PERIODIC RUN-ON AND RUN-OFF CONTROL PLAN REVISION 3 391-3-4-.10(5) and 40 C.F.R. PART 257.81 PLANT BOWEN PRIVATE INDUSTRY SOLID WASTE DISPOSAL FACILITY (ASH LANDFILL) GEORGIA POWER COMPANY

The Federal CCR Rule, and, for existing CCR Landfills where applicable, the Georgia CCR Rule (391-3-4-.10) require the owner or operator of an existing or new CCR landfill or any lateral expansion of a CCR landfill to prepare a run-on and run-off control system plan to document how these control systems have been designed and constructed to meet the applicable requirements of this section of the Rule. *See* 40 C.F.R. § 257.81; Ga. Comp. R. & Regs. r. 391.3-4-.10(5)(a). In addition, the Rules require periodic run-on and run-off control system plans every five years. *See* 40 C.F.R. § 257.81(c)(4); Ga. Comp. R. & Regs. r. 391.3-4-.10(5)(a).

The CCR Landfill known as the Plant Bowen CCR Landfill is located in Bartow County, just west of Cartersville, Georgia on Plant Bowen property. Active Cells 1 & 2 and 9 & 10 were permitted and constructed with a minimum 2-ft. compacted clay liner with a maximum hydraulic conductivity of 1×10^{-7} cm/sec, underlain with a structural fill layer with a maximum hydraulic conductivity of 1×10^{-6} cm/sec. Cells 9 & 10 were subsequently retrofitted with a composite liner and leachate collection system. Active Cells 3 & 4 were permitted and constructed with a composite liner system consisting of a HDPE geomembrane and a minimum 2-ft. compacted clay layer with a maximum hydraulic conductivity of 1×10^{-7} cm/sec. The composite liner is underlain with a structural fill layer svaried in thickness from 5 ft. (minimum) to 13 ft. The facility consists of the CCR storage cells, leachate ponds for Cell 3 and 4, and separate sedimentation ponds and clear pools. Future Cells 5-8 will be constructed in the same manner as Cells 3 & 4.

The storm water flows have been calculated using the Natural Resources Conservation Service (NRCS) method (also known as the Soil Conservation Service (SCS) method) using the 25-yr, 24hr storm event. The storm water detention system has been designed in accordance with the Georgia Soil and Water Conservation Commission requirements and Technical Release 55 (TR-55) as well as other local, city, and government codes. The post-developed storm water discharge was designed to be less than the pre-developed storm water discharge in accordance with the requirements of the State of Georgia.

Run-off curve number data was determined using Table 2.1.5-1 from the Georgia Stormwater Management Manual. Run-off coefficient data was determined by utilizing Table 2.1.5-2. The rainfall distribution for Plant Bowen (Type II) was determined from Technical Release 55 (TR-55). National Oceanic and Atmospheric Administration (NOAA) Atlas 14 was used to determine the 24-hr precipitation for the design storm event of 25-yr for Plant Bowen.

The NRCS provides information on soil characteristics and hydrologic groups present at the site. It was determined that the hydrological group "C" for Cells 1 & 2 and "B" for Cells 3 through 8 and Cells 9 & 10 should be used to best reflect the characteristics of the soils on site. This information was placed into Hydraflow Hydrographs 2019 and used to generate appropriate precipitation curves, runoff curve numbers and storm basin run-off values. This methodology has also been utilized for future cells within the unit.

The Plant Bowen CCR Landfill Cells are designed and constructed with perimeter berms and drainage ditches around the cells that prevent stormwater run-on during the peak discharge of a 24-hr, 25-yr storm from flowing onto the active portion of the landfill. The leachate from Cells 3 & 4, future Cells 5 through 8 and Cells 9 & 10 is collected and treated separately from all storm water run-off in the cells. Storm water run-off from Cells 1 & 2, Cells 9 & 10 and Cells 3 through 8, is routed through a system of sedimentation ponds designed to handle the run-off from a 24-hr, 25-yr storm. This plan is supported by appropriate engineering calculations (attached) and was reviewed to reflect current conditions.

The facility is operated subject to and in accordance with § 257.3-3 of EPA's regulations.

I hereby certify that the run-on and run-off control system plan meets the requirements of 40 C.F.R. Part 257.81.

R \cap G ISIE +No 24/24 PROVES James C. Pegues, P. Licensed State of Georgia, PE 419

Calculation Number:
DC-BN-735210-004

Project/Plant:	Unit(s):	Discipline/Area:
Bowen	1 - 4	Civil
Title/Subject:		
Run-on and Run-off Study for Bowen Cells 1 & 2		2
Purpose/Objective:		
To determine if the Cell's stormwater manageme	nt can safely manage	and pass the design
storm event.		
System or Equipment Tag Numbers:	Originator:	(#)
N/A	Jeremy Brown	

.

Contents

Торіс	Page	Attachments (Computer Printouts, Tech. Papers, Sketches, Correspondence)	# of Pages
Purpose of Calculation	1		1
Summary of Conclusions	1		1
Project Narrative	1-2		2
Methodology	2	95	ୀ ି
Assumptions/Criteria	2		1
Design Inputs/References	3-9		7
Body of Calculation	10-23		14
Total # of pages including cover sheet & attachments:	24		

Revision Record

Rev. No.	Description	Originator Initial / Date	Reviewer Initial / Date	Approver Initial / Date
0	Issued for Review	JKB 2/9/21	AOG 3/1/21	JWM 6/7/21
	· · · · · · · · · · · · · · · · · · ·		· · · · · ·	1

Notes:

Project	Prepared by	Date	
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/9/21	
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 1 & 2	Reviewed by Ashley Grissom	Date 3/1/21	
	Calculation Number DC-BN- 735210-004	Sheet 1 of 23	

Purpose of Calculation

The purpose of this calculation is to determine if the existing sedimentation ponds and clear pools can sufficiently handle run-on/run-off during a minimum 25-yr, 24-hr storm event per federal stormwater requirements Title 40 CFR Part 257.81 and the Georgia Environmental Protection Division's (EPD) Georgia CCR Rule (391-3-4-.10).

Summary of Conclusions

Based on our analysis, the detention pond system is adequate to collect and control the volume of water resulting from a 24-hour 25-year storm, as required.

Chause David Name	Normal Pool Elevation (feet,	Maximum 25 year pool elevation	Spillway/Top of Dike Elevation (feet,	Freeboard to Spillway (feet,
Storage Pond Name	NAVD 88)	(feet, NAVD 88)	NAVD 88)	NAVD 88)
Clear Pool	691.00	693.88	696.00/700.00	2.12/6.12
Sedimentation Pond	691.00	693.88	696.00/700.00	2.12/6.12

Project Narrative

The Plant Bowen CCB Disposal Facility Cells 1 & 2 site is located in Bartow County and is approximately 1.5 miles East of Euharlee, Georgia and 6 miles southwest of Cartersville, Georgia. The plant is bordered on the north and east by the Etowah River and on the south and west by farmland.

Cells 1 & 2 cover 34.88 acres and the two disposal cells are not divided by any means. (See Image 1).

Cells 1 & 2 are comprised of a 31.12 acres storage cell, 2.53 acres sedimentation pond, 1.23 acres clear pool, berms, access roads and ditches. (See Image 2) Cells 1 & 2 include a perimeter dike to control surface rainfall run-off. There is no stormwater run-on for these cells. Run-off from this area is directed through interior perimeter ditches and through 3 - 36" diameter HDEP pipes into a sedimentation pond that is connected to a clear pool via two 72" diameter risers and two 48" diameter pipes. Stormwater from the clear pool is discharged through a 72" diameter riser and 48" diameter pipe.

2 of 23

Design Calculations Project Prepared by Date 2/9/21 Plant Bowen Run-on Run-off Control Jeremy Brown Subject/Title Reviewed by Date Provide run-on and run-off system 3/1/21 Ashley Grissom calculations for the peak discharge from a 24-hr 25-year storm Cells 1 & 2 Calculation Number Sheet

The clear pool has an auxiliary spillway that is a grassed trapezoidal weir. The auxiliary spillway is 8' wide with 6:1 side slopes and sloped at 1% in the direction of flow with a 3:1 slope on the discharge channel at the downstream end. Following pages will show the analysis for Cells 1 & 2.

DC-BN-735210-004

Methodology

The stormwater flows were calculated using the National Resources Conservation Service method (also known as the Soil Conservation Service (SCS) method) using a 25-yr, 24-hr design storm event.

Storm basin calculation information was gathered from a number of sources to include the Georgia Stormwater Manual and Technical Release 55.

The National Resources Conservation Service (NCRS) provided information on the soil characteristics and hydrologic groups. The soil types found on the site are Urban Land, Wax Silt Loam and Waynesboro Clay Loam. (See Images 3 & 4). Almost the entire site (99.9%) is considered Urban Land because the cells currently have some waste stacked in it. The soils in Cells 9 & 10 that are adjacent to the North and Cells 3 & 4 that are in the vicinity to the Northwest both consist of hydrological group "B". Therefore, hydrological group "B" should be used to best reflect the characteristics of the soils on site.

Run-off curve number data was determined using Table 2.1.5-1 from the Georgia Stormwater Management Manual. Run-off coefficient data was determined by utilizing Table 2.1.5-2 from the Georgia Stormwater Management Manual and Manning's n for Channels (Chow, 1959).

Appendix B from the TR-55 was used to determine the rain distribution for Plant Bowen is Type II. (See Image 5)

NOAA Atlas 14 was used to determine the 24-hour precipitation for the design storm event of 25-yr for Plant Bowen is 6.07 in. (See Image 6)

Assumptions/Criteria

- Refer to Title 40 CFR Part 257.81 Hydrologic and hydraulic capacity requirements for the runon and run-off controls for CCR landfills.
- Other assumptions are listed on attached calculation sheets.

Design Calculations		company
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/9/21
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 1 & 2	Reviewed by Ashley Grissom	Date 3/1/21
	Calculation Number DC-BN- 735210-004	Sheet 3 of 23

Design Inputs/References

- AutoCad Civil 3D 2019, Autodesk, Inc.
- Hydraflow Hydrographs Extension for AutoCad Civil 3D 2019, Autodesk, Inc.
- Hydraflow Express Extension for AutoCad Civil 3D 2019, Autodesk, Inc.
- NOAA Atlas 14, Volume 9, Version 2 for Taylorsville, GA.
- Georgia Stormwater Manual
- TR-55 Urban Hydrology for Small Watersheds, Appendix B, National Resources Conservation Service, Conservation Engineering Division, 1986.
- Georgia Power Company Plant Bowen CCB Disposal Facility Design and Operation Plans H15061 H15097, H15296 H15315 and H52258 H52260.

Design CalculationsCompanyProjectPrepared byDatePlant Bowen Run-on Run-off ControlJeremy Brown2/9/21Subject/TitleReviewed byDateProvide run-on and run-off system
calculations for the peak discharge from
a 24-hr 25-year storm Cells 1 & 2Reviewed byDateCalculation Number
DC-BN- 735210-004Sheet
4 of 2323

Image 1

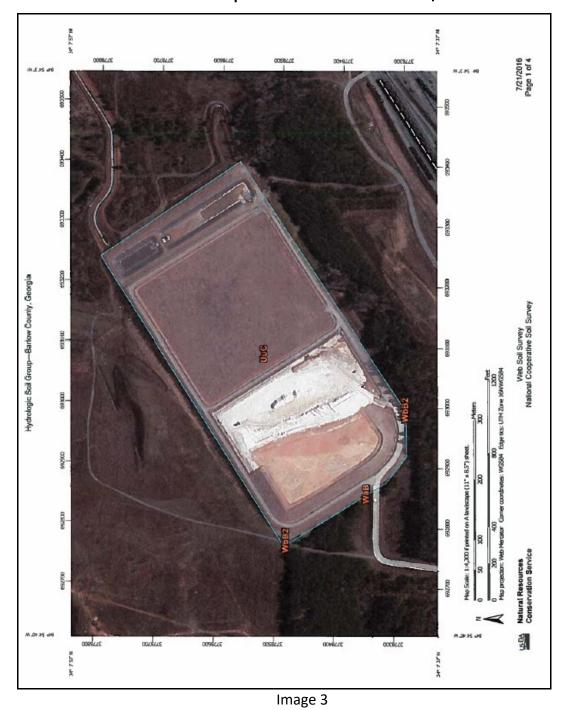

Design CalculationsCompanyProjectPrepared byDatePlant Bowen Run-on Run-off ControlJeremy Brown2/9/21Subject/TitleReviewed byAshley GrissomProvide run-on and run-off system
calculations for the peak discharge from
a 24-hr 25-year storm Cells 1 & 2Reviewed by
Ashley GrissomDate
3/1/21Calculation Number
DC-BN- 735210-004Sheet
5 of 23

Image 2

Design Calculations		Company
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/9/21
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 1 & 2	Reviewed by Ashley Grissom	Date 3/1/21
	Calculation Number DC-BN- 735210-004	Sheet 6 of 23

Design Calculations		eep
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/9/21
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 1 & 2	Reviewed by Ashley Grissom	Date 3/1/21
	Calculation Number DC-BN- 735210-004	Sheet 7 of 23

Hydi	rologic Soil Gr	oup		
Hy	drologic Soil Group—Sur	mmary by Map Unit — B	artow County, Georgia (GA0	15)
Map unit symbol	Map unit name	Rating	Acres In AOI	Percent of AOI
UuC	Urban land-Udorthents complex. 0 to 10 percent slopes		40.2	99.9 %
WaB	Wax silt loam, 2 to 6 percent slopes, rarely flooded	D	0.0	0.03
WbB2	Waynesboro clay loam,2 to 6 percent slopes, moderately eroded	B	0.1	0.1 9
Totals for Area of Inte	rest		40.2	100.0%
soils ar from lo The so three d	re not protected by veg ng-duration storms, ils in the United States lual classes (A/D, B/D,	etation, are thorough are assigned to fou and C/D). The group	ate of water infiltration wh nly wet, and receive prece r groups (A, B, C, and D) ps are defined as follows runoff potential) when tho	ipitation) and ::
soils ar from lo The so three d Group wet, Th gravell Group consist soils th	re not protected by veg ng-duration storms, ills in the United States lual classes (A/D, B/D, A. Soils having a high rese consist mainly of y sands. These soils h B. Soils having a mode t chiefly of moderately of	etation, are thorough are assigned to fou and C/D), The group infiltration rate (low r deep, well drained to ave a high rate of wa erate infiltration rate deep or deep, moder to texture to moderal	r groups (A, B, C, and D) ps are defined as follows runoff potential) when tho o excessively drained sar	ipitation) and :: proughly nds or drained
soils ar from lo The so three d Group wet, Tr gravell Group consist soils th have a Group chiefly	re not protected by veg ng-duration storms, ills in the United States lual classes (A/D, B/D, A. Soils having a high nese consist mainly of y sands. These soils h B. Soils having a mode t chiefly of moderately fin moderate rate of wate C. Soils having a slow of soils having a layer f moderately fine texture	etation, are thorough are assigned to fou and C/D), The group infiltration rate (low r deep, well drained to ave a high rate of wa erate infiltration rate deep or deep, moder the texture to moderate r transmission. infiltration rate when that impedes the do	r groups (A, B, C, and D) ps are defined as follows unoff potential) when tho o excessively drained sar aler transmission. when thoroughly wet. Th ately well drained or well	ipitation and coughly nds or drained e solls consist ater or
soils ar from lo The so three d Group wet, Tr gravell Group consist soils th have a Group chiefly soils of transm Group thorouy potenti at or no	re not protected by veg ng-duration storms, ills in the United States lual classes (A/D, B/D, A. Soils having a high rese consist mainly of y sands. These soils h B. Soils having a mode t chiefly of moderately fin moderate rate of wate C. Soils having a slow of soils having a layer f moderately fine texture ission. D. Soils having a very ghly wet. These consis ial, soils that have a high	etation, are thorough are assigned to fou and C/D). The group infiltration rate (low r deep, well drained to ave a high rate of wat erate infiltration rate of wat erate infiltration rate of wat that impedes the do a or fine texture. The slow infiltration rate the tohiefly of clays that in water table, soils bills that are shallow of	nly wet, and receive preci- r groups (A, B, C, and D) ps are defined as follows runoff potential) when tho o excessively drained sar aler transmission. when thoroughly wet. The ately well drained or well tely coarse texture. These in thoroughly wet. These is soils have a slow rate of (high runoff potential) wh that have a high shrink-swell that have a claypan or cla pover nearly impervious m	ipitation ipitation and ic proughly nds or drained e soils consist ater or of water hen ll ay layer
soils ar from lo The so three d Group wet, Tr gravell Group consist soils th have a Group chiefly soils of transm Group thorou; potenti at or n These If a soi for drai	re not protected by veg ng-duration storms, ills in the United States lual classes (A/D, B/D, A. Soils having a high rese consist mainly of a y sands. These soils h B. Soils having a mode t chiefly of moderately fin moderate rate of wate C. Soils having a layer moderately fine texture ission. D. Soils having a very ghly wet. These consis ial, soils that have a hig ear the surface, and so soils have a very slow I is assigned to a dual	etation, are thorough are assigned to fou and C/D), The group infiltration rate (low r deep, well drained to ave a high rate of wa erate infiltration rate of deep or deep, moder to the texture to moderate r transmission. infiltration rate when that impedes the do e or fine texture, The slow infiltration rate when that impedes the do e or fine texture, The slow infiltration rate when that impedes the do e or fine texture, The slow infiltration rate the thiefly of clays that gh water table, soils is that are shallow or rate of water transm hydrologic group (A/ ond is for undrained	nly wet, and receive preci- r groups (A, B, C, and D) ps are defined as follows unoff potential) when tho b excessively drained sar aler transmission. when thoroughly wet. The ately well drained or well tely coarse texture. These in thoroughly wet. These is soils have a slow rate of winward movement of was se soils have a slow rate of (high runoff potential) whit t have a high shrink-swell that have a claypan or cla over nearly impervious m hission. (D, B/D, or C/D), the first areas, Only the soils thal	ipitation) and :: proughly nds or drained e soils consist ater or of water hen ll ay layer laterial. letter is

Design Calculations Project Prepared by Date Plant Bowen Run-on Run-off Control Jeremy Brown 2/9/21 Subject/Title Reviewed by Date Provide run-on and run-off system calculations for the peak discharge from 3/1/21 Ashley Grissom a 24-hr 25-year storm Cells 1 & 2 Calculation Number Sheet DC-BN-735210-004 8 of 23

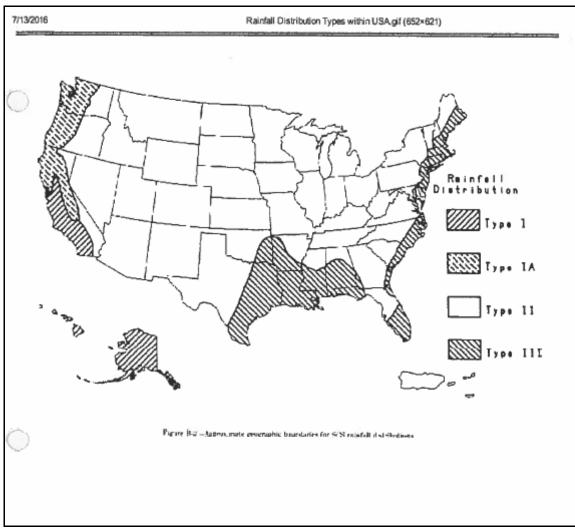


Image 5

Design Calculations		company
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/9/21
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 1 & 2	Reviewed by Ashley Grissom	Date 3/1/21
	Calculation Number DC-BN- 735210-004	Sheet 9 of 23

bitation Frequen	cy Data So	erver							Page 1
	Ě	Local	Statio tion name: T tude: 34.086 E evation (stat	LORSVILLI on ID: 09-86 Taylorsville, 1*, Longitu Ilevation:	i 00 Georgia, I de: -84.982 sta): 721 ft*	us. 8*			
			RECIPITATIO						
	Sanja Penc			el Yekta, Geoffe	ry Bonnin		aluk, Dale		
			National Weath abular <u>PF_c</u>						
			p	tabular					
PDS-based po	oint precipi	itation fre			/ith 90%	confiden	ce interva	als (in inc	hes)1
Duration				recurrence					
1	0,464	5 0.568	10	25	50	100	200	500	1000
6-min (0.321-0.518	(0.367-0.593)	(0.448-0.726)	(0.520-0.849)	(0.619-1.05)	(0.695-1.23)	(0.768-1.42)	(0.838+1.62)	(0.943-1.92)	(1.02-2.14)
10-min 0.594 (0.471-0.755	0.679	0.831 (0.655-1.06)	0.969 (0.761-1.24)	1.18 (0.907-1.56)	1.35 (1.02-1.80)	1.54 (1.12-2.07)	1.75 (1.23-2.38)	2.03 (1.38-2.81)	2.27 (1.50-3.14)
15-min 0.725 (0.574-0.926	0.828	1.01 (0.799-1.30)	1.18 (0.928-1.52)	1.44 (1.11-1.90)	1.65 (1.24-2.19)	1.88 (1.37-2.53)	2.13 (1.50-2.90)	2.48 (1.68-3.43)	2.77 (1.83-3.83)
30-min 1.02 (0.811-1.31	1.17 (0.924-1.49)	1.43 (1.13-1.83)	1.66 (1.31-2.13)	2,02 (1.56-2.68)	2.33 (1.75-3.09)	2.65	3.01	3.52	3.93
60-min 1.33 (1.05-1.70)	1.52 (1.20-1.94)	1.85 (1.46-2.36)	2.15 (1.69-2.78)	2.61 (2.01-3.45)	3.00 (2.25-3.98)	3.41 (2.49-4.58)	3.86	4,49	5.01 (3.31-6.93)
2-hr 1.64 (1.31-2.06)	1.86	2.27	2,64 (2.10-3.34)	3.20	3.66	4.16	4.70	5.47	6.09
3-hr 1.84 (1.49-2.30)	2.10 (1.69-2.62)	2.55 (2.05-3.19)	2.96 (2.37-3.71)	3.56 (2.80-4.60)	4.07	4.60	5.18 (3.73-6.91)	6.00 (4.17-8,12)	6.55
6-hr 2.27 (1.86-2.79)	2.57	3.10	3.57	4,26 (3.38-5.41)	4.82	5.42	6.05	6.94 (4.90-9.27)	7.65
12-hr 2.79 (2.32-3.39)	3.15 (2.61-3.63)	3.77 (3.12-4.58)	4.31 (3.54-5.25)	5.08 (4.08-6.34)	5.70 (4.49-7.17)	6.36 (4.67-8.10)	7.04	7.99	8.73
24-hr 3.34 (2.81-3.99)	3.79	4.54	5.18 (4.32-6.21)	6,07 (4.93-7.43)	6.77 (5.40-8.35)	7.48 (5.81-9.38)	8.22 (6.17-10.5)	9.21 (6.70-11.9)	9.98 (7,10-13.0)
2-day 3.87 (3.29-4.55)	4.43	5.34 (4.54-6.30)	6.10 (5.16-7.22)	7.14	7.95	8.75 (6.85-10.5)	9.56 (7.27-12.0)	10.6 (7.84-13.6)	11.4 (8.27-14.6)
3-day 4.24 (3.64-4.96)	4.81 (4.13-5.62)	5.76	6.56	7.66	8.53	9.40	10.3 (7.92-12.6)	11.5 (8.57-14.6)	12.4 (9.06-15.9)
4-day (3.94-5.28)	5.14 (4.43-5.96)	6.10 (5.25-7.08)	6.92 (5 93-8.06)	8.07	8.98 (7.38-10.8)	9.92	10.9 (8.43-13.5)	12.2 (9.16-15.4)	13.2 (9 72-16 6)
7-day 5.37 (4.69-6.14)	5.99 (5.22-6.66)	7.04 (6.13-8.07)	7.94 (6 88-9.14)	9.24 (7.84-10.9)	10.3	11.3 (9.21-13.7)	12.5	14.0 (10.7-17.5)	15.2 (11.3-19.2)
10-day (5.34-6.69)	6.74 (5.92-7.66)	7.88	8.87	10.3 (8.79-12.0)	11.4 (9.58-13.5)	12.6	13.8 (11.0-16.8)	15.5 (11.9-19.3)	16.8 (12.7-21.1)
20-day 8.08 (7.21-9.03)	8.91 (7.95-9.96)	10.3	11.5	13.2 (11.5-15.2)	14.6 (12.4-16.9)	16.0	17.4 (14.0-20.9)	19.4 (15.2-23.7)	21.0
30-day 9.86 (8.87-10.9)	10.8 (9.75-12.0)	12.5	13.9 (12.4-15.4)	15.8 (13.8-17.9)	17.3	18.8	20.4 (16.6-24.2)	22.5 (17.8-27.3)	24.1 (18.7-29.5)
45-day 12.2 (11.1-13.4)	13.5	15.4 (14.0-17.0)	17.1 (15.4-18.8)	19.3 (16.9-21.6)	20.9 (18.1-23.7)	22.6 (19,1-26.1)	24.3 (19.9-28.5)	26.4	28.1
60-day 14.4 (13.1-15.6)	15.8	18.1 (16.5-19.6)	19.9	22.4 (19.8-24.9)	24.2	25.9 (22.0-29.7)	27.7 (22.8-32.2)	29.8 (23.9-35.5)	31.4 (24.8-37.9)
¹ Precipitation frequency Numbers in parenthesia (for a given duration and bounds are not checked Please refer to NOAA All	(PF) estimates in are PF estimates average recurre against probable	n this table are at lower and unce interval) wi maximum pres	based on frequi pper bounds of t be greater that cipitation (PMP)	ency analysis the 90% confi in the upper bo	of partial dura dence interval ound (or less t	ion series (PE . The probabil han the lower	25). Ity that precipi bound) is 5%.	tation frequen	cy estimates
THE REAL PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS		as more interio		ack to Top				1.00	

Image 6

Project	Prepared by	Date	
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/9/21	
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 1 & 2	Reviewed by Ashley Grissom	Date 3/1/21	
	Calculation Number DC-BN- 735210-004	Sheet 10 of 23	

Body of Calculation

See detailed calculations and software output.

```
Drainage Area = 34.88 AC (See Map 1)
Curve Number = 64 (See Attached Table 1)
       31.17 AC @ CN 61 (Grass)
      2.56 AC @ CN 85 (Gravel)
       1.15 AC @ CN 98 (Impervious – Liner in Sediment Pond and Clear Pool)
      ((31.17*61)+(2.56*85)+(1.15*98))/34.88 = 63.98 = 64
Time of Concentration = 20.49 Min (See Attached TR55 Worksheet and Map 2)
      Sheet Flow
             Manning's n-Value = 0.15 (Short Grass) (See Table 2)
             Flow Length = 300 \text{ LF}
             Land Slope = (806.50-784.00)/300 = 0.075 = 7.50%
       Shallow Concentrated
             Flow Length = 202 LF
             Watercourse Slope = (784.00-746.50)/202 = 0.1856 = 18.56%
             Surface is Unpaved
       Channel Flow (See Channel Report 1)
             Grass Lined 4' Wide Ditch with 2:1 Side Slopes and 4' Deep
             Cross Sectional Area = 6.00 SF
             Wetted Perimeter = 8.47 LF
              Channel Slope = (746.50-700.01)/2387 = 0.0195 = 1.95%
             Manning's n-Value = 0.030 (Vegetal Lining) (See Table 3)
             Flow Length = 2387 LF
       Channel Flow (See Channel Report 2)
             3 - 36" Dia. HDPE Pipes @ 2.75%
             Cross Section Area = 2.079 SF
             Wetted Perimeter = 3.70 LF
             Channel Slope = (700.01-698.00)/74 = 0.0272 = 2.72%
              Manning's n-Value = 0.013 (HDPE Pipes) (See Table 4)
             Flow Length = 74 LF
```

Time Interval = 3 Min Tc*0.1333 = 20.49*0.1333 = 2.73 = 3

		= - · · · F - · · · 7
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/9/21
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 1 & 2	Reviewed by Ashley Grissom	Date 3/1/21
	Calculation Number DC-BN- 735210-004	Sheet 11 of 23

Storm Distribution = Type II

Q₂₅ = 78.47 CFS (See Hydrograph Report 1)

To Evaluate for Storage Capacity, Treat The Sediment Pond and Clear Pool As One Pond Since They Are Interconnected.

Elevation	Sed. Pond Area	Clear Pool Area	Total Area	Volume
(FT)	(SF)	(SF)	(SF)	(CF)
689	0	15,324	15,324	0*
690	39,353	16,778	56,131	33,591*
691	42,351	18,271	60,622	91,947
692	45,389	19,804	65,193	154,835
693	48,465	21,375	69,840	222,331
694	51,581	22,986	74,567	294,515
695	54,737	24,637	79,374	371,465
696	57,931	26,326	84,257	453,260

Note: Stage storage is based on topographic information from 2020. *Dead Storage

Spillways

- Principal Spillway consists of a 72" Dia. Riser with a 48" Dia. CMP.
- Auxiliary Spillway consist of a grass lined trapezoidal weir that is 8' wide with 6:1 side slopes and sloped at 1% in the direction of flow with a 3:1 slope on the discharge channel at the downstream end.

High Water Elevation is 693.88 (See Pond Reports 1 & 2)

Design CalculationsCompanyProjectPrepared byDatePlant Bowen Run-on Run-off ControlJeremy Brown2/9/21Subject/TitleReviewed byDateProvide run-on and run-off system
calculations for the peak discharge from
a 24-hr 25-year storm Cells 1 & 2Reviewed byCalculation Number
DC-BN- 735210-004Sheet
12 of 23

Map 1

Project	Prepared by	Date	
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/9/21	
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 1 & 2	Reviewed by Ashley Grissom	Date 3/1/21	
	Calculation Number DC-BN- 735210-004	Sheet 13 of 23	

Table 2.1.5-1 Runoff C	urve Numbers ¹					
Cover description				numbe		DS
Cover type and		Average percent				
hydrologic condition		impervious area ²	A	в	С	D
Cultivated land:	without conserv with conservation	vation treatment on treatment	72 62	81 71	88 78	91 81
Pasture or range land	poor condition good condition		68 39	79 61	86 74	89 80
Meadow: good condition	n		30	58	71	78
Wood or forest land:	thin stand, poor good cover	r cover	45 25	66 55	77 70	83 77
Fair condition (Good condition	arks, golf cours (grass cover <50 grass cover 50% (grass cover > 7	%) to 75%)	68 49 39	79 69 61	86 79 74	89 84 80
Impervious areas. Paved parking (excluding right	lots, roofs, drivev -of-way)	ways, etc.	98	98	98	98
right-of-way) Paved; open di	nd storm drains (tches (including ng right-of-way) ight-of-way)	right-of-way)	98 83 76 72	98 89 85 82	98 92 89 87	98 93 91 89
Urban districts: Commercial and busi Industrial	ness	85% 72%	89 81	92 88	94 91	95 93
Residential districts I 1/8 acre or less (town 1/4 acre 1/3 acre 1/2 acre 1 acre 2 acres		ize: 85% 38% 30% 25% 20% 12%	77 61 57 54 51 46	85 75 72 70 68 65	90 83 81 80 79 77	92 87 86 85 84 82
Developing urban an Newly graded areas only, no vegetation)	(pervious areas	3	77	86	91	94
 Average runoff condition. The average percent impr follows impervious areas at areas are considered equiv SCS method has an adjustr CNs shown are equivalen cover type. 	ervious area shown v re directly connected alent to open space i ment to reduce the ef	to the drainage system. Imp In good hydrologic condition Rect.	If the impe	as have a ervious are	CN of 98. a is not o	and pervicus onnected, the


Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/9/21
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 1 & 2	Reviewed by Ashley Grissom	Date 3/1/21
	Calculation Number DC-BN- 735210-004	Sheet 14 of 23

TR55 Tc Worksheet Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v12 Hyd. No. 2 Ditch Description B C Totals <u>A</u> Sheet Flow = 0.150 0.011 0.011 Manning's n-value = 300.0 0.0 Flow length (ft) 0.0 Two-year 24-hr precip. (in) = 3.79 0.00 0.00 = 7.50 Land slope (%) 0.00 0.00 Travel Time (min) = 12.78 + 0.00 0.00 12.78 + = Shallow Concentrated Flow = 202.00 0.00 0.00 Flow length (ft) 0.00 Watercourse slope (%) = 18.56 0.00 Paved Paved Surface description = Unpaved =6.95 0.00 Average velocity (ft/s) 0.00 Travel Time (min) = 0.48 0.00 0.00 0.48 + = + Channel Flow X sectional flow area (sqft) = 6.00 0.00 0.00 Wetted perimeter (ft) = 8.47 0.00 0.00 Channel slope (%) 0.00 0.00 = 1.95 Manning's n-value = 0.030 0.015 0.015 Velocity (ft/s) =5.51 0.00 0.00 Flow length (ft) ({0})2387.0 0.0 0.0 Travel Time (min) = 7.23 0.00 0.00 7.23 + + = Total Travel Time, Tc 20.49 min

TR55 Worksheet

Design Calculations Project Prepared by Date Plant Bowen Run-on Run-off Control Jeremy Brown 2/9/21 Subject/Title Reviewed by Date Provide run-on and run-off system calculations for the peak discharge from Ashley Grissom 3/1/21 a 24-hr 25-year storm Cells 1 & 2 Calculation Number DC-BN- 735210-004 Sheet 15 of 23

Map 2

8		
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/9/21
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 1 & 2	Reviewed by Ashley Grissom	Date 3/1/21
	Calculation Number DC-BN- 735210-004	Sheet 16 of 23

Surface Description	<u>n</u>
Smo oth surfaces (concrete, asphalt,	
gravel, or bare soil)	0.011
Fallow (no residue)	0.05
Cultivated soils	0.00
Residue cover < 20%	0.06
Residue cover > 20%	0.17
Grass	0, 11
Short grass prairie	0.15
Dense grasses ²	0.24
Bermuda grass	0.41
Range (natural)	0.13
Woods ³	
Light underbrush	0.40
Dense underbrush	0.80
The n values are a composite of information by Engman (1988).	
ncludes species such as weeping lovegrass, bluegrass, buffalo (grass, blue grama grass, and native grass mixtures

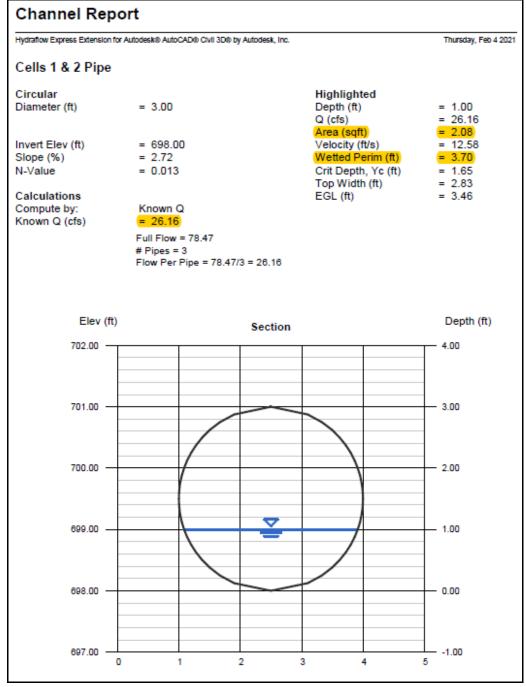
Table 2

Design Calculations		company
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/9/21
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 1 & 2	Reviewed by Ashley Grissom	Date 3/1/21
	Calculation Number DC-BN- 735210-004	Sheet 17 of 23

Hydraflow Express Extension	for Autodesk® AutoCAD® Civ	11 3D® by Autodesk, Inc.		Thursday, Feb 4 2021
Cells 1 & 2 Ditch	1			
Trapezoidal Bottom Width (ft) Side Slopes (z:1) Total Depth (ft) Invert Elev (ft) Slope (%) N-Value Calculations Compute by: Known Q (cfs)	= 4.00 = 700.01 = 1.95 = 0.030		Highlighted Depth (ft) Q (cfs) Area (sqft) Velocity (ft/s) Wetted Perim (ft) Crit Depth, Yc (ft) Top Width (ft) EGL (ft)	= 1.06
Elev (ft)		0		Depth (f
705.00		Section	1	4.99
704.00				3.99
703.00				2.99
702.00				1.99
701.00				0.99
700.00				-0.01

Channel Report 1

Design Calculations Project Prepared by Date Plant Bowen Run-on Run-off Control Jeremy Brown 2/9/21 Reviewed by Ashley Grissom Subject/Title Date Provide run-on and run-off system calculations for the peak discharge from 3/1/21 a 24-hr 25-year storm Cells 1 & 2 Sheet 18 of 23 Calculation Number DC-BN-735210-004


λ

s n Values			Pag
3. finished, with gravel on bottom	0.015	0.017	0.020
4. unfinished	0.014	0.017	0.020
5. gunite, good section	0.016	0.019	0.023
6. gunite, wavy section	0.018	0.022	0.025
7. on good excavated rock	0.017	0.020	
8. on irregular excavated rock	0.022	0.027	
d. Concrete bottom float finish with sides of:			
1. dressed stone in mortar	0.015	0.017	0.020
2. random stone in mortar	0.017	0.020	0.024
3. cement rubble masonry, plastered	0.016	0.020	0.024
4. cement rubble masonry	0.020	0.025	0.030
5. dry rubble or riprap	0.020	0.030	0.035
e. Gravel bottom with sides of:		1	
1. formed concrete	0.017	0.020	0.025
2. random stone mortar	0.020	0.023	0.026
3. dry rubble or riprap	0.023	0.033	0.036
f. Brick			1
1. glazed	0.011	0.013	0.015
2. in cement mortar	0.012	0.015	0.018
g. Masonry			
1. cemented rubble	0.017	0.025	0.030
2. dry rubble	0.023	0.032	0.035
h. Dressed ashlar/stone paving	0.013	0.015	0.017
i. Asphalt			1
1. smooth	0.013	0.013	
2. rough	0.016	0.016	

Table 3

Design Calculations		company
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/9/21
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 1 & 2	Reviewed by Ashley Grissom	Date 3/1/21
	Calculation Number DC-BN- 735210-004	Sheet 19 of 23

Project	Prepared by	Date	
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/9/21	
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 1 & 2	Reviewed by Ashley Grissom	Date 3/1/21	
	Calculation Number DC-BN- 735210-004	Sheet 20 of 23	

ning's n Values			Page
7. Concrete:		I	
Culvert, straight and free of debris	0.010	0.011	0.013
Culvert with bends, connections, and some debris	0.011	0.013	0.014
Finished	0.011	0.012	0.014
Sewer with manholes, inlet, etc., straight	0.013	0.015	0.017
Unfinished, steel form	0.012	0.013	0.014
Unlinished, smooth wood form	0.012	0.014	0.016
Unfinished, rough wood form	0.015	0.017	0.020
8. Wood:			
Stave	0.010	0.012	0.014
Laminated, treated	0.015	0.017	0.020
9. Clay:			
Common drainage tile	0.011	0.013	0.017
Vitrified sewer	0.011	0.014	0.017
Vitrilied sewer with manholes, inlet, etc.	0.013	0.015	0.017
Vitrified Subdrain with open joint	0.014	0.016	0.018
10. Brickwork:			
Glazed	0.011	0.013	0.015
Lined with cement mortar	0.012	0.015	0.017
Sanitary sewers coated with sewage slime with bends and connections	0.012	0.013	0.016
Paved invert, sewer, smooth bottom	0.016	0.019	0.020
Rubble masonry, cemented	0.018	0.025	0.030

Table 4

Design Calculations Project Prepared by Date 2/9/21 Plant Bowen Run-on Run-off Control Jeremy Brown Subject/Title Reviewed by Date Provide run-on and run-off system 3/1/21 Ashley Grissom calculations for the peak discharge from a 24-hr 25-year storm Cells 1 & 2 Calculation Number Sheet 21 of 23 DC-BN-735210-004 Hydrograph Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v12 Thursday, 02 / 4 / 2021 Hyd. No. 3 Pipe Hydrograph type = SCS Runoff Peak discharge = 78.47 cfs Storm frequency = 25 yrs = 12.15 hrs Time to peak Time interval = 3 min Hyd. volume = 285,591 cuft Drainage area = 34,880 ac Curve number = 64* Basin Slope = 0.0 % Hydraulic length = 0 ft Tc method = TR55 = 20.60 min Time of conc. (Tc) Total precip. = 6.07 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 * Composite (Area/CN) = [(31.170 x 61) + (2.560 x 85) + (1.150 x 98)] / 34.880 Pipe Q (cfs) Q (cfs) Hyd. No. 3 -- 25 Year 80.00 80.00 70.00 70.00 60.00 60.00 50.00 50.00 40.00 40.00 30.00 30.00 20.00 20.00 10.00 10.00 0.00 0.00 9 12 15 18 21 27 0 3 6 24 Time (hrs) Hyd No. 3

Hydrograph Report 1

691.00

_____ 689.00 120.0

Discharge (cfs)

100.0

90.0

110.0

	ulatio	115									-	_	Compa
t						Prepareo	5					Date	
Bower	n Run	on Rui	n-off Co	ontrol	J	leremy	y Brown					2/9/21	
^{oject/Title} ovide run-on and run-off system lculations for the peak discharge from 24-hr 25-year storm Cells 1 & 2					I	Reviewed by Ashley Grissom					Date 3/1/21		
111 20 9	your o						tion Numb N- 73521)4			Sheet 22 o	ıf 23
Por	nd R	eport											
Pond Pond Contou	No. 1 - Data Irs -User-c	Cell 182	Sed Pond	/Clear Po	ool		esk, Inc. v12 culation. Begin	ing Ele	vation = 6	89.00 ft		Frida	ay, 02 / 5 / 2021
Stage (rt)	Elevatio	n (ft)	Contour a	rea (sqft)	Incr.	Storage (cuft)	Т	otal stor	age (cuft)			
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00		689.00 690.00 691.00 693.00 693.00 694.00 695.00		15,324 56,131 60,622 65,193 69,840 74,567 79,374 84,257			0 33,591 58,356 62,887 67,496 67,496 72,183 76,950 81,795		33,5 91,9 154,8 222,3 294,5 371,4 453,2	47 35 31 15 65			
Culve	rt / Orifi	ice Struct	ures			v	Veir Struct	ures					
		[A]	[B]	[C]	[PrfRsr	1			[A]	[B]	[C]	[D]	
Rise (in Span (i No. Bar Invert E	n) rrels	 48.00 48.00 1 673.50 	0.00 0.00 0 0.00	0.00 0.00 0 0.00	0.00 0.00 0 0.00	C W	rest Len (ft) rest El. (ft) /eir Coeff. /eir Type	- 6	18.85 594.50 3.33	0.00 0.00 3.33	0.00 0.00 3.33	0.00 0.00 3.33	
Length Slope (* N-Value	(ft) %) 9	 128.00 0.40 .024 	0.00 0.00 .013	0.00 0.00 .013	0.00 n/a n/a	M	luiti-Stage	- 1	(es	No	No	No	
Onflice Multi-St		= 0.60 = n/a	0.60 No	0.60 No	0.60 No		xiil.(in/hr) W Elev. (it)		1.000 (by 1.00	Contour)			
			Note	Culvert/Orific	e outflows are a	inalyzed und	eriniet (ic) and out	let (oc) co	ntrol. Weir r	isers checked	tor orifice oc	nditiona (ic) a	nd submergence (s).
tana (B)						ane / D	ischarge						
tage (ft) 8.00													Elev (ft) 697.00
6.00 -	-												695.00
4.00 -											+		693.00
	1		I						1				

70.0

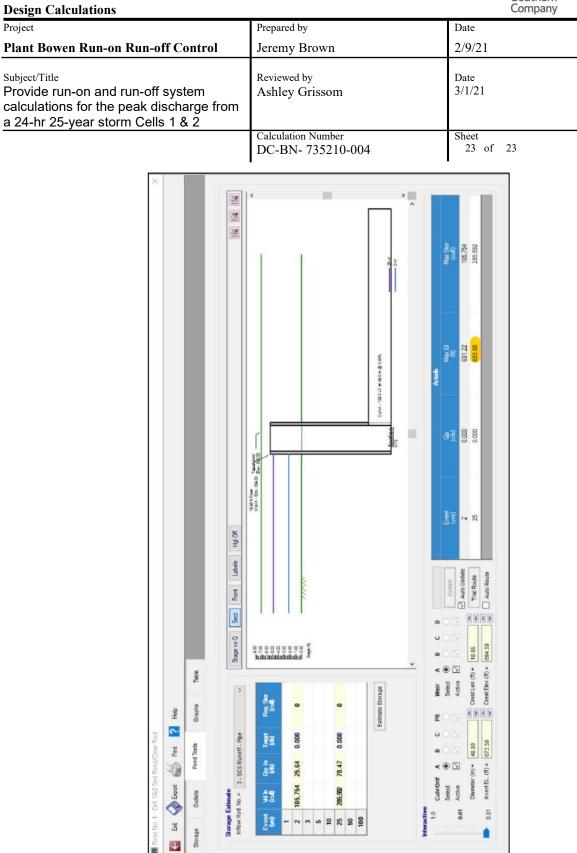
80.0

50.0 60.0

2.00 -

0.00 <u>|</u> 0.0

10.0


Total Q

20.0

30.0

40.0

Pond Report 2

Technical and Project Solutions Calculation

Calculation Number: DC-BN-735210-002

Project/Plant: Bowen	Unit(s): 1 - 4	Discipline/Area: Civil			
Title/Subject: Run-on and Run-off Study for Bowen Cells 3-8					
Purpose/Objective: To determine if the Cell's stormwater management can safely manage and pass the design storm event.					
System or Equipment Tag Numbers: N/A	Originator: Jeremy Brown				

Contents

Торіс	Page	Attachments (Computer Printouts, Tech. Papers, Sketches, Correspondence)	# of Pages
Purpose of Calculation	1		1
Summary of Conclusions	1		1
Project Narrative	1-3		3
Methodology	3-4		2
Assumptions/Criteria	4		1
Design Inputs/References	5-10		6
Body of Calculation	11-70		59
Total # of pages including cover sheet & attachments:	70		

Revision Record

Rev. No.	Description	Originator Initial / Date	Reviewer Initial / Date	Approver Initial / Date
0	Issued for Review	JKB 3/19/21	AOG 4/1/21	JWM 4/6/21
1	Replace concrete flumes with pipes and changes to leachate system in Cells 5&6.	JKB 9/15/23	AOG 9/21/23	JWM 9/25/23

Notes:

		eepairij
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 1 of 70

Purpose of Calculation

The purpose of this calculation is to determine if the existing sedimentation ponds and clear pools can sufficiently handle run-on/run-off during a minimum 25-yr, 24-hr storm event per federal stormwater requirements Title 40 CFR Part 257.81 and the Georgia Environmental Protection Division's (EPD) Georgia CCR Rule (391-3-4-.10).

Summary of Conclusions

Based on our analysis, the detention pond system is adequate to collect and control the volume of water resulting from a 24-hour 25-year storm, as required.

	Normal Pool	Maximum 25	Spillway/Top of Dike	Freeboard to
	Elevation (feet,	year pool elevation	Elevation (feet,	Spillway (feet,
Storage Pond Name	NAVD 88)	(feet, NAVD 88)	NAVD 88)	NAVD 88)
Cells 3, 5 & 7 Clear Pool	685.5	688.37	690.50/694.00	2.13/5.63
Cells 3, 5 & 7 Sediment Pond	685.5	688.37	690.50/694.00	2.13/5.63
Cell 4 Clear Pool	698.50	701.04	702.00/704.00	0.96/2.96
Cell 4 Sediment Pond	698.50	701.04	702.00/704.00	0.96/2.96
Cell 6 Clear Pool	686	688.25	689.50/692.00	1.25/3.75
Cell 6 Sediment Pond	686	688.25	689.50/692.00	1.25/3.75
Cell 8 Clear Pool	686	688.03	689.50/692.00	1.47/3.97
Cell 8 Sediment Pond	686	688.03	689.50/692.00	1.47/3.97

Project Narrative

The Plant Bowen CCB Disposal Facility Cells 3-8 site is located in Bartow County and is approximately 1.5 miles East of Euharlee, Georgia and 6 miles southwest of Cartersville, Georgia. The plant is bordered on the north and east by the Etowah River and on the south and west by farmland.

Since Cells 3-8 share an interconnected cap the storage area information below is based on the drainage area for each cells' sedimentation and clear pool. It should be noted that Cells 3, 5 & 7 share a sedimentation pond and clear pool.

Design Calculations Project Prepared by Date Plant Bowen Run-on Run-off Control 9/15/23 Jeremy Brown Subject/Title Reviewed by Date 9/21/23 Provide run-on and run-off system Ashley Grissom calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8 Calculation Number Sheet 2 of 70 DC-BN-735210-002

<u>Cells 3, 5 & 7</u>

Cells 3, 5 & 7 cover 41.47 acres and their cap is not divided by any means. (See Image 1).

Cells 3, 5 & 7 are comprised of a 43.27 acres storage cell, 2.25 acres sedimentation pond, 0.73 acres clear pool, berms, access roads and ditches. (See Image 2) Cells 3, 5 & 7 include a perimeter dike to control surface rainfall run-off. There is no stormwater run-on for these cells. Run-off from this area is directed through a down drain system into an interior perimeter ditch and is conveyed by pipe(s) into a sedimentation pond that is connected to a clear pool via two 48" diameter risers and two 30" diameter pipes. Stormwater from the clear pool is discharged through two 54" diameter risers and two 36" diameter pipes.

The sediment pond and clear pool both have an auxiliary spillway that is a concrete trapezoidal weir. The auxiliary spillway is 20' wide with 6:1 side slopes and sloped at 1% in the direction of flow with a 3:1 slope on the discharge channel at the downstream end. Following pages will show the analysis for Cells 3, 5 & 7.

<u>Cell 4</u>

Cell 4 covers 12.83 acres and its cap is not divided by any means. (See Image 1).

Cell 4 is comprised of a 12.24 acres storage cell, 1.27 acres sedimentation pond, 0.45 acres clear pool, berms, access roads and ditches. (See Image 2) Cell 4 includes a perimeter dike to control surface rainfall run-off. There is no stormwater run-on for this cell. Run-off from this area is directed through a down drain system into an interior perimeter ditch and is conveyed by pipes into a sedimentation pond that is connected to a clear pool via two 48" diameter risers and two 30" diameter pipes. Stormwater from the clear pool is discharged through a 66" diameter riser and 42" diameter pipe.

The sediment pond and clear pool both have an auxiliary spillway that is a concrete trapezoidal weir. The auxiliary spillway is 18' wide with 6:1 side slopes and sloped at 1% in the direction of flow with a 3:1 slope on the discharge channel at the downstream end. Following pages will show the analysis for Cell 4.

<u>Cell 6</u>

Cell 6 covers 28.61 acres and its cap is not divided by any means. (See Image 1).

Design Calculations Project Prepared by Date Plant Bowen Run-on Run-off Control 9/15/23 Jeremy Brown Subject/Title Reviewed by Date 9/21/23 Provide run-on and run-off system Ashley Grissom calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8 Calculation Number Sheet 3 of 70 DC-BN-735210-002

Cell 6 is comprised of a 16.37 acres storage cell, 1.52 acres sedimentation pond, 0.31 acres clear pool, berms, access roads and ditches. (See Image 2) Cell 6 includes a perimeter dike to control surface rainfall run-off. There is no stormwater run-on for these cells. Run-off from this area is directed through a down drain system into an interior perimeter ditch and is conveyed by pipes into a sedimentation pond that is connected to a clear pool via a 36" diameter riser and six 24" diameter pipes. Stormwater from the clear pool is discharged through a 36" diameter riser and two 24" diameter pipes.

The sediment pond and clear pool both have an auxiliary spillway that is a grassed trapezoidal weir. The auxiliary spillway is 8' wide with 3:1 side slopes and sloped at 1% in the direction of flow with a 3:1 slope on the discharge channel at the downstream end. Following pages will show the analysis for Cell 6.

<u>Cell 8</u>

Cell 8 cover 10.49 acres and its cap is not divided by any means. (See Image 1).

Cell 8 is comprised of a 13.51 acres storage cell, 0.74 acres sedimentation pond, 0.34 acres clear pool, berms, access roads and ditches. (See Image 2) Cell 8 includes a perimeter dike to control surface rainfall run-off. There is no stormwater run-on for this cell. Run-off from this area is directed through a down drain system into an interior perimeter ditch into a sedimentation pond that is connected to a clear pool via a 36" diameter riser and five 24" diameter pipes. Stormwater from the clear pool is discharged through a 36" diameter riser and two 24" diameter pipes.

The sediment pond and clear pool both have an auxiliary spillway that is a grassed trapezoidal weir. The auxiliary spillway is 8' wide with 3:1 side slopes and sloped at 1% in the direction of flow with a 3:1 slope on the discharge channel at the downstream end. Following pages will show the analysis for Cell 8.

Methodology

The stormwater flows were calculated using the National Resources Conservation Service method (also known as the Soil Conservation Service (SCS) method) using a 25-yr, 24-hr design storm event.

Design Calculations		Sompany
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 4 of 70
		•

Storm basin calculation information was gathered from a number of sources to include the Georgia Stormwater Manual and Technical Release 55.

The National Resources Conservation Service (NCRS) provided information on the soil characteristics and hydrologic groups. The soil types found on the site are Etowah Loam (17.1%), Waynesboro Clay Loam (81.8%) and Whitwell Silt Loam (1.1%) (See Images 3 & 4). Therefore, hydrological group "B" should be used to best reflect the characteristics of the soils on site.

Run-off curve number data was determined using Table 2.1.5-1 from the Georgia Stormwater Management Manual. Run-off coefficient data was determined by utilizing Table 2.1.5-2 from the Georgia Stormwater Management Manual and Manning's n for Channels (Chow, 1959).

Appendix B from the TR-55 was used to determine the rain distribution for Plant Bowen is Type II. (See Image 5)

NOAA Atlas 14 was used to determine the 24-hour precipitation for the design storm event of 25-yr for Plant Bowen is 6.07 in. (See Image 6)

Assumptions/Criteria

- Refer to Title 40 CFR Part 257.81 Hydrologic and hydraulic capacity requirements for the runon and run-off controls for CCR landfills.
- Other assumptions are listed on attached calculation sheets.

Design Inputs/References

- AutoCad Civil 3D 2019, Autodesk, Inc.
- Hydraflow Hydrographs Extension for AutoCad Civil 3D 2019, Autodesk, Inc.
- Hydraflow Express Extension for AutoCad Civil 3D 2019, Autodesk, Inc.
- NOAA Atlas 14, Volume 9, Version 2 for Taylorsville, GA.
- TR-55 Urban Hydrology for Small Watersheds, Appendix B, National Resources Conservation Service, Conservation Engineering Division, 1986.
- Georgia Power Company Plant Bowen CCB Disposal Facility Design and Operation Plans H15061 H15097, H15296 H15315 and H52258 H52260.

Design CalculationsCompanyProjectPrepared byDatePlant Bowen Run-on Run-off ControlJeremy Brown9/15/23Subject/TitleReviewed byDateProvide run-on and run-off system
calculations for the peak discharge from
a 24-hr 25-year storm Cells 3-8Reviewed byCalculation Number
DC-BN- 735210-002Sheet
5 of 70

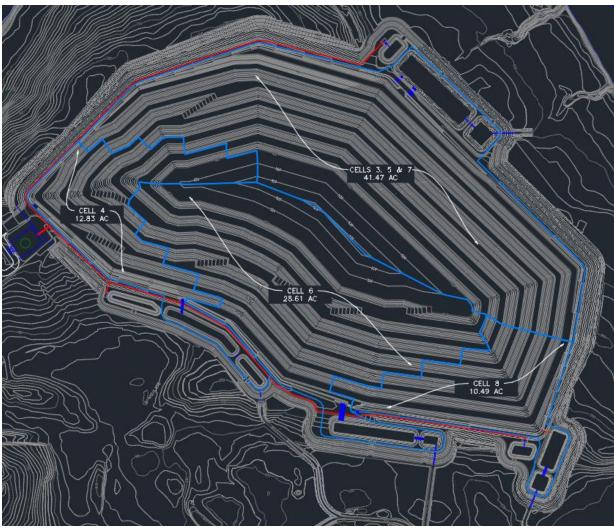


Image 1

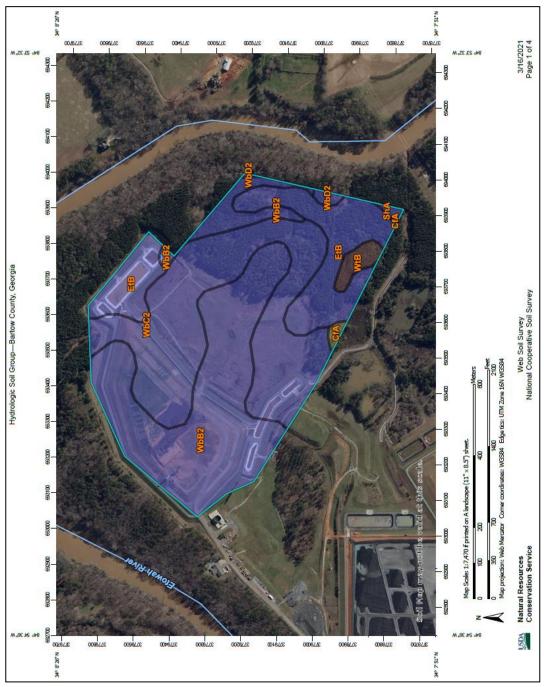

Design CalculationsCompanyProjectPrepared byDatePlant Bowen Run-on Run-off ControlJeremy Brown9/15/23Subject/TitleReviewed byDateProvide run-on and run-off system
calculations for the peak discharge from
a 24-hr 25-year storm Cells 3-8Reviewed byDateCalculation Number
DC-BN- 735210-002Sheet
6 of 70Sheet

Image 2

Design CalculationsCompanyProjectPrepared byDatePlant Bowen Run-on Run-off ControlJeremy Brown9/15/23Subject/TitleReviewed byDateProvide run-on and run-off system
calculations for the peak discharge from
a 24-hr 25-year storm Cells 3-8Reviewed byDateCalculation Number
DC-BN- 735210-002Sheet
7 of 7070

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 8 of 70

	,	ologic Soil G		
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
CfA	Cedarbluff loam, 0 to 2 percent slopes, occasionally flooded	C/D	0.0	0.05
EtB	Etowah loam, 2 to 6 percent slopes	в	19.9	17.15
WbB2	Waynesboro clay loam, 2 to 6 percent slopes, moderately eroded	В	50.0	42.95
WbC2	Waynesboro clay loam, 6 to 10 percent slopes, moderately eroded	В	45.0	38.65
WbD2	Waynesboro clay loam, 10 to 15 percent slopes, moderately eroded	В	0.3	0.35
WtB	Whitwell silt loam, 1 to 5 percent slopes, rarely flooded	B/D	1.3	1.15
Totals for Area of Inte	erest		116.5	100.09
groups according	oups are based on estir	tration when the soil	ntial. Soils are assigned t is are not protected by ve storms.	

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

USDA	Natural Resources	Web Soil Survey	3/17/2021
	Conservation Service	National Cooperative Soil Survey	Page 3 of 4

Design Calculations Prepared by Project Date Plant Bowen Run-on Run-off Control 9/15/23 Jeremy Brown Date 9/21/23 Subject/Title Reviewed by Provide run-on and run-off system Ashley Grissom calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8 Calculation Number Sheet DC-BN-735210-002 9 of 70

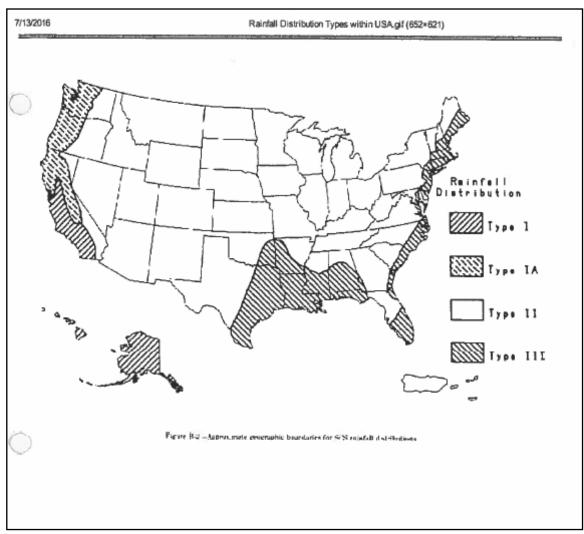


Image 5

		1 3
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 10 of 70

cipitation	Frequenc	y Data Se	erver							Page 1 c
		Ě	Local Latit	Station tion name: T tude: 34.086 E evation (stat source	LORSVILLE in ID: 09-86 aylorsville, 1*, Longitu levation: tion metada ce: Geogle Map	5 00 , Georgia, I de: -84.982 sta): 721 ft' s	US* 8*			
		Sania Perica		RECIPITATIO				abis Date		
	Sanja Perica, Deborah Marini, Sandra Pavlovic, Lahani Roy, Michael St, Leuvert, Can Trypeiuk, Dete Urnah, Michael Yeka, Geoffery Bonnia NDAL, National Walther Sanico, Silver Spring, Morstand									
	PE. tabular PF graphical Maos & aerials									
	PF tabular									
PDS	-based po	int precipi	tation fre	quency es	timates v	vith 90%	confiden	ce interva	als (in inc	hes) ¹
Duration		2	5	Average 10	25	Interval (ye	ars)	200	500	1000
5-min	0.406	0.464 (0.367-0.593)	0.568	0.662	0.804	0.924	1.05	1.19	1.39	1.55
10-min	0.594	0.679 (0.537-0.868)	0.831 (0.655-1.06)	0.969	1.18	(0.695-1.23) 1.35 (1.02-1.80)	(0.768-1.42) 1.54 (1.12-2.07)	(0.838-1.62) 1.75 (1.23-2.38)	2.03	(1.02-2.14) 2.27 (1.50-3.14)
15-min	0.725	0.828	1.01	1.18	1.44	1.65 (1.24-2.19)	1.88 (1.37-2.53)	2.13	(1.38-2.81) 2.48 (1.68-3.43)	2.77 (1.83-3.83)
30-min	1.02	1.17 (0.924-1.49)	1.43 (1.13-1.83)	1.66 (1.31-2.13)	2,02 (1.56-2.68)	2.33 (1.75-3.09)	2.65	3.01	3.52	3.93
60-min	1.33	1.52 (1.20-1.94)	1.85 (1.46-2.36)	2.15 (1.69-2.76)	2.61 (2.01-3.45)	3.00 (2.25-3.98)	3.41 (2.49-4.58)	3.86	4,49 (3.05-6.21)	5.01 (3.31-6.93)
2-hr	1.64 (1.31-2.06)	1.86 (1.49-2.35)	2.27 (1.81-2.86)	2,64 (2.10-3.34)	3.20	3.66	4.16	4.70	5.47 (3.77-7.46)	6.09 (4.09-8.32)
3-hr	1.84 (1.49-2.30)	2.10 (1.69-2.62)	2.55 (2.05-3.19)	2.96 (2.37-3.71)	3.56 (2.80-4.60)	4.07	4.60	5.18 (3.73-6.91)	6.00 (4.17-8,12)	6.66
6-hr	2.27 (1.86-2.79)	2.57 (2.10-3.17)	3.10 (2.53-3.83)	3.57 (2.90-4.41)	4,26 (3.38-5.41)	4.82 (3.75-6.16)	5.42 (4.10-7.02)	6.05 (4.42-7.96)	6.94 (4.90-9.27)	7.65
12-hr	2.79 (2.32-3.39)	3.15 (2.61-3.63)	3.77 (3.12-4.58)	4.31 (3.54-5.25)	5.08 (4.08~6.34)	5.70 (4.49-7.17)	6.36 (4.67-8.10)	7.04 (5.21-9.11)	7.99 (5.72-10.5)	8.73 (6,11-11,6)
24-hr	3.34 (2.81-3.99)	3.79 (3.18-4.53)	4.54 (3.80-5.44)	5.18 (4.32-6.21)	6,07 (4.93-7.43)	6.77 (5.40-8.35)	7.48 (5.61-9.38)	8.22 (6.17-10.5)	9.21 (6.70-11.9)	9.98 (7,10-13.0)
2-day	3.87 (3.29-4.55)	4.43 (3.77-5.21)	5.34 (4.54_6.30)	6.10 (5.16-7.22)	7.14 (5.88-8.60)	7.95 (6,42-9.65)	8.75 (6.85-10.5)	9.55 (7.27-12.0)	10.6 (7.84-13.6)	11.4 (8.27-14.6)
3-day	4.24 (3.64-4.95)	4.81 (4,13-5.62)	5.76 (4.93-6.73)	6.56 (5.59-7.68)	7.66 (6.37-9.16)	8.53 (6.95-10.3)	9.40 (7.47-11.5)	10.3 (7.92-12.6)	11.5 (8.57-14.6)	12.4 (9.06-15.9)
4-day	4.56 (3.94-5.28)	5.14 (4.43-5.95)	6.10 (5.25-7.08)	6.92 (5 93-8.06)	8.07 (6.76-9.61)	8.98 (7.38-10.8)	9.92 (7.94-12.1)	10.9 (8.43-13.5)	12.2 (9.16-15.4)	13.2 (972-16 6)
7-day	5.37 (4.69-6.14)	5.99 (5.22-8.88)	7.04 (6.13-8.07)	7.94 (6 88-9 14)	9,24 (7.84-10.9)	10.3 (8.56-12.2)	11.3 (9.21-13.7)	12.5 (9.80-15.3)	14.0 (10.7-17.5)	15.2 (11.3-19.2)
10-day	6.07 (5.34-6.69)	6.74 (5.92-7.66)	7.88 (6.91-8.97)	8.87 (7.74-10.1)	10.3 (8.79-12,0)	11.4 (9.58-13.5)	12.6 (10 3-15.1)	13.8 (11.0-16.8)	15.5 (11.9-19.3)	16.8 (12.7-21.1)
20-day	8.08 (7.21-9.03)	8.91 (7.95-9.96)	10.3 (9.17-11.5)	11.5 (10.2-12.9)	13.2 (11.5-15.2)	14.6 (12.4-16.9)	16.0 (13.3-18.8)	17.4 (14.0-20.9)	19.4 (15.2-23.7)	21.0 (16.1-25.9)
30-day	9.86 (8.87-10.9)	10.8 (9.75-12.0)	12.5 (11.2-13.8)	13.9 (12.4-15.4)	15.8 (13.8-17.9)	17.3 (14.9-19.8)	18.8 (15.8-22.0)	20.4 (16.6-24.2)	22.5 (17.8-27.3)	24.1 (18.7-29.5)
45-day	12.2 (11.1-13.4) 14.4	13.5 (12.2-14.8) 15.8	15.4 (14.0-17.0) 18.1	17.1 (15.4-18.8) 19.9	19.3 (16.9-21.6)	20.9 (18.1-23.7)	22.6 (19.1-28.1)	24.3 (19.9-28.5)	26.4 (21.1-31.7)	28.1 (22.0-34.1)
60-day	(13.1-15.6)	(14.4-17.2)	(16.5-19.6)	(18.1-21.8)	22.4 (19.8-24.9)	24.2 (21.0-27.2)	25.9 (22.0-29.7)	27.7 (22.8-32.2)	29.8 (23.9-35.5)	31.4 (24.8-37.9)
Numbers i (for a giver bounds an	tion frequency (In parenthesis ar In duration and a e not checked a er to NOAA Atla	e PF estimates verage recurrer gainst probable	at lower and u tce interval) wi maximum pres	pper bounds of It be greater that cipitation (PMP) nation.	the 90% confi n the upper bo estimates and	dence interva	The probabil	ity that precipi bound) is 5%	Estimates at	cy estimates upper
				_	ack to Top					
				PF	graphica	al				

Image 6

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 11 of 70

See detailed calculations and software output.

<u>Cells 3, 5 & 7</u>

Cells 3, 5 & 7 is broken down into 3 smaller subbasins (1A, 1B & 1C)

Drainage Area = 11.20 AC (See Map 1A)

Curve Number = 64 (See Table 1) 10.88 AC @ CN 61 (Grass) 0.32 AC @ CN 85 (Gravel) ((10.88*61)+(0.32*85))/10.88 = 63.50 = 64

```
Time of Concentration = 22.18 Min (See TR55 Worksheet 1A and Map 2A)
       Sheet Flow
             Manning's n-Value = 0.15 (Short Grass) (See Table 2)
             Flow Length = 167 LF
             Land Slope = (826.25-821.50)/167 = 0.0284 = 2.84%
       Shallow Concentrated
             Flow Length = 161 LF
             Watercourse Slope = (821.50-820.50)/161 = 0.0062 = 0.62%
             Surface is Unpaved
       Channel Flow (See Channel Report 1A1)
             15" Dia. HDPE Downdrain Pipes
             Cross Sectional Area = 0.23 SF
             Wetted Perimeter = 1.28 LF
             Channel Slope = (820.50-724.00)/1099 = 0.0878 = 8.78%
             Manning's n-Value = 0.012 (HDPE Pipe)(See Table 4)
             Flow Length = 1099 LF
       Channel Flow (See Channel Report 1A2)
             Grass Lined 4' Wide Ditch with 2:1 Side Slopes and 4' Deep
             Cross Sectional Area = 4.99 SF
             Wetted Perimeter = 7.89 LF
             Channel Slope = (724.00-694.00)/1847 = 0.0162 = 1.62%
             Manning's n-Value = 0.030 (Vegetal Lining) (See Table 3)
             Flow Length = 1847 LF
       Channel Flow (See Channel Report 1A3)
```


Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 12 of 70

2 – 30" Dia. HDPE Pipes Cross Sectional Area = 1.00 SF Wetted Perimeter = 2.66 LF Channel Slope = (694.00-692.00)/60 = 0.0333 = 3.33% Manning's n-Value = 0.012 (HDPE Pipes) (See Table 4) Flow Length = 60 LF

Time Interval = 3 Min

Tc*0.1333 = 22.18*0.1333 = 2.96 = 3

Storm Distribution = Type II

Q₂₅1A = 23.05 CFS (See Hydrograph Report 1A)

Drainage Area = 27.35 AC (See Map 1B)

```
Curve Number = 64 (See Table 1)
27.06 AC @ CN 61 (Grass)
0.29 AC @ CN 85 (Gravel)
((27.06*61)+(0.29*85))/27.35 = 61.25 = 61
```

```
Time of Concentration = 37.23 Min (See TR55 Worksheet 1B and Map 2B)

Sheet Flow

Manning's n-Value = 0.15 (Short Grass) (See Table 2)

Flow Length = 300 LF

Land Slope = (828.50-824.95)/300 = 0.0118 = 1.18\%

Shallow Concentrated

Flow Length = 92 LF

Watercourse Slope = (824.95-822.00)/92 = 0.0321 = 3.21\%

Surface is Unpaved

Channel Flow (See Channel Report 1B1)

15" Dia. HDPE Downdrain Pipes

Cross Sectional Area = 0.65 SF

Wetted Perimeter = 2.02 LF

Channel Slope = (822.00-705.75)/1957 = 0.0594 = 5.94\%

Manning's n-Value = 0.012 (HDPE Pipe)(See Table 4)
```


besign eureununons		
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 13 of 70

Flow Length = 1957 LF Channel Flow (See Channel Report 1B2) Grass Lined 4' Wide Ditch with 2:1 Side Slopes and 4' Deep Cross Sectional Area = 8.67 SF Wetted Perimeter = 9.86 LF Channel Slope = (705.75-694.67)/1673 = 0.0066 = 0.66%Manning's n-Value = 0.030 (Vegetal Lining) (See Table 3) Flow Length = 1673 LF Channel Flow (See Channel Report 1B3) 4 - 30" Dia. HDPE Pipes Cross Sectional Area = 0.70 SF Wetted Perimeter = 2.32 LF Channel Slope = (694.67-692.00)/60 = 0.0445 = 4.45%Manning's n-Value = 0.012 (HDPE Pipes) (See Table 4) Flow Length = 60 LF

Time Interval = 5 Min Tc*0.1333 = 37.23*0.1333 = 4.96 = 5

```
Storm Distribution = Type II
```

```
Q<sub>25</sub>1B = 32.02 CFS (See Hydrograph Report 1B)
```

Drainage Area = 2.92 AC (See Map 1C)

Curve Number = 64 (See Table 1) 1.97 AC @ CN 85 (Gravel) 0.95 AC @ CN 98 (Impervious – Liner in Sediment Pond and Clear Pool) ((1.97*85)+(0.95*98))/2.92 = 89.23 = 89

```
Time of Concentration = 5.00 Min (See TR55 Worksheet 1C)
*Use Tc of 5.00 minutes due to small drainage area and only receiving what stormwater
falls directly in the ponds and the small area around them.
```

Time Interval = 1 Min Tc*0.1333 = 5.00*0.1333 = 0.67= 1

Design Calculations Project Prepared by Date 9/15/23 Plant Bowen Run-on Run-off Control Jeremy Brown Subject/Title Reviewed by Date 9/21/23 Provide run-on and run-off system Ashley Grissom calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8 Calculation Number Sheet 14 of 70 DC-BN-735210-002

Storm Distribution = Type II

 $Q_{25}1C = 24.05 \text{ CFS}$ (See Hydrograph Report 1C)

Q₂₅1Total = 57.16 CFS (See Hydrograph Report 1 Total)

To Evaluate for Storage Capacity, Treat The Sediment Pond and Clear Pool As One Pond Since They Are Interconnected.

Elevation	Sed. Pond Area	Clear Pool Area	Total Area	Volume
(FT)	(SF)	(SF)	(SF)	(CF)
683	0	9,025	9,025	0*
684	43,996	9,996	53,992	28,361*
685	46,707	11,007	57,714	84,198*
685.5	48,077	11,527	59,604	113,523*
686	49,457	12,057	61,514	143,799
687	52,247	13,147	65,394	207,236
688	55,076	14,276	69,352	274,593
689	57,944	15,444	73,388	345,946
690	60,851	16,651	77,502	421,374
690.5	62,320	17,270	79,590	460,642

*Dead Storage

Spillways

- Principal Spillway consists of two 54" Dia. Risers with two 36" Dia. HDPE Pipes.
- Auxiliary Spillway consist of a concrete lined trapezoidal weir that is 20' wide with 6:1 side slopes and sloped at 1% in the direction of flow with a 3:1 slope on the discharge channel at the downstream end.

High Water Elevation is 688.37 (See Pond Reports 1 & 2)

Design CalculationsCompanyProjectPrepared byDatePlant Bowen Run-on Run-off ControlJeremy Brown9/15/23Subject/TitleReviewed byDateProvide run-on and run-off system
calculations for the peak discharge from
a 24-hr 25-year storm Cells 3-8Reviewed byDateCalculation Number
DC-BN- 735210-002Sheet
15 of 70Sheet

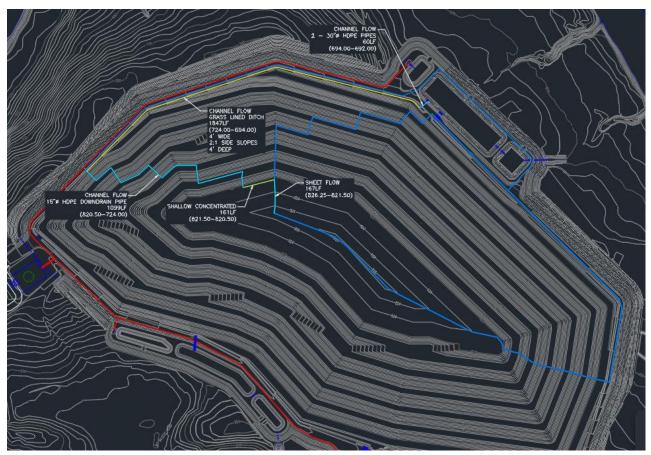
Map 1A

Design Culculations		
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 16 of 70

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v12

TR55 Tc Worksheet

Hyd. No. 4	

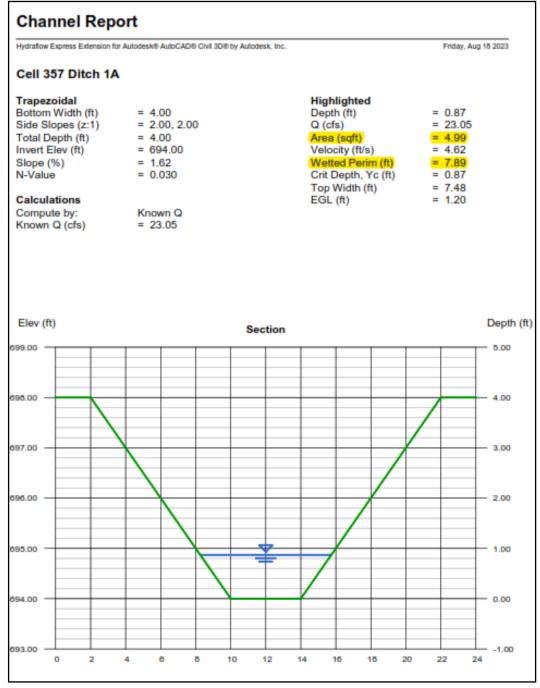

Cell 3, 5 & 7 Pipes 1A

Description	<u>A</u>	B	<u>c</u>	Totals
Sheet Flow	= 0.150	0.011	0.011	
Manning's n-value Flow length (ft)	= 167.0	0.0	0.0	
Two-year 24-hr precip. (in)	= 3.79	0.00	0.00	
Land slope (%)	= 2.84	0.00	0.00	
Travel Time (min)	= 11.79 +	0.00 +	0.00 =	11.79
Shallow Concentrated Flow				
Flow length (ft)	= 161.00	0.00	0.00	
Watercourse slope (%) Surface description	= 0.62 = Unpaved	0.00 Paved	0.00 Paved	
Average velocity (ft/s)	= 011paved =1.27	0.00	0.00	
Travel Time (min)	= 2.11 +	0.00 +	0.00 =	2.11
Channel Flow				
X sectional flow area (sqft)	= 0.23	4.99	1.00	
Wetted perimeter (ft)	= 1.28	7.89	2.66	
Channel slope (%) Manning's n-value	= 8.78 = 0.012	1.62 0.030	3.33 0.012	
		0.000		
Velocity (ft/s)	=11.65		0.012	
Velocity (ft/s)	=11.65	4.65	0.012	
Velocity (ft/s)	=11.65	4.65	11.76	
Velocity (ft/s) Flow length (ft)	=11.65 ({0})1099.0	4.65 1847.0		
			11.76	8.28

TR55 Worksheet 1A

Design CalculationsCompanyProjectPrepared byDatePlant Bowen Run-on Run-off ControlJeremy Brown9/15/23Subject/TitleReviewed byDateProvide run-on and run-off system
calculations for the peak discharge from
a 24-hr 25-year storm Cells 3-8Reviewed byDateCalculation Number
DC-BN- 735210-002Sheet
17 of 70Tot

Map 2A


Design Calculations		
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 18 of 70

Hydraflow Express Extension	for Autodesk® AutoCAD® Ci	vil 3D® by Autodesk, Inc.		Thursday, Sep 7 2023
Cell 357 Downd	rain 1A1			
Circular Diameter (ft)	= 1.25		Highlighted Depth (ft) Q (cfs)	= 0.30 = 2.550
Invert Elev (ft) Slope (%) N-Value	= 724.00 = 8.78 = 0.012		Area (sqft) Velocity (ft/s) Wetted Perim (ft) Crit Depth, Yc (ft) Top Width (ft)	= 0.23 = 11.23 = 1.28 = 0.64 = 1.07
Calculations Compute by: Known Q (cfs)	Known Q = 2.55		EGL (ft)	= 2.26
Elev (ft)			Section	
726.00				
725.50				
725.50				
725.00		\bigwedge	\searrow	
725.00				

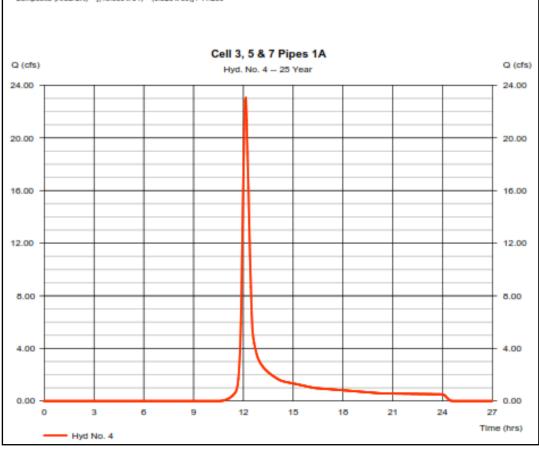
Channel Report 1A1

Prepared by	Date
Jeremy Brown	9/15/23
Reviewed by Ashley Grissom	Date 9/21/23
Calculation Number DC-BN- 735210-002	Sheet 19 of 70
	Jeremy Brown Reviewed by Ashley Grissom Calculation Number

Channel Report 1A2

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 20 of 70

Hydraflow Express Extension	for Autodesk® AutoCAD®	Civil 3D® by Autodesk, I	inc.	Wednesday, Sep 6 2023
Cell357_Pipes1/	λ.			
Circular Diameter (ft)	= 2.50		Highlighted Depth (ft) Q (cfs)	= 0.64 = 11.53
Invert Elev (ft)	= 692.00		Area (sqft) Velocity (ft/s)	= 1.00 = 11.51
Slope (%)	= 3.33		Wetted Perim (ft)	
N-Value	= 0.012		Crit Depth, Yc (ft)	= 1.14
Calculations			Top Width (ft) EGL (ft)	= 2.19 = 2.70
Compute by:	Known Q		EGE (ii)	- 2.10
Known Q (cfs)	= 11.53			
Full flow of 23.05 is di are two pipes.	video by 2 since th	ere		
Elev (f	0		Section	
695.00 -				
694.50 -				
694.00 -		+/	\rightarrow	
		1		
693.50 -		/		
000.00				
000.00				
693.00 -				
693.00 —			/	
			₹ /	
693.00 —			≚	
693.00 —			≚	
693.00 - 692.50 -			₽	
693.00 - 692.50 -			≥	


Channel Report 1A3

Ι

sign Calculations			
roject		Prepared by	Date
Plant Bowen Run-on Run-off Control		Jeremy Brown	9/15/23
ubject/Title Provide run-on and run-off system alculations for the peak discharge from 24-hr 25-year storm Cells 3-8		Reviewed by Ashley Grissom	Date 9/21/23
		Calculation Number DC-BN- 735210-002	Sheet 21 of 70
Hydrograph F	Report on for Autodesk® Civil 3D® 2019 by A	Autodesk, Inc. v12	Thursday, 09 / 7 / 2023
Hydraflow Hydrographs Extensi Hyd. No. 4	on for Autodesk® Civil 3D® 2019 by A	Autodesk, Inc. v12	Thursday, 09 / 7 / 2023
Hydraflow Hydrographs Extensi Hyd. No. 4 Cell 3, 5 & 7 Pipes 1/	on for Autodesk® Civil 3D® 2019 by J		
Hydraflow Hydrographs Extensi Hyd. No. 4	on for Autodesk® Civil 3D® 2019 by A	Autodesk, Inc. v12 Peak discharge Time to peak Hyd. volume	= 23.05 cfs = 12.15 hrs
Hydraftow Hydrographs Extensi Hyd. No. 4 Cell 3, 5 & 7 Pipes 1/ Hydrograph type Storm frequency	on for Autodesk® Civil 3D® 2019 by A A = SCS Runoff = 25 yrs	Peak discharge Time to peak	 23.05 cfs 12.15 hrs 84,769 cuft 62*
Hydraftow Hydrographs Extensi Hyd. No. 4 Cell 3, 5 & 7 Pipes 1/ Hydrograph type Storm frequency Time interval Drainage area	on for Autodesk® Civil 3D® 2019 by A = SCS Runoff = 25 yrs = 3 min = 11.200 ac	Peak discharge Time to peak Hyd. volume Curve number	 23.05 cfs 12.15 hrs 84,769 cuft 62*

* Composite (Area/CN) = [(10.880 x 61) + (0.320 x 85)] / 11.200

Hydrograph Report 1A

Design CalculationsCompanyProjectPrepared byDatePlant Bowen Run-on Run-off ControlJeremy Brown9/15/23Subject/TitleReviewed byDateProvide run-on and run-off system
calculations for the peak discharge from
a 24-hr 25-year storm Cells 3-8Reviewed byDateCalculation Number
DC-BN- 735210-002Sheet
22 of 70Sheet

Map 1B

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 23 of 70

TR55 Tc Worksheet

	H	ydraflov	w Hydrographs	Exten	sion for Autod	esk® Ci	vil 3D® 2019 by Aut
Hyd. No. 6							
Cell 3, 5 & 7 1B							
Description	A		B		<u>c</u>		<u>Totals</u>
Sheet Flow							
Manning's n-value	= 0.150		0.011		0.011		
Flow length (ft)	= 300.0		0.0		0.0		
Two-year 24-hr precip. (in)	= 3.79		0.00		0.00		
Land slope (%)	= 1.18		0.00		0.00		
Travel Time (min)	= 26.78	+	0.00	+	0.00	=	26.78
Shallow Concentrated Flow							
Flow length (ft)	= 92.00		0.00		0.00		
Watercourse slope (%)	= 3.21		0.00		0.00		
Surface description	= Unpaveo	b	Paved		Paved		
Average velocity (ft/s)	=2.89		0.00		0.00		
Travel Time (min)	= 0.53	+	0.00	+	0.00	=	0.53
Channel Flow							
X sectional flow area (sqft)	= 0.65		8.67		0.70		
Wetted perimeter (ft)	= 2.02		9.86		2.32		
Channel slope (%)	= 5.94		0.66		4.45		
Manning's n-value	= 0.012		0.030		0.012		
Velocity (ft/s)	=14.16						
			3.70				
					11.74		
Flow length (ft)	({0})1957.0)	1673.0		60.0		
Travel Time (min)	= 2.30	+	7.53	+	0.09	=	9.92
Total Travel Time, Tc							37.23 min
Total Haver Hile, To							01.20 1111

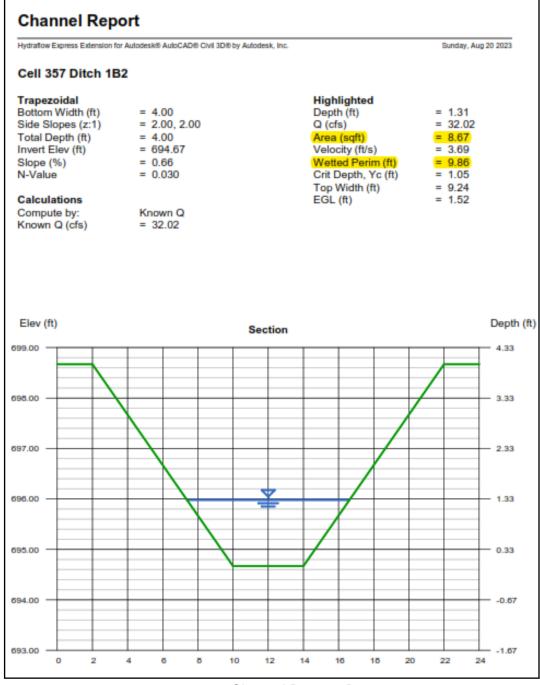
TR55 Worksheet 1B

Design CalculationsCompanyProjectPrepared byDatePlant Bowen Run-on Run-off ControlJeremy Brown9/15/23Subject/TitleReviewed byDateProvide run-on and run-off system
calculations for the peak discharge from
a 24-hr 25-year storm Cells 3-8Reviewed byDateCalculation Number
DC-BN- 735210-002Sheet
24 of 70Sheet

Map 2B

-

Design Calculations

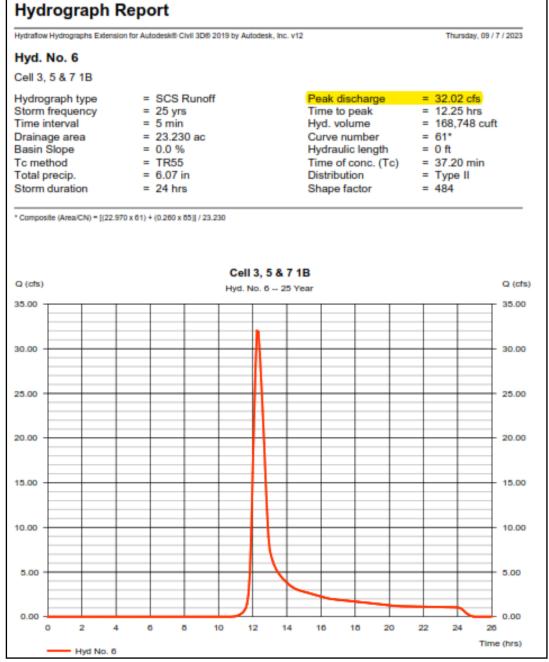

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 25 of 70

Hydraflow Express Extension	for Autodesk® AutoCAD®	Civil 3D® by Autodesk, In	ю.	Thursday, Sep 7 2023
Cell 357 Downdi	ain 1B1			
Circular Diameter (ft)	= 1.25		Highlighted Depth (ft) Q (cfs)	= 0.65 = 9.110 = 0.65
Invert Elev (ft) Slope (%) N-Value	= 705.75 = 5.94 = 0.012		Area (sqft) Velocity (ft/s) Wetted Perim (ft) Crit Depth, Yc (ft) Top Width (ft)	= 14.06
Calculations Compute by: Known Q (cfs)	Known Q = 9.11		EGL (ft)	= 3.72
Elev (ft)			Section	
707.50				
707.00		\sim		
706.50		(
706.50				

Channel Report 1B1

Design Calculations		
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 26 of 70

Channel Report 1B2

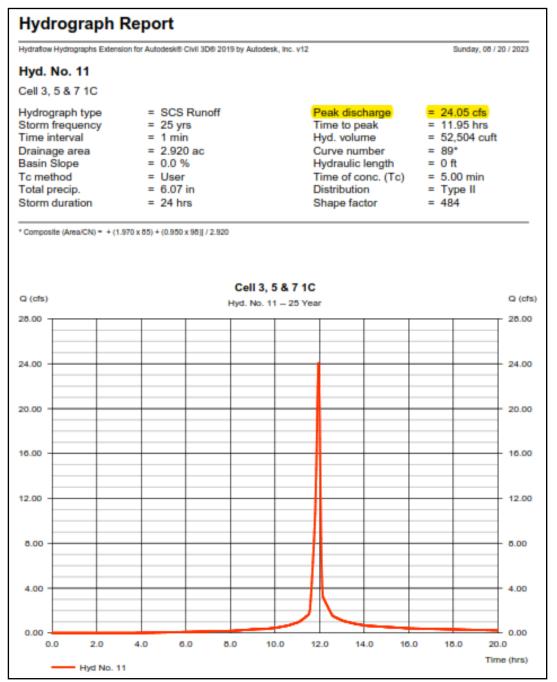

Design Culculations		
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 27 of 70

Hydraflow Express Extension	for Autodesk® AutoCA	D® Civil 3D® by Autod	esk, Inc.		Thursday, Sep 7 202
Cell357_Pipes1	B3				
Circular Diameter (ft)	= 2.50		Dep Q (d		= 0.50 = 8.010
Invert Elev (ft)	= 692.00			a (sqft) ocity (ft/s)	= 0.70 = 11.37
Slope (%)	= 4.45			tted Perim (ft)	
N-Value	= 0.012		Crit	Depth, Yc (ft)	= 0.94
Calculations				Width (ft) L (ft)	= 2.00 = 2.51
Compute by:	Known Q		20		
Known Q (cfs)					
Full flow 32.02 is div are 4 pipes. Elev (ft)	vided by 4 since t	here			
			Section	1	
695.00			Section	n	
			Section		
695.00			Section		
			Section	, 	
695.00		_	Section		
695.00 694.50 694.00		_	Section		
695.00			Section		
695.00 694.50 694.00			Section		
695.00 694.50 694.00			Section		
695.00 694.50 694.00 693.50			Section		
695.00 694.50 694.00 693.50 693.00			Section		
695.00 694.50 694.00 693.50			Section		
695.00 694.50 694.00 693.50 693.00			Section		
695.00 694.50 694.00 693.50 693.00			Section		
695.00 694.50 694.00 693.50 693.00 693.00			Section		
695.00 694.50 694.00 693.50 693.00 693.00			Section		

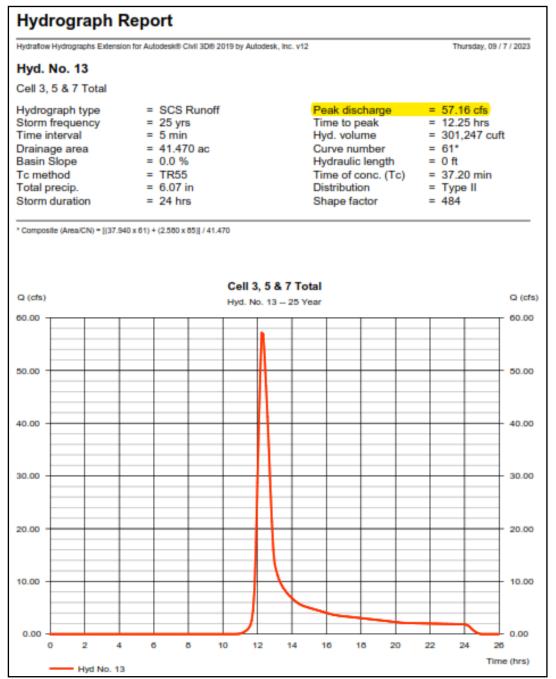
Channel Report 1B3

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 28 of 70

Hydrograph Report 1B


Design CalculationsCompanyProjectPrepared byDatePlant Bowen Run-on Run-off ControlJeremy Brown9/15/23Subject/TitleReviewed byDateProvide run-on and run-off system
calculations for the peak discharge from
a 24-hr 25-year storm Cells 3-8Reviewed byDateCalculation Number
DC-BN- 735210-002Sheet
29 of 70Sheet

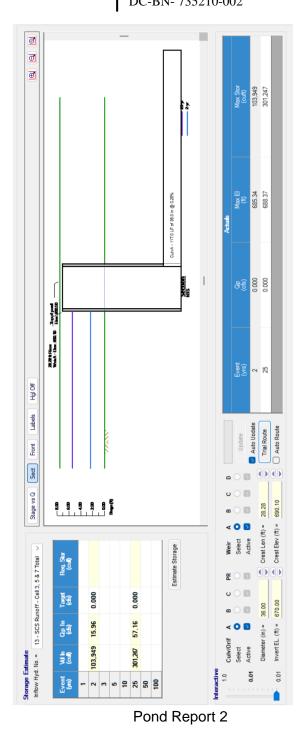
Map 1C


Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 30 of 70

Hydrograph Report 1C

Project Plant Bowen Run-on Run-off Control	Prepared by	Date
Plant Bowen Run-on Run-off Control		
	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 31 of 70

Hydrograph Report 1Total



Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 32 of 70

	ographs Extension	n for Auto	desk® Civil	3D® 2019 by	Autodesk, Inc. v12				Monday	, 04 / 12 / 2021
Pond No. 1	- Cell 3 Sed F	Pond/C	lear Pool							
Pond Data										
Contours -Use	r-defined contour	areas. Co	onic method	l used for volu	me calculation. Begini	ng Elevation =	683.00 ft			
Stage / Stor	age Table									
Stage (ft)	Elevation (ft)	Contour a	rea (sqft)	Incr. Storage (cuft)	Total sto	rage (cuft)			
0.00	683.00		9.025		0		0			
1.00	684.00		53,992		28,361	28,				
2.00 2.50	685.00 685.50		57,714 59,604		55,837 29,325	84, 113,				
3.00	686.00		61,514		30,275	143,	799			
4.00 5.00	687.00 688.00		65,394 69,352		63,438 67,357	207. 274.				
6.00	689.00		73,388	3	71,353	345,	946			
7.00 7.50	690.00 690.50		77,502 79,590		75,428 39,268	421, 460,				
Culvert / Or	ifice Structure	es			Weir Structu					
	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]	
Rise (in)	= 36.00	0.00	0.00	0.00	Crest Len (ft)	= 28.28	0.00	0.00	0.00	
Span (in)	= 36.00	0.00	0.00	0.00	Crest El. (ft)	= 690.10	0.00	0.00	0.00	
No. Barrels	= 2	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33	
Invert El. (ft)	= 670.00	0.00	0.00	0.00	Weir Type	= 1				
Length (ft)	= 117.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No	
Slope (%)	= 0.25	0.00	0.00	n/a						
M Malue	- 012	040	040							
	= .013 = 0.60	.013 0.60	.013	n/a 0.60	Exfil (in/br)	= 0.000 (by	(Contour)			
Orifice Coeff.	= .013 = 0.60 = n/a	0.60 No	0.60 No	0.60 No	Exfil.(in/hr) TW Elev. (ft) lyzed under iniet (ic) and outle	= 0.000 (by = 0.00		i for orflice co	nditions (ic) ar	nd submergence (s)
Orifice Coeff. Multi-Stage	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orffice co	nditions (ic) ar	
N-Value Orifice Coeff. Multi-Stage age (ft) 8.00	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orifice co	nditions (ic) ar	Elev (
Orifice Coeff. Multi-Stage age (ft)	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orffice co	nditions (ic) ar	Elev (
Orifice Coeff. Multi-Stage age (ft)	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orifice co	nditions (ic) ar	Elev (
Orifice Coeff. Multi-Stage age (ft)	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orffice co	nditions (ic) ar	Elev (
Orifice Coeff. Multi-Stage age (ft) 8.00	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orifice co	nditions (ic) ar	Elev (091.0
Orifice Coeff. Multi-Stage age (ft)	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orifice co	nditions (ic) ar	Elev (
Orifice Coeff. Multi-Stage	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orffice co	nditions (ic) ar	Elev (091.0
Orifice Coeff. Multi-Stage	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orifice co	nditons (ic) ar	Elev (091.0
Orifice Coeff. Multi-Stage	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orifice co	nditions (ic) ar	Elev (891.0 689.0
Orifice Coeff. Multi-Stage	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orifice co	nditions (ic) ar	Elev (891.0 689.0
Orifice Coeff. Multi-Stage	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orifice co	nditions (ic) ar	Elev (891.0 689.0
Orifice Coeff. Multi-Stage	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orifice co	nditions (ic) ar	Elev (891.0 689.0
Age (ft) 8.00 6.00	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orifice co	nditions (ic) ar	Elev (091.0 089.0 689.0
Orifice Coeff. Multi-Stage	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orifice co	nditons (ic) ar	Elev (091.0 089.0 689.0
Age (ft) 8.00 6.00	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orifice co	nditons (ic) ar	Elev (091.0 089.0 689.0
Orifice Coeff. Multi-Stage 8.00 6.00 4.00	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orifice co	nditons (ic) ar	Elev (091.0
Age (ft) 8.00 6.00	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orifice co	nditons (ic) ar	Elev (091.0 089.0 689.0

Design Calculations Prepared by Project Date 9/15/23 Plant Bowen Run-on Run-off Control Jeremy Brown Date 9/21/23 Subject/Title Reviewed by Provide run-on and run-off system Ashley Grissom calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8 Calculation Number Sheet DC-BN-735210-002 33 of 70

Drainage Area = 12.83 AC (See Map 3)

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 34 of 70

<u>Cell 4</u>

```
Curve Number = 64 (See Table 1)
       10.84 AC @ CN 61 (Grass)
       1.49 AC @ CN 85 (Gravel)
      0.50 AC @ CN 98 (Impervious – Liner in Sediment Pond and Clear Pool)
      ((10.84*61)+(1.49*85)+(0.50*98))/12.83 = 65.23 = 65
Time of Concentration = 20.51 Min (See TR55 Worksheet 2 and Map 4)
      Sheet Flow
              Manning's n-Value = 0.15 (Short Grass) (See Table 2)
             Flow Length = 167 LF
             Land Slope = (826.66-822.00)/167 = 0.0279 = 2.79%
       Shallow Concentrated
             Flow Length = 161 \text{ LF}
             Watercourse Slope = (822.00-820.90)/161 = 0.0068 = 0.68%
              Surface is Unpaved
       Channel Flow (See Channel Report 4)
              12" Dia. HDPE Downdrain Pipes
             Cross Sectional Area = 0.59 SF
             Wetted Perimeter = 1.98 LF
             Channel Slope = (820.90-723.50)/1089 = 0.0894 = 8.94%
             Manning's n-Value = 0.12 (HDPE Pipe)(See Table 4)
             Flow Length = 1089 LF
       Channel Flow (See Channel Report 5)
             Grass Lined 4' Wide Ditch with 2:1 Side Slopes and 4' Deep
             Cross Sectional Area = 5.07 SF
             Wetted Perimeter = 7.94 LF
             Channel Slope = (723.50-705.82)/1379 = 0.0128 = 1.28%
             Manning's n-Value = 0.030 (Vegetal Lining) (See Table 3)
             Flow Length = 1379 LF
       Channel Flow (See Channel Report 6)
             2 – 30" Dia. HDPE Pipes
             Cross Sectional Area = 0.70 SF
             Wetted Perimeter = 2.32 LF
```


besign curculations		
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 35 of 70

Channel Slope = (705.82-701.00)/60 = 0.0803 = 8.03%Manning's n-Value = 0.012 (HDPE Pipe) (See Table 4) Flow Length = 60 LF

Time Interval = 3 Min

Tc*0.1333 = 20.51*0.1333 = 2.73 = 3

Storm Distribution = Type II

 $Q_{25} = 30.10$ CFS (See Hydrograph Report 2)

To Evaluate for Storage Capacity, Treat The Sediment Pond and Clear Pool As One Pond Since They Are Interconnected.

Elevation	Sed. Pond Area	Clear Pool Area	Total Area	Volume
(FT)	(SF)	(SF)	(SF)	(CF)
697	740	5,913	6,653	0*
698	16,648	6,917	23,565	14,245*
698.5	17,772	7,435	25,207	26,434*
699	18,906	7,962	26,868	39,450
700	21,203	9,045	30,248	67,988
701	23,539	10,168	33,707	99,947
702	25,915	11,330	37,215	135,390

*Dead Storage

Spillways

- Principal Spillway consists of a 66" Dia. Riser with a 42" Dia. HDPE Pipe.
- Auxiliary Spillway consist of a concrete lined trapezoidal weir that is 18' wide with 6:1 side slopes and sloped at 1% in the direction of flow with a 3:1 slope on the discharge channel at the downstream end.

High Water Elevation is 701.04 (See Pond Reports 3 & 4)

Design CalculationsCompanyProjectPrepared byDatePlant Bowen Run-on Run-off ControlJeremy Brown9/15/23Subject/TitleReviewed byDateProvide run-on and run-off system
calculations for the peak discharge from
a 24-hr 25-year storm Cells 3-8Reviewed byCalculation Number
DC-BN- 735210-002Sheet
36 of 70

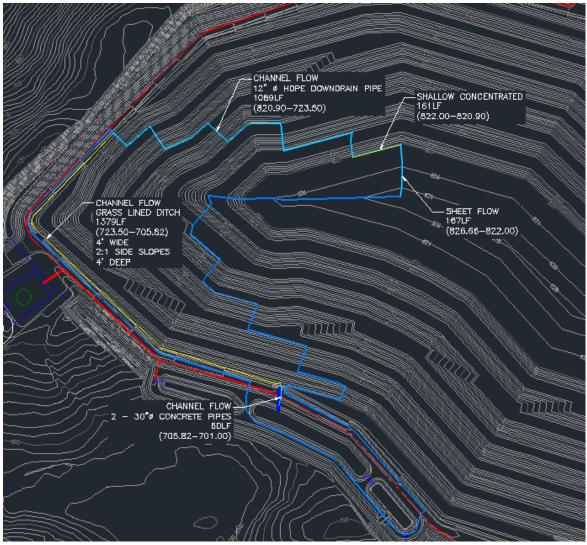
Мар 3

Prepared by	Date
Jeremy Brown	9/15/23
Reviewed by Ashley Grissom	Date 9/21/23
Calculation Number DC-BN- 735210-002	Sheet 37 of 70
	Jeremy Brown Reviewed by Ashley Grissom Calculation Number

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v12

TR55 Tc Worksheet

Hyd. No. 16


Cell 4

Description	Δ		B		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 167.0 = 3.79 = 2.79		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 11.88	+	0.00	+	0.00	=	11.88
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 161.00 = 0.68 = Unpaved =1.33		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 2.02	+	0.00	+	0.00	=	2.02
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.59 = 1.98 = 8.94 = 0.012 =16.50 ({0})1089.0		5.22 8.02 1.28 0.030 4.21 1379.0		0.70 2.32 8.03 0.012 15.77 60.0		
Flow length (ft)	({0})1089.0		1379.0		60.0		
Travel Time (min)	= 1.10	+	5.45	+	0.06	=	6.62

TR55 Worksheet 2

Design Calculations Prepared by Date Project 9/15/23 Plant Bowen Run-on Run-off Control Jeremy Brown Subject/Title Reviewed by Date Provide run-on and run-off system Ashley Grissom 9/21/23 calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8 Calculation Number Sheet DC-BN-735210-002 38 of 70

Map 4

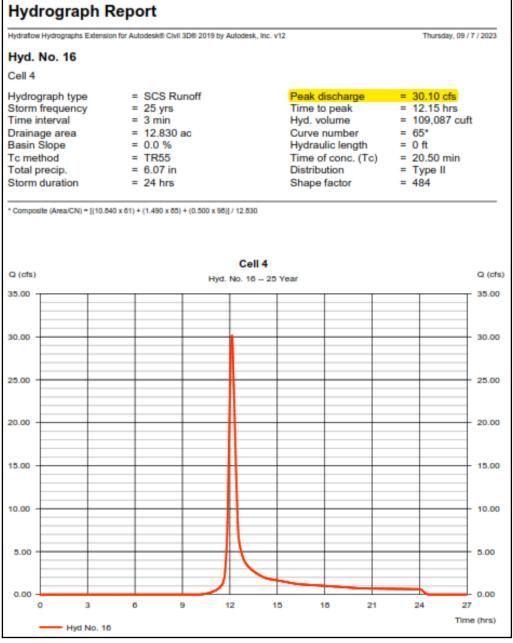
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 39 of 70

Hydraflow Express Extension	for Autodesk® AutoCAD® Civil 3D	8 by Aufodesk, Inc.	Thursday, Sep 7 202
Cell 4 Downdrai	n		
Circular Diameter (ft)	= 1.00	Highlighted Depth (ft) Q (cfs)	= 0.70 = 9.560
Invert Elev (ft) Slope (%) N-Value	= 723.50 = 8.94 = 0.012	Area (sqft) Velocity (ft/s) Wetted Perim (ft) Crit Depth, Yc (ft)	= 1.00
Calculations Compute by: Known Q (cfs)	Known Q = 9.56	Top Width (ft) EGL (ft)	= 0.92 = 4.80
Elev (ft)		Section	
724.50			
		✓ ¥	
724.00			
724.00			

2 congin ouroundhons		
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 40 of 70

Hydraflow Express Extension	for Autodesk® AutoCAD® Civil 3D® by Au	odesk, Inc.	Sunday, Aug 20 2023
Cell 4 Ditch 1			
Trapezoidal Bottom Width (ft) Side Slopes (z:1) Total Depth (ft) Invert Elev (ft) Slope (%) N-Value	= 4.00 = 2.00, 2.00 = 4.00 = 704.73 = 1.28 = 0.030	Highlighted Depth (ft) Q (cfs) Area (sqft) Velocity (ft/s) Wetted Perim (ft) Crit Depth, Yc (ft) Top Width (ft)	
Calculations Compute by:	Known Q	EGL (ft)	= 1.17
Known Q (cfs)			
Elev (ft)	5	Section	Depth (
00.00			4.27
00.00			3.27
			3.27
17.00			
17.00		*	2.27
86.00			2.27
17.00			2.27

Channel Report 5

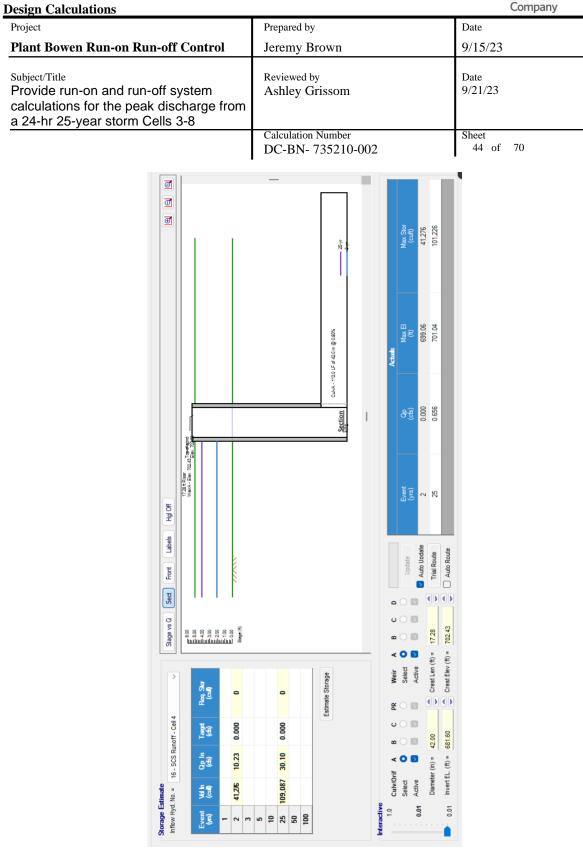


		1 3
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 41 of 70
	DC DI(755210 002	1

Hydraflow Express Extension fo	or Autodesk® AutoCAD®	Civil 3D® by Autodesk	, Inc.	Monday, Sep 18 202		
Cell 4 Pipes						
Circular Diameter (ft)	= 2.50		Highlighted Depth (ft) Q (cfs)	= 0.50 = 10.85		
Invert Elev (ft) Slope (%) N-Value	= 701.00 = 8.03 = 0.012		Area (sqft) = 0.70 Velocity (ft/s) = 15.40 Wetted Perim (ft) = 2.32 Crit Depth, Yc (ft) = 1.10 Tape Width (ft) = 2.00			
Calculations Compute by: Known Q (cfs)	Known Q = 10.85		Crit Depth, Yc (ft) = 1.10 Top Width (ft) = 2.00 EGL (ft) = 4.19			
21.70/2=10.85 Total Flow of 21.70 is o by 2 since there are 2						
Elev (ft))		Section			
704.00 —						
703.50 —						
703.00 —				\searrow		
702.50 —		/				
702.00 —						
701.50 —		\land	<u> </u>			
			\searrow			
701.00 —						

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 42 of 70

Hydrograph Report 2



Project	Prepared by	Date	
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23	
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23	
	Calculation Number DC-BN- 735210-002	Sheet 43 of 70	

nyulailow nyul	ographs Extension	n for Auto	odesk® CM	II 3D® 2019 by	Autodesk, Inc. v12				Thursday	, 09 / 7 / 2023
Pond No. 2	- Cell 4 Sed F	ond/C	lear Poo							
Pond Data										
Contours -Use	r-defined contoura	areas. C	onic method	d used for volu	me calculation. Beginir	g Elevation =	697.00 ft			
Stage / Stor	age Table									
Stage (ft)	Elevation (ft)	Contour a	area (sqft)	Incr. Storage (cuft)	Total sto	rage (cuft)			
0.00	697.00		6,653		0		0			
1.00	095.00 095.50		23,565 25,207		14,245	14,2	245 434			
2.00	699.00		26,668	5	13,015	39,	450			
3.00 4.00	700.00 701.00		30,248		25,535 31,959	67,5				
5.00	702.00		37,215		35,443	135,				
Culvert / Or	fice Structure	es			Weir Structu	res				
	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]	
Rise (in)	= 42.00	0.00	0.00	0.00	Crest Len (ft)	= 17.28	0.00	0.00	0.00	
Span (in)	= 42.00	0.00	0.00	0.00	Crest El. (ft)	= 702.43	0.00	0.00	0.00	
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33	
Invert EI. (ft) Length (ft)	= 681.60 = 113.00	0.00	0.00	0.00	Weir Type Multi-Stage	= 1 = Yes	No	No	No	
Slope (%)	= 0.80	0.00	0.00	n/a	Multi-burge	- 105	PRO 1	NO	NU	
N-Value	= .013									
	013	.013	.013	nía						
	= 0.60	.013	.013	n/a 0.60	Exfll.(In/hr)	= 0.000 (by	Wet area)			
Orlfice Coeff.		0.60 No	0.60 No	0.60 No	Exfil.(In/hr) TW Elev. (ft) lyzed under inlet (ic) and cutle	= 0.000 (by = 0.00 t(oc) control. Weir			nditions (ic) and	f submergence (s).
Orifice Coeff. Multi-Stage	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditions (ic) and	
Orifice Coeff. Multi-Stage	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditions (ic) and	Elev (f
Ortfice Coeff. Multi-Stage	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			ndilona (ic) and	Elev (f
Ortfice Coeff. Multi-Stage	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditons (ic) and	Elev (1)
Ortfice Coeff. Multi-Stage	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			ndtions (ic) and	Elev (f
Ortfice Coeff. Multi-Stage	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditons (ic) and	Elev (f
Ortfice Coeff. Multi-Stage age (ft) 5.00	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditora (ic) and	Elev (f
Ortfice Coeff. Multi-Stage age (fl) 5.00	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditora (ic) and	Elev (f
Ortfice Coeff. Multi-Stage age (fl) 5.00	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditors (ic) and	Elev (f
Ortfice Coeff. Multi-Stage age (fl) 5.00	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditors (ic) and	Elev (f
Ortfice Coeff. Multi-Stage	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditors (c) and	Elev (f
Ortfice Coeff. Multi-Stage	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditors (c) and	Elev (f
Ortfice Coeff. Multi-Stage	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditors (c) and	Elev (f
Ortfice Coeff. Multi-Stage	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditors (c) and	Elev (f
Ortfice Coeff. Multi-Stage	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditors (ic) and	Elev (f
Ortfice Coeff. Multi-Stage	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditors (ic) and	Elev (f
Ortfice Coeff. Multi-Stage	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditors (ic) and	Elev (f
Orifice Coeff. Multi-Stage	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			ndiions (ic) and	Elev (f 702.00 701.00 700.00 699.00
Ortfice Coeff. Multi-Stage	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditors (c) and	Elev (f
Orifice Coeff. Multi-Stage	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditors (c) and	Elev (f 702.00 701.00 700.00 699.00
Orifice Coeff. Multi-Stage	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00				Elev (f 702.00 701.00 700.00 699.00

Pond	Report	3
------	--------	---

Pond Report 4

Drainage Area = 28.61 AC (See Map 5)

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 45 of 70

<u>Cell 6</u>

```
Curve Number = 64 (See Table 1)
       26.50 AC @ CN 61 (Grass)
       1.53 AC @ CN 85 (Gravel)
       0.58 AC @ CN 98 (Impervious – Liner in Sediment Pond and Clear Pool)
       ((26.50^{\circ}61) + (1.53^{\circ}85) + (0.58^{\circ}98))/28.61 = 63.03 = 63
Time of Concentration = 47.04 Min (See TR55 Worksheet 3 and Map 6)
       Sheet Flow
              Manning's n-Value = 0.15 (Short Grass) (See Table 2)
              Flow Length = 300 LF
              Land Slope = (828.25-826.75)/300 = 0.0050 = 0.50%
       Shallow Concentrated
              Flow Length = 403 LF
              Watercourse Slope = (826.75-822.00)/403 = 0.0118 = 1.18%
              Surface is Unpaved
       Channel Flow (See Channel Report 7)
              18" Dia. HDPE Downdrain Pipes
              Cross Sectional Area = 1.01 SF
              Wetted Perimeter = 2.52 LF
              Channel Slope = (822.00-703.63)/1778 = 0.0666 = 6.66%
              Manning's n-Value = 0.12 (HDPE Pipe) (See Table 4)
              Flow Length = 1778 LF
       Channel Flow (See Channel Report 8)
              Grass Lined 4' Wide Ditch with 2:1 Side Slopes and 4' Deep
              Cross Sectional Area = 7.95 SF
              Wetted Perimeter = 9.50 LF
              Channel Slope = (703.63-697.94)/810 = 0.0070 = 0.70%
              Manning's n-Value = 0.030 (Vegetal Lining) (See Table 3)
              Flow Length = 810 LF
       Channel Flow (See Channel Report 9)
              5 – 30" Dia. HDPE Pipes
              Cross Sectional Area = 0.42 SF
              Wetted Perimeter = 1.92 LF
```


Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 46 of 70
		-

Channel Slope = (697.65-690.00)/79 = 0.0968 = 9.68%Manning's n-Value = 0.012 (HDPE Pipe) (See Table 4) Flow Length = 79 LF

Time Interval = 3 Min

Tc*0.1333 = 47.04*0.1333 = 6.27 = 7

Storm Distribution = Type II

Q₂₅ = 34.28 CFS (See Hydrograph Report 3)

To Evaluate for Storage Capacity, Treat The Sediment Pond and Clear Pool As One Pond Since They Are Interconnected.

Elevation	Sed. Pond Area	Clear Pool Area	Total Area	Volume
(FT)	(SF)	(SF)	(SF)	(CF)
685	0	4,531	4,531	0*
686	20,795	5,195	25,990	13,790*
687	22,799	5,899	28,698	41,120
688	24,842	6,642	31,484	71,197
689	26,925	7,245	34,170	104,011
689.50	27,981	7,831	35,812	121,504

*Dead Storage

Spillways

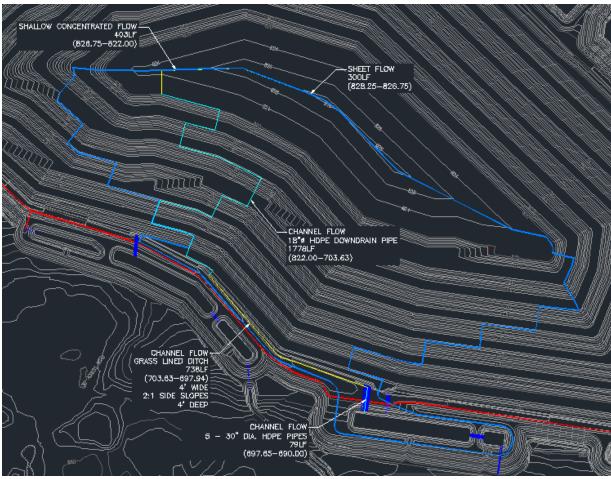
- Principal Spillway consists of a 36" Dia. Riser with two 24" Dia. HDPE Pipes.
- Auxiliary Spillway consist of a grass lined trapezoidal weir that is 8' wide with 3:1 side slopes and sloped at 1% in the direction of flow with a 3:1 slope on the discharge channel at the downstream end.

High Water Elevation is 688.25 (See Pond Reports 5 & 6)

Design CalculationsCompanyProjectPrepared byDatePlant Bowen Run-on Run-off ControlJeremy Brown9/15/23Subject/TitleReviewed byDateProvide run-on and run-off system
calculations for the peak discharge from
a 24-hr 25-year storm Cells 3-8Reviewed byCalculation Number
DC-BN- 735210-002Sheet
47 of 70

Map 5

		Contract Contraction
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 48 of 70

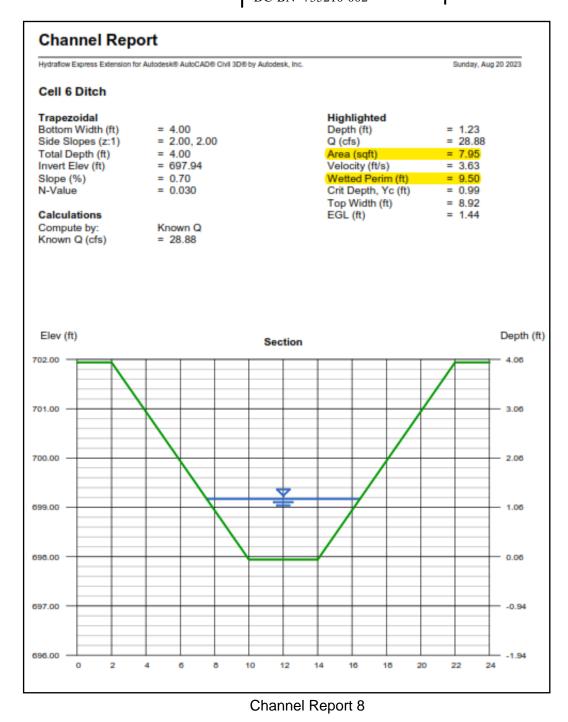

TR55 Tc Worksheet

	н	ydrafio	w Hydrographs	s Extens	sion for Autode	ask® C	wil 3D8 2019 by A
yd. No. 22							
ell 6							
escription	Δ		B		<u>c</u>		Totals
heet Flow							
Manning's n-value	= 0.150		0.011		0.011		
Flow length (ft)	= 300.0		0.0		0.0		
wo-year 24-hr precip. (in)	= 3.79		0.00		0.00		
and slope (%)	= 0.50		0.00		0.00		
avel Time (min)	= 37.75	+	0.00	+	0.00	=	37.75
hallow Concentrated Flow							
low length (ft)	= 403.00		0.00		0.00		
Vatercourse slope (%)	= 1.18		0.00		0.00		
Surface description	= Unpave	d	Paved		Paved		
Average velocity (ft/s)	=1.75		0.00		0.00		
avel Time (min)	= 3.83	+	0.00	+	0.00	=	3.83
nannel Flow							
(sectional flow area (sqft)	= 1.01		7.95		0.42		
Vetted perimeter (ft)	= 2.52		9.50		1.92		
hannel slope (%)	= 6.66		0.70		10.05		
lanning's n-value	= 0.012		0.030		0.012		
/elocity (ft/s)	=17.37						
			3.69				
					14.22		
Flow length (ft)	({0})1778.0)	810.0		79.0		
ravel Time (min)	= 1.71	+	3.66	+	0.09	=	5.46
otal Travel Time, Tc							47.04 min

TR55 Worksheet 3

Design Calculations Prepared by Project Date Plant Bowen Run-on Run-off Control 9/15/23 Jeremy Brown Subject/Title Provide run-on and run-off system Reviewed by Ashley Grissom Date 9/21/23 calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8 Calculation Number Sheet DC-BN-735210-002 49 of 70

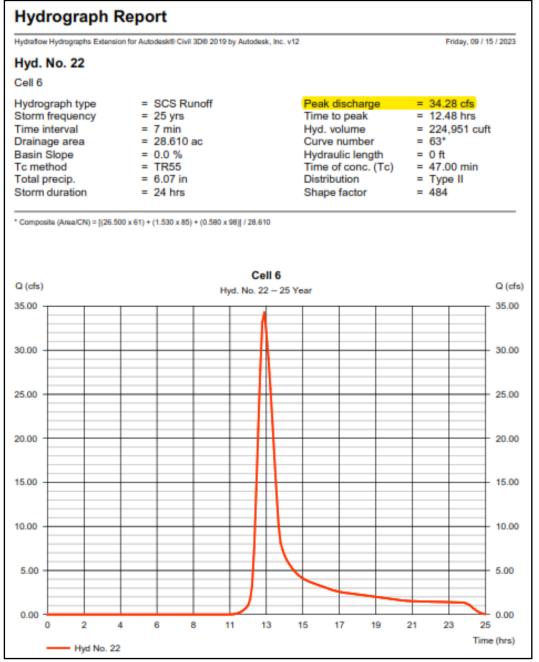
Map 6


Design Calculations		
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 50 of 70

Hydraflow Express Extension	for Autodesk® AutoCAD®	vil 3D® by Autodesk, Inc.		Thursday, Sep 7 202
Cell 6 Downdrai	'n			
Circular Diameter (ft)	= 1.50		Highlighted Depth (ft) Q (cfs)	= 0.83 = 17.28
Invert Elev (ft)	= 703.63		Area (sqft) Velocity (ft/s)	= 1.01 = 17.18
Slope (%)	= 6.66		Wetted Perim (ft)	= 2.52
N-Value	= 0.012		Crit Depth, Yc (ft)	= 1.45
			Top Width (ft)	= 1.49
Calculations	KO		EGL (ft)	= 5.42
Compute by: Known Q (cfs)	Known Q = 17.28			
Elev (ft)				
Elev (it)		Sec	ction	
706.00		Sec	ction	
		Sec	tion	
		Sec	stion	
706.00		Sec	ction	
		Sec	ction	
706.00		Sec		
705.50		Sec	ction	
706.00		Sec	ction	
705.50		Sec	ction	
705.50		Sec	ction	
705.50		Sec	ction	
705.50		Sec	ction	
706.00 705.50 705.00 704.50		Sec	etion	
705.50		Sec	etion	
706.00 705.50 705.00 704.50		Sec	ction	
706.00 705.50 705.00 704.50		Sec	etion	
706.00 705.50 705.00 704.50		Sec	etion	
706.00 705.50 705.00 704.50		Sec	etion	
706.00 705.50 705.00 704.50		Sec	etion	

Channel Report 7

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 51 of 70

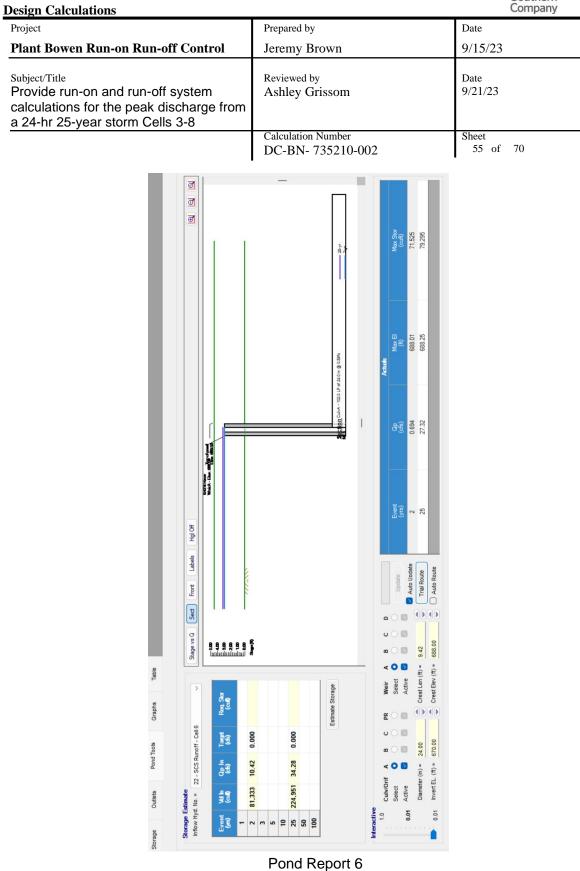

		1 3
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 52 of 70
	DC-DIN- 755210-002	52 01 70

Hydraflow Express Extension for	r Autodesk® AutoCAD®	Civil 3D® by Autodesk, Inc.		Monday, Sep 18 202
Cell 6 Pipes				
Circular Diameter (ft)	= 2.50		Highlighted Depth (ft) Q (cfs) Area (sqft)	= 0.35 = 5.780 = 0.42
Invert Elev (ft) Slope (%) N-Value	= 690.00 = 9.68 = 0.012		Velocity (ft/s) Wetted Perim (ft) Crit Depth, Yc (ft)	= 13.6 ⁹
Calculations Compute by: Known Q (cfs)	Known Q = 5.78		Top Width (ft) EGL (ft)	= 1.74 = 3.26
28.92/5=5.78 Total Flow of 28.92 is d by 5 since there are 5 p	livided			
Elev (ft)			Section	
693.00				
692.50 —				
692.00 —				
		/		\land
691.50 —		1		
691.50 — 691.00 —				
			↓	
691.00 —				

Channel Report 9

		Contraction Provide State
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 53 of 70

Hydrograph Report 3



Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 54 of 70

Hydraflow Hydri	ographs Extension	n for Auto	desk® Civi	3D8 2019 by	Autodesk, Inc. v12				Friday,	09/15/2023
Pond No. 3	- Cell 6 Sed F	ond/Cl	ear Pool	1						
Pond Data										
Contours .Use	r-defined contour	areas. Co	nic method	l used for volu	me calculation. Beginin	g Elevation =	685.00 ft			
Stage / Stor	age Table									
Stage (ft)	Elevation (ft)	Contour a	irea (sqft)	Incr. Storage (cuft)	Total sto	rage (cuft)			
0.00	685.00		4,531		0		0			
1.00 2.00	686.00 687.00		25,990 28,698		13,790 27,330	13,3				
3.00	688.00		31,484		30,077	71,1	197			
4.00 4.50	689.00 689.50		34,170 35,812		32,815 17,492	104,0				
			30,612				004			
Culvert / Ori	ifice Structure				Weir Structu					
	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]	
Rise (in) Span (in)	= 24.00 = 24.00	0.00	0.00	0.00	Crest Len (ft) Crest El. (ft)	= 9.42 = 688.00	0.00	0.00	0.00	
span (in) No. Barrels	= 24.00	0.00	0.00	0.00	Weir Coeff.	= 688.00	3.33	3.33	3.33	
invert EL (ft)	= 670.00	0.00	0.00	0.00	Weir Type	= 1				
Length (ft)	= 102.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No	
Slope (%)	= 0.59	0.00	0.00	n/a						
N-Value	= .013	.013	.013	n/a						
Orifice Coeff.										
	= 0.60 = n/a	0.60 No	0.60 No	0.60 No	Exfil.(in/hr) TW Elev. (ft) lyzed under inlet (ic) and outle	= 0.00	(Wet area)	for orifice car	uditions (ic) an	d submergence (s).
Multi-Stage		No	No	No	TW Elev. (ft)	= 0.00		for orifice-cor	nditions (ic) an	d submergence (s).
		No	No	No	TW Elev. (ft)	= 0.00		for or filos con	uditions (ic) an	f submergence (s).
		No	No	No te outflows are and	TW Elev. (ft)	= 0.00		for orifica-con	ditons (ic) an	
Multi-Stage		No	No	No te outflows are and	TW Elev. (ft)	= 0.00		for orifica-con	uditions (ic) an	Elev (f
Multi-Stage 19e (ft)		No	No	No te outflows are and	TW Elev. (ft)	= 0.00		for orifice con	ditions (ic) an	Elev (f
Multi-Stage 19e (ft)		No	No	No te outflows are and	TW Elev. (ft)	= 0.00		for online con	ditions (ic) and	Elev (ft
Multi-Stage 19e (ft)		No	No	No te outflows are and	TW Elev. (ft)	= 0.00		for orifice con	nditions (ic) and	Elev (f
Multi-Stage 19e (ft)		No	No	No te outflows are and	TW Elev. (ft)	= 0.00		for orifice con	ditions (ic) an	Elev (ft
99 (ft) 5.00		No	No	No te outflows are and	TW Elev. (ft)	= 0.00		for online con	ditions (ic) an	Elev (ft
99 (ft) 5.00		No	No	No te outflows are and	TW Elev. (ft)	= 0.00		for online con	ditors (c) av	Elev (ft
99 (ft) 5.00		No	No	No te outflows are and	TW Elev. (ft)	= 0.00		for orifica cor	nditions (c) an	Elev (ft
ge (ft)		No	No	No te outflows are and	TW Elev. (ft)	= 0.00		for orifica cor	nditions (c) an	Elev (ft
ge (ft) 5.00 4.00		No	No	No te outflows are and	TW Elev. (ft)	= 0.00		for orifice cor	nditions (c) an	Elev (f
ge (ft) 5.00 4.00		No	No	No te outflows are and	TW Elev. (ft)	= 0.00		for orifice con	nditions (ic) and	Elev (f
ge (ft) 5.00 4.00		No	No	No te outflows are and	TW Elev. (ft)	= 0.00		for orifice cor	nditions (ic) an	Elev (f
ge (ft) 5.00 4.00		No	No	No te outflows are and	TW Elev. (ft)	= 0.00		for orifice cor	nditions (c) an	Elev (f 690.00 689.00 688.00
ge (ft) 5.00 4.00		No	No	No te outflows are and	TW Elev. (ft)	= 0.00		for orifice cor	nditions (c) an	Elev (f 690.00 689.00 688.00
ge (ft) 5.00 4.00		No	No	No te outflows are and	TW Elev. (ft)	= 0.00		for orifice-cor	nditions (c) an	Elev (f 690.00 689.00 688.00
ge (ft) 5.00 4.00		No	No	No te outflows are and	TW Elev. (ft)	= 0.00		for orifice con	ditions (ic) and	Elev (f 690.00 689.00 688.00
ge (ft) 5.00 4.00 3.00		No	No	No te outflows are and	TW Elev. (ft)	= 0.00			aditions (ic) an	Elev (f 690.00 689.00 688.00 688.00
ge (ft) 5.00 4.00		No	No	No te outflows are and	TW Elev. (ft)	= 0.00			nditions (ic) an	Elev (f 690.00 689.00 688.00 688.00
ge (ft) 5.00 4.00 3.00		No	No	No te outflows are and	TW Elev. (ft)	= 0.00			nditions (c) an	Elev (f 690.00 689.00 688.00 688.00
ge (ft) 5.00 4.00 3.00		No	No	No te outflows are and	TW Elev. (ft)	= 0.00			nditions (c) an	Elev (f 690.00 689.00 688.00 688.00
ge (ft) 5.00 4.00 3.00		No	No	No te outflows are and	TW Elev. (ft)	= 0.00				Elev (f 690.00 689.00 688.00

Pond Report 5

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 56 of 70

<u>Cell 8</u>

```
Drainage Area = 10.41 AC (See Map 7)
Curve Number = 64 (See Table 1)
      9.10 AC @ CN 61 (Grass)
      0.97 AC @ CN 85 (Gravel)
      0.34 AC @ CN 98 (Impervious – Liner in Sediment Pond and Clear Pool)
      ((9.10*61)+(0.97*85)+(0.34*98))/10.41 = 64.44 = 64
Time of Concentration = 19.37 Min (See TR55 Worksheet 4 and Map 8)
       Sheet Flow
             Manning's n-Value = 0.15 (Short Grass) (See Table 2)
             Flow Length = 99 LF
             Land Slope = (806.00-805.10)/99 = 0.0091 = 0.91\%
       Channel Flow (See Channel Report 10)
              15" Dia. HDPE Downdrain Pipes
             Cross Sectional Area = 0.62 SF
             Wetted Perimeter = 1.97 LF
             Channel Slope = (805.10-696.77)/1541 = 0.0703 = 7.03%
             Manning's n-Value = 0.12 (HDPE Pipe)(See Table 4)
             Flow Length = 1541 LF
       Channel Flow (See Channel Report 11)
             Grass Lined 4' Wide Ditch with 2:1 Side Slopes and 4' Deep
             Cross Sectional Area = 5.76 SF
             Wetted Perimeter = 8.34 LF
             Channel Slope = (696.77-692.14)/895 = 0.0052 = 0.52%
             Manning's n-Value = 0.030 (Vegetal Lining) (See Table 3)
             Flow Length = 895 LF
       Channel Flow (See Channel Report 12)
             Grass Lined 4' Wide Ditch with 2:1 Side Slopes and 2' Deep
             Cross Sectional Area = 2.87 SF
             Wetted Perimeter = 6.50 LF
             Channel Slope = (692.14-688.00)/52 = 0.0796 = 7.96%
             Manning's n-Value = 0.030 (Vegetal Lining) (See Table 3)
             Flow Length = 52 LF
```


Design Calculations		
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 57 of 70

Time Interval = 3 Min

Tc*0.1333 = 19.37*0.1333 = 2.58 = 3

Storm Distribution = Type II

Q₂₅ = 27.43 CFS (See Hydrograph Report 4)

To Evaluate for Storage Capacity, Treat The Sediment Pond and Clear Pool As One Pond Since They Are Interconnected.

Elevation	Sed. Pond Area	Clear Pool Area	Total Area	Volume
(FT)	(SF)	(SF)	(SF)	(CF)
685	0	6,230	6,230	0*
686	15,795	6,995	22,790	13,644*
687	17,149	7,789	24,948	37,502
688	18,542	8,642	27,184	63,558
689	19,975	9,525	29,500	91,889
689.50	20,706	9,981	30,687	106,933

*Dead Storage

Spillways

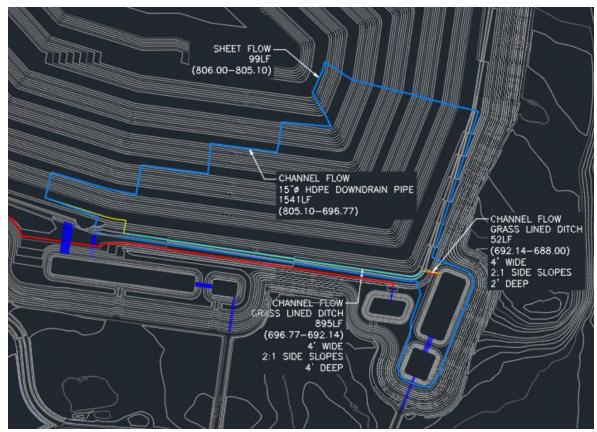
- Principal Spillway consists of a 36" Dia. Riser with two 24" Dia. HDPE Pipes.
- Auxiliary Spillway consist of a grass lined trapezoidal weir that is 8' wide with 3:1 side slopes and sloped at 1% in the direction of flow with a 3:1 slope on the discharge channel at the downstream end.

High Water Elevation is 688.03 (See Pond Reports 7 & 8)

Design CalculationsCompanyProjectPrepared byDatePlant Bowen Run-on Run-off ControlJeremy Brown9/15/23Subject/TitleReviewed byDateProvide run-on and run-off system
calculations for the peak discharge from
a 24-hr 25-year storm Cells 3-8Reviewed byCalculation Number
DC-BN- 735210-002Sheet
58 of 70

Map 7

Design Culculations			
Project	Prepared by	Date	
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23	
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23	
	Calculation Number DC-BN- 735210-002	Sheet 59 of 70	

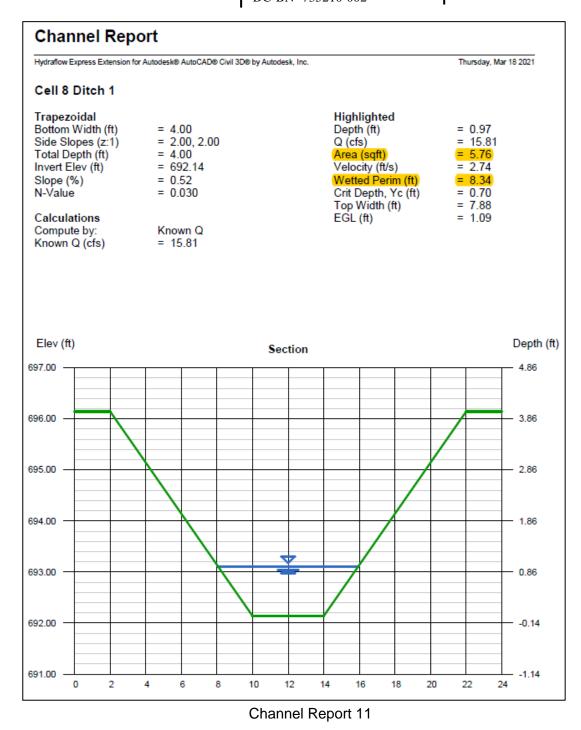

TR55 Tc Worksheet

	H	lydrafio	w Hydrograph	s Extern	sion for Autode	isk® C	MI 3D® 2019 by Au
Hyd. No. 28							
Cell 8							
Description	Δ		B		<u>c</u>		Totals
Sheet Flow							
Manning's n-value	= 0.150		0.011		0.011		
Flow length (ft)	= 99.0		0.0		0.0		
Two-year 24-hr precip. (in)	= 3.79		0.00		0.00		
Land slope (%)	= 0.91		0.00		0.00		
Travel Time (min)	= 12.24	+	0.00	+	0.00	=	12.24
Shallow Concentrated Flow							
Flow length (ft)	= 0.00		0.00		0.00		
Watercourse slope (%)	= 0.00		0.00		0.00		
Surface description	= Unpave	d	Paved		Paved		
Average velocity (ft/s)	=0.00		0.00		0.00		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Channel Flow							
X sectional flow area (sqft)	= 0.62		5.76		2.87		
Wetted perimeter (ft)	= 1.97		8.34		6.50		
Channel slope (%)	= 7.03		0.52		7.96		
Manning's n-value	= 0.012		0.030		0.030		
Velocity (ft/s)	=15.17						
			2.79				
					8.10		
Flow length (ft)	({0})1541.0	0	895.0		52.0		
Travel Time (min)	= 1.69	+	5.34	+	0.11	=	7.14
Total Travel Time, Tc							19.37 min

TR55 Worksheet 3

Design Calculations Prepared by Date Project Plant Bowen Run-on Run-off Control Jeremy Brown 9/15/23 Subject/Title Reviewed by Date Provide run-on and run-off system Ashley Grissom 9/21/23 calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8 Calculation Number Sheet DC-BN-735210-002 60 of 70

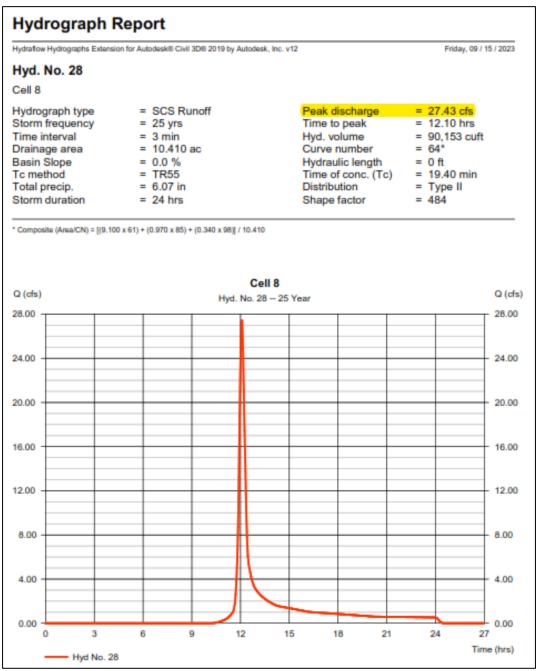
Map 8



Prepared by	Date
Jeremy Brown	9/15/23
Reviewed by Ashley Grissom	Date 9/21/23
Calculation Number DC-BN- 735210-002	Sheet 61 of 70
	Jeremy Brown Reviewed by Ashley Grissom Calculation Number

Hydraflow Express Extension fo	or Autodesk® AutoCAD® Civil 3D	6 by Autodesk, Inc.		Friday, Sep 15 2023
Cell 8 Downdrain	ı			
Circular			Highlighted	
Diameter (ft)	= 1.25		Depth (ft) Q (cfs)	= 0.63 = 9.380
nvert Elev (ft)	= 696.77		Area (sqft) Velocity (ft/s)	= 0.62 = 15.11
Slope (%)	= 7.03		Wetted Perim (ft)	
N-Value	= 0.012		Crit Depth, Yc (ft)	
v-value	- 0.012		Top Width (ft)	= 1.17
Calculations			EGL (ft)	= 4.18
Compute by:	Known Q		202(1)	1.10
Known Q (cfs)	= 9.38			
Elev (ft)	2		Section	
699.00				
698.50 -				
090.00				
698.00				
		/		
		/		
		/		
807.50		/		
697.50 —		<u>×</u>		
697.50 —		/ 		
697.50 —		/ ≚		
697.50		✓		
697.00 —				
697.00 —				
697.00 —				
697.00 —				

		,
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 62 of 70

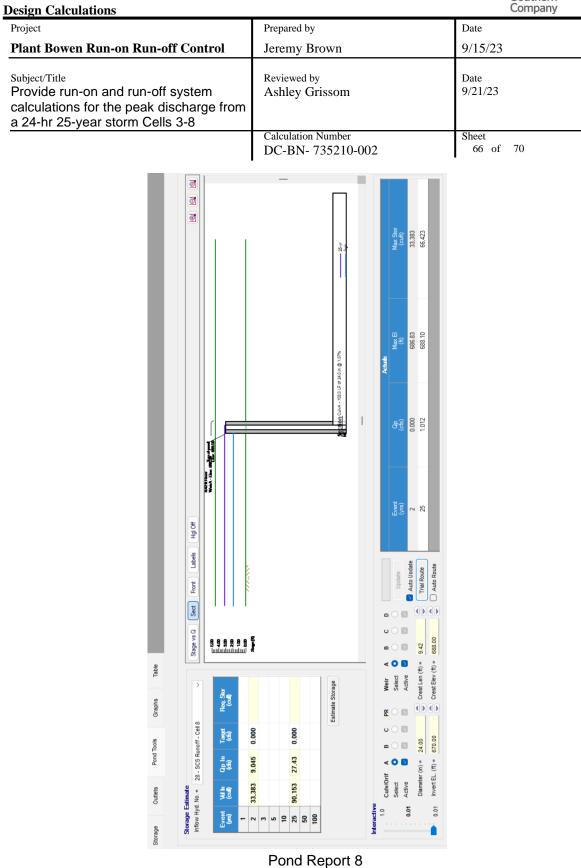

Design Culculations		
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 63 of 70

Hydraflow Express Extension 1	ior Autodesk® AutoCAD® Civil 3D®	Autodesk, Inc. Ti	hursday, Mar 18 2021
Cell 8 Ditch 2			
Trapezoidal Bottom Width (ft) Side Slopes (z:1) Total Depth (ft) Invert Elev (ft) Slope (%) N-Value Calculations Compute by: Known Q (cfs)	= 4.00 = 2.00, 2.00 = 2.00 = 688.00 = 7.96 = 0.030 Known Q = 22.51	Q (cfs) = Area (sqft) = Velocity (ft/s) = Wetted Perim (ft) = Crit Depth, Yc (ft) = Top Width (ft) =	0.56 22.51 2.87 7.85 6.50 0.86 6.24 1.52
Elev (ft)		Section	Depth (
390.50			2.50
590.00 N			2.00
89.50			1.50
689.00			1.00
688.50			0.50
			0.00
88.00			

Channel Report 12

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 64 of 70

Hydrograph Report 4



Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 65 of 70

Hydraflow Hydro	ographs Extension	n for Aut	odesk® Civi	3D8 2019 by	Autodesk, Inc. v12				Friday, (09 / 15 / 2023
Pond No. 4	- Cell 8 Sed F	ond/C	lear Pool	1						
Pond Data										
Contours -User	r-defined contour	areas. C	onic method	l used for volu	me calculation. Beginin	g Elevation =	685.00 ft			
Stage / Stor	age Table									
Stage (ft)	Elevation (ft)	Contour a	rea (sqft)	Incr. Storage (cuft)	Total stor	rage (cuft)			
0.00	685.00		6,230		0		0			
1.00 2.00	686.00 687.00		22,790 24,948		13,644 23,858	13,0	644 502			
3.00	688.00		27,184		26,055	63,5	558			
4.00 4.50	689.00 689.50		29,500 30,687		28,331 15,044	91,8				
			30,667				V33			
Culvert / Ori	fice Structure				Weir Structu					
	[A]	[B]	[C]	[PrfRsr]		[A]	(B)	[C]	[D]	
Rise (in)	= 24.00 = 24.00	0.00	0.00	0.00	Crest Len (ft)	= 9.42 = 688.00	0.00	0.00	0.00	
Span (in) No. Barreis	= 24.00	0.00	0.00	0.00	Crest El. (ft) Weir Coeff.	= 688.00	3.33	3.33	3.33	
Invert EI. (ft)	= 670.00	0.00	0.00	0.00	Weir Type	= 1	0.00	0.00	0.00	
Length (ft)	= 103.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No	
Slope (%)	= 1.07	0.00	0.00	n/a						
N-Value	= .013	.013	.013	n/a						
Orifice Coeff.										
	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)		Wet area)			
	= 0.60 = n/a	No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		for orifice cor	nditions (ic) and	submergence (s)
Multi-Stage		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		for or ilicae cor	rditions (ic) and	
Multi-Stage		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		for orifica-cor	nditions (ic) and	Elev (
Multi-Stage age (ft)		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		for orifice-cor	uditions (ic) and	Elev (
Multi-Stage age (ft)		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		for orifice cor	utitions (ic) and	Elev (
Multi-Stage 199 (ft) 5.00		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		ter oritica cor	nditions (ic) and	Elev (1
Multi-Stage age (ft)		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		ter orifica cor	ditors (c) and	Elev (
Multi-Stage 199 (ft) 5.00		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		for orfice cor	uliions (ic) and	Elev (1
Multi-Stage 199 (ft) 5.00		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		for orifice cor	ditions (c) and	Elev (1
Multi-Stage 199 (ft) 5.00		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		ter cellica cor	ditions (ic) and	Elev () 690.00 689.00
Multi-Stage 199 (ft) 5.00		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		to orifice cor	utitions (ic) and	Elev (1
Multi-Stage Ige (ft) 5.00		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		for orfice cor	utitions (ic) and	Elev () 690.00 689.00
Multi-Stage 199 (ft) 5.00		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		for orifica cor	ultions (c) and	Elev () 690.00 689.00
Autti-Stage		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		for orifica cor	ditions (c) and	Elev (690.0 689.0 688.0
Multi-Stage Ige (ft) 5.00		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		ter orifica cor		Elev () 690.00 689.00
Autti-Stage		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00				Elev (690.0 689.0 688.0
Autti-Stage		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		for orfice cor	ditions (ic) and	Elev (690.0 689.0 688.0
Autti-Stage		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		for orfice cor		Elev (690.0 689.0 688.0
Autti-Stage		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		for orfice cor		Elev (690.0 689.0 688.0 688.0
Autti-Stage		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00				Elev (1
Autti-Stage		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00				Elev (690.0 689.0 688.0 688.0
Autti-Stage		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00				Elev (690.0 689.0 688.0 688.0

Pond Report 7

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 67 of 70

Table 2.1.5-1 Runoff C	urve Numbers ¹					
Cover description			Curve numbers for hydrologic soll groups			
Cover type and		Average percent				
hydrologic condition		impervious area ²	А	В	с	D
Cultivated land:	without conservation		72 62	81 71	88 78	91 81
Pasture or range land	Pasture or range land: poor condition good condition				86 74	89 80
Meadow: good condition	30	58	71	78		
Wood or forest land:	Wood or forest land: thin stand, poor cover good cover				77 70	83 77
Open space (lawns, p Poor condition Fair condition (Good condition Impervious areas:	68 49 39	79 69 61	86 79 74	89 84 80		
Paved parking (excluding right	98	98	98	98		
Streets and roads: Paved; curbs a right-of-way) Paved; open di Gravel (includin Dirt (including)	98 83 76 72	98 89 85 82	98 92 89 87	98 93 91 89		
Urban districts: Commercial and busi Industrial		85% 72%	89 81	92 88	94 91	95 93
Residential districts 1/8 acre or less (town 1/4 acre 1/3 acre 1/2 acre 1 acre 2 acres		ze: 65% 38% 30% 25% 20% 12%	77 61 57 54 51 46	85 75 72 70 68 65	90 83 81 80 79 77	92 87 86 85 84 82
Developing urban a Newly graded areas only, no vegetation)	(pervious areas		77	86	91	94
¹ Average runoff condition. ² The average percent imp follows, impervious areas a areas are considered equiv SCS method has an adjust ³ CNs shown are equivaler cover type.	ervious area shown w re directly connected t alent to open space in ment to reduce the effi	to the drainage system. Im good hydrologic condition ect.	pervious are If the impe	ervious are	CN of 98. Is not o	and pervicus onnected, the

Project	Prepared by	Date	
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23	
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23	
	Calculation Number DC-BN- 735210-002	Sheet 68 of 70	

Surface Description	n
	-
Smooth surfaces (concrete, asphalt	
gravel, or bare soil)	0.011
Fallow (no residue)	0.05
Cultivated soils	
Residue cover < 20%	0.06
Residue cover > 20%	0.17
Grass:	0, 11
Short grass prairie	0.15
Dense grasses ²	0.24
Bermuda grass	0.41
Range (natural)	0.13
Woods ³	
Light underbrush	0.40
Dense underbrush	0.80
	10
The n values are a composite of information by Engman (1986).	
Includes species such as weeping lovegrass, bluegrass, buffalo g	rass, blue grama grass, and native grass mixtures
When selecting n, consider cover to a height of about 0.1 ft. This obstruct sheet flow	-

Table 2

Design Calculations Prepared by Date Project Plant Bowen Run-on Run-off Control Jeremy Brown 9/15/23 Subject/Title Provide run-on and run-off system Reviewed by Ashley Grissom Date 9/21/23 calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8 Calculation Number Sheet DC-BN-735210-002 69 of 70

Ν

s n Values			Paş
3. linished, with gravel on bottom	0.015	0.017	0.020
4. unfinished	0.014	0.017	0.020
5. gunite, good section	0.016	0.019	0.023
6. gunite, wavy section	0.018	0.022	0.025
7. on good excavated rock	0.017	0.020	
8. on irregular excavated rock	0.022	0.027	
d. Concrete bottom float finish with sides of:			
1. dressed stone in mortar	0.015	0.017	0.020
2. random stone in mortar	0.017	0.020	0.024
3. cement rubble masonry, plastered	0.016	0.020	0.024
4. cement rubble masonry	0.020	0.025	0.030
5. dry rubble or riprap	0.020	0.030	0.035
e. Gravel bottom with sides of:			
1. formed concrete	0.017	0.020	0.025
2. random stone mortar	0.020	0.023	0.026
dry rubble or riprap	0.023	0.033	0.036
f. Brick			
1. glazed	0.011	0.013	0.01
2. in cement mortar	0.012	0.015	0.01
g. Masonry			
1. cemented rubble	0.017	0.025	0.03
2. dry rubble	0.023	0.032	0.03
h. Dressed ashlar/stone paving	0.013	0.015	0.01
i Asphalt			
1. smooth	0.013	0.013	
2. rough	0.016	0.016	

Table 3

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 70 of 70

ADS N-12 WT IB Pipe (per AASHTO) Specification

Scope

This specification describes 4- through 60-inch (100 to 1500 mm) ADS N-12 WT IB pipe (per AASHTO) for use in gravity-flow land drainage applications.

Pipe Requirements

ADS N-12 WT IB pipe (per AASHTO) shall have a smooth interior and annular exterior corrugations.

- 4- through 60-inch (100 to 250 mm) shall meet AASHTO M252, Type S
- 12-through 60-inch (300 to 1500 mm) pipe shall meet AASHTO M294, Type S or ASTM F2306
- Manning's "n" value for use in design shall be 0.012.

Joint Performance

Pipe shall be joined using a bell & spigot joint meeting the requirements of AASHTO M252, AASHTO M294, or ASTM F2306. The joint shall be watertight according to the requirements of ASTM D3212. Gaskets shall meet the requirements of ASTM F477. Gaskets shall meet the requirements of ASTM F477. Gaskets shall be installed by the pipe manufacturer and covered with a removable, protective wrap to ensure the gasket is free from debris. A joint lubricant available from the manufacturer shall be used on the gasket and bell during assembly. 12- through 60inch (300 to 1500 mm) diameters shall have an exterior bell wrap installed by the manufacturer.

Fittings

Fittings shall conform to AASHTO M252, AASHTO M294 or ASTM F2306. Bell and spigot connections shall utilize a welded bell and valley or saddle gasket meeting the watertight joint performance requirements of AASHTO M252, AASHTO M294 or ASTM F2306.

Field Pipe and Joint Performance

To assure watertightness, field performance verification may be accomplished by testing in accordance with ASTM F2487. Appropriate safety precautions must be used when field testing any pipe material. Contact the manufacturer for recommended leakage rates.

Material Properties

Material for pipe and fitting production shall be high-density polyethylene conforming with the minimum requirements of cell classification 424420C for 4- through 10-inch (100 to 250 mm) diameters, and 435400C for 12- through 60-inch (300 to 1500 mm) diameters, as defined and described in the latest version of ASTM D3350, except that carbon black content should not exceed 4%. The 12- through 60-inch (300 to 1500 mm) pipe material shall comply with the notched constant ligament-stress (NCLS) test as specified in Sections 9.5 and 5.1 of AASHTO M294 and ASTM F2306, respectively.

Installation

Installation shall be in accordance with ASTM D2321 and ADS' recommended installation guidelines, with the exception that minimum cover in trafficked areas for 4- through 48-inch (100 to 1200 mm) diameters shall be one foot (0.3 m) and for 60-inch (1500 mm) diameter, the minimum cover shall be two feet (0.6 m) in single run applications. Backfill for minimum cover situations shall consist of Class 1 (compacted), Class 2 (minimum 90% SPD) or Class 3 (minimum 95%) material. Maximum fill heights depend on embedment material and compaction level; please refer to Technical Note 2.01. Contact your local ADS representative or visit our website *adspipe.com* for a copy of the latest installation guidelines.

Build America, Buy America (BABA)

ADS N-12 WT IB pipe (per AASHTO), manufactured in accordance with AASHTO M252, AASHTO M294 or ASTM F2306, complies with the requirements in the Build America, Buy America (BABA) Act.

Pipe Dimensions*

Pipe I.D.	4	6	8	10	12	15	18	24	30	36	42	48	60
in (mm)	(100)	(150)	(200)	(250)	(300)	(375)	(450)	(600)	(750)	(900)	(1050)	(1200)	(1500)
Pipe O.D.	4.8 (122)	6.9	9.1	11.4	14.5	18	22	28	36	42	48	54	67
in (mm)		(175)	(231)	(290)	(368)	(457)	(559)	(711)	(914)	(1067)	(1219)	(1372)	(1702)

Technical and Project Solutions Calculation

Calculation Number: DC-BN-735210-003

Project/Plant:	Unit(s):	Discipline/Area:
Bowen	1 - 4	Civil
Title/Subject:		
Run-on and Run-off Study for Bowen Cells 9 &	<u>s</u> 10	
Purpose/Objective: To determine if the Cell's stormwater manager	ment can safely mana	age and pass the design
storm event.	Originatory	
System or Equipment Tag Numbers: N/A	Originator: Jeremy Brown	

Contents

		Attachments	# of
Торіс	Page	(Computer Printouts, Tech. Papers, Sketches, Correspondence)	Pages
Purpose of Calculation	1		1
Summary of Conclusions	1		1
Project Narrative	1-2		2
Methodology	2.	11.5	1
Assumptions/Criteria	2	42	1
Design Inputs/References	3-9		7
Body of Calculation	10-23		14
Total # of pages including cover sheet & attachments:	24		

Revision Record

Rev. No.	Description	Originator Initial / Date	Reviewer Initial / Date	Approver Initial / Date
0	Issued for Review	JKB 2/12/21	AOG 3/1/21	JWM 6/7/21
1	Revised per as-builts	JKB 2/10/22	AOG 2/11/22	JWM 2/11/22

Notes:

Project	Prepared by	Date 2/10/22 Date 2/11/22		
Plant Bowen Run-on Run-off Control	Jeremy Brown			
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom			
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 1 of 23		

Purpose of Calculation

The purpose of this calculation is to determine if the existing sedimentation ponds and clear pools can sufficiently handle run-on/run-off during a minimum 25-yr, 24-hr storm event per federal stormwater requirements Title 40 CFR Part 257.81 and the Georgia Environmental Protection Division's (EPD) Georgia CCR Rule (391-3-4-.10).

Summary of Conclusions

Based on our analysis, the detention pond system is adequate to collect and control the volume of water resulting from a 24-hour 25-year storm, as required.

Storage Pond Name	Normal Pool Elevation (feet, NAVD 88)	Maximum 25 year pool elevation (feet, NAVD 88)	Spillway/Top of Dike Elevation (feet, NAVD 88)	Freeboard to Spillway (feet, NAVD 88)
Clear Pool	697.00	701.44	703.50/706.00	2.06/4.56
Sedimentation Pond	697.00	701.44	703.50/706.00	2.06/4.56

Project Narrative

The Plant Bowen CCB Disposal Facility Cells 9 & 10 site is located in Bartow County and is approximately 1.5 miles East of Euharlee, Georgia and 6 miles southwest of Cartersville, Georgia. The plant is bordered on the north and east by the Etowah River and on the south and west by farmland.

Cells 9 & 10 cover 34.71 acres and are not divided by any means. (See Image 1).

Cells 9 & 10 are comprised of a 31.67 acres storage cell, 2.12 acres sedimentation pond, 0.92 acres clear pool, berms, access roads and ditches. (See Image 2) Cells 9 & 10 include a perimeter dike to control surface rainfall run-off. There is no stormwater run-on for these cells. Run-off from this area is directed through interior perimeter ditches and through $4 - 42^{"}$ diameter HDPE pipes into a sedimentation pond that is connected to a clear pool via two 54" diameter risers and two 36" diameter pipes. Stormwater from the clear pool is discharged through a 54" diameter riser and 42" diameter pipe.

The sediment pond and clear pool have identical auxiliary spillways that are concrete trapezoidal weirs. The auxiliary spillways are 24' wide with 6:1 side slopes and sloped at 1% in

Design Calculations			
Project	Prepared by	Date	
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22	
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22	
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 2 of 23	

the direction of flow with a 3:1 slope on the discharge channel at the downstream end. Following pages will show the analysis for Cells 9 & 10.

Leachate is collected separately from stormwater run-off in a sump. From there leachate is pumped to a 592,000 gallon leachate storage tank and then sent to the Low Volume Waste Treatment System.

Methodology

The stormwater flows were calculated using the National Resources Conservation Service method (also known as the Soil Conservation Service (SCS) method) using a 25-yr, 24-hr design storm event.

Storm basin calculation information was gathered from a number of sources to include the Georgia Stormwater Manual and Technical Release 55.

The National Resources Conservation Service (NCRS) provided information on the soil characteristics and hydrologic groups. The soil types found on the site are Etowah Loam and Waynesboro Clay Loam. (See Images 3 & 4). It was determined that the hydrological group "B" should be used to best reflect the characteristics of the soils on site.

Run-off curve number data was determined using Table 2.1.5-1 from the Georgia Stormwater Management Manual. Run-off coefficient data was determined by utilizing Table 2.1.5-2 from the Georgia Stormwater Management Manual and Manning's n for Channels (Chow, 1959).

Appendix B from the TR-55 was used to determine the rain distribution for Plant Bowen is Type II. (See Image 5)

NOAA Atlas 14 was used to determine the 24-hour precipitation for the design storm event of 25-yr for Plant Bowen is 6.07 in. (See Image 6)

Assumptions/Criteria

- Refer to Title 40 CFR Part 257.81 Hydrologic and hydraulic capacity requirements for the runon and run-off controls for CCR landfills.
- Other assumptions are listed on attached calculation sheets.

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 3 of 23

Design Inputs/References

- AutoCad Civil 3D 2019, Autodesk, Inc.
- Hydraflow Hydrographs Extension for AutoCad Civil 3D 2019, Autodesk, Inc.
- Hydraflow Express Extension for AutoCad Civil 3D 2019, Autodesk, Inc.
- NOAA Atlas 14, Volume 9, Version 2 for Taylorsville, GA.
- Georgia SW Manual
- TR-55 Urban Hydrology for Small Watersheds, Appendix B, National Resources Conservation Service, Conservation Engineering Division, 1986.
- Georgia Power Company Plant Bowen CCB Disposal Facility Design and Operation Plans H15061 H15097, H15296 H15315 and H52258 H52260.
- Cells 9&10 As-built drawing from 2014 titled "13471-Plant Bowen-CCB Facility CELL9_10 2014.dwg"

Project	Prepared by	Date	
Plant Bowen Run-on Run-off Control	Run-off ControlJeremy Brown2/10/2		
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22	
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 4 of 23	

Image 1

Design Calculations	company		
Project	Prepared by	Date	
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22	
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22	
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 5 of 23	

Image 2

Design Calculations Company Project Prepared by Date Plant Bowen Run-on Run-off Control Jeremy Brown 2/10/22 Subject/Title Reviewed by Date Provide run-on and run-off system calculations for the peak discharge from Ashley Grissom 2/11/22 a 24-hr 25-year storm Cells 9 & 10 Calculation Number DC-BN- 735210-003 (Rev1) Sheet 6 of 23

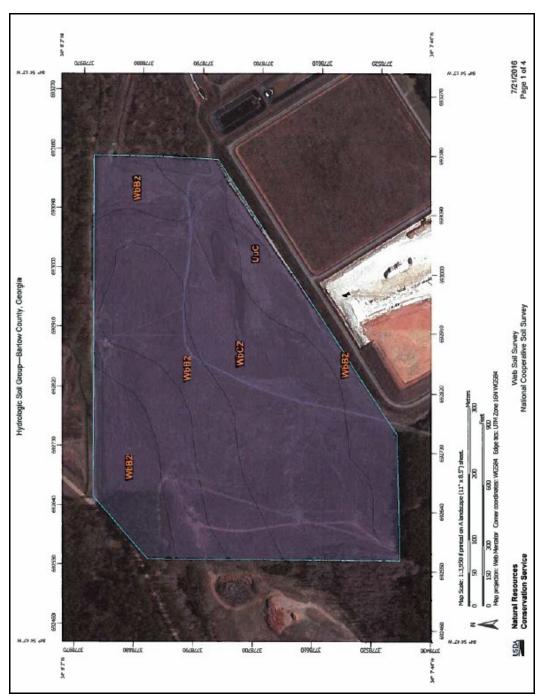


Image 3

Design Calculations			
Project	Prepared by	Date	
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22	
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22	
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 7 of 23	

	drologic Soil Gr	oup		
	Hydrologic Solt Group- Sur	nmary by Map Unit — B	artow County, Georgia (GA0	15)
Map unit symbo	Map unit name	Rating	Acres in AOI	Percent of AOI
UuC	Urban land-Udorthents complex, 0 to 10 percent slopes		0.3	0.5%
WbB2	Waynesboro clay loam. 2 to 6 percent slopes, moderately eroded	в	25.4	46-6%
WbC2	Waynesboro clay loam. 6 to 10 percent slopes. moderately eroded	B	28.8	52.9%
Totals for Area of	nterest		54.5	100.0%
			unoff potential) when tho	roughly
grav Gro com soils hav Gro chie soils	These consist mainly of e elly sands. These soils having a mode sist chiefly of moderately of that have moderately fin a moderate rate of wate up C. Soils having a slow fly of soils having a layer of moderately fine texture smission.	deep, well drained to ave a high rate of wa erate infiltration rate leep or deep, moder e texture to moderal r transmission. infiltration rate wher that impedes the do	excessively drained sar ater transmission. when thoroughly wet. Th ately well drained or well kely coarse texture. These in thoroughly wet. These wnward movement of wa	roughly nds or drained e soils consist ater or

Project	Prepared by	Date	
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22	
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22	
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 8 of 23	

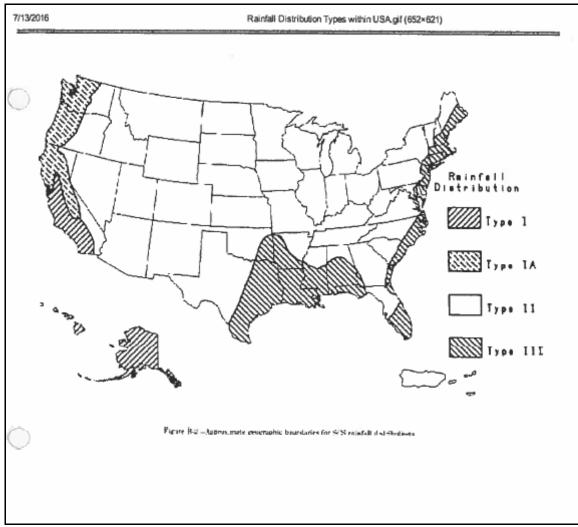


Image 5

Design Calculations		company	
Project	Prepared by	Date	
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22	
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22	
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 9 of 23	

cipitation Freque	ncy Data Server							Page 1 o
		Statio Location name: T Latitude: 34.086 Elevation (stat	LORSVILLE in ID: 09-860 aylorsville, 1*, Longitus levation: tion metada ca: Google Maps	00 Georgia, L ie: -84.982 ta): 721 ft*	J5* 8*			
	Sanja Perica, Oebora	ah Martin, Serdre Pavlo Umrsh, Michae NOAA, National Weath	el Yekta, Geoffer	y Bonnin		aluk, Dale		
		PE_tabular PF_g	raphical M	aps & aeri	als			
r		PF	tabular					
PDS-based	point precipitation	COLUMN TWO IS NOT THE OWNER.				e interva	ls (in inc	hes) ¹
Duration	2 6		25	50	ans) 100	200	500	1000
5-min 0.406	0.464 0.5		0.804	0.924	1.05 (0.768-1.42)	1.19	1.39	1.55 (1.02-2.14)
10-min 0.594	0.679 0.8	31 0.969	1.18 (0.907-1.56)	1.35 (1.02-1.80)	1.54 (1.12-2.07)	1.75 (1.23-2.38)	2.03 (1.38-2.81)	2.27 (1.50-3.14)
15-min 0.725 (0.574-0.9	0.828 1.0 (0.655-1.06) (0.799-	1.18 -1.30) (0.928-1.52)	1.44 (1.11-1.90)	1.65 (1.24-2.19)	1.88 (1.37-2.53)	2.13 (1.50-2.90)	2.48 (1.68-3.43)	2.77 (1.83-3.83)
30-min 1.02 (0.811-1.	1.17 1.4 31) (0.924-1.49) (1.13-		2.02 (1.56-2.68)	2.33 (1.75-3.09)	2.65 (1.94-3.57)	3.01 (2.12-4.11)	3.52 (2.39-4.85)	3.93 (2.60-5.44)
60-min 1.33 (1.05-1.3	1.52 1.8 (1.20-1.94) (1.46-		2.61 (2.01-3.45)	3.00 (2.25-3.98)	3.41 (2.49-4.58)	3.86 (2.71-5.26)	4,49 (3.05-6.21)	5.01 (3.31-6.93)
2-hr 1.64 (1.31-2.0	1.86 2.2 6) (1.49-2.35) (1.51-		3.20	3.66	4.16	4.70	5.47 (3.77-7.48)	6.09 (4.09-8.32)
3-hr 1.84 {1,49-2.3	2.10 2.5 (1.69-2.62) (2.05-	3.19) (2.37-3.71)	3.56 (2.80-4.60)	4.07 (3.12-5.28)	4.60 (3.43-6.05)	5.18 (3.73-6.91)	6.00 (4.17-8.12)	6.66 (4.51-9.04)
6-hr 2.27 (1.86-2.3	2.57 3.1 9) (2.10-3.17) (2.53-		4,26 (3.38-5.41)	4.82 (3.75-6.16)	5.42 (4.10-7.02)	6.05 (4.42-7.96)	6.94 (4 90-9.27)	7.65 (5.27-10.3)
12-hr 2.79 (2.32-3.3	3.15 3.7 9) (2.61-3.63) (3.12-		5,08 (4.08-6.34)	5.70 (4.49-7.17)	6.36 (4.67-8.10)	7.04 (5.21-9.11)	7.99 (5.72-10.5)	8.73 (6,11-11,6)
24-hr 3.34 (281-35	3.79 4.4 (3.18-4.53) (3.60-		6,07 (4.93-7.43)	6.77 (5.40-8.35)	7.48 (5.61-9.38)	8.22 (6.17-10.5)	9.21 (6.70-11.9)	9.98 (7.10-13.0)
2-day 3.87 (3.29-4.5	4.43 5.3 (3.77-5.21) (4.54-	6 30) (5 18-7.22)	7.14 (5.88-8.60)	7.95 (6.42-9.65)	8.75 (6.85-10.5)	9.56 (7.27-12.0)	10.6 (7.84-13.6)	11.4 (8.27-14.6)
3-day 4.24 (3.64-4.9	4.81 5.3 6) (4,13-5.62) (4.93-		7.66 (6.37-9.16)	8.53 (6.95-10.3)	9.40 (7.47-11.5)	10.3 (7.92-12.6)	11.5 (8.57-14.6)	12.4 (9.06-15.9)
4-day 4.56 (3.94-5.2	8) (4.43-5.96) (5.25-		8.07 (6.76-9.61)	8.98 (7.38-10.8)	9.92 (7 94-12.1)	10.9 (8.43-13.5)	12.2 (9.16-15.4)	13.2 (972-16 6)
7-day 5.37 (4.69-6.1	4) (5.22-6.86) (6.13-		9.24 (7.84-10.9)	10.3 (8.56-12.2)	11.3 (9.21-13.7)	12.5 (9.80-15.3)	14.0 (10.7-17.5)	15.2 (11.3-19.2)
10-day 6.07 (5.34-6.0	6.74 7.8 (5.92-7.66) (6.91-		10.3 (8.79-12,0)	11.4 (9.58-13.5)	12.6 (10 3-15.1)	13.8 (11.0-16.8)	15.5 (11.9-19.3)	16.8 (12.7-21.1)
20-day 8.08 (7.21-9)	8.91 10		13.2 (11.5-15.2)	14.6 (12.4-16.9)	16.0 (13.3-18.8)	17.4 (14.0-20.9)	19.4 (15.2-23.7)	21.0 (16.1-25.9)
30-day 9.85 (8.87-10	10.8 12 (9.75-12.0) (11.2-	.5 13.9	15.8 (13.8-17.9)	17.3 (14.9-19.8)	18.8 (15.8-22.0)	20.4 (16.6-24.2)	22.5 (17.8-27.3)	24.1 (18.7-29.5)
45-day 12.2 (11.1-13	13.5 15	.4 17.1	19.3 (16.9-21.6)	20.9 (18.1-23.7)	22.6 (19.1-28.1)	24.3 (19.9-28.5)	26.4 (21.1-31.7)	28.1 (22.0-34.1)
60-day 14.4 (13.1-15	15.8 18	.1 19.9	22.4 (19.8-24.9)	24.2 (21.0-27.2)	25.9 (22.0-29.7)	27.7 (22.8-32.2)	29.8 (23.9-35.5)	31.4
Numbers in parenthes (for a given duration a bounds are not checks	cy (PF) estimates in this tab s are PF estimates at lower to average recurrence inter d against probable maximu Attas 14 document for more	vie are based on frequi r and upper bounds of vol) will be greater tha im precipitation (PMP) e information.	ency analysis of the 90% confic in the upper bo estimates and	f pertial dural lence interval und (or less ti	ion series (PC The probabilition the lower	S). Ity that precipi bound) is 5%.	ation frequent	cy estimates
		B	ack to Top					
		PF	graphica	1				

Image 6

Body of Calculation

See detailed calculations and software output.

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 10 of 23

Drainage Area = 34.71 AC (See Map 1)

Curve Number = 64 (See Attached Table 1) 31.47 AC @ CN 61 (Grass) 2.48 AC @ CN 85 (Gravel) 0.76 AC @ CN 98 (Impervious – Liner in Sediment Pond and Clear Pool) ((31.47*61)+(2.48*85)+(0.76*98))/34.88 = 63.52 = 64Time of Concentration = 31.49 Min (See Attached TR55 Worksheet and Map 2) Sheet Flow Manning's n-Value = 0.15 (Short Grass) (See Table 2) Flow Length = 300 LF Land Slope = (805.50-799.00)/300 = 0.0217 = 2.17% Shallow Concentrated Flow Length = 353 LF Watercourse Slope = (799.00-744.54)/353 = 0.1543 = 15.43% Surface is Unpaved Channel Flow (See Channel Report 1) Grass Lined 4' Wide Ditch with 2:1 Side Slopes and 4' Deep Cross Sectional Area = 6.57 SF Wetted Perimeter = 8.79 LF Channel Slope = (744.54-704.46)/2773 = 0.0145= 1.45% Manning's n-Value = 0.030 (Vegetal Lining) (See Table 3) Flow Length = 2773 LF Channel Flow (See Channel Report 2) 4 – 42" Dia. HDPE Pipes @ 1.51% Cross Section Area = 1.85 SF Wetted Perimeter = 3.64 LF Channel Slope = (704.46-702.92)/102 = 0.0151 = 1.51% Manning's n-Value = 0.013 (HDPE Pipes) (See Table 4) Flow Length = 102 LFTime Interval = 3 Min Tc*0.1333 = 31.49*0.1333 = 4.20 = 5

Storm Distribution = Type II

Project	Prepared by	Date	
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22	
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22	
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 11 of 23	

 $Q_{25} = 65.64$ CFS (See Hydrograph Report 1)

To Evaluate for Storage Capacity, Treat The Sediment Pond and Clear Pool As One Pond Since They Are Interconnected.

Elevation	Sed. Pond Area	Clear Pool Area	Total Area	Volume
(FT)	(SF)	(SF)	(SF)	(CF)
695	0	9369	9369	0*
696	30,498	10,378	40,876	23,269*
697	32,804	11,426	44,230	65,807
698	35,149	12,514	47,663	111,738
699	37,533	13,640	51,173	161,141
700	39,956	14,806	54,762	214,093
701	42,419	16,012	58,431	270,674
702	44,921	17,256	62,177	330,962
703	47,462	18,540	66,002	395,036
703.5	48,748	19,197	67,945	428,518

Note: Stage storage is based on topographic information from 2020. *Dead Storage

Spillways

- Principal Spillway consists of a 54" Dia. Riser with a 42" Dia. HDPE Pipe.
- Auxiliary Spillways in the Clear Pool and Sediment Pond consist of a concrete trapezoidal weir that is 24' wide with 6:1 side slopes and sloped at 1% in the direction of flow with a 3:1 slope on the discharge channel at the downstream end.

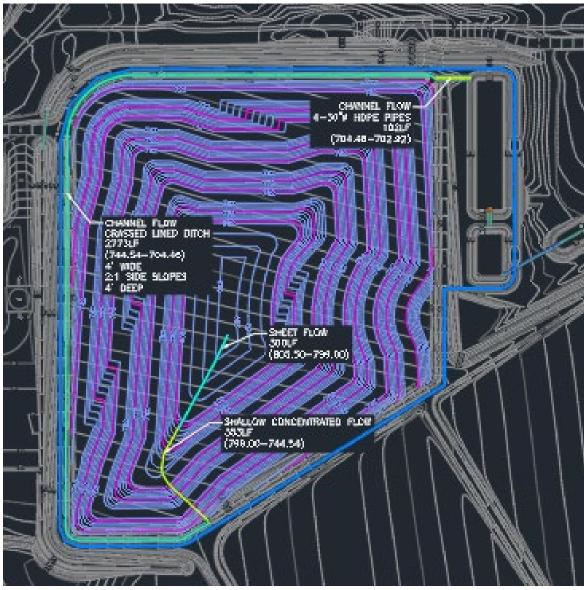
High Water Elevation is 701.44 (See Pond Reports 1 & 2)

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 12 of 23

Map 1

Design Calculations	Company	
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 13 of 23

Table 2.1.5-1 Runoff C	urve Numbers ¹					
Cover description			Curve numbers for hydrologic soll groups			
Cover type and	A	verage percent				
hydrologic condition	in	npervious area ²	A	в	С	D
Cultivated land:	without conservat with conservation		72 62	81 71	88 78	91 81
Pasture or range land	poor condition good condition		68 39	79 61	86 74	89 80
Meadow: good condition	n		30	58	71	78
Wood or forest land:	thin stand, poor c good cover	over	45 25	66 55	77 70	83 77
Open space (lawns, parks, golf courses, cemeteries, etc.) Poor condition (grass cover <50%) Fair condition (grass cover 50% to 75%) Good condition (grass cover > 75%) Impervious areas: Paved parking lots, roofs, driveways, etc.) ³ 68 49 39	79 69 61	86 79 74	89 84 80
(excluding right			98	98	98	98
right-of-way) Paved; open di	nd storm drains (e) tches (including rig ng right-of-way) ight-of-way)	•	98 83 76 72	98 89 85 82	98 92 89 87	98 93 91 89
Urban districts: Commercial and busi Industrial		85% 72%	89 81	92 88	94 91	95 93
Residential districts 1/8 acre or less (town 1/4 acre 1/3 acre 1/2 acre 1 acre 2 acres		e: 65% 38% 30% 25% 20% 12%	77 61 57 54 51 46	85 75 72 70 68 65	90 83 81 80 79 77	92 87 86 85 84 82
Developing urban areas and Newly graded areas (pervious areas only, no vegetation) 77 86 91			94			
¹ Average runoff condition, and I _a = 0.2S ² The average percent impervious area shown was used to develop the composite CNs. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. If the impervious area is not connected, the SCS method has an adjustment to reduce the effect. ³ CNs shown are equivalent to those of pasture. Composite CNs may be computed for other combinations of open space cover type.						


Design Calculations	Company	
Project	roject Prepared by	
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 14 of 23

TR55 Tc Worksheet	:						
	H	/drafio	w Hydrograph:	s Extens	sion for Autode	esk® Ci	vil 3D® 2019 by Autodesk, Inc. v12
Hyd. No. 1							
Cells 9 & 10							
Description	Α		B		<u>C</u>		Totals.
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 300.0 = 3.79 = 2.17		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 20.99	+	0.00	+	0.00	=	20.99
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 353.00 = 15.43 = Unpaved =6.34	1	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.93	+	0.00	+	0.00	=	0.93
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 6.57 = 8.79 = 1.45 = 0.030 =4.92		1.79 3.39 1.51 0.013 9.18		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})2773.0		102.0		0.0		
Travel Time (min)	= 9.39	+	0.19	+	0.00	=	9.58
Total Travel Time, Tc							31.49 min

TR55 Worksheet

Project	Prepared by	Date	
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22	
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22	
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 15 of 23	

Map 2

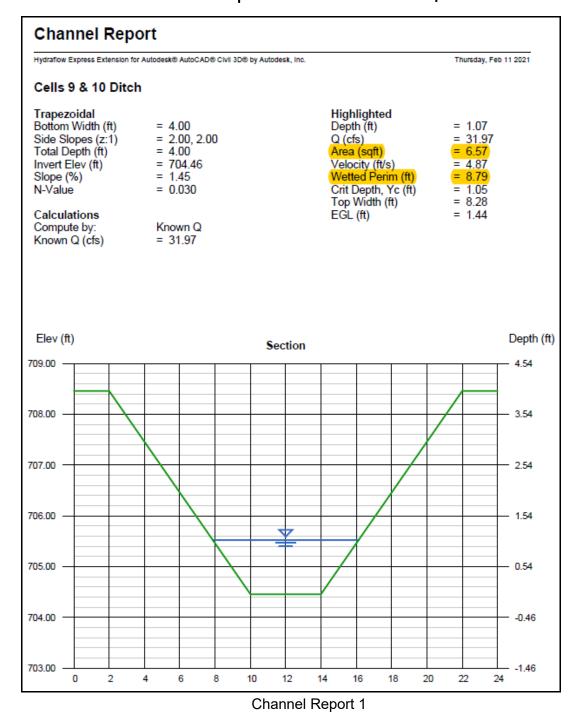

Project	Prepared by	Date	
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22	
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22	
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 16 of 23	

Table 2.1.5-2 Roughness Coefficients (Manning's n)	for Sheet Flow ¹
Surface Description	n
Smooth surfaces (concrete, asphalt,	
gravel, or bare soil)	0.011
Fallow (no residue)	0.05
Cultivated soils	
Residue cover < 20%	0.06
Residue cover > 20%	0.17
Grass:	
Short grass prairie	0.15
Dense grasses ²	0.24
Bermuda grass	0.41
Range (natural)	0.13
Woods ³	
Light underbrush	0.40
Dense underbrush	0,80
1 The purples are a comparing of information by Research (1995).	
The n values are a composite of information by Engman (1986).	
Includes species such as weeping lovegrass, bluegrass, buffalo	-
When selecting n, consider cover to a height of about 0.1 ft. This obstruct sheet flow.	s is the only part of the plant cover that will
Source: SCS, TR-55, Second Edition, June 1986,	

Table 2

Design Calculations			
Project	Prepared by	Date	
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22	
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22	
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 17 of 23	

Design Calculations		company
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 18 of 23

ng's n Values			Page
3. finished, with gravel on bottom	0.015	0.017	0.020
4. unfinished	0.014	0.017	0.020
5. gunite, good section	0.016	0.019	0.023
6. gunite, wavy section	0.018	0.022	0.025
on good excavated rock	0.017	0.020	
on irregular excavated rock	0.022	0.027	
d. Concrete bottom float finish with sides of:			
1. dressed stone in mortar	0.015	0.017	0.020
2. random stone in mortar	0.017	0.020	0.024
3. cement rubble masonry, plastered	0.016	0.020	0.024
4. cement rubble masonry	0.020	0.025	0.030
5. dry rubble or riprap	0.020	0.030	0.035
e. Gravel bottom with sides of:			
1. formed concrete	0.017	0.020	0.025
2. random stone mortar	0.020	0.023	0.026
dry rubble or riprap	0.023	0.033	0.036
f. Brick			
1. glazed	0.011	0.013	0.015
2. in cement mortar	0.012	0.015	0.018
g. Masonry			
1. cemented rubble	0.017	0.025	0.030
2. dry rubble	0.023	0.032	0.035
h. Dressed ashlar/stone paving	0.013	0.015	0.017
i. Asphalt			
1. smooth	0.013	0.013	
2. rough	0.016	0.016	
J. Vegetal lining	0.030		0.500

Table 3

Design Calculations		Company
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 19 of 23

Hydraflow Express Extension for	Autodesk® AutoCAD® Civil 3D®	y Autodesk, Inc.	Thursday, Feb 10 2022
Cells 9 & 10 Pipe			
C ircular Diameter (ft)	= 3.50	Highlighted Depth (ft) Q (cfs)	= 0.86 = 16.41
Invert Elev (ft) Slope (%) N-Value	= 702.92 = 1.51 = 0.013	Area (sqft) Velocity (ft/s) Wetted Perim (ft) Crit Depth, Yc (ft) Top Width (ft)	= 1.24
Calculations Compute by: <mark>Known Q (cfs)</mark>	Known Q = 16.41	EGL (ft)	= 3.02 = 2.09
	Full Flow = 65.64 # Pipes = 4 Flow Per Pipe = 65.64/4 = 16.41		
Elev (ft)		Section	Depth (ft)
707.00			4.08
706.00			3.08
705.00			2.08
704.00		<u> </u>	1.08
703.00			0.08
702.00			-0.92
701.00	1 2	3 4 5	-1.92

Channel Report 2

Design Calculations		company
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 20 of 23

nning's n Values			Page 4
7. Concrete:		1	
Culvert, straight and free of debris	0.010	0.011	0.013
Culvert with bends, connections, and some debris	0.011	0.013	0.014
Finished	0.011	0.012	0.014
Sewer with manholes, inlet, etc., straight	0.013	0.015	0.017
Unfinished, steel form	0.012	0.013	0.014
Unlinished, smooth wood form	0.012	0.014	0.016
Unlinished, rough wood form	0.015	0.017	0.020
8. Wood:			
Stave	0.010	0.012	0.014
Laminated, treated	0.015	0.017	0.020
9. Clay:			
Common drainage tile	0.011	0.013	0.017
Vitrified sewer	0.011	0.014	0.017
Vitrified sewer with manholes, inlet, etc.	0.013	0.015	0.017
Vitrified Subdrain with open joint	0.014	0.016	0.018
10. Brickwork:			
Glazed	0.011	0.013	0.015
Lined with cement mortar	0.012	0.015	0.017
Sanitary sewers coated with sewage slime with bends and connections	0.012	0.013	0.016
Paved invert, sewer, smooth bottom	0.016	0.019	0.020
Rubble masonry, cemented	0.018	0.025	0.030

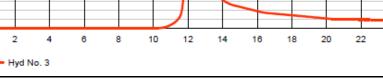
Table 4

30.00

20.00

10.00

0.00


26

Time (hrs)

- 1

24

70.00 Transformed and the second seco	Southerr Company	
bject/Title rovide run-on and run-off system alculations for the peak discharge from 24-hr 25-year storm Cells 9 & 10 Calculation Number DC-BN- 735210-003 (Rev1) Calculation Number DC-BN- 735210-003 (Rev1) Sheet 21 of 23 Hydrograph Report Hydrafow Hydrograph Extension for Autodesk® Civil 30® 2019 by Autodesk, inc. v12 Hydr No. 3 Pipe Hydrograph type = SCS Runoff Storm frequency = 25 yrs Time ito peak Storm frequency = 5 min Drainage area = 34.710 ac Curve number = 64* Basin Slope = 0.0 % Hydraulic length = 0 ft Tc method = TR55 Time of Hydraulic length = 0 ft Storm duration = 24 hrs Curve number = 484 * Composite (ArealCN) - [(31.470 x 61) + (2.480 x 85) + (0.760 x 98)] / 34.710 Q (efs) Pipe Q (efs) Pipe Q (efs) Pipe Q (efs) Pipe Q (efs) Pipe Q (efs) Pipe Q (efs) Pipe Q (efs) Pipe P		
Ashley Grissom 2/11/22 Ashley Grissom 2/11/22 24-hr 25-year storm Cells 9 & 10 Calculation Number DC-BN- 735210-003 (Rev1) Sheet 21 of 23 Hydrograph Report Thursday, 02/11/2 Hydrograph Report Hydrograph Report Thursday, 02/11/2 Hydrograph Report Thursday, 02/11/2 Hydrograph Report Thursday, 02/11/2 Hydrograph Report Thursday, 02/11/2 Hydrograph type = SCS Runoff Peak discharge G5.64 cfs Storm frequency a 34,710 ac Curve number Distribution Time of conc. (Tc) Type II Storm frequency E 6.07 in Distribution Type II Storm duration Pipe Hyd. No. 3 - 25 Year Q <td cols<="" td=""><td></td></td>	<td></td>	
Calculation Number DC-BN- 735210-003 (Rev1) Sheet 21 of 23 Hydrograph Report Thureday, 02 / 11 / 2 Hydrafow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v12 Thureday, 02 / 11 / 2 Hydr No. 3 Pipe Hydrograph type = SCS Runoff Pipe Fine to peak Hydrograph type = SCS Runoff Drainage area = 34.710 ac Drainage area = 34.710 ac Basin Slope = 0.0 % Hydraulic length = 0 ft Total precip. = 6.07 in Storm duration = 24 hrs ' composite (Area(CN) - [(31.470 x 61) + (2.480 x 85) + (0.760 x 98)] / 34.710		
Pipe Hydraforw Hydrograph Stetension for Autodesk@ Civil 3D@ 2019 by Autodesk, Inc. v12 Thursday, 02 / 11 / 2 Hydr. No. 3 Pipe Peak discharge = 65,64 cfs Hydrograph type = SCS Runoff Peak discharge = 12.17 hrs Time interval = 5 min Hyd. volume = 300,595 cuft Drainage area = 34.710 ac Curve number = 64* Basin Slope = 0.0 % Hydraulic length = 0 ft Tc method = TR55 Time of conc. (Tc) = 31.50 min Total precip. = 6.07 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 * Composite (Area/CN) - [(31.470 x 61) + (2.480 x 85) + (0.760 x 98]] / 34.710		
Hyd. No. 3 Pipe Hydrograph type = SCS Runoff Storm frequency = 25 yrs Time interval = 5 min Drainage area = 34,710 ac Basin Slope = 0.0 % Tc method = TR55 Time of conc. (Tc) = 31.50 min Total precip. = 6.07 in Storm duration = 24 hrs * Composite (Area/CN) - [(31.470 x 61) + (2.480 x 85) + (0.760 x 98)] / 34.710		
Pipe Hydrograph type = SCS Runoff Peak discharge = 65.64 cfs Storm frequency = 25 yrs Time to peak = 12.17 hrs Time interval = 5 min Hyd. volume = 300,595 cuft Drainage area = 34.710 ac Curve number = 64* Basin Slope = 0.0 % Hydraulic length = 0 ft Tc method = TR55 Time of conc. (Tc) = 31.50 min Total precip. = 6.07 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 * Composite (Area/CN) - [(31.470 x 61) + (2.480 x 85) + (0.760 x 98)] / 34.710	2021	
Storm frequency = 25 yrs Time to peak = 12.17 hrs Time interval = 5 min Hyd. volume = 300,595 cuft Drainage area = 34.710 ac Curve number = 64* Basin Slope = 0.0 % Hydraulic length = 0 ft Tc method = TR55 Time of conc. (Tc) = 31.50 min Total precip. = 6.07 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 * Composite (Area/CN) - [(31.470 x 61) + (2.480 x 85) + (0.760 x 98)] / 34.710 Pipe Q (cfs) Hyd. No. 3 - 25 Year 7 70.00		
Pipe Q (cfs) Hyd. No. 3 25 Year Q 70.00		
Q (cfs) Hyd. No. 3 25 Year Q		
	Q (cfs)	
60.00	70.00	
60.00		
	60.00	
50.00	50.00	
40.00	40.00	

30.00

20.00

10.00

0.00

0

2

Hydrograph Report 1

Design Calculations		eepa,
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 22 of 23

	ographs Extensio	n for Auto	odesk® Civil	3D@ 2019 by	Autodesk, Inc. v12				Monday,	01/31/202
Pond No. 1	- Cell 9&10 S	ed Por	d/Clear F	Pool						
Pond Data										
Contours -Use	r-defined contour	areas. Co	onic method	used for volu	me calculation. Beginir	ng Elevation = (895. 00 f t			
Stage / Stor	age Table									
Stage (ft)	Elevation ((ft)	Contour a	rea (sqft)	Incr. Storage (cuft)	Total stor	rage (cuft)			
0.00	695.00 696.00		9,369		0 23,269	23.2	0			
2.00	697.00		40,876 44,230		42,538	65,8				
3.00	698.00		47,663		45,931	111,7	738			
4.00 5.00	699.00 700.00		51,173 54,762		49,403 52,952	161,1 214,0				
6.00	701.00		58,431		56,581	270,6				
7.00	702.00		62,177		60,288	330,9	962			
8.00 8.50	703.00 703.50		66,002 67,945		64,074 33,482	395,0 428,5				
Culvert / Ori	ifice Structur	es			Weir Structu	res				
	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]	
Rise (in)	= 42.00	0.00	0.00	0.00	Crest Len (ft)	= 14.13	0.00	0.00	0.00	
Span (in)	= 42.00	0.00	0.00	0.00	Crest El. (ft)	= 701.40	0.00	0.00	0.00	
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33	
Invert El. (ft)	= 679.90	0.00	0.00	0.00	Weir Type	= 1				
Length (ft) Slope (%)	= 200.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No	
Slope (%)										
	= 2.45	0.00	0.00	n/a						
N-Value	= .013	.013	.013	n/a	F	- 0.000 /bu	Contour			
		.013 0.60 No	.013 0.60 No	n/a 0.60 No	Exfil.(in/hr) TW Elev. (ft)	= 0.000 (by = 0.00 t (oc) control. Weir		for orflice co	nditions (ic) an	i submergence (;
N-Value Orifice Coeff.	= .013 = 0.60	.013 0.60 No	.013 0.60 No	n/a 0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		for orifice co	nditions (ic) an	
N-Value Orifice Coeff. Multi-Stage	= .013 = 0.60	.013 0.60 No	.013 0.60 No	n/a 0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		for orffice co	nditions (ic) an	Elev
N-Value Orifice Coeff. Multi-Stage	= .013 = 0.60	.013 0.60 No	.013 0.60 No	n/a 0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		for orffice co	nditions (ic) an	Elev
N-Value Orifice Coeff. Multi-Stage	= .013 = 0.60	.013 0.60 No	.013 0.60 No	n/a 0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		for orffice co	nditions (ic) an	Elev 705.0
N-Value Orifice Coeff. Multi-Stage	= .013 = 0.60	.013 0.60 No	.013 0.60 No	n/a 0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		for office co	nditions (ic) an	Elev 705.
N-Value Orifice Coeff. Multi-Stage	= .013 = 0.60	.013 0.60 No	.013 0.60 No	n/a 0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		for orffice co	nditions (ic) an	Elev 705.0
N-Value Orifice Coeff. Multi-Stage	= .013 = 0.60	.013 0.60 No	.013 0.60 No	n/a 0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		for orffice co	nditions (ic) an	Elev 705.0 703.0
N-Value Orifice Coeff. Multi-Stage	= .013 = 0.60	.013 0.60 No	.013 0.60 No	n/a 0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		for orffice co	nditions (ic) an	Elev 705.0 703.0
N-Value Orifice Coeff. Multi-Stage age (ft) 10.00 8.00 6.00	= .013 = 0.60	.013 0.60 No	.013 0.60 No	n/a 0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		for orffice co	nditions (ic) an	Elev 705.0 703.0 703.0
N-Value Orifice Coeff. Multi-Stage	= .013 = 0.60	.013 0.60 No	.013 0.60 No	n/a 0.60 No e outflows are ana	TW Elev. (ft)	= 0.00			nditions (ic) an	Elev 705.0 703.0 703.0
N-Value Orifice Coeff. Multi-Stage	= .013 = 0.60	.013 0.60 No	.013 0.60 No	n/a 0.60 No e outflows are ana	TW Elev. (ft)	= 0.00			nditions (ic) an	Elev 705.0 703.0 703.0
N-Value Orifice Coeff. Multi-Stage	= .013 = 0.60	.013 0.60 No	.013 0.60 No	n/a 0.60 No e outflows are ana	TW Elev. (ft)	= 0.00			nditions (ic) an	Elev 705.0 703.0 701.0 699.0
N-Value Orifice Coeff. Multi-Stage	= .013 = 0.60	.013 0.60 No	.013 0.60 No	n/a 0.60 No e outflows are ana	TW Elev. (ft)	= 0.00			nditions (ic) an	Elev 705.0 703.0 701.0 699.0
N-Value Orifice Coeff. Multi-Stage	= .013 = 0.60	.013 0.60 No	.013 0.60 No	n/a 0.60 No e outflows are ana	TW Elev. (ft)	= 0.00			nditions (ic) an	Elev 705.0 703.0 701.0 699.0

Pond Report 1

Design Calculations Project Prepared by Date Plant Bowen Run-on Run-off Control Jeremy Brown 2/10/22 Subject/Title Reviewed by Date Provide run-on and run-off system calculations for the peak discharge from 2/11/22Ashley Grissom a 24-hr 25-year storm Cells 9 & 10 Calculation Number Sheet 23 of 23 DC-BN-735210-003 (Rev1) > đ ₫ € Max Stor (cuft) 111.312 297.335 697.99 701.44 Max El (ft) - 200.0 LF of 42.0 in @ 2.45% child - Avla 0.000 1.254 Weith-Day, 2016 Law, 2010 Event (yrs) 25 25 Hol Off Labels Front Sect 0 υ Stage vs Q 701.40 14.13 8 < 🖲 🗖 Crest Len (ft) = Crest Elev (ft) = Weir Select Active > Estimate Storage Req. Star (cul) 0 0 ()() Inflow Hyd. No. = 1 - SCS Runoff - Cells 9 & 10 **K** O D U 0.000 0.000 679.90 42.00 8 65.64 20.90 а В < 🖲 🗖 = (u) =(1)= Invert EL. Culv/Orit 111.312 300,995 Diameter Select A P Activ Storage Estimate 0.01 0.01 2 2 5 50 100 (vent .

Pond Report 2