasing:

Sulfate: ARGWA-19 (upgradient)
 TDS: ARGWA-19 (upgradient)

Confidence Interval Analysis of Appendix I & IV Parameters – August 2024

For Appendix I and IV parameters, confidence intervals for each downgradient well/constituent pair were compared against corresponding Groundwater Protection Standards (GWPS). GWPS were developed as described below. Downgradient well/constituent pairs containing 100% non-detects do not require analysis. Data from upgradient wells for Appendix I and IV parameters are reassessed for outliers during each analysis. No additional values were flagged and previously flagged values were confirmed. A summary of previously flagged outliers follows this report (Figure C).

Interwell Upper Tolerance Limits

Interwell tolerance limits were used to calculate site-specific background limits from all available pooled upgradient well data through August 2024 for Appendix I and IV constituents (Figure G). Parametric tolerance limits are used when data follow a normal or transformed-normal distribution. When data contained greater than 50% non-detects or did not follow a normal or transformed-normal distribution, nonparametric tolerance limits were used.

Groundwater Protection Standards

The background limits were then used when determining the groundwater protection standard (GWPS) under 40 CFR §257.95(h) and Georgia EPD Rule 391-3-4-.10(6)(a). On July 30, 2018, US EPA revised the Federal CCR rule updating GWPS for cobalt, lead, lithium, and molybdenum as described above in 40 CFR §257.95(h)(2). Effective on February 22, 2022, Georgia EPD incorporated the updated GWPS into the current Georgia EPD Rules for Solid Waste Management 391-3-4-.10(6)(a). In accordance with the updated Rules, the GWPS is:

- The maximum contaminant level (MCL) established under §141.62 and §141.66 of this title
- Where an MCL has not been established for a constituent, Federal and State CCR Rules specify levels for cobalt (0.006 mg/L), lead (0.015 mg/L), lithium (0.040 mg/L), and molybdenum (0.100 mg/L)
- The respective background level for a constituent when the background level is higher than the MCL or Federal CCR Rule identified GWPS

Following Georgia EPD Rule requirements and the Federal CCR requirements, GWPS were established for statistical comparison of Appendix I and IV constituents for this sample event (Figure H).

Confidence Intervals

To complete the statistical comparison to GWPS, confidence intervals were constructed when a minimum of 4 samples was available using data since 2016 for each of the Appendix I and IV constituents in accordance with the state requirements in each downgradient well (Figure I). The Sanitas software was used to calculate the confidence intervals, either parametric or nonparametric, depending on the data distribution and percentage of non-detects. When data followed a normal or transformed-normal distribution, parametric confidence intervals were used for Appendix IV parameters. Nonparametric confidence intervals, which use the appropriate order statistics, depending on the sample size, as interval limits, were constructed when data did not follow a normal or transformed-normal distribution or when there were greater than 50% non-detects. The lower confidence limit, which is constructed with 99% confidence for parametric confidence intervals, is compared to the GWPS prepared as described above. The achievable confidence level associated with nonparametric confidence intervals is dependent upon the number samples available.

Only when the entire confidence interval is above a GWPS is the well/constituent pair considered to exceed its respective standard. In the event of a confidence interval exceedance of the GWPS, a statistically significant level (SSL) exceedance is identified. Note that due to a statistically significant increasing trend for lithium at downgradient well ARGWC-23 and more recent data are reported at or above the GWPS, only the most recent 8 observations were used to construct a confidence interval on stable, non-trending data (USEPA Unified Guidance, 2009, Chapter 7). A summary of the confidence intervals follows this letter. Confidence interval exceedances were identified for the following well/constituent pairs:

• Cobalt: ARAMW-7

• Lithium: ARAMW-7 and ARGWC-23

Molybdenum: ARAMW-8

<u>Trend Test Evaluation – Appendix IV</u>

Assessment monitoring well/constituent pairs identified with confidence interval exceedances (which evaluate the average concentration of a group of measurements) are further evaluated using the Sen's Slope/Mann-Kendall trend test using 95% confidence (Figure J). Although the trend tests for Assessment monitoring pairs were previously evaluated using 99% confidence, the 95% confidence level more rapidly identifies statistically significant trends. Additionally, the 95% confidence level is recommended in cases with limited sample sizes and, particularly, for new assessment wells. Upgradient

wells are included in the trend analyses to identify whether similar patterns exist upgradient of the site for the same constituents. When trends are present in upgradient wells, it is an indication of variability in groundwater quality unrelated to practices at the site. The following statistically significant trend was identified:

Increasing

Lithium: ARGWC-23Molybdenum: ARAMW-8

Decreasing

• Molybdenum: ARGWA-19 (upgradient)

Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for Plant Arkwright Ash Pond 2/Dry Ash Stockpile. If you have any questions or comments, please feel free to contact us.

For Groundwater Stats Consulting,

Kristina Rayner

Kristina Rayner Senior Statistician Andrew Collins
Project Manager

Alollina

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting.

Page 1

Date Ranges

Date: 9/27/2024 2:56 PM

Plant Arkwright Client: Southern Company Data: Arkwright No 2

Lithium (mg/L) ARGWC-23 overall:2/10/2021-8/20/2024 Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

100% Non-Detects - Appendix I Detection Monitoring

Analysis Run 9/26/2024 11:41 AM View: Appendix I
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Cadmium (mg/L) ARGWC-21, ARGWC-22, ARGWC-23

Selenium (mg/L) ARGWC-21, ARGWC-23

Silver (mg/L) ARGWC-22, ARGWC-23 Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. U

100% Non-Detects - Appendix I and IV

Analysis Run 9/27/2024 3:01 PM View: Confidence Intervals
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Antimony (mg/L)

ARAMW-1, ARAMW-2, ARAMW-7, ARGWC-21, ARGWC-22, ARGWC-23

Arsenic (mg/L)

ARAMW-9

Beryllium (mg/L)

ARAMW-1, ARAMW-2, ARAMW-8, ARGWC-21, ARAMW-9

Cadmium (mg/L)

ARAMW-1, ARAMW-2, ARAMW-7, ARAMW-8, ARGWC-21, ARGWC-22, ARGWC-23, ARAMW-9

Chromium (mg/L)

ARAMW-1, ARAMW-2, ARAMW-7, ARAMW-8, ARGWC-23, ARAMW-9

Cobalt (mg/L)

ARAMW-9

Lead (mg/L)

ARAMW-1, ARAMW-2, ARAMW-8, ARAMW-9

Mercury (mg/L)

ARAMW-1, ARAMW-2, ARAMW-7, ARAMW-8, ARGWC-23, ARAMW-9

Molybdenum (mg/L)

ARGWC-21

Selenium (mg/L)

ARAMW-1, ARAMW-2, ARAMW-7, ARAMW-8, ARGWC-21, ARGWC-23, ARAMW-9

Silver (mg/L)

ARAMW-1, ARAMW-2, ARAMW-7, ARAMW-8, ARGWC-22, ARGWC-23, ARAMW-9

Thallium (mg/L)

ARAMW-1, ARAMW-2, ARAMW-7, ARAMW-8, ARGWC-21, ARAMW-9

Appendix I Interwell Prediction Limits - All Results (No Significant)

Plant Arkwright Client: Southern Company Data: Arkwright No 2 Printed 9/26/2024, 11:45 AM

Constituent	Well	Upper Lim	. Lower Lim	. Date	Observ.	Sig.	Bg I	N Bg Mean	Std. Dev	v. <u>%NDs</u>	ND Adj	. Transforr	m <u>Alpha</u>	Method
Arsenic (mg/L)	ARGWC-21	0.005	n/a	8/20/2024	0.005ND	No	72	n/a	n/a	87.5	n/a	n/a	0.0003715	NP Inter (NDs) 1 of 2
Arsenic (mg/L)	ARGWC-22	0.005	n/a	8/20/2024	0.005ND	No	72	n/a	n/a	87.5	n/a	n/a	0.0003715	NP Inter (NDs) 1 of 2
Arsenic (mg/L)	ARGWC-23	0.005	n/a	8/20/2024	0.005ND	No	72	n/a	n/a	87.5	n/a	n/a	0.0003715	NP Inter (NDs) 1 of 2
Barium (mg/L)	ARGWC-21	0.107	n/a	8/20/2024	0.0431	No	72	n/a	n/a	0	n/a	n/a	0.0003715	NP Inter (normality) 1 of 2
Barium (mg/L)	ARGWC-22	0.107	n/a	8/20/2024	0.0223	No	72	n/a	n/a	0	n/a	n/a	0.0003715	NP Inter (normality) 1 of 2
Barium (mg/L)	ARGWC-23	0.107	n/a	8/20/2024	0.105	No	72	n/a	n/a	0	n/a	n/a	0.0003715	NP Inter (normality) 1 of 2
Lead (mg/L)	ARGWC-21	0.002	n/a	8/20/2024	0.002ND	No	72	n/a	n/a	87.5	n/a	n/a	0.0003715	NP Inter (NDs) 1 of 2
Lead (mg/L)	ARGWC-22	0.002	n/a	8/20/2024	0.002ND	No	72	n/a	n/a	87.5	n/a	n/a	0.0003715	NP Inter (NDs) 1 of 2
Lead (mg/L)	ARGWC-23	0.002	n/a	8/20/2024	0.002ND	No	72	n/a	n/a	87.5	n/a	n/a	0.0003715	NP Inter (NDs) 1 of 2
Selenium (mg/L)	ARGWC-22	0.005	n/a	8/20/2024	0.005ND	No	71	n/a	n/a	67.61	n/a	n/a	0.0003804	NP Inter (NDs) 1 of 2
Silver (mg/L)	ARGWC-21	0.001	n/a	8/20/2024	0.001ND	No	62	n/a	n/a	91.94	n/a	n/a	0.0004981	NP Inter (NDs) 1 of 2

Appendix III Interwell Prediction Limits - Significant Results

Plant Arkwright Client: Southern Company Data: Arkwright No 2 Printed 9/26/2024, 11:48 AM

Constituent	Well	Upper Lim	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	Bg Mean	Std. Dev	<u>/. %NDs</u>	ND Adj	. Transform	n Alpha	Method
Boron (mg/L)	ARGWC-21	0.092	n/a	8/20/2024	1.13	Yes	42	n/a	n/a	26.19	n/a	n/a	0.001066	NP Inter (normality) 1 of 2
Boron (mg/L)	ARGWC-22	0.092	n/a	8/20/2024	3.09	Yes	42	n/a	n/a	26.19	n/a	n/a	0.001066	NP Inter (normality) 1 of 2
Boron (mg/L)	ARGWC-23	0.092	n/a	8/20/2024	0.434	Yes	42	n/a	n/a	26.19	n/a	n/a	0.001066	NP Inter (normality) 1 of 2
Calcium (mg/L)	ARGWC-21	13.81	n/a	8/20/2024	78	Yes	42	3.215	0.2873	0	None	sqrt(x)	0.002505	Param Inter 1 of 2
Calcium (mg/L)	ARGWC-22	13.81	n/a	8/20/2024	194	Yes	42	3.215	0.2873	0	None	sqrt(x)	0.002505	Param Inter 1 of 2
Calcium (mg/L)	ARGWC-23	13.81	n/a	8/20/2024	79.6	Yes	42	3.215	0.2873	0	None	sqrt(x)	0.002505	Param Inter 1 of 2
Fluoride (mg/L)	ARGWC-23	0.148	n/a	8/20/2024	0.365	Yes	46	n/a	n/a	41.3	n/a	n/a	0.0009064	NP Inter (normality) 1 of 2
pH (SU)	ARGWC-21	6.086	5.41	8/20/2024	6.2	Yes	45	5.748	0.1948	0	None	No	0.001253	Param Inter 1 of 2
pH (SU)	ARGWC-23	6.086	5.41	8/20/2024	6.34	Yes	45	5.748	0.1948	0	None	No	0.001253	Param Inter 1 of 2
Sulfate (mg/L)	ARGWC-21	21	n/a	8/20/2024	219	Yes	67	n/a	n/a	0	n/a	n/a	0.0004301	NP Inter (normality) 1 of 2
Sulfate (mg/L)	ARGWC-22	21	n/a	8/20/2024	674	Yes	67	n/a	n/a	0	n/a	n/a	0.0004301	NP Inter (normality) 1 of 2
Sulfate (mg/L)	ARGWC-23	21	n/a	8/20/2024	80.1	Yes	67	n/a	n/a	0	n/a	n/a	0.0004301	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	ARGWC-21	141.1	n/a	8/20/2024	520	Yes	40	104.7	20.82	0	None	No	0.002505	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	ARGWC-22	141.1	n/a	8/20/2024	1180	Yes	40	104.7	20.82	0	None	No	0.002505	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	ARGWC-23	141.1	n/a	8/20/2024	328	Yes	40	104.7	20.82	0	None	No	0.002505	Param Inter 1 of 2

Appendix III Interwell Prediction Limits - All Results

Plant Arkwright Client: Southern Company Data: Arkwright No 2 Printed 9/26/2024, 11:48 AM

Constituent	Well	Upper Lim	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	<u> Bg Mean</u>	Std. Dev	<u>/. %NDs</u>	ND Adj	. Transforr	n Alpha	Method
Boron (mg/L)	ARGWC-21	0.092	n/a	8/20/2024	1.13	Yes	42	n/a	n/a	26.19	n/a	n/a	0.001066	NP Inter (normality) 1 of 2
Boron (mg/L)	ARGWC-22	0.092	n/a	8/20/2024	3.09	Yes	42	n/a	n/a	26.19	n/a	n/a	0.001066	NP Inter (normality) 1 of 2
Boron (mg/L)	ARGWC-23	0.092	n/a	8/20/2024	0.434	Yes	42	n/a	n/a	26.19	n/a	n/a	0.001066	NP Inter (normality) 1 of 2
Calcium (mg/L)	ARGWC-21	13.81	n/a	8/20/2024	78	Yes	42	3.215	0.2873	0	None	sqrt(x)	0.002505	Param Inter 1 of 2
Calcium (mg/L)	ARGWC-22	13.81	n/a	8/20/2024	194	Yes	42	3.215	0.2873	0	None	sqrt(x)	0.002505	Param Inter 1 of 2
Calcium (mg/L)	ARGWC-23	13.81	n/a	8/20/2024	79.6	Yes	42	3.215	0.2873	0	None	sqrt(x)	0.002505	Param Inter 1 of 2
Chloride (mg/L)	ARGWC-21	16.2	n/a	8/20/2024	3.18	No	68	n/a	n/a	0	n/a	n/a	0.0004166	NP Inter (normality) 1 of 2
Chloride (mg/L)	ARGWC-22	16.2	n/a	8/20/2024	7.25	No	68	n/a	n/a	0	n/a	n/a	0.0004166	NP Inter (normality) 1 of 2
Chloride (mg/L)	ARGWC-23	16.2	n/a	8/20/2024	3.68	No	68	n/a	n/a	0	n/a	n/a	0.0004166	NP Inter (normality) 1 of 2
Fluoride (mg/L)	ARGWC-21	0.148	n/a	8/20/2024	0.124	No	46	n/a	n/a	41.3	n/a	n/a	0.0009064	NP Inter (normality) 1 of 2
Fluoride (mg/L)	ARGWC-22	0.148	n/a	8/20/2024	0.066J	No	46	n/a	n/a	41.3	n/a	n/a	0.0009064	NP Inter (normality) 1 of 2
Fluoride (mg/L)	ARGWC-23	0.148	n/a	8/20/2024	0.365	Yes	46	n/a	n/a	41.3	n/a	n/a	0.0009064	NP Inter (normality) 1 of 2
pH (SU)	ARGWC-21	6.086	5.41	8/20/2024	6.2	Yes	45	5.748	0.1948	0	None	No	0.001253	Param Inter 1 of 2
pH (SU)	ARGWC-22	6.086	5.41	8/20/2024	5.76	No	45	5.748	0.1948	0	None	No	0.001253	Param Inter 1 of 2
pH (SU)	ARGWC-23	6.086	5.41	8/20/2024	6.34	Yes	45	5.748	0.1948	0	None	No	0.001253	Param Inter 1 of 2
Sulfate (mg/L)	ARGWC-21	21	n/a	8/20/2024	219	Yes	67	n/a	n/a	0	n/a	n/a	0.0004301	NP Inter (normality) 1 of 2
Sulfate (mg/L)	ARGWC-22	21	n/a	8/20/2024	674	Yes	67	n/a	n/a	0	n/a	n/a	0.0004301	NP Inter (normality) 1 of 2
Sulfate (mg/L)	ARGWC-23	21	n/a	8/20/2024	80.1	Yes	67	n/a	n/a	0	n/a	n/a	0.0004301	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	ARGWC-21	141.1	n/a	8/20/2024	520	Yes	40	104.7	20.82	0	None	No	0.002505	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	ARGWC-22	141.1	n/a	8/20/2024	1180	Yes	40	104.7	20.82	0	None	No	0.002505	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	ARGWC-23	141.1	n/a	8/20/2024	328	Yes	40	104.7	20.82	0	None	No	0.002505	Param Inter 1 of 2

Appendix III Trend Test - Significant Results

	Plant Arkwright	Client: Southern	Company Da	ata: Arkwright No 2	Printed 9/26	/2024, 11	:53 AM			
Constituent	Well		Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	<u>Alpha</u>	Method
Boron (mg/L)	ARGWC-2	1	0.07619	175	87	Yes	21	0	0.01	NP
Calcium (mg/L)	ARGWA-2	0 (bg)	0.2776	95	87	Yes	21	0	0.01	NP
Calcium (mg/L)	ARGWC-2	1	4.91	160	87	Yes	21	0	0.01	NP
Fluoride (mg/L)	ARGWC-2	3	0.08957	105	74	Yes	19	0	0.01	NP
Sulfate (mg/L)	ARGWA-1	9 (bg)	-0.2378	-276	-176	Yes	34	0	0.01	NP
Sulfate (mg/L)	ARGWC-2	1	8.192	422	176	Yes	34	0	0.01	NP
Total Dissolved Solids (mg/L)	ARGWA-1	9 (bg)	-5.289	-84	-81	Yes	20	0	0.01	NP
Total Dissolved Solids (mg/L)	ARGWC-2	1	27.93	146	81	Yes	20	0	0.01	NP

Appendix III Trend Test - All Results

	Plant Arkwright	Client: Southern	Company	Data: Ar	kwright No 2	Printed 9/2	26/2024, 11	1:53 AM			
Constituent	Well		Slope		Calc.	Critical	Sig.	<u>N</u>	%NDs	<u>Alpha</u>	Method
Boron (mg/L)	ARGWA-19	9 (bg)	0		-2	-87	No	21	33.33	0.01	NP
Boron (mg/L)	ARGWA-20	0 (bg)	0.003024		58	87	No	21	19.05	0.01	NP
Boron (mg/L)	ARGWC-2	1	0.07619		175	87	Yes	21	0	0.01	NP
Boron (mg/L)	ARGWC-2	2	0.07412		41	74	No	19	0	0.01	NP
Boron (mg/L)	ARGWC-2	3	0.007449		32	74	No	19	0	0.01	NP
Calcium (mg/L)	ARGWA-19	9 (bg)	-0.4657		-75	-87	No	21	0	0.01	NP
Calcium (mg/L)	ARGWA-20	0 (bg)	0.2776		95	87	Yes	21	0	0.01	NP
Calcium (mg/L)	ARGWC-2	1	4.91		160	87	Yes	21	0	0.01	NP
Calcium (mg/L)	ARGWC-22	2	0		-2	-74	No	19	0	0.01	NP
Calcium (mg/L)	ARGWC-2	3	2.173		69	74	No	19	0	0.01	NP
Fluoride (mg/L)	ARGWA-19	9 (bg)	0		21	98	No	23	34.78	0.01	NP
Fluoride (mg/L)	ARGWA-20	0 (bg)	0		-2	-98	No	23	47.83	0.01	NP
Fluoride (mg/L)	ARGWC-2	3	0.08957		105	74	Yes	19	0	0.01	NP
pH (SU)	ARGWA-19	9 (bg)	0.008207		32	92	No	22	0	0.01	NP
pH (SU)	ARGWA-20	0 (bg)	0.0127		41	98	No	23	0	0.01	NP
pH (SU)	ARGWC-2	1	-0.01714		-50	-98	No	23	0	0.01	NP
pH (SU)	ARGWC-2	3	-0.005069		-8	-74	No	19	0	0.01	NP
Sulfate (mg/L)	ARGWA-19	9 (bg)	-0.2378		-276	-176	Yes	34	0	0.01	NP
Sulfate (mg/L)	ARGWA-20	0 (bg)	-0.03643		-70	-167	No	33	0	0.01	NP
Sulfate (mg/L)	ARGWC-2	1	8.192		422	176	Yes	34	0	0.01	NP
Sulfate (mg/L)	ARGWC-22	2	-17.79		-32	-74	No	19	0	0.01	NP
Sulfate (mg/L)	ARGWC-2	3	2.748		49	74	No	19	0	0.01	NP
Total Dissolved Solids (mg/L)	ARGWA-19	9 (bg)	-5.289		-84	-81	Yes	20	0	0.01	NP
Total Dissolved Solids (mg/L)	ARGWA-20) (bg)	0.2883		24	81	No	20	0	0.01	NP
Total Dissolved Solids (mg/L)	ARGWC-2	1	27.93		146	81	Yes	20	0	0.01	NP
Total Dissolved Solids (mg/L)	ARGWC-22	2	-27.81		-60	-68	No	18	0	0.01	NP
Total Dissolved Solids (mg/L)	ARGWC-2	3	1.889		23	68	No	18	0	0.01	NP

Upper Tolerance Limits

Plant Arkwright Client: Southern Company Data: Arkwright No 2 Printed 9/26/2024, 12:01 PM

Constituent	Well	Upper Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	n/a	0.003	n/a	n/a	n/a	34	100	n/a	0.1748	NP Inter(NDs)
Arsenic (mg/L)	n/a	0.005	n/a	n/a	n/a	72	87.5	n/a	0.02489	NP Inter(NDs)
Barium (mg/L)	n/a	0.107	n/a	n/a	n/a	72	0	n/a	0.02489	NP Inter(normality)
Beryllium (mg/L)	n/a	0.0005	n/a	n/a	n/a	38	92.11	n/a	0.1424	NP Inter(NDs)
Cadmium (mg/L)	n/a	0.001	n/a	n/a	n/a	70	98.57	n/a	0.02758	NP Inter(NDs)
Chromium (mg/L)	n/a	0.01	n/a	n/a	n/a	42	26.19	n/a	0.116	NP Inter(normality)
Cobalt (mg/L)	n/a	0.001	n/a	n/a	n/a	44	68.18	n/a	0.1047	NP Inter(NDs)
Combined Radium 226 + 228 (pCi/L)	n/a	2.65	n/a	n/a	n/a	42	2.381	n/a	0.116	NP Inter(normality)
Fluoride (mg/L)	n/a	0.148	n/a	n/a	n/a	46	41.3	n/a	0.09447	NP Inter(normality)
Lead (mg/L)	n/a	0.002	n/a	n/a	n/a	72	87.5	n/a	0.02489	NP Inter(NDs)
Lithium (mg/L)	n/a	0.013	n/a	n/a	n/a	44	43.18	n/a	0.1047	NP Inter(normality)
Mercury (mg/L)	n/a	0.0002	n/a	n/a	n/a	34	94.12	n/a	0.1748	NP Inter(NDs)
Molybdenum (mg/L)	n/a	0.001	n/a	n/a	n/a	40	82.5	n/a	0.1285	NP Inter(NDs)
Selenium (mg/L)	n/a	0.005	n/a	n/a	n/a	71	67.61	n/a	0.0262	NP Inter(NDs)
Silver (mg/L)	n/a	0.001	n/a	n/a	n/a	62	91.94	n/a	0.04158	NP Inter(NDs)
Thallium (mg/L)	n/a	0.002	n/a	n/a	n/a	34	97.06	n/a	0.1748	NP Inter(NDs)

PLANT	ARKWRIGH1	Γ AP #2 GWPS		
		CCR-Rule	Background	
Constituent Name	MCL	Specified	Limit	GWPS
Antimony, Total (mg/L)	0.006		0.003	0.006
Arsenic, Total (mg/L)	0.01		0.005	0.01
Barium, Total (mg/L)	2		0.11	2
Beryllium, Total (mg/L)	0.004		0.0005	0.004
Cadmium, Total (mg/L)	0.005		0.001	0.005
Chromium, Total (mg/L)	0.1		0.01	0.1
Cobalt, Total (mg/L)	n/a	0.006	0.001	0.006
Combined Radium, Total (pCi/L)	5		2.65	5
Fluoride, Total (mg/L)	4		0.15	4
Lead, Total (mg/L)	n/a	0.015	0.002	0.015
Lithium, Total (mg/L)	n/a	0.04	0.013	0.04
Mercury, Total (mg/L)	0.002		0.0002	0.002
Molybdenum, Total (mg/L)	n/a	0.1	0.001	0.1
Selenium, Total (mg/L)	0.05		0.005	0.05
Silver, Total (mg/L)	n/a		0.001	0.001
Thallium, Total (mg/L)	0.002		0.002	0.002

^{*}MCL = Maximum Contaminant Level

^{*}GWPS = Groundwater Protection Standard

^{*}CCR = Coal Combustion Residuals

Confidence Interval Summary Table - Significant Results

Plant Arkwright Client: Southern Company Data: Arkwright No 2 Printed 9/30/2024, 1:44 PM Constituent Well Upper Lim. Lower Lim. Compliance Sig. N Mean Std. Dev. %NDs ND Adj. <u>Transform</u> <u>Alpha</u> <u>Method</u> Cobalt (mg/L) ARAMW-7 0.02163 0 None x^3 0.01 Param. 0.0577 0.04 Yes 9 0.06306 0.006339 0 No Lithium (mg/L) ARAMW-7 0.0779 None 0.002 NP (normality) Lithium (mg/L) ARGWC-23 0.00478 0 None No 0.01 Param. 0.1024 0.1 Yes 9 0.1479 0.06261 0 None x^2 Molybdenum (mg/L) ARAMW-8 0.2005 0.01 Param.

Confidence Interval Summary Table - All Results

Plant Arkwright Client: Southern Company Data: Arkwright No 2 Printed 9/30/2024, 1:44 PM

Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig. N	<u>Mean</u>	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	ARAMW-8	0.003	0.00134	0.006	No 7	0.002763	0.0006274	85.71	None	No	0.008	NP (NDs)
Antimony (mg/L)	ARAMW-9	0.001904	0.0007461	0.006	No 4	0.002163	0.0009892	50	Kaplan-Meier	No	0.01	Param.
Arsenic (mg/L)	ARAMW-1	0.005	0.005	0.01	No 10	0.004733	0.0008443	90	None	No	0.011	NP (NDs)
Arsenic (mg/L)	ARAMW-2	0.03334	0.004106	0.01	No 10	0.02008	0.02536	0	None	x^(1/3)	0.01	Param.
Arsenic (mg/L)	ARAMW-7	0.005	0.00035	0.01	No 8	0.003269	0.002007	50	None	No	0.004	NP (normality)
Arsenic (mg/L)	ARAMW-8	0.005	0.00031	0.01	No 8	0.003479	0.002163	62.5	None	No	0.004	NP (NDs)
Arsenic (mg/L)	ARGWC-21	0.005	0.0019	0.01	No 23	0.003027	0.001674	39.13	None	No	0.01	NP (normality)
Arsenic (mg/L)	ARGWC-22	0.005	0.00221	0.01	No 18	0.004092	0.001787	77.78		No	0.01	NP (NDs)
Arsenic (mg/L)	ARGWC-23	0.005	0.00075	0.01	No 18	0.004248	0.001731	83.33	None	No	0.01	NP (NDs)
Barium (mg/L)	ARAMW-1	0.05151	0.04251	2	No 10	0.04701	0.005048	0	None	No	0.01	Param.
Barium (mg/L)	ARAMW-2	0.1083	0.06061	2	No 10	0.08467	0.02857	0	None	sqrt(x)	0.01	Param.
Barium (mg/L)	ARAMW-7	0.03217	0.02428	2	No 8	0.02818	0.004008	0	None	In(x)	0.01	Param.
Barium (mg/L)	ARAMW-8	0.1173	0.0939	2	No 8	0.1056	0.01106	0	None	No	0.01	Param.
, - ,	ARGWC-21		0.0959	2	No 23	0.08066	0.03529	0		No	0.01	NP (normality)
Barium (mg/L)		0.12		2				0	None		0.01	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Barium (mg/L)	ARGWC-22	0.04571	0.02815		No 18	0.0381	0.01609		None	x^(1/3)		Param.
Barium (mg/L)	ARGWC-23	0.1437	0.09733	2	No 18	0.1205	0.03829	0	None	No	0.01	Param.
Barium (mg/L)	ARAMW-9	0.02495	0.004949	2	No 4	0.01495	0.004405	0	None	No	0.01	Param.
Beryllium (mg/L)	ARAMW-7	0.0025	0.000236	0.004	No 8	0.001125	0.001139	37.5	None	No	0.004	NP (normality)
Beryllium (mg/L)	ARGWC-22	0.0005	0.00036	0.004	No 17	0.0004388	0.0001192		None	No	0.01	NP (NDs)
Beryllium (mg/L)	ARGWC-23	0.0005	0.00033	0.004	No 17	0.00049	0.00004123	94.12		No	0.01	NP (NDs)
Chromium (mg/L)	ARGWC-21	0.01	0.0017	0.1	No 21	0.009605	0.001811	95.24	None	No	0.01	NP (NDs)
Chromium (mg/L)	ARGWC-22	0.01	0.0048	0.1	No 18	0.009711	0.001226	94.44	None	No	0.01	NP (NDs)
Cobalt (mg/L)	ARAMW-1	0.0008499	0.0004085	0.006	No 11	0.0006354	0.0002714	9.091	None	sqrt(x)	0.01	Param.
Cobalt (mg/L)	ARAMW-2	0.002936	0.002064	0.006	No 11	0.0025	0.0005235	0	None	No	0.01	Param.
Cobalt (mg/L)	ARAMW-7	0.07537	0.04752	0.006	Yes 9	0.05887	0.02163	0	None	x^3	0.01	Param.
Cobalt (mg/L)	ARAMW-8	0.005031	0.002407	0.006	No 9	0.003719	0.001359	0	None	No	0.01	Param.
Cobalt (mg/L)	ARGWC-21	0.0018	0.0007	0.006	No 22	0.001279	0.0005844	0	None	No	0.01	NP (normality)
Cobalt (mg/L)	ARGWC-22	0.00766	0.002677	0.006	No 19	0.005733	0.00496	0	None	sqrt(x)	0.01	Param.
Cobalt (mg/L)	ARGWC-23	0.001791	0.0007307	0.006	No 19	0.00153	0.001291	5.263	None	ln(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	ARAMW-1	4.227	0.4887	5	No 10	2.418	2.732	0	None	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	ARAMW-2	5.492	2.154	5	No 10	3.879	2.411	0	None	x^(1/3)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	ARAMW-7	5.122	3.943	5	No 8	4.533	0.5562	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	ARAMW-8	2.547	0.1616	5	No 8	1.275	1.233	12.5	None	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	ARGWC-21	1.349	0.608	5	No 21	1.219	1.204	4.762	None	ln(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	ARGWC-22	1.169	0.4018	5	No 18	0.8644	0.7312	5.556	None	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	ARGWC-23	0.9762	0.1958	5	No 18	0.7036	0.8296	0	None	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	ARAMW-9	5.909	-0.8624	5	No 4	2.523	1.491	0	None	No	0.01	Param.
Fluoride (mg/L)	ARAMW-1	0.2184	0.1645	4	No 11	0.1915	0.03238	0	None	No	0.01	Param.
Fluoride (mg/L)	ARAMW-2	0.1417	0.08199	4	No 11	0.1118	0.0358	9.091	None	No	0.01	Param.
Fluoride (mg/L)	ARAMW-7	0.1031	0.03332	4	No 9	0.08711	0.03443	33.33	Kaplan-Meier	No	0.01	Param.
Fluoride (mg/L)	ARAMW-8	0.2498	0.1705	4	No 9	0.2101	0.04107	0	None	No	0.01	Param.
Fluoride (mg/L)	ARGWC-21	0.1557	0.09039	4	No 23	0.138	0.1027	0	None	ln(x)	0.01	Param.
Fluoride (mg/L)	ARGWC-22	0.134	0.045	4	No 19	0.08105	0.05799	15.79	None	No	0.01	NP (normality)
Fluoride (mg/L)	ARGWC-23	0.3682	0.2266	4	No 19	0.2974	0.1209	0	None	No	0.01	Param.
Fluoride (mg/L)	ARAMW-9	1.042	0.7759	4	No 4	0.9088	0.05851	0	None	No	0.01	Param.
Lead (mg/L)	ARAMW-7	0.002	0.00013	0.015	No 8	0.001766	0.0006611	87.5	None	No		NP (NDs)
Lead (mg/L)	ARGWC-21	0.002	0.00026	0.015	No 23	0.001844	0.0005174	91.3	None	No	0.01	NP (NDs)
Lead (mg/L)	ARGWC-22	0.002	0.00022	0.015	No 18	0.001798	0.0005887	88.89		No	0.01	NP (NDs)
Lead (mg/L)	ARGWC-23	0.002	0.00026	0.015	No 18	0.001802	0.0005758	88.89		No	0.01	NP (NDs)
Lithium (mg/L)	ARAMW-1	0.009982	0.008532	0.04	No 12	0.009236	0.0009998	0	None	x^2	0.01	Param.
Lithium (mg/L)	ARAMW-2	0.036	0.000332	0.04	No 12	0.0267	0.01943	0	None	No	0.01	NP (normality)
Lithium (mg/L)	ARAMW-7	0.0779	0.0577	0.04	Yes 9	0.06306	0.006339	0	None	No		NP (normality)
Lithium (mg/L)	ARAMW-8	0.006662	0.005466	0.04	No 9	0.00605	0.0007237	0	None	x^3	0.002	Param.
Lithium (mg/L)	ARGWC-21	0.000002	0.009968	0.04	No 22	0.00003	0.002084	0	None	No	0.01	Param.
Lithium (mg/L)	ARGWC-21	0.01221	0.009908	0.04	No 19	0.01109	0.002004	0	None	No	0.01	Param.
Landin (ing/L)		0.02012	3.01020	3.04	140 10	3.01001	3.001200	J			0.01	. aram.

Confidence Interval Summary Table - All Results

Plant Arkwright Client: Southern Company Data: Arkwright No 2 Printed 9/30/2024, 1:44 PM

Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig. N	Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Lithium (mg/L)	ARGWC-23	0.05532	0.04518	0.04	Yes 8	0.05025	0.00478	0	None	No	0.01	Param.
Lithium (mg/L)	ARAMW-9	0.01179	0	0.04	No 4	0.007975	0.002264	0	None	x^2	0.01	Param.
Mercury (mg/L)	ARGWC-21	0.0002	0.000073	0.002	No 17	0.0001925	0.0000308	94.12	None	No	0.01	NP (NDs)
Mercury (mg/L)	ARGWC-22	0.000372	0.0002	0.002	No 15	0.0002115	0.00004441	93.33	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	ARAMW-1	0.008455	0.005284	0.1	No 11	0.006869	0.001903	0	None	No	0.01	Param.
Molybdenum (mg/L)	ARAMW-2	0.015	0.000585	0.1	No 11	0.007281	0.007394	45.45	None	No	0.006	NP (normality)
Molybdenum (mg/L)	ARAMW-7	0.0012	0.000257	0.1	No 9	0.0008707	0.0003215	66.67	None	No	0.002	NP (NDs)
Molybdenum (mg/L)	ARAMW-8	0.2005	0.1024	0.1	Yes 9	0.1479	0.06261	0	None	x^2	0.01	Param.
Molybdenum (mg/L)	ARGWC-22	0.015	0.000496	0.1	No 18	0.007859	0.007356	50	None	No	0.01	NP (normality)
Molybdenum (mg/L)	ARGWC-23	0.06445	0.04668	0.1	No 18	0.05339	0.0183	0	None	x^2	0.01	Param.
Molybdenum (mg/L)	ARAMW-9	0.01998	0	0.1	No 4	0.008525	0.005046	0	None	No	0.01	Param.
Selenium (mg/L)	ARGWC-22	0.005	0.002	0.05	No 18	0.004833	0.0007071	94.44	None	No	0.01	NP (NDs)
Silver (mg/L)	ARGWC-21	0.001	0.00043	0.001	No 18	0.0009683	0.0001344	94.44	None	No	0.01	NP (NDs)
Thallium (mg/L)	ARGWC-22	0.002	0.00035	0.002	No 15	0.001583	0.0007244	73.33	None	No	0.01	NP (NDs)
Thallium (mg/L)	ARGWC-23	0.002	0.00028	0.002	No 15	0.001653	0.0007177	80	None	No	0.01	NP (NDs)

Appendix IV Trend Tests - Significant Results

Plant Arkwright Client: Southern Company Data: Arkwright No 2 Printed 9/27/2024, 3:13 PM

Comptitude	14/-11	Class	0-1-	0-1411	C:	N.	0/ NID-	Manager 186	Vf	A I I	M-4
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>IN</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Lithium (mg/L)	ARGWC-23	0.008693	127	58	Yes	19	0	n/a	n/a	0.05	NP
Molybdenum (mg/L)	ARAMW-8	0.03468	28	20	Yes	9	0	n/a	n/a	0.05	NP
Molybdenum (mg/L)	ARGWA-19 (ba)	-0.00008875	-92	-62	Yes	20	65	n/a	n/a	0.05	NP

Appendix IV Trend Tests - All Results

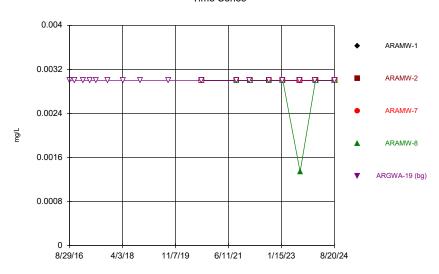
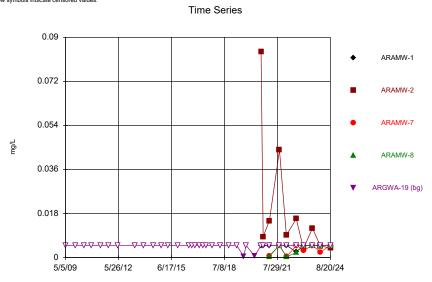
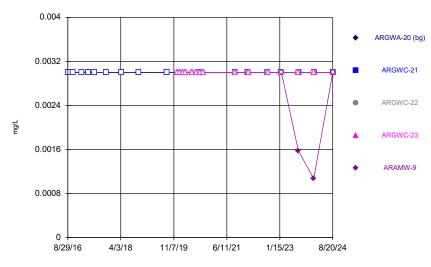

Plant Arkwright Client: Southern Company Data: Arkwright No 2 Printed 9/27/2024, 3:13 PM Calc. Critical <u>%NDs</u> <u>Normality</u> <u>Xform</u> Constituent Well Slope Sig. $\underline{\mathsf{N}}$ <u>Alpha</u> Method Cobalt (mg/L) ARAMW-7 -0.0001726 0 20 No 9 0 0.05 NP n/a n/a 5 Cobalt (mg/L) ARGWA-19 (bg) 0 71 No 22 81.82 n/a 0.05 NP n/a Cobalt (mg/L) ARGWA-20 (bg) -22 -71 No 22 54.55 n/a 0.05 NP n/a ARAMW-7 0 Lithium (mg/L) 20 No 9 0.05 NP Lithium (mg/L) ARGWA-19 (bg) -0.0001902 -68 -71 NP No 22 4.545 n/a n/a 0.05 ARGWA-20 (bg) 6 71 Lithium (mg/L) No 22 81.82 n/a 0.05 NP 0.008693 Lithium (mg/L) ARGWC-23 127 58 Yes 19 NP n/a n/a 0.05 28 Molybdenum (mg/L) ARAMW-8 0.03468 20 0 n/a n/a 0.05 ARGWA-19 (bg) -92 -62 Molybdenum (mg/L) -0.00008875 Yes 20 65 n/a n/a 0.05 NP Molybdenum (mg/L) ARGWA-20 (bg) 0.05 NP

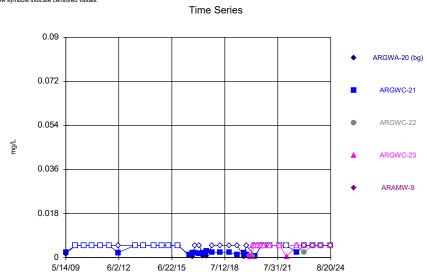
Table of Contents

Figure A. Time Series	27
Figure B. Box Plots	93
Figure C. Outlier Summary	106
Figure D. Appendix I Interwell Prediction Limits	108
Figure E. Appendix III Interwell Prediction Limits	121
Figure F. Appendix III Trend Tests	137
Figure G. Upper Tolerance Limits	147
Figure H. Groundwater Protection Standards	157
Figure I. Appendix I & IV Confidence Intervals	159
Figure J. Appendix IV Trend Tests	182

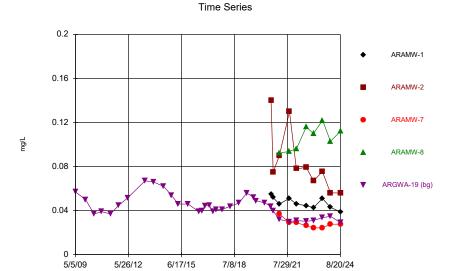

FIGURE A.


Constituent: Antimony Analysis Run 9/26/2024 12:28 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

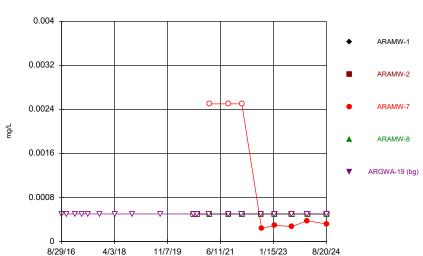

Constituent: Arsenic Analysis Run 9/26/2024 12:28 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Time Series

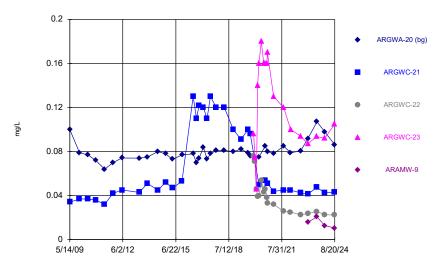


Constituent: Antimony Analysis Run 9/26/2024 12:28 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

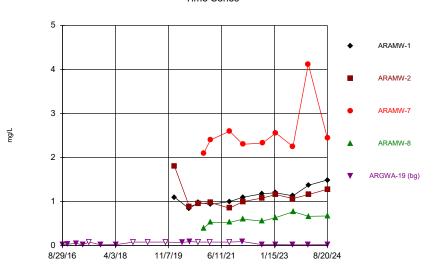


Constituent: Arsenic Analysis Run 9/26/2024 12:28 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2


Constituent: Barium Analysis Run 9/26/2024 12:28 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

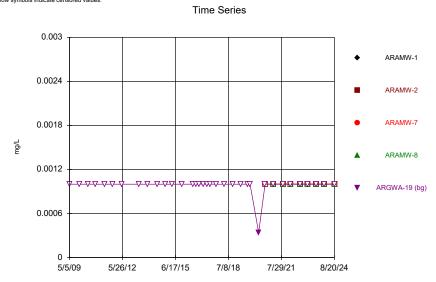
Sanitas[™] v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

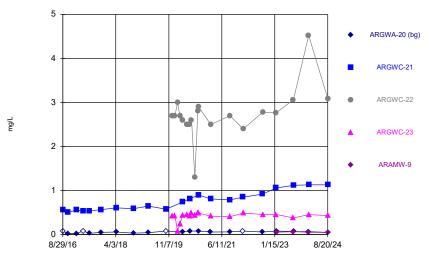
Constituent: Beryllium Analysis Run 9/26/2024 12:28 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2


Constituent: Barium Analysis Run 9/26/2024 12:28 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

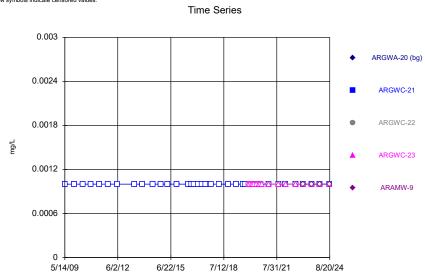
Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series 0.004 ARGWA-20 (bg) 0.0032 ARGWC-21 ARGWC-22 0.0024 ARGWC-23 0.0016 ARAMW-9 0.0008 ф-000-0-8/29/16 4/3/18 11/7/19 6/11/21 1/15/23 8/20/24

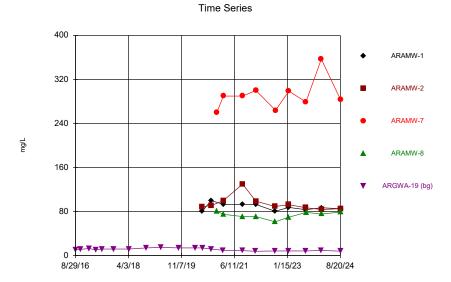

Constituent: Beryllium Analysis Run 9/26/2024 12:28 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2


Constituent: Boron Analysis Run 9/26/2024 12:28 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

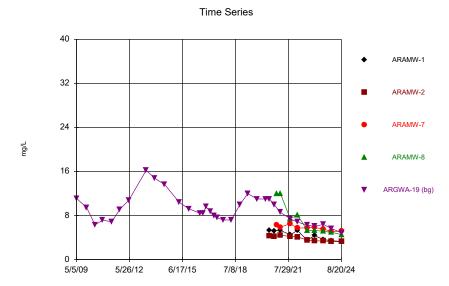

Constituent: Cadmium Analysis Run 9/26/2024 12:28 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

Time Series

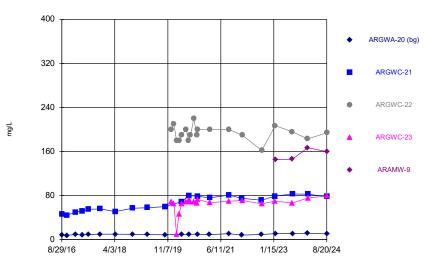


Constituent: Boron Analysis Run 9/26/2024 12:28 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

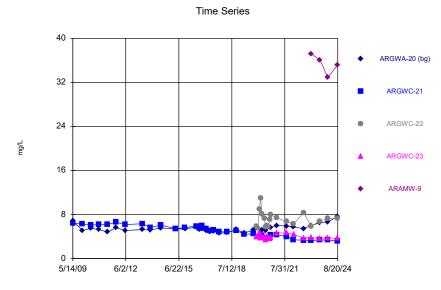
Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



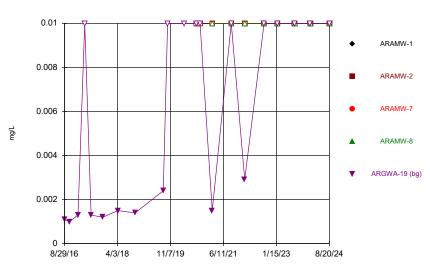
Constituent: Cadmium Analysis Run 9/26/2024 12:28 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2


Constituent: Calcium Analysis Run 9/26/2024 12:28 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

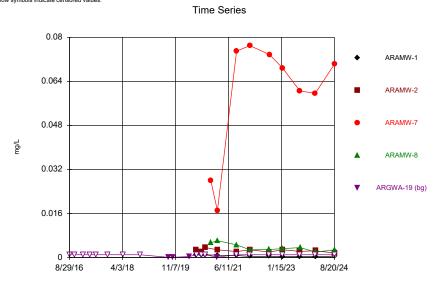
Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

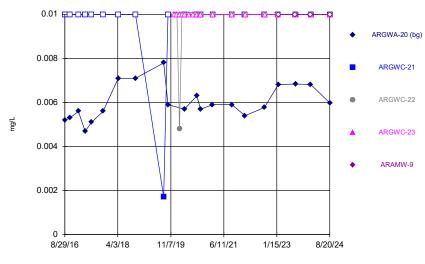

Constituent: Chloride Analysis Run 9/26/2024 12:28 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Time Series

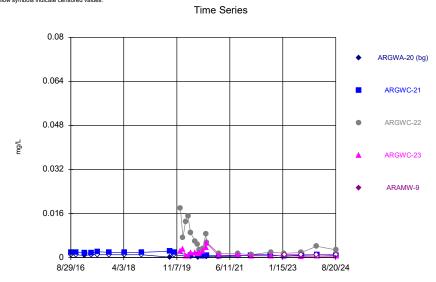

Constituent: Calcium Analysis Run 9/26/2024 12:28 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

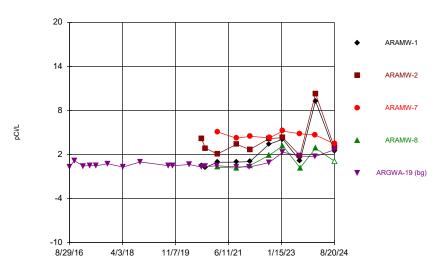

Constituent: Chloride Analysis Run 9/26/2024 12:28 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2


Constituent: Chromium Analysis Run 9/26/2024 12:28 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas[™] v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

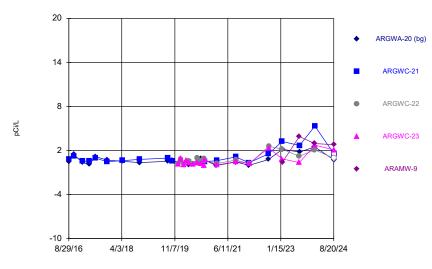

Constituent: Cobalt Analysis Run 9/26/2024 12:28 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

Time Series


Constituent: Chromium Analysis Run 9/26/2024 12:28 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Cobalt Analysis Run 9/26/2024 12:28 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2


Constituent: Combined Radium 226 + 228 Analysis Run 9/26/2024 12:28 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

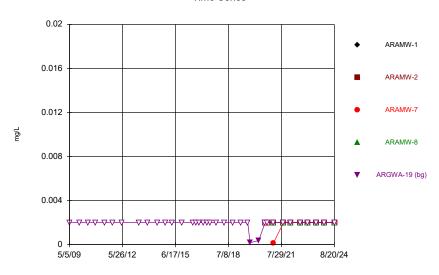
Sanitas[™] v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series ARAMW-1 0.8 ARAMW-2 ARAMW-7 0.6 ARAMW-8 0.4 ARGWA-19 (bg) 0.2 8/29/16 4/3/18 11/7/19 6/11/21 1/15/23 8/20/24

Constituent: Fluoride Analysis Run 9/26/2024 12:28 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

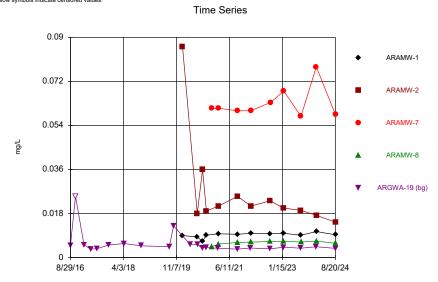
Time Series

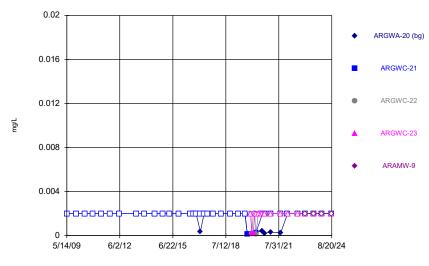
Constituent: Combined Radium 226 + 228 Analysis Run 9/26/2024 12:28 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2


Time Series

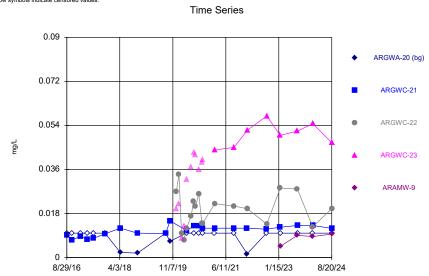
Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

ARGWC-21 ARGWC-22 ARGWC-23 ARAMW-9 8/29/16 4/3/18 11/7/19 6/11/21 1/15/23 8/20/24

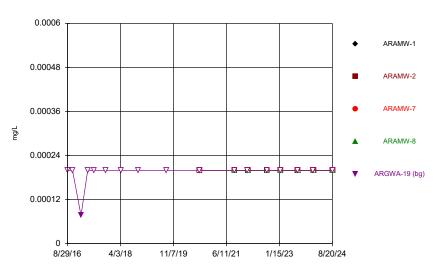

Constituent: Fluoride Analysis Run 9/26/2024 12:28 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2


Constituent: Lead Analysis Run 10/1/2024 9:21 AM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

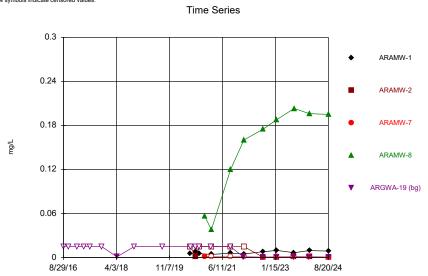
Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

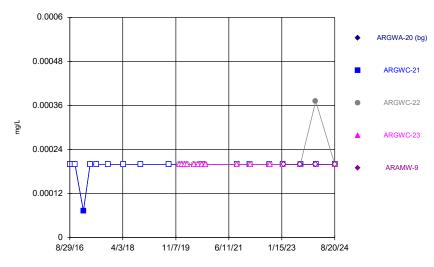

Constituent: Lithium Analysis Run 10/1/2024 9:21 AM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Time Series

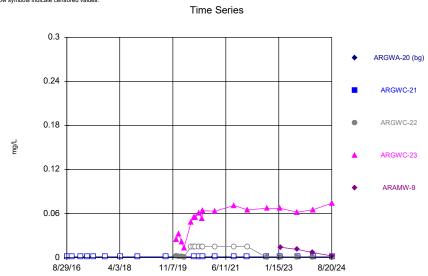

Constituent: Lead Analysis Run 10/1/2024 9:21 AM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

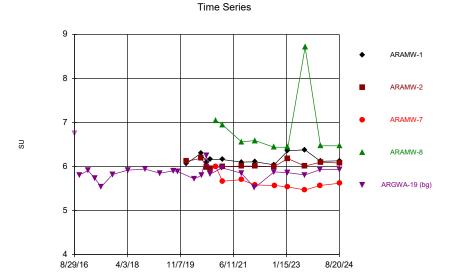

Constituent: Lithium Analysis Run 10/1/2024 9:21 AM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2


Constituent: Mercury Analysis Run 9/26/2024 12:28 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas[™] v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

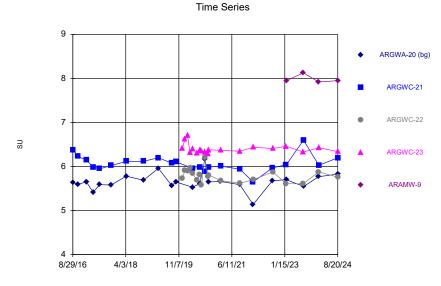

Constituent: Molybdenum Analysis Run 9/26/2024 12:28 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

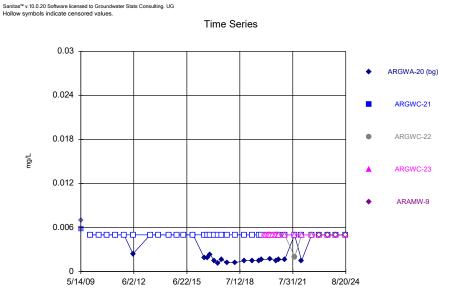
Time Series


Constituent: Mercury Analysis Run 9/26/2024 12:28 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

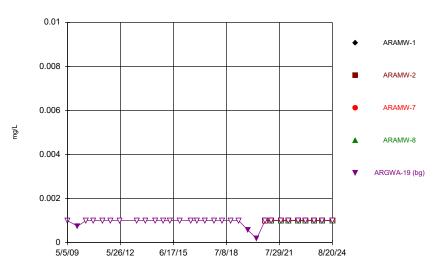
Constituent: Molybdenum Analysis Run 9/26/2024 12:28 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2


Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG


Constituent: pH Analysis Run 9/26/2024 12:28 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

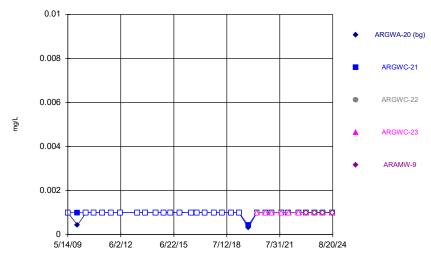
Hollow symbols indicate censored values. Time Series 0.03 ARAMW-1 0.024 ARAMW-2 ARAMW-7 0.018 mg/L ARAMW-8 0.012 ARGWA-19 (bg) 0.006 ~~~~~ 5/5/09 5/26/12 6/17/15 7/8/18 7/29/21 8/20/24

Constituent: Selenium Analysis Run 9/26/2024 12:28 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2



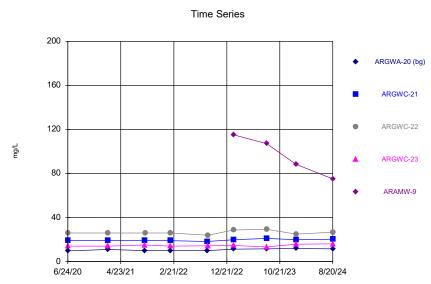
Constituent: pH Analysis Run 9/26/2024 12:28 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

Constituent: Selenium Analysis Run 9/26/2024 12:29 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

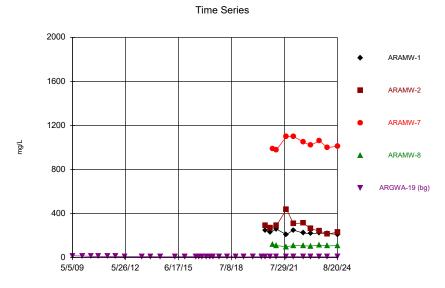

Constituent: Silver Analysis Run 9/26/2024 12:29 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

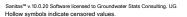
Time Series 200 ARAMW-1 160 ARAMW-2 ARAMW-7 120 ARAMW-8 80 ARGWA-19 (bg) 40 6/24/20 4/23/21 2/21/22 12/21/22 10/21/23 8/20/24

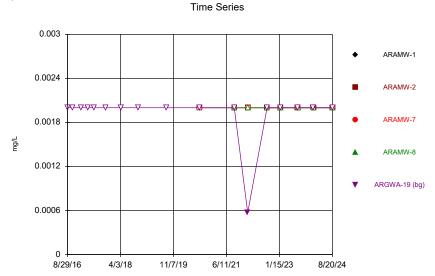

Constituent: Sodium Analysis Run 9/26/2024 12:29 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Time Series

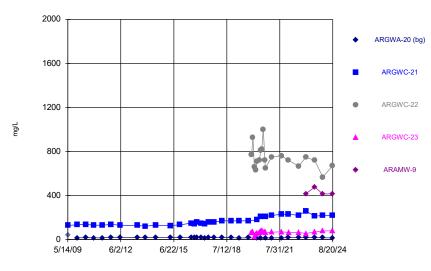


Constituent: Silver Analysis Run 9/26/2024 12:29 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

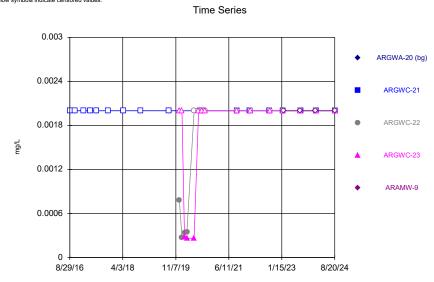

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG



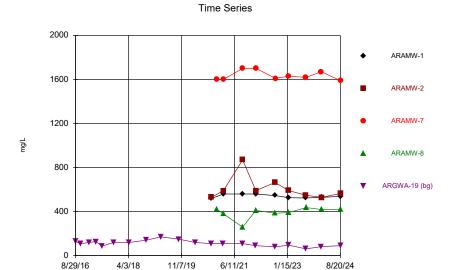
Constituent: Sodium Analysis Run 9/26/2024 12:29 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2



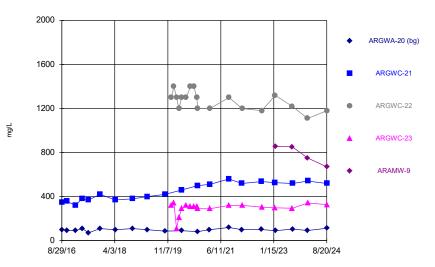
Constituent: Sulfate Analysis Run 9/26/2024 12:29 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2



Constituent: Thallium Analysis Run 9/26/2024 12:29 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2



Constituent: Sulfate Analysis Run 9/26/2024 12:29 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2


Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Thallium Analysis Run 9/26/2024 12:29 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

Constituent: Total Dissolved Solids Analysis Run 9/26/2024 12:29 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

Constituent: Total Dissolved Solids Analysis Run 9/26/2024 12:29 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

Constituent: Antimony (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARAMW-1	ARAMW-2	ARAMW-7	ARAMW-8	ARGWA-19 (bg)
8/29/2016					<0.003
10/24/2016					<0.003
1/25/2017					<0.003
4/10/2017					<0.003
6/19/2017					<0.003
10/24/2017					<0.003
4/10/2018					<0.003
10/16/2018					<0.003
8/20/2019					<0.003
8/19/2020					<0.003
8/20/2020	<0.003	<0.003			
9/7/2021					<0.003
9/9/2021	<0.003			<0.003	
9/10/2021		<0.003	<0.003		
2/1/2022					<0.003
2/2/2022			<0.003		
2/3/2022	<0.003	<0.003		<0.003	
9/1/2022					<0.003
9/2/2022	<0.003	<0.003		<0.003	
9/7/2022			<0.003		
1/31/2023	<0.003	<0.003	<0.003	<0.003	<0.003
8/8/2023	<0.003	<0.003	<0.003		<0.003
8/9/2023				0.00134 (J)	
1/23/2024			<0.003		<0.003
1/24/2024	<0.003	<0.003		<0.003	
8/20/2024	<0.003	<0.003	<0.003	<0.003	<0.003

Constituent: Antimony (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

				_	
·	ARGWA-20 (bg)	ARGWC-21	ARGWC-22	ARGWC-23	ARAMW-9
8/29/2016	<0.003				
8/30/2016		<0.003			
10/24/2016	<0.003				
10/26/2016		<0.003			
1/25/2017	<0.003	<0.003			
4/10/2017	<0.003	<0.003			
6/19/2017		<0.003			
6/20/2017	<0.003				
10/24/2017	<0.003	<0.003			
4/9/2018	<0.003				
4/10/2018		<0.003			
10/16/2018	<0.003	<0.003			
8/20/2019	<0.003	<0.003			
12/16/2019			<0.003	<0.003	
1/14/2020			<0.003	<0.003	
2/11/2020			<0.003	<0.003	
3/9/2020			<0.003	<0.003	
5/27/2020			<0.003	<0.003	
7/15/2020			<0.003	<0.003	
8/19/2020	<0.003		<0.003		
8/20/2020				<0.003	
8/21/2020		<0.003			
9/22/2020			<0.003	<0.003	
9/8/2021	<0.003	<0.003			
9/9/2021				<0.003	
9/10/2021			<0.003		
2/1/2022	<0.003	<0.003			
2/2/2022			<0.003		
2/3/2022				<0.003	
9/1/2022		<0.003			
9/2/2022	<0.003				
9/6/2022			<0.003	<0.003	
1/31/2023		<0.003	<0.003	<0.003	
2/1/2023	<0.003				<0.003
8/8/2023			<0.003	<0.003	0.00158 (J)
8/9/2023		<0.003			
8/10/2023	<0.003				
1/23/2024	<0.003		<0.003		0.00107 (J)
1/24/2024		<0.003		<0.003	
8/20/2024	<0.003	<0.003	<0.003	<0.003	<0.003

Constituent: Arsenic (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARAMW-1	ARAMW-2	ARAMW-7	ARAMW-8	ARGWA-19 (bg)
5/5/2009					<0.005
12/5/2009					<0.005
6/1/2010					<0.005
11/11/2010					<0.005
5/17/2011					<0.005
11/8/2011					<0.005
5/16/2012					<0.005
5/14/2013					<0.005
11/5/2013					<0.005
6/9/2014					<0.005
11/19/2014					<0.005
4/14/2015					<0.005
11/4/2015					<0.005
6/22/2016					<0.005
8/29/2016					<0.005
10/24/2016					<0.005
1/25/2017					<0.005
4/10/2017					<0.005
6/19/2017					<0.005
10/24/2017					<0.005
4/10/2018					<0.005
10/16/2018					<0.005
3/26/2019					<0.005
8/20/2019					0.00036 (J)
10/7/2019					<0.005
4/7/2020					0.0006 (J)
8/19/2020					<0.005
8/20/2020	<0.005	0.084			
9/29/2020					<0.005
9/30/2020	<0.005				
10/1/2020		0.0085			
2/9/2021					<0.005
2/10/2021	<0.005				
2/11/2021		0.015	0.00075 (J)	0.00046 (J)	
9/7/2021					<0.005
9/9/2021	<0.005			<0.005	
9/10/2021		0.044	<0.005		
2/1/2022					<0.005
2/2/2022			0.00035 (J)		
2/3/2022	<0.005	0.0092		0.00031 (J)	
9/1/2022					<0.005
9/2/2022	0.00233 (J)	0.0158		0.00206 (J)	
9/7/2022			<0.005		
1/31/2023	<0.005	0.00363 (J)	0.00286 (J)	<0.005	<0.005
8/8/2023	<0.005	0.012	<0.005		<0.005
8/9/2023				<0.005	
1/23/2024			0.00219 (J)		<0.005
1/24/2024	<0.005	0.0047 (J)		<0.005	
8/20/2024	<0.005	0.00392 (J)	<0.005	<0.005	<0.005

Constituent: Arsenic (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWA-20 (bg)	ARGWC-21	ARGWC-22	ARGWC-23	ARAMW-9
5/14/2009		0.0022			
5/15/2009	0.0015				
12/5/2009	<0.005	<0.005			
6/1/2010	<0.005				
6/2/2010		<0.005			
11/11/2010	<0.005	<0.005			
5/17/2011	<0.005	<0.005			
11/8/2011	<0.005	<0.005			
5/16/2012	<0.005	0.002 (J)			
5/14/2013	<0.005	<0.005			
11/5/2013	<0.005	<0.005			
6/9/2014	<0.005	<0.005			
11/18/2014	<0.005	<0.005			
4/14/2015	<0.005	<0.005			
10/29/2015	0.000	<0.005			
11/4/2015	<0.005	-0.000			
6/22/2016	0.00084 (J)				
6/23/2016	3.00004 (0)	0.0011 (J)			
8/29/2016	0.00049 (J)	0.0011(J)			
8/30/2016	0.00049 (3)	0.002			
	<0.005	0.002			
10/24/2016	<0.005	0.0010 / 1			
10/26/2016	<0.005	0.0019 (J)			
1/25/2017	<0.005	0.0017			
4/10/2017	0.00056 (J)	0.002			
6/19/2017	0.00000 / "	0.0026			
6/20/2017	0.00068 (J)	0.0004			
10/24/2017	<0.005	0.0021			
4/9/2018	<0.005				
4/10/2018		0.0022			
10/16/2018	<0.005	0.0021			
3/27/2019	<0.005	0.0011 (J)			
8/20/2019	0.00047 (J)	0.002			
10/7/2019	<0.005				
10/8/2019		0.0012 (J)			
12/16/2019			0.00066 (J)	0.00075 (J)	
1/14/2020			0.00038 (J)	0.00042 (J)	
2/11/2020			0.0004 (J)	<0.005	
3/9/2020			<0.005	<0.005	
4/6/2020	0.00042 (J)				
4/7/2020		0.00054 (J)	<0.005	<0.005	
5/27/2020			<0.005	<0.005	
7/15/2020			<0.005	<0.005	
8/19/2020	<0.005		<0.005		
8/20/2020				<0.005	
8/21/2020		<0.005			
9/22/2020			<0.005	<0.005	
9/30/2020	<0.005		<0.005		
10/1/2020		<0.005	-	<0.005	
2/9/2021	<0.005			-	
2/10/2021	-	<0.005	<0.005	<0.005	
9/8/2021	<0.005	<0.005			
9/9/2021	0.000	0.000		<0.005	
0.0.2021				-0.000	

Constituent: Arsenic (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

0/10/0001	ARGWA-20 (bg)	ARGWC-21	ARGWC-22	ARGWC-23	ARAMW-9
9/10/2021			<0.005		
2/1/2022	<0.005	<0.005			
2/2/2022			<0.005		
2/3/2022				0.0003 (J)	
9/1/2022		0.00207 (J)			
9/2/2022	<0.005				
9/6/2022			<0.005	<0.005	
1/31/2023		<0.005	0.00221 (J)	<0.005	
2/1/2023	<0.005				<0.005
8/8/2023			<0.005	<0.005	<0.005
8/9/2023		<0.005			
8/10/2023	<0.005				
1/23/2024	<0.005		<0.005		<0.005
1/24/2024		<0.005		<0.005	
8/20/2024	<0.005	<0.005	<0.005	<0.005	<0.005

Constituent: Barium (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARAMW-1	ARAMW-2	ARAMW-7	ARAMW-8	ARGWA-19 (bg)
5/5/2009					0.057
12/5/2009					0.05
6/1/2010					0.037
11/11/2010					0.039
5/17/2011					0.037
11/8/2011					0.045
5/16/2012					0.0518
5/14/2013					0.067
11/5/2013					0.066
6/9/2014					0.062
11/19/2014					0.054
4/14/2015					0.046
11/4/2015					0.046
6/22/2016					0.039
8/29/2016					0.04
10/24/2016					0.0444
1/25/2017					0.045
4/10/2017					0.039
6/19/2017					0.041
10/24/2017					0.041
4/10/2018					0.044
10/16/2018					0.047
3/26/2019					0.056
8/20/2019					0.052
10/7/2019					0.049
4/7/2020					0.047
8/19/2020					0.044
8/20/2020	0.055	0.14			
9/29/2020					0.04
9/30/2020	0.052				
10/1/2020		0.075			
2/9/2021					0.032
2/10/2021	0.046				
2/11/2021		0.09	0.037	0.092	
9/7/2021					0.03
9/9/2021	0.051			0.094	
9/10/2021		0.13	0.029		
2/1/2022					0.031
2/2/2022			0.029		
2/3/2022	0.046	0.078		0.096	
9/1/2022					0.0303
9/2/2022	0.0445	0.0792		0.116	
9/7/2022			0.0263		
1/31/2023	0.0427	0.067	0.0243	0.11	0.031
8/8/2023	0.051	0.0753	0.0244	0.122	0.0337
8/9/2023 1/23/2024			0.0277	0.122	0.0249
1/23/2024	0.043	0.0562	0.0277	0.103	0.0348
8/20/2024	0.043	0.0562	0.0277	0.103	0.0293
SILUIZUZT	0.0000	3.000	0.0277	V.112	

Constituent: Barium (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWA-20 (bg)	ARGWC-21	ARGWC-22	ARGWC-23	ARAMW-9
5/14/2009		0.034			
5/15/2009	0.1				
12/5/2009	0.079	0.037			
6/1/2010	0.077				
6/2/2010		0.037			
11/11/2010	0.072	0.036			
5/17/2011	0.064	0.032			
11/8/2011	0.07	0.042			
5/16/2012	0.0741	0.0451			
5/14/2013	0.074	0.043			
11/5/2013	0.075	0.051			
6/9/2014	0.08	0.045			
11/18/2014	0.078	0.052			
4/14/2015	0.073	0.047			
10/29/2015		0.053			
11/4/2015	0.077				
6/22/2016	0.078				
6/23/2016	-	0.13			
8/29/2016	0.07				
8/30/2016	5.07	0.11			
10/24/2016	0.0738	3.11			
10/24/2016	5.0700	0.122			
	0.084				
1/25/2017	0.084	0.12			
4/10/2017	0.073	0.11			
6/19/2017	0.079	0.13			
6/20/2017	0.078	0.10			
10/24/2017	0.081	0.12			
4/9/2018	0.081				
4/10/2018		0.12			
10/16/2018	0.08	0.1			
3/27/2019	0.082	0.091			
8/20/2019	0.079	0.1			
10/7/2019	0.076				
10/8/2019		0.096			
12/16/2019			0.076	0.096	
1/14/2020			0.071	0.075	
2/11/2020			0.046	0.046	
3/9/2020			0.039	0.14	
4/6/2020	0.075				
4/7/2020		0.05	0.04	0.16	
5/27/2020			0.054	0.18	
7/15/2020			0.043	0.16	
8/19/2020	0.085		0.046		
8/20/2020				0.16	
8/21/2020		0.054			
9/22/2020			0.038	0.16	
9/30/2020	0.08		0.033		
10/1/2020		0.051	2.200	0.17	
2/9/2021	0.078	3.001		0.17	
2/10/2021	0.070	0.044	0.032	0.13	
	0.085		0.032	0.13	
9/8/2021	0.085	0.045		0.12	
9/9/2021				0.12	

Constituent: Barium (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWA-20 (bg)	ARGWC-21	ARGWC-22	ARGWC-23	ARAMW-9
9/10/2021			0.026		
2/1/2022	0.079	0.045			
2/2/2022			0.025		
2/3/2022				0.1	
9/1/2022		0.0425			
9/2/2022	0.0806				
9/6/2022			0.0226	0.0939	
1/31/2023		0.0414	0.0237	0.0872	
2/1/2023	0.0919				0.0158
8/8/2023			0.0255	0.0936	0.0207
8/9/2023		0.0474			
8/10/2023	0.107				
1/23/2024	0.0978		0.0227		0.0128
1/24/2024		0.0427		0.0922	
8/20/2024	0.0863	0.0431	0.0223	0.105	0.0105

Constituent: Beryllium (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARAMW-1	ARAMW-2	ARAMW-7	ARAMW-8	ARGWA-19 (bg)
8/29/2016					<0.0005
10/24/2016					<0.0005
1/25/2017					<0.0005
4/10/2017					<0.0005
6/19/2017					<0.0005
10/24/2017					<0.0005
4/10/2018					<0.0005
10/16/2018					<0.0005
8/20/2019					<0.0005
8/19/2020					<0.0005
8/20/2020	<0.0005	<0.0005			
9/29/2020					<0.0005
9/30/2020	<0.0005				
10/1/2020		<0.0005			
2/9/2021					<0.0005
2/10/2021	<0.0005				
2/11/2021		<0.0005	<0.0025	<0.0005	
9/7/2021					<0.0005
9/9/2021	<0.0005			<0.0005	
9/10/2021		<0.0005	<0.0025		
2/1/2022					<0.0005
2/2/2022			<0.0025		
2/3/2022	<0.0005	<0.0005		<0.0005	
9/1/2022					<0.0005
9/2/2022	<0.0005	<0.0005		<0.0005	
9/7/2022			0.000236 (J)		
1/31/2023	<0.0005	<0.0005	0.000296 (J)	<0.0005	<0.0005
8/8/2023	<0.0005	<0.0005	0.000272 (J)		<0.0005
8/9/2023				<0.0005	
1/23/2024			0.000378 (J)		<0.0005
1/24/2024	<0.0005	<0.0005		<0.0005	
8/20/2024	<0.0005	<0.0005	0.000318 (J)	<0.0005	<0.0005

Constituent: Beryllium (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWA-20 (bg)	ARGWC-21	ARGWC-22	ARGWC-23	ARAMW-9
8/29/2016	<0.0005				
8/30/2016		<0.0005			
10/24/2016	<0.0005				
10/26/2016		<0.0005			
1/25/2017	<0.0005	<0.0005			
4/10/2017	<0.0005	<0.0005			
6/19/2017		<0.0005			
6/20/2017	<0.0005				
10/24/2017	<0.0005	<0.0005			
4/9/2018	<0.0005				
4/10/2018		<0.0005			
10/16/2018	<0.0005	<0.0005			
8/20/2019	<0.0005	<0.0005			
12/16/2019			0.0005 (J)	0.00033 (J)	
1/14/2020			0.00036 (J)	<0.0005	
2/11/2020			0.00023	<0.0005	
3/9/2020			0.00019	<0.0005	
5/27/2020			0.00018 (J)	<0.0005	
7/15/2020			<0.0005	<0.0005	
8/19/2020	0.00022 (J)		<0.0005		
8/20/2020				<0.0005	
8/21/2020		<0.0005			
9/22/2020			<0.0005	<0.0005	
9/30/2020	0.00019 (J)		<0.0005		
10/1/2020	.,	<0.0005		<0.0005	
2/9/2021	<0.0005				
2/10/2021		<0.0005	<0.0005	<0.0005	
9/8/2021	<0.0005	<0.0005			
9/9/2021				<0.0005	
9/10/2021			<0.0005		
2/1/2022	<0.0005	<0.0005			
2/2/2022			<0.0005		
2/3/2022				<0.0005	
9/1/2022		<0.0005			
9/2/2022	<0.0005				
9/6/2022			<0.0005	<0.0005	
1/31/2023		<0.0005	<0.0005	<0.0005	
2/1/2023	<0.0005				<0.0005
8/8/2023			<0.0005	<0.0005	<0.0005
8/9/2023		<0.0005			
8/10/2023	0.000275 (J)				
1/23/2024	<0.0005		<0.0005		<0.0005
1/24/2024	-	<0.0005		<0.0005	
8/20/2024	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
		,,,,,,,,			

	ARAMW-1	ARAMW-2	ARAMW-7	ARAMW-8	ARGWA-19 (bg)
8/29/2016					0.024 (J)
10/24/2016					0.0339 (J)
1/25/2017					0.048 (J)
4/10/2017					0.022 (J)
6/19/2017					<0.08
10/24/2017					0.021 (J)
4/10/2018					0.022 (J)
10/16/2018					<0.08
3/26/2019					<0.08
10/7/2019					<0.08
1/14/2020	1.1	1.8			
4/7/2020					0.072 (J)
6/24/2020	0.84	0.89			
6/25/2020					0.091
9/29/2020					<0.08
9/30/2020	0.98				
10/1/2020		0.95			
11/30/2020			2.1		
12/1/2020				0.4	
2/9/2021					<0.08
2/10/2021	0.94				
2/11/2021		0.98	2.4	0.53	
9/7/2021					<0.08
9/9/2021	1			0.53	
9/10/2021		0.85	2.6		
2/1/2022					0.092
2/2/2022			2.3		
2/3/2022	1.1	1		0.6	
9/1/2022					0.0238
9/2/2022	1.18	1.08		0.558	
9/7/2022			2.33		
1/31/2023	1.2	1.16	2.56	0.637	0.0234
8/8/2023	1.13	1.07	2.25		0.0199
8/9/2023				0.77	
1/23/2024			4.12		0.0214
1/24/2024	1.37	1.16		0.666	
8/20/2024	1.49	1.28	2.44	0.675	0.0236

			i iditi Air	Wilgin Chem. Oot	Data. Arkwight No 2
	ARGWA-20 (bg)	ARGWC-21	ARGWC-22	ARGWC-23	ARAMW-9
8/29/2016	<0.08				
8/30/2016		0.57			
10/24/2016	0.0194 (J)				
10/26/2016		0.502			
1/25/2017	0.026 (J)	0.56			
4/10/2017	<0.08	0.54			
6/19/2017		0.54			
6/20/2017	0.032 (J)				
10/24/2017	0.054	0.57			
4/9/2018	0.06				
4/10/2018		0.61			
10/16/2018	0.036 (J)	0.59			
3/27/2019	0.046 (J)	0.65			
10/7/2019	<0.08				
10/8/2019		0.58			
12/16/2019			2.7	0.42	
1/14/2020			2.7	0.43	
2/11/2020			3	0.079 (J)	
3/9/2020			2.7	0.25	
4/6/2020	0.063 (J)				
4/7/2020		0.74	2.6	0.44	
5/27/2020			2.5	0.45	
6/24/2020			2.5		
6/25/2020	0.081	0.82		0.42	
7/15/2020			2.6	0.49	
8/19/2020			1.3		
8/20/2020				0.44	
9/22/2020			2.8	0.5	
9/30/2020	0.083		2.9		
10/1/2020		0.9		0.49	
2/9/2021	0.059 (J)				
2/10/2021		0.81	2.5	0.42	
9/8/2021	0.064 (J)	0.79			
9/9/2021				0.41	
9/10/2021			2.7		
2/1/2022	<0.08	0.85			
2/2/2022			2.4		
2/3/2022				0.49	
9/1/2022		0.921			
9/2/2022	0.0597				
9/6/2022			2.78	0.458	
1/31/2023		1.06	2.77	0.459	
2/1/2023	0.0816				0.055
8/8/2023			3.06	0.379	0.0666
8/9/2023		1.12			
8/10/2023	0.0714				
1/23/2024	0.0685		4.52		0.0549
1/24/2024		1.13		0.456	
8/20/2024	0.0537	1.13	3.09	0.434	0.049

Constituent: Cadmium (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARAMW-1	ARAMW-2	ARAMW-7	ARAMW-8	ARGWA-19 (bg)
5/5/2009					<0.001
12/5/2009					<0.001
6/1/2010					<0.001
11/11/2010					<0.001
5/17/2011					<0.001
11/8/2011					<0.001
5/16/2012					<0.001
5/14/2013					<0.001
11/5/2013					<0.001
6/9/2014					<0.001
11/19/2014					<0.001
4/14/2015					<0.001
11/4/2015					<0.001
6/22/2016					<0.001
8/29/2016					<0.001
10/24/2016					<0.001
1/25/2017					<0.001
4/10/2017					<0.001
6/19/2017					<0.001
10/24/2017					<0.001
4/10/2018					<0.001
10/16/2018					<0.001
3/26/2019					<0.001
8/20/2019					<0.001
10/7/2019					<0.001
4/7/2020					0.00034 (J)
8/19/2020					<0.001
8/20/2020	<0.001	<0.001			
2/9/2021					<0.001
2/10/2021	<0.001				
2/11/2021		<0.001	<0.001	<0.001	
9/7/2021					<0.001
9/9/2021	<0.001			<0.001	
9/10/2021		<0.001	<0.001		
2/1/2022					<0.001
2/2/2022			<0.001		
2/3/2022	<0.001	<0.001		<0.001	.0.004
9/1/2022	.0.004	0.004		0.004	<0.001
9/2/2022	<0.001	<0.001	0.004	<0.001	
9/7/2022	.0.004	0.004	<0.001	0.004	.0.004
1/31/2023 8/8/2023	<0.001	<0.001	<0.001	<0.001	<0.001
	<0.001	<0.001	<0.001	<0.001	<0.001
8/9/2023			<0.001	<0.001	<0.001
1/23/2024 1/24/2024	<0.001	<0.001	<0.001	<0.001	<0.001
	<0.001	<0.001	<0.001	<0.001	<0.001
8/20/2024	<0.001	<0.001	<0.001	<0.001	<0.001

Constituent: Cadmium (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWA-20 (bg)	ARGWC-21	ARGWC-22	ARGWC-23	ARAMW-9
5/14/2009		<0.001			
5/15/2009	<0.001				
12/5/2009	<0.001	<0.001			
6/1/2010	<0.001				
6/2/2010		<0.001			
11/11/2010	<0.001	<0.001			
5/17/2011	<0.001	<0.001			
11/8/2011	<0.001	<0.001			
5/16/2012	<0.001	<0.001			
5/14/2013	<0.001	<0.001			
11/5/2013	<0.001	<0.001			
6/9/2014	<0.001	<0.001			
11/18/2014	<0.001	<0.001			
4/14/2015	<0.001	<0.001			
10/29/2015		<0.001			
11/4/2015	<0.001				
6/22/2016	<0.001				
6/23/2016		<0.001			
8/29/2016	<0.001	0.001			
8/30/2016	-0.001	<0.001			
10/24/2016	<0.001	-0.001			
10/26/2016	10.001	<0.001			
1/25/2017	<0.001	<0.001			
4/10/2017	<0.001	<0.001			
6/19/2017	10.001	<0.001			
6/20/2017	<0.001	~0.001			
10/24/2017	<0.001	<0.001			
4/9/2018	<0.001	~0.001			
4/9/2018	<0.001	<0.001			
10/16/2018	<0.001	<0.001			
3/27/2019	<0.001	<0.001			
8/20/2019	<0.001	<0.001			
10/7/2019		<0.001			
	<0.001	<0.001			
10/8/2019 12/16/2019		<0.001	<0.001	<0.001	
1/14/2020			<0.001	<0.001	
2/11/2020			<0.001	<0.001	
3/9/2020			<0.001	<0.001	
4/6/2020	<0.001		-0.001	-0.00 I	
4/7/2020	-0.00 i	<0.001	<0.001	<0.001	
5/27/2020		~0.001	<0.001	<0.001	
7/15/2020			<0.001	<0.001	
8/19/2020	<0.001		<0.001	~U.UU1	
8/20/2020	\U.UU I		~ 0.001	<0.001	
8/20/2020		<0.001		~ 0.001	
		~U.UU I	<0.001	<0.001	
9/22/2020	<0.001		<0.001	<0.001	
2/9/2021	<0.001	-0.001	-0.001	-0.001	
2/10/2021	z0.001	<0.001	<0.001	<0.001	
9/8/2021	<0.001	<0.001		-0.001	
9/9/2021			-0.004	<0.001	
9/10/2021	~0.001	-0.001	<0.001		
2/1/2022	<0.001	<0.001			

Constituent: Cadmium (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWA-20 (bg)	ARGWC-21	ARGWC-22	ARGWC-23	ARAMW-9
2/2/2022			<0.001		
2/3/2022				<0.001	
9/1/2022		<0.001			
9/2/2022	<0.001				
9/6/2022			<0.001	<0.001	
1/31/2023		<0.001	<0.001	<0.001	
2/1/2023	<0.001				<0.001
8/8/2023			<0.001	<0.001	<0.001
8/9/2023		<0.001			
8/10/2023	<0.001				
1/23/2024	<0.001		<0.001		<0.001
1/24/2024		<0.001		<0.001	
8/20/2024	<0.001	<0.001	<0.001	<0.001	<0.001

Constituent: Calcium (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARAMW-1	ARAMW-2	ARAMW-7	ARAMW-8	ARGWA-19 (bg)
8/29/2016					11
10/24/2016					11.5
1/25/2017					13
4/10/2017					11
6/19/2017					12
10/24/2017					12
4/10/2018					12
10/16/2018					14
3/26/2019					15
10/7/2019					14
4/7/2020					14
6/24/2020	81	89			
6/25/2020					14
9/29/2020					12
9/30/2020	100				
10/1/2020		91			
11/30/2020			260		
12/1/2020				81	
2/9/2021					9.7
2/10/2021	93				
2/11/2021		100	290	75	
9/7/2021					9.2
9/9/2021	93			71	
9/10/2021		130	290		
2/1/2022					8
2/2/2022			300		
2/3/2022	93	99		71	
9/1/2022					8.52
9/2/2022	80.5	89.2		61.4	
9/7/2022			264		
1/31/2023	87.7	92.5	299	69.8	8.5
8/8/2023	83.4	87.1	279		8.51
8/9/2023				78.6	
1/23/2024			357		9.34
1/24/2024	86.9	83.7		75.8	
8/20/2024	85.4	85.2	284	79.2	8.29

Constituent: Calcium (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWA-20 (bg)	ARGWC-21	ARGWC-22	ARGWC-23	ARAMW-9
8/29/2016	8.3				
8/30/2016	-	46			
10/24/2016	7.66				
10/26/2016		44.3			
1/25/2017	9.4	50			
4/10/2017	8.6	52			
6/19/2017	6.0	55			
	0.4	55			
6/20/2017	9.4	50			
10/24/2017	9.9	56			
4/9/2018	9.9				
4/10/2018		51			
10/16/2018	9.8	57			
3/27/2019	9.2	58			
10/7/2019	8.9				
10/8/2019		60			
12/16/2019			200	69	
1/14/2020			210	65	
2/11/2020			180	10	
3/9/2020			180	46	
4/6/2020	9.5				
4/7/2020		69	190	65	
5/27/2020			200	69	
6/24/2020			180		
6/25/2020	9.6	80		72	
7/15/2020			190	68	
8/19/2020			220		
8/20/2020			-	69	
9/22/2020			190	66	
9/30/2020	9.9		200	00	
10/1/2020	0.0	79	200	73	
	0.2	19		13	
2/9/2021	9.2	76	200	67	
2/10/2021	44	76	200	67	
9/8/2021	11	81		70	
9/9/2021				70	
9/10/2021			200		
2/1/2022	8.3	75			
2/2/2022			190		
2/3/2022				71	
9/1/2022		71.5			
9/2/2022	9.48				
9/6/2022			162	65.2	
1/31/2023		79.1	207	69.9	
2/1/2023	10.8				145
8/8/2023			196	66.6	146
8/9/2023		82.9			
8/10/2023	11				
1/23/2024	11.4		183		167
1/24/2024		82.6		75.6	
8/20/2024	10.6	78	194	79.6	160
		-	-		

Constituent: Chloride (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

			i idii	it Arkwright Glient.	Oddinem Company Data: Antwight No 2
	ARAMW-1	ARAMW-2	ARAMW-7	ARAMW-8	ARGWA-19 (bg)
5/5/2009					11.1
12/5/2009					9.46
6/1/2010					6.32
11/11/2010					7.16
5/17/2011					6.84
11/8/2011					9.13
5/16/2012					10.8
5/14/2013					16.2
11/5/2013					14.8
6/9/2014					13.6
4/14/2015					10.4
11/4/2015					9.19
6/22/2016					8.4
8/29/2016					8.4
10/24/2016					9.6
1/25/2017					8.7
4/10/2017					8
6/19/2017					7.6
10/24/2017					7.2
4/10/2018					7.2
10/16/2018					10
3/26/2019					12
10/7/2019					11
4/7/2020					11
6/24/2020	5.3	4.3			
6/25/2020					11
9/29/2020					10
9/30/2020	5.2				
10/1/2020		4.2			
11/30/2020			6.3		
12/1/2020				12	
2/9/2021					8.6
2/10/2021	5.3				
2/11/2021		4.4	5.9	12	
9/7/2021					7.4
9/9/2021	4.5			7.4	
9/10/2021		4.2	6.5		
2/1/2022					6.8
2/2/2022			5.7		
2/3/2022	5.3	4.1		8.1	
9/1/2022					6.27
9/2/2022	3.5	3.54		5.31	
9/7/2022			5.78		
1/31/2023	4.36	3.4	5.82	5.3	6.04
8/8/2023	3.61	3.35	5.5		6.37
8/9/2023				5.13	
1/23/2024			5.11		5.63
1/24/2024	3.43	3.31		4.96	
8/20/2024	3.27	3.24	5.13	4.54	4.89

Constituent: Chloride (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWA-20 (bg)	ARGWC-21	ARGWC-22	ARGWC-23	ARAMW-9	
5/14/2009		6.38				
5/15/2009	6.86					
12/5/2009	5.06	6.28				
6/1/2010	5.47					
6/2/2010		6.1				
11/11/2010	5.26	6.1461				
5/17/2011	4.8	6.17				
11/8/2011	5.62	6.6				
5/16/2012	5.1	6.18				
5/14/2013	5.25	6.32				
11/5/2013	5.19	5.65				
6/9/2014	5.55	6.08				
4/14/2015	5.39	5.43				
10/29/2015	0.00	5.62				
	E 20	J.UZ				
11/4/2015	5.38					
6/22/2016	5.7	E O				
6/23/2016	F.0	5.9				
8/29/2016	5.3					
8/30/2016		5.5				
10/24/2016	5.4					
10/26/2016		6				
1/25/2017	5.1	5.4				
4/10/2017	4.9	5.1				
6/19/2017		5.2				
6/20/2017	5					
10/24/2017	4.6	4.9				
4/9/2018	4.7					
4/10/2018		4.8				
10/16/2018	5.3	5.1				
3/27/2019	4.6	4.4				
10/7/2019	5.2					
10/8/2019		4.5				
12/16/2019			5.8	3.9		
1/14/2020			5.5	4		
2/11/2020			9	4.7		
3/9/2020			11	3.7		
4/6/2020	5.2					
4/7/2020		4.2	8.1	3.8		
5/27/2020		·· -	7.3	4		
6/24/2020			5.7	7		
6/25/2020	5.1	3.7	5.7	3.4		
	J. I	3.1	6	3.4		
7/15/2020			6	3.9		
8/19/2020			5.7			
8/20/2020				3.9		
9/22/2020			7.1	3.6		
9/30/2020	5.6		8			
10/1/2020		4.3		3.8		
2/9/2021	6					
2/10/2021		4.3	7.4	4.6		
9/8/2021	5.9	4				
9/9/2021				4.7		
9/10/2021			6.7			

Constituent: Chloride (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWA-20 (bg)	ARGWC-21	ARGWC-22	ARGWC-23	ARAMW-9
2/1/2022	5.7	3.4			
2/2/2022			6.3		
2/3/2022				4.4	
9/1/2022		3.34			
9/2/2022	5.44				
9/6/2022			8.34	3.73	
1/31/2023		3.3	5.88	3.84	
2/1/2023	6				37.2
8/8/2023			6.79	3.6	36.1
8/9/2023		3.35			
8/10/2023	6.5				
1/23/2024	6.68		7.31		32.9
1/24/2024		3.35		3.74	
8/20/2024	7.63	3.18	7.25	3.68	35.2

Constituent: Chromium (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARAMW-1	ARAMW-2	ARAMW-7	ARAMW-8	ARGWA-19 (bg)
8/29/2016					0.0011 (J)
10/24/2016					0.001 (J)
1/25/2017					0.0013 (J)
4/10/2017					<0.01
6/19/2017					0.0013 (J)
10/24/2017					0.0012 (J)
4/10/2018					0.0015 (J)
10/16/2018					0.0014 (J)
8/20/2019					0.0024
10/7/2019					<0.01
4/7/2020					<0.01
8/19/2020					<0.01
8/20/2020	<0.01	<0.01			
9/29/2020					<0.01
9/30/2020	<0.01				
10/1/2020		<0.01			
2/9/2021					0.0015 (J)
2/10/2021	<0.01				
2/11/2021		<0.01	<0.01	<0.01	
9/7/2021					<0.01
9/9/2021	<0.01			<0.01	
9/10/2021		<0.01	<0.01		
2/1/2022					0.0029
2/2/2022			<0.01		
2/3/2022	<0.01	<0.01		<0.01	
9/1/2022					<0.01
9/2/2022	<0.01	<0.01		<0.01	
9/7/2022			<0.01		
1/31/2023	<0.01	<0.01	<0.01	<0.01	<0.01
8/8/2023	<0.01	<0.01	<0.01		<0.01
8/9/2023				<0.01	
1/23/2024			<0.01		<0.01
1/24/2024	<0.01	<0.01		<0.01	
8/20/2024	<0.01	<0.01	<0.01	<0.01	<0.01

Constituent: Chromium (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

			T lane 7	arkwright Olicht. Oc	union company bate	1. 7 tikwiight 140 2		
	ARGWA-20 (bg)	ARGWC-21	ARGWC-22	ARGWC-23	ARAMW-9			
8/29/2016	0.0052							
8/30/2016		<0.01						
10/24/2016	0.0053 (J)							
10/26/2016		<0.01						
1/25/2017	0.0056	<0.01						
4/10/2017	0.0047	<0.01						
6/19/2017		<0.01						
6/20/2017	0.0051							
10/24/2017	0.0056	<0.01						
4/9/2018	0.0071							
4/10/2018		<0.01						
10/16/2018	0.0071	<0.01						
8/20/2019	0.0078	0.0017 (J)						
10/7/2019	0.0059							
10/8/2019		<0.01						
12/16/2019			<0.01	<0.01				
1/14/2020			<0.01	<0.01				
2/11/2020			0.0048	<0.01				
3/9/2020			<0.01	<0.01				
4/6/2020	0.0057							
4/7/2020		<0.01	<0.01	<0.01				
5/27/2020			<0.01	<0.01				
7/15/2020			<0.01	<0.01				
8/19/2020	0.0063		<0.01					
8/20/2020				<0.01				
8/21/2020		<0.01						
9/22/2020			<0.01	<0.01				
9/30/2020	0.0057		<0.01					
10/1/2020		<0.01		<0.01				
2/9/2021	0.0059							
2/10/2021		<0.01	<0.01	<0.01				
9/8/2021	0.0059	<0.01						
9/9/2021				<0.01				
9/10/2021			<0.01					
2/1/2022	0.0054	<0.01						
2/2/2022			<0.01					
2/3/2022				<0.01				
9/1/2022		<0.01						
9/2/2022	0.00578 (J)							
9/6/2022	.,		<0.01	<0.01				
1/31/2023		<0.01	<0.01	<0.01				
2/1/2023	0.00682 (J)				<0.01			
8/8/2023	` '		<0.01	<0.01	<0.01			
8/9/2023		<0.01						
8/10/2023	0.00684 (J)							
1/23/2024	0.00682 (J)		<0.01		<0.01			
1/24/2024	V-7	<0.01		<0.01				
8/20/2024	0.00598 (J)	<0.01	<0.01	<0.01	<0.01			
	(0)	*:*:	:	=:=:	***			

Constituent: Cobalt (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARAMW-1	ARAMW-2	ARAMW-7	ARAMW-8	ARGWA-19 (bg)
8/29/2016					<0.001
10/24/2016					<0.001
1/25/2017					<0.001
4/10/2017					<0.001
6/19/2017					<0.001
10/24/2017					<0.001
4/10/2018					<0.001
10/16/2018					<0.001
8/20/2019					0.00011 (J)
10/7/2019					0.00011 (J)
4/7/2020					0.00038 (J)
6/24/2020	0.00097 (J)	0.0027			
6/25/2020					<0.001
8/19/2020					<0.001
8/20/2020	0.001 (J)	0.0022 (J)			
9/29/2020					<0.001
9/30/2020	0.001 (J)				
10/1/2020		0.0036			
11/30/2020			0.028		
12/1/2020				0.0054	
2/9/2021					0.00016 (J)
2/10/2021	0.00082 (J)				
2/11/2021		0.0028	0.017	0.0061	
9/7/2021					<0.001
9/9/2021	0.00072 (J)			0.0046	
9/10/2021		0.0022 (J)	0.075		
2/1/2022					<0.001
2/2/2022			0.077		
2/3/2022	0.00045 (J)	0.0028		0.0028	
9/1/2022					<0.001
9/2/2022	0.000449 (J)	0.002		0.00292	
9/7/2022			0.0737		
1/31/2023	0.000399 (J)	0.00282	0.0687	0.00321	<0.001
8/8/2023	0.00035 (J)	0.00223	0.0605		<0.001
8/9/2023			0.0507	0.00364	0.004
1/23/2024	0.000004 (1)	0.00040	0.0597	0.00000	<0.001
1/24/2024	0.000331 (J)	0.00249	0.0702	0.00203	~0.001
8/20/2024	<0.001	0.00166	0.0702	0.00277	<0.001

Constituent: Cobalt (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWA-20 (bg)	ARGWC-21	ARGWC-22	ARGWC-23	ARAMW-9
8/29/2016	<0.001				
8/30/2016		0.0018 (J)			
10/24/2016	<0.001				
10/26/2016		0.0018 (J)			
1/25/2017	0.00076 (J)	0.0017 (J)			
4/10/2017	<0.001	0.0016 (J)			
6/19/2017		0.0021 (J)			
6/20/2017	<0.001	. ,			
10/24/2017	<0.001	0.0019 (J)			
4/9/2018	<0.001				
4/10/2018		0.0019 (J)			
10/16/2018	<0.001	0.0019 (J)			
8/20/2019	0.0001 0.00015 (J)	0.0019 (3)			
		0.0023			
10/7/2019	<0.001	0.0019			
10/8/2019		0.0018	0.010	0.000	
12/16/2019			0.018	0.0023	
1/14/2020			0.0072	0.0031	
2/11/2020			0.013	0.00056	
3/9/2020			0.015	0.00061 (J)	
4/6/2020	0.00039 (J)				
4/7/2020		0.00087	0.009	0.0016	
5/27/2020			0.0059	0.0017 (J)	
6/24/2020			0.0047		
6/25/2020	0.00015 (J)	0.00097 (J)		0.0014 (J)	
7/15/2020			0.0027	0.0017 (J)	
8/19/2020	0.00064 (J)		0.0032		
8/20/2020				0.0023 (J)	
8/21/2020		0.00066 (J)			
9/22/2020			0.0085	0.0036	
9/30/2020	0.00031 (J)		0.0055		
10/1/2020		0.00082 (J)		0.0052	
2/9/2021	0.00038 (J)				
2/10/2021	.,	0.00063 (J)	0.0015 (J)	0.00072 (J)	
9/8/2021	0.0005 (J)	0.0007 (J)	` '	` '	
9/9/2021	(-)	· · · · · · · · · · · · · · · · · · ·		0.0009 (J)	
9/10/2021			0.0015 (J)		
2/1/2022	<0.001	0.0007 (J)	0.0010(0)		
2/1/2022	~0.001	J.JJJJ (J)	0.001 (J)		
			0.001 (3)	0.00063 (J)	
2/3/2022		0.00060 / 15		ს.სსსხპ (J)	
9/1/2022	-0.004	0.00069 (J)			
9/2/2022	<0.001		0.00455	0.000=00 ())	
9/6/2022			0.00198	0.000588 (J)	
1/31/2023		0.000659 (J)	0.00154	0.000742 (J)	
2/1/2023	0.000458 (J)				<0.001
8/8/2023			0.00184	0.00044 (J)	<0.001
8/9/2023		0.000813 (J)			
8/10/2023	0.000814 (J)				
1/23/2024	<0.001		0.00408		<0.001
1/24/2024		0.00106		<0.001	
8/20/2024	<0.001	0.000769 (J)	0.00279	0.000484 (J)	<0.001

 $\label{lem:constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 9/26/2024 12:30 \ PM \quad View: Descriptive PM - View: Descriptive$

Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARAMW-1	ARAMW-2	ARAMW-7	ARAMW-8	ARGWA-19 (bg)
8/29/2016					0.324 (U)
10/24/2016					1.17 (U)
1/25/2017					0.443 (U)
4/10/2017					0.483
6/19/2017					0.478
10/24/2017					0.764
4/10/2018					0.3 (U)
10/16/2018					0.991
8/20/2019					0.498
10/7/2019					0.476 (U)
4/7/2020					0.651
8/19/2020					0.294 (U)
8/20/2020	0.527	4.13			
9/29/2020					0.372 (U)
9/30/2020	0.249 (U)				
10/1/2020		2.86			
2/9/2021					0.466 (U)
2/10/2021	0.949				
2/11/2021		2.09	5.1	0.285 (U)	
9/7/2021					0.31 (U)
9/9/2021	0.972			0.16 (U)	
9/10/2021		3.4	4.23		
2/1/2022					0.319 (U)
2/2/2022			4.48		
2/3/2022	1.04	2.69		0.51	
9/1/2022					0.913
9/2/2022	3.41	4.18		1.89	
9/7/2022			4.29		
1/31/2023	4.1	4.3	5.21	3.2	2.33
8/8/2023	1.16 (U)	1.86	4.83		1.8
8/9/2023				0.193 (U)	
1/23/2024			4.65		1.73
1/24/2024	9.3	10.3		2.87	
8/20/2024	2.47	2.98	3.47	<2.19 (D)	2.65

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

		ARGWA-20 (bg)	ARGWC-21	ARGWC-22	ARGWC-23	ARAMW-9
8/29/2	/2016	0.508 (U)				
8/30/2	/2016		0.832			
10/24	4/2016	1.46				
10/26	6/2016		1.27			
1/25/2	/2017	0.377 (U)	0.549			
4/10/2	/2017	0.132 (U)	0.556			
6/19/2	/2017		0.976			
6/20/2	/2017	1.17				
10/24	4/2017	0.704	0.504			
4/9/20	2018	0.539				
4/10/2	/2018		0.621			
	6/2018	0.354 (U)	0.796			
8/20/2		0.53	0.978			
10/7/2		0.621 (U)				
	/2019	ζ-/	0.588			
	6/2019			0.229 (U)	0.166 (U)	
1/14/2				0.783	0.869	
2/11/2				0.229 (U)	0.0291 (U)	
3/9/20				0.365	0.626	
4/6/20		0.072 (U)		0.000	5.525	
4/7/20		, = (S)	0.433 (U)	0.567	0.296 (U)	
5/27/2			300 (0)	0.143 (U)	0.230 (U) 0.192 (U)	
7/15/2				0.143 (0)	0.132 (U) 0.279 (U)	
8/19/2		0.94		0.587 (U)	3.273 (0)	
8/20/2		3.0 .		3.337 (0)	0.242 (U)	
8/21/2			0.472		J.2-12 (U)	
9/22/2			J.7/L	0.884	0.0177 (U)	
9/30/2		0.679		0.602	0.0177 (0)	
10/1/2		0.073	0.496 (11)	0.002	0.749	
		0.0306 (11)	0.496 (U)		0.743	
2/9/20 2/10/2		-0.0396 (U)	0.625	0 333 (11)	0.0408 (U)	
		0.44 (11)		0.233 (U)	0.0400 (0)	
9/8/20		0.44 (U)	1.12		0.498	
				0.712	0.496	
9/10/2		0.00712711	0.331 // 1)	0.713		
2/1/20		-0.00713 (U)	0.331 (U)	0.105 (11)		
2/2/20				0.195 (U)	0.248 (1.1)	
2/3/20			1 57		0.248 (U)	
9/1/20		0.782	1.57			
9/2/20		0.783		2.50	2.26	
9/6/20			0.05	2.58	2.36	
1/31/2		0.40	3.25	2.2	0.859 (U)	0.440
2/1/20		2.18		1.00 " "	0.000 ""	0.413 (U)
8/8/20				1.22 (U)	0.363 (U)	3.92
8/9/20			2.69			
8/10/2		1.8				
1/23/2		2.5		2.1		2.96
1/24/2			5.34		2.73	
8/20/2	/2024	<1.5	<3.22	<1.92	2.1	2.8

Constituent: Fluoride (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARAMW-1	ARAMW-2	ARAMW-7	ARAMW-8	ARGWA-19 (bg)
8/29/2016					<0.1
10/24/2016					0.07 (J)
1/25/2017					<0.1
4/10/2017					<0.1
6/19/2017					<0.1
10/24/2017					<0.1
4/10/2018					<0.1
10/16/2018					0.083 (J)
3/26/2019					0.041 (J)
8/20/2019					0.045 (J)
10/7/2019					0.049 (J)
4/7/2020					0.14
6/24/2020	0.21	0.11			
6/25/2020					0.03 (J)
8/19/2020					<0.1
8/20/2020	0.23	<0.1			
9/29/2020					0.051 (J)
9/30/2020	0.2				
10/1/2020		0.098 (J)			
11/30/2020			0.044 (J)		
12/1/2020				0.14	
2/9/2021					0.059 (J)
2/10/2021	0.21				
2/11/2021		0.12	0.054 (J)	0.24	
9/7/2021					0.1
9/9/2021	0.21			0.19	
9/10/2021		0.13	0.032 (J)		
2/1/2022					0.076 (J)
2/2/2022			<0.1		
2/3/2022	0.16	0.095 (J)		0.17	
9/1/2022					0.148
9/2/2022	0.18	0.146		0.206	
9/7/2022			<0.1		
1/31/2023	0.22 (J)	0.13 (J)	0.11 (J)	0.263 (J)	0.108 (J)
8/8/2023	0.118	0.0571 (J)	<0.1		<0.1
8/9/2023				0.261	
1/23/2024			0.126		0.121
1/24/2024	0.199	0.171		0.222	
8/20/2024	0.169	0.123	0.118 (J)	0.199	0.0679 (J)

Constituent: Fluoride (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWA-20 (bg)	ARGWC-21	ARGWC-22	ARGWC-23	ARAMW-9
8/29/2016	<0.1				
8/30/2016		0.099 (J)			
10/24/2016	0.04 (J)	• *			
10/26/2016	. ,	0.57			
1/25/2017	<0.1	0.12 (J)			
4/10/2017	<0.1	0.11 (J)			
6/19/2017		0.11 (J)			
6/20/2017	<0.1	0.11(0)			
		0.171)			
10/24/2017	<0.1	0.1 (J)			
4/9/2018	<0.1	0.004 (1)			
4/10/2018		0.094 (J)			
10/16/2018	<0.1	0.17 (J)			
3/27/2019	<0.1	0.05 (J)			
8/20/2019	0.042 (J)	0.098 (J)			
10/7/2019	0.036 (J)				
10/8/2019		0.065 (J)			
12/16/2019			0.026 (J)	0.18 (J)	
1/14/2020			<0.2	0.21	
2/11/2020			0.056	0.13	
3/9/2020			0.064 (J)	0.089 (J)	
4/6/2020	0.059 (J)				
4/7/2020	. ,	0.12	0.068 (J)	0.18	
5/27/2020			0.06 (J)	0.25	
6/24/2020			0.048 (J)		
6/25/2020	<0.1	0.041 (J)	(-)	0.25	
7/15/2020	·	3.3 (0)	0.04 (J)	0.28	
8/19/2020	<0.1		<0.2	0.20	
8/20/2020	-0.1		-0.2	0.19	
		0.00471		0.19	
8/21/2020		0.084 (J)	0.046 ();	0.00	
9/22/2020	0.000 ("		0.049 (J)	0.33	
9/30/2020	0.032 (J)		0.045 (J)		
10/1/2020		0.098 (J)		0.32	
2/9/2021	0.048 (J)				
2/10/2021		0.14	0.055 (J)	0.41	
9/8/2021	0.067 (J)	0.16			
9/9/2021				0.48	
9/10/2021			0.035 (J)		
2/1/2022	0.028 (J)	0.11			
2/2/2022			0.04 (J)		
2/3/2022			.,	0.4	
9/1/2022		0.161			
9/2/2022	0.122	5			
9/6/2022	V. 122		0.056 (J)	0.362	
		0.175 (1)			
1/31/2023	0.101	0.175 (J)	0.0979 (J)	0.551 (J)	0.036
2/1/2023	0.121			0.000	0.938
8/8/2023			<0.2	0.283	0.837
8/9/2023		0.203			
8/10/2023	<0.1				
1/23/2024	0.113		0.134		0.971
1/24/2024		0.173		0.391	
8/20/2024	0.0488 (J)	0.124	0.066 (J)	0.365	0.889

Constituent: Lead (mg/L) Analysis Run 10/1/2024 9:21 AM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARAMW-1	ARAMW-2	ARAMW-7	ARAMW-8	ARGWA-19 (bg)
5/5/2009					<0.002
12/5/2009					<0.002
6/1/2010					<0.002
11/11/2010					<0.002
5/17/2011					<0.002
11/8/2011					<0.002
5/16/2012					<0.002
5/14/2013					<0.002
11/5/2013					<0.002
6/9/2014					<0.002
11/19/2014					<0.002
4/14/2015					<0.002
11/4/2015					<0.002
6/22/2016					<0.002
8/29/2016					<0.002
10/24/2016					<0.002
1/25/2017					<0.002
4/10/2017					<0.002
6/19/2017					<0.002
10/24/2017					<0.002
4/10/2018					<0.002
10/16/2018					<0.002
3/26/2019					<0.002
8/20/2019					<0.002
10/7/2019					0.00018 (J)
4/7/2020					0.00037 (J)
8/19/2020					<0.002
8/20/2020	<0.002	<0.002			
9/29/2020					<0.002
9/30/2020	<0.002				
10/1/2020		<0.002			
2/9/2021					<0.002
2/10/2021	<0.002				
2/11/2021		<0.002	0.00013 (J)	<0.002	
9/7/2021					<0.002
9/9/2021	<0.002			<0.002	
9/10/2021		<0.002	<0.002		
2/1/2022					<0.002
2/2/2022			<0.002		
2/3/2022	<0.002	<0.002		<0.002	
9/1/2022					<0.002
9/2/2022	<0.002	<0.002		<0.002	
9/7/2022			<0.002		
1/31/2023	<0.002	<0.002	<0.002	<0.002	<0.002
8/8/2023	<0.002	<0.002	<0.002		<0.002
8/9/2023				<0.002	
1/23/2024			<0.002		<0.002
1/24/2024	<0.002	<0.002		<0.002	
8/20/2024	<0.002	<0.002	<0.002	<0.002	<0.002

Constituent: Lead (mg/L) Analysis Run 10/1/2024 9:21 AM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWA-20 (bg)	ARGWC-21	ARGWC-22	ARGWC-23	ARAMW-9
5/14/2009		<0.002			
5/15/2009	<0.002				
12/5/2009	<0.002	<0.002			
6/1/2010	<0.002				
6/2/2010		<0.002			
11/11/2010	<0.002	<0.002			
5/17/2011	<0.002	<0.002			
11/8/2011	<0.002	<0.002			
5/16/2012	<0.002	<0.002			
5/14/2013	<0.002	<0.002			
11/5/2013	<0.002	<0.002			
6/9/2014	<0.002	<0.002			
11/18/2014	<0.002	<0.002			
4/14/2015	<0.002	<0.002			
10/29/2015		<0.002			
11/4/2015	<0.002				
6/22/2016	<0.002				
6/23/2016		<0.002			
8/29/2016	<0.002				
8/30/2016		<0.002			
10/24/2016	<0.002				
10/26/2016		<0.002			
1/25/2017	0.00037 (J)	<0.002			
4/10/2017	<0.002	<0.002			
6/19/2017		<0.002			
6/20/2017	<0.002				
10/24/2017	<0.002	<0.002			
4/9/2018	<0.002				
4/10/2018		<0.002			
10/16/2018	<0.002	<0.002			
3/27/2019	<0.002	<0.002			
8/20/2019	<0.002	<0.002			
10/7/2019	0.00014 (J)	-			
10/8/2019	(-/	0.00015 (J)			
12/16/2019		3.000 10 (0)	<0.002	<0.002	
1/14/2020			0.00022 (J)	0.00018 (J)	
2/11/2020			<0.002	0.00016 (J)	
3/9/2020			<0.002	<0.002	
4/6/2020	0.00033 (J)		0.00L	0.002	
4/7/2020	0.0000 (0)	0.00026 (J)	0.00014 (J)	<0.002	
5/27/2020		0.00020 (0)	<0.002	<0.002	
7/15/2020			<0.002	<0.002	
8/19/2020	0.00039 (J)		<0.002	-0.002	
8/20/2020	0.00000 (0)		-0.002	<0.002	
8/21/2020		<0.002		~0.00Z	
9/22/2020		~0.00Z	<0.002	<0.002	
9/22/2020	0.00022 (J)		<0.002	~0.00Z	
10/1/2020	0.00022 (0)	<0.002	-0.002	<0.002	
2/9/2021	0.00033 (J)	~0.00Z		~0.00Z	
2/10/2021	0.00000 (0)	<0.002	<0.002	<0.002	
9/8/2021	0.00024 (J)	<0.002	-0.002	~0.00Z	
9/9/2021	0.00024 (3)	<0.00Z		<0.002	
3/3/2021				~U.UUZ	

Constituent: Lead (mg/L) Analysis Run 10/1/2024 9:21 AM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

0/10/2001	ARGWA-20 (bg)	ARGWC-21	ARGWC-22	ARGWC-23	ARAMW-9
9/10/2021			<0.002		
2/1/2022	<0.002	<0.002			
2/2/2022			<0.002		
2/3/2022				<0.002	
9/1/2022		<0.002			
9/2/2022	<0.002				
9/6/2022			<0.002	<0.002	
1/31/2023		<0.002	<0.002	<0.002	
2/1/2023	<0.002				<0.002
8/8/2023			<0.002	<0.002	<0.002
8/9/2023		<0.002			
8/10/2023	<0.002				
1/23/2024	<0.002		<0.002		<0.002
1/24/2024		<0.002		<0.002	
8/20/2024	<0.002	<0.002	<0.002	<0.002	<0.002

 $\label{eq:constituent: Lithium (mg/L)} Constituent: Lithium (mg/L) \quad Analysis Run 10/1/2024 9:21 \ AM \quad View: Descriptive \\ Plant Arkwright \quad Client: Southern Company \quad Data: Arkwright No 2$

	ARAMW-1	ARAMW-2	ARAMW-7	ARAMW-8	ARGWA-19 (bg)
8/29/2016					0.0048 (J)
10/24/2016					<0.05
1/25/2017					0.0052
4/10/2017					0.0034 (J)
6/19/2017					0.0036 (J)
10/24/2017					0.0051
4/10/2018					0.0057
10/16/2018					0.0048 (J)
8/20/2019					0.0044 (J)
10/7/2019					0.013
1/14/2020	0.009	0.086			
4/7/2020					0.0053
6/24/2020	0.0084	0.018			
6/25/2020					0.0053
8/19/2020					0.0038 (J)
8/20/2020	0.0066	0.036			
9/29/2020					0.0041 (J)
9/30/2020	0.0091				
10/1/2020		0.019			
11/30/2020			0.061		
12/1/2020				0.0044 (J)	
2/9/2021					0.0038 (J)
2/10/2021	0.0097				
2/11/2021		0.021	0.061	0.0055	
9/7/2021					0.0034 (J)
9/9/2021	0.0095			0.0062	
9/10/2021		0.025	0.06		
2/1/2022					0.0039 (J)
2/2/2022			0.06		
2/3/2022	0.0099	0.021		0.0063	
9/1/2022					0.00359 (J)
9/2/2022	0.0097 (J)	0.0232		0.00654 (J)	
9/7/2022			0.0634		
1/31/2023	0.0099 (J)	0.0202	0.068	0.00659 (J)	0.00424 (J)
8/8/2023	0.00909 (J)	0.0193	0.0577		0.00382 (J)
8/9/2023				0.00637 (J)	
1/23/2024			0.0779		0.0044 (J)
1/24/2024	0.0106	0.0172		0.00669 (J)	
8/20/2024	0.00934 (J)	0.0145	0.0585	0.00586 (J)	0.00376 (J)

Constituent: Lithium (mg/L) Analysis Run 10/1/2024 9:21 AM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

					,
	ARGWA-20 (bg)	ARGWC-21	ARGWC-22	ARGWC-23	ARAMW-9
8/29/2016	<0.01				
8/30/2016		0.0092			
10/24/2016	<0.01				
10/26/2016		0.0071 (J)			
1/25/2017	<0.01	0.0087			
4/10/2017	<0.01	0.0087			
	<0.01				
6/19/2017		0.0079			
6/20/2017	<0.01				
10/24/2017	<0.01	0.0097			
4/9/2018	0.0021 (J)				
4/10/2018		0.012			
10/16/2018	0.0018 (J)	0.01			
8/20/2019	<0.01	0.0098			
10/7/2019	0.0066				
10/8/2019		0.015			
12/16/2019			0.027	0.02	
1/14/2020			0.027	0.022	
2/11/2020			0.034	0.022	
3/9/2020	.0.04		0.0071	0.013	
4/6/2020	<0.01				
4/7/2020		0.011	0.012	0.032	
5/27/2020			0.017	0.037	
6/24/2020			0.023		
6/25/2020	<0.01	0.013		0.043	
7/15/2020			0.021	0.042	
8/19/2020	<0.01		0.026		
8/20/2020				0.036	
8/21/2020		0.013			
9/22/2020			0.014	0.039	
9/30/2020	<0.01		0.014	0.000	
	~0.01	0.012	0.014	0.04	
10/1/2020	10.01	0.012		0.04	
2/9/2021	<0.01				
2/10/2021		0.012	0.022	0.044	
9/8/2021	<0.01	0.012			
9/9/2021				0.045	
9/10/2021			0.021		
2/1/2022	0.0015 (J)	0.012			
2/2/2022			0.02		
2/3/2022				0.052	
9/1/2022		0.0116			
9/2/2022	<0.01	•			
9/6/2022	-0.01		0.0136	0.0578	
		0.0124	0.0136		
1/31/2023	-0.01	U.U 124	U.UZ0 4	0.0499	0.004007.
2/1/2023	<0.01		0.000	0.0545	0.00463 (J)
8/8/2023			0.028	0.0517	0.00907 (J)
8/9/2023		0.0131			
8/10/2023	<0.01				
1/23/2024	<0.01		0.0125		0.00862 (J)
1/24/2024		0.0131		0.0547	
8/20/2024	<0.01	0.0119	0.02	0.0469	0.00958 (J)

Constituent: Mercury (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARAMW-1	ARAMW-2	ARAMW-7	ARAMW-8	ARGWA-19 (bg)
8/29/2016					<0.0002
10/24/2016					<0.0002
1/25/2017					7.7E-05 (J)
4/10/2017					<0.0002
6/19/2017					<0.0002
10/24/2017					<0.0002
4/10/2018					<0.0002
10/16/2018					<0.0002
8/20/2019					<0.0002
8/19/2020					<0.0002
8/20/2020	<0.0002	<0.0002			
9/7/2021					<0.0002
9/9/2021	<0.0002			<0.0002	
9/10/2021		<0.0002	<0.0002		
2/1/2022					<0.0002
2/2/2022			<0.0002		
2/3/2022	<0.0002	<0.0002		<0.0002	
9/1/2022					<0.0002
9/2/2022	<0.0002	<0.0002		<0.0002	
9/7/2022			<0.0002		
1/31/2023	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
8/8/2023	<0.0002	<0.0002	<0.0002		<0.0002
8/9/2023				<0.0002	
1/23/2024			<0.0002		<0.0002
1/24/2024	<0.0002	<0.0002		<0.0002	
8/20/2024	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002

		ARGWA-20 (bg)	ARGWC-21	ARGWC-22	ARGWC-23	ARAMW-9
8/29/	/2016	<0.0002				
8/30/	/2016		<0.0002			
10/24	4/2016	<0.0002				
10/26	6/2016		<0.0002			
1/25/	/2017	7.2E-05 (J)	7.3E-05 (J)			
4/10/	/2017	<0.0002	<0.0002			
6/19/	/2017		<0.0002			
6/20/	/2017	<0.0002				
10/24	4/2017	<0.0002	<0.0002			
4/9/2	2018	<0.0002				
4/10/	/2018		<0.0002			
10/16	6/2018	<0.0002	<0.0002			
8/20/	/2019	<0.0002	<0.0002			
12/16	6/2019			<0.0002	<0.0002	
	/2020			<0.0002	<0.0002	
	/2020			<0.0002	<0.0002	
3/9/2				<0.0002	<0.0002	
	/2020			<0.0002	<0.0002	
7/15/				<0.0002	<0.0002	
8/19/		<0.0002		<0.0002		
8/20/					<0.0002	
8/21/			<0.0002			
9/22/				<0.0002	<0.0002	
	/2020				<0.0002	
9/8/2		<0.0002	<0.0002			
9/9/2					<0.0002	
9/10/				<0.0002		
2/1/2		<0.0002	<0.0002			
2/2/2				<0.0002		
2/3/2					<0.0002	
9/1/2			<0.0002			
9/2/2		<0.0002				
9/6/2				<0.0002	<0.0002	
	/2023		<0.0002	<0.0002	<0.0002	
2/1/2		<0.0002				<0.0002
8/8/2				<0.0002	<0.0002	<0.0002
8/9/2			<0.0002			
8/10/		<0.0002				
	/2024	<0.0002		0.000372		<0.0002
	/2024		<0.0002		<0.0002	2.3002
8/20/		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
0,201	2027	-0.0002	-5.0002	50.000Z	₹0.0002	~0.000Z

Constituent: Molybdenum (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARAMW-1	ARAMW-2	ARAMW-7	ARAMW-8	ARGWA-19 (bg)
8/29/2016					<0.015
10/24/2016					<0.015
1/25/2017					<0.015
4/10/2017					<0.015
6/19/2017					<0.015
10/24/2017					<0.015
4/10/2018					0.00096 (J)
10/16/2018					<0.015
8/20/2019					<0.015
6/24/2020	0.0051 (J)	<0.015			
6/25/2020					<0.015
8/19/2020					<0.015
8/20/2020	0.0076 (J)	0.0013 (J)			
9/29/2020					<0.015
9/30/2020	0.0054 (J)				
10/1/2020		<0.015			
11/30/2020			0.0012 (J)		
12/1/2020				0.056	
2/9/2021					<0.015
2/10/2021	0.0043 (J)				
2/11/2021		<0.015	<0.001	0.038	
9/7/2021					<0.015
9/9/2021	0.0059 (J)			0.12	
9/10/2021		<0.015	<0.001		
2/1/2022					0.00067 (J)
2/2/2022			<0.001		
2/3/2022	0.0049 (J)	<0.015		0.16	
9/1/2022					0.000501 (J)
9/2/2022	0.00785	0.000603 (J)		0.175	
9/7/2022			0.000379 (J)		
1/31/2023	0.00974	0.000491 (J)	<0.001	0.188	0.000395 (J)
8/8/2023	0.00667	0.0011	<0.001		0.000421 (J)
8/9/2023				0.203	
1/23/2024			<0.001		0.00048 (J)
1/24/2024	0.00937	0.00101		0.196	
8/20/2024	0.00873	0.000585 (J)	0.000257 (J)	0.195	0.000375 (J)

Constituent: Molybdenum (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

					. ,	
	ARGWA-20 (bg)	ARGWC-21	ARGWC-22	ARGWC-23	ARAMW-9	
8/29/2016	<0.001					
8/30/2016		<0.001				
10/24/2016	<0.001					
10/26/2016		<0.001				
1/25/2017	<0.001	<0.001				
4/10/2017	<0.001	<0.001				
6/19/2017		<0.001				
6/20/2017	<0.001					
10/24/2017	<0.001	<0.001				
4/9/2018	<0.001					
4/10/2018		<0.001				
10/16/2018	<0.001	<0.001				
8/20/2019	<0.001	<0.001				
12/16/2019			0.0018 (J)	0.025		
1/14/2020			0.0012 (J)	0.032		
2/11/2020			0.00093	0.032		
3/9/2020			0.00093	0.021 0.013 (J)		
5/27/2020			<0.015	0.048		
6/24/2020			<0.015	5.0-10		
6/25/2020	<0.001	<0.001	-0.010	0.055		
7/15/2020	-0.00 I	-0.00 i	<0.015	0.055		
8/19/2020	<0.001		<0.015	0.000		
	-0.00 i		-0.010	0.061		
8/20/2020 8/21/2020		<0.001		0.061		
		~U.UU1	<0.015	0.053		
9/22/2020	<0.001		<0.015	0.053		
9/30/2020	<0.001	<0.001	<0.015	0.064		
10/1/2020	<0.001	~U.UU1		0.064		
2/9/2021	<0.001	<0.001	<0.01E	0.063		
2/10/2021	<0.001	<0.001	<0.015	0.063		
9/8/2021	<0.001	<0.001		0.071		
9/9/2021			-0.015	0.071		
9/10/2021	-0.004	-0.001	<0.015			
2/1/2022	<0.001	<0.001				
2/2/2022			<0.015	0.005		
2/3/2022				0.065		
9/1/2022		<0.001				
9/2/2022	<0.001					
9/6/2022			0.000203 (J)	0.067		
1/31/2023		<0.001	0.000496 (J)	0.0671		
2/1/2023	<0.001				0.014	
8/8/2023			0.000514 (J)	0.0618	0.0109	
8/9/2023		<0.001				
8/10/2023	<0.001					
1/23/2024	<0.001		0.00025 (J)		0.00683	
1/24/2024		<0.001		0.0651		
8/20/2024	<0.001	<0.001	0.000406 (J)	0.074	0.00237	

Constituent: pH (SU) Analysis Run 9/26/2024 12:30 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARAMW-1	ARAMW-2	ARAMW-7	ARAMW-8	ARGWA-19 (bg)
8/29/2016					6.75 (o)
10/24/2016					5.81
1/25/2017					5.91
4/10/2017					5.74
6/19/2017					5.54
10/24/2017					5.82
4/10/2018					5.92
10/16/2018					5.94
3/26/2019					5.85
8/20/2019					5.9
10/7/2019					5.89
1/14/2020	6.07	6.12			
4/7/2020					5.72
6/24/2020	6.31	6.19			
6/25/2020					5.8
8/19/2020					6.25
8/20/2020	6.09	5.99			
9/29/2020					5.83
9/30/2020	6.16				
10/1/2020		5.96			
11/30/2020			6		
12/1/2020				7.05	
2/9/2021					5.97
2/10/2021	6.16				
2/11/2021		6	5.67	6.95	
9/7/2021					5.85
9/9/2021	6.1			6.56	
9/10/2021		6.01	5.7		
2/1/2022					5.52
2/2/2022			5.58		
2/3/2022	6.11	6.01		6.59	
9/1/2022					5.88
9/2/2022	6.04	6		6.44	
9/7/2022			5.57		
1/31/2023	6.36	6.18	5.54	6.44	5.86
8/8/2023	6.38	6.01	5.47		5.81
8/9/2023				8.71	
1/23/2024			5.57		5.93
1/24/2024	6.12	6.1		6.47	
8/20/2024	6.13	6.08	5.62	6.47	5.93

Constituent: pH (SU) Analysis Run 9/26/2024 12:30 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWA-20 (bg)	ARGWC-21	ARGWC-22	ARGWC-23	ARAMW-9
8/29/2016	5.64				
8/30/2016		6.38			
10/24/2016	5.6				
10/26/2016		6.23			
1/25/2017	5.65	6.15			
4/10/2017	5.42	5.99			
6/19/2017		5.95			
6/20/2017	5.59				
10/24/2017	5.58	6.02			
4/9/2018	5.78				
4/10/2018		6.12			
10/16/2018	5.69	6.12			
3/27/2019	5.96	6.2			
8/20/2019	5.57	6.08			
10/7/2019		0.00			
	5.65	6 11			
10/8/2019		6.11	E 74	6.41	
12/16/2019			5.74	6.41	
1/14/2020			5.91	6.62	
2/11/2020			5.9	6.71	
3/9/2020			5.97	6.32	
4/6/2020	5.53				
4/7/2020		5.96	5.84	6.4	
5/27/2020			5.69	6.3	
6/24/2020			5.82		
6/25/2020	5.61	5.98		6.37	
7/15/2020			5.58	6.36	
8/19/2020	6.16		6.21		
8/20/2020				6.33	
8/21/2020		5.89			
9/22/2020			5.77	6.29	
9/30/2020	5.65		5.81		
10/1/2020		5.99		6.38	
2/9/2021	5.66				
2/10/2021	0.00	6.01	5.68	6.37	
	5 50		3.00	0.57	
9/8/2021	5.59	5.94		6.25	
9/9/2021			5.00	6.35	
9/10/2021			5.62		
2/1/2022	5.14	5.65			
2/2/2022			5.7		
2/3/2022				6.44	
9/1/2022		5.97			
9/2/2022	5.68				
9/6/2022			5.88	6.41	
1/31/2023		6.04	5.61	6.46	
2/1/2023	5.7				7.95
8/8/2023			5.61	6.33	8.13
8/9/2023		6.6			
8/10/2023	5.55				
1/23/2024	5.77		5.88		7.92
1/24/2024		6.03		6.43	
8/20/2024	5.83	6.2	5.76	6.34	7.95
		-	· -		- -

Constituent: Selenium (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARAMW-1	ARAMW-2	ARAMW-7	ARAMW-8	ARGWA-19 (bg)
5/5/2009					0.0043
12/5/2009					<0.005
6/1/2010					<0.005
11/11/2010					<0.005
5/17/2011					<0.005
11/8/2011					<0.005
5/16/2012					<0.005
5/14/2013					<0.005
11/5/2013					<0.005
6/9/2014					<0.005
11/19/2014					<0.005
4/14/2015					<0.005
11/4/2015					<0.005
6/22/2016					0.00025 (J)
8/29/2016					0.0004 (J)
10/24/2016					<0.005
1/25/2017					<0.005
4/10/2017					<0.005
6/19/2017					0.00025 (J)
10/24/2017					<0.005
4/10/2018					0.00074 (J)
10/16/2018					<0.005
3/26/2019					<0.005
8/20/2019					<0.005
10/7/2019					<0.005
4/7/2020					<0.005
8/19/2020					<0.005
8/20/2020	<0.005	<0.005			0.000
9/29/2020	10.000	-0.000			<0.005
9/30/2020	<0.005				0.000
10/1/2020	-0.000	<0.005			
2/9/2021		-0.000			<0.005
2/10/2021	<0.005				0.000
2/11/2021	-0.000	<0.005	<0.005	<0.005	
9/7/2021		-0.000	-0.000	-0.000	<0.005
9/9/2021	<0.005			<0.005	0.000
9/10/2021	10.000	<0.005	<0.005	-0.000	
2/1/2022		-0.000	-0.000		<0.005
2/2/2022			<0.005		0.000
2/3/2022	<0.005	<0.005	-0.000	<0.005	
9/1/2022	-0.000	-0.000		-0.000	<0.005
9/2/2022	<0.005	<0.005		<0.005	10.000
9/7/2022	0.000	0.000	<0.005	0.000	
1/31/2023	<0.005	<0.005	<0.005	<0.005	<0.005
8/8/2023	<0.005	<0.005	<0.005	3.000	<0.005
8/9/2023	5.000	3.000	3.000	<0.005	5.555
1/23/2024			<0.005	-0.000	<0.005
1/24/2024	<0.005	<0.005	-0.000	<0.005	-0.000
8/20/2024	<0.005	<0.005	<0.005	<0.005	<0.005
5,20,2024	-0.000	-0.000	-0.000	-0.000	-0.000

Constituent: Selenium (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWA-20 (bg)	ARGWC-21	ARGWC-22	ARGWC-23	ARAMW-9
5/14/2009		0.0058 (o)			
5/15/2009	0.007 (o)				
12/5/2009	<0.005	<0.005			
6/1/2010	<0.005				
6/2/2010		<0.005			
11/11/2010	<0.005	<0.005			
5/17/2011	<0.005	<0.005			
11/8/2011	<0.005	<0.005			
5/16/2012	0.0024 (J)	<0.005			
5/14/2013	<0.005	<0.005			
11/5/2013	<0.005	<0.005			
6/9/2014	<0.005	<0.005			
11/18/2014	<0.005	<0.005			
4/14/2015	<0.005	<0.005			
10/29/2015		<0.005			
11/4/2015	<0.005				
6/22/2016	0.0019				
6/23/2016		<0.005			
8/29/2016	0.0019				
8/30/2016		<0.005			
10/24/2016	0.0023 (J)				
10/26/2016		<0.005			
1/25/2017	0.0015	<0.005			
4/10/2017	0.0011 (J)	<0.005			
6/19/2017		<0.005			
6/20/2017	0.0016				
10/24/2017	0.0012 (J)	<0.005			
4/9/2018	0.0012 (J)				
4/10/2018		<0.005			
10/16/2018	0.0015	<0.005			
3/27/2019	0.0015	<0.005			
8/20/2019	0.0015 (J)	<0.005			
10/7/2019	0.0016 (J)				
10/8/2019		<0.005			
12/16/2019			<0.005	<0.005	
1/14/2020			<0.005	<0.005	
2/11/2020			<0.005	<0.005	
3/9/2020			<0.005	<0.005	
4/6/2020	0.0017 (J)				
4/7/2020		<0.005	<0.005	<0.005	
5/27/2020			<0.005	<0.005	
7/15/2020			<0.005	<0.005	
8/19/2020	0.0015 (J)		<0.005		
8/20/2020				<0.005	
8/21/2020		<0.005			
9/22/2020			<0.005	<0.005	
9/30/2020	0.0016 (J)		<0.005		
10/1/2020		<0.005		<0.005	
2/9/2021	0.0016 (J)				
2/10/2021		<0.005	<0.005	<0.005	
9/8/2021	<0.005	<0.005			
9/9/2021				<0.005	

Constituent: Selenium (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWA-20 (bg)	ARGWC-21	ARGWC-22	ARGWC-23	ARAMW-9
9/10/2021			0.002 (J)		
2/1/2022	0.0015 (J)	<0.005			
2/2/2022			<0.005		
2/3/2022				<0.005	
9/1/2022		<0.005			
9/2/2022	<0.005				
9/6/2022			<0.005	<0.005	
1/31/2023		<0.005	<0.005	<0.005	
2/1/2023	<0.005				<0.005
8/8/2023			<0.005	<0.005	<0.005
8/9/2023		<0.005			
8/10/2023	<0.005				
1/23/2024	<0.005		<0.005		<0.005
1/24/2024		<0.005		<0.005	
8/20/2024	<0.005	<0.005	<0.005	<0.005	<0.005

Constituent: Silver (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARAMW-1	ARAMW-2	ARAMW-7	ARAMW-8	ARGWA-19 (bg)
5/5/2009					<0.001
12/5/2009					0.00075
6/1/2010					<0.001
11/11/2010					<0.001
5/17/2011					<0.001
11/8/2011					<0.001
5/16/2012					<0.001
5/14/2013					<0.001
11/5/2013					<0.001
6/9/2014					<0.001
11/19/2014					<0.001
4/14/2015					<0.001
11/4/2015					<0.001
6/22/2016					<0.001
10/24/2016					<0.001
4/10/2017					<0.001
10/24/2017					<0.001
4/10/2018					<0.001
10/16/2018					<0.001
3/26/2019					<0.001
10/7/2019					0.00056 (J)
4/7/2020					0.00018 (J)
9/29/2020					<0.001
9/30/2020	<0.001				
10/1/2020		<0.001			
2/9/2021					<0.001
2/10/2021	<0.001				
2/11/2021		<0.001	<0.001	<0.001	
9/7/2021					<0.001
9/9/2021	<0.001			<0.001	
9/10/2021		<0.001	<0.001		
2/1/2022					<0.001
2/2/2022			<0.001		
2/3/2022	<0.001	<0.001		<0.001	
9/1/2022					<0.001
9/2/2022	<0.001	<0.001		<0.001	
9/7/2022			<0.001		
1/31/2023	<0.001	<0.001	<0.001	<0.001	<0.001
8/8/2023	<0.001	<0.001	<0.001		<0.001
8/9/2023				<0.001	
1/23/2024			<0.001		<0.001
1/24/2024	<0.001	<0.001		<0.001	
8/20/2024	<0.001	<0.001	<0.001	<0.001	<0.001

Constituent: Silver (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWA-20 (bg)	ARGWC-21	ARGWC-22	ARGWC-23	ARAMW-9	
5/14/2009		<0.001				
5/15/2009	<0.001					
12/5/2009	0.00043	0.001				
6/1/2010	<0.001					
6/2/2010	40.001	<0.001				
11/11/2010	<0.001	<0.001				
5/17/2011	<0.001	<0.001				
11/8/2011	<0.001	<0.001				
5/16/2012	<0.001	<0.001				
5/14/2013	<0.001	<0.001				
11/5/2013	<0.001	<0.001				
6/9/2014	<0.001	<0.001				
11/18/2014	<0.001	<0.001				
4/14/2015	<0.001	<0.001				
10/29/2015		<0.001				
11/4/2015	<0.001					
6/22/2016	<0.001					
6/23/2016		<0.001				
10/24/2016	<0.001					
10/26/2016		<0.001				
4/10/2017	<0.001	<0.001				
10/24/2017	<0.001	<0.001				
4/9/2018	<0.001					
4/10/2018		<0.001				
10/16/2018	<0.001	<0.001				
3/27/2019	<0.001	<0.001				
10/7/2019		-0.00 i				
	0.00031 (J)	0.00043 (1)				
10/8/2019	<0.001	0.00043 (J)				
4/6/2020	<0.001					
4/7/2020		<0.001	<0.001	<0.001		
9/30/2020	<0.001		<0.001			
10/1/2020		<0.001		<0.001		
2/9/2021	<0.001					
2/10/2021		<0.001	<0.001	<0.001		
9/8/2021	<0.001	<0.001				
9/9/2021				<0.001		
9/10/2021			<0.001			
2/1/2022	<0.001	<0.001				
2/2/2022			<0.001			
2/3/2022				<0.001		
9/1/2022		<0.001				
9/2/2022	<0.001					
9/6/2022			<0.001	<0.001		
		<0.001				
1/31/2023	<0.001	~0.001	<0.001	<0.001	<0.001	
2/1/2023	<0.001		-0.001	-0.001	<0.001	
8/8/2023		.0.004	<0.001	<0.001	<0.001	
8/9/2023		<0.001				
8/10/2023	<0.001					
1/23/2024	<0.001		<0.001		<0.001	
1/24/2024		<0.001		<0.001		
8/20/2024	<0.001	<0.001	<0.001	<0.001	<0.001	

Constituent: Sodium (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARAMW-1	ARAMW-2	ARAMW-7	ARAMW-8	ARGWA-19 (bg)
6/24/2020	21	20			
6/25/2020					13
11/30/2020			27		
12/1/2020				22	
2/9/2021					11
2/10/2021	22				
2/11/2021		20	30	22	
9/7/2021					10
9/9/2021	21			19	
9/10/2021		20	30		
2/1/2022					10
2/2/2022			29		
2/3/2022	21	20		17	
9/1/2022					9.76
9/2/2022	19.5	18.9		15.5	
9/7/2022			28.1		
1/31/2023	21.9	20.5	29.8	17.4	10
8/8/2023	19.3	18.8	26.1		9.51
8/9/2023				18.1	
1/23/2024			33.2		11.1
1/24/2024	21	19.8		17.7	
8/20/2024	20	19	27.6	17.7	9.61

Constituent: Sodium (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWA-20 (bg)	ARGWC-21	ARGWC-22	ARGWC-23	ARAMW-9
6/24/2020			26		
6/25/2020	9.7	19		14	
2/9/2021	11				
2/10/2021		19	26	14	
9/8/2021	10	19			
9/9/2021				15	
9/10/2021			26		
2/1/2022	10	19			
2/2/2022			26		
2/3/2022				14	
9/1/2022		18.2			
9/2/2022	10				
9/6/2022			23.9	14.3	
1/31/2023		19.8	28.7	14.6	
2/1/2023	11.3				115
8/8/2023			29.2	13.3	107
8/9/2023		21			
8/10/2023	11.5				
1/23/2024	11.8		24.9		88.3
1/24/2024		19.8		15.7	
8/20/2024	11.5	20.2	26.6	16.1	75

Constituent: Sulfate (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

				3	3
	ARAMW-1	ARAMW-2	ARAMW-7	ARAMW-8	ARGWA-19 (bg)
5/5/2009					15.9
12/5/2009					15.1
6/1/2010					12.7
11/11/2010					11.5
5/17/2011					11.2
11/8/2011					11.3
5/16/2012					9.38
5/14/2013					8.74
11/5/2013					9.12
6/9/2014					8.61
4/14/2015					8.45
11/4/2015					9.01
6/22/2016					9.3
8/29/2016					8.7
10/24/2016					9.3
1/25/2017					8.8
4/10/2017					7.8
6/19/2017					8.6
10/24/2017					9.1
4/10/2018					7.9
10/16/2018					8.2
3/26/2019					6.1
10/7/2019					7.4
4/7/2020					8.4
6/24/2020	250	290			
6/25/2020					9.8
9/29/2020					8.4
9/30/2020	230				
10/1/2020		270			
11/30/2020			990		
12/1/2020				120	
2/9/2021					10
2/10/2021	260				
2/11/2021		290	980	110	
9/7/2021					9.9
9/9/2021	210			100	
9/10/2021		440	1100		
2/1/2022					10
2/2/2022			1100		
2/3/2022	250	310		110	
9/1/2022					8.38
9/2/2022	223	315		108	
9/7/2022			1050		
1/31/2023	218	262	1020	105	7.55
8/8/2023	223	243	1060		8.29
8/9/2023				114	
1/23/2024			1000		6.98
1/24/2024	219	214		106	
8/20/2024	211	232	1010	109	7.07

Constituent: Sulfate (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

5/14/20 5/15/20 12/5/20 6/1/20	2009	ARGWA-20 (bg) 41.3 (o)	ARGWC-21 129	ARGWC-22	ARGWC-23	ARAMW-9
5/15/20 12/5/20 6/1/20	2009	41.3 (o)	129			
12/5/20 6/1/20		41.3 (o)				
6/1/20	2009					
		16.2	136			
6/2/20	110	18.2				
0/2/20	10		138			
11/11/	2010	16.5	131.49			
5/17/20	2011	16	132			
11/8/20	011	21	138			
5/16/20		17.7	132			
5/14/20		19.5	129			
11/5/20		18.3	122			
6/9/20		18.6	131			
4/14/2		18.8	128			
10/29/2			134			
11/4/20		17.4	104			
6/22/20		18				
6/23/20		10	150			
8/29/20		18	100			
		10	140			
8/30/20		10	140			
10/24/2		18	100			
10/26/2		10	160			
1/25/20		19	150			
4/10/20		16	140			
6/19/20			160			
6/20/20		18				
10/24/2		19	160			
4/9/20		18				
4/10/20			170			
10/16/2	2018	18	170			
3/27/20	2019	15	170			
10/7/20	2019	17				
10/8/20	2019		170			
12/16/2	2019			770	66	
1/14/20	2020			930	68	
2/11/20				660	18	
3/9/202	20			630	49	
4/6/202		15				
4/7/20			180	710	58	
5/27/20				720	65	
6/24/20				810		
6/25/20		16	210		77	
7/15/20		-	-	820	78	
8/19/20				1000		
8/20/20				1000	69	
9/22/20				720	68	
9/30/20		15		650	00	
		10	210	000	64	
10/1/20		16	210		64	
2/9/20		16	220	750	67	
2/10/20		16	230	, 55	<i>.</i>	
2/10/20		10	∠30			
9/8/202					70	
	21			760	72	

Constituent: Sulfate (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

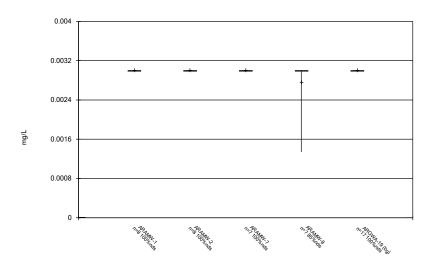
	ARGWA-20 (bg)	ARGWC-21	ARGWC-22	ARGWC-23	ARAMW-9
2/1/2022	18	230			
2/2/2022			720		
2/3/2022				64	
9/1/2022		221			
9/2/2022	18.5				
9/6/2022			667	65.3	
1/31/2023		260	751	55.5	
2/1/2023	19.3				417
8/8/2023			719	69.8	477
8/9/2023		214			
8/10/2023	18.5				
1/23/2024	17.1		567		415
1/24/2024		219		78.4	
8/20/2024	16.4	219	674	80.1	416

Constituent: Thallium (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARAMW-1	ARAMW-2	ARAMW-7	ARAMW-8	ARGWA-19 (bg)
8/29/2016					<0.002
10/24/2016					<0.002
1/25/2017					<0.002
4/10/2017					<0.002
6/19/2017					<0.002
10/24/2017					<0.002
4/10/2018					<0.002
10/16/2018					<0.002
8/20/2019					<0.002
8/19/2020					<0.002
8/20/2020	<0.002	<0.002			
9/7/2021					<0.002
9/9/2021	<0.002			<0.002	
9/10/2021		<0.002	<0.002		
2/1/2022					0.00057 (J)
2/2/2022			<0.002		
2/3/2022	<0.002	<0.002		<0.002	
9/1/2022					<0.002
9/2/2022	<0.002	<0.002		<0.002	
9/7/2022			<0.002		
1/31/2023	<0.002	<0.002	<0.002	<0.002	<0.002
8/8/2023	<0.002	<0.002	<0.002		<0.002
8/9/2023				<0.002	
1/23/2024			<0.002		<0.002
1/24/2024	<0.002	<0.002		<0.002	
8/20/2024	<0.002	<0.002	<0.002	<0.002	<0.002

Constituent: Thallium (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

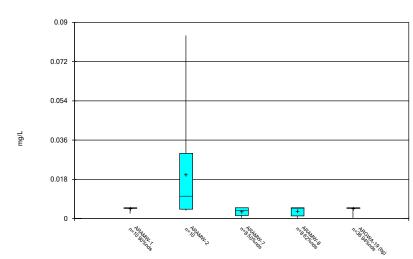
	ARGWA-20 (bg)	ARGWC-21	ARGWC-22	ARGWC-23	ARAMW-9
8/29/2016	<0.002				
8/30/2016		<0.002			
10/24/2016	<0.002				
10/26/2016		<0.002			
1/25/2017	<0.002	<0.002			
4/10/2017	<0.002	<0.002			
6/19/2017		<0.002			
6/20/2017	<0.002				
10/24/2017	<0.002	<0.002			
4/9/2018	<0.002				
4/10/2018		<0.002			
10/16/2018	<0.002	<0.002			
8/20/2019	<0.002	<0.002			
12/16/2019			0.00078 (J)	<0.002	
1/14/2020			0.00027 (J)	<0.002	
2/11/2020			0.00034	0.00028 (J)	
3/9/2020			0.00035 (J)	0.00026 (J)	
5/27/2020			<0.002	0.00026 (J)	
7/15/2020			<0.002	<0.002	
8/19/2020	<0.002		<0.002		
8/20/2020				<0.002	
8/21/2020		<0.002			
9/22/2020			<0.002	<0.002	
9/8/2021	<0.002	<0.002			
9/9/2021				<0.002	
9/10/2021			<0.002		
2/1/2022	<0.002	<0.002			
2/2/2022			<0.002		
2/3/2022				<0.002	
9/1/2022		<0.002			
9/2/2022	<0.002				
9/6/2022			<0.002	<0.002	
1/31/2023		<0.002	<0.002	<0.002	
2/1/2023	<0.002				<0.002
8/8/2023			<0.002	<0.002	<0.002
8/9/2023		<0.002			
8/10/2023	<0.002				
1/23/2024	<0.002		<0.002		<0.002
1/24/2024		<0.002		<0.002	
8/20/2024	<0.002	<0.002	<0.002	<0.002	<0.002
3.20.2027	0.002	0.002	0.002	0.002	0.002


Constituent: Total Dissolved Solids (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

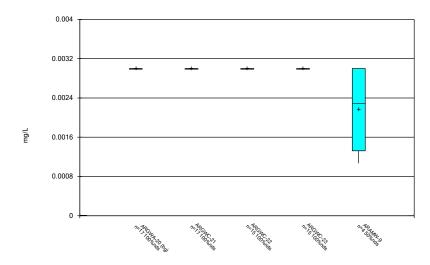
			i iditt/til	Wilgin Olicin. Cod	Michi Company Bata. 7 Minight No 2
	ARAMW-1	ARAMW-2	ARAMW-7	ARAMW-8	ARGWA-19 (bg)
8/29/2016					130
10/24/2016					108
1/25/2017					120
4/10/2017					128 (D)
6/19/2017					86
10/24/2017					120
4/10/2018					120
10/16/2018					140
3/26/2019					170
10/7/2019					150
4/7/2020					120
9/29/2020					110
9/30/2020	520				
10/1/2020		530			
11/30/2020			1600		
12/1/2020				420	
2/9/2021					110
2/10/2021	560				
2/11/2021		590	1600	380	
9/7/2021					110
9/9/2021	560			260	
9/10/2021		870	1700		
2/1/2022					91
2/2/2022			1700		
2/3/2022	560	590		410	
9/1/2022					81
9/2/2022	546	664		385	
9/7/2022			1610		
1/31/2023	527	591	1630	392	95
8/8/2023	524	548	1620		62
8/9/2023				436	
1/23/2024			1670		82
1/24/2024	530	529		419	
8/20/2024	538	564	1590	422	91

Constituent: Total Dissolved Solids (mg/L) Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

					•
	ARGWA-20 (bg)	ARGWC-21	ARGWC-22	ARGWC-23	ARAMW-9
8/29/2016	100				
8/30/2016		350			
10/24/2016	91				
10/26/2016		357			
1/25/2017	90	320			
4/10/2017	110	380			
6/19/2017	- · -	370			
6/20/2017	72	070			
		100			
10/24/2017	110	420			
4/9/2018	100	070			
4/10/2018		370			
10/16/2018	110	380			
3/27/2019	100	400			
10/7/2019	87				
10/8/2019		420			
12/16/2019			1300	320	
1/14/2020			1400	340	
2/11/2020			1300	110	
3/9/2020			1200	210	
4/6/2020	90				
4/7/2020		460	1300	290	
5/27/2020			1300	320	
7/15/2020			1400	310	
8/19/2020			1400	0.0	
8/20/2020			1700	310	
			1200		
9/22/2020	92		1300	310	
9/30/2020	82	500	1200	000	
10/1/2020		500		290	
2/9/2021	100				
2/10/2021		510	1200	290	
9/8/2021	120	560			
9/9/2021				320	
9/10/2021			1300		
2/1/2022	100	520			
2/2/2022			1200		
2/3/2022				320	
9/1/2022		537			
9/2/2022	101				
9/6/2022			1180	305	
1/31/2023		526	1320	299	
2/1/2023	90	320	1020	200	857
8/8/2023	50		1220	294	852
		E20	1220	207	002
8/9/2023	105	520			
8/10/2023	105		1110		750
1/23/2024	92	F.1.1	1110	0.40	750
1/24/2024		541		342	
8/20/2024	113	520	1180	328	670

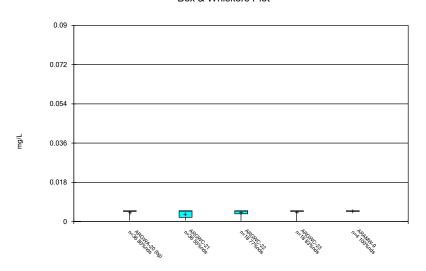

FIGURE B.

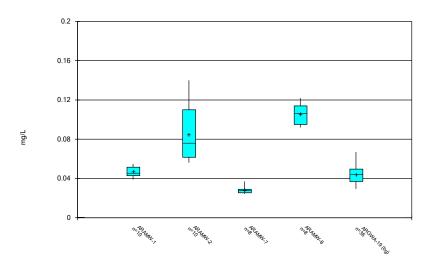
Constituent: Antimony Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2


Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

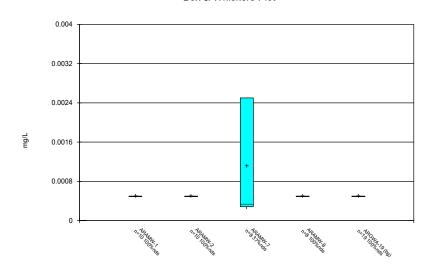
Constituent: Arsenic Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2


Box & Whiskers Plot

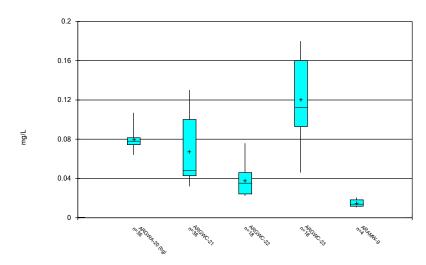

Constituent: Antimony Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

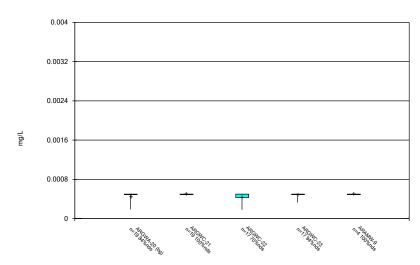

Constituent: Arsenic Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

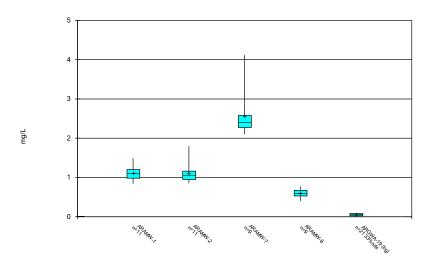
Constituent: Barium Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2


Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

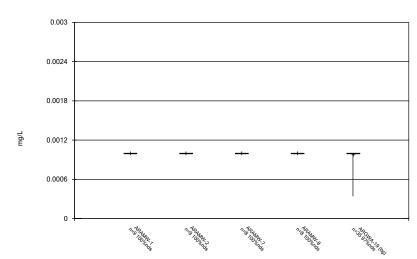
Constituent: Beryllium Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2


Box & Whiskers Plot

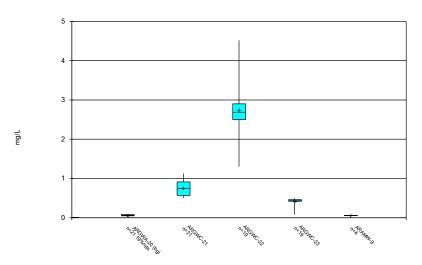

Constituent: Barium Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

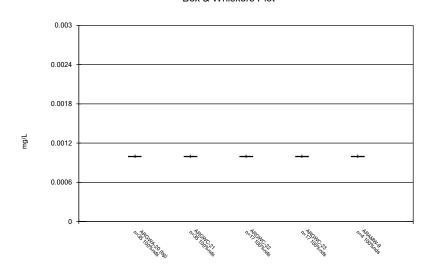

Constituent: Beryllium Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

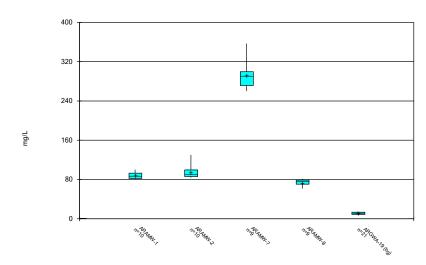
Constituent: Boron Analysis Run 9/26/2024 12:30 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2


Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

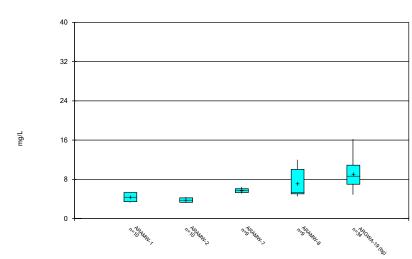
Constituent: Cadmium Analysis Run 9/26/2024 12:30 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2


Box & Whiskers Plot

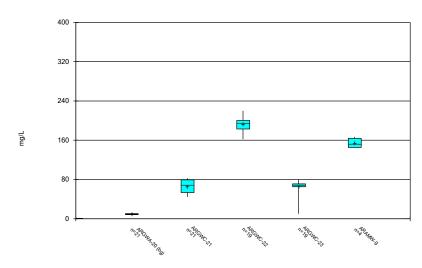

Constituent: Boron Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

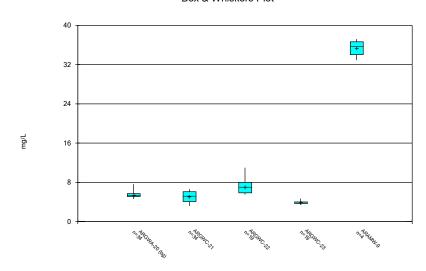

Constituent: Cadmium Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

Constituent: Calcium Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

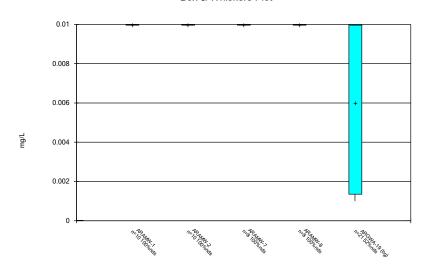

Sanitas $^{\text{\tiny{TM}}}$ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Chloride Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

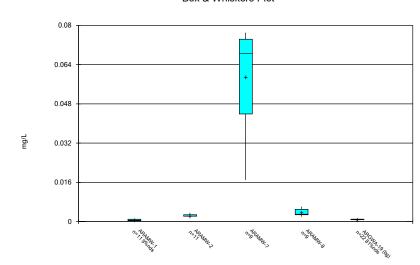

Box & Whiskers Plot

Constituent: Calcium Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

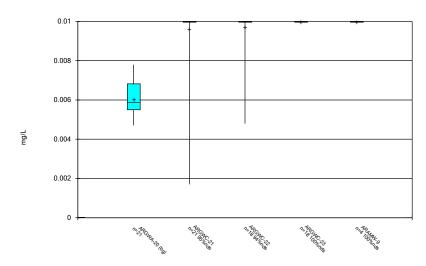

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Chloride Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

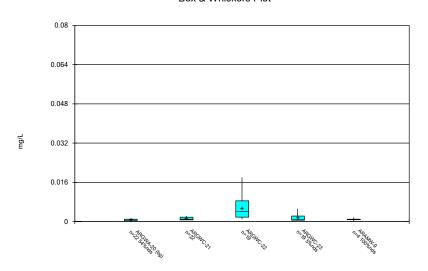


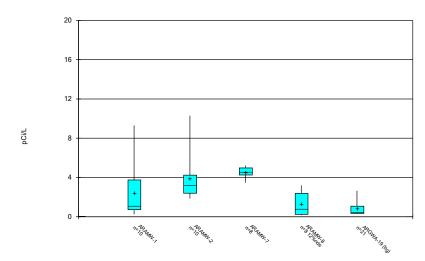
Constituent: Chromium Analysis Run 9/26/2024 12:30 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2


Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

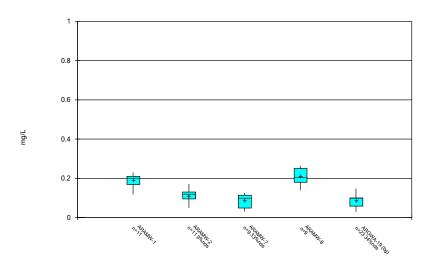
Constituent: Cobalt Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2


Box & Whiskers Plot

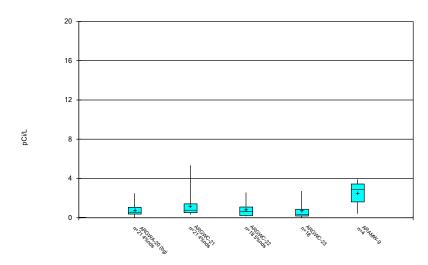

Constituent: Chromium Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

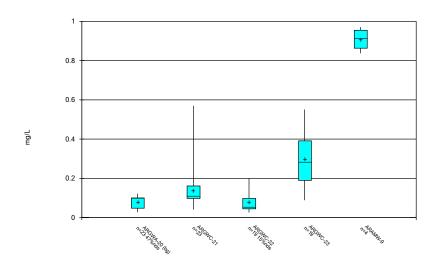

Constituent: Cobalt Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

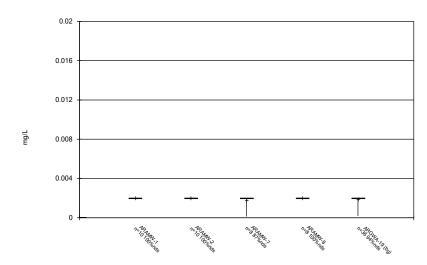
Constituent: Combined Radium 226 + 228 Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2


Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

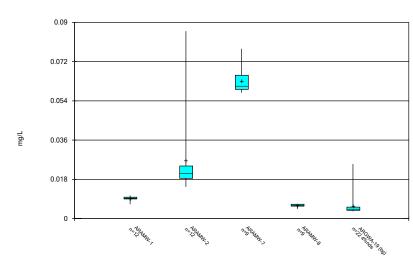
Constituent: Fluoride Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2


Box & Whiskers Plot


Constituent: Combined Radium 226 + 228 Analysis Run 9/26/2024 12:30 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

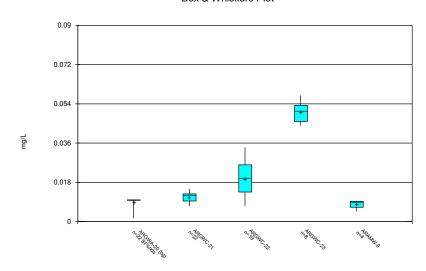

Constituent: Fluoride Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

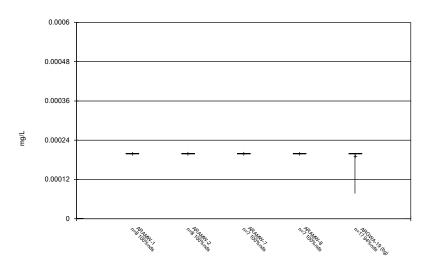
Constituent: Lead Analysis Run 10/1/2024 9:33 AM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

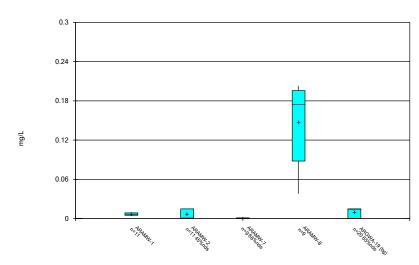
Constituent: Lithium Analysis Run 10/1/2024 9:33 AM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2


Box & Whiskers Plot

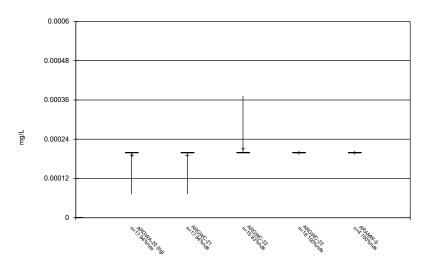

Constituent: Lead Analysis Run 10/1/2024 9:33 AM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

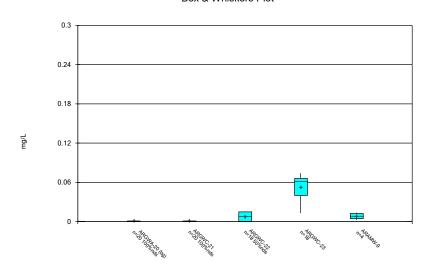

Constituent: Lithium Analysis Run 10/1/2024 9:33 AM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

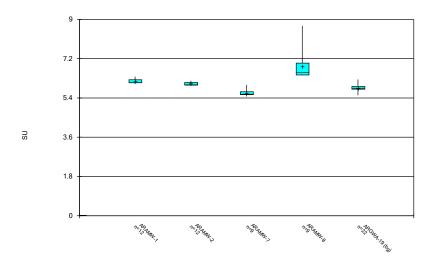
Constituent: Mercury Analysis Run 9/26/2024 12:30 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2


Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

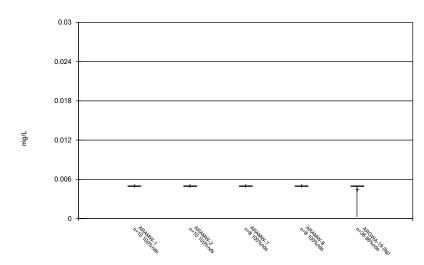
Constituent: Molybdenum Analysis Run 9/26/2024 12:31 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2


Box & Whiskers Plot

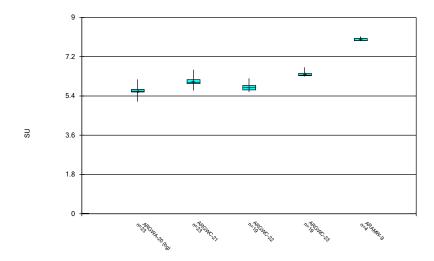

Constituent: Mercury Analysis Run 9/26/2024 12:31 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

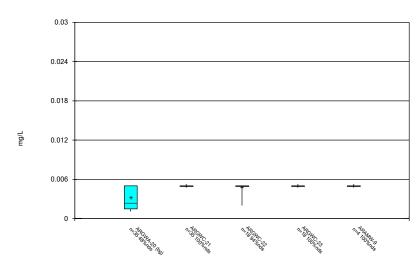

Constituent: Molybdenum Analysis Run 9/26/2024 12:31 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

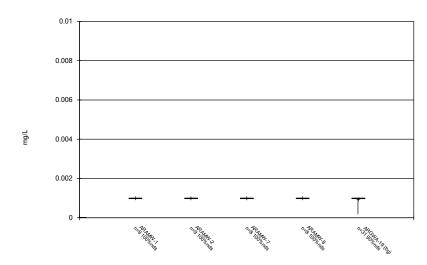
Constituent: pH Analysis Run 9/26/2024 12:31 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2


Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

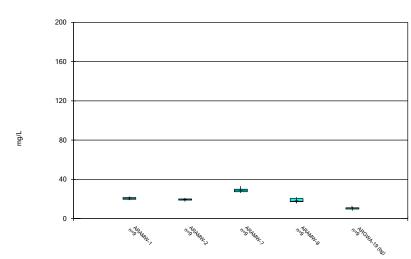
Constituent: Selenium Analysis Run 9/26/2024 12:31 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2


Box & Whiskers Plot

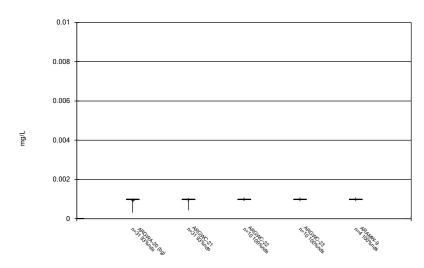

Constituent: pH Analysis Run 9/26/2024 12:31 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

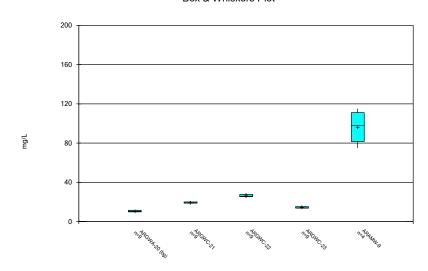

Constituent: Selenium Analysis Run 9/26/2024 12:31 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

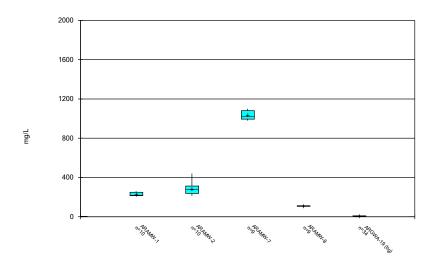
Constituent: Silver Analysis Run 9/26/2024 12:31 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2


Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

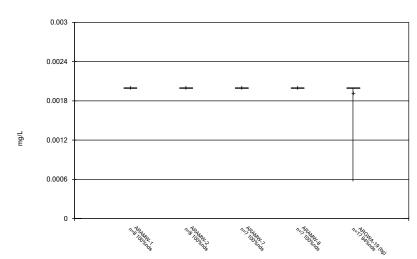
Constituent: Sodium Analysis Run 9/26/2024 12:31 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2


Box & Whiskers Plot

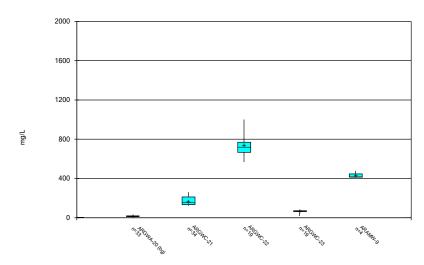

Constituent: Silver Analysis Run 9/26/2024 12:31 PM View: Descriptive
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

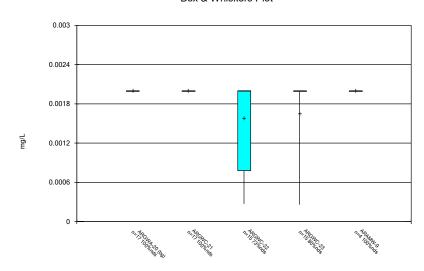

Constituent: Sodium Analysis Run 9/26/2024 12:31 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

Constituent: Sulfate Analysis Run 9/26/2024 12:31 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2


Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

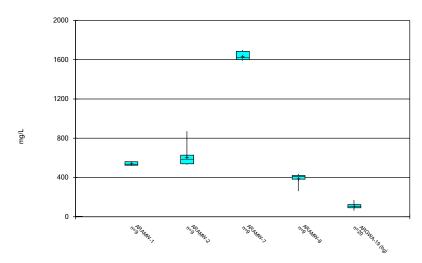
Box & Whiskers Plot

Constituent: Thallium Analysis Run 9/26/2024 12:31 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2


Box & Whiskers Plot

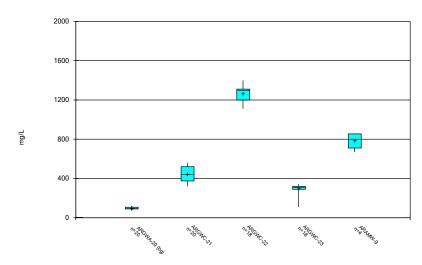
Constituent: Sulfate Analysis Run 9/26/2024 12:31 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Thallium Analysis Run 9/26/2024 12:31 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Total Dissolved Solids Analysis Run 9/26/2024 12:31 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Total Dissolved Solids Analysis Run 9/26/2024 12:31 PM View: Descriptive Plant Arkwright Client: Southern Company Data: Arkwright No 2

FIGURE C.

Outlier Summary

Plant Arkwright Client: Southern Company Data: Arkwright No 2 Printed 9/26/2024, 12:33 PM

ARGWA-19 pH (SU)

ARGWA-20 Selenium (mg/L)

ARGWC-21 Selenium (mg/L)

ARGWA-20 Sulfate (mg/L)

ARGWA-20 Sulfate (mg/L)

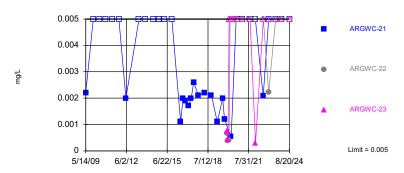
5/14/2009 5/15/2009

0.0058 (o) 0.007 (o)

41.3 (o)

8/29/2016 6.75 (o)


FIGURE D.


Appendix I Interwell Prediction Limits - All Results (No Significant)

Plant Arkwright Client: Southern Company Data: Arkwright No 2 Printed 9/26/2024, 11:45 AM

Constituent	Well	Upper Lim	. Lower Lim	. Date	Observ.	Sig.	Bg I	N Bg Mean	Std. Dev	v. <u>%NDs</u>	ND Ad	. Transform	m <u>Alpha</u>	Method
Arsenic (mg/L)	ARGWC-21	0.005	n/a	8/20/2024	0.005ND	No	72	n/a	n/a	87.5	n/a	n/a	0.0003715	NP Inter (NDs) 1 of 2
Arsenic (mg/L)	ARGWC-22	0.005	n/a	8/20/2024	0.005ND	No	72	n/a	n/a	87.5	n/a	n/a	0.0003715	NP Inter (NDs) 1 of 2
Arsenic (mg/L)	ARGWC-23	0.005	n/a	8/20/2024	0.005ND	No	72	n/a	n/a	87.5	n/a	n/a	0.0003715	NP Inter (NDs) 1 of 2
Barium (mg/L)	ARGWC-21	0.107	n/a	8/20/2024	0.0431	No	72	n/a	n/a	0	n/a	n/a	0.0003715	NP Inter (normality) 1 of 2
Barium (mg/L)	ARGWC-22	0.107	n/a	8/20/2024	0.0223	No	72	n/a	n/a	0	n/a	n/a	0.0003715	NP Inter (normality) 1 of 2
Barium (mg/L)	ARGWC-23	0.107	n/a	8/20/2024	0.105	No	72	n/a	n/a	0	n/a	n/a	0.0003715	NP Inter (normality) 1 of 2
Lead (mg/L)	ARGWC-21	0.002	n/a	8/20/2024	0.002ND	No	72	n/a	n/a	87.5	n/a	n/a	0.0003715	NP Inter (NDs) 1 of 2
Lead (mg/L)	ARGWC-22	0.002	n/a	8/20/2024	0.002ND	No	72	n/a	n/a	87.5	n/a	n/a	0.0003715	NP Inter (NDs) 1 of 2
Lead (mg/L)	ARGWC-23	0.002	n/a	8/20/2024	0.002ND	No	72	n/a	n/a	87.5	n/a	n/a	0.0003715	NP Inter (NDs) 1 of 2
Selenium (mg/L)	ARGWC-22	0.005	n/a	8/20/2024	0.005ND	No	71	n/a	n/a	67.61	n/a	n/a	0.0003804	NP Inter (NDs) 1 of 2
Silver (mg/L)	ARGWC-21	0.001	n/a	8/20/2024	0.001ND	No	62	n/a	n/a	91.94	n/a	n/a	0.0004981	NP Inter (NDs) 1 of 2

Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 72 background values. 87.5% NDs. Annual per-constituent alpha = 0.002227. Individual comparison alpha = 0.0003715 (1 of 2). Comparing 3 points to limit.

> Constituent: Arsenic Analysis Run 9/26/2024 11:43 AM View: Appendix I Plant Arkwright Client: Southern Company Data: Arkwright No 2

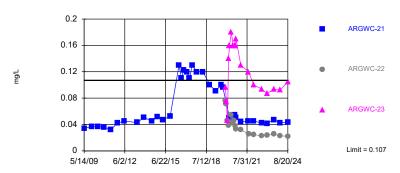
Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

5/14/09

6/2/12

Prediction Limit Within Limit Interwell Non-parametric 0.005 ARGWC-21 0.004 ARGWC-22 0.003 0.002 ARGWC-23 0.001

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 72 background values. 87.5% NDs. Annual per-constituent alpha = 0.002227. Individual comparison alpha = 0.0003715 (1 of 2). Comparing 3 points to limit.

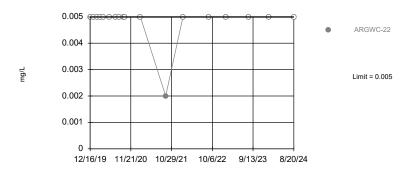

6/22/15 7/12/18 7/31/21

Limit = 0.002

8/20/24

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Prediction Limit Within Limit Interwell Non-parametric

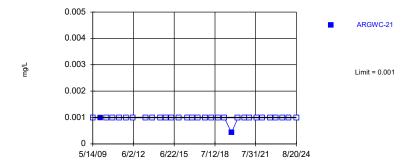


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 72 background values. Annual per-constituent alpha = 0.002227. Individual comparison alpha = 0.0003715 (1 of 2). Comparing 3 points to limit.

> Constituent: Barium Analysis Run 9/26/2024 11:43 AM View: Appendix I Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit Within Limit Interwell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 71 background values. 67.61% NDs. Annual per-constituent alpha = 0.00228. Individual comparison alpha = 0.0003804 (1 of 2). Assumes 2 future values.

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 62 background values. 91.94% NDs. Annual per-constituent alpha = 0.002985. Individual comparison alpha = 0.004981 (1 of 2). Assumes 2 future values.

Constituent: Silver Analysis Run 9/26/2024 11:43 AM View: Appendix I
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Constituent: Arsenic (mg/L) Analysis Run 9/26/2024 11:45 AM View: Appendix I

Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWA-19 (bg)	ARGWC-21	ARGWA-20 (bg)	ARGWC-23	ARGWC-22
5/5/2009	<0.005				
5/14/2009		0.0022			
5/15/2009			0.0015		
12/5/2009	<0.005	<0.005	<0.005		
6/1/2010	<0.005		<0.005		
6/2/2010		<0.005			
11/11/2010	<0.005	<0.005	<0.005		
5/17/2011	<0.005	<0.005	<0.005		
11/8/2011	<0.005	<0.005	<0.005		
5/16/2012	<0.005	0.002 (J)	<0.005		
5/14/2013	<0.005	<0.005	<0.005		
11/5/2013	<0.005	<0.005	<0.005		
6/9/2014	<0.005	<0.005	<0.005		
11/18/2014		<0.005	<0.005		
11/19/2014	<0.005				
4/14/2015	<0.005	<0.005	<0.005		
10/29/2015	3.300	<0.005	0.000		
11/4/2015	<0.005	-0.000	<0.005		
6/22/2016	<0.005	0.0011 (1)	0.00084 (J)		
6/23/2016	<0.00E	0.0011 (J)	0.0004071		
8/29/2016	<0.005	0.000	0.00049 (J)		
8/30/2016		0.002			
10/24/2016	<0.005		<0.005		
10/26/2016		0.0019 (J)			
1/25/2017	<0.005	0.0017	<0.005		
4/10/2017	<0.005	0.002	0.00056 (J)		
6/19/2017	<0.005	0.0026			
6/20/2017			0.00068 (J)		
10/24/2017	<0.005	0.0021	<0.005		
4/9/2018			<0.005		
4/10/2018	<0.005	0.0022			
10/16/2018	<0.005	0.0021	<0.005		
3/26/2019	<0.005				
3/27/2019		0.0011 (J)	<0.005		
8/20/2019	0.00036 (J)	0.002	0.00047 (J)		
10/7/2019	<0.005		<0.005		
10/8/2019		0.0012 (J)			
12/16/2019		3.00.2 (0)		0.00075 (J)	0.00066 (J)
1/14/2020				0.00073 (J) 0.00042 (J)	0.00038 (J)
2/11/2020				<0.005	0.00038 (J) 0.0004 (J)
3/9/2020			0.00040.71	<0.005	<0.005
4/6/2020	0.0000 ("	0.0005111	0.00042 (J)	0.005	.0.005
4/7/2020	0.0006 (J)	0.00054 (J)		<0.005	<0.005
5/27/2020				<0.005	<0.005
7/15/2020				<0.005	<0.005
8/19/2020	<0.005		<0.005		<0.005
8/20/2020				<0.005	
8/21/2020		<0.005			
9/22/2020				<0.005	<0.005
9/29/2020	<0.005				
9/30/2020			<0.005		<0.005
10/1/2020		<0.005		<0.005	

Constituent: Arsenic (mg/L) Analysis Run 9/26/2024 11:45 AM View: Appendix I

Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWA-19 (bg)	ARGWC-21	ARGWA-20 (bg)	ARGWC-23	ARGWC-22
2/9/2021	<0.005		<0.005		
2/10/2021		<0.005		<0.005	<0.005
9/7/2021	<0.005				
9/8/2021		<0.005	<0.005		
9/9/2021				<0.005	
9/10/2021					<0.005
2/1/2022	<0.005	<0.005	<0.005		
2/2/2022					<0.005
2/3/2022				0.0003 (J)	
9/1/2022	<0.005	0.00207 (J)			
9/2/2022			<0.005		
9/6/2022				<0.005	<0.005
1/31/2023	<0.005	<0.005		<0.005	0.00221 (J)
2/1/2023			<0.005		
8/8/2023	<0.005			<0.005	<0.005
8/9/2023		<0.005			
8/10/2023			<0.005		
1/23/2024	<0.005		<0.005		<0.005
1/24/2024		<0.005		<0.005	
8/20/2024	<0.005	<0.005	<0.005	<0.005	<0.005

Constituent: Barium (mg/L) Analysis Run 9/26/2024 11:45 AM View: Appendix I

Plant Arkwright Client: Southern Company Data: Arkwright No 2

·	ARGWA-19 (bg)	ARGWC-21	ARGWA-20 (bg)	ARGWC-23	ARGWC-22
5/5/2009	0.057				
5/14/2009		0.034			
5/15/2009			0.1		
12/5/2009	0.05	0.037	0.079		
6/1/2010	0.037		0.077		
6/2/2010		0.037			
11/11/2010	0.039	0.036	0.072		
5/17/2011	0.037	0.032	0.064		
11/8/2011	0.045	0.042	0.07		
5/16/2012	0.043	0.042	0.0741		
5/14/2013	0.0518	0.0431	0.074		
11/5/2013	0.067	0.043	0.074		
6/9/2014	0.062	0.045	0.08		
11/18/2014		0.052	0.078		
11/19/2014	0.054				
4/14/2015	0.046	0.047	0.073		
10/29/2015		0.053			
11/4/2015	0.046		0.077		
6/22/2016	0.039		0.078		
6/23/2016		0.13			
8/29/2016	0.04		0.07		
8/30/2016		0.11			
10/24/2016	0.0444		0.0738		
10/26/2016		0.122			
1/25/2017	0.045	0.12	0.084		
4/10/2017	0.039	0.11	0.073		
6/19/2017	0.041	0.13			
6/20/2017			0.078		
10/24/2017	0.041	0.12	0.081		
4/9/2018			0.081		
4/10/2018	0.044	0.12			
10/16/2018	0.047	0.12	0.08		
3/26/2019	0.056	J.,	0.00		
3/27/2019	5.000	0.091	0.082		
8/20/2019	0.052	0.091	0.082		
		U. I			
10/7/2019	0.049	0.000	0.076		
10/8/2019		0.096		0.000	0.070
12/16/2019				0.096	0.076
1/14/2020				0.075	0.071
2/11/2020				0.046	0.046
3/9/2020				0.14	0.039
4/6/2020			0.075		
4/7/2020	0.047	0.05		0.16	0.04
5/27/2020				0.18	0.054
7/15/2020				0.16	0.043
8/19/2020	0.044		0.085		0.046
8/20/2020				0.16	
8/21/2020		0.054			
9/22/2020				0.16	0.038
9/29/2020	0.04				
9/30/2020			0.08		0.033
10/1/2020		0.051		0.17	

Constituent: Barium (mg/L) Analysis Run 9/26/2024 11:45 AM View: Appendix I

Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWA-19 (bg)	ARGWC-21	ARGWA-20 (bg)	ARGWC-23	ARGWC-22
2/9/2021	0.032		0.078		
2/10/2021		0.044		0.13	0.032
9/7/2021	0.03				
9/8/2021		0.045	0.085		
9/9/2021				0.12	
9/10/2021					0.026
2/1/2022	0.031	0.045	0.079		
2/2/2022					0.025
2/3/2022				0.1	
9/1/2022	0.0303	0.0425			
9/2/2022			0.0806		
9/6/2022				0.0939	0.0226
1/31/2023	0.031	0.0414		0.0872	0.0237
2/1/2023			0.0919		
8/8/2023	0.0337			0.0936	0.0255
8/9/2023		0.0474			
8/10/2023			0.107		
1/23/2024	0.0348		0.0978		0.0227
1/24/2024		0.0427		0.0922	
8/20/2024	0.0293	0.0431	0.0863	0.105	0.0223

Constituent: Lead (mg/L) Analysis Run 9/26/2024 11:45 AM View: Appendix I Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWA-19 (bg)	ARGWC-21	ARGWA-20 (bg)	ARGWC-23	ARGWC-22
5/5/2009	<0.002				
5/14/2009		<0.002			
5/15/2009			<0.002		
12/5/2009	<0.002	<0.002	<0.002		
6/1/2010	<0.002		<0.002		
6/2/2010		<0.002			
11/11/2010	<0.002	<0.002	<0.002		
5/17/2011	<0.002	<0.002	<0.002		
11/8/2011	<0.002	<0.002	<0.002		
5/16/2012	<0.002	<0.002	<0.002		
5/14/2013	<0.002	<0.002	<0.002		
11/5/2013	<0.002	<0.002	<0.002		
6/9/2014	<0.002	<0.002	<0.002		
11/18/2014		<0.002	<0.002		
11/19/2014	<0.002				
4/14/2015	<0.002	<0.002	<0.002		
10/29/2015		<0.002			
11/4/2015	<0.002		<0.002		
6/22/2016	<0.002		<0.002		
6/23/2016		<0.002			
8/29/2016	<0.002		<0.002		
8/30/2016		<0.002			
10/24/2016	<0.002		<0.002		
10/26/2016		<0.002			
1/25/2017	<0.002	<0.002	0.00037 (J)		
4/10/2017	<0.002	<0.002	<0.002		
6/19/2017	<0.002	<0.002			
6/20/2017			<0.002		
10/24/2017	<0.002	<0.002	<0.002		
4/9/2018			<0.002		
4/10/2018	<0.002	<0.002			
10/16/2018	<0.002	<0.002	<0.002		
3/26/2019	<0.002				
3/27/2019		<0.002	<0.002		
8/20/2019	<0.002	<0.002	<0.002		
10/7/2019	0.00018 (J)		0.00014 (J)		
10/8/2019		0.00015 (J)			
12/16/2019				<0.002	<0.002
1/14/2020				0.00018 (J)	0.00022 (J)
2/11/2020				0.00026 (J)	<0.002
3/9/2020				<0.002	<0.002
4/6/2020			0.00033 (J)		
4/7/2020	0.00037 (J)	0.00026 (J)		<0.002	0.00014 (J)
5/27/2020				<0.002	<0.002
7/15/2020				<0.002	<0.002
8/19/2020	<0.002		0.00039 (J)		<0.002
8/20/2020				<0.002	
8/21/2020		<0.002			
9/22/2020				<0.002	<0.002
9/29/2020	<0.002				
9/30/2020			0.00022 (J)		<0.002
10/1/2020		<0.002		<0.002	

Constituent: Lead (mg/L) Analysis Run 9/26/2024 11:45 AM View: Appendix I Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWA-19 (bg)	ARGWC-21	ARGWA-20 (bg)	ARGWC-23	ARGWC-22
2/9/2021	<0.002		0.00033 (J)		
2/10/2021		<0.002		<0.002	<0.002
9/7/2021	<0.002				
9/8/2021		<0.002	0.00024 (J)		
9/9/2021				<0.002	
9/10/2021					<0.002
2/1/2022	<0.002	<0.002	<0.002		
2/2/2022					<0.002
2/3/2022				<0.002	
9/1/2022	<0.002	<0.002			
9/2/2022			<0.002		
9/6/2022				<0.002	<0.002
1/31/2023	<0.002	<0.002		<0.002	<0.002
2/1/2023			<0.002		
8/8/2023	<0.002			<0.002	<0.002
8/9/2023		<0.002			
8/10/2023			<0.002		
1/23/2024	<0.002		<0.002		<0.002
1/24/2024		<0.002		<0.002	
8/20/2024	<0.002	<0.002	<0.002	<0.002	<0.002

Constituent: Selenium (mg/L) Analysis Run 9/26/2024 11:45 AM View: Appendix I

Plant Arkwright Client: Southern Company Data: Arkwright No 2

					,		
_		ARGWA-19 (bg)	ARGWA-20 (bg)	ARGWC-22		 	_
	5/5/2009	0.0043					
	5/15/2009		0.007 (o)				
	12/5/2009	<0.005	<0.005				
	6/1/2010	<0.005	<0.005				
	11/11/2010	<0.005	<0.005				
	5/17/2011	<0.005	<0.005				
	11/8/2011	<0.005	<0.005				
	5/16/2012	<0.005	0.0024 (J)				
	5/14/2013	<0.005	<0.005				
	11/5/2013	<0.005	<0.005				
	6/9/2014	<0.005	<0.005				
		<0.005					
	11/18/2014	-0.005	<0.005				
	11/19/2014	<0.005	.0.005				
	4/14/2015	<0.005	<0.005				
	11/4/2015	<0.005	<0.005				
	6/22/2016	0.00025 (J)	0.0019				
	8/29/2016	0.0004 (J)	0.0019				
	10/24/2016	<0.005	0.0023 (J)				
	1/25/2017	<0.005	0.0015				
	4/10/2017	<0.005	0.0011 (J)				
	6/19/2017	0.00025 (J)					
	6/20/2017		0.0016				
	10/24/2017	<0.005	0.0012 (J)				
	4/9/2018		0.0012 (J)				
	4/10/2018	0.00074 (J)					
	10/16/2018	<0.005	0.0015				
	3/26/2019	<0.005					
	3/27/2019		0.0015				
	8/20/2019	<0.005	0.0015 (J)				
	10/7/2019	<0.005	0.0016 (J)				
	12/16/2019			<0.005			
	1/14/2020			<0.005			
	2/11/2020			<0.005			
	3/9/2020			<0.005			
	4/6/2020		0.0017 (J)				
	4/7/2020	<0.005		<0.005			
	5/27/2020			<0.005			
	7/15/2020			<0.005			
	8/19/2020	<0.005	0.0015 (J)	<0.005			
	9/22/2020		(-/	<0.005			
	9/29/2020	<0.005					
	9/30/2020	5.000	0.0016 (J)	<0.005			
	2/9/2021	<0.005	0.0016 (J)	5.000			
	2/10/2021	-0.000	3.0010(0)	<0.005			
	9/7/2021	<0.005		-0.000			
		-0.000	<0.005				
	9/8/2021		~U.UU5	0.002 (1)			
	9/10/2021	-0.005	0.0045 ())	0.002 (J)			
	2/1/2022	<0.005	0.0015 (J)	0.005			
	2/2/2022			<0.005			
	9/1/2022	<0.005					
	9/2/2022		<0.005				
	9/6/2022			<0.005			

Constituent: Selenium (mg/L) Analysis Run 9/26/2024 11:45 AM View: Appendix I

Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWA-19 (bg)	ARGWA-20 (bg)	ARGWC-22
1/31/2023	<0.005		<0.005
2/1/2023		<0.005	
8/8/2023	<0.005		<0.005
8/10/2023		<0.005	
1/23/2024	<0.005	<0.005	<0.005
8/20/2024	<0.005	<0.005	<0.005

Constituent: Silver (mg/L) Analysis Run 9/26/2024 11:45 AM View: Appendix I Plant Arkwright Client: Southern Company Data: Arkwright No 2

			Plant Arkwright	Client: Southern Company	Data: Arkwright No 2
	ARGWA-19 (bg)	ARGWC-21	ARGWA-20 (bg)		
5/5/2009	<0.001				
5/14/2009		<0.001			
5/15/2009			<0.001		
12/5/2009	0.00075	0.001	0.00043		
6/1/2010	<0.001		<0.001		
6/2/2010		<0.001			
11/11/2010	<0.001	<0.001	<0.001		
5/17/2011	<0.001	<0.001	<0.001		
11/8/2011	<0.001	<0.001	<0.001		
5/16/2012	<0.001	<0.001	<0.001		
5/14/2013	<0.001	<0.001	<0.001		
11/5/2013	<0.001	<0.001	<0.001		
6/9/2014	<0.001	<0.001	<0.001		
11/18/2014		<0.001	<0.001		
11/19/2014	<0.001				
4/14/2015	<0.001	<0.001	<0.001		
10/29/2015	-0.001	<0.001	-0.001		
11/4/2015	<0.001	-0.001	<0.001		
6/22/2016	<0.001		<0.001		
6/23/2016	10.001	<0.001	10.001		
10/24/2016	<0.001	10.001	<0.001		
10/26/2016	10.00 I	<0.001	10.001		
4/10/2017	<0.001	<0.001	<0.001		
10/24/2017	<0.001	<0.001	<0.001		
4/9/2018	~0.001	~0.001	<0.001		
4/10/2018	<0.001	<0.001	\0.001		
10/16/2018	<0.001	<0.001	<0.001		
3/26/2019	<0.001	~0.001	\0.001		
3/27/2019	~0.001	<0.001	<0.001		
10/7/2019	0.00056 (J)	~0.001	0.00031 (J)		
10/7/2019	0.00030 (3)	0.00043 (J)	0.00031 (3)		
4/6/2020		0.00043 (3)	<0.001		
4/7/2020	0.00018 (J)	<0.001	\0.001		
9/29/2020	<0.001	~0.001			
9/30/2020	<0.001		<0.001		
10/1/2020		<0.001	\0.001		
2/9/2021	<0.001	~0.001	<0.001		
2/10/2021	~0.001	<0.001	\0.001		
9/7/2021	<0.001	~0.001			
9/8/2021	~0.001	<0.001	<0.001		
2/1/2022	<0.001	<0.001	<0.001		
9/1/2022	<0.001	<0.001	\0.001		
9/2/2022	10.00 I	10.001	<0.001		
1/31/2023	<0.001	<0.001	\0.001		
2/1/2023	~0.001	~0.001	<0.001		
8/8/2023	<0.001		10.001		
8/9/2023	10.00 I	<0.001			
8/10/2023		-0.001	<0.001		
1/23/2024	<0.001		<0.001		
1/24/2024	-0.001	<0.001	0.001		
8/20/2024	<0.001	<0.001	<0.001		
5/20/2024	-0.001	-0.001	-0.001		

FIGURE E.

Appendix III Interwell Prediction Limits - Significant Results

Plant Arkwright Client: Southern Company Data: Arkwright No 2 Printed 9/26/2024, 11:48 AM

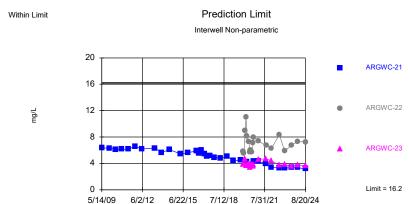

Constituent	Well	Upper Lim	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	Bg Mean	Std. Dev	<u>/. %NDs</u>	ND Adj	. Transform	n Alpha	Method
Boron (mg/L)	ARGWC-21	0.092	n/a	8/20/2024	1.13	Yes	42	n/a	n/a	26.19	n/a	n/a	0.001066	NP Inter (normality) 1 of 2
Boron (mg/L)	ARGWC-22	0.092	n/a	8/20/2024	3.09	Yes	42	n/a	n/a	26.19	n/a	n/a	0.001066	NP Inter (normality) 1 of 2
Boron (mg/L)	ARGWC-23	0.092	n/a	8/20/2024	0.434	Yes	42	n/a	n/a	26.19	n/a	n/a	0.001066	NP Inter (normality) 1 of 2
Calcium (mg/L)	ARGWC-21	13.81	n/a	8/20/2024	78	Yes	42	3.215	0.2873	0	None	sqrt(x)	0.002505	Param Inter 1 of 2
Calcium (mg/L)	ARGWC-22	13.81	n/a	8/20/2024	194	Yes	42	3.215	0.2873	0	None	sqrt(x)	0.002505	Param Inter 1 of 2
Calcium (mg/L)	ARGWC-23	13.81	n/a	8/20/2024	79.6	Yes	42	3.215	0.2873	0	None	sqrt(x)	0.002505	Param Inter 1 of 2
Fluoride (mg/L)	ARGWC-23	0.148	n/a	8/20/2024	0.365	Yes	46	n/a	n/a	41.3	n/a	n/a	0.0009064	NP Inter (normality) 1 of 2
pH (SU)	ARGWC-21	6.086	5.41	8/20/2024	6.2	Yes	45	5.748	0.1948	0	None	No	0.001253	Param Inter 1 of 2
pH (SU)	ARGWC-23	6.086	5.41	8/20/2024	6.34	Yes	45	5.748	0.1948	0	None	No	0.001253	Param Inter 1 of 2
Sulfate (mg/L)	ARGWC-21	21	n/a	8/20/2024	219	Yes	67	n/a	n/a	0	n/a	n/a	0.0004301	NP Inter (normality) 1 of 2
Sulfate (mg/L)	ARGWC-22	21	n/a	8/20/2024	674	Yes	67	n/a	n/a	0	n/a	n/a	0.0004301	NP Inter (normality) 1 of 2
Sulfate (mg/L)	ARGWC-23	21	n/a	8/20/2024	80.1	Yes	67	n/a	n/a	0	n/a	n/a	0.0004301	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	ARGWC-21	141.1	n/a	8/20/2024	520	Yes	40	104.7	20.82	0	None	No	0.002505	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	ARGWC-22	141.1	n/a	8/20/2024	1180	Yes	40	104.7	20.82	0	None	No	0.002505	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	ARGWC-23	141.1	n/a	8/20/2024	328	Yes	40	104.7	20.82	0	None	No	0.002505	Param Inter 1 of 2

Appendix III Interwell Prediction Limits - All Results

Plant Arkwright Client: Southern Company Data: Arkwright No 2 Printed 9/26/2024, 11:48 AM

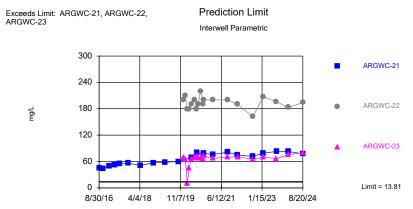
Constituent	Well	Upper Lim	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	<u> Bg Mean</u>	Std. Dev	<u>/. %NDs</u>	ND Adj	. Transforr	n Alpha	Method
Boron (mg/L)	ARGWC-21	0.092	n/a	8/20/2024	1.13	Yes	42	n/a	n/a	26.19	n/a	n/a	0.001066	NP Inter (normality) 1 of 2
Boron (mg/L)	ARGWC-22	0.092	n/a	8/20/2024	3.09	Yes	42	n/a	n/a	26.19	n/a	n/a	0.001066	NP Inter (normality) 1 of 2
Boron (mg/L)	ARGWC-23	0.092	n/a	8/20/2024	0.434	Yes	42	n/a	n/a	26.19	n/a	n/a	0.001066	NP Inter (normality) 1 of 2
Calcium (mg/L)	ARGWC-21	13.81	n/a	8/20/2024	78	Yes	42	3.215	0.2873	0	None	sqrt(x)	0.002505	Param Inter 1 of 2
Calcium (mg/L)	ARGWC-22	13.81	n/a	8/20/2024	194	Yes	42	3.215	0.2873	0	None	sqrt(x)	0.002505	Param Inter 1 of 2
Calcium (mg/L)	ARGWC-23	13.81	n/a	8/20/2024	79.6	Yes	42	3.215	0.2873	0	None	sqrt(x)	0.002505	Param Inter 1 of 2
Chloride (mg/L)	ARGWC-21	16.2	n/a	8/20/2024	3.18	No	68	n/a	n/a	0	n/a	n/a	0.0004166	NP Inter (normality) 1 of 2
Chloride (mg/L)	ARGWC-22	16.2	n/a	8/20/2024	7.25	No	68	n/a	n/a	0	n/a	n/a	0.0004166	NP Inter (normality) 1 of 2
Chloride (mg/L)	ARGWC-23	16.2	n/a	8/20/2024	3.68	No	68	n/a	n/a	0	n/a	n/a	0.0004166	NP Inter (normality) 1 of 2
Fluoride (mg/L)	ARGWC-21	0.148	n/a	8/20/2024	0.124	No	46	n/a	n/a	41.3	n/a	n/a	0.0009064	NP Inter (normality) 1 of 2
Fluoride (mg/L)	ARGWC-22	0.148	n/a	8/20/2024	0.066J	No	46	n/a	n/a	41.3	n/a	n/a	0.0009064	NP Inter (normality) 1 of 2
Fluoride (mg/L)	ARGWC-23	0.148	n/a	8/20/2024	0.365	Yes	46	n/a	n/a	41.3	n/a	n/a	0.0009064	NP Inter (normality) 1 of 2
pH (SU)	ARGWC-21	6.086	5.41	8/20/2024	6.2	Yes	45	5.748	0.1948	0	None	No	0.001253	Param Inter 1 of 2
pH (SU)	ARGWC-22	6.086	5.41	8/20/2024	5.76	No	45	5.748	0.1948	0	None	No	0.001253	Param Inter 1 of 2
pH (SU)	ARGWC-23	6.086	5.41	8/20/2024	6.34	Yes	45	5.748	0.1948	0	None	No	0.001253	Param Inter 1 of 2
Sulfate (mg/L)	ARGWC-21	21	n/a	8/20/2024	219	Yes	67	n/a	n/a	0	n/a	n/a	0.0004301	NP Inter (normality) 1 of 2
Sulfate (mg/L)	ARGWC-22	21	n/a	8/20/2024	674	Yes	67	n/a	n/a	0	n/a	n/a	0.0004301	NP Inter (normality) 1 of 2
Sulfate (mg/L)	ARGWC-23	21	n/a	8/20/2024	80.1	Yes	67	n/a	n/a	0	n/a	n/a	0.0004301	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	ARGWC-21	141.1	n/a	8/20/2024	520	Yes	40	104.7	20.82	0	None	No	0.002505	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	ARGWC-22	141.1	n/a	8/20/2024	1180	Yes	40	104.7	20.82	0	None	No	0.002505	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	ARGWC-23	141.1	n/a	8/20/2024	328	Yes	40	104.7	20.82	0	None	No	0.002505	Param Inter 1 of 2

4/4/18


8/30/16

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to he non-normal at the 0.01 alpha level. Limit is highest of 42 background values. 26.19% NDs. Annual perconstituent alpha = 0.006378. Individual comparison alpha = 0.001066 (1 of 2). Comparing 3 points to limit.

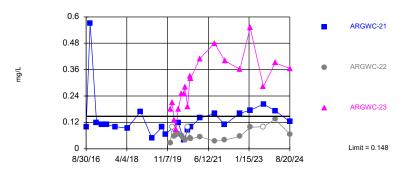
11/7/19 6/12/21 1/15/23


Constituent: Boron Analysis Run 9/26/2024 11:46 AM View: Appendix III - Interwell Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 68 background values. Annual per-constituent alpha = 0.002497. Individual comparison alpha = 0.004166 (1 of 2). Comparing 3 points to limit.

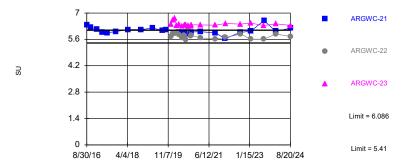
Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG



Background Data Summary (based on square root transformation): Mean=3.215, Std. Dev.=0.2873, n=42. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9292, critical = 0.922. Kappa = 1.744 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.002505. Comparing 3 points to limit.

Constituent: Calcium Analysis Run 9/26/2024 11:46 AM View: Appendix III - Interwell Plant Arkwright Client: Southern Company Data: Arkwright No 2

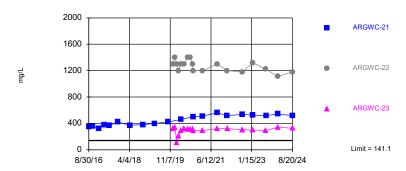
Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Exceeds Limit: ARGWC-23 Prediction Limit
Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 46 background values. 41.3% NDs. Annual perconstituent alpha = 0.005426. Individual comparison alpha = 0.0009064 (1 of 2). Comparing 3 points to limit.

Exceeds Limits: ARGWC-21, ARGWC-23

Prediction Limit
Interwell Parametric


Background Data Summary: Mean=5.748, Std. Dev.=0.1948, n=45. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9722, critical = 0.926. Kappa = 1.736 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.001253. Comparing 3 points to limit.

Constituent: pH Analysis Run 9/26/2024 11:46 AM View: Appendix III - Interwell
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Exceeds Limit: ARGWC-21, ARGWC-22, ARGWC-23

Prediction Limit
Interwell Parametric

Background Data Summary: Mean=104.7, Std. Dev.=20.82, n=40. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9558, critical = 0.919. Kappa = 1.75 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.002505. Comparing 3 points to limit.

Constituent: Total Dissolved Solids Analysis Run 9/26/2024 11:47 AM View: Appendix III - Interwell Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 67 background values. Annual per-constituent alpha = 0.002578. Individual comparison alpha = 0.0004301 (1 of 2). Comparing 3 points to limit.

Constituent: Sulfate Analysis Run 9/26/2024 11:47 AM View: Appendix III - Interwell Plant Arkwright Client: Southern Company Data: Arkwright No 2

Constituent: Boron (mg/L) Analysis Run 9/26/2024 11:48 AM View: Appendix III - Interwell Plant Arkwright Client: Southern Company Data: Arkwright No 2

					,
	ARGWA-19 (bg)	ARGWA-20 (bg)	ARGWC-21	ARGWC-22	ARGWC-23
8/29/2016	0.024 (J)	<0.08			
8/30/2016			0.57		
10/24/2016	0.0339 (J)	0.0194 (J)			
10/26/2016			0.502		
1/25/2017	0.048 (J)	0.026 (J)	0.56		
4/10/2017	0.022 (J)	<0.08	0.54		
6/19/2017	<0.08		0.54		
6/20/2017		0.032 (J)			
10/24/2017	0.021 (J)	0.054	0.57		
4/9/2018		0.06			
4/10/2018	0.022 (J)		0.61		
10/16/2018	<0.08	0.036 (J)	0.59		
3/26/2019	<0.08				
3/27/2019		0.046 (J)	0.65		
10/7/2019	<0.08	<0.08			
10/8/2019			0.58		
12/16/2019			3.00	2.7	0.42
1/14/2020				2.7	0.43
2/11/2020				3	0.079 (J)
3/9/2020		0.062 (!)		2.7	0.25
4/6/2020	0.070 / "	0.063 (J)	0.74	0.0	0.44
4/7/2020	0.072 (J)		0.74	2.6	0.44
5/27/2020				2.5	0.45
6/24/2020				2.5	
6/25/2020	0.091	0.081	0.82		0.42
7/15/2020				2.6	0.49
8/19/2020				1.3	
8/20/2020					0.44
9/22/2020				2.8	0.5
9/29/2020	<0.08				
9/30/2020		0.083		2.9	
10/1/2020			0.9		0.49
2/9/2021	<0.08	0.059 (J)			
2/10/2021		` '	0.81	2.5	0.42
9/7/2021	<0.08		-	-	-
9/8/2021		0.064 (J)	0.79		
9/9/2021		0.007 (0)	0.70		0.41
9/9/2021				2.7	0.41
	0.002	-0.09	0.05	2.1	
2/1/2022	0.092	<0.08	0.85	0.4	
2/2/2022				2.4	
2/3/2022					0.49
9/1/2022	0.0238		0.921		
9/2/2022		0.0597			
9/6/2022				2.78	0.458
1/31/2023	0.0234		1.06	2.77	0.459
2/1/2023		0.0816			
8/8/2023	0.0199			3.06	0.379
8/9/2023			1.12		
8/10/2023		0.0714			
1/23/2024	0.0214	0.0685		4.52	
1/24/2024			1.13		0.456
8/20/2024	0.0236	0.0537	1.13	3.09	0.434
-					

Constituent: Calcium (mg/L) Analysis Run 9/26/2024 11:48 AM View: Appendix III - Interwell

Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWA-19 (bg)	ARGWA-20 (bg)	ARGWC-21	ARGWC-22	ARGWC-23
8/29/2016	11	8.3			
8/30/2016			46		
10/24/2016	11.5	7.66			
10/26/2016			44.3		
1/25/2017	13	9.4	50		
4/10/2017	11	8.6	52		
6/19/2017	12		55		
6/20/2017		9.4			
10/24/2017	12	9.9	56		
4/9/2018		9.9			
4/10/2018	12		51		
10/16/2018	14	9.8	57		
3/26/2019	15				
3/27/2019		9.2	58		
10/7/2019	14	8.9			
10/8/2019			60		
12/16/2019				200	69
1/14/2020				210	65
2/11/2020				180	10
3/9/2020				180	46
4/6/2020		9.5			
4/7/2020	14		69	190	65
5/27/2020				200	69
6/24/2020				180	
6/25/2020	14	9.6	80		72
7/15/2020				190	68
8/19/2020				220	
8/20/2020					69
9/22/2020				190	66
9/29/2020	12				
9/30/2020		9.9		200	
10/1/2020			79		73
2/9/2021	9.7	9.2			
2/10/2021			76	200	67
9/7/2021	9.2				
9/8/2021		11	81		
9/9/2021					70
9/10/2021				200	
2/1/2022	8	8.3	75		
2/2/2022				190	
2/3/2022					71
9/1/2022	8.52		71.5		
9/2/2022		9.48			
9/6/2022				162	65.2
1/31/2023	8.5		79.1	207	69.9
2/1/2023		10.8			
8/8/2023	8.51			196	66.6
8/9/2023			82.9		
8/10/2023		11			
1/23/2024	9.34	11.4		183	
1/24/2024			82.6		75.6
8/20/2024	8.29	10.6	78	194	79.6

Constituent: Chloride (mg/L) Analysis Run 9/26/2024 11:48 AM View: Appendix III - Interwell Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWA-19 (bg)	ARGWC-21	ARGWA-20 (bg)	ARGWC-23	ARGWC-22
5/5/2009	11.1				
5/14/2009		6.38			
5/15/2009			6.86		
12/5/2009	9.46	6.28	5.06		
6/1/2010	6.32		5.47		
6/2/2010		6.1			
11/11/2010	7.16	6.1461	5.26		
5/17/2011	6.84	6.17	4.8		
11/8/2011	9.13	6.6	5.62		
5/16/2012	10.8	6.18	5.1		
5/14/2013	16.2	6.32	5.25		
11/5/2013	14.8	5.65	5.19		
6/9/2014	13.6	6.08	5.55		
4/14/2015	10.4	5.43	5.39		
10/29/2015		5.62			
11/4/2015	9.19		5.38		
6/22/2016	8.4		5.7		
6/23/2016		5.9			
8/29/2016	8.4		5.3		
8/30/2016		5.5			
10/24/2016	9.6		5.4		
10/26/2016		6			
1/25/2017	8.7	5.4	5.1		
4/10/2017	8	5.1	4.9		
6/19/2017	7.6	5.2			
6/20/2017			5		
10/24/2017	7.2	4.9	4.6		
4/9/2018			4.7		
4/10/2018	7.2	4.8			
10/16/2018	10	5.1	5.3		
3/26/2019	12				
3/27/2019		4.4	4.6		
10/7/2019	11		5.2		
10/8/2019		4.5			
12/16/2019				3.9	5.8
1/14/2020				4	5.5
2/11/2020				4.7	9
3/9/2020				3.7	11
4/6/2020			5.2		
4/7/2020	11	4.2		3.8	8.1
5/27/2020				4	7.3
6/24/2020					5.7
6/25/2020	11	3.7	5.1	3.4	
7/15/2020				3.9	6
8/19/2020					5.7
8/20/2020				3.9	
9/22/2020				3.6	7.1
9/29/2020	10				
9/30/2020			5.6		8
10/1/2020		4.3		3.8	
2/9/2021	8.6		6		
2/10/2021		4.3		4.6	7.4

Constituent: Chloride (mg/L) Analysis Run 9/26/2024 11:48 AM View: Appendix III - Interwell Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWA-19 (bg)	ARGWC-21	ARGWA-20 (bg)	ARGWC-23	ARGWC-22
9/7/2021	7.4				
9/8/2021		4	5.9		
9/9/2021				4.7	
9/10/2021					6.7
2/1/2022	6.8	3.4	5.7		
2/2/2022					6.3
2/3/2022				4.4	
9/1/2022	6.27	3.34			
9/2/2022			5.44		
9/6/2022				3.73	8.34
1/31/2023	6.04	3.3		3.84	5.88
2/1/2023			6		
8/8/2023	6.37			3.6	6.79
8/9/2023		3.35			
8/10/2023			6.5		
1/23/2024	5.63		6.68		7.31
1/24/2024		3.35		3.74	
8/20/2024	4.89	3.18	7.63	3.68	7.25

Constituent: Fluoride (mg/L) Analysis Run 9/26/2024 11:48 AM View: Appendix III - Interwell

Plant Arkwright Client: Southern Company Data: Arkwright No 2

_		ARGWA-19 (bg)	ARGWA-20 (bg)	ARGWC-21	ARGWC-23	ARGWC-22
	8/29/2016	<0.1	<0.1			
	8/30/2016			0.099 (J)		
	10/24/2016	0.07 (J)	0.04 (J)			
	10/26/2016			0.57		
	1/25/2017	<0.1	<0.1	0.12 (J)		
	4/10/2017	<0.1	<0.1	0.11 (J)		
	6/19/2017	<0.1		0.11 (J)		
	6/20/2017		<0.1	0.11(0)		
	10/24/2017	<0.1	<0.1	0.1 (J)		
	4/9/2018	<0.1		0.1 (3)		
		-0.4	<0.1	0.004 (1)		
	4/10/2018	<0.1	-0.1	0.094 (J)		
	10/16/2018	0.083 (J)	<0.1	0.17 (J)		
	3/26/2019	0.041 (J)				
	3/27/2019		<0.1	0.05 (J)		
	8/20/2019	0.045 (J)	0.042 (J)	0.098 (J)		
	10/7/2019	0.049 (J)	0.036 (J)			
	10/8/2019			0.065 (J)		
	12/16/2019				0.18 (J)	0.026 (J)
	1/14/2020				0.21	<0.1
	2/11/2020				0.13	0.056
	3/9/2020				0.089 (J)	0.064 (J)
	4/6/2020		0.059 (J)			
	4/7/2020	0.14		0.12	0.18	0.068 (J)
	5/27/2020				0.25	0.06 (J)
	6/24/2020					0.048 (J)
	6/25/2020	0.03 (J)	<0.1	0.041 (J)	0.25	
	7/15/2020	• •		. /	0.28	0.04 (J)
	8/19/2020	<0.1	<0.1			<0.1
	8/20/2020	-	-		0.19	-
	8/21/2020			0.084 (J)	5.10	
	9/22/2020			0.00+ (0)	0.33	0 049 (1)
		0.051 / 1			0.33	0.049 (J)
	9/29/2020	0.051 (J)	0.022 ()			0.045 (1)
	9/30/2020		0.032 (J)	0.000 (1)	0.00	0.045 (J)
	10/1/2020	0.050 (1)	0.040 (1)	0.098 (J)	0.32	
	2/9/2021	0.059 (J)	0.048 (J)			
	2/10/2021			0.14	0.41	0.055 (J)
	9/7/2021	0.1				
	9/8/2021		0.067 (J)	0.16		
	9/9/2021				0.48	
	9/10/2021					0.035 (J)
	2/1/2022	0.076 (J)	0.028 (J)	0.11		
	2/2/2022					0.04 (J)
	2/3/2022				0.4	
	9/1/2022	0.148		0.161		
	9/2/2022		0.122			
	9/6/2022				0.362	0.056 (J)
	1/31/2023	0.108 (J)		0.175 (J)	0.551 (J)	0.0979 (J)
	2/1/2023	` '	0.121	` '	ζ-/	- \-/
	8/8/2023	<0.1			0.283	<0.1
	8/9/2023	-		0.203		-
	8/10/2023		<0.1	5.255		
	1/23/2024	0.121	0.113			0.134
	112012024	V. 12 I	0.110			0.104

Constituent: Fluoride (mg/L) Analysis Run 9/26/2024 11:48 AM View: Appendix III - Interwell Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWA-19 (bg)	ARGWA-20 (bg)	ARGWC-21	ARGWC-23	ARGWC-22
1/24/2024			0.173	0.391	
8/20/2024	0.0679 (J)	0.0488 (J)	0.124	0.365	0.066 (J)

Constituent: pH (SU) Analysis Run 9/26/2024 11:48 AM View: Appendix III - Interwell Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWA-20 (bg)	ARGWC-21	ARGWA-19 (bg)	ARGWC-23	ARGWC-22
8/29/2016	5.64		6.75 (o)		
8/30/2016		6.38			
10/24/2016	5.6		5.81		
10/26/2016		6.23			
1/25/2017	5.65	6.15	5.91		
4/10/2017	5.42	5.99	5.74		
6/19/2017	<u>-</u>	5.95	5.54		
6/20/2017	5.59				
10/24/2017	5.58	6.02	5.82		
4/9/2018	5.78	0.02	J.UZ		
4/10/2018	5.76	6.12	5.92		
	F 00				
10/16/2018	5.69	6.12	5.94		
3/26/2019			5.85		
3/27/2019	5.96	6.2			
8/20/2019	5.57	6.08	5.9		
10/7/2019	5.65		5.89		
10/8/2019		6.11			
12/16/2019				6.41	5.74
1/14/2020				6.62	5.91
2/11/2020				6.71	5.9
3/9/2020				6.32	5.97
4/6/2020	5.53				
4/7/2020		5.96	5.72	6.4	5.84
5/27/2020				6.3	5.69
6/24/2020					5.82
6/25/2020	5.61	5.98	5.8	6.37	
7/15/2020				6.36	5.58
8/19/2020	6.16		6.25		6.21
8/20/2020				6.33	
8/21/2020		5.89			
9/22/2020				6.29	5.77
9/29/2020			5.83		
9/30/2020	5.65		3.00		5.81
10/1/2020	0.00	5.99		6.38	0.01
2/9/2021	5.66	J.33	5.97	0.50	
	5.00	6.01	5.87	6 27	E 60
2/10/2021		6.01	5.05	6.37	5.68
9/7/2021	5.50	5.04	5.85		
9/8/2021	5.59	5.94			
9/9/2021				6.35	
9/10/2021					5.62
2/1/2022	5.14	5.65	5.52		
2/2/2022					5.7
2/3/2022				6.44	
9/1/2022		5.97	5.88		
9/2/2022	5.68				
9/6/2022				6.41	5.88
1/31/2023		6.04	5.86	6.46	5.61
2/1/2023	5.7				
8/8/2023			5.81	6.33	5.61
8/9/2023		6.6			
8/10/2023	5.55				
1/23/2024	5.77		5.93		5.88

Constituent: pH (SU) Analysis Run 9/26/2024 11:48 AM View: Appendix III - Interwell Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWA-20 (bg)	ARGWC-21	ARGWA-19 (bg)	ARGWC-23	ARGWC-22
1/24/2024		6.03		6.43	
8/20/2024	5.83	6.2	5.93	6.34	5.76

Constituent: Sulfate (mg/L) Analysis Run 9/26/2024 11:48 AM View: Appendix III - Interwell Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWA-19 (bg)	ARGWC-21	ARGWA-20 (bg)	ARGWC-23	ARGWC-22
5/5/2009	15.9				
5/14/2009		129			
5/15/2009			41.3 (o)		
12/5/2009	15.1	136	16.2		
6/1/2010	12.7		18.2		
6/2/2010		138			
11/11/2010	11.5	131.49	16.5		
5/17/2011	11.2	132	16		
11/8/2011	11.3	138	21		
5/16/2012	9.38	132	17.7		
5/14/2013	8.74	129	19.5		
11/5/2013	9.12	122	18.3		
6/9/2014	8.61	131	18.6		
4/14/2015	8.45	128	18.8		
10/29/2015		134			
11/4/2015	9.01		17.4		
6/22/2016	9.3		18		
6/23/2016	5.0	150	10		
	9.7	150	10		
8/29/2016	8.7	140	18		
8/30/2016	0.2	140	10		
10/24/2016	9.3	160	18		
10/26/2016	0.0	160	10		
1/25/2017	8.8	150	19		
4/10/2017	7.8	140	16		
6/19/2017	8.6	160	40		
6/20/2017	0.1	100	18		
10/24/2017	9.1	160	19		
4/9/2018			18		
4/10/2018	7.9	170			
10/16/2018	8.2	170	18		
3/26/2019	6.1				
3/27/2019		170	15		
10/7/2019	7.4		17		
10/8/2019		170			
12/16/2019				66	770
1/14/2020				68	930
2/11/2020				18	660
3/9/2020				49	630
4/6/2020			15		
4/7/2020	8.4	180		58	710
5/27/2020				65	720
6/24/2020					810
6/25/2020	9.8	210	16	77	
7/15/2020				78	820
8/19/2020					1000
8/20/2020				69	
9/22/2020				68	720
9/29/2020	8.4				
9/30/2020	.		15		650
10/1/2020		210		64	
2/9/2021	10		16	٠.	
2/10/2021	.0	220	10	67	750
21 1012021		220		37	750

Constituent: Sulfate (mg/L) Analysis Run 9/26/2024 11:48 AM View: Appendix III - Interwell Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWA-19 (bg)	ARGWC-21	ARGWA-20 (bg)	ARGWC-23	ARGWC-22
9/7/2021	9.9				
9/8/2021		230	16		
9/9/2021				72	
9/10/2021					760
2/1/2022	10	230	18		
2/2/2022					720
2/3/2022				64	
9/1/2022	8.38	221			
9/2/2022			18.5		
9/6/2022				65.3	667
1/31/2023	7.55	260		55.5	751
2/1/2023			19.3		
8/8/2023	8.29			69.8	719
8/9/2023		214			
8/10/2023			18.5		
1/23/2024	6.98		17.1		567
1/24/2024		219		78.4	
8/20/2024	7.07	219	16.4	80.1	674

Constituent: Total Dissolved Solids (mg/L) Analysis Run 9/26/2024 11:48 AM View: Appendix III - Interwell Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWA-19 (bg)	ARGWA-20 (bg)	ARGWC-21	ARGWC-23	ARGWC-22
8/29/2016	130	100			
8/30/2016			350		
10/24/2016	108	91			
10/26/2016			357		
1/25/2017	120	90	320		
4/10/2017	128 (D)	110	380		
6/19/2017	86		370		
6/20/2017		72			
10/24/2017	120	110	420		
4/9/2018		100			
4/10/2018	120		370		
10/16/2018	140	110	380		
3/26/2019	170				
3/27/2019		100	400		
10/7/2019	150	87			
10/8/2019			420		
12/16/2019				320	1300
1/14/2020				340	1400
2/11/2020				110	1300
3/9/2020				210	1200
4/6/2020		90			
4/7/2020	120		460	290	1300
5/27/2020				320	1300
7/15/2020				310	1400
8/19/2020					1400
8/20/2020				310	
9/22/2020				310	1300
9/29/2020	110				
9/30/2020		82			1200
10/1/2020			500	290	
2/9/2021	110	100			
2/10/2021			510	290	1200
9/7/2021	110				
9/8/2021		120	560		
9/9/2021				320	
9/10/2021					1300
2/1/2022	91	100	520		
2/2/2022					1200
2/3/2022				320	
9/1/2022	81		537		
9/2/2022		101			
9/6/2022				305	1180
1/31/2023	95		526	299	1320
2/1/2023		90			
8/8/2023	62			294	1220
8/9/2023			520	-	
8/10/2023		105	-		
1/23/2024	82	92			1110
1/24/2024	-	•	541	342	
8/20/2024	91	113	520	328	1180

FIGURE F.

Appendix III Trend Test - Significant Results

	Plant Arkwright	Client: Southern	Company Da	ata: Arkwright No 2	Printed 9/26	/2024, 11	:53 AM			
Constituent	Well		Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	<u>Alpha</u>	Method
Boron (mg/L)	ARGWC-2	1	0.07619	175	87	Yes	21	0	0.01	NP
Calcium (mg/L)	ARGWA-2	0 (bg)	0.2776	95	87	Yes	21	0	0.01	NP
Calcium (mg/L)	ARGWC-2	1	4.91	160	87	Yes	21	0	0.01	NP
Fluoride (mg/L)	ARGWC-2	3	0.08957	105	74	Yes	19	0	0.01	NP
Sulfate (mg/L)	ARGWA-1	9 (bg)	-0.2378	-276	-176	Yes	34	0	0.01	NP
Sulfate (mg/L)	ARGWC-2	1	8.192	422	176	Yes	34	0	0.01	NP
Total Dissolved Solids (mg/L)	ARGWA-1	9 (bg)	-5.289	-84	-81	Yes	20	0	0.01	NP
Total Dissolved Solids (mg/L)	ARGWC-2	1	27.93	146	81	Yes	20	0	0.01	NP

Appendix III Trend Test - All Results

	Plant Arkwright	Client: Southern	Company	Data: Ar	kwright No 2	Printed 9/2	26/2024, 11	1:53 AM			
Constituent	Well		Slope		Calc.	Critical	Sig.	<u>N</u>	%NDs	<u>Alpha</u>	Method
Boron (mg/L)	ARGWA-19	9 (bg)	0		-2	-87	No	21	33.33	0.01	NP
Boron (mg/L)	ARGWA-20	0 (bg)	0.003024		58	87	No	21	19.05	0.01	NP
Boron (mg/L)	ARGWC-2	1	0.07619		175	87	Yes	21	0	0.01	NP
Boron (mg/L)	ARGWC-2	2	0.07412		41	74	No	19	0	0.01	NP
Boron (mg/L)	ARGWC-2	3	0.007449		32	74	No	19	0	0.01	NP
Calcium (mg/L)	ARGWA-19	9 (bg)	-0.4657		-75	-87	No	21	0	0.01	NP
Calcium (mg/L)	ARGWA-20	0 (bg)	0.2776		95	87	Yes	21	0	0.01	NP
Calcium (mg/L)	ARGWC-2	1	4.91		160	87	Yes	21	0	0.01	NP
Calcium (mg/L)	ARGWC-22	2	0		-2	-74	No	19	0	0.01	NP
Calcium (mg/L)	ARGWC-2	3	2.173		69	74	No	19	0	0.01	NP
Fluoride (mg/L)	ARGWA-19	9 (bg)	0		21	98	No	23	34.78	0.01	NP
Fluoride (mg/L)	ARGWA-20	0 (bg)	0		-2	-98	No	23	47.83	0.01	NP
Fluoride (mg/L)	ARGWC-2	3	0.08957		105	74	Yes	19	0	0.01	NP
pH (SU)	ARGWA-19	9 (bg)	0.008207		32	92	No	22	0	0.01	NP
pH (SU)	ARGWA-20	0 (bg)	0.0127		41	98	No	23	0	0.01	NP
pH (SU)	ARGWC-2	1	-0.01714		-50	-98	No	23	0	0.01	NP
pH (SU)	ARGWC-2	3	-0.005069		-8	-74	No	19	0	0.01	NP
Sulfate (mg/L)	ARGWA-19	9 (bg)	-0.2378		-276	-176	Yes	34	0	0.01	NP
Sulfate (mg/L)	ARGWA-20	0 (bg)	-0.03643		-70	-167	No	33	0	0.01	NP
Sulfate (mg/L)	ARGWC-2	1	8.192		422	176	Yes	34	0	0.01	NP
Sulfate (mg/L)	ARGWC-22	2	-17.79		-32	-74	No	19	0	0.01	NP
Sulfate (mg/L)	ARGWC-2	3	2.748		49	74	No	19	0	0.01	NP
Total Dissolved Solids (mg/L)	ARGWA-19	9 (bg)	-5.289		-84	-81	Yes	20	0	0.01	NP
Total Dissolved Solids (mg/L)	ARGWA-20) (bg)	0.2883		24	81	No	20	0	0.01	NP
Total Dissolved Solids (mg/L)	ARGWC-2	1	27.93		146	81	Yes	20	0	0.01	NP
Total Dissolved Solids (mg/L)	ARGWC-22	2	-27.81		-60	-68	No	18	0	0.01	NP
Total Dissolved Solids (mg/L)	ARGWC-2	3	1.889		23	68	No	18	0	0.01	NP

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Sen's Slope Estimator

ARGWA-19 (bg)

0.08

0.08

0.06

0.006

0.006

0.007

0.008

0.008

0.009

0.009

0.009

0.009

0.009

0.009

0.009

0.009

0.009

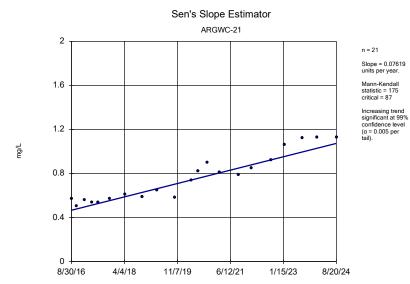
0.009

0.009

Constituent: Boron Analysis Run 9/26/2024 11:51 AM View: Appendix III - Trend Tests
Plant Arkwright Client: Southern Company Data: Arkwright No 2

6/11/21

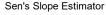
11/7/19

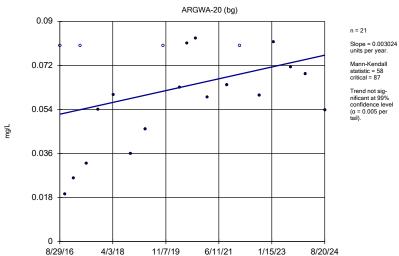

8/20/24

1/15/23

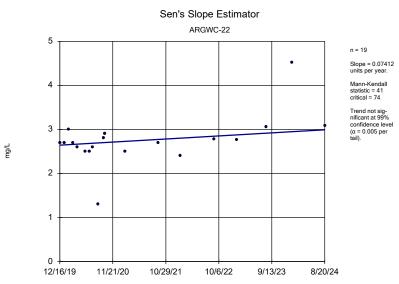
Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

8/29/16

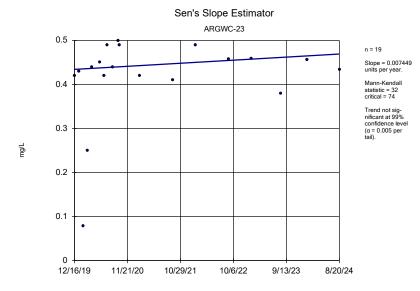

4/3/18



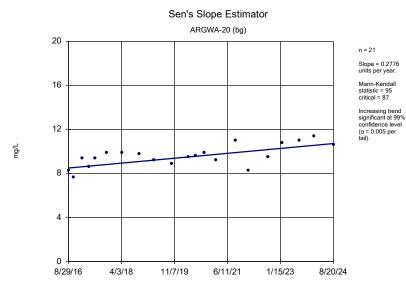
Constituent: Boron Analysis Run 9/26/2024 11:51 AM View: Appendix III - Trend Tests


Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

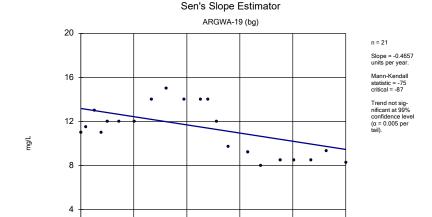


Constituent: Boron Analysis Run 9/26/2024 11:51 AM View: Appendix III - Trend Tests
Plant Arkwright Client: Southern Company Data: Arkwright No 2



Constituent: Boron Analysis Run 9/26/2024 11:51 AM View: Appendix III - Trend Tests

Plant Arkwright Client: Southern Company Data: Arkwright No 2



Constituent: Boron Analysis Run 9/26/2024 11:51 AM View: Appendix III - Trend Tests
Plant Arkwright Client: Southern Company Data: Arkwright No 2

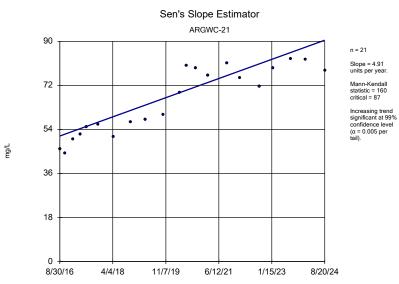
Constituent: Calcium Analysis Run 9/26/2024 11:51 AM View: Appendix III - Trend Tests

Plant Arkwright Client: Southern Company Data: Arkwright No 2

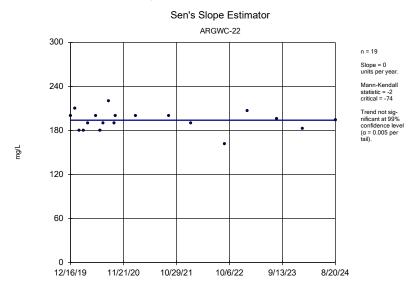
Constituent: Calcium Analysis Run 9/26/2024 11:51 AM View: Appendix III - Trend Tests
Plant Arkwright Client: Southern Company Data: Arkwright No 2

6/11/21

11/7/19

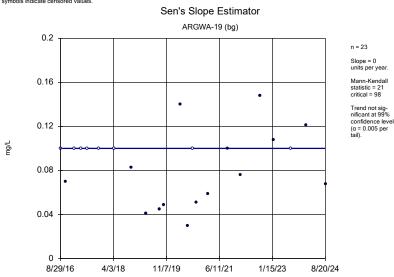

1/15/23

8/20/24


Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

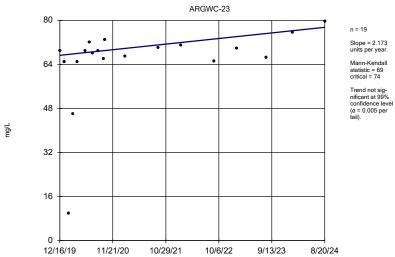
8/29/16

4/3/18

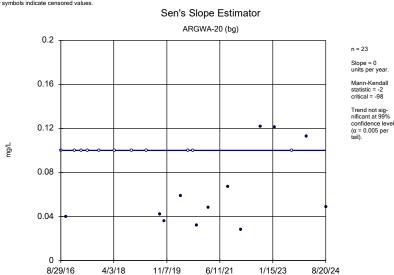


Constituent: Calcium Analysis Run 9/26/2024 11:51 AM View: Appendix III - Trend Tests
Plant Arkwright Client: Southern Company Data: Arkwright No 2

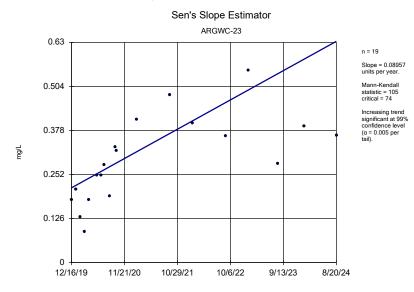
Constituent: Calcium Analysis Run 9/26/2024 11:51 AM View: Appendix III - Trend Tests
Plant Arkwright Client: Southern Company Data: Arkwright No 2



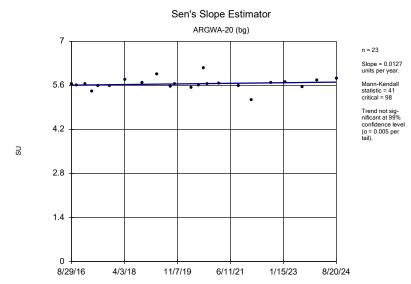
Constituent: Fluoride Analysis Run 9/26/2024 11:51 AM View: Appendix III - Trend Tests


Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sen's Slope Estimator

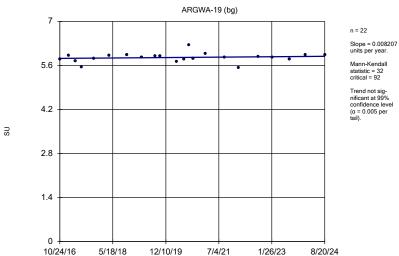

Constituent: Calcium Analysis Run 9/26/2024 11:51 AM View: Appendix III - Trend Tests
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



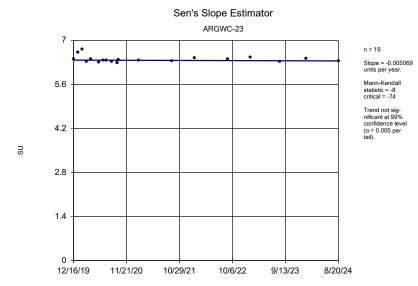
Constituent: Fluoride Analysis Run 9/26/2024 11:51 AM View: Appendix III - Trend Tests

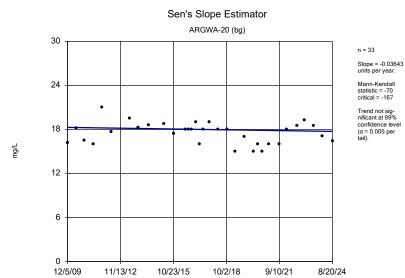
Plant Arkwright Client: Southern Company Data: Arkwright No 2



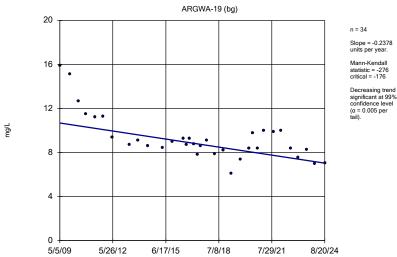
Constituent: Fluoride Analysis Run 9/26/2024 11:51 AM View: Appendix III - Trend Tests
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Constituent: pH Analysis Run 9/26/2024 11:51 AM View: Appendix III - Trend Tests
Plant Arkwright Client: Southern Company Data: Arkwright No 2

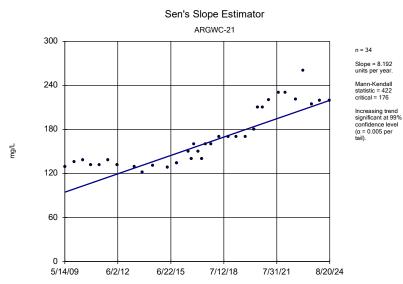

Sen's Slope Estimator


Constituent: pH Analysis Run 9/26/2024 11:51 AM View: Appendix III - Trend Tests
Plant Arkwright Client: Southern Company Data: Arkwright No 2

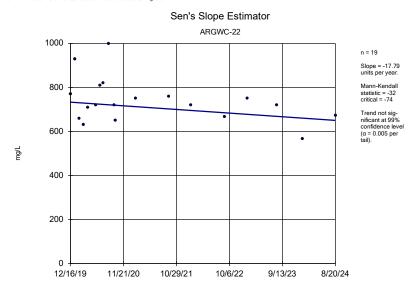
Constituent: pH Analysis Run 9/26/2024 11:51 AM View: Appendix III - Trend Tests
Plant Arkwright Client: Southern Company Data: Arkwright No 2

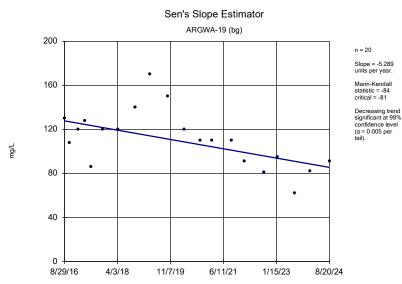


Constituent: pH Analysis Run 9/26/2024 11:51 AM View: Appendix III - Trend Tests
Plant Arkwright Client: Southern Company Data: Arkwright No 2

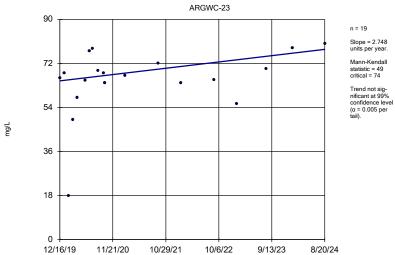


Constituent: Sulfate Analysis Run 9/26/2024 11:51 AM View: Appendix III - Trend Tests
Plant Arkwright Client: Southern Company Data: Arkwright No 2

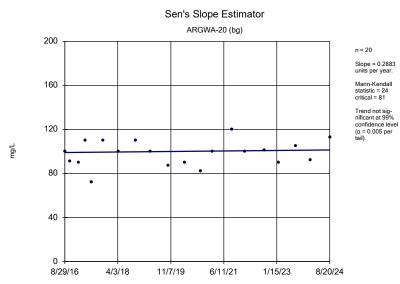

Sen's Slope Estimator


Constituent: Sulfate Analysis Run 9/26/2024 11:51 AM View: Appendix III - Trend Tests
Plant Arkwright Client: Southern Company Data: Arkwright No 2

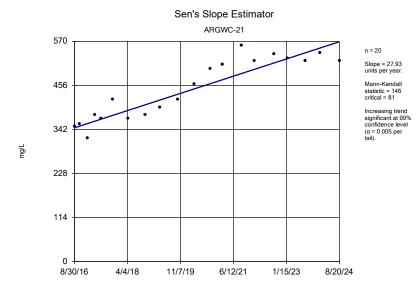
Constituent: Sulfate Analysis Run 9/26/2024 11:51 AM View: Appendix III - Trend Tests
Plant Arkwright Client: Southern Company Data: Arkwright No 2



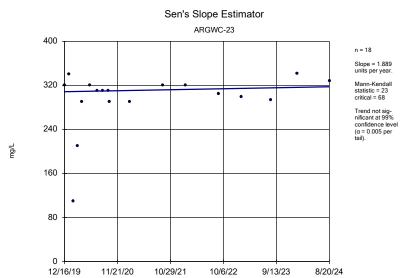
Constituent: Sulfate Analysis Run 9/26/2024 11:51 AM View: Appendix III - Trend Tests
Plant Arkwright Client: Southern Company Data: Arkwright No 2



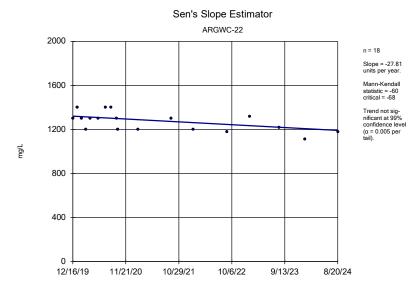
Constituent: Total Dissolved Solids Analysis Run 9/26/2024 11:51 AM View: Appendix III - Trend Tests
Plant Arkwright Client: Southern Company Data: Arkwright No 2


Sen's Slope Estimator

Constituent: Sulfate Analysis Run 9/26/2024 11:51 AM View: Appendix III - Trend Tests
Plant Arkwright Client: Southern Company Data: Arkwright No 2



Constituent: Total Dissolved Solids Analysis Run 9/26/2024 11:51 AM View: Appendix III - Trend Tests
Plant Arkwright Client: Southern Company Data: Arkwright No 2

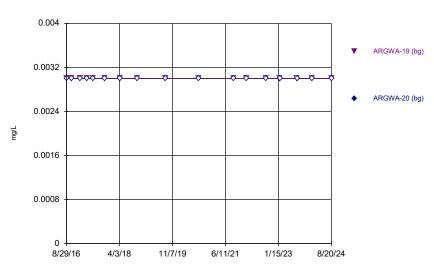


Constituent: Total Dissolved Solids Analysis Run 9/26/2024 11:51 AM View: Appendix III - Trend Tests
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

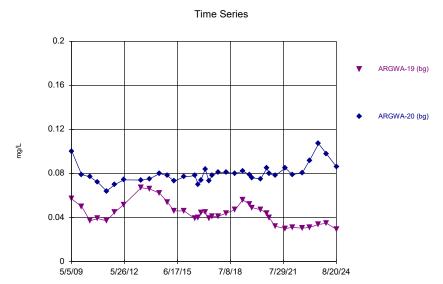
Constituent: Total Dissolved Solids Analysis Run 9/26/2024 11:51 AM View: Appendix III - Trend Tests
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Constituent: Total Dissolved Solids Analysis Run 9/26/2024 11:51 AM View: Appendix III - Trend Tests
Plant Arkwright Client: Southern Company Data: Arkwright No 2

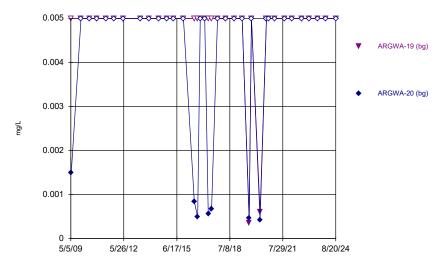

FIGURE G.

Upper Tolerance Limits

Plant Arkwright Client: Southern Company Data: Arkwright No 2 Printed 9/26/2024, 12:01 PM


Constituent	Well	Upper Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	n/a	0.003	n/a	n/a	n/a	34	100	n/a	0.1748	NP Inter(NDs)
Arsenic (mg/L)	n/a	0.005	n/a	n/a	n/a	72	87.5	n/a	0.02489	NP Inter(NDs)
Barium (mg/L)	n/a	0.107	n/a	n/a	n/a	72	0	n/a	0.02489	NP Inter(normality)
Beryllium (mg/L)	n/a	0.0005	n/a	n/a	n/a	38	92.11	n/a	0.1424	NP Inter(NDs)
Cadmium (mg/L)	n/a	0.001	n/a	n/a	n/a	70	98.57	n/a	0.02758	NP Inter(NDs)
Chromium (mg/L)	n/a	0.01	n/a	n/a	n/a	42	26.19	n/a	0.116	NP Inter(normality)
Cobalt (mg/L)	n/a	0.001	n/a	n/a	n/a	44	68.18	n/a	0.1047	NP Inter(NDs)
Combined Radium 226 + 228 (pCi/L)	n/a	2.65	n/a	n/a	n/a	42	2.381	n/a	0.116	NP Inter(normality)
Fluoride (mg/L)	n/a	0.148	n/a	n/a	n/a	46	41.3	n/a	0.09447	NP Inter(normality)
Lead (mg/L)	n/a	0.002	n/a	n/a	n/a	72	87.5	n/a	0.02489	NP Inter(NDs)
Lithium (mg/L)	n/a	0.013	n/a	n/a	n/a	44	43.18	n/a	0.1047	NP Inter(normality)
Mercury (mg/L)	n/a	0.0002	n/a	n/a	n/a	34	94.12	n/a	0.1748	NP Inter(NDs)
Molybdenum (mg/L)	n/a	0.001	n/a	n/a	n/a	40	82.5	n/a	0.1285	NP Inter(NDs)
Selenium (mg/L)	n/a	0.005	n/a	n/a	n/a	71	67.61	n/a	0.0262	NP Inter(NDs)
Silver (mg/L)	n/a	0.001	n/a	n/a	n/a	62	91.94	n/a	0.04158	NP Inter(NDs)
Thallium (mg/L)	n/a	0.002	n/a	n/a	n/a	34	97.06	n/a	0.1748	NP Inter(NDs)

Time Series

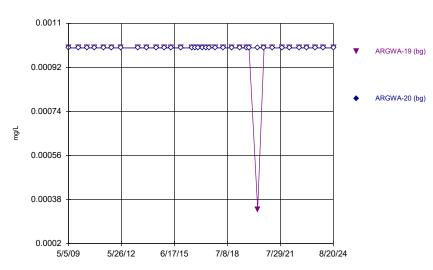

Constituent: Antimony Analysis Run 9/26/2024 11:59 AM View: Appendix IV - UTLs
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Constituent: Barium Analysis Run 9/26/2024 11:59 AM View: Appendix IV - UTLs
Plant Arkwright Client: Southern Company Data: Arkwright No 2

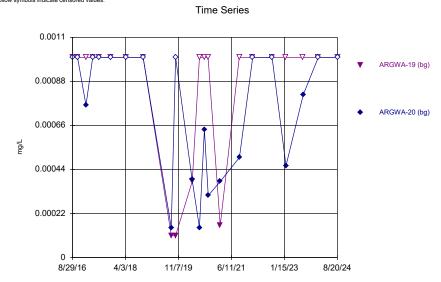
Time Series

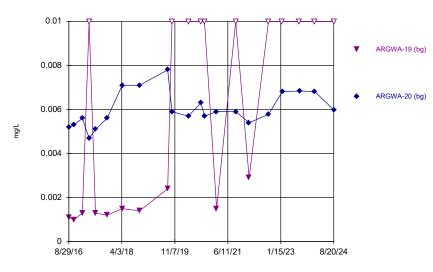
Constituent: Arsenic Analysis Run 9/26/2024 11:59 AM View: Appendix IV - UTLs
Plant Arkwright Client: Southern Company Data: Arkwright No 2


Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

0.0006 0.00048 0.00024 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012

Constituent: Beryllium Analysis Run 9/26/2024 11:59 AM View: Appendix IV - UTLs

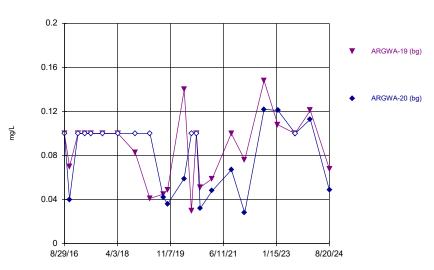

Plant Arkwright Client: Southern Company Data: Arkwright No 2


Constituent: Cadmium Analysis Run 9/26/2024 11:59 AM View: Appendix IV - UTLs
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas[™] v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

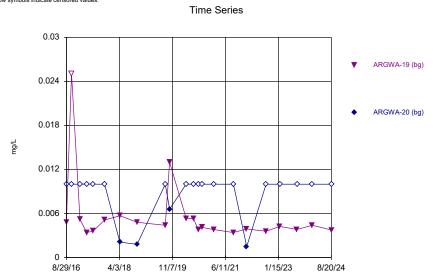
Constituent: Cobalt Analysis Run 9/26/2024 11:59 AM View: Appendix IV - UTLs
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Constituent: Chromium Analysis Run 9/26/2024 11:59 AM View: Appendix IV - UTLs
Plant Arkwright Client: Southern Company Data: Arkwright No 2

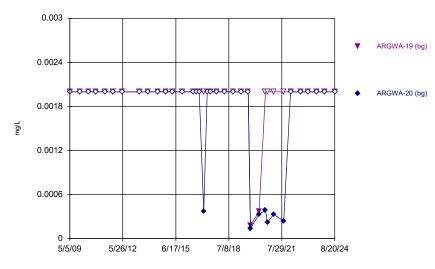

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series 3 2.392 1.784 1.176 0.568 -0.04 8/29/16 4/3/18 11/7/19 6/11/21 1/15/23 8/20/24

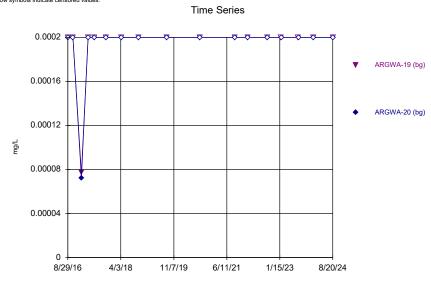
Constituent: Combined Radium 226 + 228 Analysis Run 9/26/2024 11:59 AM View: Appendix IV - UTLs


Plant Arkwright Client: Southern Company Data: Arkwright No 2

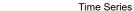
Constituent: Fluoride Analysis Run 9/26/2024 11:59 AM View: Appendix IV - UTLs
Plant Arkwright Client: Southern Company Data: Arkwright No 2

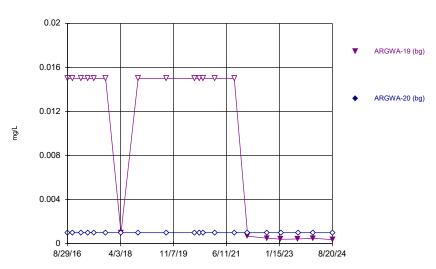

Sanitas[™] v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Lithium Analysis Run 9/26/2024 11:59 AM View: Appendix IV - UTLs

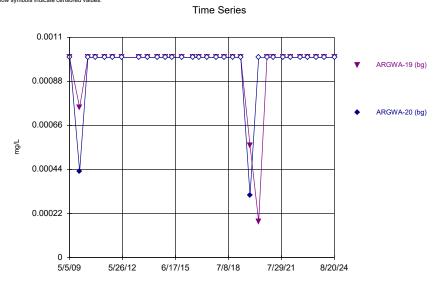

Plant Arkwright Client: Southern Company Data: Arkwright No 2

Time Series

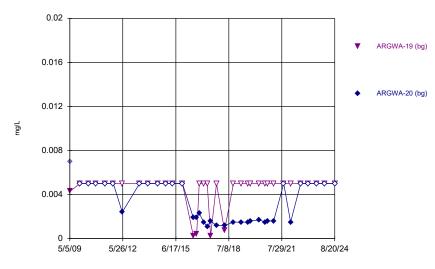

Constituent: Lead Analysis Run 9/26/2024 11:59 AM View: Appendix IV - UTLs
Plant Arkwright Client: Southern Company Data: Arkwright No 2


Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

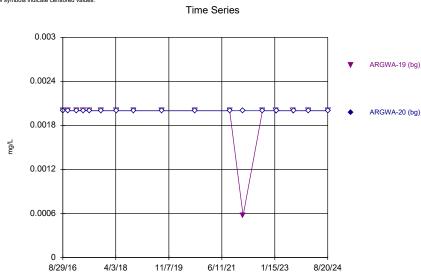
Constituent: Mercury Analysis Run 9/26/2024 11:59 AM View: Appendix IV - UTLs


Plant Arkwright Client: Southern Company Data: Arkwright No 2

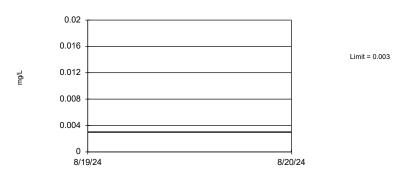
Constituent: Molybdenum Analysis Run 9/26/2024 11:59 AM View: Appendix IV - UTLs
Plant Arkwright Client: Southern Company Data: Arkwright No 2


Sanitas[™] v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Silver Analysis Run 9/26/2024 11:59 AM View: Appendix IV - UTLs


Plant Arkwright Client: Southern Company Data: Arkwright No 2

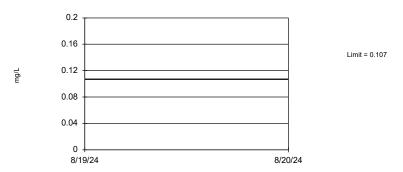
Time Series


Constituent: Selenium Analysis Run 9/26/2024 11:59 AM View: Appendix IV - UTLs
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

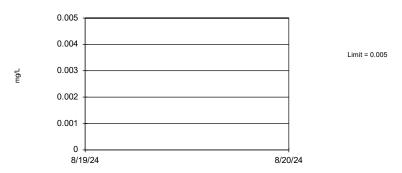
Constituent: Thallium Analysis Run 9/26/2024 11:59 AM View: Appendix IV - UTLs

Plant Arkwright Client: Southern Company Data: Arkwright No 2



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. All background values were censored; limit is most recent reporting limit. 87.3% coverage at alpha=0.01; 91.6% coverage at alpha=0.5. Report alpha = 0.1748.

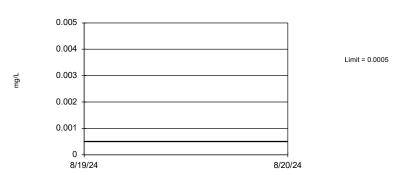
Constituent: Antimony Analysis Run 9/26/2024 11:58 AM View: Appendix IV - UTLs
Plant Arkwright Client: Southern Company Data: Arkwright No 2


Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

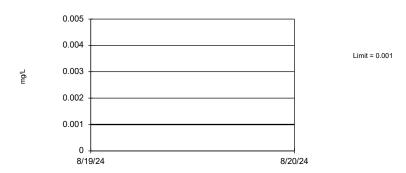
Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 72 background values. 93.95% coverage at alpha=0.01; 95.9% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.02489.

Tolerance Limit Interwell Non-parametric


Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 72 background values. 87.5% NDs. 93.95% coverage at alpha=0.01; 95.9% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.02489.

Constituent: Arsenic Analysis Run 9/26/2024 11:58 AM View: Appendix IV - UTLs


Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

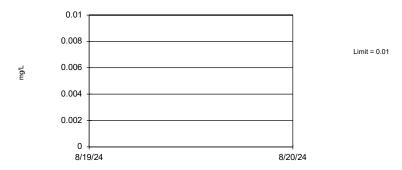
Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 38 background values. 92.11% NDs. 88.48% coverage at alpha=0.01; 92.38% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1424.



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 70 background values. 98.57% NDs. 93.55% coverage at alpha=0.01; 95.9% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.02758.

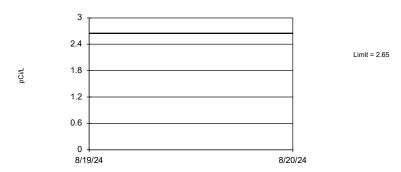
Constituent: Cadmium Analysis Run 9/26/2024 11:58 AM View: Appendix IV - UTLs
Plant Arkwright Client: Southern Company Data: Arkwright No 2


Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

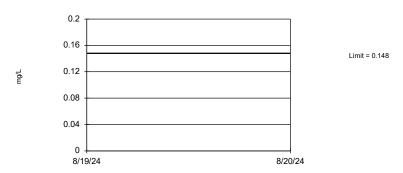
Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 44 background values. 68.18% NDs. 90.04% coverage at alpha=0.01; 93.55% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1047.

Tolerance Limit Interwell Non-parametric



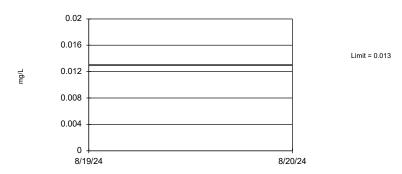
Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Wilk normality test showed the data to he non-normal at the 0.01 alpha level. Limit is highest of 42 background values. 26.19% NDs. 89.65% coverage at alpha=0.01; 93.16% coverage at alpha=0.01; 93.16% coverage at alpha=0.05. Report alpha = 0.116.


Constituent: Chromium Analysis Run 9/26/2024 11:58 AM View: Appendix IV - UTLs
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Tolerance Limit Interwell Non-parametric

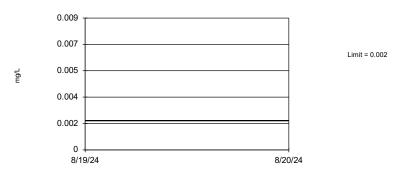
Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 42 background values. 2.381% NDs. 89.65% coverage at alpha=0.01; 93.16% coverage at alpha=0.05. Report alpha = 0.116.



Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 46 background values. 41.3% NDs. 90.43% coverage at alpha=0.01; 93.55% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha = 0.09447.

> Constituent: Fluoride Analysis Run 9/26/2024 11:58 AM View: Appendix IV - UTLs Plant Arkwright Client: Southern Company Data: Arkwright No 2

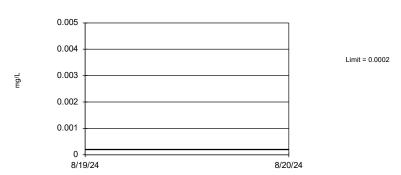
Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG


Tolerance Limit Interwell Non-parametric

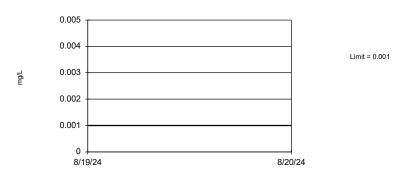
Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 44 background values. 43.18% NDs. 90.04% coverage at alpha=0.01; 93.55% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1047.

Plant Arkwright Client: Southern Company Data: Arkwright No 2

Tolerance Limit Interwell Non-parametric



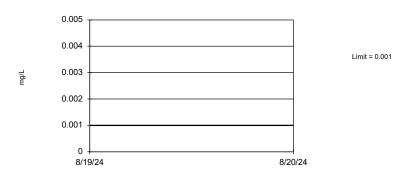
Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 72 background values. 87.5% NDs. 93.95% coverage at alpha=0.01; 95.9% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.02489.


> Constituent: Lead Analysis Run 9/26/2024 11:58 AM View: Appendix IV - UTLs Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

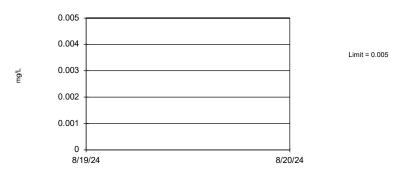
Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 34 background values. 94.12% NDs. 87.3% coverage at alpha=0.01; 91.6% coverage at alpha=0.05; 97.85% coverage at alpha=0.5. Report alpha = 0.1748.



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 40 background values. 82.5% NDs. 89.26% coverage at alpha=0.01; 92.77% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1285.

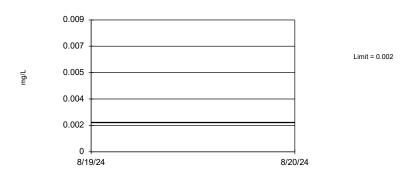
Constituent: Molybdenum Analysis Run 9/26/2024 11:58 AM View: Appendix IV - UTLs
Plant Arkwright Client: Southern Company Data: Arkwright No 2


Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 62 background values. 91.94% NDs. 92.77% coverage at alpha=0.01; 95.12% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.04158.

Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 71 background values. 67.61% NDs. 93.55% coverage at alpha=0.01; 95.9% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.0262.

Constituent: Selenium Analysis Run 9/26/2024 11:58 AM View: Appendix IV - UTLs
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 34 background values. 97.06% NDs. 87.3% coverage at alpha=0.01; 91.6% coverage at alpha=0.05; 97.85% coverage at alpha=0.5. Report alpha = 0.1748.

FIGURE H.

PLANT ARKWRIGHT AP #2 GWPS								
		CCR-Rule	Background					
Constituent Name	MCL	Specified	Limit	GWPS				
Antimony, Total (mg/L)	0.006		0.003	0.006				
Arsenic, Total (mg/L)	0.01		0.005	0.01				
Barium, Total (mg/L)	2		0.11	2				
Beryllium, Total (mg/L)	0.004		0.0005	0.004				
Cadmium, Total (mg/L)	0.005		0.001	0.005				
Chromium, Total (mg/L)	0.1		0.01	0.1				
Cobalt, Total (mg/L)	n/a	0.006	0.001	0.006				
Combined Radium, Total (pCi/L)	5		2.65	5				
Fluoride, Total (mg/L)	4		0.15	4				
Lead, Total (mg/L)	n/a	0.015	0.002	0.015				
Lithium, Total (mg/L)	n/a	0.04	0.013	0.04				
Mercury, Total (mg/L)	0.002		0.0002	0.002				
Molybdenum, Total (mg/L)	n/a	0.1	0.001	0.1				
Selenium, Total (mg/L)	0.05		0.005	0.05				
Silver, Total (mg/L)	n/a		0.001	0.001				
Thallium, Total (mg/L)	0.002		0.002	0.002				

^{*}MCL = Maximum Contaminant Level

^{*}GWPS = Groundwater Protection Standard

^{*}CCR = Coal Combustion Residuals

FIGURE I.

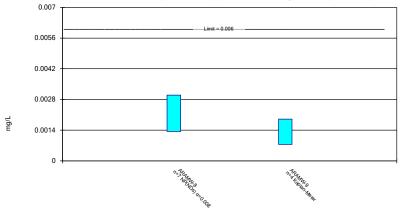
Confidence Interval Summary Table - Significant Results

Plant Arkwright Client: Southern Company Data: Arkwright No 2 Printed 9/30/2024, 1:44 PM Constituent Well Upper Lim. Lower Lim. Compliance Sig. N Mean Std. Dev. %NDs ND Adj. <u>Transform</u> <u>Alpha</u> <u>Method</u> Cobalt (mg/L) ARAMW-7 0.02163 0 None x^3 0.01 Param. 0.0577 0.04 Yes 9 0.06306 0.006339 0 No Lithium (mg/L) ARAMW-7 0.0779 None 0.002 NP (normality) Lithium (mg/L) ARGWC-23 0.00478 0 None No 0.01 Param. 0.1024 0.1 Yes 9 0.1479 0.06261 0 None x^2 Molybdenum (mg/L) ARAMW-8 0.2005 0.01 Param.

Confidence Interval Summary Table - All Results

Plant Arkwright Client: Southern Company Data: Arkwright No 2 Printed 9/30/2024, 1:44 PM

Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig. N	<u>Mean</u>	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	ARAMW-8	0.003	0.00134	0.006	No 7	0.002763	0.0006274	85.71	None	No	0.008	NP (NDs)
Antimony (mg/L)	ARAMW-9	0.001904	0.0007461	0.006	No 4	0.002163	0.0009892	50	Kaplan-Meier	No	0.01	Param.
Arsenic (mg/L)	ARAMW-1	0.005	0.005	0.01	No 10	0.004733	0.0008443	90	None	No	0.011	NP (NDs)
Arsenic (mg/L)	ARAMW-2	0.03334	0.004106	0.01	No 10	0.02008	0.02536	0	None	x^(1/3)	0.01	Param.
Arsenic (mg/L)	ARAMW-7	0.005	0.00035	0.01	No 8	0.003269	0.002007	50	None	No	0.004	NP (normality)
Arsenic (mg/L)	ARAMW-8	0.005	0.00031	0.01	No 8	0.003479	0.002163	62.5	None	No	0.004	NP (NDs)
Arsenic (mg/L)	ARGWC-21	0.005	0.0019	0.01	No 23	0.003027	0.001674	39.13	None	No	0.01	NP (normality)
Arsenic (mg/L)	ARGWC-22	0.005	0.00221	0.01	No 18	0.004092	0.001787	77.78		No	0.01	NP (NDs)
Arsenic (mg/L)	ARGWC-23	0.005	0.00075	0.01	No 18	0.004248	0.001731	83.33	None	No	0.01	NP (NDs)
Barium (mg/L)	ARAMW-1	0.05151	0.04251	2	No 10	0.04701	0.005048	0	None	No	0.01	Param.
Barium (mg/L)	ARAMW-2	0.1083	0.06061	2	No 10	0.08467	0.02857	0	None	sqrt(x)	0.01	Param.
Barium (mg/L)	ARAMW-7	0.03217	0.02428	2	No 8	0.02818	0.004008	0	None	In(x)	0.01	Param.
Barium (mg/L)	ARAMW-8	0.1173	0.0939	2	No 8	0.1056	0.01106	0	None	No	0.01	Param.
, - ,	ARGWC-21		0.0959	2	No 23	0.08066	0.03529	0		No	0.01	NP (normality)
Barium (mg/L)		0.12		2				0	None		0.01	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Barium (mg/L)	ARGWC-22	0.04571	0.02815		No 18	0.0381	0.01609		None	x^(1/3)		Param.
Barium (mg/L)	ARGWC-23	0.1437	0.09733	2	No 18	0.1205	0.03829	0	None	No	0.01	Param.
Barium (mg/L)	ARAMW-9	0.02495	0.004949	2	No 4	0.01495	0.004405	0	None	No	0.01	Param.
Beryllium (mg/L)	ARAMW-7	0.0025	0.000236	0.004	No 8	0.001125	0.001139	37.5	None	No	0.004	NP (normality)
Beryllium (mg/L)	ARGWC-22	0.0005	0.00036	0.004	No 17	0.0004388	0.0001192		None	No	0.01	NP (NDs)
Beryllium (mg/L)	ARGWC-23	0.0005	0.00033	0.004	No 17	0.00049	0.00004123	94.12		No	0.01	NP (NDs)
Chromium (mg/L)	ARGWC-21	0.01	0.0017	0.1	No 21	0.009605	0.001811	95.24	None	No	0.01	NP (NDs)
Chromium (mg/L)	ARGWC-22	0.01	0.0048	0.1	No 18	0.009711	0.001226	94.44	None	No	0.01	NP (NDs)
Cobalt (mg/L)	ARAMW-1	0.0008499	0.0004085	0.006	No 11	0.0006354	0.0002714	9.091	None	sqrt(x)	0.01	Param.
Cobalt (mg/L)	ARAMW-2	0.002936	0.002064	0.006	No 11	0.0025	0.0005235	0	None	No	0.01	Param.
Cobalt (mg/L)	ARAMW-7	0.07537	0.04752	0.006	Yes 9	0.05887	0.02163	0	None	x^3	0.01	Param.
Cobalt (mg/L)	ARAMW-8	0.005031	0.002407	0.006	No 9	0.003719	0.001359	0	None	No	0.01	Param.
Cobalt (mg/L)	ARGWC-21	0.0018	0.0007	0.006	No 22	0.001279	0.0005844	0	None	No	0.01	NP (normality)
Cobalt (mg/L)	ARGWC-22	0.00766	0.002677	0.006	No 19	0.005733	0.00496	0	None	sqrt(x)	0.01	Param.
Cobalt (mg/L)	ARGWC-23	0.001791	0.0007307	0.006	No 19	0.00153	0.001291	5.263	None	ln(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	ARAMW-1	4.227	0.4887	5	No 10	2.418	2.732	0	None	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	ARAMW-2	5.492	2.154	5	No 10	3.879	2.411	0	None	x^(1/3)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	ARAMW-7	5.122	3.943	5	No 8	4.533	0.5562	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	ARAMW-8	2.547	0.1616	5	No 8	1.275	1.233	12.5	None	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	ARGWC-21	1.349	0.608	5	No 21	1.219	1.204	4.762	None	ln(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	ARGWC-22	1.169	0.4018	5	No 18	0.8644	0.7312	5.556	None	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	ARGWC-23	0.9762	0.1958	5	No 18	0.7036	0.8296	0	None	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	ARAMW-9	5.909	-0.8624	5	No 4	2.523	1.491	0	None	No	0.01	Param.
Fluoride (mg/L)	ARAMW-1	0.2184	0.1645	4	No 11	0.1915	0.03238	0	None	No	0.01	Param.
Fluoride (mg/L)	ARAMW-2	0.1417	0.08199	4	No 11	0.1118	0.0358	9.091	None	No	0.01	Param.
Fluoride (mg/L)	ARAMW-7	0.1031	0.03332	4	No 9	0.08711	0.03443	33.33	Kaplan-Meier	No	0.01	Param.
Fluoride (mg/L)	ARAMW-8	0.2498	0.1705	4	No 9	0.2101	0.04107	0	None	No	0.01	Param.
Fluoride (mg/L)	ARGWC-21	0.1557	0.09039	4	No 23	0.138	0.1027	0	None	ln(x)	0.01	Param.
Fluoride (mg/L)	ARGWC-22	0.134	0.045	4	No 19	0.08105	0.05799	15.79	None	No	0.01	NP (normality)
Fluoride (mg/L)	ARGWC-23	0.3682	0.2266	4	No 19	0.2974	0.1209	0	None	No	0.01	Param.
Fluoride (mg/L)	ARAMW-9	1.042	0.7759	4	No 4	0.9088	0.05851	0	None	No	0.01	Param.
Lead (mg/L)	ARAMW-7	0.002	0.00013	0.015	No 8	0.001766	0.0006611	87.5	None	No		NP (NDs)
Lead (mg/L)	ARGWC-21	0.002	0.00026	0.015	No 23	0.001844	0.0005174	91.3	None	No	0.01	NP (NDs)
Lead (mg/L)	ARGWC-22	0.002	0.00022	0.015	No 18	0.001798	0.0005887	88.89		No	0.01	NP (NDs)
Lead (mg/L)	ARGWC-23	0.002	0.00026	0.015	No 18	0.001802	0.0005758	88.89		No	0.01	NP (NDs)
Lithium (mg/L)	ARAMW-1	0.009982	0.008532	0.04	No 12	0.009236	0.0009998	0	None	x^2	0.01	Param.
Lithium (mg/L)	ARAMW-2	0.036	0.000332	0.04	No 12	0.0267	0.01943	0	None	No	0.01	NP (normality)
Lithium (mg/L)	ARAMW-7	0.0779	0.0577	0.04	Yes 9	0.06306	0.006339	0	None	No		NP (normality)
Lithium (mg/L)	ARAMW-8	0.006662	0.005466	0.04	No 9	0.00605	0.0007237	0	None	x^3	0.002	Param.
Lithium (mg/L)	ARGWC-21	0.000002	0.009968	0.04	No 22	0.00003	0.002084	0	None	No	0.01	Param.
Lithium (mg/L)	ARGWC-21	0.01221	0.009908	0.04	No 19	0.01109	0.002004	0	None	No	0.01	Param.
Landin (ing/L)		0.02012	3.01020	3.04	140 10	3.01001	3.001200	5			0.01	. aram.

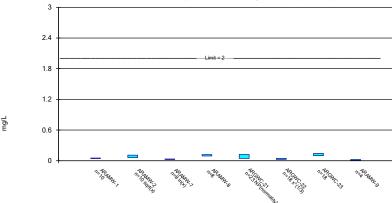

Confidence Interval Summary Table - All Results

Plant Arkwright Client: Southern Company Data: Arkwright No 2 Printed 9/30/2024, 1:44 PM

Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig. N	Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Lithium (mg/L)	ARGWC-23	0.05532	0.04518	0.04	Yes 8	0.05025	0.00478	0	None	No	0.01	Param.
Lithium (mg/L)	ARAMW-9	0.01179	0	0.04	No 4	0.007975	0.002264	0	None	x^2	0.01	Param.
Mercury (mg/L)	ARGWC-21	0.0002	0.000073	0.002	No 17	0.0001925	0.0000308	94.12	None	No	0.01	NP (NDs)
Mercury (mg/L)	ARGWC-22	0.000372	0.0002	0.002	No 15	0.0002115	0.00004441	93.33	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	ARAMW-1	0.008455	0.005284	0.1	No 11	0.006869	0.001903	0	None	No	0.01	Param.
Molybdenum (mg/L)	ARAMW-2	0.015	0.000585	0.1	No 11	0.007281	0.007394	45.45	None	No	0.006	NP (normality)
Molybdenum (mg/L)	ARAMW-7	0.0012	0.000257	0.1	No 9	0.0008707	0.0003215	66.67	None	No	0.002	NP (NDs)
Molybdenum (mg/L)	ARAMW-8	0.2005	0.1024	0.1	Yes 9	0.1479	0.06261	0	None	x^2	0.01	Param.
Molybdenum (mg/L)	ARGWC-22	0.015	0.000496	0.1	No 18	0.007859	0.007356	50	None	No	0.01	NP (normality)
Molybdenum (mg/L)	ARGWC-23	0.06445	0.04668	0.1	No 18	0.05339	0.0183	0	None	x^2	0.01	Param.
Molybdenum (mg/L)	ARAMW-9	0.01998	0	0.1	No 4	0.008525	0.005046	0	None	No	0.01	Param.
Selenium (mg/L)	ARGWC-22	0.005	0.002	0.05	No 18	0.004833	0.0007071	94.44	None	No	0.01	NP (NDs)
Silver (mg/L)	ARGWC-21	0.001	0.00043	0.001	No 18	0.0009683	0.0001344	94.44	None	No	0.01	NP (NDs)
Thallium (mg/L)	ARGWC-22	0.002	0.00035	0.002	No 15	0.001583	0.0007244	73.33	None	No	0.01	NP (NDs)
Thallium (mg/L)	ARGWC-23	0.002	0.00028	0.002	No 15	0.001653	0.0007177	80	None	No	0.01	NP (NDs)

Parametric and Non-Parametric (NP) Confidence Interval

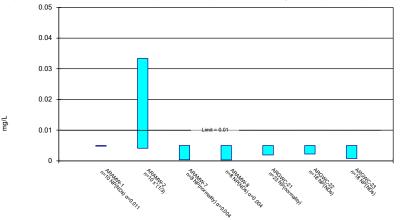
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Antimony Analysis Run 9/30/2024 1:42 PM View: Confidence Intervals
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

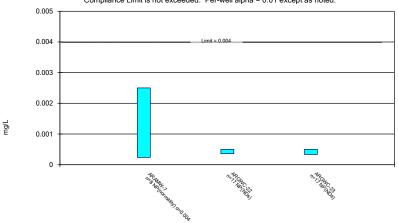
Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

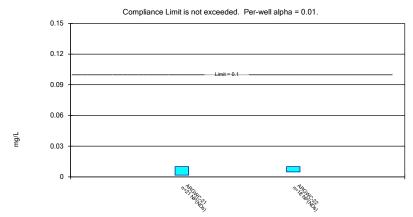
Constituent: Barium Analysis Run 9/30/2024 1:42 PM View: Confidence Intervals
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

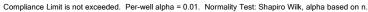


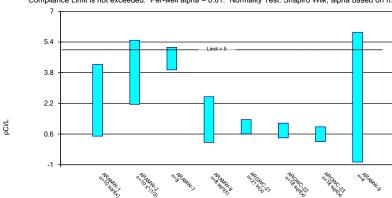
Constituent: Arsenic Analysis Run 9/30/2024 1:42 PM View: Confidence Intervals
Plant Arkwright Client: Southern Company Data: Arkwright No 2


Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.


Non-Parametric Confidence Interval



Constituent: Chromium Analysis Run 9/30/2024 1:42 PM View: Confidence Intervals
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Parametric Confidence Interval

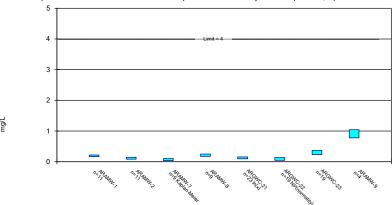
Parametric and Non-Parametric (NP) Confidence Interval

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

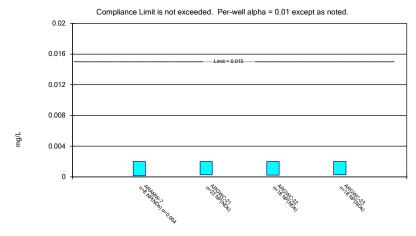
0.09

0.072

0.054

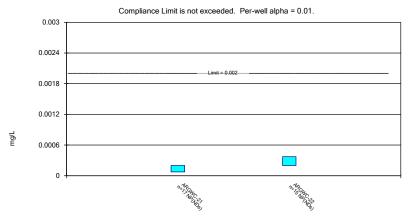

0.036

Constituent: Cobalt Analysis Run 9/30/2024 1:42 PM View: Confidence Intervals
Plant Arkwright Client: Southern Company Data: Arkwright No 2


Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

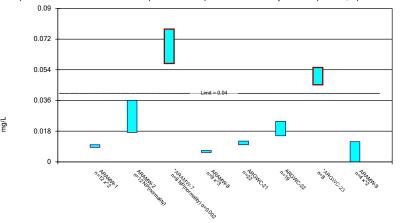
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Non-Parametric Confidence Interval

Constituent: Lead Analysis Run 9/30/2024 1:42 PM View: Confidence Intervals
Plant Arkwright Client: Southern Company Data: Arkwright No 2

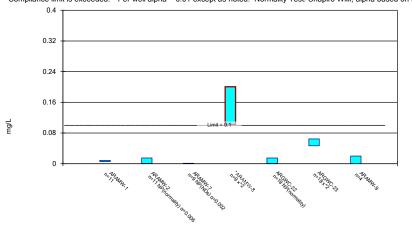
Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG


Non-Parametric Confidence Interval

Constituent: Mercury Analysis Run 9/30/2024 1:43 PM View: Confidence Intervals
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Parametric and Non-Parametric (NP) Confidence Interval

Compliance limit is exceeded.* Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Lithium Analysis Run 9/30/2024 1:42 PM View: Confidence Intervals
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance limit is exceeded.* Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Molybdenum Analysis Run 9/30/2024 1:43 PM View: Confidence Intervals
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

0.048

0.036

0.024

0.012

Constituent: Selenium Analysis Run 9/30/2024 1:43 PM View: Confidence Intervals
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

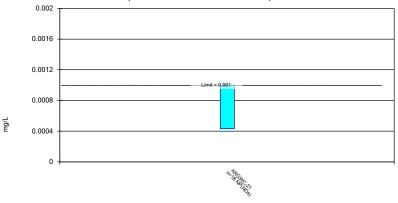
Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

0.004

0.0024

0.0016


0.0008

Constituent: Thallium Analysis Run 9/30/2024 1:43 PM View: Confidence Intervals
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

Constituent: Silver Analysis Run 9/30/2024 1:43 PM View: Confidence Intervals
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Constituent: Antimony (mg/L) Analysis Run 9/30/2024 1:44 PM View: Confidence Intervals
Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARAMW-8	ARAMW-9
9/9/2021	<0.003	
2/3/2022	<0.003	
9/2/2022	<0.003	
1/31/2023	<0.003	
2/1/2023		<0.003
8/8/2023		0.00158 (J)
8/9/2023	0.00134 (J)	
1/23/2024		0.00107 (J)
1/24/2024	<0.003	
8/20/2024	<0.003	<0.003
Mean	0.002763	0.002163
Std. Dev.	0.0006274	0.0009892
Upper Lim.	0.003	0.001904
Lower Lim.	0.00134	0.0007461

Constituent: Arsenic (mg/L) Analysis Run 9/30/2024 1:44 PM View: Confidence Intervals
Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARAMW-1	ARAMW-2	ARAMW-7	ARAMW-8	ARGWC-21	ARGWC-22	ARGWC-23
6/23/2016					0.0011 (J)		
8/30/2016					0.002		
10/26/2016					0.0019 (J)		
1/25/2017					0.0017		
4/10/2017					0.002		
6/19/2017					0.0026		
10/24/2017					0.0021		
4/10/2018					0.0022		
10/16/2018					0.0021		
3/27/2019					0.0011 (J)		
8/20/2019					0.002		
10/8/2019					0.0012 (J)		
12/16/2019						0.00066 (J)	0.00075 (J)
1/14/2020						0.00038 (J)	0.00042 (J)
2/11/2020						0.0004 (J)	<0.005
3/9/2020						<0.005	<0.005
4/7/2020					0.00054 (J)	<0.005	<0.005
5/27/2020						<0.005	<0.005
7/15/2020						<0.005	<0.005
8/19/2020						<0.005	
8/20/2020	<0.005	0.084					<0.005
8/21/2020					<0.005		
9/22/2020						<0.005	<0.005
9/30/2020	<0.005					<0.005	
10/1/2020		0.0085			<0.005		<0.005
2/10/2021	<0.005				<0.005	<0.005	<0.005
2/11/2021		0.015	0.00075 (J)	0.00046 (J)			
9/8/2021					<0.005		
9/9/2021	<0.005			<0.005			<0.005
9/10/2021		0.044	<0.005			<0.005	
2/1/2022					<0.005		
2/2/2022			0.00035 (J)			<0.005	
2/3/2022	<0.005	0.0092		0.00031 (J)			0.0003 (J)
9/1/2022					0.00207 (J)		
9/2/2022	0.00233 (J)	0.0158		0.00206 (J)			
9/6/2022						<0.005	<0.005
9/7/2022			<0.005				
1/31/2023	<0.005	0.00363 (J)	0.00286 (J)	<0.005	<0.005	0.00221 (J)	<0.005
8/8/2023	<0.005	0.012	<0.005			<0.005	<0.005
8/9/2023				<0.005	<0.005		
1/23/2024			0.00219 (J)			<0.005	
1/24/2024	<0.005	0.0047 (J)		<0.005	<0.005		<0.005
8/20/2024	<0.005	0.00392 (J)	<0.005	<0.005	<0.005	<0.005	<0.005
Mean	0.004733	0.02008	0.003269	0.003479	0.003027	0.004092	0.004248
Std. Dev.	0.0008443	0.02536	0.002007	0.002163	0.001674	0.001787	0.001731
Upper Lim.	0.005	0.03334	0.005	0.005	0.005	0.005	0.005
Lower Lim.	0.005	0.004106	0.00035	0.00031	0.0019	0.00221	0.00075

Constituent: Barium (mg/L) Analysis Run 9/30/2024 1:44 PM View: Confidence Intervals

Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARAMW-1	ARAMW-2	ARAMW-7	ARAMW-8	ARGWC-21	ARGWC-22	ARGWC-23	ARAMW-9	
6/23/2016					0.13				
8/30/2016					0.11				
10/26/2016					0.122				
1/25/2017					0.12				
4/10/2017					0.11				
6/19/2017					0.13				
10/24/2017					0.12				
4/10/2018					0.12				
10/16/2018					0.1				
3/27/2019					0.091				
8/20/2019					0.1				
10/8/2019					0.096				
12/16/2019					0.030	0.076	0.096		
1/14/2020						0.070	0.075		
2/11/2020						0.046	0.046		
3/9/2020						0.039			
4/7/2020					0.05	0.039	0.14 0.16		
5/27/2020					0.03	0.054			
							0.18		
7/15/2020						0.043	0.16		
8/19/2020	0.055	0.14				0.046	0.16		
8/20/2020	0.055	0.14			0.054		0.16		
8/21/2020					0.054	0.000	0.40		
9/22/2020	0.050					0.038	0.16		
9/30/2020	0.052	0.075			0.054	0.033	0.47		
10/1/2020	0.040	0.075			0.051	0.000	0.17		
2/10/2021	0.046	0.00	0.007	0.000	0.044	0.032	0.13		
2/11/2021		0.09	0.037	0.092	0.045				
9/8/2021					0.045				
9/9/2021	0.051			0.094			0.12		
9/10/2021		0.13	0.029			0.026			
2/1/2022					0.045				
2/2/2022			0.029			0.025			
2/3/2022	0.046	0.078		0.096			0.1		
9/1/2022					0.0425				
9/2/2022	0.0445	0.0792		0.116					
9/6/2022						0.0226	0.0939		
9/7/2022			0.0263						
1/31/2023	0.0427	0.067	0.0243	0.11	0.0414	0.0237	0.0872		
2/1/2023								0.0158	
8/8/2023	0.051	0.0753	0.0244			0.0255	0.0936	0.0207	
8/9/2023				0.122	0.0474				
1/23/2024			0.0277			0.0227		0.0128	
1/24/2024	0.043	0.0562		0.103	0.0427		0.0922		
8/20/2024	0.0389	0.056	0.0277	0.112	0.0431	0.0223	0.105	0.0105	
Mean	0.04701	0.08467	0.02818	0.1056	0.08066	0.0381	0.1205	0.01495	
Std. Dev.	0.005048	0.02857	0.004008	0.01106	0.03529	0.01609	0.03829	0.004405	
Upper Lim.	0.05151	0.1083	0.03217	0.1173	0.12	0.04571	0.1437	0.02495	
Lower Lim.	0.04251	0.06061	0.02428	0.0939	0.045	0.02815	0.09733	0.004949	

Constituent: Beryllium (mg/L) Analysis Run 9/30/2024 1:44 PM View: Confidence Intervals
Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARAMW-7	ARGWC-22	ARGWC-23
12/16/2019		0.0005 (J)	0.00033 (J)
1/14/2020		0.00036 (J)	<0.0005
2/11/2020		0.00023	<0.0005
3/9/2020		0.00019	<0.0005
5/27/2020		0.00018 (J)	<0.0005
7/15/2020		<0.0005	<0.0005
8/19/2020		<0.0005	
8/20/2020			<0.0005
9/22/2020		<0.0005	<0.0005
9/30/2020		<0.0005	
10/1/2020			<0.0005
2/10/2021		<0.0005	<0.0005
2/11/2021	<0.0025		
9/9/2021			<0.0005
9/10/2021	<0.0025	<0.0005	
2/2/2022	<0.0025	<0.0005	
2/3/2022			<0.0005
9/6/2022		<0.0005	<0.0005
9/7/2022	0.000236 (J)		
1/31/2023	0.000296 (J)	<0.0005	<0.0005
8/8/2023	0.000272 (J)	<0.0005	<0.0005
1/23/2024	0.000378 (J)	<0.0005	
1/24/2024			<0.0005
8/20/2024	0.000318 (J)	<0.0005	<0.0005
Mean	0.001125	0.0004388	0.00049
Std. Dev.	0.001139	0.0001192	4.123E-05
Upper Lim.	0.0025	0.0005	0.0005
Lower Lim.	0.000236	0.00036	0.00033

Constituent: Chromium (mg/L) Analysis Run 9/30/2024 1:44 PM View: Confidence Intervals Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWC-21	ARGWC-22
8/30/2016	<0.01	
10/26/2016	<0.01	
1/25/2017	<0.01	
4/10/2017	<0.01	
6/19/2017	<0.01	
10/24/2017	<0.01	
4/10/2018	<0.01	
10/16/2018	<0.01	
8/20/2019	0.0017 (J)	
10/8/2019	<0.01	
12/16/2019		<0.01
1/14/2020		<0.01
2/11/2020		0.0048
3/9/2020		<0.01
4/7/2020	<0.01	<0.01
5/27/2020		<0.01
7/15/2020		<0.01
8/19/2020		<0.01
8/21/2020	<0.01	
9/22/2020		<0.01
9/30/2020		<0.01
10/1/2020	<0.01	
2/10/2021	<0.01	<0.01
9/8/2021	<0.01	
9/10/2021		<0.01
2/1/2022	<0.01	
2/2/2022		<0.01
9/1/2022	<0.01	
9/6/2022		<0.01
1/31/2023	<0.01	<0.01
8/8/2023		<0.01
8/9/2023	<0.01	
1/23/2024		<0.01
1/24/2024	<0.01	
8/20/2024	<0.01	<0.01
Mean	0.009605	0.009711
Std. Dev.	0.001811	0.001226
Upper Lim.	0.01	0.01
Lower Lim.	0.0017	0.0048

Constituent: Cobalt (mg/L) Analysis Run 9/30/2024 1:44 PM View: Confidence Intervals

Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARAMW-1	ARAMW-2	ARAMW-7	ARAMW-8	ARGWC-21	ARGWC-22	ARGWC-23
8/30/2016					0.0018 (J)		
10/26/2016					0.0018 (J)		
1/25/2017					0.0017 (J)		
4/10/2017					0.0016 (J)		
6/19/2017					0.0021 (J)		
10/24/2017					0.0019 (J)		
4/10/2018					0.0019 (J)		
10/16/2018					0.0019 (J)		
8/20/2019					0.0023		
10/8/2019					0.0018		
12/16/2019						0.018	0.0023
1/14/2020						0.0072	0.0031
2/11/2020						0.013	0.00056
3/9/2020						0.015	0.00061 (J)
4/7/2020					0.00087	0.009	0.0016
5/27/2020					0.00007	0.0059	0.0017 (J)
6/24/2020	0.00097 (J)	0.0027				0.0047	0.0017 (0)
6/25/2020	0.00007 (0)	0.0027			0.00097 (J)	0.0047	0.0014 (J)
7/15/2020					0.00037 (3)	0.0027	0.0017 (J)
8/19/2020						0.0027	0.0017 (3)
8/20/2020	0.001 (J)	0.0022 (J)				0.0032	0.0023 (J)
8/21/2020	0.001 (3)	0.0022 (3)			0.00066 (J)		0.0023 (3)
9/22/2020					0.00000 (3)	0.0085	0.0036
9/30/2020	0.001 (1)					0.0065	0.0030
	0.001 (J)	0.0036			0.00082 (1)	0.0055	0.0053
10/1/2020		0.0036	0.000		0.00082 (J)		0.0052
11/30/2020			0.028	0.0054			
12/1/2020	0.00000 (1)			0.0054	0.00000 (1)	0.0015 (1)	0.00070 (1)
2/10/2021	0.00082 (J)	0.0000	0.017	0.0001	0.00063 (J)	0.0015 (J)	0.00072 (J)
2/11/2021		0.0028	0.017	0.0061	0.0007 (1)		
9/8/2021	0.00070 (1)			0.0040	0.0007 (J)		0.0000 (1)
9/9/2021	0.00072 (J)	0.0000 (1)	0.075	0.0046		0.0015 (1)	0.0009 (J)
9/10/2021		0.0022 (J)	0.075		0.0007 (1)	0.0015 (J)	
2/1/2022			0.077		0.0007 (J)	0.001 (1)	
2/2/2022	0.00045 (1)	0.000	0.077	0.0000		0.001 (J)	0.00000 (1)
2/3/2022	0.00045 (J)	0.0028		0.0028	0.00000 (1)		0.00063 (J)
9/1/2022	0.00044071	0.000		0.0000	0.00069 (J)		
9/2/2022	0.000449 (J)	0.002		0.00292		0.00100	0.000500 (1)
9/6/2022			0.0707			0.00198	0.000588 (J)
9/7/2022			0.0737				
1/31/2023	0.000399 (J)	0.00282	0.0687	0.00321	0.000659 (J)	0.00154	0.000742 (J)
8/8/2023	0.00035 (J)	0.00223	0.0605			0.00184	0.00044 (J)
8/9/2023				0.00364	0.000813 (J)		
1/23/2024			0.0597			0.00408	
1/24/2024	0.000331 (J)	0.00249		0.00203	0.00106		<0.001
8/20/2024	<0.001	0.00166	0.0702	0.00277	0.000769 (J)	0.00279	0.000484 (J)
Mean	0.0006354	0.0025	0.05887	0.003719	0.001279	0.005733	0.00153
Std. Dev.	0.0002714	0.0005235	0.02163	0.001359	0.0005844	0.00496	0.001291
Upper Lim.	0.0008499	0.002936	0.07537	0.005031	0.0018	0.00766	0.001791
Lower Lim.	0.0004085	0.002064	0.04752	0.002407	0.0007	0.002677	0.0007307

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 9/30/2024 1:44 PM View: Confidence Intervals

Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARAMW-1	ARAMW-2	ARAMW-7	ARAMW-8	ARGWC-21	ARGWC-22	ARGWC-23	ARAMW-9	
8/30/2016					0.832				
10/26/2016					1.27				
1/25/2017					0.549				
4/10/2017					0.556				
6/19/2017					0.976				
10/24/2017					0.504				
4/10/2018					0.621				
10/16/2018					0.796				
8/20/2019					0.978				
10/8/2019					0.588				
12/16/2019						0.229 (U)	0.166 (U)		
1/14/2020						0.783	0.869		
2/11/2020						0.229 (U)	0.0291 (U)		
3/9/2020						0.365	0.626		
4/7/2020					0.433 (U)	0.567	0.296 (U)		
5/27/2020						0.143 (U)	0.192 (U)		
7/15/2020						0.97	0.279 (U)		
8/19/2020						0.587 (U)			
8/20/2020	0.527	4.13					0.242 (U)		
8/21/2020					0.472				
9/22/2020						0.884	0.0177 (U)		
9/30/2020	0.249 (U)					0.602			
10/1/2020		2.86			0.496 (U)		0.749		
2/10/2021	0.949				0.625	0.233 (U)	0.0408 (U)		
2/11/2021		2.09	5.1	0.285 (U)					
9/8/2021					1.12				
9/9/2021	0.972			0.16 (U)			0.498		
9/10/2021		3.4	4.23			0.713			
2/1/2022					0.331 (U)				
2/2/2022			4.48			0.195 (U)			
2/3/2022	1.04	2.69		0.51			0.248 (U)		
9/1/2022					1.57				
9/2/2022	3.41	4.18		1.89					
9/6/2022						2.58	2.36		
9/7/2022			4.29						
1/31/2023	4.1	4.3	5.21	3.2	3.25	2.2	0.859 (U)		
2/1/2023								0.413 (U)	
8/8/2023	1.16 (U)	1.86	4.83			1.22 (U)	0.363 (U)	3.92	
8/9/2023				0.193 (U)	2.69				
1/23/2024			4.65			2.1		2.96	
1/24/2024	9.3	10.3		2.87	5.34		2.73		
8/20/2024	2.47	2.98	3.47	<2.19 (D)	<3.22	<1.92	2.1	2.8	
Mean	2.418	3.879	4.533	1.275	1.219	0.8644	0.7036	2.523	
Std. Dev.	2.732	2.411	0.5562	1.233	1.204	0.7312	0.8296	1.491	
Upper Lim.	4.227	5.492	5.122	2.547	1.349	1.169	0.9762	5.909	
Lower Lim.	0.4887	2.154	3.943	0.1616	0.608	0.4018	0.1958	-0.8624	

Constituent: Fluoride (mg/L) Analysis Run 9/30/2024 1:44 PM View: Confidence Intervals
Plant Arkwright Client: Southern Company Data: Arkwright No 2

				.	, , ,			
	ARAMW-1	ARAMW-2	ARAMW-7	ARAMW-8	ARGWC-21	ARGWC-22	ARGWC-23	ARAMW-9
8/30/2016					0.099 (J)			
10/26/2016					0.57			
1/25/2017					0.12 (J)			
4/10/2017					0.11 (J)			
6/19/2017					0.11 (J)			
10/24/2017					0.1 (J)			
4/10/2018					0.094 (J)			
10/16/2018					0.17 (J)			
3/27/2019					0.05 (J)			
8/20/2019					0.03 (J) 0.098 (J)			
10/8/2019					0.065 (J)	0.000 (1)	0.40 (1)	
12/16/2019						0.026 (J)	0.18 (J)	
1/14/2020						<0.2	0.21	
2/11/2020						0.056	0.13	
3/9/2020						0.064 (J)	0.089 (J)	
4/7/2020					0.12	0.068 (J)	0.18	
5/27/2020						0.06 (J)	0.25	
6/24/2020	0.21	0.11				0.048 (J)		
6/25/2020					0.041 (J)		0.25	
7/15/2020						0.04 (J)	0.28	
8/19/2020						<0.2		
8/20/2020	0.23	<0.1					0.19	
8/21/2020					0.084 (J)			
9/22/2020						0.049 (J)	0.33	
9/30/2020	0.2					0.045 (J)		
10/1/2020		0.098 (J)			0.098 (J)	(0)	0.32	
11/30/2020		0.000 (0)	0.044 (J)		0.000 (0)		0.02	
12/1/2020			0.044 (0)	0.14				
2/10/2021	0.21			0.14	0.14	0.055 (J)	0.41	
	0.21	0.10	0.05471	0.24	0.14	0.055 (3)	0.41	
2/11/2021		0.12	0.054 (J)	0.24	0.10			
9/8/2021	0.04			0.10	0.16		0.40	
9/9/2021	0.21			0.19			0.48	
9/10/2021		0.13	0.032 (J)			0.035 (J)		
2/1/2022					0.11			
2/2/2022			<0.1			0.04 (J)		
2/3/2022	0.16	0.095 (J)		0.17			0.4	
9/1/2022					0.161			
9/2/2022	0.18	0.146		0.206				
9/6/2022						0.056 (J)	0.362	
9/7/2022			<0.1					
1/31/2023	0.22 (J)	0.13 (J)	0.11 (J)	0.263 (J)	0.175 (J)	0.0979 (J)	0.551 (J)	
2/1/2023								0.938
8/8/2023	0.118	0.0571 (J)	<0.1			<0.2	0.283	0.837
8/9/2023				0.261	0.203			
1/23/2024			0.126			0.134		0.971
1/24/2024	0.199	0.171		0.222	0.173		0.391	
8/20/2024	0.169	0.123	0.118 (J)	0.199	0.124	0.066 (J)	0.365	0.889
Mean	0.1915	0.1118	0.08711	0.2101	0.124	0.08105	0.2974	0.9088
Std. Dev.	0.03238	0.0358	0.03443	0.04107	0.138	0.05799	0.1209	0.05851
Upper Lim.	0.03238	0.0336	0.1031	0.2498	0.1027	0.03799	0.3682	1.042
Lower Lim.	0.1645	0.08199	0.03332	0.1705	0.09039	0.045	0.2266	0.7759

Constituent: Lead (mg/L) Analysis Run 9/30/2024 1:44 PM View: Confidence Intervals
Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARAMW-7	ARGWC-21	ARGWC-22	ARGWC-23
6/23/2016		<0.002		
8/30/2016		<0.002		
10/26/2016		<0.002		
1/25/2017		<0.002		
4/10/2017		<0.002		
6/19/2017		<0.002		
10/24/2017		<0.002		
4/10/2018		<0.002		
10/16/2018		<0.002		
3/27/2019		<0.002		
8/20/2019		<0.002		
10/8/2019		0.00015 (J)		
12/16/2019			<0.002	<0.002
1/14/2020			0.00022 (J)	0.00018 (J)
2/11/2020			<0.002	0.00026 (J)
3/9/2020			<0.002	<0.002
4/7/2020		0.00026 (J)	0.00014 (J)	<0.002
5/27/2020			<0.002	<0.002
7/15/2020			<0.002	<0.002
8/19/2020			<0.002	
8/20/2020				<0.002
8/21/2020		<0.002		
9/22/2020			<0.002	<0.002
9/30/2020			<0.002	
10/1/2020		<0.002		<0.002
2/10/2021		<0.002	<0.002	<0.002
2/11/2021	0.00013 (J)			
9/8/2021		<0.002		
9/9/2021				<0.002
9/10/2021	<0.002		<0.002	
2/1/2022		<0.002		
2/2/2022	<0.002		<0.002	
2/3/2022				<0.002
9/1/2022		<0.002		
9/6/2022			<0.002	<0.002
9/7/2022	<0.002			
1/31/2023	<0.002	<0.002	<0.002	<0.002
8/8/2023	<0.002		<0.002	<0.002
8/9/2023	.0.000	<0.002	0.005	
1/23/2024	<0.002	.0.005	<0.002	0.000
1/24/2024	.0.000	<0.002	0.005	<0.002
8/20/2024	<0.002	<0.002	<0.002	<0.002
Mean	0.001766	0.001844	0.001798	0.001802
Std. Dev.	0.0006611	0.0005174	0.0005887	0.0005758
Upper Lim.	0.002	0.002	0.002	0.002
Lower Lim.	0.00013	0.00026	0.00022	0.00026

Constituent: Lithium (mg/L) Analysis Run 9/30/2024 1:44 PM View: Confidence Intervals
Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARAMW-1	ARAMW-2	ARAMW-7	ARAMW-8	ARGWC-21	ARGWC-22	ARGWC-23	ARAMW-9
8/30/2016					0.0092			
10/26/2016					0.0071 (J)			
1/25/2017					0.0087			
4/10/2017					0.0074			
6/19/2017					0.0079			
10/24/2017					0.0097			
4/10/2018					0.012			
10/16/2018					0.01			
8/20/2019					0.0098			
10/8/2019					0.015			
12/16/2019						0.027	0.02	
1/14/2020	0.009	0.086				0.034	0.022	
2/11/2020	0.000	0.000				0.01	0.0078	
3/9/2020						0.0071	0.013	
4/7/2020					0.011	0.012	0.032	
5/27/2020					0.011	0.017	0.037	
6/24/2020	0.0084	0.018				0.023	0.007	
6/25/2020	0.000	0.0.0			0.013	0.020	0.043	
7/15/2020					0.0.0	0.021	0.042	
8/19/2020						0.026	0.042	
8/20/2020	0.0066	0.036				0.020	0.036	
8/21/2020	0.0000	0.000			0.013		0.000	
9/22/2020					0.010	0.014	0.039	
9/30/2020	0.0091					0.014	0.000	
10/1/2020	0.0001	0.019			0.012	0.014	0.04	
11/30/2020		0.013	0.061		0.012		0.04	
12/1/2020			0.001	0.0044 (J)				
2/10/2021	0.0097			0.0044 (0)	0.012	0.022	0.044	
2/11/2021	0.0007	0.021	0.061	0.0055	0.012	0.022	0.044	
9/8/2021		0.02.	0.001	0.0000	0.012			
9/9/2021	0.0095			0.0062	0.012		0.045	
9/10/2021	0.000	0.025	0.06	0.0002		0.021	0.0.0	
2/1/2022		0.020	0.00		0.012	0.021		
2/2/2022			0.06		0.012	0.02		
2/3/2022	0.0099	0.021	0.00	0.0063		0.02	0.052	
9/1/2022	0.0000	0.021		0.0000	0.0116		0.002	
9/2/2022	0.0097 (J)	0.0232		0.00654 (J)	0.0110			
9/6/2022	0.0007 (0)	0.0202		0.00004 (0)		0.0136	0.0578	
9/7/2022			0.0634			0.0.00	0.0070	
1/31/2023	0.0099 (J)	0.0202	0.068	0.00659 (J)	0.0124	0.0284	0.0499	
2/1/2023	0.0000 (0)	0.0202	0.000	0.00000 (0)	0.012+	0.0204	0.0400	0.00463 (J)
8/8/2023	0.00909 (J)	0.0193	0.0577			0.028	0.0517	0.00907 (J)
8/9/2023	0.00000 (0)	0.0100	0.0077	0.00637 (J)	0.0131	0.020	0.0017	0.55507 (0)
1/23/2024			0.0779	0.00007 (0)	0.0101	0.0125		0.00862 (J)
1/24/2024	0.0106	0.0172	2.07.0	0.00669 (J)	0.0131		0.0547	(0)
8/20/2024	0.00934 (J)	0.0172	0.0585	0.00586 (J)	0.0119	0.02	0.0469	0.00958 (J)
Mean	0.00934 (3)	0.0143	0.06306	0.00586 (3)	0.0119	0.01951	0.05025	0.007975
Std. Dev.	0.009230	0.0207	0.006339	0.00003	0.002084	0.007205	0.03023	0.002264
Upper Lim.	0.0009938	0.01943	0.000339	0.006662	0.01221	0.007203	0.05532	0.01179
Lower Lim.	0.003502	0.0172	0.0577	0.005466	0.009968	0.01529	0.04518	0

Constituent: Mercury (mg/L) Analysis Run 9/30/2024 1:44 PM View: Confidence Intervals
Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWC-21	ARGWC-22
8/30/2016	<0.0002	
10/26/2016	<0.0002	
1/25/2017	7.3E-05 (J)	
4/10/2017	<0.0002	
6/19/2017	<0.0002	
10/24/2017	<0.0002	
4/10/2018	<0.0002	
10/16/2018	<0.0002	
8/20/2019	<0.0002	
12/16/2019		<0.0002
1/14/2020		<0.0002
2/11/2020		<0.0002
3/9/2020		<0.0002
5/27/2020		<0.0002
7/15/2020		<0.0002
8/19/2020		<0.0002
8/21/2020	<0.0002	
9/22/2020		<0.0002
9/8/2021	<0.0002	
9/10/2021		<0.0002
2/1/2022	<0.0002	
2/2/2022		<0.0002
9/1/2022	<0.0002	
9/6/2022		<0.0002
1/31/2023	<0.0002	<0.0002
8/8/2023		<0.0002
8/9/2023	<0.0002	
1/23/2024		0.000372
1/24/2024	<0.0002	
8/20/2024	<0.0002	<0.0002
Mean	0.0001925	0.0002115
Std. Dev.	3.08E-05	4.441E-05
Upper Lim.	0.0002	0.000372
Lower Lim.	7.3E-05	0.0002

Constituent: Molybdenum (mg/L) Analysis Run 9/30/2024 1:44 PM View: Confidence Intervals

Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARAMW-1	ARAMW-2	ARAMW-7	ARAMW-8	ARGWC-22	ARGWC-23	ARAMW-9
12/16/2019					0.0018 (J)	0.025	
1/14/2020					0.0012 (J)	0.032	
2/11/2020					0.00093	0.021	
3/9/2020					0.00067	0.013 (J)	
5/27/2020					<0.015	0.048	
6/24/2020	0.0051 (J)	<0.015			<0.015		
6/25/2020						0.055	
7/15/2020					<0.015	0.055	
8/19/2020					<0.015		
8/20/2020	0.0076 (J)	0.0013 (J)				0.061	
9/22/2020					<0.015	0.053	
9/30/2020	0.0054 (J)				<0.015		
10/1/2020		<0.015				0.064	
11/30/2020			0.0012 (J)				
12/1/2020				0.056			
2/10/2021	0.0043 (J)				<0.015	0.063	
2/11/2021		<0.015	<0.001	0.038			
9/9/2021	0.0059 (J)			0.12		0.071	
9/10/2021		<0.015	<0.001		<0.015		
2/2/2022			<0.001		<0.015		
2/3/2022	0.0049 (J)	<0.015		0.16		0.065	
9/2/2022	0.00785	0.000603 (J)		0.175			
9/6/2022					0.000203 (J)	0.067	
9/7/2022			0.000379 (J)				
1/31/2023	0.00974	0.000491 (J)	<0.001	0.188	0.000496 (J)	0.0671	
2/1/2023							0.014
8/8/2023	0.00667	0.0011	<0.001		0.000514 (J)	0.0618	0.0109
8/9/2023				0.203			
1/23/2024			<0.001		0.00025 (J)		0.00683
1/24/2024	0.00937	0.00101		0.196		0.0651	
8/20/2024	0.00873	0.000585 (J)	0.000257 (J)	0.195	0.000406 (J)	0.074	0.00237
Mean	0.006869	0.007281	0.0008707	0.1479	0.007859	0.05339	0.008525
Std. Dev.	0.001903	0.007394	0.0003215	0.06261	0.007356	0.0183	0.005046
Upper Lim.	0.008455	0.015	0.0012	0.2005	0.015	0.06445	0.01998
Lower Lim.	0.005284	0.000585	0.000257	0.1024	0.000496	0.04668	0

Constituent: Selenium (mg/L) Analysis Run 9/30/2024 1:44 PM View: Confidence Intervals Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWC-22
12/16/2019	<0.005
1/14/2020	<0.005
2/11/2020	<0.005
3/9/2020	<0.005
4/7/2020	<0.005
5/27/2020	<0.005
7/15/2020	<0.005
8/19/2020	<0.005
9/22/2020	<0.005
9/30/2020	<0.005
2/10/2021	<0.005
9/10/2021	0.002 (J)
2/2/2022	<0.005
9/6/2022	<0.005
1/31/2023	<0.005
8/8/2023	<0.005
1/23/2024	<0.005
8/20/2024	<0.005
Mean	0.004833
Std. Dev.	0.0007071
Upper Lim.	0.005
Lower Lim.	0.002

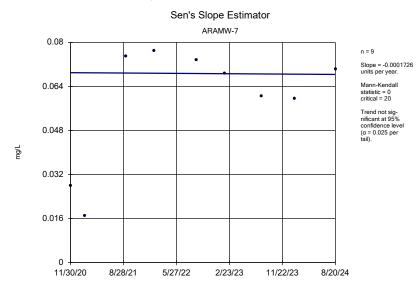
Constituent: Silver (mg/L) Analysis Run 9/30/2024 1:44 PM View: Confidence Intervals
Plant Arkwright Client: Southern Company Data: Arkwright No 2

	ARGWC-21
6/23/2016	<0.001
10/26/2016	<0.001
4/10/2017	<0.001
10/24/2017	<0.001
4/10/2018	<0.001
10/16/2018	<0.001
3/27/2019	<0.001
10/8/2019	0.00043 (J)
4/7/2020	<0.001
10/1/2020	<0.001
2/10/2021	<0.001
9/8/2021	<0.001
2/1/2022	<0.001
9/1/2022	<0.001
1/31/2023	<0.001
8/9/2023	<0.001
1/24/2024	<0.001
8/20/2024	<0.001
Mean	0.0009683
Std. Dev.	0.0001344
Upper Lim.	0.001
Lower Lim.	0.00043

 $\label{eq:constituent: Thallium (mg/L)} Constituent: Thallium (mg/L) Analysis Run 9/30/2024 1:44 PM View: Confidence Intervals Plant Arkwright Client: Southern Company Data: Arkwright No 2$

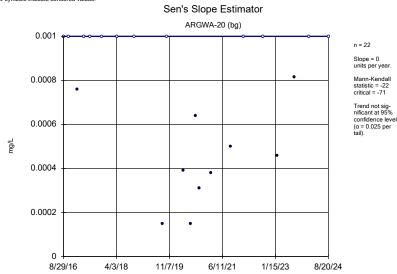
	ARGWC-22	ARGWC-23			
12/16/2019	0.00078 (J)	<0.002			
1/14/2020	0.00027 (J)	<0.002			
2/11/2020	0.00034	0.00028 (J)			
3/9/2020	0.00035 (J)	0.00026 (J)			
5/27/2020	<0.002	0.00026 (J)			
7/15/2020	<0.002	<0.002			
8/19/2020	<0.002				
8/20/2020		<0.002			
9/22/2020	<0.002	<0.002			
9/9/2021		<0.002			
9/10/2021	<0.002				
2/2/2022	<0.002				
2/3/2022		<0.002			
9/6/2022	<0.002	<0.002			
1/31/2023	<0.002	<0.002			
8/8/2023	<0.002	<0.002			
1/23/2024	<0.002				
1/24/2024		<0.002			
8/20/2024	<0.002	<0.002			
Mean	0.001583	0.001653			
Std. Dev.	0.0007244	0.0007177			
Upper Lim.	0.002	0.002			
Lower Lim.	0.00035	0.00028			

FIGURE J.

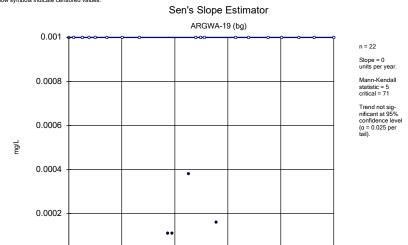

Appendix IV Trend Tests - Significant Results

Plant Arkwright Client: Southern Company Data: Arkwright No 2 Printed 9/27/2024, 3:13 PM

Comptitude	14/-11	Class	0-1-	Critical	C:	N.	0/ NID-	Manager 186	Xform	Alpha	M-4
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>IN</u>	%NDs	Normality	<u>XIOIIII</u>	Alpha	Method
Lithium (mg/L)	ARGWC-23	0.008693	127	58	Yes	19	0	n/a	n/a	0.05	NP
Molybdenum (mg/L)	ARAMW-8	0.03468	28	20	Yes	9	0	n/a	n/a	0.05	NP
Molybdenum (mg/L)	ARGWA-19 (ba)	-0.00008875	-92	-62	Yes	20	65	n/a	n/a	0.05	NP


Appendix IV Trend Tests - All Results

Plant Arkwright Client: Southern Company Data: Arkwright No 2 Printed 9/27/2024, 3:13 PM Calc. Critical <u>%NDs</u> <u>Normality</u> <u>Xform</u> Constituent Well Slope Sig. $\underline{\mathsf{N}}$ <u>Alpha</u> Method Cobalt (mg/L) ARAMW-7 -0.0001726 0 20 No 9 0 0.05 NP n/a n/a 5 Cobalt (mg/L) ARGWA-19 (bg) 0 71 No 22 81.82 n/a 0.05 NP n/a Cobalt (mg/L) ARGWA-20 (bg) -22 -71 No 22 54.55 n/a 0.05 NP n/a ARAMW-7 0 Lithium (mg/L) 20 No 9 0.05 NP Lithium (mg/L) ARGWA-19 (bg) -0.0001902 -68 -71 NP No 22 4.545 n/a n/a 0.05 ARGWA-20 (bg) 6 71 Lithium (mg/L) No 22 81.82 n/a 0.05 NP 0.008693 Lithium (mg/L) ARGWC-23 127 58 Yes 19 NP n/a n/a 0.05 28 Molybdenum (mg/L) ARAMW-8 0.03468 20 0 n/a n/a 0.05 ARGWA-19 (bg) -92 -62 Molybdenum (mg/L) -0.00008875 Yes 20 65 n/a n/a 0.05 NP Molybdenum (mg/L) ARGWA-20 (bg) 0.05 NP


Constituent: Cobalt Analysis Run 9/27/2024 3:12 PM View: Trend Tests - App IV
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Constituent: Cobalt Analysis Run 9/27/2024 3:12 PM View: Trend Tests - App IV

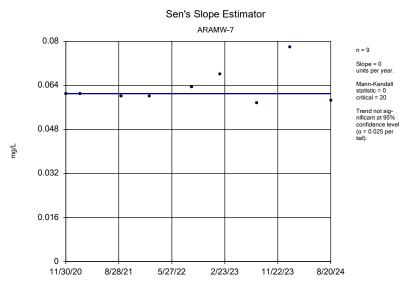
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Constituent: Cobalt Analysis Run 9/27/2024 3:12 PM View: Trend Tests - App IV

Plant Arkwright Client: Southern Company Data: Arkwright No 2

6/11/21

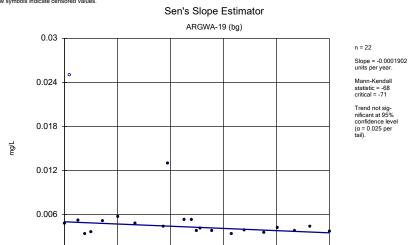
11/7/19


8/20/24

1/15/23

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

8/29/16


4/3/18

Constituent: Lithium Analysis Run 9/27/2024 3:12 PM View: Trend Tests - App IV

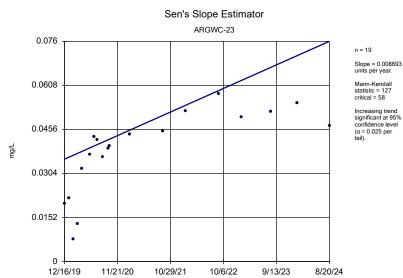
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Lithium Analysis Run 9/27/2024 3:12 PM View: Trend Tests - App IV
Plant Arkwright Client: Southern Company Data: Arkwright No 2

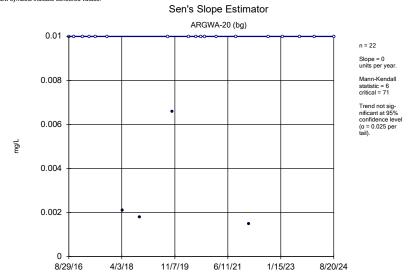
6/11/21

11/7/19

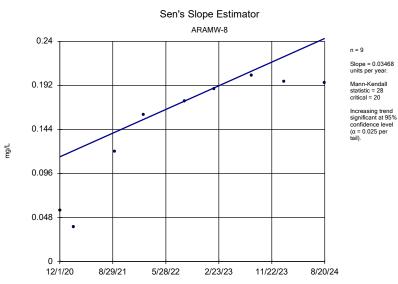

8/20/24

1/15/23

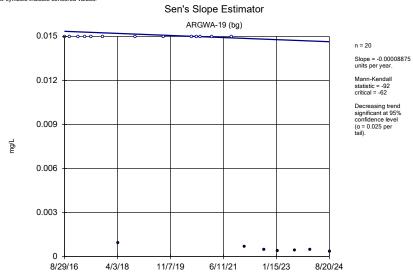
Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG


8/29/16

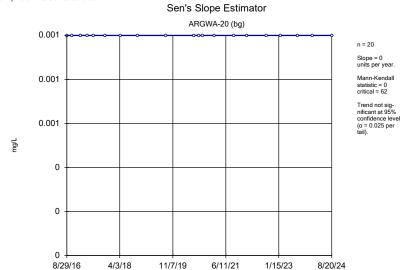
4/3/18


Constituent: Lithium Analysis Run 9/27/2024 3:12 PM View: Trend Tests - App IV
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Lithium Analysis Run 9/27/2024 3:12 PM View: Trend Tests - App IV
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG


Constituent: Molybdenum Analysis Run 9/27/2024 3:12 PM View: Trend Tests - App IV
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas[™] v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Molybdenum Analysis Run 9/27/2024 3:12 PM View: Trend Tests - App IV
Plant Arkwright Client: Southern Company Data: Arkwright No 2

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Molybdenum Analysis Run 9/27/2024 3:12 PM View: Trend Tests - App IV
Plant Arkwright Client: Southern Company Data: Arkwright No 2