Prepared for

Georgia Power Company

241 Ralph McGill Blvd NE Atlanta, Georgia 30308

2024 SEMIANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

PLANT BRANCH ASH PONDS B, C, & D

Prepared by

engineers | scientists | innovators

1255 Roberts Boulevard, Suite 200 Kennesaw, Georgia 30144

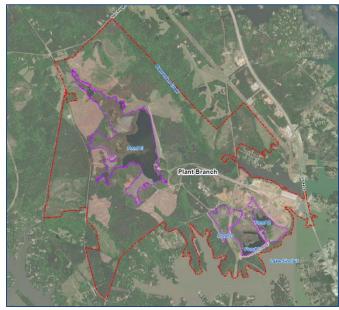
Project Number: GW8862

February 2025

CERTIFICATION STATEMENT

This 2024 Semiannual Groundwater Monitoring and Corrective Action Report, Plant Branch Ash Ponds B, C, & D has been prepared in compliance with the Georgia Environmental Protection Division Rules for Solid Waste Management 391-3-4-.10 by a qualified groundwater scientist or engineer with Geosyntec Consultants, Inc. I hereby certify that I am a qualified groundwater scientist, in accordance with the Georgia Rules of Solid Waste Management 391-3-4-.01.

Lauren E. Fitzgerald Georgia Professional Engineer No. 048960 <u>February 28, 2025</u>


Date

SUMMARY

This summary of the 2024 Semiannual Groundwater Monitoring and Corrective Action Report provides the status of the groundwater monitoring and corrective action program for the reporting period of July 2024 through December 2024 (referred herein as the "semiannual reporting period") at the Georgia Power Company (Georgia Power) Plant Branch Ash Ponds B, C, and D (AP-BCD) (the Site). This summary was prepared by Geosyntec Consultants, Inc. (Geosyntec) on behalf of Georgia Power to meet the requirements listed in Georgia Environmental Protection Division (GA EPD) Rules for Solid Waste Management 391-3-4-.10, and by reference, Part A, Section 6¹ of the United States Environmental Protection Agency (USEPA) Coal Combustion Residual Rule (CCR Rule) (40 Code of Federal Regulations [CFR] 257 Subpart D).

Plant Branch is located at 1100 Milledgeville Road, approximately 8 miles north of Milledgeville in Putnam County, Georgia. Plant Branch formerly operated as a coalfired electric generating facility, until its decommissioning in July 2015, at which point it ceased producing electricity. CCR materials resulting from power generation were historically transferred and stored at five ash ponds (AP-) (i.e., A, B, C, D, and E). Ash Pond A was taken out of service in the late 1960s and was closed in April 2016. Ash Ponds B, C, D, and E are inactive, and will be closed by removal and

Plant Branch and the Site

relocation of its stored CCR to a fully lined and permitted landfill located on the plant property. As required in the CCR Rule, this Semiannual Report describes the status of the groundwater monitoring program, summarizes key actions completed, describes any problems encountered, discusses actions to resolve the problems, and presents projected key activities for the upcoming year for AP-BCD. The other CCR unit (AP-E) at Plant Branch is reported separately.

¹ 80 FR 21468, Apr. 17, 2015, as amended at 81 FR 51807, Aug. 5, 2016; 83 FR 36452, July 30, 2018; 85 FR 53561, Aug. 28, 2020

Groundwater at the Site is monitored using a comprehensive well network that meets federal and state monitoring requirements. Routine sampling and reporting began after the background groundwater conditions were established between 2016 and 2018. Based on groundwater conditions at the Site, an assessment monitoring program was established on November 13, 2019, and the Site entered into an assessment of corrective measures on July 9, 2020. During the semiannual reporting period, the Site remained in assessment monitoring as corrective measures are being evaluated.

Site groundwater elevation measurements were recorded at monitoring wells and piezometers prior to the semiannual assessment monitoring event. The elevation data were used to confirm the groundwater flow direction, and to confirm that the groundwater monitoring well network for the CCR units remains sufficient to monitor groundwater downgradient of the unit.

During this semiannual reporting period, the semiannual assessment monitoring event for AP-BCD was conducted by Atlantic Coast Consulting (ACC) in August 2024. In order to meet the requirements of GA EPD Rule 391-3-4-.10(6) and § 257.95 (b) and (d)(1) of the CCR Rule, the semiannual assessment monitoring event included sampling and analysis of all Appendix III and Appendix IV constituents. Groundwater samples were submitted to GEL Laboratories, LLC, for analysis. Surface water samples were submitted to Pace Analytical Services, LLC, for analysis. Per the CCR Rule, groundwater results from these sampling events were evaluated in accordance with the certified statistical methods. That evaluation showed statistically significant values of Appendix III² and Appendix IV³ constituents in wells listed in the tables below.

Appendix III Parameter	August 2024
Boron	BRGWC-25I, BRGWC-27I, BRGWC-29I, BRGWC-30I, BRGWC-32S, BRGWC-47, BRGWC-52I, BRGWC-44
Calcium	BRGWC-25I, BRGWC-27I, BRGWC-29I, BRGWC-30I, BRGWC-32S, BRGWC-45, BRGWC-47, BRGWC-52I, BRGWC-44
Chloride	BRGWC-25I, BRGWC-29I, BRGWC-45, BRGWC-52I, BRGWC-44
pH (lower limit)	BRGWC-29I, BRGWC-47
Sulfate	BRGWC-25I, BRGWC-27I, BRGWC-29I, BRGWC-30I, BRGWC-32S, BRGWC-45, BRGWC-47, BRGWC-52I

² Boron, calcium, chloride, fluoride, pH, sulfate, and total dissolved solids (TDS)

³ Antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, fluoride, lead, lithium, mercury, molybdenum, selenium, thallium, and radium 226 + 228

Total Dissolved Solids (TDS)	BRGWC-25I, BRGWC-27I, BRGWC-29I, BRGWC-30I, BRGWC-32S, BRGWC-45, BRGWC-47, BRGWC-52I
Appendix IV Parameter	August 2024
Cobalt	PZ-63I
Selenium	BRGWC-32S

Prior to this semiannual reporting period, an alternate source demonstration (ASD) was prepared and initially submitted to GA EPD on February 28, 2024, with a revision submitted on July 5, 2024, (Geosyntec, 2024b) and a supplemental ASD workplan submitted on November 15, 2024 (Georgia Power, 2024). This ASD addresses the beryllium, cadmium, cobalt, and lithium statistically significant levels (SSLs) reported in BRGWC-50, PZ-51I, PZ-58I, PZ-60I, PZ-61I, PZ-63I, and PZ-64I. This ASD report satisfies the requirements of GA EPD Rule 391-3-4-.10(6) and § 257.95 of the CCR Rule, for compliance with groundwater monitoring requirements for assessment monitoring at AP-B. The ASD was approved by GA EPD on December 30, 2024 (GA EPD, 2024). Revisions to the CCR groundwater monitoring network in the vicinity of AP-B are described in this *Semiannual Groundwater Monitoring and Corrective Action Report*.

Based on a review of the Appendix III and Appendix IV statistical results completed for the groundwater monitoring and corrective action program from July 2024 through December 2024, the Site will continue in assessment monitoring. Georgia Power will continue routine groundwater monitoring and reporting at the Site. Reports will be posted to Georgia Power's CCR Rule Compliance website and provided to GA EPD semiannually. In lieu of a *Remedy Selection and Design Progress Report*, a *Draft Remedy Selection Report*, which summarizes the evaluation and proposed selection of a corrective measure, or measures, for AP-D was submitted separately to GA EPD concurrent with this report.

TABLE OF CONTENTS

SUM	IMAR'	Y	i
1.0	INT	RODUCTION	1
	1.1	Site Description and Background	2
	1.2	Regional Geology and Hydrogeologic Setting	3
		1.2.1 Regional and Site Geology	3
		1.2.2 Hydrogeologic Setting	4
	1.3	Groundwater Monitoring Well Network	4
2.0	GRO	OUNDWATER MONITORING ACTIVITIES	6
	2.1	Monitoring Well Installation and Maintenance	6
	2.2	Assessment Monitoring	6
	2.3	Additional Sampling and Surface Water Sampling	8
3.0	SAN	MPLING METHODOLOGY AND ANALYSES	9
	3.1	Groundwater Elevation Measurement	9
	3.2	Groundwater Gradient and Flow Velocity	9
	3.3	Groundwater Sampling Procedures	10
	3.4	Laboratory Analyses	12
	3.5	Quality Assurance and Quality Control Summary	12
4.0	STA	TISTICAL ANALYSIS	
	4.1	Statistical Methods	
		4.1.1 Appendix III Statistical Methods	13
		4.1.2 Appendix IV Statistical Methods	14
	4.2	Statistical Analyses Results	14
		4.2.1 August 2024 Data	14
		4.2.2 Summary of Statistical Analyses	15
5.0	NA	ΓURE AND EXTENT	16
	5.1	Selenium	16
	5.2	Beryllium, Cadmium, Cobalt, and Lithium Alternate Source Demonstration	16
6.0	МО	NITORING PROGRAM STATUS	18
	6.1	Assessment Monitoring Status	18

Geosyntec^o

consultants

	6.26.3	Assessment of Corrective Measures
7.0	CON	CLUSIONS AND FUTURE ACTIONS
8.0	REFI	ERENCES
		LIST OF TABLES
Table	1	Monitoring Well Network Summary
Table 2	2	Groundwater Sampling Event Summary
Table 3	3	Summary of Groundwater Elevations
Table 4	4	Horizontal Gradient and Flow Velocity Calculations
Table :		Summary of Groundwater Analytical Data – Monitoring Well Network
Table :	5b	Summary of Groundwater Analytical Data – Former Coal Pile Area
	_	Piezometers
Table (_	Summary of Surface Water Analytical Data
Table '	/	Summary of Background Concentrations and Groundwater Protection Standards
		LIST OF FIGURES
Figure	1	Site Location Map
Figure	2	Monitoring Well Network and Surface Water Location Map
Figure	3	Potentiometric Surface Contour Map – August 2024
Figure	4	Iso-Concentration Map, Selenium – August 2024
		LIST OF APPENDICES
Appen Appen Appen Appen	dix B dix C	Well Maintenance and Repair Documentation Laboratory Analytical Results and Field Sampling Forms Statistical Analysis Report Potable Well Survey

LIST OF ACRONYMS

ACC Atlantic Coast Consulting

ACM Assessment of Corrective Measures

AP ash pond

ASD alternate source demonstration CCR coal combustion residuals CFR Code of Federal Regulations

DO dissolved oxygen

EDR Environmental Data Resources

FCPA Former Coal Pile Area

ft/day feet per day ft/ft feet per foot

GA EPD Georgia Environmental Protection Division

GCSM geochemical conceptual site model

GEL Laboratories GEL Laboratories, LLC.
Georgia Power Georgia Power Company
Geosyntec Geosyntec Consultants, Inc.
GSC Groundwater Stats Consulting
GWPS Groundwater Protection Standard
HAR Hydrogeologic Assessment Report
Kh horizontal hydraulic conductivity

mg/L milligram per liter

MNA monitored natural attenuation

NELAP National Environmental Laboratory Accreditation Program

NTU Nephelometric turbidity units
ORP oxidation-reduction potential

PL prediction limit

PWR partially weathered rock

QA/QC Quality Assurance/Quality Control SSI statistically significant increase SSL statistically significant level

s.u. standard unit

TDS total dissolved solids

TWR transitionally weathered rock

Unified Guidance Statistical Analysis of Groundwater Data at RCRA Facilities Unified

Guidance

USEPA United States Environmental Protection Agency

VRP voluntary remediation program

1.0 INTRODUCTION

In accordance with the United States Environmental Protection Agency (USEPA) Coal Combustion Residual Rule (CCR Rule) (40 Code of Federal Regulations [CFR] Part 257, Subpart D) and the Georgia Environmental Protection Division (GA EPD) Rules for Solid Waste Management 391-3-4-.10, Geosyntec Consultants, Inc. (Geosyntec) has prepared this 2024 Semiannual Groundwater Monitoring and Corrective Action Report to document groundwater monitoring activities conducted at Georgia Power Company (Georgia Power) Plant Branch (Site) Ash Ponds B, C, and D (AP-BCD) for the reporting period of July 2024 through December 2024 (referred to herein as the "semiannual reporting period").

Groundwater monitoring and reporting for AP-BCD are performed in accordance with the monitoring requirements of the GA EPD Rules for Solid Waste Management 391-3-4-.10(6), but also in accordance with the CCR Rule, specifically § 257.90 through § 257.95. This report documents the activities completed to establish the groundwater monitoring program in accordance with GA EPD Rule 391-3-4-.10(6)(a). To specify groundwater monitoring requirements, GA EPD Rule 391-3-4-.10(6)(a) incorporates by reference the CCR Rule. For ease of reference, the CCR Rule regulations are cited within this report, in lieu of citing both sets of regulations.

A CCR Unit Solid Waste Handling Permit application for AP-BCD was submitted to GA EPD in November 2018 and is under review.

Due to statistically significant increases (SSIs) of Appendix III parameters identified in the 2019 Annual Groundwater Monitoring and Corrective Action Report (Golder, 2019), Georgia Power initiated an assessment monitoring program for AP-BCD on November 13, 2019. Statistically significant levels (SSLs) of Appendix IV parameters were identified during the initial assessment monitoring event. Georgia Power then initiated an assessment of corrective measures (ACM) program on July 9, 2020. Pursuant to § 257.96(b), Georgia Power continues to monitor groundwater associated with AP-BCD in accordance with the assessment monitoring program established for the unit in 2019, including semiannual monitoring and reporting pursuant to § 257.90 through § 257.95 of the CCR Rule.

SSLs of cadmium, cobalt, beryllium, and lithium in the vicinity of AP-B have been documented in the annual and semiannual groundwater monitoring and corrective action reports since the initiation of the assessment monitoring program. These SSLs are attributed to the former coal pile instead of AP-B as detailed in an ASD for BRGWC-50,

PZ-51I, PZ-58I, PZ-60I, PZ-61I, PZ-63I, and PZ-64I submitted on July 5, 2024 (Geosyntec, 2024b). On November 15, 2024, Georgia Power submitted a supplemental ASD workplan to GA EPD to support ongoing monitoring adjacent to AP-B and downgradient of the former coal pile, also referred to as the Former Coal Pile Area or FCPA (Georgia Power, 2024). In accordance with the supplemental ASD workplan, PZ-63I will be converted to a detection monitoring well and two additional detection monitoring wells (PZ-80 and PZ-81) will be installed. Following submittal of the workplan, the ASD was approved by GA EPD on December 30, 2024 (GA EPD, 2024). Per approval of the ASD, PZ-63I, PZ-80, and PZ-81 will be used to evaluate the cobalt trends to determine if they need to be added into the AP-BCD remedy selection process as part of the 5-year permit review. A summary of the ASD is presented in Section 2.

Downgradient of AP-D, an SSL of selenium has been identified in BRGWC-32S. A *Draft Remedy Selection Report*, which summarizes the evaluation and proposed selection of a corrective measure, or measures, for the selenium SSL at AP-D was submitted separately to GA EPD concurrent with this report (Geosyntec, 2025).

1.1 <u>Site Description and Background</u>

Plant Branch is located in Putnam County, Georgia, approximately 8 miles north of Milledgeville. The property occupies approximately 3,200 acres and is bordered on the south and east by Lake Sinclair and by sparsely populated, forested, rural land on the north and west. Lake Sinclair is an approximately 15,330-acre hydroelectric reservoir that was created in 1953 by the impoundment of the Oconee River. Ash ponds B, C, and D (AP-BCD) are located on the southeast corner of the Plant surrounded by Lake Sinclair on the south, rural land on the north and west, and the former coal pile and Ash Pond A on the east (**Figure 1**). The physical address of the Site is 1100 Milledgeville Road, Milledgeville, Georgia, 31024.

The Site formerly operated as a coal-fired power plant that commenced power generation in 1965. Over the course of power generation at the facility, five CCR surface impoundments (ash ponds), identified as Ash Ponds A, B, C, D, and E, were utilized. The location of each ash pond is shown on **Figure 1**. The former AP-A, the first ash pond constructed at the facility, was taken out of service in the late 1960s and was closed in April 2016 by the removal and relocation of its stored CCR to AP-E. AP-BCD and AP-E are currently not active and will be closed by removal, specifically, by relocation of the CCR stored in those ash ponds to a new, permitted, on-site CCR landfill.

This report documents the groundwater monitoring program at the multi-unit AP-BCD. As previously noted, groundwater monitoring activities completed at Plant Branch's AP-E are reported separately.

1.2 Regional Geology and Hydrogeologic Setting

The following section summarizes the geologic and hydrogeologic conditions at AP-BCD as described in the Hydrogeologic Assessment Report Revision 01 - AP-BCD (HAR Rev 01) submitted to GA EPD in November 2020 to provide information regarding the hydrogeologic conditions and the groundwater monitoring well network at the Site (Geosyntec, 2020b).

1.2.1 Regional and Site Geology

The Site is located within the Piedmont Physiographic Province of central Georgia, which is characterized by gently rolling hills and narrow valleys, with locally pronounced linear ridges. Generally, the property slopes gently east and south toward Beaverdam Creek and Lake Sinclair. The metamorphic and igneous rocks that underlie the area have been subjected to physical and chemical weathering which has created a landscape dissected by creeks and streams. Bedrock is typically overlain by a variably thick blanket of residual soils and saprolite. The overall depth of weathering in the Piedmont/Blue Ridge is generally about 20 to 60 feet; however, the depth of weathering along discontinuities and/or very mafic rock units may extend to depths greater than 100 feet. Because of such variations in rock types and structure, the depth of weathering can vary significantly over short horizontal distances. The bedrock underlying the saprolite is fine- to medium-grained, poorly jointed biotite-quartz-feldspar gneiss.

Based on our review of available data, micaceous, locally saprolitic soils, consisting primarily of clay, silty clay, silt, and sandy clay occur as a variably thick blanket of residuum overlying bedrock across most of the Site. The thickness of the residual soil encountered in AP-BCD borings is variable, ranging from approximately 10 feet to as much as 75 feet. Between the residual soil/saprolite zone and the underlying bedrock there is a zone of transitionally weathered rock (TWR) or partially weathered rock (PWR), as defined by standard penetration test data, where available. Material overlying the top of rock surface, including residual soil/saprolite and TWR/PWR, is collectively referred to as overburden.

1.2.2 Hydrogeologic Setting

The uppermost aquifer at the Site is an unconfined regional groundwater aquifer that occurs primarily in the saprolite, PWR, and fractured bedrock. While the aquifer characteristics of each unit may vary, the groundwater is interpreted to be interconnected between these units, and they effectively act as one unconfined aquifer. Generally, the water table surface at the Site is a subdued reflection of topography, with groundwater generally flowing east, west, and south. Downward hydraulic gradients dominate in the topographically high areas, while upward gradients are observed in topographic lows. Recharge to the fractured bedrock aquifer system comes primarily from precipitation that is stored in the overburden and slowly infiltrates to the bedrock through areas of enhanced permeability. Interconnected fractures are the primary conduit for groundwater flow through bedrock since the rock lacks primary porosity.

1.3 Groundwater Monitoring Well Network

In accordance with § 257.91, a groundwater monitoring system was installed at AP-BCD that consists of a sufficient number of wells installed at appropriate locations and depths to yield groundwater samples from the uppermost aquifer to represent the groundwater quality both upgradient of the unit (i.e., background conditions) and passing the waste boundary of the unit. The number, spacing, and depths of the groundwater monitoring wells were selected based on the characterization of site-specific hydrogeologic conditions.

Based on the Site hydrogeology, the monitoring well system is designed to monitor groundwater flow in the overburden, the transition-zone, and the upper bedrock as a single interconnected aquifer system. Wells suffixed with an "S" are installed in overburden (saprolitic soil), an "I" indicates TWR/PWR and the upper fractured mantle of bedrock (transition zone), and "D" indicates a screened zone in the deeper bedrock. Construction details for the wells and piezometers associated with evaluating groundwater flow and/or quality conditions in vicinity of AP-BCD are listed in **Table 1**. The locations of the detection monitoring wells and assessment monitoring wells are shown on **Figure 2**. Pursuant to § 257.195(g)(1)(iv), assessment monitoring wells will continue to be sampled concurrently with the detection monitoring well network as part of the ongoing assessment groundwater monitoring program.

An on-site network of piezometers is used to gauge water levels to define groundwater flow direction and gradients and to understand potential changes related to seasonal fluctuations or site activities. The piezometers may be sampled as needed to support the

AP-BCD ACM program. The piezometer locations are shown on the potentiometric surface maps generated for this semiannual reporting period (**Figure 3**, discussed in detail in Section 3).

2.0 GROUNDWATER MONITORING ACTIVITIES

In accordance with § 257.90(e), the following describes monitoring-related activities performed during this reporting period and discusses any change in status of the monitoring program. Groundwater sampling was performed in accordance with § 257.93.

2.1 Monitoring Well Installation and Maintenance

No new monitoring wells or piezometers were installed during the semiannual reporting period. However, with approval of the ASD addressing SSLs in the vicinity of AP-B (Geosyntec, 2024b), the following wells were removed from the monitoring network: detection well BRGWC-50; assessment wells PZ-50D, PZ-51I, PZ51D, PZ-58I, PZ-60I, PZ-61I, and PZ-64I; and piezometers PZ-43, PZ-51S, PZ-57I, PZ-59I, PZ-62I, PZ-65I, PZ-66I, and PZ-67 (**Table 1**). These wells and piezometers will no longer be sampled or monitored during the semiannual assessment monitoring events. An additional update to the groundwater monitoring network following ASD approval includes the reclassification of PZ-44 to a detection monitoring well (renamed BRGWC-44), and addition of this well as a permanent monitoring location in the AP-BCD detection monitoring network. Also, per the supplemental ASD workplan provided to GA EPD on November 15, 2024 (Georgia Power, 2024), existing piezometer PZ-63I will be included in the detection monitoring network along with two additional proposed piezometers (PZ-80 and PZ-81) at the AP-B boundary. These three piezometers will be included as a part of semiannual groundwater monitoring and reporting to monitor groundwater quality in immediate proximity to AP-B shown to be affected by impacts from the former coal pile. Per approval of the ASD, PZ-63I, PZ-80, and PZ-81 will be used to evaluate the cobalt trends to determine if they need to be added into the AP-BCD remedy selection process as part of the 5-year permit review.

The well and piezometer networks are inspected semiannually to evaluate if any repairs or corrective actions are necessary to meet the requirements of the Georgia Water Well Standards Act (O.C.G.A. § 12-5-134(5)(d)(vii)). In August 2024, the networks were inspected and no corrective actions were required, as documented in **Appendix A**. This documentation was prepared under the direction of a professional geologist or engineer registered in the State of Georgia.

2.2 Assessment Monitoring

Pursuant to § 257.94(e)(3), an assessment monitoring program was initiated for AP-BCD based on SSIs of Appendix III constituents documented in the 2019 Annual Groundwater

Monitoring and Corrective Action Report (Golder, 2019). A notice of assessment monitoring was placed in the operating record on November 13, 2019. An ACM program was initiated on July 9, 2020. Georgia Power completed an ACM report (Golder, 2020) for AP-BCD at Plant Branch on December 4, 2020.

In accordance with § 257.95(g)(3)(ii), an ASD was prepared and submitted to GA EPD on February 28, 2024, with a revision submitted on July 5, 2024 (Geosyntec, 2024b) and a supplemental ASD workplan on November 15, 2024 (Georgia Power, 2024). This ASD addresses the beryllium, cadmium, cobalt, and/or lithium SSLs reported for BRGWC-50, PZ-51I, PZ-58I, PZ-60I, PZ-61I, PZ-63I, and PZ-64I (Geosyntec, 2024b and c). The ASD was approved by GA EPD on December 30, 2024 (GA EPD, 2024) and resulted in the removal of wells BRGWC-50, PZ-50D, PZ-51I, PZ51D, PZ-58I, PZ-60I, PZ61I, and PZ-64I from the detection and assessment monitoring network. Per the supplemental ASD workplan (Georgia Power, 2024), PZ-63I was not removed from the network and will continue to be monitored with two proposed additional piezometers (PZ-80 and PZ-81) to evaluate impacts from the former coal pile. Per approval of the ASD, PZ-63I, PZ-80, and PZ-81 will be used to evaluate the cobalt trends to determine if they need to be added into the AP-BCD remedy selection process as at the 5-year permit review.

A *Draft Remedy Selection Report*, which summarizes the evaluation and proposed selection of a corrective measure, or measures, for the selenium SSL identified in BRGWC-32S in the vicinity of AP-D was submitted separately to GA EPD concurrent with this report (Geosyntec, 2025). In accordance with § 257.96(b), groundwater continues to be monitored at AP-BCD under the assessment monitoring program while the ACM phase is implemented.

In support of the ongoing groundwater compliance monitoring program, a semiannual assessment monitoring event was conducted in August 2024. The wells sampled during this event and the dates associated with the event are summarized in **Table 2**. The collected groundwater samples were analyzed for the complete list of Appendix III and Appendix IV constituents.

Field data, field calibration forms, well inspection logs, laboratory analytical results, and data validation reports associated with this sampling event are provided in **Appendix B**. Details of the events and analytical results are discussed in Section 3.

2.3 Additional Sampling and Surface Water Sampling

Supplemental sampling was conducted during the reporting period in support of the ACM program and in continuing to evaluate the nature and extent of target constituents showing SSLs in groundwater in the vicinity of AP-BCD. Supplemental groundwater samples were collected from the monitoring well network during the August 2024 assessment monitoring event and were analyzed for major cations (calcium, magnesium, potassium, and sodium), major anions (chloride, nitrate, sulfate), and alkalinity (i.e., bicarbonate, carbonate, total) as well as iron, manganese, and sulfide. The laboratory reports associated with the data are provided in **Appendix B**.

Due to the presence of surface water features downgradient of AP-BCD, Georgia Power proactively collected surface water samples from discrete (surface, middle, and/or bottom) depths at eight locations in Lake Sinclair on August 28, 2024, as shown on Figure 2. The water samples were collected from the four locations downgradient of AP-B (LR+8, LR+8A, LR+9, and LR+9A) and were analyzed for Appendix III and cobalt, in addition to cations and anions (sodium, magnesium, potassium, and alkalinity). In addition, at two locations downgradient of AP-D (LS+3, LS+3A), surface water samples were collected from discrete depths (surface and middle) and analyzed for Appendix III and selenium, in addition to cations and anions. One of these locations, LS+3A, is used to delineate selenium concentrations immediately downgradient of the AP-D wells identified to have SSLs of selenium (presented in Section 4). The remaining two surface water sampling locations (LR-1, LR+10) are considered to represent more general lake conditions. Depth discrete samples collected here are analyzed for Appendix III, cations and anions, and both cobalt and selenium. Surface water samples are collected in accordance with USEPA Region 4 Science and Ecosystem Support Division Operating Procedures for Surface Water Sampling SESDPROC 201-R4 (USEPA, 2016). The laboratory reports associated with the August 28, 2024 surface water sampling event are provided in Appendix B. Georgia Power will continue collecting the surface water samples semiannually as needed to support the nature and extent evaluation.

3.0 SAMPLING METHODOLOGY AND ANALYSES

The following section presents a summary of the field sampling procedures that were implemented, and the groundwater sampling results that were obtained in connection with the assessment monitoring program conducted at AP-BCD during this semiannual reporting period.

3.1 Groundwater Elevation Measurement

Prior to the semiannual assessment monitoring event, a synoptic round of depth-to-groundwater-level measurements was recorded from all the wells and piezometers (including those associated with AP-E and the proposed new CCR landfill area) and used to calculate the corresponding groundwater elevations. The calculated groundwater elevations obtained in August 2024 at AP-BCD and AP-E are presented in **Table 3**. The surface water elevations for Lake Sinclair are obtained from Georgia Power.

The groundwater and surface water elevation data were used to prepare a site-wide potentiometric surface map for the August 2024 event, which is presented on **Figure 3**. The general direction of groundwater flow across AP-BCD is towards Lake Sinclair (south-southeast). This groundwater flow pattern is consistent with previous observations.

3.2 Groundwater Gradient and Flow Velocity

The horizontal groundwater hydraulic gradients within the uppermost aquifer at AP-BCD were calculated using the groundwater elevation data from the August 2024 event. Horizontal hydraulic gradients were calculated along the flow paths between BRGWA-23S and BRGWC-30I proximal to AP-D, and between BRGWC-47 and BRGWC-44 in vicinity of AP-B and AP-C. The supporting calculations are presented in **Table 4.** The calculated hydraulic gradients associated with these well pairs for the semiannual reporting period are 0.028 feet per foot (ft/ft) and 0.012 ft/ft, respectively. The general trajectory of the flow paths used in the calculations and associated potentiometric contour lines are shown on **Figure 3**.

Groundwater flow rates at the Site were calculated based on the above hydraulic gradients, hydraulic conductivity from previous slug test results, and an estimated effective porosity of the screened horizon.

Horizontal hydraulic conductivity (K_h) values used in flow calculations range from 1.45 to 2.80 feet per day (ft/day) and were based on slug test data presented in the 2020

Hydrogeologic Assessment Report Revision 01 (Geosyntec, 2020b) and collected subsequently. The average observed K_h estimates from each lithologic unit in which the well pairs were screened was used to produce a representative estimate of groundwater flow velocity. An estimated effective porosity of 0.20 is used to represent average conditions at AP-BCD which was derived based on the default values for effective porosity recommended by USEPA for a silty sand-type soil (USEPA, 1996). With these variables determined horizontal flow velocities were calculated as below.

The approximate horizontal flow velocities associated with AP-BCD were calculated using the following derivative of Darcy's Law. The supporting calculations for the August 2024 semiannual event are presented in **Table 4**.

$$V = linear\ velocity = \frac{K_h * i}{n_e}$$

where:

V = Groundwater flow velocity $\left(\frac{feet}{day}\right)$

 K_h = Horizontal Hydraulic Conductivity $\left(\frac{feet}{day}\right)$

 $i = \text{Horizontal hydraulic gradient } \left(\frac{feet}{foot}\right) = \frac{h_1 - h_2}{L}$

 h_1 and h_2 = Groundwater elevation at location 1 and 2

L = Distance between location 1 and 2

 n_e = Effective porosity

The average groundwater flow velocity at the Site for this semiannual reporting period is approximately 0.24 ft/day across AP-BCD. The observed groundwater flow velocities are consistent with expected velocities in the Georgia Piedmont, are consistent with historical observations, and confirm the groundwater monitoring system as properly located to monitor the uppermost aquifer for AP-BCD at Plant Branch.

3.3 Groundwater Sampling Procedures

Groundwater samples were collected using low-flow sampling procedures in accordance with § 257.93(a). Purging and sampling was performed using dedicated bladder pumps with dedicated tubing, non-dedicated bladder pumps, and peristaltic pumps. For wells

sampled with non-dedicated bladder and peristaltic pumps, the pump intake was lowered to the midpoint of the well screen (or as appropriate based on the groundwater level). Non-dedicated bladder pump and peristaltic pump samples were collected using new disposable polyethylene tubing; all non-dedicated tubing was disposed of following the sampling event. All non-disposable equipment was decontaminated before use and between well locations.

An AquaTROLL® (In-Situ field instrument) was used to monitor and record field water quality parameters [i.e., pH, conductivity, dissolved oxygen (DO), temperature, and oxidation reduction potential (ORP)] during well purging to verify stabilization prior to sampling. Turbidity was monitored using a LaMotte 2020we (or similar) portable turbidity meter. Groundwater samples were collected once the following stabilization criteria were met:

- pH \pm 0.1 Standard Units (s.u.).
- Conductivity ± 5%.
- ± 0.2 milligrams per liter (mg/L) or $\pm 10\%$ (whichever is greater) for DO > 0.5 mg/L. No criterion applies if DO < 0.5 mg/L, record only.
- Turbidity measured less than 5 nephelometric turbidity units (NTU) or measured between 5 and 10 NTU following three hours of purging.

Following purging, and once stabilization was achieved, unfiltered samples were collected into appropriately preserved laboratory-supplied sample containers. Sample bottles were placed in ice-packed coolers and submitted to GEL Laboratories, LLC (GEL Laboratories) in Charleston, South Carolina, following chain-of-custody protocol. The field sampling and equipment calibration forms generated during the semiannual reporting period are provided in **Appendix B**.

During the August 2024 event, low yielding wells were encountered that purged dry and required sample collection the following day due to low recharge rates in accordance with the field sampling plan for low yielding wells. Assessment well PZ-68D and former coal pile area piezometer PZ-50D purged dry during the August 2024 event.

3.4 Laboratory Analyses

Groundwater laboratory analyses were performed by GEL Laboratories, and surface water analyses were performed by Pace Analytical Services, LLC, (Peachtree Corners, Georgia), both of which are accredited by the National Environmental Laboratory Accreditation Program (NELAP). GEL Laboratories and Pace Analytical Services maintain a NELAP certification for the Appendix III and Appendix IV constituents and the geochemical parameters analyzed for this project. Analytical methods used for sample analysis are listed in the analytical laboratory reports included in **Appendix B**.

The groundwater results from the semiannual reporting period are summarized in **Table** 5. Surface water analytical results from the August 2024 monitoring event are summarized in **Table** 6.

3.5 Quality Assurance and Quality Control Summary

Quality assurance/quality control (QA/QC) samples were collected during each sampling event at the minimum rate of one QA/QC sample per 10 groundwater samples and included the following: field duplicates, equipment blanks, and field blank samples. QA/QC samples were collected in appropriately preserved laboratory-provided sample containers and submitted under the same chain of custody as the primary samples for analysis of the same constituents by GEL Laboratories.

In addition to collecting QA/QC samples, the data were validated based on the pertinent methods referenced in the laboratory reports, professional and technical judgment, and applicable federal guidance documents (USEPA, 2011; USEPA, 2017). Where necessary, the data were qualified with supporting documentation and justifications. The validated data are considered usable for meeting project objectives. The associated data validation reports are provided in **Appendix B**, along with the laboratory reports.

4.0 STATISTICAL ANALYSIS

The following section summarizes the statistical analysis of Appendix III groundwater monitoring data performed pursuant to § 257.93. In addition, pursuant to § 257.95(d)(2), Georgia Power established Groundwater Protection Standards (GWPS) for the Appendix IV constituents and completed statistical analyses of the Appendix IV groundwater monitoring data obtained during the August 2024 assessment monitoring event. The data were analyzed by Groundwater Stats Consulting (GSC); the report generated from the analyses is provided in **Appendix C**.

4.1 Statistical Methods

The selected statistical method for AP-BCD was developed in accordance with § 257.93(f) using methodology presented in Statistical Analysis of Groundwater Data at USEPA document *Statistical Analysis of Groundwater Data at RCRA Facilities Unified Guidance* (Unified Guidance) (USEPA, 2009). The SanitasTM Groundwater statistical software was used to perform the statistical analyses. SanitasTM is a decision-support software package, which incorporates the statistical tests required of Subtitle C and D facilities by USEPA regulations and guidance as recommended in the Unified Guidance.

Appendix III statistical analysis was performed to assess if Appendix III constituents have returned to background levels. Appendix IV constituents were evaluated to assess if concentrations statistically exceeded the established GWPS. Detailed statistical methods used for Appendix III and Appendix IV constituents are discussed in the statistical analysis reports provided in **Appendix C** and summarized in Sections 4.1.1 and 4.1.2. The GWPS were finalized pursuant to § 257.95(d)(2) and presented in **Table 7**.

4.1.1 Appendix III Statistical Methods

Statistical tests used to evaluate the groundwater monitoring data consist of interwell prediction limits (PLs) combined with a 1-of-2 verification resample plan for each of the Appendix III parameters. Upgradient well data were pooled to establish a background limit for an individual constituent, and the most recent sample from each downgradient well was compared to the statistical limit for each parameter to determine if concentrations exceeded background levels. The most recent sample from each downgradient well is compared to the background limit to assess whether there are SSIs. An "initial exceedance" occurs when an Appendix III constituent reported in the groundwater of a downgradient detection monitoring well exceeds the constituent's associated PL. The 1-of-2 resample plan allows for collection of an independent

Geosyntec consultants

resample. A confirmed exceedance is noted only when the resample confirms the initial exceedance by also exceeding the statistical limit. If the resample falls within its respective PL, no exceedance is declared. The Sen's Slope/Mann Kendall trend test was used to statistically evaluate concentration levels over time and determine if concentrations are increasing, decreasing, or stabilizing.

4.1.2 Appendix IV Statistical Methods

To statistically compare groundwater data to GWPS, confidence intervals are constructed for each of the detected Appendix IV constituents in each downgradient detection and assessment monitoring well with a minimum of four samples. In accordance with Section 21.1.1 of the Unified Guidance (USEPA, 2009), four independent data are the minimum population size recommended to construct confidence intervals required to assess SSLs for Appendix IV constituents. Due to previous non-routine sampling, some Appendix IV constituents at a well location have differing number of analytical data points.

The confidence intervals are compared to the GWPS. Only when the entire confidence interval is above a GWPS is the well/constituent pair considered to exceed its GWPS. If a confidence interval exceeds a GWPS, an SSL exceedance is identified. GWPS established for statistical comparison of Appendix IV constituents and are presented in **Table 7**.

4.2 Statistical Analyses Results

Based on review of the Appendix III statistical analysis of August 2024 data presented in **Appendix C**, groundwater conditions have not returned to background and assessment monitoring should continue pursuant to § 257.95(f). A detailed list of the noted exceedances is provided in **Appendix C**.

Based on the statistical analysis of Appendix IV constituents, the following constituents exceeded the corresponding GWPS for the assessment monitoring event:

4.2.1 August 2024 Data

• Cobalt: PZ-63I⁴

• Selenium: BRGWC-32S

⁴ SSL of cobalt in PZ-63I was included in the approved ASD.

With the approval of the ASD report (GA EPD, 2024) for SSLs identified in the vicinity of AP-B, no further statistical analyses were performed for the beryllium, cadmium, cobalt, and lithium SSLs previously reported for BRGWC-50, PZ-51I, PZ-58I, PZ-60I, PZ-61I, and PZ-64I. PZ-63I was retained as part of semiannual groundwater monitoring and reporting to monitor groundwater quality in the immediate proximity of AP-B shown to be affected by impacts from the former coal pile. Per approval of the ASD, PZ-63I will be used to evaluate the cobalt trends to determine if they need to be added into the AP-BCD remedy selection process at the 5-year permit review.

The selenium SSL identified in BRGWC-32S was further evaluated using the Sen's Slope/Mann Kendall trend test (**Appendix C**). A statistically significant increasing trend of selenium was identified in this well during this reporting period.

4.2.2 Summary of Statistical Analyses

The previous SSLs identified for the semiannual reporting period have remained generally consistent with the previous reporting period with no new SSLs identified.

5.0 NATURE AND EXTENT

5.1 Selenium

Delineation activities during the current semiannual reporting period focused on defining the nature and extent of selenium in groundwater downgradient of AP-D. Results from the delineation activities indicate that selenium is horizontally and vertically delineated below the site-specific GWPS. The nature and extent of selenium is delineated below the GPWS as follows:

 Selenium in detection well BRGWC-32S is horizontally delineated downgradient by surface water location LS+3A and vertically delineated by assessment well PZ-68D.

Specific details regarding the delineation activities at AP-D are discussed in the *Draft Remedy Selection Report* that was submitted separately to GA EPD concurrent with this report. The groundwater data from the August 2024 semiannual assessment monitoring event were used to generate the selenium iso-concentration map presented on **Figure 4**.

Detection and assessment wells will be monitored in future monitoring events. In accordance with Section 21.1.1 of the Unified Guidance (USEPA, 2009), statistical analysis will be performed to construct confidence intervals required to assess SSLs for Appendix IV constituents once sufficient data is available for new assessment wells PZ-68D, PZ-74I, and PZ-75I (i.e., a minimum of four independent samples required).

5.2 Beryllium, Cadmium, Cobalt, and Lithium Alternate Source Demonstration

An ASD was prepared and initially submitted to GA EPD on February 28, 2024, with a revision submitted on July 5, 2024 (Geosyntec, 2024b), and a supplemental ASD workplan submitted on November 15, 2024 (Georgia Power, 2024). This ASD addresses the beryllium, cadmium, cobalt, and lithium SSLs reported for BRGWC-50, PZ-51I, PZ-58I, PZ-60I, PZ-61I, PZ-63I, and PZ-64I and attributes the SSLs to migration from the former coal pile instead of AP-B. The ASD was approved by GA EPD on December 30, 2024 (GA EPD, 2024).

As a result of the approval of the ASD and the supplemental ASD workplan, the SSLs of beryllium, cadmium, cobalt, and lithium in the vicinity of AP-B are not further considered for remedy selection in the *Draft Remedy Selection Report* that was submitted separately to GA EPD concurrent with this report. The CCR groundwater monitoring network in the

vicinity of AP-B has been revised as described in Section 2. The SSLs of beryllium, cadmium, cobalt, and lithium identified in detection and assessment monitoring wells BRGWC-50, PZ-51I, PZ-58I, PZ-60I, PZ-61I, and PZ-64I will be transitioned to the voluntary remediation program (VRP) with the state of Georgia and will no longer be monitored under the CCR regulatory framework.

PZ-63I (along with proposed PZ-80 and PZ-81) will be retained as part of semiannual groundwater monitoring and reporting to monitor groundwater quality in the immediate proximity of AP-B shown to be affected by impacts from the former coal pile. Per approval of the ASD, PZ-63I, PZ-80, and PZ-81 will be used to evaluate the cobalt trends to determine if they need to be added into the AP-BCD remedy selection process as at the 5-year permit review.

6.0 MONITORING PROGRAM STATUS

6.1 Assessment Monitoring Status

Pursuant to § 257.96(b), Georgia Power will continue to monitor the groundwater at APBCD in accordance with the assessment monitoring program regulations of § 257.95 while ACM efforts are implemented to address SSL concentrations of selenium in BRGWC-32S. Pursuant to § 257.195(g)(1)(iv), the additional assessment wells will continue to be sampled as part of the ongoing assessment groundwater monitoring program.

6.2 <u>Assessment of Corrective Measures</u>

A *Draft Remedy Selection Report* for AP-D was submitted to GA EPD concurrent with this report, in lieu of the *Semiannual Remedy Selection and Design Progress Report*. The *Draft Remedy Selection Report* was submitted under separate cover to GA EPD and included a comprehensive description and compilation of the following content and documents:

- i) An evaluation of corrective measure options using the comparative criteria such as long- and short-term effectiveness and protectiveness, source control effectiveness, and ease of implementation;
- ii) The current groundwater geochemical conceptual site model (GCSM) applicable to evaluating groundwater corrective measures proposed in the ACM Report (Golder, 2020b);
- iii) A risk evaluation; and
- iv) A transport modeling investigation to assess the feasibility of the corrective action measures under consideration.

The *Draft Remedy Selection Report* presents hydraulic containment ("Pump and Treat") as the proposed groundwater remedy for selenium in groundwater at BRGWC-32S downgradient of AP-D, with a potential transition from this remedy to a geochemical injection remedy and/or monitored natural attenuation (MNA) to address residual selenium in a reduced plume footprint, if achieved.

In the interim of GA EPD's review of the *Draft Remedy Selection Report*, pre-design investigations and pilot testing are being planned to complete a detailed delineation of the

selenium plume downgradient of AP-D and assess requirements needed to design an extraction system capable of achieving hydraulic capture as part of the "Pump and Treat" proposed remedy. Should a transition to a geochemical injection remedy become favorable, further treatability studies will be evaluated at that time.

6.3 Annual Potable Well Survey

An updated potable well survey of potential groundwater wells within a two-mile radius of AP-BCD was conducted in October 2024 through January 2025 and consisted of reviewing federal, state, county records, and online sources. Surveys conducted by Environmental Data Resources (EDR) are included in **Appendix D**. Additional federal, state, county records and online sources outside of the EDR survey were also reviewed. The Putnam County Environmental Health Department did not provide a response following multiple requests. The findings from the 2024 well survey are consistent with the 2023 well survey (Geosyntec, 2024a), including the following additional feature identified:

 One drinking water well located approximately 1.1 miles northeast of AP-BCD, with geographic coordinates 33.20897, -83.29427. and an address of 108 Falcon Wy SE, Milledgeville, Georgia, 31061.

Sections of Lake Sinclair are located between AP-BCD and the well listed above. Therefore, it is reasonable to expect the well to be hydrologically separated from the Site and is not considered to be hydraulically downgradient.

7.0 CONCLUSIONS AND FUTURE ACTIONS

This 2024 Semiannual Groundwater Monitoring and Corrective Action Report for Plant Branch AP-BCD was prepared to fulfill the requirements of the CCR Rule and GA EPD Rules of Solid Waste Management 391-3-4-.10. The groundwater flow direction and rates interpreted during the August 2024 monitoring event are generally consistent with historical evaluations. Statistical analysis of the groundwater monitoring data for the AP-BCD well network confirmed the SSL of selenium in BRGWC-32S above corresponding GWPS near AP-D. Based on the most current data from this reporting period, as described in Section 5, the selenium SSL is vertically and horizontally delineated downgradient to below the GWPS.

SSLs of beryllium, cadmium, cobalt, and lithium identified previously in detection and assessment monitoring wells BRGWC-50, PZ-51I, PZ-58I, PZ-60I, PZ-61I, and PZ-64I have been addressed by an approved ASD and will be transitioned to the VRP with the state of Georgia. Therefore, they will no longer be monitored under the CCR regulatory framework. Georgia Power will continue monitoring groundwater quality in immediate proximity to AP-B where impacts from the former coal pile are observed. Further evaluation of data from these locations will be assessed during the 5-year permit review for inclusion in remedy selection, if deemed necessary. In accordance with GA EPD Rule 391-3-4-.10(6) and § 257.96, the Site continues in an ACM program.

Georgia Power will continue to monitor AP-BCD groundwater under the assessment monitoring program as aspects of the ACM program are implemented to address the Appendix IV SSLs. A *Draft Remedy Selection Report*, which summarizes the evaluation and proposed selection of a corrective measure, or measures, at AP-D was submitted to GA EPD concurrent with this report. The next routine semiannual assessment monitoring event for AP-BCD is scheduled for February 2025. Progress made toward the pre-design investigation and other pilot studies will be documented as a summary in future semiannual and annual groundwater monitoring and corrective action reports.

8.0 REFERENCES

- Georgia EPD, 2024. Letter: Former Coal Pile Alternate Source Demonstration: Beryllium, Cadmium, Cobalt, and Lithium and Supplemental Alternate Source Demonstration Workplan Conditionally Approved, Georgia Power Company: Plant Branch Ash Ponds B, C, D. December 2024.
- Georgia Power, 2024. Supplemental Alternate Source Demonstration Workplan, Georgia Power Company Plant Branch AP-BCD. November 2024.
- Geosyntec, 2020a. Groundwater Monitoring Plan Revision 01, Georgia Power Plant Branch, Putnam County, Georgia. Submitted to Southern Company Services in November 2020.
- Geosyntec, 2020b. Hydrogeologic Assessment Report Revision 01, Georgia Power Plant Branch, Putnam County, Georgia. Submitted to Southern Company Services in November 2020.
- Geosyntec, 2024a. 2024 Semiannual Groundwater Monitoring and Corrective Action Report Plant Branch Ash Ponds B, C, & D (AP-BCD). February 2024.
- Geosyntec, 2024b. Alternate Source Demonstration Beryllium, Cadmium, and Cobalt, Georgia Power Plant Branch, Putnam County, Georgia. February 2024. Revised July 2024.
- Geosyntec, 2025. Draft Remedy Selection Report, Georgia Power Plant Branch Ash Pond D (AP-D), Putnam County, Georgia. February 2025.
- Golder Associates, 2019. 2019 Annual Groundwater Monitoring and Corrective Action Report, Georgia Power Plant Branch, Milledgeville, Georgia, August 2019.
- Golder Associates, 2020a. 2020 Annual Groundwater Monitoring and Corrective Action Report, Georgia Power Plant Branch, Milledgeville, Georgia, July 2020.
- Golder Associates, 2020b. Assessment of Corrective Measures Ash Pond BCD, Georgia Power Plant Branch, Milledgeville, Georgia, December 2020.
- Golder Associates, 2021. 2021 Annual Groundwater Monitoring and Corrective Action Report, Georgia Power Plant Branch, Milledgeville, Georgia, July 2021.

- Golder, 2022. 2021 Well Survey, Georgia Power Plant Branch, Milledgeville, Georgia.
- USEPA, 1996. Soil Guidance Manual.
- USEPA, 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. Office of Resource Conservation and Recovery Program Implementation and Information Division. March 2009.
- USEPA, 2011. *Region IV Data Validation Standard Operating Procedures*. Science and Ecosystem Support Division. Region IV. Athens, GA. September 2011.
- USEPA, 2016. Science and Ecosystem Support Division *Operating Procedures for Surface Water Sampling* SESDPROC-201-R4, December 16, 2016.
- USEPA, 2017. *National Functional Guidelines for Inorganic Superfund Methods Data Review*. Office of Superfund Remediation and Technology Innovation. OLEM 9355.0-135 [EPA-540-R-2017-001]. Washington, DC. January 2017.

TABLES

Table 1 Monitoring Well Network Summary Georgia Power Company Plant Branch - Ash Ponds B, C, and D Putnam County, GA

Well ID	Well Designation	Location	Northing	Easting	Ground Surface Elevation (feet)	Top of Casing Elevation (feet)	Top of Screen Elevation (feet)	Bottom of Screen Elevation (feet)	Total Well Depth from (Feet Below Top of Casing)	Groundwater Zone Screened	Installation Date
AP-BCD Monito	ring Well Network								I.		
BRGWA-2S	Detection	Upgradient	1167139.70	2549952.60	440.40	443.20	406.20	396.20	47.40	Saprolite	04/02/2014
BRGWA-2I	Detection	Upgradient	1167130.00	2549957.30	440.50	443.14	386.60	376.60	66.94	Biotite Gneiss	03/14/2014
BRGWA-5S	Detection	Upgradient	1170177.50	2549415.50	440.80	443.86	411.20	401.20	43.06	Saprolite	04/03/2014
BRGWA-5I	Detection	Upgradient	1170183.70	2549408.00	441.10	443.79	390.30	380.30	63.89	Bedrock	04/03/2014
BRGWA-6S	Detection	Upgradient	1170732.90	2551540.80	455.80	458.96	416.50	406.50	52.86	Saprolite	04/01/2014
BRGWA-23S	Detection	Upgradient	1162971.70	2557868.10	425.50	428.24	395.00	385.00	43.54	Saprolite/PWR	07/26/2016
BRGWC-25I	Detection	Downgradient	1160583.70	2561315.10	355.00	357.37	344.40	334.40	23.37	Saprolite/PWR/Biotite Gneiss	07/25/2016
BRGWC-27I	Detection	Downgradient	1159695.30	2559712.20	364.00	366.86	350.40	340.40	26.86	Saprolite	07/22/2016
BRGWC-29I	Detection	Downgradient	1160297.60	2561050.20	350.60	353.23	340.60	330.60	23.03	PWR	07/23/2016
BRGWC-30I	Detection	Downgradient	1161607.60	2557691.80	350.00	352.61	340.15	330.15	22.86	Saprolite/PWR/Biotite Gneiss	07/18/2016
BRGWC-32S	Detection	Downgradient	1160677.70	2558497.90	403.60	406.39	369.00	359.00	47.79	Saprolite	07/20/2016
BRGWC-44	Detection	Downgradient	1161724.60	2561587.50	380.50	383.04	333.90	323.90	54.46	Saprolite/PWR/Biotite Gneiss	02/02/2018
BRGWC-45	Detection	Downgradient	1162229.80	2561075.50	381.60	384.58	335.00	325.00	59.98	Saprolite/PWR/Biotite Gneiss	02/03/2018
BRGWC-47	Detection	Downgradient	1162700.70	2559456.70	408.80	411.20	327.20	317.20	94.40	PWR	01/25/2018
BRGWC-52I	Detection	Downgradient	1161275.00	2562145.30	381.20	383.87	317.70	307.70	76.57	Biotite Gneiss	08/06/2018
PZ-631	Detection	Downgradient	1161371.20	2562233.10	378.60	381.31	332.35	322.35	59.21	PWR/Biotite Gneiss	01/05/2022
PZ-80	Detection	Downgradient									
PZ-81	Detection	Downgradient									
PZ-68D	Assessment	Downgradient	1160690.48	2558512.90	402.50	405.25	328.50	318.50	81.50	Bedrock	09/06/2022
PZ-74I	Assessment	Downgradient	1160189.30	2557970.94	368.25	371.13	330.50	320.50	45.12	PWR/Biotite Gneiss	05/24/2023
PZ-751	Assessment	Downgradient	1160009.37	2558343.03	354.88	357.86	337.88	327.88	24.42	PWR/Biotite Gneiss	06/27/2023
AP-E Monitoring	g Well Network			•	•	•	•		•		
BRGWA-2S	Detection	Upgradient	1167139.70	2549952.60	440.40	443.20	406.20	396.20	47.40	Saprolite	04/02/2014
BRGWA-2I	Detection	Upgradient	1167130.00	2549957.30	440.50	443.14	386.60	376.60	66.94	Biotite Gneiss	03/14/2014
BRGWA-5S	Detection	Upgradient	1170177.50	2549415.50	440.80	443.86	411.20	401.20	43.06	Saprolite	04/03/2014
BRGWA-5I	Detection	Upgradient	1170183.70	2549408.00	441.10	443.79	390.30	380.30	63.89	Bedrock	04/03/2014
BRGWA-6S	Detection	Upgradient	1170732.90	2551540.80	455.80	458.96	416.50	406.50	52.86	Saprolite	04/01/2014
BRGWC-17S	Detection	Downgradient	1166301.50	2554687.70	362.20	365.32	360.50	355.50	10.22	Alluvium	03/13/2014
BRGWC-33S	Detection	Downgradient	1168057.00	2554064.80	414.20	416.68	398.20	388.20	28.88	Saprolite/PWR/Biotite Gneiss	07/26/2016
BRGWC-34S	Detection	Downgradient	1167384.00	2554231.20	389.20	391.96	376.20	366.20	26.16	Saprolite	07/25/2016
BRGWC-35S	Detection	Downgradient	1166646.00	2554476.30	363.70	366.31	346.70	336.70	30.01	Saprolite	07/23/2016
BRGWC-36S	Detection	Downgradient	1165742.70	2554693.30	383.10	389.84	364.60	354.40	35.44	Saprolite	07/26/2016
BRGWC-37S	Detection	Downgradient	1165093.00	2554979.50	444.40	447.05	390.80	380.80	66.65	Saprolite/PWR	07/24/2016
BRGWC-38S	Detection	Downgradient	1164391.90	2555016.50	429.80	432.24	402.00	392.00	40.64	Saprolite/PWR	07/22/2016
PZ-13S	Assessment	Downgradient	1168011.40	2555276.70	406.50	409.97	382.20	372.20	38.17	Saprolite	03/19/2014
PZ-52D	Assessment	Downgradient	1168053.90	2554051.70	414.30	417.03	365.13	355.13	62.23	Biotite Gneiss	05/14/2020
PZ-53D	Assessment	Downgradient	1164393.80	2554984.30	431.60	434.68	302.20	292.20	142.73	Saprolite/PWR/Biotite Gneiss	05/17/2020
PZ-70I	Assessment	Downgradient	1164326.66	2555374.08	422.88	425.70	383.38	373.38	52.82	Saprolite	08/16/2022

Table 1 Monitoring Well Network Summary Georgia Power Company Plant Branch - Ash Ponds B, C, and D Putnam County, GA

Well ID	Well Designation	Location	Northing	Easting	Ground Surface Elevation (feet)	Top of Casing Elevation (feet)	Top of Screen Elevation (feet)	Bottom of Screen Elevation (feet)	Total Well Depth from (Feet Below Top of Casing)	Groundwater Zone Screened	Installation Date
Piezometers											
BRGWC-50	Piezometer	Downgradient	1161593.30	2562372.90	378.80	381.35	324.20	314.20	67.55	Saprolite/Biotite Gneiss	01/31/2018
PZ-1D	Piezometer	Upgradient	1171999.00	2551598.10	462.90	463.41	397.40	302.90	160.51	Biotite Gneiss	04/04/2014
PZ-1I	Piezometer	Upgradient	1171995.80	2551577.80	461.90	464.71	392.80	382.80	82.31	Bedrock	03/10/2014
PZ-1S	Piezometer	Upgradient	1171996.40	2551588.00	462.40	465.07	407.80	397.80	67.67	Saprolite	03/20/2014
PZ-3D	Piezometer	Upgradient	1165474.40	2550275.10	486.70	487.50	438.70	356.70	130.80	Biotite Gneiss	03/27/2014
PZ-3I	Piezometer	Upgradient	1165494.50	2550273.20	486.50	489.49	442.30	432.30	57.59	Bedrock	03/11/2014
PZ-3S	Piezometer	Upgradient	1165484.50	2550274.60	487.00	490.53	457.50	447.50	43.43	Saprolite	03/11/2014
PZ-4I	Piezometer	Upgradient	1163246.80	2551282.00	479.90	482.98	443.50	433.50	49.88	Bedrock	03/11/2014
PZ-4S	Piezometer	Upgradient	1163247.80	2551270.10	479.90	482.87	460.30	450.30	32.97	Saprolite	03/10/2014
PZ-7S	Piezometer	Downgradient	1169419.20	2553055.60	449.00	451.57	414.90	404.90	47.07	Saprolite	04/01/2014
PZ-8S	Piezometer	Upgradient	1167801.10	2551188.90	450.50	453.08	411.40	401.40	52.08	Saprolite	04/01/2014
PZ-9S	Piezometer	Upgradient	1162633.30	2553089.60	466.10	469.28	428.50	418.50	51.18	Saprolite	03/05/2014
PZ-10S	Piezometer	Downgradient	1164021.50	2554990.50	431.00	433.85	402.40	392.40	41.85	Saprolite	03/05/2014
PZ-14I	Piezometer	Downgradient	1168398.20	2554365.60	419.90	422.71	376.50	366.50	56.61	Biotite Gneiss	03/20/2014
PZ-14S	Piezometer	Downgradient	1168398.70	2554359.20	420.20	423.31	393.00	383.00	40.71	Saprolite	03/20/2014
PZ-15I	Piezometer	Downgradient	1167720.90	2554399.20	400.20	403.06	321.90	311.90	91.56	Bedrock	03/25/2014
PZ-15S	Piezometer	Downgradient	1167720.30	2554394.00	400.10	402.90	370.60	360.60	42.70	Saprolite	03/27/2014
PZ-16I	Piezometer	Downgradient	1166980.70	2554587.50	379.50	382.45	351.30	341.30	41.55	Bedrock	03/14/2014
PZ-16S	Piezometer	Downgradient	1166977.80	2554581.40	379.30	382.52	370.60	360.60	22.32	Saprolite	03/18/2014
PZ-17I	Piezometer	Downgradient	1166313.80	2554702.50	362.30	365.33	329.20	319.20	46.53	Biotite Gneiss	03/17/2014
PZ-18S	Piezometer	Downgradient	1160757.30	2557747.40	359.70	362.82	345.00	335.00	28.22	Saprolite	03/26/2014
PZ-18I	Piezometer	Downgradient	1160766.20	2557745.50	359.60	362.55	331.50	321.50	41.45	Biotite Gneiss	02/26/2014
PZ-19S	Piezometer	Downgradient	1159805.40	2558894.50	368.40	371.42	350.80	340.80	31.02	Saprolite	03/04/2014
PZ-19I	Piezometer	Downgradient	1159797.10	2558900.00	368.90	371.74	335.60	325.60	46.54	Biotite Gneiss	03/04/2014
PZ-20S	Piezometer	Downgradient	1159490.30	2560157.00	362.20	365.41	357.20	347.20	18.61	Saprolite	03/05/2014
PZ-20I	Piezometer	Downgradient	1159495.40	2560160.20	362.20	365.34	343.10	333.10	32.64	Biotite Gneiss	03/05/2014
PZ-21S	Piezometer	Downgradient	1160592.40	2561321.30	355.50	358.52	351.10	346.10	12.82	Saprolite	03/11/2014
PZ-21I	Piezometer	Downgradient	1160591.60	2561328.20	355.80	358.92	341.80	331.80	27.52	Biotite Gneiss	03/10/2014
PZ-23I	Piezometer	Downgradient	1162975.40	2557877.70	425.10	427.74	368.60	358.60	69.54	Biotite Gneiss	07/29/2016
PZ-24S	Piezometer	Downgradient	1162400.90	2562862.20	351.40	354.10	319.90	309.90	44.70	Saprolite	07/27/2016
PZ-26I	Piezometer	Downgradient	1160669.00	2561626.40	368.00	370.63	347.90	337.90	33.13	Biotite Gneiss	07/26/2016
PZ-28I	Piezometer	Downgradient	1159505.10	2560151.70	362.50	364.81	348.50	338.50	26.71	PWR/Biotite Gneiss	07/24/2016
PZ-31S	Piezometer	Downgradient	1160936.90	2557971.80	374.30	376.77	345.20	335.20	41.97	TWR	07/26/2016
PZ-40S	Piezometer	Downgradient	1162414.90	2562807.70	353.20	355.96	324.40	314.40	42.96	Saprolite	02/14/2017
PZ-41S	Piezometer	Downgradient	1162431.80	2562759.40	354.30	357.17	320.50	310.50	47.07	Saprolite	02/14/2017
PZ-42S	Piezometer	Downgradient	1162845.70	2562735.00	359.00	361.66	337.20	327.20	34.86	Saprolite	02/09/2017
PZ-46	Piezometer	Downgradient	1162756.20	2560559.00	382.10	384.64	346.50	336.50	49.54	Saprolite/PWR/Biotite Gneiss	02/05/2018
PZ-48	Piezometer	Downgradient	1163046.70	2558444.60	418.30	420.90	361.70	351.70	69.60	Saprolite/PWR/Amphibolite	01/24/2018
PZ-49	Piezometer	Downgradient	1163321.20	2561125.70	382.20	384.99	375.60	365.60	19.79	Saprolite/Biotite Gneiss	01/30/2018
PZ-54	Piezometer	Downgradient	1164828.70	2555458.30	440.80	443.86	399.05	389.05	55.06	Saprolite/PWR	05/15/2020
PZ-55	Piezometer	Downgradient	1163208.00	2554783.60	450.20	453.07	411.15	401.15	52.17	Saprolite/TWR/Biotite Gneiss	05/19/2020
PZ-56	Piezometer	Downgradient	1162965.10	2554086.30	416.20	418.84	397.15	387.15	31.94	Saprolite/TWR/Biotite Gneiss	05/20/2020
PZ-69I	Piezometer	Downgradient	1160311.39	2558447.46	376.97	379.36	347.97	337.97	41.64	Saprolite/Amphibolite	08/31/2022
PZ-71I	Piezometer	Downgradient	1160295.35	2558230.83	382.57	385.34	352.82	342.82	42.77	Saprolite/PWR/Biotite Gneiss	05/02/2023
PZ-72I	Piezometer	Downgradient	1160133.29	2558394.65	365.91	368.57	342.01	332.01	36.86	PWR/Bedrock	05/09/2023
PZ-73I	Piezometer	Downgradient	1160226.37	2558559.30	349.87	352.63	334.87	324.87	28.01	Saprolite/PWR/Amphibolite	05/10/2023

Table 1 Monitoring Well Network Summary Georgia Power Company Plant Branch - Ash Ponds B, C, and D Putnam County, GA

Well ID	Well Designation	Location	Northing	Easting	Ground Surface Elevation (feet)	Top of Casing Elevation (feet)	Top of Screen Elevation (feet)	Bottom of Screen Elevation (feet)	Total Well Depth from (Feet Below Top of Casing)	Groundwater Zone Screened	Installation Date
Former Coal Pile	Area Piezometers										
BRGWC-50	Piezometer	Downgradient	1161593.30	2562372.90	378.80	381.35	324.20	314.20	67.55	Saprolite/Biotite Gneiss	01/31/2018
PZ-43	Piezometer	Downgradient	1162159.80	2562031.30	381.00	383.71	351.00	341.00	43.11	Saprolite/Biotite Gneiss	02/07/2018
PZ-50D	Piezometer	Downgradient	1161588.90	2562381.20	378.30	380.86	282.30	272.30	108.81	Biotite Gneiss	10/08/2020
PZ-51S	Piezometer	Downgradient	1161613.40	2562433.10	377.90	380.27	337.90	332.90	47.62	Saprolite	08/01/2018
PZ-51I	Piezometer	Downgradient	1161631.10	2562439.30	378.00	380.52	323.10	313.10	67.67	Saprolite/PWR/Biotite Gneiss	08/01/2018
PZ-51D	Piezometer	Downgradient	1161639.80	2562434.00	378.10	380.75	282.10	272.10	108.90	Biotite Gneiss	10/09/2020
PZ-57I	Piezometer	Downgradient	1161582.20	2562170.20	379.40	382.50	313.80	303.80	79.03	Saprolite/PWR	03/24/2021
PZ-58I	Piezometer	Downgradient	1161579.10	2562297.90	379.30	382.27	325.70	315.70	66.90	Saprolite/PWR	03/27/2021
PZ-59I	Piezometer	Downgradient	1161654.90	2562329.80	379.90	383.49	324.30	314.30	69.52	Saprolite/PWR	03/31/2021
PZ-60I	Piezometer	Downgradient	1161588.00	2562330.60	379.50	382.61	329.00	319.00	63.86	Saprolite/PWR	03/29/2021
PZ-61I	Piezometer	Downgradient	1161621.90	2562429.70	377.70	380.64	312.00	302.00	78.89	Saprolite/PWR	03/30/2021
PZ-62I	Piezometer	Downgradient	1161478.90	2562336.00	378.10	380.95	318.35	308.35	72.85	PWR/Biotite Gneiss	01/06/2022
PZ-64I	Piezometer	Downgradient	1161787.72	2562404.29	379.37	381.94	320.37	310.37	71.82	PWR	09/10/2022
PZ-65I	Piezometer	Downgradient	1161692.72	2562240.57	379.61	382.06	320.61	310.61	71.70	Saprolite/PWR	09/09/2022
PZ-66I	Piezometer	Downgradient	1161747.91	2562134.65	380.86	383.52	322.86	312.86	70.91	Saprolite/PWR	09/08/2022
PZ-67	Piezometer	Downgradient	1161831.98	2561919.76	378.78	381.48	350.78	340.78	40.95	Saprolite	09/07/2022

Notes:

Elevations shown are in datum NAVD88, which indicates feet (ft) in elevation referenced to the North American Vertical Datum 1988.

Coordinates in North American Datum (NAD) 1983, State Plane, Georgia-West, feet.

Ground surface elevation defined at the survey nail installed within the well pad.

Well screen elevations are calculated by subtracting the depths to top and bottom of the well screen from the ground surface elevation.

Total well depth accounts for sump if data provided on construction logs.

PZ-44 was renamed BRGWC-44 and reclassified to a detection well.

PZ-63I and two proposed piezometers (PZ-80 and PZ-81) are included in the detection network to monitor groundwater quality in immediate proximity to AP-B shown to be affected by impacts from the former coal pile.

Table 2 Groundwater Sampling Event Summary Georgia Power Company Plant Branch - Ash Ponds B, C, and D Putnam County, GA

Well ID	Hydraulic Location	Well Designation	August 27 2024 - August 29 2024
	,	West Designation	Assessment Event
Georgia Power Company	Plant Branch - Ash Ponds	B, C, and D	
BRGWA-2I	Upgradient	Detection	X
BRGWA-2S	Upgradient	Detection	X
BRGWA-5I	Upgradient	Detection	X
BRGWA-5S	Upgradient	Detection	X
BRGWA-6S	Upgradient	Detection	X
BRGWA-23S	Upgradient	Detection	X
BRGWC-25I	Downgradient	Detection	X
BRGWC-27I	Downgradient	Detection	X
BRGWC-29I	Downgradient	Detection	X
BRGWC-30I	Downgradient	Detection	X
BRGWC-32S	Downgradient	Detection	X
BRGWC-44	Downgradient	Detection	X
BRGWC-45	Downgradient	Detection	X
BRGWC-47	Downgradient	Detection	X
BRGWC-52I	Downgradient	Detection	X
PZ-631	Downgradient	Detection	X
PZ-68D	Downgradient	Assessment	Х
PZ-74I	Downgradient	Assessment	X
PZ-75I	Downgradient	Assessment	X

Notes:

X - Indicates well sampled during event

Table 3 Summary of Groundwater Elevations Georgia Power Company Plant Branch - Ash Pond B, C, and D Putnam County, GA

		August 26, 2024					
Well ID	Top of Casing Elevation (feet)	Depth to Water (feet)	Groundwater Elevation (feet)				
AP-BCD Detection	Monitoring Well Ne	twork					
BRGWA-2I	443.14	13.39	429.75				
BRGWA-2S	443.2	13.59	429.61				
BRGWA-5I	443.79	14.44	429.35				
BRGWA-5S	443.86	14.59	429.27				
BRGWA-6S	458.96	28.71	430.25				
BRGWA-23S	428.24	41.79	386.45				
BRGWC-25I	357.37	13.08	344.29				
BRGWC-27I	366.86	13.55	353.31				
BRGWC-29I	353.23	11.64	341.59				
BRGWC-30I	352.61	5.41	347.20				
BRGWC-32S	406.39	41.88	364.51				
BRGWC-44	383.04	30.37	352.67				
BRGWC-45	384.58	15.83	368.75				
BRGWC-47	411.2	30.21	380.99				
BRGWC-52I	383.87	40.88	342.99				
PZ-63I	381.31	40.28	341.03				
AP-E Detection Mo	nitoring Well Netw	ork					
BRGWA-2I	443.14	13.39	429.75				
BRGWA-2S	443.2	13.59	429.61				
BRGWA-5I	443.79	14.44	429.35				
BRGWA-5S	443.86	14.59	429.27				
BRGWA-6S	458.96	28.71	430.25				
BRGWC-17S	365.32	6.02	359.30				
BRGWC-33S	416.68	15.87	400.81				
BRGWC-34S	391.96	4.56	387.40				
BRGWC-35S	366.31	1.02	365.29				
BRGWC-36S	389.84	6.28	383.56				
BRGWC-37S	447.05	55.58	391.47				
BRGWC-38S	432.24	25.44	406.80				
AP-BCD Assessmer	nt Monitoring Well I	Network					
PZ-68D	405.25	42.44	362.81				
PZ-74I	371.13	28.82	342.31				
PZ-75I	357.86	18.46	339.40				
AP-E Assessment N	Monitoring Well Net	work					
PZ-13S	409.97	31.11	378.86				
PZ-52D	417.03	25.33	391.70				
PZ-53D	434.68	26.58	408.10				
PZ-70I	425.70	31.48	394.22				

Table 3 Summary of Groundwater Elevations Georgia Power Company Plant Branch - Ash Pond B, C, and D Putnam County, GA

		August 2	6, 2024
Well ID	Top of Casing Elevation (feet)	Depth to Water (feet)	Groundwater Elevation (feet)
Piezometers	•	•	
PZ-1D	463.41	42.39	421.02
PZ-1I	464.71	44.17	420.54
PZ-1S	465.07	42.41	422.66
PZ-3D	487.5	50.12	437.38
PZ-3I	489.49	52.45	437.04
PZ-3S	490.53		
PZ-4I	482.98	35.13	447.85
PZ-4S	482.87	32.99	449.88
PZ-7S	451.57	31.29	420.28
PZ-8S	453.08	29.02	424.06
PZ-9S	469.28	37.15	432.13
PZ-10S	433.85	29.94	403.91
PZ-14I	422.71	22.44	400.27
PZ-14S	423.31	27.42	395.89
PZ-15I	403.06	13.03	390.03
PZ-15S	402.9	13.23	389.67
PZ-16I	382.45	13.04	369.41
PZ-16S	382.52	13.18	369.34
PZ-17I	365.33	3.47	361.86
PZ-18I	362.55	21.56	340.99
PZ-18S	362.82	21.72	341.10
PZ-19I	371.74	18.52	353.22
PZ-19S	371.42	17.95	353.47
PZ-20I	365.34	18.69	346.65
PZ-20S	365.41	18.44	346.97
PZ-21I	358.92	14.58	344.34
PZ-21S	358.52	12.70	345.82
PZ-23I	427.74	40.65	387.09
PZ-24S	354.1	14.77	339.33
PZ-26I	370.63	25.58	345.05
PZ-28I	364.81	18.16	346.65
PZ-31S	376.77	29.01	347.76
PZ-40S	355.96	16.33	339.63
PZ-41S	357.17	17.51	339.66
PZ-42S	361.66	20.77	340.89
PZ-46	384.64	13.16	371.48
PZ-48	420.9	34.96	385.94
PZ-49	384.99	11.54	373.45
PZ-54	443.86	51.81	392.05
PZ-55	453.07	48.59	404.48
PZ-56	418.84	11.01	407.83
PZ-69I	379.36	22.69	356.67
PZ-71I	385.34	34.17	351.17
PZ-72I	368.57	26.17	342.40
PZ-73I	352.63	8.12	344.51

Table 3 Summary of Groundwater Elevations Georgia Power Company Plant Branch - Ash Pond B, C, and D Putnam County, GA

		August 2	6, 2024
Well ID	Top of Casing Elevation (feet)	Depth to Water (feet)	Groundwater Elevation (feet)
Former Coal Pile A	rea Piezometers		
BRGWC-50	381.35	39.23	342.12
PZ-43	383.71	39.41	344.30
PZ-50D	380.86	38.86	342.00
PZ-51D	380.75	38.83	341.92
PZ-51I	380.52	39.23	341.29
PZ-51S	380.27	39.26	341.01
PZ-57I	382.5	37.69	344.81
PZ-58I	382.27	38.67	343.60
PZ-59I	383.49	40.01	343.48
PZ-60I	382.61	39.37	343.24
PZ-61I	380.64	41.24	339.40
PZ-62I	380.95	39.96	340.99
PZ-64I	381.94	39.52	342.42
PZ-65I	382.06	37.40	344.66
PZ-66I	383.52	37.34	346.18
PZ-67	381.48	32.52	348.96

Notes:

-- = Not measured

NAVD88 indicates feet (ft) in elevation referenced to the North American Vertical Datum 1988.

Table 4 Horizontal Gradient and Flow Velocity Calculations Georgia Power Company Plant Branch - Ash Ponds B, C and D Putnam County, GA

Well Pair	Ground Elevation Pa (f	s in Well	Change in Elevation (ft)	Distance Between Well 1 and Well 2 (ft)	Hydraulic Gradient (ft/ft)	Average Hydraulic Conductivity (K) (ft/day)	Estimated Effective Porosity (ne)	Calculated Groundwater Flow Velocity (ft/day)	Calculated Groundwater Flow Velocity (ft/year)	Average Groundwater Flow Velocity (ft/day)	Average Groundwater Flow Velocity (ft/year)
BRGWA-23S to BRGWC-30I	386.45	347.20	39.25	1421	0.028	2.80	0.20	0.39	141	0.24	86
BRGWC-47 to BRGWC-44	380.99	352.67	28.32	2424	0.012	1.45	0.20	0.08	31	0.24	80

Notes:

ft – feet

In-situ hydraulic conductivity (slug) tests at the Site: in saprolite ranged from 0.002 to 6.1 feet/day with a geometric mean of 1.2 feet/day; in saprolite/partially weathered rock (PWR) ranged from 0.036 to 22 feet/day with a geometric mean of 3.1 feet/day; and in bedrock ranged from 0.002 to 4.7 feet/day with a geometric mean of 0.32 feet/day.

Effective porosity of 20% was derived based on the default values for effective porosity recommended by USEPA for a silty sand-type soil (USEPA, 1996) See figures for illustrated flow path

Groundwater flow velocity equation: V= (K* i)ne

Table 5A Summary of Groundwater Analytical Data - Monitoring Well Network Georgia Power Company Plant Branch - Ash Ponds B, C, and D Putnam County, GA

	Sample Location	BRGWA-2I	BRGWA-2S	BRGWA-5I	BRGWA-5S	BRGWA-6S	BRGWA-23S	BRGWC-25I	BRGWC-27I	BRGWC-29I
	Sample Date	08/27/2024	08/27/2024	08/27/2024	08/27/2024	08/27/2024	08/27/2024	08/29/2024	08/27/2024	08/27/2024
ANALYTE	UNITS									
APPENDIX III						•	•			
Boron	mg/L	< 0.0052	< 0.0052	< 0.0052	0.00538 J	< 0.0052	0.0315	2.04	1.28	1.09
Calcium	mg/L	12.4	5.45	15.9	17.2	4.19	5.88	77.6	75.9	70.5
Chloride	mg/L	2.16	2.17	3.88	3.49	2.28	2.16	13.7	4.47	8.87
Fluoride	mg/L	0.0342 J	0.0426 J	0.0365 J	0.0516 J	0.0334 J	0.204	0.248	0.382	0.0849 J
pH, Field	SU	6.60	6.02	6.56	6.65	6.80	5.92	6.52	5.95	4.47
Sulfate	mg/L	2.58	0.444	2.67	0.652	0.465	9.73	216	174	261
TDS	mg/L	82	51	107	101	57	86	492	346	424
APPENDIX IV										
Antimony	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Arsenic	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Barium	mg/L	0.00493	0.0132	0.0314	0.0362	0.0159	0.0432	0.0291	0.0164	0.0163
Beryllium	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.000892
Cadmium	mg/L	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
Chromium	mg/L	0.00445 J	0.00799 J	0.00521 J	0.00604 J	0.0124	< 0.003	< 0.003	< 0.003	< 0.003
Cobalt	mg/L	0.00105	0.000772 J	0.000396 J	< 0.0003	< 0.0003	< 0.0003	0.00319	0.00566	0.00574
Lead	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Lithium	mg/L	0.00584 J	< 0.003	0.00337 J	< 0.003	0.00322 J	0.00687 J	< 0.003	< 0.003	0.00305 J
Mercury	mg/L	< 0.000067	< 0.000067	< 0.000067	< 0.000067	< 0.000067	< 0.000067	< 0.000067	< 0.000067	< 0.000067
Molybdenum	mg/L	0.000313 J	< 0.0002	0.00134	< 0.0002	< 0.0002	0.000225 J	0.00123	0.000211 J	< 0.0002
Combined Radium 226 + 228	pCi/L	0.864 U	1.40 U	3.62	0.236 U	1.64	2.43	6.24	2.41	2.39
Selenium	mg/L	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015
Thallium	mg/L	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006
Fluoride	mg/L	0.0342 J	0.0426 J	0.0365 J	0.0516 J	0.0334 J	0.204	0.248	0.382	0.0849 J
Additional Parameters										
Bicarbonate Alkalinity as CaCO3	mg/L	67.8	38.0	79.5	79.8	27.8	32.4	98.4	51.2	< 0.725
Carbonate Alkalinity as CaCO3	mg/L	< 0.725	< 0.725	< 0.725	< 0.725	< 0.725	< 0.725	< 0.725	< 0.725	< 0.725
Total Alkalinity as CaCO3	mg/L	67.8	38.0	79.5	79.8	27.8	32.4	98.4	51.2	< 0.725
Iron	mg/L	0.153	0.056 J	< 0.033	0.0458 J	< 0.033	0.0482 J	< 0.033	< 0.033	17.6
Ferrous (II) Iron	mg/L	0	0	0	0	0	0	0	0	6.5
Magnesium	mg/L	7.55	5.49	9.79	8.38	4.21	3.38	27.5	7.27	8.52
Manganese	mg/L	0.0107	0.0293	< 0.001	0.00602	< 0.001	< 0.001	2.34	0.415	1.13
Nitrate	mg/L	0.321	0.176	0.368	0.241	0.713	1.28	< 0.033	0.037 J	< 0.033
Potassium	mg/L	2.08	0.431	1.34	0.499	0.736	1.95	4.86	5.07	9.74
Sodium	mg/L	4.74	3.51	4.86	4.89	2.54	8.76	22.3	16.7	17.7
Sulfide	mg/L	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033

Table 5A Summary of Groundwater Analytical Data - Monitoring Well Network Georgia Power Company Plant Branch - Ash Ponds B, C, and D

Putnam County, GA

	Sample Location	BRGWC-30I	BRGWC-32S	BRGWC-44	BRGWC-45	BRGWC-47	BRGWC-52I	PZ-63I	PZ-68D	PZ-74I	PZ-75I
	Sample Date	08/28/2024	08/28/2024	08/27/2024	08/29/2024	08/28/2024	08/28/2024	08/29/2024	08/29/2024	08/27/2024	08/27/2024
ANALYTE	UNITS										
APPENDIX III			•		•		•	•	•	•	
Boron	mg/L	1.82	0.996	1.16	0.0431	0.508	1.44	0.731	0.404	1.20	1.20
Calcium	mg/L	419	37.4	24.9	42.9	302	36.8	65.6	96.7	68.8	49.8
Chloride	mg/L	3.48	4.09	5.99	24.8	4.57	6.58	6.86	18.1	27.1	6.31
Fluoride	mg/L	0.336 J	0.0511 J	0.193	0.078 J	< 0.066	0.0748 J	0.139	0.126	0.159	0.155
pH, Field	SU	6.49	6.05	6.19	6.26	5.57	6.49	5.70	7.36	5.89	5.63
Sulfate	mg/L	1,260	201	41.8	150	1,310	150	344	280	260	257
TDS	mg/L	2,030	374	180	353	1,780	310	625	601	519	467
APPENDIX IV											
Antimony	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Arsenic	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Barium	mg/L	0.0339	0.0163	0.0524	0.0602	0.0257	0.0345	0.0206	0.0796	0.0260	0.0350
Beryllium	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Cadmium	mg/L	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
Chromium	mg/L	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
Cobalt	mg/L	0.00149	< 0.0003	< 0.0003	0.00203	< 0.0003	< 0.0003	0.0335	0.000526 J	< 0.0003	< 0.0003
Lead	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Lithium	mg/L	0.0295	0.00514 J	0.00629 J	< 0.003	0.0436	0.00997 J	0.00651 J	0.00633 J	0.00825 J	0.00433 J
Mercury	mg/L	< 0.000067	< 0.000067	< 0.000067	< 0.000067	< 0.000067	< 0.000067	< 0.000067	< 0.000067	< 0.000067	< 0.000067
Molybdenum	mg/L	0.00123	< 0.0002	< 0.0002	0.000207 J	0.000252 J	0.000691 J	0.000827 J	0.00702	< 0.0002	< 0.0002
Combined Radium 226 + 228	pCi/L	3.82	0.737 U	2.84	1.71	1.32 U	14.7	4.48	5.43	0.997 U	2.81
Selenium	mg/L	< 0.0015	0.0945	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	0.0597	0.106
Thallium	mg/L	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006
Fluoride	mg/L	0.336 J	0.0511 J	0.193	0.078 J	< 0.066	0.0748 J	0.139	0.126	0.159	0.155
Additional Parameters											
Bicarbonate Alkalinity as CaCO3	mg/L	141	30.1	76.7	38.2	27.8	52.8	22.5	114	45.8	35.3
Carbonate Alkalinity as CaCO3	mg/L	< 0.725	< 0.725	< 0.725	< 0.725	< 0.725	< 0.725	< 0.725	< 0.725	< 0.725	< 0.725
Total Alkalinity as CaCO3	mg/L	141	30.1	76.7	38.2	27.8	52.8	22.5	114	45.8	35.3
Iron	mg/L	2.57	< 0.033	< 0.033	0.0353 J	0.119	0.578	0.741	0.399	0.138	< 0.033
Ferrous (II) Iron	mg/L	0.5	0	0	0	0	0	1.0	0	0	0
Magnesium	mg/L	57.8	23.1	10.5	22.0	114	18.5	45.0	23.1	38.4	36.1
Manganese	mg/L	1.52	< 0.001	0.404	0.14	0.00704	0.558	8.12	0.15	0.00713	0.0125
Nitrate	mg/L	< 0.165	0.213	0.0416 J	< 0.033 H	0.176 J	< 0.033	0.754 H	< 0.033	0.0492 J	0.0477 J
Potassium	mg/L	5.86	2.26	2.65	3.24	11.1	4.35	8.41	8.24	3.36	4.07
Sodium	mg/L	29.0	24.0	11.9	15.7	38.9	17.6	19.6	35.2	25.5	25.7
Sulfide	mg/L	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033

Notes:

mg/L - milligrams per liter

pCi/L - picocuries per liter

SU - Standard Units

NA - Indicates not analyzed

< indicates the substance was not detected above the method detection limit (MDL). The value displayed is the MDL.

Radium data are a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurement.

Metals were analyzed by EPA Method 6020B and Method 7470A, anions were analyzed by EPA Method 300.0, TDS was analyzed by SM 2540C, alkalinity was analyzed by SM2320B, sulfide was analyzed by EPA Method 9034, and combined radium by EPA Methods 9315/9320.

The pH value presented was recorded at the time of sample collection in the field.

J - The result is an estimated concentration. "J" qualifiers are applied by the laboratory when the concentration reported is above the method detection limit, but below the laboratory reporting limit.

H - Sample analysis performed beyond the recognized method holding time.

Table 5B Summary of Groundwater Analytical Data - Former Coal Pile Area Piezometers Georgia Power Company Plant Branch - Ash Ponds B, C, and D Putnam County, GA

	Sample Location	BRGWC-44	BRGWC-50	PZ-50D	PZ-51I	PZ-51D	PZ-58I	PZ-60I	PZ-61I	PZ-64I
	Sample Date	08/27/2024	08/29/2024	08/29/2024	08/29/2024	08/29/2024	08/29/2024	08/29/2024	08/29/2024	08/29/2024
ANALYTE	UNITS			, ,		, ,	, ,	,	,,	,
APPENDIX III								•	•	•
Boron	mg/L	1.16	0.393	0.298	0.443	0.0366	0.444	0.318	0.348	0.0142 J
Calcium	mg/L	24.9	232	197	231	127	209	322	216	333
Chloride	mg/L	5.99	15.1	11.2	9.77	17.9	13.6	27.1	15.3	33.8
Fluoride	mg/L	0.193	0.442	0.165	0.0805 J	0.326	1.36	1.3	0.111 J	< 0.165
pH, Field	SU	6.19	5.2	6.16	5.39	7.06	3.93	4.5	5.23	5.58
Sulfate	mg/L	41.8	1,390	806	1,290	361	1,200	1,980	1,460	2,300
TDS	mg/L	180	2,140	1,490	2,010	800	1,970	3,270	2,110	3,830
APPENDIX IV										
Antimony	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.005
Arsenic	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	0.00356 J	< 0.002	< 0.01	< 0.01	< 0.01
Barium	mg/L	0.0524	0.0156	0.026	0.0135	0.0471	0.0164	0.0203	0.0103	0.0119
Beryllium	mg/L	< 0.0002	0.00868	< 0.0002	< 0.0002	< 0.0002	0.0393	0.0671	0.00173	0.003
Cadmium	mg/L	< 0.0003	0.00742	< 0.0003	0.00181	< 0.0003	0.00519	0.0156	0.000413 J	0.00411 J
Chromium	mg/L	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
Cobalt	mg/L	< 0.0003	1.36	0.111	0.0246	0.000506 J	0.622	3.66	0.743	9.65
Lead	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.000884 J	< 0.0005	< 0.0005	< 0.0005
Lithium	mg/L	0.00629 J	0.0433	0.0279	0.026	0.00392 J	0.0602	0.103	0.0108	0.0134
Mercury	mg/L	< 0.000067	< 0.000067	< 0.000067	< 0.000067	< 0.000067	< 0.000067	< 0.000067	< 0.000067	< 0.000067
Molybdenum	mg/L	< 0.0002	< 0.0002	0.000466 J	0.000288 J	0.00192	< 0.0002	< 0.001	< 0.0002	< 0.001
Combined Radium 226 + 228	pCi/L	2.84	3.86	3.49	2.55	3.43	3.34	3.7	2.64	1.72
Selenium	mg/L	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	0.00576	< 0.0075	< 0.0075	0.00888 J
Thallium	mg/L	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006	< 0.0006
Fluoride	mg/L	0.193	0.442	0.165	0.0805 J	0.326	1.36	1.3	0.111 J	< 0.165
Additional Parameters										
Bicarbonate Alkalinity as CaCO3	mg/L	76.7	10.9	56.9	23.8	129	< 0.725	< 0.725	12.7	14.7
Carbonate Alkalinity as CaCO3	mg/L	< 0.725	< 0.725	< 0.725	< 0.725	< 0.725	< 0.725	< 0.725	< 0.725	< 0.725
Total Alkalinity as CaCO3	mg/L	76.7	10.9	56.9	23.8	129	< 0.725	< 0.725	12.7	14.7
Iron	mg/L	< 0.033	0.23	2.01	0.0681 J	3.37	63	2.31	0.233	1.81
Ferrous (II) Iron	mg/L	0	0	2	0	1	7	1.5	0	0.5
Magnesium	mg/L	10.5	156	76.6	146	27.4	109	202	165	222
Manganese	mg/L	0.404	79.4	9.82	52	1.41	45.5	191	111	348
Nitrate	mg/L	0.0416 J	< 0.066	0.818	< 0.066	< 0.066	1.52	< 0.165	< 0.132	< 0.165
Potassium	mg/L	2.65	10.6	11.2	11.2	9.83	8.99	13.1	6.33	12.4
Sodium	mg/L	11.9	50.7	45.8	46.8	51.4	39.1	64.4	59.8	65.5
Sulfide	mg/L	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033

Notes:

mg/L - milligrams per liter

pCi/L - picocuries per liter

SU - Standard Units

NA - Indicates not analyzed

< indicates the substance was not detected above the method detection limit (MDL). The value displayed is the MDL.

Radium data are a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurement.

Metals were analyzed by EPA Method 6020B and Method 7470A, anions were analyzed by EPA Method 300.0, TDS was analyzed by SM 2540C, alkalinity was analyzed by SM2320B, sulfide was analyzed by EPA Method 9034, and combined radium by EPA Methods 9315/9320.

The pH value presented was recorded at the time of sample collection in the field.

PZ-44 was renamed BRGWC-44 and reclassified to a detection well.

J - The result is an estimated concentration. "J" qualifiers are applied by the laboratory when the concentration reported is above the method detection limit, but below the laboratory reporting limit.

H - Sample analysis performed beyond the recognized method holding time.

Table 6 Summary of Surface Water Analytical Data Georgia Power Company Plant Branch - Ash Ponds B, C, and D Putnam County, GA

Sample	Location	LR-1 (bottom)	LR-1 (mid)	LR-1 (surface)	LS+3(mid)	LS+3(surface)	LS+3A(surface)	LR+8 (bottom)	LR+8 (mid)	LR+8 (surface)	LR+8A (surface)
-	nple Date	08/28/2024	08/28/2024	08/28/2024	08/28/2024	08/28/2024	08/28/2024	08/28/2024	08/28/2024	08/28/2024	08/28/2024
ANALYTE	UNITS										
APPENDIX III					•	•	•	•	•	•	•
Boron	mg/L	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040
Calcium	mg/L	5.6	5.5	5.6	5.5	5.2	5.5	5.4	5.2	5.4	5.4
Chloride	mg/L	3.4	3.4	3.4	3.4	3.4	3.4	3.5	3.5	3.5	3.4
Fluoride	mg/L	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
pH, Field	SU	7.11	7.16	7.07	7.24	7.20	7.32	7.03	7.01	6.99	7.17
Sulfate	mg/L	1.8	1.8	1.9	2.0	2.0	2.0	2.1	2.1	2.1	2.1
TDS	mg/L	60.0	60.0	69.0	71.0	57.0	55.0	74.0	58.0	59.0	72.0
APPENDIX IV											
Cobalt	mg/L	< 0.0050	< 0.0050	< 0.0050	NA	NA	NA	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Fluoride	mg/L	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Selenium	mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	NA	NA	NA
Additional Parameters											-
Alkalinity Total as CaCO3	mg/L	32.7	33.9	31.4	34.7	32.7	31.7	30.7	31.0	30.8	31.7
Bicarbonate Alkalinity as CaCO3	mg/L	32.7	33.9	31.4	34.7	32.7	31.7	30.7	31.0	30.8	31.7
Magnesium	mg/L	2.7	2.6	2.7	2.7	2.5	2.6	2.5	2.4	2.5	2.5
Potassium	mg/L	2.6	2.6	2.7	2.7	2.5	2.6	2.6	2.5	2.7	2.6
Sodium	mg/L	5.2	5.2	5.3	5.3	5.0	5.2	5.1	4.9	5.2	5.1

Table 6 Summary of Surface Water Analytical Data Georgia Power Company Plant Branch - Ash Ponds B, C, and D Putnam County, GA

Sample	Location	LR+9 (bottom)	LR+9 (mid)	LR+9 (surface)	LR+9A (surface)	LR+10 (bottom)	LR+10 (mid)	LR+10 (surface)
San	nple Date	08/28/2024	08/28/2024	08/28/2024	08/28/2024	08/28/2024	08/28/2024	08/28/2024
ANALYTE	UNITS							
APPENDIX III				•	•	•		•
Boron	mg/L	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040
Calcium	mg/L	5.3	5.3	5.2	5.2	5.1	5.3	5.4
Chloride	mg/L	3.5	3.6	3.5	3.5	3.6	3.6	3.6
Fluoride	mg/L	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
pH, Field	SU	6.72	6.72	6.71	6.90	9.96	6.91	6.97
Sulfate	mg/L	2.1	2.1	2.1	2.2	2.1	2.1	2.1
TDS	mg/L	90.0	70.0	60.0	67.0	63.0	68.0	56.0
APPENDIX IV								
Cobalt	mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Fluoride	mg/L	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Selenium	mg/L	NA	NA	NA	NA	< 0.0050	< 0.0050	< 0.0050
Additional Parameters								
Alkalinity Total as CaCO3	mg/L	29.3	30.5	30.3	30.6	29.7	30.0	29.2
Bicarbonate Alkalinity as CaCO3	mg/L	29.3	30.5	30.3	30.6	29.7	30.0	29.2
Magnesium	mg/L	2.4	2.4	2.4	2.4	2.3	2.4	2.4
Potassium	mg/L	2.6	2.6	2.6	2.6	2.5	2.6	2.7
Sodium	mg/L	5.0	5.1	5.0	5.0	4.6	5.1	5.2

Notes

mg/L - milligrams per liter

SU - Standard Units

NA - Indicates not analyzed

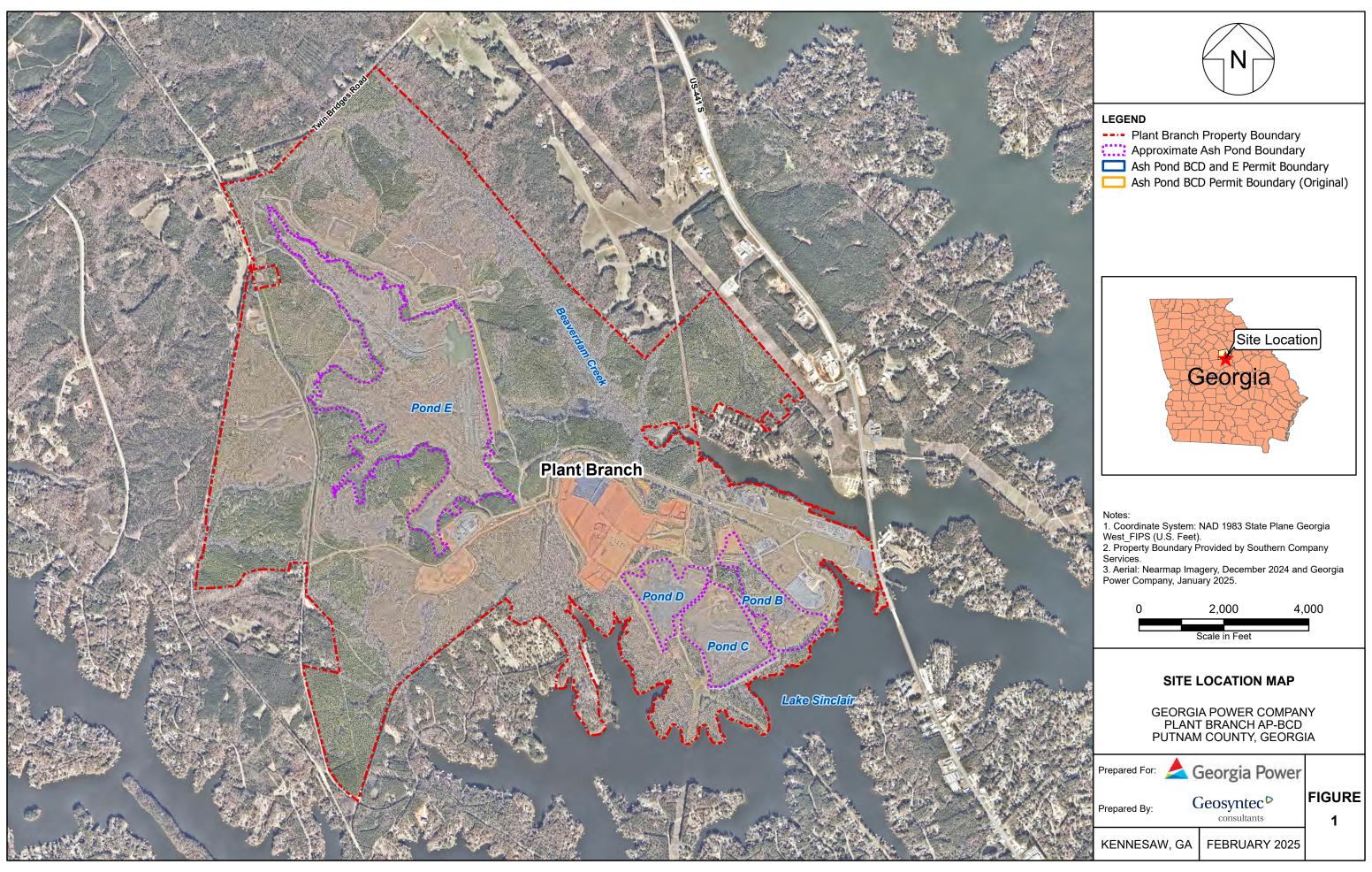
< indicates the substance was not detected above the reporting limit (RL). The value displayed is the RL.

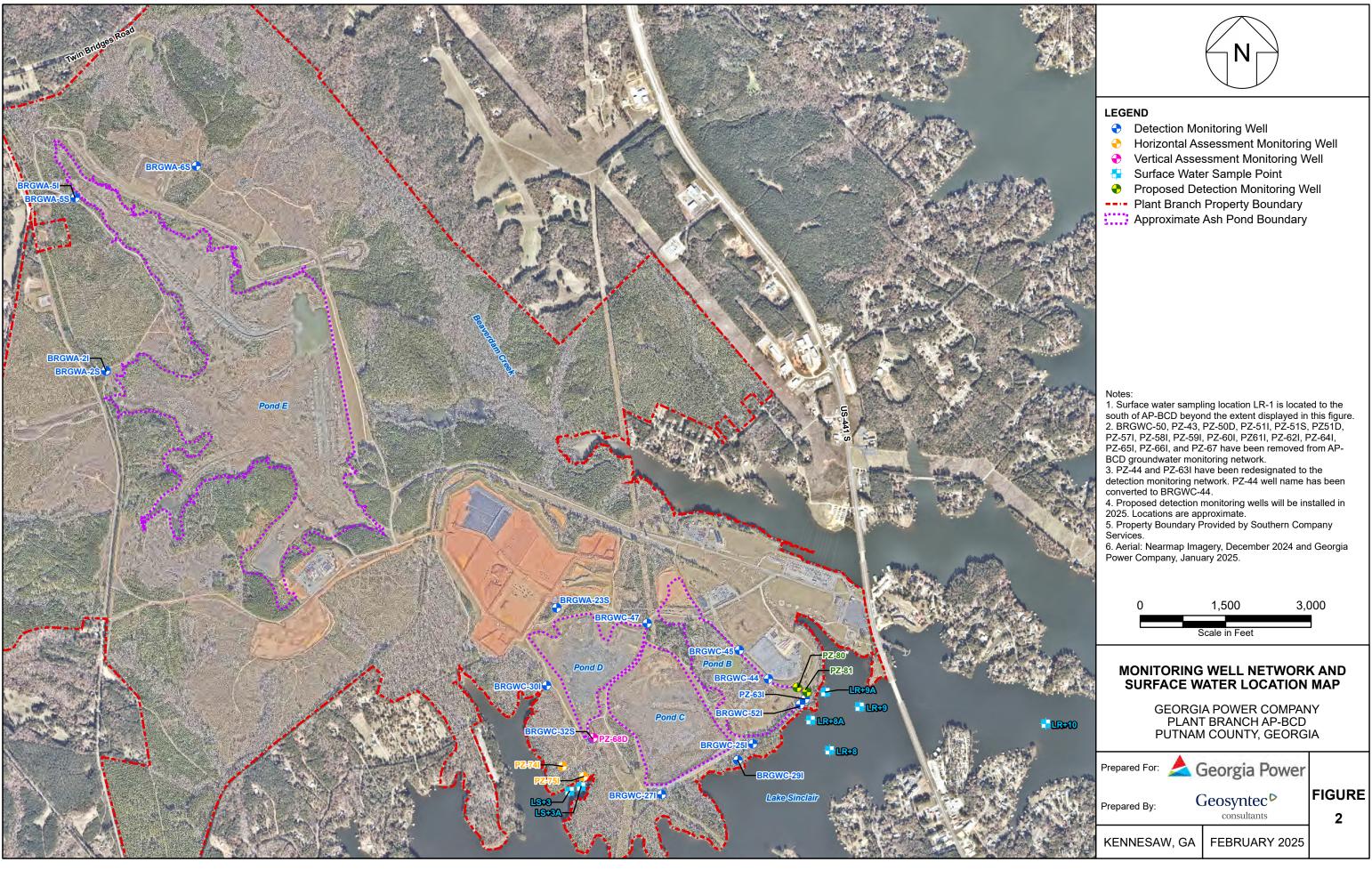
Table 7

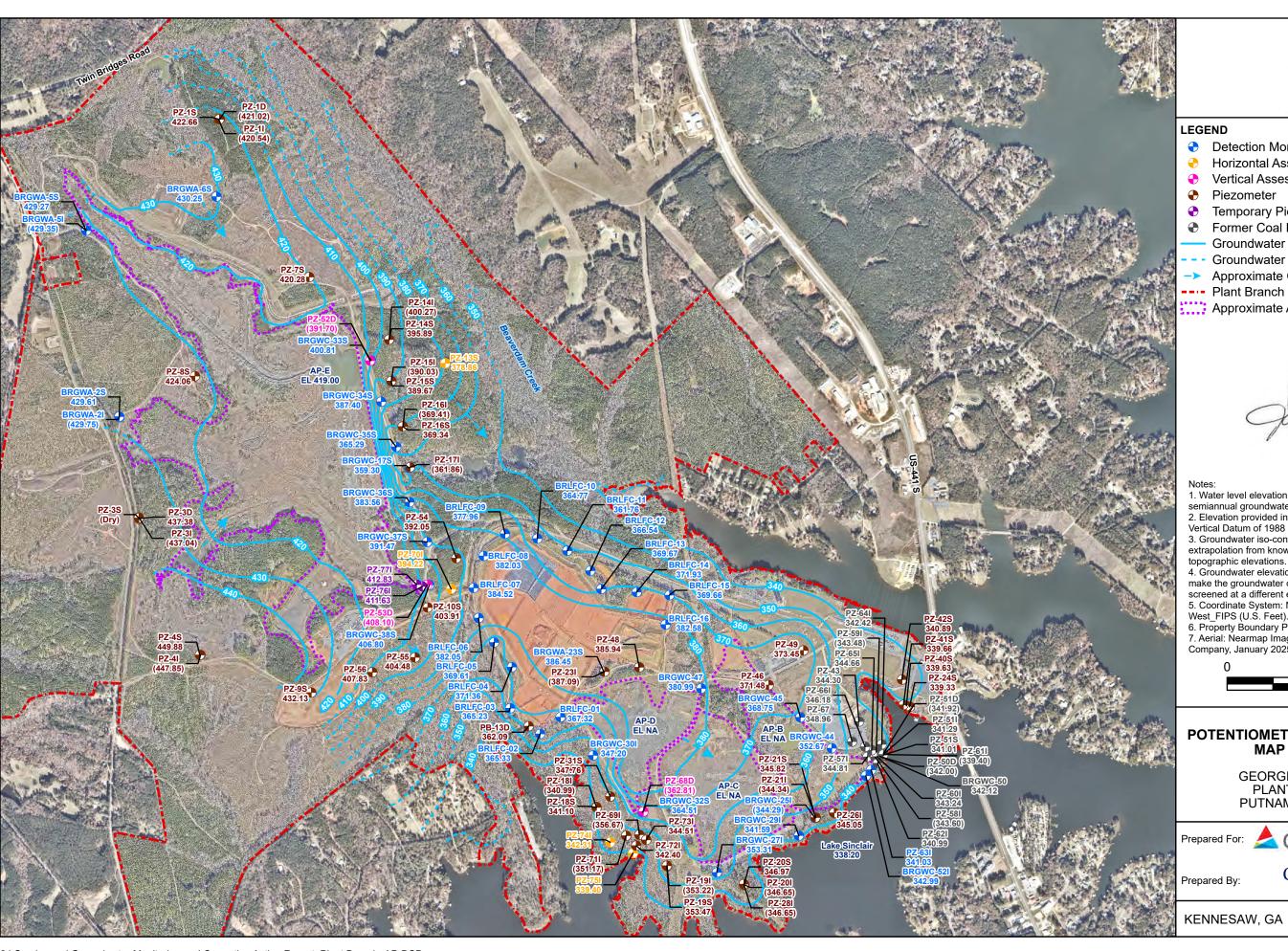
Summary of Background Concentrations and Groundwater Protection Standards Georgia Power Company Plant Branch - Ash Ponds B, C, and D Putnam County, GA

Analyte	Units	EPA MCL	Federal CCR Rules Specified GWPS	Background August 2024	GWPS August 2024
Antimony	mg/L	0.006		0.025	0.006
Arsenic	mg/L	0.01		0.005	0.01
Barium	mg/L	2		0.13	2
Beryllium	mg/L	0.004		0.0005	0.004
Cadmium	mg/L	0.005		0.001	0.005
Chromium	mg/L	0.1		0.016	0.1
Cobalt	mg/L		0.006	0.014	0.014
Combined Radium 226 + 228	pCi/L	5		2.33	5
Fluoride	mg/L	4		0.42	4
Lead	mg/L		0.015	0.002	0.015
Lithium	mg/L		0.04	0.089	0.089
Mercury	mg/L	0.002		0.00021	0.002
Molybdenum	mg/L		0.1	0.008	0.1
Selenium	mg/L	0.05		0.006	0.05
Thallium	mg/L	0.002		0.002	0.002

Notes:


GWPS- Groundwater Protection Standard


MCL - Maximum Contaminant Level


The background limits are used when determining the groundwater protection standard (GWPS) under 40 CFR § 257.95(h) and 391-3-4-.10(6)(a).

Under existing EPD rules, the GWPS is: (i) the MCL or RSL, (ii) where the MCL or RSL is not established, the background concentration, or (iii) background levels for constituents where the background level is higher than the MCL or RSL.

FIGURES

- Detection Monitoring Well
- Horizontal Assessment Monitoring Well
- Vertical Assessment Monitoring Well
- Piezometer
- Temporary Piezometer
- Former Coal Pile Area Piezometer
- **Groundwater Elevation Iso-Contour**
- Groundwater Elevation Iso-Contour (Inferred) Approximate Groundwater Flow Direction
- Plant Branch Property Boundary
- Approximate Ash Pond Boundary

- 1. Water level elevation recorded on August 26, 2024, for
- semiannual groundwater event.


 2. Elevation provided in feet (ft) referenced to the North American Vertical Datum of 1988 (NAVD 88).
- 3. Groundwater iso-contours based on linear interpolation and extrapolation from known groundwater elevation data, and topographic elevations.
- topographic elevations.

 4. Groundwater elevations in parentheses were not used to make the groundwater contours because these wells are screened at a different elevation in the formation/aquifer.

 5. Coordinate System: NAD 1983 State Plane Georgia West_FIPS (U.S. Feet).

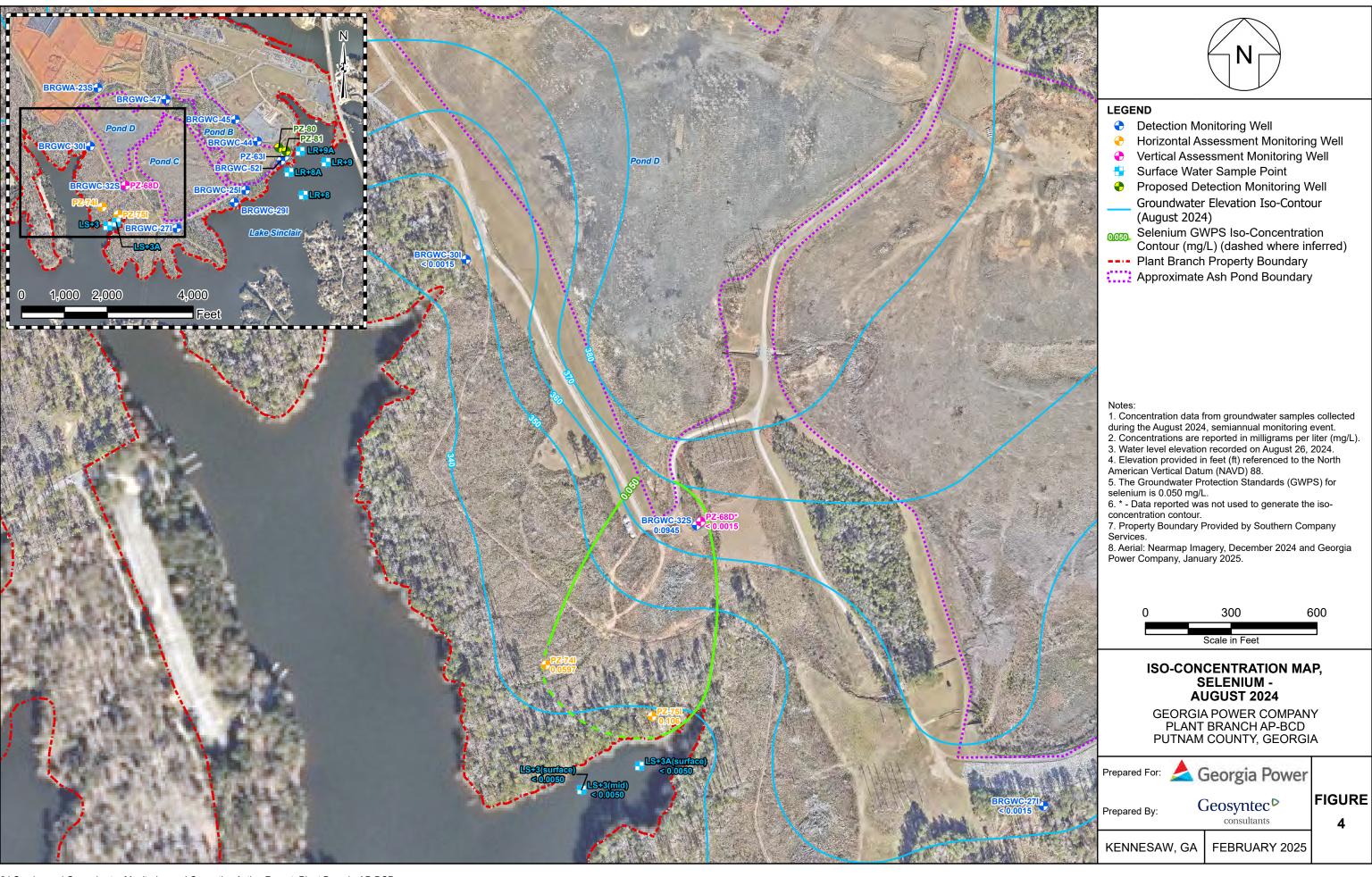
 6. Property Boundary Provided by Southern Company Services.

 7. Aerial: Nearmap Imagery, December 2024 and Georgia Power Company, January 2025.

POTENTIOMETRIC SURFACE CONTOUR MAP - AUGUST 2024

GEORGIA POWER COMPANY PLANT BRANCH AP-BCD PUTNAM COUNTY, GEORGIA

Prepared For:


Prepared By:

Geosyntec consultants

FIGURE

3

FEBRUARY 2025

APPENDIX A

Well Maintenance and Repair Documentation

Permit Number: <u>APL1171</u>, <u>APL1172</u> Field Conditions: <u>Sunny</u>, <u>Dry</u>

		Location/Identification									
Well ID:	Visible and accessible	Properly identified with correct well ID	Located in high traffic area; does the well require protection from traffic	Acceptable drainage around well (no standing water, not located in obvious drainage flow path)							
Well ID: BRGWA-2S	Vaa	Vaa	No	Vaa							
BRGWA-25 BRGWA-21	Yes Yes	Yes Yes	No No	Yes Yes							
BRGWA-21 BRGWA-5S	Yes	Yes	No	Yes							
BRGWA-55	Yes	Yes	No	Yes							
BRGWA-51 BRGWA-6S											
	Yes Yes	Yes Yes	No No	Yes Yes							
BRGWA-12S											
BRGWA-12I	Yes	Yes	No	Yes							
BRGWA-23S	Yes	Yes	No No	Yes							
BRGWC-25I	Yes	Yes	No	Yes							
BRGWC-27I	Yes	Yes	No	Yes							
BRGWC-29I	Yes	Yes	No	Yes							
BRGWC-30I	Yes	Yes	No	Yes							
BRGWC-32S	Yes	Yes	No	Yes							
BRGWC-45	Yes	Yes	No	Yes							
BRGWC-47	Yes	Yes	No	Yes							
BRGWC-50	Yes	Yes	No	Yes							
BRGWC-52I	Yes	Yes	No	Yes							
PZ-44	Yes	Yes	No	Yes							
PZ-50D	Yes	Yes	No	Yes							
PZ-51S	Yes	Yes	No	Yes							
PZ-51I	Yes	Yes	No	Yes							
PZ-51D	Yes	Yes	No	Yes							
PZ-57I	Yes	Yes	No	Yes							
PZ-58I	Yes	Yes	No	Yes							
PZ-59I	Yes	Yes	No	Yes							
PZ-60I	Yes	Yes	No	Yes							
PZ-61I	Yes	Yes	No	Yes							
PZ-62I	Yes	Yes	No	Yes							
PZ-63I	Yes	Yes	No	Yes							
PZ-64I	Yes	Yes	No	Yes							
PZ-65I	Yes	Yes	No	Yes							
PZ-66I	Yes	Yes	No	Yes							
PZ-68D	Yes	Yes	No	Yes							
PZ-74I	Yes	Yes	No	Yes							
PZ-75I	Yes	Yes	No	Yes							
PZ-79I	Yes	Yes	No	Yes							

Permit Number: <u>APL1171</u>, <u>APL1172</u> Field Conditions: <u>Sunny</u>, <u>Dry</u>

			Protective Casing		
Well ID:	Free from apparent damage and able to be secured	No degradation or deterioration	Functioning weep hole	Annular space clear of debris and water, or filled with pea gravel/sand	Locked and is the lock in good condition
BRGWA-2S	Yes	Yes	Yes	Yes	Yes
BRGWA-2I	Yes	Yes	Yes	Yes	Yes
BRGWA-5S	Yes	Yes	Yes	Yes	Yes
BRGWA-5I	Yes	Yes	Yes	Yes	Yes
BRGWA-6S	Yes	Yes	Yes	Yes	Yes
BRGWA-12S	Yes	Yes	Yes	Yes	Yes
BRGWA-12I	Yes	Yes	Yes	Yes	Yes
BRGWA-121	Yes	Yes	Yes	Yes	Yes
BRGWC-25I	Yes	Yes	Yes	Yes	Yes
BRGWC-27I	Yes	Yes	Yes	Yes	Yes
BRGWC-29I	Yes	Yes	Yes	Yes	Yes
BRGWC-30I	Yes	Yes	Yes	Yes	Yes
BRGWC-32S		Yes	Yes	Yes	Yes
BRGWC-45	Yes	Yes	Yes	Yes	Yes
BRGWC-47	Yes	Yes	Yes	Yes	Yes
BRGWC-50	Yes	Yes	Yes	Yes	Yes
BRGWC-52I	Yes	Yes	Yes	Yes	Yes
PZ-44	Yes	Yes	Yes	Yes	Yes
PZ-50D	Yes	Yes	Yes	Yes	Yes
PZ-50D PZ-51S	Yes	Yes	Yes	Yes	Yes
PZ-515 PZ-51I	Yes	Yes	Yes	Yes	Yes
PZ-51D	Yes	Yes	Yes	Yes	Yes
PZ-57I	Yes	Yes	Yes	Yes	Yes
PZ-58I	Yes	Yes	Yes	Yes	Yes
PZ-59I	Yes	Yes	Yes	Yes	Yes
PZ-60I	Yes	Yes	Yes	Yes	Yes
PZ-61I	Yes	Yes	Yes	Yes	Yes
PZ-62I	Yes	Yes	Yes	Yes	Yes
PZ-63I	Yes	Yes	Yes	Yes	Yes
PZ-631 PZ-641	Yes	Yes	Yes	Yes	Yes
PZ-641 PZ-651	Yes	Yes	Yes		Yes
PZ-661				Yes	Yes
PZ-68D	Yes	Yes	Yes	Yes	
	Yes	Yes	Yes	Yes	Yes
PZ-74I	Yes	Yes	Yes	Yes	Yes
PZ-75I	Yes	Yes	Yes	Yes	Yes
PZ-79I	Yes	Yes	Yes	Yes	Yes

Permit Number: <u>APL1171</u>, <u>APL1172</u> Field Conditions: <u>Sunny</u>, <u>Dry</u>

		Surface Pad		Internal Casing				
Well ID:	Good condition (not cracked/ broken)	Sloped away from the protective casing	In complete contact with the ground surface and stable	Cap prevents entry of foreign material into the well	Free of kinks/bends, or any obstructions from foreign objects (such as bailers)	Properly vented for equilibration of air pressure		
BRGWA-2S	Yes	Yes	Yes	Yes	Yes	Yes		
BRGWA-2I	Yes	Yes	Yes	Yes	Yes	Yes		
BRGWA-5S	Yes	Yes	Yes	Yes	Yes	Yes		
BRGWA-5I	Yes	Yes	Yes	Yes	Yes	Yes		
BRGWA-6S	Yes	Yes	Yes	Yes	Yes	Yes		
BRGWA-12S	Yes	Yes	Yes	Yes	Yes	Yes		
BRGWA-12I	Yes	Yes	Yes	Yes	Yes	Yes		
BRGWA-121	Yes	Yes	Yes	Yes	Yes	Yes		
BRGWC-25I	Yes	Yes	Yes	Yes	Yes	Yes		
BRGWC-27I	Yes	Yes	Yes	Yes	Yes	Yes		
BRGWC-29I	Yes	Yes	Yes	Yes	Yes	Yes		
BRGWC-30I	Yes	Yes	Yes	Yes	Yes	Yes		
BRGWC-32S	Yes	Yes	Yes	Yes	Yes	Yes		
BRGWC-45	Yes	Yes	Yes	Yes	Yes	Yes		
BRGWC-47	Yes	Yes	Yes	Yes	Yes	Yes		
BRGWC-47 BRGWC-50	Yes	Yes	Yes	Yes	Yes	Yes		
BRGWC-52I	Yes	Yes		Yes	Yes	Yes		
PZ-44	Yes	Yes	Yes Yes	Yes	Yes			
						Yes		
PZ-50D	Yes	Yes	Yes	Yes	Yes	Yes		
PZ-51S	Yes	Yes	Yes	Yes	Yes	Yes		
PZ-51I	Yes	Yes	Yes	Yes	Yes	Yes		
PZ-51D	Yes	Yes	Yes	Yes	Yes	Yes		
PZ-57I	Yes	Yes	Yes	Yes	Yes	Yes		
PZ-58I	Yes	Yes	Yes	Yes	Yes	Yes		
PZ-59I	Yes	Yes	Yes	Yes	Yes	Yes		
PZ-60I	Yes	Yes	Yes	Yes	Yes	Yes		
PZ-61I	Yes	Yes	Yes	Yes	Yes	Yes		
PZ-62I	Yes	Yes	Yes	Yes	Yes	Yes		
PZ-63I	Yes	Yes	Yes	Yes	Yes	Yes		
PZ-64I	Yes	Yes	Yes	Yes	Yes	Yes		
PZ-65I	Yes	Yes	Yes	Yes	Yes	Yes		
PZ-66I	Yes	Yes	Yes	Yes	Yes	Yes		
PZ-68D	Yes	Yes	Yes	Yes	Yes	Yes		
PZ-74I	Yes	Yes	Yes	Yes	Yes	Yes		
PZ-75I	Yes	Yes	Yes	Yes	Yes	Yes		
PZ-79I	Yes	Yes	Yes	Yes	Yes	Yes		

Permit Number: <u>APL1171</u>, <u>APL1172</u> Field Conditions: <u>Sunny</u>, <u>Dry</u>

	Corrective actions as needed, by date:
Well ID:	
BRGWA-2S	
BRGWA-2I	
BRGWA-5S	
BRGWA-5I	
BRGWA-6S	
BRGWA-12S	
BRGWA-12I	
BRGWA-23S	
BRGWC-25I	
BRGWC-27I	
BRGWC-29I	
BRGWC-30I	
BRGWC-32S	
BRGWC-45	
BRGWC-47	
BRGWC-50	
BRGWC-52I	
PZ-44	
PZ-50D	
PZ-51S	
PZ-51I	
PZ-51D	
PZ-57I	
PZ-58I	
PZ-59I	
PZ-60I	
PZ-61I	
PZ-62I	
PZ-63I	
PZ-64I	
PZ-65I	
PZ-66I	
PZ-68D	
PZ-74I	
PZ-75I	
PZ-79I	

	Location/Identification						
Well ID:	Visible and accessible	Properly identified with correct well ID	Located in high traffic area; does the well require protection from traffic	Acceptable drainage around well (no standing water, not located in obvious drainage flow path)			
BRGWA-2S	Yes	Yes	No	Yes			
BRGWA-2I	Yes	Yes	No	Yes			
BRGWA-5S	Yes	Yes	No	Yes			
BRGWA-5I	Yes	Yes	No	Yes			
BRGWA-6S	Yes	Yes	No	Yes			
BRGWC-17S	Yes	Yes	No	Yes			
BRGWC-33S	Yes	Yes	No	Yes			
BRGWC-34S	Yes	Yes	No	Yes			
BRGWC-35S	Yes	Yes	No	Yes			
BRGWC-36S	Yes	Yes	No	Yes			
BRGWC-37S	Yes	Yes	No	Yes			
BRGWC-38S	Yes	Yes	No	Yes			
PZ-13S	Yes	Yes	No	Yes			
PZ-52D	Yes	Yes	No	Yes			
PZ-53D	Yes	Yes	No	Yes			
PZ-70I	Yes	Yes	No	Yes			
ı							

			Protective Casing	J	
	Free from apparent damage and able to be secured	No degradation or deterioration	Functioning weep hole	Annular space clear of debris and water, or filled with pea gravel/sand	Locked and is the lock in good condition
Well ID:					
BRGWA-2S	Yes	Yes	Yes	Yes	Yes
BRGWA-2I	Yes	Yes	Yes	Yes	Yes
BRGWA-5S	Yes	Yes	Yes	Yes	Yes
BRGWA-5I	Yes	Yes	Yes	Yes	Yes
BRGWA-6S	Yes	Yes	Yes	Yes	Yes
BRGWC-17S		Yes	Yes	Yes	Yes
BRGWC-33S		Yes	Yes	Yes	Yes
BRGWC-34S		Yes	Yes	Yes	Yes
BRGWC-35S		Yes	Yes	Yes	Yes
BRGWC-36S		Yes	Yes	Yes	Yes
BRGWC-37S		Yes	Yes	Yes	Yes
BRGWC-38S		Yes	Yes	Yes	Yes
PZ-13S	Yes	Yes	Yes	Yes	Yes
PZ-52D	Yes	Yes	Yes	Yes	Yes
PZ-53D	Yes	Yes	Yes	Yes	Yes
PZ-70I	Yes	Yes	Yes	Yes	Yes

	Ī	Curfoss Dad		Internal Casing		
		Surface Pad		Internal Casing		
Well ID:	Good condition (not cracked/ broken)	Sloped away from the protective casing	In complete contact with the ground surface and stable	Cap prevents entry of foreign material into the well	Free of kinks/bends, or any obstructions from foreign objects (such as bailers)	Properly vented for equilibration of air pressure
BRGWA-2S	Yes	Yes	Yes	Yes	Yes	Yes
BRGWA-2I	Yes	Yes	Yes	Yes	Yes	Yes
BRGWA-5S	Yes	Yes	Yes	Yes	Yes	Yes
BRGWA-5I	Yes	Yes	Yes	Yes	Yes	Yes
BRGWA-6S	Yes	Yes	Yes	Yes	Yes	Yes
BRGWC-17S	Yes	Yes	Yes	Yes	Yes	Yes
BRGWC-33S	Yes	Yes	Yes	Yes	Yes	Yes
BRGWC-34S	Yes	Yes	Yes	Yes	Yes	Yes
BRGWC-35S	Yes	Yes	Yes	Yes	Yes	Yes
BRGWC-36S	Yes	Yes	Yes	Yes	Yes	Yes
BRGWC-37S	Yes	Yes	Yes	Yes	Yes	Yes
BRGWC-38S	Yes	Yes	Yes	Yes	Yes	Yes
PZ-13S	Yes	Yes	Yes	Yes	Yes	Yes
PZ-52D	Yes	Yes	Yes	Yes	Yes	Yes
PZ-53D	Yes	Yes	Yes	Yes	Yes	Yes
PZ-70I	Yes	Yes	Yes	Yes	Yes	Yes

	Corrective actions as needed, by date:
Well ID:	
BRGWA-2S	
BRGWA-2I	
BRGWA-5S	
BRGWA-5I	
BRGWA-6S	
BRGWC-17S	
BRGWC-33S	
BRGWC-34S	
BRGWC-35S	
BRGWC-36S	
BRGWC-37S	
BRGWC-38S	
PZ-13S	
PZ-52D	
PZ-53D	
PZ-70I	

Permit Number: <u>APL1171</u>, <u>APL1172</u> Field Conditions: <u>Sunny</u>, <u>Dry</u>

		Location	/Identification	
Well ID:	Visible and accessible	Properly identified with correct well ID	Located in high traffic area; does the well require protection from traffic	Acceptable drainage around well (no standing water, not located in obvious drainage flow path)
PZ-1S	Yes	Yes	No	Yes
PZ-13 PZ-1I	Yes	Yes	No	Yes
PZ-11	Yes	Yes	No	Yes
PZ-3S	Yes	Yes	No	Yes
PZ-33 PZ-31	Yes	Yes	No	Yes
PZ-3D	Yes	Yes	No	Yes
PZ-3D PZ-4S	Yes	Yes	No	Yes
PZ-43 PZ-41	Yes	Yes	No	Yes
PZ-41 PZ-7S	Yes	Yes	No	Yes
PZ-8S	Yes	Yes	No	Yes
PZ-9S	Yes	Yes	No	Yes
PZ-93 PZ-10S	Yes	Yes	No	Yes
PZ-11S	Yes	Yes	No	Yes
PZ-112D	Yes	Yes	No	Yes
PZ-14S	Yes	Yes	No	Yes
PZ-140 PZ-14I	Yes	Yes	No	Yes
PZ-1 5 1	Yes	Yes	No	Yes
PZ-156	Yes	Yes	No	Yes
PZ-16S	Yes	Yes	No	Yes
PZ-165 PZ-16I	Yes	Yes	No	Yes
PZ-101 PZ-17I	Yes	Yes	No	Yes
PZ-171	Yes	Yes	No	Yes
PZ-18I	Yes	Yes	No	Yes
PZ-101 PZ-19S	Yes	Yes	No	Yes
PZ-193 PZ-19I	Yes	Yes	No	Yes
PZ-191 PZ-20S	Yes	Yes	No	Yes
PZ-203 PZ-20I	Yes	Yes	No	Yes
PZ-201	Yes	Yes	No	Yes
PZ-211	Yes	Yes	No	Yes
PZ-23I	Yes	Yes	No	Yes
PZ-24S	Yes	Yes	No	Yes
PZ-26I	Yes	Yes	No	Yes
PZ-28I	Yes	Yes	No	Yes
PZ-31S	Yes	Yes	No	Yes
PZ-319	Yes	Yes	No	Yes
PZ-40S	Yes	Yes	No	Yes
PZ-40S PZ-41S	Yes	Yes	No	Yes

Permit Number: <u>APL1171</u>, <u>APL1172</u> Field Conditions: <u>Sunny</u>, <u>Dry</u>

	Protective Casing							
M. II ID.	Free from apparent damage and able to be secured	No degradation or deterioration	Functioning weep hole	Annular space clear of debris and water, or filled with pea gravel/sand	Locked and is the lock in good condition			
Well ID:	V	V .	V.	V.	V.			
PZ-1S	Yes	Yes	Yes	Yes	Yes			
PZ-1I	Yes	Yes	Yes	Yes	Yes			
PZ-1D	Yes	Yes	Yes	Yes	Yes			
PZ-3S	Yes	Yes	Yes	Yes	Yes			
PZ-3I	Yes	Yes	Yes	Yes	Yes			
PZ-3D	Yes	Yes	Yes	Yes	Yes			
PZ-4S	Yes	Yes	Yes	Yes	Yes			
PZ-4I	Yes	Yes	Yes	Yes	Yes			
PZ-7S	Yes	Yes	Yes	Yes	Yes			
PZ-8S	Yes	Yes	Yes	Yes	Yes			
PZ-9S	Yes	Yes	Yes	Yes	Yes			
PZ-10S	Yes	Yes	Yes	Yes	Yes			
PZ-11S	Yes	Yes	Yes	Yes	Yes			
PZ-12D	Yes	Yes	Yes	Yes	Yes			
PZ-14S	Yes	Yes	Yes	Yes	Yes			
PZ-14I	Yes	Yes	Yes	Yes	Yes			
PZ-15S	Yes	Yes	Yes	Yes	Yes			
PZ-15I	Yes	Yes	Yes	Yes	Yes			
PZ-16S	Yes	Yes	Yes	Yes	Yes			
PZ-16I	Yes	Yes	Yes	Yes	Yes			
PZ-17I	Yes	Yes	Yes	Yes	Yes			
PZ-18S	Yes	Yes	Yes	Yes	Yes			
PZ-18I	Yes	Yes	Yes	Yes	Yes			
PZ-19S	Yes	Yes	Yes	Yes	Yes			
PZ-19I	Yes	Yes	Yes	Yes	Yes			
PZ-20S	Yes	Yes	Yes	Yes	Yes			
PZ-20I	Yes	Yes	Yes	Yes	Yes			
PZ-21S	Yes	Yes	Yes	Yes	Yes			
PZ-21I	Yes	Yes	Yes	Yes	Yes			
PZ-23I	Yes	Yes	Yes	Yes	Yes			
PZ-24S	Yes	Yes	Yes	Yes	Yes			
PZ-26I	Yes	Yes	Yes	Yes	Yes			
PZ-28I	Yes	Yes	Yes	Yes	Yes			
PZ-31S	Yes	Yes	Yes	Yes	Yes			
PZ-39	Yes	Yes	Yes	Yes	Yes			
PZ-40S	Yes	Yes	Yes	Yes	Yes			
PZ-41S	Yes	Yes	Yes	Yes	Yes			

		Surface Pad		Internal Casing			
Well ID:	Good condition (not cracked/ broken)	Sloped away from the protective casing	In complete contact with the ground surface and stable	Cap prevents entry of foreign material into the well	Free of kinks/bends, or any obstructions from foreign objects (such as bailers)	Properly vented for equilibration of air pressure	
PZ-1S	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-1I	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-1D	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-3S	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-3I	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-3D	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-4S	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-4I	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-7S	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-8S	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-9S	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-10S	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-11S	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-12D	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-14S	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-14I	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-15S	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-15I	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-16S	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-16I	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-17I	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-18S	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-18I	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-19S	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-19I	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-20S	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-20I	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-21S	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-21I	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-23I	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-24S	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-26I	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-28I	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-31S	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-39	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-40S	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-41S	Yes	Yes	Yes	Yes	Yes	Yes	

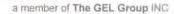
Permit Number: <u>APL1171</u>, <u>APL1172</u> Field Conditions: <u>Sunny</u>, <u>Dry</u>

	Corrective actions as needed, by date:
Well ID:	
PZ-1S	
PZ-1I	
PZ-1D	
PZ-3S	
PZ-3I	
PZ-3D	
PZ-4S	
PZ-4I	
PZ-7S	
PZ-8S	
PZ-9S	
PZ-10S	
PZ-11S	
PZ-12D	
PZ-14S	
PZ-14I	
PZ-15S	
PZ-15I	
PZ-16S	
PZ-16I	
PZ-17I	
PZ-18S	
PZ-18I	
PZ-19S	
PZ-19I	
PZ-20S	
PZ-20I	
PZ-21S	
PZ-21I	
PZ-23I	
PZ-24S	
PZ-26I	
PZ-28I	
PZ-31S	
PZ-39 PZ-40S	
PZ-40S PZ-41S	
FZ-413	

Permit Number: <u>APL1171</u>, <u>APL1172</u> Field Conditions: <u>Sunny</u>, <u>Dry</u>

		Location/Identification							
Well ID:	Visible and accessible	Properly identified with correct well ID	Located in high traffic area; does the well require protection from traffic	Acceptable drainage around well (no standing water, not located in obvious drainage flow path)					
PZ-42S	Yes	Yes	No	Yes					
⁻ Z-423 ⁻ Z-43	Yes	Yes	No	Yes					
⁻ Z-43 ⁻ Z-46	Yes	Yes	No	Yes					
⁻ Z-40 ⁻ Z-48	Yes	Yes	No	Yes					
2-40 PZ-49	Yes	Yes	No	Yes					
⁻ Z-49 ⁻ Z-54	Yes	Yes	No	Yes					
⁻ Z-54 ⁻ Z-55	Yes	Yes	No	Yes					
² Z-55 PZ-56	Yes	Yes	No	Yes					
- <u>Z-30</u> 	Yes	Yes	No	Yes					
2-67 2-691	Yes	Yes	No	Yes					
2-091 PZ-71I	Yes	Yes	No	Yes					
PZ-72I	Yes	Yes	No	Yes					
PZ-731	Yes	Yes	No	Yes					
PZ-76I	Yes	Yes	No	Yes					
PZ-771	Yes	Yes	No	Yes					

	Protective Casing						
Well ID.	Free from apparent damage and able to be secured	No degradation or deterioration	Functioning weep hole	Annular space clear of	Locked and is the lock in good condition		
Well ID: PZ-42S	V	V	V	V	V		
	Yes	Yes	Yes	Yes	Yes		
PZ-43	NA Vaa	NA Yaa	NA Vaa	NA Vaa	NA Van		
PZ-46 PZ-48	Yes	Yes	Yes	Yes	Yes		
	Yes	Yes	Yes	Yes	Yes		
PZ-49	Yes	Yes	Yes	Yes	Yes		
PZ-54	Yes	Yes	Yes	Yes	Yes		
PZ-55	Yes	Yes	Yes	Yes	Yes		
PZ-56	Yes	Yes	Yes	Yes	Yes		
PZ-67	Yes	Yes	Yes	Yes	Yes		
PZ-69I	Yes	Yes	Yes	Yes	Yes		
PZ-71I	Yes	Yes	Yes	Yes	Yes		
PZ-72I	Yes	Yes	Yes	Yes	Yes		
PZ-73I	Yes	Yes	Yes	Yes	Yes		
PZ-76I PZ-77I	NA NA	NA NA	NA NA	NA NA	NA NA		


		Surface Pad			Internal Casing		
Well ID:	Good condition (not cracked/ broken)	Sloped away from the protective casing	In complete contact with the ground surface and stable	Cap prevents entry of foreign material into the well	Free of kinks/bends, or any obstructions from foreign objects (such as bailers)	Properly vented for equilibration of air pressure	
PZ-42S	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-43	NA NA	NA	NA NA	Yes	Yes	Yes	
PZ-46	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-48	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-49	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-54	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-55	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-56	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-67	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-69I	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-71I	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-711	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-73I	Yes	Yes	Yes	Yes	Yes	Yes	
PZ-731 PZ-761	NA Yes	NA	NA	Yes	Yes	Yes	
PZ-701 PZ-771	NA NA	NA NA	NA NA	Yes	Yes	Yes	

Permit Number: <u>APL1171</u>, <u>APL1172</u> Field Conditions: <u>Sunny</u>, <u>Dry</u>

	Corrective actions as needed, by date:
Well ID:	
PZ-42S	
PZ-43	PVC stick up well
PZ-46	I VO Stick up Well
PZ-48	
PZ-49	
PZ-54	
PZ-55	
PZ-56	
PZ-67	
PZ-69I	
PZ-71I	
PZ-72I	
PZ-73I	
PZ-76I	PVC stick up well
PZ-77I	PVC stick up well

APPENDIX B

Laboratory Analytical Results and Field Sampling Forms

September 12, 2024

Joju Abraham Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

Re: Branch CCR Groundwater Compliance

Work Order: 683169

Dear Joju Abraham:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on August 28, 2024. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt. The laboratory received the following sample(s):

<u>Laboratory ID</u>	Client ID	<u>Matrix</u>	Date Collected	Date Received
683169001	BRA-BRGWC-38S	Ground Water	08/27/24 12:07	08/28/24 08:27
683169002	BRA-PZ-53D	Ground Water	08/27/24 14:00	08/28/24 08:27
683169003	BRA-PZ-13S	Ground Water	08/27/24 13:51	08/28/24 08:27
683169004	BRA-BRGWC-37S	Ground Water	08/27/24 16:41	08/28/24 08:27
683169005	BRA-APE-FB-07	Water	08/27/24 15:40	08/28/24 08:27
683169006	BRA-APE-FD-04	Ground Water	08/27/24 12:00	08/28/24 08:27

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Prep Methods and Prep Dates

Method	Run Date ID
SW846 3005A	31-AUG-2024
SW846 7470A Prep	29-AUG-2024

Analysis Methods and Analysis Dates

Method	Run Date ID	
EPA 300.0	28-AUG-2024	

EPA 300.0	29-AUG-2024
SM 2320B	28-AUG-2024
SM 2540C	03-SEP-2024
SM 4500-S (2-) D	29-AUG-2024
SW846 3005A/6020B	07-SEP-2024
SW846 3005A/6020B	08-SEP-2024
SW846 7470A	30-AUG-2024

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4443.

Sincerely,

Hannah Bowden for

Alaina Pinnick Project Manager

Purchase Order: GPC82177-0006

Enclosures

Page 3 of 36 SDG: 683169

GEL LABORATORIES LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

GPCC001 Georgia Power Company Client SDG: 683169 GEL Work Order: 683169

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- B Either presence of analyte detected in the associated blank, or MDL/IDL < sample value < PQL
- J Value is estimated

N/A RPD or %Recovery limits do not apply.

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Alaina Pinnick.

Reviewed by

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

GPCC00101

GPCC001

Report Date: September 12, 2024

Company: Georgia Power Company, Southern Company
Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWC-38S

Sample ID: 683169001

Matrix: WG

Collect Date: 27-AUG-24 12:07
Receive Date: 28-AUG-24
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liqu	uid "As Recei	ved"									
Chloride		6.53	0.0670	0.200	mg/L		1	CH6	08/28/24	1854 2664372	2 1
Fluoride		0.366	0.0330	0.100	mg/L		1				
Sulfate		233	2.66	8.00	mg/L		20	CH6	08/29/24	0816 2664372	2 2
Nitrate-N	J	0.145	0.0660	0.200	mg/L		2	CH6	08/29/24	0745 2664372	2 3
Mercury Analysis-CVA	A										
7470 Cold Vapor Merci	ury, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	08/30/24	1307 2664552	2 4
Metals Analysis-ICP-M	IS										
SW846 3005A/6020B "		"									
Boron	110 1100011.00	1.31	0.0520	0.150	mg/L	1.00	10	BAJ	09/08/24	1148 2664353	3 5
Antimony	U	ND	0.00100	0.00300	mg/L	1.00		BAJ	09/07/24	1544 2664353	
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00					
Barium		0.0164	0.000670	0.00400	mg/L	1.00	1				
Beryllium		0.00644	0.000200	0.000500	mg/L	1.00	1				
Cadmium	J	0.000341	0.000300	0.00100	mg/L	1.00	1				
Chromium	J	0.00328	0.00300	0.0100	mg/L	1.00	1				
Cobalt		0.119	0.000300	0.00100	mg/L	1.00	1				
Iron	U	ND	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium		0.0200	0.00300	0.0100	mg/L	1.00	1				
Magnesium		27.9	0.0100	0.0300	mg/L	1.00	1				
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1				
Potassium		5.23	0.0800	0.300	mg/L	1.00					
Selenium		0.0180	0.00150	0.00500	mg/L	1.00					
Sodium		32.8	0.0800	0.250	mg/L	1.00					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00					
Manganese		1.26	0.0100	0.0500	mg/L	1.00		BAJ	09/07/24	1600 2664353	
Calcium		26.7	0.0800	0.200	mg/L	1.00	1	BAJ	09/08/24	1138 2664353	8
Solids Analysis											
SM2540C Dissolved So	olids "As Rec	eived"									
Total Dissolved Solids		370	2.38	10.0	mg/L			KLP1	09/03/24	1558 2666213	9
Spectrometric Analysis					-						
SM 4500-S(2-) D Sulfic		ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	08/29/24	1100 2664625	5 10
					J						

Page 5 of 36 SDG: 683169

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 12, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWC-38S Project: GPCC00101
Sample ID: 683169001 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF An	alyst Date	Time Batch	Method
Titration and Ion Analys	sis									
SM 2320B Total Alkali	nity "As Rec	eived"								
Alkalinity, Total as CaCO3	U	ND	0.725	2.00	mg/L		JW	2 08/28/24	1633 2664341	11
Bicarbonate alkalinity (CaCO	3) U	ND	0.725	2.00	mg/L					
Carbonate alkalinity (CaCO3)	U	ND	0.725	2.00	mg/L					
The following Prep Met	thods were po	erformed:								
Method	Description	n		Analyst	Date		Time	Prep Batch		
SW846 3005A	ICP-MS 3005	SA PREP		BB2	08/31/24		0950	2664350		
SW846 7470A Prep	EPA 7470A	Mercury Prep Liquid		JM13	08/29/24		1110	2664551		

The following Analytical Methods were performed:

Method	Description	Analyst Comments
1	EPA 300.0	•
2	EPA 300.0	
3	EPA 300.0	
4	SW846 7470A	
5	SW846 3005A/6020B	
6	SW846 3005A/6020B	
7	SW846 3005A/6020B	
8	SW846 3005A/6020B	
9	SM 2540C	
10	SM 4500-S (2-) D	
11	SM 2320B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 36 SDG: 683169

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

GPCC00101

GPCC001

Report Date: September 12, 2024

Company: Georgia Power Company, Southern Company
Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-53D Sample ID: 683169002

Matrix: WG

Collect Date: 27-AUG-24 14:00
Receive Date: 28-AUG-24
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liqu	id "As Recei	ved"									
Chloride		4.37	0.0670	0.200	mg/L		1	CH6	08/28/24	1924 2664372	1
Fluoride		0.103	0.0330	0.100	mg/L		1				
Nitrate-N	U	ND	0.0330	0.100	mg/L		1				
Sulfate		294	3.33	10.0	mg/L		25	CH6	08/29/24	0847 2664372	2
Mercury Analysis-CVA	A										
7470 Cold Vapor Mercu	ıry, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	08/30/24	1318 2664552	3
Metals Analysis-ICP-MS	S										
SW846 3005A/6020B "A	As Received	"									
Boron		0.989	0.0520	0.150	mg/L	1.00	10	BAJ	09/08/24	1129 2664353	4
Calcium		80.0	0.800	2.00	mg/L	1.00	10				
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	09/07/24	1617 2664353	5
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium		0.0535	0.000670	0.00400	mg/L	1.00	1				
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1				
Iron		0.218	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium		0.0190	0.00300	0.0100	mg/L	1.00	1				
Magnesium		20.2	0.0100	0.0300	mg/L	1.00	1				
Manganese		0.451	0.00100	0.00500	mg/L	1.00					
Molybdenum		0.00191	0.000200	0.00100	mg/L	1.00					
Potassium		6.42	0.0800	0.300	mg/L	1.00					
Selenium	U	ND	0.00150	0.00500	mg/L	1.00					
Sodium		42.1	0.0800	0.250	mg/L	1.00					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Solids Analysis											
SM2540C Dissolved So	lids "As Rec	eived"									
Total Dissolved Solids		521	2.38	10.0	mg/L			KLP1	09/03/24	1558 2666213	6
Spectrometric Analysis											
SM 4500-S(2-) D Sulfid	le "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	08/29/24	1100 2664625	7

Page 7 of 36 SDG: 683169

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 12, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-53D Project: GPCC00101
Sample ID: 683169002 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Titration and Ion An	alysis									
SM 2320B Total All	kalinity "As Rec	eived"								
Alkalinity, Total as CaCC	03	50.3	0.725	2.00	mg/L		JW2	08/28/24	1633 2664341	8
Bicarbonate alkalinity (Ca	aCO3)	50.3	0.725	2.00	mg/L					
Carbonate alkalinity (CaC	CO3) U	ND	0.725	2.00	mg/L					
The following Prep l	Methods were pe	erformed:								
Method	Description	n		Analyst	Date	Т	ime P	rep Batch		
SW846 3005A	ICP-MS 3005	SA PREP		BB2	08/31/24	0	950 2	664350		
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		JM13	08/29/24	1	110 20	664551		
The following Analy	ytical Methods v	vere performed:								

Method	Description	Analyst Comments
1	EPA 300.0	•
2	EPA 300.0	
3	SW846 7470A	
4	SW846 3005A/6020B	
5	SW846 3005A/6020B	
6	SM 2540C	
7	SM 4500-S (2-) D	
8	SM 2320B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 36 SDG: 683169

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 12, 2024

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-13S Sample ID: 683169003

Matrix: WG

Collect Date: 27-AUG-24 13:51
Receive Date: 28-AUG-24
Collector: Client

Project: GPCC00101 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liqu	uid "As Recei	ived"									
Chloride		3.03	0.0670	0.200	mg/L		1	CH6	08/28/24	1955 2664372	1
Fluoride	J	0.0701	0.0330	0.100	mg/L		1				
Sulfate		66.6	0.665	2.00	mg/L		5	CH6	08/29/24	0949 2664372	2
Nitrate-N		0.260	0.0660	0.200	mg/L		2	CH6	08/29/24	0918 2664372	3
Mercury Analysis-CVA	AΑ										
7470 Cold Vapor Merc	ury, Liquid "	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	08/30/24	1320 2664552	4
Metals Analysis-ICP-M	1S				_						
SW846 3005A/6020B		"									
Boron	U	ND	0.00520	0.0150	mg/L	1.00	1	BAJ	09/08/24	1125 2664353	5
Calcium		14.0	0.0800	0.200	mg/L	1.00	1				
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	09/07/24	1627 2664353	6
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium		0.0543	0.000670	0.00400	mg/L	1.00	1				
Beryllium	J	0.000346	0.000200	0.000500	mg/L	1.00					
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00					
Chromium		0.0137	0.00300	0.0100	mg/L	1.00					
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00					
Iron	U	ND	0.0330	0.100	mg/L	1.00					
Lead	U	ND	0.000500	0.00200	mg/L	1.00					
Lithium	U	ND	0.00300	0.0100	mg/L	1.00					
Magnesium		8.65	0.0100	0.0300	mg/L	1.00					
Manganese	J	0.00185	0.00100	0.00500	mg/L	1.00					
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00					
Potassium		4.23	0.0800	0.300	mg/L	1.00					
Selenium	J	0.00217	0.00150	0.00500	mg/L	1.00					
Sodium		11.7	0.0800	0.250	mg/L	1.00					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Solids Analysis											
SM2540C Dissolved Se	olids "As Rec	eived"									
Total Dissolved Solids		140	2.38	10.0	mg/L			KLP1	09/03/24	1558 2666213	7
Spectrometric Analysis	3										
SM 4500-S(2-) D Sulfi	de "As Recei	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	08/29/24	1100 2664625	8

Page 9 of 36 SDG: 683169

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 12, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-13S Project: GPCC00101
Sample ID: 683169003 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF A	nalyst Date	Time Batch	Method
Titration and Ion Ana	ılysis									
SM 2320B Total Alk	alinity "As Rec	eived"								
Alkalinity, Total as CaCO	3	17.6	0.725	2.00	mg/L		JV	V2 08/28/24	1635 2664341	9
Bicarbonate alkalinity (Ca	CO3)	17.6	0.725	2.00	mg/L					
Carbonate alkalinity (CaC	O3) U	ND	0.725	2.00	mg/L					
The following Prep N	Methods were p	erformed:								
Method	Description	n		Analyst	Date		Time	Prep Batch	ı	
SW846 3005A	ICP-MS 300:	5A PREP		BB2	08/31/24		0950	2664350		
SW846 7470A Prep	EPA 7470A	Mercury Prep Liquid		JM13	08/29/24		1110	2664551		

The following Analytical Methods were performed:

The following A	marytical Methods were performed:		
Method	Description	Analyst Comments	
1	EPA 300.0		
2	EPA 300.0		
3	EPA 300.0		
4	SW846 7470A		
5	SW846 3005A/6020B		
6	SW846 3005A/6020B		
7	SM 2540C		
8	SM 4500-S (2-) D		
9	SM 2320B		

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 36 SDG: 683169

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

GPCC00101

GPCC001

Report Date: September 12, 2024

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWC-37S

Sample ID: 683169004

Matrix: WG

Collect Date: 27-AUG-24 16:41
Receive Date: 28-AUG-24
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											_
EPA 300.0 Anions Liqu	id "As Recei	ved"									
Chloride		1.90	0.0670	0.200	mg/L		1	CH6	08/28/24	2026 2664372	1
Fluoride	J	0.0777	0.0330	0.100	mg/L		1				
Sulfate	J	0.279	0.133	0.400	mg/L		1				
Nitrate-N		0.301	0.0660	0.200	mg/L		2	CH6	08/29/24	1020 2664372	2
Mercury Analysis-CVA	A										
7470 Cold Vapor Mercu	ıry, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	08/30/24	1322 2664552	3
Metals Analysis-ICP-Ma	S										
SW846 3005A/6020B ".	As Received	"									
Boron	U	ND	0.00520	0.0150	mg/L	1.00	1	BAJ	09/08/24	1126 2664353	4
Calcium		3.64	0.0800	0.200	mg/L	1.00	1				
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	09/07/24	1629 2664353	5
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium		0.0270	0.000670	0.00400	mg/L	1.00	1				
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00					
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00					
Iron	U	ND	0.0330	0.100	mg/L	1.00					
Lead	U	ND	0.000500	0.00200	mg/L	1.00					
Lithium	U	ND	0.00300	0.0100	mg/L	1.00					
Magnesium		1.34	0.0100	0.0300	mg/L	1.00					
Manganese	U	ND	0.00100	0.00500	mg/L	1.00					
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00					
Potassium		1.95	0.0800	0.300	mg/L	1.00					
Selenium	U	ND	0.00150	0.00500	mg/L	1.00					
Sodium		4.50	0.0800	0.250	mg/L	1.00					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Solids Analysis											
SM2540C Dissolved So	lids "As Rec	eived"									
Total Dissolved Solids		40.0	2.38	10.0	mg/L			KLP1	09/03/24	1558 2666213	6
Spectrometric Analysis											
SM 4500-S(2-) D Sulfid	le "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	08/29/24	1100 2664625	7

Page 11 of 36 SDG: 683169

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 12, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWC-37S Project: GPCC00101 Sample ID: 683169004 Client ID: GPCC001

Parameter	Qualifier	Result		DL	RL	Units	PF	DF A	nalyst Date	Time Batch	Method
Titration and Ion Analys	sis										
SM 2320B Total Alkalii	nity "As Rec	eived"									
Alkalinity, Total as CaCO3		21.2	0.	.725	2.00	mg/L		JV	V2 08/28/24	1636 2664341	8
Bicarbonate alkalinity (CaCO)	3)	21.2	0.	.725	2.00	mg/L					
Carbonate alkalinity (CaCO3)	U	ND	0.	.725	2.00	mg/L					
The following Prep Met	hods were p	erformed:									
Method	Description	n			Analyst	Date		Time	Prep Batch	1	
SW846 3005 A	ICP-MS 3004	SA DRED			RR2	08/31/24		0950	2664350		

Method	Description	Anaiyst	Date	Time	гтер вакси
SW846 3005A	ICP-MS 3005A PREP	BB2	08/31/24	0950	2664350
SW846 7470A Prep	EPA 7470A Mercury Prep Liquid	JM13	08/29/24	1110	2664551

The following Analytical Methods were performed:						
Method	Description	Analyst Comments				
1	EPA 300.0					
2	EPA 300.0					
3	SW846 7470A					
4	SW846 3005A/6020B					
5	SW846 3005A/6020B					
6	SM 2540C					
7	SM 4500-S (2-) D					
8	SM 2320B					

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 12 of 36 SDG: 683169

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 12, 2024

GPCC00101

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Branch CCR Groundwater Compliance Project:

Client Sample ID: BRA-APE-FB-07

Sample ID: 683169005

Collect Date: Receive Date: 28-AUG-24 Collector: Client

Client ID: GPCC001 Matrix: WQ 27-AUG-24 15:40

Project:

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liqu	iid "As Recei	ved"									
Chloride	U	ND	0.0670	0.200	mg/L		1	CH6	08/28/24	2057 2664372	1
Fluoride	U	ND	0.0330	0.100	mg/L		1				
Nitrate-N	U	ND	0.0330	0.100	mg/L		1				
Sulfate	U	ND	0.133	0.400	mg/L		1				
Mercury Analysis-CVA	A										
7470 Cold Vapor Mercu	ıry, Liquid "ا	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	08/30/24	1323 2664552	2
Metals Analysis-ICP-M	S										
SW846 3005A/6020B "		"									
Boron	U	ND	0.00520	0.0150	mg/L	1.00	1	BAJ	09/08/24	1121 2664353	3
Calcium	U	ND	0.0800	0.200	mg/L	1.00	1				
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	09/07/24	1526 2664353	4
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium	U	ND	0.000670	0.00400	mg/L	1.00	1				
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00					
Iron	U	ND	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium	U	ND	0.00300	0.0100	mg/L	1.00					
Magnesium	U	ND	0.0100	0.0300	mg/L	1.00	1				
Manganese	U	ND	0.00100	0.00500	mg/L	1.00	1				
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1				
Potassium	U	ND	0.0800	0.300	mg/L	1.00					
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1				
Sodium	U	ND	0.0800	0.250	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Solids Analysis											
SM2540C Dissolved So	olids "As Rec										
Total Dissolved Solids	U	ND	2.38	10.0	mg/L			KLP1	09/03/24	1558 2666213	5
Spectrometric Analysis											
SM 4500-S(2-) D Sulfic	le "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	08/29/24	1100 2664625	6

Page 13 of 36 SDG: 683169

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 12, 2024

Company: Georgia Power Company, Southern Company
Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-APE-FB-07 Project: GPCC00101
Sample ID: 683169005 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Ana	lyst Date	Time Batch	Method
Titration and Ion Ana	lysis									
SM 2320B Total Alka	alinity "As Rec	eived"								
Alkalinity, Total as CaCO3	J U	ND	0.725	2.00	mg/L		JW2	08/28/24	1638 2664341	7
Bicarbonate alkalinity (CaC	CO3) U	ND	0.725	2.00	mg/L					
Carbonate alkalinity (CaCo	D3) U	ND	0.725	2.00	mg/L					
The following Prep M	lethods were pe	erformed:								
Method	Description	1		Analyst	Date		Time I	Prep Batch		
SW846 3005A	ICP-MS 3005	A PREP		BB2	08/31/24		0950 2	664350		
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		JM13	08/29/24		1110 2	664551		
The following Analy	tical Methods v	vere performed:								

Analyst Comments

The following Analytical Methods were performed:

Method	Description	
1	EPA 300.0	
2	SW846 7470A	
3	SW846 3005A/6020B	
4	SW846 3005A/6020B	
5	SM 2540C	
6	SM 4500-S (2-) D	
7	SM 2320B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 14 of 36 SDG: 683169

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 12, 2024

GPCC00101

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-APE-FD-04

Sample ID: 683169006

Matrix: WG

Collect Date: 27-AUG-24 12:00
Receive Date: 28-AUG-24
Collector: Client

683169006 Client ID: GPCC001 WG 27-AUG-24 12:00 28-AUG-24

Project:

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liqu	iid "As Recei	ived"									
Sulfate		64.9	0.665	2.00	mg/L		5	CH6	08/29/24	1152 2664372	1
Chloride		3.00	0.0670	0.200	mg/L		1	CH6	08/28/24	2128 2664372	2
Fluoride	J	0.0675	0.0330	0.100	mg/L		1				
Nitrate-N	J	0.0514	0.0330	0.100	mg/L		1				
Mercury Analysis-CVA	A										
7470 Cold Vapor Mercu	ury, Liquid ".	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	08/30/24	1325 2664552	3
Metals Analysis-ICP-M	S										
SW846 3005A/6020B "		"									
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	09/07/24	1632 2664353	4
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium		0.0563	0.000670	0.00400	mg/L	1.00	1				
Beryllium	J	0.000348	0.000200	0.000500	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Chromium		0.0138	0.00300	0.0100	mg/L	1.00	1				
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1				
Iron	U	ND	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00					
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Magnesium		8.68	0.0100	0.0300	mg/L	1.00					
Manganese	J	0.00183	0.00100	0.00500	mg/L	1.00					
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00					
Potassium		4.28	0.0800	0.300	mg/L	1.00	1				
Selenium	J	0.00206	0.00150	0.00500	mg/L	1.00					
Sodium		12.0	0.0800	0.250	mg/L	1.00					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00					
Boron	U	ND	0.00520	0.0150	mg/L	1.00		BAJ	09/08/24	1128 2664353	5
Calcium		14.2	0.0800	0.200	mg/L	1.00	1				
Solids Analysis											
SM2540C Dissolved So	olids "As Rec	eived"									
Total Dissolved Solids		159	2.38	10.0	mg/L			KLP1	09/03/24	1558 2666213	6
Spectrometric Analysis											
SM 4500-S(2-) D Sulfic	de "As Recei	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	08/29/24	1100 2664625	7

Page 15 of 36 SDG: 683169

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 12, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-APE-FD-04 Project: GPCC00101 Sample ID: 683169006 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF DF A	nalyst Date	Time Batch	Method
Titration and Ion Ana	alysis								
SM 2320B Total Alk	alinity "As Rec	eived"							
Alkalinity, Total as CaCO	3	16.8	0.725	2.00	mg/L	Ъ	W2 08/28/24	1639 2664341	8
Bicarbonate alkalinity (Ca	CO3)	16.8	0.725	2.00	mg/L				
Carbonate alkalinity (CaC	O3) U	ND	0.725	2.00	mg/L				
The following Prep N	Methods were po	erformed:							
Method	Description	1		Analyst	Date	Time	Prep Batch	1	
SW846 3005A	ICP-MS 3005	SA PREP		BB2	08/31/24	0950	2664350		
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		JM13	08/29/24	1110	2664551		
The following Analy	tical Methods v	vere performed:							

Method	Description	Analyst Comments						
1	EPA 300.0	·						
2	EPA 300.0							
3	SW846 7470A							
4	SW846 3005A/6020B							
5	SW846 3005A/6020B							
6	SM 2540C							
7	SM 4500-S (2-) D							
8	SM 2320B							

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 16 of 36 SDG: 683169

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: September 12, 2024 Page 1 of 12

Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia Joju Abraham

Workorder: 683169

Contact:

Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Ion Chromatography Batch 2664372 ———								
QC1205838481 683164003 DUP Chloride		62.5	62.8	mg/L	0.488		(0%-20%) CH6	08/29/24 00:33
Fluoride		1.07	1.06	mg/L	1.1 ′		(+/-0.500)	08/29/24 04:09
Nitrate-N		22.1	22.2	mg/L	0.194		(0%-20%)	08/29/24 00:33
Sulfate		354	354	mg/L	0.109		(0%-20%)	08/29/24 06:43
QC1205838480 LCS Chloride	5.00		4.72	mg/L		94.4	(90%-110%)	08/29/24 00:02
Fluoride	2.50		2.35	mg/L		94	(90%-110%)	
Nitrate-N	2.50		2.38	mg/L		95.2	(90%-110%)	
Sulfate	10.0		9.45	mg/L		94.5	(90%-110%)	
QC1205838479 MB Chloride		U	ND	mg/L				08/28/24 23:31
Fluoride		U	ND	mg/L				
Nitrate-N		U	ND	mg/L				
Sulfate		U	ND	mg/L				

Page 17 of 36 SDG: 683169

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683169 Page 2 of 12 Parmname **NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Ion Chromatography 2664372 Batch QC1205838482 683164003 PS 6.25 11.7 Chloride 5.00 mg/L 109 (90%-110%) CH6 08/29/24 01:04 Fluoride 2.50 1.07 3.48 96.2 (90%-110%) 08/29/24 05:42 mg/L Nitrate-N 2.50 2.21 4.79 mg/L 103 (90%-110%) 08/29/24 01:04 Sulfate 10.0 14.2 24.5 mg/L 104 (90%-110%) 08/29/24 07:14 **Metals Analysis - ICPMS** 2664353 Batch QC1205838425 0.0500 0.0500 99.9 (80%-120%) BAJ 09/07/24 15:23 Antimony mg/L 0.0500 0.0498 99.7 Arsenic mg/L (80%-120%) Barium 0.0500 0.0514 mg/L 103 (80%-120%) Beryllium 0.0500 0.0559 112 (80%-120%) mg/L 0.100 0.103 103 09/08/24 11:19 Boron mg/L (80%-120%) Cadmium 0.0500 0.0505 mg/L 101 (80%-120%) 09/07/24 15:23 2.03 Calcium 2.00 102 09/08/24 11:19 mg/L (80%-120%) Chromium 0.0500 0.0506 101 09/07/24 15:23 mg/L (80%-120%)Cobalt 0.0500 0.0494 98.8 (80%-120%) mg/L

Page 18 of 36 SDG: 683169

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

683169 Page 3 of 12 QC RPD% Parmname **NOM** Sample Qual Units REC% Range Anlst Date Time Metals Analysis - ICPMS Batch 2664353 mg/L Iron 2.00 1.99 99.4 (80%-120%) BAJ 09/07/24 15:23 Lead 0.0500 0.0497 99.4 (80%-120%) mg/L 0.0500 0.0525 Lithium mg/L 105 (80%-120%) 2.17 Magnesium 2.00 mg/L109 (80%-120%) 0.0500 0.0495 Manganese 99 (80%-120%) mg/L Molybdenum 0.0500 0.0513 mg/L 103 (80%-120%) Potassium 2.00 2.03 101 (80%-120%) mg/L 0.0500 0.0521 Selenium mg/L 104 (80%-120%) Sodium 2.00 2.13 mg/L 107 (80%-120%) Thallium 0.0500 0.0474 94.8 (80%-120%) mg/L QC1205838424 MB U 09/07/24 15:20 ND Antimony mg/L U ND Arsenic mg/L Barium U ND mg/L Beryllium U ND mg/L

Page 19 of 36 SDG: 683169

Workorder:

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 4 of 12 NOM QC RPD% REC% Parmname Sample Qual Units Range Anlst Date Time Metals Analysis - ICPMS 2664353 Batch U Boron ND mg/L BAJ 09/08/24 11:18 U Cadmium ND mg/L 09/07/24 15:20 U ND mg/L 09/08/24 11:18 Calcium Chromium U ND mg/L 09/07/24 15:20 Cobalt U ND mg/LIron U ND mg/L U ND Lead mg/LU ND Lithium mg/L U Magnesium ND mg/LManganese U ND mg/L Molybdenum U ND mg/L Potassium U ND mg/LU ND Selenium mg/L U ND Sodium mg/L

Page 20 of 36 SDG: 683169

Workorder:

683169

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 5 of 12 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2664353 Batch Thallium U ND mg/L BAJ 09/07/24 15:20 QC1205838426 683169001 MS ND 0.0528 0.0500 U 106 09/07/24 15:47 Antimony mg/L (75%-125%) 0.0500 U ND 0.0542 Arsenic mg/L 106 (75%-125%) Barium 0.0500 0.0164 0.0685 mg/L 104 (75%-125%) Beryllium 0.0500 0.006440.0655 118 (75%-125%) mg/L Boron 0.100 1.31 1.41 N/A (75%-125%) 09/08/24 11:50 mg/L 0.000341 0.0521 Cadmium 0.0500 104 (75%-125%) 09/07/24 15:47 mg/L 29.2 Calcium 2.00 26.7 09/08/24 11:40 mg/L N/A (75%-125%) Chromium 0.0500 0.00328 0.0546 103 (75%-125%) 09/07/24 15:47 mg/L 0.0500 0.119 0.169 101 Cobalt mg/L (75%-125%)2.00 U ND Iron 2.04 mg/L 101 (75%-125%) 0.0500 ND 0.0494 98.3 Lead mg/L (75%-125%) Lithium 0.0500 0.0200 0.0745 mg/L 109 (75%-125%) Magnesium 2.00 27.9 30.2 mg/L N/A (75%-125%)

Workorder:

683169

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683169 Page 6 of 12 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2664353 Batch Manganese 0.0500 1.26 1.30 mg/L N/A (75%-125%) BAJ09/07/24 16:03 0.0500 U ND 0.0559 112 09/07/24 15:47 Molybdenum mg/L (75%-125%) 5.23 7.47 Potassium 2.00 mg/L 112 (75%-125%) 0.0500 0.0180 0.0714 Selenium mg/L 107 (75%-125%) Sodium 2.00 32.8 34.6 N/A mg/L (75%-125%)Thallium 0.0500 U ND 0.0477 95.1 (75%-125%) mg/L QC1205838427 683169001 MSD mg/L Antimony 0.0500 U ND 0.0521 1.44 104 (0%-20%)09/07/24 15:50 ND 0.0524 102 0.0500 U 3.41 (0%-20%) Arsenic mg/L 0.0164 0.0500 0.0676102 Barium mg/L 1.27 (0%-20%)Beryllium 0.0500 0.00644 0.0636 mg/L2.89 114 (0%-20%) 0.100 1.31 1.36 09/08/24 11:51 Boron 4.08 N/A (0%-20%) mg/L 0.0500 0.000341 0.0520 Cadmium J mg/L 0.292 103 (0%-20%)09/07/24 15:50 2.95 Calcium 2.00 26.7 28.3 mg/L N/A (0%-20%) 09/08/24 11:41 Chromium 0.0500 0.00328 0.0528 mg/L 3.3 99.1 (0%-20%)09/07/24 15:50

Page 22 of 36 SDG: 683169

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683169 Page 7 of 12 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2664353 Batch Cobalt 0.0500 0.119 0.165 mg/L 2.25 93 (0%-20%)BAJ 09/07/24 15:50 2.00 U ND 2.00 2.01 99.1 (0%-20%) Iron mg/L ND 0.0489 Lead 0.0500 U mg/L 0.94 97.4 (0%-20%) 0.0500 0.0200 0.0738 Lithium mg/L 0.875 108 (0%-20%) 29.4 2.00 27.9 2.87 N/A (0%-20%)Magnesium mg/L 0.0500 1.26 1.25 4.06 N/A (0%-20%)09/07/24 16:05 Manganese mg/L 0.0500 U ND 0.0554 mg/L 111 (0%-20%) 09/07/24 15:50 Molybdenum 0.967 Potassium 2.00 5.23 7.14 mg/L 4.48 95.4 (0%-20%)Selenium 0.0500 0.0180 0.0700 mg/L 1.97 104 (0%-20%) 2.00 32.8 33.9 2.02 N/A Sodium mg/L (0%-20%)0.0500 U ND Thallium 0.0466 mg/L 2.37 92.9 (0%-20%)QC1205838428 683169001 SDILT U ND U ND 09/07/24 15:56 Antimony ug/L N/A (0%-20%)Arsenic U ND U ND ug/L N/A (0%-20%) Barium 16.4 J 3.42 ug/L 4.18 (0%-20%)

Page 23 of 36 SDG: 683169

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683169 Page 8 of 12 QC REC% **Parmname NOM** Sample Qual Units RPD% Range Anlst Date Time Metals Analysis - ICPMS 2664353 Batch ug/L Beryllium 6.44 1.25 3.4 (0%-20%)BAJ 09/07/24 15:56 Boron 131 31.0 ug/L 17.9 (0%-20%) 09/08/24 11:52 J 0.341 U ND Cadmium ug/L N/A (0%-20%) 09/07/24 15:56 26700 5480 ug/L Calcium 2.83 (0%-20%) 09/08/24 11:43 J 3.28 ND ug/L Chromium U N/A (0%-20%)09/07/24 15:56 ug/L Cobalt 119 24.5 2.95 (0%-20%) U ug/L ND U ND N/A (0%-20%) Iron U U Lead ND ND ug/L N/A (0%-20%)ug/L Lithium 20.0 3.83 4.15 (0%-20%) 27900 5950 (0%-20%) Magnesium ug/L 6.39 Manganese 126 25.3 ug/L .101 (0%-20%)09/07/24 16:08 U ND U ND 09/07/24 15:56 Molybdenum ug/L N/A (0%-20%) 5230 1060 .798 (0%-20%) Potassium ug/L Selenium 18.0 J 3.83 ug/L (0%-20%) 6.1

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683169 Page 9 of 12 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2664353 Batch Sodium 32800 6560 ug/L.000277 (0%-20%)BAJ 09/07/24 15:56 Thallium U ND U ND (0%-20%) ug/L N/A Metals Analysis-Mercury 2664552 QC1205838870 683169001 DUP Mercury U ND U ND mg/L N/A JP2 08/30/24 13:08 QC1205838869 LCS 0.00200 0.00204 102 (80%-120%) 08/30/24 13:05 Mercury mg/L QC1205838868 MB U ND 08/30/24 13:03 Mercury mg/L QC1205838871 683169001 MS 0.00200 U ND 0.00203 99.5 08/30/24 13:13 Mercury mg/L (75%-125%) QC1205838872 683169001 SDILT U ND U ND ug/L N/A (0%-10%) 08/30/24 13:15 Mercury Solids Analysis Batch 2666213 QC1205842577 683169001 DUP 370 401 mg/L 8.04 * (0%-5%) KLP1 09/03/24 15:58 **Total Dissolved Solids** QC1205842578 683173007 DUP Total Dissolved Solids 180 178 mg/L 1.12 (0%-5%) 09/03/24 15:58 QC1205842576 300 294 mg/L09/03/24 15:58 Total Dissolved Solids 98 (95%-105%)

Page 25 of 36 SDG: 683169

GEL LABORATORIES LLC 2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683169			ĺ		•						Page 1	10 of 12
Parmname	NO	М	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst		Time
Solids Analysis Batch 2666213 QC1205842575 MB Total Dissolved Solids				U	ND	mg/L				KLP1	09/03/2	?4 15:58
Spectrometric Analysis Batch 2664625												
QC1205838996 LCS Total Sulfide	0.400				0.409	mg/L		102	(85%-115%)	JW2	08/29/2	24 11:00
QC1205838995 MB Total Sulfide				U	ND	mg/L					08/29/2	24 11:00
QC1205838997 683169001 F Total Sulfide	0.400	U	ND		0.389	mg/L		97.2	(75%-125%)		08/29/2	24 11:00
QC1205838999 683176001 F Total Sulfide	9S 0.400	U	ND		0.401	mg/L		100	(75%-125%)		08/29/2	24 11:01
QC1205838998 683169001 F Total Sulfide	PSD 0.400	U	ND		0.378	mg/L	2.9	94.4	(0%-15%)		08/29/2	24 11:00
QC1205839000 683176001 I Total Sulfide	PSD 0.400	U	ND		0.393	mg/L	2.18	98.2	(0%-15%)		08/29/2	24 11:01
Titration and Ion Analysis Batch 2664341												
QC1205838409 LCS Alkalinity, Total as CaCO3	50.0				53.1	mg/L		106	(90%-110%)	JW2	08/28/2	24 16:28
QC1205838414 LCS Alkalinity, Total as CaCO3	15.0				14.4	mg/L		96	(90%-110%)		08/28/2	24 16:30
QC1205838415 LCSD Alkalinity, Total as CaCO3	50.0				52.9	mg/L	0.377	106	(0%-20%)		08/28/2	24 16:29

Page 26 of 36 SDG: 683169

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683169 Page 11 of 12 **Parmname** NOM Sample Qual \mathbf{OC} Units RPD% REC% Range Anlst Date Time **Titration and Ion Analysis** Batch 2664341 QC1205838416 **LCSD** 14.1 mg/L Alkalinity, Total as CaCO3 15.0 2.11 94 (0%-20%)JW2 08/28/24 16:31

Notes:

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- N Metals--The Matrix spike sample recovery is not within specified control limits
- H Analytical holding time was exceeded
- < Result is less than value reported
- > Result is greater than value reported
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- Z Paint Filter Test--Particulates passed through the filter, however no free liquids were observed.
- d 5-day BOD--The 2:1 depletion requirement was not met for this sample
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- E %difference of sample and SD is >10%. Sample concentration must meet flagging criteria
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- E General Chemistry--Concentration of the target analyte exceeds the instrument calibration range
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- FB Mercury was found present at quantifiable concentrations in field blanks received with these samples. Data associated with the blank are deemed invalid for reporting to regulatory agencies
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- R Per section 9.3.4.1 of Method 1664 Revision B, due to matrix spike recovery issues, this result may not be reported or used for regulatory compliance purposes.
- B The target analyte was detected in the associated blank.
- e 5-day BOD--Test replicates show more than 30% difference between high and low values. The data is qualified per the method and can be used for reporting purposes
- J See case narrative for an explanation

Page 27 of 36 SDG: 683169

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 12 of 12 Parmname NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

Workorder:

683169

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 28 of 36 SDG: 683169

[^] The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

^{*} Indicates that a Quality Control parameter was not within specifications.

Technical Case Narrative Georgia Power Company SDG #: 683169

Metals

<u>Product:</u> Determination of Metals by ICP-MS <u>Analytical Method:</u> SW846 3005A/6020B <u>Analytical Procedure:</u> GL-MA-E-014 REV# 36

Analytical Batch: 2664353

Preparation Method: SW846 3005A

Preparation Procedure: GL-MA-E-006 REV# 15

Preparation Batch: 2664350

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683169001	BRA-BRGWC-38S
683169002	BRA-PZ-53D
683169003	BRA-PZ-13S
683169004	BRA-BRGWC-37S
683169005	BRA-APE-FB-07
683169006	BRA-APE-FD-04
1205838424	Method Blank (MB)ICP-MS
1205838425	Laboratory Control Sample (LCS)
1205838428	683169001(BRA-BRGWC-38SL) Serial Dilution (SD)
1205838426	683169001(BRA-BRGWC-38SS) Matrix Spike (MS)
1205838427	683169001(BRA-BRGWC-38SSD) Matrix Spike Duplicate (MSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Calibration Information

ICSA/ICSAB Statement

For the ICP-MS analysis, the ICSA solution contains analyte concentrations which are verified trace impurities indigenous to the purchased standard.

Technical Information

Sample Dilutions

Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range. Samples 683169001 (BRA-BRGWC-38S) and 683169002 (BRA-PZ-53D) were diluted to ensure that the analyte concentrations were within the linear calibration range of the instrument.

Page 29 of 36 SDG: 683169

A 14 -	683169					
Analyte	001	002				
Boron	10X	10X				
Calcium	1X	10X				
Manganese	10X	1X				

Product: Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer

Analytical Method: SW846 7470A

Analytical Procedure: GL-MA-E-010 REV# 40

Analytical Batch: 2664552

Preparation Method: SW846 7470A Prep

Preparation Procedure: GL-MA-E-010 REV# 40

Preparation Batch: 2664551

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683169001	BRA-BRGWC-38S
683169002	BRA-PZ-53D
683169003	BRA-PZ-13S
683169004	BRA-BRGWC-37S
683169005	BRA-APE-FB-07
683169006	BRA-APE-FD-04
1205838868	Method Blank (MB)CVAA
1205838869	Laboratory Control Sample (LCS)
1205838872	683169001(BRA-BRGWC-38SL) Serial Dilution (SD)
1205838870	683169001(BRA-BRGWC-38SD) Sample Duplicate (DUP)
1205838871	683169001(BRA-BRGWC-38SS) Matrix Spike (MS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

General Chemistry

Product: Ion Chromatography Analytical Method: EPA 300.0

Analytical Procedure: GL-GC-E-086 REV# 35

Analytical Batch: 2664372

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID# Client Sample Identification

683169001 BRA-BRGWC-38S 683169002 BRA-PZ-53D

Page 30 of 36 SDG: 683169

683169003	BRA-PZ-13S
683169004	BRA-BRGWC-37S
683169005	BRA-APE-FB-07
683169006	BRA-APE-FD-04
1205838479	Method Blank (MB)
1205838480	Laboratory Control Sample (LCS)
1205838481	683164003(NonSDG) Sample Duplicate (DUP)
1205838482	683164003(NonSDG) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Sample Dilutions

The following samples 1205838481 (Non SDG 683164003DUP), 1205838482 (Non SDG 683164003PS), 683169001 (BRA-BRGWC-38S), 683169002 (BRA-PZ-53D), 683169003 (BRA-PZ-13S) and 683169006 (BRA-APE-FD-04) were diluted because target analyte concentrations exceeded the calibration range. The following samples 1205838481 (Non SDG 683164003DUP), 1205838482 (Non SDG 683164003PS), 683169001 (BRA-BRGWC-38S), 683169003 (BRA-PZ-13S) and 683169004 (BRA-BRGWC-37S) in this sample group were diluted due to matrix interference. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

A 14 -	683169											
Analyte	001	002	003	004	006							
Nitrate-N	2X	1X	2X	2X	1X							
Sulfate	20X	25X	5X	1X	5X							

Miscellaneous Information

Manual Integrations

Samples 1205838481 (Non SDG 683164003DUP), 1205838482 (Non SDG 683164003PS), 683169001 (BRA-BRGWC-38S), 683169002 (BRA-PZ-53D), 683169003 (BRA-PZ-13S), 683169004 (BRA-BRGWC-37S) and 683169006 (BRA-APE-FD-04) were manually integrated to correctly position the baseline as set in the calibration standards.

Product: Solids, Total Dissolved **Analytical Method:** SM 2540C

Analytical Procedure: GL-GC-E-001 REV# 21

Analytical Batch: 2666213

The following samples were analyzed using the above methods and analytical procedure(s).

 GEL Sample ID#
 Client Sample Identification

 683169001
 BRA-BRGWC-38S

 683169002
 BRA-PZ-53D

 683169003
 BRA-PZ-13S

683169004	BRA-BRGWC-37S
683169005	BRA-APE-FB-07
683169006	BRA-APE-FD-04
1205842575	Method Blank (MB)
1205842576	Laboratory Control Sample (LCS)
1205842577	683169001(BRA-BRGWC-38S) Sample Duplicate (DUP)
1205842578	683173007(BRA-PZ-44) Sample Duplicate (DUP)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Duplicate Relative Percent Difference (RPD) Statement

The Relative Percent Difference (RPD) between the sample and duplicate falls outside of the established acceptance limits because of the heterogeneous matrix of the sample:

Analyte	Sample	Value
Total Dissolved Solids	1205842577 (BRA-BRGWC-38SDUP)	8.04* (0%-5%)

Product: Sulfide, Total

Analytical Method: SM 4500-S (2-) D

Analytical Procedure: GL-GC-E-052 REV# 13

Analytical Batch: 2664625

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683169001	BRA-BRGWC-38S
683169002	BRA-PZ-53D
683169003	BRA-PZ-13S
683169004	BRA-BRGWC-37S
683169005	BRA-APE-FB-07
683169006	BRA-APE-FD-04
1205838995	Method Blank (MB)
1205838996	Laboratory Control Sample (LCS)
1205838997	683169001(BRA-BRGWC-38S) Post Spike (PS)
1205838998	683169001(BRA-BRGWC-38S) Post Spike Duplicate (PSD)
1205838999	683176001(BRA-BRGWA-2S) Post Spike (PS)
1205839000	683176001(BRA-BRGWA-2S) Post Spike Duplicate (PSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Page 32 of 36 SDG: 683169

Product: Alkalinity

Analytical Method: SM 2320B

Analytical Procedure: GL-GC-E-033 REV# 16

Analytical Batch: 2664341

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683169001	BRA-BRGWC-38S
683169002	BRA-PZ-53D
683169003	BRA-PZ-13S
683169004	BRA-BRGWC-37S
683169005	BRA-APE-FB-07
683169006	BRA-APE-FD-04
1205838409	Laboratory Control Sample (LCS)
1205838414	Laboratory Control Sample (LCS)
1205838415	Laboratory Control Sample Duplicate (LCSD)
1205838416	Laboratory Control Sample Duplicate (LCSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Laboratory Control Sample Duplicate (LCSD)

An LCSD was used in place of matrix QC due to limited sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 33 of 36 SDG: 683169

Pa1880 OUS80

GEL Laboratories, LLC 2040 Savage Road Charleston, SC 29407 Phone: (843) 556-8171	Fax: (843) 766-1178	(Fill in the number of containers for each test)	< Preservative Type (6)	Comments	Note: extra sample is	Task_Code: BRA-CCR-	1001										Specify: (Subject to Surcharge)		[] level 1 [x] Level 2 [] Level 4	,Be,Cd,Cr,Co,Pb,Li,Mo,Se,Tl,Fe,Mg,Mn,K,Na,Hg	ct? [] Yes [] No Cooler Temp:	[] Pacific [] Central [] Mountain [] Other:						Please provide any additional details below regarding handling and/or disposal concerns. (i.e.: Origin of sample(s), type of site collected from, odd matrices, etc.)
Specialty Analytics	Trent	Sample Analysis Requested (5) (Fill in	IN	8 110 110 VIK VIK O3	TDS, N M 2540 Bicarb , 20B s * 010, 74 6 & 22 115, 932	Ci, F, SO4, 7 EPA 300, Sulfin 23 Sulfin 22 Sulfin 23 Sulfin 23 Sulfin 23 Sulfin 23 Sulfin 24 Sulfin 25 Sulfin 25	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	1/1/1	1///	1/// 8	1111	7010					TAT Requested: Normal: x Rush:	[] Yes	rable: [] (Additional Remarks: * Metals: B,Ca,Sb,As,Ba	For Lab Receiving Use Only: Custody Seal Intact? [] Yes	Sample Collection Time Zone: [x] Eastern [] Pacific	= Grab C = Commonsite		lity Control Matrix		te, If no preservative is added = leave field blank	Other OT= Other / Unknown (i.e.: High/low pH, asbestos, beryllium, irritants, other misc. health hazards, etc.) Description:
GEL Laboratories LLC get.com Chemistry Radiochemistry Radiobioassay Specialty Analytics Chain of Custody and Analytical Request	GEL Project Manager: Erin Trent	Phone # 404-506-7116 Sa	. 22	sample be considered:	(IE	*Time Collected OC Field Sample Sample (Miltary OC Field Sample (Sample (Miltary Octe 6) Filtered (Miltary (4) Marrix (4) Marrix (4) Marrix (4) Marrix (5) Marrix (5) Marrix (6) Marrix (6) Marrix (7)	D M N D	Z Z Z Z D 0071	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	N N N S OFS!	2 2 2 2 1					TA	Date Time Fax	1 8/28/84 USZ7 Select Di	\$ 28/21 (3) D Addition	For Lab		S = Marrix Snike Samule MSD = Marrix Snike Dunlicate Samule G	r sample was not field filtered.	L=Leachate, SO=Soil, SE=Sediment, SL=Sludge, WQ=Water Qual	containers provided for each (i.e. 8260B - 3, 6010B/74704 - 1).	c Acid, AA = Ascorbic Acid, HX = Hexane, ST = Sodium Thiosulfai	Listed Waste LW= Listed Waste (F,K,P and U-listed wastes.) (I.e.: High/lc Maste code(s): Description:
5	2177-0006 GEL Work Order Number:		Project/Site Name: Plant Branch Ash Ponds - E	Address: 241 Ralph McGill Blvd SE, Atlanta GA 30308	Godsle / D. John ACC Send Results To: SCS & Geosyntec Contacts	*Date Collected	DX/77/24	US(121/24)	h7/L//\$0	2/80	08/21/24	>-04					Chain of Custody Signatures	Date	NEW 4-80/12-8 11	A 272	3	> For sample shipping and delivery details, see Sample Receipt & Review form (SRR.)	1.) Chain of Custody Number = Client Determined 1.) Chain of Custody Number = Client Determined 2.) Of Codes: Na Normal Samule TR = Trin Blank FD = Field Duniticate FR = Fourinment Blank FINS Marrix Soilee Samule FR = Trin Blank FD = Graph C = Commonities 3.) Of Codes: Na Normal Samule TR = Trin Blank FD = Field Duniticate FR = Fourinment Blank FINS Marrix Soilee Samule FR = Trin Blank FD = Field Duniticate FR = From From FR = From	3.) Field Filtered: For liquid matrices, indicate with a - Y - for yes the sample was field filtered or - N - for sample was not field filtered.	4.) Matrix Codes: WD=Drinking Water, WG=Groundwater, WS=Surface Water, WW=Waste Water, WL=Leachate, SO=Soil, SE=Sediment, SL=Sludge, WQ=Water Quality Control Matrix	5.) Sample Analysis Requested: Analytical method requested (i.e. 8260B, 6010B/7470A) and number of containers provided for each (i.e. 8260B - 3, 6010B/7470A - 1).	Nitric Aci	T.) KNOWN OK POSSIBLE HAZAKUS RCRA Metals As = Arsenic Hg=Mercury As = Barium Se= Selenium Cd = Cadmium Ag= Silver Cr = Chromium MR= Misc. RCRA metals. PD = Lead Characteristic Hazards FL = Flammable/Ignitable CO = Corrosive RE = Reactive RE = Reactive RE = Reactive Age = Silver Cr = Chromium Ag = Silver Cr = Chromium MR = Misc. RCRA metals. FOB = Polychlorinated biphenyls
Page: Project # GEL Quote #: COC Number (1).	PO Number: GPC82177-0006	Client Name: GA Power	Project/Site Name:	Address: 241 Ralph	Collected By: (-)	* For compos	BRA- BAGWC-385	BRA- P2-53D	BRA- P2-13S	BRA- BRGMC-37S	BRA- APE-FB-07	BRA- APE-FD-04	BRA-	BRA-	BRA-	BRA-		Relinquished By (Signed)	1 Tayon Hill	2 / 1	rr.	> For sample shipps	 Chain of Custody Number = Client Determined OC Codes: N = Normal Sample TB = Trip Bit 	3.) Field Filtered: For liqu	4.) Matrix Codes: WD=D	5.) Sample Analysis Requ	6.) Preservative Type: HA	7) KNOWN OR PO RCRA Metals As = Arsenic Hg Ba = Barium Sc Cd = Cadmium A Cr = Chromium M Pb = Lead

GEL Laboratories LLC

SAMPLE RECEIPT & REVIEW FORM

683170 683169 683173 683174 683176 683177

Client: GPCC		SD	OG/AR/COC/Work Order:									
Received By: QG		Da	Date Received: 8 28 24									
Carrier and Tracking Number			Circle Applicable: FedEx Express FedEx Ground UPS Field Services Courier Other									
Suspected Hazard Information	Yes	*If	Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.									
A)Shipped as a DOT Hazardous?	1	Ha	Hazard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes No									
B) Did the client designate the samples are to be received as radioactive?	4	co	C notation or radioactive stickers on containers equal client designation.									
C) Did the RSO classify the samples as radioactive?		Ma	Classified as: Rad 1 Rad 2 Rad 3									
D) Did the client designate samples are hazardous?			C notation or hazard labels on containers equal client designation. Or E is yes, select Hazards below.									
E) Did the RSO identify possible hazards?	-	1	PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:									
Sample Receipt Criteria	Yes	oN										
1 Shipping containers received intact and sealed?	1	-	Circle Applicable: Seals broken Damaged container Leaking container Other (describe)									
2 Chain of custody documents included with shipment?			Circle Applicable: Client contacted and provided COC COC created upon receipt									
3 Samples requiring cold preservation within (0 ≤ 6 deg. C)?*	1		Preservation Method: Wet Ice Ice Packs Dry ice None Other: *all temperatures are recorded in Celsius TEMP:									
Daily check performed and passed on IR temperature gun?	1	/	Temperature Device Serial #: IR1-23 Secondary Temperature Device Serial # (If Applicable):									
5 Sample containers intact and sealed?			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)									
Samples requiring chemical preservation at proper pH?	1		Sample ID's and Containers Affected: If Presegvation added, Lot#:									
7 Do any samples require Volatile Analysis?		1	If Yes, are Encores or Soil Kits present for solids? YesNoNA(If yes, take to VOA Freezer) Po liquid VOA vials contain acid preservation? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA Sample ID's and containers affected:									
8 Samples received within holding time?			ID's and tests affected:									
9 Sample ID's on COC match ID's on bottles?			ID's and containers affected:									
Date & time on COC match date & time on bottles?	1		Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)									
Number of containers received match number indicated on COC?	1		Circle Applicable: No container count on COC Other (describe)									
Are sample containers identifiable as GEL provided by use of GEL labels? COC form is properly signed in		1	GNA-2I metals container has no lakel Circle Applicable: Not relinquished Other (describe)									
relinquished/received sections?			All wasters and annual control (desertor)									
cooler:	Ĩ.	3R	-A-BRGWA-65 metals container has no lab									
1-00 5-00 2-00 6-00		re	ceived three plastic ILS in BRA-BREWAS									
3-227-00		KI	+ with no label or anything written on +									
4-2%		KK	2A-BRGWA- as radium container has no Get									
PM (or PMA) r	review:	Initia	als TP Date AUG 29 2024 Page 1 of 1									

List of current GEL Certifications as of 12 September 2024

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	KY90129
Kentucky Wastewater	KY90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2023019
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	NV-C24-00175
New Hampshire NELAP	205424
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2023-152
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235
Utah NELAP	SC000122024-41
Vermont	VT87156
Virginia NELAP	460202
Washington	C780
	, , , ,

gel.com

September 12, 2024

Joju Abraham Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

Re: Branch CCR Groundwater Compliance

Work Order: 683173

Dear Joju Abraham:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on August 28, 2024. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt. The laboratory received the following sample(s):

<u>Laboratory ID</u>	Client ID	<u>Matrix</u>	Date Collected	Date Received
683173001	BRA-BRGWA-23S	Ground Water	08/27/24 12:30	08/28/24 08:27
683173002	BRA-APBCD-FB-01	Water	08/27/24 15:25	08/28/24 08:27
683173003	BRA-BRGWC-29I	Ground Water	08/27/24 15:45	08/28/24 08:27
683173004	BRA-BRGWC-27I	Ground Water	08/27/24 15:37	08/28/24 08:27
683173005	BRA-PZ-74I	Ground Water	08/27/24 12:12	08/28/24 08:27
683173006	BRA-PZ-75I	Ground Water	08/27/24 14:00	08/28/24 08:27
683173007	BRA-PZ-44	Ground Water	08/27/24 17:21	08/28/24 08:27
683173008	BRA-APBCD-FD-01	Ground Water	08/27/24 12:00	08/28/24 08:27
683173009	BRA-APBCD-EB-04	Water	08/27/24 17:45	08/28/24 08:27

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Prep Methods and Prep Dates

Method	Run Date ID
SW846 3005A	31-AUG-2024
SW846 7470A Prep	29-AUG-2024

Analysis Methods and Analysis Dates

<u>Method</u>	Run Date ID
EPA 300.0	28-AUG-2024
EPA 300.0	29-AUG-2024
SM 2320B	28-AUG-2024
SM 2540C	03-SEP-2024
SM 4500-S (2-) D	29-AUG-2024
SW846 3005A/6020B	07-SEP-2024
SW846 3005A/6020B	08-SEP-2024
SW846 7470A	30-AUG-2024

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4443.

Sincerely,

Alaina Pinnick

Alaina Pinnick

Project Manager

Purchase Order: GPC82177-0006

Enclosures

Page 3 of 42 SDG: 683173

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

GPCC001 Georgia Power Company Client SDG: 683173 GEL Work Order: 683173

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- B Either presence of analyte detected in the associated blank, or MDL/IDL < sample value < PQL
- J Value is estimated

N/A RPD or %Recovery limits do not apply.

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Alaina Pinnick.

Reviewed by

Page 4 of 42 SDG: 683173

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 12, 2024

GPCC00101

GPCC001

Company: Georgia Power Company, Southern Company
Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWA-23S

Sample ID: 683173001

Matrix: WG

Collect Date: 27-AUG-24 12:30
Receive Date: 28-AUG-24
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liqu	id "As Recei	ived"									
Nitrate-N		1.28	0.0660	0.200	mg/L		2	TXT1	08/29/24	0151 2664366	1
Chloride		2.16	0.0670	0.200	mg/L		1	TXT1	08/28/24	1824 2664366	2
Fluoride		0.204	0.0330	0.100	mg/L		1				
Sulfate		9.73	0.133	0.400	mg/L		1				
Mercury Analysis-CVA	A										
7470 Cold Vapor Mercu	ıry, Liquid "	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	08/30/24	1326 2664552	3
Metals Analysis-ICP-M	S				C						
SW846 3005A/6020B ".		"									
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	09/07/24	1643 2664353	4
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium		0.0432	0.000670	0.00400	mg/L	1.00	1				
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1				
Iron	J	0.0482	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium	J	0.00687	0.00300	0.0100	mg/L	1.00	1				
Magnesium		3.38	0.0100	0.0300	mg/L	1.00	1				
Manganese	U	ND	0.00100	0.00500	mg/L	1.00	1				
Molybdenum	J	0.000225	0.000200	0.00100	mg/L	1.00	1				
Potassium		1.95	0.0800	0.300	mg/L	1.00					
Selenium	U	ND	0.00150	0.00500	mg/L	1.00					
Sodium		8.76	0.0800	0.250	mg/L	1.00					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00					
Boron		0.0315	0.00520	0.0150	mg/L	1.00		BAJ	09/08/24	1200 2664353	5
Calcium		5.88	0.0800	0.200	mg/L	1.00	1				
Solids Analysis											
SM2540C Dissolved So	lids "As Rec	eived"									
Total Dissolved Solids		86.0	2.38	10.0	mg/L			KLP1	09/03/24	1558 2666213	6
Spectrometric Analysis											
SM 4500-S(2-) D Sulfid	le "As Recei	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	08/29/24	1100 2664625	7

Page 5 of 42 SDG: 683173

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 12, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWA-23S Project: GPCC00101
Sample ID: 683173001 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Ana	yst Date	Time Batch	Method
Titration and Ion Analy	sis									
SM 2320B Total Alkali	nity "As Rec	eived"								
Alkalinity, Total as CaCO3		32.4	0.725	2.00	mg/L		JW2	08/28/24	1640 2664341	8
Bicarbonate alkalinity (CaCC	(3)	32.4	0.725	2.00	mg/L					
Carbonate alkalinity (CaCO3)) U	ND	0.725	2.00	mg/L					
The following Prep Me	thods were po	erformed:								
Method	Description	n		Analyst	Date		Time I	rep Batch		
SW846 3005A	ICP-MS 3005	SA PREP		BB2	08/31/24		0950 2	664350		
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		JM13	08/29/24		1110 2	664551		

The following Analytical Methods were performed:

Method	Description	Analyst Comments
1	EPA 300.0	•
2	EPA 300.0	
3	SW846 7470A	
4	SW846 3005A/6020B	
5	SW846 3005A/6020B	
6	SM 2540C	
7	SM 4500-S (2-) D	
8	SM 2320B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 42 SDG: 683173

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 12, 2024

Company: Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160 Address:

Atlanta, Georgia 30308

Contact: Joju Abraham

Branch CCR Groundwater Compliance Project:

Client Sample ID: BRA-APBCD-FB-01 Project: GPCC00101 Client ID: GPCC001

Sample ID: 683173002

Matrix: WQ

Collect Date: 27-AUG-24 15:25 Receive Date: 28-AUG-24 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liqu	id "As Recei	ved"									
Chloride	J	0.118	0.0670	0.200	mg/L		1	TXT1	08/28/24	2000 2664366	1
Fluoride	U	ND	0.0330	0.100	mg/L		1				
Nitrate-N	U	ND	0.0330	0.100	mg/L		1				
Sulfate	U	ND	0.133	0.400	mg/L		1				
Mercury Analysis-CVA	A										
7470 Cold Vapor Mercu	ıry, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	08/30/24	1328 2664552	2
Metals Analysis-ICP-Ma	S										
SW846 3005A/6020B ".	As Received	"									
Boron	U	ND	0.00520	0.0150	mg/L	1.00	1	BAJ	09/08/24	1122 2664353	3
Calcium	U	ND	0.0800	0.200	mg/L	1.00	1				
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	09/07/24	1528 2664353	4
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium	U	ND	0.000670	0.00400	mg/L	1.00	1				
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1				
Iron	U	ND	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Magnesium	U	ND	0.0100	0.0300	mg/L	1.00	1				
Manganese	U	ND	0.00100	0.00500	mg/L	1.00	1				
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1				
Potassium	U	ND	0.0800	0.300	mg/L	1.00	1				
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1				
Sodium	U	ND	0.0800	0.250	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Solids Analysis											
SM2540C Dissolved So	lids "As Rec	eived"									
Total Dissolved Solids	U	ND	2.38	10.0	mg/L			KLP1	09/03/24	1558 2666213	5
Spectrometric Analysis											
SM 4500-S(2-) D Sulfid	le "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	08/29/24	1100 2664625	6

Page 7 of 42 SDG: 683173

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 12, 2024

Company: Georgia Power Company, Southern Company
Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-APBCD-FB-01 Project: GPCC00101
Sample ID: 683173002 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF A	nalyst Date	Time Batch	Method
Titration and Ion Anal	ysis									
SM 2320B Total Alka	linity "As Rec	eived"								
Alkalinity, Total as CaCO3	U	ND	0.725	2.00	mg/L		JV	V2 08/28/24	1642 2664341	7
Bicarbonate alkalinity (CaC	O3) U	ND	0.725	2.00	mg/L					
Carbonate alkalinity (CaCO	3) U	ND	0.725	2.00	mg/L					
The following Prep Me	ethods were p	erformed:								
Method	Description	n		Analyst	Date		Time	Prep Batch		
SW846 3005A	ICP-MS 3005	5A PREP		BB2	08/31/24		0950	2664350		
SW846 7470A Prep	EPA 7470A	Mercury Prep Liquid		JM13	08/29/24		1110	2664551		
The following Analyti	ical Mathada x	wara parformad:								

The following Analytical Methods were performed:

Method	Description	Analyst Comments
1	EPA 300.0	•
2	SW846 7470A	
3	SW846 3005A/6020B	
4	SW846 3005A/6020B	
5	SM 2540C	
6	SM 4500-S (2-) D	
7	SM 2320B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 42 SDG: 683173

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 12, 2024

GPCC00101

GPCC001

Project:

Client ID:

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWC-29I

Sample ID: 683173003

Matrix: WG

Collect Date: 27-AUG-24 15:45
Receive Date: 28-AUG-24
Collector: Client

U

U

ND

17.7

ND

1.09

70.5

424

ND

Rece	ive Date: 28-A	AUG-24									
Colle	ector: Clie	nt									
Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatograp	ohy										
EPA 300.0 Anion	s Liquid "As Recei	ved"									
Chloride	•	8.87	0.0670	0.200	mg/L		1	TXT1	08/28/24	2032 2664366	1
Fluoride	J	0.0849	0.0330	0.100	mg/L		1				
Nitrate-N	U	ND	0.0330	0.100	mg/L		1				
Sulfate		261	3.33	10.0	mg/L		25	TXT1	08/29/24	0327 2664366	2
Mercury Analysis	-CVAA										
7470 Cold Vapor	Mercury, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	08/30/24	1333 2664552	3
Metals Analysis-I	CP-MS										
SW846 3005A/60	20B "As Received"	"									
Manganese		1.13	0.0100	0.0500	mg/L	1.00	10	BAJ	09/07/24	1655 2664353	4
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	09/07/24	1646 2664353	5
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium		0.0163	0.000670	0.00400	mg/L	1.00	1				
Beryllium		0.000892	0.000200	0.000500	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt		0.00574	0.000300	0.00100	mg/L	1.00	1				
Iron		17.6	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium	J	0.00305	0.00300	0.0100	mg/L	1.00	1				
Magnesium		8.52	0.0100	0.0300	mg/L	1.00	1				
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1				
Potassium		9.74	0.0800	0.300	mg/L	1.00	1				

0.00150

0.000600

0.0800

0.0520

0.800

2.38

0.0330

0.00500

0.00200

0.250

0.150

2.00

10.0

0.100

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

1.00 1

1.00 1

1.00 1

1.00

1.00 10

10 BAJ

JW2

09/08/24 1202 2664353

08/29/24 1100 2664625

KLP1 09/03/24 1558 2666213

6

7

Page 9 of 42 SDG: 683173

SM2540C Dissolved Solids "As Received"

SM 4500-S(2-) D Sulfide "As Received"

Selenium

Sodium

Boron

Thallium

Calcium

Total Sulfide

Solids Analysis

Total Dissolved Solids

Spectrometric Analysis

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 12, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWC-29I Project: GPCC00101
Sample ID: 683173003 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF A	nalyst Date	Time Batch	Method
Titration and Ion Anal	lysis									
SM 2320B Total Alka	linity "As Rec	eived"								
Alkalinity, Total as CaCO3	U	ND	0.725	2.00	mg/L		JV	V2 08/28/24	1642 2664341	9
Bicarbonate alkalinity (CaC	CO3) U	ND	0.725	2.00	mg/L					
Carbonate alkalinity (CaCC	03) U	ND	0.725	2.00	mg/L					
The following Prep M	lethods were p	erformed:								
Method	Descriptio	n		Analyst	Date		Time	Prep Batch	ı	
SW846 3005A	ICP-MS 300:	5A PREP		BB2	08/31/24		0950	2664350		
SW846 7470A Prep	EPA 7470A	Mercury Prep Liquid		JM13	08/29/24		1110	2664551		
TTI 6.11 1 1 1 1										

The following Analytical Methods were performed:

The following Analytical Methods were performed.							
Method	Description	Analyst Comments					
1	EPA 300.0	·					
2	EPA 300.0						
3	SW846 7470A						
4	SW846 3005A/6020B						
5	SW846 3005A/6020B						
6	SW846 3005A/6020B						
7	SM 2540C						
8	SM 4500-S (2-) D						
9	SM 2320B						

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 42 SDG: 683173

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 12, 2024

GPCC00101

GPCC001

Company: Georgia Power Company, Southern Company
Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWC-27I

Sample ID: 683173004

Matrix: WG

Collect Date: 27-AUG-24 15:37
Receive Date: 28-AUG-24
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liqu	id "As Recei	ived"									
Sulfate		174	3.33	10.0	mg/L		25	TXT1	08/29/24	0358 2664366	1
Chloride		4.47	0.0670	0.200	mg/L		1	TXT1	08/28/24	2104 2664366	2
Fluoride		0.382	0.0330	0.100	mg/L		1				
Nitrate-N	J	0.0370	0.0330	0.100	mg/L		1				
Mercury Analysis-CVA	A										
7470 Cold Vapor Mercu	ıry, Liquid "	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	08/30/24	1335 2664552	3
Metals Analysis-ICP-Ma	S										
SW846 3005A/6020B ".		["									
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	09/07/24	1649 2664353	4
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium		0.0164	0.000670	0.00400	mg/L	1.00	1				
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt		0.00566	0.000300	0.00100	mg/L	1.00	1				
Iron	U	ND	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Magnesium		7.27	0.0100	0.0300	mg/L	1.00	1				
Manganese		0.415	0.00100	0.00500	mg/L	1.00	1				
Molybdenum	J	0.000211	0.000200	0.00100	mg/L	1.00	1				
Potassium		5.07	0.0800	0.300	mg/L	1.00	1				
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1				
Sodium		16.7	0.0800	0.250	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Boron		1.28	0.0520	0.150	mg/L	1.00	10	BAJ	09/08/24	1203 2664353	5
Calcium		75.9	0.800	2.00	mg/L	1.00	10				
Solids Analysis											
SM2540C Dissolved So	lids "As Rec	eived"									
Total Dissolved Solids		346	2.38	10.0	mg/L			KLP1	09/03/24	1558 2666213	6
Spectrometric Analysis											
SM 4500-S(2-) D Sulfid	le "As Recei	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	08/29/24	1100 2664625	7

Page 11 of 42 SDG: 683173

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 12, 2024

Company: Georgia Power Company, Southern Company
Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWC-27I Project: GPCC00101
Sample ID: 683173004 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF A	nalyst Date	Time Batch	Method
Titration and Ion Analy	ysis									
SM 2320B Total Alkal	linity "As Rec	eived"								
Alkalinity, Total as CaCO3		51.2	0.725	2.00	mg/L		JW	/2 08/28/24	1643 2664341	8
Bicarbonate alkalinity (CaC	O3)	51.2	0.725	2.00	mg/L					
Carbonate alkalinity (CaCO	3) U	ND	0.725	2.00	mg/L					
The following Prep Mo	ethods were p	erformed:								
Method	Description	n		Analyst	Date	-	Time	Prep Batch		
SW846 3005A	ICP-MS 3005	5A PREP		BB2	08/31/24	(0950	2664350		
SW846 7470A Prep	EPA 7470A I	Mercury Prep Liquid		JM13	08/29/24	1	1110	2664551		
The following Analyti	ical Methods v	were performed:								

Analyst Comments

Method	Description
1	EPA 300.0
2	EPA 300.0
3	SW846 7470A
4	SW846 3005A/6020B
5	SW846 3005A/6020B
6	SM 2540C
7	SM 4500-S (2-) D
8	SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 12 of 42 SDG: 683173

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 12, 2024

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-74I Sample ID: 683173005

Matrix: WG

Collect Date: 27-AUG-24 12:12
Receive Date: 28-AUG-24
Collector: Client

Project: GPCC00101 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liqu	uid "As Recei	ved"									
Fluoride		0.159	0.0330	0.100	mg/L		1	TXT1	08/28/24	2136 2664366	1
Nitrate-N	J	0.0492	0.0330	0.100	mg/L		1				
Chloride		27.1	1.68	5.00	mg/L		25	TXT1	08/29/24	0430 2664366	2
Sulfate		260	3.33	10.0	mg/L		25				
Mercury Analysis-CVA	λA										
7470 Cold Vapor Merci	ury, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	08/30/24	1336 2664552	3
Metals Analysis-ICP-M	IS										
SW846 3005A/6020B "	'As Received'	"									
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	09/07/24	1651 2664353	4
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium		0.0260	0.000670	0.00400	mg/L	1.00	1				
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1				
Iron		0.138	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium	J	0.00825	0.00300	0.0100	mg/L	1.00	1				
Magnesium		38.4	0.0100	0.0300	mg/L	1.00	1				
Manganese		0.00713	0.00100	0.00500	mg/L	1.00	1				
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1				
Potassium		3.36	0.0800	0.300	mg/L	1.00	1				
Selenium		0.0597	0.00150	0.00500	mg/L	1.00	1				
Sodium		25.5	0.0800	0.250	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Boron		1.20	0.0520	0.150	mg/L	1.00	10	BAJ	09/08/24	1205 2664353	5
Calcium		68.8	0.800	2.00	mg/L	1.00	10				
Solids Analysis											
SM2540C Dissolved So	olids "As Rec	eived"									
Total Dissolved Solids		519	2.38	10.0	mg/L			KLP1	09/03/24	1558 2666213	6
Spectrometric Analysis											
SM 4500-S(2-) D Sulfic	de "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	08/29/24	1100 2664625	7

Page 13 of 42 SDG: 683173

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 12, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-74I Project: GPCC00101 Sample ID: 683173005 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF A	nalyst Date	Time Batch	Method
Titration and Ion Anal	ysis									
SM 2320B Total Alka	linity "As Rec	eived"								
Alkalinity, Total as CaCO3		45.8	0.725	2.00	mg/L		JV	V2 08/28/24	1644 2664341	8
Bicarbonate alkalinity (CaC	O3)	45.8	0.725	2.00	mg/L					
Carbonate alkalinity (CaCO	3) U	ND	0.725	2.00	mg/L					
The following Prep M	ethods were p	erformed:								
Method	Description	n		Analyst	Date		Time	Prep Batch		
SW846 3005A	ICP-MS 3005	SA PREP		BB2	08/31/24		0950	2664350		
SW846 7470A Prep	EPA 7470A	Mercury Prep Liquid		JM13	08/29/24		1110	2664551		
The following Analyt	ical Methods v	vere performed:								

The following f	mary treat Methods were performed.	
Method	Description	Analyst Comments
1	EPA 300.0	•
2	EPA 300.0	
3	SW846 7470A	
4	SW846 3005A/6020B	
5	SW846 3005A/6020B	
6	SM 2540C	
7	SM 4500-S (2-) D	
8	SM 2320B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 14 of 42 SDG: 683173

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 12, 2024

Georgia Power Company, Southern Company Company: 241 Ralph McGill Blvd NE, Bin 10160 Address:

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-75I Sample ID: 683173006

M

Matrix:	WG							
Collect Date:	27-AUG-24 14:00							
Receive Date:	28-AUG-24							
Collector:	Client							
Qual	lifier Result	DL	RL	Units	PF	DF Analyst Date	Time Batch	Method
1								

Project:

Client ID:

GPCC00101

GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liqu	uid "As Recei	ved"									
Chloride		6.31	0.0670	0.200	mg/L		1	TXT1	08/28/24	2208 2664366	1
Fluoride		0.155	0.0330	0.100	mg/L		1				
Nitrate-N	J	0.0477	0.0330	0.100	mg/L		1				
Sulfate		257	3.33	10.0	mg/L		25	TXT1	08/29/24	0606 2664366	2
Mercury Analysis-CVA	AΑ										
7470 Cold Vapor Merc	ury, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	08/30/24	1338 2664552	3
Metals Analysis-ICP-M	1S				C						
SW846 3005A/6020B '		"									
Boron		1.20	0.0520	0.150	mg/L	1.00	10	BAJ	09/08/24	1227 2664353	4
Calcium		49.8	0.800	2.00	mg/L	1.00	10				
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	09/07/24	1716 2664353	5
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium		0.0350	0.000670	0.00400	mg/L	1.00	1				
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1				
Iron	U	ND	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium	J	0.00433	0.00300	0.0100	mg/L	1.00	1				
Magnesium		36.1	0.0100	0.0300	mg/L	1.00	1				
Manganese		0.0125	0.00100	0.00500	mg/L	1.00	1				
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1				
Potassium		4.07	0.0800	0.300	mg/L	1.00	1				
Selenium		0.106	0.00150	0.00500	mg/L	1.00	1				
Sodium		25.7	0.0800	0.250	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Solids Analysis											
SM2540C Dissolved So	olids "As Rec	eived"									
Total Dissolved Solids		467	2.38	10.0	mg/L			KLP1	09/03/24	1558 2666213	6
Spectrometric Analysis	\$										
SM 4500-S(2-) D Sulfie	de "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	08/29/24	1100 2664625	7

Page 15 of 42 SDG: 683173

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 12, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-75I Project: GPCC00101
Sample ID: 683173006 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF A	nalyst Date	Time Batch	Method
Titration and Ion Analy	sis									
SM 2320B Total Alkali	nity "As Reco	eived"								
Alkalinity, Total as CaCO3		35.3	0.725	2.00	mg/L		JV	<i>V</i> 2 08/28/24	1646 2664341	8
Bicarbonate alkalinity (CaCO	93)	35.3	0.725	2.00	mg/L					
Carbonate alkalinity (CaCO3)) U	ND	0.725	2.00	mg/L					
The following Prep Me	thods were pe	erformed:								
Method	Description	1		Analyst	Date		Time	Prep Batch		
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		JM13	08/29/24		1110	2664551		
SW846 3005A	ICP-MS 3005	A PREP		BB2	08/31/24		0950	2664350		

The following Analytical Methods were performed:

Method	Description	Analyst Comments	
1	EPA 300.0	•	
2	EPA 300.0		
3	SW846 7470A		
4	SW846 3005A/6020B		
5	SW846 3005A/6020B		
6	SM 2540C		
7	SM 4500-S (2-) D		
8	SM 2320B		

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 16 of 42 SDG: 683173

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 12, 2024

GPCC00101

GPCC001

Company: Georgia Power Company, Southern Company
Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-44 Sample ID: 683173007

Matrix: WG

Collect Date: 27-AUG-24 17:21
Receive Date: 28-AUG-24
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liqu	id "As Recei	ved"									
Sulfate		41.8	0.665	2.00	mg/L		5	TXT1	08/29/24	0953 2664366	1
Chloride		5.99	0.0670	0.200	mg/L		1	TXT1	08/28/24	2343 2664366	2
Fluoride		0.193	0.0330	0.100	mg/L		1				
Nitrate-N	J	0.0416	0.0330	0.100	mg/L		1				
Mercury Analysis-CVA	A										
7470 Cold Vapor Mercu	ıry, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	08/30/24	1340 2664552	3
Metals Analysis-ICP-M	S										
SW846 3005A/6020B ".		"									
Boron		1.16	0.0520	0.150	mg/L	1.00	10	BAJ	09/08/24	1233 2664353	4
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	09/07/24	1719 2664353	5
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium		0.0524	0.000670	0.00400	mg/L	1.00	1				
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1				
Iron	U	ND	0.0330	0.100	mg/L	1.00					
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium	J	0.00629	0.00300	0.0100	mg/L	1.00					
Magnesium		10.5	0.0100	0.0300	mg/L	1.00					
Manganese		0.404	0.00100	0.00500	mg/L	1.00					
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00					
Potassium		2.65	0.0800	0.300	mg/L	1.00					
Selenium	U	ND	0.00150	0.00500	mg/L	1.00					
Sodium		11.9	0.0800	0.250	mg/L	1.00					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00					
Calcium		24.9	0.0800	0.200	mg/L	1.00	1	BAJ	09/08/24	1228 2664353	6
Solids Analysis											
SM2540C Dissolved So	lids "As Rec	eived"									
Total Dissolved Solids		180	2.38	10.0	mg/L			KLP1	09/03/24	1558 2666213	7
Spectrometric Analysis											
SM 4500-S(2-) D Sulfid	le "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	08/29/24	1101 2664625	8

Page 17 of 42 SDG: 683173

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 12, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-44 Project: GPCC00101
Sample ID: 683173007 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF A	nalyst Date	Time Batch	Method
Titration and Ion Ana	lysis									
SM 2320B Total Alka	alinity "As Rec	eived"								
Alkalinity, Total as CaCO3	3	76.7	0.725	2.00	mg/L		JV	72 08/28/24	1648 2664341	9
Bicarbonate alkalinity (Cad	CO3)	76.7	0.725	2.00	mg/L					
Carbonate alkalinity (CaCo	O3) U	ND	0.725	2.00	mg/L					
The following Prep M	lethods were p	erformed:								
Method	Description	n		Analyst	Date		Time	Prep Batch	ı	
SW846 7470A Prep	EPA 7470A	Mercury Prep Liqui	id	JM13	08/29/24		1110	2664551		
SW846 3005A	ICP-MS 300:	5A PREP		BB2	08/31/24		0950	2664350		
TT1 0.11 1 4 1										

The following Analytical Methods were performed:

Method	Description	Analyst Comments
1	EPA 300.0	
2	EPA 300.0	
3	SW846 7470A	
4	SW846 3005A/6020B	
5	SW846 3005A/6020B	
6	SW846 3005A/6020B	
7	SM 2540C	
8	SM 4500-S (2-) D	
9	SM 2320B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 18 of 42 SDG: 683173

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 12, 2024

GPCC00101

GPCC001

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-APBCD-FD-01

Sample ID: 683173008

Matrix: WQ

Collect Date: 27-AUG-24 12:00
Receive Date: 28-AUG-24
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liqu	id "As Recei	ived"									
Sulfate		177	2.66	8.00	mg/L		20	TXT1	08/29/24	1024 2664366	1
Chloride		4.45	0.0670	0.200	mg/L		1	TXT1	08/29/24	0015 2664366	2
Fluoride		0.398	0.0330	0.100	mg/L		1				
Nitrate-N	U	ND	0.0330	0.100	mg/L		1				
Mercury Analysis-CVA	Α										
7470 Cold Vapor Mercu	ıry, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	08/30/24	1341 2664552	3
Metals Analysis-ICP-M	S				Ç						
SW846 3005A/6020B ".		"									
Boron		1.32	0.0520	0.150	mg/L	1.00	10	BAJ	09/08/24	1231 2664353	4
Calcium		73.7	0.800	2.00	mg/L	1.00	10				
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	09/07/24	1722 2664353	5
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium		0.0162	0.000670	0.00400	mg/L	1.00	1				
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt		0.00543	0.000300	0.00100	mg/L	1.00	1				
Iron	U	ND	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Magnesium		7.08	0.0100	0.0300	mg/L	1.00	1				
Manganese		0.402	0.00100	0.00500	mg/L	1.00	1				
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1				
Potassium		4.90	0.0800	0.300	mg/L	1.00	1				
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1				
Sodium		16.4	0.0800	0.250	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Solids Analysis											
SM2540C Dissolved So	olids "As Rec	eived"									
Total Dissolved Solids		340	2.38	10.0	mg/L			KLP1	09/03/24	1558 2666213	6
Spectrometric Analysis											
SM 4500-S(2-) D Sulfid	le "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	08/29/24	1101 2664625	7

Page 19 of 42 SDG: 683173

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 12, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-APBCD-FD-01 Project: GPCC00101
Sample ID: 683173008 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF A	nalyst Date	Time Batch	Method
Titration and Ion Analy	ysis									
SM 2320B Total Alkal	inity "As Rec	eived"								
Alkalinity, Total as CaCO3		52.1	0.725	2.00	mg/L		JV	W2 08/28/24	1649 2664341	8
Bicarbonate alkalinity (CaCo	O3)	52.1	0.725	2.00	mg/L					
Carbonate alkalinity (CaCO	3) U	ND	0.725	2.00	mg/L					
The following Prep Me	ethods were p	erformed:								
Method	Description	n		Analyst	Date		Time	Prep Batch		
SW846 7470A Prep	EPA 7470A I	Mercury Prep Liquid		JM13	08/29/24		1110	2664551		
SW846 3005A	ICP-MS 3005	5A PREP		BB2	08/31/24		0950	2664350		

The following Analytical Methods were performed:

The felle wing f	The following Thialfytheat Metallouis were performed.						
Method	Description	Analyst Comments					
1	EPA 300.0	•					
2	EPA 300.0						
3	SW846 7470A						
4	SW846 3005A/6020B						
5	SW846 3005A/6020B						
6	SM 2540C						
7	SM 4500-S (2-) D						
8	SM 2320B						

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 20 of 42 SDG: 683173

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 12, 2024

GPCC00101

GPCC001

Client ID:

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-APBCD-EB-04 Project:

Sample ID: 683173009

Matrix: WG

Collect Date: 27-AUG-24 17:45
Receive Date: 28-AUG-24
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	e Batch	Method
Ion Chromatography												
EPA 300.0 Anions Liqu	id "As Recei	ived"										
Chloride	J	0.118	0.0670	0.200	mg/L		1	TXT1	08/29/24	0047	2664366	1
Fluoride	U	ND	0.0330	0.100	mg/L		1					
Nitrate-N	U	ND	0.0330	0.100	mg/L		1					
Sulfate	U	ND	0.133	0.400	mg/L		1					
Mercury Analysis-CVA	A											
7470 Cold Vapor Mercu	ıry, Liquid "	As Received"										
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	08/30/24	1343	2664552	2
Metals Analysis-ICP-M	S											
SW846 3005A/6020B ".	As Received	<u> </u> "										
Boron	U	ND	0.00520	0.0150	mg/L	1.00	1	BAJ	09/08/24	1124	2664353	3
Calcium	U	ND	0.0800	0.200	mg/L	1.00	1					
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	09/07/24	1531	2664353	4
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1					
Barium	U	ND	0.000670	0.00400	mg/L	1.00	1					
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1					
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1					
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1					
Iron	U	ND	0.0330	0.100	mg/L	1.00	1					
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1					
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Magnesium	U	ND	0.0100	0.0300	mg/L	1.00	1					
Manganese	U	ND	0.00100	0.00500	mg/L	1.00	1					
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1					
Potassium	U	ND	0.0800	0.300	mg/L	1.00	1					
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1					
Sodium	U	ND	0.0800	0.250	mg/L	1.00	1					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1					
Solids Analysis												
SM2540C Dissolved So	lids "As Rec	eived"										
Total Dissolved Solids	U	ND	2.38	10.0	mg/L			KLP1	09/03/24	1558	2666213	5
Spectrometric Analysis												
SM 4500-S(2-) D Sulfid	le "As Recei	ved"										
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	08/29/24	1101	2664625	6
					-							

Page 21 of 42 SDG: 683173

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 12, 2024

Company: Georgia Power Company, Southern Company
Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-APBCD-EB-04 Project: GPCC00101
Sample ID: 683173009 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF At	nalyst Date	Time Batch	Method
Titration and Ion Anal	ysis									
SM 2320B Total Alka	linity "As Rec	eived"								
Alkalinity, Total as CaCO3	J	0.900	0.725	2.00	mg/L		JW	2 08/28/24	1650 2664341	7
Bicarbonate alkalinity (CaC	O3) J	0.900	0.725	2.00	mg/L					
Carbonate alkalinity (CaCO	3) U	ND	0.725	2.00	mg/L					
The following Prep M	ethods were p	erformed:								
Method	Description	n		Analyst	Date		Time	Prep Batch	ı	
SW846 7470A Prep	EPA 7470A I	Mercury Prep Liquid		JM13	08/29/24		1110	2664551		
SW846 3005A	ICP-MS 3005	5A PREP		BB2	08/31/24		0950	2664350		
TTI 6.11 1 1 1 1										

The following Analytical Methods were performed:

The following i	The following rinary floar Methods were performed.					
Method	Description	Analyst Comments				
1	EPA 300.0	•				
2	SW846 7470A					
3	SW846 3005A/6020B					
4	SW846 3005A/6020B					
5	SM 2540C					
6	SM 4500-S (2-) D					
7	SM 2320B					

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 22 of 42 SDG: 683173

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: September 12, 2024

Page 1 of 12

Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia

Contact: Joju Abraham

Workorder: 683173

Parmname	NOM	Sample Qual	QC	Units	RPD% REC	% Range Anlst	Date Time
Ion Chromatography Batch 2664366							
QC1205838463 683173001 DUP Chloride		2.16	2.15	mg/L	0.283	(0%-20%) TXT1	08/28/24 18:56
Fluoride		0.204	0.213	mg/L	4.51 ^	(+/-0.100)	
Nitrate-N		1.28	1.28	mg/L	0.265	(0%-20%)	08/29/24 02:23
Sulfate		9.73	9.63	mg/L	1.02	(0%-20%)	08/28/24 18:56
QC1205838462 LCS Chloride	5.00		4.64	mg/L	92.8	(90%-110%)	08/28/24 17:53
Fluoride	2.50		2.45	mg/L	98	(90%-110%)	
Nitrate-N	2.50		2.38	mg/L	95	(90%-110%)	
Sulfate	10.0		9.41	mg/L	94.1	(90%-110%)	
QC1205838461 MB Chloride		J	0.115	mg/L			08/28/24 17:21
Fluoride		U	ND	mg/L			
Nitrate-N		U	ND	mg/L			
Sulfate		U	ND	mg/L			

Page 23 of 42 SDG: 683173

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683173 Page 2 of 12 Sample Qual Parmname **NOM** QC Units RPD% REC% Range Anlst Date Time Ion Chromatography 2664366 Batch QC1205838464 683173001 PS 7.01 2.16 97 Chloride 5.00 mg/L (90%-110%) TXT1 08/28/24 19:28 Fluoride 2.50 0.204 2.67 98.8 (90%-110%) mg/L Nitrate-N 2.50 0.642 2.97 mg/L 93.3 (90%-110%) 08/29/24 02:55 Sulfate 10.0 9.73 19.7 mg/L 99.7 (90%-110%) 08/28/24 19:28 **Metals Analysis - ICPMS** 2664353 Batch QC1205838425 0.0500 0.0500 99.9 (80%-120%) BAJ 09/07/24 15:23 Antimony mg/L 0.0500 0.0498 99.7 Arsenic mg/L (80%-120%) Barium 0.0500 0.0514 mg/L 103 (80%-120%) Beryllium 0.0500 0.0559 112 (80%-120%) mg/L 0.100 0.103 103 (80%-120%) 09/08/24 11:19 Boron mg/L Cadmium 0.0500 0.0505 mg/L 101 (80%-120%) 09/07/24 15:23 2.03 Calcium 2.00 102 09/08/24 11:19 mg/L (80%-120%) Chromium 0.0500 0.0506 101 09/07/24 15:23 mg/L (80%-120%)Cobalt 0.0500 0.0494 98.8 (80%-120%) mg/L

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683173 Page 3 of 12 QC RPD% REC% Range Parmname NOM Sample Qual Units Anlst Date Time Metals Analysis - ICPMS Batch 2664353 Iron 2.00 1.99 mg/L 99.4 (80%-120%) BAJ 09/07/24 15:23 Lead 0.0500 0.0497 99.4 (80%-120%) mg/L 0.0500 0.0525 Lithium mg/L 105 (80%-120%) 2.17 Magnesium 2.00 mg/L109 (80%-120%) 0.0500 0.0495 Manganese 99 (80%-120%) mg/L Molybdenum 0.0500 0.0513 mg/L 103 (80%-120%) Potassium 2.00 2.03 101 (80%-120%) mg/L 0.0500 0.0521 Selenium mg/L 104 (80%-120%) Sodium 2.00 2.13 mg/L 107 (80%-120%) Thallium 0.0500 0.0474 94.8 (80%-120%) mg/L QC1205838424 MB U 09/07/24 15:20 ND Antimony mg/L U ND Arsenic mg/L Barium U ND mg/L Beryllium U ND mg/L

Page 25 of 42 SDG: 683173

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 4 of 12 P<u>armname</u> NOM QC RPD% REC% Sample Qual Units Range Anlst Date Time Metals Analysis - ICPMS 2664353 Batch U Boron ND mg/L BAJ 09/08/24 11:18 U Cadmium ND mg/L 09/07/24 15:20 Calcium U ND mg/L 09/08/24 11:18 Chromium U ND mg/L 09/07/24 15:20 Cobalt U ND mg/LIron U ND mg/L U ND Lead mg/LU ND Lithium mg/L U Magnesium ND mg/LManganese U ND mg/L Molybdenum U ND mg/L Potassium U ND mg/LU ND Selenium mg/L U ND Sodium mg/L

Workorder:

683173

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683173 Page 5 of 12 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2664353 Batch Thallium U ND mg/L BAJ 09/07/24 15:20 QC1205838426 683169001 MS 0.0500 U ND 0.0528 106 09/07/24 15:47 Antimony mg/L (75%-125%) 0.0500 U ND 0.0542 Arsenic mg/L 106 (75%-125%) Barium 0.0500 0.0164 0.0685 mg/L 104 (75%-125%) Beryllium 0.0500 0.006440.0655 118 (75%-125%) mg/L Boron 0.100 1.31 1.41 mg/L N/A (75%-125%) 09/08/24 11:50 0.000341 0.0521 Cadmium 0.0500 104 (75%-125%) 09/07/24 15:47 mg/L 29.2 Calcium 2.00 26.7 09/08/24 11:40 mg/L N/A (75%-125%) Chromium 0.0500 0.00328 0.0546 103 (75%-125%) 09/07/24 15:47 mg/L 0.0500 0.119 0.169 101 Cobalt mg/L (75%-125%)2.00 U ND Iron 2.04 mg/L 101 (75%-125%) 0.0500 ND 0.0494 98.3 Lead mg/L (75%-125%) Lithium 0.0500 0.0200 0.0745 mg/L 109 (75%-125%) Magnesium 2.00 27.9 30.2 mg/L N/A (75%-125%)

Page 27 of 42 SDG: 683173

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

683173 Page 6 of 12 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2664353 Batch Manganese 0.0500 1.26 1.30 mg/L N/A (75%-125%) BAJ09/07/24 16:03 0.0500 U ND 0.0559 112 09/07/24 15:47 Molybdenum mg/L (75%-125%) 5.23 7.47 Potassium 2.00 mg/L 112 (75%-125%) 0.0500 0.0180 0.0714 Selenium mg/L 107 (75%-125%) Sodium 2.00 32.8 34.6 N/A mg/L (75%-125%)Thallium 0.0500 U ND 0.0477 95.1 (75%-125%) mg/L QC1205838427 683169001 MSD Antimony 0.0500 U ND 0.0521 mg/L 1.44 104 (0%-20%)09/07/24 15:50 ND 0.0524 102 0.0500 U 3.41 (0%-20%) Arsenic mg/L 0.0164 0.0500 0.0676102 Barium mg/L 1.27 (0%-20%)Beryllium 0.0500 0.00644 0.0636 mg/L2.89 114 (0%-20%) 0.100 1.31 1.36 09/08/24 11:51 Boron 4.08 N/A (0%-20%) mg/L 0.0500 0.000341 0.0520 Cadmium J mg/L 0.292 103 (0%-20%)09/07/24 15:50 2.95 Calcium 2.00 26.7 28.3 mg/L N/A (0%-20%) 09/08/24 11:41 Chromium 0.0500 0.00328 0.0528 mg/L 3.3 99.1 (0%-20%)09/07/24 15:50

Page 28 of 42 SDG: 683173

Workorder:

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683173 Page 7 of 12 **Parmname** NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2664353 Batch Cobalt 0.0500 0.119 0.165 mg/L 2.25 93 (0%-20%)BAJ 09/07/24 15:50 2.00 U ND 2.00 2.01 99.1 (0%-20%) Iron mg/L ND 0.0489 Lead 0.0500 U mg/L 0.94 97.4 (0%-20%) 0.0500 0.0200 0.0738 Lithium mg/L 0.875 108 (0%-20%) 29.4 2.00 27.9 2.87 N/A (0%-20%)Magnesium mg/L 0.0500 1.26 1.25 4.06 N/A (0%-20%)09/07/24 16:05 Manganese mg/L 0.0500 U ND 0.0554 mg/L 111 (0%-20%) 09/07/24 15:50 Molybdenum 0.967 Potassium 2.00 5.23 7.14 mg/L 4.48 95.4 (0%-20%)Selenium 0.0500 0.0180 0.0700 mg/L 1.97 104 (0%-20%) 2.00 32.8 33.9 2.02 N/A Sodium mg/L (0%-20%)0.0500 U ND Thallium 0.0466 mg/L 2.37 92.9 (0%-20%)QC1205838428 683169001 SDILT U ND U ND 09/07/24 15:56 Antimony ug/L N/A (0%-20%)Arsenic U ND U ND ug/L N/A (0%-20%) Barium 16.4 J 3.42 ug/L 4.18 (0%-20%)

Page 29 of 42 SDG: 683173

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683173 Page 8 of 12 QC RPD% REC% **Parmname NOM** Sample Qual Units Range Anlst Date Time Metals Analysis - ICPMS 2664353 Batch ug/L Beryllium 6.44 1.25 3.4 (0%-20%)BAJ 09/07/24 15:56 Boron 131 31.0 ug/L 17.9 (0%-20%) 09/08/24 11:52 J 0.341 U ND Cadmium ug/L N/A (0%-20%) 09/07/24 15:56 26700 5480 ug/L Calcium 2.83 (0%-20%) 09/08/24 11:43 J 3.28 ND ug/L Chromium U N/A (0%-20%)09/07/24 15:56 ug/L Cobalt 119 24.5 2.95 (0%-20%) U ug/L ND U ND N/A (0%-20%) Iron U U Lead ND ND ug/L N/A (0%-20%)ug/L Lithium 20.0 3.83 4.15 (0%-20%) 27900 5950 (0%-20%) Magnesium ug/L 6.39 Manganese 126 25.3 ug/L .101 (0%-20%)09/07/24 16:08 U ND U ND 09/07/24 15:56 Molybdenum ug/L N/A (0%-20%) 5230 1060 .798 (0%-20%) Potassium ug/L Selenium 18.0 J 3.83 ug/L (0%-20%) 6.1

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683173 Page 9 of 12 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2664353 Batch Sodium 32800 6560 ug/L.000277 (0%-20%)BAJ 09/07/24 15:56 Thallium U ND U ND (0%-20%) ug/L N/A Metals Analysis-Mercury 2664552 QC1205838870 683169001 DUP Mercury U ND U ND mg/L N/A JP2 08/30/24 13:08 QC1205838869 LCS 0.00200 0.00204 102 (80%-120%) 08/30/24 13:05 Mercury mg/L QC1205838868 MB U ND 08/30/24 13:03 Mercury mg/L QC1205838871 683169001 MS 0.00200 U ND 0.00203 99.5 08/30/24 13:13 Mercury mg/L (75%-125%) QC1205838872 683169001 SDILT U ND U ND ug/L N/A (0%-10%) 08/30/24 13:15 Mercury Solids Analysis Batch 2666213 QC1205842577 683169001 DUP 370 401 mg/L 8.04 * (0%-5%) KLP1 09/03/24 15:58 **Total Dissolved Solids** QC1205842578 683173007 DUP Total Dissolved Solids 180 178 mg/L 1.12 (0%-5%) 09/03/24 15:58 QC1205842576 300 294 mg/L09/03/24 15:58 Total Dissolved Solids 98 (95%-105%)

GEL LABORATORIES LLC 2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683173				2		,					
		NO	4	Samuela Onal		TT24	PPD0/	DEC0/		A 1 4	Page 10 of 12
Parmname		NON	1	Sample Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Solids Analysis Batch 2666213 QC1205842575 MB											
Total Dissolved Solids				U	ND	mg/L				KLP1	09/03/24 15:58
Spectrometric Analysis Batch 2664625											
QC1205838996 LCS Total Sulfide		0.400			0.409	mg/L		102	(85%-115%)) JW2	08/29/24 11:00
QC1205838995 MB Total Sulfide				U	ND	mg/L					08/29/24 11:00
QC1205838997 683169001 Total Sulfide	PS	0.400	U	ND	0.389	mg/L		97.2	(75%-125%))	08/29/24 11:00
QC1205838999 683176001 Total Sulfide	PS	0.400	U	ND	0.401	mg/L		100	(75%-125%))	08/29/24 11:01
QC1205838998 683169001 Total Sulfide	PSD	0.400	U	ND	0.378	mg/L	2.9	94.4	(0%-15%))	08/29/24 11:00
QC1205839000 683176001 Total Sulfide	PSD	0.400	U	ND	0.393	mg/L	2.18	98.2	(0%-15%))	08/29/24 11:01
Titration and Ion Analysis Batch 2664341											
QC1205838409 LCS Alkalinity, Total as CaCO3		50.0			53.1	mg/L		106	(90%-110%)) JW2	08/28/24 16:28
QC1205838414 LCS Alkalinity, Total as CaCO3		15.0			14.4	mg/L		96	(90%-110%))	08/28/24 16:30
QC1205838415 LCSD Alkalinity, Total as CaCO3		50.0			52.9	mg/L	0.377	106	(0%-20%))	08/28/24 16:29

Page 32 of 42 SDG: 683173

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

683173 Page 11 of 12 **Parmname** NOM Sample Qual \mathbf{OC} Units RPD% REC% Range Anlst Date Time **Titration and Ion Analysis** Batch 2664341 QC1205838416 LCSD 14.1 mg/L Alkalinity, Total as CaCO3 15.0 2.11 94 (0%-20%)JW2 08/28/24 16:31

Notes:

Workorder:

The Qualifiers in this report are defined as follows:

- Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- N Metals--The Matrix spike sample recovery is not within specified control limits
- Η Analytical holding time was exceeded
- < Result is less than value reported
- > Result is greater than value reported
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- Z Paint Filter Test--Particulates passed through the filter, however no free liquids were observed.
- 5-day BOD--The 2:1 depletion requirement was not met for this sample d
- Λ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- Е %difference of sample and SD is >10%. Sample concentration must meet flagging criteria
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Е General Chemistry--Concentration of the target analyte exceeds the instrument calibration range
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- FΒ Mercury was found present at quantifiable concentrations in field blanks received with these samples. Data associated with the blank are deemed invalid for reporting to regulatory agencies
- N1See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- R Per section 9.3.4.1 of Method 1664 Revision B, due to matrix spike recovery issues, this result may not be reported or used for regulatory compliance
- В The target analyte was detected in the associated blank.
- 5-day BOD--Test replicates show more than 30% difference between high and low values. The data is qualified per the method and can be used for reporting purposes
- See case narrative for an explanation

Page 33 of 42 SDG: 683173

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 12 of 12

Parmname NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

Workorder:

683173

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 34 of 42 SDG: 683173

[^] The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

^{*} Indicates that a Quality Control parameter was not within specifications.

Technical Case Narrative Georgia Power Company SDG #: 683173

Metals

Product: Determination of Metals by ICP-MS Analytical Method: SW846 3005A/6020B **Analytical Procedure:** GL-MA-E-014 REV# 36

Analytical Batch: 2664353

Preparation Method: SW846 3005A

Preparation Procedure: GL-MA-E-006 REV# 15

Preparation Batch: 2664350

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683173001	BRA-BRGWA-23S
683173002	BRA-APBCD-FB-01
683173003	BRA-BRGWC-29I
683173004	BRA-BRGWC-27I
683173005	BRA-PZ-74I
683173006	BRA-PZ-75I
683173007	BRA-PZ-44
683173008	BRA-APBCD-FD-01
683173009	BRA-APBCD-EB-04
1205838424	Method Blank (MB)ICP-MS
1205838425	Laboratory Control Sample (LCS)
1205838428	683169001(BRA-BRGWC-38SL) Serial Dilution (SD)
1205838426	683169001(BRA-BRGWC-38SS) Matrix Spike (MS)
1205838427	683169001(BRA-BRGWC-38SSD) Matrix Spike Duplicate (MSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Calibration Information

ICSA/ICSAB Statement

For the ICP-MS analysis, the ICSA solution contains analyte concentrations which are verified trace impurities indigenous to the purchased standard.

Technical Information

Sample Dilutions

Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range. Samples 683173003 (BRA-BRGWC-29I), 683173004 (BRA-BRGWC-27I), 683173005 (BRA-PZ-74I), 683173006 (BRA-PZ-75I), 683173007 (BRA-PZ-44) and 683173008 (BRA-APBCD-FD-01) were diluted to ensure that the analyte concentrations were within the linear

Page 35 of 42 SDG: 683173

calibration range of the instrument.

A 14 -	683173								
Analyte	003	004	005	006	007	008			
Boron	10X	10X	10X	10X	10X	10X			
Calcium	10X	10X	10X	10X	1X	10X			
Manganese	10X	1X	1X	1X	1X	1X			

Product: Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer

Analytical Method: SW846 7470A

Analytical Procedure: GL-MA-E-010 REV# 40

Analytical Batch: 2664552

Preparation Method: SW846 7470A Prep

Preparation Procedure: GL-MA-E-010 REV# 40

Preparation Batch: 2664551

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683173001	BRA-BRGWA-23S
683173002	BRA-APBCD-FB-01
683173003	BRA-BRGWC-29I
683173004	BRA-BRGWC-27I
683173005	BRA-PZ-74I
683173006	BRA-PZ-75I
683173007	BRA-PZ-44
683173008	BRA-APBCD-FD-01
683173009	BRA-APBCD-EB-04
1205838868	Method Blank (MB)CVAA
1205838869	Laboratory Control Sample (LCS)
1205838872	683169001(BRA-BRGWC-38SL) Serial Dilution (SD)
1205838870	683169001(BRA-BRGWC-38SD) Sample Duplicate (DUP)
1205838871	683169001(BRA-BRGWC-38SS) Matrix Spike (MS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

General Chemistry

Product: Ion Chromatography Analytical Method: EPA 300.0

Analytical Procedure: GL-GC-E-086 REV# 35

Analytical Batch: 2664366

Page 36 of 42 SDG: 683173

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683173001	BRA-BRGWA-23S
683173002	BRA-APBCD-FB-01
683173003	BRA-BRGWC-29I
683173004	BRA-BRGWC-27I
683173005	BRA-PZ-74I
683173006	BRA-PZ-75I
683173007	BRA-PZ-44
683173008	BRA-APBCD-FD-01
683173009	BRA-APBCD-EB-04
1205838461	Method Blank (MB)
1205838462	Laboratory Control Sample (LCS)
1205838463	683173001(BRA-BRGWA-23S) Sample Duplicate (DUP)
1205838464	683173001(BRA-BRGWA-23S) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Sample Dilutions

The following samples 683173003 (BRA-BRGWC-29I), 683173004 (BRA-BRGWC-27I), 683173005 (BRA-PZ-74I), 683173006 (BRA-PZ-75I), 683173007 (BRA-PZ-44) and 683173008 (BRA-APBCD-FD-01) were diluted because target analyte concentrations exceeded the calibration range. The following samples 1205838463 (BRA-BRGWA-23SDUP), 1205838464 (BRA-BRGWA-23SPS) and 683173001 (BRA-BRGWA-23S) in this sample group were diluted due to matrix interference. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

A 14 -		683173								
Analyte	001	003	004	005	006	007	008			
Chloride	1X	1X	1X	25X	1X	1X	1X			
Nitrate-N	2X	1X	1X	1X	1X	1X	1X			
Sulfate	1X	25X	25X	25X	25X	5X	20X			

Miscellaneous Information

Manual Integrations

Samples 683173003 (BRA-BRGWC-29I) and 683173008 (BRA-APBCD-FD-01) were manually integrated to correctly position the baseline as set in the calibration standards.

Product: Solids, Total Dissolved Analytical Method: SM 2540C

Analytical Procedure: GL-GC-E-001 REV# 21

Analytical Batch: 2666213

Page 37 of 42 SDG: 683173

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683173001	BRA-BRGWA-23S
683173002	BRA-APBCD-FB-01
683173003	BRA-BRGWC-29I
683173004	BRA-BRGWC-27I
683173005	BRA-PZ-74I
683173006	BRA-PZ-75I
683173007	BRA-PZ-44
683173008	BRA-APBCD-FD-01
683173009	BRA-APBCD-EB-04
1205842575	Method Blank (MB)
1205842576	Laboratory Control Sample (LCS)
1205842577	683169001(BRA-BRGWC-38S) Sample Duplicate (DUP)
1205842578	683173007(BRA-PZ-44) Sample Duplicate (DUP)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Duplicate Relative Percent Difference (RPD) Statement

The Relative Percent Difference (RPD) between the sample and duplicate falls outside of the established acceptance limits because of the heterogeneous matrix of the sample:

Analyte	Sample	Value
Total Dissolved Solids	1205842577 (BRA-BRGWC-38SDUP)	8.04* (0%-5%)

Product: Sulfide, Total

Analytical Method: SM 4500-S (2-) D

Analytical Procedure: GL-GC-E-052 REV# 13

Analytical Batch: 2664625

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683173001	BRA-BRGWA-23S
683173002	BRA-APBCD-FB-01
683173003	BRA-BRGWC-29I
683173004	BRA-BRGWC-27I
683173005	BRA-PZ-74I
683173006	BRA-PZ-75I
683173007	BRA-PZ-44
683173008	BRA-APBCD-FD-01
683173009	BRA-APBCD-EB-04
1205838995	Method Blank (MB)

1205838996	Laboratory Control Sample (LCS)
1205838997	683169001(BRA-BRGWC-38S) Post Spike (PS)
1205838998	683169001(BRA-BRGWC-38S) Post Spike Duplicate (PSD)
1205838999	683176001(BRA-BRGWA-2S) Post Spike (PS)
1205839000	683176001(BRA-BRGWA-2S) Post Spike Duplicate (PSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: Alkalinity

Analytical Method: SM 2320B

Analytical Procedure: GL-GC-E-033 REV# 16

Analytical Batch: 2664341

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683173001	BRA-BRGWA-23S
683173002	BRA-APBCD-FB-01
683173003	BRA-BRGWC-29I
683173004	BRA-BRGWC-27I
683173005	BRA-PZ-74I
683173006	BRA-PZ-75I
683173007	BRA-PZ-44
683173008	BRA-APBCD-FD-01
683173009	BRA-APBCD-EB-04
1205838409	Laboratory Control Sample (LCS)
1205838414	Laboratory Control Sample (LCS)
1205838415	Laboratory Control Sample Duplicate (LCSD)
1205838416	Laboratory Control Sample Duplicate (LCSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Laboratory Control Sample Duplicate (LCSD)

An LCSD was used in place of matrix QC due to limited sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 39 of 42 SDG: 683173

Columnian Circ (23.177.00) Columnian Circ	Phone: (843) 556-8171	Client Name: GA Power	Chain of Custody Chain of Custody GEL P, The # 404-506-7116 The Contacts The Cont	And Analytic organization of the sample of t	Same Solution or a general containers of the same of t	nt Analy			Phon	e: (843) 556-8171	
# 404-506-7116 Should this sample be sample sampl	Specify:	Project/Site Name: GA Power	6 Cts	A S S S S S S S S S S S S S S S S S S S	S G G G Gontainers S G G G G G G G G G G G G G G G G G G	le Analy:			LFAX	(843) 766-1178	
Should this sample be Sample be Contacts Should this Sample be Contacts Should this Sample be Considered; Sample be Considered; Sample be Contacts Sample be Contacts Sample be Sample be Sample be Sample be Contacts Sample be Sample be Sample be Sample be Sample be Sample be Sample collection Time Sample Collection Sam	Paper Pape	S = 3 E = 0 12 12 12 12 12 12 12 12 12 12 12 12 12	cts Field N N A A A A A A A A A A A	II) Badioactive (If	shrexell aldisson		sis Req		103459	unber of containers	for each test)
Contacts Contacts Contacts Contacts Code 3 Fillered 9 Sumple be Contacts Code 3 Fillered 9 Mantry 6 Code 3 Fillered 9 Code 3 Fillered 9 Mantry 6 Fillered 9 Man	Code 20 Titled Sample Contacts Code 20 Titled Sample Code 20 Titled Code 20 Titled Code 20 Contact Code 20 Code	0 = 3 = 3 = 6 0 W W W W D = 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	cts Field N N S S S S S S S S S S S S S S S S S	II) syrinosoling	possible Hazards		IN	IN			< Preservative Type (6)
CC Send Results To. SCS & Goosyntee Contacts Collected Col	### Paritic [] Contral [] Mounts Mounts Mou	0 9 2 2 2 0 1 10 10 10 10 10 10 10 10 10 10 10 10	Cts Field N N N S S S S S S S S S S S S S S S S	II) Sylioactive (If	bossiple Hazards	O3		8			Comments
Code	Mall: X Rush: Specify: A [] QC Summary [] Ievel 1 [x] Level 2 Metals: B,Ca,Sb,As,Ba,Be,Cd,Cr,Co,Ph,Li,Mo,Se, 7 Sifem [] Pacific [] Central [] Mounts	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Code (3) Filtered (3) O N N S S S S S S S S S S S S S S S S S	Radioactive yes, please sup	possible Haza	TDS, N	S * S	9 8 228		4	Note: extra sample is
50 G N WG R V V V V V V V V V		0 10 10 10 10 10 10 10 10 10 10 10 10 10	255554 _x	A A	d	Cl' E' 200' 2	SM 23.	S2 muibsA			required for sample specific QC Task_Code: BRA-CCR-ASSMT-2074S2
5 6 W W 6 8 V V V V 5 6 N W 6 8 V V V V 6 N W 6 8 V V V V 7 6 N W 6 8 V V V V 8 V V V V V 9 N W 8 V V V V 9 N W 8 W V V V 1 N W 8 W W W 1 N W 8 W W W 1 N W W W W W 2 N W W W W W 3 N V V V W 4 N W W W W W 5 N W W W W W 6 N W W W W W W 7 N W W W W W 8 N V V V W 9 N W W W W 1 N W W W W 1 N W W W 2 N W W W W 3 N W W W 4 N W W W W 5 N W W W W 6 N W W W W 7 N W W W 8 N V V V 9 N W W W 1 N W W 1 N W W 1 N W W 1 N W W 1 N W W 1 N W W 1 N W W 1 N W W 1 N W W 1 N W W 1 N W W 1 N W W 1 N W W 1 N W W 1 N W 1 N W W 1 N W W 1 N W W 1 N W W 1 N W W 1 N W W 1 N W W 1 N W W 1 N W W 1 N W W 1 N W W 1 N W W 1 N W W 1 N W W 1 N W W 1 N W W 1 N W W 1 N W 1 N W W 1 N		1 10 1 0 - 1 10 1 1 1 1 1 1 1 1 1 1 1 1	255555	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	W 80 80 1)	7	7)		
5 6 N √C √	Constant Control Con	10 th 21 0 - 1 10 10 10 10 10 10 10 10 10 10 10 10 1	25555	20000	PO 00 1	>	7	1	>		
1	mal: x Rush: Specify: (Subject to Surcharge Metals: B,Ca,Sb,As,Ba,Be,Cd,Cr,Co,Pb,Li,Mo,Se,Tl,Fe,Mg,Mn,K,Na,Hg Pr: Custody Seal Intact? [] Yes [] Mountain [] Other: °C astern [] Pacific [] Central [] Mountain [] Other:	4 20 -1 10 20	25555	2500	60 1	/	7	1	7		
C	Transl: X Rush: Specify: (Subject to Surcharge No Sundange No Subject to Surcharge No Subject To Subject to Surcharge No Subject To Subject to Surcharge No Subject To Su	20 21 10 20 20	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	200	1	>)	7	>		
6 N w6	mal: x Rush: Specify: (Subject to Surcharge No Color Summary [] level 1 [x] Level 2 [] Level 3 [] Level Metals: B,Ca,Sb,As,Ba,Be,Cd,Cr,Co,Pb,Li,Mo,Se,Tl,Fe,Mg,Mn,K,Na,Hg Pr: Custody Seal Intact? [] Yes [] No Cooler Temp: °C astern [] Pacific [] Central [] Mountain [] Other:	0 _ 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2555	26	V	>	7	7	7		
6 N W6	Tanal: X Rush: Specify: (Subject to Surcharge No Clastody Seal Interest of Sucharge No Clastody Seal Interest of Sucharge N: Custody Seal Interest of Seal No Cooler Temp: °C astern [] Pacific [] Central [] Mountain [] Other:	- L P	\$ \$ \$ \$ e e e e	20	(%)	7	1	1)		
5 W W B S	mal: x Rush: Specify: (Subject to Surcharge No Country of Sucharge No Country [] level 1 [x] Level 2 [] Level 3 [] Level Metals: B,Ca,Sb,As,Ba,Be,Cd,Cr,Co,Pb,Li,Mo,Se,Tl,Fe,Mg,Mn,K,Na,Hg Py: Custody Seal Intact? [] Yes [] No Cooler Temp: °C astern [] Pacific [] Central [] Mountain [] Other:		2 8		X	7	,	7	7		
Date Time Fax Results: [] Yes [x] No Specify: Sp	Taal: X Rush: Specify: (Subject to Surcharge No A [] QC Summary [] level 1 [x] Level 2 [] Level 3 [] Level Metals: B,Ca,Sb,As,Ba,Be,Cd,Cr,Co,Pb,Li,Mo,Se,Tl,Fe,Mg,Mn,K,Na,Hg P; Clustody Seal Intact? [] Yes [] No Cooler Temp: °C astern [] Pacific [] Central [] Mountain [] Other:	2 2	6 N	NG	8	>	7	1	7		
Date Time Fax Results: [] Yes [x] No Time Fax Results: [] Yes [x] No Summary [] level 1 [x] Level 2 [] Level 3 [] Level 4 [] Cof 4 [] QC Summary [] level 1 [x] Level 3 [] Level 5 [] Level 5 [] Cof 4 [] QC Summary [] level 1 [x] Level 3 [] Level 5 [] Level 6 [] Cof 7 [] Cof 6 [] Level 7 [] Level 9 [] Level 9 [] Level 8 [] Meaths: 8, Ca, Sb, As, Ba, Be, Cd, Cr, Co, Pb, Li, Mo, Se, Ti, Fe, Mg, Mn, K, Na, Hg 6 [] Cof 7 [] For Lab Receiving Use Only: Custody Seal Intact? [] Yes [] No Cooler Temp: °C Sample Collection Time Zone: [x] Eastern [] Pacific [] Central [] Mountain [] Other:	A [] OC Summary [] level 1 [x] Level 2 [] Level 3 [] Level 3 [] Level 3 [] Level 4 [] Level 4 [] Level 5 [] Level 6 [] Level 6 [] Level 7 [] Level 8 [] No Cooler Temp: °C astern [] Pacific [] Central [] Mountain [] Other:			0/4	00	7	7	7	7		
Date Time Fax Results: [] Yes [x] No Select Deliverable: [] C of A [] QC Summary [] level 1 [x] Level 2 [] Level 3 [] Level For Lab Receiving Use Only: Custody Seal Intact? [] Yes [] No Cooler Temp: oC Sample Collection Time Zone: [x] Bastern [] Pacific [] Central [] Mountain [] Other:	Specify: Subject to Surcharge Subject to Surcharge No A [] QC Summary [] level 1 [x] Level 2 [] Level 3 [] Level Metals: B,Ca,Sb,As,Ba,Be,Cd,Cr,Co,Pb,Li,Mo,Se,Tl,Fe,Mg,Mn,K,Na,Hg Provided Statem Pacific [] Central [] Mountain [] Other: Oth										
Date Time Fax Results: [] Yes [x] No Select Deliverable: [] C of A [] QC Summary [] level 1 [x] Level 2 [] Level 3 [] Level A 25 24 2 (Additional Remarks: * Metals: B,Ca,Sb,As,Ba,Be,Cd,Cr,Co,Pb,Li,Mo,Se,Tl,Fe,Mg,Mn,K,Na,Hg For Lab Receiving Use Only: Custody Seal Intact? [] Yes [] No Cooler Temp: °C Sample Collection Time Zone: [x] Eastern [] Pacific [] Central [] Mountain [] Other:	No A [] QC Summary [] level 1 [x] Level 2 [] Level 3 [] Level Metals: B,Ca,Sb,As,Ba,Be,Cd,Cr,Co,Pb,Li,Mo,Se,Tl,Fe,Mg,Mn,K,Na,Hg y: Custody Seal Intact? [] Yes [] No Cooler Temp: °C astern [] Pacific [] Central [] Mountain [] Other:				TATR	equested:		nal: x		pecify:	(Subject to Surcharge)
Select Deliverable: [] C of A [] QC Summary [] level 1 [x] Level 2 [] Level 3 [] Level 3 [] Level 4 [] Z S Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	A []QC Summary []level 1 [x] Level 2 []Level 3 []Level Metals: B,Ca,Sb,As,Ba,Be,Cd,Cr,Co,Pb,Li,Mo,Se,Tl,Fe,Mg,Mn,K,Na,Hg P: Custody Seal Intact? []Yes []No Cooler Temp: °C astern []Pacific []Central []Mountain []Other:	2		124	ax Results:	[] Yes					,
Sample Collection Time Zone: [X] Eastern [1] Pacific [1] Central [1] Mountain [1] Other:	Metals: B,Ca,Sb,As,Ba,Be,Cd,Cr,Co,Pb,Li,Mo,Se,Tl,Fe,Mg,Mn,K,N p: Custody Seal Intact? [] Yes [] No Cooler Temp: astern [] Pacific [] Central [] Mountain [] Other:	3 For sample shipping and delivery details, see Sample Receipt & Review form (SRR.) Chain of Custody Number = Client Determined	3	14	select Deliv		CofA			[x] Level 2	[] Level
For Lab Receiving Use Only: Custody Seal Intact? [] Yes [] No Cooler Temp: Sample Collection Time Zone: [x] Eastern [] Pacific [] Central [] Mountain [] Other:	y: Custody Seal Intact? [] Yes [] No Cooler Temp: astern [] Pacific [] Central [] Mountain [] Other:	3 > For sample shipping and delivery details, see Sample Receipt & Review form (SRR.) 1) Chain of Custody Number = Client Determined	1 4/28	1241316	1dditional h	lemarks:	* Me	etals: B,C	Za,Sb,As,Ba,Be,Cd,	Cr,Co,Pb,Li,Mo,Se,Tl	
Sample Collection Time Zone: [x] Eastern [] Pacific [] Central [] Mountain	astern [] Pacific [] Central [] Mountain	> For sample shipping and delivery details, see Sample Receipt & Review form (SRR.) 1.) Chain of Custody Number = Client Determined		I	For Lab Re	ceiving Us	e Only:	Custod	v Seal Intact? []	Yes [] No Cool	ler Temp:
	1. Ordan of Custody Number = Cutent Determined 2.) QC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicate, EB = Equipment Blank, MS = Matrix Spike Sample, MSD = Matrix Spike Duplicate Sample, G = Grab, C = Composite 3.) Field Filtered: For liquid matrices, indicate with a - Y - for yes the sample was field filtered or - N - for sample was not field filtered.	1.) Chain of Custody Number = Chent Determined	.)	Sample Co	ellection Ti.	me Zone:	[x] Eas	tern [] Pacific [] Co	1	
) Matix Codes: WD=Drinking Water, WG=Groundwater, WS=Surface Water, WW=Waste Water, WL=Leachate, SO=Soil, SE=Sediment, SL=Sludge, WQ=Water Quality Control Matrix) Sample Analysis Requested: Analytical method requested (i.e. 8260B, 6010B/7470A) and number of containers provided for each (i.e. 8260B - 3, 6010B/7470A - 1).) Preservative Type: HA = Hydrochloric Acid, NI = Nitric Acid, SH = Sodium Hydroxide, SA = Sulfaric Acid, AA = A scorbic Acid, HX = Howare, ST = Sodium Thinsulfare, If an preservative is added = Insura field khart.		KNOWN OR POSSIBLE HAZARDS Characteristic Hazards Listed W	isted Waste	0	ther	and on		2	Name of the state	Please provide	any additional details
.) Marix Codes: WD=Drinking Water, WG=Groundwater, WS=Surface Water, WW=Waste Water, WL=Leachate, SO=Soil, SE=Sediment, SL=Sludge, WQ=Water Quality Control Matrix) Sample Analysis Requested: Analytical method requested (i.e. 8260B, 6010B/7470A) and number of containers provided for each (i.e. 8260B - 3, 6010B/7470A - 1). Preservative Type: HA = Hydrochloric Acid, SI = Sodium Hydroxide, SA = Sulfuric Acid, AA = Ascorbic Acid, HX = Hexane, ST = Sodium Thiosulfate, If no preservative is added = leave field blank Please provide any additional details NROWN OR POSSIBLE HAZARDS Characteristic Hazards Listed Waste Other		FL = Flammable/Ignitable FL = Flammable/Ignitable CO = Corrosive RE = Reactive Se= Selenium	W= Listed Waste .K.P and U-listed wastes aste code(s):		T= Other / i.e.: High/lo isc. health escription:	Unknown w pH, asb hazards, e.	estos, be tc.)	eryllium,	, irritants, other	below regardin, disposal concer sample(s), type matrices, etc.)	g handling and/or rns. (i.e.: Origin of of site collected from, odd
ediment, SL=Sludge, WQ=Water Quality Control Matrix e. 8260B - 3, 6010B74704 - 1). EX = Hexane, ST = Sodium Thiosulfate, If no preservative is added = leave field blank OT = Other OT = Other / Unknown (i.e.: High/low pH, asbestos, beryllium, irritants, other nuise. health hazards, etc.) Description:	ts, other	Cd = Cadmium Ag= Silver TSCA Regulated Cr = Chromium MR= Misc. RCRA metals PCB = Polychlorinated Pb = Lead biphenyls									

GEL Laboratories LLC

SAMPLE RECEIPT & REVIEW FORM

683170 683169 683173 683174 683176 683177

Client: GPCC			SDG/AR/COC/Work Order:
Received By: QG			Date Received: 8 28 24
Carrier and Tracking Number			Circle Applicable: FedEx Express FedEx Ground UPS Field Services Courier Other
Suspected Hazard Information	Yes	No	*If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
A)Shipped as a DOT Hazardous?		1	Hazard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? YesNo
B) Did the client designate the samples are to be received as radioactive?		-	COC notation or radioactive stickers on containers equal client designation.
C) Did the RSO classify the samples as radioactive?			Maximum Net Counts Observed* (Observed Counts - Area Background Counts): PM/mR/Hr Classified as: Rad 1 Rad 2 Rad 3
D) Did the client designate samples are hazardous?		4	COC notation or hazard labels on containers equal client designation.
E) Did the RSO identify possible hazards?		1	PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
Sample Receipt Criteria	Yes	NA	Č Comments/Qualifiers (Required for Non-Conforming Items)
1 Shipping containers received intact and sealed?	1		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
2 Chain of custody documents included with shipment?	1		Circle Applicable: Client contacted and provided COC COC created upon receipt
3 Samples requiring cold preservation within (0 ≤ 6 deg. C)?*	1		Preservation Method: Wet Ice Ice Packs Dry ice None Other: *all temperatures are recorded in Celsius TEMP:
4 Daily check performed and passed on IR temperature gun?	~		Temperature Device Serial #: IR1-23 Secondary Temperature Device Serial # (If Applicable):
5 Sample containers intact and sealed?	1		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
6 Samples requiring chemical preservation at proper pH?	1		Sample ID's and Containers Affected: If Presegnation added, Lot#:
7 Do any samples require Volatile Analysis?			If Yes, are Encores or Soil Kits present for solids? YesNoNA(If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA Sample ID's and containers affected:
8 Samples received within holding time?	1		ID's and tests affected:
9 Sample ID's on COC match ID's on bottles?	1	N	ID's and containers affected:
Date & time on COC match date & time on bottles?	4		Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
Number of containers received match number indicated on COC?	1		Circle Applicable: No container count on COC Other (describe)
Are sample containers identifiable as GEL provided by use of GEL labels? COC form is properly signed in relinquished/received sections?			GWA-2I metals container has no lakel Circle Applicable: Not relinquished Other (describe)
COOLUT:			SRA-BRGWA-65 metals container has no lab
1-00 5-0c		r	received three plastic ILS in BRA-BREWAS
2-00 6 00		1	Kit with no label or anything written on it
4-2%		6	3RA-BREWA- as radium container how no del
~ 6		_	HQ AUC 20 2021

List of current GEL Certifications as of 12 September 2024

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	KY90129
Kentucky Wastewater	KY90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2023019
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	NV-C24-00175
New Hampshire NELAP	205424
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2023-152
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235
Utah NELAP	SC000122024-41
Vermont	VT87156
Virginia NELAP	460202
Washington	C780

gel.com

September 12, 2024

Joju Abraham Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

Re: Branch CCR Groundwater Compliance

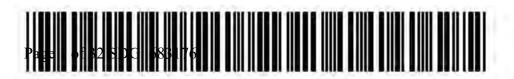
Work Order: 683176

Dear Joju Abraham:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on August 28, 2024. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt. The laboratory received the following sample(s):

<u>Laboratory ID</u>	Client ID	Matrix	Date Collected	Date Received
683176001	BRA-BRGWA-2S	Ground Water	08/27/24 09:45	08/28/24 08:27
683176002	BRA-BRGWA-5S	Ground Water	08/27/24 09:50	08/28/24 08:27
683176003	BRA-BRGWA-2I	Ground Water	08/27/24 10:08	08/28/24 08:27
683176004	BRA-BRGWA-5I	Ground Water	08/27/24 09:47	08/28/24 08:27
683176005	BRA-BRGWA-6S	Ground Water	08/27/24 11:35	08/28/24 08:27


Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Prep Methods and Prep Dates

Method	Run Date ID
SW846 3005A	31-AUG-2024
SW846 7470A Prep	29-AUG-2024

Analysis Methods and Analysis Dates

Method	Run Date ID
EPA 300.0	28-AUG-2024
SM 2320B	28-AUG-2024
SM 2540C	03-SEP-2024

SM 4500-S (2-) D 29-AUG-2024 SW846 3005A/6020B 07-SEP-2024 SW846 3005A/6020B 08-SEP-2024 SW846 7470A 30-AUG-2024 Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4443.

Sincerely,

Alaina Pinnick Project Manager

Alaina Pinnick

Purchase Order: GPC82177-0006

Enclosures

Page 3 of 32 SDG: 683176

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

GPCC001 Georgia Power Company Client SDG: 683176 GEL Work Order: 683176

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- B Either presence of analyte detected in the associated blank, or MDL/IDL < sample value < PQL
- J Value is estimated

N/A RPD or %Recovery limits do not apply.

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Alaina Pinnick.

Page 4 of 32 SDG: 683176

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 12, 2024

GPCC00101

GPCC001

Company: Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160 Address:

Atlanta, Georgia 30308

Contact: Joju Abraham

Branch CCR Groundwater Compliance Project:

Client Sample ID: BRA-BRGWA-2S

Sample ID: 683176001

Matrix:

Collect Date Receive Date Collector:

	WG				
te:	27-AUG-24 09:45				
ite:	28-AUG-24				
	Client				

Project:

Client ID:

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liqu	iid "As Recei	ved"									
Chloride		2.17	0.0670	0.200	mg/L		1	CH6	08/28/24	1709 2663917	1
Fluoride	J	0.0426	0.0330	0.100	mg/L		1				
Nitrate-N		0.176	0.0330	0.100	mg/L		1				
Sulfate		0.444	0.133	0.400	mg/L		1				
Mercury Analysis-CVA	A										
7470 Cold Vapor Merci	ary, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	08/30/24	1345 2664552	2
Metals Analysis-ICP-M	S										
SW846 3005A/6020B "	As Received	"									
Boron	U	ND	0.00520	0.0150	mg/L	1.00	1	BAJ	09/08/24	1211 2664353	3
Calcium		5.45	0.0800	0.200	mg/L	1.00	1				
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	09/07/24	1724 2664353	4
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium		0.0132	0.000670	0.00400	mg/L	1.00	1				
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Chromium	J	0.00799	0.00300	0.0100	mg/L	1.00	1				
Cobalt	J	0.000772	0.000300	0.00100	mg/L	1.00	1				
Iron	J	0.0560	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Magnesium		5.49	0.0100	0.0300	mg/L	1.00	1				
Manganese		0.0293	0.00100	0.00500	mg/L	1.00	1				
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1				
Potassium		0.431	0.0800	0.300	mg/L	1.00	1				
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1				
Sodium		3.51	0.0800	0.250	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Solids Analysis											
SM2540C Dissolved So	olids "As Rec	eived"									
Total Dissolved Solids		51.0	2.38	10.0	mg/L			KLP1	09/03/24	1531 2666209	5
Spectrometric Analysis											
SM 4500-S(2-) D Sulfic	de "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	08/29/24	1101 2664625	6

Page 5 of 32 SDG: 683176

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 12, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Branch CCR Groundwater Compliance Project:

Client Sample ID: BRA-BRGWA-2S Project: GPCC00101 Sample ID: 683176001 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Ana	lyst Date	Time Batch	Method
Titration and Ion Ana	alysis									
SM 2320B Total Alk	alinity "As Rec	eived"								
Alkalinity, Total as CaCO	3	38.0	0.725	2.00	mg/L		JW2	08/28/24	1651 2664341	7
Bicarbonate alkalinity (Ca	CO3)	38.0	0.725	2.00	mg/L					
Carbonate alkalinity (CaC	O3) U	ND	0.725	2.00	mg/L					
The following Prep N	Methods were po	erformed:								
Method	Description	n		Analyst	Date		Time 1	Prep Batch	ı	
SW846 3005A	ICP-MS 3005	5A PREP		BB2	08/31/24		0950	2664350		
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		JM13	08/29/24		1110	2664551		
The following Analy	vtical Methods v	were performed:								

Analyst Comments

Method	Description
1	EPA 300.0
2	SW846 7470A
3	SW846 3005A/6020B
4	SW846 3005A/6020B
5	SM 2540C
6	SM 4500-S (2-) D
7	SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 32 SDG: 683176

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

GPCC00101

GPCC001

Report Date: September 12, 2024

Company: Georgia Power Company, Southern Company
Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWA-5S

Sample ID: 683176002

Matrix: WG

Collect Date: 27-AUG-24 09:50
Receive Date: 28-AUG-24
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Ion Chromatography												
EPA 300.0 Anions Liqui	id "As Recei	ived"										
Chloride		3.49	0.0670	0.200	mg/L		1	CH6	08/28/24	1841	2663917	1
Fluoride	J	0.0516	0.0330	0.100	mg/L		1					
Nitrate-N		0.241	0.0330	0.100	mg/L		1					
Sulfate		0.652	0.133	0.400	mg/L		1					
Mercury Analysis-CVA	A											
7470 Cold Vapor Mercu	ry, Liquid "A	As Received"										
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	08/30/24	1346	2664552	2
Metals Analysis-ICP-MS	S				C							
SW846 3005A/6020B "A	As Received	."										
Boron	J	0.00538	0.00520	0.0150	mg/L	1.00	1	BAJ	09/08/24	1213	2664353	3
Calcium		17.2	0.0800	0.200	mg/L	1.00	1					
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	09/07/24	1727	2664353	4
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1					
Barium		0.0362	0.000670	0.00400	mg/L	1.00	1					
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1					
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1					
Chromium	J	0.00604	0.00300	0.0100	mg/L	1.00	1					
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1					
Iron	J	0.0458	0.0330	0.100	mg/L	1.00	1					
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1					
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Magnesium		8.38	0.0100	0.0300	mg/L	1.00	1					
Manganese		0.00602	0.00100	0.00500	mg/L	1.00	1					
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1					
Potassium		0.499	0.0800	0.300	mg/L	1.00	1					
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1					
Sodium		4.89	0.0800	0.250	mg/L	1.00	1					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1					
Solids Analysis												
SM2540C Dissolved So	lids "As Rec	eived"										
Total Dissolved Solids		101	2.38	10.0	mg/L			KLP1	09/03/24	1531	2666209	5
Spectrometric Analysis					-							
SM 4500-S(2-) D Sulfid	e "As Recei	ved"										
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	08/29/24	1101	2664625	6
					-							

Page 7 of 32 SDG: 683176

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 12, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWA-5S Project: GPCC00101 Sample ID: 683176002 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF D	Ana	lyst Date	Time Batch	Method
Titration and Ion Ana	alysis									
SM 2320B Total Alk	calinity "As Rec	eived"								
Alkalinity, Total as CaCO	3	79.8	0.725	2.00	mg/L		JW2	08/28/24	1653 2664341	7
Bicarbonate alkalinity (Ca	iCO3)	79.8	0.725	2.00	mg/L					
Carbonate alkalinity (CaC	O3) U	ND	0.725	2.00	mg/L					
The following Prep N	Methods were po	erformed:								
Method	Description	n	1	Analyst	Date	Tin	ne I	Prep Batch		
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid	J	JM13	08/29/24	111) 2	2664551		
SW846 3005A	ICP-MS 3005	5A PREP	I	BB2	08/31/24	095) 2	2664350		
The following Analy	ytical Methods v	vere performed:								

Method	Description	Analyst Comments
1	EPA 300.0	•
2	SW846 7470A	
3	SW846 3005A/6020B	
4	SW846 3005A/6020B	
5	SM 2540C	
6	SM 4500-S (2-) D	
7	SM 2320B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 32 SDG: 683176

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

GPCC00101

GPCC001

Report Date: September 12, 2024

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWA-2I

Sample ID: 683176003

Matrix: WG

Collect Date: 27-AUG-24 10:08
Receive Date: 28-AUG-24
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liqu	id "As Recei	ved"									
Chloride		2.16	0.0670	0.200	mg/L		1	CH6	08/28/24	1912 2663917	1
Fluoride	J	0.0342	0.0330	0.100	mg/L		1				
Nitrate-N		0.321	0.0330	0.100	mg/L		1				
Sulfate		2.58	0.133	0.400	mg/L		1				
Mercury Analysis-CVA	A										
7470 Cold Vapor Mercu	ıry, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	08/30/24	1348 2664552	2
Metals Analysis-ICP-MS	S										
SW846 3005A/6020B "A	As Received	"									
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	09/07/24	1730 2664353	3
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium		0.00493	0.000670	0.00400	mg/L	1.00	1				
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Chromium	J	0.00445	0.00300	0.0100	mg/L	1.00	1				
Cobalt		0.00105	0.000300	0.00100	mg/L	1.00	1				
Iron		0.153	0.0330	0.100	mg/L	1.00					
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium	J	0.00584	0.00300	0.0100	mg/L	1.00					
Magnesium		7.55	0.0100	0.0300	mg/L	1.00					
Manganese		0.0107	0.00100	0.00500	mg/L	1.00					
Molybdenum	J	0.000313	0.000200	0.00100	mg/L	1.00	1				
Potassium		2.08	0.0800	0.300	mg/L	1.00	1				
Selenium	U	ND	0.00150	0.00500	mg/L	1.00					
Sodium		4.74	0.0800	0.250	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Boron	U	ND	0.00520	0.0150	mg/L	1.00		BAJ	09/08/24	1214 2664353	4
Calcium		12.4	0.0800	0.200	mg/L	1.00	1				
Solids Analysis											
SM2540C Dissolved So	lids "As Rec	eived"									
Total Dissolved Solids		82.0	2.38	10.0	mg/L			KLP1	09/03/24	1531 2666209	5
Spectrometric Analysis											
SM 4500-S(2-) D Sulfid	le "As Recei	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	08/29/24	1101 2664625	6

Page 9 of 32 SDG: 683176

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 12, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWA-2I Project: GPCC00101 Sample ID: 683176003 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Ana	lyst Date	Time Batch	Method
Titration and Ion An	alysis									
SM 2320B Total Alk	calinity "As Rec	eived"								
Alkalinity, Total as CaCO	03	67.8	0.725	2.00	mg/L		JW2	08/28/24	1654 2664341	7
Bicarbonate alkalinity (Ca	aCO3)	67.8	0.725	2.00	mg/L					
Carbonate alkalinity (CaC	CO3) U	ND	0.725	2.00	mg/L					
The following Prep 1	Methods were pe	erformed:								
Method	Description	1		Analyst	Date		Time I	Prep Batch		
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		JM13	08/29/24		1110 2	664551		
SW846 3005A	ICP-MS 3005	SA PREP		BB2	08/31/24		0950 2	664350		
The following Analy	vtical Methods v	vere performed:								

Method	Description	Analyst Comments	
1	EPA 300.0	•	
2	SW846 7470A		
3	SW846 3005A/6020B		
4	SW846 3005A/6020B		
5	SM 2540C		
6	SM 4500-S (2-) D		
7	SM 2320B		

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 32 SDG: 683176

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

GPCC00101

GPCC001

Report Date: September 12, 2024

Company: Georgia Power Company, Southern Company
Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWA-5I

Sample ID: 683176004

Matrix: WG

Collect Date: 27-AUG-24 09:47
Receive Date: 28-AUG-24
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Ion Chromatography												
EPA 300.0 Anions Liqu	id "As Recei	ved"										
Chloride		3.88	0.0670	0.200	mg/L		1	CH6	08/28/24	1943	2663917	1
Fluoride	J	0.0365	0.0330	0.100	mg/L		1					
Nitrate-N		0.368	0.0330	0.100	mg/L		1					
Sulfate		2.67	0.133	0.400	mg/L		1					
Mercury Analysis-CVA	A											
7470 Cold Vapor Mercu	ıry, Liquid "A	As Received"										
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	08/30/24	1353	2664552	2
Metals Analysis-ICP-Ma	S											
SW846 3005A/6020B ".	As Received	"										
Boron	U	ND	0.00520	0.0150	mg/L	1.00	1	BAJ	09/08/24	1215	2664353	3
Calcium		15.9	0.0800	0.200	mg/L	1.00	1					
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	09/07/24	1733	2664353	4
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1					
Barium		0.0314	0.000670	0.00400	mg/L	1.00	1					
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1					
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1					
Chromium	J	0.00521	0.00300	0.0100	mg/L	1.00	1					
Cobalt	J	0.000396	0.000300	0.00100	mg/L	1.00	1					
Iron	U	ND	0.0330	0.100	mg/L	1.00	1					
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1					
Lithium	J	0.00337	0.00300	0.0100	mg/L	1.00	1					
Magnesium		9.79	0.0100	0.0300	mg/L	1.00	1					
Manganese	U	ND	0.00100	0.00500	mg/L	1.00	1					
Molybdenum		0.00134	0.000200	0.00100	mg/L	1.00	1					
Potassium		1.34	0.0800	0.300	mg/L	1.00	1					
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1					
Sodium		4.86	0.0800	0.250	mg/L	1.00	1					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1					
Solids Analysis												
SM2540C Dissolved So	lids "As Rec	eived"										
Total Dissolved Solids		107	2.38	10.0	mg/L			KLP1	09/03/24	1531	2666209	5
Spectrometric Analysis												
SM 4500-S(2-) D Sulfid	le "As Receiv	ved"										
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	08/29/24	1101	2664625	6

Page 11 of 32 SDG: 683176

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 12, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWA-5I Project: GPCC00101 Sample ID: 683176004 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF An	alyst Date	Time Batch	Method
Titration and Ion Ana	lysis									
SM 2320B Total Alka	alinity "As Rec	eived"								
Alkalinity, Total as CaCO3	3	79.5	0.725	2.00	mg/L		JW	2 08/28/24	1655 2664341	7
Bicarbonate alkalinity (CaC	CO3)	79.5	0.725	2.00	mg/L					
Carbonate alkalinity (CaCC	D3) U	ND	0.725	2.00	mg/L					
The following Prep M	lethods were po	erformed:								
Method	Description	n		Analyst	Date		Time	Prep Batch	1	
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		JM13	08/29/24		1110	2664551		
SW846 3005A	ICP-MS 3005	5A PREP		BB2	08/31/24		0950	2664350		
The following Analys	tical Methods v	were performed:								

TC1 C 11 '	A 1 1 1	3 / /1 1		C 1
The following	Analyfical	Methods	Were 1	nertormed:
The following	<i>i</i> many tious	Michigas	WCIC	perrorrinea.

	•	
Method	Description	Analyst Comments
1	EPA 300.0	•
2	SW846 7470A	
3	SW846 3005A/6020B	
4	SW846 3005A/6020B	
5	SM 2540C	
6	SM 4500-S (2-) D	
7	SM 2320B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 12 of 32 SDG: 683176

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

GPCC00101

GPCC001

Report Date: September 12, 2024

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWA-6S

Sample ID: 683176005

Matrix: WG

Collect Date: 27-AUG-24 11:35
Receive Date: 28-AUG-24
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liqu	iid "As Recei	ved"									
Chloride		2.28	0.0670	0.200	mg/L		1	CH6	08/28/24	2014 2663917	1
Fluoride	J	0.0334	0.0330	0.100	mg/L		1				
Nitrate-N		0.713	0.0330	0.100	mg/L		1				
Sulfate		0.465	0.133	0.400	mg/L		1				
Mercury Analysis-CVA	A										
7470 Cold Vapor Mercu	ary, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	08/30/24	1355 2664552	2
Metals Analysis-ICP-M	S										
SW846 3005A/6020B "	As Received	"									
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	09/07/24	1736 2664353	3
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium		0.0159	0.000670	0.00400	mg/L	1.00	1				
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Chromium		0.0124	0.00300	0.0100	mg/L	1.00	1				
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1				
Iron	U	ND	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium	J	0.00322	0.00300	0.0100	mg/L	1.00	1				
Magnesium		4.21	0.0100	0.0300	mg/L	1.00	1				
Manganese	U	ND	0.00100	0.00500	mg/L	1.00	1				
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1				
Potassium		0.736	0.0800	0.300	mg/L	1.00	1				
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1				
Sodium		2.54	0.0800	0.250	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Boron	U	ND	0.00520	0.0150	mg/L	1.00	1	BAJ	09/08/24	1217 2664353	4
Calcium		4.19	0.0800	0.200	mg/L	1.00	1				
Solids Analysis											
SM2540C Dissolved So	olids "As Rec	eived"									
Total Dissolved Solids		57.0	2.38	10.0	mg/L			KLP1	09/03/24	1531 2666209	5
Spectrometric Analysis											
SM 4500-S(2-) D Sulfic	de "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	08/29/24	1101 2664625	6

Page 13 of 32 SDG: 683176

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 12, 2024

Company: Georgia Power Company, Southern Company
Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWA-6S Project: GPCC00101
Sample ID: 683176005 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Aı	nalyst Date	Time Batch	Method
Titration and Ion Analy	ysis									
SM 2320B Total Alkal	inity "As Rec	eived"								
Alkalinity, Total as CaCO3	-	27.8	0.725	2.00	mg/L		JW	2 08/28/24	1656 2664341	7
Bicarbonate alkalinity (CaCo	O3)	27.8	0.725	2.00	mg/L					
Carbonate alkalinity (CaCO3	3) U	ND	0.725	2.00	mg/L					
The following Prep Me	ethods were p	erformed:								
Method	Description	n		Analyst	Date		Time	Prep Batch	1	
SW846 3005A	ICP-MS 3005	5A PREP		BB2	08/31/24		0950	2664350		
SW846 7470A Prep	EPA 7470A	Mercury Prep L	iquid	JM13	08/29/24		1110	2664551		
The following Analyti	cal Methods v	were perform	ned:							

Analyst Comments

Method	Description	
1	EPA 300.0	
2	SW846 7470A	
3	SW846 3005A/6020B	
4	SW846 3005A/6020B	
5	SM 2540C	

SM 4500-S (2-) D SM 2320B

/ SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 14 of 32 SDG: 683176

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: September 12, 2024

Page 1 of 11

Georgia Power Company, Southern Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia Joju Abraham

Workorder: 683176

Contact:

Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range Anl	st Date Time
Ion Chromatography Batch 2663917								
QC1205837518 683030001 DUP Chloride		44.7	45.3	mg/L	1.27		(0%-20%) C	EH6 08/28/24 22:48
Fluoride		0.417	0.375	mg/L	10.5	Λ.	(+/-0.100)	08/28/24 12:59
Nitrate-N		0.124	0.123	mg/L	0.243		(+/-0.100)	
Sulfate		24.7	24.6	mg/L	0.523		(0%-20%)	08/28/24 22:48
QC1205837517 LCS Chloride	5.00		4.79	mg/L		95.8	(90%-110%)	08/28/24 14:32
Fluoride	2.50		2.39	mg/L		95.6	(90%-110%)	
Nitrate-N	2.50		2.42	mg/L		96.7	(90%-110%)	
Sulfate	10.0		9.61	mg/L		96.1	(90%-110%)	
QC1205837516 MB Chloride		U	ND	mg/L				08/28/24 14:01
Fluoride		U	ND	mg/L				
Nitrate-N		U	ND	mg/L				
Sulfate		U	ND	mg/L				

Page 15 of 32 SDG: 683176

GEL LABORATORIES LLC 2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

		Q € B	umminum,	•					
Workorder: 683176									Page 2 of 11
Parmname	NOM	Sample Qual	QC	Units	RPD% R	EC%	Range	Anlst	Date Time
Ion Chromatography Batch 2663917									
QC1205837519 683030001 PS	5.00	4.47	10.0	/T		110	(000/ 1100/)	CH	00/20/24 22 10
Chloride	5.00	4.47	10.0	mg/L		110	(90%-110%)	СН6	08/28/24 23:19
Fluoride	2.50	0.417	2.87	mg/L		98	(90%-110%)		08/28/24 13:30
Nitrate-N	2.50	0.124	2.51	mg/L	9	5.4	(90%-110%)		
Sulfate	10.0	2.47	12.2	mg/L	9	7.5	(90%-110%)		08/28/24 23:19
Metals Analysis - ICPMS Batch 2664353 —									
QC1205838425 LCS Antimony	0.0500		0.0500	mg/L	9	9.9	(80%-120%)	BAJ	09/07/24 15:23
Arsenic	0.0500		0.0498	mg/L	9	9.7	(80%-120%)		
Barium	0.0500		0.0514	mg/L	1	103	(80%-120%)		
Beryllium	0.0500		0.0559	mg/L	1	112	(80%-120%)		
Boron	0.100		0.103	mg/L	1	103	(80%-120%)		09/08/24 11:19
Cadmium	0.0500		0.0505	mg/L	1	101	(80%-120%)		09/07/24 15:23
Calcium	2.00		2.03	mg/L	1	102	(80%-120%)		09/08/24 11:19
Chromium	0.0500		0.0506	mg/L	1	101	(80%-120%)		09/07/24 15:23
Cobalt	0.0500		0.0494	mg/L	9	8.8	(80%-120%)		

Page 16 of 32 SDG: 683176

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 3 of 11 QC RPD% Parmname NOM Sample Qual Units REC% Range Anlst Date Time Metals Analysis - ICPMS Batch 2664353 mg/L Iron 2.00 1.99 99.4 (80%-120%) BAJ 09/07/24 15:23 Lead 0.0500 0.0497 99.4 (80%-120%) mg/L 0.0500 0.0525 Lithium mg/L 105 (80%-120%) 2.17 Magnesium 2.00 mg/L109 (80%-120%) 0.0500 0.0495 Manganese 99 (80%-120%) mg/L Molybdenum 0.0500 0.0513 mg/L 103 (80%-120%) Potassium 2.00 2.03 101 (80%-120%) mg/L 0.0500 0.0521 Selenium mg/L 104 (80%-120%) Sodium 2.00 2.13 mg/L 107 (80%-120%) Thallium 0.0500 0.0474 94.8 (80%-120%) mg/L QC1205838424 MB U 09/07/24 15:20 ND Antimony mg/L U ND Arsenic mg/L Barium U ND mg/L Beryllium U ND mg/L

Page 17 of 32 SDG: 683176

Workorder:

683176

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683176 Page 4 of 11 NOM QC RPD% REC% Parmname Sample Qual Units Range Anlst Date Time Metals Analysis - ICPMS 2664353 Batch U Boron ND mg/L BAJ 09/08/24 11:18 U Cadmium ND mg/L 09/07/24 15:20 U ND mg/L 09/08/24 11:18 Calcium Chromium U ND mg/L 09/07/24 15:20 Cobalt U ND mg/LIron U ND mg/L U ND Lead mg/LU ND Lithium mg/L U Magnesium ND mg/LManganese U ND mg/L Molybdenum U ND mg/L Potassium U ND mg/LU ND Selenium mg/L U ND Sodium mg/L

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

683176 Page 5 of 11 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2664353 Batch Thallium U ND mg/L BAJ 09/07/24 15:20 QC1205838426 683169001 MS 0.0500 U ND 0.0528 106 09/07/24 15:47 Antimony mg/L (75%-125%) 0.0500 U ND 0.0542 Arsenic mg/L 106 (75%-125%) Barium 0.0500 0.0164 0.0685 mg/L 104 (75%-125%) Beryllium 0.0500 0.006440.0655 118 (75%-125%) mg/L Boron 0.100 1.31 1.41 N/A (75%-125%) 09/08/24 11:50 mg/L 0.000341 0.0521 Cadmium 0.0500 104 (75%-125%) 09/07/24 15:47 mg/L 29.2 Calcium 2.00 26.7 09/08/24 11:40 mg/L N/A (75%-125%) Chromium 0.0500 0.00328 0.0546 103 (75%-125%) 09/07/24 15:47 mg/L 0.0500 0.119 0.169 101 Cobalt mg/L (75%-125%)2.00 U ND Iron 2.04 mg/L 101 (75%-125%) 0.0500 ND 0.0494 98.3 Lead mg/L (75%-125%) Lithium 0.0500 0.0200 0.0745 mg/L 109 (75%-125%) Magnesium 2.00 27.9 30.2 mg/L N/A (75%-125%)

Workorder:

GEL LABORATORIES LLC 2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683176										Page 6 of 11
Parmname	NON	Л	Sample Qual	QC	Units	RPD%	REC%	Range A	nlst	Date Time
Metals Analysis - ICPMS Batch 2664353										
Manganese	0.0500		1.26	1.30	mg/L		N/A	(75%-125%)	BAJ	09/07/24 16:03
Molybdenum	0.0500	U	ND	0.0559	mg/L		112	(75%-125%)		09/07/24 15:47
Potassium	2.00		5.23	7.47	mg/L		112	(75%-125%)		
Selenium	0.0500		0.0180	0.0714	mg/L		107	(75%-125%)		
Sodium	2.00		32.8	34.6	mg/L		N/A	(75%-125%)		
Thallium	0.0500	U	ND	0.0477	mg/L		95.1	(75%-125%)		
QC1205838427 683169001 MSD Antimony	0.0500	U	ND	0.0521	mg/L	1.44	104	(0%-20%)		09/07/24 15:50
Arsenic	0.0500	U	ND	0.0524	mg/L	3.41	102	(0%-20%)		
Barium	0.0500		0.0164	0.0676	mg/L	1.27	102	(0%-20%)		
Beryllium	0.0500		0.00644	0.0636	mg/L	2.89	114	(0%-20%)		
Boron	0.100		1.31	1.36	mg/L	4.08	N/A	(0%-20%)		09/08/24 11:51
Cadmium	0.0500	J	0.000341	0.0520	mg/L	0.292	103	(0%-20%)		09/07/24 15:50
Calcium	2.00		26.7	28.3	mg/L	2.95	N/A	(0%-20%)		09/08/24 11:41
Chromium	0.0500	J	0.00328	0.0528	mg/L	3.3	99.1	(0%-20%)		09/07/24 15:50

Page 20 of 32 SDG: 683176

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683176 Page 7 of 11 **Parmname** NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2664353 Batch Cobalt 0.0500 0.119 0.165 mg/L 2.25 93 (0%-20%)BAJ 09/07/24 15:50 2.00 U ND 2.00 2.01 99.1 (0%-20%) Iron mg/L ND 0.0489 Lead 0.0500 U mg/L 0.94 97.4 (0%-20%) 0.0500 0.0200 0.0738 Lithium mg/L 0.875 108 (0%-20%) 29.4 2.00 27.9 2.87 N/A (0%-20%)Magnesium mg/L 0.0500 1.26 1.25 4.06 N/A (0%-20%)09/07/24 16:05 Manganese mg/L 0.0500 U ND 0.0554 mg/L 111 (0%-20%) 09/07/24 15:50 Molybdenum 0.967 Potassium 2.00 5.23 7.14 mg/L 4.48 95.4 (0%-20%)Selenium 0.0500 0.0180 0.0700 mg/L 1.97 104 (0%-20%) 2.00 32.8 33.9 2.02 N/A Sodium mg/L (0%-20%)0.0500 U ND Thallium 0.0466 mg/L 2.37 92.9 (0%-20%)QC1205838428 683169001 SDILT U ND U ND 09/07/24 15:56 Antimony ug/L N/A (0%-20%)Arsenic U ND U ND ug/L N/A (0%-20%) Barium 16.4 J 3.42 ug/L 4.18 (0%-20%)

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683176 Page 8 of 11 QC REC% **Parmname NOM** Sample Qual Units RPD% Range Anlst Date Time Metals Analysis - ICPMS 2664353 Batch ug/L Beryllium 6.44 1.25 3.4 (0%-20%)BAJ 09/07/24 15:56 Boron 131 31.0 ug/L 17.9 (0%-20%) 09/08/24 11:52 J 0.341 U ND Cadmium ug/L N/A (0%-20%) 09/07/24 15:56 26700 5480 ug/L Calcium 2.83 (0%-20%) 09/08/24 11:43 J 3.28 ND ug/L Chromium U N/A (0%-20%)09/07/24 15:56 ug/L Cobalt 119 24.5 2.95 (0%-20%) U ug/L ND U ND N/A (0%-20%) Iron U U Lead ND ND ug/L N/A (0%-20%)ug/L Lithium 20.0 3.83 4.15 (0%-20%) 27900 5950 (0%-20%) Magnesium ug/L 6.39 Manganese 126 25.3 ug/L .101 (0%-20%)09/07/24 16:08 U ND U ND 09/07/24 15:56 Molybdenum ug/L N/A (0%-20%) 5230 1060 .798 (0%-20%) Potassium ug/L Selenium 18.0 J 3.83 ug/L (0%-20%) 6.1

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683176 Page 9 of 11 **Parmname** NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2664353 Batch Sodium 32800 6560 ug/L.000277 (0%-20%)BAJ 09/07/24 15:56 Thallium U ND U ND (0%-20%) ug/L N/A Metals Analysis-Mercury 2664552 QC1205838870 683169001 DUP Mercury U ND U ND mg/L N/A JP2 08/30/24 13:08 QC1205838869 LCS 0.00200 0.00204 102 (80%-120%) 08/30/24 13:05 Mercury mg/L QC1205838868 MB U ND 08/30/24 13:03 Mercury mg/L QC1205838871 683169001 MS 0.00200 U ND 0.00203 99.5 08/30/24 13:13 Mercury mg/L (75%-125%) QC1205838872 683169001 SDILT U ND ND ug/L N/A (0%-10%) 08/30/24 13:15 Mercury Solids Analysis Batch 2666209 QC1205842574 683236002 DUP 238 236 mg/L 0.844 (0%-5%) KLP1 09/03/24 15:31 **Total Dissolved Solids** QC1205842572 LCS Total Dissolved Solids 300 298 99.3 (95%-105%) 09/03/24 15:31 mg/L QC1205842571 ND 09/03/24 15:31 Total Dissolved Solids mg/L

GEL LABORATORIES LLC 2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683176										Page 10	of 11
Parmname		NOM	Sample (Qual QC	Units	RPD%	REC%	Range A	Anlst	Date 7	Гіте
Spectrometric Analysis Batch 2664625											
QC1205838996 LCS Total Sulfide	0.4	400		0.409	mg/L		102	(85%-115%)	JW2	08/29/24	11:00
QC1205838995 MB Total Sulfide				U ND	mg/L					08/29/24	11:00
QC1205838997 683169001 Total Sulfide		400 U	J ND	0.389	mg/L		97.2	(75%-125%)		08/29/24	11:00
QC1205838999 683176001 Total Sulfide		400 U	J ND	0.401	mg/L		100	(75%-125%)		08/29/24	11:01
QC1205838998 683169001 Total Sulfide		400 U	J ND	0.378	mg/L	2.9	94.4	(0%-15%)		08/29/24	11:00
QC1205839000 683176001 Total Sulfide		400 U	J ND	0.393	mg/L	2.18	98.2	(0%-15%)		08/29/24	11:01
Titration and Ion Analysis Batch 2664341											
QC1205838409 LCS Alkalinity, Total as CaCO3	5	0.0		53.1	mg/L		106	(90%-110%)	JW2	08/28/24	16:28
QC1205838414 LCS Alkalinity, Total as CaCO3	1	5.0		14.4	mg/L		96	(90%-110%)		08/28/24	16:30
QC1205838415 LCSD Alkalinity, Total as CaCO3	5	0.0		52.9	mg/L	0.377	106	(0%-20%)		08/28/24	16:29
QC1205838416 LCSD Alkalinity, Total as CaCO3	1	5.0		14.1	mg/L	2.11	94	(0%-20%)		08/28/24	16:31

Notes:

Page 24 of 32 SDG: 683176

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683176

Parmname NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- N Metals--The Matrix spike sample recovery is not within specified control limits
- H Analytical holding time was exceeded
- < Result is less than value reported
- > Result is greater than value reported
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- Z Paint Filter Test--Particulates passed through the filter, however no free liquids were observed.
- d 5-day BOD--The 2:1 depletion requirement was not met for this sample
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- E %difference of sample and SD is >10%. Sample concentration must meet flagging criteria
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- E General Chemistry--Concentration of the target analyte exceeds the instrument calibration range
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- FB Mercury was found present at quantifiable concentrations in field blanks received with these samples. Data associated with the blank are deemed invalid for reporting to regulatory agencies
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- R Per section 9.3.4.1 of Method 1664 Revision B, due to matrix spike recovery issues, this result may not be reported or used for regulatory compliance purposes.
- B The target analyte was detected in the associated blank.
- e 5-day BOD--Test replicates show more than 30% difference between high and low values. The data is qualified per the method and can be used for reporting purposes
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 25 of 32 SDG: 683176

Technical Case Narrative Georgia Power Company SDG #: 683176

Metals

<u>Product:</u> Determination of Metals by ICP-MS <u>Analytical Method:</u> SW846 3005A/6020B <u>Analytical Procedure:</u> GL-MA-E-014 REV# 36

Analytical Batch: 2664353

Preparation Method: SW846 3005A

Preparation Procedure: GL-MA-E-006 REV# 15

Preparation Batch: 2664350

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683176001	BRA-BRGWA-2S
683176002	BRA-BRGWA-5S
683176003	BRA-BRGWA-2I
683176004	BRA-BRGWA-5I
683176005	BRA-BRGWA-6S
1205838424	Method Blank (MB)ICP-MS
1205838425	Laboratory Control Sample (LCS)
1205838428	683169001(BRA-BRGWC-38SL) Serial Dilution (SD)
1205838426	683169001(BRA-BRGWC-38SS) Matrix Spike (MS)
1205838427	683169001(BRA-BRGWC-38SSD) Matrix Spike Duplicate (MSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Calibration Information

ICSA/ICSAB Statement

For the ICP-MS analysis, the ICSA solution contains analyte concentrations which are verified trace impurities indigenous to the purchased standard.

 $\underline{\textbf{Product:}} \ \textbf{Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer}$

Analytical Method: SW846 7470A

Analytical Procedure: GL-MA-E-010 REV# 40

Analytical Batch: 2664552

Preparation Method: SW846 7470A Prep

Preparation Procedure: GL-MA-E-010 REV# 40

Preparation Batch: 2664551

Page 26 of 32 SDG: 683176

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683176001	BRA-BRGWA-2S
683176002	BRA-BRGWA-5S
683176003	BRA-BRGWA-2I
683176004	BRA-BRGWA-5I
683176005	BRA-BRGWA-6S
1205838868	Method Blank (MB)CVAA
1205838869	Laboratory Control Sample (LCS)
1205838872	683169001(BRA-BRGWC-38SL) Serial Dilution (SD)
1205838870	683169001(BRA-BRGWC-38SD) Sample Duplicate (DUP)
1205838871	683169001(BRA-BRGWC-38SS) Matrix Spike (MS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

General Chemistry

Product: Ion Chromatography Analytical Method: EPA 300.0

Analytical Procedure: GL-GC-E-086 REV# 35

Analytical Batch: 2663917

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683176001	BRA-BRGWA-2S
683176002	BRA-BRGWA-5S
683176003	BRA-BRGWA-2I
683176004	BRA-BRGWA-5I
683176005	BRA-BRGWA-6S
1205837516	Method Blank (MB)
1205837517	Laboratory Control Sample (LCS)
1205837518	683030001(NonSDG) Sample Duplicate (DUP)
1205837519	683030001(NonSDG) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Sample Dilutions

The following samples 1205837518 (Non SDG 683030001DUP) and 1205837519 (Non SDG 683030001PS) were diluted because target analyte concentrations exceeded the calibration range. Dilutions may be required for many

Page 27 of 32 SDG: 683176

reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

Miscellaneous Information

Manual Integrations

Samples 683176001 (BRA-BRGWA-2S), 683176002 (BRA-BRGWA-5S), 683176003 (BRA-BRGWA-2I), 683176004 (BRA-BRGWA-5I) and 683176005 (BRA-BRGWA-6S) were manually integrated to correctly position the baseline as set in the calibration standards.

Product: Solids, Total Dissolved **Analytical Method:** SM 2540C

Analytical Procedure: GL-GC-E-001 REV# 21

Analytical Batch: 2666209

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683176001	BRA-BRGWA-2S
683176002	BRA-BRGWA-5S
683176003	BRA-BRGWA-2I
683176004	BRA-BRGWA-5I
683176005	BRA-BRGWA-6S
1205842571	Method Blank (MB)
1205842572	Laboratory Control Sample (LCS)
1205842574	683236002(NonSDG) Sample Duplicate (DUP)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: Sulfide, Total

Analytical Method: SM 4500-S (2-) D

Analytical Procedure: GL-GC-E-052 REV# 13

Analytical Batch: 2664625

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683176001	BRA-BRGWA-2S
683176002	BRA-BRGWA-5S
683176003	BRA-BRGWA-2I
683176004	BRA-BRGWA-5I
683176005	BRA-BRGWA-6S
1205838995	Method Blank (MB)
1205838996	Laboratory Control Sample (LCS)
1205838997	683169001(BRA-BRGWC-38S) Post Spike (PS)
1205838998	683169001(BRA-BRGWC-38S) Post Spike Duplicate (PSD)

1205838999	683176001(BRA-BRGWA-2S) Post Spike (PS)
1205839000	683176001(BRA-BRGWA-2S) Post Spike Duplicate (PSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: Alkalinity

Analytical Method: SM 2320B

Analytical Procedure: GL-GC-E-033 REV# 16

Analytical Batch: 2664341

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683176001	BRA-BRGWA-2S
683176002	BRA-BRGWA-5S
683176003	BRA-BRGWA-2I
683176004	BRA-BRGWA-5I
683176005	BRA-BRGWA-6S
1205838409	Laboratory Control Sample (LCS)
1205838414	Laboratory Control Sample (LCS)
1205838415	Laboratory Control Sample Duplicate (LCSD)
1205838416	Laboratory Control Sample Duplicate (LCSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Laboratory Control Sample Duplicate (LCSD)

An LCSD was used in place of matrix QC due to limited sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 29 of 32 SDG: 683176

US8317 / LE83176

GEL Laboratories, LLC 2040 Savage Road Charleston, SC 29407	Fax: (843) 766-1178	(Fill in the number of containers for each test)	< Preservative Type (6)	Comments	Note: extra sample is required for sample specifi	Task_Code: BRA-CCR-ASSMT-202482											Specify: (Subject to Surcharge)		[] level 1 [x] Level 2 [] Level 4	* Metals: B,Ca,Sb,As,Ba,Be,Cd,Cr,Co,Pb,Li,Mo,Se,Tl,Fe,Mg,Mn,K,Na,Hg	[] Yes [] No Cooler Temp:	Sample Collection Time Zone: [x] Eastern [] Pacific [] Central [] Mountain [] Other:						Please provide any additional details	
0 60 0	1. IL	3		87	2010, 7- 115, 93: 100, 7-	Meta Radium 22 SW 4 SW 846 92 SW 92 SW 92	7	7	7	1	7						Normal: x Rush:	No	[] QC Summary	Metals: B,Ca,Sb,As,Ba,B	For Lab Receiving Use Only: Custody Seal Intact? [] Yes	Sastern [] Pacific [o.			dded = leave field blank		OT= Other / Unknown (i.e.: High/low pH, asbestos, beryllium, irritants, other misc. health hazards, etc.) Description:
cialty Analytics	מן	Sample Analysis Requested		0C 1O3	TDS, N 5M 254 8 Bicarb	Cl, F, SO4, EPA 300, S Total, Carb, & SM 23	7	1	>	7	7						TAT Requested: Non	[] Yes [x] No			ceiving Use Onl	me Zone: [x] E		Jrab, C = Composite		Control Matrix	Ino preservative is a		OT= Other / Unknown (i.e.: High/low pH, asbestos, misc. health hazards, etc.) Description:
Laboratories LLC gencom Chemistry Radiochemistry Radiochemistry	GEL Project Manager: Erin Trent	Samp	10000	sample be	sprds	isotopic info.) (7) Known or possible Haza		(%)	00	OQ.	2						TATR	Fax Results: [] Yes	Select Deliv	13 LC Additional Remarks:	For Lab Re	ole Collection Ti		plicate Sample, G = C		WQ=Water Quality C	77470A - 1).	Other	OT=Other / Unknown (i.e.: High/low pH, asb misc. health hazards, e. Description:
-aboratories LLC	Project Man		S	S	ll)	Sample Matrix & Radioactive	WG	we	w6	n.G	w6								6727	50		Sam		- Matrix Spike Du		nent, SL=Sludge,	8260B - 3, 6010B = Hexane ST = 5		les.)
Labol Chemistry I R	GEL	506-7116			tacts	QC Field Code (2) Hitered (3)	z	CN	5	6 1	6 2							Time	50	-4/23	2			e Sample, MSD =	t field filtered.	D=Soil, SE=Sedin	ded for each (i.e. o	ıste	LW= Listed Waste fr.K.P and U-listed wastes.) Waste code(s):
gel.com		Phone # 404-506-7116	Fax#		eosyntec Con	*Time Collected (Military)			8001	£460	1135							ned) Date	8/28	Br		(SRR.)		MS = Matrix Spik	for sample was no	WL=Leachate, SC	of containers provi	Listed Waste	LW=Listed Waste (F.K.P and U-listed Waste code(s):
O	GEL Work Order Number:				Send Results To: SCS & Geosyntec Contacts	*Date Collected (mm/dd/yy)	US/27/24	P2/12/80	V8/17/24	p2/22/80	08/23/24						Chain of Custody Signatures	Received by (signed)	MILL	2/1	3	ipt & Review form		EB = Equipment Blank,	vas field filtered or - N -	ter, WW=Waste Water,	3B/7470A) and number of Hydroxide $SA = Sulfi$	Characteristic Hazards	FL = Flammable/Ignitable CO = Corrosive RE = Reactive TSCA Regulated PCB = Polychlorinated biphenyls
	GEL WO		Upgradient	GA 30308	Send Res	late/time											Chain of Cus	Time	4280			e Sample Rece		= Field Duplicate, I	for yes the sample v	r, WS=Surface Wat	d (i.e. 8260B, 6010 Acid SH = Sodim	Character	FL = Flammable CO = Corrosive RE = Reactive TSCA Regulate PCB = Polychlor biphenyl
Page: l of l Project # GEL Quote #:	PO Number: GPC82177-0006	Client Name: GA Power	Project/Site Name: Plant Branch Ash Ponds - Upgradient	Address: 241 Ralph McGill Blvd SE, Atlanta GA 30308	Collected By: J. Ren3 Low ACC	${ m SampleID}$	BRA- BR 6 WA - 25	BRA- 8R GWA-55	BRA-BREWA-2I	BRA-BRGWA-5I	BRA- BR GWA- 65	BRA-	BRA-	BRA-	BRA-	BRA-		Relinquished By (Signed) Date T	1 July 8/28ex 0	2	3	> For sample shipping and delivery details, see Sample Receipt & Review form (SRR.)	1.) Chain of Custody Number = Client Determined	2.) QC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicate, EB = Equipment Blank, MS = Matrix Spike Sample, MSD = Matrix Spike Duplicate Sample, G = Grab, C = Composite	3.) Field Filtered: For liquid matrices, indicate with a - Y - for yes the sample was field filtered or - N - for sample was not field filtered	4.) Matrix Codes: WD=Drinking Water, WG=Groundwater, WS=Surface Water, WW=Waste Water, WL=Leachate, SO=Soil, SE=Sediment, SL=Sludge, WQ=Water Quality Control Matrix	5.) Sample Analysis Requested: Analytical method requested (i.e. 8260B, 6010B/7470A) and number of containers provided for each (i.e. 8260B - 3, 6010B/7470A - 1).	7.) KNOWN OR POSSIBLE HAZARDS	RCRA Metals As = Arsenic Hg= Mercury Ba = Barium Se= Selenium Cd = Cadmium Ag= Silver Cr = Chromium MR= Misc. RCRA metals Pb = Lead

SAMPLE RECEIPT & REVIEW FORM

683170 683169 683173 683174 683176 683177

Client: GPCC			SDG/AR/COC/Work Order:											
Received By: QG			Date Received: 8 28 24											
Carrier and Tracking Number			Circle Applicable: FedEx Express FedEx Ground UPS Field Services Courier Other											
Suspected Hazard Information	Yes	oN	*If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.											
A)Shipped as a DOT Hazardous?		1	UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes No											
B) Did the client designate the samples are to be received as radioactive?		-	COC notation or radioactive stickers on containers equal client designation.											
C) Did the RSO classify the samples as radioactive?		/	Maximum Net Counts Observed* (Observed Counts - Area Background Counts):											
D) Did the client designate samples are hazardous?	,	,	COC notation or hazard labels on containers equal client designation. If D or E is yes, select Hazards below.											
E) Did the RSO identify possible hazards?		1	PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:											
Sample Receipt Criteria	Yes	NA	Comments/Qualifiers (Required for Non-Conforming Items)											
Shipping containers received intact and sealed?	1		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)											
2 Chain of custody documents included with shipment?	1		Circle Applicable: Client contacted and provided COC COC created upon receipt											
3 Samples requiring cold preservation within (0 ≤ 6 deg. C)?*	1		Preservation Method: Wet Ice I ge Packs Dry ice None Other: *all temperatures are recorded in Celsius TEMP:											
Daily check performed and passed on IR temperature gun?	~		Temperature Device Serial #: <u>IR1-23</u> Secondary Temperature Device Serial # (If Applicable):											
5 Sample containers intact and sealed?	1		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)											
Samples requiring chemical preservation at proper pH?	1		Sample ID's and Containers Affected: If Preservation added, Lot#:											
7 Do any samples require Volatile Analysis?			If Yes, are Encores or Soil Kits present for solids? YesNoNA(If yes, take to VOA Freezer) To liquid VOA vials contain acid preservation? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA Sample ID's and containers affected:											
8 Samples received within holding time?	1		ID's and tests affected;											
Sample ID's on COC match ID's on bottles?	1		ID's and containers affected:											
Date & time on COC match date & time on bottles?	9		Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)											
Number of containers received match number indicated on COC?	1		Circle Applicable: No container count on COC Other (describe)											
Are sample containers identifiable as GEL provided by use of GEL labels? COC form is properly signed in			Circle Applicable: Not relinquished Other (describe)											
relinquished/received sections?	1													
cooler:			RA-BRGWA-65 metals container has no lab											
- 0'c 5- 0 c		r	eccured three plastic ILS in BRA-BREWAS											
3-227-02		1	cit with no label or anything written on it											
4-2%		t	3RA-BREWA- as radium container how no del											
PM (or PMA	A) revie	ew:	Initials TTS Date AUG 29 2024 Page 1 of 1											

List of current GEL Certifications as of 12 September 2024

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	KY90129
Kentucky Wastewater	KY90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2023019
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	NV-C24-00175
New Hampshire NELAP	205424
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2023-152
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235
Utah NELAP	SC000122024-41
Vermont	VT87156
Virginia NELAP	460202
Washington	C780

gel.com

September 10, 2024

Joju Abraham Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

Re: Branch CCR Groundwater Compliance

Work Order: 683390

Dear Joju Abraham:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on August 29, 2024. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt. The laboratory received the following sample(s):

Laboratory ID	Client ID	Matrix	Date Collected	Date Received
683390001	BRA-BRGWC-30I	Ground Water	08/28/24 13:05	08/29/24 13:10
683390002	BRA-BRGWC-47	Ground Water	08/28/24 15:38	08/29/24 13:10
683390003	BRA-APBCD-FB-02	Water	08/28/24 16:30	08/29/24 13:10
683390004	BRA-BRGWC-52I	Ground Water	08/28/24 16:32	08/29/24 13:10
683390005	BRA-BRGWC-32S	Ground Water	08/28/24 16:27	08/29/24 13:10

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Prep Methods and Prep Dates

Method	Run Date ID
SW846 3005A	30-AUG-2024
SW846 7470A Prep	30-AUG-2024

Analysis Methods and Analysis Dates

Method	Run Date ID		
EPA 300.0	29-AUG-2024		
EPA 300.0	30-AUG-2024		
SM 2320B	29-AUG-2024		

SM 2540C 04-SEP-2024 SM 4500-S (2-) D 30-AUG-2024 SW846 3005A/6020B 08-SEP-2024 SW846 7470A 03-SEP-2024 Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4443.

Sincerely,

Alaina Pinnick Project Manager

Alaina Pinnick

Purchase Order: GPC82177-0006

Enclosures

Page 3 of 33 SDG: 683390

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

GPCC001 Georgia Power Company Client SDG: 683390 GEL Work Order: 683390

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- B Either presence of analyte detected in the associated blank, or MDL/IDL < sample value < PQL
- J Value is estimated

N/A RPD or %Recovery limits do not apply.

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Alaina Pinnick.

Page 4 of 33 SDG: 683390

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 10, 2024

GPCC00101

Company: Georgia Power Company, Southern Company
Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWC-30I

Sample ID: 683390001

Matrix: WG

Collect Date: 28-AUG-24 13:05
Receive Date: 29-AUG-24
Collector: Client

390001 Client ID: GPCC001

Project:

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liqu	uid "As Recei	ved"									
Chloride		3.48	0.335	1.00	mg/L		5	CH6	08/29/24	1823 2664760	1
Fluoride	J	0.336	0.165	0.500	mg/L		5				
Nitrate-N	U	ND	0.165	0.500	mg/L		5				
Sulfate		1260	26.6	80.0	mg/L		200	CH6	08/30/24	0644 2664760	2
Mercury Analysis-CVA	A										
7470 Cold Vapor Merci	ury, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/03/24	1226 2665310	3
Metals Analysis-ICP-M	S										
SW846 3005A/6020B "	'As Received	"									
Boron		1.82	0.104	0.300	mg/L	1.00	20	PRB	09/08/24	1646 2665210	4
Calcium		419	1.60	4.00	mg/L	1.00	20				
Magnesium		57.8	0.200	0.600	mg/L	1.00	20				
Manganese		1.52	0.0200	0.100	mg/L	1.00	20				
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/08/24	1544 2665210	5
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium		0.0339	0.000670	0.00400	mg/L	1.00	1				
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt		0.00149	0.000300	0.00100	mg/L	1.00	1				
Iron		2.57	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium		0.0295	0.00300	0.0100	mg/L	1.00	1				
Molybdenum		0.00123	0.000200	0.00100	mg/L	1.00	1				
Potassium		5.86	0.0800	0.300	mg/L	1.00	1				
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1				
Sodium		29.0	0.0800	0.250	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Solids Analysis											
SM2540C Dissolved So	olids "As Rec	eived"									
Total Dissolved Solids		2030	23.8	100	mg/L			KLP1	09/04/24	1045 2666217	6
Spectrometric Analysis											
SM 4500-S(2-) D Sulfic	de "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	08/30/24	1032 2665386	7

Page 5 of 33 SDG: 683390

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 10, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWC-30I Project: GPCC00101 Sample ID: 683390001 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF A	nalyst Date	Time Batch	Method
Titration and Ion Ana	lysis									
SM 2320B Total Alka	alinity "As Rec	eived"								
Alkalinity, Total as CaCO3	3	141	0.725	2.00	mg/L		JV	/2 08/29/24	1648 2665165	8
Bicarbonate alkalinity (Cao	CO3)	141	0.725	2.00	mg/L					
Carbonate alkalinity (CaCo	O3) U	ND	0.725	2.00	mg/L					
The following Prep M	lethods were p	erformed:								
Method	Description	n		Analyst	Date		Time	Prep Batch		
SW846 3005A	ICP-MS 300:	5A PREP		BB2	08/30/24		1510	2665209		
SW846 7470A Prep	EPA 7470A	Mercury Prep Liquid		JM13	08/30/24		1100	2665309		
The following Analy	tical Methods v	were performed:								

The following Analytical Methods were performed:

Method	Description	Analyst Comments
1	EPA 300.0	•
2	EPA 300.0	
3	SW846 7470A	
4	SW846 3005A/6020B	
5	SW846 3005A/6020B	
6	SM 2540C	
7	SM 4500-S (2-) D	
8	SM 2320B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 33 SDG: 683390

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 10, 2024

Company: Georgia Power Company, Southern Company
Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWC-47

Sample ID: 683390002

Matrix: WG

Collect Date: 28-AUG-24 15:38
Receive Date: 29-AUG-24
Collector: Client

Project: GPCC00101 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liqu	uid "As Recei	ved"									
Sulfate		1310	13.3	40.0	mg/L		100	CH6	08/29/24	1854 2664760	1
Chloride		4.57	0.134	0.400	mg/L		2	CH6	08/29/24	2332 2664760	2
Fluoride	U	ND	0.0660	0.200	mg/L		2				
Nitrate-N	J	0.176	0.0660	0.200	mg/L		2				
Mercury Analysis-CVA	AΑ										
7470 Cold Vapor Merc	ury, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/03/24	1227 2665310	3
Metals Analysis-ICP-M	1S										
SW846 3005A/6020B	"As Received	"									
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/08/24	1548 2665210	4
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium		0.0257	0.000670	0.00400	mg/L	1.00	1				
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1				
Iron		0.119	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium		0.0436	0.00300	0.0100	mg/L	1.00	1				
Manganese		0.00704	0.00100	0.00500	mg/L	1.00	1				
Molybdenum	J	0.000252	0.000200	0.00100	mg/L	1.00	1				
Potassium		11.1	0.0800	0.300	mg/L	1.00	1				
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1				
Sodium		38.9	0.0800	0.250	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Boron		0.508	0.0520	0.150	mg/L	1.00	10	PRB	09/08/24	1709 2665210	5
Calcium		302	0.800	2.00	mg/L	1.00	10				
Magnesium		114	0.100	0.300	mg/L	1.00	10				
Solids Analysis											
SM2540C Dissolved So	olids "As Rec	eived"									
Total Dissolved Solids		1780	23.8	100	mg/L			KLP1	09/04/24	1045 2666217	6
Spectrometric Analysis	;										
SM 4500-S(2-) D Sulfi	de "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	08/30/24	1033 2665386	7

Page 7 of 33 SDG: 683390

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 10, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWC-47 Project: GPCC00101
Sample ID: 683390002 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Titration and Ion Ana	alysis									
SM 2320B Total Alk	calinity "As Rec	eived"								
Alkalinity, Total as CaCO	3	27.8	0.725	2.00	mg/L		JW2	08/29/24	1650 2665165	8
Bicarbonate alkalinity (Ca	iCO3)	27.8	0.725	2.00	mg/L					
Carbonate alkalinity (CaC	O3) U	ND	0.725	2.00	mg/L					
The following Prep N	Methods were po	erformed:								
Method	Description	n		Analyst	Date		Time P	rep Batch		
SW846 3005A	ICP-MS 3005	5A PREP		BB2	08/30/24		1510 2	665209		
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		JM13	08/30/24		1100 2	665309		
TT1 C 11 ' A 1	13.6.1 1	C 1								

The following Analytical Methods were performed:

	1	
Method	Description	Analyst Comments
1	EPA 300.0	•
2	EPA 300.0	
3	SW846 7470A	
4	SW846 3005A/6020B	
5	SW846 3005A/6020B	
6	SM 2540C	
7	SM 4500-S (2-) D	
8	SM 2320B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 33 SDG: 683390

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 10, 2024

GPCC00101

GPCC001

Company: Georgia Power Company, Southern Company
Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-APBCD-FB-02

Sample ID: 683390003

Matrix: WQ

Collect Date: 28-AUG-24 16:30
Receive Date: 29-AUG-24
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liq	uid "As Recei	ved"									
Chloride	U	ND	0.0670	0.200	mg/L		1	CH6	08/29/24	1925 2664760	1
Fluoride	U	ND	0.0330	0.100	mg/L		1				
Nitrate-N	U	ND	0.0330	0.100	mg/L		1				
Sulfate	U	ND	0.133	0.400	mg/L		1				
Mercury Analysis-CV	AA										
7470 Cold Vapor Merc	cury, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/03/24	1229 2665310	2
Metals Analysis-ICP-N	ИS										
SW846 3005A/6020B	"As Received	"									
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/08/24	1551 2665210	3
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium	U	ND	0.000670	0.00400	mg/L	1.00	1				
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1				
Boron	J	0.00979	0.00520	0.0150	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00					
Calcium	U	ND	0.0800	0.200	mg/L	1.00					
Chromium	U	ND	0.00300	0.0100	mg/L	1.00					
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00					
Iron	U	ND	0.0330	0.100	mg/L	1.00					
Lead	U	ND	0.000500	0.00200	mg/L	1.00					
Lithium	U	ND	0.00300	0.0100	mg/L	1.00					
Magnesium	U	ND	0.0100	0.0300	mg/L	1.00					
Manganese	U	ND	0.00100	0.00500	mg/L	1.00					
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00					
Potassium	U	ND	0.0800	0.300	mg/L	1.00					
Selenium	U	ND	0.00150	0.00500	mg/L	1.00					
Sodium	U	ND ND	0.0800	0.250	mg/L	1.00					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Solids Analysis											
SM2540C Dissolved S					_						
Total Dissolved Solids	J	3.00	2.38	10.0	mg/L			KLP1	09/04/24	1045 2666217	4
Spectrometric Analysis											
SM 4500-S(2-) D Sulfi	ide "As Recei										
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	08/30/24	1033 2665386	5

Page 9 of 33 SDG: 683390

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 10, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-APBCD-FB-02 Project: GPCC00101
Sample ID: 683390003 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Ana	lyst Date	Time Batch	Method
Titration and Ion Analys	sis									
SM 2320B Total Alkalir	nity "As Rece	eived"								
Alkalinity, Total as CaCO3	U	ND	0.725	2.00	mg/L		JW2	08/29/24	1651 2665165	6
Bicarbonate alkalinity (CaCO3	3) U	ND	0.725	2.00	mg/L					
Carbonate alkalinity (CaCO3)	U	ND	0.725	2.00	mg/L					
The following Prep Met	hods were pe	erformed:								
Method	Description	1		Analyst	Date		Time	Prep Batch	ı	
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		JM13	08/30/24		1100	2665309		
SW846 3005A	ICP-MS 3005	A PREP		BB2	08/30/24		1510	2665209		

Analyst Comments

The following Analytical Methods were performed:

Method	Description
1	EPA 300.0
2	SW846 7470A
3	SW846 3005A/6020B
4	SM 2540C
5	SM 4500-S (2-) D
6	SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 33 SDG: 683390

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

GPCC00101

GPCC001

Report Date: September 10, 2024

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWC-52I

Sample ID: 683390004

Matrix: WG

Collect Date: 28-AUG-24 16:32
Receive Date: 29-AUG-24
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liq	uid "As Recei	ved"									
Chloride		6.58	0.0670	0.200	mg/L		1	CH6	08/29/24	1956 2664760	1
Fluoride	J	0.0748	0.0330	0.100	mg/L		1				
Nitrate-N	U	ND	0.0330	0.100	mg/L		1				
Sulfate		150	1.33	4.00	mg/L		10	CH6	08/30/24	0715 2664760	2
Mercury Analysis-CVA	AA										
7470 Cold Vapor Merc	cury, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/03/24	1231 2665310	3
Metals Analysis-ICP-N	/IS										
SW846 3005A/6020B	"As Received	"									
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/08/24	1555 2665210	4
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium		0.0345	0.000670	0.00400	mg/L	1.00	1				
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Calcium		36.8	0.0800	0.200	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00					
Iron		0.578	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium	J	0.00997	0.00300	0.0100	mg/L	1.00					
Magnesium		18.5	0.0100	0.0300	mg/L	1.00					
Manganese		0.558	0.00100	0.00500	mg/L	1.00					
Molybdenum	J	0.000691	0.000200	0.00100	mg/L	1.00					
Potassium		4.35	0.0800	0.300	mg/L	1.00					
Selenium	U	ND	0.00150	0.00500	mg/L	1.00					
Sodium		17.6	0.0800	0.250	mg/L	1.00					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00					
Boron		1.44	0.0520	0.150	mg/L	1.00	10	PRB	09/08/24	1712 2665210	5
Solids Analysis											
SM2540C Dissolved S	olids "As Rec	eived"									
Total Dissolved Solids		310	2.38	10.0	mg/L			KLP1	09/04/24	1045 2666217	6
Spectrometric Analysis	S				2						
SM 4500-S(2-) D Sulfi		ved"									
Total Sulfide	ue As Kecer U	ND	0.0330	0.100	mg/L		1	JW2	08/30/24	1033 2665386	7
Total Bulliuc	U	IND	0.0330	0.100	mg/L		1	3 11 2	00/30/24	1033 2003360	,

Page 11 of 33 SDG: 683390

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 10, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWC-52I Project: GPCC00101 Sample ID: 683390004 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF A	nalyst Date	Time Batch	Method
Titration and Ion Anal	ysis									
SM 2320B Total Alka	linity "As Rec	eived"								
Alkalinity, Total as CaCO3		52.8	0.725	2.00	mg/L		J/	W2 08/29/24	1652 2665165	8
Bicarbonate alkalinity (CaC	O3)	52.8	0.725	2.00	mg/L					
Carbonate alkalinity (CaCO	3) U	ND	0.725	2.00	mg/L					
The following Prep M	ethods were p	erformed:								
Method	Description	n		Analyst	Date		Time	Prep Batch		
SW846 3005A	ICP-MS 3005	5A PREP		BB2	08/30/24		1510	2665209		
SW846 7470A Prep	EPA 7470A	Mercury Prep Liquid		JM13	08/30/24		1100	2665309		
The following Analyt	ical Methods v	were performed:								

Method	Description	Analyst Comments
1	EPA 300.0	•
2	EPA 300.0	
3	SW846 7470A	
4	SW846 3005A/6020B	
5	SW846 3005A/6020B	
6	SM 2540C	
7	SM 4500-S (2-) D	
8	SM 2320B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 12 of 33 SDG: 683390

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 10, 2024

GPCC00101

GPCC001

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWC-32S

Sample ID: 683390005

Matrix: WG

Collect Date: 28-AUG-24 16:27
Receive Date: 29-AUG-24
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liqu	uid "As Recei	ived"									
Sulfate		201	2.66	8.00	mg/L		20	CH6	08/30/24	0746 2664760	1
Chloride		4.09	0.0670	0.200	mg/L		1	CH6	08/29/24	2027 2664760	2
Fluoride	J	0.0511	0.0330	0.100	mg/L		1				
Nitrate-N		0.213	0.0330	0.100	mg/L		1				
Mercury Analysis-CVA	A										
7470 Cold Vapor Merci	ury, Liquid "	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/03/24	1232 2665310	3
Metals Analysis-ICP-M	IS				_						
SW846 3005A/6020B "	'As Received	!"									
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/08/24	1558 2665210	4
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium		0.0163	0.000670	0.00400	mg/L	1.00	1				
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Calcium		37.4	0.0800	0.200	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1				
Iron	U	ND	0.0330	0.100	mg/L	1.00					
Lead	U	ND	0.000500	0.00200	mg/L	1.00					
Lithium	J	0.00514	0.00300	0.0100	mg/L	1.00					
Magnesium		23.1	0.0100	0.0300	mg/L	1.00					
Manganese	U	ND	0.00100	0.00500	mg/L	1.00					
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00					
Potassium		2.26	0.0800	0.300	mg/L	1.00					
Selenium		0.0945	0.00150	0.00500	mg/L	1.00					
Sodium		24.0	0.0800	0.250	mg/L	1.00					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00					
Boron		0.996	0.0260	0.0750	mg/L	1.00	5	PRB	09/08/24	1616 2665210	5
Solids Analysis											
SM2540C Dissolved So	olids "As Rec	eived"									
Total Dissolved Solids		374	2.38	10.0	mg/L			KLP1	09/04/24	1045 2666217	6
Spectrometric Analysis											
SM 4500-S(2-) D Sulfid	de "As Recei	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	08/30/24	1033 2665386	7

Page 13 of 33 SDG: 683390

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 10, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWC-32S Project: GPCC00101
Sample ID: 683390005 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Titration and Ion Analy	vsis									
SM 2320B Total Alkal	inity "As Rec	eived"								
Alkalinity, Total as CaCO3		30.1	0.725	2.00	mg/L		JW2	08/29/24	1653 2665165	8
Bicarbonate alkalinity (CaCC	03)	30.1	0.725	2.00	mg/L					
Carbonate alkalinity (CaCO3) U	ND	0.725	2.00	mg/L					
The following Prep Me	thods were po	erformed:								
Method	Description	1		Analyst	Date		Time P	rep Batch		
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		JM13	08/30/24		1100 2	665309		

BB2

08/30/24

1510

2665209

TT1 C 11 '	A 1 1 1	3 / /1 1	C 1
The following	Analyfical	Methods	were performed:
The following	1 mai y ticai	Michigas	were periorifica.

ICP-MS 3005A PREP

Method	Description	Analyst Comments	
1	EPA 300.0	•	
2	EPA 300.0		
3	SW846 7470A		
4	SW846 3005A/6020B		
5	SW846 3005A/6020B		
6	SM 2540C		
7	SM 4500-S (2-) D		
8	SM 2320B		

Notes:

SW846 3005A

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 14 of 33 SDG: 683390

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: September 10, 2024

Page 1 of 11

Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia Joju Abraham

Workorder: 683390

Contact:

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range A	nlst	Date Time
Ion Chromatography Batch 2664760										
QC1205840176 683390005 DUP Chloride		4.09		4.08	mg/L	0.414		(0%-20%)	СН6	08/29/24 21:59
Fluoride	J	0.0511	J	0.0487	mg/L	4.81	^	(+/-0.100)		
Nitrate-N		0.213		0.211	mg/L	1.04	^	(+/-0.100)		
Sulfate		201		201	mg/L	0.189		(0%-20%)		08/30/24 08:17
QC1205839267 LCS Chloride	5.00			4.91	mg/L		98.3	(90%-110%)		08/29/24 14:32
Fluoride	2.50			2.37	mg/L		94.8	(90%-110%)		
Nitrate-N	2.50			2.49	mg/L		99.7	(90%-110%)		
Sulfate	10.0			9.59	mg/L		95.9	(90%-110%)		
QC1205839266 MB Chloride			U	ND	mg/L					08/29/24 14:01
Fluoride			U	ND	mg/L					
Nitrate-N			U	ND	mg/L					
Sulfate			U	ND	mg/L					

Page 15 of 33 SDG: 683390

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683390 Page 2 of 11 Parmname **NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Ion Chromatography 2664760 Batch QC1205840177 683390005 PS 9.56 4.09 Chloride 5.00 mg/L 109 (90%-110%) CH6 08/29/24 22:30 Fluoride 2.50 J 0.0511 2.48 97.3 (90%-110%) mg/L Nitrate-N 2.50 0.213 2.70 mg/L 99.3 (90%-110%) Sulfate 10.0 10.1 20.2 mg/L 102 (90%-110%) 08/30/24 08:47 **Metals Analysis - ICPMS** 2665210 Batch QC1205840131 0.0500 0.0483 mg/L 96.7 (80%-120%) PRB 09/08/24 13:41 Antimony 0.0500 0.0481 Arsenic mg/L 96.2 (80%-120%) Barium 0.0500 0.0496 mg/L 99.3 (80%-120%) Beryllium 0.0500 0.0533 107 (80%-120%) mg/L 0.100 0.101 101 Boron mg/L (80%-120%) Cadmium 0.0500 0.0499 mg/L 99.7 (80%-120%) 2.05 Calcium 2.00 103 mg/L (80%-120%) Chromium 0.0500 0.0484 mg/L 96.8 (80%-120%) Cobalt 0.0500 0.0486 97.3 (80%-120%) mg/L

Page 16 of 33 SDG: 683390

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 3 of 11 QC Parmname **NOM** Sample Qual Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS Batch 2665210 mg/L Iron 2.00 1.95 97.4 (80%-120%) PRB 09/08/24 13:41 Lead 0.0500 0.0495 99 (80%-120%) mg/L 0.0500 0.0510 Lithium mg/L 102 (80%-120%) 1.97 98.5 Magnesium 2.00 mg/L(80%-120%) 0.0500 0.0488 Manganese 97.6 (80%-120%) mg/L Molybdenum 0.0500 0.0527 mg/L 105 (80%-120%) Potassium 2.00 1.95 97.6 (80%-120%) mg/L 0.0500 0.0498 Selenium mg/L 99.6 (80%-120%) mg/L Sodium 2.00 1.94 96.9 (80%-120%) Thallium 0.0500 0.0451 90.1 (80%-120%) mg/L QC1205840130 MB U 09/08/24 13:37 ND Antimony mg/L U ND Arsenic mg/L Barium U ND mg/L Beryllium U ND mg/L

Page 17 of 33 SDG: 683390

Workorder:

683390

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683390 Page 4 of 11 P<u>armname</u> NOM QC RPD% REC% Sample Qual Units Range Anlst Date Time Metals Analysis - ICPMS 2665210 Batch U Boron ND mg/L PRB 09/08/24 13:37 U Cadmium ND mg/L U ND mg/L Calcium Chromium U ND mg/L Cobalt U ND mg/LIron U ND mg/L U ND Lead mg/LU ND Lithium mg/L U Magnesium ND mg/LU ND mg/LManganese Molybdenum U ND mg/L Potassium U ND mg/LU ND Selenium mg/L U ND Sodium mg/L

Page 18 of 33 SDG: 683390

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

683390 Page 5 of 11 Parmname **NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2665210 Batch Thallium U ND mg/L PRB 09/08/24 13:37 QC1205840132 683387001 MS 0.0500 U ND 0.0503 100 09/08/24 13:56 Antimony mg/L (75%-125%) 0.0500 U ND 0.0501 Arsenic mg/L 99.2 (75%-125%) Barium 0.0500 0.0502 0.102 mg/L 103 (75%-125%) Beryllium 0.0500 U ND 0.0538 108 (75%-125%) mg/L mg/L Boron 0.100 0.0721 0.180 108 (75%-125%) 0.0500 U ND 0.0494 Cadmium 98.7 (75%-125%) mg/L Calcium 2.00 46.4 50.5 mg/L N/A (75%-125%) (75%-125%) Chromium 0.0500 0.0101 0.0592 98.1 mg/L 0.0500 U ND 0.0487 Cobalt 97.4 mg/L (75%-125%) 2.00 U ND Iron 1.98 mg/L 98 (75%-125%) 0.0500 U ND 0.0490 98.1 Lead mg/L (75%-125%) 0.0500 U Lithium ND 0.0529 mg/L 103 (75%-125%) Magnesium 2.00 26.0 28.7 mg/LN/A (75%-125%)

Page 19 of 33 SDG: 683390

Workorder:

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

683390 Page 6 of 11 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2665210 Batch Manganese 0.0500 ND 0.0497 mg/L 98.8 (75%-125%) PRB 09/08/24 13:56 0.0500 U ND 0.0522 104 Molybdenum mg/L (75%-125%) 3.25 Potassium 2.00 1.22 mg/L 101 (75%-125%) 0.00304 0.0542 Selenium 0.0500 J mg/L 102 (75%-125%) Sodium 2.00 23.4 26.4 N/A mg/L (75%-125%)Thallium 0.0500 U ND 0.0450 89.8 (75%-125%) mg/L QC1205840133 683387001 MSD mg/L Antimony 0.0500 U ND 0.0488 3.08 97.3 (0%-20%)09/08/24 13:59 ND 0.0500 U 0.0480 4.26 95 (0%-20%) Arsenic mg/L 0.0502 0.0974 0.0500 94.3 Barium mg/L 4.41 (0%-20%)Beryllium 0.0500 U ND 0.0527 mg/L2.06 105 (0%-20%) 0.100 0.0721 0.172 100 Boron 4.57 (0%-20%) mg/L 0.0500 U ND 0.0473 Cadmium mg/L 4.2 94.7 (0%-20%) 5.08 Calcium 2.00 46.4 48.0 mg/L N/A (0%-20%) Chromium 0.0500 0.0101 0.0573 mg/L 3.27 94.3 (0%-20%)

Page 20 of 33 SDG: 683390

Workorder:

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683390 Page 7 of 11 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2665210 Batch Cobalt 0.0500 ND 0.0479 mg/L 1.75 95.7 (0%-20%)PRB 09/08/24 13:59 2.00 U ND 1.95 1.54 96.5 (0%-20%) Iron mg/L ND 0.0475 Lead 0.0500 U mg/L 3.08 95.1 (0%-20%) 0.0500 U ND 0.0509 Lithium mg/L 3.94 99.4 (0%-20%) 2.00 26.0 27.4 N/A (0%-20%)Magnesium mg/L 4.43 0.0500 U ND 0.0485 2.41 96.4 (0%-20%) Manganese mg/L 0.0500 U ND 0.0507 mg/L 2.92 101 (0%-20%) Molybdenum Potassium 2.00 1.22 3.13 mg/L 3.65 95.6 (0%-20%)Selenium 0.0500 0.00304 0.0516 mg/L 4.88 97.1 (0%-20%) 2.00 23.4 24.8 N/A Sodium mg/L 6.05 (0%-20%)0.0500 U ND Thallium 0.0438 mg/L 2.58 87.5 (0%-20%)QC1205840134 683387001 SDILT U ND U ND 09/08/24 14:07 Antimony ug/L N/A (0%-20%) Arsenic U ND U ND ug/L N/A (0%-20%) Barium 50.2 10.0 ug/L (0%-20%) .157

Page 21 of 33 SDG: 683390

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683390 Page 8 of 11 QC REC% **Parmname NOM** Sample Qual Units RPD% Range Anlst Date Time Metals Analysis - ICPMS 2665210 Batch Beryllium U ND U ND ug/L N/A (0%-20%)PRB 09/08/24 14:07 Boron 72.1 J 13.8 ug/L 4.32 (0%-20%) U ND U ND Cadmium ug/L N/A (0%-20%) 46400 9270 Calcium ug/L .154 (0%-20%) U ND ug/L Chromium 10.1 N/A (0%-20%) ug/L Cobalt U ND U ND N/A (0%-20%) U ug/L ND U ND N/A (0%-20%) Iron U U Lead ND ND ug/L N/A (0%-20%)Lithium U ND U ND ug/L N/A (0%-20%) 26000 5170 ug/L .621 (0%-20%) Magnesium U ND U ND Manganese ug/L N/A (0%-20%)U ND U ND Molybdenum ug/L N/A (0%-20%) 1220 J (0%-20%) Potassium 246 ug/L .831 J Selenium 3.04 U ND ug/L N/A (0%-20%)

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683390 Page 9 of 11 **Parmname** NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2665210 Batch Sodium 23400 4590 ug/L 1.92 (0%-20%)PRB 09/08/24 14:07 Thallium U ND U ND (0%-20%) ug/L N/A Metals Analysis-Mercury 2665310 QC1205840305 683387001 DUP Mercury U ND U ND mg/L N/A JP2 09/03/24 11:56 QC1205840304 LCS 0.00200 0.00202 101 (80%-120%) 09/03/24 11:53 Mercury mg/L QC1205840303 MB U ND 09/03/24 11:51 Mercury mg/L QC1205840306 683387001 MS 0.00200 U ND 0.00194 09/03/24 12:01 Mercury mg/L 96.8 (75%-125%) QC1205840307 683387001 SDILT U ND U ND ug/L N/A (0%-10%) 09/03/24 12:03 Mercury Solids Analysis Batch 2666217 QC1205842587 683390004 DUP 310 mg/L 314 (0%-5%) KLP1 09/04/24 10:45 Total Dissolved Solids 1.28 QC1205842586 LCS Total Dissolved Solids 300 291 (95%-105%) 09/04/24 10:45 mg/L QC1205842585 ND 09/04/24 10:45 Total Dissolved Solids mg/L

Page 23 of 33 SDG: 683390

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

		20 80		,					
Workorder: 683390									Page 10 of 11
Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Spectrometric Analysis Batch 2665386 ——									
QC1205840474 LCS Total Sulfide	0.400		0.408	mg/L		102	(85%-115%)	JW2	08/30/24 10:32
QC1205840473 MB Total Sulfide		U	ND	mg/L					08/30/24 10:32
QC1205840475 683164001 PS Total Sulfide	0.400 U	ND	0.399	mg/L		99.6	(75%-125%)		08/30/24 10:32
QC1205840476 683164001 PSD Total Sulfide	0.400 U	ND	0.388	mg/L	2.81	96.9	(0%-15%)		08/30/24 10:32
Titration and Ion Analysis Batch 2665165 ——									
QC1205839997 LCS Alkalinity, Total as CaCO3	50.0		50.5	mg/L		101	(90%-110%)	JW2	08/29/24 16:29
QC1205839998 LCS Alkalinity, Total as CaCO3	15.0		15.0	mg/L		100	(90%-110%)		08/29/24 16:31
QC1205839999 LCSD Alkalinity, Total as CaCO3	50.0		50.9	mg/L	0.789	102	(0%-20%)		08/29/24 16:30
QC1205840000 LCSD Alkalinity, Total as CaCO3	15.0		14.7	mg/L	2.02	98	(0%-20%)		08/29/24 16:32

Notes:

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- N Metals--The Matrix spike sample recovery is not within specified control limits
- H Analytical holding time was exceeded

Page 24 of 33 SDG: 683390

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683390

Page 11 of 11

Parmname

NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time

- < Result is less than value reported
- > Result is greater than value reported
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- Z Paint Filter Test--Particulates passed through the filter, however no free liquids were observed.
- d 5-day BOD--The 2:1 depletion requirement was not met for this sample
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- E %difference of sample and SD is >10%. Sample concentration must meet flagging criteria
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- E General Chemistry--Concentration of the target analyte exceeds the instrument calibration range
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- FB Mercury was found present at quantifiable concentrations in field blanks received with these samples. Data associated with the blank are deemed invalid for reporting to regulatory agencies
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- R Per section 9.3.4.1 of Method 1664 Revision B, due to matrix spike recovery issues, this result may not be reported or used for regulatory compliance purposes.
- B The target analyte was detected in the associated blank.
- e 5-day BOD--Test replicates show more than 30% difference between high and low values. The data is qualified per the method and can be used for reporting purposes
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 25 of 33 SDG: 683390

Technical Case Narrative Georgia Power Company SDG #: 683390

Metals

<u>Product:</u> Determination of Metals by ICP-MS <u>Analytical Method:</u> SW846 3005A/6020B <u>Analytical Procedure:</u> GL-MA-E-014 REV# 36

Analytical Batch: 2665210

Preparation Method: SW846 3005A

Preparation Procedure: GL-MA-E-006 REV# 15

Preparation Batch: 2665209

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683390001	BRA-BRGWC-30I
683390002	BRA-BRGWC-47
683390003	BRA-APBCD-FB-02
683390004	BRA-BRGWC-52I
683390005	BRA-BRGWC-32S
1205840130	Method Blank (MB)ICP-MS
1205840131	Laboratory Control Sample (LCS)
1205840134	683387001(BRA-BRGWC-17SL) Serial Dilution (SD)
1205840132	683387001(BRA-BRGWC-17SS) Matrix Spike (MS)
1205840133	683387001(BRA-BRGWC-17SSD) Matrix Spike Duplicate (MSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Calibration Information

ICSA/ICSAB Statement

For the ICP-MS analysis, the ICSA solution contains analyte concentrations which are verified trace impurities indigenous to the purchased standard.

Technical Information

Sample Dilutions

Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range. Samples 683390001 (BRA-BRGWC-30I), 683390002 (BRA-BRGWC-47), 683390004 (BRA-BRGWC-52I) and 683390005 (BRA-BRGWC-32S) were diluted to ensure that the analyte concentrations were within the linear calibration range of the instrument.

Analyte	683390							
Anaryte	001	002	004	005				

Page 26 of 33 SDG: 683390

Boron	20X	10X	10X	5X
Calcium	20X	10X	1X	1X
Magnesium	20X	10X	1X	1X
Manganese	20X	1X	1X	1X

Product: Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer

Analytical Method: SW846 7470A

Analytical Procedure: GL-MA-E-010 REV# 40

Analytical Batch: 2665310

Preparation Method: SW846 7470A Prep

Preparation Procedure: GL-MA-E-010 REV# 40

Preparation Batch: 2665309

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683390001	BRA-BRGWC-30I
683390002	BRA-BRGWC-47
683390003	BRA-APBCD-FB-02
683390004	BRA-BRGWC-52I
683390005	BRA-BRGWC-32S
1205840303	Method Blank (MB)CVAA
1205840304	Laboratory Control Sample (LCS)
1205840307	683387001(BRA-BRGWC-17SL) Serial Dilution (SD)
1205840305	683387001(BRA-BRGWC-17SD) Sample Duplicate (DUP)
1205840306	683387001(BRA-BRGWC-17SS) Matrix Spike (MS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

General Chemistry

Product: Ion Chromatography Analytical Method: EPA 300.0

Analytical Procedure: GL-GC-E-086 REV# 35

Analytical Batch: 2664760

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683390001	BRA-BRGWC-30I
683390002	BRA-BRGWC-47
683390003	BRA-APBCD-FB-02
683390004	BRA-BRGWC-52I

Page 27 of 33 SDG: 683390

683390005	BRA-BRGWC-32S
1205839266	Method Blank (MB)
1205839267	Laboratory Control Sample (LCS)
1205840176	683390005(BRA-BRGWC-32S) Sample Duplicate (DUP)
1205840177	683390005(BRA-BRGWC-32S) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Sample Dilutions

The following samples 683390001 (BRA-BRGWC-30I), 683390004 (BRA-BRGWC-52I) and 683390005 (BRA-BRGWC-32S) were diluted because target analyte concentrations exceeded the calibration range. Samples 683390001 (BRA-BRGWC-30I) and 683390002 (BRA-BRGWC-47) were diluted to minimize matrix effects on instrument performance. Sample 683390002 (BRA-BRGWC-47) was diluted based on historical data. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

A 14 -		6833	90	
Analyte	001	002	004	005
Chloride	5X	2X	1X	1X
Fluoride	5X	2X	1X	1X
Nitrate-N	5X	2X	1X	1X
Sulfate	200X	100X	10X	20X

Miscellaneous Information

Manual Integrations

Samples 1205840176 (BRA-BRGWC-32SDUP), 1205840177 (BRA-BRGWC-32SPS), 683390004 (BRA-BRGWC-52I) and 683390005 (BRA-BRGWC-32S) were manually integrated to correctly position the baseline as set in the calibration standards.

Product: Solids, Total Dissolved Analytical Method: SM 2540C

Analytical Procedure: GL-GC-E-001 REV# 21

Analytical Batch: 2666217

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683390001	BRA-BRGWC-30I
683390002	BRA-BRGWC-47
683390003	BRA-APBCD-FB-02
683390004	BRA-BRGWC-52I
683390005	BRA-BRGWC-32S
1205842585	Method Blank (MB)

Page 28 of 33 SDG: 683390

1205842586 Laboratory Control Sample (LCS)

1205842587 683390004(BRA-BRGWC-52I) Sample Duplicate (DUP)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Miscellaneous Information

Additional Comments

A reduced aliquot was used due to historical information. 683390001 (BRA-BRGWC-30I) and 683390002 (BRA-BRGWC-47).

Product: Sulfide, Total

Analytical Method: SM 4500-S (2-) D

Analytical Procedure: GL-GC-E-052 REV# 13

Analytical Batch: 2665386

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683390001	BRA-BRGWC-30I
683390002	BRA-BRGWC-47
683390003	BRA-APBCD-FB-02
683390004	BRA-BRGWC-52I
683390005	BRA-BRGWC-32S
1205840473	Method Blank (MB)
1205840474	Laboratory Control Sample (LCS)
1205840475	683164001(NonSDG) Post Spike (PS)
1205840476	683164001(NonSDG) Post Spike Duplicate (PSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Sample Dilutions

The following samples 1205840475 (Non SDG 683164001PS) and 1205840476 (Non SDG 683164001PSD) in this sample group were diluted due to limited sample quantity. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

Product: Alkalinity

Analytical Method: SM 2320B

Analytical Procedure: GL-GC-E-033 REV# 16

Page 29 of 33 SDG: 683390

Analytical Batch: 2665165

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683390001	BRA-BRGWC-30I
683390002	BRA-BRGWC-47
683390003	BRA-APBCD-FB-02
683390004	BRA-BRGWC-52I
683390005	BRA-BRGWC-32S
1205839997	Laboratory Control Sample (LCS)
1205839998	Laboratory Control Sample (LCS)
1205839999	Laboratory Control Sample Duplicate (LCSD)
1205840000	Laboratory Control Sample Duplicate (LCSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Laboratory Control Sample Duplicate (LCSD)

An LCSD was used in place of matrix QC due to limited sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 30 of 33 SDG: 683390

Page: 1 of 1 Project # GEL Quote #: COC Number (0).		GELCOM		abo mistry I B	Laboration Laboration Laborative Chemistry Radiochemistry Radioc	SS LL Radiobioa	C Ssay Spec	ialty Anal	ytics		0 70	GEL Laboratories, LLC 2040 Savage Road Charleston, SC 29407	aboratories, LLC (10 C)	1009
9000	GEL Work Order Number:	5	5	GEL F	GEL Project Manager: Erin Trent	ger: Er	in Trent				<u> </u>	Phone: (843) 556-8171 Fax: (843) 766-1178	56-8171	
Client Name: GA Power		Phone # 4	404-506-7116	116			Sample		sis Rec	Analysis Requested (5)		e number of	(Fill in the number of containers for each test)	ch test)
Project/Site Name: Plant Branch Ash Ponds - BCD		Fax#			S	Should this			IN	IN			< P	< Preservative Type (6)
Address: 241 Ralph McGill Blvd SE, Atlanta GA 30308	0308				'S 03	sample be		Э	NIV	8				Comments
Collected By: Routh of ACC S	Send Results To: SCS & Geosyntec Contacts	eosyntec C	ontacts		H)			M 2540	Z0B	12, 932 15, 932			Not	Note: extra sample is
Sample ID * For composites - indicate start and stop date/time	*Date Collected	*Time Collected (Military)	QC Code (3)	Field (9)	Sample Matrix (3) Sadioactive Yes, please sup	sotopic info.)	nszible Haza	EPA 300, S	Total, Carb, & SM 23 Metal	EPA 6020, 6 SW-846 93 SW-846 93	5t WS		Task	Task_Code: BRA-CCR-ASSMT-2074S7
BRA-BREWG 30T	100	1305	Ö	z	I	!	0	5	/	7	\			
BRA-BREWC-47	08/28/24	1538	0	X	n/s		000	1	1	7	\			
BRA-APBCD - F8-02	12/81/80	1630	0	>	N N		000	>	,	1	1			
BRA- 826WC-52]	hc/82/80	1632	0	4	80		00	7	1	1	1			
BRA- BR 6W6-325	12/20/20	1627	9	>	1/2		00	7	7	1	1			
BRA-														
BRA-									-					
BRA-														
BRA-					-			1	-					
BRA-									+					
Chair	Chain of Custody Signatures						TAT Requested:	uested:	Normal:	nal: X	Rush:	Specify:	(Subi	(Subject to Surcharge)
Relinquished By (Signed) Date Time	Received by (signed)		Date	Time		Fax	Fax Results: [] Yes] Yes	oN [x]					
1 July 8/29/24 0822	I Mally	1/3/29	58%	08	22	Selec	Select Deliverable: [] C of A	able: []	CofA	[] QC Summary		[] level 1 [x	[x] Level 2 [] Level 3	/el 3 [] Level 4
	2 m	Ma	los	Sell .	18) he/s	0	Additional Remarks:	narks:	* W	etals: B,Ca	Sb,As,Ba,Be	,Cd,Cr,Co,Pb,	* Metals: B,Ca,Sb,As,Ba,Be,Cd,Cr,Co,Pb,Li,Mo,Se,Tl,Fe,Mg,Mn,K,Na,Hg	
3 3 Second leshipping and delivery details, see Sample Receipt & Review form (SRR)	3 on the Receipt & Review form	(SRR.)			Samp	For Je Collec	Lab Recei	ving Us	e Only:	Custody S	Sample Collection Time Zone: [X] Eastern [] Pacific [] Central		[] No Cooler Temp:	Temp: O °C
1.) Chain of Custody Number = Client Determined 2.) QC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicate, EB = Equipment Blank, MS = Matrix Spike Sample, MSD = Matrix Spike Duplicate Sample, G = Grab, C = Composite 3.) Field Filtered: For liquid matrices, indicate with a - Y - for yeas the sample was field filtered or - N - for sample was not field filtered. 4.) Matrix Codes: WD=Drinking Water, WG=Groundwater, WS=Surface Water, WW=Waste Water, WL=Leachter, SO=Soil, SE=Sediment, SL=Sludge, WQ=Water Quality Control Matrix 5.) Sample Analysis Requested: Analytical method requested (i.e. 8260B, 6010B/7470A) and number of containers provided for each (i.e. 8260B - 3, 6010B/7470A - 1). 5.) Preservative Type: HA = Hydrochloric Acid, NI = Nitric Acid, SH = Sodium Hydroxide, SA = Sulfuric Acid, HX = Hexane, ST = Sodium Thiosulfate, If no preservative is added = leave field blank	Duplicate, EB = Equipment Blank, the sample was field filtered or - N - Surface Water, WW=Waste Water, 2260B, 6010B/7470A) and number CSH = Sodium Hydroxide, SA = Suff	MS = Matrix S. for sample was WL=Leachate, of containers pre uric Acid, AA =	oike Sample not field filt SO=Soil, S vided for ea	ered. E=Sedimer tch (i.e. 82)	latrix Spike Duplicate Samp t, SL=Sludge, WQ=Water 50B - 3, 6010B/74704 - 1). Hexane, ST = Sodium Thio	icate Samp Q=Water (470A - 1).	le, $G = Grab$ Quality Cont ulfate, If no	, C = Corrol Matrix	nposite	d = leave field	blank			
(Ch. KNOWN OR POSSIBLE HAZARDS Ch. KNOWN OR POSSIBLE HAZARDS Ch. KI KNOWN OR POSSIBLE HAZARDS Ch. KNOWN OR POSSIBLE HAZARD CH. KNOWN OR POSSIBLE HAZARDS CH. KNOWN OR POSSIBLE HAZARDS CH.	Characteristic Hazards FL = Flammable/Ignitable CO = Corrosive	Listed Waste LW= Listed W	Listed Waste LW= Listed Waste CR R P and Illinear	e e		Other OT= C	Other OT= Other / Unknown	nknown					Please provide any additional details below regarding handling and/or	ditional details ling and/or
Hg= Mercury Se= Selenium An= Silver	RE = Reactive	Waste co	(r.k.r. and 0-itsted wastes.) Waste code(s):	ed waste.		misc. Descr	(i.e.: High/tow p.t., asbesti misc. health hazards, etc.) Description:	pri, aso zards, e	estos, b tc.)	eryllium, n	(t.e.: rignitow pri, aspesios, berylium, irritants, other misc. health hazards, etc.) Description:		disposal concerns. (i.e.: Origin of sample(s), type of site collected fro matrices, etc.)	disposat concerns. (i.e.: Origin of sample(s), type of site collected from, odd matrices, etc.)
MR= Misc. RCRA metals	PCB = Polychlorinated				1									
	civitatiqua													

Client: GPCC			SAMPLE RECEIPT & REVIEW FORM (\$3387) U83389 SDG/AR/COC/Work Optder:
Received By: CLM			Date Received: 8 29/24
Carrier and Tracking Number			FedEx Express FedEx Ground UPS Field Services Courie) Other 3-0 5-9 4-0 (6-1)
uspected Hazard Information	Yes	No.	*If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
Shipped as a DOT Hazardous?		V	Hazard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes No
) Did the client designate the samples are to ceived as radioactive?	be	1	COC notation or radioactive stickers on containers equal client designation.
) Did the RSO classify the samples as dioactive?		V	Maximum Net Counts Observed* (Observed Counts - Area Background Counts): Classified as: Rad 1 Rad 2 Rad 3
) Did the client designate samples are hazaro	lous?	1	COC notation or hazard labels on containers equal client designation.
Did the RSO identify possible hazards?		1	If D or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
Sample Receipt Criteria	Yes	NA	Comments/Qualifiers (Required for Non-Conforming Items)
Shipping containers received intact a sealed?	200		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
Chain of custody documents included with shipment?			Circle Applicable: Client contacted and provided COC COC created upon receipt
Samples requiring cold preservation within (0 ≤ 6 deg. C)?*	V		Preservation Method: Wet Ice ce Packs Dry ice None Other: *all temperatures are recorded in Celsius TEMP:
Daily check performed and passed or temperature gun?	IR		Temperature Device Serial #: IRS-23 Secondary Temperature Device Serial # (If Applicable):
Sample containers intact and sealed?	V		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
Samples requiring chemical preserval at proper pH?	ion	7	Sample ID's and Containers Affected: If Preservation added, Lot#:
Do any samples require Volatile Analysis?		大学	If Yes, are Encores or Soil Kits present for solids? YesNoNA (If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? YesNoNA (If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA Sample ID's and containers affected:
Samples received within holding time	2		ID's and tests affected:
Sample ID's on COC match ID's on bottles?	/		ID's and containers affected:
Date & time on COC match date & ti on bottles?	me /	1	Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
Number of containers received match number indicated on COC?	V		Circle Applicable: No container count on COC Other (describe)
Are sample containers identifiable as GEL provided by use of GEL labels?			
COC form is properly signed in	1/		Circle Applicable: Not relinquished Other (describe)

GL-CHL-SR-001 Rev 7

List of current GEL Certifications as of 10 September 2024

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	KY90129
Kentucky Wastewater	KY90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2023019
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	NV-C24-00175
New Hampshire NELAP	205424
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2023-152
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235
Utah NELAP	SC000122024-41
Vermont	VT87156
Virginia NELAP	460202
Washington	C780

gel.com

September 10, 2024

Joju Abraham Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

Re: Branch CCR Groundwater Compliance

Work Order: 683387

Dear Joju Abraham:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on August 29, 2024. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt. The laboratory received the following sample(s):

<u>Laboratory ID</u>	Client ID	<u>Matrix</u>	Date Collected	Date Received
683387001	BRA-BRGWC-17S	Ground Water	08/28/24 12:13	08/29/24 13:10
683387002	BRA-BRGWC-33S	Ground Water	08/28/24 14:22	08/29/24 13:10
683387003	BRA-BRGWC-34S	Ground Water	08/28/24 12:43	08/29/24 13:10
683387004	BRA-BRGWC-35S	Ground Water	08/28/24 11:27	08/29/24 13:10
683387005	BRA-BRGWC-36S	Ground Water	08/28/24 10:08	08/29/24 13:10
683387006	BRA-PZ-52D	Ground Water	08/28/24 13:44	08/29/24 13:10
683387007	BRA-PZ-70I	Ground Water	08/28/24 10:06	08/29/24 13:10
683387008	BRA-APE-FD-05	Ground Water	08/28/24 12:00	08/29/24 13:10
683387009	BRA-APE-FB-08	Water	08/28/24 14:30	08/29/24 13:10
683387010	BRA-APE-EB-09	Water	08/28/24 11:00	08/29/24 13:10
683387011	BRA-APE-EB-10	Water	08/28/24 13:10	08/29/24 13:10

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Prep Methods and Prep Dates

Method	Run Date ID
SW846 3005A	30-AUG-2024
SW846 7470A Prep	30-AUG-2024

Analysis Methods and Analysis Dates

Method	Run Date ID
EPA 300.0	29-AUG-2024
EPA 300.0	30-AUG-2024
SM 2320B	29-AUG-2024
SM 2540C	04-SEP-2024
SM 4500-S (2-) D	30-AUG-2024
SW846 3005A/6020B	08-SEP-2024
SW846 7470A	03-SEP-2024

Page 2 of 48 SDG: 683387

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4443.

Sincerely,

Alaina Pinnick Project Manager

Alaina Pinnick

Purchase Order: GPC82177-0006

Enclosures

Page 3 of 48 SDG: 683387

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

GPCC001 Georgia Power Company Client SDG: 683387 GEL Work Order: 683387

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- B Either presence of analyte detected in the associated blank, or MDL/IDL < sample value < PQL
- H Analytical holding time was exceeded
- J Value is estimated
- N/A RPD or %Recovery limits do not apply.
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Alaina Pinnick.

Page 4 of 48 SDG: 683387

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

GPCC00101

GPCC001

Report Date: September 10, 2024

Company: Georgia Power Company, Southern Company
Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWC-17S

Sample ID: 683387001

Matrix: WG

Collect Date: 28-AUG-24 12:13
Receive Date: 29-AUG-24
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date		Time Batch	Method	
Ion Chromatography											
EPA 300.0 Anions Liqui	id "As Recei	ved"									
Sulfate		188	2.66	8.00	mg/L		20	TXT1	08/30/24	0832 2665219	1
Chloride		4.95	0.134	0.400	mg/L		2	TXT1	08/29/24	1812 2665219	2
Fluoride		0.218	0.0660	0.200	mg/L		2				
Nitrate-N		0.248	0.0660	0.200	mg/L		2				
Mercury Analysis-CVA	A										
7470 Cold Vapor Mercu	ry, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/03/24	1155 2665310	3
Metals Analysis-ICP-MS	S										
SW846 3005A/6020B "A	As Received'	"									
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/08/24	1352 2665210	4
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium		0.0502	0.000670	0.00400	mg/L	1.00	1				
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1				
Boron		0.0721	0.00520	0.0150	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Calcium		46.4	0.0800	0.200	mg/L	1.00	1				
Chromium		0.0101	0.00300	0.0100	mg/L	1.00	1				
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1				
Iron	U	ND	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Magnesium		26.0	0.0100	0.0300	mg/L	1.00	1				
Manganese	U	ND	0.00100	0.00500	mg/L	1.00	1				
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1				
Potassium		1.22	0.0800	0.300	mg/L	1.00	1				
Selenium	J	0.00304	0.00150	0.00500	mg/L	1.00	1				
Sodium		23.4	0.0800	0.250	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Solids Analysis											
SM2540C Dissolved Sol	lids "As Rec	eived"									
Total Dissolved Solids		421	2.38	10.0	mg/L			KLP1	09/04/24	1045 2666217	5
Spectrometric Analysis					C						
SM 4500-S(2-) D Sulfide	e "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	08/30/24	1032 2665386	6

Page 5 of 48 SDG: 683387

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 10, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWC-17S Project: GPCC00101
Sample ID: 683387001 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Aı	nalyst Date	Time Batch	Method
Titration and Ion Ana	lysis									
SM 2320B Total Alka	alinity "As Rec	eived"								
Alkalinity, Total as CaCO3	3	62.9	0.725	2.00	mg/L		JW	/2 08/29/24	1634 2665165	7
Bicarbonate alkalinity (CaC	CO3)	62.9	0.725	2.00	mg/L					
Carbonate alkalinity (CaCo	D3) U	ND	0.725	2.00	mg/L					
The following Prep M	lethods were p	erformed:								
Method	Description	n		Analyst	Date		Time	Prep Batch	ı	
SW846 3005A	ICP-MS 300:	5A PREP		BB2	08/30/24		1510	2665209		
SW846 7470A Prep	EPA 7470A	Mercury Prep Liquid		JM13	08/30/24		1100	2665309		
TT1 C 11 ' A 1	13.6.4.1	C 1								

Analyst Comments

The following Analytical Methods were performed:

Method	Description	
1	EPA 300.0	
2	EPA 300.0	
3	SW846 7470A	
4	SW846 3005A/6020B	
5	SM 2540C	
6	SM 4500-S (2-) D	
7	SM 2320B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 48 SDG: 683387

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 10, 2024

GPCC00101

GPCC001

Company: Georgia Power Company, Southern Company
Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWC-33S

Sample ID: 683387002

Matrix: WG

Parameter

Collect Date: 28-AUG-24 14:22
Receive Date: 29-AUG-24
Collector: Client

Qualifier Result DL RL Units PF DF Analyst Date Time Batch Method atography

Project:

Client ID:

Ion Chromatography												
EPA 300.0 Anions Liquid "As	Recei	ved"										
Fluoride		0.204	0.0660	0.200	mg/L		2	TXT1	08/29/24	1843	2665219	1
Nitrate-N	U	ND	0.0660	0.200	mg/L		2					
Sulfate		1230	26.6	80.0	mg/L		200	TXT1	08/30/24	0936	2665219	2
Chloride		71.7	1.34	4.00	mg/L		20	TXT1	08/30/24	0904	2665219	3
Mercury Analysis-CVAA												
7470 Cold Vapor Mercury, Lic	uid "A	As Received	"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/03/24	1206	2665310	4
Metals Analysis-ICP-MS												
SW846 3005A/6020B "As Rec	eived	"										
Boron		1.25	0.0520	0.150	mg/L	1.00	10	PRB	09/08/24	1628	2665210	5
Calcium		369	0.800	2.00	mg/L	1.00	10					
Magnesium		73.2	0.100	0.300	mg/L	1.00	10					
Manganese		5.89	0.0100	0.0500	mg/L	1.00	10					
Sodium		87.6	0.800	2.50	mg/L	1.00	10					
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/08/24	1417	2665210	6
Arsenic		0.00577	0.00200	0.00500	mg/L	1.00	1					
Barium		0.0511	0.000670	0.00400	mg/L	1.00	1					
Beryllium		0.00209	0.000200	0.000500	mg/L	1.00	1					
Cadmium	J	0.000807	0.000300	0.00100	mg/L	1.00	1					
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Cobalt		0.104	0.000300	0.00100	mg/L	1.00	1					
Iron		0.105	0.0330	0.100	mg/L	1.00	1					
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1					
Lithium		0.0102	0.00300	0.0100	mg/L	1.00	1					
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1					
Potassium		20.4	0.0800	0.300	mg/L	1.00	1					
Selenium		0.0238	0.00150	0.00500	mg/L	1.00	1					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1					
Solids Analysis												
SM2540C Dissolved Solids "A	s Rec	eived"										
Total Dissolved Solids		1880	23.8	100	mg/L			KLP1	09/04/24	1045	2666217	7
Spectrometric Analysis												
SM 4500-S(2-) D Sulfide "As 1	Receiv	ved"										
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	08/30/24	1032	2665386	8

Page 7 of 48 SDG: 683387

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 10, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWC-33S Project: GPCC00101 Sample ID: 683387002 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Ana	lyst Date	Time Batch	Method
Titration and Ion Analy	sis									
SM 2320B Total Alkali	nity "As Rec	eived"								
Alkalinity, Total as CaCO3		2.70	0.725	2.00	mg/L		JW2	08/29/24	1635 2665165	9
Bicarbonate alkalinity (CaCO	3)	2.70	0.725	2.00	mg/L					
Carbonate alkalinity (CaCO3)	U	ND	0.725	2.00	mg/L					
The following Prep Met	thods were po	erformed:								
Method	Description	1		Analyst	Date		Time	Prep Batch	l	
SW846 3005A	ICP-MS 3005	A PREP		BB2	08/30/24		1510	2665209		
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		JM13	08/30/24		1100	2665309		

The following Analytical Methods were performed:

The following A	marytical Methods were performed.		
Method	Description	Analyst Comments	
1	EPA 300.0		
2	EPA 300.0		
3	EPA 300.0		
4	SW846 7470A		
5	SW846 3005A/6020B		
6	SW846 3005A/6020B		
7	SM 2540C		
8	SM 4500-S (2-) D		
9	SM 2320B		

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 48 SDG: 683387

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

GPCC00101

GPCC001

Report Date: September 10, 2024

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWC-34S

Sample ID: 683387003

Matrix: WG

Collect Date: 28-AUG-24 12:43
Receive Date: 29-AUG-24
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liqui	id "As Recei	ved"									
Fluoride		0.110	0.0330	0.100	mg/L		1	TXT1	08/29/24	1915 2665219	1
Nitrate-N	J	0.0378	0.0330	0.100	mg/L		1				
Sulfate		308	6.65	20.0	mg/L		50	TXT1	08/30/24	1039 2665219	2
Chloride		15.5	0.268	0.800	mg/L		4	TXT1	08/30/24	1008 2665219	3
Mercury Analysis-CVA	A										
7470 Cold Vapor Mercu	ry, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/03/24	1208 2665310	4
Metals Analysis-ICP-MS	S										
SW846 3005A/6020B "A	As Received	"									
Boron		1.88	0.104	0.300	mg/L	1.00	20	PRB	09/08/24	1631 2665210	5
Calcium		95.9	1.60	4.00	mg/L	1.00	20				
Manganese		3.71	0.0200	0.100	mg/L	1.00	20				
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/08/24	1421 2665210	6
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium		0.0281	0.000670	0.00400	mg/L	1.00	1				
Beryllium	J	0.000205	0.000200	0.000500	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt		0.00494	0.000300	0.00100	mg/L	1.00	1				
Iron	J	0.100	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Magnesium		22.3	0.0100	0.0300	mg/L	1.00	1				
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1				
Potassium		3.89	0.0800	0.300	mg/L	1.00	1				
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1				
Sodium		22.7	0.0800	0.250	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Solids Analysis											
SM2540C Dissolved So	lids "As Rec	eived"									
Total Dissolved Solids		562	2.38	10.0	mg/L			KLP1	09/04/24	1045 2666217	7
Spectrometric Analysis											
SM 4500-S(2-) D Sulfid	e "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	08/30/24	1032 2665386	8

Page 9 of 48 SDG: 683387

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 10, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWC-34S Project: GPCC00101
Sample ID: 683387003 Client ID: GPCC001

DL RL Units Parameter Qualifier Result PF DF Analyst Date Time Batch Method Titration and Ion Analysis SM 2320B Total Alkalinity "As Received" Alkalinity, Total as CaCO3 32.8 0.725 2.00 mg/L JW2 08/29/24 1636 2665165 Bicarbonate alkalinity (CaCO3) 32.8 0.725 2.00 mg/L Carbonate alkalinity (CaCO3) ND 0.725 2.00 mg/L The following Prep Methods were performed: Datal

Method	Description	Analyst	Date	Time	Prep Batch
SW846 7470A Prep	EPA 7470A Mercury Prep Liquid	JM13	08/30/24	1100	2665309
SW846 3005A	ICP-MS 3005A PREP	BB2	08/30/24	1510	2665209

The following Analytical Methods were performed:

The following A	analytical Michigas were performed.		
Method	Description	Analyst Comments	
1	EPA 300.0	•	
2	EPA 300.0		
3	EPA 300.0		
4	SW846 7470A		
5	SW846 3005A/6020B		
6	SW846 3005A/6020B		
7	SM 2540C		
8	SM 4500-S (2-) D		
9	SM 2320B		

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 48 SDG: 683387

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 10, 2024

GPCC00101

GPCC001

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWC-35S

Sample ID: 683387004

Matrix: WG

Collect Date: 28-AUG-24 11:27
Receive Date: 29-AUG-24
Collector: Client

RL Parameter **Qualifier** DL Units PF DF Analyst Date Time Batch Method Result Ion Chromatography EPA 300.0 Anions Liquid "As Received" Nitrate-N ND 0.132 0.400 mg/L 4 TXT1 08/30/24 1603 2665219 1 Sulfate 25 2 251 3.33 10.0 mg/L TXT1 08/30/24 1111 2665219 Chloride 6.21 0.06700.200 TXT1 08/29/24 1947 2665219 3 mg/L Fluoride J 0.0609 0.0330 0.100mg/LMercury Analysis-CVAA 7470 Cold Vapor Mercury, Liquid "As Received" Mercury 0.0000670 0.000200 mg/L 1.00 1 JP2 09/03/24 1209 2665310 Metals Analysis-ICP-MS SW846 3005A/6020B "As Received" Boron 2.10 0.104 0.300 mg/L 1.00 20 PRB 09/08/24 1635 2665210 5 Calcium 59.5 1.60 4.00 mg/L 1.00 20 U 0.001000.00300 mg/L 1.00 PRB 09/08/24 1425 2665210 Antimony ND 1 6 U ND 0.00200 0.00500 mg/L1.00 Arsenic 1 mg/LBarium 0.0267 0.000670 0.00400 1.00 1 Beryllium U ND 0.000200 0.000500mg/L 1.00 1 U 0.00100 1.00 Cadmium ND 0.000300 mg/L Chromium J 0.00491 0.003000.0100 mg/L 1.00 1 U 0.00100Cobalt ND 0.000300 mg/L 1.00 1 U ND 0.100 1.00 Iron 0.0330 mg/L 1 U ND 0.000500 0.00200 mg/L1.00 Lead 1 Lithium U ND 0.003000.0100 mg/L 1.00 1 Magnesium 31.0 0.0100 0.0300 mg/L 1.00 1 0.0109 0.001000.00500 1.00 Manganese mg/L 1 Molybdenum U ND 0.0002000.00100mg/L 1.00 1 0.300 1.00 Potassium 3.77 0.0800 mg/L 1 U Selenium ND 0.00150 0.00500 mg/L 1.00 1 Sodium 17.4 0.0800 0.250 mg/L1.00 1 U Thallium ND 0.0006000.00200 mg/L 1.00 Solids Analysis SM2540C Dissolved Solids "As Received" Total Dissolved Solids 479 2.38 10.0 09/04/24 1045 2666217 7 mg/L KLP1 Spectrometric Analysis SM 4500-S(2-) D Sulfide "As Received" 0.0330 mg/LTotal Sulfide ND 0.100 JW2 08/30/24 1032 2665386

Page 11 of 48 SDG: 683387

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 10, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWC-35S Project: GPCC00101
Sample ID: 683387004 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF A	nalyst Date	Time Batch	Method
Titration and Ion Analys	sis									
SM 2320B Total Alkalin	nity "As Rec	eived"								
Alkalinity, Total as CaCO3		51.9	0.725	2.00	mg/L		JV	/2 08/29/24	1638 2665165	9
Bicarbonate alkalinity (CaCO	3)	51.9	0.725	2.00	mg/L					
Carbonate alkalinity (CaCO3)	U	ND	0.725	2.00	mg/L					
The following Prep Met	hods were pe	erformed:								
Method	Description	1		Analyst	Date		Time	Prep Batch		
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		JM13	08/30/24		1100	2665309		
SW846 3005A	ICP-MS 3005	A PREP		BB2	08/30/24		1510	2665209		

The following Analytical Methods were performed:

The following F	analytical Methods were performed.		
Method	Description	Analyst Comments	
1	EPA 300.0	·	
2	EPA 300.0		
3	EPA 300.0		
4	SW846 7470A		
5	SW846 3005A/6020B		
6	SW846 3005A/6020B		
7	SM 2540C		
8	SM 4500-S (2-) D		
9	SM 2320B		

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 12 of 48 SDG: 683387

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 10, 2024

Company: Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160 Address:

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWC-36S

Sample ID:

Matrix:

Collect Date: 28-AUG-24 10:08 Receive Date: 29-AUG-24 Collector: Client

683387005 Client ID: GPCC001 WG

Project:

GPCC00101

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liqu	id "As Recei	ved"									
Chloride		7.81	0.0670	0.200	mg/L		1	TXT1	08/29/24	2019 2665219	1
Fluoride	J	0.0861	0.0330	0.100	mg/L		1				
Nitrate-N		0.535	0.0330	0.100	mg/L		1				
Sulfate		201	3.33	10.0	mg/L		25	TXT1	08/30/24	1143 2665219	2
Mercury Analysis-CVA	A										
7470 Cold Vapor Mercu	ıry, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/03/24	1211 2665310	3
Metals Analysis-ICP-M	S										
SW846 3005A/6020B ".	As Received	"									
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/08/24	1428 2665210	4
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium		0.0247	0.000670	0.00400	mg/L	1.00	1				
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Calcium		41.0	0.0800	0.200	mg/L	1.00	1				
Chromium	J	0.00617	0.00300	0.0100	mg/L	1.00	1				
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1				
Iron	U	ND	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Magnesium		16.7	0.0100	0.0300	mg/L	1.00	1				
Manganese	J	0.00218	0.00100	0.00500	mg/L	1.00	1				
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1				
Potassium		3.36	0.0800	0.300	mg/L	1.00	1				
Selenium	J	0.00159	0.00150	0.00500	mg/L	1.00	1				
Sodium		34.8	0.0800	0.250	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Boron		1.04	0.0520	0.150	mg/L	1.00	10	PRB	09/08/24	1638 2665210	5
Solids Analysis											
SM2540C Dissolved So	lids "As Rec	eived"									
Total Dissolved Solids		389	2.38	10.0	mg/L			KLP1	09/04/24	1045 2666217	6
Spectrometric Analysis					-						
SM 4500-S(2-) D Sulfid	le "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	08/30/24	1032 2665386	7

Page 13 of 48 SDG: 683387

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 10, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWC-36S Project: GPCC00101
Sample ID: 683387005 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF A1	nalyst Date	Time Batch	Method
Titration and Ion Anal	ysis									
SM 2320B Total Alkal	inity "As Rec	eived"								
Alkalinity, Total as CaCO3		20.8	0.725	2.00	mg/L		JW	2 08/29/24	1639 2665165	8
Bicarbonate alkalinity (CaC	O3)	20.8	0.725	2.00	mg/L					
Carbonate alkalinity (CaCO	3) U	ND	0.725	2.00	mg/L					
The following Prep Mo	ethods were po	erformed:								
Method	Description	n		Analyst	Date		Time	Prep Batch		
SW846 3005A	ICP-MS 3005	SA PREP		BB2	08/30/24		1510	2665209		
SW846 7470A Prep	EPA 7470A	Mercury Prep Liquid		JM13	08/30/24		1100	2665309		

The following Analytical Methods were performed:

The following A	Analytical Methods were performed:	
Method	Description	Analyst Comments
1	EPA 300.0	•
2	EPA 300.0	
3	SW846 7470A	
4	SW846 3005A/6020B	
5	SW846 3005A/6020B	
6	SM 2540C	
7	SM 4500-S (2-) D	
8	SM 2320B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 14 of 48 SDG: 683387

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 10, 2024

GPCC00101

GPCC001

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-52D Sample ID: 683387006

Matrix: WG

Collect Date: 28-AUG-24 13:44
Receive Date: 29-AUG-24
Collector: Client

RL Parameter **Qualifier** DL Units PF DF Analyst Date Time Batch Method Result Ion Chromatography EPA 300.0 Anions Liquid "As Received" Chloride 4.15 0.0670 0.200 mg/L 1 TXT1 08/29/24 2051 2665219 1 0.0330 Fluoride 2.04 0.100 mg/L Nitrate-N 0.343 0.06600.2002 TXT1 08/30/24 0417 2665219 2 mg/L Sulfate 72.9 1.33 4.00 mg/L10 TXT1 08/30/24 0656 2665219 3 Mercury Analysis-CVAA 7470 Cold Vapor Mercury, Liquid "As Received" Mercury 0.0000670 0.000200 mg/L 1.00 1 JP2 09/03/24 1213 2665310 Metals Analysis-ICP-MS SW846 3005A/6020B "As Received" Antimony ND 0.001000.00300 mg/L 1.00 1 PRB 09/08/24 1432 2665210 5 Arsenic U ND 0.002000.00500 mg/L 1.00 1 0.0006700.00400 mg/L 1.00 Barium 0.0156 1 Beryllium U 0.000200 0.000500 mg/L1.00 1 ND mg/LBoron 0.0751 0.00520 0.0150 1.00 1 Cadmium U ND 0.000300 0.00100mg/L 1.00 1 0.200 1.00 Calcium 44.5 0.0800mg/L Chromium U ND 0.003000.0100mg/L 1.00 1 0.00100Cobalt J 0.000337 0.000300 mg/L 1.00 1 U ND 0.0330 0.100 1.00 Iron mg/L 1 U ND 0.000500 0.00200 mg/L1.00 Lead 1 Lithium 0.0163 0.003000.0100 mg/L 1.00 1 Magnesium 10.6 0.0100 0.0300 mg/L 1.00 1 J 0.003030.001000.00500 1.00 Manganese mg/L 1 Molybdenum 0.009220.0002000.00100mg/L 1.00 1 0.300 1.00 Potassium 4.72 0.0800 mg/L 1 U Selenium ND 0.00150 0.00500 mg/L 1.00 1 Sodium 42.0 0.0800 0.250 1.00 1 mg/L U Thallium ND 0.0006000.00200 mg/L 1.00 1 Solids Analysis SM2540C Dissolved Solids "As Received" Total Dissolved Solids 303 2.38 10.0 09/04/24 1045 2666217 mg/L KLP1 Spectrometric Analysis SM 4500-S(2-) D Sulfide "As Received" 0.0330 mg/LTotal Sulfide ND 0.100 JW2 08/30/24 1032 2665386

Page 15 of 48 SDG: 683387

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 10, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-52D Project: GPCC00101
Sample ID: 683387006 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF A	nalyst Date	Time Batch	Method
Titration and Ion Anal	ysis									
SM 2320B Total Alka	linity "As Rec	eived"								
Alkalinity, Total as CaCO3		172	0.725	2.00	mg/L		Л	W2 08/29/24	1640 2665165	8
Bicarbonate alkalinity (CaC	O3)	172	0.725	2.00	mg/L					
Carbonate alkalinity (CaCO	(3) U	ND	0.725	2.00	mg/L					
The following Prep M	ethods were po	erformed:								
Method	Description	n		Analyst	Date		Time	Prep Batch		
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		JM13	08/30/24		1100	2665309		
SW846 3005A	ICP-MS 3005	5A PREP		BB2	08/30/24		1510	2665209		

The following Analytical Methods were performed:

Method	Description	Analyst Comments	
1	EPA 300.0	•	
2	EPA 300.0		
3	EPA 300.0		
4	SW846 7470A		
5	SW846 3005A/6020B		
6	SM 2540C		
7	SM 4500-S (2-) D		
8	SM 2320B		

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 16 of 48 SDG: 683387

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 10, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-70I Sample ID: 683387007

Matrix: WG

Collect Date: 28-AUG-24 10:06 Receive Date: 29-AUG-24 Collector: Client

Project: GPCC00101 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Lic	uid "As Recei	ived"									
Chloride	1	4.99	0.0670	0.200	mg/L		1	TXT1	08/29/24	2226 2665219	1
Fluoride	U	ND	0.0330	0.100	mg/L		1				
Nitrate-N		0.113	0.0330	0.100	mg/L		1				
Sulfate		128	1.33	4.00	mg/L		10	TXT1	08/30/24	1634 2665219	2
Mercury Analysis-CV	AA										
7470 Cold Vapor Merc	cury, Liquid ".	As Received"									
Mercury		0.00101	0.0000670	0.000200	mg/L	1.00	1	JP2	09/03/24	1214 2665310	3
Metals Analysis-ICP-N	MS										
SW846 3005A/6020B	"As Received	."									
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/08/24	1501 2665210	4
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium		0.0198	0.000670	0.00400	mg/L	1.00	1				
Beryllium	J	0.000344	0.000200	0.000500	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Calcium		31.4	0.0800	0.200	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt	J	0.000686	0.000300	0.00100	mg/L	1.00					
Iron	J	0.0701	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium	J	0.00382	0.00300	0.0100	mg/L	1.00					
Magnesium		10.6	0.0100	0.0300	mg/L	1.00	1				
Manganese		0.249	0.00100	0.00500	mg/L	1.00					
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00					
Potassium		3.93	0.0800	0.300	mg/L	1.00	1				
Selenium		0.00691	0.00150	0.00500	mg/L	1.00	1				
Sodium		18.2	0.0800	0.250	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00					
Boron		0.898	0.0260	0.0750	mg/L	1.00	5	PRB	09/08/24	1519 2665210	5
Solids Analysis											
SM2540C Dissolved S	Solids "As Rec	eived"									
Total Dissolved Solids		259	2.38	10.0	mg/L			KLP1	09/04/24	1045 2666217	6
Spectrometric Analysi	S				-						
SM 4500-S(2-) D Sulf		ved"									

Page 17 of 48 SDG: 683387

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 10, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-70I Project: GPCC00101
Sample ID: 683387007 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Ana	yst Date	Time Batch	Method
Titration and Ion Ana	alysis									
SM 2320B Total Alk	calinity "As Rec	eived"								
Alkalinity, Total as CaCO	3	17.1	0.725	2.00	mg/L		JW2	08/29/24	1641 2665165	8
Bicarbonate alkalinity (Ca	CO3)	17.1	0.725	2.00	mg/L					
Carbonate alkalinity (CaC	O3) U	ND	0.725	2.00	mg/L					
The following Prep I	Methods were p	erformed:								
Method	Description	n		Analyst	Date		Time I	rep Batch		
SW846 7470A Prep	EPA 7470A	Mercury Prep Liquid		JM13	08/30/24		1100 2	665309		
SW846 3005A	ICP-MS 300:	5A PREP		BB2	08/30/24		1510 2	665209		
Th - f-11 A1-										

The following Analytical Methods were performed:

1110 101101118 1	initially treat in contents were perferment.		
Method	Description	Analyst Comments	
1	EPA 300.0	•	
2	EPA 300.0		
3	SW846 7470A		
4	SW846 3005A/6020B		
5	SW846 3005A/6020B		
6	SM 2540C		
7	SM 4500-S (2-) D		
8	SM 2320B		

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 18 of 48 SDG: 683387

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 10, 2024

GPCC00101

GPCC001

Company: Georgia Power Company, Southern Company
Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-APE-FD-05

Sample ID: 683387008

Matrix: WG

Collect Date: 28-AUG-24 12:00
Receive Date: 29-AUG-24
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liqu	id "As Recei	ved"									
Sulfate		259	2.66	8.00	mg/L		20	TXT1	08/30/24	1842 2665219	1
Chloride		6.21	0.0670	0.200	mg/L		1	TXT1	08/30/24	0106 2665219	2
Fluoride	J	0.0970	0.0330	0.100	mg/L		1				
Nitrate-N	HU	ND	0.132	0.400	mg/L		4	TXT1	08/30/24	1810 2665219	3
Mercury Analysis-CVA	A										
7470 Cold Vapor Mercu	ıry, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/03/24	1216 2665310	4
Metals Analysis-ICP-M	S				_						
SW846 3005A/6020B ".		"									
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/08/24	1504 2665210	5
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium		0.0262	0.000670	0.00400	mg/L	1.00	1				
Beryllium	J	0.000202	0.000200	0.000500	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Chromium	J	0.00474	0.00300	0.0100	mg/L	1.00	1				
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1				
Iron	U	ND	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Magnesium		30.7	0.0100	0.0300	mg/L	1.00	1				
Manganese		0.00994	0.00100	0.00500	mg/L	1.00					
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00					
Potassium		3.71	0.0800	0.300	mg/L	1.00					
Selenium	U	ND	0.00150	0.00500	mg/L	1.00					
Sodium		17.3	0.0800	0.250	mg/L	1.00					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00					
Boron		2.00	0.104	0.300	mg/L	1.00		PRB	09/08/24	1642 2665210	6
Calcium		56.4	1.60	4.00	mg/L	1.00	20				
Solids Analysis											
SM2540C Dissolved So	olids "As Rec	eived"									
Total Dissolved Solids		499	2.38	10.0	mg/L			KLP1	09/04/24	1045 2666217	7
Spectrometric Analysis											
SM 4500-S(2-) D Sulfid	le "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	08/30/24	1032 2665386	8

Page 19 of 48 SDG: 683387

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 10, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-APE-FD-05 Project: GPCC00101 Sample ID: 683387008 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Titration and Ion An	alysis									
SM 2320B Total All	kalinity "As Reco	eived"								
Alkalinity, Total as CaCC	03	51.4	0.725	2.00	mg/L		JW2	08/29/24	1643 2665165	9
Bicarbonate alkalinity (Ca	aCO3)	51.4	0.725	2.00	mg/L					
Carbonate alkalinity (CaC	CO3) U	ND	0.725	2.00	mg/L					
The following Prep	Methods were pe	erformed:								
Method	Description	1		Analyst	Date		Time P	rep Batch		
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		JM13	08/30/24		1100 2	665309		
SW846 3005A	ICP-MS 3005	A PREP		BB2	08/30/24		1510 2	665209		
Th - f-11i A1	- 4:1 M -41 1	C 1.								

The following Analytical Methods were performed:

The following Analytical Methods were performed.								
Method	Description	Analyst Comments						
1	EPA 300.0							
2	EPA 300.0							
3	EPA 300.0							
4	SW846 7470A							
5	SW846 3005A/6020B							
6	SW846 3005A/6020B							
7	SM 2540C							
8	SM 4500-S (2-) D							
9	SM 2320B							

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 20 of 48 SDG: 683387

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 10, 2024

Company: Georgia Power Company, Southern Company
Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-APE-FB-08 Project: GPCC00101
Sample ID: 683387009 Client ID: GPCC001

Matrix: WQ

Collect Date: 28-AUG-24 14:30
Receive Date: 29-AUG-24
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liqu	id "As Recei	ived"									
Chloride	J	0.120	0.0670	0.200	mg/L		1	TXT1	08/30/24	0137 2665219	1
Fluoride	U	ND	0.0330	0.100	mg/L		1				
Nitrate-N	U	ND	0.0330	0.100	mg/L		1				
Sulfate	U	ND	0.133	0.400	mg/L		1				
Mercury Analysis-CVA	A										
7470 Cold Vapor Mercu	ıry, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/03/24	1221 2665310	2
Metals Analysis-ICP-M	S										
SW846 3005A/6020B ".	As Received										
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/08/24	1508 2665210	3
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium	U	ND	0.000670	0.00400	mg/L	1.00	1				
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1				
Boron		0.0208	0.00520	0.0150	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Calcium	U	ND	0.0800	0.200	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1				
Iron	U	ND	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Magnesium	U	ND	0.0100	0.0300	mg/L	1.00	1				
Manganese	U	ND	0.00100	0.00500	mg/L	1.00	1				
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1				
Potassium	U	ND	0.0800	0.300	mg/L	1.00	1				
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1				
Sodium	U	ND	0.0800	0.250	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Solids Analysis											
SM2540C Dissolved So	lids "As Rec	eived"									
Total Dissolved Solids	U	ND	2.38	10.0	mg/L			KLP1	09/04/24	1045 2666217	4
Spectrometric Analysis											
SM 4500-S(2-) D Sulfid	le "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	08/30/24	1032 2665386	5

Page 21 of 48 SDG: 683387

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 10, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-APE-FB-08 Project: GPCC00101
Sample ID: 683387009 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Ar	nalyst Date	Time Batch	Method
Titration and Ion Analy	/sis									
SM 2320B Total Alkal	inity "As Rec	eived"								
Alkalinity, Total as CaCO3	U	ND	0.725	2.00	mg/L		JW	2 08/29/24	1644 2665165	6
Bicarbonate alkalinity (CaCo	O3) U	ND	0.725	2.00	mg/L					
Carbonate alkalinity (CaCO3	3) U	ND	0.725	2.00	mg/L					
The following Prep Me	ethods were po	erformed:								
Method	Description	n		Analyst	Date		Time	Prep Batch		
SW846 3005A	ICP-MS 3005	5A PREP		BB2	08/30/24		1510	2665209		
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		JM13	08/30/24		1100	2665309		
The following Analyti	cal Methods v	were performed:								

Analyst Comments

Method	Description
1	EPA 300.0
2	SW846 7470A
3	SW846 3005A/6020B
4	SM 2540C
5	SM 4500-S (2-) D
6	SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 22 of 48 SDG: 683387

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 10, 2024

Company: Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160 Address:

Atlanta, Georgia 30308

Contact: Joju Abraham

Branch CCR Groundwater Compliance Project:

Client Sample ID: BRA-APE-EB-09

Sample ID: 683387010

Matrix: WQ

Collect Date: 28-AUG-24 11:00 Receive Date: 29-AUG-24 Collector: Client

Project: Client ID: GPCC001

GPCC00101

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liqu	uid "As Recei	ved"									
Chloride	J	0.120	0.0670	0.200	mg/L		1	TXT1	08/30/24	1914 2665219	1
Fluoride	U	ND	0.0330	0.100	mg/L		1				
Nitrate-N	Н	0.298	0.0330	0.100	mg/L		1				
Sulfate	U	ND	0.133	0.400	mg/L		1				
Mercury Analysis-CVA	AA										
7470 Cold Vapor Merc	ury, Liquid "/	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/03/24	1223 2665310	2
Metals Analysis-ICP-M	1S										
SW846 3005A/6020B '	"As Received	"									
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/08/24	1512 2665210	3
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium	U	ND	0.000670	0.00400	mg/L	1.00	1				
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1				
Boron	J	0.00556	0.00520	0.0150	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Calcium	U	ND	0.0800	0.200	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1				
Iron	U	ND	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Magnesium	U	ND	0.0100	0.0300	mg/L	1.00	1				
Manganese	U	ND	0.00100	0.00500	mg/L	1.00	1				
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1				
Potassium	U	ND	0.0800	0.300	mg/L	1.00	1				
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1				
Sodium	U	ND	0.0800	0.250	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Solids Analysis											
SM2540C Dissolved So	olids "As Rec	eived"									
Total Dissolved Solids	U	ND	2.38	10.0	mg/L			KLP1	09/04/24	1045 2666217	4
Spectrometric Analysis					-						
SM 4500-S(2-) D Sulfie	de "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	08/30/24	1032 2665386	5

Page 23 of 48 SDG: 683387

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 10, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-APE-EB-09 Project: GPCC00101 Sample ID: 683387010 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Ana	alyst Date	Time Batch	Method
Titration and Ion An	alysis									
SM 2320B Total Alk	kalinity "As Rec	eived"								
Alkalinity, Total as CaCO)3	6.40	0.725	2.00	mg/L		JW2	08/29/24	1645 2665165	6
Bicarbonate alkalinity (Ca	aCO3) U	ND	0.725	2.00	mg/L					
Carbonate alkalinity (CaC	CO3)	2.80	0.725	2.00	mg/L					
The following Prep 1	Methods were p	erformed:								
Method	Description	n		Analyst	Date		Time	Prep Batch	ļ	
SW846 3005A	ICP-MS 300:	5A PREP		BB2	08/30/24		1510	2665209		
SW846 7470A Prep	EPA 7470A	Mercury Prep Liquid		JM13	08/30/24		1100	2665309		
The following Analy	ytical Methods v	were performed:								
Method	Description	1			Δ	nalvs	st Comme	nte		

Method	Description
1	EPA 300.0
2	SW846 7470A
3	SW846 3005A/6020B
4	SM 2540C
5	SM 4500-S (2-) D
6	SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 24 of 48 SDG: 683387

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

GPCC00101

GPCC001

Report Date: September 10, 2024

Company: Georgia Power Company, Southern Company
Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-APE-EB-10

Sample ID: 683387011

Matrix: WQ

Collect Date: 28-AUG-24 13:10
Receive Date: 29-AUG-24
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liqu	iid "As Recei	ved"									
Chloride	J	0.117	0.0670	0.200	mg/L		1	TXT1	08/30/24	0241 2665219	1
Fluoride	U	ND	0.0330	0.100	mg/L		1				
Nitrate-N	J	0.0376	0.0330	0.100	mg/L		1				
Sulfate	U	ND	0.133	0.400	mg/L		1				
Mercury Analysis-CVA	A										
7470 Cold Vapor Merci	ury, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/03/24	1224 2665310	2
Metals Analysis-ICP-M	S										
SW846 3005A/6020B "	As Received	"									
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/08/24	1515 2665210	3
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium	U	ND	0.000670	0.00400	mg/L	1.00	1				
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1				
Boron	U	ND	0.00520	0.0150	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Calcium	U	ND	0.0800	0.200	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1				
Iron	U	ND	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Magnesium	U	ND	0.0100	0.0300	mg/L	1.00	1				
Manganese	U	ND	0.00100	0.00500	mg/L	1.00	1				
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1				
Potassium	U	ND	0.0800	0.300	mg/L	1.00	1				
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1				
Sodium	U	ND	0.0800	0.250	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Solids Analysis											
SM2540C Dissolved Sc	olids "As Rec	eived"									
Total Dissolved Solids	U	ND	2.38	10.0	mg/L			KLP1	09/04/24	1045 2666217	4
Spectrometric Analysis					-						
SM 4500-S(2-) D Sulfic		ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	08/30/24	1032 2665386	5

Page 25 of 48 SDG: 683387

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 10, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-APE-EB-10 Project: GPCC00101
Sample ID: 683387011 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF An	alyst Date	Time Batch	Method
Titration and Ion Analy	sis									
SM 2320B Total Alkali	nity "As Reco	eived"								
Alkalinity, Total as CaCO3	U	ND	0.725	2.00	mg/L		JW	2 08/29/24	1647 2665165	6
Bicarbonate alkalinity (CaCC	03) U	ND	0.725	2.00	mg/L					
Carbonate alkalinity (CaCO3) U	ND	0.725	2.00	mg/L					
The following Prep Me	thods were pe	erformed:								
Method	Description	n		Analyst	Date	,	Time	Prep Batch	Į.	
SW846 3005A	ICP-MS 3005	SA PREP		BB2	08/30/24		1510	2665209		
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		JM13	08/30/24		1100	2665309		
The following Analytic	cal Methods v	vere performed:								
Method	Description				A	Analyst	Commo	ents		
1	EPA 300.0						•			

EPA 300.0 SW846 7470A SW846 3005A/6020B SM 2540C SM 4500-S (2-) D SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 26 of 48 SDG: 683387

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia Joju Abraham

Workorder: 683387

Contact:

Report Date: September 10, 2024

Page 1 of 12

Workorder: 683387									
Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC	C% Range Anl	lst Date Time
Ion Chromatography Batch 2665219									
QC1205840159 683387006 DUP Chloride		4.15		4.14	mg/L	0.256		(0%-20%) T	XT1 08/29/24 21:23
Fluoride		2.04		2.03	mg/L	0.378		(0%-20%)	
Nitrate-N		0.343		0.343	mg/L	0.175	^	(+/-0.200)	08/30/24 04:49
Sulfate		72.9		72.7	mg/L	0.18		(0%-20%)	08/30/24 07:28
QC1205840161 683387007 DUP Chloride		4.99		5.01	mg/L	0.332		(0%-20%)	08/29/24 22:58
Fluoride	U	ND	U	ND	mg/L	N/A			
Nitrate-N		0.113		0.127	mg/L	11.2	^	(+/-0.100)	
Sulfate		128		129	mg/L	0.344		(0%-20%)	08/30/24 17:06
QC1205840158 LCS Chloride	5.00			4.63	mg/L		92.6	6 (90%-110%)	08/30/24 03:45
Fluoride	2.50			2.46	mg/L		98.4	4 (90%-110%)	
Nitrate-N	2.50			2.37	mg/L		94.8	8 (90%-110%)	
Sulfate	10.0			9.41	mg/L		94.1	(90%-110%)	

Page 27 of 48 SDG: 683387

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 2 of 12 Parmname NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time Ion Chromatography 2665219 Batch QC1205840157 MB J 0.116 TXT1 08/30/24 03:13 Chloride mg/L Fluoride U ND mg/L U Nitrate-N ND mg/LU Sulfate ND mg/L QC1205840160 683387006 PS 4.15 9.18 101 (90%-110%) 08/29/24 21:54 Chloride 5.00 mg/L 104 Fluoride 2.50 2.04 4.63 mg/L (90%-110%) 2.50 0.172 2.41 (90%-110%) 08/30/24 05:21 Nitrate-N 89.6* mg/L Sulfate 10.0 7.29 17.2 08/30/24 08:00 mg/L 98.6 (90%-110%) QC1205840162 683387007 PS Chloride 5.00 4.99 10.2 104 (90%-110%) 08/30/24 00:34 mg/L Fluoride 2.50 U ND 2.58 103 (90%-110%) mg/L Nitrate-N 0.113 2.38 90.5 (90%-110%) 2.50 mg/L 10.0 12.8 23.2 08/30/24 17:38 Sulfate mg/L 103 (90%-110%)

Page 28 of 48 SDG: 683387

Workorder:

683387

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683387 Page 3 of 12 Parmname NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2665210 Batch QC1205840131 LCS 0.0483 96.7 0.0500 mg/L (80%-120%) PRB 09/08/24 13:41 Antimony Arsenic 0.0500 0.0481 96.2 (80%-120%) mg/L Barium 0.0500 0.0496 mg/L99.3 (80%-120%) Beryllium 0.0500 0.0533 mg/L 107 (80%-120%) Boron 0.100 0.101 mg/L 101 (80%-120%) Cadmium 0.0500 0.0499 mg/L 99.7 (80%-120%) Calcium 2.00 2.05 mg/L 103 (80%-120%) 0.0500 0.0484 96.8 Chromium (80%-120%) mg/L Cobalt 0.0500 0.0486 97.3 mg/L (80%-120%) Iron 2.00 1.95 mg/L97.4 (80%-120%) 0.0495 0.0500 mg/L 99 (80%-120%) Lead Lithium 0.0500 0.0510102 mg/L (80%-120%) Magnesium 2.00 1.97 mg/L98.5 (80%-120%) Manganese 0.0500 0.0488 mg/L 97.6 (80%-120%)

Page 29 of 48 SDG: 683387

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 4 of 12 QC RPD% REC% Parmname NOM Sample Qual Units Range Anlst Date Time **Metals Analysis - ICPMS** Batch 2665210 Molybdenum 0.0500 0.0527 mg/L 105 (80%-120%) PRB 09/08/24 13:41 Potassium 2.00 1.95 97.6 (80%-120%) mg/L 0.0500 0.0498 Selenium mg/L 99.6 (80%-120%) Sodium 2.00 1.94 mg/L96.9 (80%-120%) 0.0500 0.0451 Thallium mg/L90.1 (80%-120%) QC1205840130 MB U ND 09/08/24 13:37 Antimony mg/L U ND Arsenic mg/L U ND Barium mg/L U ND Beryllium mg/L U ND Boron mg/LU ND Cadmium mg/L Calcium U ND mg/L Chromium U ND mg/LCobalt U ND mg/L

Page 30 of 48 SDG: 683387

Workorder:

683387

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683387 Page 5 of 12 QC RPD% REC% Range **P**armname NOM Sample Qual Units Anlst Date Time Metals Analysis - ICPMS Batch 2665210 Iron U ND mg/L PRB 09/08/24 13:37 U Lead ND mg/L U ND Lithium mg/L U ND Magnesium mg/LManganese U ND mg/LMolybdenum U ND mg/L U ND Potassium mg/L U ND Selenium mg/L U Sodium ND mg/LThallium U ND mg/L QC1205840132 683387001 MS ND 0.0500 U 0.0503 100 09/08/24 13:56 Antimony mg/L(75%-125%) 0.0500 U ND 0.0501 99.2 Arsenic mg/L (75%-125%) Barium 0.0500 0.0502 0.102 mg/L103 (75%-125%) Beryllium 0.0500 U ND 0.0538 mg/L 108 (75%-125%)

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

683387 Page 6 of 12 **Parmname** NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2665210 Batch (75%-125%) Boron 0.100 0.0721 0.180 mg/L 108 PRB 09/08/24 13:56 Cadmium 0.0500 U ND 0.0494 98.7 (75%-125%) mg/L 50.5 Calcium 2.00 46.4 mg/L N/A (75%-125%) 0.0500 0.0101 0.0592 Chromium mg/L 98.1 (75%-125%) 0.0500 U ND 0.0487 Cobalt 97.4 (75%-125%) mg/L Iron 2.00 U ND 1.98 98 (75%-125%) mg/L 0.0500 U ND 0.0490 mg/L 98.1 Lead (75%-125%) ND Lithium 0.0500 U 0.0529 mg/L 103 (75%-125%) Magnesium 2.00 26.0 28.7 mg/L N/A (75%-125%) 0.0500 U ND 0.0497 98.8 Manganese mg/L (75%-125%) U ND 0.0522 Molybdenum 0.0500 mg/L 104 (75%-125%) Potassium 101 2.00 1.22 3.25 (75%-125%) mg/L 0.00304 0.0542 0.0500 J 102 Selenium mg/L (75%-125%) Sodium 2.00 23.4 26.4 mg/LN/A (75%-125%)

Page 32 of 48 SDG: 683387

Workorder:

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683387 Page 7 of 12 **Parmname** NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2665210 Batch Thallium 0.0500 U ND 0.0450 mg/L 89.8 (75%-125%) PRB 09/08/24 13:56 QC1205840133 683387001 MSD ND 0.0488 0.0500 U 97.3 09/08/24 13:59 Antimony mg/L 3.08 (0%-20%) ND 0.0480 Arsenic 0.0500 U mg/L 4.26 95 (0%-20%)Barium 0.0500 0.0502 0.0974 mg/L 4.41 94.3 (0%-20%) Beryllium 0.0500 U ND 0.05272.06 105 (0%-20%)mg/L mg/L Boron 0.100 0.0721 0.172 4.57 100 (0%-20%)Cadmium 0.0500 U ND 0.0473 4.2 94.7 (0%-20%) mg/L 46.4 48.0 Calcium 2.00 mg/L 5.08 N/A (0%-20%)Chromium 0.0500 0.0101 0.0573 3.27 94.3 (0%-20%)mg/L 0.0500 U ND 0.0479 95.7 Cobalt 1.75 mg/L (0%-20%)U ND Iron 2.00 1.95 mg/L 1.54 96.5 (0%-20%) 0.0500 U ND 0.0475 95.1 Lead mg/L3.08 (0%-20%) Lithium 0.0500 U ND 0.0509 mg/L 3.94 99.4 (0%-20%) Magnesium 2.00 26.0 27.4 mg/L4.43 N/A (0%-20%)

Page 33 of 48 SDG: 683387

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683387 Page 8 of 12 **Parmname** NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2665210 Batch Manganese 0.0500 U ND 0.0485 mg/L 2.41 96.4 (0%-20%)PRB 09/08/24 13:59 0.0500 U ND 0.0507 2.92 101 (0%-20%) Molybdenum mg/L 1.22 Potassium 2.00 3.13 mg/L 3.65 95.6 (0%-20%) 0.00304 0.0516 Selenium 0.0500 J mg/L 4.88 97.1 (0%-20%) Sodium 2.00 23.4 24.8 6.05 N/A (0%-20%)mg/L Thallium 0.0500 U ND 0.0438 2.58 87.5 (0%-20%) mg/L QC1205840134 683387001 SDILT U Antimony ND U ND ug/L N/A (0%-20%)09/08/24 14:07 U ND U ND ug/L N/A (0%-20%) Arsenic 50.2 10.0 ug/L (0%-20%)Barium .157 U Beryllium ND U ND ug/L N/A (0%-20%) J 13.8 Boron 72.1 ug/L 4.32 (0%-20%) U ND U ND Cadmium ug/L N/A (0%-20%) .154 Calcium 46400 9270 ug/L (0%-20%) Chromium 10.1 U ND ug/L N/A (0%-20%)

Page 34 of 48 SDG: 683387

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683387 Page 9 of 12 Anlst **Parmname** NOM Sample Qual QC Units RPD% REC% Range Date Time Metals Analysis - ICPMS 2665210 Batch Cobalt U ND U ND ug/L N/A (0%-20%)PRB 09/08/24 14:07 U ND U ND N/A (0%-20%) Iron ug/L U ND U ND Lead ug/L N/A (0%-20%) U ND U ND ug/L Lithium N/A (0%-20%) Magnesium 26000 5170 ug/L .621 (0%-20%) Manganese U ND U ND ug/L N/A (0%-20%) U ND U ND (0%-20%) Molybdenum ug/L N/A Potassium 1220 J 246 ug/L .831 (0%-20%)ug/L (0%-20%) Selenium 3.04 U ND N/A Sodium 23400 4590 1.92 (0%-20%) ug/L U Thallium ND U ND ug/L N/A (0%-20%)Metals Analysis-Mercury Batch 2665310 QC1205840305 683387001 DUP Mercury U ND U ND mg/LN/A JP2 09/03/24 11:56 QC1205840304 LCS 0.00200 0.00202 mg/L 101 (80%-120%) 09/03/24 11:53 Mercury

Page 35 of 48 SDG: 683387

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683387 Page 10 of 12 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis-Mercury Batch 2665310 QC1205840303 MB U ND mg/L JP2 09/03/24 11:51 Mercury QC1205840306 683387001 MS 0.00200 U ND 0.00194 Mercury mg/L 96.8 (75%-125%) 09/03/24 12:01 QC1205840307 683387001 SDILT U ND U ND ug/L N/A (0%-10%) 09/03/24 12:03 Mercury Solids Analysis 2666217 Batch QC1205842587 683390004 DUP 310 (0%-5%) KLP1 09/04/24 10:45 **Total Dissolved Solids** 314 1.28 mg/L QC1205842586 LCS 300 291 09/04/24 10:45 Total Dissolved Solids mg/L 97 (95%-105%) QC1205842585 MB Total Dissolved Solids ND 09/04/24 10:45 mg/L Spectrometric Analysis Batch 2665386 QC1205840474 LCS 0.400 0.408 Total Sulfide mg/L 102 (85%-115%) JW2 08/30/24 10:32 QC1205840473 MB Total Sulfide U ND 08/30/24 10:32 mg/L QC1205840475 683164001 PS Total Sulfide 0.400 U ND 0.399 99.6 (75%-125%) 08/30/24 10:32 mg/L QC1205840476 683164001 PSD Total Sulfide 0.400 U ND 0.388 08/30/24 10:32 mg/L 2.81 96.9 (0%-15%)

Page 36 of 48 SDG: 683387

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683387 Page 11 of 12 **Parmname** NOM Sample Qual \mathbf{OC} Units RPD% REC% Range Anlst Date Time **Titration and Ion Analysis** Batch 2665165 QC1205839997 50.5 Alkalinity, Total as CaCO3 50.0 mg/L 101 (90%-110%) JW2 08/29/24 16:29 OC1205839998 LCS 15.0 15.0 Alkalinity, Total as CaCO3 mg/L 100 (90%-110%) 08/29/24 16:31 QC1205839999 LCSD Alkalinity, Total as CaCO3 50.0 50.9 mg/L 0.789 102 (0%-20%)08/29/24 16:30 QC1205840000 Alkalinity, Total as CaCO3 15.0 14.7 2.02 98 (0%-20%)08/29/24 16:32 mg/L

Notes:

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- N Metals--The Matrix spike sample recovery is not within specified control limits
- H Analytical holding time was exceeded
- < Result is less than value reported
- > Result is greater than value reported
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- Z Paint Filter Test--Particulates passed through the filter, however no free liquids were observed.
- d 5-day BOD--The 2:1 depletion requirement was not met for this sample
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- E %difference of sample and SD is >10%. Sample concentration must meet flagging criteria
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- E General Chemistry--Concentration of the target analyte exceeds the instrument calibration range
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- FB Mercury was found present at quantifiable concentrations in field blanks received with these samples. Data associated with the blank are deemed invalid for reporting to regulatory agencies

Page 37 of 48 SDG: 683387

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683387

Page 12 of 12

Parmname

NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time

- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- R Per section 9.3.4.1 of Method 1664 Revision B, due to matrix spike recovery issues, this result may not be reported or used for regulatory compliance purposes.
- B The target analyte was detected in the associated blank.
- e 5-day BOD--Test replicates show more than 30% difference between high and low values. The data is qualified per the method and can be used for reporting purposes
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 38 of 48 SDG: 683387

Technical Case Narrative Georgia Power Company SDG #: 683387

Metals

<u>Product:</u> Determination of Metals by ICP-MS <u>Analytical Method:</u> SW846 3005A/6020B <u>Analytical Procedure:</u> GL-MA-E-014 REV# 36

Analytical Batch: 2665210

Preparation Method: SW846 3005A

Preparation Procedure: GL-MA-E-006 REV# 15

Preparation Batch: 2665209

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683387001	BRA-BRGWC-17S
683387002	BRA-BRGWC-33S
683387003	BRA-BRGWC-34S
683387004	BRA-BRGWC-35S
683387005	BRA-BRGWC-36S
683387006	BRA-PZ-52D
683387007	BRA-PZ-70I
683387008	BRA-APE-FD-05
683387009	BRA-APE-FB-08
683387010	BRA-APE-EB-09
683387011	BRA-APE-EB-10
1205840130	Method Blank (MB)ICP-MS
1205840131	Laboratory Control Sample (LCS)
1205840134	683387001(BRA-BRGWC-17SL) Serial Dilution (SD)
1205840132	683387001(BRA-BRGWC-17SS) Matrix Spike (MS)
1205840133	683387001(BRA-BRGWC-17SSD) Matrix Spike Duplicate (MSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Calibration Information

ICSA/ICSAB Statement

For the ICP-MS analysis, the ICSA solution contains analyte concentrations which are verified trace impurities indigenous to the purchased standard.

Technical Information

Sample Dilutions

Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range. Samples 683387002 (BRA-BRGWC-33S), 683387003

Page 39 of 48 SDG: 683387

(BRA-BRGWC-34S), 683387004 (BRA-BRGWC-35S), 683387005 (BRA-BRGWC-36S), 683387007 (BRA-PZ-70I) and 683387008 (BRA-APE-FD-05) were diluted to ensure that the analyte concentrations were within the linear calibration range of the instrument.

A 14 -	683387									
Analyte	002	003	004	005	007	008				
Boron	10X	20X	20X	10X	5X	20X				
Calcium	10X	20X	20X	1X	1X	20X				
Magnesium	10X	1X	1X	1X	1X	1X				
Manganese	10X	20X	1X	1X	1X	1X				
Sodium	10X	1X	1X	1X	1X	1X				

Product: Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer

Analytical Method: SW846 7470A

Analytical Procedure: GL-MA-E-010 REV# 40

Analytical Batch: 2665310

Preparation Method: SW846 7470A Prep

Preparation Procedure: GL-MA-E-010 REV# 40

Preparation Batch: 2665309

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683387001	BRA-BRGWC-17S
683387002	BRA-BRGWC-33S
683387003	BRA-BRGWC-34S
683387004	BRA-BRGWC-35S
683387005	BRA-BRGWC-36S
683387006	BRA-PZ-52D
683387007	BRA-PZ-70I
683387008	BRA-APE-FD-05
683387009	BRA-APE-FB-08
683387010	BRA-APE-EB-09
683387011	BRA-APE-EB-10
1205840303	Method Blank (MB)CVAA
1205840304	Laboratory Control Sample (LCS)
1205840307	683387001(BRA-BRGWC-17SL) Serial Dilution (SD)
1205840305	683387001(BRA-BRGWC-17SD) Sample Duplicate (DUP)
1205840306	683387001(BRA-BRGWC-17SS) Matrix Spike (MS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

General Chemistry

Page 40 of 48 SDG: 683387

Product: Ion Chromatography Analytical Method: EPA 300.0

Analytical Procedure: GL-GC-E-086 REV# 35

Analytical Batch: 2665219

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683387001	BRA-BRGWC-17S
683387002	BRA-BRGWC-33S
683387003	BRA-BRGWC-34S
683387004	BRA-BRGWC-35S
683387005	BRA-BRGWC-36S
683387006	BRA-PZ-52D
683387007	BRA-PZ-70I
683387008	BRA-APE-FD-05
683387009	BRA-APE-FB-08
683387010	BRA-APE-EB-09
683387011	BRA-APE-EB-10
1205840157	Method Blank (MB)
1205840158	Laboratory Control Sample (LCS)
1205840159	683387006(BRA-PZ-52D) Sample Duplicate (DUP)
1205840160	683387006(BRA-PZ-52D) Post Spike (PS)
1205840161	683387007(BRA-PZ-70I) Sample Duplicate (DUP)
1205840162	683387007(BRA-PZ-70I) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Matrix Spike (MS)/Post Spike (PS) Recovery Statement

The percent recoveries (%R) obtained from the spike analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. The matrix spike recovered outside of the established acceptance limits due to matrix interference and/or non-homogeneity.

Analyte	Sample	Value
Nitrate-N	1205840160 (BRA-PZ-52DPS)	89.6* (90%-110%)

Technical Information

Holding Times

Samples (See Below) were initially analyzed within holding; however, the holding times had expired prior to reanalysis of samples. The data is qualified.

Sample Analyte	Value
----------------	-------

683387004 (BRA-BRGWC-35S)	Nitrate-N	Received 29-AUG-24, within holding, analyzed 30-AUG-24, out of holding 30-AUG-24
683387008 (BRA-APE-FD-05)	Nitrate-N	Received 29-AUG-24, within holding, analyzed 30-AUG-24, out of holding 30-AUG-24
683387010 (BRA-APE-EB-09)	Nitrate-N	Received 29-AUG-24, within holding, analyzed 30-AUG-24, out of holding 30-AUG-24

Sample Dilutions

The following samples 1205840159 (BRA-PZ-52DDUP), 1205840160 (BRA-PZ-52DPS), 1205840161 (BRA-PZ-70IDUP), 1205840162 (BRA-PZ-70IPS), 683387001 (BRA-BRGWC-17S), 683387002 (BRA-BRGWC-33S), 683387003 (BRA-BRGWC-34S), 683387004 (BRA-BRGWC-35S), 683387005 (BRA-BRGWC-36S), 683387006 (BRA-PZ-52D), 683387007 (BRA-PZ-70I) and 683387008 (BRA-APE-FD-05) were diluted because target analyte concentrations exceeded the calibration range. The following samples 1205840159 (BRA-PZ-52DDUP), 1205840160 (BRA-PZ-52DPS), 683387004 (BRA-BRGWC-35S), 683387006 (BRA-PZ-52D) and 683387008 (BRA-APE-FD-05) in this sample group were diluted due to matrix interference. Samples 683387001 (BRA-BRGWC-17S) and 683387002 (BRA-BRGWC-33S) were diluted based on historical data. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

Analyte		683387									
Anaiyte	001	002	003	004	005	006	007	008			
Chloride	2X	20X	4X	1X	1X	1X	1X	1X			
Fluoride	2X	2X	1X	1X	1X	1X	1X	1X			
Nitrate-N	2X	2X	1X	4X	1X	2X	1X	4X			
Sulfate	20X	200X	50X	25X	25X	10X	10X	20X			

Sample Re-analysis

Sample 683387010 (BRA-APE-EB-09) was re-analyzed to verify the result.

Miscellaneous Information

Manual Integrations

Samples 1205840159 (BRA-PZ-52DDUP), 1205840161 (BRA-PZ-70IDUP), 683387001 (BRA-BRGWC-17S), 683387002 (BRA-BRGWC-33S), 683387004 (BRA-BRGWC-35S), 683387005 (BRA-BRGWC-36S), 683387006 (BRA-PZ-52D) and 683387008 (BRA-APE-FD-05) were manually integrated to correctly position the baseline as set in the calibration standards.

Product: Solids, Total Dissolved Analytical Method: SM 2540C

Analytical Procedure: GL-GC-E-001 REV# 21

Analytical Batch: 2666217

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683387001	BRA-BRGWC-17S
683387002	BRA-BRGWC-33S
683387003	BRA-BRGWC-34S
683387004	BRA-BRGWC-35S

Page 42 of 48 SDG: 683387

683387005	BRA-BRGWC-36S
683387006	BRA-PZ-52D
683387007	BRA-PZ-70I
683387008	BRA-APE-FD-05
683387009	BRA-APE-FB-08
683387010	BRA-APE-EB-09
683387011	BRA-APE-EB-10
1205842585	Method Blank (MB)
1205842586	Laboratory Control Sample (LCS)
1205842587	683390004(BRA-BRGWC-52I) Sample Duplicate (DUP)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Miscellaneous Information

Additional Comments

A reduced aliquot was used due to historical information. 683387002 (BRA-BRGWC-33S).

Product: Sulfide, Total

Analytical Method: SM 4500-S (2-) D

Analytical Procedure: GL-GC-E-052 REV# 13

Analytical Batch: 2665386

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683387001	BRA-BRGWC-17S
683387002	BRA-BRGWC-33S
683387003	BRA-BRGWC-34S
683387004	BRA-BRGWC-35S
683387005	BRA-BRGWC-36S
683387006	BRA-PZ-52D
683387007	BRA-PZ-70I
683387008	BRA-APE-FD-05
683387009	BRA-APE-FB-08
683387010	BRA-APE-EB-09
683387011	BRA-APE-EB-10
1205840473	Method Blank (MB)
1205840474	Laboratory Control Sample (LCS)
1205840475	683164001(NonSDG) Post Spike (PS)
1205840476	683164001(NonSDG) Post Spike Duplicate (PSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Page 43 of 48 SDG: 683387

Technical Information

Sample Dilutions

The following samples 1205840475 (Non SDG 683164001PS) and 1205840476 (Non SDG 683164001PSD) in this sample group were diluted due to limited sample quantity. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

Product: Alkalinity

Analytical Method: SM 2320B

Analytical Procedure: GL-GC-E-033 REV# 16

Analytical Batch: 2665165

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683387001	BRA-BRGWC-17S
683387002	BRA-BRGWC-33S
683387003	BRA-BRGWC-34S
683387004	BRA-BRGWC-35S
683387005	BRA-BRGWC-36S
683387006	BRA-PZ-52D
683387007	BRA-PZ-70I
683387008	BRA-APE-FD-05
683387009	BRA-APE-FB-08
683387010	BRA-APE-EB-09
683387011	BRA-APE-EB-10
1205839997	Laboratory Control Sample (LCS)
1205839998	Laboratory Control Sample (LCS)
1205839999	Laboratory Control Sample Duplicate (LCSD)
1205840000	Laboratory Control Sample Duplicate (LCSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Laboratory Control Sample Duplicate (LCSD)

An LCSD was used in place of matrix QC due to limited sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 44 of 48 SDG: 683387

Page: of 7		CC 200	このもんろし
Project #	ī		
GEL Quote #:	GEL Laboratories II C	ies I c	GEL Laboratories, LLC
COC Number (1).	get.com Chemistry Radiochemist	Chemistry I Radiochemistry I Radiobloassay I Specialty Analytics	2040 Savage Road
9000	GEL Work Order Number:	nalytical Request	Charleston, SC 29407
1	hon	GEL Project Manager: Erin Trent	Phone: (843) 556-8171
Project/Site Name: Plant Branch Ash Ponds - E	T	Analysis Requested (5)	Fax. (843) /66-1178
Address: 241 Ralph McGill Blvd SE, Atlanta GA 30308	rax#	11/1	a m m the number of containers for each test)
Collected By. T. Goolc		niner 3 K	< Preservative Type (6)
D. Johnson ACC	Send Results To: SCS & Geosyntec Contacts	Is contacted:	Comments
· ·	*Time	28. 112, 115, 115, 115, 115, 115, 115, 115,	Note: extra sample is
Sample ID		SO4, 600, 100, 100, 100, 100, 100, 100, 100	required for sample specific
	OC Field Sample	Knoopicoopicoopicoopicoopicoopicoopicoopi	OC
Jr.	(nnmm) Code Filtered Matrix (4)	Total	Task_Code: BRA-CCR-
BRA- BEGWC-335		5 7	ASSMT-2024S2
BRA- 20 10 2.15	UNGELCH HLZ G N WC	7 2 2	
BBA ACTION OF S	08/28/24 1243 G 11 1.10		
	2	///////////////////////////////////////	
BRA- B RGWC-365	120/01/	2 2 2 2 2	
BRA- P7 _ 570	DM N 5 900 77 100	N A N	
BB A G A G A G A G A G A G A G A G A G A	08/28/24 1344 6 11 12/	2	
101-71 - WA	2 -		
BRA- APE-FD-05	1000 C N NG	N	
BRA- APC CR - 27	17/	1 / 8	
BRA ALL JOHN DE	08/28/24 1430 G 1 1NO		
PO-02-245			
	2	111112	
Relinquished By (Signed) Date Time	4	TAT Requested: Normal: x Rush:	
16/6 Mal 4:79 311 200	Time Time		Specify: (Subject to Surcharge)
Sal.	1 8 124 July 1882	Service I I es X No	
4 (1	JC of A [] QC Summary	[]level [x] Level 2 []level 3 []level 1
2	160000	Additional Remarks:	O.Ph.Li Mo So.Tr
> For sample shipping and delivery details, see Sample Receipt & Review form (SBB)		For Lab Receiving Use Only: Custody Seal Intact? [] Yes	I Mo Color T
1.) Chain of Custody Number = Client Determined	Sam,	Sample Collection Time Zone: [x] Eastern [] Pacific [] Central	[] Mountain
 QC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplica 			L Jaconnann L J Other:
(i) Field Filtered: For liquid matrices, indicate with a - Y - for wes the sample was fails file.	release to the During Maria Spike Sample, MSD = Matrix Spike Du	plicate Sample, G = Grab, C = Composite	
.) Matrix Codes: WD=Drinking Water. WG=Groundwater WS-C.	ipro was neid intered or - N - for sample was not field filtered.		
.) Sample Analysis Requested: Analytical marked	Sample Analysis Requested: Analysis, Analysis Requested: Analysis	WQ=Water Quality Control Matrix	
national method requested (i.e. 8260B,	native sector and provided for equested (i.e. 8260B, 6010B/7470A) and number of containers provided for each (i.e. 8260B - 3 4010B/7770A).	William Composition of Fourth	
Freservative Type: HA = Hydrochloric Acid, NI = Nitric Acid, SH = St. KNOWN OR POSSIBLE HAS ABBE) Preservative Type: HA = Hydrochloric Acid, NI = Nitric Acid, SH = Sodium Hydroxide, SA = Sulfuric Acid, AA = Ascorbic Acid HX = Hywans cm = 0.17	74/04 - 1).	
Charac	teristic Hazards Listed Waste	Odium Thiosulfate, If no preservative is added = leave field blank	
S	FL = Flammable/Ignitable Listed Waste	Olle Other / Thimsen	Please provide any additional descrip-
S = Arsenic Hg= Mercury RE = Reactive	active Wassa and U-listed wastes.)	(i.e.: High/low pH, asbestos herollium imitement	
m Age Stiern		misc. health hazards, etc.)	
mium MR= Misc. RCRA metals	TSCA Regulated	Description:	sample(s), type of site collected from, odd
	biphenvis		(1)

Page: 2 of 2.	GEL Labora	Laboratories	0				GEL La	GEL Laboratories, LLC 2040 Savage Road	O	
GEL Quote #: COC Number ⁽¹⁾ :	get.com Chemistry Radiochemistry Radiobioassay Special Chain of Cusfody and Analytical Regulact	Chemistry I Radiochemistry I Radiobioassay I Specialty Analytics of Custody and Analytical Reguest	Redile	ialty Analytic	to.		Charles	Charleston, SC 29407		
382177-0006	GEL Work Order Number: GEL Pr	GEL Project Manager: Erin Trent	Erin Tren	,			Fax: (84	Fax: (843) 766-1178		
Client Name: GA Power	Phone # 404-506-7116		Sampl	Sample Analysis Requested (5)	Reque	sted (5) (Fi	Il in the num	ber of contair	(Fill in the number of containers for each test)	st)
Project/Site Name: Plant Branch Ash Ponds - E	Fax #	Should this			IN	IN			< Preserv	< Preservative Type (6)
Address: 241 Ralph McGill Blvd SE, Atlanta GA 30308		sample be considered:		ЭС	-				Con	Comments
Collected By: To Goode ACC Send Re	Send Results To: SCS & Geosyntec Contacts	U) Vidd	spar	M 2540 dresie	sl * 2 * 2	12, 932 15, 932			Note: ext	Note: extra sample is required for sample specific
Sample ID * For composites - indicate start and stop date/time	*Date Collected Collected (Collected (OK) Field S (Milterry) (OC Field S (Milterry) (OC Pielted S) Milterry (Milterry) (M	Sample Matrix 3 yes, please sul	(7) Known or possible Haxa Total number	Cl, F, SO4, " Total, Carb, &	EPA 6020, 6	Radium 22 SW-846 93 Mu2 SM 45			Task_Codi	Task_Code: BRA-CCR-ASSMT-2024S2
BRA- APE - EB-10	4 1310 G N	Z	-	>	1	>				
BRA-										
BRA-										
BRA-										
BRA-										
BRA-				2-5						
BRA-										
BRA-					1 3					
BRA-			F							
BRA-										
Chain of Ct	Chain of Custody Signatures		TAT Re	TAT Requested:	Normal:	x Rush:		Specify:	(Subject to	(Subject to Surcharge)
Relinquished By (Signed) Date Time	Received by (signed) Date Time	F	Fax Results: [] Yes		[x] No					
Tay Halo 8-29-24/ 0822	180 WAPY / MAPE	S , S	elect Delive	Select Deliverable: [] C of A		[] QC Summary	nary [] level 1	il [x] Level 2	12 [] Level 3	[] Level 4
	8/24/	A 1810 AL	Additional Remarks:	emarks:	* Metal	s: B,Ca,Sb,	s,Ba,Be,Cd,Cı	,Co,Pb,Li,Mo,	* Metals: B,Ca,Sb,As,Ba,Be,Cd,Cr,Co,Pb,Li,Mo,Se,Tl,Fe,Mg,Mn,K,Na,Hg	K,Na,Hg
8	3 (F	or Lab Rec	eiving Use	Only: C.	ustody Seal	For Lab Receiving Use Only: Custody Seal Intact? [] Yes	[] No	Cooler Temp:	\sim
> For sample shipping and delivery details, see Sample Receipt & Review form (SRR.)	ceipt & Review form (SRR.)	Sample Co	llection Tir	re Zone: [x] Easter	n []Pac	fic []Cen	tral [] Mou	Sample Collection Time Zone: [x] Eastern [] Pacific [] Central [] Mountain [] Other:	er:
 Chain of Custody Number = Client Determined OC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicate, EB = Equipment Blank, MS = Matrix Spike Sample, MSD = Matrix Spike Duplicate Sample, G = Grab, C = Composite Sample, FD = Field Duplicate with a - Y - for use the sample was field filtered or - N - for sample was not field filtered 	e, EB = Equipment Blank, MS = Matrix Spike Sample, MSD = Ma le was field filtered or = N = for cample was not field filtered	trix Spike Duplicate S	ample, G = G	ab, C = Comp	osite					
4.) Matrix Codes: WD=Drinking Water, WG=Groundwater, WS=Surface Water, WW=Waste Water, WL=Leachate, SO=Soil, SE=Sediment, SL=Sludge, WQ=Water Quality Control Matrix	Nater, WW=Waste Water, WL=Leachate, SO=Soil, SE=Sediment	SL=Sludge, WQ=W	ater Quality Co	introl Matrix						
5.) Sample Analysis Requested: Analytical method requested (i.e. 82608, 6010B/7470A) and number of containers provided for each (i.e. 82608 - 3, 6010B/7470A - 1). S.) Preservative Type: HA = Hydrochloric Acid, NI = Nitric Acid, SH = Sodium Hydroxide, SA = Sulfuric Acid, AA = Ascorbic Acid, HX = Hexane, ST = Sodium Thiosulfine. If no preservative is added = leave field blank	010B/7470A) and number of containers provided for each (i.e. 8266 dium Hydroxide, SA = Sulfaric Acid, AA = Ascorbic Acid, HX = H	B - 3, 6010B/7470A exane, ST = Sodium	- 1). Thiosulfate, If	to preservative	is added =	leave field bla	-24			
S KNOWN OR POSSIBLE HAZARDS Characte	Characteristic Hazards Listed Waste	0	Other					Please pro	Please provide any additional details	nal details
RCRA Metals As = Arsenic Hg= Mercury Ba = Barium Se= Selenium Cd = Cadmium Ag= Silver Cr = Chromium MR= Misc. RCRA metals PCB = Polychlor PCB = Polychlor TSCA Regulate PCB = Polychlor	FL = Flammable/Ignitable CO = Corrosive RE = Reactive Waste code(s): TSCA Regulated PCB = Polychlorinated biphenyls		OT= Other / Unknown (i.e.: High/low pH, asb misc. health hazards, e Description:	OT= Other / Unknown (i.e.: High/low pH, asbestos, beryllium, irritants, other misc. health hazards, etc.) Description:	J)	llium, irrite	nts, other	below regardi disposal conc sample(s), typ matrices, etc.)	below regarding handling and/or disposal concerns. (i.e.: Origin of sample(s), type of site collected from, odd matrices, etc.)	and/or rigin of cted from, odd

Cli	ent: GPCC	-		SAMPLE RECEIPT & REVIEW FORM (0555) 1 (08558
-	reived By: CLM		-	SDG/AR/COC/Work Order:
Carrier and Tracking Number			FedEx Express FedEx Ground UPS Field Services Courie) Other Other 1 - 0 3 - 0 5 - 0	
Sus	pected Hazard Information	Yes	o'N	*If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
A)S	hipped as a DOT Hazardous?		1	Hazard Class Shipped: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes No
	oid the client designate the samples are to be ived as radioactive?		1	COC notation or radioactive stickers on containers equal client designation.
C) I	oid the RSO classify the samples as pactive?	T	V	Maximum Net Counts Observed* (Observed Counts - Area Background Counts): Classified as: Rad 1 Rad 2 Rad 3
	old the client designate samples are hazardous.		1	COC notation or hazard labels on containers equal client designation.
	id the RSO identify possible hazards?	ľ	1	If D or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
	Sample Receipt Criteria	Yes	NA	Č Comments/Qualifiers (Required for Non-Conforming Items)
1	Shipping containers received intact and sealed?	V	Á	Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
2	Chain of custody documents included with shipment?	-	N.	Circle Applicable: Client contacted and provided COC COC created upon receipt
3	Samples requiring cold preservation within (0 ≤ 6 deg. C)?*	1		Preservation Method: Wet Ice Ice Packs Dry ice None Other: **all temperatures are recorded in Celsius TEMP:
4	Daily check performed and passed on IR temperature gun?		Ř	Temperature Device Serial #: IR5-23 Secondary Temperature Device Serial # (If Applicable):
5	Sample containers intact and scaled?	V		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
6	Samples requiring chemical preservation at proper pH?			Sample ID's and Containers Affected: If Preservation added, Lot#:
7	Do any samples require Volatile Analysis?			If Yes, are Encores or Soil Kits present for solids? Yes No NA (If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Are liquid VOA vials free of headspace? Yes No NA Sample ID's and containers affected:
8	Samples received within holding time?	1		ID's and tests affected:
9	Sample ID's on COC match ID's on bottles?	/		ID's and containers affected:
0	Date & time on COC match date & time on bottles?		/	Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
	Number of containers received match number indicated on COC?	V		Circle Applicable: No container count on COC Other (describe)
-	Are sample containers identifiable as GEL provided by use of GEL labels?	1		
	COC form is properly signed in relinquished/received sections?	1		Circle Applicable: Not relinquished Other (describe)

GL-CHL-SR-001 Rev 7

List of current GEL Certifications as of 10 September 2024

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	KY90129
Kentucky Wastewater	KY90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2023019
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	NV-C24-00175
New Hampshire NELAP	205424
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2023-152
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235
Utah NELAP	SC000122024-41
Vermont	VT87156
Virginia NELAP	460202
Washington	C780
	, , , ,

gel.com

October 03, 2024

Joju Abraham Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

Re: Branch CCR Groundwater Compliance

Work Order: 683468

Dear Joju Abraham:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on August 30, 2024. This revised data report has been prepared and reviewed in accordance with GEL's standard operating procedures. This report replaces the original version which is noted as SDG number 683468 in the left-hand footer of the data report. Package revision 01 to include results for Fluoride.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt. The laboratory received the following sample(s):

Laboratory ID	Client ID	Matrix	Date Collected	Date Received
683468001	BRA-PZ-50D	Ground Water	08/29/24 10:00	08/30/24 08:30
683468002	BRA-PZ-64I	Ground Water	08/29/24 11:35	08/30/24 08:30
683468003	BRA-PZ-61I	Ground Water	08/29/24 12:05	08/30/24 08:30
683468004	BRA-BRGWC-50	Ground Water	08/29/24 13:30	08/30/24 08:30
683468005	BRA-PZ-51D	Ground Water	08/29/24 13:40	08/30/24 08:30
683468006	BRA-APBCD-FB-03	Water	08/29/24 15:00	08/30/24 08:30
683468007	BRA-APBCD-FD-03	Ground Water	08/29/24 12:00	08/30/24 08:30
683468008	BRA-PZ-51I	Ground Water	08/29/24 14:20	08/30/24 08:30
683468009	BRA-APBCD-EB-06	Water	08/29/24 14:45	08/30/24 08:30
683468010	BRA-PZ-60I	Ground Water	08/29/24 12:44	08/30/24 08:30
683468011	BRA-PZ-58I	Ground Water	08/29/24 15:15	08/30/24 08:30

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Prep Methods and Prep Dates

Method	Run Date ID
SW846 3005A	31-AUG-2024
SW846 7470A Prep	03-SEP-2024

Analysis Methods and Analysis Dates

Method	Run Date ID
EPA 300.0	30-AUG-2024
EPA 300.0	31-AUG-2024
SM 2320B	30-AUG-2024
SM 2540C	04-SEP-2024
SM 4500-S (2-) D	03-SEP-2024
SW846 3005A/6020B	09-SEP-2024
SW846 3005A/6020B	10-SEP-2024
SW846 3005A/6020B	11-SEP-2024
SW846 7470A	04-SEP-2024

Page 2 of 50 SDG: 683468 Rev1

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4443.

Sincerely,

Alaina Pinnick Project Manager

Alaina Pinnick

Purchase Order: GPC82177-0006

Enclosures

Page 3 of 50 SDG: 683468 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

GPCC001 Georgia Power Company Client SDG: 683468 GEL Work Order: 683468

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- B Either presence of analyte detected in the associated blank, or MDL/IDL < sample value < PQL
- H Analytical holding time was exceeded
- J Value is estimated
- N/A RPD or %Recovery limits do not apply.
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Alaina Pinnick.

Page 4 of 50 SDG: 683468 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: October 3, 2024

GPCC00101

GPCC001

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-50D Sample ID: 683468001

Matrix: WG

Collect Date: 29-AUG-24 10:00 Receive Date: 30-AUG-24 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liqui	id "As Recei	ived"									
Fluoride		0.165	0.0330	0.100	mg/L		1	CH6	08/30/24	1244 2665531	1
Chloride		11.2	0.335	1.00	mg/L		5	CH6	08/31/24	0034 2665531	2
Nitrate-N		0.818	0.165	0.500	mg/L		5				
Sulfate		806	13.3	40.0	mg/L		100	CH6	08/31/24	0339 2665531	3
Mercury Analysis-CVA	A										
7470 Cold Vapor Mercu	ry, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/04/24	1152 2665644	4
Metals Analysis-ICP-MS	S										
SW846 3005A/6020B "A	As Received	"									
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	09/10/24	1608 2665671	5
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium		0.0260	0.000670	0.00400	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt		0.111	0.000300	0.00100	mg/L	1.00	1				
Iron		2.01	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium		0.0279	0.00300	0.0100	mg/L	1.00	1				
Molybdenum	J	0.000466	0.000200	0.00100	mg/L	1.00	1				
Potassium		11.2	0.0800	0.300	mg/L	1.00	1				
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1				
Sodium		45.8	0.0800	0.250	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Boron		0.298	0.0260	0.0750	mg/L	1.00	5	BAJ	09/10/24	1620 2665671	6
Calcium		197	0.400	1.00	mg/L	1.00	5				
Magnesium		76.6	0.0500	0.150	mg/L	1.00	5				
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1	BAJ	09/09/24	1946 2665671	7
Manganese		9.82	0.0500	0.250	mg/L	1.00	50	BAJ	09/11/24	1609 2665671	8
Solids Analysis											
SM2540C Dissolved So	lids "As Rec	eived"									
Total Dissolved Solids		1490	23.8	100	mg/L			KLP1	09/04/24	1105 2666218	9
Spectrometric Analysis											
SM 4500-S(2-) D Sulfid	e "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	09/03/24	1008 2666112	10

Page 5 of 50 SDG: 683468 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 3, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-50D Project: GPCC00101
Sample ID: 683468001 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Ana	llyst Date	Time Batch	Method
Titration and Ion Ana	alysis									
SM 2320B Total Alk	alinity "As Rec	eived"								
Alkalinity, Total as CaCO	3	56.9	0.725	2.00	mg/L		JW2	08/30/24	1427 2665536	11
Bicarbonate alkalinity (Ca	CO3)	56.9	0.725	2.00	mg/L					
Carbonate alkalinity (CaC	O3) U	ND	0.725	2.00	mg/L					
The following Prep N	Methods were p	erformed:								
Method	Description	n		Analyst	Date		Time	Prep Batch		
SW846 3005A	ICP-MS 3005	SA PREP		BB2	08/31/24		0950	2665670		
SW846 7470A Prep	EPA 7470A I	Mercury Prep Liquid		JM13	09/03/24		1145	2665643		
TT1 C 11 . A 1	13.6.4.1	C 1								

The following Analytical Methods were performed:

35.1.1	7 I	
Method	Description	Analyst Comments
1	EPA 300.0	
2	EPA 300.0	
3	EPA 300.0	
4	SW846 7470A	
5	SW846 3005A/6020B	
6	SW846 3005A/6020B	
7	SW846 3005A/6020B	
8	SW846 3005A/6020B	
9	SM 2540C	
10	SM 4500-S (2-) D	
11	SM 2320B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 50 SDG: 683468 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: October 3, 2024

GPCC00101

GPCC001

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

1.81

ND

12.4

ND

333

9.65

348

3830

ND

0.0134

U

U

Client Sample ID: BRA-PZ-64I Sample ID: 683468002

Matrix: WG

Collect Date: 29-AUG-24 11:35
Receive Date: 30-AUG-24
Collector: Client

RL Parameter **Qualifier** DL Units PF DF Analyst Date Time Batch Method Result Ion Chromatography EPA 300.0 Anions Liquid "As Received" Chloride 33.8 0.335 1.00 mg/L 5 CH₆ 08/30/24 1315 2665531 1 0.500 5 Fluoride U ND 0.165 mg/L Nitrate-N U ND 0.165 0.5005 mg/L Sulfate 2300 26.6 80.0mg/L200 CH6 08/31/24 0410 2665531 2 Mercury Analysis-CVAA 7470 Cold Vapor Mercury, Liquid "As Received" Mercury 0.0000670 0.000200 mg/L 1.00 1 JP2 09/04/24 1203 2665644 3 Metals Analysis-ICP-MS SW846 3005A/6020B "As Received" Antimony ND 0.00500 0.0150 mg/L 1.00 5 BAJ 09/10/24 1639 2665671 4 Arsenic U ND 0.01000.0250 mg/L 1.00 5 0.00150 0.00500 mg/L 1.00 5 Cadmium J 0.00411 Magnesium 222 0.0500 0.150 mg/L1.00 5 mg/LMolybdenum U ND 0.00100 0.00500 1.00 5 5 Selenium J 0.00888 0.00750 0.0250 mg/L 1.00 Sodium 1.25 1.00 5 65.5 0.400 mg/L Beryllium 0.00300 0.0002000.000500mg/L 1.00 1 BAJ 09/09/24 2020 2665671 5 0.00400 09/10/24 1636 2665671 Barium 0.0119 0.000670 mg/L 1.00 1 BAJ 6 I 0.0142 0.0150 mg/L1.00 Boron 0.00520 1 U ND 0.0100 mg/L1.00 Chromium 0.00300 1

0.0330

0.000500

0.00300

0.000600

0.0800

4.00

0.0150

0.500

23.8

0.0330

0.100

0.00200

0.00200

0.0100

0.300

10.0

2.50

100

0.100

0.0500

mg/L

1.00 1

1.00 1

1.00 1

1.00 1

1.00

1.00 50

1.00 50

1.00

1

BAJ

KLP1

JW2

500 BAJ

09/10/24 1641 2665671

1615 2665671

1105 2666218

1008 2666112

10

09/11/24

09/04/24

09/03/24

Page 7 of 50 SDG: 683468 Rev1

SM2540C Dissolved Solids "As Received"

SM 4500-S(2-) D Sulfide "As Received"

Iron

Lead

Lithium

Potassium

Thallium

Calcium

Manganese

Total Sulfide

Solids Analysis

Total Dissolved Solids

Spectrometric Analysis

Cobalt

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 3, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-64I Project: GPCC00101 Sample ID: 683468002 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF An	alyst Date	Time Batch	Method
Titration and Ion Analy	/sis									
SM 2320B Total Alkali	inity "As Rec	eived"								
Alkalinity, Total as CaCO3	-	14.7	0.725	2.00	mg/L		JW	2 08/30/24	1428 2665536	11
Bicarbonate alkalinity (CaCC	03)	14.7	0.725	2.00	mg/L					
Carbonate alkalinity (CaCO3) U	ND	0.725	2.00	mg/L					
The following Prep Me	thods were p	erformed:								
Method	Description	n		Analyst	Date	,	Time	Prep Batch	l	
SW846 3005A	ICP-MS 300:	5A PREP		BB2	08/31/24		0950	2665670		
SW846 7470A Prep	EPA 7470A	Mercury Prep Liquid	I	JM13	09/03/24		1145	2665643		
The following Analytic	ool Mathode s	vara parformadi								

The following Analytical Methods were performed:

Method	Description	Analyst Comments	
1	EPA 300.0	•	
2	EPA 300.0		
3	SW846 7470A		
4	SW846 3005A/6020B		
5	SW846 3005A/6020B		
6	SW846 3005A/6020B		
7	SW846 3005A/6020B		
8	SW846 3005A/6020B		
9	SM 2540C		
10	SM 4500-S (2-) D		
11	SM 2320B		

Notes:

Column headers are defined as follows:

Lc/LC: Critical Level DF: Dilution Factor DL: Detection Limit PF: Prep Factor RL: Reporting Limit MDA: Minimum Detectable Activity

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 50 SDG: 683468 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 3, 2024

GPCC00101

GPCC001

Georgia Power Company, Southern Company Company: Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-61I Sample ID: 683468003

Matr

Coll Rece Coll

trix:	WG
llect Date:	29-AUG-24 12:05
ceive Date:	30-AUG-24
llector:	Client

Project:

Client ID:

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analyst Date		Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liqu	uid "As Recei	ved"									
Sulfate		1460	13.3	40.0	mg/L		100	CH6	08/31/24	0441 2665531	1
Chloride		15.3	0.134	0.400	mg/L		2	CH6	08/30/24	1345 2665531	2
Fluoride	J	0.111	0.0660	0.200	mg/L		2				
Nitrate-N	U	ND	0.132	0.400	mg/L		4	CH6	08/31/24	0105 2665531	3
Mercury Analysis-CVA	λA										
7470 Cold Vapor Merc	ury, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/04/24	1205 2665644	4
Metals Analysis-ICP-M	IS										
SW846 3005A/6020B '	'As Received	"									
Beryllium		0.00173	0.000200	0.000500	mg/L	1.00	1	BAJ	09/09/24	2025 2665671	5
Manganese		111	0.500	2.50	mg/L	1.00	500	BAJ	09/11/24	1616 2665671	6
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	09/10/24	1646 2665671	7
Barium		0.0103	0.000670	0.00400	mg/L	1.00	1				
Cadmium	J	0.000413	0.000300	0.00100	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt		0.743	0.000300	0.00100	mg/L	1.00	1				
Iron		0.233	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium		0.0108	0.00300	0.0100	mg/L	1.00	1				
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1				
Potassium		6.33	0.0800	0.300	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Arsenic	U	ND	0.0100	0.0250	mg/L	1.00	5	BAJ	09/10/24	1648 2665671	8
Boron		0.348	0.0260	0.0750	mg/L	1.00	5				
Calcium		216	0.400	1.00	mg/L	1.00	5				
Magnesium		165	0.0500	0.150	mg/L	1.00	5				
Selenium	U	ND	0.00750	0.0250	mg/L	1.00	5				
Sodium		59.8	0.400	1.25	mg/L	1.00	5				
Solids Analysis											
SM2540C Dissolved So	olids "As Rec	eived"									
Total Dissolved Solids		2110	23.8	100	mg/L			KLP1	09/04/24	1105 2666218	9
Spectrometric Analysis											
SM 4500-S(2-) D Sulfie	de "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	09/03/24	1008 2666112	10

Page 9 of 50 SDG: 683468 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 3, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-61I Project: GPCC00101
Sample ID: 683468003 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Titration and Ion Ana	ılysis									
SM 2320B Total Alka	alinity "As Rec	eived"								
Alkalinity, Total as CaCO3	3	12.7	0.725	2.00	mg/L		JW2	08/30/24	1430 2665536	11
Bicarbonate alkalinity (Cao	CO3)	12.7	0.725	2.00	mg/L					
Carbonate alkalinity (CaCo	O3) U	ND	0.725	2.00	mg/L					
The following Prep M	Methods were p	erformed:								
Method	Description	n		Analyst	Date		Time F	rep Batch		
SW846 3005A	ICP-MS 3005	SA PREP		BB2	08/31/24		0950 2	665670		
SW846 7470A Prep	EPA 7470A I	Mercury Prep Liquid		JM13	09/03/24		1145 2	665643		

The following Analytical Methods were performed:

Method	Description	Analyst Comments
1	EPA 300.0	•
2	EPA 300.0	
3	EPA 300.0	
4	SW846 7470A	
5	SW846 3005A/6020B	
6	SW846 3005A/6020B	
7	SW846 3005A/6020B	
8	SW846 3005A/6020B	
9	SM 2540C	
10	SM 4500-S (2-) D	
11	SM 2320B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 50 SDG: 683468 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: October 3, 2024

GPCC00101

GPCC001

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWC-50

Sample ID: 683468004

Matrix: WG

Collect Date: 29-AUG-24 13:30 Receive Date: 30-AUG-24 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liqu	uid "As Recei	ved"									
Fluoride		0.442	0.0330	0.100	mg/L		1	CH6	08/30/24	1416 2665531	1
Sulfate		1390	13.3	40.0	mg/L		100	CH6	08/31/24	0511 2665531	2
Chloride		15.1	0.134	0.400	mg/L		2	CH6	08/31/24	0135 2665531	3
Nitrate-N	U	ND	0.0660	0.200	mg/L		2				
Mercury Analysis-CVA	AΑ										
7470 Cold Vapor Merc	ury, Liquid "/	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/04/24	1206 2665644	4
Metals Analysis-ICP-M	1S				_						
SW846 3005A/6020B '	"As Received	"									
Boron		0.393	0.0260	0.0750	mg/L	1.00	5	BAJ	09/10/24	1700 2665671	5
Calcium		232	0.400	1.00	mg/L	1.00	5				
Cobalt		1.36	0.00150	0.00500	mg/L	1.00	5				
Magnesium		156	0.0500	0.150	mg/L	1.00	5				
Sodium		50.7	0.400	1.25	mg/L	1.00	5				
Manganese		79.4	0.500	2.50	mg/L	1.00	500	BAJ	09/11/24	1617 2665671	6
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	09/10/24	1657 2665671	7
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium		0.0156	0.000670	0.00400	mg/L	1.00	1				
Cadmium		0.00742	0.000300	0.00100	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Iron		0.230	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium		0.0433	0.00300	0.0100	mg/L	1.00	1				
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1				
Potassium		10.6	0.0800	0.300	mg/L	1.00	1				
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1	DAI	00/00/24	2021 2665671	0
Beryllium		0.00868	0.000200	0.000500	mg/L	1.00	1	BAJ	09/09/24	2031 2665671	8
Solids Analysis											
SM2540C Dissolved So	olids "As Rec										
Total Dissolved Solids		2140	2.38	10.0	mg/L			KLP1	09/04/24	1105 2666218	9
Spectrometric Analysis											
SM 4500-S(2-) D Sulfid	de "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	09/03/24	1008 2666112	10

Page 11 of 50 SDG: 683468 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 3, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWC-50 Project: GPCC00101
Sample ID: 683468004 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Titration and Ion Anal	lysis									
SM 2320B Total Alka	linity "As Rec	eived"								
Alkalinity, Total as CaCO3		10.9	0.725	2.00	mg/L		JW2	08/30/24	1431 2665536	11
Bicarbonate alkalinity (CaC	CO3)	10.9	0.725	2.00	mg/L					
Carbonate alkalinity (CaCC	03) U	ND	0.725	2.00	mg/L					
The following Prep M	ethods were p	erformed:								
Method	Descriptio	n		Analyst	Date		Time F	rep Batch		
SW846 7470A Prep	EPA 7470A	Mercury Prep Liqu	id	JM13	09/03/24		1145 2	665643		
SW846 3005A	ICP-MS 300:	5A PREP		BB2	08/31/24		0950 2	665670		

The following Analytical Methods were performed:

	<u> </u>	
Method	Description	Analyst Comments
1	EPA 300.0	
2	EPA 300.0	
3	EPA 300.0	
4	SW846 7470A	
5	SW846 3005A/6020B	
6	SW846 3005A/6020B	
7	SW846 3005A/6020B	
8	SW846 3005A/6020B	
9	SM 2540C	
10	SM 4500-S (2-) D	
11	SM 2320B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 12 of 50 SDG: 683468 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 3, 2024

GPCC00101

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Branch CCR Groundwater Compliance Project:

Client Sample ID: BRA-PZ-51D Sample ID: 683468005

Matrix: WG

29-AUG-24 13:40 Collect Date: Receive Date: 30-AUG-24 Collector: Client

Project: Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Lic	quid "As Recei	ived"									
Nitrate-N	U	ND	0.0660	0.200	mg/L		2	CH6	08/31/24	1308 2665531	1
Sulfate		361	6.65	20.0	mg/L		50	CH6	08/31/24	0644 2665531	2
Chloride		17.9	0.268	0.800	mg/L		4	CH6	08/31/24	0206 2665531	3
Fluoride		0.326	0.0330	0.100	mg/L		1	CH6	08/30/24	1447 2665531	4
Mercury Analysis-CV	AA										
7470 Cold Vapor Merc	cury, Liquid ".	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/04/24	1208 2665644	5
Metals Analysis-ICP-N	MS										
SW846 3005A/6020B	"As Received	."									
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	09/10/24	1704 2665671	6
Arsenic	J	0.00356	0.00200	0.00500	mg/L	1.00	1				
Barium		0.0471	0.000670	0.00400	mg/L	1.00	1				
Boron		0.0366	0.00520	0.0150	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt	J	0.000506	0.000300	0.00100	mg/L	1.00	1				
Iron		3.37	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00					
Lithium	J	0.00392	0.00300	0.0100	mg/L	1.00					
Magnesium		27.4	0.0100	0.0300	mg/L	1.00					
Molybdenum		0.00192	0.000200	0.00100	mg/L	1.00					
Potassium		9.83	0.0800	0.300	mg/L	1.00					
Selenium	U	ND	0.00150	0.00500	mg/L	1.00					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00					
Calcium		127	0.400	1.00	mg/L	1.00		BAJ	09/10/24	1707 2665671	7
Sodium		51.4	0.400	1.25	mg/L	1.00					
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00		BAJ	09/09/24	2037 2665671	
Manganese		1.41	0.00500	0.0250	mg/L	1.00	5	BAJ	09/11/24	1618 2665671	9
Solids Analysis											
SM2540C Dissolved S	Solids "As Rec	eived"									
Total Dissolved Solids		800	23.8	100	mg/L			KLP1	09/04/24	1105 2666218	10
Spectrometric Analysi	S										
SM 4500-S(2-) D Sulf	ide "As Recei	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	09/03/24	1008 2666112	11

Page 13 of 50 SDG: 683468 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 3, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-51D Project: GPCC00101
Sample ID: 683468005 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Titration and Ion Ana	alysis									
SM 2320B Total Alk	alinity "As Rec	eived"								
Alkalinity, Total as CaCO	3	129	0.725	2.00	mg/L		JW2	08/30/24	1433 2665536	12
Bicarbonate alkalinity (Ca	CO3)	129	0.725	2.00	mg/L					
Carbonate alkalinity (CaC	O3) U	ND	0.725	2.00	mg/L					
The following Prep N	Methods were po	erformed:								
Method	Description	n		Analyst	Date		Time P	rep Batch		
SW846 3005A	ICP-MS 3005	SA PREP		BB2	08/31/24		0950 2	665670		
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		JM13	09/03/24		1145 2	665643		

The following Analytical Methods were performed:

Method	Description	Analyst Comments	
1	EPA 300.0	•	
2	EPA 300.0		
3	EPA 300.0		
4	EPA 300.0		
5	SW846 7470A		
6	SW846 3005A/6020B		
7	SW846 3005A/6020B		
8	SW846 3005A/6020B		
9	SW846 3005A/6020B		
10	SM 2540C		
11	SM 4500-S (2-) D		
12	SM 2320B		

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 14 of 50 SDG: 683468 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: October 3, 2024

GPCC00101

GPCC001

Company: Georgia Power Company, Southern Company
Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-APBCD-FB-03

Sample ID: 683468006

Matrix: WQ

Collect Date: 29-AUG-24 15:00 Receive Date: 30-AUG-24 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liqu	uid "As Recei	ved"									
Chloride	U	ND	0.0670	0.200	mg/L		1	CH6	08/30/24	1518 2665531	1
Fluoride	U	ND	0.0330	0.100	mg/L		1				
Nitrate-N	U	ND	0.0330	0.100	mg/L		1				
Sulfate	U	ND	0.133	0.400	mg/L		1				
Mercury Analysis-CVA	λA										
7470 Cold Vapor Merc	ury, Liquid "/	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/04/24	1210 2665644	2
Metals Analysis-ICP-M	IS										
SW846 3005A/6020B '	'As Received	"									
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1	BAJ	09/09/24	1932 2665671	3
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	09/10/24	1547 2665671	4
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium	U	ND	0.000670	0.00400	mg/L	1.00	1				
Boron	U	ND	0.00520	0.0150	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Calcium	U	ND	0.0800	0.200	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1				
Iron	U	ND	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Magnesium	U	ND	0.0100	0.0300	mg/L	1.00	1				
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1				
Potassium	U	ND	0.0800	0.300	mg/L	1.00	1				
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1				
Sodium	U	ND	0.0800	0.250	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				_
Manganese	U	ND	0.00100	0.00500	mg/L	1.00	1	BAJ	09/11/24	1606 2665671	5
Solids Analysis											
SM2540C Dissolved So	olids "As Rec										
Total Dissolved Solids	U	ND	2.38	10.0	mg/L			KLP1	09/04/24	1105 2666218	6
Spectrometric Analysis											
SM 4500-S(2-) D Sulfic	de "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	09/03/24	1008 2666112	7

Page 15 of 50 SDG: 683468 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 3, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-APBCD-FB-03 Project: GPCC00101

Sample ID: 683468006 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF A	nalyst Date	Time Batch	Method
Titration and Ion Analy	/sis									
SM 2320B Total Alkal	inity "As Rec	eived"								
Alkalinity, Total as CaCO3	U	ND	0.725	2.00	mg/L		1/	W2 08/30/24	1436 2665536	8
Bicarbonate alkalinity (CaCC	D3) U	ND	0.725	2.00	mg/L					
Carbonate alkalinity (CaCO3) U	ND	0.725	2.00	mg/L					
The following Prep Me	thods were p	erformed:								
Method	Description	n		Analyst	Date		Time	Prep Batch		
SW846 3005A	ICP-MS 3005	SA PREP		BB2	08/31/24		0950	2665670		
SW846 7470A Prep	EPA 7470A	Mercury Prep Liquid		JM13	09/03/24		1145	2665643		
The following Analytic	cal Methods v	were performed:								
Method	Description	1			,	Analys	t Comn	nents		

1	EPA 300.0
2	SW846 7470A
3	SW846 3005A/6020B
4	SW846 3005A/6020B
5	SW846 3005A/6020B
6	SM 2540C
7	SM 4500-S (2-) D
8	SM 2320B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 16 of 50 SDG: 683468 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: October 3, 2024

GPCC00101

GPCC001

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-APBCD-FD-03

Sample ID: 683468007

Matrix: WG

Collect Date: 29-AUG-24 12:00 Receive Date: 30-AUG-24 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liqu	id "As Recei	ived"									
Chloride		15.2	0.134	0.400	mg/L		2	CH6	08/30/24	1549 2665531	1
Fluoride		0.472	0.0660	0.200	mg/L		2				
Sulfate		1380	13.3	40.0	mg/L		100	CH6	08/31/24	0715 2665531	2
Nitrate-N	U	ND	0.132	0.400	mg/L		4	CH6	08/31/24	0237 2665531	3
Mercury Analysis-CVA	A										
7470 Cold Vapor Mercu	ury, Liquid ".	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/04/24	1211 2665644	4
Metals Analysis-ICP-M	S				_						
SW846 3005A/6020B "		"									
Manganese		80.2	0.500	2.50	mg/L	1.00	500	BAJ	09/11/24	1619 2665671	5
Boron		0.399	0.0260	0.0750	mg/L	1.00	5	BAJ	09/10/24	1712 2665671	6
Calcium		234	0.400	1.00	mg/L	1.00	5				
Cobalt		1.36	0.00150	0.00500	mg/L	1.00	5				
Magnesium		157	0.0500	0.150	mg/L	1.00					
Sodium		50.4	0.400	1.25	mg/L	1.00					
Beryllium		0.00878	0.000200	0.000500	mg/L	1.00		BAJ	09/09/24	2048 2665671	7
Antimony	U	ND	0.00100	0.00300	mg/L	1.00		BAJ	09/10/24	1709 2665671	8
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00					
Barium		0.0158	0.000670	0.00400	mg/L	1.00					
Cadmium		0.00732	0.000300	0.00100	mg/L	1.00					
Chromium	U	ND	0.00300	0.0100	mg/L	1.00					
Iron		0.233	0.0330	0.100	mg/L	1.00					
Lead	U	ND	0.000500	0.00200	mg/L	1.00					
Lithium	**	0.0439	0.00300	0.0100	mg/L	1.00					
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00					
Potassium	* 1	10.6 ND	0.0800	0.300	mg/L	1.00					
Selenium Thallium	U U	ND ND	0.00150 0.000600	0.00500 0.00200	mg/L	1.00 1.00					
	U	ND	0.000000	0.00200	mg/L	1.00	1				
Solids Analysis	1. 1 D										
SM2540C Dissolved So	olids "As Rec		22.0	100				*** D.	00/04/04		
Total Dissolved Solids		1930	23.8	100	mg/L			KLP1	09/04/24	1105 2666218	9
Spectrometric Analysis											
SM 4500-S(2-) D Sulfic	de "As Recei										
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	09/03/24	1008 2666112	10

Page 17 of 50 SDG: 683468 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 3, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-APBCD-FD-03 Project: GPCC00101

Sample ID: 683468007 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Titration and Ion Ana	lysis									
SM 2320B Total Alka	linity "As Rec	eived"								
Alkalinity, Total as CaCO3		10.2	0.725	2.00	mg/L		JW2	08/30/24	1437 2665536	11
Bicarbonate alkalinity (CaC	CO3)	10.2	0.725	2.00	mg/L					
Carbonate alkalinity (CaCC	03) U	ND	0.725	2.00	mg/L					
The following Prep M	lethods were p	erformed:								
Method	Description	n		Analyst	Date		Time P	rep Batch		
SW846 7470A Prep	EPA 7470A	Mercury Prep Liquid		JM13	09/03/24		1145 2	665643		
SW846 3005A	ICP-MS 300:	5A PREP		BB2	08/31/24		0950 2	665670		

The following Analytical Methods were performed:

Method	Description	Analyst Comments	
1	EPA 300.0	•	
2	EPA 300.0		
3	EPA 300.0		
4	SW846 7470A		
5	SW846 3005A/6020B		
6	SW846 3005A/6020B		
7	SW846 3005A/6020B		
8	SW846 3005A/6020B		
9	SM 2540C		
10	SM 4500-S (2-) D		
11	SM 2320B		

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 18 of 50 SDG: 683468 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: October 3, 2024

GPCC00101

GPCC001

Company: Georgia Power Company, Southern Company
Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-51I Sample ID: 683468008

Matrix: WG

Collect Date: 29-AUG-24 14:20 Receive Date: 30-AUG-24 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liqu	uid "As Recei	ived"									
Sulfate		1290	13.3	40.0	mg/L		100	CH6	08/31/24	0746 2665531	1
Fluoride	J	0.0805	0.0330	0.100	mg/L		1	CH6	08/30/24	1620 2665531	2
Chloride		9.77	0.134	0.400	mg/L		2	CH6	08/31/24	0308 2665531	3
Nitrate-N	U	ND	0.0660	0.200	mg/L		2				
Mercury Analysis-CVA	λA										
7470 Cold Vapor Merci	ury, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/04/24	1216 2665644	4
Metals Analysis-ICP-M	IS										
SW846 3005A/6020B "	'As Received	"									
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1	BAJ	09/09/24	2054 2665671	5
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	09/10/24	1721 2665671	6
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium		0.0135	0.000670	0.00400	mg/L	1.00	1				
Cadmium		0.00181	0.000300	0.00100	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt		0.0246	0.000300	0.00100	mg/L	1.00	1				
Iron	J	0.0681	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium		0.0260	0.00300	0.0100	mg/L	1.00	1				
Molybdenum	J	0.000288	0.000200	0.00100	mg/L	1.00	1				
Potassium		11.2	0.0800	0.300	mg/L	1.00	1				
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1				
Sodium		46.8	0.0800	0.250	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Boron		0.443	0.0260	0.0750	mg/L	1.00	5	BAJ	09/10/24	1723 2665671	7
Calcium		231	0.400	1.00	mg/L	1.00	5				
Magnesium		146	0.0500	0.150	mg/L	1.00	5				
Manganese		52.0	0.500	2.50	mg/L	1.00	500	BAJ	09/11/24	1620 2665671	8
Solids Analysis											
SM2540C Dissolved So	olids "As Rec	eived"									
Total Dissolved Solids		2010	23.8	100	mg/L			KLP1	09/04/24	1105 2666218	9
Spectrometric Analysis											
SM 4500-S(2-) D Sulfic	de "As Recei	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	09/03/24	1008 2666112	10

Page 19 of 50 SDG: 683468 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 3, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-51I Project: GPCC00101
Sample ID: 683468008 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF A	nalyst Date	Time Batch	Method
Titration and Ion Analy	sis									
SM 2320B Total Alkali	nity "As Rec	eived"								
Alkalinity, Total as CaCO3		23.8	0.725	2.00	mg/L		JV	W2 08/30/24	1438 2665536	11
Bicarbonate alkalinity (CaCC	03)	23.8	0.725	2.00	mg/L					
Carbonate alkalinity (CaCO3) U	ND	0.725	2.00	mg/L					
The following Prep Me	thods were po	erformed:								
Method	Description	n		Analyst	Date		Time	Prep Batch		
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		JM13	09/03/24		1145	2665643		
SW846 3005A	ICP-MS 3005	5A PREP		BB2	08/31/24		0950	2665670		

The following Analytical Methods were performed:

Method	Description	Analyst Comments
1	EPA 300.0	•
2	EPA 300.0	
3	EPA 300.0	
4	SW846 7470A	
5	SW846 3005A/6020B	
6	SW846 3005A/6020B	
7	SW846 3005A/6020B	
8	SW846 3005A/6020B	
9	SM 2540C	
10	SM 4500-S (2-) D	
11	SM 2320B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 20 of 50 SDG: 683468 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 3, 2024

Company: Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160 Address:

Atlanta, Georgia 30308

Contact: Joju Abraham

Branch CCR Groundwater Compliance Project:

Client Sample ID: BRA-APBCD-EB-06 Project: GPCC00101 Client ID: GPCC001

Sample ID: 683468009

Matrix: WQ

29-AUG-24 14:45 Collect Date: Receive Date: 30-AUG-24

Collector: Client

T 01 1		Result	DL	RL	Units	PF	DI	7 Milary	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liq	juid "As Recei	ved"									
Chloride	U	ND	0.0670	0.200	mg/L		1	CH6	08/30/24	1651 2665531	1
Fluoride	U	ND	0.0330	0.100	mg/L		1				
Nitrate-N	U	ND	0.0330	0.100	mg/L		1				
Sulfate	U	ND	0.133	0.400	mg/L		1				
Mercury Analysis-CV	AA										
7470 Cold Vapor Merc	cury, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/04/24	1218 2665644	2
Metals Analysis-ICP-N	MS				C						
SW846 3005A/6020B		"									
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	09/10/24	1549 2665671	3
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium	U	ND	0.000670	0.00400	mg/L	1.00	1				
Boron	U	ND	0.00520	0.0150	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Calcium	U	ND	0.0800	0.200	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1				
Iron	U	ND	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Magnesium	J	0.0112	0.0100	0.0300	mg/L	1.00	1				
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1				
Potassium	U	ND	0.0800	0.300	mg/L	1.00	1				
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1				
Sodium	U	ND	0.0800	0.250	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1	BAJ	09/09/24	1934 2665671	4
Manganese	U	ND	0.00100	0.00500	mg/L	1.00	1	BAJ	09/11/24	1607 2665671	5
Solids Analysis											
SM2540C Dissolved S	Solids "As Rec	eived"									
Total Dissolved Solids	U	ND	2.38	10.0	mg/L			KLP1	09/04/24	1105 2666218	6
Spectrometric Analysis	S										
SM 4500-S(2-) D Sulf	ide "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	09/03/24	1008 2666112	7

Page 21 of 50 SDG: 683468 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 3, 2024

8

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-APBCD-EB-06 Project: GPCC00101
Sample ID: 683468009 Client ID: GPCC001

Parameter Qualifier Result DL RL Units PF DF Analyst Date Time Batch Method Titration and Ion Analysis

SM 2320B Total Alkalinity "As Received"
Alkalinity, Total as CaCO3 U

ND 0.725 2.00 mg/L JW2 08/30/24 1439 2665536 Bicarbonate alkalinity (CaCO3) ND 0.725 2.00 mg/L Carbonate alkalinity (CaCO3) U ND 0.725 2.00 mg/L

The following Prep Methods were performed:

Method	Description	Analyst	Date	Time	Prep Batch
SW846 3005A	ICP-MS 3005A PREP	BB2	08/31/24	0950	2665670
SW846 7470A Prep	EPA 7470A Mercury Prep Liquid	JM13	09/03/24	1145	2665643

The following Analytical Methods were performed:

The following A	Analytical Methods were performed:		
Method	Description	Analyst Comments	
1	EPA 300.0	•	
2	SW846 7470A		
3	SW846 3005A/6020B		
4	SW846 3005A/6020B		
5	SW846 3005A/6020B		
6	SM 2540C		
7	SM 4500-S (2-) D		
8	SM 2320B		

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 22 of 50 SDG: 683468 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 3, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-60I Sample ID: 683468010

Matrix: WG

Collect Date: 29-AUG-24 12:44
Receive Date: 30-AUG-24
Collector: Client

Project: GPCC00101 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liqu	uid "As Recei	ved"									
Fluoride		1.30	0.0660	0.200	mg/L		2	CH6	08/30/24	1823 2665531	1
Sulfate		1980	26.6	80.0	mg/L		200	CH6	08/31/24	1817 2665531	2
Chloride		27.1	0.335	1.00	mg/L		5	CH6	08/31/24	1238 2665531	3
Nitrate-N	U	ND	0.165	0.500	mg/L		5				
Mercury Analysis-CVA	AA										
7470 Cold Vapor Merc	ury, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/04/24	1220 2665644	4
Metals Analysis-ICP-M	1S										
SW846 3005A/6020B	"As Received	"									
Barium		0.0203	0.000670	0.00400	mg/L	1.00	1	BAJ	09/10/24	1728 2665671	5
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Iron		2.31	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium		0.103	0.00300	0.0100	mg/L	1.00	1				
Potassium		13.1	0.0800	0.300	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Calcium		322	2.00	5.00	mg/L	1.00	25	BAJ	09/10/24	1733 2665671	6
Antimony	U	ND	0.00500	0.0150	mg/L	1.00	5	BAJ	09/10/24	1730 2665671	7
Arsenic	U	ND	0.0100	0.0250	mg/L	1.00	5				
Boron		0.318	0.0260	0.0750	mg/L	1.00	5				
Cadmium		0.0156	0.00150	0.00500	mg/L	1.00	5				
Cobalt		3.66	0.00150	0.00500	mg/L	1.00	5				
Magnesium		202	0.0500	0.150	mg/L	1.00	5				
Molybdenum	U	ND	0.00100	0.00500	mg/L	1.00	5				
Selenium	U	ND	0.00750	0.0250	mg/L	1.00	5				
Sodium		64.4	0.400	1.25	mg/L	1.00	5				
Beryllium		0.0671	0.000200	0.000500	mg/L	1.00	1	BAJ	09/09/24	2059 2665671	8
Manganese		191	0.500	2.50	mg/L	1.00	500	BAJ	09/11/24	1623 2665671	9
Solids Analysis											
SM2540C Dissolved So	olids "As Rec	eived"									
Total Dissolved Solids		3270	23.8	100	mg/L			KLP1	09/04/24	1105 2666218	10
Spectrometric Analysis											
SM 4500-S(2-) D Sulfi	de "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	09/03/24	1008 2666112	11

Page 23 of 50 SDG: 683468 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 3, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-60I Project: GPCC00101
Sample ID: 683468010 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Ana	lyst Date	Time Batch	Method
Titration and Ion Ana	lysis									
SM 2320B Total Alka	alinity "As Rec	eived"								
Alkalinity, Total as CaCO3	3 U	ND	0.725	2.00	mg/L		JW2	08/30/24	1441 2665536	12
Bicarbonate alkalinity (Cao	CO3) U	ND	0.725	2.00	mg/L					
Carbonate alkalinity (CaCo	O3) U	ND	0.725	2.00	mg/L					
The following Prep M	lethods were p	erformed:								
Method	Description	n		Analyst	Date		Time I	rep Batch		
SW846 3005A	ICP-MS 3005	5A PREP		BB2	08/31/24		0950 2	665670		
SW846 7470A Prep	EPA 7470A I	Mercury Prep Liquid		JM13	09/03/24		1145 2	665643		

The following Analytical Methods were performed:

Method	Description	Analyst Comments	
1	EPA 300.0	•	
2	EPA 300.0		
3	EPA 300.0		
4	SW846 7470A		
5	SW846 3005A/6020B		
6	SW846 3005A/6020B		
7	SW846 3005A/6020B		
8	SW846 3005A/6020B		
9	SW846 3005A/6020B		
10	SM 2540C		
11	SM 4500-S (2-) D		
12	SM 2320B		

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 24 of 50 SDG: 683468 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: October 3, 2024

GPCC00101

GPCC001

Company: Georgia Power Company, Southern Company
Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-58I Sample ID: 683468011

Matrix: WG

Collect Date: 29-AUG-24 15:15
Receive Date: 30-AUG-24
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liqu	id "As Recei	ived"									
Chloride		13.6	0.134	0.400	mg/L		2	CH6	08/30/24	1450 2665497	1
Fluoride		1.36	0.0660	0.200	mg/L		2				
Sulfate		1200	13.3	40.0	mg/L		100	CH6	08/31/24	0241 2665497	2
Nitrate-N		1.52	0.132	0.400	mg/L		4	CH6	08/30/24	1858 2665497	3
Mercury Analysis-CVA	A										
7470 Cold Vapor Mercu	ıry, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/04/24	1221 2665644	4
Metals Analysis-ICP-Ma	S										
SW846 3005A/6020B ".	As Received	."									
Manganese		45.5	0.100	0.500	mg/L	1.00	100	BAJ	09/11/24	1624 2665671	5
Boron		0.444	0.0260	0.0750	mg/L	1.00	5	BAJ	09/10/24	1744 2665671	6
Calcium		209	0.400	1.00	mg/L	1.00	5				
Iron		63.0	0.165	0.500	mg/L	1.00	5				
Magnesium		109	0.0500	0.150	mg/L	1.00	5				
Beryllium		0.0393	0.000200	0.000500	mg/L	1.00	1	BAJ	09/09/24	2105 2665671	7
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	09/10/24	1742 2665671	8
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium		0.0164	0.000670	0.00400	mg/L	1.00	1				
Cadmium		0.00519	0.000300	0.00100	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt		0.622	0.000300	0.00100	mg/L	1.00	1				
Lead	J	0.000884	0.000500	0.00200	mg/L	1.00	1				
Lithium		0.0602	0.00300	0.0100	mg/L	1.00	1				
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1				
Potassium		8.99	0.0800	0.300	mg/L	1.00	1				
Selenium		0.00576	0.00150	0.00500	mg/L	1.00	1				
Sodium		39.1	0.0800	0.250	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Solids Analysis											
SM2540C Dissolved So	lids "As Rec	eived"									
Total Dissolved Solids		1970	23.8	100	mg/L			KLP1	09/04/24	1105 2666218	9
Spectrometric Analysis											
SM 4500-S(2-) D Sulfid	le "As Recei	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	09/03/24	1008 2666112	10

Page 25 of 50 SDG: 683468 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: October 3, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-58I Project: GPCC00101 Sample ID: 683468011 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Titration and Ion Ana	lysis									
SM 2320B Total Alka	alinity "As Rec	eived"								
Alkalinity, Total as CaCO3	3 U	ND	0.725	2.00	mg/L		JW2	08/30/24	1442 2665536	11
Bicarbonate alkalinity (Cat	CO3) U	ND	0.725	2.00	mg/L					
Carbonate alkalinity (CaCo	O3) U	ND	0.725	2.00	mg/L					
The following Prep M	lethods were p	erformed:								
Method	Descriptio	n		Analyst	Date		Time P	rep Batch		
SW846 3005A	ICP-MS 300.	5A PREP		BB2	08/31/24		0950 2	665670		
				** ***						

SW846 7470A Prep EPA 7470A Mercury Prep Liquid JM13 09/03/24 1145 2665643

The following Analytical Methods were performed:

Method	Description	Analyst Comments
1	EPA 300.0	•
2	EPA 300.0	
3	EPA 300.0	
4	SW846 7470A	
5	SW846 3005A/6020B	
6	SW846 3005A/6020B	
7	SW846 3005A/6020B	
8	SW846 3005A/6020B	
9	SM 2540C	
10	SM 4500-S (2-) D	
11	SM 2320B	

Notes:

Column headers are defined as follows:

Lc/LC: Critical Level DF: Dilution Factor DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 26 of 50 SDG: 683468 Rev1

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia Joju Abraham

Contact:

Report Date: October 3, 2024

Page 1 of 13

Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Ion Chromatography Batch 2665497 ———								
QC1205840892 683471005 DUP Chloride		18.1	18.2	mg/L	0.0881	^	(+/-4.00) CH6	08/31/24 06:17
Fluoride		0.126	0.127	mg/L	0.395	^	(+/-0.100)	08/31/24 00:37
Nitrate-N	U	ND U	ND	mg/L	N/A			
Sulfate		280	280	mg/L	0.106		(0%-20%)	08/31/24 06:17
QC1205840891 LCS Chloride	5.00		4.68	mg/L		93.6	(90%-110%)	08/31/24 00:06
Fluoride	2.50		2.33	mg/L		93.4	(90%-110%)	
Nitrate-N	2.50		2.37	mg/L		94.8	(90%-110%)	
Sulfate	10.0		9.40	mg/L		94	(90%-110%)	
QC1205840890 MB Chloride		U	ND	mg/L				08/30/24 22:34
Fluoride		U	ND	mg/L				
Nitrate-N		U	ND	mg/L				
Sulfate		U	ND	mg/L				

Page 27 of 50 SDG: 683468 Rev1

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683468 Page 2 of 13 Parmname **NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Ion Chromatography 2665497 Batch QC1205840893 683471005 PS 0.907 5.66 Chloride 5.00 mg/L 95.1 (90%-110%) CH6 08/31/24 06:48 Fluoride 2.50 0.126 2.50 94.9 (90%-110%) 08/31/24 01:08 mg/L Nitrate-N 2.50 U ND 2.39 95.5 (90%-110%) mg/L Sulfate 10.0 14.0 24.3 mg/L 103 (90%-110%) 08/31/24 06:48 2665531 Batch QC1205840963 683468010 DUP Chloride 27.1 27.1 mg/L 0.048 (0%-20%) CH6 08/31/24 13:39 (0%-20%)Fluoride 1.30 1.31 mg/L 0.997 08/30/24 18:54 Nitrate-N U ND HU ND mg/L N/A 08/31/24 13:39 1980 1990 Sulfate mg/L 0.285 (0%-20%)08/31/24 18:48 QC1205840962 LCS 4.70 mg/L 5.00 94.1 (90%-110%) 08/30/24 23:01 Chloride Fluoride 2.50 2.36 mg/L 94.3 (90%-110%) 2.50 2.37 Nitrate-N 95 (90%-110%) mg/L 10.0 9.54 (90%-110%) Sulfate mg/L 95.4 MB QC1205840961 U ND 08/30/24 22:30 Chloride mg/L

Page 28 of 50 SDG: 683468 Rev1

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 3 of 13 Parmname **NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Ion Chromatography Batch 2665531 Fluoride U ND mg/L CH6 08/30/24 22:30 Nitrate-N U ND mg/L U ND Sulfate mg/L QC1205840964 683468010 PS Chloride 5.00 5.42 10.7 mg/L 105 (90%-110%) 08/31/24 14:10 Fluoride 2.50 0.649 3.14 99.6 (90%-110%) 08/30/24 19:25 mg/L Nitrate-N 2.50 U ND Η 2.30 08/31/24 14:10 mg/L 91.8 (90%-110%) 9.92 08/31/24 19:19 Sulfate 10.0 19.7 mg/L 97.4 (90%-110%) Metals Analysis - ICPMS Batch 2665671 QC1205841255 LCS 0.0500 0.0491 mg/L98.3 (80%-120%) BAJ 09/10/24 15:44 Antimony 0.0527 0.0500 mg/L 105 (80%-120%) Arsenic Barium 0.0500 0.0488 97.5 (80%-120%) mg/L Beryllium 0.0500 0.0600 120 09/09/24 19:29 mg/L (80%-120%) 0.1000.113 09/10/24 15:44 Boron mg/L 113 (80%-120%) Cadmium 0.0500 0.0505 101 (80%-120%) mg/L

Page 29 of 50 SDG: 683468 Rev1

Workorder:

683468

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 4 of 13 QC RPD% REC% Parmname NOM Sample Qual Units Range Anlst Date Time Metals Analysis - ICPMS Batch 2665671 Calcium 2.00 2.10 mg/L 105 (80%-120%) BAJ 09/10/24 15:44 Chromium 0.0500 0.0511 102 (80%-120%) mg/L 0.0500 0.0508 Cobalt mg/L 102 (80%-120%) 2.01 Iron 2.00 mg/L101 (80%-120%) 0.0500 0.0516 Lead 103 (80%-120%) mg/L Lithium 0.0500 0.0593 mg/L 119 (80%-120%) 2.00 2.25 mg/L113 (80%-120%) Magnesium 0.0514 Manganese 0.0500 mg/L 103 (80%-120%) 09/11/24 16:05 Molybdenum 0.0500 0.0509 mg/L 102 (80%-120%) 09/10/24 15:44 Potassium 2.00 2.14 107 mg/L (80%-120%) 0.0500 0.0509 Selenium mg/L 102 (80%-120%) Sodium 2.00 2.29 115 (80%-120%) mg/L 0.0500 0.0497 99.4 Thallium (80%-120%) mg/L QC1205841254 MB Antimony U ND mg/L 09/10/24 15:42

Page 30 of 50 SDG: 683468 Rev1

Workorder:

683468

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683468 Page 5 of 13 NOM QC RPD% REC% Parmname Sample Qual Units Range Anlst Date Time Metals Analysis - ICPMS 2665671 Batch U Arsenic ND mg/L BAJ 09/10/24 15:42 U Barium ND mg/L U ND mg/L 09/09/24 19:26 Beryllium U ND mg/L 09/10/24 15:42 Boron U ND Cadmium mg/LCalcium U ND mg/L U ND Chromium mg/LU ND Cobalt mg/L U Iron ND mg/LLead U ND mg/LLithium U ND mg/L U ND Magnesium mg/LU ND 09/11/24 16:04 Manganese mg/L U ND 09/10/24 15:42 Molybdenum mg/L

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683468 Page 6 of 13 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2665671 Batch Potassium U ND mg/L BAJ 09/10/24 15:42 Selenium U ND mg/L U ND Sodium mg/L Thallium U ND mg/LQC1205841256 683468001 MS Antimony 0.0500 U ND 0.0503 100 (75%-125%) 09/10/24 16:10 mg/L 0.0500 U ND 0.0552 107 mg/L (75%-125%) Arsenic 0.0260 0.0752 Barium 0.0500 mg/L 98.5 (75%-125%) 0.0500 U ND 0.0533 Beryllium 106 (75%-125%) 09/09/24 19:49 mg/L 0.298 0.395 0.100 97.7 09/10/24 16:22 Boron mg/L (75%-125%)Cadmium 0.0500 U ND 0.0493 mg/L98.5 (75%-125%) 09/10/24 16:10 Calcium 2.00 197 203 09/10/24 16:22 N/A (75%-125%) mg/L 0.0500 U ND 0.0491 09/10/24 16:10 Chromium mg/L 98.2 (75%-125%) Cobalt 0.0500 0.111 0.161 mg/L99.9 (75%-125%) 2.00 2.01 4.01 mg/L 99.6 (75%-125%) Iron

Page 32 of 50 SDG: 683468 Rev1

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683468 Page 7 of 13 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2665671 Batch Lead 0.0500 ND 0.0462 mg/L 92.3 (75%-125%) BAJ 09/10/24 16:10 Lithium 0.0500 0.0279 0.0826 109 mg/L (75%-125%) 79.0 Magnesium 2.00 76.6 mg/L N/A (75%-125%) 09/10/24 16:22 9.82 10.2 0.0500 mg/L N/A (75%-125%) 09/11/24 16:10 Manganese 0.0536 Molybdenum 0.0500J 0.000466106 09/10/24 16:10 mg/L (75%-125%)Potassium 2.00 11.2 13.3 N/A (75%-125%) mg/L Selenium 0.0500 U ND 0.0571 mg/L 114 (75%-125%) Sodium 2.00 45.8 48.7 mg/L N/A (75%-125%) Thallium 0.0500 U ND 0.0451 mg/L 90.1 (75%-125%) QC1205841257 683468001 MSD mg/L 0.666 0.0500 U ND 0.0500 99.8 (0%-20%) 09/10/24 16:13 Antimony 0.0500 U ND 0.0544 105 1.45 (0%-20%) Arsenic mg/L 0.0500 0.0260 0.0722 Barium mg/L 4.18 92.4 (0%-20%)Beryllium 0.0500 ND 0.0528 mg/L 1.04 105 (0%-20%) 09/09/24 19:51 0.100 0.2980.388mg/L 1.93 90.1 (0%-20%)09/10/24 16:25 Boron

Page 33 of 50 SDG: 683468 Rev1

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

683468 Page 8 of 13 **Parmname** NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2665671 Batch Cadmium 0.0500 ND 0.0487 mg/L 1.27 97.3 (0%-20%)BAJ 09/10/24 16:13 Calcium 2.00 197 201 mg/L 0.721 N/A (0%-20%) 09/10/24 16:25 ND 0.0488 Chromium 0.0500 U mg/L 0.699 97.5 (0%-20%) 09/10/24 16:13 0.0500 0.111 0.160 mg/L Cobalt 97.1 (0%-20%) 0.857 2.01 2.00 3.94 96.3 (0%-20%)Iron mg/L 1.65 Lead 0.0500 U ND 0.0448 3.02 89.5 (0%-20%) mg/L Lithium 0.0500 0.0279 0.0812 mg/L 107 1.7 (0%-20%)Magnesium 2.00 76.6 79.2 mg/L 0.15 N/A (0%-20%)09/10/24 16:25 Manganese 0.0500 9.82 10.4 mg/L 2.36 N/A (0%-20%) 09/11/24 16:11 0.0500 J 0.000466 0.0528 105 09/10/24 16:13 Molybdenum mg/L 1.42 (0%-20%)Potassium 2.00 11.2 13.1 mg/L 1.53 N/A (0%-20%)0.0500 ND 0.0554 Selenium 3.01 111 (0%-20%) mg/L 2.00 45.8 47.9 N/A Sodium mg/L 1.71 (0%-20%) Thallium 0.0500 U ND 0.0443 mg/L 1.74 88.5 (0%-20%)

Page 34 of 50 SDG: 683468 Rev1

Workorder:

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 9 of 13 Parmname NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2665671 Batch QC1205841258 683468001 SDILT U ND U ND ug/L N/A (0%-20%)BAJ 09/10/24 16:17 Antimony Arsenic U ND U ND N/A (0%-20%) ug/L Barium 26.0 5.69 ug/L 9.47 (0%-20%) U Beryllium ND U ND ug/L N/A (0%-20%)09/09/24 19:57 ug/L Boron 59.5 15.8 32.8 (0%-20%) 09/10/24 16:29 U ND U ND ug/L 09/10/24 16:17 Cadmium N/A (0%-20%)Calcium 39400 8160 ug/L 3.49 (0%-20%)09/10/24 16:29 U ND U ND 09/10/24 16:17 Chromium ug/L N/A (0%-20%) 111 Cobalt 24.0 ug/L 8.09 (0%-20%)Iron 2010 426 ug/L 5.83 (0%-20%)U U ND ug/L ND N/A (0%-20%) Lead Lithium 27.9 J 5.65 ug/L 1.37 (0%-20%) Magnesium 15300 3270 ug/L 6.63 (0%-20%) 09/10/24 16:29 Manganese 196 42.1 ug/L 7.19 (0%-20%) 09/11/24 16:12

Workorder:

683468

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683468 Page 10 of 13 Parmname **NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS Batch 2665671 ug/L Molybdenum J 0.466 ND N/A (0%-20%)BAJ 09/10/24 16:17 11200 2360 5.45 (0%-20%)Potassium ug/L U Selenium ND U ND ug/L N/A (0%-20%)45800 9540 Sodium ug/L 4.02 (0%-20%) U Thallium ND U ND (0%-20%)ug/L N/A Metals Analysis-Mercury Batch 2665644 QC1205841207 683468001 DUP U mg/L Mercury ND U ND N/A JP2 09/04/24 11:57 QC1205841206 LCS 0.00198 Mercury 0.00200 mg/L 99.2 (80%-120%)09/04/24 11:48 QC1205841205 MB U ND mg/L 09/04/24 11:47 Mercury QC1205841208 683468001 MS 0.00200 U ND 0.00170 85.1 (75%-125%) 09/04/24 11:58 Mercury mg/L QC1205841209 683468001 SDILT U ND U ND (0%-10%)09/04/24 12:00 Mercury ug/L N/A Solids Analysis 2666218 Batch QC1205842591 683468001 DUP Total Dissolved Solids 1490 1240 18.3 * (0%-5%) KLP1 09/04/24 11:05 mg/L

Page 36 of 50 SDG: 683468 Rev1

GEL LABORATORIES LLC 2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

						ge bui	""""""	,						Į.
Workorder:	683468												Page 1	11 of 13
Parmname			NOM	Л	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time
	2666218 592 683471004 d Solids	DUP			492		493	mg/L	0.203		(0%-5%)) KLP1	09/04/2	24 11:05
QC120584259 Total Dissolved			300				300	mg/L		100	(95%-105%)	J	09/04/2	24 11:05
QC120584258 Total Dissolved						U	ND	mg/L					09/04/2	24 11:05
Spectrometric An Batch	nalysis 2666112													
QC120584233 Total Sulfide	332 LCS		0.400				0.405	mg/L		101	(85%-115%)	JW2	09/03/2	24 10:08
QC12058423; Total Sulfide	331 MB					U	ND	mg/L					09/03/2	24 10:08
QC12058423 Total Sulfide	333 683468001	PS	0.400	U	ND		0.402	mg/L		100	(75%-125%)	J	09/03/2	24 10:08
QC120584233 Total Sulfide	683471004	PS	0.400	U	ND		0.388	mg/L		97	(75%-125%))	09/03/2	24 10:08
QC12058423. Total Sulfide	683468001	PSD	0.400	U	ND		0.392	mg/L	2.47	98	(0%-15%)	ı	09/03/2	24 10:08
QC120584233 Total Sulfide	336 683471004	PSD	0.400	U	ND		0.377	mg/L	2.89	94.3	(0%-15%)	1	09/03/2	24 10:08
Titration and Ion Batch	n Analysis 2665536													
QC120584098 Alkalinity, Tota			50.0				50.6	mg/L		101	(90%-110%)	JW2	08/30/2	24 14:22

Page 37 of 50 SDG: 683468 Rev1

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683468 Page 12 of 13 **Parmname NOM** Sample Qual \mathbf{OC} Units RPD% REC% Range Anlst Date Time Titration and Ion Analysis Batch 2665536 QC1205840988 LCS 15.0 14.5 mg/L 96.7 (90%-110%) JW2 08/30/24 14:24 Alkalinity, Total as CaCO3 QC1205840989 LCSD 50.3 Alkalinity, Total as CaCO3 50.0 mg/L 0.595 101 (0%-20%)08/30/24 14:23 QC1205840990 LCSD Alkalinity, Total as CaCO3 15.0 15.2 mg/L 4.71 101 (0%-20%)08/30/24 14:25

Notes:

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- N Metals--The Matrix spike sample recovery is not within specified control limits
- H Analytical holding time was exceeded
- < Result is less than value reported
- > Result is greater than value reported
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- Z Paint Filter Test--Particulates passed through the filter, however no free liquids were observed.
- d 5-day BOD--The 2:1 depletion requirement was not met for this sample
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- E %difference of sample and SD is >10%. Sample concentration must meet flagging criteria
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- E General Chemistry--Concentration of the target analyte exceeds the instrument calibration range
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- FB Mercury was found present at quantifiable concentrations in field blanks received with these samples. Data associated with the blank are deemed invalid for reporting to regulatory agencies
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- R Per section 9.3.4.1 of Method 1664 Revision B, due to matrix spike recovery issues, this result may not be reported or used for regulatory compliance purposes.

Page 38 of 50 SDG: 683468 Rev1

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683468

Page 13 of 13

Parmname

NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time

- B The target analyte was detected in the associated blank.
- e 5-day BOD--Test replicates show more than 30% difference between high and low values. The data is qualified per the method and can be used for reporting purposes
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 39 of 50 SDG: 683468 Rev1

Technical Case Narrative Georgia Power Company SDG #: 683468

Metals

<u>Product:</u> Determination of Metals by ICP-MS <u>Analytical Method:</u> SW846 3005A/6020B <u>Analytical Procedure:</u> GL-MA-E-014 REV# 36

Analytical Batch: 2665671

Preparation Method: SW846 3005A

Preparation Procedure: GL-MA-E-006 REV# 15

Preparation Batch: 2665670

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683468001	BRA-PZ-50D
683468002	BRA-PZ-64I
683468003	BRA-PZ-61I
683468004	BRA-BRGWC-50
683468005	BRA-PZ-51D
683468006	BRA-APBCD-FB-03
683468007	BRA-APBCD-FD-03
683468008	BRA-PZ-51I
683468009	BRA-APBCD-EB-06
683468010	BRA-PZ-60I
683468011	BRA-PZ-58I
1205841254	Method Blank (MB)ICP-MS
1205841255	Laboratory Control Sample (LCS)
1205841258	683468001(BRA-PZ-50DL) Serial Dilution (SD)
1205841256	683468001(BRA-PZ-50DS) Matrix Spike (MS)
1205841257	683468001(BRA-PZ-50DSD) Matrix Spike Duplicate (MSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Calibration Information

ICSA/ICSAB Statement

For the ICP-MS analysis, the ICSA solution contains analyte concentrations which are verified trace impurities indigenous to the purchased standard.

Technical Information

Sample Dilutions

Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range. Samples 683468001 (BRA-PZ-50D), 683468002

Page 40 of 50 SDG: 683468 Rev1

(BRA-PZ-64I), 683468003 (BRA-PZ-61I), 683468004 (BRA-BRGWC-50), 683468005 (BRA-PZ-51D), 683468007 (BRA-APBCD-FD-03), 683468008 (BRA-PZ-51I), 683468010 (BRA-PZ-60I) and 683468011 (BRA-PZ-58I) were diluted to ensure that the analyte concentrations were within the linear calibration range of the instrument. Per the SOP, samples 683468002 (BRA-PZ-64I), 683468003 (BRA-PZ-61I) and 683468010 (BRA-PZ-60I) were diluted due to internal standard recoveries outside the acceptable control limits.

A 1-4-	683468										
Analyte	001	002	003	004	005	007	008	010	011		
Antimony	1X	5X	1X	1X	1X	1X	1X	5X	1X		
Arsenic	1X	5X	5X	1X	1X	1X	1X	5X	1X		
Boron	5X	1X	5X	5X	1X	5X	5X	5X	5X		
Cadmium	1X	5X	1X	1X	1X	1X	1X	5X	1X		
Calcium	5X	50X	5X	5X	5X	5X	5X	25X	5X		
Cobalt	1X	50X	1X	5X	1X	5X	1X	5X	1X		
Iron	1X	1X	1X	1X	1X	1X	1X	1X	5X		
Magnesium	5X	5X	5X	5X	1X	5X	5X	5X	5X		
Manganese	50X	500X	500X	500X	5X	500X	500X	500X	100X		
Molybdenum	1X	5X	1X	1X	1X	1X	1X	5X	1X		
Selenium	1X	5X	5X	1X	1X	1X	1X	5X	1X		
Sodium	1X	5X	5X	5X	5X	5X	1X	5X	1X		

Product: Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer

Analytical Method: SW846 7470A

Analytical Procedure: GL-MA-E-010 REV# 40

Analytical Batch: 2665644

Preparation Method: SW846 7470A Prep

Preparation Procedure: GL-MA-E-010 REV# 40

Preparation Batch: 2665643

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683468001	BRA-PZ-50D
683468002	BRA-PZ-64I
683468003	BRA-PZ-61I
683468004	BRA-BRGWC-50
683468005	BRA-PZ-51D
683468006	BRA-APBCD-FB-03
683468007	BRA-APBCD-FD-03
683468008	BRA-PZ-51I
683468009	BRA-APBCD-EB-06
683468010	BRA-PZ-60I
683468011	BRA-PZ-58I
1205841205	Method Blank (MB)CVAA
1205841206	Laboratory Control Sample (LCS)
1205841209	683468001(BRA-PZ-50DL) Serial Dilution (SD)
1205841207	683468001(BRA-PZ-50DD) Sample Duplicate (DUP)
1205841208	683468001(BRA-PZ-50DS) Matrix Spike (MS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Miscellaneous Information

Additional Comments

Double potassium permanganate was added to the sample and associated QC to prevent premature reduction of the reagent. 1205841205 (MB) and 1205841206 (LCS).

General Chemistry

<u>Product:</u> Ion Chromatography <u>Analytical Method:</u> EPA 300.0

Analytical Procedure: GL-GC-E-086 REV# 35

Analytical Batch: 2665497

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683468011	BRA-PZ-58I
1205840890	Method Blank (MB)
1205840891	Laboratory Control Sample (LCS)
1205840892	683471005(BRA-PZ-68D) Sample Duplicate (DUP)
1205840893	683471005(BRA-PZ-68D) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Sample Dilutions

The following samples 1205840892 (BRA-PZ-68DDUP), 1205840893 (BRA-PZ-68DPS) and 683468011 (BRA-PZ-58I) were diluted because target analyte concentrations exceeded the calibration range. The following sample 683468011 (BRA-PZ-58I) in this sample group was diluted due to matrix interference. Sample 683468011 (BRA-PZ-58I) was diluted to minimize matrix effects on instrument performance. Sample 683468011 (BRA-PZ-58I) was diluted based on historical data. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

A 14 -	683468
Analyte	011
Chloride	2X
Fluoride	2X

Page 42 of 50 SDG: 683468 Rev1

Nitrate-N	4X
Sulfate	100X

Miscellaneous Information

Manual Integrations

Samples 1205840892 (BRA-PZ-68DDUP) and 1205840893 (BRA-PZ-68DPS) were manually integrated to correctly position the baseline as set in the calibration standards.

Product: Ion Chromatography Analytical Method: EPA 300.0

Analytical Procedure: GL-GC-E-086 REV# 35

Analytical Batch: 2665531

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683468001	BRA-PZ-50D
683468002	BRA-PZ-64I
683468003	BRA-PZ-61I
683468004	BRA-BRGWC-50
683468005	BRA-PZ-51D
683468006	BRA-APBCD-FB-03
683468007	BRA-APBCD-FD-03
683468008	BRA-PZ-51I
683468009	BRA-APBCD-EB-06
683468010	BRA-PZ-60I
1205840961	Method Blank (MB)
1205840962	Laboratory Control Sample (LCS)
1205840963	683468010(BRA-PZ-60I) Sample Duplicate (DUP)
1205840964	683468010(BRA-PZ-60I) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Holding Times

Samples (See Below) were initially analyzed within holding; however, the holding times had expired prior to reanalysis of diluted samples. The data is qualified.

Sample	Analyte	Value
1205840963 (BRA-PZ-60IDUP)	Nitrate-N	Received 30-AUG-24, within holding, analyzed 31-AUG-24, out of holding 31-AUG-24
1205840964 (BRA-PZ-60IPS)	Nitrate-N	Received 30-AUG-24, within holding, analyzed 31-AUG-24, out of holding 31-AUG-24

Page 43 of 50 SDG: 683468 Rev1

Sample Dilutions

The following samples 1205840963 (BRA-PZ-60IDUP), 1205840964 (BRA-PZ-60IPS), 683468001 (BRA-PZ-50D), 683468002 (BRA-PZ-64I), 683468003 (BRA-PZ-61I), 683468004 (BRA-BRGWC-50), 683468005 (BRA-PZ-51D), 683468007 (BRA-APBCD-FD-03), 683468008 (BRA-PZ-51I) and 683468010 (BRA-PZ-60I) were diluted because target analyte concentrations exceeded the calibration range. The following samples 1205840963 (BRA-PZ-60IDUP), 1205840964 (BRA-PZ-60IPS), 683468001 (BRA-PZ-50D), 683468003 (BRA-PZ-61I), 683468004 (BRA-BRGWC-50), 683468005 (BRA-PZ-51D), 683468007 (BRA-APBCD-FD-03), 683468008 (BRA-PZ-51I) and 683468010 (BRA-PZ-60I) in this sample group were diluted due to matrix interference. Samples 683468002 (BRA-PZ-64I) and 683468003 (BRA-PZ-60IDUP), 1205840964 (BRA-PZ-60IPS), 683468002 (BRA-PZ-64I), 683468003 (BRA-PZ-61I), 683468007 (BRA-PZ-60IDUP), 1205840964 (BRA-PZ-60IPS), 683468002 (BRA-PZ-64I), 683468003 (BRA-PZ-61I), 683468007 (BRA-APBCD-FD-03) and 683468010 (BRA-PZ-60I) were diluted based on historical data. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

A 14 -	683468								
Analyte	001	002	003	004	005	007	008	010	
Chloride	5X	5X	2X	2X	4X	2X	2X	5X	
Fluoride	1X	5X	2X	1X	1X	2X	1X	2X	
Nitrate-N	5X	5X	4X	2X	2X	4X	2X	5X	
Sulfate	100X	200X	100X	100X	50X	100X	100X	200X	

Miscellaneous Information

Manual Integrations

Sample 683468002 (BRA-PZ-64I) was manually integrated to correctly position the baseline as set in the calibration standards.

Product: Solids, Total Dissolved **Analytical Method:** SM 2540C

Analytical Procedure: GL-GC-E-001 REV# 21

Analytical Batch: 2666218

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683468001	BRA-PZ-50D
683468002	BRA-PZ-64I
683468003	BRA-PZ-61I
683468004	BRA-BRGWC-50
683468005	BRA-PZ-51D
683468006	BRA-APBCD-FB-03
683468007	BRA-APBCD-FD-03
683468008	BRA-PZ-51I
683468009	BRA-APBCD-EB-06
683468010	BRA-PZ-60I
683468011	BRA-PZ-58I
1205842589	Method Blank (MB)
1205842590	Laboratory Control Sample (LCS)
1205842591	683468001(BRA-PZ-50D) Sample Duplicate (DUP)
1205842592	683471004(BRA-BRGWC-25I) Sample Duplicate (DUP)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Duplicate Relative Percent Difference (RPD) Statement

The Relative Percent Difference (RPD) between the sample and duplicate falls outside of the established acceptance limits because of the heterogeneous matrix of the sample:

Analyte	Sample	Value
Total Dissolved Solids	1205842591 (BRA-PZ-50DDUP)	18.3* (0%-5%)

Miscellaneous Information

Additional Comments

A reduced aliquot was used due to historical information. 1205842591 (BRA-PZ-50DDUP), 683468001 (BRA-PZ-50D), 683468002 (BRA-PZ-64I), 683468003 (BRA-PZ-61I), 683468005 (BRA-PZ-51D), 683468007 (BRA-APBCD-FD-03), 683468008 (BRA-PZ-51I), 683468010 (BRA-PZ-60I) and 683468011 (BRA-PZ-58I).

Product: Sulfide, Total

Analytical Method: SM 4500-S (2-) D

Analytical Procedure: GL-GC-E-052 REV# 13

Analytical Batch: 2666112

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683468001	BRA-PZ-50D
683468002	BRA-PZ-64I
683468003	BRA-PZ-61I
683468004	BRA-BRGWC-50
683468005	BRA-PZ-51D
683468006	BRA-APBCD-FB-03
683468007	BRA-APBCD-FD-03
683468008	BRA-PZ-51I
683468009	BRA-APBCD-EB-06
683468010	BRA-PZ-60I
683468011	BRA-PZ-58I
1205842331	Method Blank (MB)
1205842332	Laboratory Control Sample (LCS)
1205842333	683468001(BRA-PZ-50D) Post Spike (PS)
1205842334	683468001(BRA-PZ-50D) Post Spike Duplicate (PSD)
1205842335	683471004(BRA-BRGWC-25I) Post Spike (PS)
1205842336	683471004(BRA-BRGWC-25I) Post Spike Duplicate (PSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: Alkalinity

Analytical Method: SM 2320B

Analytical Procedure: GL-GC-E-033 REV# 16

Analytical Batch: 2665536

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683468001	BRA-PZ-50D
683468002	BRA-PZ-64I
683468003	BRA-PZ-61I
683468004	BRA-BRGWC-50
683468005	BRA-PZ-51D
683468006	BRA-APBCD-FB-03
683468007	BRA-APBCD-FD-03
683468008	BRA-PZ-51I
683468009	BRA-APBCD-EB-06
683468010	BRA-PZ-60I
683468011	BRA-PZ-58I
1205840987	Laboratory Control Sample (LCS)
1205840988	Laboratory Control Sample (LCS)
1205840989	Laboratory Control Sample Duplicate (LCSD)
1205840990	Laboratory Control Sample Duplicate (LCSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Laboratory Control Sample Duplicate (LCSD)

An LCSD was used in place of matrix QC due to limited sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 46 of 50 SDG: 683468 Rev1

683479

Page:			- 1															000
Project #		GEL		abo	orato	ories	LLC	10-							2040 S	aboratories avage Roac	d	68346
COC Number (1):		Ch	ain of	Custo	dv and	Analyti	cal Re	obioassay Specialty Analytics						7.5	ton, SC 29			
PO Number: GPC82177-0006	GEL Work Order Numb	ber:		GEL	Project	Manage	r: Erin	Tren	<i>t</i>							(843) 556-		
Client Name: GA Power		Phone # 4	104-506							alveie	Dagu	octod	(5) (E	211 2	Fax: (84	43) 766-11	78	Suran Talanta and Suran Su
Project/Site Name: Plant Branch Ash Ponds -	BCD	Fax #				CI	ld this	ampi	CAII	alysis			(F	111 in t	ne num	per of con	tainer	s for each test)
Address: 241 Ralph McGill Blvd SE, Atlanta	GA 30308					A CONTRACTOR OF STREET	ole be	ners	-		Z	Z					1	< Preservative Type (6)
Collected By a Born Ford ACC	Send Results To: SCS &	Geosyntec (Contact	S		12%	dered:	of contai	DS, NO3	Carb, & Bicarb Alk SM 2320B	,*	5, 9320	90 00					Comments Note: extra sample is
Sample ID * For composites - indicate start and stop a	*Date Collected	*Time Collected (Military) (hhmm)	QC Code ⁽²	Field Filtered	Sample Matrix (4	Radioactive (If yes, please supply isotopic info.)	(7) Known or possible Hazards	Total number	CI, F, SO4, TDS, NO3 EPA 300, SM 2540C	Total, Carb, & SM 232	Metals * EPA 6020, 6010, 7470	Radium 226 & 228 SW-846 9315, 9320	Sulfide SM 4500					required for sample specifi QC Task_Code: BRA-CCR- ASSMT-2024S2
BRA- PZ-50D	08/29/24	1060	G	N	WG			8	1	/	1	~	V	-		+	- 10	A55W11-202452
BRA-PZ-64I	03/29/24	1135	6	N	WG			8	1	1	,		- 1			-		
BRA- P2-61I	08/29/24	1205	6	N	WG			8	1	-	~	~	V			-		
BRA-BRGWLSD	08/29/24	1330	6	N	1				V		ν		V			1		
BRA-PZ-51D	08/29/24	1340	6	N	WG			8	V /	/	V	/						
BRA-APBOD-FB-03	03/29/24	1500		N	W6		Production in	8	~	V	V	/	~					
BRA-APBCD-FD-03	68/29/24	13-	6		WQ				V	V	V	V	V					
BRA- PZ-517	03/29/24	-	6	N	WG	7.55		8	V	~	V	V	V				-4	
BRA- APBCD - EB- 06		1420	6	N	W6	- 6		8	/	V	/	-						
BRA- PZ-66I	08/29/24	14215	6	N	WQ		2015	8	/	V	/	/						
	03/29/24	1244	6	N	NG			8	V	V	V	V	~					
	Chain of Custody Signature Received by (si		ate	Time			TA	T Req	ueste	d: N	ormal	<u> </u>	_ Rus	h:	Spec	eify:		(Subject to Surcharge)
John 08-30-24	0830 1/	- A					Fax Resi											
2	2 2	172	8/3	30/20	1	830	Select D	eliver	able: [[]Level 3 []Level 4
3	3						Addition				* Meta	ls: B,C	a,Sb,A	s,Ba,B	e,Cd,Cr,	Co,Pb,Li,M	Io,Se,T	l,Fe,Mg,Mn,K,Na,Hg
> For sample shipping and delivery details, see	Sample Receipt & Review form	n (SPP)	7 - 1		e de la companya de l	Sample C	For Lab	Recei	ving	Use Or	ily: C	ustody	Seal .	Intact:	[] Yes	[] No	Coo	ler Temp: 7 °C
1.) Chain of Custody Number = Client Determined	Sample Receipt & Review Join	(SAA.)		Y		Sumple C	onecnon	1 1 ime	Zone	2: [X]	Easter	n [] Pacı	iic [] Centr	al []M	iountai	n [] Other:
2.) QC Codes: N = Normal Sample, TB = Trip Blank, FD =	Field Duplicate FR = Fauinment Blank	MS = Marsin S	-11 - C	l Mon	Contract of the contract of th		A . 141 82											
3.) Field Filtered: For liquid matrices, indicate with a - Y - fo	r ves the sample was field filtered or N	for somels was	pike Samp	ile, MSD =	Matrix Spil	ke Duplicate	Sample, G	= Grab	, C = C	Composit	e							
Matrix Codes: WD=Drinking Water, WG=Groundwater,					ex er													
.) Sample Analysis Requested: Analytical method requested	(i.e. 8260B 6010B/7470A) and number	of containers per	50-5011,	SE=Sedime	ent, SL=Siu	idge, WQ=W	ater Quali	ty Cont	rol Mat	rix								
Preservative Type: HA = Hydrochloric Acid, NI = Nitric																		
) KNOWN OR POSSIBLE HAZARDS	Characteristic Hazards	Listed V		Acid, HX =	= Hexane, S	-		e, If no	preserv	rative is a	idded =	leave fie	eld blank	¢.				
	FL = Flammable/Ignitable	LW= Li		ste			Other OT= Oth	er/II	nknov	vn						Please pr	rovide	any additional details
RCRA Metals As = Arsenic Hg= Mercury	CO = Corrosive	(F,K,P a	nd U-lis	sted wast	es.)		i.e.: High				s, bery	llium,	irritai	nts, oth	her	disposal	conce	g handling and/or rns. (i.e.: Origin of
Ba = Barium Se= Selenium	RE = Reactive	Waste co	ode(s):			n	isc. hea	lth ha	zards,	etc.)						sample(s,), type	of site collected from, odd
Cd = Cadmium Ag= Silver	TSCA Regulated					L	escriptio	on:								matrices,	etc.)	
Cr = Chromium MR= Misc. RCRA metals b = Lead	PCB = Polychlorinated biphenyls		-1.											Al.				
	отриснуіѕ					-			=									

Project #		C	-	horate	Shorstorios	C				GEL 1	GEL Laboratories, LLC		
GEL Quote #:)		Stry Radiocher	Chemistry Radiochemistry Badiobinassay Specially Analytics	J-C	cialty Analy	90		2040	2040 Savage Road		
COC Number (1).			Chain of Cus	stody and	of Custody and Analytical Request	Regue	34			Cliance	Cital Eston, SC 29407		
PO Number: GPC82177-0006	GEL Work Order Number:			TEL Project	GEL Project Manager: Erin Trent	rin Tren	,			Phone	Phone: (843) 556-8171		
Client Name: GA Power		Phone # 4	404-506-7116			Samn	Samule Analysis Requested (5)	is Ream		I in the num	rax. (843) /66-11/8		
Project/Site Name: Plant Branch Ash Ponds - BCD	BCD	Fax #			Should this			I		m me mm	(1 m) in the number of containers for each test)	rs ror each t	est)
Address: 241 Ralph McGill Blvd SE, Atlanta GA 30308	GA 30308				sample be			N	N	1		< Prese	< Preservative Type (6)
Collected By: 3 Best My ACC	Send Results To: SCS & Geosyntec	& Geosyntec (Contacts		(If considered:	sı	12540C	*	0756 '9			Co Note: e:	Comments Note: extra sample is
Sample ID * For composites - indicate start and stop date/time	*Date Collected (mm/dd/xy)	*Time Collected (Military (hhmm)	OC Filt	Field Sample Filtered (3) Marrix (4)		orazaH əldiseo	Cl, F, SO4, TT EPA 300, SM Total, Carb, & B	Eby 6020, 601 Metals SM 2320	846 9315 SW-846 9315 Sulfide SM 450			required fo	required for sample specific QC Task_Code: BRA-CCR-
15	0	-	N O	WG	i c	d	7	7	7			MOON.	754707-11
BRA-							+						
BRA-													
BRA-													
BRA-													
BRA-													
BRA-													
BRA-									M				
BRA-					100								
BRA-													
	Chain of Custody Signatures	es				TATBe	TAT Bornastad	Normal.	,				
Relinquished By (Signed) Date Ti	Time Received by (signed)	ned)	Date Ti	Time	Į.	Tar J. II. C. IX	11.1	17.7	A ANDRE		specify:	(Subject t	(Subject to Surcharge)
John 30-30-74 6	6830 H	Si	8130/24	9	34	results:	Select Deliverable: [] C of A		[1 QC Summary	ary [] level 1	el 1 [x] Level 2	[][evel 3	A level 1
	2					Additional Remarks:	marks:	* Meta	s: B,Ca,Sb,A	,Ba,Be,Cd,C	0,P	Tl,Fe,Mg,Mn.	K,Na,Hg
5 For sample shipping and delivery details, see Samnle Receipt & Review form (SRR)	Samule Receint & Review fo	rm (SBB)		The Hard Brooks	Samile Collection Time Zone Extension Constant Constant	Lab Rec	iving Use	Only: C.	istody Seal I	For Lab Receiving Use Only: Custody Seal Intact? [] Yes	es []No Co	Cooler Temp:	20,
.) Chain of Custody Number = Client Determined		(1000)						rasicii v	T T T T		[] Central [] Mountain [] Other:	ain [] Ott	er:
Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicate, EB = Equipment Blank, MS = Matrix Spike Sample, MSD = Matrix Spike Duplicate Sample, G = Grab, C = Composite Field Filtered: For liquid matrices, indicate with a - Y - for yes the sample was field filtered or - N - for sample was not field filtered.	Field Duplicate, $\mathbf{EB} = \mathbf{Equipment}$ Blar yes the sample was field filtered or -	ik, MS = Matrix S N - for sample was	pike Sample, M not field filtered	SD = Matrix Spil	ke Duplicate Sam	ole, G = Grz	b, C = Comp	osite					
.) Matrix Codes: WD=Drinking Water, WG=Groundwater, WS=Surface Water, WW=Waste Water, WL=Leachate, SO=Soil, SE=Sediment, SL=Sludge, WQ=Water Quality Control Matrix	WS=Surface Water, WW=Waste Wat	er, WL=Leachate,	SO=Soil, SE=S	ediment, SL=Slu	idge, WQ=Water	Quality Cor	trol Matrix						
.) Sample Analysis Requested: Analytical method requested (i.e. 8260B, 6010B/7470A) and number of containers provided for each (i.e. 8260B - 3, 6010B/7470A - 1).	(i.e. 8260B, 6010B/7470A) and numb	er of containers pro	ovided for each	i.e. 8260B - 3, 6	5010B/7470A - 1)								
I I I I I I I I I I I I I I I I I I I	Characteristic Hazards	sulfuric Acid, AA =	= Ascorbic Acid,	HX = Hexane, S	= Ascorbic Acid, HX = Hexane, ST = Sodium Thiosulfate, If no preservative is added = leave field blank Mosto	sulfate, If n	preservative	is added =	eave field blank				
	FL = Flammable/Ignitable CO = Corrosive RE = Reactive	LW=Li (F,K,P a Waste co	LW= Listed Waste (F.K.P and U-listed wastes.) Waste code(s):	wastes.)	OT= C (i.e.: H misc. h Descrip	OT= Other / Unknown (i.e.: High/low pH, asb misc. health hazards, e. Description:	OT= Other / Unknown (i.e.: High/low pH, asbest misc. health hazards, etc.) Description:	_ tos, bery. .)	OT= Other / Unknown (i.e.: High/low pH, asbestos, beryllium, irritants, other misc. health hazards, etc.) Description:	ts, other	Please provide any additional details below regarding handling and/or disposal concerns. (i.e.: Origin of sample(s), type of site collected from, matrices, etc.)	te any additie ing handling erns. (i.e.: C ee of site coll.	00
d = Cadmium Ag= Silver r = Chromium MR= Misc, RCRA metals b = Lead	TSCA Regulated PCB = Polychlorinated biphenyls												346

683471 683768 SAMPLE RECEIPT & REVIEW FORM GEL Laboratories LLC SDG/AR/COC/Work Order: Received By: CLM 8130124 Date Received: FedEx Express FedEx Ground UPS Field Services Courier Other Carrier and Tracking Number Suspected Hazard Information *If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation. Hazard Class Shipped: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes___No__ A)Shipped as a DOT Hazardous? B) Did the client designate the samples are to be COC notation or radioactive stickers on containers equal client designation. received as radioactive? Maximum Net Counts Observed* (Observed Counts - Area Background Counts): CPM/mR/Hr C) Did the RSO classify the samples as Classified as: Rad 1 Rad 2 Rad 3 radioactive? COC notation or hazard labels on containers equal client designation. D) Did the client designate samples are hazardous? If D or E is yes, select Hazards below Foreign Soil RCRA Asbestos PCB's Flammable Beryllium Other: E) Did the RSO identify possible hazards? Sample Receipt Criteria No NA Comments/Qualifiers (Required for Non-Conforming Items) Circle Applicable: Seals broken Damaged container Leaking container Other (describe) Shipping containers received intact and sealed? Circle Applicable: Client contacted and provided COC Chain of custody documents included COC created upon receipt with shipment? Preservation Method Wet Ice Ice Packs Dry ice None Other: Samples requiring cold preservation *all temperatures are recorded in Celsius within $(0 \le 6 \text{ deg. C})$?* Temperature Device Serial #: IR5-23 Daily check performed and passed on IR temperature gun? Secondary Temperature Device Serial # (If Applicable): Circle Applicable: Seals broken Damaged container Leaking container Other (describe) 5 Sample containers intact and sealed? ample ID's and Containers Affected: Samples requiring chemical preservation at proper pH? If Preservation added, Lot#: If Yes, are Encores or Soil Kits present for solids? Yes No NA (If yes, take to VOA Freezer) De liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Do any samples require Volatile are liquid VOA vials free of headspace? Yes___ No__ Analysis? Sample ID's and containers affected: ID's and tests affected: 8 Samples received within holding time? Sample ID's on COC match ID's on D's and containers affected: bottles? Date & time on COC match date & time on bottles? Number of containers received match number indicated on COC? Are sample containers identifiable as GEL provided by use of GEL labels? COC form is properly signed in Circle Applicable: Not relinquished Other (describe) relinquished/received sections? Comments (Use Continuation Form if needed): Of the ID. (683479) 10.) Wrote on the sample. BLA-PZ-63I all times on samples are hanged from 10:30 to 11:30 except for analysis TDS- (1683 477) PM (or PMA) review: Initials _

List of current GEL Certifications as of 03 October 2024

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	KY90129
Kentucky Wastewater	KY90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2023019
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	NV-C24-00175
New Hampshire NELAP	205424
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2023-152
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235
Utah NELAP	SC000122024-41
Vermont	VT87156
Virginia NELAP	460202
Washington	C780

Page 50 of 50 SDG: 683468 Rev1

a member of The GEL Group INC

gel.com

September 16, 2024

Joju Abraham Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

Re: Branch CCR Groundwater Compliance

Work Order: 683471

Dear Joju Abraham:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on August 30, 2024. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt. The laboratory received the following sample(s):

Laboratory ID	Client ID	Matrix	Date Collected	Date Received
683471001	BRA-BRGWC-45	Ground Water	08/29/24 09:55	08/30/24 08:30
683471002	BRA-APBCD-EB-05	Water	08/29/24 10:25	08/30/24 08:30
683471003	BRA-APBCD-FD-02	Ground Water	08/29/24 12:00	08/30/24 08:30
683471004	BRA-BRGWC-25I	Ground Water	08/29/24 10:17	08/30/24 08:30
683471005	BRA-PZ-68D	Ground Water	08/29/24 09:58	08/30/24 08:30

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Prep Methods and Prep Dates

Method	Run Date ID
SW846 3005A	31-AUG-2024
SW846 7470A Prep	03-SEP-2024

Analysis Methods and Analysis Dates

Method	Run Date ID
EPA 300.0	30-AUG-2024
EPA 300.0	31-AUG-2024
SM 2320B	30-AUG-2024

SM 2540C 04-SEP-2024 SM 4500-S (2-) D 03-SEP-2024 SW846 3005A/6020B 09-SEP-2024 SW846 3005A/6020B 10-SEP-2024 SW846 3005A/6020B 11-SEP-2024 SW846 7470A 04-SEP-2024 Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4443.

Sincerely,

Hannah Bowden for

Alaina Pinnick
Project Manager

Purchase Order: GPC82177-0006

Enclosures

Page 3 of 34 SDG: 683471

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

GPCC001 Georgia Power Company Client SDG: 683471 GEL Work Order: 683471

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- B Either presence of analyte detected in the associated blank, or MDL/IDL < sample value < PQL
- H Analytical holding time was exceeded
- J Value is estimated
- N/A RPD or %Recovery limits do not apply.
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Alaina Pinnick.

	HannahBowden	
Reviewed by		

Page 4 of 34 SDG: 683471

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 16, 2024

GPCC00101

GPCC001

Company : Georgia Power Company, Southern Company Address : 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWC-45

Sample ID: 683471001

Matrix: WG

Collect Date: 29-AUG-24 09:55
Receive Date: 30-AUG-24
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liqu	iid "As Recei	ived"									
Chloride		24.8	3.35	10.0	mg/L		50	CH6	08/31/24	0312 2665497	1
Sulfate		150	6.65	20.0	mg/L		50				
Fluoride	J	0.0780	0.0330	0.100	mg/L		1	CH6	08/31/24	1242 2665497	2
Nitrate-N	HU	ND	0.0330	0.100	mg/L		1				
Mercury Analysis-CVA	A										
7470 Cold Vapor Merci	ury, Liquid ".	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/04/24	1223 2665644	3
Metals Analysis-ICP-M	[S				_						
SW846 3005A/6020B "		"									
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	09/10/24	1749 2665671	4
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium		0.0602	0.000670	0.00400	mg/L	1.00	1				
Boron		0.0431	0.00520	0.0150	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Calcium		42.9	0.0800	0.200	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt		0.00203	0.000300	0.00100	mg/L	1.00	1				
Iron	J	0.0353	0.0330	0.100	mg/L	1.00					
Lead	U	ND	0.000500	0.00200	mg/L	1.00					
Lithium	U	ND	0.00300	0.0100	mg/L	1.00					
Magnesium		22.0	0.0100	0.0300	mg/L	1.00					
Molybdenum	J	0.000207	0.000200	0.00100	mg/L	1.00					
Potassium		3.24	0.0800	0.300	mg/L	1.00					
Selenium	U	ND	0.00150	0.00500	mg/L	1.00					
Sodium		15.7	0.0800	0.250	mg/L	1.00					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00					_
Manganese	**	0.140	0.00100	0.00500	mg/L	1.00		BAJ	09/11/24	1625 2665671	5
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1	BAJ	09/09/24	2116 2665671	6
Solids Analysis											
SM2540C Dissolved So	olids "As Rec										
Total Dissolved Solids		353	2.38	10.0	mg/L			KLP1	09/04/24	1105 2666218	7
Spectrometric Analysis											
SM 4500-S(2-) D Sulfic	de "As Recei	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	09/03/24	1008 2666112	8

Page 5 of 34 SDG: 683471

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 16, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWC-45 Project: GPCC00101 Sample ID: 683471001 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF A	nalyst Date	Time Batch	Method
Titration and Ion Ana	lysis									
SM 2320B Total Alka	linity "As Rec	eived"								
Alkalinity, Total as CaCO3		38.2	0.725	2.00	mg/L		JV	/2 08/30/24	1443 2665530	6 9
Bicarbonate alkalinity (CaC	CO3)	38.2	0.725	2.00	mg/L					
Carbonate alkalinity (CaCC	03) U	ND	0.725	2.00	mg/L					
The following Prep M	lethods were p	erformed:								
Method	Description	n		Analyst	Date		Time	Prep Batch		
SW846 7470A Prep	EPA 7470A I	Mercury Prep Liquid		JM13	09/03/24		1145	2665643		
SW846 3005A	ICP-MS 3005	5A PREP		BB2	08/31/24		0950	2665670		
TT1 0.11 1 1 1 1		0 1								

The following Analytical Methods were performed:

The following A	narytical Methods were performed.		
Method	Description	Analyst Comments	
1	EPA 300.0	·	
2	EPA 300.0		
3	SW846 7470A		
4	SW846 3005A/6020B		
5	SW846 3005A/6020B		
6	SW846 3005A/6020B		
7	SM 2540C		
8	SM 4500-S (2-) D		
9	SM 2320B		

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 34 SDG: 683471

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

GPCC00101

GPCC001

Report Date: September 16, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-APBCD-EB-05

Sample ID: 683471002

Matrix: WQ

Collect Date: Receive Date: 30-AUG-24

29-AUG-24 10:25 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Ion Chromatography												
EPA 300.0 Anions Liqu	iid "As Recei	ived"										
Chloride	U	ND	0.0670	0.200	mg/L		1	CH6	08/30/24	1247	2665497	1
Fluoride	U	ND	0.0330	0.100	mg/L		1					
Nitrate-N	U	ND	0.0330	0.100	mg/L		1					
Sulfate	U	ND	0.133	0.400	mg/L		1					
Mercury Analysis-CVA	A											
7470 Cold Vapor Mercu	ury, Liquid "A	As Received"										
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/04/24	1224	2665644	2
Metals Analysis-ICP-M	S											
SW846 3005A/6020B "	'As Received	."										
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1	BAJ	09/09/24	1937	2665671	3
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	09/10/24	1552	2665671	4
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1					
Barium	U	ND	0.000670	0.00400	mg/L	1.00	1					
Boron	U	ND	0.00520	0.0150	mg/L	1.00	1					
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1					
Calcium	U	ND	0.0800	0.200	mg/L	1.00	1					
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1					
Iron	U	ND	0.0330	0.100	mg/L	1.00	1					
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1					
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Magnesium	U	ND	0.0100	0.0300	mg/L	1.00	1					
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1					
Potassium	U	ND	0.0800	0.300	mg/L	1.00	1					
Selenium	U	ND	0.00150	0.00500	mg/L	1.00						
Sodium	U	ND	0.0800	0.250	mg/L	1.00						
Thallium	U	ND	0.000600	0.00200	mg/L	1.00						
Manganese	U	ND	0.00100	0.00500	mg/L	1.00	1	BAJ	09/11/24	1608	2665671	5
Solids Analysis												
SM2540C Dissolved So	olids "As Rec	eived"										
Total Dissolved Solids	U	ND	2.38	10.0	mg/L			KLP1	09/04/24	1105	2666218	6
Spectrometric Analysis					-							
SM 4500-S(2-) D Sulfic	de "As Receiv	ved"										
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	09/03/24	1008	2666112	7
					-							

Page 7 of 34 SDG: 683471

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 16, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-APBCD-EB-05 Project: GPCC00101
Sample ID: 683471002 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF A	nalyst Date	Time Batcl	n Method
Titration and Ion Analy	sis									
SM 2320B Total Alkali	nity "As Rec	eived"								
Alkalinity, Total as CaCO3	U	ND	0.725	2.00	mg/L		J.	W2 08/30/24	1444 266553	86 8
Bicarbonate alkalinity (CaCO	(3) U	ND	0.725	2.00	mg/L					
Carbonate alkalinity (CaCO3)) U	ND	0.725	2.00	mg/L					
The following Prep Met	thods were po	erformed:								
Method	Description	1		Analyst	Date		Time	Prep Batch		
SW846 3005A	ICP-MS 3005	A PREP		BB2	08/31/24		0950	2665670		
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		JM13	09/03/24		1145	2665643		

The following Analytical Methods were performed:

The following F	Anarytical Methods were performed:	
Method	Description	Analyst Comments
1	EPA 300.0	•
2	SW846 7470A	
3	SW846 3005A/6020B	
4	SW846 3005A/6020B	
5	SW846 3005A/6020B	
6	SM 2540C	
7	SM 4500-S (2-) D	
8	SM 2320B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 34 SDG: 683471

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 16, 2024

GPCC00101

GPCC001

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-APBCD-FD-02

U

U

U

ND

22.5

ND

ND

2.10

78.3

2.38

493

ND

Sample ID: 683471003

Matrix: WG

Collect Date: 29-AUG-24 12:00
Receive Date: 30-AUG-24
Collector: Client

RL Parameter **Qualifier** DL Units PF DF Analyst Date Time Batch Method Result Ion Chromatography EPA 300.0 Anions Liquid "As Received" Chloride 13.9 1.34 4.00 mg/L 20 CH6 08/31/24 0343 2665497 1 20 Sulfate 216 2.66 8.00 mg/L Fluoride 0.253 0.03300.100 CH6 08/30/24 1318 2665497 2 mg/L Nitrate-N U ND 0.0330 0.100mg/LMercury Analysis-CVAA 7470 Cold Vapor Mercury, Liquid "As Received" Mercury 0.0000670 0.000200 mg/L 1.00 1 JP2 09/04/24 1226 2665644 3 Metals Analysis-ICP-MS SW846 3005A/6020B "As Received" ND 0.001000.00300 mg/L 1.00 1 BAJ 09/10/24 1754 2665671 4 Antimony Arsenic U ND 0.002000.00500 mg/L 1.00 1 0.0006700.00400 mg/L 1.00 Barium 0.0289 1 Cadmium U ND 0.000300 0.00100 mg/L1.00 1 mg/LChromium U ND 0.00300 0.0100 1.00 1 Cobalt 0.00334 0.000300 0.00100mg/L 1.00 1 U 0.1001.00 Iron ND 0.0330mg/L Lead U ND 0.000500 0.00200mg/L 1.00 U Lithium ND 0.003000.0100 mg/L 1.00 1 28.0 0.0300 1.00 Magnesium 0.0100 mg/L 1 0.00127 0.0002000.00100 mg/L1.00 Molybdenum 1 Potassium 5.08 0.08000.300 mg/L 1.00 1

0.00150

0.000600

0.000200

0.0800

0.104

0.400

2.38

0.0330

0.00500

0.00500

0.00200

0.000500

0.250

0.300

1.00

10.0

0.100

0.0250

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

1.00 1

1.00

1.00 1

1.00

1.00 20 BAJ

1.00 5 BAJ

1.00 5 BAJ

1

1 BAJ

KLP1

JW2

09/09/24 2122 2665671

1759 2665671

1756 2665671

1626 2665671

1105 2666218

1008 2666112

09/10/24

09/10/24

09/11/24

09/04/24

09/03/24

5

6

7

8

Q

10

Page 9 of 34 SDG: 683471

SM2540C Dissolved Solids "As Received"

SM 4500-S(2-) D Sulfide "As Received"

Selenium

Sodium

Thallium

Boron

Calcium

Manganese

Total Sulfide

Solids Analysis

Total Dissolved Solids

Spectrometric Analysis

Beryllium

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 16, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-APBCD-FD-02 Project: GPCC00101
Sample ID: 683471003 Client ID: GPCC001

r Qualifier Result DL RL Units PF DF Analyst Date Time Batch Method

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date	Time Batch	Method
Titration and Ion Analy	ysis								
SM 2320B Total Alkal	inity "As Rec	eived"							
Alkalinity, Total as CaCO3		97.8	0.725	2.00	mg/L		JW2 08/30/24	1445 2665536	11
Bicarbonate alkalinity (CaCo	O3)	97.8	0.725	2.00	mg/L				
Carbonate alkalinity (CaCO	3) U	ND	0.725	2.00	mg/L				
The following Prep Me	ethods were p	erformed:							

Method	Description	Analyst	Date	Time	Prep Batch
SW846 7470A Prep	EPA 7470A Mercury Prep Liquid	JM13	09/03/24	1145	2665643
SW846 3005A	ICP-MS 3005A PREP	BB2	08/31/24	0950	2665670

The following Analytical Methods were performed:

Method	Description	Analyst Comments
1	EPA 300.0	•
2	EPA 300.0	
3	SW846 7470A	
4	SW846 3005A/6020B	
5	SW846 3005A/6020B	
6	SW846 3005A/6020B	
7	SW846 3005A/6020B	
8	SW846 3005A/6020B	
9	SM 2540C	
10	SM 4500-S (2-) D	
11	SM 2320B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 34 SDG: 683471

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 16, 2024

GPCC00101

GPCC001

Company: Georgia Power Company, Southern Company
Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWC-25I

Sample ID: 683471004

Matrix: WG

Collect Date: 29-AUG-24 10:17
Receive Date: 30-AUG-24
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liqu	uid "As Recei	ived"									
Chloride		13.7	1.34	4.00	mg/L		20	CH6	08/31/24	0413 2665497	1
Sulfate		216	2.66	8.00	mg/L		20				
Fluoride		0.248	0.0330	0.100	mg/L		1	CH6	08/30/24	1348 2665497	2
Nitrate-N	U	ND	0.0330	0.100	mg/L		1				
Mercury Analysis-CVA	λA										
7470 Cold Vapor Merc	ury, Liquid ".	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/04/24	1228 2665644	3
Metals Analysis-ICP-M	1S										
SW846 3005A/6020B '		<u>l</u> "									
Calcium		77.6	0.400	1.00	mg/L	1.00	5	BAJ	09/10/24	1808 2665671	4
Antimony	U	ND	0.00100	0.00300	mg/L	1.00		BAJ	09/10/24	1806 2665671	5
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium		0.0291	0.000670	0.00400	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt		0.00319	0.000300	0.00100	mg/L	1.00	1				
Iron	U	ND	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Magnesium		27.5	0.0100	0.0300	mg/L	1.00	1				
Molybdenum		0.00123	0.000200	0.00100	mg/L	1.00					
Potassium		4.86	0.0800	0.300	mg/L	1.00					
Selenium	U	ND	0.00150	0.00500	mg/L	1.00					
Sodium		22.3	0.0800	0.250	mg/L	1.00					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00					
Manganese		2.34	0.00500	0.0250	mg/L	1.00		BAJ	09/11/24	1627 2665671	6
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00		BAJ	09/09/24	2128 2665671	7
Boron		2.04	0.104	0.300	mg/L	1.00	20	BAJ	09/10/24	1810 2665671	8
Solids Analysis											
SM2540C Dissolved So	olids "As Rec	eived"									
Total Dissolved Solids		492	2.38	10.0	mg/L			KLP1	09/04/24	1105 2666218	9
Spectrometric Analysis											
SM 4500-S(2-) D Sulfic	de "As Recei	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	09/03/24	1008 2666112	10

Page 11 of 34 SDG: 683471

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 16, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWC-25I Project: GPCC00101 Sample ID: 683471004 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF A	nalyst Date	Time Batch	Method
Titration and Ion Ana	alysis									
SM 2320B Total Alk	alinity "As Rec	eived"								
Alkalinity, Total as CaCO	3	98.4	0.725	2.00	mg/L		JV	V2 08/30/24	1447 2665536	11
Bicarbonate alkalinity (Ca	CO3)	98.4	0.725	2.00	mg/L					
Carbonate alkalinity (CaC	O3) U	ND	0.725	2.00	mg/L					
The following Prep N	Methods were p	erformed:								
Method	Description	n		Analyst	Date		Time	Prep Batch		
SW846 3005A	ICP-MS 3005	5A PREP		BB2	08/31/24		0950	2665670		
SW846 7470A Prep	EPA 7470A 1	Mercury Prep Liquid		JM13	09/03/24		1145	2665643		
The following Analy	rtical Mathada	vara narfarmadi								

The following Analytical Methods were performed:

Method	Description	Analyst Comments
1	EPA 300.0	•
2	EPA 300.0	
3	SW846 7470A	
4	SW846 3005A/6020B	
5	SW846 3005A/6020B	
6	SW846 3005A/6020B	
7	SW846 3005A/6020B	
8	SW846 3005A/6020B	
9	SM 2540C	
10	SM 4500-S (2-) D	
11	SM 2320B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 12 of 34 SDG: 683471

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 16, 2024

Company: Georgia Power Company, Southern Company
Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-68D Sample ID: 683471005

Matrix: WG

Collect Date: 29-AUG-24 09:58
Receive Date: 30-AUG-24
Collector: Client

Project: GPCC00101 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Liqu	uid "As Recei	ved"									
Chloride		18.1	1.34	4.00	mg/L		20	CH6	08/31/24	0444 2665497	7 1
Sulfate		280	2.66	8.00	mg/L		20				
Fluoride		0.126	0.0330	0.100	mg/L		1	CH6	08/30/24	1419 2665497	7 2
Nitrate-N	U	ND	0.0330	0.100	mg/L		1				
Mercury Analysis-CVA	λA										
7470 Cold Vapor Merc	ury, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/04/24	1229 2665644	1 3
Metals Analysis-ICP-M	ſS										
SW846 3005A/6020B '	'As Received	"									
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1	BAJ	09/09/24	2133 266567	1 4
Manganese		0.150	0.00100	0.00500	mg/L	1.00	1	BAJ	09/11/24	1628 266567	1 5
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	BAJ	09/10/24	1813 266567	1 6
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium		0.0796	0.000670	0.00400	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt	J	0.000526	0.000300	0.00100	mg/L	1.00	1				
Iron		0.399	0.0330	0.100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium	J	0.00633	0.00300	0.0100	mg/L	1.00	1				
Magnesium		23.1	0.0100	0.0300	mg/L	1.00	1				
Molybdenum		0.00702	0.000200	0.00100	mg/L	1.00	1				
Potassium		8.24	0.0800	0.300	mg/L	1.00	1				
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1				
Sodium	**	35.2	0.0800	0.250	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1	DAI	00/10/24	1015 066565	
Boron		0.404	0.0260	0.0750	mg/L	1.00	5	BAJ	09/10/24	1815 266567	1 7
Calcium		96.7	0.400	1.00	mg/L	1.00	5				
Solids Analysis											
SM2540C Dissolved So	olids "As Rec										
Total Dissolved Solids		601	2.38	10.0	mg/L			KLP1	09/04/24	1105 2666218	8
Spectrometric Analysis											
SM 4500-S(2-) D Sulfie	de "As Receiv	ved"									
Total Sulfide	U	ND	0.0330	0.100	mg/L		1	JW2	09/03/24	1008 2666112	2 9

Page 13 of 34 SDG: 683471

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 16, 2024

Company: Georgia Power Company, Southern Company
Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-68D Project: GPCC00101 Sample ID: 683471005 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Titration and Ion An	alysis									
SM 2320B Total Alk	calinity "As Rec	eived"								
Alkalinity, Total as CaCO	03	114	0.725	2.00	mg/L		JW2	08/30/24	1448 2665536	10
Bicarbonate alkalinity (Ca	aCO3)	114	0.725	2.00	mg/L					
Carbonate alkalinity (CaC	CO3) U	ND	0.725	2.00	mg/L					
The following Prep 1	Methods were po	erformed:								
Method	Description	n		Analyst	Date		Time P	rep Batch	ı	
SW846 3005A	ICP-MS 3005	SA PREP		BB2	08/31/24		0950 2	665670		
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		JM13	09/03/24		1145 2	665643		

The following Analytical Methods were performed:

The following A	The following Analytical Methods were performed.									
Method	Description	Analyst Comments								
1	EPA 300.0	•								
2	EPA 300.0									
3	SW846 7470A									
4	SW846 3005A/6020B									
5	SW846 3005A/6020B									
6	SW846 3005A/6020B									
7	SW846 3005A/6020B									
8	SM 2540C									
9	SM 4500-S (2-) D									
10	SM 2320B									

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 14 of 34 SDG: 683471

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: September 16, 2024

Page 1 of 12

Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia Joju Abraham

Workorder: 683471

Contact:

Parmname	NOM	Sample	Qual	QC	Units	RPD%)	REC%	Range A	Anlst	Date Time
Ion Chromatography Batch 2665497											
QC1205840892 683471005 DUP Chloride		18.1		18.2	mg/L	0.0881	^		(+/-4.00)	СН6	08/31/24 06:17
Fluoride		0.126		0.127	mg/L	0.395	٨		(+/-0.100)		08/31/24 00:37
Nitrate-N	Ţ	J ND	U	ND	mg/L	N/A					
Sulfate		280		280	mg/L	0.106			(0%-20%)		08/31/24 06:17
QC1205840891 LCS Chloride	5.00			4.68	mg/L			93.6	(90%-110%)		08/31/24 00:06
Fluoride	2.50			2.33	mg/L			93.4	(90%-110%)		
Nitrate-N	2.50			2.37	mg/L			94.8	(90%-110%)		
Sulfate	10.0			9.40	mg/L			94	(90%-110%)		
QC1205840890 MB Chloride			U	ND	mg/L						08/30/24 22:34
Fluoride			U	ND	mg/L						
Nitrate-N			U	ND	mg/L						
Sulfate			U	ND	mg/L						

Page 15 of 34 SDG: 683471

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683471 Page 2 of 12 Parmname **NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Ion Chromatography 2665497 Batch QC1205840893 683471005 PS 0.907 5.66 Chloride 5.00 mg/L 95.1 (90%-110%) CH6 08/31/24 06:48 Fluoride 2.50 0.126 2.50 94.9 (90%-110%) 08/31/24 01:08 mg/L Nitrate-N 2.50 U ND 2.39 mg/L 95.5 (90%-110%) Sulfate 10.0 14.0 24.3 mg/L 103 (90%-110%) 08/31/24 06:48 **Metals Analysis - ICPMS** 2665671 Batch QC1205841255 0.0500 0.0491 mg/L 98.3 (80%-120%) BAJ 09/10/24 15:44 Antimony 0.0500 0.0527 105 Arsenic mg/L (80%-120%) Barium 0.0500 0.0488mg/L 97.5 (80%-120%) Beryllium 0.0500 0.0600 mg/L120 (80%-120%) 09/09/24 19:29 0.100 0.113 (80%-120%) 09/10/24 15:44 Boron mg/L 113 Cadmium 0.0500 0.0505 mg/L 101 (80%-120%) 2.10 Calcium 2.00 105 mg/L (80%-120%) Chromium 0.0500 0.0511 mg/L 102 (80%-120%) Cobalt 0.0500 0.0508 102 (80%-120%) mg/L

Page 16 of 34 SDG: 683471

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683471 Page 3 of 12 QC RPD% REC% Parmname **NOM** Sample Qual Units Range Anlst Date Time Metals Analysis - ICPMS Batch 2665671 (80%-120%) Iron 2.00 2.01 mg/L 101 BAJ 09/10/24 15:44 Lead 0.0500 0.0516 103 (80%-120%) mg/L 0.0593 Lithium 0.0500 mg/L 119 (80%-120%) 2.25 Magnesium 2.00 mg/L113 (80%-120%) 0.0500 0.0514 09/11/24 16:05 Manganese 103 (80%-120%) mg/L Molybdenum 0.0500 0.0509 mg/L 102 (80%-120%) 09/10/24 15:44 Potassium 2.00 2.14 107 (80%-120%) mg/L 0.0500 0.0509 Selenium mg/L 102 (80%-120%) Sodium 2.00 2.29 mg/L 115 (80%-120%) Thallium 0.0500 0.0497 99.4 (80%-120%) mg/L QC1205841254 MB U 09/10/24 15:42 ND Antimony mg/L U ND Arsenic mg/L Barium U ND mg/L Beryllium U ND mg/L 09/09/24 19:26

Page 17 of 34 SDG: 683471

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683471 Page 4 of 12 P<u>armname</u> NOM QC RPD% REC% Sample Qual Units Range Anlst Date Time Metals Analysis - ICPMS Batch 2665671 U BAJ 09/10/24 15:42 Boron ND mg/L U Cadmium ND mg/L U ND mg/L Calcium Chromium U ND mg/L Cobalt U ND mg/LIron U ND mg/L U ND Lead mg/LU ND Lithium mg/L U Magnesium ND mg/LManganese U ND mg/L 09/11/24 16:04 Molybdenum U ND 09/10/24 15:42 mg/L Potassium U ND mg/LU ND Selenium mg/L U ND Sodium mg/L

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 5 of 12 Parmname **NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2665671 Batch Thallium U ND mg/L BAJ 09/10/24 15:42 QC1205841256 683468001 MS ND 0.0503 0.0500 U 100 09/10/24 16:10 Antimony mg/L (75%-125%) 0.0500 U ND 0.0552 Arsenic mg/L 107 (75%-125%) Barium 0.0500 0.0260 0.0752 mg/L 98.5 (75%-125%) Beryllium 0.0500 U ND 0.0533 106 (75%-125%) 09/09/24 19:49 mg/L Boron 0.100 0.298 0.395 mg/L 97.7 (75%-125%) 09/10/24 16:22 U Cadmium 0.0500 ND 0.0493 98.5 (75%-125%) 09/10/24 16:10 mg/L 197 203 Calcium 2.00 09/10/24 16:22 mg/L N/A (75%-125%) Chromium 0.0500 U ND 0.0491 98.2 (75%-125%) 09/10/24 16:10 mg/L 0.0500 0.111 0.161 99.9 Cobalt mg/L (75%-125%)2.01 Iron 2.00 4.01 mg/L 99.6 (75%-125%) 0.0500 ND 0.0462 Lead mg/L 92.3 (75%-125%) Lithium 0.0500 0.0279 0.0826 mg/L 109 (75%-125%) Magnesium 2.00 76.6 79.0 mg/L N/A (75%-125%) 09/10/24 16:22

Page 19 of 34 SDG: 683471

Workorder:

683471

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683471 Page 6 of 12 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2665671 Batch Manganese 0.0500 9.82 10.2 mg/L N/A (75%-125%) BAJ 09/11/24 16:10 0.05000.000466 0.0536 106 09/10/24 16:10 Molybdenum mg/L (75%-125%) Potassium 2.00 11.2 13.3 mg/L N/A (75%-125%) ND 0.0571 Selenium 0.0500 U mg/L 114 (75%-125%) Sodium 2.00 45.8 48.7 N/A mg/L (75%-125%)Thallium 0.0500 U ND 0.0451 90.1 (75%-125%) mg/L QC1205841257 683468001 MSD Antimony 0.0500 U ND 0.0500 mg/L 0.666 99.8 (0%-20%)09/10/24 16:13 ND 0.0544 105 0.0500 U 1.45 (0%-20%) Arsenic mg/L 0.0722 0.0500 0.026092.4 Barium mg/L 4.18 (0%-20%)Beryllium 0.0500 U ND 0.0528 mg/L 1.04 105 (0%-20%) 09/09/24 19:51 0.100 0.298 0.388 90.1 09/10/24 16:25 Boron 1.93 (0%-20%) mg/L 0.0500 U ND 0.0487 97.3 09/10/24 16:13 Cadmium mg/L 1.27 (0%-20%)mg/L 0.721 Calcium 2.00 197 201 N/A (0%-20%) 09/10/24 16:25 Chromium 0.0500 U ND 0.0488 mg/L 0.699 97.5 (0%-20%)09/10/24 16:13

Page 20 of 34 SDG: 683471

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

683471 Page 7 of 12 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2665671 Batch mg/L 0.857 Cobalt 0.0500 0.111 0.160 97.1 (0%-20%)BAJ 09/10/24 16:13 2.00 2.01 3.94 96.3 (0%-20%) Iron mg/L 1.65 ND 0.0448 Lead 0.0500 U mg/L 3.02 89.5 (0%-20%) 0.0500 0.0279 0.0812 Lithium mg/L 1.7 107 (0%-20%) 79.2 2.00 76.6 0.15 N/A (0%-20%)09/10/24 16:25 Magnesium mg/L 0.0500 9.82 10.4 2.36 N/A (0%-20%)09/11/24 16:11 Manganese mg/L 0.0500 0.000466 0.0528 mg/L 105 (0%-20%) 09/10/24 16:13 Molybdenum 1.42 Potassium 2.00 11.2 13.1 mg/L 1.53 N/A (0%-20%)Selenium 0.0500 U ND 0.0554 mg/L 3.01 111 (0%-20%) 2.00 45.8 47.9 N/A Sodium mg/L 1.71 (0%-20%)U ND Thallium 0.0500 0.0443 mg/L 1.74 88.5 (0%-20%)QC1205841258 683468001 SDILT U ND U ND 09/10/24 16:17 Antimony ug/L N/A (0%-20%)Arsenic U ND U ND ug/L N/A (0%-20%) Barium 26.0 5.69 ug/L 9.47 (0%-20%)

Workorder:

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683471 Page 8 of 12 QC REC% Parmname **NOM** Sample Qual Units RPD% Range Anlst Date Time Metals Analysis - ICPMS 2665671 Batch U Beryllium ND U ND ug/L N/A (0%-20%)BAJ 09/09/24 19:57 Boron 59.5 15.8 ug/L 32.8 (0%-20%) 09/10/24 16:29 U ND U ND Cadmium ug/L N/A (0%-20%) 09/10/24 16:17 39400 8160 Calcium ug/L 3.49 (0%-20%) 09/10/24 16:29 U ND ND ug/L 09/10/24 16:17 Chromium U N/A (0%-20%)Cobalt 111 24.0 ug/L 8.09 (0%-20%) 2010 426 5.83 (0%-20%) Iron ug/L U U Lead ND ND ug/L N/A (0%-20%)Lithium 27.9 5.65 ug/L 1.37 (0%-20%) 15300 3270 (0%-20%)09/10/24 16:29 Magnesium ug/L 6.63 196 09/11/24 16:12 Manganese 42.1 ug/L 7.19 (0%-20%)0.466 U ND 09/10/24 16:17 Molybdenum ug/L N/A (0%-20%) 11200 2360 5.45 (0%-20%) Potassium ug/L U Selenium ND U ND ug/L N/A (0%-20%)

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683471 Page 9 of 12 **Parmname NOM** Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS Batch 2665671 Sodium 45800 9540 ug/L 4.02 (0%-20%)BAJ 09/10/24 16:17 Thallium U ND U ND (0%-20%) ug/L N/A Metals Analysis-Mercury 2665644 QC1205841207 683468001 DUP Mercury U ND U ND mg/L N/A JP2 09/04/24 11:57 QC1205841206 LCS 0.00200 0.00198 99.2 (80%-120%) 09/04/24 11:48 Mercury mg/L QC1205841205 MB U ND 09/04/24 11:47 Mercury mg/L QC1205841208 683468001 MS 0.00200 U ND 0.00170 09/04/24 11:58 Mercury mg/L 85.1 (75%-125%) QC1205841209 683468001 SDILT U ND ND ug/L N/A (0%-10%) 09/04/24 12:00 Mercury Solids Analysis Batch 2666218 QC1205842591 683468001 DUP 1490 1240 mg/L 18.3 * (0%-5%) KLP1 09/04/24 11:05 **Total Dissolved Solids** QC1205842592 683471004 DUP Total Dissolved Solids 492 493 mg/L 0.203 (0%-5%) 09/04/24 11:05 QC1205842590 300 300 09/04/24 11:05 Total Dissolved Solids 100 (95%-105%) mg/L

Page 23 of 34 SDG: 683471

GEL LABORATORIES LLC 2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683471				·	_	•						Page 1	10 of 12
Parmname		NOM	1	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst		Time
Solids Analysis Batch 2666218 QC1205842589 MB Total Dissolved Solids					U	ND	mg/L				KLP1	09/04/2	24 11:05
Spectrometric Analysis Batch 2666112													
QC1205842332 LCS Total Sulfide		0.400				0.405	mg/L		101	(85%-115%)	JW2	09/03/2	24 10:08
QC1205842331 MB Total Sulfide					U	ND	mg/L					09/03/2	24 10:08
QC1205842333 683468001 Total Sulfide	PS	0.400	U	ND		0.402	mg/L		100	(75%-125%))	09/03/2	24 10:08
QC1205842335 683471004 Total Sulfide	PS	0.400	U	ND		0.388	mg/L		97	(75%-125%))	09/03/2	24 10:08
QC1205842334 683468001 Total Sulfide	PSD	0.400	U	ND		0.392	mg/L	2.47	98	(0%-15%))	09/03/2	24 10:08
QC1205842336 683471004 Total Sulfide	PSD	0.400	U	ND		0.377	mg/L	2.89	94.3	(0%-15%))	09/03/2	24 10:08
Titration and Ion Analysis Batch 2665536													
QC1205840987 LCS Alkalinity, Total as CaCO3		50.0				50.6	mg/L		101	(90%-110%)) JW2	08/30/2	24 14:22
QC1205840988 LCS Alkalinity, Total as CaCO3		15.0				14.5	mg/L		96.7	(90%-110%))	08/30/2	24 14:24
QC1205840989 LCSD Alkalinity, Total as CaCO3		50.0				50.3	mg/L	0.595	101	(0%-20%))	08/30/2	24 14:23

Page 24 of 34 SDG: 683471

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

683471 Page 11 of 12 **Parmname** NOM Sample Qual \mathbf{OC} Units RPD% REC% Range Anlst Date Time **Titration and Ion Analysis** Batch 2665536 QC1205840990 LCSD 15.2 mg/L 101 Alkalinity, Total as CaCO3 15.0 4.71 (0%-20%)JW2 08/30/24 14:25

Notes:

Workorder:

The Qualifiers in this report are defined as follows:

- Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Ν Metals--The Matrix spike sample recovery is not within specified control limits
- Η Analytical holding time was exceeded
- < Result is less than value reported
- > Result is greater than value reported
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- Z Paint Filter Test--Particulates passed through the filter, however no free liquids were observed.
- d 5-day BOD--The 2:1 depletion requirement was not met for this sample
- Λ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- Е %difference of sample and SD is >10%. Sample concentration must meet flagging criteria
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Е General Chemistry--Concentration of the target analyte exceeds the instrument calibration range
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- FΒ Mercury was found present at quantifiable concentrations in field blanks received with these samples. Data associated with the blank are deemed invalid for reporting to regulatory agencies
- N1See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- R Per section 9.3.4.1 of Method 1664 Revision B, due to matrix spike recovery issues, this result may not be reported or used for regulatory compliance
- В The target analyte was detected in the associated blank.
- 5-day BOD--Test replicates show more than 30% difference between high and low values. The data is qualified per the method and can be used for reporting purposes
- See case narrative for an explanation

Page 25 of 34 SDG: 683471

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 12 of 12 Parmname NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

Workorder:

683471

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 26 of 34 SDG: 683471

[^] The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

^{*} Indicates that a Quality Control parameter was not within specifications.

Technical Case Narrative Georgia Power Company SDG #: 683471

Metals

Product: Determination of Metals by ICP-MS Analytical Method: SW846 3005A/6020B **Analytical Procedure:** GL-MA-E-014 REV# 36

Analytical Batch: 2665671

Preparation Method: SW846 3005A

Preparation Procedure: GL-MA-E-006 REV# 15

Preparation Batch: 2665670

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683471001	BRA-BRGWC-45
683471002	BRA-APBCD-EB-05
683471003	BRA-APBCD-FD-02
683471004	BRA-BRGWC-25I
683471005	BRA-PZ-68D
1205841254	Method Blank (MB)ICP-MS
1205841255	Laboratory Control Sample (LCS)
1205841258	683468001(BRA-PZ-50DL) Serial Dilution (SD)
1205841256	683468001(BRA-PZ-50DS) Matrix Spike (MS)
1205841257	683468001(BRA-PZ-50DSD) Matrix Spike Duplicate (MSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Calibration Information

ICSA/ICSAB Statement

For the ICP-MS analysis, the ICSA solution contains analyte concentrations which are verified trace impurities indigenous to the purchased standard.

Technical Information

Sample Dilutions

Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range. Samples 683471003 (BRA-APBCD-FD-02), 683471004 (BRA-BRGWC-25I) and 683471005 (BRA-PZ-68D) were diluted to ensure that the analyte concentrations were within the linear calibration range of the instrument.

A = 14 -	683471			
Analyte	003	004	005	

Page 27 of 34 SDG: 683471

Boron	20X	20X	5X
Calcium	5X	5X	5X
Manganese	5X	5X	1X

Product: Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer

Analytical Method: SW846 7470A

Analytical Procedure: GL-MA-E-010 REV# 40

Analytical Batch: 2665644

Preparation Method: SW846 7470A Prep

Preparation Procedure: GL-MA-E-010 REV# 40

Preparation Batch: 2665643

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683471001	BRA-BRGWC-45
683471002	BRA-APBCD-EB-05
683471003	BRA-APBCD-FD-02
683471004	BRA-BRGWC-25I
683471005	BRA-PZ-68D
1205841205	Method Blank (MB)CVAA
1205841206	Laboratory Control Sample (LCS)
1205841209	683468001(BRA-PZ-50DL) Serial Dilution (SD)
1205841207	683468001(BRA-PZ-50DD) Sample Duplicate (DUP)
1205841208	683468001(BRA-PZ-50DS) Matrix Spike (MS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Miscellaneous Information

Additional Comments

Double potassium permanganate was added to the sample and associated QC to prevent premature reduction of the reagent. 1205841205 (MB) and 1205841206 (LCS).

General Chemistry

Product: Ion Chromatography Analytical Method: EPA 300.0

Analytical Procedure: GL-GC-E-086 REV# 35

Analytical Batch: 2665497

Page 28 of 34 SDG: 683471

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683471001	BRA-BRGWC-45
683471002	BRA-APBCD-EB-05
683471003	BRA-APBCD-FD-02
683471004	BRA-BRGWC-25I
683471005	BRA-PZ-68D
1205840890	Method Blank (MB)
1205840891	Laboratory Control Sample (LCS)
1205840892	683471005(BRA-PZ-68D) Sample Duplicate (DUP)
1205840893	683471005(BRA-PZ-68D) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Holding Times

Sample (See Below) was initially analyzed within holding; however, the holding time had expired prior to reanalysis of diluted sample. The data is qualified.

	Sample	Analyte	Value
- 1	683471001 (BRA-BRGWC-45)	Nitrate-N	Received 30-AUG-24, within holding, analyzed 31-AUG-24, out of holding 31-AUG-24

Sample Dilutions

The following samples 1205840892 (BRA-PZ-68DDUP), 1205840893 (BRA-PZ-68DPS), 683471001 (BRA-BRGWC-45), 683471003 (BRA-APBCD-FD-02), 683471004 (BRA-BRGWC-25I) and 683471005 (BRA-PZ-68D) were diluted because target analyte concentrations exceeded the calibration range. The following sample 683471001 (BRA-BRGWC-45) in this sample group was diluted due to matrix interference. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

. 1	683471					
Analyte	001	003	004	005		
Chloride	50X	20X	20X	20X		
Sulfate	50X	20X	20X	20X		

Sample Re-analysis

Sample 683471001 (BRA-BRGWC-45) was re-analyzed to verify the result.

Miscellaneous Information

Manual Integrations

Samples 1205840892 (BRA-PZ-68DDUP), 1205840893 (BRA-PZ-68DPS), 683471001 (BRA-BRGWC-45), 683471003 (BRA-APBCD-FD-02), 683471004 (BRA-BRGWC-25I) and 683471005 (BRA-PZ-68D) were manually

Page 29 of 34 SDG: 683471

integrated to correctly position the baseline as set in the calibration standards.

Product: Solids, Total Dissolved **Analytical Method:** SM 2540C

Analytical Procedure: GL-GC-E-001 REV# 21

Analytical Batch: 2666218

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683471001	BRA-BRGWC-45
683471002	BRA-APBCD-EB-05
683471003	BRA-APBCD-FD-02
683471004	BRA-BRGWC-25I
683471005	BRA-PZ-68D
1205842589	Method Blank (MB)
1205842590	Laboratory Control Sample (LCS)
1205842591	683468001(BRA-PZ-50D) Sample Duplicate (DUP)
1205842592	683471004(BRA-BRGWC-25I) Sample Duplicate (DUP)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Duplicate Relative Percent Difference (RPD) Statement

The Relative Percent Difference (RPD) between the sample and duplicate falls outside of the established acceptance limits because of the heterogeneous matrix of the sample:

Analyte	Sample	Value
Total Dissolved Solids	1205842591 (BRA-PZ-50DDUP)	18.3* (0%-5%)

Miscellaneous Information

Additional Comments

A reduced aliquot was used due to historical information. 1205842591 (BRA-PZ-50DDUP).

Product: Sulfide, Total

Analytical Method: SM 4500-S (2-) D

Analytical Procedure: GL-GC-E-052 REV# 13

Analytical Batch: 2666112

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683471001	BRA-BRGWC-45
683471002	BRA-APBCD-EB-05

Page 30 of 34 SDG: 683471

683471003	BRA-APBCD-FD-02
683471004	BRA-BRGWC-25I
683471005	BRA-PZ-68D
1205842331	Method Blank (MB)
1205842332	Laboratory Control Sample (LCS)
1205842333	683468001(BRA-PZ-50D) Post Spike (PS)
1205842334	683468001(BRA-PZ-50D) Post Spike Duplicate (PSD)
1205842335	683471004(BRA-BRGWC-25I) Post Spike (PS)
1205842336	683471004(BRA-BRGWC-25I) Post Spike Duplicate (PSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: Alkalinity

Analytical Method: SM 2320B

Analytical Procedure: GL-GC-E-033 REV# 16

Analytical Batch: 2665536

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683471001	BRA-BRGWC-45
683471002	BRA-APBCD-EB-05
683471003	BRA-APBCD-FD-02
683471004	BRA-BRGWC-25I
683471005	BRA-PZ-68D
1205840987	Laboratory Control Sample (LCS)
1205840988	Laboratory Control Sample (LCS)
1205840989	Laboratory Control Sample Duplicate (LCSD)
1205840990	Laboratory Control Sample Duplicate (LCSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Laboratory Control Sample Duplicate (LCSD)

An LCSD was used in place of matrix QC due to limited sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 31 of 34 SDG: 683471

Prage: 01 Project # 6EL Quote #: COC Number (¹⁾ :		GEI gel.com Chain		ADOF mistry Rad	Laboratories LLC chemistry Radiochemistry Radiochemistry Radiochemistry Radiochemistry Radiochemistry Radiopicas Reminest	S LLC Radiobioassa	y I Speci	alty Analy	tics			GEL Laboratories, LLC 2040 Savage Road Charleston, SC 29407	s, LLC ad 9407	124289
382177-0006	GEL Work Order Number:			GEL Pr	GEL Project Manager: Erin Trent	ger: Erin	Trent	M				Fax: (843) 766-1178	178	トしてのダ
Client Name: GA Power		Phone # 40	404-506-7116	16		S	ample	Sample Analysis Requested (5)	is Req	ueste		(Fill in the number of containers for each test)	ntainers for	each test)
Project/Site Name: Plant Branch Ash Ponds - BCD		Fax#			S		s		IN	IN			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	< Preservative Type (6)
Address: 241 Ralph McGill Blvd SE, Atlanta GA 30308					38 03	sample be considered:	tainer	0		8				Comments
Collected By: なん ACC Send I	Send Results To: SCS & Geosyntec	eosyntec Co	Contacts		H)	span	. ој соп	SM 2540	820B	76 & 228	əbī		N	Note: extra sample is required for sample specific
Sample ID * For composites - indicate start and stop date/time	*Date Collected (mm/dd/xy)	*Time Collected (Military) (hhmm)	QC Code (2) F	Field S	Nampie Radioactive Pes, please superse,	sotopic info.) (7) Known or possible Haza	Fotal number	Cl, F, SO4, EPA 300, S Total, Carb, &	SM 23 Meta	EPA 6020, C	iluč p M2		Tas	Task_Code: BRA-CCR-ASSMT-2024S2
BRA-BEGWC-45	h2/62/80	0955	0	Z	ī)	. W	>	/	1	7			
BRA-APBCD- EB-05	12/15/20	5201	5	5	3		00	7	7	17	7			
BRA- APBCD - FD-02	12/27/20	1	0	5	20%		(%)	7	7	7	7			
BRA- BR6w6-25I	h2/22/80	4101	0	1	200		00	7	>	7	7			
BRA- P2-620	12/22/20	6958	0	3	200		N	>	1)	1			
BRA-				C										
BRA-														
BRA-														
BRA-										_				
BRA-														
Chain of C	Chain of Custody Signatures					T	T Red	TAT Requested:	Normal:	nal: x	Rush:	Specify:	(Su	(Subject to Surcharge)
Relinquished By (Signed) Date Time	Received by (signed)		Date	Time		Fax Re	Fax Results: [] Yes] Yes	[x] No					
galles 08-30-74 0830	1	B	8/301	124	830	Select I	Delivera	Select Deliverable: [] C of A	CofA	[] [[] QC Summary	[] level 1 [x] I	[x] Level 2 []	[]Level3 []Level4
2	2					Additio	Additional Remarks:	narks:	* W	etals: B	Ca,Sb,As,Ba	* Metals: B,Ca,Sb,As,Ba,Be,Cd,Cr,Co,Pb,Li,Mo,Se,Tl,Fe,Mg,Mn,K,Na,Hg	,Mo,Se,TI,Fe,	Mg,Mn,K,Na,Hg
3	3					For La	b Recei	ving Us	e Only:	Custo	For Lab Receiving Use Only: Custody Seal Intact? [] Yes	21? [] Yes [] No	lo Cooler Temp:	Temp: 1 °C
> For sample shipping and delivery details, see Sample Receipt & Review form (SRR.)	leceipt & Review form	(SRR.)			Samp	Sample Collection Time Zone: [x] Eastern	n Time	Zone:	[x] Eas		[] Pacific	[] Central []	[] Mountain	[] Other:
 Chain of Custody Number = Client Determined QC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicate, EB = Equipment Blank, MS = Matrix Spike Sample, MSD = Matrix Spike Duplicate Sample, G = Grab, C = Composite 	ite, $\mathbf{E}\mathbf{B} = \mathbf{E}$ quipment Blank,	MS = Matrix Sp	oike Sample	MSD = Mg	trix Spike Dupl	icate Sample,	G = Grab	, C = Con	posite					
3.) Field Filtered: For liquid matrices, indicate with a - Y - for yes the sample was field filtered or - N - for sample was not field filtered	ple was field filtered or - N -	for sample was	not field filt	ered.										
1.) Matrix Codes: WD=Drinking Water, WG=Groundwater, WS=Surface Water, WW=Waste Water, WL=Leachate, SO=Soil, SE=Sediment, SL=Sludge, WQ=Water Quality Control Matrix Codes: WD=Drinking Water, WG=Groundwater, WS=Surface Water, WM=Water Quality Control Matrix Codes: WG=Store Control Matrix Codes: WG=Store Codes: WG=Water Quality Control Matrix Commission Codes: WG=Store Codes: WG=Store Codes: WG=Water Quality Control Matrix Codes: WG=Store Codes	Water, WW=Waste Water,	WL=Leachate,	SO=Soil, SI	E=Sediment,	ate, SO=Soil, SE=Sediment, SL=Sludge, WQ=Water	Q=Water Qua	ility Cont	rol Matrix						
Superior of the superior of th	odium Hydroxide, SA = Sulf	uric Acid, AA =	Ascorbic A	cid, HX = H	exane, ST = So	dium Thiosulf	ate, If no	preservati	ve is adde	d = leave	field blank			
7.) KNOWN OR POSSIBLE HAZARDS Charac	Characteristic Hazards	Listed Waste	Vaste			Other						Please	e provide any	Please provide any additional details
Hg= Mercury See Selenium	FL = Flammable/Ignitable CO = Corrosive RE = Reactive	LW= Listed W (F,K,P and U-l Waste code(s):	LW= Listed Waste (F,K,P and U-listee Waste code(s):	LW= Listed Waste (F.K.P and U-listed wastes.) Waste code(s):		OT= Other / (i.e.: High/lc misc. health Description:	ther / U gh/low calth ha tion:	OT= Other / Unknown f.e.: High/low pH, asbest misc. health hazards, etc.) Description:	estos, b	erylliu	OT=Other / Unknown (i.e.: High/low pH, asbestos, beryllium, irritants, other misc. health hazards, etc.) Description:		below regarding h disposal concerns. sample(s), type of s matrices, etc.)	below regarding handling and/or disposal concerns. (i.e.: Origin of sample(s), type of site collected from, odd matrices, etc.)
Cr = Chromium AR= Misc. RCRA metals PCB = 1b = 1	PCB = Polychlorinated biphenyls				ĺ									

683475 683477 683471 683474

AP

SAMPLE RECEIPT & REVIEW FORM Laboratories LLC Client: SDG/AR/COC/Work Order: Received By: CLM 8130124 Date Received: FedEx Express FedEx Ground UPS Field Services Courier Carrier and Tracking Number Suspected Hazard Information S *If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Salety Group for further investigation. lazard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes_ A)Shipped as a DOT Hazardous? B) Did the client designate the samples are to be COC notation or radioactive stickers on containers equal client designation. received as radioactive? Maximum Net Counts Observed* (Observed Counts - Area Background Counts): CPM/ mR/Hr C) Did the RSO classify the samples as Classified as: Rad 1 Rad 2 Rad 3 radioactive? COC notation or hazard labels on containers equal client designation. D) Did the client designate samples are hazardous? If D or E is yes, select Hazards below. Flammable RCRA Asbestos Foreign Soil E) Did the RSO identify possible hazards? Beryllium Sample Receipt Criteria N N N Comments/Qualifiers (Required for Non-Conforming Items) Circle Applicable: Seals broken Damaged container Leaking container Other (describe) Shipping containers received intact and Chain of custody documents included Circle Applicable: Client contacted and provided COC COC created upon receipt with shipment? Preservation Method Wet Ice Ice Packs Dry ice None Other: Samples requiring cold preservation *all temperatures are recorded in Celsius within $(0 \le 6 \text{ deg. C})$?* Daily check performed and passed on IR Temperature Device Serial #: IR5-23 Secondary Temperature Device Serial # (If Applicable): temperature gun? Circle Applicable: Seals broken Damaged container Leaking container Other (describe) 5 Sample containers intact and sealed? Sample ID's and Containers Affected: Samples requiring chemical preservation at proper pH? If Preservation added, Lot#: If Yes, are Encores or Soil Kits present for solids? Yes___No___NA__(If yes, take to VOA Freezer) De liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Do any samples require Volatile 7 Are liquid VOA vials free of headspace? Yes____No__ Analysis? NA Sample ID's and containers affected: ID's and tests affected: 8 Samples received within holding time? 's and containers affected: Sample ID's on COC match ID's on ircle Applicable: No dates on containers Date & time on COC match date & time on bottles? Number of containers received match number indicated on COC? Are sample containers identifiable as GEL provided by use of GEL labels? COC form is properly signed in Circle Applicable: Not relinquished Other (describe) relinquished/received sections? Comments (Use Continuation Form if needed): a) of the ID. (683479)
10.) wrote on the sample. BLA-PZ-63I all times on samples are hanged from 10:30 to 11:30 except for analysis TDS- (683477) PM (or PMA) review: Initials _

List of current GEL Certifications as of 16 September 2024

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	KY90129
Kentucky Wastewater	KY90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2023019
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	NV-C24-00175
New Hampshire NELAP	205424
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2023-152
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235
Utah NELAP	SC000122024-41
Vermont	VT87156
Virginia NELAP	460202
Washington	C780

gel.com

September 16, 2024

Joju Abraham Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

Re: Branch CCR Groundwater Compliance

Work Order: 683475

Dear Joju Abraham:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on August 30, 2024. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The sample collection times were changed by the client from 10:30 to 11:30 on all the containers except for the sample container designated for TDS analysis. Client was notified via email. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt. The laboratory received the following sample(s):

Laboratory ID	Client ID	<u>Matrix</u>	Date Collected	Date Received
683475001	BRA-PZ-63I	Ground Water	08/29/24 11:30	08/30/24 08:30

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Prep Methods and Prep Dates

Method	Run Date ID
SW846 3005A	04-SEP-2024
SW846 7470A Prep	04-SEP-2024

Analysis Methods and Analysis Dates

Method	<u>1</u>	Run Date ID
EPA 30	0.00	03-SEP-2024
EPA 30	0.00	04-SEP-2024
SM 232	20B	03-SEP-2024
SM 254	10C	04-SEP-2024
SM 450	00-S (2-) D	03-SEP-2024
SW846	3005A/6020B	08-SEP-2024
SW846	3005A/6020B	09-SEP-2024

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4443.

Sincerely,

Hannah Bowden for

Alaina Pinnick
Project Manager

Purchase Order: GPC82177-0006

Enclosures

Page 3 of 24 SDG: 683475

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

GPCC001 Georgia Power Company Client SDG: 683475 GEL Work Order: 683475

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- B Either presence of analyte detected in the associated blank, or MDL/IDL < sample value < PQL
- H Analytical holding time was exceeded
- J Value is estimated
- N/A RPD or %Recovery limits do not apply.
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Alaina Pinnick.

	HannahBouden	
Reviewed by	1 -	

Page 4 of 24 SDG: 683475

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 16, 2024

GPCC00101

GPCC001

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-63I Sample ID: 683475001

Matrix: WG

Collect Date: 29-AUG-24 11:30
Receive Date: 30-AUG-24
Collector: Client

RL Parameter **Qualifier** DL Units PF DF Analyst Date Time Batch Method Result Ion Chromatography EPA 300.0 Anions Liquid "As Received" Sulfate 344 6.65 20.0 mg/L 50 TXT1 09/04/24 1306 2666362 1 0.200 Chloride 6.86 0.0670 mg/L 1 TXT1 09/03/24 1837 2666362 2 Fluoride 0.1390.03300.100 mg/L Nitrate-N Η 0.754 0.0660 0.200mg/L2 TXT1 09/04/24 1235 2666362 3 Mercury Analysis-CVAA 7470 Cold Vapor Mercury, Liquid "As Received" Mercury 0.0000670 0.000200 mg/L 1.00 1 JP2 09/05/24 1003 2666519 Metals Analysis-ICP-MS SW846 3005A/6020B "As Received" Boron 0.731 0.0260 0.0750 mg/L 1.00 5 BAJ 09/08/24 2343 2666441 5 Calcium 65.6 0.400 1.00 mg/L 1.00 5 0.0250 0.125 mg/L 1.00 2.5 09/09/24 1251 2666441 Manganese 8.12 BAJ 6 U ND 0.00100 0.00300 mg/L1.00 1 BAJ 09/08/24 2329 2666441 Antimony mg/LArsenic U ND 0.00200 0.00500 1.00 1 Barium 0.0206 0.000670 0.00400 mg/L 1.00 1 Beryllium U 0.000500 1.00 ND 0.000200 mg/L 1 Cadmium U ND 0.000300 0.00100mg/L 1.00 1 U 0.0100 Chromium ND 0.00300mg/L 1.00 1 0.0335Cobalt 0.000300 0.00100 1.00 mg/L 1 Iron 0.741 0.0330 0.100 mg/L1.00 1 Lead U ND 0.000500 0.00200 mg/L 1.00 1 Lithium 0.006510.003000.0100 mg/L 1.00 1 45.0 0.0100 0.03001.00 Magnesium mg/L 1 Molybdenum J 0.000827 0.0002000.00100mg/L 1.00 1 0.300 1.00 Potassium 8.41 0.0800 mg/L 1 Selenium U ND 0.00150 0.00500 mg/L 1.00 1 Sodium 19.6 0.0800 0.250 mg/L1.00 1 U Thallium ND 0.0006000.00200 mg/L 1.00 1 Solids Analysis SM2540C Dissolved Solids "As Received" Total Dissolved Solids 2.38 10.0 KLP1 09/04/24 1124 2666643 625 mg/L 8 Spectrometric Analysis SM 4500-S(2-) D Sulfide "As Received" 0.0330 mg/LTotal Sulfide ND 0.100 JW2 09/03/24 1703 2666456

Page 5 of 24 SDG: 683475

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 16, 2024

Company: Georgia Power Company, Southern Company Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-63I Project: GPCC00101
Sample ID: 683475001 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Titration and Ion Anal	ysis									
SM 2320B Total Alkal	linity "As Rec	eived"								
Alkalinity, Total as CaCO3		22.5	0.725	2.00	mg/L		JW2	09/03/24	1710 2666454	10
Bicarbonate alkalinity (CaC	O3)	22.5	0.725	2.00	mg/L					
Carbonate alkalinity (CaCO	3) U	ND	0.725	2.00	mg/L					
The following Prep Mo	ethods were p	erformed:								
Method	Description	n		Analyst	Date		Time P	rep Batch		
SW846 7470A Prep	EPA 7470A	Mercury Prep Liquid		JM13	09/04/24		1115 2	666518		

 SW846 7470A Prep
 EPA 7470A Mercury Prep Liquid
 JM13
 09/04/24
 1115
 2666518

 SW846 3005A
 ICP-MS 3005A PREP
 BB2
 09/04/24
 1510
 2666440

The following Analytical Methods were performed:

Method	Description	Analyst Comments
1	EPA 300.0	•
2	EPA 300.0	
3	EPA 300.0	
4	SW846 7470A	
5	SW846 3005A/6020B	
6	SW846 3005A/6020B	
7	SW846 3005A/6020B	
8	SM 2540C	
9	SM 4500-S (2-) D	
10	SM 2320B	

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 24 SDG: 683475

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: September 16, 2024

Page 1 of 11

Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia Joju Abraham

Workorder:

Contact:

683475

Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Ion Chromatography Batch 2666362								
QC1205842860 683236002 DUP Chloride		7.02	7.06	mg/L	0.503		(0%-20%) TXT1	09/03/24 15:29
Fluoride		0.859	0.863	mg/L	0.523		(0%-20%)	
Nitrate-N		1.17	1.17	mg/L	0.189		(0%-20%)	
Sulfate		18.3	18.2	mg/L	0.142		(0%-20%)	
QC1205842859 LCS Chloride	5.00		4.61	mg/L		92.2	(90%-110%)	09/03/24 14:26
Fluoride	2.50		2.34	mg/L		93.7	(90%-110%)	
Nitrate-N	2.50		2.32	mg/L		92.8	(90%-110%)	
Sulfate	10.0		9.35	mg/L		93.5	(90%-110%)	
QC1205842858 MB Chloride		U	ND	mg/L				09/03/24 13:55
Fluoride		U	ND	mg/L				
Nitrate-N		U	ND	mg/L				
Sulfate		U	ND	mg/L				

Page 7 of 24 SDG: 683475

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683475 Page 2 of 11 Parmname NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time Ion Chromatography 2666362 Batch QC1205842861 683236002 PS 7.02 12.3 Chloride 5.00 mg/L 106 (90%-110%) TXT1 09/03/24 16:00 Fluoride 2.50 0.859 3.27 96.4 (90%-110%) mg/L Nitrate-N 2.50 1.17 3.54 mg/L 95.2 (90%-110%) Sulfate 10.0 18.3 28.8 mg/L 105 (90%-110%) **Metals Analysis - ICPMS** 2666441 Batch QC1205842995 0.0500 0.0485 mg/L 96.9 (80%-120%) BAJ 09/08/24 23:21 Antimony 0.0500 0.0498 99.7 Arsenic mg/L (80%-120%) Barium 0.0500 0.0487 mg/L 97.4 (80%-120%) Beryllium 0.0500 0.0601 mg/L120 (80%-120%) Boron 0.100 0.112 mg/L 112 (80%-120%) Cadmium 0.0500 0.0495 mg/L 99 (80%-120%) 2.05 Calcium 2.00 102 mg/L (80%-120%) Chromium 0.0500 0.0476 95.2 mg/L (80%-120%) Cobalt 0.0500 0.0485 97.1 (80%-120%) mg/L

Page 8 of 24 SDG: 683475

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683475 Page 3 of 11 QC RPD% Parmname NOM Sample Qual Units REC% Range Anlst Date Time Metals Analysis - ICPMS Batch 2666441 Iron 2.00 1.90 mg/L 94.8 (80%-120%) BAJ 09/08/24 23:21 Lead 0.0500 0.0478 95.6 (80%-120%) mg/L 0.0500 0.0555 Lithium mg/L 111 (80%-120%) 2.13 106 Magnesium 2.00 mg/L(80%-120%) 0.0500 0.0487 97.4 Manganese (80%-120%) 09/09/24 12:50 mg/L Molybdenum 0.0500 0.0513 mg/L 103 (80%-120%) 09/08/24 23:21 Potassium 2.00 2.05 102 (80%-120%) mg/L 0.0500 0.0495 Selenium mg/L 98.9 (80%-120%) Sodium 2.00 2.17 mg/L 109 (80%-120%) Thallium 0.0500 0.0454 90.9 mg/L (80%-120%) QC1205842994 MB U 09/08/24 23:18 ND Antimony mg/L U ND Arsenic mg/L Barium U ND mg/L Beryllium U ND mg/L

Page 9 of 24 SDG: 683475

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683475 Page 4 of 11 P<u>armname</u> NOM QC RPD% REC% Sample Qual Units Range Anlst Date Time Metals Analysis - ICPMS 2666441 Batch U BAJ 09/08/24 23:18 Boron ND mg/L U Cadmium ND mg/L U ND mg/L Calcium Chromium U ND mg/L Cobalt U ND mg/LIron U ND mg/L U ND Lead mg/LU ND Lithium mg/L U Magnesium ND mg/LU ND mg/L09/09/24 12:49 Manganese Molybdenum U ND 09/08/24 23:18 mg/L Potassium U ND mg/LU ND Selenium mg/L U ND Sodium mg/L

Page 10 of 24 SDG: 683475

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

683475 Page 5 of 11 **Parmname** NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2666441 Batch Thallium U ND mg/L BAJ 09/08/24 23:18 QC1205842996 683475001 MS ND 0.0479 0.0500 U 95.7 09/08/24 23:32 Antimony mg/L (75%-125%) 0.0500 U ND 0.0520 Arsenic mg/L 100 (75%-125%) Barium 0.0500 0.0206 0.0684 mg/L 95.6 (75%-125%) Beryllium 0.0500 U ND 0.0610 122 (75%-125%) mg/L Boron 0.100 0.731 0.809 mg/L N/A (75%-125%) 09/08/24 23:46 U ND Cadmium 0.0500 0.0483 96.3 (75%-125%) 09/08/24 23:32 mg/L Calcium 2.00 65.6 66.7 09/08/24 23:46 mg/L N/A (75%-125%) Chromium 0.0500 U ND 0.0479 95.4 (75%-125%) 09/08/24 23:32 mg/L 0.0500 0.0335 0.0796 Cobalt 92.3 mg/L (75%-125%)Iron 2.00 0.7412.60 mg/L 93.1 (75%-125%) 0.0500 U ND 0.0453 90.5 Lead mg/L (75%-125%) Lithium 0.0500 J 0.00651 0.0620 mg/L 111 (75%-125%) Magnesium 2.00 45.0 46.5 mg/L N/A (75%-125%)

Workorder:

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683475 Page 6 of 11 **Parmname** NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2666441 Batch Manganese 0.0500 8.12 8.18 mg/L N/A (75%-125%) BAJ 09/09/24 12:52 0.05000.000827 0.0535 105 09/08/24 23:32 Molybdenum mg/L (75%-125%) Potassium 2.00 8.41 10.4 mg/L N/A (75%-125%) ND 0.0503 Selenium 0.0500 U mg/L 99.7 (75%-125%) Sodium 2.00 19.6 21.4 N/A mg/L (75%-125%)Thallium 0.0500 U ND 0.0437 87.4 (75%-125%) mg/L QC1205842997 683475001 MSD Antimony 0.0500 U ND 0.0496 mg/L 3.62 99.2 (0%-20%)09/08/24 23:35 ND 0.0521 0.0500 U mg/L 0.221 100 (0%-20%) Arsenic 0.0701 0.0500 0.02062.32 98.8 Barium mg/L (0%-20%)Beryllium 0.0500 U ND 0.0618 mg/L1.21 123 (0%-20%) 0.100 0.731 0.814 Boron N/A (0%-20%) 09/08/24 23:49 mg/L 0.651 0.0500 U ND 0.0504 Cadmium mg/L 4.17 100 (0%-20%)09/08/24 23:35 mg/L 0.783 Calcium 2.00 65.6 66.2 N/A (0%-20%) 09/08/24 23:49 Chromium 0.0500 U ND 0.0488 mg/L 1.7 97 (0%-20%)09/08/24 23:35

Page 12 of 24 SDG: 683475

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683475 Page 7 of 11 **Parmname** NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2666441 Batch Cobalt 0.0500 0.0335 0.0798 mg/L 0.198 92.6 (0%-20%)BAJ 09/08/24 23:35 2.00 0.741 94.8 (0%-20%) Iron 2.64 mg/L 1.26 ND Lead 0.0500 U 0.0468mg/L 3.24 93.5 (0%-20%) 0.00651 0.0639 Lithium 0.0500 J mg/L 3.11 115 (0%-20%) 2.00 45.0 47.2 1.31 N/A (0%-20%)Magnesium mg/L 0.0500 8.12 8.09 1.13 N/A (0%-20%)09/09/24 12:53 Manganese mg/L 0.0500 0.000827 0.0553 mg/L 3.31 109 (0%-20%) 09/08/24 23:35 Molybdenum Potassium 2.00 8.41 10.5 mg/L 0.437 N/A (0%-20%)Selenium 0.0500 U ND 0.0524 mg/L 4.19 104 (0%-20%) 2.00 19.6 21.6 N/A Sodium mg/L 0.879 (0%-20%)U ND Thallium 0.0500 0.0453 mg/L 3.69 90.6 (0%-20%)QC1205842998 683475001 SDILT U ND U ND 09/08/24 23:40 Antimony ug/L N/A (0%-20%)Arsenic U ND U ND ug/L N/A (0%-20%) Barium 20.6 J 3.98 ug/L 3.52 (0%-20%)

Page 13 of 24 SDG: 683475

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683475 Page 8 of 11 QC REC% Parmname NOM Sample Qual Units RPD% Range Anlst Date Time Metals Analysis - ICPMS 2666441 Batch U Beryllium ND U ND ug/L N/A (0%-20%)BAJ 09/08/24 23:40 Boron 146 34.2 ug/L 16.9 (0%-20%) 09/08/24 23:55 U ND U ND Cadmium ug/L N/A (0%-20%) 09/08/24 23:40 13100 2630 Calcium ug/L .303 (0%-20%) 09/08/24 23:55 U ND ND ug/L Chromium U N/A (0%-20%)09/08/24 23:40 Cobalt 33.5 6.83 ug/L 1.95 (0%-20%) 741 152 2.58 (0%-20%) Iron ug/L U U Lead ND ND ug/L N/A (0%-20%)Lithium J 6.51 ND ug/L N/A (0%-20%) 45000 9210 ug/L 2.4 (0%-20%) Magnesium Manganese 325 65.8 ug/L 1.29 (0%-20%)09/09/24 12:54 0.827 U ND 09/08/24 23:40 Molybdenum ug/L N/A (0%-20%) 1590 8410 5.36 (0%-20%) Potassium ug/L U Selenium ND U ND ug/L N/A (0%-20%)

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683475 Page 9 of 11 Parmname NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2666441 Batch Sodium 19600 4060 ug/L 3.42 (0%-20%)BAJ 09/08/24 23:40 Thallium U ND U ND (0%-20%) ug/L N/A Metals Analysis-Mercury 2666519 QC1205843135 683196014 DUP Mercury U ND U ND mg/L N/A JP2 09/05/24 09:57 QC1205843134 LCS 0.00200 0.00202 101 (80%-120%) 09/05/24 09:52 Mercury mg/L QC1205843133 MB U ND 09/05/24 09:50 Mercury mg/L QC1205843136 683196014 MS 0.00200 U ND 0.00201 101 09/05/24 09:58 Mercury mg/L (75%-125%) QC1205843137 683196014 SDILT U ND ND ug/L N/A (0%-10%) 09/05/24 10:00 Mercury Solids Analysis Batch 2666643 QC1205843360 683782002 DUP 145 151 mg/L(0%-5%) KLP1 09/04/24 11:24 **Total Dissolved Solids** 4.05 QC1205843359 LCS Total Dissolved Solids 300 299 99.7 (95%-105%) 09/04/24 11:24 mg/L QC1205843358 ND 09/04/24 11:24 Total Dissolved Solids mg/L

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

		ي د د د	•	,					
Workorder: 683475									Page 10 of 11
Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range A	nlst	Date Time
Spectrometric Analysis Batch 2666456 -									
QC1205843027 LCS Total Sulfide	0.400		0.402	mg/L		100	(85%-115%)	JW2	09/03/24 17:03
QC1205843026 MB Total Sulfide		U	ND	mg/L					09/03/24 17:03
QC1205843028 683475001 PS Total Sulfide	0.400 U	ND	0.386	mg/L		96.4	(75%-125%)		09/03/24 17:03
QC1205843029 683475001 PSI Total Sulfide	D 0.400 U	ND	0.377	mg/L	2.25	94.3	(0%-15%)		09/03/24 17:03
Titration and Ion Analysis Batch 2666454 -									
QC1205843021 LCS Alkalinity, Total as CaCO3	50.0		50.7	mg/L		101	(90%-110%)	JW2	09/03/24 17:05
QC1205843034 LCSD Alkalinity, Total as CaCO3	50.0		51.1	mg/L	0.786	102	(0%-20%)		09/03/24 17:07

Notes:

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- N Metals--The Matrix spike sample recovery is not within specified control limits
- H Analytical holding time was exceeded
- < Result is less than value reported
- > Result is greater than value reported
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- Z Paint Filter Test--Particulates passed through the filter, however no free liquids were observed.
- d 5-day BOD--The 2:1 depletion requirement was not met for this sample

Page 16 of 24 SDG: 683475

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 11 of 11 Pa

Parmname	NOM	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time

- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.

683475

- ND Analyte concentration is not detected above the detection limit
- Ε %difference of sample and SD is >10%. Sample concentration must meet flagging criteria
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Е General Chemistry--Concentration of the target analyte exceeds the instrument calibration range
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- FB Mercury was found present at quantifiable concentrations in field blanks received with these samples. Data associated with the blank are deemed invalid for reporting to regulatory agencies
- N1See case narrative

Workorder:

- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- Per section 9.3.4.1 of Method 1664 Revision B, due to matrix spike recovery issues, this result may not be reported or used for regulatory compliance R purposes.
- The target analyte was detected in the associated blank. R
- 5-day BOD--Test replicates show more than 30% difference between high and low values. The data is qualified per the method and can be used for e reporting purposes
- See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 17 of 24 SDG: 683475

Technical Case Narrative Georgia Power Company SDG #: 683475

Metals

<u>Product:</u> Determination of Metals by ICP-MS <u>Analytical Method:</u> SW846 3005A/6020B <u>Analytical Procedure:</u> GL-MA-E-014 REV# 36

Analytical Batch: 2666441

Preparation Method: SW846 3005A

Preparation Procedure: GL-MA-E-006 REV# 15

Preparation Batch: 2666440

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683475001	BRA-PZ-63I
1205842994	Method Blank (MB)ICP-MS
1205842995	Laboratory Control Sample (LCS)
1205842998	683475001(BRA-PZ-63IL) Serial Dilution (SD)
1205842996	683475001(BRA-PZ-63IS) Matrix Spike (MS)
1205842997	683475001(BRA-PZ-63ISD) Matrix Spike Duplicate (MSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Calibration Information

ICSA/ICSAB Statement

For the ICP-MS analysis, the ICSA solution contains analyte concentrations which are verified trace impurities indigenous to the purchased standard.

Technical Information

Sample Dilutions

Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range. Samples were diluted to ensure that the analyte concentrations were within the linear calibration range of the instrument.

A 14 -	683475
Analyte	001
Boron	5X
Calcium	5X
Manganese	25X

Page 18 of 24 SDG: 683475

Product: Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer

Analytical Method: SW846 7470A

Analytical Procedure: GL-MA-E-010 REV# 40

Analytical Batch: 2666519

Preparation Method: SW846 7470A Prep

Preparation Procedure: GL-MA-E-010 REV# 40

Preparation Batch: 2666518

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683475001	BRA-PZ-63I
1205843133	Method Blank (MB)CVAA
1205843134	Laboratory Control Sample (LCS)
1205843137	683196014(NonSDGL) Serial Dilution (SD)
1205843135	683196014(NonSDGD) Sample Duplicate (DUP)
1205843136	683196014(NonSDGS) Matrix Spike (MS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

General Chemistry

Product: Ion Chromatography Analytical Method: EPA 300.0

Analytical Procedure: GL-GC-E-086 REV# 35

Analytical Batch: 2666362

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683475001	BRA-PZ-63I
1205842858	Method Blank (MB)
1205842859	Laboratory Control Sample (LCS)
1205842860	683236002(NonSDG) Sample Duplicate (DUP)
1205842861	683236002(NonSDG) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Page 19 of 24 SDG: 683475

Technical Information

Holding Times

Sample (See Below) was logged in for this analysis outside of the method specified holding time. The data is qualified.

Sample	Analyte	Value
683475001 (BRA-PZ-63I)	Nitrate-N	Received 30-AUG-24, within holding, analyzed 04-SEP-24, out of holding 31-AUG-24

Sample Dilutions

The following sample 683475001 (BRA-PZ-63I) was diluted because target analyte concentrations exceeded the calibration range. The following sample 683475001 (BRA-PZ-63I) in this sample group was diluted due to matrix interference. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

A 14 -	683475
Analyte	001
Nitrate-N	2X
Sulfate	50X

Miscellaneous Information

Manual Integrations

Samples 1205842860 (Non SDG 683236002DUP), 1205842861 (Non SDG 683236002PS) and 683475001 (BRA-PZ-63I) were manually integrated to correctly position the baseline as set in the calibration standards.

Product: Solids, Total Dissolved **Analytical Method:** SM 2540C

Analytical Procedure: GL-GC-E-001 REV# 21

Analytical Batch: 2666643

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683475001	BRA-PZ-63I
1205843358	Method Blank (MB)
1205843359	Laboratory Control Sample (LCS)
1205843360	683782002(NonSDG) Sample Duplicate (DUP)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Page 20 of 24 SDG: 683475

Product: Sulfide, Total

Analytical Method: SM 4500-S (2-) D

Analytical Procedure: GL-GC-E-052 REV# 13

Analytical Batch: 2666456

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683475001	BRA-PZ-63I
1205843026	Method Blank (MB)
1205843027	Laboratory Control Sample (LCS)
1205843028	683475001(BRA-PZ-63I) Post Spike (PS)
1205843029	683475001(BRA-PZ-63I) Post Spike Duplicate (PSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: Alkalinity

Analytical Method: SM 2320B

Analytical Procedure: GL-GC-E-033 REV# 16

Analytical Batch: 2666454

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID# Client Sample Identification

683475001 BRA-PZ-63I

1205843021 Laboratory Control Sample (LCS)

1205843034 Laboratory Control Sample Duplicate (LCSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Laboratory Control Sample Duplicate (LCSD)

An LCSD was used in place of matrix QC due to limited sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 21 of 24 SDG: 683475

age: of last and a second a second and a second a second and a second				Chem Chem	Laboratories LLC Chemistry I Radiochemistry I Radiobioassay I Specialty Analytics	Ories	LLC iobioassay 13	Specialty A	nalytics			GEL Laboratories, LLC 2040 Savage Road Charleston, SC 29407	ies, LLC oad 29407	683475
OC Number (1);				in of Cu	Chain of Custody and Analytical Request	d Analyti	cal Requ	lest				Phone: (843) 556-8171	56-8171	1000
O Number: GPC82177-0006	GEL Wor	GEL Work Order Number:			GEL Project Manager: Erin Trent	ct Manage	r: Erin Tr	ent		- 0		Fax: (843) 766-1178	-1178	6000
llient Name: GA Power			Phone # 4(404-506-7116	9		San	Sample Analysis Requested ⁽⁵⁾	lysis Re	quested		(Fill in the number of containers for each test)	containers for	or each test)
roject/Site Name: Plant Branch Ash Ponds - BCD	BCD		Fax#			Shou	-	S.		IN IN			V	< Preservative Type (6)
ddress: 241 Ralph McGill Blvd SE, Atlanta GA 30308	3A 30308					samı	sample be considered:	£O.		8			XVIII	Comments
Collected By: J, May ACC	Send Resu	Send Results To: SCS & Geosyntec		Contacts		II) Vlqc	ırds	TDS, N	dicarb Boos	7Z 38 9Z			red	Note: extra sample is required for sample specific
Sample ID * For composites - indicate start and stop date time	tate time	*Date Collected (mm/dd/vy)	*Time Collected (Military) (hhmm)	QC Code (3) Fi	Field Sample Filtered (3) Matrix (4)	E Garage Suppose Suppo	(7) Known or possible Haza	Total number Cl, F, SO4, EPA 300, S	Total, Carb, & SM 23 Meta	EPA 6020, C	JluS 4 MS		Ţ	QC QC Task_Code: BRA-CCR-ASSMT-2024S2
3RA-72-63I		42/52/89	1630	Z	MG			00	7	7	>			
3RA-														
3RA-														
SRA-														
sra-														
RA-														
IRA-							1							
IRA-							V-	1						
IRA-								-		-				
RA-														
	Chain of Cust	Chain of Custody Signatures					TAT	TAT Requested:		Normal: x	Rush:	Specify:	S	(Subject to Surcharge)
igned) Date	Time	Received by (signed)		Date	Time		Fax Results: [] Yes	ts: [] Ye	oN [x] No	lo				
h2.0580 crops	0830	the I	1	178/3	24	834	Select Del	iverable:	[]Cof.	V [] Q	Summar	Select Deliverable: [] C of A [] QC Summary [] level 1 [x]	[x] Level 2 [[]Level 3 [] Level 4
		0 6					Additional Remarks: For Lab Receiving 1	l Remark Receiving	Use Only	Aetals: B	Ca,Sb,As,I	Additional Remarks: * Metals: B.Ca,Sb,As,Ba,Be,Cd,Cr,Co,Pb,Li,Mo,Se,Tl,Fe,Mg,Mn,K,Na,Hg For Lab Receiving Use Only: Custody Seal Intact? [] Yes [] No Cooler Temp:	Pb,Li,Mo,Se,Tl,F	Se,Ti,Fe,Mg,Mn,K,Na,Hg Cooler Temp: / °C
For sample shipping and delivery details, see Sample Receipt & Review form (SRR.)	e Sample Recei	ot & Review form	(SRR.)		-	Sample	Sample Collection Time Zone: [x] Eastern	Time Zon	e: [x] E	ıstem	[] Pacific	-	2	[] Other:
) Chain of Custody Number = Client Determined) QC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicate, EB = Equipment Blank, MS = Matrix Spike Sample, MSD = Matrix Spike Duplicate Sample, G = Grab, C = Composite of Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicate with a - Y - for yes the sample was field filtered or - N - for sample was not field filtered.	= Field Duplicate, EF	= Equipment Blank,	MS = Matrix S for sample was	pike Sample, not field filte	MSD = Matrix ed.	Spike Duplicat	e Sample, G=	- Grab, C =	Composite					
) Matrix Codes: WD=Drinking Water, WG=Groundwater, WS=Surface Water, WW=Waste Water, WL=Leachate, SO=Soil, SE=Sediment, SL=Sludge, WQ=Water Quality Control Matrix Codes: WD=Drinking Water, WG-Groundwater, WS=Surface Water, WW=Water, WL=Leachate, SO=Soil, SE=Sediment, SL=Sludge, WQ=Water Quality Control Matrix Codes: WD=Drinking Water, WG-Groundwater, WS=Surface Water, WW=Water, WL=Leachate, SO=Soil, SE=Sediment, SL=Sludge, WQ=Water Quality Control Matrix Codes: WD=Drinking Water, WG-Groundwater, WS=Surface Water, WW=Water, WL=Leachate, SO=Soil, SE=Sediment, SL=Sludge, WQ=Water Quality Control Matrix Codes: WD=Drinking Water, WG-Groundwater, WS=Surface Water, WW=Water, WW=Water, WL=Leachate, SO=Soil, SE=Sediment, SL=Sludge, WQ=Water, WG-Water, WW=Water, WW=Water, WC-Leachate, SO=Soil, SE=Sediment, SL=Sludge, WQ=Water, WQ=Water, WG-Water, WG-Wate	, WS=Surface Wate	., WW=Waste Water,	WL=Leachate,	SO=Soil, SE	=Sediment, SL	=Sludge, WQ=	Water Quality	Control Mi	ıtrix					
) Sample Manys Acquested. Analytical mention representative, account, out on A. Sample Manys and the same of the s	Acid, SH = Sodium	Hydroxide, SA = Sulf	uric Acid, AA	= Ascorbic Ac	id, HX = Hexa	ne, ST = Sodiu	m Thiosulfate	. If no prese	vative is ad	ded = leave	field blank			
KNOWN OR POSSIBLE HAZARDS	Characteri	Characteristic Hazards	Listed Waste	Waste			Other		Ī			Plea	rse provide a	Please provide any additional details
	FL = Flammable CO = Corrosive RE = Reactive	FL = Flammable/Ignitable CO = Corrosive RE = Reactive	LW= Listed W (F,K,P and U-! Waste code(s):	LW= Listed Waste (F,K,P and U-listed wastes.) Waste code(s):	d wastes.)		OT= Other / Unknown (i.e.: High/low pH, asbestos, beryllium, irritants, other misc. health hazards, etc.) Description:	r / Unknc Now pH, th hazara n:	asbestos, s, etc.)	berylliu	n, irritants	-1	below regarding disposal concern sample(s), type o matrices, etc.)	below regarding handling and/or disposal concerns. (i.e.: Origin of sample(s), type of site collected from, odd matrices, etc.)
d = Cadmium Ag= Silver r = Chromium MR= Misc. RCRA metals b = Lead	TSCA Regulated PCB = Polychlorinated biphenyls	Regulated Polychlorinated biphenyls				1								
						Ŧ								

683471 683768 SAMPLE RECEIPT & REVIEW FORM GEL Laboratories LLC SDG/AR/COC/Work Order: Received By: CLM 8130124 Date Received: FedEx Express FedEx Ground UPS Field Services Courier Other Carrier and Tracking Number Suspected Hazard Information *If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation. Hazard Class Shipped: UN#;

If UN2910, Is the Radioactive Shipment Survey Compliant? Yes___No__ A)Shipped as a DOT Hazardous? B) Did the client designate the samples are to be COC notation or radioactive stickers on containers equal client designation. received as radioactive? Maximum Net Counts Observed* (Observed Counts - Area Background Counts): CPM/ mR/Hr C) Did the RSO classify the samples as Classified as: Rad 1 Rad 2 Rad 3 radioactive? COC notation or hazard labels on containers equal client designation. D) Did the client designate samples are hazardous? If D or E is yes, select Hazards below. Foreign Soil RCRA Asbestos Beryllium Flammable E) Did the RSO identify possible hazards? N N N Sample Receipt Criteria Comments/Qualifiers (Required for Non-Conforming Items) Circle Applicable: Seals broken Damaged container Leaking container Other (describe) Shipping containers received intact and sealed? Circle Applicable: Client contacted and provided COC Chain of custody documents included COC created upon receipt with shipment? Preservation Method Wet Ice Ice Packs Dry ice None Other: Samples requiring cold preservation *all temperatures are recorded in Celsius within $(0 \le 6 \text{ deg. C})$?* Daily check performed and passed on IR Temperature Device Serial #: IR5-23 temperature gun? Secondary Temperature Device Serial # (If Applicable): Circle Applicable: Seals broken Damaged container Leaking container Other (describe) 5 Sample containers intact and sealed? ample ID's and Containers Affected: Samples requiring chemical preservation at proper pH? If Preservation added, Lot#: If Yes, are Encores or Soil Kits present for solids? Yes No NA (If yes, take to VOA Freezer) De liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Do any samples require Volatile Are liquid VOA vials free of headspace? Yes___ No__ Analysis? Sample ID's and containers affected: ID's and tests affected: 8 Samples received within holding time? Sample ID's on COC match ID's on O's and containers affected: bottles? Date & time on COC match date & time on bottles? Number of containers received match number indicated on COC? Are sample containers identifiable as GEL provided by use of GEL labels? COC form is properly signed in Circle Applicable: Not relinquished Other (describe) relinquished/received sections? Comments (Use Continuation Form if needed): of the ID. (683479) 10.) wrote on the sample. BLA-PZ-63I all times on samples are hanged from 10:30 to 11:30 except for analysis TDS- (1683477) PM (or PMA) review: Initials __

List of current GEL Certifications as of 16 September 2024

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	KY90129
Kentucky Wastewater	KY90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2023019
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	NV-C24-00175
New Hampshire NELAP	205424
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2023-152
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235
Utah NELAP	SC000122024-41
Vermont	VT87156
Virginia NELAP	460202
Washington	C780
	, , , ,

Memorandum

Date: 28 January 2025

To: Courtney Collins

From: Ashley Wilson

CC: K. Henderson

Subject: Stage 2A Data Validation - Level II Data Deliverables – GEL

Laboratories, LLC Work Orders 683169, 683173, 683176, 683387,

683390, 683471 and 683475

SITE: Plant Branch CCR Groundwater Compliance Semiannual Monitoring AP-BCD & AP-E

INTRODUCTION

This report summarizes the findings of the Stage 2A data validation of thirty groundwater samples, four equipment blanks, four field blanks and four field duplicate samples collected 27-29 August 2024, as part of the Plant Branch on-site sampling event.

The samples were analyzed at GEL Laboratories LLC, Charleston, SC, for the following analytical tests:

- Total and Dissolved Metals by United States (US) Environmental Protection Agency (EPA) Methods 3005A/6020B
- Mercury by US EPA Method 7470A
- Anions (Nitrate-Nitrogen (N), Chloride, Fluoride and Sulfate) by US EPA Method 300.0
- Total Dissolved Solids (TDS) by Standard Method (SM) 2540C
- Total Sulfide by SM 4500-S2-D
- Alkalinity by SM 2320B

EXECUTIVE SUMMARY

Overall, based on this Stage 2A data validation covering the quality control (QC) parameters listed below and based on the information provided, the data as qualified are usable for supporting project objectives, with the following exceptions.

The non-detect results of nitrate as N in samples BRA-BRGWC-45, BRA-APE-FD-05 and BRA-BRGWC-35S were R qualified as rejected due analysis outside of holding time.

The qualified data should be used within the limitations of the qualifications. If there are results with two or more different qualifications due to multiple QC failures, the final qualification is reconciled in the electronic data deliverable (EDD) with qualifications.

The data were reviewed based on the following documents, the pertinent methods referenced by the data package and professional and technical judgment:

- US EPA Region IV Data Validation Standard Operating Procedures (US EPA Region IV, September 2011); and
- USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review, November 2020 (EPA 542-R-20-006).

The following samples were analyzed and reported in the laboratory reports:

Laboratory IDs	Client IDs
683169001	BRA-BRGWC-38S
683169002	BRA-PZ-53D
683169003	BRA-PZ-13S
683169004	BRA-BRGWC-37S
683169005	BRA-APE-FB-07
683169006	BRA-APE-FD-04
683173001	BRA-BRGWA-23S
683173002	BRA-APBCD-FB-01
683173003	BRA-BRGWC-29I
683173004	BRA-BRGWC-27I
683173005	BRA-PZ-74I
683173006	BRA-PZ-75I
683173007	BRA-PZ-44
683173008	BRA-APBCD-FD-01
683173009	BRA-APBCD-EB-04
683176001	BRA-BRGWA-2S
683176002	BRA-BRGWA-5S
683176003	BRA-BRGWA-2I
683176004	BRA-BRGWA-5I
683176005	BRA-BRGWA-6S
683387001	BRA-BRGWC-17S

Laboratory IDs	Client IDs
683387002	BRA-BRGWC-33S
683387003	BRA-BRGWC-34S
683387004	BRA-BRGWC-35S
683387005	BRA-BRGWC-36S
683387006	BRA-PZ-52D
683387007	BRA-PZ-70I
683387008	BRA-APE-FD-05
683387009	BRA-APE-FB-08
683387010	BRA-APE-EB-09
683387011	BRA-APE-EB-10
683390001	BRA-BRGWC-30I
683390002	BRA-BRGWC-47
683390003	BRA-APBCD-FB-02
683390004	BRA-BRGWC-52I
683390005	BRA-BRGWC-32S
683471001	BRA-BRGWC-45
683471002	BRA-APBCD-EB-05
683471003	BRA-APBCD-FD-02
683471004	BRA-BRGWC-25I
683471005	BRA-PZ-68D
683475001	BRA-PZ-63I

The samples were received at 0.0, 2.0 and 1.0 degrees Celsius (${}^{\circ}$ C), both within and outside of the EPA Region 4 criteria of $4{}^{\circ}$ C \pm $2{}^{\circ}$ C. Since the samples were received between 0-6 ${}^{\circ}$ C and based on professional judgment, no qualifications were applied to the data. No sample preservation issues were noted by the laboratory.

683176 and **683177:** The laboratory noted that the metals containers for samples GWA-2I and BRA-BRGWA-6S were missing labels. The radium container for sample BRA-BRGWA-2S was also noted as missing the label.

683169, **683170**, **683173**, **683174**, **683176** and **683177**: The laboratory noted three 1L containers were received without labels.

683471: The laboratory noted that sample BRA-PZ-68D was missing a collection time for TDS. The time was changed to 11:30 by the laboratory.

Incorrect error corrections were observed on the COC, instead of the proper procedure of a single strike through, correction, and initials and date of person making the corrections.

1.0 METALS

The samples were analyzed for metals by US EPA methods 3005A/6020B.

The areas of data review are listed below. A leading check mark (\checkmark) indicates an area of review in which the data were acceptable or not applicable. A preceding crossed circle (\otimes) signifies areas where issues were raised during the course of the validation review and should be considered to determine any impact on data quality and usability.

- ✓ Overall Assessment
- ✓ Holding Time
- ✓ Method Blank
- ✓ Matrix Spike/Matrix Spike Duplicate
- ✓ Laboratory Control Sample
- ✓ Laboratory Duplicate
- ⊗ Field Blank
- ✓ Equipment Blank
- ✓ Field Duplicate
- ✓ Serial Dilution
- ✓ Sensitivity
- ✓ Electronic Data Deliverables Review

1.1 Overall Assessment

1.1.1 Completeness

The metals data reported in this laboratory report are considered usable for supporting project objectives. The results are considered valid; the analytical completeness, defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to

the total number of analytical results requested on samples submitted for this analysis, for this data set is 100%.

1.1.2 Analysis Anomaly

The laboratory noted that the contract required detection limit (CRDL) for calcium did not meet the laboratory specified acceptance criteria. Since the calcium results in the associated samples were significantly greater than the CRDL and based on professional and technical judgement, no qualifications were applied to the data.

The laboratory also noted that for the Inductively Coupled Plasma – Mass Spectrometry analysis, the Interference Check Sample (ICSA) solution contains analyte concentrations which are verified trace impurities indigenous to the purchased standard.

1.2 **Holding Time**

The holding time for the metals analysis of a water sample is 180 days from sample collection to analysis. The holding times were met.

1.3 Method Blank

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). The metals were not detected in the method blanks at or above the method detection limits (MDLs).

1.4 Matrix Spike/Matrix Spike Duplicate (MS/MSD)

MS/MSDs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Three sample set specific MS/MSD pairs were reported, using samples BRA-BRGWC-38S, BRA-BRGWC-17S and BRA-PZ-63I. The recovery and relative percent difference (RPD) results were within the laboratory specified acceptance criteria.

Batch MS/MSD pairs were also reported. Since these were batch QC, the results do not affect the samples in this data set and qualifications were not applied to the data.

1.5 <u>Laboratory Control Sample (LCS)</u>

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). The recovery results were within the laboratory specified acceptance criteria.

1.6 <u>Laboratory Duplicate</u>

Laboratory duplicates were not reported for metals.

1.7 Field Blank

Four field blanks, BRA-APE-FB-07, BRA-APBCD-FB-01, BRA-APE-FB-08 and BRA-APBCD-FB-02 were collected with the sample set. Metals were not detected in the field blanks at or above the MDLs, with the following exceptions.

683387: Boron (0.0208 mg/L) was detected in field blank BRA-APE-FB-08 at a concentration greater than the RL. Therefore, the estimated boron concentration in BRA-APE-EB-09 was U qualified as not detected at the RL, and the concentrations of boron in samples BRA-BRGWC-17S and BRA-PZ-52D were J+ qualified as estimated with high bias.

683390: Boron (0.00979 mg/L) was detected at an estimated concentrations greater than the MDL and less than the RL in field blank BRA-APBCD-FB-02. Since the concentration of boron in the associated samples was greater than ten times the blank concentration, and based on technical and professional judgement, no qualifications were applied to the data.

Sample ID	Compound	Laboratory Result (mg/L)	Laboratory Flag	Validation Result (mg/L)	Validation Qualifier*	Reason Code**
BRA-APE-EB-09	Boron	0.00556	J	0.0150	U	BFH
BRA-BRGWC-17S	Boron	0.0721	NA	0.0721	J+	BFH
BRA-PZ-52D	Boron	0.0751	NA	0.0751	J+	BFH

mg/L- milligram per liter

J-the result is less than RL but greater than the MDL and the concentration is an approximate value NA-not applicable

1.8 Equipment Blank

Four equipment blanks, BRA-APBCD-EB-04, BRA-APE-EB-09, BRA-APE-EB-10 and BRA-APBCD-EB-05 were collected with the sample set. Metals were not detected in the equipment blanks at or above the MDLs, with the following exceptions.

683389: Boron (0.00556 mg/L) was detected in equipment blank BRA-APE-EB-09 at a concentration greater than the MDL and less than the RL. Since the boron concentration in the equipment blank was U qualified due to field blank contamination and based on professional and technical judgment, no additional qualifications were applied to the data.

Final Review: K Henderson 2/5/2025

^{*} Validation qualifiers are defined in Attachment 1 at the end of this report

^{**}Reason codes are defined in Attachment 2 at the end of this report

1.9 Field Duplicate

Four duplicate samples, BRA-APE-FD-04, BRA-APBCD-FD-01, BRA-APE-FD-05 and BRA-APBCD-FD-02 were collected with the sample set. Acceptable precision [RPD < 20% or the difference between the concentrations < reporting limit (RL)] was demonstrated between the field duplicates and the original samples, BRA-PZ-13S, BRA-BRGWC-27I, BRA-BRGWC-35S and BRA-BRGWC-25I, respectively, with the following exceptions.

683387: Beryllium was not detected in sample BRA-BRGWC-35S and detected at an estimated concentration greater than the MDL and less than the RL in field duplicate BRA-APE-FD-05, resulting in a noncalculable RPD between the results. Since the difference between the results were within the RL of each other, no qualifications were applied to the data.

683173: Molybdenum was detected at an estimated concentration greater than the MDL and less than the RL in sample BRA-BRGWC-27I and not detected in field duplicate BRA-APBCD-FD-01, resulting in a noncalculable RPD between the results. Since the difference between the results were within the RL of each other, no qualifications were applied to the data.

1.10 Serial Dilution

Three sample set specific serial dilutions were reported for metals using samples BRA-BRGWC-38S, BRA-BRGWC-17S and BRA-PZ-63I. The percent difference (%D) results were within the method specified acceptance criteria.

Batch serial dilutions were also reported. Since these were batch QC, the results do not affect the samples in this data set and qualifications were not applied to the data.

1.11 Sensitivity

The samples were reported to the MDLs. Elevated non-detect results were reported due to dilutions analyzed.

1.12 <u>Electronic Data Deliverable (EDD) Review</u>

The results and sample IDs in the EDDs were reviewed against the information provided by the associated level II reports at a minimum of 20% as part of the data validation process. No discrepancies were identified between the level II reports and the EDDs.

2.0 MERCURY

The samples were analyzed for mercury by US EPA Method 7470A.

The areas of data review are listed below. A leading check mark (\checkmark) indicates an area of review in which the data were acceptable or not applicable. A preceding crossed circle (\otimes) signifies areas where issues were raised during the course of the validation review and should be considered to determine any impact on data quality and usability.

- ✓ Overall Assessment
- ✓ Holding Time
- ✓ Method Blank
- ✓ Matrix Spike
- ✓ Laboratory Control Sample
- ✓ Laboratory Duplicate
- ✓ Field Blank
- ✓ Equipment Blank
- ✓ Field Duplicate
- ✓ Serial Dilution
- ✓ Sensitivity
- ✓ Electronic Data Deliverable Review

2.1 Overall Assessment

The mercury data reported in this laboratory report are considered usable for supporting project objectives. The results are considered valid; the analytical completeness, defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for this analysis, for this data set is 100%.

2.2 Holding Times

The holding time for the mercury analysis of a water sample is 28 days from sample collection to analysis. The holding times were met.

2.3 Method Blank

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Mercury was not detected in the method blanks at or above the MDL.

2.4 Matrix Spike

MSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Two sample set specific MSs were reported using samples BRA-

BRGWC-38S and BRA-BRGWC-17S. The recovery results were within the laboratory specified acceptance criteria.

Batch MSs were also reported. Since these were batch QC, the results do not affect the samples in this data set and qualifications were not applied to the data.

2.5 Laboratory Control Sample

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). The recovery results were within the laboratory specified acceptance criteria.

2.6 <u>Laboratory Duplicate</u>

Two sample set specific laboratory duplicates were reported using sample BRA-BRGWC-38S and BRA-BRGWC-17S. The RPD results were within the laboratory specified acceptance criteria.

Batch laboratory duplicates were also reported. Since these were batch QC, the results do not affect the samples in this data set and qualifications were not applied to the data.

2.7 Field Blank

Four field blanks, BRA-APE-FB-07, BRA-APBCD-FB-01, BRA-APE-FB-08 and BRA-APBCD-FB-02 were collected with the sample set. Mercury was not detected in the field blanks at or above the MDL.

2.8 **Equipment Blank**

Four equipment blanks, BRA-APBCD-EB-04, BRA-APE-EB-09, BRA-APE-EB-10 and BRA-APBCD-EB-05 were collected with the sample set. Mercury was not detected in the equipment blanks at or above the MDL.

2.9 Field Duplicate

Four duplicate samples, BRA-APE-FD-04, BRA-APBCD-FD-01, BRA-APE-FD-05 and BRA-APBCD-FD-02 were collected with the sample set. Acceptable precision [RPD < 20% or the difference between the concentrations < reporting limit (RL)] was demonstrated between the field duplicates and the original samples, BRA-PZ-13S, BRA-BRGWC-27I, BRA-BRGWC-35S and BRA-BRGWC-25I, respectively.

2.10 Serial Dilution

Two sample set specific serial dilutions were performed using samples BRA-BRGWC-38S and BRA-BRGWC-17S. The %D results were within the method specified acceptance criteria.

Batch serial dilutions were also reported for mercury. Since these were batch QC, the results do not affect the samples in this data set and qualifications were not applied to the data.

2.11 Sensitivity

The samples were reported to the MDL. Elevated non-detect results were not reported.

2.12 <u>Electronic Data Deliverable Review</u>

The results and sample IDs in the EDDs were reviewed against the information provided by the associated level II reports at a minimum of 20% as part of the data validation process. No discrepancies were identified between the level II reports and the EDDs.

3.0 WET CHEMISTRY

The samples were analyzed for anions by US EPA method 300.0, TDS by SM 2540C, total sulfide by SM 4500-S2-D and alkalinity by SM 2320B.

The areas of data review are listed below. A leading check mark (\checkmark) indicates an area of review in which the data were acceptable or not applicable. A preceding crossed circle (\otimes) signifies areas where issues were raised during the course of the validation review and should be considered to determine any impact on data quality and usability.

- ⊗ Overall Assessment
- **⊗** Holding Times
- ⊗ Method Blank
- ⊗ Matrix Spike/Matrix Spike Duplicate
- ✓ Laboratory Control Sample
- **⊗** Laboratory Duplicate
- ⊗ Field Blank
- ⊗ Equipment Blank
- ⊗ Field Duplicate
- ✓ Sensitivity
- ✓ Electronic Data Deliverables Review

3.1 Overall Assessment

3.1.1 <u>Completeness</u>

The wet chemistry data reported in this laboratory report are considered usable for supporting project objectives with the following exception. The non-detect results of nitrate as N in samples BRA-BRGWC-45, BRA-APE-FD-05 and BRA-BRGWC-35S were R qualified as rejected due analysis outside of holding time. Therefore, the analytical completeness, defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for the analysis, for this data set is 98.4%.

3.1.2 Analysis Anomaly

683169, **683173**, **683176**, **683387**, **683390**, **683471** and **683475**: The laboratory noted that samples BRA-BRGWC-38S, BRA-PZ-53D, BRA-PZ-13S, BRA-BRGWC-37S, BRA-APE-FD-04, BRA-BRGWC-29I, BRA-APBCD-FD-01, BRA-BRGWA-2S, BRA-BRGWA-5S, BRA-BRGWA-5I and BRA-BRGWA-6S, BRA-BRGWC-17S, BRA-BRGWC-33S, BRA-BRGWC-35S, BRA-BRGWC-36S, BRA-PZ-52D, BRA-APE-FD-05, BRA-BRGWC-52I, BRA-BRGWC-32, BRA-BRGWC-45, BRA-APBCD-FD-02, BRA-BRGWC-25I, BRA-PZ-68D and BRA-PZ-63I were manually integrated to correctly position the baseline as set in the calibration standards for the anion analysis. No qualifications were applied to the data based on professional and technical judgment.

3.2 Holding Times

The holding time for the nitrate-N analyses of a water sample is 48 hours from sample collection to analysis. The holding time for the fluoride, chloride and sulfate analyses of a water sample is 28 days from sample collection to analysis. The holding times for the TDS and total sulfide analysis of a water sample are 7 days from sample collection to analysis. The holding time for the alkalinity analysis of a water sample is 14 days from sample collection to analysis. The holding times were met, with the following exceptions.

683387, **683475** and **683471**: Nitrate-N was analyzed outside of the 48-hour holding time for samples BRA-BRGWC-35S, BRA-APE-FD-05, BRA-APE-EB-09, BRA-BRGWC-45 and BRA-PZ-63I. Therefore, the nondetect results for BRA-BRGWC-45, BRA-APE-FD-05 and BRA-BRGWC-35S were R qualified as rejected and the concentrations in samples BRA-PZ-63I and BRA-APE-EB-09 were J- qualified as estimated with a low bias.

Sample ID	Compound	Laboratory Result (mg/L)	Laboratory Flag	Validation Result (mg/L)	Validation Qualifier	Reason Code
BRA-BRGWC-45	Nitrogen Nitrate	0.0330	HU	0.0330	R	HT2

Final Review: K Henderson 2/5/2025

Sample ID	Compound	Laboratory Result (mg/L)	Laboratory Flag	Validation Result (mg/L)	Validation Qualifier	Reason Code
BRA-APE-EB-09	Nitrogen Nitrate	0.298	Н	0.298	J-	HT2
BRA-APE-FD-05	Nitrogen Nitrate	0.132	HU	0.132	R	HT2
BRA-BRGWC-35S	Nitrogen Nitrate	0.132	HU	0.132	R	HT2
BRA-PZ-63I	Nitrogen Nitrate	0.754	Н	0.754	J-	HT2

mg/L- milligram per liter

U-not detected at or above the MDL

H-analytical holding time exceeded

3.3 Method Blank

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). The wet chemistry parameters were not detected in the method blanks at or above the MDLs, with the following exceptions.

683173 and **683387**: Chloride (0.115 mg/L and 0.116 mg/L) was detected in the method blanks in batches 2664366 and 2665219, respectively. Therefore, the estimated concentrations of chloride in BRA-APBCD-EB-04, BRA-APBCD-FB-01, BRA-APE-EB-09 and BRA-APE-EB-10 were U qualified as not detected at or above the RL.

Sample ID	Compound	Laboratory Result (mg/L)	Laboratory Flag	Validation Result (mg/L)	Validation Qualifier	Reason Code
BRA-APBCD-EB-04	Chloride	0.118	J	0.200	U	BL1
BRA-APBCD-FB-01	Chloride	0.118	J	0.200	U	BL1
BRA-APBCD-EB-09	Chloride	0.120	J	0.200	U	BL1
BRA-APBCD-EB-10	Chloride	0.117	J	0.200	U	BL1

mg/L- milligram per liter

J-the result is less than RL but greater than the MDL and the concentration is an approximate value

3.4 Matrix Spike/Matrix Spike Duplicate

Five sample set specific MSs were reported for anions, using samples BRA-BRGWA-23S, BRA-PZ-52D, BRA-PZ-70I, BRA-BRGWC-32S and BRA-PZ-68D. The recovery results were within the laboratory specified acceptance criteria, with the following exception.

683387: The recovery of nitrate as N in the MS using sample BRA-PZ-52D was low and outside of laboratory specified acceptance criteria. Therefore, the concentration for nitrate as N in sample BRA-PZ-52DPS was J- qualified as estimated.

Final Review: K Henderson 2/5/2025

Four sample set specific MS/MSDs were reported for sulfide, using samples BRA-BRGWC-38S, BRA-BRGWA-2S, BRA-BRGWC-25I and BRA-PZ-63I. The recovery results were within the laboratory specified acceptance criteria, with the following exceptions.

Batch MSs and MS/MSD pairs were also reported for anions and sulfide. Since the batch QC results do not affect the samples in this data set, qualifications were not applied to the data.

Sample ID	Compound	Laboratory Result (mg/L)	Laboratory Flag	Validation Result (mg/L)	Validation Qualifier	Reason Code
BRA-PZ-52D	Nitrate	0.343	NA	0.343	J-	MS1

mg/L- milligram per liter

NA-not applicable

3.5 <u>Laboratory Control Sample</u>

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). An LCS or LCS/LCSD pair was reported for each analytical batch per analysis. The recovery and RPD results were within the laboratory specified acceptance criteria.

3.6 <u>Laboratory Duplicate</u>

Five sample set specific laboratory duplicates were reported for anions, using samples BRA-BRGWA-23S, BRA-PZ-52D, BRA-PZ-70I, BRA-BRGWC-32S and BRA-PZ-68D. The RPD results were within the laboratory specified acceptance criteria.

Four sample set specific laboratory duplicate was reported for TDS, using samples BRA-BRGWC-38S, BRA-PZ-44, BRA-BRGWC-52I and BRA-BRGWC-25I. The RPD results were within the laboratory specified acceptance criteria, with the following exception.

683169: The RPD of TDS for the laboratory duplicate using sample BRA-BRGWC-38S was high and outside of laboratory specified acceptance criteria. Therefore, the TDS concentration in sample BRA-BRGWC-38S was J qualified as estimated.

Batch laboratory duplicates were reported for TDS and anions. Since the batch QC results do not affect the samples in this data set, qualifications were not applied to the data.

Sample ID	Compound	Laboratory Result (mg/L)	Laboratory Flag	Validation Result (mg/L)	Validation Qualifier	Reason Code
BRA-BRGWC-38S	Total Dissolved Solids	370	NA	370	J	LD1

mg/L- milligram per liter

NA-not applicable

3.7 Field Blank

Four field blanks, BRA-APE-FB-07, BRA-APBCD-FB-01, BRA-APE-FB-08 and BRA-APBCD-FB-02 were collected with the sample set. Wet chemistry parameters were not detected in the field blanks at or above the MDLs, with the following exceptions.

683173: Chloride (0.118 mg/L) was detected at an estimated concentration greater than the MDL and less than the RL in field blank BRA-APBCD-FB-01. Since the concentration of chloride in field blank BRA-APBCD-FB-01 was U qualified as not detected at the RL due to method blank contamination and based on professional and technical judgment, no additional qualifications were applied to the data.

683387: Chloride (0.120 mg/L) was detected at an estimated concentration greater than the MDL and less than the RL in field blank BRA-APE-FB-08. Since the chloride concentration in the associated samples were U qualified due to method blank contamination and based on professional and technical judgment, no additional qualifications were applied to the data.

683390: TDS (3.00 mg/L) was detected at an estimated concentration greater than the MDL and less than the RL in field blank BRA-APBCD-FB-02. Since the associated samples were detected at concentrations greater than ten times the field blank concentration, and based on technical and professional judgement, no qualifications were applied to the data.

Sample ID	Compound	Laboratory Result (mg/L)	Laboratory Flag	Validation Result (mg/L)	Validation Qualifier	Reason Code
BRA-APE-EB-09	Chloride	0.120	J	0.200	U	BFL
BRA-APE-EB-10	Chloride	0.117	J	0.200	U	BFL

mg/L- milligram per liter

J-the result is less than RL but greater than the MDL and the concentration is an approximate value

3.8 **Equipment Blank**

Four equipment blanks, BRA-APBCD-EB-04, BRA-APE-EB-09, BRA-APE-EB-10 and BRA-APBCD-EB-05 were collected with the sample set. Wet chemistry parameters were not detected in the equipment blanks at or above the MDLs, with the following exceptions.

683173 and 683387: Chloride (0.118 mg/L, 0.120 mg/L and 0.117 mg/L) was detected at estimated concentrations greater than the MDL and less than the RL in equipment blanks BRA-APBCD-EB-04, BRA-APE-EB-09 and BRA-APE-EB-10, respectively. Since the concentrations of chloride in equipment blanks BRA-APBCD-EB-04, BRA-APE-EB-09 and BRA-APE-EB-10

Final Review: K Henderson 2/5/2025

were U qualified as not detected at the RL due to method blank contamination and based on professional and technical judgment, no additional qualifications were applied to the data.

683173: Bicarbonate alkalinity as CaCO3 (0.900 mg/L) and total alkalinity as CaCO3 (0.900 mg/L) were detected at estimated concentrations greater than the MDL and less than the RL in equipment blank BRA-APBCD-EB-04. Since the associated samples were either nondetect or detected at concentrations greater than ten times the equipment blank concentrations of bicarbonate alkalinity as CaCO3 and total alkalinity as CaCO3, and based on technical and professional judgement, no qualifications were applied to the data.

683387: Nitrate (0.298 mg/L and 0.0376 mg/L) were detected at estimated concentrations greater than the MDL and less than the RL in equipment blanks BRA-APE-EB-09 and BRA-APE-EB-10, respectively. Therefore, for the associated samples the concentrations greater than the equipment blank concentrations and less than ten times the equipment blank concentrations were J+ qualified as estimated with high bias. Since the nitrate concentration for sample BRA-PZ-52D was also J-qualified due to matrix spike recovery outside the limits, the final qualification for the nitrate concentration for sample BRA-PZ-52D was J qualified as estimated.

Carbonate alkalinity as CaCO3 (2.80 mg/L) and total alkalinity as CaCO3 (6.40 mg/L) were detected in BRA-APE-EB-09 at concentrations greater than the RLs. Therefore, for the associated samples the concentrations greater than the equipment blank concentrations and less than ten times the equipment blank concentrations were J+ qualified as estimated with high bias.

Sample	Analyte	Laboratory Result	Laboratory Flag	Validation Result	Validation Qualifier	Reason Code
		(mg/L)		(mg/L)		
BRA-BRGWC-17S	Nitrogen Nitrate	0.248	NA	0.248	J+	BEL
BRA-BRGWC-34S	Nitrogen Nitrate	0.0378	J	0.100	U	BEL
BRA-BRGWC-36S	Nitrogen Nitrate	0.535	NA	0.535	J+	BEL
BRA-PZ-52D	Nitrogen Nitrate	0.343	NA	0.343	J	MS1 BEL
BRA-PZ-70I	Nitrogen Nitrate	0.113	NA	0.113	J+	BEL
BRA-APE-FD-05	Bicarbonate Alkalinity as CaCO3	51.4	NA	51.4	J+	ВЕН
BRA-APE-FD-05	Alkalinity Total as CaCO3	51.4	NA	51.4	J+	BEH
BRA-BRGWC-17S	Bicarbonate Alkalinity as CaCO3	62.9	NA	62.9	J+	ВЕН
BRA-BRGWC-17S	Alkalinity Total as CaCO3	62.9	NA	62.9	J+	BEH
BRA-BRGWC-33S	Bicarbonate Alkalinity as CaCO3	2.70	NA	2.70	J+	ВЕН

Sample	Analyte	Laboratory Result (mg/L)	Laboratory Flag	Validation Result (mg/L)	Validation Qualifier	Reason Code
BRA-BRGWC-33S	Alkalinity Total as CaCO3	2.70	NA	2.70	J+	BEH
BRA-BRGWC-34S	Bicarbonate Alkalinity as CaCO3	32.8	NA	32.8	J+	BEH
BRA-BRGWC-34S	Alkalinity Total as CaCO3	32.8	NA	32.8	J+	BEH
BRA-BRGWC-35S	Bicarbonate Alkalinity as CaCO3	51.9	NA	51.9	J+	ВЕН
BRA-BRGWC-35S	Alkalinity Total as CaCO3	51.9	NA	51.9	J+	BEH
BRA-BRGWC-36S	Bicarbonate Alkalinity as CaCO3	20.8	NA	20.8	J+	ВЕН
BRA-BRGWC-36S	Alkalinity Total as CaCO3	20.8	NA	20.8	J+	BEH
BRA-PZ-70I	Bicarbonate Alkalinity as CaCO3	17.1	NA	17.1	J+	ВЕН
BRA-PZ-70I	Alkalinity Total as CaCO3	17.1	NA	17.1	J+	BEH

mg/L- milligram per liter

J-the result is less than RL but greater than the MDL and the concentration is an approximate value NA-not applicable

3.9 Field Duplicate

Four duplicate samples, BRA-APE-FD-04, BRA-APBCD-FD-01, BRA-APE-FD-05 and BRA-APBCD-FD-02 were collected with the sample set. Acceptable precision [RPD < 20% or the difference between the concentrations < reporting limit (RL)] was demonstrated between the field duplicates and the original samples, BRA-PZ-13S, BRA-BRGWC-27I, BRA-BRGWC-35S and BRA-BRGWC-25I, respectively, with the following exceptions.

683169: Nitrate was detected in sample BRA-PZ-13S at a concentration greater than the RL and detected at an estimated concentration greater than the MDL and less than the RL in field duplicate BRA-APE-FD-04, resulting in a noncalculable RPD between the results, and the absolute difference between the field duplicate pair concentrations was greater than the RL. Therefore, the nitrate concentrations in the field duplicate pair were J qualified as estimated.

683173: Nitrate was not detected in field duplicate BRA-APBCD-FD-01 and detected at an estimated concentration greater than the MDL and less than the RL in sample BRA-BRGWC-27I, resulting in a noncalculable RPD between the results. Since the difference between the results were within the RL of each other, no qualifications were applied to the data.

Sample	Analyte	Laboratory Result (mg/l)	Laboratory Flag	RPD	Validation Result (mg/l)	Validation Qualifier	Reason Code
BRA-APE-FD-04	Nitrogen Nitrate	0.0514	J	NC	0.0514	J	RPDF2
BRA-PZ-13S	Nitrogen Nitrate	0.260	NA		0.260	J	RPDF2

mg/L- milligram per liter

J-the result is less than RL but greater than the MDL and the concentration is an approximate value

NC-not calculable

NA-not applicable

3.10 **Sensitivity**

The samples were reported to the MDLs. Elevated non-detect results were reported due to dilutions analyzed.

3.11 <u>Electronic Data Deliverable Review</u>

The results and sample IDs in the EDDs were reviewed against the information provided by the associated level II reports at a minimum of 20% as part of the data validation process. No discrepancies were identified between the level II reports and the EDDs.

Final Review: K Henderson 2/5/2025

ATTACHMENT 1 DATA VALIDATION QUALIFIER DEFINITIONS AND INTERPRETATION KEY Assigned by Geosyntec's Data Validation Team

DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected at or above the reported sample quantitation limit. Upon application of the U qualifier to a reported result, the definition changes to "not detected at or above the reported result".
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The analyte was positively identified; however, the associated numerical value is likely to be higher than the concentration of the analyte in the sample due to positive bias of associated QC or calibration data or attributable to matrix interference.
- J- The analyte was positively identified; however, the associated numerical value is likely to be lower than the concentration of the analyte in the sample due to negative bias of associated QC or calibration data or attributable to matrix interference.
- UJ The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

ATTACHMENT 2 DATA VALIDATION REASON CODES Assigned by Geosyntec's Data Validation Team

Valid Value	Description
1	Preservation requirement not met
2	Analysis holding time exceeded
3	Blank contamination (i.e., method, trip, equipment, etc.)
4	Matrix spike/matrix spike duplicate recovery or RPD outside limits
5	LCS or RPD recovery outside limits (LCS/LCSD)
6	Surrogate recovery outside limits
7	Field Duplicate RPD exceeded
8	Serial dilution percent difference exceeded
9	Calibration criteria not met
10	Linear range exceeded
11	Internal standard criteria not met
12	Lab duplicates RPD exceeded
13	Other
14	Lab flag removed or modified: no validation qualification required

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample duplicate

RPD - Relative percent difference

Final Review: K Henderson 2/5/2025

Memorandum

Date: 17 February 2025

To: Courtney Collins

From: Kristoffer Henderson

CC: Ashley Wilson

Subject: Stage 2A Data Validation - Level II Data Deliverable - GEL

Laboratories, LLC Work Order 683468

SITE: Plant Branch CCR Groundwater Compliance Semiannual Monitoring ASD

INTRODUCTION

This report summarizes the findings of the Stage 2A data validation of eight groundwater samples including one equipment blank, one field blank and one field duplicate samples collected 29 August 2024, as part of the Plant Branch on-site sampling event.

The samples were analyzed at GEL Laboratories LLC, Charleston, SC, for the following analytical tests:

- Total and Dissolved Metals by United States (US) Environmental Protection Agency (EPA) Methods 3005A/6020B
- Mercury by US EPA Method 7470A
- Anions (Nitrate-Nitrogen (N), Chloride, Fluoride and Sulfate) by US EPA Method 300.0
- Total Dissolved Solids (TDS) by Standard Method (SM) 2540C
- Total Sulfide by SM 4500-S2-D
- Alkalinity by SM 2320B

EXECUTIVE SUMMARY

Overall, based on this Stage 2A data validation covering the quality control (QC) parameters listed below and based on the information provided, the data as qualified are usable for supporting project objectives.

The qualified data should be used within the limitations of the qualifications. If there are results with two or more different qualifications due to multiple QC failures, the final qualification is reconciled in the electronic data deliverable (EDD) with qualifications.

The data were reviewed based on the following documents, the pertinent methods referenced by the data package and professional and technical judgment:

- US EPA Region IV Data Validation Standard Operating Procedures (US EPA Region IV, September 2011); and
- USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review, November 2020 (EPA 542-R-20-006).

The following samples were analyzed and reported in the laboratory reports:

The data were reviewed based on the following documents, the pertinent methods referenced by the data package and professional and technical judgment:

- US EPA Region IV Data Validation Standard Operating Procedures (US EPA Region IV, September 2011); and
- USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review, November 2020 (EPA 542-R-20-006).

The following samples were analyzed and reported in the laboratory reports:

Laboratory IDs	Client IDs
683468001	BRA-PZ-50D
683468002	BRA-PZ-64I
683468003	BRA-PZ-61I
683468004	BRA-BRGWC-50
683468005	BRA-PZ-51D
683468006	BRA-APBCD-FB-03

Laboratory IDs	Client IDs
683468007	BRA-APBCD-FD-03
683468008	BRA-PZ-51I
683468009	BRA-APBCD-EB-06
683468010	BRA-PZ-60I
683468011	BRA-PZ-58I

The samples were received at 1.0 degrees Celsius ($^{\circ}$ C), outside of the EPA Region 4 criteria of 4° C \pm 2° C. Since the samples were received between 0-6 $^{\circ}$ C and based on professional judgment, no qualifications were applied to the data. No sample preservation issues were noted by the laboratory.

1.0 METALS

The samples were analyzed for metals by US EPA methods 3005A/6020B.

The areas of data review are listed below. A leading check mark (\checkmark) indicates an area of review in which the data were acceptable or not applicable. A preceding crossed circle (\otimes) signifies areas where issues were raised during the course of the validation review and should be considered to determine any impact on data quality and usability.

- ✓ Overall Assessment
- ✓ Holding Time
- ✓ Method Blank
- ✓ Matrix Spike/Matrix Spike Duplicate
- ✓ Laboratory Control Sample
- ✓ Laboratory Duplicate
- ✓ Field Blank
- ✓ Equipment Blank
- ✓ Field Duplicate
- ✓ Serial Dilution
- ✓ Sensitivity
- ✓ Electronic Data Deliverables Review

1.1 Overall Assessment

1.1.1 Completeness

The metals data reported in this laboratory report are considered usable for supporting project objectives. The results are considered valid; the analytical completeness, defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for this analysis, for this data set is 100%.

1.1.2 Analysis Anomaly

The laboratory noted that the contract required detection limit (CRDL) for calcium did not meet the laboratory specified acceptance criteria. Since the calcium results in the associated samples were significantly greater than the CRDL and based on professional and technical judgement, no qualifications were applied to the data.

The laboratory also noted that for the Inductively Coupled Plasma – Mass Spectrometry analysis, the Interference Check Sample (ICSA) solution contains analyte concentrations which are verified trace impurities indigenous to the purchased standard.

1.2 **Holding Time**

The holding time for the metals analysis of a water sample is 180 days from sample collection to analysis. The holding times were met.

1.3 Method Blank

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). The metals were not detected in the method blanks at or above the method detection limits (MDLs).

1.4 <u>Matrix Spike/Matrix Spike Duplicate (MS/MSD)</u>

MS/MSDs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One sample set specific MS/MSD pair was reported, using sample BRA-PZ-50D. The recovery and relative percent difference (RPD) results were within the laboratory specified acceptance criteria.

1.5 Laboratory Control Sample (LCS)

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). The recovery results were within the laboratory specified acceptance criteria.

1.6 <u>Laboratory Duplicate</u>

Laboratory duplicates were not reported for metals.

1.7 Field Blank

One field blank, BRA-APBCD-FB-03, was collected with the sample set. Metals were not detected in the field blank at or above the MDLs.

1.8 Equipment Blank

One equipment blanks, BRA-APBCD-EB-06, was collected with the sample set. Metals were not detected in the equipment blank at or above the MDLs, with the following exception.

Magnesium (0.0112 mg/L) was detected at an estimated concentrations greater than the MDL and less than the reporting limit (RL)in equipment blank BRA-APBCD-EB-06. Since the concentration of magnesium in the associated samples was greater than ten times the blank concentration, and based on technical and professional judgement, no qualifications were applied to the data.

1.9 Field Duplicate

One duplicate sample, BRA-APBCD-FD-03, was collected with the sample set. Acceptable precision (RPD < 20% or the difference between the concentrations < RL) was demonstrated between the field duplicate and the original sample, BRA-BRGWC-50.

1.10 Serial Dilution

One sample set specific serial dilution was reported for metals using sample BRA-PZ-50D. The percent difference (%D) results were within the method specified acceptance criteria, with the following exception.

The %D of boron was high and outside the laboratory specified acceptance criteria. Therefore, the boron concentration for sample BRA-PZ-50D was J qualified as estimated.

1.11 **Sensitivity**

The samples were reported to the MDLs. Elevated non-detect results were reported due to dilutions analyzed.

1.12 <u>Electronic Data Deliverable Review</u>

The results and sample IDs in the EDDs were reviewed against the information provided by the associated level II reports at a minimum of 20% as part of the data validation process. No discrepancies were identified between the level II reports and the EDDs.

2.0 MERCURY

The samples were analyzed for mercury by US EPA Method 7470A.

The areas of data review are listed below. A leading check mark (\checkmark) indicates an area of review in which the data were acceptable or not applicable. A preceding crossed circle (\otimes) signifies areas where issues were raised during the course of the validation review and should be considered to determine any impact on data quality and usability.

- ✓ Overall Assessment
- ✓ Holding Time
- ✓ Method Blank
- ✓ Matrix Spike
- ✓ Laboratory Control Sample
- ✓ Laboratory Duplicate
- ✓ Field Blank
- ✓ Equipment Blank

- ✓ Field Duplicate
- ✓ Serial Dilution
- ✓ Sensitivity
- ✓ Electronic Data Deliverable Review

2.1 Overall Assessment

The mercury data reported in this laboratory report are considered usable for supporting project objectives. The results are considered valid; the analytical completeness, defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for this analysis, for this data set is 100%.

2.2 <u>Holding Times</u>

The holding time for the mercury analysis of a water sample is 28 days from sample collection to analysis. The holding times were met.

2.3 Method Blank

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Mercury was not detected in the method blanks at or above the MDL.

2.4 Matrix Spike

MSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One sample set specific MS was reported using sample BRA-BRGWC-50. The recovery result was within the laboratory specified acceptance criteria.

2.5 <u>Laboratory Control Sample</u>

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). The recovery results were within the laboratory specified acceptance criteria.

2.6 <u>Laboratory Duplicate</u>

One sample set specific laboratory duplicate was reported using sample BRA-BRGWC-50. The RPD result was within the laboratory specified acceptance criteria.

2.7 Field Blank

One field blank, BRA-APBCD-FB-03, was collected with the sample set. Mercury was not detected in the field blank at or above the MDL.

2.8 Equipment Blank

One equipment blanks, BRA-APBCD-EB-06, was collected with the sample set. Mercury was not detected in the equipment blank at or above the MDL.

2.9 Field Duplicate

One duplicate sample, BRA-APBCD-FD-03, was collected with the sample set. Acceptable precision (RPD < 20% or the difference between the concentrations < RL) was demonstrated between the field duplicate and the original sample, BRA-BRGWC-50.

2.10 <u>Serial Dilution</u>

One sample set specific serial dilution was performed using sample BRA-BRGWC-50. The %D result was within the method specified acceptance criteria.

2.11 Sensitivity

The samples were reported to the MDL. Elevated non-detect results were not reported.

2.12 Electronic Data Deliverable Review

The results and sample IDs in the EDDs were reviewed against the information provided by the associated level II reports at a minimum of 20% as part of the data validation process. No discrepancies were identified between the level II reports and the EDDs.

3.0 WET CHEMISTRY

The samples were analyzed for anions by US EPA method 300.0, TDS by SM 2540C, total sulfide by SM 4500-S2-D and alkalinity by SM 2320B.

The areas of data review are listed below. A leading check mark (\checkmark) indicates an area of review in which the data were acceptable or not applicable. A preceding crossed circle (\otimes) signifies areas where issues were raised during the course of the validation review and should be considered to determine any impact on data quality and usability.

- ✓ Overall Assessment
- ✓ Holding Times

- ✓ Method Blank
- ✓ Matrix Spike/Matrix Spike Duplicate
- ✓ Laboratory Control Sample
- **⊗** Laboratory Duplicate
- ✓ Field Blank
- ✓ Equipment Blank
- ✓ Field Duplicate
- ✓ Sensitivity
- ✓ Electronic Data Deliverables Review

3.1 Overall Assessment

3.1.1 <u>Completeness</u>

The wet chemistry data reported in this laboratory report are considered usable for supporting project objectives. The results are considered valid; the analytical completeness, defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for this analysis, for this data set is 100%.

3.1.2 Analysis Anomaly

The laboratory noted that sample BRA-PZ-64I was manually integrated to correctly position the baseline as set in the calibration standards for the anion analysis. No qualifications were applied to the data based on professional and technical judgment.

3.2 Holding Times

The holding time for the nitrate-N analyses of a water sample is 48 hours from sample collection to analysis. The holding time for the fluoride, chloride and sulfate analyses of a water sample is 28 days from sample collection to analysis. The holding times for the TDS and total sulfide analysis of a water sample are 7 days from sample collection to analysis. The holding time for the alkalinity analysis of a water sample is 14 days from sample collection to analysis. The holding times were met.

3.3 Method Blank

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). The wet chemistry parameters were not detected in the method blanks at or above the MDLs.

3.4 Matrix Spike/Matrix Spike Duplicate

One sample set specific MS was reported for anions, using sample BRA-PZ-60I. The recovery results were within the laboratory specified acceptance criteria.

One sample set specific MS/MSD was reported for sulfide, using sample BRA-PZ-50D. The recovery results were within the laboratory specified acceptance criteria.

Batch MSs and MS/MSD pairs were also reported for anions and sulfide. Since the batch QC results do not affect the samples in this data set, qualifications were not applied to the data.

3.5 Laboratory Control Sample

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). An LCS or LCS/LCS duplicate (LCSD) pair was reported for each analytical batch per analysis. The recovery and RPD results were within the laboratory specified acceptance criteria.

3.6 Laboratory Duplicate

One sample set specific laboratory duplicate was reported for anions, using sample BRA-PZ-60I. The RPD result was within the laboratory specified acceptance criteria.

One sample set specific laboratory duplicate was reported for TDS, using sample BRA-PZ-50D. The RPD of TDS was high and outside of laboratory specified acceptance criteria. Therefore, the TDS concentration in sample BRA-PZ-50D was J qualified as estimated.

Batch laboratory duplicates were reported for TDS and anions. Since the batch QC results do not affect the samples in this data set, qualifications were not applied to the data.

Sample ID	Compound	Laboratory Result (mg/L)	Laboratory Flag	Validation Result (mg/L)	Validation Qualifier*	Reason Code**
BRA-PZ-50D	Total Dissolved Solids	1490	NA	1490	J	LD1

mg/L- milligram per liter

NA-not applicable

^{*} Validation qualifiers are defined in Attachment 1 at the end of this report.

**Reason codes are defined in Attachment 2 at the end of this report.

3.7 Field Blank

One field blank, BRA-APBCD-FB-03, was collected with the sample set. Wet chemistry parameters were not detected in the field blank at or above the MDLs.

3.8 Equipment Blank

One equipment blanks, BRA-APBCD-EB-06, was collected with the sample set. Wet chemistry parameters were not detected in the equipment blank at or above the MDLs.

3.9 Field Duplicate

One duplicate sample, BRA-APBCD-FD-03, was collected with the sample set. Acceptable precision (RPD < 20% or the difference between the concentrations < RL) was demonstrated between the field duplicate and the original sample, BRA-BRGWC-50.

3.10 **Sensitivity**

The samples were reported to the MDLs. Elevated non-detect results were reported due to dilutions analyzed.

3.11 Electronic Data Deliverable Review

The results and sample IDs in the EDDs were reviewed against the information provided by the associated level II reports at a minimum of 20% as part of the data validation process. No discrepancies were identified between the level II reports and the EDDs.

ATTACHMENT 1 DATA VALIDATION QUALIFIER DEFINITIONS AND INTERPRETATION KEY Assigned by Geosyntec's Data Validation Team

DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected at or above the reported sample quantitation limit. Upon application of the U qualifier to a reported result, the definition changes to "not detected at or above the reported result".
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The analyte was positively identified; however, the associated numerical value is likely to be higher than the concentration of the analyte in the sample due to positive bias of associated QC or calibration data or attributable to matrix interference.
- J- The analyte was positively identified; however, the associated numerical value is likely to be lower than the concentration of the analyte in the sample due to negative bias of associated QC or calibration data or attributable to matrix interference.
- UJ The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

Final Review: K Henderson 2/17/2025

ATTACHMENT 2 DATA VALIDATION REASON CODES Assigned by Geosyntec's Data Validation Team

DQM Reason Code	Description
AB1	> Samples in batch
AB2	QC sample missing
AB3	Batch analysis time exceeded
BAH	Contamination detected in the Ambient Blank greater than or equal to the Quantitation Limit.
BAL	Contamination detected in the Ambient Blank less than the Quantitation Limit.
BC	Calibration blank contamination
BC1	assoc. result < RL
BC2	assoc. result > RL < mult.
BC3	assoc. result > RL > mult.
BEH	Contamination detected in the Equipment Blank greater than or equal to the Quantitation Limit.
BEL	Contamination detected in the Equipment Blank less than the Quantitation Limit.
BF	Field blank contamination
BF1	assoc. result < RL
BF2	assoc. result > RL < mult.
BF3	assoc. result > RL > mult.
BFH	Contamination detected in the Field Blank greater than or equal to the Quantitation Limit.
BFL	Contamination detected in the Field Blank less than the Quantitation Limit.
BL	Laboratory blank contamination
BL1	assoc. result < RL
BL2	assoc. result > RL < mult.
BL3	assoc. result > RL > mult.

DQM Reason Code	Description
BLH	Contamination detected in the Lab Blank greater than or
	equal to the Quantitation Limit.
BLL	Contamination detected in the Lab Blank less than the
BT	Quantitation Limit.
	Trip blank contamination
BT1	assoc. result < RL
BT2	assoc. result $> RL < mult.$
BT3	assoc. result $> RL > mult$.
ВТН	Contamination detected in the Trip Blank greater than or equal to the Quantitation Limit.
BTL	Contamination detected in the Trip Blank less than the Quantitation Limit.
CA1	Column difference
CC1	CCV %D
CC2	CCV %R
CC3	CCV RRF
CI1	IC RSD
CI2	IC RRF
CR1	Calibration range
CV1	ICV or CCV %D
CV2	ICV or CCV %R
CV3	ICV CCV RRF
DF1	Dilution Factor > 1
DL	Dilution Factor > 1
DVT1	The Dissolved Result > Total Result and the absolute difference > the AD_MULTIPLIER_CL * Detection Limit

Plant Branch Data Validation 17 February 2025 Page 13

DQM Reason Code	Description
DVT2	The Dissolved Result > Total Result and the absolute difference > AD_MULTIPLIER_UCO * Detection Limit
DVT3	The Dissolved Result > Total Result and the relative percent difference (RPD) > RPD_CL
DVT4	The Dissolved Result > Total Result and the relative percent difference (RPD) > RPD_UCO
ER1	MDL= <result<rl (inorganic)<="" td=""></result<rl>
ER2	MDL= <result<rl (organic)<="" td=""></result<rl>
FBC1	BLANK CONTAMINATION
FBC2	RESULT < BLANK * MULTIPLIER
FBC3	RESULT > BLANK * MULTIPLIER
FD1	Field duplicate RPD
FD2	Field duplicate abs. diff.
GHT1	GROSS_QUALIFIER_HIT
GHT2	GROSS_QUALIFIER_NON_DETECT
HP1	Hydrocarbon pattern
HT1	Holding time samp. to preservation
HT2	Holding time samp. to analysis
HT3	Holding time gros. samp. to pres.
HT4	Holding time gros. samp. to analysis
IS1	Internal standard
LBC1	BLANK CONTAMINATION
LBC2	RESULT < BLANK * MULTIPLIER
LBC3	RESULT > BLANK * MULTIPLIER

DQM Reason Code	Description
LD1	Lab duplicate RPD
LD2	Lab duplicate abs. diff.
LS1	LS %R
LS2	LS RPD
MS1	MS %R
MS2	MS RPD
MS3	Parent >4x spike
MS4	Spike diluted out
NP1	Non-Preferred Result
NR1	NUMERIC RESULTS
OT1	Other quality issue
PS1	BETWEEN CONTROL AND WARNING LIMITS
PS2	INVALID
PS3	LESS THAN LOWER CONTROL LIMIT
PS4	LESS THAN LOWER WARNING LIMIT
PT1	The preservative for this test id does not match the
RDL1	required preservative in RT_HOLDING_TIME. EXCEEDS REQUIRED DETECTION LIMIT
RL1	ND > project limit
RO1	Other rad. issue
RPD1	LCS/LCSD
KPDI	LCS/LCSD
RPD2	LCS/LCSD_NON_DETECT
RPD3	MS/MSD
RPD4	MS/MSD_NON_DETECT
RPD5	Orig/Dup
RPD6	Orig/Dup_NON_DETECT

Plant Branch Data Validation 17 February 2025 Page 14

DQM Reason Code RPDF1	Description FIELD DUPLICATE
RPDF2	FIELD DUPLICATE NON DETECT
RQ1	Rad. quantitation issue
RR1	Repeated result same method
RR2	Repeated result diff. method
RSD1	RSD exceeds CL for LCS sample
	*
RSD2	RSD exceeds CL for MS sample
RSD3	RSD exceeds CL for Lab sample
RSD4	RSD exceeds CL for Field sample
RY1	Tracer or carrier
SD1	Serial dilution
SO1	High moisture
SO2	Wet weight
SP1	Preservation, temp
SP2	Preservation, pH
SP3	Preservation, headspace
SPR1	BLANK SPIKE > UCL
SPR10	EarthSoft.DQM.SpikeRecovery2
SPR11	EarthSoft.DQM.SpikeRecovery2
SPR12	EarthSoft.DQM.SpikeRecovery2
SPR2	INORGANIC SPIKE > UCL
SPR3	ORGANIC SPIKE > UCL
SPR4	LCL > BLANK > LOW_CUTOFF
SPR5	LCL > INORG > LOW_CUTOFF
SPR6	LCL > ORG > LOW_CUTOFF
SPR7	BLANK SPIKE < LOW_CUTOFF
SPR8	INORGANIC SPIKE < LOW_CUTOFF
SPR9	ORGANIC SPIKE < LOW_CUTOFF
SU	Surrogate outlier

DQM Reason Code	Description
SU1	Surrogate
SU2	Surrogate diluted out
SURR1	ASSO. DETECTS OF LCL > REC > LOW_CUTOFF
SURR10	EarthSoft.DQM.SurrogateRecovery
SURR11	EarthSoft.DQM.SurrogateRecovery
SURR12	EarthSoft.DQM.SurrogateRecovery
SURR2	ASSO. DETECTS OF REC < LOW_CUTOFF
SURR3	ASSO. DETECTS OF REC > UCL
SURR4	ASSO. NDS OF LCL > REC > LOW_CUTOFF
SURR5	ASSO. NDS OF REC < LOW_CUTOFF
SURR6	ASSO. NDS OF REC > UCL
SURR7	LCL > REC > LOW_CUTOFF
SURR8	REC < LOW_CUTOFF
SURR9	REC > UCL
TBC1	BLANK CONTAMINATION
TBC2	RESULT < BLANK * MULTIPLIER
TBC3	RESULT > BLANK * MULTIPLIER
TR	Trace Detection
TR1	Trace detection
TRA1	Tracer is outside of UCL or LCL
TRA2	Associated result of a tracer less than the LCL
TRA3	Associated detect result of a tracer greater than the UCL
VC1	Canister vacuum
VC2	Canister contamination
VSU1	INVALID SAMPLE UNIT TYPE
VSU2	MISSING SAMPLE UNIT TYPE
VSU3	NON-DEFAULT RESULT UNIT

Plant Branch Data Validation 17 February 2025 Page 15

AD-Absolute Difference

CCV-Continuous Calibration Verification

CL-Control Limit

%D-Percent Difference

IC-Initial Calibration

ICV-Initial Calibration Verification

INORG-Inorganic

LCL-Lower Control Limit

LCS-Laboratory Control Spike

LCSD-Laboratory Control Spike Duplicate

LS-Laboratory Spike

MDL-Method Detection Limit

MS-Matrix Spike

MSD-Matrix Spike Duplicate

ND-Not Detected

ORG-Organic

QC-Quality Control

%R-Percent Recovery

REC-Recovery

RL-Reporting Limit

RPD-Relative Percent Difference

RRF-Relative Response Factor

RSD-Relative Standard Deviation

UCL-Upper Control Limit

UCO-Upper Cut Off

gel.com

September 11, 2024

Joju Abraham Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

Re: Branch CCR Groundwater Compliance

Work Order: 683170

Dear Joju Abraham:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on August 28, 2024. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt. The laboratory received the following sample(s):

<u>Laboratory ID</u>	Client ID	<u>Matrix</u>	Date Collected	Date Received
683170001	BRA-BRGWC-38S	Ground Water	08/27/24 12:07	08/28/24 13:10
683170002	BRA-PZ-53D	Ground Water	08/27/24 14:00	08/28/24 13:10
683170003	BRA-PZ-13S	Ground Water	08/27/24 13:51	08/28/24 13:10
683170004	BRA-BRGWC-37S	Ground Water	08/27/24 16:41	08/28/24 13:10
683170005	BRA-APE-FB-07	Water	08/27/24 15:40	08/28/24 13:10
683170006	BRA-APE-FD-04	Ground Water	08/27/24 12:00	08/28/24 13:10

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Prep Methods and Prep Dates

Not Applicable

Analysis Methods and Analysis Dates

Method	Run Date ID
Calculation	11-SEP-2024
EPA 903.1 Modified	10-SEP-2024
EPA 904.0/SW846 9320 Modified	10-SEP-2024

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4443.

Sincerely,

Hannah Bowden for

Alaina Pinnick Project Manager

Purchase Order: GPC82177-0006

Enclosures

Page 2 of 17 SDG: 683170

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

GPCC001 Georgia Power Company Client SDG: 683170 GEL Work Order: 683170

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Alaina Pinnick.

	Hannah Bonden	
Reviewed by		

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 11, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWC-38S Project: GPCC00101 Sample ID: 683170001 Client ID: GPCC001

Sample ID: 683170001 Matrix: WG

Collect Date: 27-AUG-24 Receive Date: 28-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analyst	Date	Time	Batch	Mtd.
Rad Gas Flow Proportion	onal Countir													
GFPC Ra228, Liquid	"As Received	"												
Radium-228	U	-0.123	+/-1.52	2.81	+/-1.52	3.00	pCi/L			KP1	09/10/24	1158	2664487	1
Radium-226+Radium-	Radium-226+Radium-228 Calculation "See Parent Products"													
Radium-226+228 Sum	U	0.945	+/-1.58	2.81	+/-1.59		pCi/L			NXL1	09/11/24	1550	2664985	2
Rad Radium-226														
Lucas Cell, Ra226, Lie	quid "As Rece	eived"												
Radium-226		0.945	+/-0.408	0.453	+/-0.465	1.00	pCi/L			MJ2	09/10/24	1000	2665880	3

The following Analytical Methods were performed

MethodDescription1EPA 904.0/SW846 9320 Modified2Calculation

B EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2664487	72.9	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method
DL: Detection Limit PF: Prep Factor
Lc/LC: Critical Level RL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 4 of 17 SDG: 683170

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 11, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

BRA-PZ-53D Client Sample ID: Project: GPCC00101 Sample ID: GPCC001 Client ID: 683170002

Matrix: WG

Collect Date: 27-AUG-24 Receive Date: 28-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	st Date Tin	e Batch	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		0										
Radium-228		2.16	+/-1.19	1.75	+/-1.32	3.00	pCi/L		KP1	09/10/24 1158	2664487	7 1
Radium-226+Radium-	228 Calculat	ion "See Pa	rent Produci	ts"								
Radium-226+228 Sum		3.22	+/-1.28	1.75	+/-1.40		pCi/L		NXL1	09/11/24 1550	2664985	5 2
Rad Radium-226 Lucas Cell, Ra226, Lid	quid "As Rece	rived"										
Radium-226		1.06	+/-0.454	0.452	+/-0.481	1.00	pCi/L		MJ2	09/10/24 1000	2665880) 3

The following Analytical Methods were performed Description

1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2664487	89.1	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 5 of 17 SDG: 683170

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 11, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-13S Project: GPCC00101 Sample ID: 683170003 Client ID: GPCC001

Matrix: WG

Collect Date: 27-AUG-24
Receive Date: 28-AUG-24
Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date Ti	me	Batch N	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		0											
Radium-228		3.10	+/-1.37	1.78	+/-1.58	3.00	pCi/L		KP1	09/10/24 11	58 2	2664487	1
Radium-226+Radium-	228 Calculat	ion "See Pa	rent Product	s"									
Radium-226+228 Sum		4.31	+/-1.42	1.78	+/-1.65		pCi/L		NXL1	09/11/24 15	50 2	2664985	2
Rad Radium-226 Lucas Cell, Ra226, Lic	quid "As Rece	rived"											
Radium-226		1.21	+/-0.388	0.283	+/-0.476	1.00	pCi/L		MJ2	09/10/24 10	00 2	2665880	3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery Test Batch ID Recovery% Acceptable Limits

Barium-133 Tracer GFPC Ra228, Liquid "As Received" 2664487 74.1 (15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

Lc/LC: Critical Level

Mtd.: Method

PF: Prep Factor

RL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 6 of 17 SDG: 683170

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 11, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: **BRA-BRGWC-37S** Project: GPCC00101 Sample ID: GPCC001 Client ID: 683170004

Matrix: WG

Collect Date: 27-AUG-24 Receive Date: 28-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	st Date Tim	e Batch	Mtd.
Rad Gas Flow Proporti GFPC Ra228, Liquid		0										
Radium-228	U	0.619	+/-1.30	2.26	+/-1.31	3.00	pCi/L		KP1	09/10/24 1158	2664487	1
Radium-226+Radium-	-228 Calcula	tion "See Pa	rent Produci	ts"								
Radium-226+228 Sum	U	2.01	+/-1.41	2.26	+/-1.44		pCi/L		NXL1	09/11/24 1550	2664985	2
Rad Radium-226 Lucas Cell, Ra226, Lic	quid "As Rec	eived"										
Radium-226		1.39	+/-0.556	0.627	+/-0.602	1.00	pCi/L		MJ2	09/10/24 1000	2665880	3

The following Analytical Methods were performed Description

1	EPA 904.0/SW846 9320 Modified
2	Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2664487	91.8	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 7 of 17 SDG: 683170

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 11, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-APE-FB-07 Project: GPCC00101 Sample ID: GPCC001 Client ID: 683170005

Matrix: WQ

Collect Date: 27-AUG-24 Receive Date: 28-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date Time	Batch .	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		0										
Radium-228	U	0.510	+/-1.01	1.79	+/-1.01	3.00	pCi/L		KP1	09/10/24 1158	2664487	1
Radium-226+Radium-2	228 Calculo	ation "See Pa	rent Produci	ts"								
Radium-226+228 Sum	U	0.838	+/-1.04	1.79	+/-1.05		pCi/L		NXL1	09/11/24 1550	2664985	2
Rad Radium-226 Lucas Cell, Ra226, Liq	uid "As Red	ceived"										
Radium-226	U	0.328	+/-0.255	0.367	+/-0.266	1.00	pCi/L		MJ2	09/10/24 1000	2665880	3

The following Analytical Methods were performed Description

1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2664487	83.3	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 8 of 17 SDG: 683170

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 11, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-APE-FD-04 Project: GPCC00101 Sample ID: Client ID: GPCC001 683170006

Matrix: WG

Collect Date: 27-AUG-24 Receive Date: 28-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date	Time	Batch	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		0											
Radium-228	U	-0.683	+/-1.09	2.25	+/-1.09	3.00	pCi/L		KP1	09/10/24	1158	2664487	1
Radium-226+Radium-	-228 Calculat	tion "See Pa	arent Product:	s"									
Radium-226+228 Sum	U	1.62	+/-1.21	2.25	+/-1.24		pCi/L		NXL1	09/11/24	1550	2664985	2
Rad Radium-226 Lucas Cell, Ra226, Lie	quid "As Rece	eived"											
Radium-226		1.62	+/-0.543	0.487	+/-0.607	1.00	pCi/L		MJ2	09/10/24	1000	2665880	3

The following Analytical Methods were performed Description

1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery **Batch ID Recovery% Acceptable Limits**

Barium-133 Tracer GFPC Ra228, Liquid "As Received" 2664487 77.5 (15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor **RL**: Reporting Limit Lc/LC: Critical Level

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 9 of 17 SDG: 683170

Radiochemistry Technical Case Narrative Georgia Power Company SDG #: 683170

Product: Radium-226+Radium-228 Calculation

Analytical Method: Calculation

Analytical Procedure: GL-RAD-D-003 REV# 45

Analytical Batch: 2664985

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683170001	BRA-BRGWC-38S
683170002	BRA-PZ-53D
683170003	BRA-PZ-13S
683170004	BRA-BRGWC-37S
683170005	BRA-APE-FB-07
683170006	BRA-APE-FD-04

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: GFPC Ra228, Liquid

Analytical Method: EPA 904.0/SW846 9320 Modified Analytical Procedure: GL-RAD-A-063 REV# 5

Analytical Batch: 2664487

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683170001	BRA-BRGWC-38S
683170002	BRA-PZ-53D
683170003	BRA-PZ-13S
683170004	BRA-BRGWC-37S
683170005	BRA-APE-FB-07
683170006	BRA-APE-FD-04
1205838732	Method Blank (MB)
1205838733	683170001(BRA-BRGWC-38S) Sample Duplicate (DUP)
1205838734	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the

Page 10 of 17 SDG: 683170

following exceptions.

Quality Control (QC) Information

Duplication Criteria between QC Sample and Duplicate Sample

The Sample and the Duplicate, (See Below), did not meet the relative percent difference requirement; however, they do meet the relative error ratio requirement with the value listed below.

Sample	Analyte	Value
1205838733 (BRA-BRGWC-38SDUP)	Radium-228	RPD 226* (0.0%-100.0%) RER 2.06 (0-3)

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2665880

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683170001	BRA-BRGWC-38S
683170002	BRA-PZ-53D
683170003	BRA-PZ-13S
683170004	BRA-BRGWC-37S
683170005	BRA-APE-FB-07
683170006	BRA-APE-FD-04
1205841769	Method Blank (MB)
1205841770	682900001(NonSDG) Sample Duplicate (DUP)
1205841771	682900001(NonSDG) Matrix Spike (MS)
1205841772	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Miscellaneous Information

Additional Comments

The matrix spike, 1205841771 (Non SDG 682900001MS), aliquot was reduced to conserve sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the

Page 11 of 17 SDG: 683170

requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 12 of 17 SDG: 683170

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Client: Georgia Power Company, Southern Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia

Contact: Joju Abraham

Workorder: 683170 Report Date: September 11, 2024 Page 1 of 2

Parmname		NOM	Sample Q	ual	QC	Units	RPD%	REC%	Range A	Anlst	Date Time
Rad Gas Flow											
Batch	2664487 —										
QC1205838733	683170001 DUP										
Radium-228		U	-0.123		1.99	pCi/L	226*		(0% - 100%)	KP1	09/10/2411:58
		Uncert:	+/-1.52		+/-1.21						
		TPU:	+/-1.52		+/-1.31						
QC1205838734	LCS										
Radium-228		70.3			61.8	pCi/L		87.9	(75%-125%)	KP1	09/10/2411:58
		Uncert:			+/-4.28						
		TPU:			+/-16.6						
QC1205838732	MB										
Radium-228				U	0.876	pCi/L				KP1	09/10/2411:58
		Uncert:			+/-1.30						
		TPU:			+/-1.32						
Rad Ra-226											
Batch	2665880 —										
QC1205841770	682900001 DUP										
Radium-226			1.22		1.32	pCi/L	7.74		(0% - 100%)	MJ2	09/10/2411:07
		Uncert:	+/-0.439		+/-0.478						
		TPU:	+/-0.495		+/-0.515						
QC1205841772	LCS										
Radium-226		27.1			29.6	pCi/L		109	(75%-125%)	MJ2	09/10/2411:07
		Uncert:			+/-2.01						
		TPU:			+/-7.13						
QC1205841769	MB										
Radium-226				U	0.000	pCi/L				MJ2	09/10/2411:07
		Uncert:			+/-0.208						
		TPU:			+/-0.208						
QC1205841771	682900001 MS										
Radium-226		134	1.22		117	pCi/L		86.4	(75%-125%)	MJ2	09/10/2411:07
		Uncert:	+/-0.439		+/-8.08						
		TPU:	+/-0.495		+/-27.4						

Notes:

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Η Analytical holding time was exceeded
- Result is less than value reported
- Result is greater than value reported

Page 13 of 17 SDG: 683170

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683170 Page 2 of 2 **Parmname** NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time UI Gamma Spectroscopy--Uncertain identification BDResults are either below the MDC or tracer recovery is low Preparation or preservation holding time was exceeded h R Sample results are rejected RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry. N/A RPD or %Recovery limits do not apply. Analyte concentration is not detected above the detection limit ND M M if above MDC and less than LLD NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier FA Failed analysis. UJ Gamma Spectroscopy--Uncertain identification One or more quality control criteria have not been met. Refer to the applicable narrative or DER. O

- Analyte present. Reported value may be biased high. Actual value is expected to be lower. K
- Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias. UL
- Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- N1 See case narrative
- Other specific qualifiers were required to properly define the results. Consult case narrative.
- Analyte is a Tracer compound
- REMP Result > MDC/CL and < RDL M
- See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ** Indicates analyte is a surrogate/tracer compound.
- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 14 of 17 SDG: 683170

Pa1580 OC1580

GEL Laboratories, LLC 2040 Savage Road Charleston, SC 29407 Phone* (843) 556-8171	Fax: (843) 766-1178	he number of containers for each test)	< Preservative Type (6)	Comments	Note: extra sample is required for sample specific	Task_Code: BRA-CCR-ASSMT-202482										I de la constante de la consta	Specify: (Subject to Surcharge)		[] level 1 [x] Level 2 [] Level 3 [] Level 4	* Metals: B,Ca,Sb,As,Ba,Be,Cd,Cr,Co,Pb,Li,Mo,Se,Tl,Fe,Mg,Mn,K,Na,Hg	t? [] Yes [] No Cooler Temp:	[] Pacific [] Central [] Mountain [] Other:						Please provide any additional details below regarding handling and/or disposal concerns. (i.e.: Origin of sample(s), type of site collected from, odd matrices etc.)	Harres, etc./	
ity Analytics		Sample Analysis Requested (5) (Fill in the number of containers for each test)	IN IN	410 VIE	TDS, N. 2540 Bicarb 2008 IS * 5010, 74 26 & 22 26 & 22 315, 932	Total number CI, E, SO4, EPA 300, S Total, Carb, & SM 23 Metal BPA 6020, G Radium 22 SW-846 93 Sulf Sulf Sulf Sulf	1118	/////	1///	1////8	11118	1010					TAT Requested: Normal: x Rush:	ts: [] Yes [x] No	ble: [] C of A [] QC Summary	Additional Remarks: * Metals: B,Ca,Sb,As,Ba,E	For Lab Receiving Use Only: Custody Seal Intact? [] Yes	Sample Collection Time Zone: [x] Eastern [] Pacific	- Cook O - Comments	origo, composito	y Control Matrix		, If no preservative is added = leave field blank	Other OT= Other / Unknown (i.e.: High/low pH, asbestos, beryllium, irritants, other misc. health hazards, etc.) Description:		
Laboratories LLC security Radiochemistry Radiochemi	GEL Project Manager: Erin Trent	Phone # 404-506-7116 Sam	Should this	sample be considered:	M)	Code (3) Marrix (4) Known or sotopic info.) (7) Known or sotopic info.)	M M M	2 2 2 2 2 2 2	2 2 2 2	2 2 3 2 5 -	2 2 2 3	2 2 63 2 6					TAT	Date Time Fax Results:	S/28/84 USZZ Select Del	8/28/27 3 D Additional	For Lab h	Sample Collection	Morin Guilso Gamala MCD – Morin Guilsa Dualisses Gamala C – Cank C – Commeries	As not field filtered.	ate, SO=Soil, SE=Sediment, SL=Sludge, WQ=Water Quality	provided for each (i.e. 8260B - 3, 6010B/7470A - 1).	A = Ascorbic Acid, HX = Hexane, ST = Sodium Thiosulfate,	Listed Waste LW= Listed Waste OT= Other / (F.K.P and U-listed wastes.) Waste code(s): Description:		
GEL gel.com	GEL Work Order Number:	Phone #	Fax#	A 30308	Send Results To: SCS & Geosyntec Contacts	*Date Collected Collected (Military)	08/77/24	08/17/24 1400	1351	71 16	08/21/24 1540	- HZ//Z//50					Chain of Custody Signatures	ne Received by (signed)	C827 124/1	IL M	3	Sample Receipt & Review form (SRR.)	Stald Dundlingto DD - Danismant Dlank MC - Matri	yes the sample was field filtered or - N - for sample v	WS=Surface Water, WW=Waste Water, WL=Leach	(i.e. 8260B, 6010B/7470A) and number of containers	cid, SH = Sodium Hydroxide, SA = Sulfuric Acid, A	ble	TSCA Regulated PCB = Polychlorinated biphenyls	
Page:	PO Number: GPC82177-0006	Client Name: GA Power	Project/Site Name: Plant Branch Ash Ponds - E	Address: 241 Ralph McGill Blvd SE, Atlanta GA 30308	Collected By: T. Galale J. Jahnson	Sample ID * For composites - indicate start and stop date time	BRA- BRGWC-385	BRA- P2-53D	BRA- P2-13S	BRA- BRGWC-37S	BRA- APE-FB-07	BRA- APE-FD-04	BRA-	BRA-	BRA-	BRA-	3	Relinquished By (Signed) Date Time	1 m- 82-8 MM 4-801. 1	2	3	> For sample shipping and delivery details, see Sample Receipt & Review form (SRR.)	Chain of Custody Number = Client Determined Control of Custody Number = Client Determined Control of Custom Number = Client Determined Control of Custom Number = Client Determined Number = Client	3.) Field Filtered: For liquid matrices, indicate with a - Y - for yes the sample was field filtered or - N - for sample was not field filtered.	4.) Matrix Codes. WD=Drinking Water, WG=Groundwater, WS=Surface Water, WW=Waste Water, WL=Leachate, SO=Soil, SE=Sediment, SL=Sludge, WQ=Water Quality Control Matrix	5.) Sample Analysis Requested: Analytical method requested (i.e. 8260B, 6010B/7470A) and number of containers provided for each (i.e. 8260B - 3, 6010B/7470A - 1).	6.) Preservative Type: HA = Hydrochloric Acid, NI = Nitric Acid, SH = Sodium Hydroxide, SA = Sulfuric Acid, AA = Ascorbic Acid, HX = Hexane, ST = Sodium Thiosulfate, If no preservative is added = leave field blank	7.) KNOWN OR POSSIBLE HAZARDS RCRA Metals As = Arsenic Hg= Mercury Ba = Barium Se= Selenium	Cd = Cadmium Ag= Silver Cr = Chromium MR= Misc. RCRA metals Pb = Lead	

SAMPLE RECEIPT & REVIEW FORM

683170 683169 683173 683174 683176 683177

Client: GPCC		SDG/AR/COC/Work Order:									
Received By: QG		Date Received: 8 128 24									
Carrier and Tracking Number		Circle Applicable: FedEx Express FedEx Ground UPS Field Services Courier Other									
Suspected Hazard Information	oN.	*If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.									
A)Shipped as a DOT Hazardous?	1	UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? YesNo									
Did the client designate the samples are to be received as radioactive?	~	COC notation or radioactive stickers on containers equal client designation.									
C) Did the RSO classify the samples as radioactive?	/	Maximum Net Counts Observed* (Observed Counts - Area Background Counts):									
D) Did the client designate samples are hazardous?	1	COC notation or hazard labels on containers equal client designation. OD or E is yes, select Hazards below.									
E) Did the RSO identify possible hazards?	1	PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:									
Sample Receipt Criteria	NA	Comments/Qualifiers (Required for Non-Conforming Items)									
Shipping containers received intact and sealed?		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)									
2 Chain of custody documents included with shipment?		Circle Applicable: Client contacted and provided COC COC created upon receipt									
3 Samples requiring cold preservation within (0 ≤ 6 deg. C)?*		Preservation Method: Wet Ice Ice Packs Dry ice None Other: *all temperatures are recorded in Celsius TEMP:									
Daily check performed and passed on IR temperature gun?		Temperature Device Serial #: IR1-23 Secondary Temperature Device Serial # (If Applicable):									
5 Sample containers intact and sealed?		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)									
6 Samples requiring chemical preservation at proper pH?		Sample ID's and Containers Affected: If Presegvation added, Lot#:									
7 Do any samples require Volatile Analysis?		If Yes, are Encores or Soil Kits present for solids? YesNoNA(If yes, take to VOA Freezer) To liquid VOA vials contain acid preservation? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA Sample ID's and containers affected:									
8 Samples received within holding time?	*	ID's and tests affected:									
Sample ID's on COC match ID's on bottles?		ID's and containers affected:									
Date & time on COC match date & time on bottles?		Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)									
Number of containers received match number indicated on COC?		Circle Applicable: No container count on COC Other (describe)									
Are sample containers identifiable as GEL provided by use of GEL labels? COC form is properly signed in relinquished/received sections?		Circle Applicable: Not relinquished Other (describe)									
omments (Use Continuation Form if needed):	B	RA-BRGWA-65 metals container has no labor									
1-00 5-00	r	eccused three plastic ILS in BRA-BROWAS									
3-227-02	1	cit with no label or anything written on it.									
4-22	t	IRA-BREWA- as radium container how no Get									
PM (or PMA) revi	iew: I	uitials Date AUG 29 2024 Page of									

List of current GEL Certifications as of 11 September 2024

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	KY90129
Kentucky Wastewater	KY90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2023019
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	NV-C24-00175
New Hampshire NELAP	205424
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2023-152
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235
Utah NELAP	SC000122024-41
Vermont	VT87156
Virginia NELAP	460202
Washington	C780

gel.com

September 12, 2024

Joju Abraham Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

Re: Branch CCR Groundwater Compliance

Work Order: 683174

Dear Joju Abraham:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on August 28, 2024. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt. The laboratory received the following sample(s):

<u>Laboratory ID</u>	Client ID	<u>Matrix</u>	Date Collected	Date Received
683174001	BRA-BRGWA-23S	Ground Water	08/27/24 12:30	08/28/24 13:10
683174002	BRA-APBCD-FB-01	Water	08/27/24 15:25	08/28/24 13:10
683174003	BRA-BRGWC-29I	Ground Water	08/27/24 15:45	08/28/24 13:10
683174004	BRA-BRGWC-27I	Ground Water	08/27/24 15:37	08/28/24 13:10
683174005	BRA-PZ-74I	Ground Water	08/27/24 12:12	08/28/24 13:10
683174006	BRA-PZ-75I	Ground Water	08/27/24 14:00	08/28/24 13:10
683174007	BRA-PZ-44	Ground Water	08/27/24 17:21	08/28/24 13:10
683174008	BRA-APBCD-FD-01	Ground Water	08/27/24 12:00	08/28/24 13:10
683174009	BRA-APBCD-EB-04	Water	08/27/24 17:45	08/28/24 13:10

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Prep Methods and Prep Dates

Not Applicable

Analysis Methods and Analysis Dates

Method	Run Date ID
Calculation	12-SEP-2024
EPA 903.1 Modified	10-SEP-2024
EPA 904.0/SW846 9320 Modified	10-SEP-2024

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4443.

Sincerely,

Hannah Bowden for

Alaina Pinnick Project Manager

Purchase Order: GPC82177-0006

Enclosures

Page 3 of 20 SDG: 683174

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

GPCC001 Georgia Power Company Client SDG: 683174 GEL Work Order: 683174

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Alaina Pinnick.

	HannahBonden	
Reviewed by	1 -	

Page 4 of 20 SDG: 683174

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 12, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWA-23S Project: GPCC00101 Sample ID: 683174001 Client ID: GPCC001

Sample ID: 683174001 Matrix: WG

Collect Date: 27-AUG-24
Receive Date: 28-AUG-24
Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analyst	Date	Time	Batch	Mtd.
Rad Gas Flow Proporti	onal Countir	ıg												
GFPC Ra228, Liquid	"As Received	"												
Radium-228	U	0.435	+/-0.765	1.36	+/-0.773	3.00	pCi/L			KP1	09/10/24	0932	2664488	1
Radium-226+Radium-	-228 Calculat	ion "See Pa	arent Product	s"										
Radium-226+228 Sum		2.43	+/-0.914	1.36	+/-1.01		pCi/L		1	NXL1	09/12/24	1026	2664986	2
Rad Radium-226														
Lucas Cell, Ra226, Lie	quid "As Rece	eived"												
Radium-226		2.00	+/-0.500	0.294	+/-0.642	1.00	pCi/L			MJ2	09/10/24	1000	2665880	3

The following Analytical Methods were performed

MethodDescription1EPA 904.0/SW846 9320 Modified2Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2664488	82.1	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method
DL: Detection Limit PF: Prep Factor
Lc/LC: Critical Level RL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 5 of 20 SDG: 683174

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 12, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: **BRA-APBCD-FB-01** Project: GPCC00101 Sample ID: GPCC001 Client ID: 683174002

Matrix: WQ

Collect Date: 27-AUG-24 Receive Date: 28-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date Time	Batch I	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		0										
Radium-228	U	0.392	+/-0.811	1.47	+/-0.817	3.00	pCi/L		KP1	09/10/24 0934	2664488	1
Radium-226+Radium-	228 Calculo	ation "See Pa	irent Produci	ts"								
Radium-226+228 Sum	U	0.622	+/-0.844	1.47	+/-0.851		pCi/L		1 NXL1	09/12/24 1026	2664986	2
Rad Radium-226 Lucas Cell, Ra226, Lid	quid "As Red	ceived"										
Radium-226	U	0.230	+/-0.232	0.363	+/-0.237	1.00	pCi/L		MJ2	09/10/24 1031	2665880	3

The following Analytical Methods were performed **Description**

1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2664488	76.7	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 6 of 20 SDG: 683174

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 12, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: **BRA-BRGWC-29I** Project: GPCC00101 Sample ID: GPCC001 Client ID: 683174003

Matrix: WG

Collect Date: 27-AUG-24 Receive Date: 28-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date Time	Batch	Mtd.
Rad Gas Flow Proports GFPC Ra228, Liquid		0										
Radium-228	U	0.835	+/-0.837	1.37	+/-0.863	3.00	pCi/L		KP1	09/10/24 0932	2664488	1
Radium-226+Radium	-228 Calculat	tion "See Pa	rent Produc	ts"								
Radium-226+228 Sum		2.39	+/-0.975	1.37	+/-1.04		pCi/L		1 NXL1	09/12/24 1026	2664986	2
Rad Radium-226 Lucas Cell, Ra226, Li	iquid "As Rece	eived"										
Radium-226		1.56	+/-0.501	0.436	+/-0.581	1.00	pCi/L		MJ2	09/10/24 1031	2665880	3

The following Analytical Methods were performed **Description**

	*
1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2664488	82.7	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 7 of 20 SDG: 683174

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 12, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: **BRA-BRGWC-27I** Project: GPCC00101 Sample ID: GPCC001 Client ID: 683174004

Matrix: WG

Collect Date: 27-AUG-24 Receive Date: 28-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analys	Date	Time	Batch	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		0												
Radium-228	U	0.664	+/-0.802	1.35	+/-0.819	3.00	pCi/L			KP1	09/10/24	0932	2664488	1
Radium-226+Radium-	228 Calculat	tion "See Pa	arent Product	s"										
Radium-226+228 Sum		2.41	+/-0.960	1.35	+/-1.03		pCi/L		1	NXL1	09/12/24	1026	2664986	2
Rad Radium-226 Lucas Cell, Ra226, Lic	quid "As Rece	eived"												
Radium-226		1.75	+/-0.527	0.304	+/-0.632	1.00	pCi/L			MJ2	09/10/24	1031	2665880	3

The following Analytical Methods were performed Description

1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2664488	85.1	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 8 of 20 SDG: 683174

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 12, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-74I Project: GPCC00101 Sample ID: GPCC001 Client ID: 683174005

Matrix: WG

Collect Date: 27-AUG-24 Receive Date: 28-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analys	t Date	Time	Batch 1	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		U												
Radium-228	U	0.685	+/-0.921	1.58	+/-0.938	3.00	pCi/L			KP1	09/10/24	0934	2664488	1
Radium-226+Radium-	-228 Calcula	ition "See Pa	arent Produc	ts"										
Radium-226+228 Sum	U	0.997	+/-0.965	1.58	+/-0.982		pCi/L		1	NXL1	09/12/24	1026	2664986	2
Rad Radium-226 Lucas Cell, Ra226, Lic	quid "As Rec	reived"												
Radium-226	U	0.312	+/-0.287	0.449	+/-0.291	1.00	pCi/L			MJ2	09/10/24	1031	2665880	3

The following Analytical Methods were performed **Description**

	<u>•</u>
1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2664488	77.1	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 9 of 20 SDG: 683174

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 12, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-75I Project: GPCC00101 Sample ID: GPCC001 Client ID: 683174006

Matrix: WG

Collect Date: 27-AUG-24 Receive Date: 28-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analys	t Date	Time	Batch 1	Mtd.
Rad Gas Flow Proporti GFPC Ra228, Liquid		0												
Radium-228	U	1.10	+/-1.17	1.93	+/-1.20	3.00	pCi/L			KP1	09/10/24	0929	2664488	1
Radium-226+Radium-	-228 Calculai	tion "See Pa	rent Produci	ts"										
Radium-226+228 Sum		2.81	+/-1.29	1.93	+/-1.36		pCi/L		1	NXL1	09/12/24	1026	2664986	2
Rad Radium-226 Lucas Cell, Ra226, Lic	quid "As Rece	eived"												
Radium-226		1.71	+/-0.544	0.497	+/-0.627	1.00	pCi/L			MJ2	09/10/24	1031	2665880	3

The following Analytical Methods were performed Description

1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2664488	63	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 10 of 20 SDG: 683174

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 12, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-44 Project: GPCC00101 Sample ID: GPCC001 Client ID: 683174007

Matrix: WG

Collect Date: 27-AUG-24 Receive Date: 28-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analyst	Date Tir	ne B	Batch I	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		0												
Radium-228	U	1.44	+/-1.00	1.52	+/-1.07	3.00	pCi/L			KP1	09/10/24 092	.9 26	664488	1
Radium-226+Radium-	228 Calculat	ion "See Pa	rent Product	s"										
Radium-226+228 Sum		2.84	+/-1.10	1.52	+/-1.20		pCi/L		1	NXL1	09/12/24 102	6 26	664986	2
Rad Radium-226 Lucas Cell, Ra226, Lie	quid "As Rece	eived"												
Radium-226		1.40	+/-0.450	0.447	+/-0.538	1.00	pCi/L			MJ2	09/10/24 103	2 26	665880	3

The following Analytical Methods were performed Description

	_
1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2664488	80.3	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 11 of 20 SDG: 683174

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 12, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-APBCD-FD-01 Project: GPCC00101 Sample ID: GPCC001 Client ID: 683174008

Matrix: WG

Collect Date: 27-AUG-24 Receive Date: 28-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date Time	Batch	Mtd.
Rad Gas Flow Proporti GFPC Ra228, Liquid		0										
Radium-228	U	0.798	+/-1.16	2.00	+/-1.17	3.00	pCi/L		KP1	09/10/24 0934	2664488	1
Radium-226+Radium	-228 Calculat	ion "See Pa	rent Product	ts"								
Radium-226+228 Sum		2.76	+/-1.29	2.00	+/-1.34		pCi/L		1 NXL1	09/12/24 1026	2664986	2
Rad Radium-226 Lucas Cell, Ra226, Li	quid "As Rece	eived"										
Radium-226		1.96	+/-0.579	0.474	+/-0.650	1.00	pCi/L		MJ2	09/10/24 1032	2665880	3

The following Analytical Methods were performed Description

1	EPA 904.0/SW846 9320 Modified	
2	Calculation	
3	EPA 903.1 Modified	

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2664488	62.9	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 12 of 20 SDG: 683174

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 12, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: **BRA-APBCD-EB-04** Project: GPCC00101 Sample ID: GPCC001 Client ID: 683174009

Matrix: WQ

Collect Date: 27-AUG-24 Receive Date: 28-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date Time	Batch	Mtd.
Rad Gas Flow Proports GFPC Ra228, Liquid		0										
Radium-228	U	0.127	+/-0.801	1.52	+/-0.801	3.00	pCi/L		KP1	09/10/24 0929	2664488	1
Radium-226+Radium	-228 Calcular	tion "See Pa	rent Produc	ts"								
Radium-226+228 Sum	U	0.487	+/-0.871	1.52	+/-0.873		pCi/L		1 NXL1	09/12/24 1026	2664986	2
Rad Radium-226 Lucas Cell, Ra226, Li	iquid "As Rece	eived"										
Radium-226	U	0.360	+/-0.342	0.536	+/-0.346	1.00	pCi/L		MJ2	09/10/24 1032	2665880	3

The following Analytical Methods were performed Description

1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2664488	82.5	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 13 of 20 SDG: 683174

Radiochemistry Technical Case Narrative Georgia Power Company SDG #: 683174

Product: Radium-226+Radium-228 Calculation

Analytical Method: Calculation

Analytical Procedure: GL-RAD-D-003 REV# 45

Analytical Batch: 2664986

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683174001	BRA-BRGWA-23S
683174002	BRA-APBCD-FB-01
683174003	BRA-BRGWC-29I
683174004	BRA-BRGWC-27I
683174005	BRA-PZ-74I
683174006	BRA-PZ-75I
683174007	BRA-PZ-44
683174008	BRA-APBCD-FD-01
683174009	BRA-APBCD-EB-04

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: GFPC Ra228, Liquid

Analytical Method: EPA 904.0/SW846 9320 Modified **Analytical Procedure:** GL-RAD-A-063 REV# 5

Analytical Batch: 2664488

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683174001	BRA-BRGWA-23S
683174002	BRA-APBCD-FB-01
683174003	BRA-BRGWC-29I
683174004	BRA-BRGWC-27I
683174005	BRA-PZ-74I
683174006	BRA-PZ-75I
683174007	BRA-PZ-44
683174008	BRA-APBCD-FD-01
683174009	BRA-APBCD-EB-04
1205838735	Method Blank (MB)
1205838736	683174001(BRA-BRGWA-23S) Sample Duplicate (DUP)
1205838737	Laboratory Control Sample (LCS)

Page 14 of 20 SDG: 683174

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2665880

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683174001	BRA-BRGWA-23S
683174002	BRA-APBCD-FB-01
683174003	BRA-BRGWC-29I
683174004	BRA-BRGWC-27I
683174005	BRA-PZ-74I
683174006	BRA-PZ-75I
683174007	BRA-PZ-44
683174008	BRA-APBCD-FD-01
683174009	BRA-APBCD-EB-04
1205841769	Method Blank (MB)
1205841770	682900001(NonSDG) Sample Duplicate (DUP)
1205841771	682900001(NonSDG) Matrix Spike (MS)
1205841772	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Miscellaneous Information

Additional Comments

The matrix spike, 1205841771 (Non SDG 682900001MS), aliquot was reduced to conserve sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 15 of 20 SDG: 683174

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Report Date: September 12, 2024

Page 1 of 2

(75%-125%) MJ2

86.4 (75%-125%) MJ2

MJ2

09/10/2411:07

09/10/2411:07

09/10/2411:07

QC Summary

Client: Georgia Power Company, Southern Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia

Contact: Joju Abraham

Workorder: 683174

Parmname		NOM	Sample (Qual	QC	Units	RPD%	REC%	Range A	nlst	Date Time
Rad Gas Flow Batch	2664488 —										
QC1205838736	683174001 DUP										
Radium-228		U	0.435	U	0.416	pCi/L	0		N/A	KP1	09/10/2409:34
		Uncert:	+/-0.765		+/-0.841						
		TPU:	+/-0.773		+/-0.848						
QC1205838737	LCS										
Radium-228		42.1			38.5	pCi/L		91.5	(75%-125%)	KP1	09/10/2409:34
		Uncert:			+/-2.53						
		TPU:			+/-10.1						
QC1205838735	MB										
Radium-228				U	0.780	pCi/L				KP1	09/10/2409:34
		Uncert:			+/-0.723						
		TPU:			+/-0.750						
Rad Ra-226											
Batch	2665880										
QC1205841770	682900001 DUP										
Radium-226			1.22		1.32	pCi/L	7.74		(0% - 100%)	MJ2	09/10/2411:07

+/-0.478

+/-0.515

+/-2.01

+/-7.13

0.000

117

+/-0.208

+/-0.208

+/-8.08

+/-27.4

U

29.6

pCi/L

pCi/L

pCi/L

Notes:

QC1205841772 Radium-226

QC1205841769

Radium-226

Radium-226

MB

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

134

The Qualifiers in this report are defined as follows:

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

J Value is estimated

QC1205841771 682900001 MS

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

Uncert:

Uncert:

Uncert:

Uncert:

TPU:

TPU:

TPU:

27.1

TPU:

+/-0.439

+/-0.495

1.22

+/-0.439

+/-0.495

H Analytical holding time was exceeded

< Result is less than value reported

> Result is greater than value reported

Page 16 of 20 SDG: 683174

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683174 Page 2 of 2 **Parmname** NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time UI Gamma Spectroscopy--Uncertain identification BDResults are either below the MDC or tracer recovery is low Preparation or preservation holding time was exceeded h R Sample results are rejected RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry. N/A RPD or %Recovery limits do not apply. Analyte concentration is not detected above the detection limit ND M M if above MDC and less than LLD

- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier FA Failed analysis.
- UJ Gamma Spectroscopy--Uncertain identification
- One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ** Analyte is a Tracer compound
- M REMP Result > MDC/CL and < RDL
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ** Indicates analyte is a surrogate/tracer compound.
- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 17 of 20 SDG: 683174

PO Number: GPC82177-0006 Client Name: GA Power Project/Site Name: Plant Branch Ash Ponds - BCD Address: 241 Ralph McGill Blvd SE, Atlanta GA 30308 Collected By: J & Cry ford ACC Send Resu Sample ID * For compositex - indicate start and stop date/time BRA- 名と Cw A - 23 S BRA- 名と Cw C - 2 4 五 BRA- B & Cw C - 2 4 五 BRA- B & Cw C - 2 4 五 BRA- アニーナイエ BRA- アニーナイエ	GEL Work Order Number: Phone # 404-506-7 Phone # 404-506-7	## ## ## ### ### #####################	GE			t Custody and Analytical Reguest	PST	Custody and Analytical Request			Dhono: (943) 556 9171	1210 75	
Name: GA Power VSite Name: Plant Branch Ash Ponds - BCD ss: 241 Ralph McGill Blvd SE, Atlanta GA 3 sted By: \(\) \(\mathcal{S} \) \(\mathcal{C} \) \(\mathcal{A} \) \(\mathcal{C} \mathcal{C} \) \(\mathc	P F	ax # ssyntec Con *Time Collected (Military) Chimun) 17.2.0 G		L Project	GEL Project Manager: Erin Trent	Erin Tr	ent				Fax: (843) 766-1178	-1178	
See 241 Ralph McGill Blvd SE, Atlanta GA 2 sted By:) までいるもの ACC Sample ID * For composites - indicate start and stop date in AP B C D - 下 B - 0 1 B R G W C - 2 4 エ かん アンティー	11ts To: SCS & Gec "Date Collected (mm/dd/xy) 08/27/24 08/27/24	ax # *Time *Time Collected (Military) 1230 G	-506-7116			San	63	Analysis Requested	equest	3	n the number of c	(Fill in the number of containers for each test)	est)
See: 241 Ralph McGill Blvd SE, Atlanta GA 3 sted By:) & As See See See A Alanta GA 3 Sample ID * For composites - indicate start and stop date in B R CwA - 23 5 AP 13 CD - FB - 01 B R CwC - 24 I PR Sw C - 24 I PR SW C - 24 I	*Date Collected *Date Collected (mm/dd/sy) ©8/27/24 ©8/27/24 ©8/27/24	*Time *Time Collected (Military) (Military) (Hhum) C1230 G			Should this		S		IN			< Preserv	< Preservative Type (6)
sted By:) & cos ford ACC Sample ID *For composites - indicate start and stop date in the start and	*Date Collected *Date Collected (mm/dd/yy) ©8/27/24 ©8/27/24 Ø8/27/24	*Time *Time Collected (Military) (hhmm) C 1730 G			sample be considered:	be red:	50	-	-			Con	Comments
to 1 m to 1 1 15	e	0 0	tacts) Vlq	sp.	LDS, NO	Bicarb A	t/ '010	12, 932 15, 932		Note: ext	Note: extra sample is
8R6W4-23 APBCD-FB BR6WC-27 PR-74I P2-74I	-		QC Field Code (3)	d Sample	Radioactive yes, please sup isotopic info.)	(7) Known or possible Haza	Total number Cl, F, SO4, 7	Total, Carb, & SM 23.	EPA 6020, 6 Radium 22	St WS O'HINS		Task_Cod	equined for sample specific QC Task_Code: BRA-CCR-ASSMT-2024S2
AP13c0 - FB BRGWC-27 BRGWC-27 PC-74I PC-75T	7	-		WG			(X)	7	7)			
BRGWC-27J PR-74I P2-75I			6 1	3			8	>	7	>			
BRA- BR6WC-27I BRA-92-74I BRA-92-75I		1545	5	K		T	100	.)	7	7			
BRA-72-74I BRA-72-75I		1537	6	WG			8	1	7)			
BRA- 72- 757	1 1/2/2/30	1212 (0 2	w 6			N	1	7	1			
	45/22/80	1460 6	6	200			1	>	7	1			
BRA- PZ-44	-	1721 6	6	2			7	7	7	7			
BRA-APBCD-FD-01	12/42/80	1	6	W			100	>	1	7			
BRA-APBCD - EB-OH	1 42/22/80	1745 6	8	WA			2	7	7	1			
BRA-													
Chain of Cust	Chain of Custody Signatures					TAT	TAT Requested:		Normal:	x Rush:	Specify:	(Subject to	(Subject to Surcharge)
Relinquished By (Signed) Date Time	Received by (signed)	d) Date	Time	o o	H	ax Result	Fax Results: [] Yes		No				
1 WM 3/28/2 0827	in the second	8/28	8 28x	\$280	S	elect Del	Select Deliverable: [] C of A	[] C of		[] QC Summary	[] level 1	[x] Level 2 [] Level 3	[] Level 4
2/	2/1	1	1	25/2	241314	dditional	Additional Remarks:	·	Metals:	B,Ca,Sb,As,F	a,Be,Cd,Cr,Co,Pb,I		
3	3				F	or Lab K	eceiving	Use On.	ly: Cus	For Lab Receiving Use Only: Custody Seal Intact? [] Yes	act? [] Yes [].] No Cooler Temp:	20
> For sample shipping and delivery details, see Sample Receipt & Review form (SRR.)	ot & Review form (L	RR.)			Sample Co	llection	Time Zon	1e: [x] I	Sastern	[] Pacific	Sample Collection Time Zone: [x] Eastern [] Pacific [] Central [[] Mountain [] Other:	ier:
1.) Chain of Custody Number = Client Determined 2.) QC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicate, EB = Equipment Blank, MS = Matrix Spike Sample, MSD = Matrix Spike Duplicate Sample, G = Grab, C = Composite	3 = Equipment Blank, M.	S = Matrix Spike	s Sample, MSI) = Matrix Sp.	ike Duplicate S	ample, G =	Grab, C = (Composite	72				
 Field Filtered: For liquid matrices, indicate with a - Y - for yes the sample was field filtered or - N - for sample was not field filtered. Matrix Codes: WD=Drinking Water, WG=Groundwater, WS=Surface Water, WW=Waste Water, WL=Leachate, SO=Soil, SE=Sediment, SL=Sludge, WQ=Water Quality Control Matrix Sample Analysis Requested: Analytical method requested (i.e. 8260B, 6010B/7470A) and number of containers provided for each (i.e. 8260B - 3, 6010B/7470A - 1). 	ns field filtered or - N - for r, WW=Waste Water, W. 1/7470A) and number of c	L=Leachate, SO ontainers provid	i field filtered. =Soil, SE=Sec ed for each (i.e.	liment, SL=Sl	id filtered. oil, SE=Sediment, SL=Sludge, WQ=Water for each (i.e. 8260B - 3, 6010B/7470A - 1).	ter Quality 1).	Control Ma	atrix	1				
7.) KNOWN OR POSSIBLE HAZARDS [Characteristic Hazards	tic Hazards	Listed Waste	ste	Tievalle,	0	Other	n no preser	valive is a	gar = papp	ve neid blank	Plea	Please provide any additional details	mal details
Hg= Mercury Se= Selenium	FL = Flammable/Ignitable CO = Corrosive RE = Reactive	LW= Listed W (F,K,P and U-h Waste code(s):	LW= Listed Waste (F.K.P and U-listed wastes.) Waste code(s):	rstes.)	JO E E A	OT= Other / (i.e.: High/lc misc. health Description:	OT= Other / Unknown (i.e.: High/low pH, asbest misc. health hazards, etc.) Description:	own asbestos s, etc.)	, berylli	OT= Other / Unknown fi.e.: High/low pH, asbestos, beryllium, irritants, other misc. health hazards, etc.) Description:		below regarding handling and/or disposal concerns. (i.e.: Origin of scample(s), type of site collected from, odd matrices, etc.)	and/or rigin of ccted from, odd
Cd = Cadmium Ag= Silver TSCA Regulated CT = Cadmium AR= Misc. RCRA metals CT = Corronium MR= Misc. RCRA metals CT = Corronium MR= Misc. RCRA metals	Regulated Polychlorinated		-		11								

SAMPLE RECEIPT & REVIEW FORM

683170 683169 683173 683174 683176 683177

Client: GPCC			SDG/AR/COC/Work Order:
Received By: QG			Date Received: 8 28 24
Carrier and Tracking Number			Circle Applicable: FedEx Express FedEx Ground UPS Field Services Courier Other
Suspected Hazard Information	Yes	No	*If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
A)Shipped as a DOT Hazardous?		/	Lazard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? YesNo
3) Did the client designate the samples are to be eccived as radioactive?		-	COC notation or radioactive stickers on containers equal client designation.
C) Did the RSO classify the samples as adioactive?			Maximum Net Counts Observed* (Observed Counts - Area Background Counts):PM/mR/Hr Classified as: Rad 1 Rad 2 Rad 3
D) Did the client designate samples are hazardous?		-	COC notation or hazard labels on containers equal client designation.
E) Did the RSO identify possible hazards?		1	D or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
Sample Receipt Criteria	Yes	NA	Comments/Qualifiers (Required for Non-Conforming Items)
Shipping containers received intact and sealed?	1		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
2 Chain of custody documents included with shipment?	1		Circle Applicable: Client contacted and provided COC COC created upon receipt
Samples requiring cold preservation within $(0 \le 6 \text{ deg. C})$?*	1		Preservation Method: Wet Ice Ice Packs Dry ice None Other: *all temperatures are recorded in Celsius TEMP:
Daily check performed and passed on IR temperature gun?	~		Temperature Device Serial #: IR1-23 Secondary Temperature Device Serial # (If Applicable):
5 Sample containers intact and sealed?	1		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
6 Samples requiring chemical preservation at proper pH?	1		Sample ID's and Containers Affected: If Presegnation added, Lot#:
7 Do any samples require Volatile Analysis?			If Yes, are Encores or Soil Kits present for solids? Yes No NA (If yes, take to VOA Freezer) Jo liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Are liquid VOA vials free of headspace? Yes No NA Sample ID's and containers affected:
8 Samples received within holding time?	1		ID's and tests affected:
Sample ID's on COC match ID's on bottles?			ID's and containers affected:
Date & time on COC match date & time on bottles?	4		Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
Number of containers received match number indicated on COC?	/		Circle Applicable: No container count on COC Other (describe)
Are sample containers identifiable as GEL provided by use of GEL labels? COC form is properly signed in relinquished/received sections?		1	GWA-2I metals container has no lakel Circle Applicable: Not relinquished Other (describe)
COOLCT:		B	RA-BRGWA-65 metals container has no lat
1-0° 5-0°		r	eccured three plastic ILS in BRA-BRENA
1-00 le 00		k	cit with no label or anything written on it
4-2%		8	SRA-BREWA- as radium container has no Gel
		-	140

List of current GEL Certifications as of 12 September 2024

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	KY90129
Kentucky Wastewater	KY90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2023019
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	NV-C24-00175
New Hampshire NELAP	205424
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2023-152
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235
Utah NELAP	SC000122024-41
Vermont	VT87156
Virginia NELAP	460202
Washington	C780
	, , , ,

Page 20 of 20 SDG: 683174

gel.com

September 12, 2024

Joju Abraham Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

Re: Branch CCR Groundwater Compliance Rchem

Work Order: 683177

Dear Joju Abraham:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on August 28, 2024. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The radium sample containers for sample ID "BRA-BRGWA-2S" did not have a label or sample identifiers. he radium sample containers for sample ID "BRA-BRGWA-5I" did not have a label or sample identifiers683177001(BRA-BRGWA-2S), 683177004(BRA-BRGWA-5I). All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt. The laboratory received the following sample(s):

<u>Laboratory ID</u>	Client ID	<u>Matrix</u>	Date Collected	Date Received
683177001	BRA-BRGWA-2S	Ground Water	08/27/24 09:45	08/28/24 08:27
683177002	BRA-BRGWA-5S	Ground Water	08/27/24 09:50	08/28/24 08:27
683177003	BRA-BRGWA-2I	Ground Water	08/27/24 10:08	08/28/24 08:27
683177004	BRA-BRGWA-5I	Ground Water	08/27/24 09:47	08/28/24 08:27
683177005	BRA-BRGWA-6S	Ground Water	08/27/24 11:35	08/28/24 08:27

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Prep Methods and Prep Dates

Not Applicable

Analysis Methods and Analysis Dates

Method	Run Date ID
Calculation	12-SEP-2024
EPA 903.1 Modified	12-SEP-2024
EPA 904.0/SW846 9320 Modified	10-SEP-2024

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4443.

Sincerely,

Alaina Pinnick Project Manager

Alaina Pinnick

Purchase Order: GPC82177-0006

Enclosures

Page 2 of 18 SDG: 683177

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

GPCC001 Georgia Power Company Client SDG: 683177 GEL Work Order: 683177

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Alaina Pinnick.

Page 3 of 18 SDG: 683177

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Report Date: September 12, 2024 Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater ComplianceRchem

Client Sample ID: **BRA-BRGWA-2S** Project: GPCC00101 GPCC001 Client ID:

Sample ID: 683177001 Matrix: WG

Collect Date: 27-AUG-24 Receive Date: 28-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analyst	Date	Time	Batch	Mtd.
Rad Gas Flow Proport GFPC Ra228, Liquid		0												
Radium-228	U	0.901	+/-0.902	1.48	+/-0.931	3.00	pCi/L			KP1	09/10/24	0933	2664488	1
Radium-226+Radium	n-228 Calcular	tion "See Pa	irent Product	ts"										
Radium-226+228 Sum	U	1.40	+/-0.964	1.48	+/-0.995		pCi/L			NXL1	09/12/24	1112	2671139	2
Rad Radium-226 Lucas Cell, Ra226, L	iquid "As Reco	eived"												
Radium-226		0.501	+/-0.340	0.383	+/-0.351	1.00	pCi/L			MJ2	09/12/24	0906	2665882	. 3

The following Analytical Methods were performed Description

1 EPA 904.0/SW846 9320 Modified Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2664488	86.9	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor **RL**: Reporting Limit Lc/LC: Critical Level

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 4 of 18 SDG: 683177

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 12, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater ComplianceRchem

Client Sample ID: **BRA-BRGWA-5S** Project: GPCC00101 Sample ID: GPCC001 Client ID: 683177002

Matrix: WG

Collect Date: 27-AUG-24 Receive Date: 28-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analy	st Date Ti	me	Batch I	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		0											
Radium-228	U	-0.371	+/-0.757	1.60	+/-0.757	3.00	pCi/L		KP1	09/10/24 09	34	2664488	1
Radium-226+Radium-228 Calculation "See Parent Products"													
Radium-226+228 Sum	U	0.236	+/-0.788	1.60	+/-0.790		pCi/L		NXL1	09/12/24 11	12	2671139	2
Rad Radium-226 Lucas Cell, Ra226, Lic	quid "As Rece	eived"											
Radium-226	U	0.236	+/-0.218	0.301	+/-0.224	1.00	pCi/L		MJ2	09/12/24 09	06	2665882	3

The following Analytical Methods were performed Description

1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2664488	80.3	(15%-125%)

Method

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 5 of 18 SDG: 683177

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 12, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater ComplianceRchem

Client Sample ID: **BRA-BRGWA-2I** Project: GPCC00101 Sample ID: GPCC001 Client ID: 683177003

Matrix: WG

Collect Date: 27-AUG-24 Receive Date: 28-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date Time	Batch 1	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		0										
Radium-228	U	-0.124	+/-0.859	1.72	+/-0.859	3.00	pCi/L		KP1	09/10/24 0933	2664488	1
Radium-226+Radium-	228 Calcular	tion "See Pa	arent Products	s"								
Radium-226+228 Sum	U	0.864	+/-0.954	1.72	+/-0.965		pCi/L		NXL1	09/12/24 1112	2671139	2
Rad Radium-226 Lucas Cell, Ra226, Lie	quid "As Rece	eived"										
Radium-226		0.864	+/-0.415	0.414	+/-0.438	1.00	pCi/L		MJ2	09/12/24 0939	2665882	3

The following Analytical Methods were performed Description

1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2664488	76.6	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 6 of 18 SDG: 683177

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 12, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater ComplianceRchem

Client Sample ID: **BRA-BRGWA-5I** Project: GPCC00101 Sample ID: GPCC001 Client ID: 683177004

Matrix: WG

Collect Date: 27-AUG-24 Receive Date: 28-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	T	PU RL	Units	PF	DF Analys	t Date Tin	e Batch	Mtd.
Rad Gas Flow Proport GFPC Ra228, Liquid		0										
Radium-228	U	-0.146	+/-1.00	2.02	+/-	3.00	pCi/L		KP1	09/10/24 093	4 266448	8 1
Radium-226+Radium	ı-228 Calcular	tion "See Pa	irent Product	s"								
Radium-226+228 Sum		3.62	+/-1.32	2.02	+/-	1.46	pCi/L		NXL1	09/12/24 111	2 267113	9 2
Rad Radium-226 Lucas Cell, Ra226, L	iquid "As Rece	eived"										
Radium-226		3.62	+/-0.853	0.622	+/-	1.00	pCi/L		MJ2	09/12/24 093	266588	2 3

The following Analytical Methods were performed Description

	_
1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2664488	67.3	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 7 of 18 SDG: 683177

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 12, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater ComplianceRchem

Client Sample ID: **BRA-BRGWA-6S** Project: GPCC00101 Sample ID: Client ID: GPCC001 683177005

Matrix: WG

Collect Date: 27-AUG-24 Receive Date: 28-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date Time	Batch	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		0										
Radium-228	U	1.11	+/-1.02	1.64	+/-1.05	3.00	pCi/L		KP1	09/10/24 0933	2664488	1
Radium-226+Radium-	228 Calcular	tion "See Pa	rent Products	s"								
Radium-226+228 Sum		1.64	+/-1.07	1.64	+/-1.12		pCi/L		NXL1	09/12/24 1112	2671139	2
Rad Radium-226 Lucas Cell, Ra226, Lid	juid "As Rece	eived"										
Radium-226		0.539	+/-0.346	0.375	+/-0.368	1.00	pCi/L		MJ2	09/12/24 0939	2665882	3

The following Analytical Methods were performed Description

	<u> </u>
1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery Batch ID Recovery% **Acceptable Limits** Barium-133 Tracer 2664488 (15%-125%)

GFPC Ra228, Liquid "As Received"

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level RL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 8 of 18 SDG: 683177

Radiochemistry Technical Case Narrative Georgia Power Company SDG #: 683177

Product: Radium-226+Radium-228 Calculation

Analytical Method: Calculation

Analytical Procedure: GL-RAD-D-003 REV# 45

Analytical Batch: 2671139

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683177001	BRA-BRGWA-2S
683177002	BRA-BRGWA-5S
683177003	BRA-BRGWA-2I
683177004	BRA-BRGWA-5I
683177005	BRA-BRGWA-6S

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: GFPC Ra228, Liquid

<u>Analytical Method:</u> EPA 904.0/SW846 9320 Modified <u>Analytical Procedure:</u> GL-RAD-A-063 REV# 5

Analytical Batch: 2664488

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683177001	BRA-BRGWA-2S
683177002	BRA-BRGWA-5S
683177003	BRA-BRGWA-2I
683177004	BRA-BRGWA-5I
683177005	BRA-BRGWA-6S
1205838735	Method Blank (MB)
1205838736	683174001(BRA-BRGWA-23S) Sample Duplicate (DUP)
1205838737	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Page 9 of 18 SDG: 683177

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2665882

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683177001	BRA-BRGWA-2S
683177002	BRA-BRGWA-5S
683177003	BRA-BRGWA-2I
683177004	BRA-BRGWA-5I
683177005	BRA-BRGWA-6S
1205841780	Method Blank (MB)
1205841781	683177001(BRA-BRGWA-2S) Sample Duplicate (DUP)
1205841782	683177001(BRA-BRGWA-2S) Matrix Spike (MS)
1205841783	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Method Blank Criteria

The blank result (See Below) is greater than the MDC but less than the required detection limit.

Sample	Analyte	Value
1205841780 (MB)	Radium-226	Result: 0.497 pCi/L > MDA: 0.471 pCi/L <= RDL: 1.00 pCi/L

Miscellaneous Information

Additional Comments

The matrix spike, 1205841782 (BRA-BRGWA-2SMS), aliquot was reduced to conserve sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 10 of 18 SDG: 683177

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Report Date: September 12, 2024

Page 1 of 2

QC Summary

Client: Georgia Power Company, Southern Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia

Contact: Joju Abraham

Workorder: 683177

Parmname		NOM	Sample (Qual	QC	Units	RPD%	REC%	Range A	nlst	Date Time
Rad Gas Flow											
Batch	2664488										
QC1205838736	683174001 DUP										
Radium-228		U	0.435	U	0.416	pCi/L	0		N/A	KP1	09/10/2409:34
		Uncert:	+/-0.765		+/-0.841						
		TPU:	+/-0.773		+/-0.848						
QC1205838737	LCS										
Radium-228		42.1			38.5	pCi/L		91.5	(75%-125%)	KP1	09/10/2409:34
		Uncert:			+/-2.53						
QC1205838735	MB	TPU:			+/-10.1						
Radium-228	MD			U	0.780	pCi/L				KP1	09/10/2409:34
Radium-226		Uncert:		U	+/-0.723	pcnL				Kii	07/10/2407.54
		TPU:			+/-0.750						
Rad Ra-226		11 0.									
Batch	2665882										
QC1205841781	683177001 DUP										
Radium-226			0.501		0.598	pCi/L	17.6		(0% - 100%)	MJ2	09/12/2410:12
		Uncert:	+/-0.340		+/-0.365	-					
		TPU:	+/-0.351		+/-0.384						
QC1205841783	LCS										
Radium-226		27.1			27.2	pCi/L		100	(75%-125%)	MJ2	09/12/2410:12
		Uncert:			+/-2.14						
0.01005041500		TPU:			+/-4.87						
QC1205841780	MB				0.407	C:/I				1412	00/12/2410 12
Radium-226		Uncert:			0.497 +/-0.343	pCi/L				MJ2	09/12/2410:12
		TPU:			+/-0.343						
QC1205841782	683177001 MS	110.			17-0.500						
Radium-226	000177001 1110	124	0.501		110	pCi/L		88.3	(75%-125%)	MJ2	09/12/2410:12
		Uncert:	+/-0.340		+/-8.62	PULL		00.5	(.2.3 12270)		22,12,2.10,12
		TPU:	+/-0.351		+/-22.9						

Notes:

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- H Analytical holding time was exceeded
- < Result is less than value reported
- > Result is greater than value reported

Page 11 of 18 SDG: 683177

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683177 Page 2 of 2 **Parmname** NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time UI Gamma Spectroscopy--Uncertain identification BDResults are either below the MDC or tracer recovery is low Preparation or preservation holding time was exceeded h R Sample results are rejected RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry. N/A RPD or %Recovery limits do not apply. Analyte concentration is not detected above the detection limit ND

- NJ
- Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- FA Failed analysis.

M

UJ Gamma Spectroscopy--Uncertain identification

M if above MDC and less than LLD

- One or more quality control criteria have not been met. Refer to the applicable narrative or DER. O
- Analyte present. Reported value may be biased high. Actual value is expected to be lower. K
- Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias. UL
- Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- N1 See case narrative
- Other specific qualifiers were required to properly define the results. Consult case narrative.
- Analyte is a Tracer compound
- REMP Result > MDC/CL and < RDL M
- See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ** Indicates analyte is a surrogate/tracer compound.
- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 12 of 18 SDG: 683177

USS177 / LESS176

GEL Laboratories, LLC 2040 Savage Road Charleston, SC 29407	Fax: (843) 766-1178	(Fill in the number of containers for each test)	< Preservative Type (6)	Comments	Note: extra sample 1s required for sample specific	QC Task_Code: BRA-CCR- ASSMT-2024S2											ify: (Subject to Surcharge)		1 [x] Level 2 [] Level 3 [] Level 4	* Metals: B,Ca,Sb,As,Ba,Be,Cd,Cr,Co,Pb,Li,Mo,Se,Tl,Fe,Mg,Mn,K,Na,Hg	s [] No Cooler Temp: °C	ral [] Mountain [] Other:						Please provide any additional details below regarding handling and/or disposal concerns. (i.e.: Origin of sample(s), type of site collected from, odd	matrices, etc.)		
GEL Lab 2040 Sav Charlestc	Fax: (843				005t)	\	1							Rush: Specify:		Select Deliverable: [] C of A [] QC Summary [] level 1	a,Sb,As,Ba,Be,Cd,Cr,	For Lab Receiving Use Only: Custody Seal Intact? [] Yes	Pacific [] Central					eld blank	Other / Unknown OT = Other / Unknown (i.e.: High/low pH, asbestos, beryllium, irritants, other misc. health hazards, etc.)			
		Sample Analysis Requested (5)	IN			Z muibsA 9 848-WZ	7)	1	1	7						I: x		[] QC	als: B,C;	Custody	ш					= leave fi	ryllium,			
		Requ	IN	0.4	* sla		7	7	7	1	1						Normal:	[x] No	of A	* Met	Only:	x] East	osite				e is added	J stos, be			
nalytics		alysis			-	Total, Carb, SM 2	1	1	1	1	>								::[]C	ks:	g Use	ne: [5	= Comp		Matrix		servative	nown, asbess			
ecialty A	int	ole An	SJ	KON	TDS, ì	Total numb	7	2	8	2	7						TAT Requested:	s: [],	verable	Remar	eceivin	ime Z	Grab, C		Control		If no pre	/ Unki Iow ph h hazar	ı,		
assay I Spi	Erin Tre	Samı			ards	(7) Known o possible Haz	80	8		**	83						TAT	Fax Results: [] Yes	elect Deli	Additional Remarks:	or Lab R	llection 7	sample, G =		ater Quality	-1).	Thiosulfate,	OT= Other / Unknown (i.e.: High/low pH, asbest misc. health hazards, etc.)	Description:		
Laboratories Laboratories LC Chemistry Radiochemistry Radioche	GEL Project Manager: Erin Trent		Should this	sample be considered:	ıpply	Radioactive yes, please su isotopic info.												F	S	1316A	F	Sample Collection Time Zone: [x] Eastern [] Pacific	e Duplicate		dge, WQ=W	010B/7470A	T = Sodium	00 % %	Q		
ator	roject N					Sample Matrix (4)	MG	we	we	w6	we								228	52		57	Matrix Spil		nt, SL=Slu	260B - 3, 6	Hexane, S	28.)			
DOF	GEL P	91				Field Filtered ⁽³⁾ 1		N	3	1	N			B				Time	63	128			, MSD = 1	ered.	E=Sedime	ach (i.e. 82	Acid, HX =	te ed waste			
;	5	1-506-71			ntacts	QC Code (2) F	Z U	6	C	9	9							te	1548	1			iike Sample	not field filt	SO=Soil, S	vided for e	Ascorbic A	Listed Waste LW=Listed Waste (F,K,P and U-listed wastes.) Waste code(s):			
GELCOM gelcom		Phone # 404-506-7116	Fax#		osyntec Co	*Time Collected (Military) (hhmm)		0990	8001	444	1135							ed) Date	8128	2 gr		SRR.)	IS = Matrix Sp	or sample was	VL=Leachate,	containers pro	ric Acid, AA =	LN=Listed Waste LW=Listed W (F,K,P and U-I) Waste code(s):		ļ.	
O	GEL Work Order Number:	P	F		Send Results To: SCS & Geosyntec Contacts	*Date Collected (mm/dd/yy)	02/27/24	08/21/24	08/27/24	08/27/24	08/27/24						Chain of Custody Signatures	Received by (signed)	MARIA	27 1	3	ipt & Review form (.B = Equipment Blank, N	vas field filtered or - N - fi	er, WW=Waste Water, V	B/7470A) and number of	m Hydroxide, SA = Sulfu	Characteristic Hazards FL = Flammable/Ignitable CO = Corrosive RE = Reactive	TSCA Regulated	Polychlorinated biphenyls	
	GEL Wor		- Upgradient	1 GA 30308	Send Resu	date/time											Chain of Cus	Time	4280			see Sample Rece	O = Field Duplicate, E	- for yes the sample w	ter, WS=Surface Wat	sted (i.e. 8260B, 6010	ric Acid, SH = Sodiur	Characteristic FL = Flammable CO = Corrosive RE = Reactive	TSCA Reg	PCB = Poly	
Page: of Project # GEL Quote #:	PO Number: GPC82177-0006	Client Name: GA Power	Project/Site Name: Plant Branch Ash Ponds - Upgradient	Address: 241 Ralph McGill Blvd SE, Atlanta GA 30308	Collected By: J. Rens Lond ACC	Sample ID * For composites - indicate start and stop date time	BRA-BR 6WA-25	BRA- 8R 6WA-55	BRA-BRGWA-ZI	BRA-BREWA-5I	BRA- 8R GWA- 65	BRA-	BRA-	BRA-	BRA-	BRA-		Relinquished By (Signed) Date	1 July 8/28cd	2	3	> For sample shipping and delivery details, see Sample Receipt & Review form (SR	1.) Chain of Custody Number = Client Determined 2.) QC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicate, EB = Equipment Blank, MS = Matrix Spike Sample, MSD = Matrix Spike Duplicate Sample, G = Grab, C = Composite	3.) Field Filtered: For liquid matrices, indicate with a - Y - for yes the sample was field filtered or - N - for sample was not field filtered.	4.) Matrix Codes; WD=Drinking Water, WG=Groundwater, WS=Surface Water, WW=Waste Water, WL=Leachate, SO=Soil, SE=Sediment, SL=Sludge, WQ=Water Quality Control Matrix	5.) Sample Analysis Requested: Analytical method requested (i.e. 8260B, 6010B/7470A) and number of containers provided for each (i.e. 8260B - 3, 6010B/7470A - 1).	6.) Preservative Type: HA = Hydrochloric Acid, NI = Nitric Acid, SH = Sodium Hydroxide, SA = Sulfuric Acid, AA = Ascorbic Acid, HX = Hexane, ST = Sodium Thiosulfate, If no preservative is added = leave field blank	7.) KNOWN OR POSSIBLE HAZARDS RCRA Metals As = Arsenic He= Mercury		Cr = Chromium $MR = Misc.$ RCRA metals $Pb = Lead$	

00		SDG/AR/COC/Work Order:
eceived By: QG		Date Received: 8 28 24
Carrier and Tracking Number		Circle Applicable: FedEx Express FedEx Ground UPS Field Services Courier Other
spected Hazard Information	Yes	*If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
Shipped as a DOT Hazardous?	1	Hazard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? YesNo
Did the client designate the samples are to be served as radioactive?	4	COC notation or radioactive stickers on containers equal client designation.
Did the RSO classify the samples as lioactive?		Maximum Net Counts Observed* (Observed Counts - Area Background Counts): PM mR/Hr Classified as: Rad 1 Rad 2 Rad 3
Did the client designate samples are hazardous?		COC notation or hazard labels on containers equal client designation. BD or E is yes, select Hazards below.
Did the RSO identify possible hazards?	-	PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
Sample Receipt Criteria	Yes	Comments/Qualifiers (Required for Non-Conforming Items)
Shipping containers received intact and sealed?	1	Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
Chain of custody documents included with shipment?	/	Circle Applicable: Client contacted and provided COC COC created upon receipt
Samples requiring cold preservation within $(0 \le 6 \text{ deg. C})$?*	1	Preservation Method: Wet Ice Ice Packs Dry ice None Other: *all temperatures are recorded in Celsius TEMP:
Daily check performed and passed on IR temperature gun?	1	Temperature Device Serial #: <u>IR1-23</u> Secondary Temperature Device Serial # (If Applicable):
Sample containers intact and sealed?	/	Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
Samples requiring chemical preservation at proper pH?	1	Sample ID's and Containers Affected: If Presegvation added, Lot#:
Do any samples require Volatile Analysis?		If Yes, are Encores or Soil Kits present for solids? YesNoNA(If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? Yes NoNA(If unknown, select No) Are liquid VOA vials free of headspace? Yes NoNA Sample ID's and containers affected:
Samples received within holding time?		ID's and tests affected:
Sample ID's on COC match ID's on bottles?	/	ID's and containers affected:
Date & time on COC match date & time on bottles?	1	Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
Number of containers received match number indicated on COC?	1	Circle Applicable: No container count on COC Other (describe)
Are sample containers identifiable as GEL provided by use of GEL labels? COC form is properly signed in		GWA-2I mutals container has no lakel Circle Applicable: Not relinquished Other (describe)
relinquished/received sections? mments (Use Continuation Form if needed):	1	SRA-BRGWA-65 metals container has no la
- 0 c 5 - 0 c		received three plastic ILS in BRA-BREWA
-0° 6 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0°		kit with no label or anything written on i
1-2%		3RA-BREWA- as radium container has no Ge

RE: Sample Delivery 8/28: Plant Branch Ash Ponds Bottle Kit Request (2nd 2024 Event)

Betsy McDaniel <betsy.mcdaniel@atlcc.net>

Wed 8/28/2024 10:07 AM

To:Alaina Pinnick <Alaina.Pinnick@gel.com>;Team Pinnick <Team.Pinnick@gel.com>

Cc:Joju Abraham <jabraham@southernco.com>;Jurinko, Kristen Nichole <KNJURINK@SOUTHERNCO.COM>;Midkiff, Laura B.

<Ibmidkif@southernco.com>;Smilley, Michael Jay <MJSMILLE@SOUTHERNCO.COM>;Noelia Ruiz

<NSMUSKUS@SOUTHERNCO.COM>;Lauren Fitzgerald <LAFitzgerald@Geosyntec.com>;Mr. Whitney Law

<wlaw@Geosyntec.com>;Joseph Ivanowski <JIvanowski@Geosyntec.com>;Chris Parker <chris.parker@atlcc.net>;Monte Jones <monte.jones@atlcc.net>;Matt Malone <matt.malone@atlcc.net>;CCollins@Geosyntec.com <ccollins@geosyntec.com>;Jordan Berisford <jordan.berisford@atlcc.net>;Taylor Goble <taylor.goble@atlcc.net>;Dever Johnson <dever.johnson@atlcc.net>; Joshua May <joshua.may@atlcc.net>

[EXTERNAL EMAIL] DO NOT CLICK links or attachments unless you recognize the sender and know the content is safe.

Alaina:

I was just notified by one of our field technicians that the bottle set for Upgradient BRA-BRGWA-5S did not have labels for the rads containers. The TDS, anions, and metals containers do have labels, and all 8 containers are packaged together in the same baggie. Those 3 rads containers are the only ones in today's delivery that do not have labels. Please notify us, if there is any confusion about matching up sample volumes with the correct IDs.

Thank you,

Betsy McDaniel

Atlantic Coast Consulting, Inc.

From: Alaina Pinnick <Alaina.Pinnick@gel.com> Sent: Wednesday, August 28, 2024 9:01 AM

To: Betsy McDaniel <betsy.mcdaniel@atlcc.net>; Team Pinnick <Team.Pinnick@gel.com>

Cc: Joju Abraham <jabraham@southernco.com>; Jurinko, Kristen Nichole <KNJURINK@SOUTHERNCO.COM>; Midkiff, Laura B. <lbmidkif@southernco.com>; Smilley, Michael Jay <MJSMILLE@SOUTHERNCO.COM>; Noelia Ruiz <NSMUSKUS@SOUTHERNCO.COM>; Lauren Fitzgerald <LAFitzgerald@Geosyntec.com>; Mr. Whitney Law <wlaw@Geosyntec.com>; Joseph Ivanowski <JIvanowski@Geosyntec.com>; Chris Parker <chris.parker@atlcc.net>; Monte Jones <monte.jones@atlcc.net>; Matt Malone <matt.malone@atlcc.net>; CCollins@Geosyntec.com; Jordan Berisford <jordan.berisford@atlcc.net>; Taylor Goble <taylor.goble@atlcc.net> Subject: Re: Sample Delivery 8/28: Plant Branch Ash Ponds Bottle Kit Request (2nd 2024 Event)

Good morning,

Thank you for sending these, we will be on the lookout for the courier.

Thank you,

Alaina Pinnick Project Manager

Page 15 of 18 SDG: 683177

2040 Savage Road, Charleston, SC 29407

Office Direct: 843.769.7371 Ext. 4443 | Office Main: 843.556.8171 | Fax: 843.766.1178

E-Mail: Alaina.Pinnick@gel.com | Website: www.gel.com

Analytical Testing

From: Betsy McDaniel < betsy.mcdaniel@atlcc.net >

Sent: Wednesday, August 28, 2024 8:43 AM

To: Alaina Pinnick < <u>Alaina.Pinnick@gel.com</u>>; Team Pinnick < <u>Team.Pinnick@gel.com</u>>

Cc: Joju Abraham <<u>jabraham@southernco.com</u>>; Jurinko, Kristen Nichole <<u>KNJURINK@SOUTHERNCO.COM</u>>; Midkiff, Laura B. <<u>lbmidkif@southernco.com</u>>; Smilley, Michael Jay <<u>MJSMILLE@SOUTHERNCO.COM</u>>; Noelia Ruiz <<u>NSMUSKUS@SOUTHERNCO.COM</u>>; Lauren Fitzgerald <<u>LAFitzgerald@Geosyntec.com</u>>; Mr. Whitney Law

<wl><wlaw@Geosyntec.com; Joseph IvanowskiJIvanowski@Geosyntec.com; Chris Parker

<<u>chris.parker@atlcc.net</u>>; Monte Jones <<u>monte.jones@atlcc.net</u>>; Matt Malone <<u>matt.malone@atlcc.net</u>>;

<u>CCollins@Geosyntec.com</u> <<u>ccollins@geosyntec.com</u>>; Jordan Berisford <<u>jordan.berisford@atlcc.net</u>>; Taylor Goble

<taylor.goble@atlcc.net>

Subject: Sample Delivery 8/28: Plant Branch Ash Ponds Bottle Kit Request (2nd 2024 Event)

[EXTERNAL EMAIL] DO NOT CLICK links or attachments unless you recognize the sender and know the content is safe.

Alaina:

The first set of Plant Branch Ash Pond 2nd 2024 event samples are being delivered to your Charleston lab today (the courier picked them up this morning). Please set up separate work orders for B/C/D vs. E vs. Upgradient as per the COC pages.

I've attached the COC for your information. Note: all samples get short-hold nitrate analysis.

Betsy McDaniel

Atlantic Coast Consulting, Inc.

From: Betsy McDaniel

Sent: Tuesday, July 9, 2024 8:55 AM

To: Team Trent < team.trent@gel.com >; Erin Trent < Erin.Trent@gel.com >

Cc: Joju Abraham <<u>jabraham@southernco.com</u>>; Jurinko, Kristen Nichole <<u>KNJURINK@SOUTHERNCO.COM</u>>; Midkiff, Laura B. <<u>lbmidkif@southernco.com</u>>; Hodges, John Benjamin <<u>JOHHODGE@SOUTHERNCO.COM</u>>; Smilley, Michael Jay <<u>MJSMILLE@SOUTHERNCO.COM</u>>; Noelia Ruiz <<u>NSMUSKUS@SOUTHERNCO.COM</u>>; Lauren Fitzgerald <<u>LAFitzgerald@Geosyntec.com</u>>; Mr. Whitney Law <<u>wlaw@Geosyntec.com</u>>; Joseph Ivanowski <<u>JIvanowski@Geosyntec.com</u>>; Chris Parker <<u>chris.parker@atlcc.net</u>>; Monte Jones <<u>monte.jones@atlcc.net</u>>;

Matt Malone <matt.malone@atlcc.net>; CCollins@Geosyntec.com

Subject: Plant Branch Ash Ponds Bottle Kit Request (2nd 2024 Event)

Erin & Team:

Page 16 of 18 SDG: 683177

The 2nd 2024 event for **Plant Branch-Ash Ponds B/C/D** and **E** is scheduled for the week of **8/26/2024**. Please find attached the bottle order spreadsheet and template COC. **Please have the coolers delivered to our new Alpharetta office by Tuesday 8/13/2024**. Southern Company has approved us getting the ASTM type I water from our 3rd party source.

Geosyntec has requested the major ions analytical for this event as well as the semi-annual scope. We will coordinate for the samples to be delivered to your Charleston lab after collection; we're aware that the samples getting nitrate analysis will need to be delivered as soon as possible due to the 48-hour holding time. I will email you the updated field documentation and let you know when samples are underway to the lab. Let Courtney Collins or me know, if you have any questions or concerns.

Betsy
McDaniel
Atlantic
Coast
Consulting,
Inc.

Our WorkHelps Producea CleanerEnvironmentfor All

11545 Wills
 Road, Ste 100,
 Alpharetta, GA
 30009

CONFIDENTIALITY NOTICE: This e-mail and any files transmitted with it are the property of The GEL Group, Inc. and its affiliates. All rights, including without limitation copyright, are reserved. The proprietary information contained in this e-mail message, and any files transmitted with it, is intended for the use of the recipient(s) named above. If the reader of this e-mail is not the intended recipient, you are hereby notified that you have received this e-mail in error and that any review, distribution or copying of this e-mail or any files transmitted with it is strictly prohibited. If you have received this e-mail in error, please notify the sender immediately and delete the original message and any files transmitted. The unauthorized use of this e-mail or any files transmitted with it is prohibited and disclaimed by The GEL Group, Inc. and its affiliates.

Page 17 of 18 SDG: 683177

List of current GEL Certifications as of 12 September 2024

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	KY90129
Kentucky Wastewater	KY90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2023019
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	NV-C24-00175
New Hampshire NELAP	205424
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2023-152
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235
Utah NELAP	SC000122024-41
Vermont	VT87156
Virginia NELAP	460202
Washington	C780
	, , , ,

gel.com

September 30, 2024

Joju Abraham Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

Re: Branch CCR Groundwater Compliance

Work Order: 683389

Dear Joju Abraham:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on August 29, 2024. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt. The laboratory received the following sample(s):

Laboratory ID	Client ID	Matrix	<u>Date Collected</u>	Date Received
683389001	BRA-BRGWC-17S	Ground Water	08/28/24 12:13	08/29/24 13:10
683389002	BRA-BRGWC-33S	Ground Water	08/28/24 14:22	08/29/24 13:10
683389003	BRA-BRGWC-34S	Ground Water	08/28/24 12:43	08/29/24 13:10
683389004	BRA-BRGWC-35S	Ground Water	08/28/24 11:27	08/29/24 13:10
683389005	BRA-BRGWC-36S	Ground Water	08/28/24 10:08	08/29/24 13:10
683389006	BRA-PZ-52D	Ground Water	08/28/24 13:44	08/29/24 13:10
683389007	BRA-PZ-70I	Ground Water	08/28/24 10:06	08/29/24 13:10
683389008	BRA-APE-FD-05	Ground Water	08/28/24 12:00	08/29/24 13:10
683389009	BRA-APE-FB-08	Water	08/28/24 14:30	08/29/24 13:10
683389010	BRA-APE-EB-09	Water	08/28/24 11:00	08/29/24 13:10
683389011	BRA-APE-EB-10	Water	08/28/24 13:10	08/29/24 13:10

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Prep Methods and Prep Dates

Not Applicable

Analysis Methods and Analysis Dates

<u>Method</u>	Run Date ID
Calculation	30-SEP-2024
EPA 903.1 Modified	26-SEP-2024
EPA 904.0/SW846 9320 Modified	26-SEP-2024

Page 2 of 24 SDG: 683389

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4443.

Sincerely,

Hannah Bowden for

Alaina Pinnick Project Manager

Purchase Order: GPC82177-0006

Enclosures

Page 3 of 24 SDG: 683389

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

GPCC001 Georgia Power Company Client SDG: 683389 GEL Work Order: 683389

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Alaina Pinnick.

	HannahBonden	
Reviewed by	1 -	

Page 4 of 24 SDG: 683389

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Report Date: September 30, 2024 Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: **BRA-BRGWC-17S** Project: GPCC00101 GPCC001 Client ID:

Sample ID: 683389001 Matrix: WG

Collect Date: 28-AUG-24 Receive Date: 29-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analyst	Date '	Time	Batch	Mtd.
Rad Gas Flow Propor GFPC Ra228, Liquid		0												
Radium-228	U	1.20	+/-1.29	2.15	+/-1.32	3.00	pCi/L			KP1	09/26/24	1300	2665605	1
Radium-226+Radium	n-228 Calculai	tion "See Pa	rent Produc	ts"										
Radium-226+228 Sum	U	1.78	+/-1.36	2.15	+/-1.39		pCi/L		1	LXB3	09/30/24	0940	2670884	2
Rad Radium-226 Lucas Cell, Ra226, L	Liquid "As Rece	eived"												
Radium-226	U	0.571	+/-0.423	0.625	+/-0.433	1.00	pCi/L			MJ2	09/26/24	0819	2665908	3

The following Analytical Methods were performed

Description 1 EPA 904.0/SW846 9320 Modified Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2665605	82.8	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor **RL**: Reporting Limit Lc/LC: Critical Level

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 5 of 24 SDG: 683389

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 30, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: **BRA-BRGWC-33S** Project: GPCC00101 Sample ID: GPCC001 Client ID: 683389002

Matrix: WG

Collect Date: 28-AUG-24 Receive Date: 29-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analys	t Date	Time	Batch 1	Mtd.
Rad Gas Flow Proporti GFPC Ra228, Liquid		0												
Radium-228		1.73	+/-0.927	1.29	+/-1.03	3.00	pCi/L			KP1	09/26/24	1300	2665605	1
Radium-226+Radium	-228 Calcular	tion "See Pa	irent Product	s"										
Radium-226+228 Sum		2.68	+/-1.06	1.29	+/-1.16		pCi/L		1	LXB3	09/30/24	0940	2670884	2
Rad Radium-226 Lucas Cell, Ra226, Li	quid "As Rece	eived"												
Radium-226		0.947	+/-0.508	0.649	+/-0.538	1.00	pCi/L			MJ2	09/26/24	0819	2665908	3

The following Analytical Methods were performed Description

	<u> </u>
1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2665605	86	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 6 of 24 SDG: 683389

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 30, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: **BRA-BRGWC-34S** Project: GPCC00101 Sample ID: GPCC001 Client ID: 683389003

Matrix: WG

Collect Date: 28-AUG-24 Receive Date: 29-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date Time	Batch I	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		0										
Radium-228		2.84	+/-1.50	2.26	+/-1.67	3.00	pCi/L		KP1	09/26/24 1300	2665605	1
Radium-226+Radium-	-228 Calculo	ation "See Pa	rent Produci	ts"								
Radium-226+228 Sum		3.15	+/-1.54	2.26	+/-1.71		pCi/L		1 LXB3	09/30/24 0940	2670884	2
Rad Radium-226 Lucas Cell, Ra226, Lid	quid "As Rec	ceived"										
Radium-226	U	0.301	+/-0.367	0.616	+/-0.372	1.00	pCi/L		MJ2	09/26/24 0819	2665908	3

The following Analytical Methods were performed **Description**

1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2665605	81.1	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 7 of 24 SDG: 683389

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 30, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: **BRA-BRGWC-35S** Project: GPCC00101 Sample ID: GPCC001 Client ID: 683389004

Matrix: WG

Collect Date: 28-AUG-24 Receive Date: 29-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC_	TPU	RL	Units	PF	DF Analys	st Date Time	Batch 1	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		0										
Radium-228	U	1.13	+/-0.921	1.46	+/-0.966	3.00	pCi/L		KP1	09/26/24 1300	2665605	1
Radium-226+Radium-	228 Calculo	ation "See Pa	irent Produc	ts"								
Radium-226+228 Sum	U	1.36	+/-0.989	1.46	+/-1.03		pCi/L		1 LXB3	09/30/24 0940	2670884	2
Rad Radium-226 Lucas Cell, Ra226, Lie	quid "As Rec	ceived"										
Radium-226	U	0.235	+/-0.360	0.633	+/-0.364	1.00	pCi/L		MJ2	09/26/24 0819	2665908	3

The following Analytical Methods were performed **Description**

1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2665605	85.2	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 8 of 24 SDG: 683389

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 30, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: **BRA-BRGWC-36S** Project: GPCC00101 Sample ID: GPCC001 Client ID: 683389005

Matrix: WG

Collect Date: 28-AUG-24 Receive Date: 29-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analys	Date	Time	Batch 1	Mtd.
Rad Gas Flow Proporti GFPC Ra228, Liquid		0												
Radium-228		1.47	+/-0.931	1.36	+/-1.00	3.00	pCi/L			KP1	09/26/24	1300	2665605	1
Radium-226+Radium	-228 Calculai	tion "See Pa	rent Product	s"										
Radium-226+228 Sum		2.45	+/-1.06	1.36	+/-1.14		pCi/L		1	LXB3	09/30/24	0940	2670884	2
Rad Radium-226 Lucas Cell, Ra226, Li	quid "As Rece	eived"												
Radium-226		0.981	+/-0.506	0.571	+/-0.531	1.00	pCi/L			MJ2	09/26/24	0819	2665908	3

The following Analytical Methods were performed **Description**

	•
1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2665605	81.5	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 9 of 24 SDG: 683389

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 30, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-52D Project: GPCC00101 Sample ID: GPCC001 Client ID: 683389006

Matrix: WG

Collect Date: 28-AUG-24 Receive Date: 29-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analys	t Date	<u> Fime</u>	Batch	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		0												
Radium-228		4.35	+/-1.57	2.11	+/-1.92	3.00	pCi/L			KP1	09/26/24	1300	2665605	1
Radium-226+Radium-	228 Calculat	tion "See Pa	rent Produci	ts"										
Radium-226+228 Sum		5.34	+/-1.63	2.11	+/-1.98		pCi/L		1	LXB3	09/30/24	0940	2670884	2
Rad Radium-226 Lucas Cell, Ra226, Lie	quid "As Rece	eived"												
Radium-226		0.984	+/-0.445	0.507	+/-0.483	1.00	pCi/L			MJ2	09/26/24	0819	2665908	3

The following Analytical Methods were performed Description

	_
1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2665605	81.5	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 10 of 24 SDG: 683389

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 30, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-70I Project: GPCC00101 Sample ID: GPCC001 Client ID: 683389007

Matrix: WG

Collect Date: 28-AUG-24 Receive Date: 29-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analyst	Date	Time	Batch	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		0												
Radium-228	U	0.350	+/-1.27	2.27	+/-1.27	3.00	pCi/L			KP1	09/26/24	1300	2665605	1
Radium-226+Radium-228 Calculation "See Parent Products"														
Radium-226+228 Sum	U	1.25	+/-1.34	2.27	+/-1.35		pCi/L		1	LXB3	09/30/24	0940	2670884	2
Rad Radium-226 Lucas Cell, Ra226, Liquid "As Received"														
Radium-226		0.899	+/-0.438	0.382	+/-0.468	1.00	pCi/L			MJ2	09/26/24	0819	2665908	3

The following Analytical Methods were performed Description

	<u>-</u>
1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2665605	79.5	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 11 of 24 SDG: 683389

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 30, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-APE-FD-05 Project: GPCC00101 Sample ID: GPCC001 Client ID: 683389008

Matrix: WG

Collect Date: 28-AUG-24 Receive Date: 29-AUG-24 Client Collector:

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analy	st Date Tim	e Batch	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		0										
Radium-228	U	1.05	+/-0.983	1.60	+/-1.02	3.00	pCi/L		KP1	09/26/24 1300	2665605	1
Radium-226+Radium-	228 Calculo	ation "See Pa	rent Produci	ts"								
Radium-226+228 Sum	U	1.24	+/-1.05	1.60	+/-1.08		pCi/L		1 LXB3	09/30/24 0940	2670884	2
Rad Radium-226 Lucas Cell, Ra226, Liq	quid "As Rec	ceived"										
Radium-226	U	0.184	+/-0.361	0.663	+/-0.362	1.00	pCi/L		MJ2	09/26/24 0819	2665908	3

The following Analytical Methods were performed Description

1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2665605	80.4	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 12 of 24 SDG: 683389

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 30, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: **BRA-APE-FB-08** Project: GPCC00101 Sample ID: GPCC001 Client ID: 683389009

Matrix: WQ

Collect Date: 28-AUG-24 Receive Date: 29-AUG-24 Client Collector:

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analyst	Date Time	Batch	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		0											
Radium-228		2.42	+/-1.04	1.33	+/-1.21	3.00	pCi/L			KP1	09/26/24 1300	2665605	1
Radium-226+Radium-	228 Calculati	ion "See Pa	rent Products	s"									
Radium-226+228 Sum		3.02	+/-1.09	1.33	+/-1.26		pCi/L		1	LXB3	09/30/24 0940	2670884	2
Rad Radium-226 Lucas Cell, Ra226, Lie	quid "As Rece	ived"											
Radium-226		0.595	+/-0.333	0.325	+/-0.348	1.00	pCi/L			MJ2	09/26/24 0852	2665908	3

The following Analytical Methods were performed Description

1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2665605	83	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 13 of 24 SDG: 683389

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 30, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: **BRA-APE-EB-09** Project: GPCC00101 Sample ID: GPCC001 Client ID: 683389010

Matrix: WQ

Collect Date: 28-AUG-24 Receive Date: 29-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analys	t Date	Time	Batch 1	Mtd.
Rad Gas Flow Proporti GFPC Ra228, Liquid		U												
Radium-228		3.23	+/-1.57	2.35	+/-1.78	3.00	pCi/L			KP1	09/26/24	1300	2665605	1
Radium-226+Radium	-228 Calcul	ation "See Pa	rent Produc	ts"										
Radium-226+228 Sum		3.35	+/-1.58	2.35	+/-1.79		pCi/L		1	LXB3	09/30/24	0940	2670884	2
Rad Radium-226 Lucas Cell, Ra226, Li	quid "As Red	ceived"												
Radium-226	U	0.115	+/-0.198	0.366	+/-0.199	1.00	pCi/L			MJ2	09/26/24	0852	2665908	3

The following Analytical Methods were performed **Description**

1	EPA 904.0/SW846 9320 Modified	
2	Calculation	
3	EPA 903.1 Modified	

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2665605	81.8	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 14 of 24 SDG: 683389

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 30, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-APE-EB-10 Project: GPCC00101 Sample ID: 683389011 Client ID: GPCC001

Sample ID: 683389011 Matrix: WO

Collect Date: 28-AUG-24
Receive Date: 29-AUG-24
Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL.	Units	PF	DF	Analyst	Date '	Time	Batch	Mtd.
Rad Gas Flow Propor GFPC Ra228, Liquid		0												
Radium-228	U	0.701	+/-1.18	2.06	+/-1.2	3.00	pCi/L			KP1	09/26/24	1300	2665605	1
Radium-226+Radiur	n-228 Calcula	tion "See Pa	rent Produc	ts"										
Radium-226+228 Sum	U	1.21	+/-1.24	2.06	+/-1.2	5	pCi/L		1	LXB3	09/30/24	0940	2670884	2
Rad Radium-226 Lucas Cell, Ra226, I	Liquid "As Rece	eived"												
Radium-226		0.505	+/-0.371	0.484	+/-0.382	1.00	pCi/L			MJ2	09/26/24	0852	2665908	3

The following Analytical Methods were performed

MethodDescription1EPA 904.0/SW846 9320 Modified2Calculation

BEPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2665605	78.7	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method
DL: Detection Limit PF: Prep Factor
Lc/LC: Critical Level RL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 15 of 24 SDG: 683389

Radiochemistry Technical Case Narrative Georgia Power Company SDG #: 683389

Product: Radium-226+Radium-228 Calculation

Analytical Method: Calculation

Analytical Procedure: GL-RAD-D-003 REV# 45

Analytical Batch: 2670884

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683389001	BRA-BRGWC-17S
683389002	BRA-BRGWC-33S
683389003	BRA-BRGWC-34S
683389004	BRA-BRGWC-35S
683389005	BRA-BRGWC-36S
683389006	BRA-PZ-52D
683389007	BRA-PZ-70I
683389008	BRA-APE-FD-05
683389009	BRA-APE-FB-08
683389010	BRA-APE-EB-09
683389011	BRA-APE-EB-10

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: GFPC Ra228, Liquid

Analytical Method: EPA 904.0/SW846 9320 Modified **Analytical Procedure:** GL-RAD-A-063 REV# 5

Analytical Batch: 2665605

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683389001	BRA-BRGWC-17S
683389002	BRA-BRGWC-33S
683389003	BRA-BRGWC-34S
683389004	BRA-BRGWC-35S
683389005	BRA-BRGWC-36S
683389006	BRA-PZ-52D
683389007	BRA-PZ-70I
683389008	BRA-APE-FD-05
683389009	BRA-APE-FB-08
683389010	BRA-APE-EB-09
683389011	BRA-APE-EB-10

Page 16 of 24 SDG: 683389

1205841102	Method Blank (MB)
1205841103	683389001(BRA-BRGWC-17S) Sample Duplicate (DUP)
1205841104	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2665908

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683389001	BRA-BRGWC-17S
683389002	BRA-BRGWC-33S
683389003	BRA-BRGWC-34S
683389004	BRA-BRGWC-35S
683389005	BRA-BRGWC-36S
683389006	BRA-PZ-52D
683389007	BRA-PZ-70I
683389008	BRA-APE-FD-05
683389009	BRA-APE-FB-08
683389010	BRA-APE-EB-09
683389011	BRA-APE-EB-10
1205841869	Method Blank (MB)
1205841870	683389001(BRA-BRGWC-17S) Sample Duplicate (DUP)
1205841871	683389001(BRA-BRGWC-17S) Matrix Spike (MS)
1205841872	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Miscellaneous Information

Additional Comments

The matrix spike, 1205841871 (BRA-BRGWC-17SMS), aliquot was reduced to conserve sample volume.

Page 17 of 24 SDG: 683389

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 18 of 24 SDG: 683389

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Client: Georgia Power Company, Southern Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia

Contact: Joju Abraham

Workorder: 683389

Report Date: September 30, 2024 Page 1 of 2

Parmname	NOM	Sample Qua	l QC	Units	RPD%	REC%	Range A	nlst	Date Time
Rad Gas Flow									
Batch 2665605 —									
QC1205841103 683389001 DUP									
Radium-228	U	1.20	1.84	pCi/L	41.9		(0% - 100%)	KP1	09/26/2413:00
	Uncert:	+/-1.29	+/-1.20						
	TPU:	+/-1.32	+/-1.29						
QC1205841104 LCS									
Radium-228	70.1		78.4	pCi/L		112	(75%-125%)	KP1	09/26/2413:00
	Uncert:		+/-5.07						
	TPU:		+/-20.8						
QC1205841102 MB									
Radium-228		U	0.775	pCi/L				KP1	09/26/2413:00
	Uncert:		+/-0.951						
	TPU:		+/-0.971						
Rad Ra-226									
Batch 2665908									
QC1205841870 683389001 DUP									
Radium-226	U	0.571	0.789	pCi/L	32		(0% - 100%)	MJ2	09/26/2409:24
	Uncert:	+/-0.423	+/-0.344	•			,		
	TPU:	+/-0.433	+/-0.367						
QC1205841872 LCS									
Radium-226	27.1		27.1	pCi/L		100	(75%-125%)	MJ2	09/26/2409:24
	Uncert:		+/-1.98	•					
	TPU:		+/-6.48						
QC1205841869 MB									
Radium-226		U	0.203	pCi/L				MJ2	09/26/2409:24
	Uncert:		+/-0.264						
	TPU:		+/-0.267						
QC1205841871 683389001 MS									
Radium-226	132 U	0.571	133	pCi/L		101	(75%-125%)	MJ2	09/26/2409:24
	Uncert:	+/-0.423	+/-11.2						
	TPU:	+/-0.433	+/-22.3						

Notes:

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- H Analytical holding time was exceeded
- < Result is less than value reported
- > Result is greater than value reported

Page 19 of 24 SDG: 683389

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683389 Page 2 of 2 **Parmname** NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time UI Gamma Spectroscopy--Uncertain identification BDResults are either below the MDC or tracer recovery is low Preparation or preservation holding time was exceeded h R Sample results are rejected RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry. N/A RPD or %Recovery limits do not apply. Analyte concentration is not detected above the detection limit ND M M if above MDC and less than LLD NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

- FA Failed analysis.UJ Gamma Spectroscopy--Uncertain identification
- One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ** Analyte is a Tracer compound
- M REMP Result > MDC/CL and < RDL
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ** Indicates analyte is a surrogate/tracer compound.
- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 20 of 24 SDG: 683389

U83387 (U83389)

GEL Laboratories, LLC 2040 Savage Road Charleston, SC 29407	Fax: (843) 766-1178	Sample Analysis Requested (5) (Fill in the number of containers for each test)	< Preservative Type (6)	Comments	Note: extra sample is required for sample specific	Task_Code: BRA-CCR-	and an arrangement of the second										Specify: (Subject to Surcharge)	The state of the s	[]level 1 [x] Level 2 [] Level 4	* Metals: B,Ca,Sb,As,Ba,Be,Cd,Cr,Co,Pb,Li,Mo,Se,Tl,Fe,Mg,Mn,K,Na,Hg	C? [] Yes [] No Cooler Temp: O °C	1 [] Mc				Please provide any additional details	below regarding handling and/or disposal concerns. (i.e.: Origin of sample(s), type of site collected from, odd matrices, etc.)
		Requested (5) (Fill in t	IN	8	15, 932 15, 932 15, 932	Metal EPA 6020, 6 Sw-846 93 Sw-846 93	7	1	7	7	111	11	>	1	/	1	Normal: x Rush:	[x] No	of A [] QC Summary	* Metals: B,Ca,Sb,As,Ba,	For Lab Receiving Use Only: Custody Seal Intact? [] Yes	Sample Collection Time Zone: [x] Eastern [] Pacific	osite		is added = leave field blank		OT=Other / Unknown (i.e.: High/low pH, asbestos, beryllium, irritants, other misc. health hazards, etc.) Description:
Laboratories LLC Chemistry Radiochemistry Radiochemis	in Trent	Sample Analysis	2000	taine:	r of con TDS, No.	ossible Haza otal number Cl, F, SO4, T EPA 300, S Total, Carb, &		7	/ 8	1 8	1	1 8	1 8 1	8	1	//8	TAT Requested: N	Fax Results: [] Yes [Select Deliverable: [] C of A	Additional Remarks:	Lab Receiving Use C	ction Time Zone: [x	Matrix Spike Sample, MSD = Matrix Spike Duplicate Sample, G = Grab, C = Composite	Quality Control Matrix). Sulfate. If no preservative	er.	OT=Other / Unknown (i.e.: High/low pH, asbest misc. health hazards, etc.) Description:
_aboratories LLC Themistry Radiochemistry Radiobleasss f Custody and Analytical R	GEL Project Manager: Erin Trent		Should this	sample be considered:	Klqqq H)	Sample Sadioactive es, please sup sotopic info.) Manown or	\ \ \ \	2 2 32	2 2 5 3	MG N	2 2	NG N	MG N	MG N	2 03	WQ N N		Fax		REPORT 131 Chadi	For	Sample Colle	rix Spike Duplicate Sam	SL=Sludge, WQ=Water	B - 3, 6010B/7470A - 1)	Other	OT= (i.e.: misc. Desc
Laboratories LLC percent Chairs I Redicotemistry Radicotemistry Ra	GEL Pro	4-506-7116			intacts	QC Field Sa	Z	3 7 5	NE	2 7 5	3 2 5	マ 2 ウ	3 2 0	3 2 5	3 2 5	3 7 9		te Time	2380 60	A REP		7	like Sample, MSD = Mat	SO=Soil, SE=Sediment,	vided for each (i.e. 8260) Ascorbic Acid. HX = He	/aste	LW= Listed Waste F.K.P and U-listed wastes.) Waste code(s):
GEL Gelcom Chair		Phone # 404-506-7116	Fax#		& Geosyntec Co	*Time Collected (Military)	12/3	77/11 15	24 1243	24 1127	24 1003	रम 13नम	01001 HZ	774	24 1430	1100	ıres	y (signed) Date	18 poli	Marmal		form (SRR.)	lank, MS = Matrix Sp	Vater, WL=Leachate, 5	mber of containers pro	Listed Waste	
	GEL Work Order Number:			~	Send Results To: SCS & Geosyntec Contacts	*Date Collected	02/22/24	04/24/24	08/24/24	12/32/20	08/28/24	08/28/24	08/28/	08/28/	08/28/	08/28/	Chain of Custody Signatures	Received by (signed)	18/29	2 /11	3 (Receipt & Review J	icate, EB = Equipment B	iniple was neld intered of	B, 6010B/7470A) and nun: Sodium Hydroxide SA:	Characteristic Hazards	FL = Flammable/Ignitable CO = Corrosive RE = Reactive TSCA Regulated PCB = Polychlorinated biphenyls
Page: 7 of 7 Project # CGL Quote #: COC Number ⁽¹⁾ .	382177-0006	Client Name: GA Power	Project/Site Name: Plant Branch Ash Ponds - E	Address: 241 Ralph McGill Blvd SE, Atlanta GA 30308	Collected By: T. Bable ACC Send	Sample ID * For composites - indicate start and stop date time	BRA- BAGWC-175	BRA- BR.GWC-335	BRA- BACTUC-345	BRA- BRG-WC-355	BRA-BAGWC-365	BRA- P2-52D	BRA- 92-70I	BRA- APE-FD-05	BRA- APE, - FB-08	BRA- APE-EB-09	Chain of	Relinquished By (Signed) Date Time	2720 /nz-57-8 //all 1/10] 1	2 / 0 0 0 0	3	> For sample shipping and delivery details, see Sample Receipt & Review form (SRR.)	1.) Chain of Custody Number = Client Determined 2.) QC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicate, EB = Equipment Blank, MS = Matrix Spike Sample, MS 2.) QC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicate, EB = Equipment Blank, MS = Matrix Spike Sample, MS	3.) Freig Fritered. For industries, indicate with a * 1 - 101 yes are sample was and intered on * 1.7 - 101 sample was not need intered. 4.) Matrix Codes: WD=Drinking Water, WG=Groundwater, WS=Surface Water, WW=Waste Water, WL=Leachate, SO=Soil, SE=Sediment, SL=Sludge, WQ=Water Quality Control Matrix	5.) Sample Analysis Requested: Analytical method requested (i.e. 8260B, 6010B7/470A) and number of containers provided for each (i.e. 8260B - 3, 6010B7/470A - 1). 6.) Preservative Tvne: HA = Hydrochloric Acid NI = Nitric Acid SH = Sodium Hydroxide SA = Sulfinic Acid, AA = Ascorbic Acid HX = Hexane, ST = Sodium Thiosulfate. If no preservative is added = leave field blank	7.) KNOWN OR POSSIBLE HAZARDS Char.	RCRA Metals As = Arsenic Ba = Barium Cd = Cadmium Cr = Chromium MR = Misc. RCRA metals FL = CO = RE = CO = CO = RE = TSCA TSCA PCB = CBA

Age: 2 of 2. Troject # JEL Quote #: 7. OC Number (1).	O	Gha Cha		DOF2 istry Radio	Chain of Custody and Analytical Regulast	S LLC adiobioassa	y I Specie	alty Analy	tics			<u> </u>	GEL Laboratories, 2040 Savage Road Charleston, SC 294	GEL Laboratories, LLC 2040 Savage Road Charleston, SC 29407 Phone: (843) 556-8171	O7	
382177-0006	GEL Work Order Number:			GEL Pro	GEL Project Manager: Erin Trent	iger: Erin	Trent					Fa	x: (843)	Fax: (843) 766-1178	-	
Client Name: GA Power		Phone # 4(404-506-7116	16			Sample Analysis Requested	Analy	sis Re	queste	(2)	ill in the	number	of contai	(Fill in the number of containers for each test)	th test)
roject/Site Name: Plant Branch Ash Ponds - E		Fax#			IS	Should this	S.I.		111	IN					< Pr	< Preservative Type (6)
Address: 241 Ralph McGill Blvd SE, Atlanta GA 30308					200	sample be considered:	əaista		AIK		07					Comments
Send Resu	Send Results To: SCS & Geosyntec	eosyntec C	Contacts			ابر (1 3.0		STOB STOB	4 '0109	4200 tide				Note required	Note: extra sample is required for sample specific
	*Date Collected	*Time Collected (Military)	QC Code (3)	Field S	Sample Maurx & Adioactive	sotopic info. 7) Known o	dmun latol	Eb¥ 300'		EPA 6020, Radium 2					Task_AS	QC Task_Code: BRA-CCR- ASSMT-2024S2
3RA- APE -EB-10	04/28/24	1310	G	Z	T			>	>	>	>					
3RA-																
3RA-																
3RA-																
3RA-																
3RA-															THE COL	
3RA-							, ES		7 7							
3RA-				+												
3RA-																
3RA-												1,00				
Chain of Cust	Chain of Custody Signatures					Т	TAT Requested:	quested	. Nor	Normal:	x R	Rush:	Specify:	.i.	(Subj	(Subject to Surcharge)
Relinquished By (Signed) Date Time	Received by (signed)		Date	Time		Fax R	Fax Results: [] Yes	[] Yes	oN [x]	No						
TOWN Hall 5-19-24/ 0822	1 A Min	18 /	16/24	585	2		Select Deliverable: [] C of A	able: []C of	4 []	[] QC Summary		[] level [[x] Level 2	el 2 [] Level 3	vel 3 [] Level 4
10	2 / Mars	mal	lon	8/24/	24 1310		Additional Remarks:	marks:	*	Metals:	B,Ca,Sl	As, Ba, Be	Cd,Cr,C	o,Pb,Li,Mo	,Se,TI,Fe,M	* Metals: B,Ca,Sb,As,Ba,Be,Cd,Cr,Co,Pb,Li,Mo,Se,Tl,Fe,Mg,Mn,K,Na,Hg
	3					For L	ab Rece	iving U	se Onl	v: Cus	ody Se	For Lab Receiving Use Only: Custody Seal Intact? [[] Yes	[] No	Cooler Temp:	10: C
For sample shipping and delivery details, see Sample Receipt & Review form (SRR.)	pt & Review form	(SRR.)			Sam	ole Collect	ion Tim	e Zone	: [x] E	astern	[] Pg	cific [] Centra	1 [] Mc	Sample Collection Time Zone: [x] Eastern [] Pacific [] Central [] Mountain [] Other:] Other:
.) Chain of Custody Number = Client Determined J. OC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicate, EB = Equipment Blank, MS = Matrix Spike Sample, MSD = Matrix Spike Duplicate Sample, G = Grab, C = Composite	B = Equipment Blank,	MS = Matrix	Spike Sampl	e, MSD = Ma	atrix Spike Du	plicate Sampl	e, G = Gra	ab, C = C	omposite							
.) Field Filtered: For liquid matrices, indicate with a - Y - for yes the sample was field filtered or - N - for sample was not field filtered	as field filtered or - N -	for sample wa	s not field fi	tered.												
.) Matrix Codes: WD=Drinking Water, WG=Groundwater, WS=Surface Water, WW=Waste Water, WL=Leachate, SO=Soil, SE=Sediment, SL=Sludge, WQ=Water Quality Control Matrix	er, WW=Waste Water,	WL=Leachate	SO=Soil,	SE=Sediment	, SL=Sludge,	WQ=Water (Quality Co.	ntrol Mat	×							
Sample Analysis Requested: Analytical method requested (i.e. 8260B, 6010B/7470A) and number of containers provided for each (i.e. 8260B - 3, 6010B/7470A - 1).	B/7470A) and number	of containers p	rovided for	sach (i.e. 826	0B - 3, 6010B	7470A - 1).	1			1	Elegania de la companya de la compan					
) Preservative Type: HA = Hydrochloric Acid, NI = Nitric Acid, SH = Sodium Hydroxide, SA = Sultunc Acid, AA = Ascorbic Acid, HX = Hexane, SI = Sodium 1 in opreservative is adeed = leave neur olaristy. If no preservative is adeed = leave neur olaristy and the sodium Hydroxide is adeed = leave neur olaristy. If no preservative is adeed = leave neur olaristy. If no preservative is adeed = leave neur olaristy. If no preservative is adeed = leave neur olaristy. If no preservative is adeed = leave neur olaristy. If no preservative is adeed = leave neur olaristy.	d, SH = Sodium Hydroxide, SA = Sulf Characteristic Hazards	unc Acid, AA = Ascort	= Ascorbic	Acid, HX = F	lexane, S1 = 2	Other	ulfate, If n	o preserv	ative is ac	ar = papr	ave neid	lank	7	Plonso nr.	ovide any a	Please provide any additional details
tals inc Hg= Mercury in Se= Selenium nium Ag= Silver mium MR= Misc. RCRA metals	FL = Flammable/Ignitable CO = Corrosive RE = Reactive TSCA Regulated PCB = Polychlorinated	LW=L (F,K,P) Waste c	LW= Listed Waste (F,K,P and U-listee Waste code(s):	LW= Listed Waste (F.K.P and U-listed wastes.) Waste code(s):] _ []	OT= (i.e.: l misc. , Descr	OT= Other / Unknown f.e.: High/low pH, asbest misc. health hazards, etc.) Description:	Jnknow v pH, as azards,	n bestos, etc.)	beryll	um, irr	OT= Other / Unknown (i.e.: High/low pH, asbestos, beryllium, irritants, other misc. health hazards, etc.) Description:	er.	below regard disposal conc sample(s), typ matrices, etc.	arding han concerns. (i type of site etc.)	below regarding handling and/or disposal concerns. (i.e.: Orign of sample(s). type of site collected from, odd matrices, etc.)
$\mathbf{b} = \mathrm{Lead}$ bipl	biphenyls															

Cli	ent: GPCC			0.	SAMPLE RECEIPT & REVIEW FORM (0855) 1 (0855)
	eived By: CLM				DG/AR/COC/Work Order:
Re	eived By: OLIVI			D	ate Received: 8 297 39 Circle Applicable:
	Carrier and Tracking Number				FedEx Express FedEx Ground UPS Field Services Course Other 3-0° 5-8
Sus	pected Hazard Information	Yes	No	*1	If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
A)S	hipped as a DOT Hazardous?		V	Hi	azard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes No
	old the client designate the samples are to be	ñ	V	C	OC notation or radioactive stickers on containers equal client designation.
C) I	oid the RSO classify the samples as pactive?		V	М	laximum Net Counts Observed* (Observed Counts - Area Background Counts): CPM mR/Hr Classified as: Rad 1 Rad 2 Rad 3
	old the client designate samples are hazardous?		1	CC	OC notation or hazard labels on containers equal client designation.
	old the RSO identify possible hazards?		1	If	D or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
	Sample Receipt Criteria	Yes	NA	Z	Comments/Qualifiers (Required for Non-Conforming Items)
1	Shipping containers received intact and sealed?	1			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
2	Chain of custody documents included with shipment?			1	Circle Applicable: Client contacted and provided COC COC created upon receipt
3	Samples requiring cold preservation within $(0 \le 6 \text{ deg. C})$?*	1	7		Preservation Method: Wet Ice ce Packs Dry ice None Other: #all temperatures tre recorder in Celsius TEMP: TEMP: CE
4	Daily check performed and passed on IR temperature gun?		1		Temperature Device Serial #: IR5-23 Secondary Temperature Device Serial # (If Applicable):
5	Sample containers intact and sealed?	/			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
6	Samples requiring chemical preservation at proper pH?				Sample ID's and Containers Affected: If Preservation added, Lot#:
7	Do any samples require Volatile Analysis?				If Yes, are Encores or Soil Kits present for solids? Yes No NA (If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Are liquid VOA vials free of headspace? Yes No NA Sample ID's and containers affected:
8	Samples received within holding time?		×.		ID's and tests affected:
9	Sample ID's on COC match ID's on bottles?	1			ID's and containers affected:
10	Date & time on COC match date & time on bottles?	1	/		Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)
11	Number of containers received match number indicated on COC?	V	Ŕ	1	Circle Applicable: No container count on COC Other (describe)
12	Are sample containers identifiable as GEL provided by use of GEL labels?	/			
13	COC form is properly signed in relinquished/received sections?	/			Circle Applicable: Not relinquished Other (describe)

GL-CHL-SR-001 Rev 7

List of current GEL Certifications as of 30 September 2024

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	KY90129
Kentucky Wastewater	KY90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2023019
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	NV-C24-00175
New Hampshire NELAP	205424
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2023-152
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235
Utah NELAP	SC000122024-41
Vermont	VT87156
Virginia NELAP	460202
Washington	C780

gel.com

September 30, 2024

Joju Abraham Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

Re: Branch CCR Groundwater Compliance

Work Order: 683391

Dear Joju Abraham:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on August 29, 2024. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt. The laboratory received the following sample(s):

Laboratory ID	Client ID	Matrix	Date Collected	Date Received
683391001	BRA-BRGWC-30I	Ground Water	08/28/24 13:05	08/29/24 13:10
683391002	BRA-BRGWC-47	Ground Water	08/28/24 15:38	08/29/24 13:10
683391003	BRA-APBCD-FB-02	Water	08/28/24 16:30	08/29/24 13:10
683391004	BRA-BRGWC-52I	Ground Water	08/28/24 16:32	08/29/24 13:10
683391005	BRA-BRGWC-32S	Ground Water	08/28/24 16:27	08/29/24 13:10

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Prep Methods and Prep Dates

Not Applicable

Analysis Methods and Analysis Dates

Method	Run Date ID
Calculation	30-SEP-2024
EPA 903.1 Modified	26-SEP-2024
EPA 904.0/SW846 9320 Modified	26-SEP-2024
EPA 904 0/SW846 9320 Modified	28-SEP-2024

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4443.

Sincerely,

Hannah Bowden for

Alaina Pinnick Project Manager

Purchase Order: GPC82177-0006

Enclosures

Page 2 of 15 SDG: 683391

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

GPCC001 Georgia Power Company Client SDG: 683391 GEL Work Order: 683391

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Alaina Pinnick.

	Hannah Bonden	
Reviewed by		

Page 3 of 15 SDG: 683391

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 30, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWC-30I Project: GPCC00101 GPCC001 Sample ID: 683391001 Client ID:

Matrix: WG

Collect Date: 28-AUG-24 Receive Date: 29-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analyst	Date	Time	Batch	Mtd.
Rad Gas Flow Proport GFPC Ra228, Liquid		0												
Radium-228		3.07	+/-1.12	1.34	+/-1.36	3.00	pCi/L			KP1	09/26/24	1301	2665605	1
Radium-226+Radium	n-228 Calculai	ion "See Pa	rent Product	s"										
Radium-226+228 Sum		3.82	+/-1.18	1.34	+/-1.43		pCi/L		1	LXB3	09/30/24	0940	2670884	2
Rad Radium-226 Lucas Cell, Ra226, L	iquid "As Rece	eived"												
Radium-226		0.752	+/-0.390	0.463	+/-0.425	1.00	pCi/L			MJ2	09/26/24	0852	2665908	3

The following Analytical Methods were performed Description

1 EPA 904.0/SW846 9320 Modified Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2665605	81.8	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor **RL**: Reporting Limit Lc/LC: Critical Level

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 4 of 15 SDG: 683391

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 30, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: **BRA-BRGWC-47** Project: GPCC00101 Sample ID: GPCC001 Client ID: 683391002

Matrix: WG

Collect Date: 28-AUG-24 Receive Date: 29-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC_	TPU	RL	Units	PF	DF Analys	t Date Time	Batch	Mtd.
Rad Gas Flow Proporti GFPC Ra228, Liquid		U										
Radium-228	U	0.877	+/-1.48	2.55	+/-1.49	3.00	pCi/L		KP1	09/26/24 1300	2665605	1
Radium-226+Radium	-228 Calcula	ation "See Pa	rent Produc	ts"								
Radium-226+228 Sum	U	1.32	+/-1.52	2.55	+/-1.54		pCi/L		1 LXB3	09/30/24 0940	2670884	2
Rad Radium-226 Lucas Cell, Ra226, Li	quid "As Rec	ceived"										
Radium-226	U	0.438	+/-0.370	0.539	+/-0.384	1.00	pCi/L		MJ2	09/26/24 0852	2665908	3

The following Analytical Methods were performed **Description**

1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2665605	81.1	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 5 of 15 SDG: 683391

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 30, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-APBCD-FB-02 Project: GPCC00101 Sample ID: Client ID: GPCC001 683391003

Matrix: WQ

Collect Date: 28-AUG-24 Receive Date: 29-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date Time	Batch 1	Mtd.
Rad Gas Flow Proporti GFPC Ra228, Liquid		0										
Radium-228		2.86	+/-1.63	2.51	+/-1.79	3.00	pCi/L		KP1	09/26/24 1300	2665605	1
Radium-226+Radium-	-228 Calculat	ion "See Pa	rent Product	s"								
Radium-226+228 Sum		3.54	+/-1.67	2.51	+/-1.84		pCi/L		1 LXB3	09/30/24 0940	2670884	2
Rad Radium-226 Lucas Cell, Ra226, Lie	quid "As Rece	rived"										
Radium-226		0.673	+/-0.359	0.413	+/-0.393	1.00	pCi/L		MJ2	09/26/24 0852	2665908	3

The following Analytical Methods were performed Description

-	1	EPA 904.0/SW846 9320 Modified
2	2	Calculation
1	3	EPA 903.1 Modified

Surrogate/Tracer Recovery Test **Batch ID Recovery% Acceptable Limits** Barium-133 Tracer 2665605 73.5 (15%-125%)

GFPC Ra228, Liquid "As Received"

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level RL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 6 of 15 SDG: 683391

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 30, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-BRGWC-52I Project: GPCC00101 Sample ID: 683391004 Client ID: GPCC001

Matrix: WG

Collect Date: 28-AUG-24 Receive Date: 29-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date Time	Batch 1	Mtd.
Rad Gas Flow Proporti GFPC Ra228, Liquid		0										
Radium-228		11.8	+/-2.55	2.72	+/-3.96	3.00	pCi/L		KP1	09/28/24 0840	2665605	1
Radium-226+Radium-	-228 Calculat	tion "See Pa	rent Produci	ts"								
Radium-226+228 Sum		14.7	+/-2.65	2.72	+/-4.05		pCi/L		1 LXB3	09/30/24 0940	2670884	2
Rad Radium-226 Lucas Cell, Ra226, Lie	quid "As Rece	eived"										
Radium-226		2.87	+/-0.719	0.348	+/-0.837	1.00	pCi/L		MJ2	09/26/24 0852	2665908	3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2665605	68.6	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

Lc/LC: Critical Level

Mtd.: Method

PF: Prep Factor

RL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 7 of 15 SDG: 683391

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 30, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: **BRA-BRGWC-32S** Project: GPCC00101 Sample ID: GPCC001 Client ID: 683391005

Matrix: WG

Collect Date: 28-AUG-24 Receive Date: 29-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analyst	Date	Time	Batch	Mtd.
Rad Gas Flow Proporti GFPC Ra228, Liquid		0												
Radium-228	U	-0.0875	+/-0.779	1.57	+/-0.779	3.00	pCi/L			KP1	09/26/24	1449	2665605	1
Radium-226+Radium-	-228 Calculat	ion "See Pa	arent Products	s"										
Radium-226+228 Sum	U	0.737	+/-0.878	1.57	+/-0.885		pCi/L		1	LXB3	09/30/24	0940	2670884	2
Rad Radium-226 Lucas Cell, Ra226, Lia	quid "As Rece	eived"												
Radium-226		0.737	+/-0.404	0.442	+/-0.420	1.00	pCi/L			MJ2	09/26/24	0852	2665908	3

The following Analytical Methods were performed Description

	*
1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2665605	87.5	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 8 of 15 SDG: 683391

Radiochemistry Technical Case Narrative Georgia Power Company SDG #: 683391

Product: Radium-226+Radium-228 Calculation

Analytical Method: Calculation

Analytical Procedure: GL-RAD-D-003 REV# 45

Analytical Batch: 2670884

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683391001	BRA-BRGWC-30I
683391002	BRA-BRGWC-47
683391003	BRA-APBCD-FB-02
683391004	BRA-BRGWC-52I
683391005	BRA-BRGWC-32S

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: GFPC Ra228, Liquid

Analytical Method: EPA 904.0/SW846 9320 Modified **Analytical Procedure:** GL-RAD-A-063 REV# 5

Analytical Batch: 2665605

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683391001	BRA-BRGWC-30I
683391002	BRA-BRGWC-47
683391003	BRA-APBCD-FB-02
683391004	BRA-BRGWC-52I
683391005	BRA-BRGWC-32S
1205841102	Method Blank (MB)
1205841103	683389001(BRA-BRGWC-17S) Sample Duplicate (DUP)
1205841104	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Page 9 of 15 SDG: 683391

Technical Information

Recounts

Sample 683391004 (BRA-BRGWC-52I) was re-eluted and recounted to verify sample result. The recount is reported.

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2665908

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683391001	BRA-BRGWC-30I
683391002	BRA-BRGWC-47
683391003	BRA-APBCD-FB-02
683391004	BRA-BRGWC-52I
683391005	BRA-BRGWC-32S
1205841869	Method Blank (MB)
1205841870	683389001(BRA-BRGWC-17S) Sample Duplicate (DUP)
1205841871	683389001(BRA-BRGWC-17S) Matrix Spike (MS)
1205841872	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Miscellaneous Information

Additional Comments

The matrix spike, 1205841871 (BRA-BRGWC-17SMS), aliquot was reduced to conserve sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 10 of 15 SDG: 683391

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Client: Georgia Power Company, Southern Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia

Contact: Joju Abraham

Workorder: 683391

Report Date: September 30, 2024
Page 1 of 2

Parmname	NOM	Sample Qua	ıl QC	Units	RPD%	REC%	Range A	nlst	Date Time
Rad Gas Flow									
Batch 2665605 —									
QC1205841103 683389001 DUP									
Radium-228	U	1.20	1.84	pCi/L	41.9		(0% - 100%)	KP1	09/26/2413:00
	Uncert:	+/-1.29	+/-1.20						
	TPU:	+/-1.32	+/-1.29						
QC1205841104 LCS									
Radium-228	70.1		78.4	pCi/L		112	(75%-125%)	KP1	09/26/2413:00
	Uncert:		+/-5.07						
	TPU:		+/-20.8						
QC1205841102 MB									
Radium-228		U		pCi/L				KP1	09/26/2413:00
	Uncert:		+/-0.951						
	TPU:		+/-0.971						
Rad Ra-226									
Batch 2665908 —									
QC1205841870 683389001 DUP									
Radium-226	U	0.571	0.789	pCi/L	32		(0% - 100%)	MJ2	09/26/2409:24
	Uncert:	+/-0.423	+/-0.344						
	TPU:	+/-0.433	+/-0.367						
QC1205841872 LCS									
Radium-226	27.1		27.1	pCi/L		100	(75%-125%)	MJ2	09/26/2409:24
	Uncert:		+/-1.98						
	TPU:		+/-6.48						
QC1205841869 MB									
Radium-226		U		pCi/L				MJ2	09/26/2409:24
	Uncert:		+/-0.264						
	TPU:		+/-0.267						
QC1205841871 683389001 MS									
Radium-226	132 U	0.571	133	pCi/L		101	(75%-125%)	MJ2	09/26/2409:24
	Uncert:	+/-0.423	+/-11.2						
	TPU:	+/-0.433	+/-22.3						

Notes:

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- H Analytical holding time was exceeded
- < Result is less than value reported
- > Result is greater than value reported

Page 11 of 15 SDG: 683391

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683391 Page 2 of 2 **Parmname** NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time UI Gamma Spectroscopy--Uncertain identification BDResults are either below the MDC or tracer recovery is low Preparation or preservation holding time was exceeded h R Sample results are rejected RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry. N/A RPD or %Recovery limits do not apply. Analyte concentration is not detected above the detection limit ND M if above MDC and less than LLD M NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

- FA Failed analysis.
- UJ Gamma Spectroscopy--Uncertain identification
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ** Analyte is a Tracer compound
- M REMP Result > MDC/CL and < RDL
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ** Indicates analyte is a surrogate/tracer compound.
- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 12 of 15 SDG: 683391

													(000)	012210101251	122
Page: of l		田田	Show Service	abo	rator	aboratoriesuc	0					GEL 2040	GEL Laboratories, LLC 2040 Savage Road	LLC I	•
GEL Quote #: COC Number ⁽¹⁾ :		gel.com Chain	_ 0	mistry B	adiochemist	Chemistry I Radiochemistry I Radiochemistry I Radiochemistry of Custody and Analytical Request	Reque	ecialty An	alytics			Char	Charleston, SC 29407 Phone: (843) 556-8171	407	
9000	GEL Work Order Number:			GEL	Project M	GEL Project Manager: Erin Trent	Frin Trei		100			Fax:	Fax: (843) 766-1178	78	
Client Name: GA Power		Phone # 4(404-506-7116	116			Sample		lysis R	Analysis Requested (5)		l in the m	umber of con	(Fill in the number of containers for each test)	test)
Project/Site Name: Plant Branch Ash Ponds - BCD		Fax#			At:	Should this		6		IN	IN			< Pres	< Preservative Type (6)
Address: 241 Ralph McGill Blvd SE, Atlanta GA 30308	8					sample be considered:		103	AIR	-	07				Comments
Collected By 2, Routhord ACC Seno	Send Results To: SCS & Geosyntec Contacts	eosyntec C	ontacts		317	Vido (If	rds	TDS, N	20B	L '0109	əpi			Note:	Note: extra sample is required for sample specific
Sample ID * For composites - indicate start and stop date/time	*Date Collected (mm/dd/yy)	*Time Collected (Military) (hhmm)	QC Code (3)	Filered (3)	Sample Matrix (4)	Radioactive yes, please sup sotopic info.)	(7) Known or possible Haza Fotal number	Cl' E' 204' .	Total, Carb, & SM 23	Metal EPA 6020, 6	# WS UIns 66 9#8-MS			Task_C ASS	Task_Code: BRA-CCR-ASSMT-2024S2
BRA-BREWC-30I	12/82/24	1305	Ð	z	MG		0.	>	1	1	7				
BRA-BREWC-47	08/28/24	1538	0	7	du		00	1	1	7	7				
BRA-4PBCD-F8-02	12/81/20	1630	0	>	X		000	>	1	1	>				
BRA- BR6WC-52]	1-42/20	1632	9	2	8		8	7	>	1	1				
BRA- BR 6W6-325	12/20/20	1627	0	>	200		00	7	>	7	1				
BRA-								1							
3RA-							yen.								
3RA-															
3RA-						12,0									
3RA-															
Chain o	Chain of Custody Signatures						TATR	TAT Requested:		Normal:	x Rush:		Specify:	(Subjec	(Subject to Surcharge)
Relinquished By (Signed) Date Time	Received by (signed)		Date	Time		Fax	Fax Results: [] Yes	: [] Ye		oN [x]					
July 8/29/24 0822	Mall	1 8/29	58/	80	22	Se	Select Deliverable: [] C of A	erable: []C of		[] QC Summary		[] level 1 [x] L	[x] Level 2 [] Level 3	13 [] Level 4
	2 (Mus	Ma	Loca	200	he/6	130 40	Additional Remarks:	Remarks.		Metals	B,Ca,Sb,A	s,Ba,Be,Cd	,Cr,Co,Pb,Li,	* Metals: B,Ca,Sb,As,Ba,Be,Cd,Cr,Co,Pb,Li,Mo,Se,Tl,Fe,Mg,Mn,K,Na,Hg	In,K,Na,Hg
) (The Control of the Control	2	Fo	r Lab Re	ceiving	Use On	ly: Cus	tody Seal	For Lab Receiving Use Only: Custody Seal Intact? [] Yes	1/4	Cooler	0
To sumpre surpring unit actively detuins, see Sumple Necepti & New Form (SANA) Chain of Custody Number = Client Determined OC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicate, EB = Equipment Blank, MS = Matrix Spike Sample, MSD = Matrix Spike Duplicate Sample, G = Grab, C = Composite	necepp & neview form cate, EB = Equipment Blank,	(SACA.) MS = Matrix S	pike Samp	e, MSD =	Matrix Spike	ke Duplicate Sample, G = Grab, C = Composite	mple, G = G	rab, C = C	omposite				40	l Jaroundan	
.) Field Filtered: For liquid matrices, indicate with a - Y - for yes the sample was field filtered or - N - for sample was not field filtered. .) Matrix Codes: WD=Drinking Water, WG=Groundwater, WS=Surface Water, WW=Waste Water, WL=Leachate, SO=Soil, SE=Sediment, SL=Sludge, WQ=Water Quality Control Matrix. .) Sample Analysis Requested: Analytical method requested (i.e. 8260B, 6010B/7470A) and number of containers provided for each (i.e. 8260B - 3, 6010B/7470A - 1).	imple was field filtered or - N - ice Water, WW=Waste Water, 3, 6010B/7470A) and number of	for sample was WL=Leachate, of containers pro	not field fi SO=Soil,	tered. SE=Sedime sach (i.e. 8.	nt, SL=Sludg	ge, WQ=Wate	er Quality C	ontrol Mat	. ķi						
.) Preservative Type: HA = Hydrochloric Acid, SH = Sodium Hydroxide, SA = Sulfuric Acid, AA = Ascorbic Acid, HX = Hexane, ST = Sodium Thiosulfate, If no preservative is added = leave field blank KNOWN OR POSSIBLE HAZARDS Characteristic Hazards Listed Waste	d, SH = Sodium Hydroxide, SA = Sulfi Characteristic Hazards	uric Acid, AA = Ascort Listed Waste	· Ascorbic	Acid, HX =	Hexane, ST	= Sodium Thiosu	iiosulfate, If	no preserv	ative is a	dded = le	ve field blan		Plonse	Please provide any additional details	itional details
Hg= Mercury Se= Selenium	FL = Flammable/Ignitable CO = Corrosive RE = Reactive	LW=Listed Waste (F.K.P and U-listed wastes.) Waste code(s):	sted Wa md U-lis ode(s):	ste ted wast	·s·.)	OT (i.e. mis Des	OT= Other / Unknown (i.e.: High/low pH, asbest misc. health hazards, etc.) Description:	Unknov vw pH, a hazards	vn sbestos etc.)	, beryll	OT=Other / Unknown (i.e.: High/low pH, asbestos, beryllium, irritants, other misc. health hazards, etc.) Description:	nts, other	below regardi disposal conc sample(s), typ matrices, etc.)	below regarding handling and/or disposal concerns. (i.e.: Origin of sample(s), type of site collected fro matrices, etc.)	below regarding handling and/or disposal concerns. (i.e.: Origin of sample(s), type of site collected from, odd matrices, etc.)
ITSCA THE Chromium Ag= Silver Track	TSCA Regulated PCB = Polychlorinated biphenyls					11									

683390/683391 AP Laboratories LLC SAMPLE RECEIPT & REVIEW FORM Client: (5) SDG/AR/COC/Work Order: Date Received: 8/29 Received By: CLM FedEx Ground UPS Field Services Carrier and Tracking Number S *If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation. Suspected Hazard Information Hazard Class Shipped: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes___No__ A)Shipped as a DOT Hazardous? B) Did the client designate the samples are to be COC notation or radioactive stickers on containers equal client designation. received as radioactive? Maximum Net Counts Observed* (Observed Counts - Area Background Counts): C) Did the RSO classify the samples as CPM mR/Hr Classified as: Rad 1 Rad 2 Rad 3 COC notation or hazard labels on containers equal client designation. D) Did the client designate samples are hazardous' If D or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium E) Did the RSO identify possible hazards? No No Sample Receipt Criteria Comments/Qualifiers (Required for Non-Conforming Items) Circle Applicable: Seals broken Damaged container Leaking container Other (describe) Shipping containers received intact and sealed? Chain of custody documents included Circle Applicable: Client contacted and provided COC COC created upon receipt with shipment? TEMP: Le alave with Preservation Method: Wet Ice ce Packs Dry ice None Other: Samples requiring cold preservation *all temperatures are recorded in Celsius within $(0 \le 6 \text{ deg. C})$?* Temperature Device Serial #: IR5-23 Daily check performed and passed on IR temperature gun? Secondary Temperature Device Serial # (If Applicable): Circle Applicable: Seals broken Damaged container Leaking container Other (describe) 5 Sample containers intact and sealed? Sample ID's and Containers Affected: Samples requiring chemical preservation at proper pH? If Preservation added, Lot#: If Yes, are Encores or Soil Kits present for solids? Yes__No__NA__(If yes, take to VOA Freezer) Deliquid VOA vials contain acid preservation? Yes___ No___ NA__(If unknown, select No) Do any samples require Volatile Are liquid VOA vials free of headspace? Yes___ No__ Analysis? Sample ID's and containers affected: ID's and tests affected: 8 Samples received within holding time? ID's and containers affected: Sample ID's on COC match ID's on bottles? Circle Applicable: No dates on containers No times on containers COC missing info Other (describe) Date & time on COC match date & time on bottles? Circle Applicable: No container count on COC Other (describe) Number of containers received match number indicated on COC? Are sample containers identifiable as GEL provided by use of GEL labels? COC form is properly signed in Circle Applicable: Not relinquished Other (describe) relinquished/received sections? Comments (Use Continuation Form if needed): AUG 30 2024 Page L of 1

HB

PM (or PMA) review: Initials _

GL-CHL-SR-001 Rev 7

List of current GEL Certifications as of 30 September 2024

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	KY90129
Kentucky Wastewater	KY90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2023019
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	NV-C24-00175
New Hampshire NELAP	205424
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2023-152
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235
Utah NELAP	SC000122024-41
Vermont	VT87156
Virginia NELAP	460202
Washington	C780
	, , , ,

gel.com

September 16, 2024

Joju Abraham Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

Re: Branch CCR Groundwater Compliance

Work Order: 683474

Dear Joju Abraham:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on August 30, 2024. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt. The laboratory received the following sample(s):

Laboratory ID	Client ID	Matrix	Date Collected	Date Received
683474001	BRA-BRGWC-45	Ground Water	08/29/24 09:55	08/30/24 08:30
683474002	BRA-APBCD-EB-05	Water	08/29/24 10:25	08/30/24 08:30
683474003	BRA-APBCD-FD-02	Ground Water	08/29/24 12:00	08/30/24 08:30
683474004	BRA-BRGWC-25I	Ground Water	08/29/24 10:17	08/30/24 08:30
683474005	BRA-PZ-68D	Ground Water	08/29/24 09:58	08/30/24 08:30

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Prep Methods and Prep Dates

Not Applicable

Analysis Methods and Analysis Dates

<u>Method</u>	Run Date ID
Calculation	16-SEP-2024
EPA 903.1 Modified	12-SEP-2024
EPA 904.0/SW846 9320 Modified	12-SEP-2024

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4443.

Sincerely,

Hannah Bowden for

Alaina Pinnick Project Manager

Purchase Order: GPC82177-0006

Enclosures

Page 2 of 15 SDG: 683474

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

GPCC001 Georgia Power Company Client SDG: 683474 GEL Work Order: 683474

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Alaina Pinnick.

	HannahBonden	
Reviewed by	1 -	

Page 3 of 15 SDG: 683474

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Report Date: September 16, 2024 Atlanta, Georgia 30308

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: **BRA-BRGWC-45** Project: GPCC00101 GPCC001 Client ID:

Sample ID: 683474001 Matrix: WG

Collect Date: 29-AUG-24 Receive Date: 30-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date Time	Batch	Mtd.
Rad Gas Flow Proports GFPC Ra228, Liquid		0										
Radium-228	U	0.963	+/-0.939	1.53	+/-0.971	3.00	pCi/L		KP1	09/12/24 0738	2665594	1
Radium-226+Radium	-228 Calculat	ion "See Pa	rent Product	<i>'s''</i>								
Radium-226+228 Sum		1.71	+/-1.00	1.53	+/-1.05		pCi/L		NXL1	09/16/24 1006	2670865	2
Rad Radium-226 Lucas Cell, Ra226, Li	iquid "As Rece	eived"										
Radium-226		0.752	+/-0.355	0.303	+/-0.389	1.00	pCi/L		MJ2	09/12/24 0939	2665882	3

The following Analytical Methods were performed **Description**

	•
1	EPA 904.0/SW846 9320 Modified
2	Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2665594	74	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor **RL**: Reporting Limit Lc/LC: Critical Level

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 4 of 15 SDG: 683474

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 16, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: **BRA-APBCD-EB-05** Project: GPCC00101 Sample ID: GPCC001 Client ID: 683474002

Matrix: WQ

Collect Date: 29-AUG-24 Receive Date: 30-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date Tin	ie Batch	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		0										
Radium-228	U	0.377	+/-0.720	1.29	+/-0.726	3.00	pCi/L		KP1	09/12/24 073	8 2665594	4 1
Radium-226+Radium-	228 Calculat	ion "See Pa	arent Products	s"								
Radium-226+228 Sum	U	0.808	+/-0.786	1.29	+/-0.795		pCi/L		NXL1	09/16/24 100	6 2670865	5 2
Rad Radium-226 Lucas Cell, Ra226, Liq	quid "As Rece	eived"										
Radium-226		0.430	+/-0.316	0.412	+/-0.324	1.00	pCi/L		MJ2	09/12/24 093	9 2665882	2 3

The following Analytical Methods were performed Description

1	EPA 904.0/SW846 9320 Modified
2	Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2665594	87.6	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 5 of 15 SDG: 683474

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 16, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-APBCD-FD-02 Project: GPCC00101 Sample ID: GPCC001 Client ID: 683474003

Matrix: WG

Collect Date: 29-AUG-24 Receive Date: 30-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analyst	Date Time	Batch 1	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		0										
Radium-228	U	0.653	+/-0.868	1.49	+/-0.883	3.00	pCi/L		KP1	09/12/24 0738	2665594	1
Radium-226+Radium-	228 Calculat	ion "See Pa	rent Product:	s"								
Radium-226+228 Sum		3.95	+/-1.22	1.49	+/-1.42		pCi/L		NXL1	09/16/24 1006	2670865	2
Rad Radium-226 Lucas Cell, Ra226, Liq	quid "As Rece	eived"										
Radium-226		3.30	+/-0.857	0.762	+/-1.12	1.00	pCi/L		MJ2	09/12/24 0939	2665882	3

The following Analytical Methods were performed Description

1	EPA 904.0/SW846 9320 Modified
2	Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2665594	78.1	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 6 of 15 SDG: 683474

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 16, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: **BRA-BRGWC-25I** Project: GPCC00101 Sample ID: GPCC001 Client ID: 683474004

Matrix: WG

Collect Date: 29-AUG-24 Receive Date: 30-AUG-24 Collector: Client

Parameter	Qualifier	Result Un	certainty	MDC	TPU	RL	Units	PF	DF Analys	t Date Time	Batch 1	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		0										
Radium-228	U	1.34	+/-1.11	1.75	+/-1.16	3.00	pCi/L		KP1	09/12/24 0749	2665594	1
Radium-226+Radium-	-228 Calcula	tion "See Par	ent Product	s"								
Radium-226+228 Sum		6.24	+/-1.50	1.75	+/-1.76		pCi/L		NXL1	09/16/24 1006	2670865	2
Rad Radium-226 Lucas Cell, Ra226, Lic	quid "As Rec	eived"										
Radium-226		4.90	+/-1.01	0.621	+/-1.33	1.00	pCi/L		MJ2	09/12/24 0939	2665882	3

The following Analytical Methods were performed Description

1	EPA 904.0/SW846 9320 Modified
2	Calculation

EPA 903.1 Modified 3

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2665594	71.7	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 7 of 15 SDG: 683474

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 16, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-68D Project: GPCC00101 Sample ID: GPCC001 Client ID: 683474005

Matrix: WG

Collect Date: 29-AUG-24 Receive Date: 30-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date Time	Batch	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		0										
Radium-228	U	0.638	+/-0.797	1.35	+/-0.813	3.00	pCi/L		KP1	09/12/24 0736	2665594	1
Radium-226+Radium-	228 Calcula	tion "See Pa	irent Produci	ts"								
Radium-226+228 Sum		5.43	+/-1.24	1.35	+/-1.44		pCi/L		NXL1	09/16/24 1006	2670865	2
Rad Radium-226 Lucas Cell, Ra226, Liq	juid "As Rec	eived"										
Radium-226		4.79	+/-0.951	0.561	+/-1.19	1.00	pCi/L		MJ2	09/12/24 0939	2665882	3

The following Analytical Methods were performed **Description**

1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2665594	90	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 8 of 15 SDG: 683474

Radiochemistry Technical Case Narrative Georgia Power Company SDG #: 683474

Product: Radium-226+Radium-228 Calculation

Analytical Method: Calculation

Analytical Procedure: GL-RAD-D-003 REV# 45

Analytical Batch: 2670865

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683474001	BRA-BRGWC-45
683474002	BRA-APBCD-EB-05
683474003	BRA-APBCD-FD-02
683474004	BRA-BRGWC-25I
683474005	BRA-PZ-68D

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: GFPC Ra228, Liquid

<u>Analytical Method:</u> EPA 904.0/SW846 9320 Modified <u>Analytical Procedure:</u> GL-RAD-A-063 REV# 5

Analytical Batch: 2665594

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683474001	BRA-BRGWC-45
683474002	BRA-APBCD-EB-05
683474003	BRA-APBCD-FD-02
683474004	BRA-BRGWC-25I
683474005	BRA-PZ-68D
1205841081	Method Blank (MB)
1205841082	683474001(BRA-BRGWC-45) Sample Duplicate (DUP)
1205841083	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Page 9 of 15 SDG: 683474

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2665882

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683474001	BRA-BRGWC-45
683474002	BRA-APBCD-EB-05
683474003	BRA-APBCD-FD-02
683474004	BRA-BRGWC-25I
683474005	BRA-PZ-68D
1205841780	Method Blank (MB)
1205841781	683177001(BRA-BRGWA-2S) Sample Duplicate (DUP)
1205841782	683177001(BRA-BRGWA-2S) Matrix Spike (MS)
1205841783	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Method Blank Criteria

The blank result (See Below) is greater than the MDC but less than the required detection limit.

Sample	Analyte	Value
1205841780 (MB)	Radium-226	Result: 0.497 pCi/L > MDA: 0.471 pCi/L <= RDL: 1.00 pCi/L

Miscellaneous Information

Additional Comments

The matrix spike, 1205841782 (BRA-BRGWA-2SMS), aliquot was reduced to conserve sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 10 of 15 SDG: 683474

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Report Date: September 16, 2024

Page 1 of 2

QC Summary

Client: Georgia Power Company, Southern Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia

Contact: Joju Abraham

Workorder: 683474

Parmname		NOM	Sample (Qual	QC	Units	RPD%	REC%	Range A	nlst	Date Time
Rad Gas Flow											
Batch	2665594										
QC1205841082	683474001 DUP										
Radium-228		U	0.963	U	1.13	pCi/L	0		N/A	KP1	09/12/2407:38
		Uncert:	+/-0.939		+/-1.27						
		TPU:	+/-0.971		+/-1.31						
QC1205841083	LCS										
Radium-228		70.0			68.7	pCi/L		98	(75%-125%)	KP1	09/12/2407:36
		Uncert:			+/-4.24						
0.01205041001	MD	TPU:			+/-18.1						
QC1205841081	MB			U	1 42	pCi/L				KP1	09/12/2407:37
Radium-228		Uncert:		U	1.43 +/-1.02	pCI/L				KPI	09/12/2407:37
		TPU:			+/-1.02						
Rad Ra-226		110.			17 1.00						
Batch	2665882										
QC1205841781	683177001 DUP										
Radium-226	003177001 Del		0.501		0.598	pCi/L	17.6		(0% - 100%)	MJ2	09/12/2410:12
radiani 220		Uncert:	+/-0.340		+/-0.365	Penz	17.0		(070 10070)	1.102	09/12/2110112
		TPU:	+/-0.351		+/-0.384						
QC1205841783	LCS										
Radium-226		27.1			27.2	pCi/L		100	(75%-125%)	MJ2	09/12/2410:12
		Uncert:			+/-2.14						
		TPU:			+/-4.87						
QC1205841780	MB										
Radium-226					0.497	pCi/L				MJ2	09/12/2410:12
		Uncert:			+/-0.343						
0.01205041702	692177001 MG	TPU:			+/-0.360						
QC1205841782 Radium-226	683177001 MS	124	0.501		110	C:/I		00.2	(750/ 1050/)	MIO	00/12/2410-12
Naululli-220		124 Uncert:	+/-0.340		110 +/-8.62	pCi/L		88.3	(75%-125%)	ıVIJ∠	09/12/2410:12
		TPU:	+/-0.340		+/-22.9						
		11 0.	17-0.551		11-22.9						

Notes:

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- H Analytical holding time was exceeded
- Result is less than value reported
- > Result is greater than value reported

Page 11 of 15 SDG: 683474

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683474 Page 2 of 2 **Parmname** NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time UI Gamma Spectroscopy--Uncertain identification BDResults are either below the MDC or tracer recovery is low Preparation or preservation holding time was exceeded h R Sample results are rejected RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry. N/A RPD or %Recovery limits do not apply. Analyte concentration is not detected above the detection limit ND M if above MDC and less than LLD M NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

- FA Failed analysis.
- UJ Gamma Spectroscopy--Uncertain identification
- One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ** Analyte is a Tracer compound
- M REMP Result > MDC/CL and < RDL
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ** Indicates analyte is a surrogate/tracer compound.
- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 12 of 15 SDG: 683474

Figure 2 OFE 2 Part Pa	Page: Of Project # GEL Quote #:		U	GELCOM		1DOF2	Laboratories LLC Chemistry Radiochemistry Radiochemis	S LLC diobioassay	1 Specia	ity Analyti	83			GEL Laboratories, LLC 2040 Savage Road Charleston, SC 29407	LC (8317	_
Part of the Part	COC Number '':	, m , m			3 10 11	ISTOUY at	id Analyt	ical Re	nest					Phone: (843) 556-81		771
Strong Results To: SCS & Geosympec Contacts Strong this	PO Number: GPC82177-0006	GEL Work	Jrder Number	"	100	GEL Proj	ect Manag	er: Erin	Frent	Treat Color		9)		Fax: (843) 766-1178	2002	t
Size Variety Bartier Bartier State Association State Sta	Client Name: GA Power			#=	4-200-71	01		Ö	ample,	Analysi	. Kedn	sted		he number of conta	iners for each test)	0
Sample in Comment Comment Comment Comment Comments Sample in Comment Comments Sample in Comment Comments Sample in Comment Comments Sample in Comm	Project/Site Name: Plant Branch Ash Ponds - BCL			Fax#			Shor	uld this	S.I		IN	IN			< Preservative Type (6)	(9) a
Note 1960	Address: 241 Ralph McGill Blvd SE, Atlanta GA	30308					Sam	iple be idered:		00	0 <i>L</i> t				Comments	
Sample ID		Send Results	To: SCS & G		ntacts			regre	AUT PO	SM 2540 & Bicarb	* slf	312, 932			Note: extra sample is required for sample specific	s is
\$\(\text{\$\infty}\) \(\text{\$\infty}\) \(\text	l Sample ID * For composites - indicate start and stop date!	time	*Date Collected		QC Code (2) F	Field Sau	Radioactive yes, please su	10 имоим (7)	- 110	EPA 300, 2 Total, Carb, 2	Meta	6 948-WS			QC Task_Code: BRA-CCR- ASSMT-2024S2	CCR-
AP BCO - EB - O	BRA-BRGWC-45		12/62/80		D D	I WC	()		W	1)	1	7			
RPC & C. P. F. D. O. Z. D. S. P.	BRA-APBCD-EB-05	0	12/2/24	5201			Ø		00	7	7	7	7			
PRE-6-EV) PRE-	BRA- APBCD - FD-02	0	2/29/24	/			0		60	7	7	1)			
Chain of Custody Signatures Chai	BRA-BREWC-25I	2	h2/22/86	4101	0		0		00	>	>	1	1			
Chain of Custody Signatures Chain of Custody Signatures Chain of Custody Signatures Chain of Custody Signatures Time Received by (signed) Time Received by (signed) Time Received by (signed) Additional learners: "A Real II: 15°C Signatures A Real II: 15	BRA- P2-620	7	12/20/24	8549	0		0		X	>	1	>	7			
Chain of Custody Signatures Codes We have been delivery details, see Sample Receipt & Revitew form (SRR) Sample shipping and delivery details, see Sample Receipt & Revitew form (SRR) Sample shipping and delivery details, see Sample Receipt & Revitew form (SRR) Sample shipping and delivery details, see Sample Receipt & Revitew form (SRR) Sample shipping and delivery details, see Sample Receipt & Revitew form (SRR) Sample shipping and delivery details, see Sample Receipt & Revitew form (SRR) Sample shipping and delivery details, see Sample Receipt & Revitew form (SRR) Sample Collection Time Zone: [I Jesuel Listed Waste Codes We will a see the sample was not field filtered. Sample shipping and delivery details in the sample was fold filtered or -N - for sample was not field filtered. Sample shipping and delivery details are sample was field filtered or -N - for sample was not field filtered. Sample Collection Time Zone: [I Jesuel Vision of Compacing Spice Daplicane Sample, NSD - Maint Spice Sample, NSD - Maint Spice Only: Control Mainter Spice Daplicane Sample, Waste Or Compacing Spice Daplicane Sample, NSD - Maintered Spice Daplicane Sample Spice Sample Spice Daplicane Sample Spice Sample Spice Sample Spice Sample Spice Sample Spice Sample Spice Daplicane Sample Spice Sample Spice Sample Spice Sample Spice	BRA-															
Chain of Custody Signatures Time Received by (signed) Date Time Received by (signed) Additional Remarks: A Nethalis Receipt & Review form (SRR) Sample shipping and delivery details, see Sample Receipt & Review form (SRR) Sample shipping and delivery details, see Sample Receipt & Review form (SRR) Sample shipping and delivery details, see Sample Receipt & Review form (SRR) Sample shipping and delivery details, see Sample Receipt & Review form (SRR) Sample collection Time Zone Collection Time Zone (Signature) Review No.—The Blank, ED—Field Daplicate, ED—Epigement Blank, MS—Matrix Spice Daplicate Simple, G—Grabody Seal Innace) [1] Year Lab Receiving Use Only: Charactery Seal Innace) [2] Central Additional Collection Time Zone (Signature) Residence of Sample was not field filtered. Now No Revolution and A Sample Collection Time Zone (Signature) The Elemental Sample, TD—Trip Blank, MS—Matrix Spice Sample, MSD—Matrix Spice Daplicate Sample, G—Grapodo (Signature) Sample Collection Time Zone Composite The Elemental Sample was not field filtered. Sample collection Time Zone Composite The Elemental Sample was not field filtered. Sample Collection Matrix See Solid matrix See Solid matrix See Solid matrix See Solid matrix As Silver Trick Matrix TISCA Regulated Trick Matrix T	BRA-															
Chain of Custody Signatures Codes No. 24 of 32 of 1 from Received by (Signature) Date Time Fix Recults; [1] Yes [x] No. Additional Remarks: "Mentals: B.C.asb.Ax,Ba.Ba.Ca.Ca.Ca.Ca.Ca.Ca.Ca.Ca.Ca.Ca.Ca.Ca.Ca	BRA-															
Chain of Custody Signatures Claim of Custody Signatures Guished By (Signed) Date Time Received by (signed) Date Time Received by (signed) Date Time Received by (signed) Supplies Signed Date Time Time Time Time Time Time Time Tim	BRA-															Г
Chair of Custody Signatures	BRA-															
Pax Results: [] Yes [x] No	Ch	ain of Custod	ly Signatures					TA	T Requ	ested:	Norma		Rush:	Specify:	(Subject to Surcharge)	ge)
Select Deliverable: [] C of A [] 1QC Summary [] level 1	Date		Received by (sig		ite .	Time		Fax Res	sults: [1	No [x]					
3	Ale 08-20-24	30	41	B		124	00	Select I	Delivera	ble: [] C	ofA	10c	Summary	1 1	rel 2 [] Level 3 [] Level	4 18
1 For Lan Receiving Use Onto; Custody Seat Intact? J Fest		2 0						Additio	nal Rem	arks:	* Met	als: B,C	,Sb,As,Ba	Be,Cd,Cr,Co,Pb,Li,M	o,Se,TI,Fe,Mg,Mn,K,Na,Hg	
obstance Client Determined Normal Sample, TB = Trip Blank, FD = Field Duplicate, EB = Equipment Blank, MS = Matrix Spike Sample, MSD = Matrix Spike Duplicate Sample, G = Grab, C = Composite For Italia matrices, indicate with a - Y - for yes the sample was field filtered or - N - for sample was not field filtered or - N - for sample was not field filtered or - N - for sample was not field filtered or - N - for sample was not field filtered or - N - for sample was not field filtered or - N - for sample was field filtered or - N - for sample was not field filtered or - N - for sample was field filtered or - N - for sample was not field filtered or - N - for sample was field filtered or - N - for sample was not field filtered or - N - for sample was field filtered or - N - for sample was field filtered or - N - for sample was field filtered or - N - for sample was not field filtered or - N - for sample was field filtered or - N - for sample was field filtered or - N - for sample was not field filtered or - N - for sample was field filtered or - N - for sample was not field filtered or - N - for sample was field filtered or - N - for sample was field filtered or - N - for sample was field filtered or - N - for sample was not field filtered or - N - for sample was field filtered or - N - for sample was field filtered or - N - for sample was field filtered or - N - for sample was field filtered or - N - for sample was field filtered or - N - for sample was field filtered or - N - for sample was field filtered or - for sample was field	7	C D C C	o Daniem Com	(ads)			Samulo	Collection	n Timo	Zono.	Unity: C	nstoay m [Dacific	[] res [] No	Cooler Temp: 1 -C	1
For liquid matrices, indicate with a - Y - for yes the sample was field filtered or - N - for sample was not field filtered. WD=Drinking Water, WG=Groundwater, WS=Surface Water, WW=Waste Water, WB=Drinking Water, WG=Groundwater, WS=Surface Water, WB=Drinking Water, WG=Groundwater, WS=Surface Water, WB=Drinking Water, WG=Groundwater, WS=Surface Water, WB=Drinking Water, WG=Containers provided for each (i.e. \$260B - 3, 6010B/74704 - 1). The Hammable Mater of (i.e. \$260B, 6010B/74704) and number of containers provided for each (i.e. \$260B - 3, 6010B/74704 - 1). The Hammable Mater of Characteristic Hazards and number of containers provided for each (i.e. \$260B - 3, 6010B/74704 - 1). The Hammable Mater of Characteristic Hazards and number of containers provided for each (i.e. \$260B - 3, 6010B/74704 - 1). The Hammable Mater of Characteristic Hazards and number of containers provided for each (i.e. \$260B - 3, 6010B/74704 - 1). The Hammable Mater of Characteristic Hazards and number of containers provided for each (i.e. \$260B - 3, 6010B/74704 - 1). The Hammable Mater of Characteristic Hazards and number of containers provided for each (i.e. \$260B - 3, 6010B/74704 - 1). The Hammable Mater of Characteristic Hazards and number of containers provided for each (i.e. \$260B - 3, 6010B/74704 - 1). The Hazards and number of containers provided for each (i.e. \$260B - 3, 6010B/74704 - 1). The Hazards and number of containers provided for each (i.e. \$260B - 3, 6010B/74704 - 1). The Hazards and number of containers provided for each (i.e. \$260B - 3, 6010B/74704 - 1). The Hazards and number of containers provided for each (i.e. \$260B - 3, 6010B/74704 - 1). The Hazards and number of containers provided for each (i.e. \$260B - 3, 6010B/74704 - 1). The Hazards and number of containers provided for each (i.e. \$260B - 3, 6010B/74704 - 1). The Hazards and number of containers provided for each (i.e. \$260B - 3, 6010B/74704 - 1). The Hazards and number of containers provided for each (i.e. \$260B - 3, 6010B/74704 - 1). The Ha	Chain of Custody Number = Client Determined (2) QC Codes: N = Normal Sample, TB = Trip Blank, FD = Fiel	intpre Accepted	Equipment Blank,	MS = Matrix Sp	ike Sample	MSD = Matr	ix Spike Duplica	ate Sample,	G = Grab,	C = Comp	osite					
WD=Drinking Water, WG=Groundwater, WS=Surface Water, WW=Waste Water, WW=Waste Water, WB=Cachate, SO=Soil, SE=Sediment, SL=Sludge, WQ=Water Quality Control Matrix Sequested: Analytical method requested (i.e. 8260B, 6010B7470A) and number of containers provided for each (i.e. 8260B - 3, 6010B7470A - 1). RE = Reactive Ag= Sulfuric Acid, AR = Hexane, ST = Sodium Thiosulfate, If no preservative is added = leave field blank Characteristic Hazards Listed Waste Other Other Other Other RE = Reactive Waste code(s): Description: Ag= Silver Ag= Silver MR= Misc. RCRA metals PCB = Polychlorinated MR = Misc. RCRA metals Description: MR = Misc. RCRA metals Desc	i.) Field Filtered: For liquid matrices, indicate with a - ${\bf Y}$ - for ye	es the sample was fi	eld filtered or - N -	for sample was	not field filt	ered.										
PROSSIBLE HAZARDS The Hydrochloric Acid, IN = Nitric Acid, BH = Sodium Hydroxide, SA = Sulfuric Acid, BH = Hexane, ST = Sodium Thiosulfate, If no preservative is added = leave field blank Characteristic Hazards The Hydrochloric Acid, IN = Nitric Acid, BH = Sodium Hydroxide, SA = Sulfuric Acid, BH = Hexane, ST = Sodium Thiosulfate, If no preservative is added = leave field blank Other OT = Other / Unknown (i.e.: High/low pH, asbestos, beryllium, irritants, other misc. health hazards, etc.) Ag = Silver NR = Misc. RCRA metals PCB = Polychlorinated biphenyls	(i) Matrix Codes: WD=Drinking Water, WG=Groundwater, WS	S=Surface Water, V	VW=Waste Water,	WL=Leachate,	SO=Soil, SI	E=Sediment, S	L=Sludge, WQ	=Water Qua	lity Contr	ol Matrix						
Characteristic Hazards Listed Waste Other) Preservative Type: HA = Hydrochloric Acid, NI = Nitric Acid	d, SH = Sodium Hy	/droxide, SA = Sulf	uric Acid, AA =	Ascorbic A	cid, HX = He	tane, ST = Sodi	um Thiosulf	ate, If no	reservative	is added	= leave fi	ld blank			
Hg= Mercury RE = Reactive RE = Reactive RE = Regulated MR = Misc. RCRA metals F.L. = Frammatoler lightness and Protect Content of the Frammatoler lightness and Protect of the Francisco of the Protect of the Francisco of the Protect of the Francisco of the Protect of the		Characteristi	c Hazards	Listed V	Vaste		-	Other	111					Please p	Please provide any additional details	S
Ag= Silver MR= Misc. RCRA metals	Hg= Mercury Se= Selenium	FL = Flammar CO = Corrosiv RE = Reactive	ole/ignitable	(F,K,P a	nd U-list ode(s):	ed wastes.)		(i.e.: Hi misc. he Descrip	gh/low j alth ha:	oH, asbe	stos, ber	yllium,	irritants,		vetow regarang nananng anwor disposal concerns, (t.e.: Origin of sample(s), type of site collected from, odd matrices, etc.)	, odd
	Ag= Silver MR= Misc. RCRA metals	TSCA Regula PCB = Polych bipher	ted lorinated nyls				1									

6834751 683477 683471 683474 683468 683474

AP

Client: 614			SDG/AR/COC/Work Order:
Received By: CLM		_	Date Received: 813010
Carrier and Tracking Number			FedEx Express FedEx Ground UPS Field Services Courier Other
Suspected Hazard Information	Yes	°Z,	*If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
A)Shipped as a DOT Hazardous?		1	Hazard Class Shipped: If UN2910, Is the Radioactive Shipment Survey Compliant? YesNo
B) Did the client designate the samples are to be received as radioactive?		/	COC notation or radioactive stickers on containers equal client designation.
C) Did the RSO classify the samples as adioactive?		0	Maximum Net Counts Observed* (Observed Counts - Area Background Counts):
D) Did the client designate samples are hazardous?		/	COC notation or hazard labels on containers equal client designation.
E) Did the RSO identify possible hazards?	u	/	If D or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
Sample Receipt Criteria	Yes	X.	Comments/Qualifiers (Required for Non-Conforming Items)
Shipping containers received intact and sealed?	/	4	Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
2 Chain of custody documents included with shipment?	/		Circle Applicable: Client contacted and provided COC COC created upon receipt
3 Samples requiring cold preservation within (0 ≤ 6 deg. C)?*	/		Preservation Method (Wet Ice) Ice Packs Dry ice None Other: *all temperatures are recorded in Celsius TEMP:
Daily check performed and passed on IR temperature gun?			Temperature Device Serial #: IR5-23 Secondary Temperature Device Serial # (If Applicable):
5 Sample containers intact and sealed?	V		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
6 Samples requiring chemical preservation at proper pH?		_	Sample ID's and Containers Affected: If Preservation added, Lot#:
7 Do any samples require Volatile Analysis?		+ 11	If Yes, are Encores or Soil Kits present for solids? Yes No NA (If yes, take to VOA Freezer) De liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Are liquid VOA vials free of headspace? Yes No NA Sample ID's and containers affected:
8 Samples received within holding time?			ID's and tests affected:
9 Sample ID's on COC match ID's on bottles?		Ť	BLA-PZ-51 I (Analysis Metals) forgot the T"at H
Date & time on COC match date & time on bottles?			BRA-PZ-68D (Analysis TDS) doesn't have a ti
Number of containers received match number indicated on COC?		iii k	Circle Applicable: No container count on COC Other (describe)
Are sample containers identifiable as GEL provided by use of GEL labels? COC form is properly signed in relinquished/received sections?			Circle Applicable: Not relinquished Other (describe)
relinquished/received sections?	8 as	3 ~	Circle Applicable: Not relinquished Other (describe) 479) Ole. BLA-PZ-63I all times on samples are 11:30 except for analysis TDS- (1683477)

List of current GEL Certifications as of 16 September 2024

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	KY90129
Kentucky Wastewater	KY90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2023019
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	NV-C24-00175
New Hampshire NELAP	205424
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2023-152
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235
Utah NELAP	SC000122024-41
Vermont	VT87156
Virginia NELAP	460202
Washington	C780
	. * *

gel.com

September 16, 2024

Joju Abraham Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

Re: Branch CCR Groundwater Compliance

Work Order: 683477

Dear Joju Abraham:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on August 30, 2024. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The sample was delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. The laboratory received the following sample(s):

Laboratory ID	Client ID	<u>Matrix</u>	Date Collected	Date Received
683477001	BRA-PZ-63I	Ground Water	08/29/24 11:30	08/30/24 08:30

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Prep Methods and Prep Dates

Not Applicable

Analysis Methods and Analysis Dates

Method	Run Date ID
Calculation	16-SEP-2024
EPA 903.1 Modified	12-SEP-2024
EPA 904.0/SW846 9320 Modified	12-SEP-2024

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4443.

Sincerely,

Hannah Bowden for

Alaina Pinnick Project Manager

Purchase Order: GPC82177-0006

Enclosures

Page 2 of 12 SDG: 683477

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

GPCC001 Georgia Power Company Client SDG: 683477 GEL Work Order: 683477

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Alaina Pinnick.

	HannahBonden	
Reviewed by	1 -	

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 16, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater Compliance

Client Sample ID: BRA-PZ-63I Project: GPCC00101
Sample ID: 683477001 Client ID: GPCC001

Matrix: WG

Collect Date: 29-AUG-24
Receive Date: 30-AUG-24
Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date Tim	e Batch	Mtd.
Rad Gas Flow Proporti GFPC Ra228, Liquid		0										
Radium-228		2.11	+/-1.10	1.53	+/-1.22	3.00	pCi/L		KP1	09/12/24 0738	2665594	1
Radium-226+Radium	-228 Calculat	ion "See Pa	rent Product	s"								
Radium-226+228 Sum		4.48	+/-1.29	1.53	+/-1.47		pCi/L		NXL1	09/16/24 1006	2670865	2
Rad Radium-226 Lucas Cell, Ra226, Li	quid "As Rece	eived"										
Radium-226		2.37	+/-0.680	0.577	+/-0.807	1.00	pCi/L		MJ2	09/12/24 1012	2665882	3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation

B EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2665594	83.4	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method
DL: Detection Limit PF: Prep Factor
Lc/LC: Critical Level RL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 4 of 12 SDG: 683477

Radiochemistry Technical Case Narrative Georgia Power Company SDG #: 683477

Product: Radium-226+Radium-228 Calculation

Analytical Method: Calculation

Analytical Procedure: GL-RAD-D-003 REV# 45

Analytical Batch: 2670865

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID# Client Sample Identification

683477001 BRA-PZ-63I

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: GFPC Ra228, Liquid

Analytical Method: EPA 904.0/SW846 9320 Modified Analytical Procedure: GL-RAD-A-063 REV# 5

Analytical Batch: 2665594

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID# Client Sample Identification

683477001 BRA-PZ-63I

1205841081 Method Blank (MB)

1205841082 683474001(BRA-BRGWC-45) Sample Duplicate (DUP)

1205841083 Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2665882

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683477001	BRA-PZ-63I
1205841780	Method Blank (MB)
1205841781	683177001(BRA-BRGWA-2S) Sample Duplicate (DUP)
1205841782	683177001(BRA-BRGWA-2S) Matrix Spike (MS)
1205841783	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Method Blank Criteria

The blank result (See Below) is greater than the MDC but less than the required detection limit.

Sample	Analyte	Value
1205841780 (MB)	Radium-226	Result: 0.497 pCi/L > MDA: 0.471 pCi/L <= RDL: 1.00 pCi/L

Miscellaneous Information

Additional Comments

The matrix spike, 1205841782 (BRA-BRGWA-2SMS), aliquot was reduced to conserve sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 6 of 12 SDG: 683477

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Client: Georgia Power Company, Southern Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia

Contact: Joju Abraham

Workorder: 683477

Parmname		NOM	Sample (Qual	QC	Units	RPD%	REC%	Range A	nlst	Date Time
Rad Gas Flow											
Batch	2665594										
QC1205841082	683474001 DUP										
Radium-228		U	0.963	U	1.13	pCi/L	0		N/A	KP1	09/12/2407:38
		Uncert:	+/-0.939		+/-1.27						
		TPU:	+/-0.971		+/-1.31						
QC1205841083	LCS										
Radium-228		70.0			68.7	pCi/L		98	(75%-125%)	KP1	09/12/2407:36
		Uncert:			+/-4.24						
0.01205041001	MD	TPU:			+/-18.1						
QC1205841081	MB			U	1 42	pCi/L				KP1	09/12/2407:37
Radium-228		Uncert:		U	1.43 +/-1.02	pCI/L				KPI	09/12/2407:37
		TPU:			+/-1.02						
Rad Ra-226		110.			17 1.00						
Batch	2665882										
QC1205841781	683177001 DUP										
Radium-226	003177001 Del		0.501		0.598	pCi/L	17.6		(0% - 100%)	MJ2	09/12/2410:12
radiani 220		Uncert:	+/-0.340		+/-0.365	Penz	17.0		(070 10070)	1.102	09/12/2110112
		TPU:	+/-0.351		+/-0.384						
QC1205841783	LCS										
Radium-226		27.1			27.2	pCi/L		100	(75%-125%)	MJ2	09/12/2410:12
		Uncert:			+/-2.14						
		TPU:			+/-4.87						
QC1205841780	MB										
Radium-226					0.497	pCi/L				MJ2	09/12/2410:12
		Uncert:			+/-0.343						
0.01205041702	692177001 MG	TPU:			+/-0.360						
QC1205841782 Radium-226	683177001 MS	124	0.501		110	C:/I		00.2	(750/ 1050/)	MIO	00/12/2410-12
Naululli-220		124 Uncert:	+/-0.340		110 +/-8.62	pCi/L		88.3	(75%-125%)	ıVIJ∠	09/12/2410:12
		TPU:	+/-0.340		+/-22.9						
		11 0.	17-0.551		11-22.9						

Notes:

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- H Analytical holding time was exceeded
- < Result is less than value reported
- > Result is greater than value reported

Page 7 of 12 SDG: 683477

Report Date: September 16, 2024 Page 1 of 2

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683477 Page 2 of 2 **Parmname** NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time UI Gamma Spectroscopy--Uncertain identification BDResults are either below the MDC or tracer recovery is low Preparation or preservation holding time was exceeded h R Sample results are rejected RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry. N/A RPD or %Recovery limits do not apply. Analyte concentration is not detected above the detection limit ND

- M if above MDC and less than LLD
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- FA Failed analysis.
- UJ Gamma Spectroscopy--Uncertain identification
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ** Analyte is a Tracer compound
- M REMP Result > MDC/CL and < RDL
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ** Indicates analyte is a surrogate/tracer compound.
- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 8 of 12 SDG: 683477

Project # Of COO Number (1).		GEI.	E CO.	Laboratories LLC	TOTIES	Indiposassay I	Specialty Ans	lytics		0 70	GEL Laboratories, LLC 2040 Savage Road Charleston, SC 29407	683475
PO Number: GPC82177-0006	GEL Work Order Number:		all of C	Chain of Custody and Analytical Request	GEI Project Manager: Frin Trans	cal Requ	lest			Ы	Phone: (843) 556-8171	1.831
Client Name: GA Power		Phone #	404-506-7116	116	Smunge	San	unle Anal	veis Rear	ested (5)	(Fill in the	Sample Analysis Requested (5) (Fill in the number of containing for each	- TOO
Project/Site Name: Plant Branch Ash Ponds - BCD	CD	Fax#			Shou	Should this		IN	11		number of contain	Cls 101 each test)
Address: 241 Ralph McGill Blvd SE, Atlanta GA 30308	A 30308				sam	sample be	£(1	1			Comments
Collected By: J, May ACC	Send Results To: SCS & Geosyntec	Geosyntec	Contacts) (If	sp.	DS' NG	E00	5 & 228 15, 9320	00		Note: extra sample is
Sample ID * For composites - indicate start and stop date/time	*Date Collected	*Time d Collected (Military)	OC Code 3)	Field Sample Filtered (3) Matrix (4)	Radioactive	7) Known or ocsible Hazar	Γοτεί number Cl, F, SO4, T	Total, Carb, & SM 232 Metals EPA 6020, 60	Radium 220 SW-846 931 Sulfic	St WS		required for sample specific QC Task_Code: BRA-CCR-ASSMT-2024S2
BRA-72-63I	89	2511	Ö	N WG	r I	1)	00	1	7			
BRA-												
BRA-								-	y I			
BRA-										Ė		
BRA-												
3RA-				0.0								
3RA-												
3RA-												
3RA-				-								
3RA-												
D	Chain of Custody Signatures	es				TAT	TAT Requested:	Normal:	×	Rush:	Specify:	(Subject to Surcharge)
Relinquished By (Signed) Date Time	ne Received by (signed)	signed)	Date	Time		Fax Result	Fax Results: [] Yes	[x] No				
pers 0830.24	1 0880	1	8/301	124	834	Select Del	iverable: []C of A	10C St	Select Deliverable: [] C of A [] QC Summary [] level 1		[x] Level 2 [] Level 3 [] Level 4
	3 5					Additional Remarks: For Lab Receiving 1	Remarks:	* Met	als: B,Ca,	Additional Remarks: * Metals: B,Ca,Sb,As,Ba,Be,Cd,Cr,C	Cd,Cr,Co,Pb,Li,Mo,S	* Metals: B.Ca.Sh.As,Ba,Be,Cd,Cr,Co,Pb,Li,Mo,Se,Ti,Fe,Mg,Mn,K,Na,Hg nly: Cutrody Sort Intract? [1 Vos [1 No
For sample shipping and delivery details, see Sample Receipt & Review form (SRR.)	Sample Receipt & Review for	·m (SRR.)			Sample (Collection	Time Zone	[x] Easte	m []	Sample Collection Time Zone: [x] Eastern [] Pacific [] Central	[] Mo	[] Other:
) Chain of Custody Number = Client Determined) QC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicate, EB = Equipment Blank, MS = Matrix	ield Duplicate, EB = Equipment Blan	k, MS = Matrix	Spike Sample	Spike Sample, $MSD = Matrix$ Spike Duplicate Sample, $G = Grab$, $C = Composite$	Spike Duplicat	s Sample, G =	Grab, C = Co	mposite				
) Field Filtered: For liquid matrices, indicate with a - Y - for yes the sample was field filtered or - N - for sample was not field filtered	yes the sample was field filtered or - l	N - for sample w	as not field filt	ered.								
Matrix Codes: WD=Drinking Water, WG=Groundwater, WS=Surface Water, WW=Waste Water, WL=Leachate, SO=Soil, SE=Sediment, SL=Sludge, WQ=Water Quality Control Matrix Complex Analysis Demonstration Analysis and Analysis of State Of the Complex Analysis of State Of the Complex Analysis of State Of the Complex Analysis of th	WS=Surface Water, WW=Waste Wat	er, WL=Leachat	e, SO=Soil, S	E=Sediment, SL	=Sludge, WQ=	Water Quality	Control Matri	y				
Preservative Type: HA = Hydrochloric Acid, NI = Nitric Acid, SH = Sodium Hydroxide, SA = Sulfuric Acid, AA	cid, SH = Sodium Hydroxide, SA = S	ulfuric Acid, AA	= Ascorbic A	toviaca tot cacui (t.e. 0.2000 - 5), 001005/34/01 - 1.j. = Ascorbic Acid, HX = Hexane, ST = Sodium Thiosulfate, If no preservative is added = leave field blank	ne, ST = Sodium	n Thiosulfate,	If no preserva	ive is added	= leave field	blank		
KNOWN OR POSSIBLE HAZARDS	Characteristic Hazards	Listed		4		Other	Other	П.			Please prov	Please provide any additional details
	CO = Corrosive RE = Reactive	(F,K,P Waste	and U-listed wastes.)	ed wastes.)		(i.e.: High/lc misc. health Description:	(i.e.: High/low pH, asbest misc. health hazards, etc.) Description:	bestos, ber etc.)	yllium, ir	OT CORRECT CHAINMING (i.e.: High/low pH, asbestos, beryllium, irritants, other misc. health hazards, etc.) Description:		below regarding nanding and/or disposal concerns. (i.e.: Origin of sample(s), type of site collected from, odd marrices, etc.)
d = Cadmium Ag= Silver r = Chromium MR= Misc. RCRA metals b = Lead	TSCA Regulated PCB = Polychlorinated biphenyls				1							

68347 1 683768 Sample receipt & review form Laboratories LLC SDG/AR/COC/Work Order: Received By: CLM 8130124 Date Received: FedEx Express FedEx Ground UPS Field Services Courier Other Carrier and Tracking Number 🙎 *If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation. Suspected Hazard Information Hazard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes___ No_ A)Shipped as a DOT Hazardous? B) Did the client designate the samples are to be COC notation or radioactive stickers on containers equal client designation. received as radioactive? Maximum Net Counts Observed* (Observed Counts - Area Background Counts): _ C) Did the RSO classify the samples as E) CPM/mR/Hr Classified as: Rad 1 Rad 2 Rad 3 radioactive? COC notation or hazard labels on containers equal client designation. D) Did the client designate samples are hazardous? If D or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium E) Did the RSO identify possible hazards? Sample Receipt Criteria No NA Comments/Qualifiers (Required for Non-Conforming Items) Circle Applicable: Seals broken Damaged container Leaking container Other (describe) Shipping containers received intact and Chain of custody documents included Circle Applicable: Client contacted and provided COC COC created upon receipt with shipment? Preservation Method Wet Ice Ice Packs Dry ice None Other:
all temperatures are recorded in Celsius 3 Samples requiring cold preservation within $(0 \le 6 \text{ deg. C})$? Daily check performed and passed on IR Temperature Device Serial #: IR5-23 Secondary Temperature Device Serial # (If Applicable): temperature gun? Circle Applicable: Seals broken Damaged container Leaking container Other (describe) 5 Sample containers intact and sealed? Sample ID's and Containers Affected: Samples requiring chemical preservation at proper pH? If Preservation added, Lot#: If Yes, are Encores or Soil Kits present for solids? Yes___No___NA__(If yes, take to VOA Freezer) De liquid VOA vials contain acid preservation? Yes___ No__ NA__(If unknown, select No) Do any samples require Volatile Are liquid VOA vials free of headspace? Yes____No__ Analysis? Sample ID's and containers affected: ID's and tests affected: Samples received within holding time? Sample ID's on COC match ID's on O's and containers affected: bottles? Date & time on COC match date & time on bottles? Number of containers received match number indicated on COC? Are sample containers identifiable as GEL provided by use of GEL labels? COC form is properly signed in Circle Applicable: Not relinquished Other (describe) relinquished/received sections? Comments (Use Continuation Form if needed): a) of the ID. (683479) 10.) Wrote on the sample. BLA-PZ-63I all times on samples are hanged from 10:30 to 11:30 except for analysis TDS- (683477) VM Date 91324 Page of 1 PM (or PMA) review: Initials _

Collection Time-GEL WO: 683477 (BRA-PZ-63I)

Will James < Will.James@gel.com>

Tue 9/3/2024 3:24 PM

To:Joju Abraham <jabraham@southernco.com>;betsy.mcdaniel@atlcc.net <betsy.mcdaniel@atlcc.net>;Brian Steele <bri>chris.parker@atlcc.net>;Monte Jones <monte.jones@atlcc.net>;Lauren Fitzgerald <LAFitzgerald@Geosyntec.com>;KNJURINK@SOUTHERNCO.COM < KNJURINK@SOUTHERNCO.COM>;Smilley, Michael Jay <MJSMILLE@SOUTHERNCO.COM>;NSMUSKUS@SOUTHERNCO.COM <NSMUSKUS@SOUTHERNCO.COM>; lbmidkif@southernco.com <lbmidkif@southernco.com <Collins@Geosyntec.com <ccollins@geosyntec.com>;CNelson@Geosyntec.com <CNelson@Geosyntec.com>; Autumn.Acree@Geosyntec.com < Cc:Team Pinnick <Team.Pinnick@gel.com>

1 attachments (538 KB)

683477-coc.pdf;

Good afternoon,

Notifying you that the sample collection times for "BRA-PZ-61I" were changed from 10:30 to 11:30 on all the containers except for the sample container designated for TDS analysis. No reply is necessary just wanted to let you know.

Please see attached for reference.

Thank you,
Will James
Project Manager Assistant

2040 Savage Road, Charleston, SC 29407 | PO Box 30712, Charleston, SC 29417 Office Direct: 843.769.7371 Ext. 4261 | Office Main: 843.556.8171 | Fax: 843.766.1178

E-Mail: Will.James@gel.com | Website: www.gel.com

Analytical Testing

List of current GEL Certifications as of 16 September 2024

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	KY90129
Kentucky Wastewater	KY90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2023019
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	NV-C24-00175
New Hampshire NELAP	205424
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2023-152
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235
Utah NELAP	SC000122024-41
Vermont	VT87156
Virginia NELAP	460202
Washington	C780

gel.com

September 19, 2024

Joju Abraham Georgia Power Company, Southern Company 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

Re: Branch CCR Groundwater Compliance RCHEM

Work Order: 683479

Dear Joju Abraham:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on August 30, 2024. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. The metal analysis container for sample ID 683479008(BRA-PZ-51I) did not have the I, sample ID was used from the chain of custody. The laboratory received the following sample(s):

<u>Laboratory ID</u>	Client ID	Matrix	Date Collected	Date Received
683479001	BRA-PZ-50D	Ground Water	08/29/24 10:00	08/30/24 08:30
683479002	BRA-PZ-64I	Ground Water	08/29/24 11:35	08/30/24 08:30
683479003	BRA-PZ-61I	Ground Water	08/29/24 12:05	08/30/24 08:30
683479004	BRA-BRGWC-50	Ground Water	08/29/24 13:30	08/30/24 08:30
683479005	BRA-PZ-51D	Ground Water	08/29/24 13:40	08/30/24 08:30
683479006	BRA-APBCD-FB-03	Water	08/29/24 15:00	08/30/24 08:30
683479007	BRA-APBCD-FD-03	Ground Water	08/29/24 12:00	08/30/24 08:30
683479008	BRA-PZ-51I	Ground Water	08/29/24 14:20	08/30/24 08:30
683479009	BRA-APBCD-EB-06	Water	08/29/24 14:45	08/30/24 08:30
683479010	BRA-PZ-60I	Ground Water	08/29/24 12:44	08/30/24 08:30
683479011	BRA-PZ-58I	Ground Water	08/29/24 15:15	08/30/24 08:30

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Prep Methods and Prep Dates

Not Applicable

Analysis Methods and Analysis Dates

<u>Method</u>	Run Date ID
Calculation	19-SEP-2024
EPA 903.1 Modified	19-SEP-2024
EPA 904.0/SW846 9320 Modified	12-SEP-2024

Page 2 of 24 SDG: 683479

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4443.

Sincerely,

Hannah Bowden for

Alaina Pinnick Project Manager

Purchase Order: GPC82177-0006

Enclosures

Page 3 of 24 SDG: 683479

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

GPCC001 Georgia Power Company Client SDG: 683479 GEL Work Order: 683479

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Alaina Pinnick.

	HannahBonden	
Reviewed by	1 -	

Page 4 of 24 SDG: 683479

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 19, 2024

Project:

Client ID:

GPCC00101 GPCC001

Contact: Joju Abraham

Project: Branch CCR Groundwater ComplianceRCHEM

Client Sample ID: BRA-PZ-50D Sample ID: 683479001

Matrix: WG

Collect Date: 29-AUG-24
Receive Date: 30-AUG-24
Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analyst	Date	Time	Batch	Mtd.
Rad Gas Flow Proporti	onal Countii	ng												
GFPC Ra228, Liquid	"As Received	!"												
Radium-228		2.01	+/-1.04	1.46	+/-1.16	3.00	pCi/L			KP1	09/12/24	0749	2665594	1
Radium-226+Radium	-228 Calcular	tion "See Pa	rent Product	s"										
Radium-226+228 Sum		3.49	+/-1.15	1.46	+/-1.29		pCi/L			LXB3	09/19/24	1306	2672824	2
Rad Radium-226 Lucas Cell, Ra226, Li	quid "As Reco	eived"												
Radium-226		1.48	+/-0.501	0.383	+/-0.552	1.00	pCi/L			MJ2	09/19/24	1048	2665896	3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2665594	89.6	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method
DL: Detection Limit PF: Prep Factor
Lc/LC: Critical Level RL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 5 of 24 SDG: 683479

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 19, 2024

Project:

Client ID:

GPCC00101

GPCC001

Contact: Joju Abraham

Project: Branch CCR Groundwater ComplianceRCHEM

Client Sample ID: BRA-PZ-64I Sample ID: 683479002 Matrix:

WG

Collect Date: 29-AUG-24 Receive Date: 30-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date T	ime	Batch 1	Mtd.
Rad Gas Flow Proportion		0											
GFPC Ra228, Liquid	'As Receivea												
Radium-228	U	1.38	+/-1.07	1.66	+/-1.12	3.00	pCi/L		KP1	09/12/24 0	747	2665594	1
Radium-226+Radium-	228 Calculat	ion "See Pa	rent Product	s"									
Radium-226+228 Sum		1.72	+/-1.11	1.66	+/-1.17		pCi/L		LXB3	09/19/24 13	306	2672824	2
Rad Radium-226													
Lucas Cell, Ra226, Lie	quid "As Rece	eived"											
Radium-226	U	0.334	+/-0.306	0.461	+/-0.316	1.00	pCi/L		MJ2	09/19/24 1	048	2665896	3

The following Analytical Methods were performed Description

1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2665594	83.4	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 6 of 24 SDG: 683479

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 19, 2024

Project:

Client ID:

GPCC00101

GPCC001

Contact: Joju Abraham

Project: Branch CCR Groundwater ComplianceRCHEM

Client Sample ID: BRA-PZ-61I Sample ID: 683479003 Matrix:

WG

Collect Date: 29-AUG-24 Receive Date: 30-AUG-24 Client Collector:

<u>Parameter</u>	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date Time	e Batch	Mtd.
Rad Gas Flow Proporti GFPC Ra228, Liquid		0										
Radium-228		2.04	+/-1.13	1.64	+/-1.25	3.00	pCi/L		KP1	09/12/24 0747	2665594	1
Radium-226+Radium-	-228 Calculat	ion "See Pa	rent Products	s"								
Radium-226+228 Sum		2.64	+/-1.19	1.64	+/-1.30		pCi/L		LXB3	09/19/24 1306	2672824	2
Rad Radium-226 Lucas Cell, Ra226, Lid	quid "As Rece	rived"										
Radium-226		0.596	+/-0.364	0.380	+/-0.374	1.00	pCi/L		MJ2	09/19/24 1048	2665896	3

The following Analytical Methods were performed **Description**

	<u> </u>
1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2665594	83.7	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 7 of 24 SDG: 683479

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 19, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater ComplianceRCHEM

Client Sample ID: **BRA-BRGWC-50** Project: GPCC00101 GPCC001 Sample ID: Client ID: 683479004

Matrix: WG

Collect Date: 29-AUG-24 Receive Date: 30-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date Tin	ie Batch	Mtd.
Rad Gas Flow Proporti GFPC Ra228, Liquid		0										
Radium-228		1.98	+/-1.15	1.70	+/-1.26	3.00	pCi/L		KP1	09/12/24 074	7 2665594	1
Radium-226+Radium-	-228 Calculat	ion "See Pa	rent Products	s"								
Radium-226+228 Sum		3.86	+/-1.29	1.70	+/-1.43		pCi/L		LXB3	09/19/24 130	6 2672824	1 2
Rad Radium-226 Lucas Cell, Ra226, Lic	quid "As Rece	ived"										
Radium-226		1.88	+/-0.580	0.541	+/-0.684	1.00	pCi/L		MJ2	09/19/24 104	8 2665896	5 3

The following Analytical Methods were performed Description

1	EPA 904.0/SW846 9320 Modified
2	Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2665594	82.1	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 8 of 24 SDG: 683479

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 19, 2024

Project:

Client ID:

GPCC00101

GPCC001

Contact: Joju Abraham

Project: Branch CCR Groundwater ComplianceRCHEM

Client Sample ID: BRA-PZ-51D Sample ID: 683479005 Matrix: WG

Collect Date: 29-AUG-24
Receive Date: 30-AUG-24

Receive Date: 30-AUG-24
Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date Tin	e Batch	Mtd.
Rad Gas Flow Proporti GFPC Ra228, Liquid		0										
Radium-228		2.83	+/-1.23	1.67	+/-1.43	3.00	pCi/L		KP1	09/12/24 073	3 266559	4 1
Radium-226+Radium-	-228 Calculat	tion "See Pa	rent Product	s"								
Radium-226+228 Sum		3.43	+/-1.30	1.67	+/-1.49		pCi/L		LXB3	09/19/24 130	6 267282	4 2
Rad Radium-226 Lucas Cell, Ra226, Lic	quid "As Rece	eived"										
Radium-226		0.604	+/-0.417	0.571	+/-0.431	1.00	pCi/L		MJ2	09/19/24 104	3 266589	6 3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2665594	83.4	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

Lc/LC: Critical Level

Mtd.: Method

PF: Prep Factor

RL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 9 of 24 SDG: 683479

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 19, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater ComplianceRCHEM

Client Sample ID: BRA-APBCD-FB-03 Project: GPCC00101 Sample ID: 683479006 Client ID: GPCC001

Sample ID: 683479006 Matrix: WQ

Collect Date: 29-AUG-24
Receive Date: 30-AUG-24
Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date Ti	me :	Batch I	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		0											
Radium-228	U	-0.104	+/-0.860	1.69	+/-0.861	3.00	pCi/L		KP1	09/12/24 07	38 2	2665594	1
Radium-226+Radium-	228 Calculat	ion "See Pa	arent Products	s"									
Radium-226+228 Sum	U	0.407	+/-0.905	1.69	+/-0.908		pCi/L		LXB3	09/19/24 13	06 2	2672824	2
Rad Radium-226 Lucas Cell, Ra226, Liq	quid "As Rece	eived"											
Radium-226		0.407	+/-0.281	0.354	+/-0.291	1.00	pCi/L		MJ2	09/19/24 10	48 2	2665896	3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2665594	82.8	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

Lc/LC: Critical Level

Mtd.: Method

PF: Prep Factor

RL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 10 of 24 SDG: 683479

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 19, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater ComplianceRCHEM

Client Sample ID: BRA-APBCD-FD-03 Project: GPCC00101 Sample ID: GPCC001 Client ID:

683479007 Matrix: WG

Collect Date: 29-AUG-24 Receive Date: 30-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date Time	Batch	Mtd.
Rad Gas Flow Proport GFPC Ra228, Liquid		0										
Radium-228	U	1.53	+/-1.07	1.65	+/-1.14	3.00	pCi/L		KP1	09/12/24 0736	2665594	1
Radium-226+Radium	-228 Calculat	tion "See Pa	rent Produc	ts"								
Radium-226+228 Sum		4.27	+/-1.31	1.65	+/-1.44		pCi/L		LXB3	09/19/24 1306	2672824	2
Rad Radium-226 Lucas Cell, Ra226, Li	iquid "As Rece	eived"										
Radium-226		2.74	+/-0.756	0.542	+/-0.883	1.00	pCi/L		MJ2	09/19/24 1048	2665896	3

The following Analytical Methods were performed Description

1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2665594	83.8	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 11 of 24 SDG: 683479

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 19, 2024

GPCC00101

GPCC001

Contact: Joju Abraham

Project: Branch CCR Groundwater ComplianceRCHEM

Client Sample ID: BRA-PZ-51I Project: Sample ID: Client ID: 683479008 Matrix:

WG

Collect Date: 29-AUG-24 Receive Date: 30-AUG-24 Client Collector:

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date Tim	e Batch	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		0										
Radium-228	U	1.46	+/-1.05	1.65	+/-1.12	3.00	pCi/L		KP1	09/12/24 0740	2665594	1
Radium-226+Radium-	-228 Calcular	tion "See Pa	rent Product	s"								
Radium-226+228 Sum		2.55	+/-1.19	1.65	+/-1.26		pCi/L		LXB3	09/19/24 1306	2672824	2
Rad Radium-226 Lucas Cell, Ra226, Lie	quid "As Rece	eived"										
Radium-226		1.09	+/-0.545	0.702	+/-0.579	1.00	pCi/L		MJ2	09/19/24 1048	2665896	3

The following Analytical Methods were performed **Description**

1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	FPA 903 1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits	
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2665594	88.1	(15%-125%)	

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 12 of 24 SDG: 683479

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 19, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater ComplianceRCHEM

Client Sample ID: **BRA-APBCD-EB-06** Project: GPCC00101 Sample ID: GPCC001 Client ID:

683479009 Matrix: WQ

Collect Date: 29-AUG-24 Receive Date: 30-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date Time	Batch 1	Mtd.
Rad Gas Flow Proporti GFPC Ra228, Liquid		U										
Radium-228	U	1.81	+/-1.19	1.85	+/-1.27	3.00	pCi/L		KP1	09/12/24 0736	2665594	1
Radium-226+Radium	-228 Calculo	ation "See Pa	rent Produc	ts"								
Radium-226+228 Sum		2.07	+/-1.21	1.85	+/-1.30		pCi/L		LXB3	09/19/24 1306	2672824	2
Rad Radium-226 Lucas Cell, Ra226, Li	quid "As Red	ceived"										
Radium-226	U	0.259	+/-0.239	0.330	+/-0.245	1.00	pCi/L		MJ2	09/19/24 1119	2665896	3

The following Analytical Methods were performed Description

1	EPA 904.0/SW846 9320 Modified	
2	Calculation	
3	EPA 903.1 Modified	

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits	
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2665594	77.6	(15%-125%)	

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 13 of 24 SDG: 683479

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 19, 2024

Contact: Joju Abraham

Project: Branch CCR Groundwater ComplianceRCHEM

Client Sample ID: BRA-PZ-60I Project: GPCC00101 Sample ID: GPCC001 Client ID: 683479010

Matrix: WG

Collect Date: 29-AUG-24 Receive Date: 30-AUG-24 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date Time	Batch 1	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid		0										
Radium-228	U	1.71	+/-1.11	1.73	+/-1.19	3.00	pCi/L		KP1	09/12/24 0738	2665594	1
Radium-226+Radium-	228 Calculat	tion "See Pa	rent Product	s"								
Radium-226+228 Sum		3.70	+/-1.25	1.73	+/-1.36		pCi/L		LXB3	09/19/24 1306	2672824	2
Rad Radium-226 Lucas Cell, Ra226, Lid	quid "As Rece	eived"										
Radium-226		2.00	+/-0.585	0.546	+/-0.660	1.00	pCi/L		MJ2	09/19/24 1119	2665896	3

The following Analytical Methods were performed **Description**

1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2665594	85.4	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 14 of 24 SDG: 683479

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company, Southern

Address: Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: September 19, 2024

Project:

Client ID:

GPCC00101 GPCC001

Contact: Joju Abraham

Project: Branch CCR Groundwater ComplianceRCHEM

Client Sample ID: BRA-PZ-58I Sample ID: 683479011

Matrix: WG

Collect Date: 29-AUG-24
Receive Date: 30-AUG-24
Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date Tim	e Batch	Mtd.
Rad Gas Flow Proportional Counting												
GFPC Ra228, Liquid	"As Received				,	• • •	-1-					
Radium-228	U	1.22	+/-1.09	1.79	+/-1.14	3.00	pCi/L		KP1	09/12/24 0739	2665594	1
Radium-226+Radium-	-228 Calculat	ion "See Pa	rent Product	s"								
Radium-226+228 Sum		3.34	+/-1.27	1.79	+/-1.36		pCi/L		LXB3	09/19/24 1306	2672824	2
Rad Radium-226												
Lucas Cell, Ra226, Lie	quid "As Rece	eived"										
Radium-226		2.12	+/-0.648	0.377	+/-0.755	1.00	pCi/L		MJ2	09/19/24 1119	2665896	3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation

B EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2665594	84.8	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method
DL: Detection Limit PF: Prep Factor
Lc/LC: Critical Level RL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 15 of 24 SDG: 683479

Radiochemistry Technical Case Narrative Georgia Power Company SDG #: 683479

Product: Radium-226+Radium-228 Calculation

Analytical Method: Calculation

Analytical Procedure: GL-RAD-D-003 REV# 45

Analytical Batch: 2672824

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683479001	BRA-PZ-50D
683479002	BRA-PZ-64I
683479003	BRA-PZ-61I
683479004	BRA-BRGWC-50
683479005	BRA-PZ-51D
683479006	BRA-APBCD-FB-03
683479007	BRA-APBCD-FD-03
683479008	BRA-PZ-51I
683479009	BRA-APBCD-EB-06
683479010	BRA-PZ-60I
683479011	BRA-PZ-58I

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: GFPC Ra228, Liquid

Analytical Method: EPA 904.0/SW846 9320 Modified **Analytical Procedure:** GL-RAD-A-063 REV# 5

Analytical Batch: 2665594

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683479001	BRA-PZ-50D
683479002	BRA-PZ-64I
683479003	BRA-PZ-61I
683479004	BRA-BRGWC-50
683479005	BRA-PZ-51D
683479006	BRA-APBCD-FB-03
683479007	BRA-APBCD-FD-03
683479008	BRA-PZ-51I
683479009	BRA-APBCD-EB-06
683479010	BRA-PZ-60I
683479011	BRA-PZ-58I

Page 16 of 24 SDG: 683479

1205841081	Method Blank (MB)
1205841082	683474001(BRA-BRGWC-45) Sample Duplicate (DUP)
1205841083	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2665896

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
683479001	BRA-PZ-50D
683479002	BRA-PZ-64I
683479003	BRA-PZ-61I
683479004	BRA-BRGWC-50
683479005	BRA-PZ-51D
683479006	BRA-APBCD-FB-03
683479007	BRA-APBCD-FD-03
683479008	BRA-PZ-51I
683479009	BRA-APBCD-EB-06
683479010	BRA-PZ-60I
683479011	BRA-PZ-58I
1205841832	Method Blank (MB)
1205841833	683097001(NonSDG) Sample Duplicate (DUP)
1205841834	683097001(NonSDG) Matrix Spike (MS)
1205841835	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Miscellaneous Information

Additional Comments

The matrix spike, 1205841834 (Non SDG 683097001MS), aliquot was reduced to conserve sample volume.

Page 17 of 24 SDG: 683479

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 18 of 24 SDG: 683479

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Client: Georgia Power Company, Southern Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia

Contact: Joju Abraham

Workorder: 683479

Page 1 of 2	

Report Date: September 19, 2024

Parmname		NOM	Sample (Qual	QC	Units	RPD%	REC%	Range A	nlst	Date Time
Rad Gas Flow											
Batch	2665594										
QC1205841082	683474001 DUP										
Radium-228		U	0.963	U	1.13	pCi/L	0		N/A	KP1	09/12/2407:38
		Uncert:	+/-0.939		+/-1.27						
		TPU:	+/-0.971		+/-1.31						
QC1205841083	LCS										
Radium-228		70.0			68.7	pCi/L		98	(75%-125%)	KP1	09/12/2407:36
		Uncert:			+/-4.24						
		TPU:			+/-18.1						
QC1205841081	MB										
Radium-228				U	1.43	pCi/L				KP1	09/12/2407:37
		Uncert:			+/-1.02						
		TPU:			+/-1.08						
Rad Ra-226											
Batch	2665896										
QC1205841833	683097001 DUP										
Radium-226			0.920		0.970	pCi/L	5.29		(0% - 100%)	MJ2	09/19/2411:19
		Uncert:	+/-0.412		+/-0.413	-					
		TPU:	+/-0.437		+/-0.445						
QC1205841835	LCS										
Radium-226		27.3			24.8	pCi/L		90.9	(75%-125%)	MJ2	09/19/2411:19
		Uncert:			+/-2.14						
		TPU:			+/-5.04						
QC1205841832	MB										
Radium-226				U	0.115	pCi/L				MJ2	09/19/2411:19
		Uncert:			+/-0.168						
		TPU:			+/-0.170						
QC1205841834	683097001 MS										
Radium-226		170	0.920		140	pCi/L		81.4	(75%-125%)	MJ2	09/19/2411:19
		Uncert:	+/-0.412		+/-12.4						
		TPU:	+/-0.437		+/-32.7						

Notes:

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- H Analytical holding time was exceeded
- < Result is less than value reported
- > Result is greater than value reported

Page 19 of 24 SDG: 683479

GEL LABORATORIES LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 683479 Page 2 of 2 **Parmname** NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time UI Gamma Spectroscopy--Uncertain identification BDResults are either below the MDC or tracer recovery is low Preparation or preservation holding time was exceeded h R Sample results are rejected RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry. N/A RPD or %Recovery limits do not apply. Analyte concentration is not detected above the detection limit ND M M if above MDC and less than LLD

FA Failed analysis.

NJ

- UJ Gamma Spectroscopy--Uncertain identification
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.

Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- N1 See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ** Analyte is a Tracer compound
- M REMP Result > MDC/CL and < RDL
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ** Indicates analyte is a surrogate/tracer compound.
- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 20 of 24 SDG: 683479

683479

Page: of 2				- 1														Vo.	2
Project # GEL Quote #:			GEL	L C	_abc	orat(Ories	LLC	/ I Sne	cialty A	nalytic	0			204	40 Savag			346
COC Number (1):			Cha	ain of	Custoc	ly and	Analyti	cal Re	aues	t	rary uc.	5		Charleston, SC 29407 Phone: (843) 556-8171					
PO Number: GPC82177-0006	GEL Work	Order Numbe	er:				Manage										3) 336-81 <i>)</i> 766-1178	1	
Client Name: GA Power			Phone # 4	04-506-	7116			S	ampl	e Ana	lysis	Regu	ested	(5) (Fill	in the r	number	of contai	ners for each test)	1011275-
Project/Site Name: Plant Branch Ash Ponds -			Fax #				Shou	ld this				Z	Z	(*		Idilloci	Or contain		m
Address: 241 Ralph McGill Blvd SE, Atlanta	GA 30308						(U) and also the best factors	ole be	iners		-2				-	+		< Preservative	C. R. S.
Collected By Bors and ACC	Send Resul	ts To: SCS & C	Geosyntec (Contacts	i		consider (If supply (i.e.)		of conta	, SO4, TDS, NO3	Carb, & Bicarb Alk SM 2320B	s * 010, 7470	5 & 228 15, 9320	de 00				Note: extra sa	mple is
Sample ID *For composites - indicate start and stop a	late/time	*Date Collected (mm/dd/yy)	*Time Collected (Military) (hhmm)	QC Code (2)	Field Filtered (3	Sample Matrix (4)	Radioactive yes, please supp isotopic info.)	(7) Known or possible Hazards	Total number	CI, F, SO4, 7 EPA 300, S	Total, Carb, & SM 23;	Metals * EPA 6020, 6010, 7	Radium 226 & 228 SW-846 9315, 9320	Sulfide SM 4500				required for samp QC Task_Code: BR ASSMT-20	RA-CCR
BRA- PZ-50D		08/29/24	1060	G	N	WG	- A		8	1	/	1	~	1	-	-		A55W11-20	2432
BRA-PZ-64I		03/29/24	1135	6	N	WG			8	1	-					-			
BRA- 72-61I		08/29/24	1205	6	N	w6				/	/	V	V	-		45			
BRA-BRGWC50		08/29/24	1330	6	N				8	V		ν	-	V	100				
BRA-PZ-51D		08/29/24				WG			8	V /	/	1	/						
BRA-APBCD-FB-03		08/29/24	1340	6	N	W6			8	~	V	V	~	1	1				
BRA-APBCD-FD-03			1500	6	N	WQ			8	V	V	V	V	V					
BRA- PZ-51I		68/29/24		6	N	W6			8	V	~	V	V	V					
BRA- APBCD - EB- 06	- 1	58/29/24	1420	6	N	W6	- N	TAY THE	8	/	V	/	-						
BRA- PZ-60I		8/29/24	1445	6	N	WQ			8	/	V	/	/						
		28/29/24	1244	6	N	NG			8	V	V	V	V	~					
P. C. Li in the control of	Chain of Custome	Received by (sign	ned) D	ate	Time			TA	Г Req	uested	1: N	ormal	: <u>x</u>	_Rush:		Specify	:	(Subject to Surc	harge)
John 08-30-24	0830	14	A				A	Fax Resu											
00-)0-11	0030	177	12	8/3	0/20	1	830	Select De	elivera	ible: [JC o	fA [] QC	Summar	y []!	level 1	[x] Level	2 []Level 3 []I	Level 4
	2							Addition				* Meta	ls: B,C	a,Sb,As,I	3a,Be,Co	I,Cr,Co,J	Pb,Li,Mo,S	e,Tl,Fe,Mg,Mn,K,Na,H	Ig
> For sample shipping and delivery details, see	Sample Receipt	P. Daview Come	(CDD)	7 - 1			C	For Lab	Recei	ving U	Jse Oi	nly: C	ustody	Seal Int	act? [] Yes	[] No (Cooler Temp: 7 °	'C
.) Chain of Custody Number = Client Determined	Sample Receipt	& Review Joint	(SAA.)			MARKET !	sample C	onection	1 ime	Zone	: [x]	Easter	n [Pacific	[](Central	[] Mour	ntain [] Other:	ner out to
.) QC Codes: N = Normal Sample, TB = Trip Blank, FD =	Field Duplicate FR =	Fauinment Blank B	MC = Massic C		. Mon			A											
.) Field Filtered: For liquid matrices, indicate with a - Y - for	ves the sample was f	ield filtered or N. 6	or somela	oike Sampi	ie, MSD = 1	Matrix Spil	e Duplicate	Sample, G	= Grab	C = Cc	omposit	te							
) Matrix Codes: WD=Drinking Water, WG=Groundwater,						. 01 01													
.) Sample Analysis Requested: Analytical method requested	(i.e. 8260B_6010B/7	470A) and number of	f containes nec	30-30H, 2	SE=Sedime	nt, SL=Siu	dge, WQ=W	ater Qualit	y Contr	ol Matr	ix								
) Preservative Type: HA = Hydrochloric Acid, NI = Nitric A) KNOWN OR POSSIBLE HAZARDS	Characteristic	c Hazards	Listed V		Acid, HX =	Hexane, S			e, If no	preserva	itive is a	added =	leave fi	eld blank					
	FL = Flammal	Chicago Contractor	LW= Li		ste			Other OT= Othe	er/III	ıknow	m					Pl	lease prov	ide any additional de	tails
SCRA Metals S = Arsenic Hg= Mercury	CO = Corrosiv		(F,K,P a	nd U-lis		es.)		i.e.: High				s, bery	llium,	irritants	, other	di	now regar isposal con	ding handling and/or acerns. (i.e.: Origin o	of .
a = Barium Se= Selenium	RE = Reactive		Waste co	ode(s):			n	isc. heai	th ha:							sa	imple(s), ty	vpe of site collected fr	om, odd
d = Cadmium Ag= Silver	TSCA Regula						L	escriptio	n:							mo	atrices, etc	1	
r = Chromium MR= Misc. RCRA metals b = Lead	PCB = Polychl biphen			-16 16											Mc				
	orphen	y 13					-			=								0.4	

Project #		II U	-	I ahoratoriae I	jooil				G	GEL Laboratories, LLC	TTC	
GEL Quote #:		996.00		Chemistry Radiochemistry Radiobloassay Specially Analytics	TOO LLC	av I Specia	tv Analytics		0 0	2040 Savage Road		
COC Number (1):		Chain	5	of Custody and Analytical Request	nalytical Re	aduest) 6	nameston, 50, 294	101	
PO Number: GPC82177-0006	GEL Work Order Number:		P. CE	GEL Project Manager: Erin Trent	anager: Erin	Trent			24 1	Phone: (843) 556-8171	171	
Client Name: GA Power		Phone # 40	404-506-7116			Samule Analysis Requested (5)	nalveie	Regiment		rax. (843) /00-11/8	8	
Project/Site Name: Plant Branch Ash Ponds - BCD	BCD	Fax#			Should this	and man	and your	II		(rui in the number of containers for each test)	amers for each	test)
Address: 241 Raiph McGill Blvd SE, Atlanta GA 30308	GA 30308				sample be	1			NT.		< Prese	< Preservative Type (6)
Collected By: 3, Beng find ACC	Send Results To: SCS & Geosyntec	Geosyntec Co	Contacts	317	nsidered	istnos Te	1 2540C	0 <i>L</i> † <i>L</i> '01	-		Note: 6	Comments Note: extra sample is
Sample ID * For composites - indicate start and stop date/time	*Date Collected (mm/dd/sy)	*Time Collected (Military (hhmm)	QC Field Code (3) Filtered (3)	Sample Matrix (4)	Radioactive ves, please supp sotopic info.) 7) Known or possible Hazare	otal number o	EPA 300, SM Total, Carb, & B	Metals EPA 6020, 60 Radium 226	054 MS		required for	required for sample specific QC Task_Code: BRA-CCR- ASSMT 202462
BRA- P2- 58 I	õ	-	N	WG	(L &	7	7	1		ICCA	754707-114
BRA-						-	-					
BRA-												
BRA-								T				
BRA-												
BRA-								+				
BRA-												
BRA-			ŀ									
BRA-				-								
BRA-												
	Chain of Custody Signatures	9			Ę	-		-	4			
Relinquished By (Signed) Date Ti	Time Received by (signed)	igned) Date	te Time			i ai nequesteu:		Normal: X	Kush:	Specify:	(Subject	(Subject to Surcharge)
golder 08-30-24 4	6830 1 th		30/2	83	Fax Re	Fax Results: [] Yes [x] No Select Deliverable: [] C of A	Yes [x]		[10C Summary [[] [evel [r] [avel]	[] [] [] [[]	2 11 aval 4
	2				Additio	Additional Remarks:		Metals:	3,Ca,Sb,As,Ba,Be,	4	o,Se,TI,Fe,Mg,Mr	,K,Na,Hg
For sample chiming and delivery details see Sound Descrit 9 D. : Corn	Someto Passing & Paris C.	1 4457			For La	b Receiving	ig Use Or	tly: Cust	For Lab Receiving Use Only: Custody Seal Intact? [] Yes] Yes [] No	Cooler Temp:	J. /
Chain of Custody Number = Client Determined	s sumpre necespt & nevrew for	n (SKK.)		mc .	Sumpte Collection 11me Zone: [X] Eastern [] Pacific	n time z	one: [x]	Eastern	[] Pacific []	[] Central [] Mountain [] Other:	ountain [] Ot	her:
.) QC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicate, EB = Equipment Blank, MS = Matrix Spike Sample, MSD = Matrix Spike Duplicate Sample, G = Grab, C = Composite .) Field Filtered: For liquid matrices, indicate with a - Y - for yes the sample was field filtered or - N - for sample was not field filtered.	Field Duplicate, $EB = Equipment$ Blank or yes the sample was field filtered or - N	, MS = Matrix Spi - for sample was n	ike Sample, MSD ot field filtered.	= Matrix Spike D	Suplicate Sample,	G = Grab, C	= Composit	D				
.) Matrix Codes. WD=Drinking Water, WG=Groundwater, WS=Surface Water, WW=Waste Water, WL=Leachate, SO=Soil, SE=Sediment, SL=Sludge, WQ=Water Quality Control Matrix	WS=Surface Water, WW=Waste Wate	r, WL=Leachate, S	O=Soil, SE=Sed	iment, SL=Sludge	, WQ=Water Qua	lity Control	Matrix					
) Sample Analysis Requested: Analytical method requested (i.e., 8260B, 6010B/7470A) and number of containers provided for each (i.e., 8260B - 3, 6010B/7470A - 1).	(i.e. 8260B, 6010B/7470A) and numbe	r of containers prov	ided for each (i.e	. 8260B - 3, 6010	B/7470A - 1).							
) Preservative Type: HA = Hydrochloric Acid, NI = Nitric Acid, SH = Sodium Hydroxide, SA = Sulfuric Acid, AA	Acid, SH = Sodium Hydroxide, SA = St	Ilfuric Acid, AA = ,	Ascorbic Acid, H	= Ascorbic Acid, HX = Hexane, ST = Sodium Thiosulfate, If no preservative is added = leave field blank	Sodium Thiosulf	ate, If no pre	servative is	idded = leav	e field blank			
ANOWN OR POSSIBLE HAZARDS	Characteristic Hazards FL = Flammable/Ignitable	Listed W	Listed Waste LW= Listed Waste		Other	Other Other / Inknown	manor			Please pr	Please provide any additional details	onal details
	CO = Corrosive RE = Reactive	(F,K,P an	(F,K,P and U-listed wastes.) Waste code(s):	stes.)	(i.e.: High/lo misc. health Description:	(i.e.: High/low pH, asbest misc. health hazards, etc.) Description:	', asbesto: 'ds, etc.)	i, beryllin	fi.e.: Highly on pH, asbestos, beryllium, irritants, other misc. health hazards, etc.) Description:	7	oetow regarding nanding and/or disposal concerns. (i.e.: Origin of sample(s), type of site collected from,	- 00
.d = Cadmium Ag= Silver .r = Chromium MR= Misc, RCRA metals b = Lead	TSCA Regulated PCB = Polychlorinated biphenyls											334
				j								68

683471 683768 SAMPLE RECEIPT & REVIEW FORM GEL Laboratories LLC SDG/AR/COC/Work Order: Received By: CLM 8130124 Date Received: FedEx Express FedEx Ground UPS Field Services Courier Other Carrier and Tracking Number Suspected Hazard Information *If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation. Hazard Class Shipped: UN#:

If UN2910, Is the Radioactive Shipment Survey Compliant? Yes___No__ A)Shipped as a DOT Hazardous? B) Did the client designate the samples are to be COC notation or radioactive stickers on containers equal client designation. received as radioactive? Maximum Net Counts Observed* (Observed Counts - Area Background Counts): CPM/mR/Hr C) Did the RSO classify the samples as Classified as: Rad 1 Rad 2 Rad 3 radioactive? COC notation or hazard labels on containers equal client designation. D) Did the client designate samples are hazardous? If D or E is yes, select Hazards below Foreign Soil RCRA Asbestos PCB's Flammable Beryllium Other: E) Did the RSO identify possible hazards? Sample Receipt Criteria No NA Comments/Qualifiers (Required for Non-Conforming Items) Circle Applicable: Seals broken Damaged container Leaking container Other (describe) Shipping containers received intact and sealed? Circle Applicable: Client contacted and provided COC Chain of custody documents included COC created upon receipt with shipment? Preservation Method Wet Ice Ice Packs Dry ice None Other: Samples requiring cold preservation *all temperatures are recorded in Celsius within $(0 \le 6 \text{ deg. C})$?* Temperature Device Serial #: IR5-23 Daily check performed and passed on IR Secondary Temperature Device Serial # (If Applicable): temperature gun? Circle Applicable: Seals broken Damaged container Leaking container Other (describe) 5 Sample containers intact and sealed? ample ID's and Containers Affected: Samples requiring chemical preservation at proper pH? If Preservation added, Lot#: If Yes, are Encores or Soil Kits present for solids? Yes No NA (If yes, take to VOA Freezer) De liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Do any samples require Volatile are liquid VOA vials free of headspace? Yes___ No__ Analysis? Sample ID's and containers affected: ID's and tests affected: 8 Samples received within holding time? Sample ID's on COC match ID's on D's and containers affected: Date & time on COC match date & time on bottles? Number of containers received match number indicated on COC? Are sample containers identifiable as GEL provided by use of GEL labels? COC form is properly signed in Circle Applicable: Not relinquished Other (describe) relinquished/received sections? Comments (Use Continuation Form if needed): 9) Of the ID. (683479) 10.) wrote on the sample. BLA-PZ-63I all times on samples are hanged from 10:30 to 11:30 except for analysis TDS- (1683 477) PM (or PMA) review: Initials __

List of current GEL Certifications as of 19 September 2024

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	KY90129
Kentucky Wastewater	KY90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2023019
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	NV-C24-00175
New Hampshire NELAP	205424
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2023-152
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235
Utah NELAP	SC000122024-41
Vermont	VT87156
Virginia NELAP	460202
Washington	C780
	, , , ,

180A Market Place Boulevard Knoxville, TN 37922 PH 865.330.0037 www.geosyntec.com

Memorandum

Date: 31 January 2025

To: Lauren Fitzgerald

From: Kristoffer Henderson

CC: Ashley Wilson

Subject: Stage 2A Data Validation - Level II Data Deliverables - GEL

Laboratories, LLC Work Orders (WOs) 683170, 683174, 683177,

683389, 683391, 683474 and 683477

SITE: Plant Branch CCR Groundwater Compliance

INTRODUCTION

This report summarizes the findings of the Stage 2A data validation of thirty groundwater samples including four equipment blanks, four field blanks and four field duplicate samples collected 27-29 August 2024, as part of the Plant Branch on-site sampling event.

The samples were analyzed at GEL Laboratories LLC, Charleston, SC, for the following analytical tests:

- Radium-226 by Modified United States (US) Environmental Protection Agency (EPA) Method 903.1
- Radium-228 by Modified US EPA Methods 904.0/9320 Modified
- Total Radium by Calculation

EXECUTIVE SUMMARY

Overall, based on this Stage 2A data validation covering the quality control (QC) parameters listed below and based on the information provided, the data as qualified are usable for supporting project objectives. The qualified data should be used within the limitations of the qualifications. If there are results with two or more different qualifications due to multiple QC failures, the final qualification is reconciled in the electronic data deliverable (EDD) with qualifications.

The data were reviewed based on the pertinent methods referenced in the laboratory reports, professional and technical judgment, and the following documents:

 American Nuclear Society Verification and Validation of Radiological Data for use in Waste Management and Environmental Remediation (ANSI/ANS-41.5-2012), February 15, 2012.

The following samples were analyzed and reported in the laboratory reports:

Laboratory IDs	Client IDs
683170001	BRA-BRGWC-38S
683170002	BRA-PZ-53D
683170003	BRA-PZ-13S
683170004	BRA-BRGWC-37S
683170005	BRA-APE-FB-07
683170006	BRA-APE-FD-04
683174001	BRA-BRGWA-23S
683174002	BRA-APBCD-FB-01
683174003	BRA-BRGWC-29I
683174004	BRA-BRGWC-27I
683174005	BRA-PZ-74I
683174006	BRA-PZ-75I
683174007	BRA-PZ-44
683174008	BRA-APBCD-FD-01
683174009	BRA-APBCD-EB-04
683177001	BRA-BRGWA-2S
683177002	BRA-BRGWA-5S
683177003	BRA-BRGWA-2I
683177004	BRA-BRGWA-5I
683177005	BRA-BRGWA-6S
683389001	BRA-BRGWC-17S

Laboratory IDs	Client IDs
683389002	BRA-BRGWC-33S
683389003	BRA-BRGWC-34S
683389004	BRA-BRGWC-35S
683389005	BRA-BRGWC-36S
683389006	BRA-PZ-52D
683389007	BRA-PZ-70I
683389008	BRA-APE-FD-05
683389009	BRA-APE-FB-08
683389010	BRA-APE-EB-09
683389011	BRA-APE-EB-10
683391001	BRA-BRGWC-30I
683391002	BRA-BRGWC-47
683391003	BRA-APBCD-FB-02
683391004	BRA-BRGWC-52I
683391005	BRA-BRGWC-32S
683474001	BRA-BRGWC-45
683474002	BRA-APBCD-EB-05
683474003	BRA-APBCD-FD-02
683474004	BRA-BRGWC-25I
683474005	BRA-PZ-68D
683477001	BRA-PZ-63I

The samples were received at 0.0, 2.0 and 1.0 degrees Celsius ($^{\circ}$ C), both within and outside of the EPA Region 4 criteria of 4° C \pm 2 $^{\circ}$ C. Since the samples were received between 0-6 $^{\circ}$ C and based on professional judgment, no qualifications were applied to the data. No sample preservation issues were noted by the laboratory.

683177: The laboratory noted that the radium container for sample BRA-BRGWA-2S was missing the label.

683170, **683174** and **683177**: The laboratory noted three 1L containers were received without labels.

Incorrect error corrections were observed on the COC, instead of the proper procedure of a single strike through, correction, and initials and date of person making the corrections.

1.0 RADIOCHEMISTRY

The samples were analyzed for radium-226 by modified US EPA method 903.1, modified radium-228 by US EPA methods 904.0/9320 modified and total radium by calculation.

The areas of data review are listed below. A leading check mark (\checkmark) indicates an area of review in which the data were acceptable. A preceding crossed circle (\otimes) signifies areas where issues were raised during the course of the validation review and should be considered to determine any impact on data quality and usability.

- ⊗ Overall Assessment
- ✓ Holding Times
- ⊗ Method Blank
- ✓ Matrix Spike
- ✓ Laboratory Control Sample
- ✓ Laboratory Duplicate
- ✓ Tracers and Carriers
- ⊗ Field Blank
- ✓ Equipment Blank
- ✓ Field Duplicate
- ✓ Sensitivity
- ✓ Electronic Data Deliverables Review

1.1 Overall Assessment

1.1.1 Completeness

The radiochemistry data reported in this data set are considered usable for supporting project objectives. The results are considered valid; the analytical completeness defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for this analysis, for this data set is 100%.

1.1.2 Analysis Anomaly

683170, **683189**, **683391** and **683474**: Total radium was reported at the minimum detectable concentration (MDC) for radium-226 and radium-228. However, radium-226 was detected in the following samples greater than the MDC, BRA-APE-FD-04, BRA-BRGWC-37S, BRA-BRGWC-38S, BRA-BRGWA-2I, BRA-BRGWA-2S, BRA-APE-EB-10, BRA-PZ-70I and BRA-BRGWC-32S. Since total radium is calculated from radium-226 and radium-228, and

radium-226 was greater than the MDC, and based on professional and technical judgment, the total radium concentrations for these samples were reported with no qualifications.

Sample ID	Compound	Laboratory Result (pCi/L)	Laboratory Flag	Validation Result (pCi/L)	Validation Qualifier*	Reason Code**
BRA-APE-FD-04	Combined Radium 226 + 228	1.62	U	1.62	NA	RO1
BRA-BRGWC-37S	Combined Radium 226 + 228	2.01	U	2.01	NA	RO1
BRA-BRGWC-38S	Combined Radium 226 + 228	0.945	U	0.945	NA	RO1
BRA-BRGWA-2I	Combined Radium 226 + 228	0.864	U	0.864	NA	RO1
BRA-BRGWA-2S	Combined Radium 226 + 228	1.40	U	1.40	NA	RO1
BRA-APE-EB-10	Combined Radium 226 + 228	1.21	U	1.21	NA	RO1
BRA-PZ-70I	Combined Radium 226 + 228	1.25	U	1.25	NA	RO1
BRA-BRGWC-32S	Combined Radium 226 + 228	0.737	U	0.737	NA	RO1
BRA-APBCD-EB-05	Combined Radium 226 + 228	0.808	U	0.808	NA	RO1

pCi/L-picocuries per liter

1.2 Holding Times

The holding times for the radium-226 and radium-228 analyses of a water sample are 180 days from sample collection to analysis. The holding times were met for the sample analyses.

1.3 Method Blank

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Radium-226 and radium-228 were not detected in the method blanks at or above the MDCs, with the following exceptions.

683177, **683474** and **683477**: Radium-226 (0.497 pCi/L) was detected in the method blank in batch 2665882 at a concentration greater than the MDC.

Since the mean differences were less than 2 between the blank, and the sample concentrations were less than ten times the blank concentration, the radium-226 the combined radium 226 + 228 results for samples BRA-BRGWA-2I, BRA-BRGWA-2S, BRA-BRGWA-6S, BRA-APBCD-EB-05 and BRA-BRGWC-45 were UJ qualified as not statistically distinguishable from the blank.

Since the mean differences were greater than 3 between the blank, and the sample concentrations were less than ten times the blank concentration, the radium-226 the combined radium 226 + 228 results for samples BRA-BRGWA-5I, BRA-APBCD-FD-02, BRA-BRGWC-25I, BRA-PZ-68D and BRA-PZ-63I were J qualified as estimated.

U-not detected at or above the MDC

^{*} Validation qualifiers are defined in Attachment 1 at the end of this report

^{**}Reason codes are defined in Attachment 2 at the end of this report

Sample ID	Compound	Laboratory Result (pCi/L)	Laboratory Flag	Validation Result (pCi/L)	Validation Qualifier	Reason Code
BRA-BRGWA-2I	Radium-226	0.864	NA	0.864	UJ	BL2
BRA-BRGWA-2I	Combined Radium 226 + 228	0.864	U	0.864	UJ	BL2
BRA-BRGWA-2S	Radium-226	0.501	NA	0.501	UJ	BL2
BRA-BRGWA-2S	Combined Radium 226 + 228	1.40	U	1.40	UJ	BL2
BRA-BRGWA-5I	Radium-226	3.62	NA	3.62	J	BL2
BRA-BRGWA-5I	Combined Radium 226 + 228	3.62	NA	3.62	J	BL2
BRA-BRGWA-6S	Radium-226	0.539	NA	0.539	UJ	BL2
BRA-BRGWA-6S	Combined Radium 226 + 228	1.64	NA	1.64	UJ	BL2
BRA-APBCD-EB-05	Radium-226	0.43	NA	0.43	UJ	BL2
BRA-APBCD-EB-05	Combined Radium 226 + 228	0.808	U	0.808	UJ	BL2
BRA-APBCD-FD-02	Radium-226	3.30	NA	3.30	J	BL2
BRA-APBCD-FD-02	Combined Radium 226 + 228	3.95	NA	3.95	J	BL2
BRA-BRGWC-25I	Radium-226	4.90	NA	4.90	J	BL2
BRA-BRGWC-25I	Combined Radium 226 + 228	6.24	NA	6.24	J	BL2
BRA-BRGWC-45	Radium-226	0.752	NA	0.752	UJ	BL2
BRA-BRGWC-45	Combined Radium 226 + 228	1.71	NA	1.71	UJ	BL2
BRA-PZ-68D	Radium-226	4.79	NA	4.79	J	BL2
BRA-PZ-68D	Combined Radium 226 + 228	5.43	NA	5.43	J	BL2
BRA-PZ-63I	Radium-226	2.37	NA	2.37	J	BL2
BRA-PZ-63I	Combined Radium 226 + 228	4.48	NA	4.48	J	BL2

pCi/L-picocuries per liter

NA-not applicable

1.4 <u>Matrix Spike (MS)</u>

Two sample set specific MSs were reported for radium-226 using samples BRA-BRGWA-2S and BRA-BRGWC-17S. The recovery results were within the laboratory specified acceptance criteria.

1.5 Laboratory Control Sample (LCS)

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). The recovery results were within the laboratory specified acceptance criteria.

1.6 Laboratory Duplicate

One sample set specific laboratory duplicate was reported for radium-226 using sample BRA-BRGWC-17S and four sample set specific laboratory duplicates were reported for radium-228 using samples BRA-BRGWC-38S, BRA-BRGWA-23S, BRA-BRGWC-17S and BRA-BRGWC-45. The replicate error ratio (RER) results were within the laboratory specified acceptance criteria.

1.7 <u>Tracers and Carriers</u>

Tracers were reported for radium-228 analyses. The recovery results were within the laboratory specified acceptance criteria.

1.8 Field Blank

Five field blanks, BRA-APBCD-FB-01, BRA-APBCD-FB-02, BRA-APBCD-FB-03, BRA-APE-FB-07 and BRA-APE-FB-08 were collected with the sample set. Radium-226 and Radium-228 were not detected in the field blanks at or above the MDCs, with the following exceptions.

683389: Radium-226 (0.595 pCi/L), radium-228 (2.42 pCi/L) and combined radium 226 and 228 (3.02 pCi/L) were detected in the BRA-APE-FB-0, at concentrations greater than the MDC. The associated samples were qualified as follows:

683391: Radium-226 (0.673 pCi/L), radium-228 (2.86 pCi/L) and combined radium 226 and 228 (3.54 pCi/L) were detected in the BRA-APE-FB-08 and BRA-APBCD-FB-02, respectively, at concentrations greater than the MDC. The associated samples were qualified as follows:

If the mean difference was less than 2 between the blank, and the sample concentration was less than ten times the blank concentration, the results for samples were UJ qualified as not statistically distinguishable from the blank.

If the mean difference was greater than 3 between the blank, and the sample concentration was less than ten times the blank concentration, the results for samples were J qualified as estimated.

Sample ID	Compound	Laboratory Result (mg/L)	Laboratory Flag	Validation Result (mg/L)	Validation Qualifier	Reason Code
BRA-APE-EB-10	Radium-226	0.505	NA	0.505	UJ	BFH
BRA-BRGWC-33S	Radium-226	0.947	NA	0.947	UJ	BFH
BRA-BRGWC-36S	Radium-226	0.981	NA	0.981	UJ	BFH
BRA-PZ-52D	Radium-226	0.984	NA	0.984	UJ	BFH
BRA-PZ-70I	Radium-226	0.899	NA	0.899	UJ	BFH
BRA-APE-EB-09	Radium-228	3.23	NA	3.23	UJ	BFH
BRA-BRGWC-33S	Radium-228	1.73	NA	1.73	UJ	BFH
BRA-BRGWC-34S	Radium-228	2.84	NA	2.84	UJ	BFH
BRA-BRGWC-36S	Radium-228	1.47	NA	1.47	UJ	BFH
BRA-PZ-52D	Radium-228	4.35	NA	4.35	UJ	BFH
BRA-APE-EB-09	Combined Radium 226 + 228	3.35	NA	3.35	UJ	BFH

Sample ID	Compound	Laboratory Result (mg/L)	Laboratory Flag	Validation Result (mg/L)	Validation Qualifier	Reason Code
BRA-BRGWC-33S	Combined Radium 226 + 228	2.68	NA	2.68	UJ	BFH
BRA-BRGWC-34S	Combined Radium 226 + 228	3.15	NA	3.15	UJ	BFH
BRA-BRGWC-36S	Combined Radium 226 + 228	2.45	NA	2.45	UJ	BFH
BRA-PZ-52D	Combined Radium 226 + 228	5.34	NA	5.34	UJ	BFH
BRA-BRGWC-30I	Radium-226	0.752	NA	0.752	UJ	BFH
BRA-BRGWC-32S	Radium-226	0.737	NA	0.737	UJ	BFH
BRA-BRGWC-52I	Radium-226	2.87	NA	2.87	J	BFH
BRA-BRGWC-30I	Radium-228	3.07	NA	3.07	UJ	BFH
BRA-BRGWC-52I	Radium-228	11.8	NA	11.8	J	BFH
BRA-BRGWC-30I	Combined Radium 226 + 228	3.82	NA	3.82	UJ	BFH
BRA-BRGWC-32S	Combined Radium 226 + 228	0.737	U	0.737	UJ	BFH
BRA-BRGWC-52I	Combined Radium 226 + 228	14.7	NA	14.7	J	BFH

pCi/L-picocuries per liter NA-not applicable

1.9 **Equipment Blank**

Five equipment blanks, BRA-APBCD-EB-04, BRA-APBCD-EB-05 and BRA-APBCD-EB-06 BRA-APE-EB-09 and BRA-APE-EB-10 were collected with the sample set. Radium-226 and radium-228 were not detected in the equipment blanks at or above the MDCs, with the following exceptions.

683389: Radium-228 (3.23 pCi/L) and combined radium 226 + 228 (3.35 pCi/L) were detected in the BRA-APE-EB-09 at concentrations greater than the MDC. Radium-226 (0.505 pCi/L) was detected in the BRA-APE-EB-10 at concentrations greater than the MDC. Since radium-226, radium-228 and combined radium 226 + 228 were UJ qualified due to field blank contamination, no additional qualifications were applied to the data.

683474: Radium-226 (0.430 pCi/L) was detected in BRA-APBCD-EB-05 at a concentration greater than the MDC. Since radium-226 was UJ qualified due to method blank contamination, no additional qualifications were applied to the data.

1.10 Field Duplicate

Four duplicate samples, BRA-APE-FD-04, BRA-APBCD-FD-01, BRA-APE-FD-05 and BRA-APBCD-FD-02 were collected with the sample set. Acceptable precision [RER $(1\sigma) < 3$] was demonstrated between the field duplicates and the original samples, BRA-PZ-13S, BRA-BRGWC-27I, BRA-BRGWC-35S and BRA-BRGWC-25I, respectively.

1.11 Sensitivity

The samples were reported to the MDCs. Elevated non-detect results were not reported.

1.12 <u>Electronic Data Deliverable Review</u>

The results and sample IDs in the EDDs were reviewed against the information provided by the associated level II reports at a minimum of 20% as part of the data validation process. No discrepancies were identified between the level II reports and the EDDs.

DATA VALIDATION QUALIFIER DEFINITIONS AND INTERPRETATION KEY Assigned by Geosyntec's Data Validation Team

DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit. Upon application of the U qualifier to a reported result, the definition changes to "not detected at or above the reported result."
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The analyte was positively identified; however, the associated numerical value is likely to be higher than the concentration of the analyte in the sample due to positive bias of associated OC or calibration data or attributable to matrix interference.
- J- The analyte was positively identified; however, the associated numerical value is likely to be lower than the concentration of the analyte in the sample due to negative bias of associated QC or calibration data or attributable to matrix interference.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

ATTACHMENT 2 DATA VALIDATION REASON CODES Assigned by Geosyntec's Data Validation Team

DQM Reason Code	Description
AB1	> Samples in batch
AB2	QC sample missing
AB3	Batch analysis time exceeded
BAH	Contamination detected in the Ambient Blank greater than or equal to the Quantitation Limit.
BAL	Contamination detected in the Ambient Blank less than the Quantitation Limit.
BC	Calibration blank contamination
BC1	assoc. result < RL
BC2	assoc. result > RL < mult.
BC3	assoc. result > RL > mult.
BEH	Contamination detected in the Equipment Blank greater than or equal to the Quantitation Limit.
BEL	Contamination detected in the Equipment Blank less than the Quantitation Limit.
BF	Field blank contamination
BF1	assoc. result < RL
BF2	assoc. result > RL < mult.
BF3	assoc. result > RL > mult.
BFH	Contamination detected in the Field Blank greater than or equal to the Quantitation Limit.
BFL	Contamination detected in the Field Blank less than the Quantitation Limit.
BL	Laboratory blank contamination
BL1	assoc. result < RL

DQM Reason Code	Description
BL2	assoc. result $> RL < mult$.
BL3	assoc. result $>$ RL $>$ mult.
BLH	Contamination detected in the Lab Blank greater than or equal to the Quantitation Limit.
BLL	Contamination detected in the Lab Blank less than the Quantitation Limit.
BT	Trip blank contamination
BT1	assoc. result < RL
BT2	assoc. result > RL < mult.
BT3	assoc. result > RL > mult.
BTH	Contamination detected in the Trip Blank greater than or equal to the Quantitation Limit.
BTL	Contamination detected in the Trip Blank less than the Quantitation Limit.
CA1	Column difference
CC1	CCV %D
CC2	CCV %R
CC3	CCV RRF
CI1	IC RSD
CI2	IC RRF
CR1	Calibration range
CV1	ICV or CCV %D
CV2	ICV or CCV %R
CV3	ICV CCV RRF
DF1	Dilution Factor > 1

DQM Reason Code	Description
DL	Dilution Factor > 1
DVT1	The Dissolved Result > Total Result and the absolute difference > the AD_MULTIPLIER_CL * Detection Limit
DVT2	The Dissolved Result > Total Result and the absolute difference > AD_MULTIPLIER_UCO * Detection Limit
DVT3	The Dissolved Result > Total Result and the relative percent difference (RPD) > RPD_CL
DVT4	The Dissolved Result > Total Result and the relative percent difference (RPD) > RPD_UCO
ER1	MDL= <result<rl (inorganic)<="" td=""></result<rl>
ER2	MDL= <result<rl (organic)<="" td=""></result<rl>
FBC1	BLANK CONTAMINATION
FBC2	RESULT < BLANK * MULTIPLIER
FBC3	RESULT > BLANK * MULTIPLIER
FD1	Field duplicate RPD
FD2	Field duplicate abs. diff.
GHT1	GROSS_QUALIFIER_HIT
GHT2	GROSS_QUALIFIER_NON_DETECT
HP1	Hydrocarbon pattern
HT1	Holding time samp. to preservation
HT2	Holding time samp. to analysis
HT3	Holding time gros. samp. to pres.
HT4	Holding time gros. samp. to analysis

DQM Reason Code	Description
LBC2	RESULT < BLANK * MULTIPLIER
LBC3	RESULT > BLANK * MULTIPLIER
LD1	Lab duplicate RPD
LD2	Lab duplicate abs. diff.
LS1	LS %R
LS2	LS RPD
MS1	MS %R
MS2	MS RPD
MS3	Parent >4x spike
MS4	Spike diluted out
NP1	Non-Preferred Result
NR1	NUMERIC RESULTS
OT1	Other quality issue
PS1	BETWEEN CONTROL AND WARNING LIMITS
PS2	INVALID
PS3	LESS THAN LOWER CONTROL LIMIT
PS4	LESS THAN LOWER WARNING LIMIT
PT1	The preservative for this test id does not match the required preservative in RT_HOLDING_TIME.
RDL1	EXCEEDS REQUIRED DETECTION LIMIT
RL1	ND > project limit
RO1	Other rad. issue
RPD1	LCS/LCSD
RPD2	LCS/LCSD_NON_DETECT
RPD3	MS/MSD
RPD4	MS/MSD_NON_DETECT

DVR Branch SA RAD Final Review: K Henderson 2/7/2025

Internal standard

BLANK CONTAMINATION

IS1

LBC1

DQM Reason Code	Description
RPD5	Orig/Dup
RPD6	Orig/Dup_NON_DETECT
RPDF1	FIELD DUPLICATE
RPDF2	FIELD DUPLICATE NON_DETECT
RQ1	Rad. quantitation issue
RR1	Repeated result same method
RR2	Repeated result diff. method
RSD1	RSD exceeds CL for LCS sample
RSD2	RSD exceeds CL for MS sample
RSD3	RSD exceeds CL for Lab sample
RSD4	RSD exceeds CL for Field sample
RY1	Tracer or carrier
SD1	Serial dilution
SO1	High moisture
SO2	Wet weight
SP1	Preservation, temp
SP2	Preservation, pH
SP3	Preservation, headspace
SPR1	BLANK SPIKE > UCL
SPR10	EarthSoft.DQM.SpikeRecovery2
SPR11	EarthSoft.DQM.SpikeRecovery2
SPR12	EarthSoft.DQM.SpikeRecovery2
SPR2	INORGANIC SPIKE > UCL
SPR3	ORGANIC SPIKE > UCL
SPR4	LCL > BLANK > LOW_CUTOFF
SPR5	LCL > INORG > LOW_CUTOFF
SPR6	LCL > ORG > LOW_CUTOFF
SPR7	BLANK SPIKE < LOW_CUTOFF

DQM Reason Code	Description
SPR8	INORGANIC SPIKE < LOW_CUTOFF
SPR9	ORGANIC SPIKE < LOW_CUTOFF
SU	Surrogate outlier
SU1	Surrogate
SU2	Surrogate diluted out
SURR1	ASSO. DETECTS OF LCL > REC > LOW_CUTOFF
SURR10	EarthSoft.DQM.SurrogateRecovery
SURR11	EarthSoft.DQM.SurrogateRecovery
SURR12	EarthSoft.DQM.SurrogateRecovery
SURR2	ASSO. DETECTS OF REC < LOW_CUTOFF
SURR3	ASSO. DETECTS OF REC > UCL
SURR4	ASSO. NDS OF LCL > REC > LOW_CUTOFF
SURR5	ASSO. NDS OF REC < LOW_CUTOFF
SURR6	ASSO. NDS OF REC > UCL
SURR7	LCL > REC > LOW_CUTOFF
SURR8	REC < LOW_CUTOFF
SURR9	REC > UCL
TBC1	BLANK CONTAMINATION
TBC2	RESULT < BLANK * MULTIPLIER
TBC3	RESULT > BLANK * MULTIPLIER
TR	Trace Detection
TR1	Trace detection
TRA1	Tracer is outside of UCL or LCL
TRA2	Associated result of a tracer less than the LCL
TRA3	Associated detect result of a tracer greater than the UCL
VC1	Canister vacuum
VC2	Canister contamination

DQM Reason Code	Description
VSU1	INVALID SAMPLE UNIT TYPE
VSU2	MISSING SAMPLE UNIT TYPE
VSU3	NON-DEFAULT RESULT UNIT

Plant Branch Data Validation 31 January 2025

Page 14

AD-Absolute Difference

CCV-Continuous Calibration Verification

CL-Control Limit

%D-Percent Difference

IC-Initial Calibration

ICV-Initial Calibration Verification

INORG-Inorganic

LCL-Lower Control Limit

LCS-Laboratory Control Spike

LCSD-Laboratory Control Spike Duplicate

LS-Laboratory Spike

MDL-Method Detection Limit

MS-Matrix Spike

MSD-Matrix Spike Duplicate

ND-Not Detected

ORG-Organic

QC-Quality Control

%R-Percent Recovery

REC-Recovery

RL-Reporting Limit

RPD-Relative Percent Difference

RRF-Relative Response Factor

RSD-Relative Standard Deviation

UCL-Upper Control Limit

UCO-Upper Cut Off

180A Market Place Boulevard Knoxville, TN 37922 PH 865.330.0037 www.geosyntec.com

Memorandum

Date: 17 February 2025

To: Courtney Collins

From: Kristoffer Henderson

CC: Ashley Wilson

Subject: Stage 2A Data Validation - Level II Data Deliverable - GEL

Laboratories, LLC Work Order 683479

SITE: Plant Branch CCR Groundwater Compliance ASD

INTRODUCTION

This report summarizes the findings of the Stage 2A data validation of eight groundwater samples including one equipment blank, one field blank and one field duplicate samples collected 29 August 2024, as part of the Plant Branch on-site sampling event.

The samples were analyzed at GEL Laboratories LLC, Charleston, SC, for the following analytical tests:

- Radium-226 by Modified United States (US) Environmental Protection Agency (EPA) Method 903.1
- Radium-228 by Modified US EPA Methods 904.0/9320 Modified
- Total Radium by Calculation

EXECUTIVE SUMMARY

Overall, based on this Stage 2A data validation covering the quality control (QC) parameters listed below and based on the information provided, the data as qualified are usable for supporting project objectives. The qualified data should be used within the limitations of the qualifications. If there are results with two or more different qualifications due to multiple QC failures, the final qualification is reconciled in the electronic data deliverable (EDD) with qualifications.

The data were reviewed based on the pertinent methods referenced in the laboratory reports, professional and technical judgment, and the following documents:

 American Nuclear Society Verification and Validation of Radiological Data for use in Waste Management and Environmental Remediation (ANSI/ANS-41.5-2012), February 15, 2012.

The following samples were analyzed and reported in the laboratory reports:

Laboratory IDs	Client IDs
683479001	BRA-PZ-50D
683479002	BRA-PZ-64I
683479003	BRA-PZ-61I
683479004	BRA-BRGWC-50
683479005	BRA-PZ-51D
683479006	BRA-APBCD-FB-03

Laboratory IDs	Client IDs
683479007	BRA-APBCD-FD-03
683479008	BRA-PZ-51I
683479009	BRA-APBCD-EB-06
683479010	BRA-PZ-60I
683479011	BRA-PZ-58I

The samples were received at 1.0 degrees Celsius ($^{\circ}$ C), outside of the EPA Region 4 criteria of 4° C \pm 2 $^{\circ}$ C. Since the samples were received between 0-6 $^{\circ}$ C and based on professional judgment, no qualifications were applied to the data. No sample preservation issues were noted by the laboratory.

1.0 RADIOCHEMISTRY

The samples were analyzed for radium-226 by modified US EPA method 903.1, modified radium-228 by US EPA methods 904.0/9320 modified and total radium by calculation.

The areas of data review are listed below. A leading check mark (\checkmark) indicates an area of review in which the data were acceptable. A preceding crossed circle (\otimes) signifies areas where issues were raised during the course of the validation review and should be considered to determine any impact on data quality and usability.

- ⊗ Overall Assessment
- ✓ Holding Times
- ✓ Method Blank
- ✓ Matrix Spike
- ✓ Laboratory Control Sample
- ✓ Laboratory Duplicate
- ✓ Tracers and Carriers
- ⊗ Field Blank
- ✓ Equipment Blank
- ✓ Field Duplicate
- ✓ Sensitivity
- ✓ Electronic Data Deliverables Review

1.1 Overall Assessment

1.1.1 <u>Completeness</u>

The radiochemistry data reported in this data set are considered usable for supporting project objectives. The results are considered valid; the analytical completeness defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for this analysis, for this data set is 100%.

1.1.2 Analysis Anomaly

Total radium was reported at the minimum detectable concentration (MDC) for radium-226 and radium-228. However, radium-226 was detected in the following sample greater than the MDC, BRA-APBCD-FB-03. Since total radium is calculated from radium-226 and radium-228, and radium-226 was greater than the MDC, and based on professional and technical judgment, the total radium concentrations for this sample was reported with no qualifications.

Since total radium is calculated from radium-226 and radium-228 and radium-226 and radium-228 were less than the MDC, and based on professional and technical judgment, the total radium concentrations for samples BRA-APBCD-EB-06 and BRA-PZ-64I were U qualified as less than the MDC.

Sample ID	Compound	Laboratory Result (pCi/L)	Laboratory Flag	Validation Result (pCi/L)	Validation Qualifier*	Reason Code**
BRA-APBCD-FB-03	Combined Radium 226 + 228	0.407	U	0.407	NA	RO1
BRA-APBCD-EB-06	Combined Radium 226 + 228	2.07	NA	2.07	U	RO1
BRA-PZ-64I	Combined Radium 226 + 228	1.72	NA	1.72	U	RO1

pCi/L-picocuries per liter

U-not detected at or above the MDC

NA-not applicable

1.2 <u>Holding Times</u>

The holding times for the radium-226 and radium-228 analyses of a water sample are 180 days from sample collection to analysis. The holding times were met for the sample analyses.

^{*} Validation qualifiers are defined in Attachment 1 at the end of this report

^{**}Reason codes are defined in Attachment 2 at the end of this report

1.3 Method Blank

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Radium-226 and radium-228 were not detected in the method blanks at or above the MDCs.

1.4 Matrix Spike (MS)

MSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One batch MS was reported. Since these were batch QC, the results do not affect the samples in this data set and qualifications were not applied to the data.

1.5 <u>Laboratory Control Sample (LCS)</u>

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). The recovery results were within the laboratory specified acceptance criteria.

1.6 <u>Laboratory Duplicate</u>

Laboratory duplicates were not reported with the sample set.

1.7 Tracers and Carriers

Tracers were reported for radium-228 analyses. The recovery results were within the laboratory specified acceptance criteria.

1.8 Field Blank

One field blank, BRA-APBCD-FB-03, was collected with the sample set. Radium-226 and Radium-228 were not detected in the field blanks at or above the MDCs, with the following exceptions.

Radium-226 (0.407 pCi/L) was detected in the BRA-APBCD-FB-03, at a concentration greater than the MDC. The associated samples were qualified as follows:

Since the mean differences were less than 2 between the blank, and the sample concentrations were less than ten times the blank concentration, the radium-226 results for samples BRA-PZ-51D and BRA-PZ-61I were UJ qualified as not statistically distinguishable from the blank.

Since the mean differences were greater than 3 between the blank, and the sample concentrations were less than ten times the blank concentration, the radium-226 and/or the combined radium 226

+ 228 results for samples BRA-APBCD-FD-03, BRA-BRGWC-50, BRA-PZ-50D, BRA-PZ-51D, BRA-PZ-51I, BRA-PZ-58I, BRA-PZ-60I and BRA-PZ-61I were J qualified as estimated. In addition, the combined radium 226 + 228 results for samples BRA-PZ-51D and BRA-PZ-61I were J qualified as estimated.

Sample ID	Compound	Laboratory Result (mg/L)	Laboratory Flag	Validation Result (mg/L)	Validation Qualifier	Reason Code
BRA-APBCD- FD-03	Radium-226	2.74	NA	2.74	J	BFH
BRA-APBCD- FD-03	Combined Radium 226 + 228	4.27	NA	4.27	J	BFH
BRA-BRGWC- 50	Radium-226	1.88	NA	1.88	J	BFH
BRA-BRGWC- 50	Combined Radium 226 + 228	3.86	NA	3.86	J	BFH
BRA-PZ-50D	Radium-226	1.48	NA	1.48	J	BFH
BRA-PZ-50D	Combined Radium 226 + 228	3.49	NA	3.49	J	BFH
BRA-PZ-51D	Radium-226	0.604	NA	0.604	UJ	BFH
BRA-PZ-51D	Combined Radium 226 + 228	3.43	NA	3.43	J	BFH
BRA-PZ-51I	Radium-226	1.09	NA	1.09	J	BFH
BRA-PZ-51I	Combined Radium 226 + 228	2.55	NA	2.55	J	BFH
BRA-PZ-58I	Radium-226	2.12	NA	2.12	J	BFH
BRA-PZ-58I	Combined Radium 226 + 228	3.34	NA	3.34	J	BFH
BRA-PZ-60I	Radium-226	2.00	NA	2.00	J	BFH
BRA-PZ-60I	Combined Radium 226 + 228	3.70	NA	3.70	J	BFH
BRA-PZ-61I	Radium-226	0.596	NA	0.596	UJ	BFH
BRA-PZ-61I	Combined Radium 226 + 228	2.64	NA	2.64	J	BFH

pCi/L-picocuries per liter NA-not applicable

1.9 Equipment Blank

One equipment blanks, BRA-APBCD-EB-06, was collected with the sample set. Radium-226 and radium-228 were not detected in the equipment blanks at or above the MDCs, with the following exceptions.

Combined radium 226 + 228 (2.07 pCi/L) was detected in the BRA-APBCD-EB-06 at a concentration greater than the MDC. Since combined radium 226 + 228 was qualified as nondetect

in sample BRA-APBCD-EB-06 due to radium-226 and radium-228 being nondetect, no qualifications were applied to the data.

1.10 Field Duplicate

One duplicate sample, BRA-APBCD-FD-03, was collected with the sample set. Acceptable precision [RER $(1\sigma) < 3$] was demonstrated between the field duplicate and the original sample, BRA-BRGWC-50.

1.11 Sensitivity

The samples were reported to the MDCs. Elevated non-detect results were not reported.

1.12 Electronic Data Deliverable Review

The results and sample IDs in the EDDs were reviewed against the information provided by the associated level II reports at a minimum of 20% as part of the data validation process. No discrepancies were identified between the level II reports and the EDDs.

DATA VALIDATION QUALIFIER DEFINITIONS AND INTERPRETATION KEY Assigned by Geosyntec's Data Validation Team

DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit. Upon application of the U qualifier to a reported result, the definition changes to "not detected at or above the reported result."
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The analyte was positively identified; however, the associated numerical value is likely to be higher than the concentration of the analyte in the sample due to positive bias of associated OC or calibration data or attributable to matrix interference.
- J- The analyte was positively identified; however, the associated numerical value is likely to be lower than the concentration of the analyte in the sample due to negative bias of associated QC or calibration data or attributable to matrix interference.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

ATTACHMENT 2 DATA VALIDATION REASON CODES Assigned by Geosyntec's Data Validation Team

DQM Reason Code	Description
AB1	> Samples in batch
AB2	QC sample missing
AB3	Batch analysis time exceeded
BAH	Contamination detected in the Ambient Blank greater than or equal to the Quantitation Limit.
BAL	Contamination detected in the Ambient Blank less than the Quantitation Limit.
BC	Calibration blank contamination
BC1	assoc. result < RL
BC2	assoc. result > RL < mult.
BC3	assoc. result > RL > mult.
BEH	Contamination detected in the Equipment Blank greater than or equal to the Quantitation Limit.
BEL	Contamination detected in the Equipment Blank less than the Quantitation Limit.
BF	Field blank contamination
BF1	assoc. result < RL
BF2	assoc. result > RL < mult.
BF3	assoc. result > RL > mult.
BFH	Contamination detected in the Field Blank greater than or equal to the Quantitation Limit.
BFL	Contamination detected in the Field Blank less than the Quantitation Limit.
BL	Laboratory blank contamination
BL1	assoc. result < RL

DQM Reason Code	Description
BL2	assoc. result $> RL < mult$.
BL3	assoc. result $>$ RL $>$ mult.
BLH	Contamination detected in the Lab Blank greater than or equal to the Quantitation Limit.
BLL	Contamination detected in the Lab Blank less than the Quantitation Limit.
BT	Trip blank contamination
BT1	assoc. result < RL
BT2	assoc. result > RL < mult.
BT3	assoc. result > RL > mult.
BTH	Contamination detected in the Trip Blank greater than or equal to the Quantitation Limit.
BTL	Contamination detected in the Trip Blank less than the Quantitation Limit.
CA1	Column difference
CC1	CCV %D
CC2	CCV %R
CC3	CCV RRF
CI1	IC RSD
CI2	IC RRF
CR1	Calibration range
CV1	ICV or CCV %D
CV2	ICV or CCV %R
CV3	ICV CCV RRF
DF1	Dilution Factor > 1

DOM	
DQM Reason	Deganintion
Code	Description
DL	Dilution Factor > 1
DVT1	The Dissolved Result > Total Result and the absolute
DVII	difference > the AD_MULTIPLIER_CL * Detection
	Limit
DVT2	The Dissolved Result > Total Result and the absolute
	difference > AD_MULTIPLIER_UCO * Detection Limit
DVT3	The Dissolved Result > Total Result and the relative
	percent difference (RPD) > RPD_CL
DVT4	The Dissolved Result > Total Result and the relative
	percent difference (RPD) > RPD_UCO
ER1	MDL= <result<rl (inorganic)<="" td=""></result<rl>
ER2	MDL= <result<rl (organic)<="" td=""></result<rl>
FBC1	BLANK CONTAMINATION
FBC2	RESULT < BLANK * MULTIPLIER
FBC3	RESULT > BLANK * MULTIPLIER
FD1	Field duplicate RPD
FD2	Field duplicate abs. diff.
GHT1	GROSS_QUALIFIER_HIT
GHT2	GROSS_QUALIFIER_NON_DETECT
HP1	Hydrocarbon pattern
HT1	Holding time samp. to preservation
HT2	Holding time samp. to analysis
HT3	Holding time gros. samp. to pres.
HT4	Holding time gros. samp. to analysis
IS1	Internal standard
LBC1	BLANK CONTAMINATION

DQM Reason Code	Description
LBC2	RESULT < BLANK * MULTIPLIER
LBC3	RESULT > BLANK * MULTIPLIER
LD1	Lab duplicate RPD
LD2	Lab duplicate abs. diff.
LS1	LS %R
LS2	LS RPD
MS1	MS %R
MS2	MS RPD
MS3	Parent >4x spike
MS4	Spike diluted out
NP1	Non-Preferred Result
NR1	NUMERIC RESULTS
OT1	Other quality issue
PS1	BETWEEN CONTROL AND WARNING LIMITS
PS2	INVALID
PS3	LESS THAN LOWER CONTROL LIMIT
PS4	LESS THAN LOWER WARNING LIMIT
PT1	The preservative for this test id does not match the required preservative in RT_HOLDING_TIME.
RDL1	EXCEEDS REQUIRED DETECTION LIMIT
RL1	ND > project limit
RO1	Other rad. issue
RPD1	LCS/LCSD
RPD2	LCS/LCSD_NON_DETECT
RPD3	MS/MSD
RPD4	MS/MSD_NON_DETECT

DQM Reason Code	Description							
RPD5	Orig/Dup							
RPD6	Orig/Dup_NON_DETECT							
RPDF1	FIELD DUPLICATE							
RPDF2	FIELD DUPLICATE NON_DETECT							
RQ1	Rad. quantitation issue							
RR1	Repeated result same method							
RR2	Repeated result diff. method							
RSD1	RSD exceeds CL for LCS sample							
RSD2	RSD exceeds CL for MS sample							
RSD3	RSD exceeds CL for Lab sample							
RSD4	RSD exceeds CL for Field sample							
RY1	Tracer or carrier Serial dilution							
SD1								
SO1	High moisture							
SO2	Wet weight							
SP1	Preservation, temp							
SP2	Preservation, pH							
SP3	Preservation, headspace							
SPR1	BLANK SPIKE > UCL							
SPR10	EarthSoft.DQM.SpikeRecovery2							
SPR11	EarthSoft.DQM.SpikeRecovery2							
SPR12	EarthSoft.DQM.SpikeRecovery2							
SPR2	INORGANIC SPIKE > UCL							
SPR3	ORGANIC SPIKE > UCL							
SPR4	LCL > BLANK > LOW_CUTOFF							
SPR5	LCL > INORG > LOW_CUTOFF							
SPR6	LCL > ORG > LOW_CUTOFF							
SPR7	BLANK SPIKE < LOW_CUTOFF							

DQM Reason Code	Description						
SPR8	INORGANIC SPIKE < LOW_CUTOFF						
SPR9	ORGANIC SPIKE < LOW_CUTOFF						
SU	Surrogate outlier						
SU1	Surrogate						
SU2	urrogate diluted out						
SURR1	ASSO. DETECTS OF LCL > REC > LOW_CUTOFF						
SURR10	EarthSoft.DQM.SurrogateRecovery						
SURR11	EarthSoft.DQM.SurrogateRecovery						
SURR12	EarthSoft.DQM.SurrogateRecovery						
SURR2	ASSO. DETECTS OF REC < LOW_CUTOFF						
SURR3	ASSO. DETECTS OF REC > UCL						
SURR4	ASSO. NDS OF LCL > REC > LOW_CUTOFF						
SURR5	ASSO. NDS OF REC < LOW_CUTOFF						
SURR6	ASSO. NDS OF REC > UCL						
SURR7	LCL > REC > LOW_CUTOFF						
SURR8	REC < LOW_CUTOFF						
SURR9	REC > UCL						
TBC1	BLANK CONTAMINATION						
TBC2	RESULT < BLANK * MULTIPLIER						
TBC3	RESULT > BLANK * MULTIPLIER						
TR	Trace Detection						
TR1	Trace detection						
TRA1	Tracer is outside of UCL or LCL						
TRA2	Associated result of a tracer less than the LCL						
TRA3	Associated detect result of a tracer greater than the UCL						
VC1	Canister vacuum						
VC2	Canister contamination						

DQM Reason Code	Description
VSU1	INVALID SAMPLE UNIT TYPE
VSU2	MISSING SAMPLE UNIT TYPE
VSU3	NON-DEFAULT RESULT UNIT

Plant Branch Data Validation 17 February 2025

Page 12

AD-Absolute Difference

CCV-Continuous Calibration Verification

CL-Control Limit

%D-Percent Difference

IC-Initial Calibration

ICV-Initial Calibration Verification

INORG-Inorganic

LCL-Lower Control Limit

LCS-Laboratory Control Spike

LCSD-Laboratory Control Spike Duplicate

LS-Laboratory Spike

MDL-Method Detection Limit

MS-Matrix Spike

MSD-Matrix Spike Duplicate

ND-Not Detected

ORG-Organic

QC-Quality Control

%R-Percent Recovery

REC-Recovery

RL-Reporting Limit

RPD-Relative Percent Difference

RRF-Relative Response Factor

RSD-Relative Standard Deviation

UCL-Upper Control Limit

UCO-Upper Cut Off

Test Date / Time: 8/27/2024 9:18:34 AM **Project:** Plant Branch Ash Ponds

Operator Name: J. May

Location Name: BRGWA-2I

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 56.9 ft Total Depth: 66.9 ft

Initial Depth to Water: 13.42 ft

Pump Type: Dedicated Bladder

Pump

Tubing Type: Poly

Tubing Inner Diameter: 0.17 in Pump Intake From TOC: 61.9 ft Estimated Total Volume Pumped:

12.5 liter

Flow Cell Volume: 130 ml Final Flow Rate: 250 ml/min Final Draw Down: 40.56 in Instrument Used: Aqua TROLL 500

Serial Number: 863127

Test Notes:

Sample Time: 1008

Sunny, 90sFe2+ = 0.0

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 3	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/27/2024 9:18 AM	00:00	6.73 pH	24.23 °C	133.21 μS/cm	2.60 mg/L	6.28 NTU	168.4 mV	13.42 ft	250.00 ml/min
8/27/2024 9:23 AM	05:00	6.74 pH	20.09 °C	131.93 μS/cm	0.76 mg/L	2.20 NTU	83.8 mV	15.30 ft	250.00 ml/min
8/27/2024 9:28 AM	10:00	6.75 pH	19.74 °C	131.47 μS/cm	1.51 mg/L	1.90 NTU	96.1 mV	16.00 ft	250.00 ml/min
8/27/2024 9:33 AM	15:00	6.82 pH	19.93 °C	134.08 μS/cm	1.43 mg/L	2.32 NTU	105.1 mV	16.30 ft	250.00 ml/min
8/27/2024 9:38 AM	20:00	6.85 pH	19.90 °C	134.21 μS/cm	1.30 mg/L	3.05 NTU	102.9 mV	16.60 ft	250.00 ml/min
8/27/2024 9:43 AM	25:00	6.89 pH	19.82 °C	136.03 μS/cm	1.04 mg/L	4.42 NTU	102.0 mV	16.70 ft	250.00 ml/min
8/27/2024 9:48 AM	30:00	6.83 pH	20.06 °C	133.10 μS/cm	1.13 mg/L	5.23 NTU	97.7 mV	16.70 ft	250.00 ml/min
8/27/2024 9:53 AM	35:00	6.70 pH	20.00 °C	122.11 μS/cm	1.48 mg/L	3.95 NTU	99.9 mV	16.70 ft	250.00 ml/min
8/27/2024 9:58 AM	40:00	6.62 pH	20.31 °C	116.41 μS/cm	1.61 mg/L	4.27 NTU	103.8 mV	16.80 ft	250.00 ml/min
8/27/2024 10:03 AM	45:00	6.62 pH	20.22 °C	115.12 μS/cm	1.72 mg/L	3.92 NTU	105.8 mV	16.80 ft	250.00 ml/min
8/27/2024 10:08 AM	50:00	6.60 pH	20.15 °C	113.75 μS/cm	1.75 mg/L	3.21 NTU	108.8 mV	16.80 ft	250.00 ml/min

Samples

Sample ID:	Description:
------------	--------------

Created using VuSitu from In-Situ, Inc.

Test Date / Time: 8/27/2024 9:15:16 AM **Project:** Plant Branch Ash Ponds **Operator Name:** J. Berisford

Location Name: BRGWA-2S

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 37 ft Total Depth: 47.4 ft

Initial Depth to Water: 13.63 ft

Pump Type: Dedicated Bladder

Pump

Tubing Type: Poly

Tubing Inner Diameter: 0.17 in Pump Intake From TOC: 42 ft Estimated Total Volume Pumped:

6.7 liter

Flow Cell Volume: 130 ml Final Flow Rate: 225 ml/min

Final Draw Down: 2 in

Instrument Used: Aqua TROLL 500

Serial Number: 689325

Test Notes:

Sunny, sample time-0945 Fe2+=0.0 mg/L

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 3	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/27/2024 9:15 AM	00:00	5.95 pH	19.81 °C	58.83 μS/cm	2.82 mg/L	2.45 NTU	175.7 mV	13.63 ft	225.00 ml/min
8/27/2024 9:20 AM	05:00	6.00 pH	19.67 °C	58.37 μS/cm	1.57 mg/L	0.88 NTU	171.1 mV	13.80 ft	225.00 ml/min
8/27/2024 9:25 AM	10:00	6.07 pH	19.88 °C	58.45 µS/cm	1.17 mg/L	0.92 NTU	162.8 mV	13.80 ft	225.00 ml/min
8/27/2024 9:30 AM	15:00	6.09 pH	19.89 °C	57.97 μS/cm	1.02 mg/L	0.89 NTU	157.8 mV	13.80 ft	225.00 ml/min
8/27/2024 9:35 AM	20:00	6.11 pH	20.11 °C	57.72 μS/cm	1.00 mg/L	0.94 NTU	154.9 mV	13.80 ft	225.00 ml/min
8/27/2024 9:40 AM	25:00	6.11 pH	20.21 °C	57.39 μS/cm	1.04 mg/L	0.82 NTU	153.5 mV	13.80 ft	225.00 ml/min
8/27/2024 9:45 AM	30:00	6.02 pH	20.32 °C	57.02 μS/cm	1.02 mg/L	0.75 NTU	154.8 mV	13.80 ft	225.00 ml/min

Samples

Sample ID:	Description:
------------	--------------

Created using VuSitu from In-Situ, Inc.

Test Date / Time: 8/27/2024 9:22:40 AM **Project:** Plant Branch Ash Ponds **Operator Name:** Taylor Goble

Location Name: BRGWA-5I

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 53.9 ft Total Depth: 63.9 ft

Initial Depth to Water: 14.5 ft

Pump Type: Dedicated Bladder

Pump

Tubing Type: Poly

Tubing Inner Diameter: 0.17 in Pump Intake From TOC: 58 ft Estimated Total Volume Pumped:

6.25 liter

Flow Cell Volume: 90 ml Final Flow Rate: 250 ml/min Final Draw Down: 0.25 ft Instrument Used: Aqua TROLL 400

Serial Number: 965658

Test Notes:

Sampled at 0947. Clear 78 degrees. Fe2+ 0.0 mg/L

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 3	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/27/2024	00:00	6.18 pH	20.70 °C	137.86 µS/cm	4.01 mg/L	0.41 NTU	108.5 mV	14.75 ft	250.00 ml/min
9:22 AM	00.00	отто ртт	200			01111110			200100 1111,111111
8/27/2024	05:00	6.44 pH	19.25 °C	142.05 µS/cm	2.74 mg/L	1.14 NTU	98.3 mV	14.75 ft	250.00 ml/min
9:27 AM	03.00	0.44 pm	13.23	142.05 μο/οπ	2.7 + 111g/L	1.141010	30.5 111	14.751	250.00 111/111111
8/27/2024	10:00	6.48 pH	19.23 °C	131.21 µS/cm	4.26 mg/L	1.35 NTU	95.3 mV	14.75 ft	250.00 ml/min
9:32 AM	10.00	0.46 pri	19.23	131.21 μ3/611	4.20 mg/L	1.33 1410	95.5 1117	14.7511	250.00 111/111111
8/27/2024	15:00	6.56 pH	19.27 °C	129.32 µS/cm	4.75 mg/L	0.93 NTU	89.4 mV	14.75 ft	250.00 ml/min
9:37 AM	15.00	0.50 pri	19.27	129.32 μ3/611	4.75 mg/L	0.93 1410	09.4 1110	14.7511	250.00 111/111111
8/27/2024	20:00	6.56 pH	19.40 °C	128.21 µS/cm	4.97 mg/L	0.75 NTU	87.9 mV	14.75 ft	250.00 ml/min
9:42 AM	20.00	0.50 PH	19.40 C	120.21 μ3/011	4.97 HIG/L	0.75 NTO	VIII 6. 10	14.7511	230.00 111/111111
8/27/2024	25:00	6.56 pH	19.41 °C	127.27 µS/cm	5.03 mg/L	0.71 NTU	87.6 mV	14.75 ft	250.00 ml/min
9:47 AM	25.00	0.50 μπ	19.41 C	121.21 μ3/011	3.03 Hig/L	0.711010	67.01110	14.7511	230.00 111/111111

Samples

Sample ID:	Description:
------------	--------------

Created using VuSitu from In-Situ, Inc.

Test Date / Time: 8/27/2024 9:20:08 AM Project: Plant Branch Ash Ponds Operator Name: D. Johnson

Location Name: BRGWA-5S

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 33 ft Total Depth: 43.06 ft

Initial Depth to Water: 14.61 ft

Pump Type: Dedicated Bladder

Pump

Tubing Type: Poly

Tubing Inner Diameter: 0.17 in Pump Intake From TOC: 38 ft Estimated Total Volume Pumped:

7.5 liter

Flow Cell Volume: 90 ml Final Flow Rate: 250 ml/min Final Draw Down: 1.68 in Instrument Used: Aqua TROLL 400

Serial Number: 884189

Test Notes:

Sample time 0950. Sunny, 75 degrees F.

Fe2+=0.0 mg/L.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 3	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/27/2024 9:20 AM	00:00	7.01 pH	24.84 °C	154.72 μS/cm	6.85 mg/L	0.39 NTU	123.3 mV	14.61 ft	250.00 ml/min
8/27/2024 9:25 AM	05:00	6.57 pH	21.14 °C	139.08 μS/cm	3.77 mg/L	0.69 NTU	136.4 mV	14.75 ft	250.00 ml/min
8/27/2024 9:30 AM	10:00	6.65 pH	20.57 °C	139.66 μS/cm	3.46 mg/L	1.05 NTU	97.6 mV	14.75 ft	250.00 ml/min
8/27/2024 9:35 AM	15:00	6.68 pH	20.61 °C	141.49 μS/cm	3.07 mg/L	1.17 NTU	93.6 mV	14.75 ft	250.00 ml/min
8/27/2024 9:40 AM	20:00	6.68 pH	20.78 °C	143.43 μS/cm	2.82 mg/L	1.27 NTU	90.9 mV	14.75 ft	250.00 ml/min
8/27/2024 9:45 AM	25:00	6.66 pH	20.89 °C	144.88 μS/cm	2.68 mg/L	1.25 NTU	89.4 mV	14.75 ft	250.00 ml/min
8/27/2024 9:50 AM	30:00	6.65 pH	20.98 °C	145.95 μS/cm	2.61 mg/L	1.21 NTU	89.1 mV	14.75 ft	250.00 ml/min

Samples

Sample ID: Description:	Sample ID:
-------------------------	------------

Test Date / Time: 8/27/2024 11:05:36 AM

Project: Plant Branch Ash Ponds **Operator Name:** Taylor Goble

Location Name: BRGWA-6S

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 42.9 ft Total Depth: 52.9 ft

Initial Depth to Water: 28.74 ft

Pump Type: Dedicated Bladder

Pump

Tubing Type: Poly

Tubing Inner Diameter: 0.17 in Pump Intake From TOC: 48 ft Estimated Total Volume Pumped:

6.9 liter

Flow Cell Volume: 90 ml Final Flow Rate: 230 ml/min Final Draw Down: 0.73 ft Instrument Used: Aqua TROLL 400

Serial Number: 965658

Test Notes:

Sampled at 1135. Cloudy 84 degrees. Fe2+ 0.0 mg/L

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 3	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/27/2024 11:05 AM	00:00	7.23 pH	28.46 °C	43.69 µS/cm	6.34 mg/L	0.59 NTU	81.0 mV	28.74 ft	230.00 ml/min
8/27/2024 11:10 AM	05:00	7.03 pH	20.74 °C	47.63 µS/cm	6.63 mg/L	0.76 NTU	86.6 mV	29.06 ft	230.00 ml/min
8/27/2024 11:15 AM	10:00	6.95 pH	20.58 °C	48.17 μS/cm	6.64 mg/L	0.74 NTU	85.9 mV	29.32 ft	230.00 ml/min
8/27/2024 11:20 AM	15:00	6.89 pH	20.66 °C	48.14 µS/cm	6.64 mg/L	0.76 NTU	86.8 mV	29.40 ft	230.00 ml/min
8/27/2024 11:25 AM	20:00	6.86 pH	20.50 °C	48.12 μS/cm	6.64 mg/L	0.71 NTU	87.6 mV	29.45 ft	230.00 ml/min
8/27/2024 11:30 AM	25:00	6.82 pH	20.57 °C	48.24 µS/cm	6.65 mg/L	0.75 NTU	88.8 mV	29.47 ft	230.00 ml/min
8/27/2024 11:35 AM	30:00	6.80 pH	20.58 °C	48.45 μS/cm	6.66 mg/L	0.78 NTU	90.0 mV	29.47 ft	230.00 ml/min

Samples

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/27/2024 11:15:17 AM

Project: Plant Branch Ash Ponds **Operator Name:** J. Berisford

Location Name: BRGWA-23S

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 33.5 ft Total Depth: 43.5 ft

Initial Depth to Water: 41.79 ft

Pump Type: Dedicated Bladder

Pump

Tubing Type: Poly

Tubing Inner Diameter: 0.17 in Pump Intake From TOC: 42 ft Estimated Total Volume Pumped:

7.5 liter

Flow Cell Volume: 130 ml Final Flow Rate: 100 ml/min Instrument Used: Aqua TROLL 500

Serial Number: 689325

Test Notes:

Sunny, sample time-1230. Fe2+= 0.0 mg/L. Water level below the top of the pump

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 3	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/27/2024 11:15 AM	00:00	6.40 pH	35.19 °C	71.39 µS/cm	6.83 mg/L	3.99 NTU	145.7 mV	41.79 ft	100.00 ml/min
8/27/2024 11:20 AM	05:00	5.85 pH	30.45 °C	75.82 µS/cm	6.21 mg/L	4.68 NTU	162.1 mV	NA	100.00 ml/min
8/27/2024 11:25 AM	10:00	5.67 pH	30.73 °C	81.64 µS/cm	3.71 mg/L	8.63 NTU	171.9 mV	NA	100.00 ml/min
8/27/2024 11:30 AM	15:00	5.61 pH	31.17 °C	84.19 μS/cm	1.97 mg/L	9.43 NTU	175.4 mV	NA	100.00 ml/min
8/27/2024 11:35 AM	20:00	5.61 pH	31.22 °C	85.01 μS/cm	1.50 mg/L	5.09 NTU	176.3 mV	NA	100.00 ml/min
8/27/2024 11:40 AM	25:00	5.62 pH	31.50 °C	83.69 µS/cm	1.54 mg/L	2.22 NTU	176.0 mV	NA	100.00 ml/min
8/27/2024 11:45 AM	30:00	5.65 pH	31.67 °C	82.29 µS/cm	1.85 mg/L	1.95 NTU	175.4 mV	NA	100.00 ml/min
8/27/2024 11:50 AM	35:00	5.66 pH	32.05 °C	79.83 μS/cm	2.19 mg/L	1.65 NTU	175.0 mV	NA	100.00 ml/min
8/27/2024 11:55 AM	40:00	5.72 pH	31.73 °C	77.18 µS/cm	2.47 mg/L	1.28 NTU	173.7 mV	NA	100.00 ml/min
8/27/2024 12:00 PM	45:00	5.78 pH	31.78 °C	75.60 µS/cm	2.80 mg/L	1.09 NTU	171.6 mV	NA	100.00 ml/min
8/27/2024 12:05 PM	50:00	5.83 pH	32.00 °C	74.02 μS/cm	2.97 mg/L	1.11 NTU	170.6 mV	NA	100.00 ml/min
8/27/2024 12:10 PM	55:00	5.85 pH	32.46 °C	72.57 µS/cm	3.24 mg/L	1.01 NTU	170.0 mV	NA	100.00 ml/min
8/27/2024 12:15 PM	01:00:00	5.87 pH	33.04 °C	72.15 µS/cm	4.59 mg/L	1.03 NTU	170.4 mV	NA	100.00 ml/min
8/27/2024 12:20 PM	01:05:00	5.88 pH	33.32 °C	71.49 µS/cm	5.64 mg/L	1.21 NTU	171.6 mV	NA	100.00 ml/min
8/27/2024 12:25 PM	01:10:00	5.90 pH	34.07 °C	71.07 µS/cm	5.83 mg/L	1.80 NTU	172.0 mV	NA	100.00 ml/min

8/27/2024	01:15:00	5 02 all	34.46 °C	70.65 µS/cm	F 70 m a/l	1.67 NTU	170.4 m\/	NA	100 00 ml/min
12:30 PM	01:15.00	5.92 pH	34.46 C	70.65 μδ/σπ	5.78 mg/L	1.07 NTU	172.4 mV	INA	100.00 ml/min

Samples

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/29/2024 9:27:10 AM **Project:** Plant Branch Ash Ponds **Operator Name:** Taylor Goble

Location Name: BRGWC-25I

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 12.87 ft Total Depth: 22.87 ft

Initial Depth to Water: 13.17 ft

Pump Type: Dedicated Bladder

Pump

Tubing Type: Poly

Tubing Inner Diameter: 0.17 in Pump Intake From TOC: 17 ft Estimated Total Volume Pumped:

17.75 liter

Flow Cell Volume: 90 ml Final Flow Rate: 350 ml/min Final Draw Down: 0.13 ft Instrument Used: Aqua TROLL 400

Serial Number: 965658

Test Notes:

Sampled at 1017. Sunny 85 degrees. Fe2+ 0.0 mg/L. APBCD-FD-02 taken here.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 3	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/29/2024 9:27 AM	00:00	7.96 pH	24.60 °C	517.42 μS/cm	6.69 mg/L	2.10 NTU	150.7 mV	13.30 ft	350.00 ml/min
8/29/2024 9:32 AM	05:00	7.47 pH	19.40 °C	614.25 μS/cm	0.46 mg/L	1.78 NTU	119.5 mV	13.30 ft	350.00 ml/min
8/29/2024 9:37 AM	10:00	7.10 pH	19.37 °C	618.42 µS/cm	0.22 mg/L	1.53 NTU	114.8 mV	13.30 ft	350.00 ml/min
8/29/2024 9:42 AM	15:00	6.90 pH	19.36 °C	619.37 μS/cm	0.19 mg/L	0.87 NTU	111.2 mV	13.30 ft	350.00 ml/min
8/29/2024 9:47 AM	20:00	6.77 pH	19.38 °C	619.47 µS/cm	0.18 mg/L	0.87 NTU	113.6 mV	13.30 ft	350.00 ml/min
8/29/2024 9:52 AM	25:00	6.69 pH	19.40 °C	619.62 μS/cm	0.18 mg/L	0.79 NTU	113.7 mV	13.30 ft	350.00 ml/min
8/29/2024 9:57 AM	30:00	6.64 pH	19.41 °C	620.12 μS/cm	0.17 mg/L	0.86 NTU	111.8 mV	13.30 ft	350.00 ml/min
8/29/2024 10:02 AM	35:00	6.58 pH	19.46 °C	620.12 μS/cm	0.19 mg/L	0.82 NTU	115.4 mV	13.30 ft	350.00 ml/min
8/29/2024 10:07 AM	40:00	6.56 pH	19.41 °C	619.63 μS/cm	0.19 mg/L	0.84 NTU	115.2 mV	13.30 ft	350.00 ml/min
8/29/2024 10:12 AM	45:00	6.54 pH	19.68 °C	625.70 μS/cm	0.22 mg/L	0.91 NTU	112.8 mV	13.30 ft	350.00 ml/min
8/29/2024 10:17 AM	50:00	6.52 pH	19.64 °C	620.33 μS/cm	0.19 mg/L	0.88 NTU	115.5 mV	13.30 ft	350.00 ml/min

Test Date / Time: 8/27/2024 3:02:23 PM **Project:** Plant Branch Ash Ponds

Operator Name: J. May

Location Name: BRGWC-27I

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 16.9 ft Total Depth: 26.9 ft

Initial Depth to Water: 13.57 ft

Pump Type: Dedicated Bladder

Pump

Tubing Type: Poly

Tubing Inner Diameter: 0.17 in Pump Intake From TOC: 21.9 ft Estimated Total Volume Pumped:

7 liter

Flow Cell Volume: 130 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.36 in Instrument Used: Aqua TROLL 500

Serial Number: 863127

Test Notes:

Sample Time: 1537

Sunny, 90sFe2+ = 0.0 mg/L

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 3	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/27/2024 3:02 PM	00:00	6.22 pH	29.33 °C	369.38 μS/cm	5.57 mg/L	0.36 NTU	131.5 mV	13.57 ft	200.00 ml/min
8/27/2024 3:07 PM	05:00	5.50 pH	22.75 °C	337.09 μS/cm	1.84 mg/L	0.30 NTU	205.6 mV	13.60 ft	200.00 ml/min
8/27/2024 3:12 PM	10:00	5.55 pH	22.05 °C	342.18 μS/cm	0.78 mg/L	0.21 NTU	245.9 mV	13.60 ft	200.00 ml/min
8/27/2024 3:17 PM	15:00	5.74 pH	21.85 °C	348.89 μS/cm	0.36 mg/L	0.25 NTU	241.7 mV	13.60 ft	200.00 ml/min
8/27/2024 3:22 PM	20:00	5.82 pH	22.12 °C	356.33 μS/cm	0.25 mg/L	0.25 NTU	236.0 mV	13.60 ft	200.00 ml/min
8/27/2024 3:27 PM	25:00	5.88 pH	21.78 °C	360.40 μS/cm	0.20 mg/L	0.36 NTU	233.5 mV	13.60 ft	200.00 ml/min
8/27/2024 3:32 PM	30:00	5.93 pH	22.01 °C	362.76 μS/cm	0.20 mg/L	0.15 NTU	231.8 mV	13.60 ft	200.00 ml/min
8/27/2024 3:37 PM	35:00	5.95 pH	21.75 °C	363.87 µS/cm	0.18 mg/L	0.30 NTU	230.2 mV	13.60 ft	200.00 ml/min

	Sample ID:	Description:	
--	------------	--------------	--

Test Date / Time: 8/27/2024 3:00:05 PM Project: Plant Branch Ash Ponds Operator Name: J. Berisford

Location Name: BRGWC-29I

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 12.6 ft Total Depth: 22.6 ft

Initial Depth to Water: 11.63 ft

Pump Type: Dedicated Bladder

Pump

Tubing Type: Poly

Tubing Inner Diameter: 0.17 in Pump Intake From TOC: 17 ft Estimated Total Volume Pumped:

13.5 liter

Flow Cell Volume: 130 ml Final Flow Rate: 300 ml/min

Final Draw Down: 2 in

Instrument Used: Aqua TROLL 500

Serial Number: 689325

Test Notes:

Sunny, sample time-1545, FB-01 here at 1525. Fe2+ = 6.5 mg/L

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 3	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/27/2024 3:00 PM	00:00	3.48 pH	24.87 °C	472.13 μS/cm	3.94 mg/L	1.73 NTU	299.9 mV	11.63 ft	300.00 ml/min
8/27/2024 3:05 PM	05:00	3.99 pH	24.33 °C	442.95 μS/cm	1.06 mg/L	1.43 NTU	266.1 mV	11.80 ft	300.00 ml/min
8/27/2024 3:10 PM	10:00	4.29 pH	24.46 °C	428.95 μS/cm	0.31 mg/L	1.05 NTU	237.6 mV	11.80 ft	300.00 ml/min
8/27/2024 3:15 PM	15:00	4.40 pH	24.65 °C	425.58 μS/cm	0.19 mg/L	0.86 NTU	226.5 mV	11.80 ft	300.00 ml/min
8/27/2024 3:20 PM	20:00	4.44 pH	24.99 °C	424.89 μS/cm	0.16 mg/L	0.77 NTU	221.9 mV	11.80 ft	300.00 ml/min
8/27/2024 3:25 PM	25:00	4.46 pH	24.95 °C	423.15 μS/cm	0.14 mg/L	0.79 NTU	219.6 mV	11.80 ft	300.00 ml/min
8/27/2024 3:30 PM	30:00	4.47 pH	25.06 °C	423.58 μS/cm	0.13 mg/L	0.63 NTU	218.1 mV	11.80 ft	300.00 ml/min
8/27/2024 3:35 PM	35:00	4.46 pH	25.03 °C	422.85 μS/cm	0.12 mg/L	0.89 NTU	217.6 mV	11.80 ft	300.00 ml/min
8/27/2024 3:40 PM	40:00	4.47 pH	24.88 °C	422.82 μS/cm	0.11 mg/L	0.95 NTU	217.0 mV	11.80 ft	300.00 ml/min
8/27/2024 3:45 PM	45:00	4.47 pH	24.56 °C	423.54 μS/cm	0.11 mg/L	0.84 NTU	216.7 mV	11.80 ft	300.00 ml/min

Sample ID:	Description:	
		48

Test Date / Time: 8/28/2024 9:30:11 AM **Project:** Plant Branch Ash Ponds **Operator Name:** J. Berisford

Location Name: BRGWC-30I

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 12.8 ft Total Depth: 22.86 ft

Initial Depth to Water: 5.35 ft

Pump Type: Dedicated Bladder

Pump

Tubing Type: Poly

Tubing Inner Diameter: 0.17 in Pump Intake From TOC: 17 ft Estimated Total Volume Pumped:

64.5 liter

Flow Cell Volume: 130 ml Final Flow Rate: 300 ml/min

Final Draw Down: 3 in

Instrument Used: Aqua TROLL 500

Serial Number: 689325

Test Notes:

Sunny, sample time-1305, Fe2+=0.5 mg/L

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 3	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/28/2024 9:30 AM	00:00	6.38 pH	25.67 °C	1,382.8 μS/cm	5.46 mg/L	237.00 NTU	200.4 mV	5.35 ft	300.00 ml/min
8/28/2024 9:35 AM	05:00	6.43 pH	23.68 °C	1,311.6 μS/cm	1.95 mg/L	1,000.00 NTU	123.4 mV	5.60 ft	300.00 ml/min
8/28/2024 9:40 AM	10:00	6.42 pH	23.15 °C	1,421.1 μS/cm	0.30 mg/L	892.00 NTU	102.2 mV	5.60 ft	300.00 ml/min
8/28/2024 9:45 AM	15:00	6.44 pH	22.87 °C	1,462.5 μS/cm	0.20 mg/L	583.00 NTU	96.7 mV	5.60 ft	300.00 ml/min
8/28/2024 9:50 AM	20:00	6.45 pH	22.72 °C	1,479.0 μS/cm	0.14 mg/L	274.00 NTU	94.0 mV	5.60 ft	300.00 ml/min
8/28/2024 9:55 AM	25:00	6.45 pH	22.85 °C	1,486.4 μS/cm	0.12 mg/L	231.00 NTU	92.1 mV	5.60 ft	300.00 ml/min
8/28/2024 10:00 AM	30:00	6.46 pH	22.75 °C	1,484.5 μS/cm	0.11 mg/L	159.00 NTU	90.8 mV	5.60 ft	300.00 ml/min
8/28/2024 10:05 AM	35:00	6.46 pH	22.88 °C	1,484.5 μS/cm	0.11 mg/L	84.00 NTU	89.8 mV	5.60 ft	300.00 ml/min
8/28/2024 10:10 AM	40:00	6.46 pH	22.89 °C	1,483.7 μS/cm	0.10 mg/L	85.00 NTU	88.5 mV	5.60 ft	300.00 ml/min
8/28/2024 10:15 AM	45:00	6.46 pH	23.07 °C	1,482.8 μS/cm	0.10 mg/L	82.00 NTU	87.6 mV	5.60 ft	300.00 ml/min
8/28/2024 10:20 AM	50:00	6.46 pH	22.90 °C	1,477.7 μS/cm	0.10 mg/L	80.00 NTU	86.6 mV	5.60 ft	300.00 ml/min
8/28/2024 10:25 AM	55:00	6.46 pH	23.10 °C	1,482.0 μS/cm	0.10 mg/L	80.00 NTU	85.7 mV	5.60 ft	300.00 ml/min
8/28/2024 10:30 AM	01:00:00	6.46 pH	23.19 °C	1,482.0 μS/cm	0.10 mg/L	76.00 NTU	85.4 mV	5.60 ft	300.00 ml/min
8/28/2024 10:35 AM	01:05:00	6.46 pH	23.22 °C	1,487.2 μS/cm	0.10 mg/L	71.00 NTU	85.1 mV	5.60 ft	300.00 ml/min

8/28/2024				1,489.1					
10:40 AM	01:10:00	6.45 pH	23.31 °C	μS/cm	0.10 mg/L	59.00 NTU	85.0 mV	5.60 ft	300.00 ml/min
8/28/2024 10:45 AM	01:15:00	6.46 pH	23.30 °C	1,486.3 μS/cm	0.10 mg/L	41.00 NTU	84.4 mV	5.60 ft	300.00 ml/min
8/28/2024 10:50 AM	01:20:00	6.45 pH	23.22 °C	1,487.6 μS/cm	0.10 mg/L	34.00 NTU	84.3 mV	5.60 ft	300.00 ml/min
8/28/2024 10:55 AM	01:25:00	6.46 pH	23.31 °C	1,485.9 μS/cm	0.09 mg/L	29.00 NTU	83.9 mV	5.60 ft	300.00 ml/min
8/28/2024 11:00 AM	01:30:00	6.46 pH	23.44 °C	1,484.6 μS/cm	0.10 mg/L	32.00 NTU	83.7 mV	5.60 ft	300.00 ml/min
8/28/2024 11:05 AM	01:35:00	6.46 pH	23.21 °C	1,483.9 μS/cm	0.10 mg/L	31.00 NTU	83.7 mV	5.60 ft	300.00 ml/min
8/28/2024 11:10 AM	01:40:00	6.46 pH	23.24 °C	1,482.3 μS/cm	0.10 mg/L	34.00 NTU	83.4 mV	5.60 ft	300.00 ml/min
8/28/2024 11:15 AM	01:45:00	6.46 pH	23.45 °C	1,481.1 μS/cm	0.09 mg/L	33.00 NTU	83.4 mV	5.60 ft	300.00 ml/min
8/28/2024 11:20 AM	01:50:00	6.46 pH	23.39 °C	1,484.3 μS/cm	0.10 mg/L	30.00 NTU	83.1 mV	5.60 ft	300.00 ml/min
8/28/2024 11:25 AM	01:55:00	6.46 pH	23.30 °C	1,488.5 µS/cm	0.10 mg/L	31.00 NTU	83.3 mV	5.60 ft	300.00 ml/min
8/28/2024 11:30 AM	02:00:00	6.46 pH	23.39 °C	1,485.5 μS/cm	0.10 mg/L	27.00 NTU	83.1 mV	5.60 ft	300.00 ml/min
8/28/2024 11:35 AM	02:05:00	6.45 pH	23.83 °C	1,480.1 µS/cm	0.34 mg/L	47.00 NTU	96.4 mV	5.60 ft	300.00 ml/min
8/28/2024 11:40 AM	02:10:00	6.47 pH	21.96 °C	1,497.0 μS/cm	0.08 mg/L	65.00 NTU	92.6 mV	5.60 ft	300.00 ml/min
8/28/2024 11:45 AM	02:15:00	6.48 pH	22.02 °C	1,499.5 μS/cm	0.09 mg/L	62.00 NTU	91.3 mV	5.60 ft	300.00 ml/min
8/28/2024 11:50 AM	02:20:00	6.47 pH	21.48 °C	1,501.8 μS/cm	0.06 mg/L	61.00 NTU	91.3 mV	5.60 ft	300.00 ml/min
8/28/2024 11:55 AM	02:25:00	6.48 pH	21.77 °C	1,504.0 μS/cm	0.07 mg/L	58.00 NTU	90.8 mV	5.60 ft	300.00 ml/min
8/28/2024 12:00 PM	02:30:00	6.48 pH	22.05 °C	1,500.8 μS/cm	0.06 mg/L	44.00 NTU	90.8 mV	5.60 ft	300.00 ml/min
8/28/2024 12:05 PM	02:35:00	6.48 pH	21.93 °C	1,504.2 μS/cm	0.07 mg/L	48.00 NTU	90.4 mV	5.60 ft	300.00 ml/min
8/28/2024 12:10 PM	02:40:00	6.49 pH	21.96 °C	1,514.7 μS/cm	0.07 mg/L	48.00 NTU	90.9 mV	5.60 ft	300.00 ml/min
8/28/2024 12:15 PM	02:45:00	6.48 pH	21.78 °C	1,502.6 μS/cm	0.07 mg/L	42.00 NTU	90.6 mV	5.60 ft	300.00 ml/min
8/28/2024 12:20 PM	02:50:00	6.48 pH	21.85 °C	1,503.0 μS/cm	0.07 mg/L	46.00 NTU	90.9 mV	5.60 ft	300.00 ml/min
8/28/2024 12:25 PM	02:55:00	6.48 pH	21.61 °C	1,504.7 μS/cm	0.06 mg/L	47.00 NTU	90.9 mV	5.60 ft	300.00 ml/min
8/28/2024 12:30 PM	03:00:00	6.48 pH	21.68 °C	1,502.7 μS/cm	0.07 mg/L	51.00 NTU	90.9 mV	5.60 ft	300.00 ml/min
8/28/2024 12:35 PM	03:05:00	6.48 pH	21.88 °C	1,500.6 μS/cm	0.06 mg/L	47.00 NTU	91.2 mV	5.60 ft	300.00 ml/min
8/28/2024 12:40 PM	03:10:00	6.48 pH	21.80 °C	1,502.9 μS/cm	0.07 mg/L	43.00 NTU	91.0 mV	5.60 ft	300.00 ml/min
8/28/2024 12:45 PM	03:15:00	6.49 pH	21.79 °C	1,509.2 μS/cm	0.07 mg/L	23.00 NTU	91.6 mV	5.60 ft	300.00 ml/min
8/28/2024 12:50 PM	03:20:00	6.48 pH	21.53 °C	1,504.0 μS/cm	0.07 mg/L	13.00 NTU	91.4 mV	5.60 ft	300.00 ml/min
8/28/2024 12:55 PM	03:25:00	6.48 pH	21.86 °C	1,502.2 μS/cm	0.07 mg/L	7.73 NTU	91.5 mV	5.60 ft	300.00 ml/min
8/28/2024 1:00 PM	03:30:00	6.48 pH	21.72 °C	1,502.1 μS/cm	0.07 mg/L	6.85 NTU	91.3 mV	5.60 ft	300.00 ml/min

8/28/2024	03:35:00	6.40 ml l	24.77.00	1,501.8	0.07 mg/L	7.27 NTU	04.2 m\/	5.60 ft	300.00 ml/min
1:05 PM	03.35.00	6.49 pH	21.77	μS/cm	0.07 mg/L	7.27 NTO	91.2 mV	5.60 11	300.00 mi/min

Samples

Sample ID: Description:	
-------------------------	--

Test Date / Time: 8/28/2024 3:22:11 PM **Project:** Plant Branch Ash Ponds

Operator Name: J. May

Location Name: BRGWC-32S

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 37.8 ft Total Depth: 47.8 ft

Initial Depth to Water: 41.88 ft

Pump Type: Dedicated Bladder

Pump

Tubing Type: Poly

Tubing Inner Diameter: 0.17 in Pump Intake From TOC: 42.8 ft Estimated Total Volume Pumped:

11.375 liter

Flow Cell Volume: 130 ml Final Flow Rate: 175 ml/min

Final Draw Down: 0 in

Instrument Used: Aqua TROLL 500

Serial Number: 863127

Test Notes:

Final WL below top of pump

Sample Time: 1627

Sunny, 90s Fe2+ = 0.0 mg/L

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 3	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/28/2024 3:22 PM	00:00	6.37 pH	28.44 °C	453.67 μS/cm	6.60 mg/L	14.70 NTU	33.3 mV	41.88 ft	175.00 ml/min
8/28/2024 3:27 PM	05:00	6.05 pH	23.65 °C	410.34 μS/cm	4.05 mg/L	30.30 NTU	92.7 mV	NA	175.00 ml/min
8/28/2024 3:32 PM	10:00	6.06 pH	23.70 °C	418.57 μS/cm	3.17 mg/L	8.17 NTU	109.1 mV	NA	175.00 ml/min
8/28/2024 3:37 PM	15:00	6.07 pH	23.57 °C	420.12 μS/cm	3.08 mg/L	6.47 NTU	121.4 mV	NA	175.00 ml/min
8/28/2024 3:42 PM	20:00	6.06 pH	23.84 °C	425.00 μS/cm	5.80 mg/L	4.84 NTU	132.3 mV	NA	175.00 ml/min
8/28/2024 3:47 PM	25:00	6.03 pH	25.55 °C	425.97 μS/cm	6.62 mg/L	4.26 NTU	141.4 mV	NA	175.00 ml/min
8/28/2024 3:52 PM	30:00	6.03 pH	25.42 °C	422.46 μS/cm	6.51 mg/L	3.70 NTU	148.2 mV	NA	175.00 ml/min
8/28/2024 3:57 PM	35:00	6.03 pH	26.06 °C	423.17 μS/cm	6.28 mg/L	2.92 NTU	153.4 mV	NA	175.00 ml/min
8/28/2024 4:02 PM	40:00	6.04 pH	25.82 °C	426.62 μS/cm	6.33 mg/L	2.32 NTU	156.1 mV	NA	175.00 ml/min
8/28/2024 4:07 PM	45:00	6.04 pH	25.33 °C	420.12 μS/cm	6.44 mg/L	1.68 NTU	159.5 mV	NA	175.00 ml/min
8/28/2024 4:12 PM	50:00	6.04 pH	25.87 °C	420.02 μS/cm	6.19 mg/L	1.38 NTU	161.0 mV	NA	175.00 ml/min
8/28/2024 4:17 PM	55:00	6.05 pH	25.09 °C	421.93 μS/cm	6.28 mg/L	1.45 NTU	162.9 mV	NA	175.00 ml/min

8/28/2024	01:00:00	6.05 pH	24.70 °C	415.50 µS/cm	6.28 mg/L	1.70 NTU	165.3 mV	NA	175.00 ml/min
4:22 PM	01.00.00	0.03 pm	24.70 C	413.30 μ3/611	0.28 mg/L	1.70 1010	105.5 1117	INA.	175.00 1111/111111
8/28/2024	01:05:00	6.05 pH	24.98 °C	420.09 µS/cm	6.10 mg/L	1.49 NTU	166.8 mV	NA	175.00 ml/min
4:27 PM	01.05.00	0.03 pn	24.96 0	420.09 µ5/cm	6.10 mg/L	1.49 NTU	100.8 1117	INA	175.00 mi/min

Samples

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/29/2024 9:20:09 AM Project: Plant Branch Ash Ponds Operator Name: D. Johnson

Location Name: BRGWC-45

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 49 ft Total Depth: 59.98 ft

Initial Depth to Water: 15.95 ft

Pump Type: Dedicated Bladder

Pump

Tubing Type: Poly

Tubing Inner Diameter: 0.17 in Pump Intake From TOC: 54 ft Estimated Total Volume Pumped:

8.75 liter

Flow Cell Volume: 90 ml Final Flow Rate: 250 ml/min Final Draw Down: 7.44 in Instrument Used: Aqua TROLL 400

Serial Number: 884189

Test Notes:

Sample time 0955. EB-05 here.

Fe2+= 0.0mg/L.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 3	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/29/2024 9:20 AM	00:00	6.91 pH	28.55 °C	284.71 μS/cm	6.33 mg/L	3.65 NTU	176.4 mV	15.95 ft	250.00 ml/min
8/29/2024 9:25 AM	05:00	5.90 pH	23.53 °C	384.51 μS/cm	2.11 mg/L	2.50 NTU	166.5 mV	16.51 ft	250.00 ml/min
8/29/2024 9:30 AM	10:00	5.83 pH	23.44 °C	390.14 μS/cm	1.66 mg/L	0.77 NTU	110.1 mV	16.55 ft	250.00 ml/min
8/29/2024 9:35 AM	15:00	5.83 pH	23.64 °C	382.89 μS/cm	1.43 mg/L	0.57 NTU	131.1 mV	16.57 ft	250.00 ml/min
8/29/2024 9:40 AM	20:00	5.81 pH	23.64 °C	385.77 μS/cm	1.48 mg/L	0.51 NTU	142.1 mV	16.57 ft	250.00 ml/min
8/29/2024 9:45 AM	25:00	6.25 pH	23.79 °C	384.36 μS/cm	1.48 mg/L	0.63 NTU	144.3 mV	16.57 ft	250.00 ml/min
8/29/2024 9:50 AM	30:00	6.25 pH	23.85 °C	382.74 μS/cm	1.43 mg/L	0.61 NTU	142.1 mV	16.57 ft	250.00 ml/min
8/29/2024 9:55 AM	35:00	6.26 pH	24.02 °C	383.49 μS/cm	1.44 mg/L	0.61 NTU	134.1 mV	16.57 ft	250.00 ml/min

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/28/2024 3:13:09 PM Project: Plant Branch Ash Ponds Operator Name: D. Johnson

Location Name: BRGWC-47

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 84 ft Total Depth: 94.4 ft

Initial Depth to Water: 30.24 ft

Pump Type: Dedicated Bladder

Pump

Tubing Type: Poly

Tubing Inner Diameter: 0.17 in Pump Intake From TOC: 89 ft Estimated Total Volume Pumped:

3.75 liter

Flow Cell Volume: 90 ml Final Flow Rate: 150 ml/min Final Draw Down: 4.92 ft Instrument Used: Aqua TROLL 400

Serial Number: 884189

Test Notes:

Sample time 1538. Sunny, 94 degrees F.

Fe2+= 0.0 mg/L.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 3	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/28/2024 3:13 PM	00:00	6.15 pH	31.00 °C	1,791.4 μS/cm	5.80 mg/L	0.78 NTU	12.9 mV	30.24 ft	150.00 ml/min
8/28/2024 3:18 PM	05:00	5.64 pH	24.40 °C	1,801.5 μS/cm	1.02 mg/L	0.21 NTU	25.6 mV	30.52 ft	150.00 ml/min
8/28/2024 3:23 PM	10:00	5.59 pH	26.18 °C	1,816.5 μS/cm	1.15 mg/L	1.75 NTU	60.5 mV	30.65 ft	150.00 ml/min
8/28/2024 3:28 PM	15:00	5.58 pH	26.45 °C	1,812.2 μS/cm	1.05 mg/L	1.83 NTU	78.0 mV	30.65 ft	150.00 ml/min
8/28/2024 3:33 PM	20:00	5.58 pH	26.60 °C	1,805.4 μS/cm	0.98 mg/L	0.98 NTU	88.5 mV	30.65 ft	150.00 ml/min
8/28/2024 3:38 PM	25:00	5.57 pH	26.56 °C	1,805.2 μS/cm	0.96 mg/L	0.78 NTU	94.8 mV	30.65 ft	150.00 ml/min

Samples

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/29/2024 12:40:06 PM

Project: Plant Branch Ash Ponds **Operator Name:** J. Berisford

Location Name: BRGWC-50

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 57.6 ft Total Depth: 67.6 ft

Initial Depth to Water: 39.27 ft

Pump Type: Dedicated Bladder

Pump

Tubing Type: Poly

Tubing Inner Diameter: 0.17 in Pump Intake From TOC: 62 ft Estimated Total Volume Pumped:

12.5 liter

Flow Cell Volume: 130 ml Final Flow Rate: 250 ml/min

Final Draw Down: 2 in

Instrument Used: Aqua TROLL 500

Serial Number: 689325

Test Notes:

Sunny, sample time-1330. Fe2+= 0.0 mg/L. FD-03 here

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 3	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/29/2024 12:40 PM	00:00	5.25 pH	25.07 °C	1,459.8 μS/cm	3.98 mg/L	1.08 NTU	186.5 mV	39.27 ft	250.00 ml/min
8/29/2024 12:45 PM	05:07	5.10 pH	24.09 °C	1,475.7 μS/cm	1.30 mg/L	0.87 NTU	205.7 mV	39.50 ft	250.00 ml/min
8/29/2024 12:50 PM	10:07	5.22 pH	24.18 °C	1,474.1 μS/cm	0.83 mg/L	1.07 NTU	204.8 mV	39.50 ft	250.00 ml/min
8/29/2024 12:55 PM	15:07	5.23 pH	24.24 °C	1,474.5 μS/cm	0.56 mg/L	1.75 NTU	208.1 mV	39.50 ft	250.00 ml/min
8/29/2024 1:00 PM	20:07	5.22 pH	24.02 °C	1,472.9 μS/cm	0.44 mg/L	1.92 NTU	211.4 mV	39.50 ft	250.00 ml/min
8/29/2024 1:05 PM	25:07	5.22 pH	23.67 °C	1,465.9 μS/cm	0.37 mg/L	1.87 NTU	214.0 mV	39.50 ft	250.00 ml/min
8/29/2024 1:10 PM	30:07	5.21 pH	23.76 °C	1,474.9 μS/cm	0.36 mg/L	1.29 NTU	216.3 mV	39.50 ft	250.00 ml/min
8/29/2024 1:15 PM	35:07	5.21 pH	23.88 °C	1,477.1 μS/cm	0.34 mg/L	1.04 NTU	218.4 mV	39.50 ft	250.00 ml/min
8/29/2024 1:20 PM	40:07	5.21 pH	23.92 °C	1,479.2 μS/cm	0.34 mg/L	0.95 NTU	220.1 mV	39.50 ft	250.00 ml/min
8/29/2024 1:25 PM	45:07	5.21 pH	23.95 °C	1,482.3 μS/cm	0.32 mg/L	1.06 NTU	221.8 mV	39.50 ft	250.00 ml/min
8/29/2024 1:30 PM	50:07	5.20 pH	24.17 °C	1,482.9 μS/cm	0.30 mg/L	0.87 NTU	223.1 mV	39.50 ft	250.00 ml/min

Test Date / Time: 8/28/2024 3:17:30 PM **Project:** Plant Branch Ash Ponds **Operator Name:** Taylor Goble

Location Name: BRGWC-52I

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 66.6 ft Total Depth: 76.6 ft

Initial Depth to Water: 40.87 ft

Pump Type: Dedicated Bladder

Pump

Tubing Type: Poly

Tubing Inner Diameter: 0.17 in Pump Intake From TOC: 71 ft Estimated Total Volume Pumped:

18.75 liter

Flow Cell Volume: 90 ml Final Flow Rate: 250 ml/min Final Draw Down: 0.71 ft Instrument Used: Aqua TROLL 400

Serial Number: 965658

Test Notes:

Sampled at 1632. Cloudy 95 degrees. Fe2+ 0.0 mg/L

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 3	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/28/2024 3:17 PM	00:00	6.76 pH	35.55 °C	377.15 μS/cm	6.36 mg/L	1.29 NTU	126.1 mV	41.22 ft	250.00 ml/min
8/28/2024 3:22 PM	05:00	9.18 pH	22.12 °C	302.04 μS/cm	2.17 mg/L	0.93 NTU	136.3 mV	41.48 ft	250.00 ml/min
8/28/2024 3:27 PM	10:00	11.38 pH	21.28 °C	317.51 μS/cm	1.53 mg/L	0.80 NTU	131.9 mV	41.53 ft	250.00 ml/min
8/28/2024 3:32 PM	15:00	10.62 pH	21.26 °C	324.64 μS/cm	0.83 mg/L	0.61 NTU	127.3 mV	41.56 ft	250.00 ml/min
8/28/2024 3:37 PM	20:00	9.66 pH	21.14 °C	350.34 μS/cm	0.53 mg/L	0.55 NTU	126.5 mV	41.58 ft	250.00 ml/min
8/28/2024 3:42 PM	25:00	8.85 pH	21.10 °C	364.95 μS/cm	0.43 mg/L	0.49 NTU	120.3 mV	41.58 ft	250.00 ml/min
8/28/2024 3:47 PM	30:00	8.20 pH	21.16 °C	377.26 μS/cm	0.38 mg/L	0.44 NTU	113.7 mV	41.58 ft	250.00 ml/min
8/28/2024 3:52 PM	35:00	7.68 pH	21.01 °C	381.13 μS/cm	0.36 mg/L	0.33 NTU	108.8 mV	41.58 ft	250.00 ml/min
8/28/2024 3:57 PM	40:00	7.28 pH	21.07 °C	381.26 μS/cm	0.35 mg/L	0.28 NTU	105.6 mV	41.58 ft	250.00 ml/min
8/28/2024 4:02 PM	45:00	7.00 pH	21.06 °C	382.72 μS/cm	0.33 mg/L	0.21 NTU	103.5 mV	41.58 ft	250.00 ml/min
8/28/2024 4:07 PM	50:00	6.83 pH	21.02 °C	382.07 μS/cm	0.33 mg/L	0.31 NTU	102.2 mV	41.58 ft	250.00 ml/min
8/28/2024 4:12 PM	55:00	6.71 pH	21.10 °C	380.50 μS/cm	0.32 mg/L	0.27 NTU	101.5 mV	41.58 ft	250.00 ml/min
8/28/2024 4:17 PM	01:00:00	6.62 pH	21.00 °C	381.73 μS/cm	0.31 mg/L	0.24 NTU	100.6 mV	41.58 ft	250.00 ml/min
8/28/2024 4:22 PM	01:05:00	6.56 pH	20.76 °C	382.21 μS/cm	0.31 mg/L	0.35 NTU	100.5 mV	41.58 ft	250.00 ml/min

8/28/2024	01:10:00	6.52 pH	20.84 °C	380.84 µS/cm	0.30 mg/L	0.29 NTU	100.4 mV	41.58 ft	250.00 ml/min
4:27 PM	01.10.00	0.52 pri	20.84 C	360.64 μ3/611	0.30 Hig/L	0.29 1110	100.4 1117	41.5610	250.00 111/111111
8/28/2024	01:15:00	6.49 pH	20.65 °C	381.82 µS/cm	0.29 mg/L	0.37 NTU	100.0 mV	41.58 ft	250.00 ml/min
4:32 PM	01.15.00	0.49 p⊓	20.65 C	361.62 μ3/011	0.29 Hig/L	0.37 1010	100.01110	41.56 11	250.00 111/111111

Samples

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/27/2024 4:40:45 PM **Project:** Plant Branch Ash Ponds

Operator Name: J. May

Location Name: PZ-44
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 49.1 ft
Total Depth: 59.1 ft

Initial Depth to Water: 30.33 ft

Pump Type: Dedicated Bladder

Pump

Tubing Type: Poly

Tubing Inner Diameter: 0.17 in Pump Intake From TOC: 54.1 ft Estimated Total Volume Pumped:

10.21 liter

Flow Cell Volume: 130 ml Final Flow Rate: 250 ml/min Final Draw Down: 3.24 in Instrument Used: Aqua TROLL 500

Serial Number: 863127

Test Notes:

Sample Time: 1721

Sunny, 90s Fe2+ = 0.0 mg/L

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 3	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/27/2024 4:40 PM	00:00	6.23 pH	23.89 °C	189.06 μS/cm	2.02 mg/L	0.66 NTU	171.5 mV	30.33 ft	250.00 ml/min
8/27/2024 4:45 PM	05:00	6.08 pH	23.18 °C	189.15 μS/cm	0.80 mg/L	1.25 NTU	265.2 mV	30.40 ft	250.00 ml/min
8/27/2024 4:50 PM	10:00	6.04 pH	22.96 °C	189.03 μS/cm	0.36 mg/L	0.71 NTU	341.0 mV	30.60 ft	250.00 ml/min
8/27/2024 4:55 PM	15:00	6.03 pH	22.77 °C	189.28 μS/cm	0.29 mg/L	0.66 NTU	400.8 mV	30.60 ft	250.00 ml/min
8/27/2024 5:00 PM	20:00	6.05 pH	22.95 °C	188.77 μS/cm	0.31 mg/L	1.30 NTU	413.1 mV	30.60 ft	250.00 ml/min
8/27/2024 5:06 PM	25:21	6.17 pH	23.59 °C	244.06 μS/cm	1.75 mg/L	2.11 NTU	202.0 mV	30.60 ft	250.00 ml/min
8/27/2024 5:11 PM	30:21	6.20 pH	23.11 °C	198.19 μS/cm	0.28 mg/L	0.70 NTU	197.0 mV	30.60 ft	250.00 ml/min
8/27/2024 5:16 PM	35:21	6.19 pH	22.91 °C	192.23 μS/cm	0.24 mg/L	0.52 NTU	196.5 mV	30.60 ft	250.00 ml/min
8/27/2024 5:21 PM	40:21	6.19 pH	22.74 °C	190.30 μS/cm	0.23 mg/L	0.71 NTU	198.4 mV	30.60 ft	250.00 ml/min

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/28/2024 1:50:50 PM Project: Plant Branch Ash Ponds Operator Name: J. Berisford

Location Name: PZ-50D
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 98.5 ft
Total Depth: 108.5 ft

Initial Depth to Water: 38.83 ft

Pump Type: Dedicated Bladder

Pump

Tubing Type: Poly

Tubing Inner Diameter: 0.17 in Pump Intake From TOC: 103 ft Estimated Total Volume Pumped:

49.1 liter

Flow Cell Volume: 130 ml Final Flow Rate: 250 ml/min Final Draw Down: 784 in Instrument Used: Aqua TROLL 500

Serial Number: 689325

Test Notes:

Sunny, well purged dry, no sample collected. Allow for overnight recharge.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 3	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/28/2024 1:50 PM	00:00	5.89 pH	42.80 °C	0.12 μS/cm	5.53 mg/L	10.00 NTU	175.7 mV	38.83 ft	200.00 ml/min
8/28/2024 1:55 PM	05:00	6.24 pH	26.00 °C	1,065.0 μS/cm	1.45 mg/L	9.74 NTU	131.8 mV	39.40 ft	200.00 ml/min
8/28/2024 2:00 PM	10:00	6.02 pH	24.77 °C	1,108.4 μS/cm	0.62 mg/L	9.29 NTU	108.5 mV	40.40 ft	200.00 ml/min
8/28/2024 2:05 PM	15:00	5.99 pH	24.81 °C	1,110.7 μS/cm	0.58 mg/L	10.00 NTU	115.4 mV	41.70 ft	200.00 ml/min
8/28/2024 2:10 PM	20:00	6.06 pH	24.86 °C	1,113.2 μS/cm	0.54 mg/L	10.00 NTU	117.4 mV	42.80 ft	200.00 ml/min
8/28/2024 2:15 PM	25:00	6.10 pH	24.56 °C	1,120.7 μS/cm	0.59 mg/L	11.00 NTU	118.2 mV	43.40 ft	200.00 ml/min
8/28/2024 2:20 PM	30:00	6.15 pH	24.53 °C	1,104.2 μS/cm	0.62 mg/L	13.00 NTU	118.7 mV	44.60 ft	200.00 ml/min
8/28/2024 2:25 PM	35:00	6.19 pH	24.54 °C	1,081.1 µS/cm	0.68 mg/L	14.00 NTU	119.0 mV	45.90 ft	200.00 ml/min
8/28/2024 2:30 PM	40:00	6.22 pH	24.35 °C	1,074.6 μS/cm	0.68 mg/L	14.00 NTU	118.4 mV	47.00 ft	200.00 ml/min
8/28/2024 2:35 PM	45:00	6.25 pH	24.28 °C	1,057.5 μS/cm	0.79 mg/L	17.00 NTU	117.4 mV	48.30 ft	200.00 ml/min
8/28/2024 2:40 PM	50:00	6.31 pH	24.36 °C	995.49 μS/cm	0.78 mg/L	13.00 NTU	115.1 mV	49.10 ft	200.00 ml/min
8/28/2024 2:45 PM	55:00	6.41 pH	24.60 °C	895.40 μS/cm	0.75 mg/L	12.00 NTU	111.3 mV	50.20 ft	200.00 ml/min
8/28/2024 2:50 PM	01:00:00	6.51 pH	24.47 °C	806.68 μS/cm	0.75 mg/L	10.00 NTU	107.4 mV	51.70 ft	200.00 ml/min
8/28/2024 2:55 PM	01:05:00	6.58 pH	24.56 °C	729.56 µS/cm	0.76 mg/L	11.00 NTU	102.6 mV	53.10 ft	200.00 ml/min

2/22/222	1								
8/28/2024 3:00 PM	01:10:00	6.64 pH	24.49 °C	654.12 µS/cm	0.74 mg/L	9.33 NTU	97.2 mV	54.80 ft	200.00 ml/min
8/28/2024 3:05 PM	01:15:00	6.67 pH	24.27 °C	595.48 μS/cm	0.82 mg/L	8.29 NTU	92.0 mV	56.00 ft	200.00 ml/min
8/28/2024 3:10 PM	01:20:00	6.68 pH	24.44 °C	547.36 μS/cm	0.80 mg/L	8.42 NTU	87.3 mV	58.90 ft	200.00 ml/min
8/28/2024 3:15 PM	01:25:00	6.69 pH	24.43 °C	504.01 μS/cm	0.91 mg/L	8.11 NTU	82.6 mV	60.50 ft	200.00 ml/min
8/28/2024 3:20 PM	01:30:00	6.69 pH	24.31 °C	466.88 μS/cm	0.83 mg/L	8.57 NTU	76.7 mV	62.80 ft	200.00 ml/min
8/28/2024 3:25 PM	01:35:00	6.69 pH	24.25 °C	425.97 μS/cm	0.75 mg/L	7.49 NTU	60.3 mV	64.00 ft	200.00 ml/min
8/28/2024 3:30 PM	01:40:00	6.70 pH	24.27 °C	391.75 μS/cm	0.84 mg/L	8.31 NTU	33.7 mV	65.80 ft	200.00 ml/min
8/28/2024 3:35 PM	01:45:00	6.71 pH	24.35 °C	382.27 μS/cm	1.01 mg/L	8.04 NTU	8.3 mV	67.10 ft	200.00 ml/min
8/28/2024 3:40 PM	01:50:00	6.71 pH	24.19 °C	393.73 μS/cm	1.13 mg/L	7.79 NTU	-2.1 mV	68.00 ft	200.00 ml/min
8/28/2024 3:45 PM	01:55:00	6.70 pH	24.19 °C	411.94 μS/cm	1.36 mg/L	7.95 NTU	-6.2 mV	69.30 ft	200.00 ml/min
8/28/2024 3:50 PM	02:00:00	6.70 pH	24.30 °C	432.21 μS/cm	1.56 mg/L	7.68 NTU	-7.4 mV	70.90 ft	200.00 ml/min
8/28/2024 3:55 PM	02:05:00	6.70 pH	24.22 °C	456.88 μS/cm	1.71 mg/L	7.42 NTU	-6.9 mV	71.50 ft	200.00 ml/min
8/28/2024 4:00 PM	02:10:00	6.69 pH	24.33 °C	482.13 μS/cm	1.96 mg/L	6.21 NTU	-5.7 mV	72.90 ft	200.00 ml/min
8/28/2024 4:05 PM	02:15:00	6.69 pH	24.22 °C	506.08 μS/cm	2.12 mg/L	6.24 NTU	-3.9 mV	74.10 ft	200.00 ml/min
8/28/2024 4:10 PM	02:20:00	6.69 pH	24.09 °C	530.59 μS/cm	2.45 mg/L	7.69 NTU	-1.7 mV	75.30 ft	200.00 ml/min
8/28/2024 4:15 PM	02:25:00	6.69 pH	24.17 °C	550.97 μS/cm	2.67 mg/L	8.17 NTU	0.5 mV	76.80 ft	200.00 ml/min
8/28/2024 4:20 PM	02:30:00	6.69 pH	24.02 °C	569.31 μS/cm	2.90 mg/L	8.58 NTU	2.6 mV	78.40 ft	200.00 ml/min
8/28/2024 4:25 PM	02:35:00	6.70 pH	23.86 °C	579.55 μS/cm	3.13 mg/L	9.21 NTU	4.4 mV	79.60 ft	200.00 ml/min
8/28/2024 4:30 PM	02:39:17	6.69 pH	24.62 °C	588.93 μS/cm	3.21 mg/L	9.28 NTU	5.5 mV	80.40 ft	200.00 ml/min
8/28/2024 4:35 PM	02:44:17	6.70 pH	24.40 °C	594.28 μS/cm	3.30 mg/L	8.83 NTU	6.5 mV	81.20 ft	200.00 ml/min
8/28/2024 4:40 PM	02:49:17	6.70 pH	24.23 °C	595.63 μS/cm	3.46 mg/L	8.41 NTU	7.3 mV	82.40 ft	200.00 ml/min
8/28/2024 4:45 PM	02:54:17	6.70 pH	26.39 °C	598.13 μS/cm	3.57 mg/L	8.49 NTU	5.5 mV	83.60 ft	200.00 ml/min
8/28/2024 4:50 PM	02:59:17	6.68 pH	28.42 °C	607.31 μS/cm	3.85 mg/L	9.52 NTU	1.5 mV	84.70 ft	200.00 ml/min
8/28/2024 4:55 PM	03:04:17	6.64 pH	24.38 °C	620.53 μS/cm	3.43 mg/L	8.44 NTU	11.5 mV	85.30 ft	200.00 ml/min
8/28/2024 5:00 PM	03:09:17	6.68 pH	23.99 °C	597.35 μS/cm	3.63 mg/L	8.21 NTU	9.6 mV	86.90 ft	250.00 ml/min
8/28/2024 5:05 PM	03:14:17	6.79 pH	22.81 °C	591.17 μS/cm	5.16 mg/L	7.92 NTU	7.7 mV	88.20 ft	250.00 ml/min
8/28/2024 5:10 PM	03:19:17	6.84 pH	22.57 °C	593.15 μS/cm	5.98 mg/L	7.33 NTU	5.1 mV	89.40 ft	250.00 ml/min
8/28/2024 5:15 PM	03:24:17	6.83 pH	22.45 °C	609.53 μS/cm	5.87 mg/L	7.52 NTU	5.1 mV	91.90 ft	250.00 ml/min
8/28/2024 5:20 PM	03:29:17	6.82 pH	22.40 °C	620.82 μS/cm	5.86 mg/L	7.89 NTU	5.1 mV	93.30 ft	250.00 ml/min

8/28/2024 5:25 PM	03:34:17	6.82 pH	22.55 °C	628.34 μS/cm	5.82 mg/L	7.77 NTU	4.6 mV	95.70 ft	250.00 ml/min
8/28/2024 5:30 PM	03:39:17	6.81 pH	22.33 °C	639.82 μS/cm	5.82 mg/L	10.00 NTU	3.9 mV	97.40 ft	250.00 ml/min
8/28/2024 5:35 PM	03:44:17	6.80 pH	22.42 °C	651.04 μS/cm	5.77 mg/L	9.41 NTU	4.1 mV	99.00 ft	250.00 ml/min
8/28/2024 5:40 PM	03:49:17	6.76 pH	22.39 °C	704.64 μS/cm	5.85 mg/L	13.00 NTU	6.2 mV	102.60 ft	250.00 ml/min
8/28/2024 5:45 PM	03:54:17	6.34 pH	22.39 °C	974.71 μS/cm	2.39 mg/L	15.00 NTU	21.9 mV	104.20 ft	250.00 ml/min

Samples

Sample ID:	Description:
•	·

Test Date / Time: 8/29/2024 9:30:10 AM **Project:** Plant Branch Ash Ponds **Operator Name:** J. Berisford

Location Name: PZ-50D
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 98.5 ft
Total Depth: 108.5 ft

Initial Depth to Water: 73.62 ft

Pump Type: Dedicated Bladder

Pump

Tubing Type: Poly

Tubing Inner Diameter: 0.17 in Pump Intake From TOC: 103 ft Estimated Total Volume Pumped:

3 liter

Flow Cell Volume: 130 ml Final Flow Rate: 100 ml/min Final Draw Down: 37 in Instrument Used: Aqua TROLL 500

Serial Number: 689325

Test Notes:

Sunny, sample time-1000

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 3	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/29/2024	00:00	6.11 pH	26.39 °C	1,049.5	5.30 mg/L	6.21 NTU	191.9 mV	73.62 ft	100.00 ml/min
9:30 AM	00.00	6.11 μπ		μS/cm	3.30 Hig/L		131.3111	73.02 11	100.00 1111/111111
8/29/2024	05:00	6.17 pH	25.39 °C	1,028.0	2.50 mg/L	3.21 NTU	126.9 mV	74.20 ft	100.00 ml/min
9:35 AM		0.17 pm	25.39 °C	μS/cm	2.50 Hig/L		120.5 111 V	74.2011	100.00 111711111
8/29/2024	10:00	6.18 pH	25.36 °C	1,030.5	1.64 mg/L	3.85 NTU	93.5 mV	74.90 ft	100.00 ml/min
9:40 AM	10.00	0.10 pm	20.00 0	μS/cm		0.001110	30.0 1117	74.50 10	100.00 111711111
8/29/2024	15:00	6.17 pH	25.46 °C	1,037.2	1.26 mg/L	2.32 NTU	81.1 mV	75.50 ft	100.00 ml/min
9:45 AM	13.00			μS/cm	1.20 mg/L	2.52 1110	01.11111	75.50 11	100.00 111711111
8/29/2024	20:00	6.17 pH	25.65 °C	1,034.5	0.98 mg/L	2.84 NTU	74.1 mV	76.00 ft	100.00 ml/min
9:50 AM	20.00	0.17 pi i	20.00	μS/cm	0.00 mg/L	2.041110	7 4.1 1110	70.00 10	100.00 1111/111111
8/29/2024	25:00	6.16 pH	25.88 °C	1,040.3	0.86 mg/L	1.98 NTU	71.1 mV	76.40 ft	100.00 ml/min
9:55 AM	25.00	ο. το μπ	25.06 C	μS/cm	0.00 mg/L	1.55 1416	,	70.4010	100.00 111/111111
8/29/2024	30:00	6 16 nH	26.04 °C	1,046.9	0.81 mg/L	1.64 NTU	69.7 mV	76.90 ft	100.00 ml/min
10:00 AM	30.00	6.16 pH		μS/cm	0.01 mg/L				100.00 1111/111111

Samples

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/29/2024 12:55:46 PM

Project: Plant Branch Ash Ponds **Operator Name:** D. Johnson

Location Name: PZ-51D
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 98 ft
Total Depth: 108.63 ft

Initial Depth to Water: 41.12 ft

Pump Type: Dedicated Bladder

Pump

Tubing Type: Poly

Tubing Inner Diameter: 0.17 in Pump Intake From TOC: 104 ft Estimated Total Volume Pumped:

4.5 liter

Flow Cell Volume: 90 ml Final Flow Rate: 100 ml/min Final Draw Down: 18.12 in Instrument Used: Aqua TROLL 400

Serial Number: 884189

Test Notes:

Sample time 1340. Sunny, 94 degrees F.

Fe2+= 1.0mg/L. FB- 03 here.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 3	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/29/2024 12:55 PM	00:00	7.26 pH	42.18 °C	842.04 μS/cm	6.74 mg/L	2.73 NTU	113.5 mV	41.12 ft	100.00 ml/min
8/29/2024 1:00 PM	05:00	7.33 pH	42.51 °C	823.33 μS/cm	6.21 mg/L	1.26 NTU	95.7 mV	41.36 ft	100.00 ml/min
8/29/2024 1:05 PM	10:00	7.26 pH	42.96 °C	812.79 μS/cm	4.94 mg/L	0.77 NTU	16.5 mV	41.65 ft	100.00 ml/min
8/29/2024 1:10 PM	15:00	7.15 pH	38.56 °C	791.03 μS/cm	3.13 mg/L	1.39 NTU	-79.4 mV	42.01 ft	100.00 ml/min
8/29/2024 1:15 PM	20:00	7.11 pH	37.20 °C	801.29 μS/cm	3.13 mg/L	4.01 NTU	-99.9 mV	42.07 ft	100.00 ml/min
8/29/2024 1:20 PM	25:00	7.10 pH	39.01 °C	807.37 μS/cm	3.18 mg/L	3.82 NTU	-114.9 mV	42.15 ft	100.00 ml/min
8/29/2024 1:25 PM	30:00	7.08 pH	40.58 °C	813.02 µS/cm	2.96 mg/L	3.48 NTU	-126.6 mV	42.32 ft	100.00 ml/min
8/29/2024 1:30 PM	35:00	7.04 pH	40.24 °C	808.04 μS/cm	2.35 mg/L	3.63 NTU	-133.6 mV	42.58 ft	100.00 ml/min
8/29/2024 1:35 PM	40:00	7.06 pH	40.67 °C	798.58 μS/cm	2.30 mg/L	2.45 NTU	-131.9 mV	42.61 ft	100.00 ml/min
8/29/2024 1:40 PM	45:00	7.06 pH	39.28 °C	796.08 µS/cm	2.33 mg/L	2.29 NTU	-131.5 mV	42.63 ft	100.00 ml/min

Sa	ample ID:	Description:	
----	-----------	--------------	--

Test Date / Time: 8/29/2024 1:40:35 PM **Project:** Plant Branch Ash Ponds

Operator Name: J. May

Location Name: PZ-51I
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 57.5 ft
Total Depth: 67.5 ft

Initial Depth to Water: 38.22 ft

Pump Type: Dedicated Bladder

Pump

Tubing Type: Poly

Tubing Inner Diameter: 0.17 in Pump Intake From TOC: 62.5 ft Estimated Total Volume Pumped:

6 liter

Flow Cell Volume: 130 ml Final Flow Rate: 150 ml/min Final Draw Down: 6.96 in Instrument Used: Aqua TROLL 500

Serial Number: 863127

Test Notes:

Sample Time: 1420

Sunny, 90sFe2+ = 0.0 mg/L

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 3	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/29/2024 1:40 PM	00:00	5.42 pH	25.89 °C	1,730.0 μS/cm	3.43 mg/L	0.60 NTU	93.0 mV	39.22 ft	150.00 ml/min
8/29/2024 1:45 PM	05:00	5.31 pH	24.35 °C	1,750.2 μS/cm	1.13 mg/L	0.37 NTU	83.6 mV	39.80 ft	150.00 ml/min
8/29/2024 1:50 PM	10:00	5.33 pH	24.44 °C	1,756.6 μS/cm	0.81 mg/L	0.61 NTU	78.8 mV	39.80 ft	150.00 ml/min
8/29/2024 1:55 PM	15:00	5.34 pH	24.29 °C	1,754.5 μS/cm	0.45 mg/L	0.59 NTU	73.7 mV	39.80 ft	150.00 ml/min
8/29/2024 2:00 PM	20:00	5.35 pH	24.02 °C	1,755.9 μS/cm	0.31 mg/L	0.65 NTU	70.2 mV	39.80 ft	150.00 ml/min
8/29/2024 2:05 PM	25:00	5.37 pH	24.29 °C	1,763.6 μS/cm	0.27 mg/L	0.75 NTU	68.9 mV	39.80 ft	150.00 ml/min
8/29/2024 2:10 PM	30:00	5.38 pH	24.16 °C	1,758.8 μS/cm	0.26 mg/L	0.51 NTU	66.6 mV	39.80 ft	150.00 ml/min
8/29/2024 2:15 PM	35:00	5.38 pH	23.90 °C	1,740.5 μS/cm	0.24 mg/L	0.46 NTU	65.1 mV	39.80 ft	150.00 ml/min
8/29/2024 2:20 PM	40:00	5.39 pH	24.38 °C	1,735.4 μS/cm	0.24 mg/L	0.50 NTU	64.2 mV	39.80 ft	150.00 ml/min

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/29/2024 2:30:18 PM Project: Plant Branch Ash Ponds Operator Name: J. Berisford

Location Name: PZ-58I
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 56.9 ft
Total Depth: 66.9 ft

Initial Depth to Water: 39.72 ft

Pump Type: Dedicated Bladder

Pump

Tubing Type: Poly

Tubing Inner Diameter: 0.17 in Pump Intake From TOC: 61 ft Estimated Total Volume Pumped:

11.2 liter

Flow Cell Volume: 130 ml Final Flow Rate: 250 ml/min

Final Draw Down: 2 in

Instrument Used: Aqua TROLL 500

Serial Number: 689325

Test Notes:

Sunny, sample time-1515. Fe2+= 7.0 mg/L

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 3	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/29/2024 2:30 PM	00:00	3.18 pH	25.94 °C	1,355.5 μS/cm	2.20 mg/L	0.57 NTU	390.2 mV	39.72 ft	250.00 ml/min
8/29/2024 2:35 PM	05:00	3.71 pH	23.91 °C	1,316.5 μS/cm	0.39 mg/L	0.63 NTU	320.9 mV	39.90 ft	250.00 ml/min
8/29/2024 2:40 PM	10:00	3.98 pH	23.60 °C	1,302.8 μS/cm	0.13 mg/L	0.74 NTU	277.8 mV	39.90 ft	250.00 ml/min
8/29/2024 2:45 PM	15:00	3.98 pH	23.32 °C	1,305.0 μS/cm	0.11 mg/L	0.58 NTU	267.7 mV	39.90 ft	250.00 ml/min
8/29/2024 2:50 PM	20:00	3.97 pH	23.37 °C	1,306.9 μS/cm	0.11 mg/L	0.59 NTU	262.4 mV	39.90 ft	250.00 ml/min
8/29/2024 2:55 PM	25:00	3.96 pH	23.47 °C	1,307.4 μS/cm	0.11 mg/L	0.61 NTU	259.0 mV	39.90 ft	250.00 ml/min
8/29/2024 3:00 PM	30:00	3.96 pH	23.41 °C	1,308.6 μS/cm	0.11 mg/L	0.72 NTU	256.4 mV	39.90 ft	250.00 ml/min
8/29/2024 3:05 PM	35:00	3.95 pH	23.52 °C	1,310.7 μS/cm	0.13 mg/L	0.68 NTU	253.6 mV	39.90 ft	250.00 ml/min
8/29/2024 3:10 PM	40:00	3.92 pH	23.46 °C	1,321.7 μS/cm	0.18 mg/L	0.51 NTU	252.4 mV	39.90 ft	250.00 ml/min
8/29/2024 3:15 PM	45:00	3.93 pH	23.17 °C	1,309.2 μS/cm	0.11 mg/L	0.48 NTU	251.8 mV	39.90 ft	250.00 ml/min

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/29/2024 12:04:04 PM

Project: Plant Branch Ash Ponds

Operator Name: J. May

Location Name: PZ-60I Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 54 ft

Total Depth: 64 ft

Initial Depth to Water: 39.43 ft

Pump Type: Dedicated Bladder

Pump

Tubing Type: Poly

Tubing Inner Diameter: 0.17 in Pump Intake From TOC: 59 ft Estimated Total Volume Pumped:

10 liter

Flow Cell Volume: 130 ml Final Flow Rate: 250 ml/min Final Draw Down: 2.04 in Instrument Used: Aqua TROLL 500

Serial Number: 863127

Test Notes:

Sample Time: 1244

Sunny, 90s Fe2+ = 1.5 mg/L

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 3	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/29/2024	00:00	4.96 pH	32.71 °C	2,334.8	5.83 mg/L	2.27 NTU	261.8 mV	39.43 ft	250.00 ml/min
12:04 PM	00.00	4.96 pn	32.71 C	μS/cm	5.65 Hig/L	2.27 NTO	201.01110	39.43 11	250.00 111/111111
8/29/2024	05:00	4.44 pH	23.44 °C	2,447.8	1.05 mg/L	1.03 NTU	309.4 mV	39.60 ft	250.00 ml/min
12:09 PM	05.00	4.44 pn	23.44 C	μS/cm	1.05 mg/L	1.03 N T U	309.4 1110	39.60 11	250.00 mi/min
8/29/2024	10:00	4.42 pH	23.63 °C	2,470.8	0.37 mg/L	1.02 NTU	325.9 mV	39.60 ft	250.00 ml/min
12:14 PM	10.00	4.42 pm	23.03 C	μS/cm	0.57 Hig/L	1.02 1110	323.9 111	39.00 10	250.00 111/111111
8/29/2024	15:00	4.44 pH	23.28 °C	2,466.8	0.18 mg/L	1.34 NTU	324.2 mV	39.60 ft	250.00 ml/min
12:19 PM	13.00	ווק דד.ד	25.20 0	μS/cm	0.10 IIIg/L	1.041110	02 1.2 11.V	00.00 11	200.00 111/11111
8/29/2024	20:00	4.46 pH	oH 23.04 °C	2,463.4	0.17 mg/L	1.08 NTU	331.3 mV	39.60 ft	250.00 ml/min
12:24 PM	20.00	т. то ргт	25.04 0	μS/cm		1.08 N10	331.3111	33.00 11	
8/29/2024	25:00	4.49 pH	23.32 °C	2,456.6	0.17 mg/L	1.06 NTU	334.9 mV	39.60 ft	250.00 ml/min
12:29 PM	20.00	4.40 pi i	20.02	μS/cm	0.17 mg/L	1.001110	004.01117	00.00 11	200.00 1111/111111
8/29/2024	30:00	4.49 pH	22.84 °C	2,447.2	0.17 mg/L	1.05 NTU	330.5 mV	39.60 ft	250.00 ml/min
12:34 PM	00.00	4.40 pm	22.04 0	μS/cm	0.17 mg/L	1.001110	000.0111	00.00 11	200.00 1111/111111
8/29/2024	35:00	35:00 4.49 pH	22.54 °C	2,447.4	0.16 mg/L	0.72 NTU	335.7 mV	39.60 ft	250.00 ml/min
12:39 PM	33.00	4.45 pi i	22.04 0	μS/cm	0.10 mg/L	0.72 1410	555.7 IIIV	00.00 11	200.00 1111/111111
8/29/2024	40:00	4.50 pH	23.03 °C	2,438.7	0.17 mg/L	0.80 NTU	339.2 mV	39.60 ft	250.00 ml/min
12:44 PM	40:00	4.00 pri	20.00	μS/cm	0.17 mg/L	0.00 1410	000.Z IIIV	00.00 It	200.00 1111/111111

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/29/2024 11:25:46 AM

Project: Plant Branch Ash Ponds **Operator Name:** Taylor Goble

Location Name: PZ-61I
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 68.9 ft
Total Depth: 78.9 ft

Initial Depth to Water: 48.62 ft

Pump Type: Dedicated Bladder

Pump

Tubing Type: Poly

Tubing Inner Diameter: 0.17 in Pump Intake From TOC: 73 ft Estimated Total Volume Pumped:

6.4 liter

Flow Cell Volume: 90 ml Final Flow Rate: 160 ml/min Final Draw Down: 0.48 ft Instrument Used: Aqua TROLL 400

Serial Number: 965658

Test Notes:

Sampled at 1205. Cloudy 91 degrees. Fe2+ 0.0 mg/L

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 3	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/29/2024 11:25 AM	00:00	6.50 pH	32.50 °C	2,234.0 μS/cm	7.10 mg/L	1.17 NTU	123.2 mV	48.88 ft	160.00 ml/min
8/29/2024 11:30 AM	05:00	6.03 pH	24.67 °C	2,094.2 μS/cm	2.24 mg/L	0.56 NTU	127.3 mV	49.05 ft	160.00 ml/min
8/29/2024 11:35 AM	10:00	5.55 pH	23.82 °C	2,107.8 μS/cm	1.89 mg/L	0.36 NTU	129.8 mV	49.08 ft	160.00 ml/min
8/29/2024 11:40 AM	15:00	5.38 pH	23.70 °C	2,115.5 μS/cm	1.32 mg/L	0.39 NTU	131.5 mV	49.10 ft	160.00 ml/min
8/29/2024 11:45 AM	20:00	5.31 pH	23.86 °C	2,111.0 μS/cm	1.43 mg/L	0.29 NTU	132.8 mV	49.10 ft	160.00 ml/min
8/29/2024 11:50 AM	25:00	5.27 pH	23.83 °C	2,105.9 μS/cm	1.11 mg/L	0.33 NTU	134.2 mV	49.10 ft	160.00 ml/min
8/29/2024 11:55 AM	30:00	5.24 pH	23.97 °C	2,112.9 μS/cm	1.28 mg/L	0.44 NTU	135.3 mV	49.10 ft	160.00 ml/min
8/29/2024 12:00 PM	35:00	5.23 pH	24.50 °C	2,136.1 μS/cm	1.17 mg/L	0.40 NTU	136.0 mV	49.10 ft	160.00 ml/min
8/29/2024 12:05 PM	40:00	5.23 pH	24.24 °C	2,119.6 μS/cm	1.16 mg/L	0.52 NTU	137.2 mV	49.10 ft	160.00 ml/min

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/29/2024 10:50:06 AM

Project: Plant Branch Ash Ponds **Operator Name:** J. Berisford

Location Name: PZ-63I
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 49.2 ft
Total Depth: 59.2 ft

Initial Depth to Water: 40.3 ft

Pump Type: Dedicated Bladder

Pump

Tubing Type: Poly

Tubing Inner Diameter: 0.17 in Pump Intake From TOC: 54 ft Estimated Total Volume Pumped:

10 liter

Flow Cell Volume: 130 ml Final Flow Rate: 250 ml/min

Final Draw Down: 9 in

Instrument Used: Aqua TROLL 500

Serial Number: 689325

Test Notes:

Sunny ,sample time-1130, Fe2+= 1.0mg/L

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 3	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/29/2024 10:50 AM	00:00	6.19 pH	42.32 °C	0.36 μS/cm	5.48 mg/L	8.21 NTU	120.5 mV	40.30 ft	250.00 ml/min
8/29/2024 10:55 AM	05:00	5.82 pH	22.19 °C	435.89 μS/cm	1.22 mg/L	7.05 NTU	91.5 mV	40.90 ft	250.00 ml/min
8/29/2024 11:00 AM	10:00	5.67 pH	21.64 °C	436.92 μS/cm	0.42 mg/L	3.84 NTU	95.2 mV	41.10 ft	250.00 ml/min
8/29/2024 11:05 AM	15:00	5.61 pH	21.63 °C	442.01 μS/cm	0.29 mg/L	2.45 NTU	103.3 mV	41.10 ft	250.00 ml/min
8/29/2024 11:10 AM	20:00	5.64 pH	21.73 °C	473.12 μS/cm	0.20 mg/L	2.05 NTU	106.3 mV	41.10 ft	250.00 ml/min
8/29/2024 11:15 AM	25:00	5.67 pH	21.48 °C	464.84 μS/cm	0.17 mg/L	1.32 NTU	108.7 mV	41.10 ft	250.00 ml/min
8/29/2024 11:20 AM	30:00	5.69 pH	21.28 °C	452.31 μS/cm	0.14 mg/L	1.00 NTU	110.6 mV	41.10 ft	250.00 ml/min
8/29/2024 11:25 AM	35:00	5.70 pH	21.33 °C	451.69 μS/cm	0.13 mg/L	1.03 NTU	112.2 mV	41.10 ft	250.00 ml/min
8/29/2024 11:30 AM	40:00	5.70 pH	21.32 °C	454.99 µS/cm	0.12 mg/L	1.11 NTU	113.8 mV	41.10 ft	250.00 ml/min

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/29/2024 10:50:29 AM

Project: Plant Branch Ash Ponds **Operator Name:** D. Johnson

Location Name: PZ-64I
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 61 ft
Total Depth: 71.82 ft

Initial Depth to Water: 39.52 ft

Pump Type: Dedicated Bladder

Pump

Tubing Type: Poly

Tubing Inner Diameter: 0.17 in Pump Intake From TOC: 66 ft Estimated Total Volume Pumped:

4.5 liter

Flow Cell Volume: 90 ml Final Flow Rate: 100 ml/min Final Draw Down: 32.76 in Instrument Used: Aqua TROLL 400

Serial Number: 884189

Test Notes:

Sample time 1135. Sunny, 90 degrees F.

Fe2+= 0.5mg/L.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 3	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/29/2024 10:50 AM	00:00	5.91 pH	37.15 °C	2,623.5 μS/cm	6.25 mg/L	2.51 NTU	116.9 mV	39.52 ft	100.00 ml/min
8/29/2024 10:55 AM	05:00	5.00 pH	29.67 °C	2,666.9 μS/cm	3.12 mg/L	27.20 NTU	308.3 mV	40.67 ft	100.00 ml/min
8/29/2024 11:00 AM	10:00	5.55 pH	28.63 °C	2,612.2 μS/cm	1.96 mg/L	14.10 NTU	274.4 mV	41.23 ft	100.00 ml/min
8/29/2024 11:05 AM	15:00	5.51 pH	29.19 °C	2,613.5 μS/cm	1.58 mg/L	12.60 NTU	285.2 mV	41.52 ft	100.00 ml/min
8/29/2024 11:10 AM	20:00	5.52 pH	29.50 °C	2,599.4 μS/cm	1.30 mg/L	6.44 NTU	267.2 mV	41.61 ft	100.00 ml/min
8/29/2024 11:15 AM	25:00	5.53 pH	29.47 °C	2,581.4 μS/cm	0.63 mg/L	5.99 NTU	262.5 mV	41.61 ft	100.00 ml/min
8/29/2024 11:20 AM	30:00	5.53 pH	29.22 °C	2,547.5 μS/cm	0.46 mg/L	5.52 NTU	266.8 mV	41.98 ft	100.00 ml/min
8/29/2024 11:25 AM	35:00	5.53 pH	29.38 °C	2,528.8 μS/cm	0.41 mg/L	4.13 NTU	239.1 mV	42.21 ft	100.00 ml/min
8/29/2024 11:30 AM	40:00	5.55 pH	29.61 °C	2,519.2 μS/cm	0.36 mg/L	3.50 NTU	237.6 mV	42.24 ft	100.00 ml/min
8/29/2024 11:35 AM	45:00	5.58 pH	29.73 °C	2,519.7 μS/cm	0.34 mg/L	3.24 NTU	227.3 mV	42.25 ft	100.00 ml/min

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/28/2024 9:40:03 AM **Project:** Plant Branch Ash Ponds

Operator Name: J. May

Location Name: PZ-68D
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 77 ft

Total Depth: 87 ft

Initial Depth to Water: 42.46 ft

Pump Type: Dedicated Bladder

Pump

Tubing Type: Poly

Tubing Inner Diameter: 0.17 in Pump Intake From TOC: 82 ft Estimated Total Volume Pumped:

49.4 liter

Flow Cell Volume: 130 ml Final Flow Rate: 300 ml/min Final Draw Down: 468.48 in Instrument Used: Aqua TROLL 500

Serial Number: 863127

Test Notes:

Well purged dry, no sample taken Sunny, 90s

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 3	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/28/2024 9:40 AM	00:00	7.10 pH	23.38 °C	699.80 μS/cm	6.04 mg/L	14.70 NTU	189.6 mV	42.46 ft	150.00 ml/min
8/28/2024 9:45 AM	05:00	7.32 pH	21.54 °C	745.19 μS/cm	1.28 mg/L	23.40 NTU	10.3 mV	44.00 ft	150.00 ml/min
8/28/2024 9:50 AM	10:00	7.31 pH	20.80 °C	750.73 μS/cm	0.46 mg/L	10.90 NTU	-12.9 mV	45.10 ft	150.00 ml/min
8/28/2024 9:55 AM	15:00	7.30 pH	20.83 °C	741.08 μS/cm	0.35 mg/L	12.30 NTU	3.0 mV	45.10 ft	150.00 ml/min
8/28/2024 10:00 AM	20:00	7.31 pH	20.84 °C	740.09 µS/cm	0.33 mg/L	9.64 NTU	-7.5 mV	46.50 ft	150.00 ml/min
8/28/2024 10:05 AM	25:00	7.31 pH	20.82 °C	750.88 µS/cm	0.26 mg/L	11.50 NTU	-15.1 mV	48.00 ft	150.00 ml/min
8/28/2024 10:10 AM	30:00	7.27 pH	20.86 °C	734.45 µS/cm	0.23 mg/L	9.39 NTU	-7.5 mV	48.60 ft	150.00 ml/min
8/28/2024 10:15 AM	35:00	7.22 pH	20.99 °C	723.03 µS/cm	0.23 mg/L	8.93 NTU	3.7 mV	49.60 ft	150.00 ml/min
8/28/2024 10:20 AM	40:00	7.20 pH	20.95 °C	719.40 µS/cm	0.23 mg/L	6.39 NTU	11.1 mV	50.40 ft	150.00 ml/min
8/28/2024 10:25 AM	45:00	7.18 pH	21.09 °C	719.60 µS/cm	0.22 mg/L	5.23 NTU	15.6 mV	51.50 ft	150.00 ml/min
8/28/2024 10:30 AM	50:00	7.18 pH	21.06 °C	716.37 µS/cm	0.23 mg/L	5.88 NTU	16.7 mV	52.30 ft	150.00 ml/min
8/28/2024 10:35 AM	55:00	7.17 pH	21.13 °C	715.90 µS/cm	0.24 mg/L	5.34 NTU	15.1 mV	53.10 ft	150.00 ml/min
8/28/2024 10:40 AM	01:00:00	7.17 pH	21.32 °C	718.31 µS/cm	0.24 mg/L	5.71 NTU	15.1 mV	53.80 ft	150.00 ml/min
8/28/2024 10:45 AM	01:05:00	7.17 pH	21.57 °C	719.39 μS/cm	0.25 mg/L	5.96 NTU	12.5 mV	54.70 ft	80.00 ml/min

0/00/0004									
8/28/2024 10:50 AM	01:10:00	7.16 pH	22.34 °C	720.19 µS/cm	0.28 mg/L	5.16 NTU	10.6 mV	55.20 ft	80.00 ml/min
8/28/2024 10:55 AM	01:15:00	7.14 pH	22.76 °C	719.24 μS/cm	0.24 mg/L	6.95 NTU	9.7 mV	55.60 ft	80.00 ml/min
8/28/2024 11:00 AM	01:20:00	7.16 pH	23.02 °C	713.19 μS/cm	0.29 mg/L	7.83 NTU	8.7 mV	56.20 ft	80.00 ml/min
8/28/2024 11:05 AM	01:25:00	7.17 pH	22.92 °C	711.14 μS/cm	0.41 mg/L	5.97 NTU	6.3 mV	56.70 ft	80.00 ml/min
8/28/2024 11:10 AM	01:30:00	7.18 pH	23.38 °C	708.80 μS/cm	0.63 mg/L	7.06 NTU	4.9 mV	57.20 ft	80.00 ml/min
8/28/2024 11:15 AM	01:35:00	7.21 pH	23.33 °C	699.12 μS/cm	0.94 mg/L	7.67 NTU	2.2 mV	57.70 ft	80.00 ml/min
8/28/2024 11:20 AM	01:40:00	7.23 pH	23.82 °C	696.52 μS/cm	1.18 mg/L	8.07 NTU	1.1 mV	58.00 ft	80.00 ml/min
8/28/2024 11:25 AM	01:45:00	7.24 pH	24.57 °C	700.96 μS/cm	1.42 mg/L	10.30 NTU	-0.0 mV	58.30 ft	80.00 ml/min
8/28/2024 11:30 AM	01:50:00	7.24 pH	24.47 °C	706.86 μS/cm	1.57 mg/L	10.10 NTU	-0.7 mV	58.60 ft	80.00 ml/min
8/28/2024 11:35 AM	01:55:00	7.25 pH	24.11 °C	699.00 μS/cm	1.63 mg/L	12.30 NTU	-1.8 mV	58.90 ft	80.00 ml/min
8/28/2024 11:40 AM	02:00:00	7.25 pH	24.79 °C	707.46 μS/cm	1.68 mg/L	12.30 NTU	-4.5 mV	59.30 ft	80.00 ml/min
8/28/2024 11:45 AM	02:05:00	7.26 pH	24.48 °C	704.06 μS/cm	1.74 mg/L	14.90 NTU	-5.3 mV	59.60 ft	80.00 ml/min
8/28/2024 11:50 AM	02:10:00	7.26 pH	24.36 °C	697.77 μS/cm	1.75 mg/L	12.80 NTU	-7.4 mV	60.00 ft	80.00 ml/min
8/28/2024 11:55 AM	02:15:00	7.27 pH	24.56 °C	704.49 μS/cm	1.78 mg/L	15.50 NTU	-8.5 mV	60.30 ft	80.00 ml/min
8/28/2024 12:00 PM	02:20:00	7.27 pH	24.21 °C	699.50 μS/cm	1.82 mg/L	19.10 NTU	-9.3 mV	60.70 ft	80.00 ml/min
8/28/2024 12:05 PM	02:25:00	7.27 pH	24.74 °C	702.33 μS/cm	1.77 mg/L	18.10 NTU	-10.1 mV	61.00 ft	80.00 ml/min
8/28/2024 12:10 PM	02:30:00	7.28 pH	24.47 °C	697.67 μS/cm	1.84 mg/L	19.50 NTU	-11.9 mV	61.30 ft	80.00 ml/min
8/28/2024 12:15 PM	02:35:00	7.28 pH	24.28 °C	703.61 μS/cm	1.86 mg/L	23.60 NTU	-12.8 mV	61.80 ft	80.00 ml/min
8/28/2024 12:20 PM	02:40:00	7.28 pH	24.31 °C	704.29 μS/cm	1.88 mg/L	20.20 NTU	-12.0 mV	62.00 ft	80.00 ml/min
8/28/2024 12:25 PM	02:45:00	7.29 pH	24.02 °C	701.28 μS/cm	1.88 mg/L	24.20 NTU	-13.8 mV	62.40 ft	80.00 ml/min
8/28/2024 12:30 PM	02:50:00	7.29 pH	24.01 °C	705.56 μS/cm	1.93 mg/L	21.10 NTU	-15.3 mV	62.70 ft	80.00 ml/min
8/28/2024 12:35 PM	02:55:00	7.30 pH	24.36 °C	706.11 μS/cm	1.93 mg/L	21.30 NTU	-16.2 mV	63.10 ft	80.00 ml/min
8/28/2024 12:40 PM	03:00:00	7.30 pH	24.81 °C	706.17 μS/cm	1.97 mg/L	29.30 NTU	-16.7 mV	63.30 ft	50.00 ml/min
8/28/2024 12:45 PM	03:05:00	7.29 pH	25.95 °C	708.29 μS/cm	1.95 mg/L	21.20 NTU	-18.4 mV	63.40 ft	50.00 ml/min
8/28/2024 12:50 PM	03:10:00	7.29 pH	26.51 °C	709.40 μS/cm	1.95 mg/L	20.90 NTU	-19.0 mV	63.50 ft	50.00 ml/min
8/28/2024 12:55 PM	03:15:00	7.28 pH	26.53 °C	708.86 μS/cm	2.05 mg/L	25.30 NTU	-18.9 mV	63.70 ft	50.00 ml/min
8/28/2024 1:00 PM	03:20:00	7.29 pH	25.58 °C	701.88 μS/cm	2.08 mg/L	27.40 NTU	-19.1 mV	63.90 ft	50.00 ml/min
8/28/2024 1:05 PM	03:25:00	7.30 pH	25.19 °C	706.82 μS/cm	2.09 mg/L	35.10 NTU	-21.9 mV	64.70 ft	200.00 ml/min
8/28/2024 1:10 PM	03:30:00	7.31 pH	21.38 °C	702.52 μS/cm	2.30 mg/L	27.90 NTU	-26.0 mV	65.60 ft	200.00 ml/min

8/28/2024 1:15 PM	03:35:00	7.30 pH	21.17 °C	699.04 μS/cm	2.18 mg/L	30.30 NTU	-22.9 mV	66.60 ft	200.00 ml/min
8/28/2024 1:20 PM	03:40:00	7.32 pH	21.12 °C	701.26 μS/cm	2.04 mg/L	47.10 NTU	-21.5 mV	67.70 ft	200.00 ml/min
8/28/2024 1:25 PM	03:45:00	7.33 pH	20.92 °C	694.73 μS/cm	2.21 mg/L	26.30 NTU	-19.0 mV	69.00 ft	200.00 ml/min
8/28/2024 1:30 PM	03:50:00	7.34 pH	21.07 °C	679.05 μS/cm	2.54 mg/L	14.20 NTU	-16.1 mV	69.80 ft	200.00 ml/min
8/28/2024 1:35 PM	03:55:00	7.35 pH	21.07 °C	672.18 μS/cm	2.79 mg/L	11.50 NTU	-14.6 mV	70.80 ft	200.00 ml/min
8/28/2024 1:40 PM	04:00:00	7.36 pH	21.04 °C	672.13 μS/cm	2.92 mg/L	8.42 NTU	-14.6 mV	71.90 ft	200.00 ml/min
8/28/2024 1:45 PM	04:05:00	7.36 pH	21.37 °C	678.32 μS/cm	2.92 mg/L	7.92 NTU	-14.1 mV	73.20 ft	200.00 ml/min
8/28/2024 1:50 PM	04:10:00	7.37 pH	21.45 °C	672.68 μS/cm	2.94 mg/L	9.53 NTU	-15.0 mV	73.90 ft	200.00 ml/min
8/28/2024 1:55 PM	04:15:00	7.37 pH	20.94 °C	673.32 μS/cm	3.01 mg/L	6.11 NTU	-15.8 mV	75.00 ft	200.00 ml/min
8/28/2024 2:00 PM	04:20:00	7.36 pH	21.37 °C	677.78 μS/cm	2.97 mg/L	5.14 NTU	-15.4 mV	76.00 ft	200.00 ml/min
8/28/2024 2:05 PM	04:25:00	7.37 pH	21.28 °C	673.84 μS/cm	2.96 mg/L	4.70 NTU	-16.1 mV	76.40 ft	200.00 ml/min
8/28/2024 2:06 PM	04:26:07	7.37 pH	21.28 °C	673.18 μS/cm	2.93 mg/L	4.16 NTU	-16.3 mV	76.80 ft	200.00 ml/min
8/28/2024 2:11 PM	04:31:07	7.37 pH	21.04 °C	676.96 μS/cm	2.92 mg/L	4.25 NTU	-17.5 mV	77.30 ft	200.00 ml/min
8/28/2024 2:16 PM	04:36:07	7.36 pH	21.28 °C	680.35 μS/cm	2.82 mg/L	3.03 NTU	-18.1 mV	77.30 ft	200.00 ml/min
8/28/2024 2:21 PM	04:41:07	7.36 pH	21.27 °C	674.38 μS/cm	2.81 mg/L	3.51 NTU	-19.4 mV	77.60 ft	200.00 ml/min
8/28/2024 2:26 PM	04:46:07	7.36 pH	22.57 °C	677.01 μS/cm	2.72 mg/L	16.20 NTU	-21.6 mV	78.00 ft	200.00 ml/min
8/28/2024 2:31 PM	04:51:07	7.37 pH	20.65 °C	681.92 μS/cm	2.29 mg/L	19.30 NTU	-28.3 mV	78.80 ft	300.00 ml/min
8/28/2024 2:36 PM	04:56:07	7.38 pH	20.39 °C	677.14 μS/cm	1.38 mg/L	31.20 NTU	-33.1 mV	79.30 ft	300.00 ml/min
8/28/2024 2:41 PM	05:01:07	7.38 pH	20.01 °C	691.81 μS/cm	0.76 mg/L	44.50 NTU	-45.4 mV	79.80 ft	300.00 ml/min
8/28/2024 2:46 PM	05:06:07	7.38 pH	20.51 °C	729.93 µS/cm	0.40 mg/L	21.30 NTU	-52.7 mV	80.60 ft	300.00 ml/min
8/28/2024 2:51 PM	05:11:07	7.37 pH	20.38 °C	733.03 µS/cm	0.32 mg/L	13.70 NTU	-51.1 mV	81.50 ft	300.00 ml/min
8/28/2024 2:56 PM	05:16:07	7.36 pH	20.16 °C	735.34 µS/cm	0.28 mg/L	7.64 NTU	-66.3 mV		300.00 ml/min
8/28/2024 3:01 PM	05:21:07	7.36 pH	20.41 °C	733.64 µS/cm	0.25 mg/L	6.82 NTU	-88.0 mV		300.00 ml/min
8/28/2024 3:06 PM	05:26:07	7.40 pH	20.50 °C	751.63 µS/cm	0.26 mg/L	2.25 NTU	-105.3 mV		300.00 ml/min
8/28/2024 3:11 PM	05:31:07	7.46 pH	21.82 °C	753.78 µS/cm	0.39 mg/L	1.90 NTU	-128.9 mV		300.00 ml/min

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/29/2024 9:23:37 AM **Project:** Plant Branch Ash Ponds

Operator Name: J. May

Location Name: PZ-68D
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 77 ft
Total Depth: 87 ft

Initial Depth to Water: 51.75 ft

Pump Type: Dedicated Bladder

Pump

Tubing Type: Poly

Tubing Inner Diameter: 0.17 in Pump Intake From TOC: 82 ft Estimated Total Volume Pumped:

5.25 liter

Flow Cell Volume: 130 ml Final Flow Rate: 150 ml/min Final Draw Down: 70.2 in Instrument Used: Aqua TROLL 500

Serial Number: 863127

Test Notes:

Sample Time: 0958

Sunny, 90s Fe2+ = 0.0 mg/L

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 3	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/29/2024 9:23 AM	00:00	7.15 pH	24.37 °C	735.29 µS/cm	4.84 mg/L	9.42 NTU	202.6 mV	51.75 ft	150.00 ml/min
8/29/2024 9:28 AM	05:00	7.36 pH	21.60 °C	726.64 µS/cm	2.26 mg/L	8.32 NTU	160.5 mV	52.80 ft	150.00 ml/min
8/29/2024 9:33 AM	10:00	7.40 pH	21.18 °C	716.32 µS/cm	2.64 mg/L	11.10 NTU	155.4 mV	53.60 ft	150.00 ml/min
8/29/2024 9:38 AM	15:00	7.41 pH	21.04 °C	711.36 μS/cm	3.59 mg/L	10.00 NTU	155.3 mV	54.30 ft	150.00 ml/min
8/29/2024 9:43 AM	20:00	7.42 pH	21.09 °C	688.52 μS/cm	3.46 mg/L	9.05 NTU	139.3 mV	55.30 ft	150.00 ml/min
8/29/2024 9:48 AM	25:00	7.41 pH	21.13 °C	681.57 μS/cm	3.54 mg/L	9.66 NTU	121.0 mV	56.00 ft	150.00 ml/min
8/29/2024 9:53 AM	30:00	7.39 pH	21.07 °C	673.28 μS/cm	4.09 mg/L	14.00 NTU	115.2 mV	56.80 ft	150.00 ml/min
8/29/2024 9:58 AM	35:00	7.36 pH	21.28 °C	649.25 μS/cm	4.50 mg/L	8.86 NTU	108.4 mV	57.60 ft	150.00 ml/min

	Sample ID:	Description:	
--	------------	--------------	--

Test Date / Time: 8/27/2024 11:32:08 AM

Project: Plant Branch Ash Ponds

Operator Name: J. May

Location Name: PZ-74I
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 40.88 ft
Total Depth: 50.88 ft

Initial Depth to Water: 28.84 ft

Pump Type: Dedicated Bladder

Pump

Tubing Type: Poly

Tubing Inner Diameter: 0.17 in Pump Intake From TOC: 45.88 ft Estimated Total Volume Pumped:

8 liter

Flow Cell Volume: 130 ml Final Flow Rate: 200 ml/min Final Draw Down: 3.12 in Instrument Used: Aqua TROLL 500

Serial Number: 863127

Test Notes:

Sample Time: 1212

Sunny, 90s Fe2+ = 0.0 mg/L

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 3	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/27/2024 11:32 AM	00:00	6.52 pH	26.74 °C	620.99 μS/cm	6.32 mg/L	1.26 NTU	131.2 mV	28.84 ft	200.00 ml/min
8/27/2024 11:37 AM	05:00	5.81 pH	21.30 °C	645.32 μS/cm	3.72 mg/L	1.78 NTU	147.2 mV	29.10 ft	200.00 ml/min
8/27/2024 11:42 AM	10:00	5.78 pH	20.54 °C	649.18 μS/cm	3.23 mg/L	8.63 NTU	154.5 mV	29.10 ft	200.00 ml/min
8/27/2024 11:47 AM	15:00	5.78 pH	20.58 °C	649.66 μS/cm	2.97 mg/L	17.90 NTU	162.9 mV	29.10 ft	200.00 ml/min
8/27/2024 11:52 AM	20:00	5.79 pH	20.43 °C	647.40 μS/cm	2.95 mg/L	13.40 NTU	170.6 mV	29.10 ft	200.00 ml/min
8/27/2024 11:57 AM	25:00	5.79 pH	20.28 °C	648.19 μS/cm	2.95 mg/L	12.90 NTU	173.4 mV	29.10 ft	200.00 ml/min
8/27/2024 12:02 PM	30:00	5.81 pH	20.34 °C	651.20 μS/cm	2.92 mg/L	7.75 NTU	175.3 mV	29.10 ft	200.00 ml/min
8/27/2024 12:07 PM	35:00	5.85 pH	20.30 °C	649.53 μS/cm	2.95 mg/L	5.29 NTU	175.1 mV	29.10 ft	200.00 ml/min
8/27/2024 12:12 PM	40:00	5.89 pH	20.18 °C	649.82 µS/cm	2.96 mg/L	4.70 NTU	175.2 mV	29.10 ft	200.00 ml/min

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/27/2024 1:35:44 PM **Project:** Plant Branch Ash Ponds

Operator Name: J. May

Location Name: PZ-75I
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 20.4 ft
Total Depth: 30.4 ft

Initial Depth to Water: 18.45 ft

Pump Type: Peristaltic Pump

Tubing Type: Poly

Tubing Inner Diameter: 0.17 in Pump Intake From TOC: 25.4 ft Estimated Total Volume Pumped:

5 liter

Flow Cell Volume: 130 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.6 in **Instrument Used: Aqua TROLL 500**

Serial Number: 863127

Test Notes:

Sample Time: 1400

Sunny, 90s

Fe 2+ = 0.0 mg/L

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 3	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/27/2024 1:35 PM	00:00	5.70 pH	23.86 °C	460.06 μS/cm	2.64 mg/L	3.11 NTU	164.4 mV	18.45 ft	200.00 ml/min
8/27/2024 1:40 PM	05:00	5.61 pH	23.59 °C	460.47 μS/cm	2.61 mg/L	1.41 NTU	173.4 mV	18.50 ft	200.00 ml/min
8/27/2024 1:45 PM	10:00	5.60 pH	23.58 °C	460.73 μS/cm	2.59 mg/L	0.92 NTU	181.9 mV	18.50 ft	200.00 ml/min
8/27/2024 1:50 PM	15:00	5.60 pH	23.59 °C	460.87 μS/cm	2.59 mg/L	0.44 NTU	186.3 mV	18.50 ft	200.00 ml/min
8/27/2024 1:55 PM	20:00	5.61 pH	23.31 °C	461.38 μS/cm	2.59 mg/L	0.59 NTU	190.7 mV	18.50 ft	200.00 ml/min
8/27/2024 2:00 PM	25:00	5.63 pH	23.19 °C	461.94 μS/cm	2.60 mg/L	0.28 NTU	195.2 mV	18.50 ft	200.00 ml/min

Samples

Sample ID:	Description:
The state of the s	

Field Instrumentation Calibration Form

Site Name: Plant Bigach	Date: 08/2 7/24
Calibrated By: J, Benston	Field Conditions: Suruy

Instrument	Manufactuer/ Model	Serial Number
Water Quality Meter	Agation 500	689325
Turbidity Meter	HACH 2100 Q	2208017001127

	Cal	ibration Standard Infor	rmation	
Parameter	Standard	Lot #	Date of Expiration	Brand
D.O. (%)	N/A	DI H ₂ O	N/A	N/A
pH (SU)	4.00	46B1376	02/26	PINE
pH (SU)	7.00	46 60526	03/26	PINE
pH (SU)	10.00	46 60600	03/26	PINE
Specific Conductance (µS/cm)	1,413	3640664	12/24	PINE
ORP (mV)	240.0	3620404	09/24	PINE
	Standard	Lot #	Date of Expiration	Brand
	0	DI H ₂ O	N/A	N/A
Turbidity (NTU)	10	A4172	09/25	HACH
	20	A 4183	10/25	HACH
Ī	100	A4179	10/75	HACH

	Calibration						
Time Start: 08/19		Time Finish:	833				
Parameter	Standard	Calibration Value	Calibration Solution Temperature (°C)	Acceptance Criteria	Reference		
D.O. (%)	N/A	97.77	24.94	± 10%	EPA 2023		
(US) Hq	4.00	400	25.45	± 0.1	GWMP		
pH (SU)	7.00	7.00	25.33	± 0.1	GWMP		
pH (SU)	10.00	10.00	25.36	± 0.1	GWMP		
Specific Conductance (µS/cm)	1,413	14/3	24,87	± 10% of standard	NA		
ORP (mV)	² 40.0 228	228	25.32	± 10	EPA 2023		

	Standard	Calibration Value	Acceptance Criteria	Reference
	0	0.32		
Turbidity (NTU)	10	16.3	± 10% of standard	EPA 2023
	20	14.8	± 10% of Standard	EFA 2025
	100	98,2		

		Calibratio	n Check	·	
Time Start 1249 Time Finish 1303					
Parameter	Standard	Calibration Value	Calibration Solution Temperature (°C)	Acceptance Criteria	Reference
pH (SU)	4.00	4.02	23.35	± 0.1	GWMP
pH (SU)	7.00	7.06	28,87	± 0.1	GWMP
pH (SU)	10.00	10.01	29.91	± 0.1	GWMP
Specific Conductance (µS/cm)	1,413	1501	23.90	± 10% of standard	EPA 2023

	Standard	Calibration Value	Acceptance Criteria	Reference
	0	0.34		
Turbidity (NTU)	10	9,97	± 10% of standard	EPA 2023
	20	19.8	± 10% of Standard	LI / 2020
	100	104		

Field Instrumentation Calibration Form

Date: 728/2*

Site Name: Plant Branch
Calibrated By: J. Beris ford

Field Conditions:

Instrument	Manufactuer/ Model	Serial Number
Water Quality Meter	Aquatrol 560	689325
Turbidity Meter	HACH 2100 Q	22080 000/127

	Cal	ibration Standard Infor	mation	
Parameter	Standard	Lot #	Date of Expiration	Brand
D.O. (%)	N/A	DI H₂O	N/A	N/A
pH (SU)	4.00	4681376	02/26	PINE
pH (SU)	7.00		03/26	PINE
pH (SU)	10.00	4600526	03/26	PINE
Specific Conductance (µS/cm)	1,413	366064	17/24	PINE
ORP (mV)	240.0	3660404	09/24	PINE
	Standard	Lot #	Date of Expiration	Brand
	0	DI H ₂ O	N/A	N/A
Turbidity (NTU)	10	A4172	04/25	HACH
	20	A 4183	10/25	HACH
	100	44179	10/25	HACH

		Calibra			
Time Start: 0877 Time Finish: 0859					
Parameter	Standard	Calibration Value	Calibration Solution Temperature (°C)	Acceptance Criteria	Reference
D.O. (%)	N/A	107.4	25.77	± 10%	EPA 2023
pH (SU)	4.00	400	24.99	± 0.1	GWMP
pH (SU)	7.00	7.00	25.31	± 0.1	GWMP
pH (SU)	10.00	10.00	24.88	± 0.1	GWMP
Specific Conductance (µS/cm)	1,413	1413	25.13	± 10% of standard	NA
ORP (mV)	240.0 22	9 229	24,96	± 10	EPA 2023

	Standard	Calibration Value	Acceptance Criteria	Reference
	0	0.29		
Turbidity (NTU)	10	10.2	± 10% of standard	EPA 2023
	20	20.7	2 20% 01 01011111111	
	100	102		

	Calibration Check						
Time Start (32) Time Finish \333							
Parameter	Standard	Calibration Value	Calibration Solution Temperature (°C)	Acceptance Criteria	Reference		
pH (SU)	4.00	4.67	27.17	± 0.1	GWMP		
pH (SU)	7.00	6.48	21.99	± 0.1	GWMP		
pH (SU)	10.00	9.94	2694	± 0.1 .	GWMP		
Specific Conductance (µS/cm)	1,413	1511	2731	± 10% of standard	EPA 2023		

	Standard	Calibration Value	Acceptance Criteria	Reference
	0	0.31		
Turbidity (NTU)	10	101	± 10% of standard	EPA 2023
	20	19.8	I Ion of Standard	LINLOLO
	100	98.8		

Site Name:	Plant	Broods

Site Name: Ylout Brown Calibrated By: Section

Date: 3/29/24

Field Conditions: Sunny

Instrument	Manufactuer/ Model	Serial Number
Water Quality Meter	Aquatroll 500	639 325
Turbidity Meter	HACH 2160 Q	210B00 001127

	Cali	ibration Standard Infor	mation	
Parameter	Standard	Lot #	Date of Expiration	Brand
D.O. (%)	N/A	DI H ₂ O	N/A	N/A
pH (SU)	4.00	4631376	02/26	PINE
pH (SU)	7.00	4600526	63/26	PINE
pH (SU)	10.00	466 0600 03/26		PINE
Specific Conductance (µS/cm)	1,413	366 0864	12/24	PINE
ORP (mV)	240.0	3620404	04/24	PINE
	Standard	Lot #	Date of Expiration	Brand
	О	DI H ₂ O	N/A	N/A
Turbidity (NTU)	10	44172	04/25	HACH
	20	A4183	10/25	HACH
	100	44179	10/25	HACH

	Calibration							
Time Start: 6819	Time Start: 0819 Time Finish: 0829							
Parameter	Standard	Calibration Value	Calibration Solution Temperature (°C)	Acceptance Criteria	Reference			
D.O. (%)	N/A	10154	24.54	± 10%	EPA 2023			
pH (SU)	4.00	4,00	26,14	± 0.1	GWMP			
pH (SU)	7.00	7.00	26.51	± 0.1	GWMP			
pH (SU)	10.00	10.00	26.45	± 0.1	GWMP			
Specific Conductance (µS/cm)	1,413	1413	26.93	± 10% of standard	NA			
ORP (mV)	240.0 226	726	26,93	± 10	EPA 2023			

	Standard	Calibration Value	Acceptance Criteria	Reference
•	0	0134		
Turbidity (NTU)	10	10.2	± 10% of standard	EPA 2023
	20	20		
	100	99.3	•	

		Calibratio	n Check			
Time Start / 2/3 Time Finish / 225						
Parameter	Standard	Calibration Value	Calibration Solution Temperature (°C)	Acceptance Criteria	Reference	
pH (SU)	4.00	4.07	28.92	± 0.1	GWMP	
pH (SU)	7.00	7.06	727-74	± 0.1	GWMP	
pH (SU)	10.00	10.63	78,95	± 0.1	GWMP	
Specific Conductance (µS/cm)	1,413	1501	29.17	± 10% of standard	EPA 2023	

	Standard	Calibration Value	Acceptance Criteria	Reference
	0	0.35		
Turbidity (NTU)	10	10.1	± 10% of standard	EPA 2023
	20	20.1	± ±0% of Standard	EI // ZOZO
	100	99.1		

Site Name: Plant Branch AP

Date: 08 - 27 - 24

Calibrated By: J - May

Field Conditions: Survy,

Instrument	Manufactuer/ Model Seria	l Number
Water Quality Meter	Institu Aqua Troll 863	3127
Turbidity Meter	Hach 21000 24010	D000424

	Calib	ration Standard Inforr	nation	
Parameter	Standard	Lot #	Date of Expiration	Brand
D.O. (%)	N/A	DI Water		
pH (SU)	4.00	46E0127	05/20	PINE
pH (SU)	7.00	4601667	04/26	PINE
pH (SU)	10.00	4600000	03/24	PINE
Specific Conductance (µS/cm)	1,413	4GE0258	05/25	PINE
ORP (mV)	240.0	4GE1370	02/25	PINE
	Standard	Lot #	Date of Expiration	Brand
	0	DI Water		
Turbidity (NTU)	#6 20	13363	04/25	Hacu
	20 10	A4029	05/25	Hach
	100	A4002	04/25	Hach

		Calibra			
Time Start: 0820)	Time Finish: 💍	836		
Parameter	Standard	Calibration Value	Calibration Solution Temperature (°C)	Acceptance Criteria	Reference
D.O. (%)	N/A	100.13	24.45	± 10%	EPA 2023
pH (SU)	4.00	니.06	23.93	± 0.1	GWMP
pH (SU)	7.00	7.00	24.07	± 0.1	GWMP
pH (SU)	10.00	10.00	23.76	± 0.1	GWMP
Specific Conductance (µS/cm)	1,413	1413.0	24.01	± 10% of standard	NA
ORP (mV)	240.0	230.5	24.21	± 10	EPA 2023

	Standard	Calibration Value	Acceptance Criteria	Reference
	0	0.00		
Turbidity (NTU)	10	9.99	± 10% of standard	EPA 2023
	20	20.0	± ±0% of Standard	Li A 2023
	100	99.8		

Calibration Check							
Time Start 1265 Time Finish \305							
Parameter	Standard	Calibration Value	Calibration Solution Temperature (°C)	Acceptance Criteria	Reference		
pH (SU)	4.00	4.01	3129	± 0.1	GWMP		
pH (SU)	7.00	(299	31.00	± 0.1	GWMP		
pH (SU)	10.00	9.95	31.35	± 0.1	GWMP		
Specific Conductance (µS/cm)	1,413	1413-0	31.20	± 10% of standard	EPA 2023		

	Standard	Calibration Value	Acceptance Criteria	Reference
	0	0.07		
Turbidity (NTU)	10	9.89	± 10% of standard	EPA 2023
	20	20.2	± 10% of Standard	LI / LOLO
	100	99-2		

Site Name: Plant Brand AP BCD	Site Name:	Plant	Brand	AP	BCD
-------------------------------	------------	-------	-------	----	-----

Date: 08-28-24

Calibrated By: J. Nay

Field Conditions: Sonry, 804

		
Instrument	Manufactuer/ Model	Serial Number
Water Quality Meter	1.5. to AgraTroll	803127
Turbidity Meter	Hach 2100 Q	2901017000426

	Cali	bration Standard Inforn	nation	
Parameter	Standard	Lot #	Date of Expiration	Brand
D.O. (%)	N/A	DI H ₂ O	N/A	N/A
pH (SU)	4.00	4GE0127	05/20	PINE
pH (SU)	7.00	4601007	04/26	PINE
pH (SU)	10.00	461060	03/26	PINE
Specific Conductance (µS/cm)	1,413	11GE0258	05/25	PINE
ORP (mV)	240.0	46F1370	02/25	PINE
	Standard	Lot #	Date of Expiration	Brand
	0	DI H ₂ O	N/A	N/A
Turbidity (NTU)	10	A4079	05/25	HACH
	20	A3363	64/29	HACH
	100	A4002	04/29	HACH

		Calibra	ation				
Time Start: 084	Time Start: 0840 Time Finish: 0856						
Parameter	Standard	Calibration Value	Calibration Solution Temperature (°C)	Acceptance Criteria	Reference		
D.O. (%)	N/A	100-0	23.54	± 10%	EPA 2023		
pH (SU)	4.00	4.00	23.04	± 0.1	GWMP		
pH (SU)	7.00	7.00	2332	± 0.1	GWMP		
pH (SU)	10.00	10-00	23.48	± 0.1	GWMP		
Specific Conductance (µS/cm)	1,413	1413-0	23.50	± 10% of standard	NA		
ORP (mV)	240.0	227.8	24.25	± 10	EPA 2023		

	Standard	Calibration Value	Acceptance Criteria	Reference
	0	0.08		
Turbidity (NTU)	10	10-1	± 10% of standard	EPA 2023
	20	20.1	± ±0,0 0. Startdard	020
	100	101		

Calibration Check								
Time Start 1710 Time Finish 1775								
Parameter	Standard	Calibration Value	Calibration Solution Temperature (°C)	Acceptance Criteria	Reference			
pH (SU)	4.00	4.01	31.15	± 0.1	GWMP			
pH (SU)	7.00	7.00	31.23	± 0.1	GWMP			
pH (SU)	10.00	9.95	32.00	± 0.1	GWMP			
Specific Conductance (µS/cm)	1,413	1413-0	32.30	± 10% of standard	EPA 2023			

	Standard	Calibration Value	Acceptance Criteria	Reference
	0	0.11		
Turbidity (NTU)	10	10.0	± 10% of standard	EPA 2023
	20	19.9	1 10% of Standard	E 7 2020
	100	99.9		

ATLANTIC COAST CONSULTING, INC.

Site Name:	Plans	Branch	AP	
		T —		

Date: 08-29-24

Calibrated By:). Way

Field Conditions: Sunny 865

Instrument	Manufactuer/ Model	Serial Number
Water Quality Meter	1,5: to Agustroil	863127
Turbidity Meter	Hach 2100Q	740100000426

	Cali	bration Standard Infor	mation	
Parameter	Standard	Lot #	Date of Expiration	Brand
D.O. (%)	N/A	DI H ₂ O	N/A	N/A
pH (SU)	4.00	46E0127	05/26	PINE
pH (SU)	7.00	4601667	04/26	PINE
pH (SU)	10.00	4610600	03/26	PINE
Specific Conductance (µS/cm)	1,413	46,15028	05/25	PINE
ORP (mV)	240.0	4(JE1370	02 25	PINE
	Standard	Lot #	Date of Expiration	Brand
	0	DI H₂O	N/A	N/A
Turbidity (NTU)	10	A4029	05/25	HACH
	20	A3263	04/25	HACH
	100	A40UZ	04/25	HACH

Calibration							
Time Start:0820		Time Finish:	0836	· 	,		
Parameter	Standard	Calibration Value	Calibration Solution Temperature (°C)	Acceptance Criteria	Reference		
D.O. (%)	N/A	100.00	74.30	± 10%	EPA 2023		
pH (SU)	4.00	4.00	25.34	± 0.1	GWMP		
pH (SU)	7.00	7.00	25.98	± 0.1	GWMP		
pH (SU)	10.00	10.00	25.77	± 0.1	GWMP		
Specific Conductance (µS/cm)	1,413	1413.0	26.02	± 10% of standard	NA		
ORP (mV)	240.0	727.4	26.33	± 10	EPA 2023		

	Standard	Calibration Value	Acceptance Criteria	Reference
	0.	0.09		
Turbidity (NTU)	10	10.0	± 10% of standard	EPA 2023
	20	20.1	± ±0% of standard	ZI // 2020
	100	99.8		

		Calibratio	n Check		
Time Start /320		Time Finish /	3 <i>3</i> 5		
Parameter	Standard	Calibration Value	Calibration Solution Temperature (°C)	Acceptance Criteria	Reference
pH (SU)	4.00	4.02	33.35	± 0.1	GWMP
pH (SU)	7.00	6.99	31.91	± 0.1	GWMP
pH (SU)	10.00	9.91	33.61	± 0.1	GWMP
Specific Conductance (µS/cm)	1,413	1413.0	32.47	± 10% of standard	EPA 2023

	Standard	Calibration Value	Acceptance Criteria	Reference
	0	0.07		
Turbidity (NTU)	10	10-1	± 10% of standard	EPA 2023
	20	19-7		
	100	99.5		

ATLANTIC COAST CONSULTING, INC.

Site Name: Pla	nt branch	
-		

Date: 8-28-24

Calibrated By: T. Goble

Field Conditions: Clear 74°

Instrument	Manufactuer/ Model	Serial Number
Water Quality Meter	Smar Trell	965658
Turbidity Meter	HACH	22090000000

	Cali	bration Standard Inforr	mation	
Parameter	Standard	Lot #	Date of Expiration	Brand
D.O. (%)	N/A	DI H₂O	N/A	N/A
pH (SU)	4.00	46CB127	5/26	PINE
pH (SU)	7.00	3650919	10/25	PINE
pH (SU)	10.00	3620168	12/25	PINE
pecific Conductance (µS/cm)	1,413	3650727	10/24	PINE
ORP (mV)	240.0	36-6404	9/24	PINE
	Standard	Lot #	Date of Expiration	Brand
	0	DI H₂O	N/A	N/A
Turbidity (NTU)	10	A4172	9/25	HACH
	20	A4183	10/25	HACH
	100	14179	10/25	HACH

		Calibra	ation		
Time Start: 0530	1	Time Finish:	1855		
Parameter	Standard	Calibration Value	Calibration Solution Temperature (°C)	Acceptance Criteria	Reference
D.O. (%)	N/A	107.54	23.56	± 10%	EPA 2023
pH (SU)	4.00	4.00	26.12	± 0.1	GWMP
pH (SU)	7.00	7.00	26.49	± 0.1	GWMP
pH (SU)	10.00	10.00	26.67	± 0.1	GWMP
Specific Conductance (µS/cm)	1,413	1431	25.19	± 10% of standard	NA
ORP (mV)	240.0	247	26.60	± 10	EPA 2023

	Standard	Calibration Value	Acceptance Criteria	Reference
	0	0.27		
Turbidity (NTU)	10	10.3	± 10% of standard	EPA 2023
	20	20.3	± ±0,0 01 Staffdard	2, 7(2020
	100	101		

		Calibratio	n Check		
Time Start 1300)	Time Finish	315		
Parameter	Standard	Calibration Value	Calibration Solution Temperature (°C)	Acceptance Criteria	Reference
- pH (SU)	4.00	4.04	26.19	± 0.1	GWMP
pH (SU)	7.00	7.02	26.27	± 0.1	GWMP
pH (SU)	10.00	10.02	25.22	± 0.1	GWMP
Specific Conductance (µS/cm)	1,413	H39	25.69	± 10% of standard	EPA 2023

	Standard	Calibration Value	Acceptance Criteria	Reference
	0	0.12		
Turbidity (NTU)	10	10.1	± 10% of standard	EPA 2023
	20	20.3	± 10% of Standard	LI // LOLO
	100	101		

ATLANTIC COAST CONSULTING, INC.

Site Name:	Plant	Branch	ı
_			

Date: 8-29-24

Calibrated By: T. Goble

Field Conditions: Clardy

Instrument	Manufactuer/ Model	Serial Number
Water Quality Meter	Smartroll	965659
Turbidity Meter	HAEN	22080000000

	Cali	bration Standard Infor	mation	
Parameter	Standard	Lot #	Date of Expiration	Brand
D.O. (%)	N/A	DI H ₂ O	N/A	N/A
pH (SU)	4.00	4660127	5/26	PINE
pH (SU)	7.00	3650918	10125	PINE
pH (SU)	10.00	3GL0168	12/25	PINE
Specific Conductance (µS/cm)	1,413	464,0677	5/25	PINE
ORP (mV)	240.0	4666438	4/25	PINE
	Standard	Lot #	Date of Expiration	Brand
	0	DI H₂O	N/A	N/A
Turbidity (NTU)	10	24172	9/25	HACH
	20	44183	10/25	HACH
	100	44177	10/25	HACH

	Calibration						
Time Start: 0720 Time Finish: 0840							
Parameter	Standard	Calibration Value	Calibration Solution Temperature (°C)	Acceptance Criteria	Reference		
D.O. (%)	N/A	99.93	24.12	± 10%	EPA 2023		
pH (SU)	4.00	4.00	26:78	± 0.1	GWMP		
pH (SU)	7.00	7.00	27.31	± 0.1	GWMP		
pH (SU)	10.00	9.95	27.56	± 0.1	GWMP		
Specific Conductance (µS/cm)	1,413	1413	25.13	± 10% of standard	NA		
ORP (mV)	240.0	239.2	27.34	± 10	EPA 2023		

	Standard	Calibration Value	Acceptance Criteria	Reference
	0	0.18		
Turbidity (NTU)	10	10.3	± 10% of standard	EPA 2023
	20	20.4	E 10% of Standard	LI // 2020
	100	101		

		Calibratio	n Check		
Time Start 1236 Time Finish 1245					
Parameter	Standard	Calibration Value	Calibration Solution Temperature (°C)	Acceptance Criteria	Reference
pH (SU)	4.00	4.00	26.35	± 0.1	GWMP
pH (SU)	7.00	7.02	26.52	± 0.1	GWMP
pH (SU)	10.00	10.02	24,61	± 0.1	GWMP
Specific Conductance (µS/cm)	1,413	1431	25.31	± 10% of standard	EPA 2023

	Standard	Calibration Value	Acceptance Criteria	Reference
	0	0.21		
Turbidity (NTU)	10	10.2	± 10% of standard	EPA 2023
	20	20.2	E 2070 OF Staffdard	2.77.2020
	100	102		

ATLANTIC COAST CONSULTING, INC.

Site Name: Plant Branch AP-E/BCD

Date: 8/28/24

Calibrated By: D. Johnson

Field Conditions: 75° F Sunny

Instrument Manufactuer/Model Serial Number
Water Quality Meter Trull 884189 (rental)
Turbidity Meter Hach 1809000 69298 (rental)

	Cali	bration Standard Inform	mation	
Parameter	Standard	Lot #	Date of Expiration	Brand
D.O. (%)	N/A	DI H₂O	N/A	N/A
pH (SU)	4.00	4GB1376	2/2/2	PINE
pH (SU)	7.00	46260526	312le	PINE
pH (SU)	10.00	3950041	10/25	PINE
Specific Conductance (µS/cm)	1,413	4640258	5125	PINE
ORP (mV)	240.0	3610404	9124	PINE
	Standard	Lot #	Date of Expiration	Brand
	0	DI H₂O	N/A	N/A
Turbidity (NTU)	10	124201	10/25	HACH
	, 20	A4201	10/25	HACH
	100	A4095	7/25	HACH

		Calibra	ation		
Time Start: 0 8 りり Time Finish: 085 子					
Parameter	Standard	Calibration Value	Calibration Solution Temperature (°C)	Acceptance Criteria	Reference
D.O. (%)	N/A	97.40	24.76	± 10%	EPA 2023
pH (SU)	4.00	4.00	25,40	± 0.1	GWMP
pH (SU)	7.00	7.00	25.49	± 0.1	GWMP
pH (SU)	10.00	10.00	25.38	± 0.1	GWMP
Specific Conductance (µS/cm)	1,413	1410	25.00	± 10% of standard	NA
ORP (mV)	240.0	232.4	25.82	± 10	EPA 2023

	Standard	Calibration Value	Acceptance Criteria	Reference
Turbidity (NTU)	0	0.19		
	10	9.98	± 10% of standard	EPA 2023
	20	20-0	± 10% of Standard	
	100	100		

		Calibratio	n Check		
Time Start 1,200 Time Finish 1210					
Parameter	Standard	Calibration Value	Calibration Solution Temperature (°C)	Acceptance Criteria	Reference
pH (SU)	4.00	4.01	31.86	± 0.1	GWMP
pH (SU)	7.00	6.99	31-90	± 0.1	GWMP
pH (SU)	10.00	9.48	31.83	± 0.1	GWMP
Specific Conductance (µS/cm)	1,413	1412	31.80	± 10% of standard	EPA 2023

	Standard	Calibration Value	Acceptance Criteria	Reference
	0	0.12		
Turbidity (NTU)	10	9.84	± 10% of standard	EPA 2023
	20	20.2		
	100	99.1		

Plant

Site Name: Bronch AP-BCD

Calibrated By: D. Johnson

Field Conditions: Sunny, He f.

Instrument	Manufactuer/ Model	Serial Number	0
Water Quality Meter	Troil	884189	(rental)
Turbidity Meter	Hach	18090601	9298 (rental)

Calibration Standard Information						
Parameter	Standard	Lot #	Date of Expiration	Brand		
D.O. (%)	N/A	DI H ₂ O	N/A	N/A		
pH (SU)	4.00	4681376	2/24	PINE		
pH (SU)	7.00	4600526	3124	PINE		
pH (SU)	10.00	36-50258	10/25	PINE		
Specific Conductance (µS/cm)	1,413	46,80258	5125	PINE		
ORP (mV)	240.0	36L0404	9124	PINE		
	Standard	Lot #	Date of Expiration	Brand		
	0	DI H₂O	N/A	N/A		
Turbidity (NTU)	10	AUZOI	10/25	HACH		
	20	AUZUI	10/25	HACH		
	100	A4095	7/25	HACH		

		Calibra	ation		
Time Start: 083(Time Start: US 30 Time Finish: OSU()				
Parameter	Standard	Calibration Value	Calibration Solution Temperature (°C)	Acceptance Criteria	Reference
D.O. (%)	N/A	99.25	25.03	± 10%	EPA 2023
pH (SU)	4.00	4.00	25.81	± 0.1	GWMP
pH (SU)	7.00	7.00	26,03	± 0.1	GWMP
pH (SU)	10.00	10.00	25.76	± 0.1	GWMP
Specific Conductance (µS/cm)	1,413	1410	25,97	± 10% of standard	NA
ORP (mV)	240.0	230. 2	25,99	± 10	EPA 2023

	Standard	Calibration Value	Acceptance Criteria	Reference
	0	0.18		
Turbidity (NTU)	10	10.4	± 10% of standard	EPA 2023
	20	20.1	± 10% of standard	LI // 2020
	100	100		

		Calibratio	n Check		
Time Start (210		Time Finish 1	216		
Parameter	Standard	Calibration Value	Calibration Solution Temperature (°C)	Acceptance Criteria	Reference
pH (SU)	4.00	4.03	30.84	± 0.1	GWMP
pH (SU)	7.00	7.00	30.85	± 0.1	GWMP
pH (SU)	10.00	9,94	31.44	± 0.1	GWMP
Specific Conductance (µS/cm)	1,413	1416	39.34	± 10% of standard	EPA 2023

	Standard	Calibration Value	Acceptance Criteria	Reference
	0	0.11		
Turbidity (NTU)	10	10.2	± 10% of standard	EPA 2023
	20	20.2	1 10% of Standard	LI // 2020
	100	99.3		

Instrument Aqua TROLL 400

Serial Number 884189 Created 8/28/2024

Sensor RDO

Serial Number 1114594 Last Calibrated 8/28/2024

Calibration Details

Slope 1.0806775 Offset -0.00 mg/L

Calibration point 100%

Concentration 7.62 mg/L
Temperature 24.76 °C
Barometric Pressure 1,006.1 mbar

Sensor Conductivity

Serial Number 884189 Last Calibrated 8/28/2024

Calibration Details

Offset 0.00 µS/cm
Cell Constant 0.856
Reference Temperature 25.00 °C
TDS Conversion Factor (ppm) 0.65

Sensor Level

Serial Number 879249

Last Calibrated Factory Defaults

1 of 2 9/13/2024, 5:16 PM

Sensor pH/ORP
Serial Number 21633
Last Calibrated 8/28/2024

Calibration Details

Total Calibration Points 3

Calibration Point 1

pH of Buffer 4.00 pH pH mV 151.3 mV Temperature 25.24 °C

Calibration Point 2

pH of Buffer 7.00 pH pH mV 5.2 mV Temperature 25.37 °C

Calibration Point 3

pH of Buffer 10.00 pH pH mV -165.9 mV Temperature 25.01 °C

Slope and Offset 1

Slope -48.7 mV/pH Offset 5.2 mV

Slope and Offset 2

Slope -57.02 mV/pH Offset 5.2 mV

ORP

ORP Solution Zobell's
Offset 8.4 mV
Temperature 25.41 °C

2 of 2

Instrument Aqua TROLL 400

Serial Number 884189 Created 8/29/2024

Sensor RDO

Serial Number 1114594 Last Calibrated 8/29/2024

Calibration Details

Slope 1.0883331 Offset -0.00 mg/L

Calibration point 100%

Concentration 7.48 mg/L
Temperature 25.44 °C
Barometric Pressure 1,006.1 mbar

Sensor Conductivity

Serial Number 884189 Last Calibrated 8/29/2024

Calibration Details

Offset $0.00 \,\mu\text{S/cm}$ Cell Constant 0.805Reference Temperature $25.00 \,^{\circ}\text{C}$ TDS Conversion Factor (ppm) 0.65

Sensor Level

Serial Number 879249

Last Calibrated Factory Defaults

1 of 2 9/13/2024, 5:16 PM

Sensor pH/ORP Serial Number 21633 Last Calibrated 8/29/2024

Calibration Details

Total Calibration Points 3

Calibration Point 1

4.00 pH pH of Buffer pH mV 161.3 mV Temperature 25.81 °C

Calibration Point 2

pH of Buffer 7.00 pH pH mV 7.1 mV Temperature 26.03 °C

Calibration Point 3

10.00 pH pH of Buffer pH mV -173.9 mV 25.76 °C Temperature

Slope and Offset 1

Slope -51.38 mV/pH Offset 7.1 mV

Slope and Offset 2

-60.34 mV/pH Slope 7.1 mV

Offset

ORP

Zobell's **ORP Solution** Offset 10.5 mV Temperature 25.99 °C

2 of 2 9/13/2024, 5:16 PM

Instrument Aqua TROLL 500

Serial Number 689325 Created 8/27/2024

Sensor Conductivity

Serial Number 1096524 Last Calibrated 8/27/2024

Calibration Details

TDS Conversion Factor (ppm) 0.65
Cell Constant 0.684
Offset 0.00 µS/cm
Reference Temperature 25.00 °C

Calibration Point 1

Pre Measurement

Actual Conductivity 1,397.1 μS/cm Specific Conductivity 1,400.4 μS/cm

Post Measurement

Actual Conductivity 1,409.7 μS/cm Specific Conductivity 1,413.0 μS/cm

Sensor RDO

Serial Number 1014555 Last Calibrated 8/27/2024

Calibration Details

Slope 0.9996724 Offset -0.00 mg/L

Calibration point 100%

Concentration 8.22 mg/L
Pre Measurement 97.77 %Sat
Post Measurement 100.00 %Sat
Temperature 24.95 °C
Barometric Pressure 1,007.0 mbar

Sensor	pH/ORP
O	00000

Serial Number 996836 Last Calibrated 8/27/2024

Calibration Details

Calibration Point 1

pH of Buffer 4.00 pH pH mV 163.2 mV Temperature 25.45 °C

Pre Measurement

pH 4.06 pH pH mV 163.1 mV

Post Measurement

pH 4.00 pH pH mV 163.4 mV

Calibration Point 2

pH of Buffer 7.00 pH pH mV 4.2 mV Temperature 25.38 °C

Pre Measurement

pH 7.01 pH pH mV 4.2 mV

Post Measurement

pH 7.00 pH pH mV 4.2 mV

Calibration Point 3

pH of Buffer 10.00 pH pH mV -167.8 mV Temperature 25.36 °C

Pre Measurement

pH 9.98 pH pH mV -167.3 mV

Post Measurement

pH 10.00 pH pH mV -168.0 mV

Slope and Offset 1

Slope -53 mV/pH Offset 4.2 mV

Slope and Offset 2

Slope -57.32 mV/pH

Offset 4.2 mV

ORP

ORP Solution	Zobell's
Offset	12.6 mV
Temperature	25.32 °C
Pre Measurement	226.0 mV
Post Measurement	228.7 mV

Instrument Aqua TROLL 500

Serial Number 689325 Created 8/28/2024

Sensor Conductivity

Serial Number 1096524 Last Calibrated 8/28/2024

Calibration Details

TDS Conversion Factor (ppm) 0.65
Cell Constant 0.662
Offset 0.00 µS/cm
Reference Temperature 25.00 °C

Calibration Point 1

Pre Measurement

Actual Conductivity 1,463.2 μS/cm Specific Conductivity 1,459.6 μS/cm

Post Measurement

Actual Conductivity 1,416.4 µS/cm Specific Conductivity 1,413.0 µS/cm

Sensor RDO

Serial Number 1014555 Last Calibrated 8/28/2024

Calibration Details

Slope 0.98492163 Offset -0.00 mg/L

Calibration point 100%

Concentration 8.29 mg/L
Pre Measurement 101.46 %Sat
Post Measurement 100.00 %Sat
Temperature 25.22 °C
Barometric Pressure 1,005.8 mbar

Sensor	pH/ORP
Serial Number	996836

Serial Number 996836 Last Calibrated 8/28/2024

Calibration Details

Calibration Point 1

pH of Buffer 4.00 pH pH mV 163.9 mV Temperature 24.99 °C

Pre Measurement

pH 3.98 pH pH mV 163.9 mV

Post Measurement

pH 4.00 pH pH mV 163.9 mV

Calibration Point 2

pH of Buffer 7.00 pH pH mV 5.6 mV Temperature 25.31 °C

Pre Measurement

pH 6.97 pH pH mV 5.7 mV

Post Measurement

pH 7.00 pH pH mV 5.6 mV

Calibration Point 3

pH of Buffer 10.00 pH pH mV -167.1 mV Temperature 24.88 °C

Pre Measurement

pH 9.98 pH pH mV -166.6 mV

Post Measurement

pH 10.00 pH pH mV -167.0 mV

Slope and Offset 1

Slope -52.76 mV/pH Offset 5.6 mV

Slope and Offset 2

Slope -57.57 mV/pH

Offset 5.6 mV

ORP

ORP Solution	Zobell's
Offset	11.4 mV
Temperature	24.96 °C
Pre Measurement	230.4 mV
Post Measurement	229.2 mV

Instrument Aqua TROLL 500

Serial Number 689325 Created 8/29/2024

Sensor Conductivity

Serial Number 1096524 Last Calibrated 8/29/2024

Calibration Details

TDS Conversion Factor (ppm) 0.65
Cell Constant 0.663
Offset 0.00 µS/cm
Reference Temperature 25.00 °C

Calibration Point 1

Pre Measurement

Actual Conductivity 1,461.5 µS/cm Specific Conductivity 1,409.6 µS/cm

Post Measurement

Actual Conductivity 1,465.0 μS/cm Specific Conductivity 1,413.0 μS/cm

Sensor RDO

Serial Number 1014555 Last Calibrated 8/29/2024

Calibration Details

Slope 0.9718852 Offset -0.00 mg/L

Calibration point 100%

Concentration 8.40 mg/L
Pre Measurement 101.54 %Sat
Post Measurement 100.00 %Sat
Temperature 25.43 °C
Barometric Pressure 1,008.8 mbar

Sensor	pH/ORP
--------	--------

Serial Number 996836 Last Calibrated 8/29/2024

Calibration Details

Calibration Point 1

pH of Buffer 4.00 pH pH mV 160.3 mV Temperature 26.14 °C

Pre Measurement

pH 4.08 pH pH mV 160.2 mV

Post Measurement

pH 4.00 pH pH mV 160.9 mV

Calibration Point 2

pH of Buffer 7.00 pH pH mV 3.5 mV Temperature 26.51 °C

Pre Measurement

pH 7.04 pH pH mV 3.5 mV

Post Measurement

pH 7.00 pH pH mV 3.5 mV

Calibration Point 3

pH of Buffer 10.00 pH pH mV -168.3 mV Temperature 26.45 °C

Pre Measurement

pH 10.01 pH pH mV -168.1 mV

Post Measurement

pH 10.00 pH pH mV -169.2 mV

Slope and Offset 1

Slope -52.27 mV/pH Offset 3.5 mV

Slope and Offset 2

Slope -57.28 mV/pH Offset 3.5 mV

ORP

ORP Solution Zobell's
Offset 12.8 mV
Temperature 26.93 °C
Pre Measurement 225.2 mV
Post Measurement 226.6 mV

Instrument Aqua TROLL 500

Serial Number 863127 Created 8/27/2024

Sensor Conductivity

Serial Number 1035050 Last Calibrated 8/27/2024

Calibration Details

TDS Conversion Factor (ppm) 0.65 Cell Constant 0.858 Offset 0.00 μ S/cm Reference Temperature 25.00 °C

Calibration Point 1

Pre Measurement

Actual Conductivity 1,533.7 μS/cm Specific Conductivity 1,563.6 μS/cm

Post Measurement

Actual Conductivity 1,386.0 μS/cm Specific Conductivity 1,413.0 μS/cm

Sensor RDO

Serial Number 909613 Last Calibrated 8/27/2024

Calibration Details

Slope 1.0296766 Offset -0.00 mg/L

Calibration point 100%

Concentration 8.04 mg/L
Pre Measurement 98.18 %Sat
Post Measurement 100.00 %Sat
Temperature 24.50 °C
Barometric Pressure 1,006.3 mbar

1 of 3 9/13/2024, 5:15 PM

Sensor	pH/ORP
Serial Number	996677
Last Calibrated	8/27/2024

Calibration Details

Calibration Point 1

pH of Buffer 4.00 pH pH mV 165.1 mV Temperature 23.93 °C

Pre Measurement

pH 4.01 pH pH mV 165.1 mV

Post Measurement

pH 4.00 pH pH mV 164.5 mV

Calibration Point 2

pH of Buffer 7.00 pH pH mV -4.7 mV Temperature 24.07 °C

Pre Measurement

pH 7.00 pH pH mV -4.7 mV

Post Measurement

pH 7.00 pH pH mV -4.7 mV

Calibration Point 3

pH of Buffer 10.00 pH pH mV -169.0 mV Temperature 23.76 °C

Pre Measurement

pH 9.97 pH pH mV -168.8 mV

Post Measurement

pH 10.00 pH pH mV -168.3 mV

Slope and Offset 1

Slope -56.6 mV/pH Offset -4.7 mV

Slope and Offset 2

Slope -54.77 mV/pH

2 of 3 9/13/2024, 5:15 PM

	Offset	-4.7	mV
--	--------	------	----

\cap	R	P
\cup	П	г

ORP Solution	Zobell's
Offset	0.1 mV
Temperature	24.40 °C
Pre Measurement	231.5 mV
Post Measurement	229.9 mV

3 of 3

Instrument Aqua TROLL 500

Serial Number 863127 Created 8/28/2024

Sensor Conductivity

Serial Number 1035050 Last Calibrated 8/28/2024

Calibration Details

TDS Conversion Factor (ppm) 0.65 Cell Constant 0.818 Offset 0.00 μ S/cm Reference Temperature 25.00 °C

Calibration Point 1

Pre Measurement

Actual Conductivity 1,174.4 μS/cm Specific Conductivity 1,212.3 μS/cm

Post Measurement

Actual Conductivity 1,368.8 μS/cm Specific Conductivity 1,413.0 μS/cm

Sensor RDO
Serial Number 909613

Last Calibrated 8/28/2024

Calibration Details

Slope 0.99460727 Offset -0.00 mg/L

Calibration point 100%

Concentration 8.47 mg/L
Pre Measurement 104.24 %Sat
Post Measurement 100.00 %Sat
Temperature 23.54 °C
Barometric Pressure 1,005.9 mbar

1 of 3 9/13/2024, 5:15 PM

Sensor	pH/ORP
Serial Number	996677
Last Calibrated	8/28/2024

Calibration Details

Calibration Point 1

pH of Buffer 4.00 pH pH mV 165.7 mV Temperature 23.64 °C

Pre Measurement

pH 4.00 pH pH mV 165.7 mV

Post Measurement

pH 4.00 pH pH mV 165.0 mV

Calibration Point 2

pH of Buffer 7.00 pH pH mV -2.9 mV Temperature 23.32 °C

Pre Measurement

pH 6.99 pH pH mV -2.9 mV

Post Measurement

pH 7.00 pH pH mV -2.9 mV

Calibration Point 3

pH of Buffer 10.00 pH pH mV -169.1 mV Temperature 23.48 °C

Pre Measurement

pH 10.07 pH pH mV -168.9 mV

Post Measurement

pH 10.00 pH pH mV -168.2 mV

Slope and Offset 1

Slope -56.21 mV/pH Offset -2.9 mV

Slope and Offset 2

Slope -55.39 mV/pH

2 of 3 9/13/2024, 5:15 PM

Offset	-2.9 mV

\cap	R	P
\cup	П	г

ORP Solution	Zobell's
Offset	0.2 mV
Temperature	24.25 °C
Pre Measurement	227.8 mV
Post Measurement	230.1 mV

3 of 3

Instrument Aqua TROLL 500

Serial Number 863127 Created 8/29/2024

Sensor Conductivity

Serial Number 1035050 Last Calibrated 8/29/2024

Calibration Details

TDS Conversion Factor (ppm) 0.65
Cell Constant 0.78

Offset $0.00 \mu \text{S/cm}$ Reference Temperature 25.00 °C

Calibration Point 1

Pre Measurement

Actual Conductivity 1,520.6 µS/cm Specific Conductivity 1,484.4 µS/cm

Post Measurement

Actual Conductivity 1,447.5 μS/cm Specific Conductivity 1,413.0 μS/cm

Sensor RDO

Serial Number 909613 Last Calibrated 8/29/2024

Calibration Details

Slope 0.9946833 Offset -0.00 mg/L

Calibration point 100%

Concentration 8.36 mg/L
Pre Measurement 100.01 %Sat
Post Measurement 100.00 %Sat
Temperature 24.30 °C
Barometric Pressure 1,006.4 mbar

1 of 3 9/13/2024, 5:15 PM

Sensor	pH/ORP
Serial Number	996677
Last Calibrated	8/29/2024

Calibration Details

Calibration Point 1

pH of Buffer 4.00 pH pH mV 164.0 mV Temperature 25.34 °C

Pre Measurement

pH 4.05 pH pH mV 164.0 mV

Post Measurement

pH 4.00 pH pH mV 164.2 mV

Calibration Point 2

pH of Buffer 7.00 pH pH mV -4.4 mV Temperature 25.98 °C

Pre Measurement

pH 7.03 pH pH mV -4.3 mV

Post Measurement

pH 7.00 pH pH mV -4.4 mV

Calibration Point 3

pH of Buffer 10.00 pH pH mV -167.6 mV Temperature 25.77 °C

Pre Measurement

pH 9.94 pH pH mV -167.4 mV

Post Measurement

pH 10.00 pH pH mV -168.0 mV

Slope and Offset 1

Slope -56.13 mV/pH Offset -4.4 mV

Slope and Offset 2

Slope -54.41 mV/pH

2 of 3 9/13/2024, 5:15 PM

Offset	-4.4 mV
Olloci	-4.4 111 V

0	R	P
\sim	, ı	•

Zobell's
2.0 mV
26.33 °C
225.6 mV
227.4 mV

3 of 3

Instrument Aqua TROLL 400

Serial Number 965658 Created 8/28/2024

Sensor RDO
Serial Number 964434

Last Calibrated 8/28/2024

Calibration Details

Slope 1.0447013 Offset -0.00 mg/L

Calibration point 100%

Concentration 8.06 mg/L
Temperature 23.56 °C

Barometric Pressure 1,006.0 mbar

Sensor Conductivity

Serial Number 965658 Last Calibrated 8/28/2024

Calibration Details

Offset $0.00 \,\mu\text{S/cm}$

Cell Constant 0.852
Reference Temperature 25.00 °C
TDS Conversion Factor (ppm) 0.65

Sensor Level Serial Number 97629

Serial Number 976298 Last Calibrated Factory Defaults

1 of 2 9/13/2024, 5:15 PM

Sensor	pH/ORP
Serial Number	22007
Last Calibrated	8/28/2024

Calibration Details

Total Calibration Points 3

Calibration Point 1

pH of Buffer 4.00 pH pH mV 162.5 mV Temperature 26.12 °C

Calibration Point 2

pH of Buffer 7.00 pH pH mV 10.5 mV Temperature 26.49 °C

Calibration Point 3

pH of Buffer 10.00 pH pH mV -133.7 mV Temperature 26.67 °C

Slope and Offset 1

Slope -50.67 mV/pH Offset 10.5 mV

Slope and Offset 2

Slope -48.05 mV/pH Offset 10.5 mV

ORP

ORP Solution ORP Standard

Offset 19.2 mV Temperature 26.60 °C

2 of 2

Instrument Aqua TROLL 400

Serial Number 965658 Created 8/29/2024

Sensor RDO
Serial Number 964434
Last Calibrated 8/29/2024

Calibration Details

Slope 1.0464802 Offset -0.00 mg/L

Calibration point 100%

Concentration 7.96 mg/L
Temperature 24.12 °C
Barometric Pressure 1,005.0 mbar

Sensor Conductivity

Serial Number 965658 Last Calibrated 8/29/2024

Calibration Details

Offset 0.00 µS/cm
Cell Constant 0.925
Reference Temperature 25.00 °C
TDS Conversion Factor (ppm) 0.65

Sensor Level
Serial Number 976298
Last Calibrated Factory Defaults

1 of 2 9/13/2024, 5:15 PM

Sensor	pH/ORP
Serial Number	22007
Last Calibrated	8/29/2024

Calibration Details

Total Calibration Points 3

Calibration Point 1

pH of Buffer 4.00 pH pH mV 158.1 mV Temperature 26.78 °C

Calibration Point 2

pH of Buffer 7.00 pH pH mV 11.0 mV Temperature 27.31 °C

Calibration Point 3

pH of Buffer 9.95 pH pH mV -133.0 mV Temperature 27.56 °C

Slope and Offset 1

Slope -49.01 mV/pH Offset 11.0 mV

Slope and Offset 2

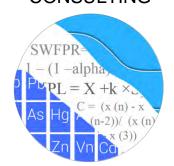
Slope -48.81 mV/pH Offset 11.0 mV

ORP

ORP Solution ORP Standard

Offset 19.8 mV Temperature 27.34 °C

2 of 2


APPENDIX C

Statistical Analysis Report

GROUNDWATER STATS CONSULTING

February 28, 2025

Southern Company Services Attn: Mr. Joju Abraham 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308-3374

Re: Plant Branch Ponds B, C, D – August 2024 Statistical Analysis

Dear Mr. Abraham,

Groundwater Stats Consulting (GSC), formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the August 2024 Semi-Annual Groundwater Detection and Assessment Monitoring Statistical Analysis of groundwater data for Georgia Power Company's Plant Branch Ponds B, C, and D. The analysis complies with the Georgia Environmental Protection Division (EPD) Rules for Solid Waste Management Chapter 391-3-4-.10 as well as with the United States Environmental Protection Agency (USEPA) Unified Guidance (2009). The site is in Assessment Monitoring.

Sampling began for Appendix III and IV parameters in 2016 for most wells. However, sampling for wells BRGWC-45, BRGWC-47, and BRGWC-52I began in 2018, and at least 8 background samples have been collected at each of the groundwater monitoring wells. Semi-annual sampling of the majority of constituents has been performed for several years in accordance with the Georgia Department of Natural Resources, Environmental Protection Division groundwater monitoring regulations.

The current monitoring well network, as provided by Southern Company Services, consists of the following:

- **Upgradient wells:** BRGWA-2I, BRGWA-2S, BRGWA-5I, BRGWA-5S, BRGWA-6S, and BRGWA-23S
- **Downgradient wells:** BRGWC-25I, BRGWC-27I, BRGWC-29I, BRGWC-30I, BRGWC-32S, BRGWC-45, BRGWC-47, BRGWC-52I, BRGWC-44, and PZ-63I
- Assessment wells: PZ-68D, PZ-74I, and PZ-75I

Previously, the monitoring well network included upgradient wells BRGWA-12I and BRGWA-12S, and several assessment wells, which have since been abandoned. While those assessment wells are no longer included in the statistical analysis per request of Geosyntec Consultants, Inc., data from upgradient wells BRGWA-12I and BRGWA-12S will continue to be included in construction of interwell prediction limits and interwell upper tolerance limits since the data represent historical groundwater quality upgradient of the facility.

Data from newer assessment wells PZ-74I and PZ-75I, which were first sampled in September 2023, are plotted on time series and box plots and will be evaluated using confidence intervals for Appendix IV constituents when a minimum of 4 samples is available. Downgradient well BRGWC-44 was previously designated as assessment well PZ-44 and has been reclassified. Data from this well are analyzed for all Appendix III constituents (except pH which does not yet have a minimum of 8 samples) and Appendix IV constituents using interwell prediction limits and confidence intervals, respectively. Similarly, downgradient well PZ-63I was previously designated as an assessment well and has been reclassified. Data from well PZ-63I are plotted on time series and box plots and will be evaluated with prediction limits and confidence intervals when at least 8 observations have been collected. Note that a confidence interval was constructed for cobalt at PZ-63I and is discussed below.

Data were sent electronically to GSC, and the statistical analysis was reviewed by Andrew Collins, Project Manager of GSC.

The Coal Combustion Residuals (CCR) program consists of the following constituents:

- Appendix III (Detection Monitoring) boron, calcium, chloride, fluoride, pH, sulfate, and TDS
- Appendix IV (Assessment Monitoring) antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 + 228, fluoride, lead, lithium, mercury, molybdenum, selenium, and thallium

Note that when there are no detections present in downgradient wells for a given constituent, statistical analyses are not required. A summary of Appendix IV downgradient and assessment well/constituent pairs with 100% non-detects follows this letter. A substitution of the most recent reporting limit is used for non-detect data.

Time series plots for Appendix III and IV parameters at all wells are provided for the purpose of screening data at these wells (Figure A). Assessment well data are included on the time series graphs, and are included with the confidence intervals when a minimum

of 4 samples is available as discussed above. Additionally, a separate section of box plots is included for all constituents at upgradient and downgradient wells (Figure B). The time series plots are used to initially screen for suspected outliers and trends, while the box plots provide visual representation of variation within individual wells and between all wells. Values in background which have been flagged as outliers may be seen in a lighter font and as a disconnected symbol on the graphs. A summary of flagged outliers follows this report (Figure C).

In earlier analyses, data at all wells were evaluated for the following: 1) outliers; 2) trends; 3) most appropriate statistical method for Appendix III parameters based on site characteristics of groundwater data upgradient of the facility; and 4) eligibility of downgradient wells when intrawell statistical methods are recommended. Power curves were provided with the previous screening to demonstrate that the selected statistical methods for Appendix III parameters comply with the USEPA Unified Guidance. The EPA suggests the selected statistical method should provide at least 55% power at 3 standard deviations or at least 80% power at 4 standard deviations.

Summary of Statistical Methods – Appendix III Parameters:

Based on the earlier evaluation described above, the following method was selected:

• Interwell prediction limits, combined with a 1-of-2 resample plan for boron, calcium, chloride, fluoride, pH, sulfate, and TDS

Parametric prediction limits are utilized when the screened historical data follow a normal or transformed-normal distribution. When data cannot be normalized or the majority of data are non-detects, a nonparametric test is utilized. While the false positive rate associated with the parametric limits is based on an annual 10% (5% per semi-annual event) as recommended by the EPA Unified Guidance (2009), the false positive rate associated with the nonparametric limits is dependent upon the available background sample size, number of future comparisons, and verification resample plan. The distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. After testing for normality and performing any adjustments as discussed below (US EPA, 2009), data are analyzed using either parametric or non-parametric prediction limits.

After testing for normality and performing any adjustments as discussed below (US EPA, 2009), data are analyzed using either parametric or non-parametric prediction limits.

 No statistical analyses are required on wells and analytes containing 100% nondetects (USEPA Unified Guidance, 2009, Chapter 6).

- When data contain <15% non-detects, simple substitution of one-half the most reporting limit is utilized in the statistical analysis. The reporting limit utilized for non-detects is the most recent practical quantification limit (PQL) as reported by the laboratory.
- When data contain between 15-50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data for parametric limits. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric prediction limits are used on data containing greater than 50% non-detects.

Natural systems continuously evolve due to physical changes made to the environment. Examples include capping a landfill, paving areas near a well, or lining a drainage channel to prevent erosion. Periodic updating of background statistical limits is necessary to accommodate these types of changes. In the interwell case, prediction limits are updated with upgradient well data during each event after careful screening for any new outliers. In some cases, the earlier portion of data are deselected prior to construction of limits to provide sensitive limits that will rapidly detect changes in groundwater quality. Even though the data are excluded from the calculation, the values will continue to be reported and shown in tables and graphs.

Summary of Background Screening – Conducted in March 2019

Outlier Analysis

Time series plots were used to identify suspected outliers, or extreme values that would result in limits that are not conservative from a regulatory perspective, in proposed background data. Suspected outliers at all wells for Appendix III and Appendix IV parameters were formally tested using Tukey's box plot method and, when identified either visually or by Tukey's test, flagged in the computer database with "o" and deselected prior to construction of statistical limits. A list of flagged values is provided in the outlier summary. Although outliers are screened for all wells, only outliers in upgradient wells will affect the interwell prediction limits. The current list of outliers includes a few additional measurements that were not flagged as outliers in the previous background screening list for Appendix III parameters.

When suspected outliers were evaluated using the Tukey box plot method during the previous screening, several outliers were identified. In cases where the most recent value was identified as an outlier, values were not flagged in the database as they may represent a future trend. If future values do not remain at similar concentrations, these values will

be flagged as outliers and deselected. Several low values exist in the data sets and appear on the graphs as possible low outliers relative to the Practical Quantitation Limit. However, these values are observed trace values (i.e., measurements reported by the laboratory between the Method Detection Limit and the Practical Quantitation Limit) and, therefore, were not flagged as outliers.

When any values are flagged in the database as outliers, they are plotted in a disconnected and lighter symbol on the time series graph. A substitution of the most recent reporting limit was applied when varying detection limits existed in data. Note that the reporting limit for boron during the March 2019 event was 0.1 mg/L; however, the historical reporting limit of 0.04 mg/L was substituted at that time for all non-detects which provided more conservative (lower) statistical limits.

<u>Seasonality</u>

No obvious seasonal patterns were observed on the time series plots for any of the detected data; therefore, no deseasonalizing adjustments were made to the data. When seasonal patterns are observed, data may be deseasonalized so that the resulting limits will correctly account for the seasonality as a predictable pattern rather than random variation or a release.

Trend Tests

While trends may be identified by visual inspection, a quantification of the trend and its significance is needed. The Sen's Slope/Mann Kendall trend test was used to evaluate all data at each well to identify statistically significant increasing or decreasing trends. In the absence of suspected contamination, significant trending data are typically not included as part of the background data used for construction of prediction limits. This step serves to eliminate the trend and, thus, reduce variation in background. When statistically significant decreasing trends are present, earlier data are evaluated to determine whether earlier concentration levels are significantly different than current reported concentrations and will be deselected as necessary. When the historical records of data are truncated for the reasons above, a summary report will be provided to show the date ranges used in construction of the statistical limits.

The results of the trend analyses, included with the background screening report, showed a number of statistically significant decreasing trends for the Appendix III parameters. All trends noted were relatively low in magnitude when compared to average concentrations; therefore, no adjustments were made to the data sets.

<u>Appendix III – Determination of Spatial Variation</u>

The Analysis of Variance (ANOVA) was used to statistically evaluate differences in average concentrations among upgradient wells, which assists in identifying the most appropriate statistical approach. Interwell tests, which compare downgradient well data to statistical limits constructed from pooled upgradient well data, are appropriate when average concentrations are similar across upgradient wells. Intrawell tests, which compare compliance data from a single well to screened historical data within the same well, are appropriate when upgradient wells exhibit spatial variation; when statistical limits constructed from upgradient wells would not be conservative from a regulatory perspective; and when downgradient water quality is unimpacted compared to upgradient water quality for the same parameter.

The ANOVA identified no variation among upgradient well data for fluoride, making this constituent eligible for interwell analyses. Variation was noted for boron, calcium, chloride, pH, sulfate, and TDS. While data were further tested for intrawell eligibility during the screening, interwell methods will be used for all Appendix III constituents in accordance with Georgia EPD requirements.

Evaluation of Appendix III Parameters - August 2024

Interwell Prediction Limits

Interwell prediction limits, combined with a 1-of-2 resample plan, were constructed using all historical upgradient well data through August 2024 (Figure D). Background (upgradient) well data were reassessed for potential outliers during this analysis and no new values were flagged. Interwell prediction limits pool upgradient well data to establish a background limit for an individual constituent. As mentioned above, data from abandoned upgradient wells BRGWA-12I and BRGWA-12S are included in calculations for interwell prediction limits. The August 2024 sample from each downgradient well is compared to the background limit to determine whether initial exceedances are present.

In the event of an initial exceedance of compliance well data, the 1-of-2 resample plan allows for collection of one additional sample to determine whether the initial exceedance is confirmed. When resamples confirm the initial exceedance, a statistically significant increase is identified, and further research would be required to identify the cause of the exceedance (i.e., impact from the site, natural variation, or an off-site source). If the resample falls within the statistical limit, the initial exceedance is considered to be a false positive result; therefore, no exceedance is noted and no further action is necessary. If no resample is collected, the original result is considered a confirmed exceedance. Prediction

limit exceedances were noted for several Appendix III parameters. Exceedances were identified for the following well/constituent pairs:

Boron: BRGWC-25I, BRGWC-27I, BRGWC-29I, BRGWC-30I,

BRGWC-32S, BRGWC-44 BRGWC-47, and BRGWC-52I

Calcium: BRGWC-25I, BRGWC-27I, BRGWC-29I, BRGWC-30I,

BRGWC-32S, BRGWC-44, BRGWC-45, BRGWC-47, and

BRGWC-52I

Chloride: BRGWC-25I, BRGWC-29I, BRGWC-44, BRGWC-45, and

BRGWC-52I

pH (lower limit): BRGWC-29I and BRGWC-47

• Sulfate: BRGWC-25I, BRGWC-27I, BRGWC-29I, BRGWC-30I,

BRGWC-32S, BRGWC-45, BRGWC-47, and BRGWC-52I

• TDS: BRGWC-25I, BRGWC-27I, BRGWC-29I, BRGWC-30I,

BRGWC-32S, BRGWC-45, BRGWC-47, and BRGWC-52I

<u>Trend Test Evaluation – Appendix III</u>

When prediction limit exceedances are identified in downgradient wells, data are further evaluated using the Sen's Slope/Mann Kendall trend test to determine whether concentrations are statistically increasing, decreasing, or stable at the 99% confidence level (Figure E). Upgradient wells are included in the trend analyses to identify whether similar patterns exist upgradient of the site which is an indication of variability in groundwater unrelated to practices at the site. A summary of the trend test results follows this letter and statistically significant trends were identified for the following well/constituent pairs:

Increasing:

• Boron: BRGWC-47

Calcium: BRGWA-2S, BRGWA-6S (both upgradient), and BRGWC-30I

Sulfate: BRGWC-30ITDS: BRGWC-30I

Decreasing:

Boron: BRGWC-29I

Calcium: BRGWA-23S (upgradient) and BRGWC-32S

• Chloride: BRGWA-12I, BRGWA-23S, BRGWA-5I, BRGWA-5S

(all four upgradient), BRGWC-45, and BRGWC-521

• pH: BRGWA-2I, BRGWA-2S, and BRGWA-5S (all three upgradient),

and BRGWC-47

Sulfate: BRGWA-12I BRGWA-12S, BRGWA-23S (all three upgradient),

BRGWC-25I, BRGWC-27I, BRGWC-32S, and BRGWC-47

• TDS: BRGWA-23S, BRGWA-5S (both upgradient), BRGWC-25I,

BRGWC-27I, BRGWC-32S, BRGWC-45, and BRGWC-47

Evaluation of Appendix IV Parameters – August 2024

For Appendix IV parameters, confidence intervals for each downgradient well/constituent pair were compared against corresponding Groundwater Protection Standards (GWPS). GWPS were developed as described below. Well/constituent pairs containing 100% non-detects do not require analysis. Data from upgradient wells for Appendix IV parameters are reassessed for outliers during each analysis. No new values were flagged and a summary of previously flagged outliers follows this report (Figure C).

Interwell Upper Tolerance Limits

Interwell tolerance limits were used to calculate site-specific background limits from all available pooled upgradient well data through August 2024 for Appendix IV constituents (Figure F). Parametric tolerance limits are calculated, with a target of 95% confidence and 95% coverage, when data follow a normal or transformed-normal distribution, such as for combined radium 226 + 228. When data contained greater than 50% non-detects or did not follow a normal or transformed-normal distribution, non-parametric tolerance limits were constructed using the highest background measurement. The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples.

Groundwater Protection Standards

The background limits were then used when determining the groundwater protection standard (GWPS) under 40 CFR §257.95(h) and Georgia EPD Rule 391-3-4-.10(6)(a). On July 30, 2018, US EPA revised the Federal CCR rule updating GWPS for cobalt, lead, lithium, and molybdenum as described above in 40 CFR §257.95(h)(2). Effective on February 22, 2022, Georgia EPD incorporated the updated GWPS into the current Georgia EPD Rules for Solid Waste Management 391-3-4-.10(6)(a). In accordance with the updated Rules, the GWPS is:

• The maximum contaminant level (MCL) established under §141.62 and §141.66 of this title

- Where an MCL has not been established for a constituent, Federal and State CCR Rules specify levels for cobalt (0.006 mg/L), lead (0.015 mg/L), lithium (0.040 mg/L), and molybdenum (0.100 mg/L)
- The respective background level for a constituent when the background level is higher than the MCL or Federal CCR Rule identified GWPS

Following Georgia EPD Rule requirements and the Federal CCR requirements, GWPS were established for statistical comparison of Appendix IV constituents for this sample event (Figure G). Note that due to the steady increase in concentrations for antimony at upgradient well BRGWA-12I, the MCL was used in lieu of the Background limit for antimony to maintain a GWPS that is conservative from a regulatory perspective.

Confidence Intervals

To complete the statistical comparison to GWPS, confidence intervals were constructed for Appendix IV constituents in each downgradient with a minimum of 8 samples and assessment wells with a minimum of 4 samples (Figure H). These intervals were constructed as either parametric or nonparametric confidence intervals depending on the data distribution and percentage of non-detects. When data followed a normal or transformed-normal distribution, parametric confidence intervals were used for Appendix IV parameters. Nonparametric confidence intervals, which use the highest and lowest values in background as interval limits, were constructed when data did not follow a normal or transformed-normal distribution or when there were greater than 50% non-detects. The lower confidence limit, which is constructed with 99% confidence for parametric confidence intervals, is compared to the GWPS prepared as described above.

Note that due to the limited sample size, the lower confidence limit of a parametric confidence interval resulted in a negative number for combined radium 226 + 228 at assessment well PZ-68D. Therefore, a non-parametric confidence interval, which is bound by reported high and low measurements within a given well was constructed for this particular case and follows the confidence intervals (Figure H). This is a more conservative approach in that the lower confidence limit reflects the lowest reported measurement in the data.

When evaluating the entire record of data for selenium at downgradient well BRGWC-32S, a steady increasing trend in concentrations since 2019 was noted. Therefore, the confidence interval evaluates data since 2019, for this well/constituent pair (USEPA Unified Guidance, 2009, Chapter 7). Only when the entire confidence interval is above a GWPS is the downgradient well/constituent pair considered to exceed its respective standard. If there is an exceedance of the GWPS, a statistically significant level (SSL) exceedance is identified.

Statistical exceedances were identified for the following well/constituent pair:

• *Cobalt: PZ-63I

Selenium: BRGWC-32S

Note that although cobalt at downgradient well PZ-63I has less than 8 observations, it was previously reported as an exceedance and will continue to be included in confidence interval reporting. An Alternate Source Demonstration (ASD) has been, reportedly, performed for this well/constituent pair.

<u>Trend Test Evaluation – Appendix IV</u>

Data at wells with confidence interval exceedances are further evaluated using the Sen's Slope/Mann Kendall trend test at the 95% confidence level to determine whether concentrations are statistically increasing, decreasing, or stable (Figure I). Although the trend tests for Assessment monitoring pairs were previously evaluated using 99% confidence, the 95% confidence level more rapidly identifies statistically significant trends. Additionally, the 95% confidence level is recommended in cases with limited sample sizes and, particularly, for new assessment wells. Upgradient wells are included in the trend analyses to identify whether similar patterns exist upgradient of the site for the same constituents. When trends are present in upgradient wells, it is an indication of variability in groundwater quality unrelated to practices at the site. A summary of the Appendix IV trend test results follows this letter. Statistically significant trends were identified:

Increasing:

• Cobalt: PZ-63I

Selenium: BRGWC-32S

Decreasing:

• Cobalt: BRGWA-2S, BRGWA-5I, and BRGWA-23S (all upgradient)

Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for Plant Branch Ponds B, C, D. If you have any questions or comments, please feel free to contact us.

For Groundwater Stats Consulting,

Kristina Rayner

Kristina Rayner

Senior Statistician

Andrew T. Collins
Project Manager

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

100% Non-Detects: Appendix IV Downgradient & Assessment

Analysis Run 1/10/2025 11:16 AM View: Confidence Intervals BCD Plant Branch Client: Southern Company Data: Plant Branch AP

Antimony (mg/L) BRGWC-25I, BRGWC-27I, BRGWC-44

Beryllium (mg/L)

BRGWC-25I, BRGWC-30I, BRGWC-32S, BRGWC-52I, BRGWC-44, PZ-68D

Cadmium (mg/L)

BRGWC-25I, BRGWC-29I, BRGWC-52I, BRGWC-44, PZ-68D

Chromium (mg/L) BRGWC-44, PZ-68D

Lead (mg/L) BRGWC-32S, BRGWC-44

Lithium (mg/L) BRGWC-25I

Mercury (mg/L)

BRGWC-45, BRGWC-47, BRGWC-52I, BRGWC-44, PZ-68D

Molybdenum (mg/L) BRGWC-29I, BRGWC-32S, BRGWC-44

Selenium (mg/L) BRGWC-52I, BRGWC-44, PZ-68D

Thallium (mg/L)

BRGWC-25I, BRGWC-27I, BRGWC-30I, BRGWC-32S, BRGWC-45, BRGWC-47, BRGWC-52I, BRGWC-44, PZ-68D

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting.

Page 1

Date Ranges

Date: 11/15/2024 2:52 PM

Plant Branch Client: Southern Company Data: Plant Branch AP

Selenium (mg/L) BRGWC-32S overall:8/27/2019-8/28/2024

Appendix III Interwell Prediction Limits - Significant Results

		Plant Branch	Client: Southe	ern Company Dat	a: Plant Branch AP	Printed 1/10/2	025, 11:0	B AM			
Constituent	Well	Upper Lim. L	ower Lim. Da	ate Observ.	Sig. Bg NBg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Boron (mg/L)	BRGWC-25I	0.068 n	n/a 8/2	29/2024 2.04	Yes 154 n/a	n/a	53.9	n/a	n/a	0.00008335	NP Inter (NDs) 1 of 2
Boron (mg/L)	BRGWC-27I	0.068 n	n/a 8/2	27/2024 1.28	Yes 154 n/a	n/a	53.9	n/a	n/a	0.00008335	NP Inter (NDs) 1 of 2
Boron (mg/L)	BRGWC-29I	0.068 n	n/a 8/2	27/2024 1.09	Yes 154 n/a	n/a	53.9	n/a	n/a	0.00008335	NP Inter (NDs) 1 of 2
Boron (mg/L)	BRGWC-30I	0.068 n	n/a 8/2	28/2024 1.82	Yes 154 n/a	n/a	53.9	n/a	n/a	0.00008335	NP Inter (NDs) 1 of 2
Boron (mg/L)	BRGWC-32S	0.068 n	n/a 8/2	28/2024 0.996	Yes 154 n/a	n/a	53.9	n/a	n/a	0.00008335	NP Inter (NDs) 1 of 2
Boron (mg/L)	BRGWC-47	0.068 n	n/a 8/2	28/2024 0.508	Yes 154 n/a	n/a	53.9	n/a	n/a	0.00008335	NP Inter (NDs) 1 of 2
Boron (mg/L)	BRGWC-52I	0.068 n	n/a 8/2	28/2024 1.44	Yes 154 n/a	n/a	53.9	n/a	n/a	0.00008335	NP Inter (NDs) 1 of 2
Boron (mg/L)	BRGWC-44	0.068 n	n/a 8/2	27/2024 1.16	Yes 154 n/a	n/a	53.9	n/a	n/a	0.00008335	NP Inter (NDs) 1 of 2
Calcium (mg/L)	BRGWC-25I	24 n	n/a 8/2	29/2024 77.6	Yes 156 n/a	n/a	3.846	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Calcium (mg/L)	BRGWC-27I	24 n	n/a 8/2	27/2024 75.9	Yes 156 n/a	n/a	3.846	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Calcium (mg/L)	BRGWC-29I	24 n	n/a 8/2	27/2024 70.5	Yes 156 n/a	n/a	3.846	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Calcium (mg/L)	BRGWC-30I	24 n	n/a 8/2	28/2024 419	Yes 156 n/a	n/a	3.846	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Calcium (mg/L)	BRGWC-32S	24 n	n/a 8/2	28/2024 37.4	Yes 156 n/a	n/a	3.846	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Calcium (mg/L)	BRGWC-45	24 n	n/a 8/2	29/2024 42.9	Yes 156 n/a	n/a	3.846	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Calcium (mg/L)	BRGWC-47	24 n	n/a 8/2	28/2024 302	Yes 156 n/a	n/a	3.846	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Calcium (mg/L)	BRGWC-52I	24 n	n/a 8/2	28/2024 36.8	Yes 156 n/a	n/a	3.846	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Calcium (mg/L)	BRGWC-44	24 n	n/a 8/2	27/2024 24.9	Yes 156 n/a	n/a	3.846	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Chloride (mg/L)	BRGWC-25I	5.8 n	n/a 8/2	29/2024 13.7	Yes 156 n/a	n/a	0	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Chloride (mg/L)	BRGWC-29I	5.8 n	n/a 8/2	27/2024 8.87	Yes 156 n/a	n/a	0	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Chloride (mg/L)	BRGWC-45	5.8 n	n/a 8/2	29/2024 24.8	Yes 156 n/a	n/a	0	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Chloride (mg/L)	BRGWC-52I	5.8 n	n/a 8/2	28/2024 6.58	Yes 156 n/a	n/a	0	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Chloride (mg/L)	BRGWC-44	5.8 n	n/a 8/2	27/2024 5.99	Yes 156 n/a	n/a	0	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
pH, Field (S.U.)	BRGWC-29I	7.034 5	5.577 8/2	27/2024 4.47	Yes 172 6.305	0.3796	0	None	No	0.0004179	Param Inter 1 of 2
pH, Field (S.U.)	BRGWC-47	7.034 5	5.577 8/2	28/2024 5.57	Yes 172 6.305	0.3796	0	None	No	0.0004179	Param Inter 1 of 2
Sulfate (mg/L)	BRGWC-25I	89 n	n/a 8/2	29/2024 216	Yes 156 n/a	n/a	12.18	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BRGWC-27I	89 n	n/a 8/2	27/2024 174	Yes 156 n/a	n/a	12.18	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BRGWC-29I	89 n	n/a 8/2	27/2024 261	Yes 156 n/a	n/a	12.18	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BRGWC-30I	89 n	n/a 8/2	28/2024 1260	Yes 156 n/a	n/a	12.18	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BRGWC-32S	89 n	n/a 8/2	28/2024 201	Yes 156 n/a	n/a	12.18	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BRGWC-45	89 n	n/a 8/2	29/2024 150	Yes 156 n/a	n/a	12.18	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BRGWC-47	89 n	n/a 8/2	28/2024 1310	Yes 156 n/a	n/a	12.18	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BRGWC-52I	89 n	n/a 8/2	28/2024 150	Yes 156 n/a	n/a	12.18	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	BRGWC-25I	183.3 n	n/a 8/2	29/2024 492	Yes 155 102	42.34	1.29	None	No	0.0008358	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BRGWC-27I	183.3 n	n/a 8/2	27/2024 346	Yes 155 102	42.34	1.29	None	No	0.0008358	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BRGWC-29I	183.3 n	n/a 8/2	27/2024 424	Yes 155 102	42.34	1.29	None	No	0.0008358	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BRGWC-30I	183.3 n	n/a 8/2	28/2024 2030	Yes 155 102	42.34	1.29	None	No	0.0008358	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BRGWC-32S	183.3 n	n/a 8/2	28/2024 374	Yes 155 102	42.34	1.29	None	No	0.0008358	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BRGWC-45	183.3 n	n/a 8/2	29/2024 353	Yes 155 102	42.34	1.29	None	No	0.0008358	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BRGWC-47	183.3 n	n/a 8/2	28/2024 1780	Yes 155 102	42.34	1.29	None	No	0.0008358	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BRGWC-52I	183.3 n	n/a 8/2	28/2024 310	Yes 155 102	42.34	1.29	None	No	0.0008358	Param Inter 1 of 2

Appendix III Interwell Prediction Limits - All Results

Printed 1/10/2025, 11:06 AM Client: Southern Company Data: Plant Branch AP Constituent Well Sig. Bg NBg Mean Std. Dev. %NDs ND Adj. Upper Lim. Lower Lim. Date Observ. Method BRGWC-25I 8/29/2024 2.04 53.9 0.00008335 NP Inter (NDs) 1 of 2 Boron (mg/L) 0.068 Yes 154 n/a n/a n/a n/a n/a Boron (mg/L) Yes 154 n/a 0.00008335 NP Inter (NDs) 1 of 2 BRGWC-27I 0.068 n/a 8/27/2024 1.28 n/a 53.9 n/a n/a BRGWC-29I 8/27/2024 1.09 0.00008335 NP Inter (NDs) 1 of 2 Boron (ma/L) Yes 154 n/a 53.9 0.068 n/a n/a n/a n/a Boron (mg/L) BRGWC-30I 0.068 n/a 8/28/2024 1.82 Yes 154 n/a n/a 53.9 n/a 0.00008335 NP Inter (NDs) 1 of 2 BRGWC-32S 8/28/2024 0.996 Yes 154 n/a 0.00008335 NP Inter (NDs) 1 of 2 53.9 Boron (ma/L) 0.068 n/a n/a n/a n/a BRGWC-45 8/29/2024 0.043 No 154 n/a 53.9 n/a 0.00008335 NP Inter (NDs) 1 of 2 Boron (mg/L) 0.068 n/a n/a n/a BRGWC-47 Yes 154 n/a 0.00008335 NP Inter (NDs) 1 of 2 Boron (mg/L) 0.068 n/a 8/28/2024 0.508 n/a 53.9 n/a n/a Boron (mg/L) BRGWC-52I 8/28/2024 1.44 Yes 154 n/a 53.9 n/a 0.00008335 NP Inter (NDs) 1 of 2 Boron (mg/L) BRGWC-44 0.068 n/a 8/27/2024 1.16 Yes 154 n/a n/a 53.9 n/a n/a 0.00008335 NP Inter (NDs) 1 of 2 Calcium (mg/L) BRGWC-25I n/a 8/29/2024 77.6 Yes 156 n/a n/a 3.846 n/a n/a 0.00008104 NP Inter (normality) 1 of 2 Calcium (mg/L) BRGWC-27I 24 n/a 8/27/2024 75.9 Yes 156 n/a n/a 3.846 n/a n/a 0.00008104 NP Inter (normality) 1 of 2 Calcium (mg/L) BRGWC-29I n/a 8/27/2024 70.5 Yes 156 n/a 3.846 n/a n/a 0.00008104 NP Inter (normality) 1 of 2 n/a BRGWC-30I Yes 156 n/a 0.00008104 NP Inter (normality) 1 of 2 Calcium (mg/L) 24 n/a 8/28/2024 419 n/a 3.846 n/a n/a Calcium (mg/L) BRGWC-32S 8/28/2024 37.4 Yes 156 n/a n/a 3.846 n/a 0.00008104 NP Inter (normality) 1 of 2 Calcium (mg/L) BRGWC-45 24 n/a 8/29/2024 42.9 Yes 156 n/a n/a 3.846 n/a n/a 0.00008104 NP Inter (normality) 1 of 2 Calcium (mg/L) BRGWC-47 8/28/2024 302 Yes 156 n/a 3.846 n/a 0.00008104 NP Inter (normality) 1 of 2 n/a n/a n/a Calcium (mg/L) BRGWC-52I 24 n/a 8/28/2024 36.8 Yes 156 n/a n/a 3.846 n/a n/a 0.00008104 NP Inter (normality) 1 of 2 Calcium (mg/L) BRGWC-44 24 8/27/2024 24.9 Yes 156 n/a 0.00008104 NP Inter (normality) 1 of 2 n/a n/a 3.846 n/a n/a Chloride (mg/L) BRGWC-25I 5.8 n/a 8/29/2024 13.7 Yes 156 n/a n/a 0 n/a n/a 0.00008104 NP Inter (normality) 1 of 2 Chloride (ma/L) BRGWC-27I 5.8 n/a 8/27/2024 4.47 156 n/a 0 n/a n/a 0.00008104 NP Inter (normality) 1 of 2 n/a Chloride (mg/L) BRGWC-29I 8/27/2024 8.87 Yes 156 n/a 0 n/a n/a 0.00008104 NP Inter (normality) 1 of 2 5.8 n/a n/a BRGWC-30I 0 Chloride (mg/L) n/a 8/28/2024 3.48 156 n/a n/a n/a 0.00008104 NP Inter (normality) 1 of 2 5.8 No n/a BRGWC-32S 8/28/2024 4.09 156 n/a 0 n/a 0.00008104 NP Inter (normality) 1 of 2 Chloride (mg/L) 5.8 n/a No n/a BRGWC-45 8/29/2024 24.8 Chloride (mg/L) 5.8 n/a Yes 156 n/a n/a 0 n/a n/a 0.00008104 NP Inter (normality) 1 of 2 Chloride (mg/L) BRGWC-47 5.8 n/a 8/28/2024 4.57 156 n/a n/a 0 n/a n/a 0.00008104 NP Inter (normality) 1 of 2 Chloride (ma/L) BRGWC-52I 8/28/2024 6.58 Yes 156 n/a 0 n/a 0.00008104 NP Inter (normality) 1 of 2 5.8 n/a n/a n/a Chloride (mg/L) BRGWC-44 8/27/2024 5.99 156 n/a n/a 0.00008104 NP Inter (normality) 1 of 2 BRGWC-25I 8/29/2024 0.248 47.06 0.00006849 NP Inter (normality) 1 of 2 Fluoride (mg/L) 170 n/a n/a 0.42 n/a No n/a n/a BRGWC-27I 8/27/2024 0.382 0.00006849 NP Inter (normality) 1 of 2 Fluoride (mg/L) 0.42 n/a 170 n/a 47.06 n/a BRGWC-29I Fluoride (ma/L) 0.42 n/a 8/27/2024 0.0849J No 170 n/a n/a 47.06 n/a n/a 0.00006849 NP Inter (normality) 1 of 2 Fluoride (ma/L) BRGWC-30I 8/28/2024 0.336J 170 n/a n/a 47.06 0.00006849 NP Inter (normality) 1 of 2 BRGWC-32S Fluoride (mg/L) 0.42 n/a 8/28/2024 0 0511.1 Nο 170 n/a n/a 47.06 n/a n/a 0.00006849 NP Inter (normality) 1 of 2 Fluoride (mg/L) BRGWC-45 0.42 n/a 8/29/2024 0.078J n/a 47.06 n/a n/a 0.00006849 NP Inter (normality) 1 of 2 BRGWC-47 0.00006849 NP Inter (normality) 1 of 2 Fluoride (mg/L) 0.42 n/a 8/28/2024 0.033ND No 170 n/a n/a 47.06 n/a n/a Fluoride (mg/L) BRGWC-52I 0.42 n/a 8/28/2024 0.0748J 170 n/a 47.06 n/a 0.00006849 NP Inter (normality) 1 of 2 n/a n/a Fluoride (mg/L) BRGWC-44 0.42 n/a 8/27/2024 0.193 No 170 n/a n/a 47.06 n/a n/a 0.00006849 NP Inter (normality) 1 of 2 pH, Field (S.U.) BRGWC-25I 7.034 5.577 8/29/2024 6.52 Nο 172 6.305 0.3796 0 None No 0.0004179 Param Inter 1 of 2 pH, Field (S.U.) BRGWC-27I 7.034 5.577 8/27/2024 5.95 Nο 172 6.305 0.3796 0 No 0.0004179 Param Inter 1 of 2 None 0 pH, Field (S.U.) BRGWC-29I 5.577 8/27/2024 4.47 Yes 172 6.305 0.3796 No 0.0004179 Param Inter 1 of 2 7.034 None 5.577 pH, Field (S.U.) BRGWC-30I 8/28/2024 6.49 172 6.305 0.3796 0 No 0.0004179 Param Inter 1 of 2 7.034 None pH, Field (S.U.) BRGWC-32S 7.034 5.577 8/28/2024 6.05 172 6.305 0.3796 0 No 0.0004179 Param Inter 1 of 2 None pH, Field (S.U.) BRGWC-45 7.034 5.577 8/29/2024 6 26 No 172 6.305 0.3796 0 No 0.0004179 Param Inter 1 of 2 None pH. Field (S.U.) BRGWC-47 5.577 8/28/2024 5.57 Yes 172 6.305 0.3796 0 No 0.0004179 Param Inter 1 of 2 7.034 None pH, Field (S.U.) BRGWC-52I 7 034 5.577 8/28/2024 6 49 No. 172 6 305 0.3796 0 No 0.0004179 Param Inter 1 of 2 None 8/29/2024 216 BRGWC-25I Yes 156 n/a 0.00008104 NP Inter (normality) 1 of 2 Sulfate (mg/L) 89 12.18 n/a n/a n/a n/a BRGWC-27I 8/27/2024 174 Yes 156 n/a Sulfate (mg/L) 12.18 n/a 0.00008104 NP Inter (normality) 1 of 2 BRGWC-29I 8/27/2024 261 Yes 156 n/a 12.18 0.00008104 NP Inter (normality) 1 of 2 Sulfate (mg/L) 89 n/a n/a n/a n/a BRGWC-30I 8/28/2024 1260 Sulfate (mg/L) Yes 156 n/a n/a 12.18 n/a 0.00008104 NP Inter (normality) 1 of 2 BRGWC-32S 8/28/2024 201 Yes 156 n/a 0.00008104 NP Inter (normality) 1 of 2 Sulfate (mg/L) 89 n/a n/a 12.18 n/a n/a BRGWC-45 8/29/2024 150 Sulfate (mg/L) Yes 156 n/a 12.18 0.00008104 NP Inter (normality) 1 of 2 BRGWC-47 8/28/2024 1310 0.00008104 NP Inter (normality) 1 of 2 Sulfate (mg/L) 89 n/a Yes 156 n/a n/a 12.18 n/a n/a Sulfate (mg/L) BRGWC-52I n/a 8/28/2024 150 Yes 156 n/a n/a 12.18 n/a n/a 0.00008104 NP Inter (normality) 1 of 2 Sulfate (mg/L) BRGWC-44 89 n/a 8/27/2024 41.8 No 156 n/a n/a 12.18 n/a n/a 0.00008104 NP Inter (normality) 1 of 2 Total Dissolved Solids (mg/L) BRGWC-25I 183.3 n/a 8/29/2024 492 Yes 155 102 42.34 1.29 No 0.0008358 Param Inter 1 of 2 None Total Dissolved Solids (mg/L) BRGWC-27I 183.3 n/a 8/27/2024 346 Yes 155 102 42.34 1.29 None No 0.0008358 Param Inter 1 of 2

Page 2

Appendix III Interwell Prediction Limits - All Results

	P	ant Branch	Client: So	utnern Com	ipany Dai	la: Plant Branch AP	Printed 1/10/2	2025, 11:0	o Alvi			
Constituent	Well	Upper Lim	Lower Lim.	<u>Date</u>	Observ.	Sig. Bg NBg Mean	Std. Dev.	%NDs	ND Adj.	Transform	Alpha	Method
Total Dissolved Solids (mg/L)	BRGWC-29I	183.3	n/a	8/27/2024	424	Yes 155 102	42.34	1.29	None	No	0.0008358	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BRGWC-30I	183.3	n/a	8/28/2024	2030	Yes 155 102	42.34	1.29	None	No	0.0008358	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BRGWC-32S	183.3	n/a	8/28/2024	374	Yes 155 102	42.34	1.29	None	No	0.0008358	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BRGWC-45	183.3	n/a	8/29/2024	353	Yes 155 102	42.34	1.29	None	No	0.0008358	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BRGWC-47	183.3	n/a	8/28/2024	1780	Yes 155 102	42.34	1.29	None	No	0.0008358	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BRGWC-52I	183.3	n/a	8/28/2024	310	Yes 155 102	42.34	1.29	None	No	0.0008358	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BRGWC-44	183 3	n/a	8/27/2024	180	No. 155 102	42 34	1 29	None	No	0.0008358	Param Inter 1 of 2

Appendix III - Trend Tests - Significant Results

	Plant Branch Client: \$	Southern Compar	ny Data:	Plant Brand	h AP F	Printed 1/10	/2025, 11:1:	2 AM		
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Alpha</u>	Method
Boron (mg/L)	BRGWC-29I	-0.08779	-95	-81	Yes	20	0	n/a	0.01	NP
Boron (mg/L)	BRGWC-47	0.03101	100	87	Yes	21	0	n/a	0.01	NP
Calcium (mg/L)	BRGWA-23S (bg)	-1.303	-127	-81	Yes	20	5	n/a	0.01	NP
Calcium (mg/L)	BRGWA-2S (bg)	0.1911	100	81	Yes	20	0	n/a	0.01	NP
Calcium (mg/L)	BRGWA-6S (bg)	0.1244	107	81	Yes	20	0	n/a	0.01	NP
Calcium (mg/L)	BRGWC-30I	45.33	165	81	Yes	20	0	n/a	0.01	NP
Calcium (mg/L)	BRGWC-32S	-3.16	-84	-81	Yes	20	0	n/a	0.01	NP
Chloride (mg/L)	BRGWA-12I (bg)	-0.1919	-99	-68	Yes	18	0	n/a	0.01	NP
Chloride (mg/L)	BRGWA-23S (bg)	-0.23	-130	-81	Yes	20	0	n/a	0.01	NP
Chloride (mg/L)	BRGWA-5I (bg)	-0.1245	-93	-81	Yes	20	0	n/a	0.01	NP
Chloride (mg/L)	BRGWA-5S (bg)	-0.06359	-100	-81	Yes	20	0	n/a	0.01	NP
Chloride (mg/L)	BRGWC-45	-7.079	-132	-87	Yes	21	0	n/a	0.01	NP
Chloride (mg/L)	BRGWC-52I	-0.1515	-83	-81	Yes	20	0	n/a	0.01	NP
pH, Field (S.U.)	BRGWA-2I (bg)	-0.06454	-116	-92	Yes	22	0	n/a	0.01	NP
pH, Field (S.U.)	BRGWA-2S (bg)	-0.03038	-116	-92	Yes	22	0	n/a	0.01	NP
pH, Field (S.U.)	BRGWA-5S (bg)	-0.0462	-104	-92	Yes	22	0	n/a	0.01	NP
pH, Field (S.U.)	BRGWC-47	-0.02599	-99	-87	Yes	21	0	n/a	0.01	NP
Sulfate (mg/L)	BRGWA-12I (bg)	-0.2108	-113	-68	Yes	18	0	n/a	0.01	NP
Sulfate (mg/L)	BRGWA-12S (bg)	-0.126	-88	-68	Yes	18	16.67	n/a	0.01	NP
Sulfate (mg/L)	BRGWA-23S (bg)	-9.079	-112	-81	Yes	20	0	n/a	0.01	NP
Sulfate (mg/L)	BRGWC-25I	-18.92	-90	-81	Yes	20	0	n/a	0.01	NP
Sulfate (mg/L)	BRGWC-27I	-19.62	-140	-81	Yes	20	0	n/a	0.01	NP
Sulfate (mg/L)	BRGWC-30I	116.8	128	81	Yes	20	0	n/a	0.01	NP
Sulfate (mg/L)	BRGWC-32S	-27.39	-116	-81	Yes	20	0	n/a	0.01	NP
Sulfate (mg/L)	BRGWC-47	-39.5	-91	-87	Yes	21	0	n/a	0.01	NP
Total Dissolved Solids (mg/L)	BRGWA-23S (bg)	-11.78	-117	-81	Yes	20	0	n/a	0.01	NP
Total Dissolved Solids (mg/L)	BRGWA-5S (bg)	-7.447	-115	-81	Yes	20	0	n/a	0.01	NP
Total Dissolved Solids (mg/L)	BRGWC-25I	-25.85	-88	-81	Yes	20	0	n/a	0.01	NP
Total Dissolved Solids (mg/L)	BRGWC-27I	-20.5	-110	-81	Yes	20	0	n/a	0.01	NP
Total Dissolved Solids (mg/L)	BRGWC-30I	188.3	144	81	Yes	20	0	n/a	0.01	NP
Total Dissolved Solids (mg/L)	BRGWC-32S	-36.68	-135	-81	Yes	20	0	n/a	0.01	NP
Total Dissolved Solids (mg/L)	BRGWC-45	-19.95	-119	-87	Yes	21	0	n/a	0.01	NP
Total Dissolved Solids (mg/L)	BRGWC-47	-40.59	-82	-81	Yes	20	0	n/a	0.01	NP

Appendix III - Trend Tests - All Results

Client: Southern Company Data: Plant Branch AP Constituent Well Slope Calc. Critical <u>N</u> %NDs <u>Alpha</u> Method BRGWA-12I (bg) -0.00006578 -7 -63 17 17.65 0.01 NP Boron (mg/L) No n/a BRGWA-12S (bg) Boron (mg/L) 0 -7 -63 No 17 76.47 n/a 0.01 NP Boron (mg/L) BRGWA-23S (bg) 9 81 20 0.01 NP 0.0005097 10 No n/a Boron (mg/L) BRGWA-2I (bg) 0.0002903 43 81 No 20 35 n/a 0.01 NP Boron (mg/L) BRGWA-2S (bg) 0 -10 -81 20 0.01 NP No 85 n/a Boron (mg/L) BRGWA-5I (bg) 0 -9 -81 No 20 75 n/a 0.01 NP BRGWA-5S (bg) 0 0.01 NP Boron (mg/L) -8 -81 No 20 55 n/a Boron (mg/L) BRGWA-6S (bg) 0 -5 -81 No 20 75 n/a 0.01 NP Boron (mg/L) BRGWC-25I 0 -5 -81 No 20 0 n/a 0.01 NP Boron (mg/L) BRGWC-27I -0.05377 -87 No 21 0 n/a 0.01 NP BRGWC-29I -0.08779 Boron (mg/L) -95 -81 Yes 20 0 n/a 0.01 NP BRGWC-30I 0.05462 72 87 21 0 0.01 NP Boron (mg/L) No BRGWC-32S 0 -0.05585 21 0.01 NP Boron (mg/L) -79 -87 No n/a Boron (mg/L) BRGWC-47 0.03101 100 87 Yes 21 0 n/a 0.01 NP BRGWC-52I Boron (mg/L) 0.03284 48 81 No 20 0 n/a 0.01 NP Boron (mg/L) BRGWC-44 -0.1363 -24 -25 n/a 0.01 No Calcium (mg/L) BRGWA-12I (bg) -0.2348 -12 -68 No 18 5.556 n/a 0.01 NP Calcium (mg/L) BRGWA-12S (bg) 0.1273 28 68 18 5.556 0.01 NP No n/a Calcium (mg/L) BRGWA-23S (bg) -1.303 -127 -81 Yes 20 5 n/a 0.01 NP Calcium (mg/L) BRGWA-2I (ba) 0.1344 17 81 No 20 5 n/a 0.01 NP Calcium (mg/L) BRGWA-2S (bg) 0.1911 100 81 Yes 20 0 n/a 0.01 NP BRGWA-5I (bg) 81 5 0.01 NP Calcium (mg/L) 0.1912 52 20 n/a No Calcium (mg/L) BRGWA-5S (bg) -0.5187 -75 -81 20 5 n/a 0.01 NP BRGWA-6S (bg) 0 Calcium (mg/L) 0.1244 107 81 Yes 20 n/a 0.01 NP Calcium (mg/L) BRGWC-25I -2.049 -44 -81 No 20 0 n/a 0.01 NP Calcium (mg/L) BRGWC-27I -2.088 -81 20 0 0.01 NP -66 No n/a Calcium (mg/L) BRGWC-29I -2.357 -38 -81 No 20 0 n/a 0.01 NP BRGWC-30I 0 Calcium (mg/L) 45.33 165 81 Yes 20 n/a 0.01 NP BRGWC-32S Calcium (mg/L) -3.16 -81 Yes 20 n/a 0.01 NP Calcium (mg/L) BRGWC-45 -1.597 -83 -87 No 21 0 n/a 0.01 NP Calcium (mg/L) BRGWC-47 87 No 0 0.01 BRGWC-52I Ω 0.01 Calcium (mg/L) -0.5141 -29 -74 Nο 19 n/a NP BRGWC-44 Calcium (mg/L) 0.02606 8 25 No 22.22 n/a 0.01 NP Chloride (mg/L) BRGWA-12I (bg) -0.1919 -99 -68 Yes 18 0 n/a 0.01 NP Chloride (mg/L) BRGWA-12S (bg) 0.06545 68 No 18 0 n/a 0.01 Chloride (mg/L) BRGWA-23S (bg) -0.23 -130 -81 Yes 20 0 n/a 0.01 NP Chloride (mg/L) BRGWA-2I (bg) -0.01185 -18 -81 No 20 0 n/a 0.01 NF Chloride (mg/L) BRGWA-2S (bg) 0.02985 28 81 No 20 0 n/a 0.01 NP 0 Chloride (mg/L) BRGWA-5I (bg) -0.1245 -81 20 n/a 0.01 NP -93 Yes Chloride (mg/L) BRGWA-5S (bg) -0.06359 -100 -81 Yes 20 0 n/a 0.01 NP Chloride (mg/L) BRGWA-6S (bg) 0 -14 -81 20 0 0.01 NP No n/a Chloride (mg/L) BRGWC-25I -0.1552 -17 -81 No 20 0 n/a 0.01 NP Chloride (ma/L) BRGWC-29I -0.05551 -22 -81 20 0 0.01 NP No n/a Chloride (mg/L) BRGWC-45 -7.079 -132 -87 Yes 21 0 n/a 0.01 NP BRGWC-52I Chloride (ma/L) -0.1515 -81 20 0 0.01 NP -83 Yes n/a Chloride (mg/L) BRGWC-44 0.0637 25 0 0.01 NP No pH, Field (S.U.) BRGWA-12I (bg) -0.02367 -87 21 0 0.01 NP -36 No n/a pH, Field (S.U.) BRGWA-12S (bg) -0.01755 -49 -81 No 20 0 n/a 0.01 NP BRGWA-23S (bg) pH, Field (S.U.) -0.01775 -92 22 0 0.01 NP -30 No n/a pH, Field (S.U.) BRGWA-2I (bg) -0.06454 -92 22 0 0.01 Yes BRGWA-2S (bg) 0.01 pH, Field (S.U.) -0.03038 0 -116 -92 Yes 22 n/a NP pH, Field (S.U.) BRGWA-5I (bg) -0.008211 -26 -92 No 22 0 n/a 0.01 NP pH, Field (S.U.) BRGWA-5S (bg) -0.0462 -104 -92 Yes 22 0 n/a 0.01 NP pH, Field (S.U.) BRGWA-6S (bg) -0.005567 21 0 0.01 -87 No n/a NP pH, Field (S.U.) BRGWC-29I -0.008383 22 ٥ 0.01 NP -25 -92 Nο n/a

Appendix III - Trend Tests - All Results

Plant Branch Client: Southern Company Data: Plant Branch AP Constituent Well Calc. <u>Critical</u> Sig. %NDs <u>Alpha</u> Method pH, Field (S.U.) BRGWC-47 -0.02599 -87 21 0 0.01 NP -99 n/a Yes Sulfate (mg/L) BRGWA-12I (bg) -0.2108 -113 -68 Yes 18 0 n/a 0.01 NP BRGWA-12S (bg) -68 18 0.01 NP Sulfate (mg/L) -0.126 -88 16.67 Yes n/a Sulfate (mg/L) BRGWA-23S (bg) -9.079 -112 -81 Yes 20 0 n/a 0.01 NP Sulfate (mg/L) BRGWA-2I (bg) -0.308 -72 -81 20 0 0.01 NP No n/a Sulfate (mg/L) BRGWA-2S (bg) -0.02433 -35 -81 No 20 30 n/a 0.01 NP BRGWA-5I (bg) Sulfate (mg/L) -0.2157 0.01 NP -74 -81 No 20 0 n/a Sulfate (mg/L) BRGWA-5S (bg) -0.03749 -81 20 30 0.01 NP Sulfate (mg/L) BRGWA-6S (bg) -0.01207 -42 -81 No 20 20 n/a 0.01 NP Sulfate (mg/L) BRGWC-25I -18.92 -81 Yes 20 0.01 ΝP BRGWC-27I 20 0.01 Sulfate (mg/L) -19.62 -140 -81 Yes 0 n/a NP Sulfate (mg/L) BRGWC-29I -18.2 -81 20 0 0.01 NP No BRGWC-30I Sulfate (mg/L) 116.8 128 81 Yes 20 0 n/a 0.01 NP Sulfate (mg/L) BRGWC-32S -27.39 -81 Yes n/a 0.01 NP BRGWC-45 Sulfate (mg/L) -1 369 -26 -87 No 21 0 n/a 0.01 NP Sulfate (mg/L) BRGWC-47 -39.5 -87 n/a 0.01 Yes BRGWC-52I Sulfate (mg/L) -4.768 -63 -81 No 20 0 n/a 0.01 NP Total Dissolved Solids (mg/L) BRGWA-12I (bg) -5.117 -61 -68 18 0 0.01 NP No n/a Total Dissolved Solids (mg/L) BRGWA-12S (bg) -5.699 -57 -68 No 18 0 n/a 0.01 NP Total Dissolved Solids (mg/L) BRGWA-23S (bg) -11.78 -117 -81 Yes 20 0 n/a 0.01 NP Total Dissolved Solids (mg/L) BRGWA-2I (bg) -9.102 -75 -81 No 20 0 n/a 0.01 NP Total Dissolved Solids (mg/L) BRGWA-2S (bg) 5 0.01 NP -0.8471 -12 -81 20 n/a No Total Dissolved Solids (mg/L) BRGWA-5I (bg) -3.51 -81 20 5 n/a 0.01 ΝP Total Dissolved Solids (mg/L) BRGWA-5S (bg) 0 -7.447 -115 -81 Yes 20 n/a 0.01 NP Total Dissolved Solids (mg/L) BRGWA-6S (bg) -1.988 -30 -74 No 19 0 n/a 0.01 NP Total Dissolved Solids (mg/L) BRGWC-25I -25.85 -88 -81 Yes 20 0 n/a 0.01 NP Total Dissolved Solids (mg/L) BRGWC-27I -20.5 20 0 0.01 Yes Total Dissolved Solids (mg/L) 0 NP BRGWC-29I 20 0.01 -37.85 -72 -81 No n/a Total Dissolved Solids (mg/L) BRGWC-30I 188.3 81 ΝP 144 Yes 20 n/a 0.01 Total Dissolved Solids (mg/L) BRGWC-32S -36.68 -135 -81 Yes 20 0 n/a 0.01 NP Total Dissolved Solids (mg/L) BRGWC-45 Yes 0 Total Dissolved Solids (mg/L) BRGWC-47 0 0.01 NP -40.59 -82 -81 Yes 20 n/a Total Dissolved Solids (mg/L) BRGWC-52I -9.317 -70 0.01 NP -81 No n/a

Upper Tolerance Limits

Client: Southern Company Data: Plant Branch AP Printed 11/18/2024, 10:24 AM Constituent Well Upper Lim. Date $\underline{\mathsf{Observ.}} \quad \underline{\mathsf{Sig.}} \quad \underline{\mathsf{Bg}} \; \underline{\mathsf{N}} \quad \underline{\mathsf{Bg}} \; \underline{\mathsf{Mean}} \quad \underline{\mathsf{Std.}} \; \underline{\mathsf{Dev.}\%\mathsf{NDs}} \quad \underline{\mathsf{ND}} \; \underline{\mathsf{Adj.}}$ <u>Alpha</u> Method n/a 162 n/a 84.57 n/a 0.0002462 NP Inter(NDs) Antimony (mg/L) n/a 0.0245 n/a n/a n/a n/a 0.0002462 NP Inter(NDs) Arsenic (mg/L) n/a 0.005 n/a n/a 162 n/a n/a 78.4 n/a n/a Barium (mg/L) n/a 0.13 n/a 162 0 0.0002462 NP Inter(normality) n/a n/a n/a n/a n/a n/a 0.0002462 NP Inter(NDs) Beryllium (mg/L) n/a 0.0005 n/a 162 100 n/a 0.0002222 NP Inter(NDs) Cadmium (mg/L) n/a 0.001 n/a n/a n/a 164 n/a n/a 98.78 n/a n/a 0.0002462 NP Inter(normality) Chromium (mg/L) n/a 0.016 n/a n/a 162 21.6 n/a Cobalt (mg/L) 0.0002462 NP Inter(NDs) n/a 0.0135 n/a n/a 162 n/a 54.94 n/a n/a n/a n/a Combined Radium 226 + 228 (pCi/L) n/a 2.326 n/a 162 0.9094 0.3312 0 0.05 n/a 0.0001633 NP Inter(normality) Fluoride (mg/L) 0.42 n/a n/a n/a 170 n/a n/a 47.06 n/a n/a Lead (mg/L) 0.002 n/a 162 88.89 n/a 0.0002462 NP Inter(NDs) 0.0002462 NP Inter(normality) Lithium (mg/L) n/a 0.089 n/a 162 41.36 n/a n/a n/a n/a n/a n/a Mercury (mg/L) 0.00021 n/a 146 89.73 0.0005593 NP Inter(NDs) 0.0002871 NP Inter(NDs) Molybdenum (mg/L) 0.008 74.21 n/a n/a n/a n/a n/a 159 n/a n/a n/a Selenium (mg/L) 0.006 n/a 162 n/a 0.0002462 NP Inter(NDs) Thallium (mg/L) 0.002 0.0002462 NP Inter(NDs) n/a n/a n/a n/a 162 n/a n/a 100 n/a n/a

PLANT BRANCH POND BCD GWPS								
		CCR-Rule						
Constituent Name	MCL	Specified	Background Limit	GWPS				
Antimony, Total (mg/L)	0.006		0.025	0.006				
Arsenic, Total (mg/L)	0.01		0.005	0.01				
Barium, Total (mg/L)	2		0.13	2				
Beryllium, Total (mg/L)	0.004		0.0005	0.004				
Cadmium, Total (mg/L)	0.005		0.001	0.005				
Chromium, Total (mg/L)	0.1		0.016	0.1				
Cobalt, Total (mg/L)	n/a	0.006	0.014	0.014				
Combined Radium, Total (pCi/L)	5		2.33	5				
Fluoride, Total (mg/L)	4		0.42	4				
Lead, Total (mg/L)	n/a	0.015	0.002	0.015				
Lithium, Total (mg/L)	n/a	0.04	0.089	0.089				
Mercury, Total (mg/L)	0.002		0.00021	0.002				
Molybdenum, Total (mg/L)	n/a	0.1	0.008	0.1				
Selenium, Total (mg/L)	0.05		0.006	0.05				
Thallium, Total (mg/L)	0.002		0.002	0.002				

^{*}Highlighted cells indicate Background is higher than MCLs

^{*}MCL = Maximum Contaminant Level

^{*}CCR = Coal Combustion Residuals

^{*}GWPS = Groundwater Protection Standard

^{**}MCL used in lieu of Background limit for Antimony

Confidence Intervals Summary Table - Significant Results

Plant Branch Client: Southern Company Data: Plant Branch AP Printed 1/21/2025, 1:51 PM

Constituent	Well	Upper Lim	Lower Lim.	Compliance	Sig. N	<u>Mean</u>	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Cobalt (mg/L)	PZ-63I	0.0348	0.02004	0.014	Yes 6	0.02742	0.005372	0	None	No	0.01	Param.
Selenium (mg/L)	BRGWC-32S	0.1763	0.1016	0.05	Yes 14	0.139	0.05274	0	None	No	0.01	Param.

Confidence Intervals Summary Table - All Results

Client: Southern Company Data: Plant Branch AP Printed 1/21/2025, 1:51 PM ND Adj. Constituent Well %NDs Transform Alpha Upper Lim. Lower Lim. Compliance Sig. <u>N</u> Std. Dev. Method Antimony (mg/L) BRGWC-29 0.003 0.0007 21 0.00289 0.0005019 95.24 None No 0.01 NP (NDs) No Antimony (mg/L) BRGWC-30I 0.003 0.0013 0.006 No 21 0.002919 0.000371 95.24 None No 0.01 NP (NDs) Antimony (mg/L) BRGWC-32S 0.003 0.0014 0.006 0.002924 0.0003491 95.24 None No 0.01 NP (NDs) BRGWC-45 0.003 0.0024 0.006 0.01 NP (NDs) Antimony (mg/L) Nο 22 0.002547 0.0008329 68 18 None Nο BRGWC-47 Antimony (mg/L) 0.003 0.00035 0.006 No 22 0.00288 0.000565 95.45 0.01 NP (NDs) BRGWC-52I Antimony (mg/L) 0.003 0.00091 0.006 21 0.002676 0.0008181 85.71 0.01 NP (NDs) No None No Antimony (mg/L) PZ-68D 0.003 0.00176 0.006 No 4 0.00269 0.00062 75 No 0.0625 NP (NDs) None BRGWC-25I 0.005 0.00091 0.01 0.004179 0.001736 0.01 NP (NDs) Arsenic (mg/L) No 21 80.95 No None Arsenic (mg/L) BRGWC-27I 0.005 0.0014 0.01 No 21 0.004243 0.001604 80.95 No 0.01 NP (NDs) Arsenic (mg/L) BRGWC-29I 0.005 0.0016 0.01 No 21 0.003743 0.001859 66.67 No 0.01 NP (NDs) None BRGWC-30I 0.00283 NP (NDs) Arsenic (mg/L) 0.005 0.01 Nο 21 0.004403 0.001313 80.95 None Nο 0.01 Arsenic (mg/L) BRGWC-32S 0.005 0.00053 0.01 No 0.004787 0.0009754 95.24 None 0.01 NP (NDs) BRGWC-44 NP (NDs) Arsenic (mg/L) 0.005 0.00221 0.01 Nο 9 0.004579 0.0009479 77.78 Kaplan-Meier No 0.002 Arsenic (mg/L) BRGWC-45 0.005 0.00225 0.01 No 22 0.00397 0.00176 72.73 0.01 NP (NDs) BRGWC-47 0.0023 0.001182 0.01 22 0.00315 0.001772 36.36 0.01 Param. Arsenic (mg/L) No Kaplan-Meier x^(1/3) BRGWC-52I 0.01 0.003913 0.001424 52.38 Kaplan-Meier No NP (NDs) Arsenic (mg/L) 0.005 0.003 No 21 0.01 PZ-68D 0.006826 0.0001393 0.01 0.004805 50 Arsenic (mg/L) No 4 0.0009974 Kaplan-Meier No 0.01 Param Barium (mg/L) BRGWC-25I 0.03348 0.02673 2 Nο 21 0.0303 0.006413 0 0.01 Param BRGWC-27I 0.01518 2 0.01592 0.001344 0 Barium (mg/L) 0.01666 No No 0.01 Param None 2 Barium (mg/L) BRGWC-29I 0.01886 0.017 Nο 21 0.01793 0.001692 Ω None No 0.01 Param BRGWC-30I Barium (mg/L) 0.03158 0.02415 2 No 0.02787 0.006739 0 None No 0.01 Param BRGWC-32S Barium (mg/L) 0.03843 0.02484 2 Nο 21 0.03163 0.01231 0 None No 0.01 Param BRGWC-44 0.04867 2 Barium (mg/L) 0.05462 No 0.05164 0.003081 0 0.01 BRGWC-45 2 0 Barium (mg/L) 0.08892 0.06937 No 22 0.07915 0.01821 None No 0.01 Param. Barium (mg/L) BRGWC-47 0.04055 0.03182 2 No 22 0.03618 0.008132 0 None No 0.01 Param Barium (mg/L) BRGWC-52I 0.02848 0.0183 2 No 21 0.02339 0.009232 0 No 0.01 Param None 0.03694 Barium (mg/L) PZ-68D 0.1715 Nο 4 0.1042 0.02964 0 No 0.01 Param Beryllium (mg/L) BRGWC-27I 0.0005 0.00011 0.004 No 22 0.0002834 0.0001885 40.91 No 0.01 NP (normality) None Beryllium (mg/L) BRGWC-29I 0.001094 0.0008358 0.004 No 21 0.0009651 0.0002344 4.762 None No 0.01 Param. Beryllium (mg/L) BRGWC-45 0.0005 0.000079 0.004 No 23 0.000462 0.0001261 91.3 None No 0.01 NP (NDs) Beryllium (mg/L) BRGWC-47 0.0005 0.000056 0.004 Nο 22 0.000439 0.0001571 86.36 None No 0.01 NP (NDs) Cadmium (mg/L) BRGWC-27I 0.00009 0.005 22 0.0009164 0.0002707 90.91 0.01 NP (NDs) BRGWC-30I Cadmium (mg/L) 0.001 0.00014 0.005 22 0.0009191 0.000262 90.91 0.01 NP (NDs) Nο None No Cadmium (mg/L) BRGWC-32S 0.001 0.00011 0.005 No 22 0.0008768 0.0003173 86.36 No 0.01 NP (NDs) BRGWC-45 Cadmium (mg/L) 0.001 0.0002 0.005 23 0.0008499 0.0003349 82.61 0.01 NP (NDs) No None No Cadmium (mg/L) BRGWC-47 0.001 0.00017 0.005 No 22 0.0006241 0.0004222 54.55 No 0.01 NP (NDs) Chromium (mg/L) BRGWC-25I 0.01 0.0016 0.1 No 0.00917 0.002622 90.48 No 0.01 NP (NDs) Chromium (mg/L) BRGWC-27I 0.01 0.003 0.1 No 0.009238 0.002427 90.48 No 0.01 NP (NDs) None Chromium (mg/L) BRGWC-29I 0.02 0.01 0.1 No 0.01048 0.002182 95.24 No 0.01 NP (NDs) None Chromium (mg/L) BRGWC-30I 0.014 0.0051 0.1 No 21 0.009957 0.001414 90.48 None No 0.01 NP (NDs) Chromium (ma/L) BRGWC-32S 0.0014 0.1 No 0.005652 0.004263 47.62 NP (normality) BRGWC-45 NP (NDs) 0.0014 22 0.00877 0.003172 Chromium (mg/L) 0.01 0.1 Nο 86.36 None No 0.01 Chromium (mg/L) BRGWC-47 0.0018 No 22 0.00837 0.003545 81.82 0.01 NP (NDs) 0.01 0.1 No BRGWC-52I NP (NDs) Chromium (mg/L) 0.01 0.0017 0.1 No 21 0.009605 0.001811 95.24 No 0.01 None Cobalt (mg/L) BRGWC-25I 0.003608 0.014 No 21 0.004832 0.002109 4.762 0.005785 0.01 Param BRGWC-27I 0.007147 0.014 22 0 Cobalt (mg/L) 0.009934 No 0.008541 0.002596 No 0.01 Param Cobalt (mg/L) BRGWC-29I 0.009419 0.006747 0.014 No 21 0.008083 0.002422 4.762 None No 0.01 Param. Cobalt (mg/L) BRGWC-30I 0.00163 0.001 0.014 No 0.0038 0.006598 13.64 No 0.01 NP (normality) BRGWC-32S 0.001 0.014 0.001068 NP (NDs) Cobalt (mg/L) 0.0025 Nο 22 0.0003198 90.91 None Nο 0.01 BRGWC-44 Cobalt (mg/L) 0.000408 0.014 No 0.0009342 0.0001973 88.89 Kaplan-Meier 0.002 NP (NDs) Cobalt (mg/L) BRGWC-45 0.01111 0.004672 0.014 Nο 23 0.0106 0.01364 0 None ln(x) 0.01 Param. Cobalt (mg/L) BRGWC-47 0.001434 0.000455 0.014 22 0.001933 0.00284 31.82 Kaplan-Meier In(x) 0.01 Param Cobalt (mg/L) BRGWC-52I 0.00063 0.014 57.14 NP (NDs) 0.0012 No 21 0.001249 0.0009195 Kaplan-Meier No 0.01 Cobalt (mg/L) PZ-63I 0.02004 0.005372 0.0348 0.014 0.02742 0 0.01 Param. Cobalt (mg/L) PZ-68D 0.001315 0.0003166 0.014 0.0008158 0.0002199 0 0.01 Param No None No Combined Radium 226 + 228 (pCi/L) BRGWC-25I 2.104 0.7511 5 Nο 21 1.609 1.542 0 None 0.01 Param sqrt(x)

Confidence Intervals Summary Table - All Results

		Plant Branch C	lient: Southern	Company D	ata: Plant l	Branch AP	Printed 1/21/2	025, 1:51 F	РМ			
Constituent	Well	Upper Lim	n. Lower Lim.	Compliance	Sig. N	Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Combined Radium 226 + 228 (pCi/L)	BRGWC-27I	1.671	0.7732	5	No 21	1.222	0.8135	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	BRGWC-29I	1.999	1.309	5	No 21	1.654	0.6257	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	BRGWC-30I	1.901	0.7981	5	No 21	1.475	1.145	0	None	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	BRGWC-32S	1.257	0.5561	5	No 21	0.9067	0.6356	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	BRGWC-44	2.315	0.3329	5	No 9	1.322	1.135	0	None	ln(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	BRGWC-45	0.9907	0.4847	5	No 22	0.7377	0.4713	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	BRGWC-47	1.93	0.9463	5	No 22	1.438	0.916	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	BRGWC-52I	3.627	1.662	5	No 21	3.263	3.193	0	None	ln(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	PZ-68D	5.43	1.62	5	No 4	3.343	1.769	0	None	No	0.0625	NP (selected)
Fluoride (mg/L)	BRGWC-25I	0.245	0.151	4	No 22	0.2144	0.1206	4.545	None	ln(x)	0.01	Param.
Fluoride (mg/L)	BRGWC-27I	0.2674	0.1768	4	No 22	0.2221	0.08435	9.091	None	No	0.01	Param.
Fluoride (mg/L)	BRGWC-29I	0.186	0.09624	4	No 22	0.1628	0.1143	9.091	None	ln(x)	0.01	Param.
Fluoride (mg/L)	BRGWC-30I	0.3169	0.1458	4	No 22	0.2503	0.1968	4.545	None	sqrt(x)	0.01	Param.
Fluoride (mg/L)	BRGWC-32S	0.11	0.09	4	No 22	0.1057	0.04431	50	None	No	0.01	NP (normality)
Fluoride (mg/L)	BRGWC-44	0.2142	0.09695	4	No 9	0.1877	0.08533	22.22	Kaplan-Meie	r No	0.01	Param.
Fluoride (mg/L)	BRGWC-45	0.163	0.078	4	No 23	0.1697	0.2103	43.48	None	No	0.01	NP (normality)
Fluoride (mg/L)	BRGWC-47	0.2194	0.09107	4	No 23	0.2654	0.2163	47.83	Kaplan-Meie	r ln(x)	0.01	Param.
Fluoride (mg/L)	BRGWC-52I	0.2194	0.1376	4	No 21	0.1785	0.07413	4.762	None	No	0.01	Param.
Fluoride (mg/L)	PZ-68D	0.2776	0.08289	4	No 4	0.1803	0.04288	0	None	No	0.01	Param.
Lead (mg/L)	BRGWC-25I	0.002	0.00011	0.015	No 21	0.00191	0.0004124	95.24	None	No	0.01	NP (NDs)
Lead (mg/L)	BRGWC-27I	0.002	0.000063	0.015	No 21	0.001908	0.0004227	95.24	None	No	0.01	NP (NDs)
Lead (mg/L)	BRGWC-29I	0.002	0.0003	0.015	No 20	0.0009455	0.0007996	35	None	No	0.01	NP (normality)
Lead (mg/L)	BRGWC-30I	0.002	0.00011	0.015	No 21	0.00191	0.0004124	95.24	None	No	0.01	NP (NDs)
Lead (mg/L)	BRGWC-45	0.002	0.000595	0.015	No 22	0.001687	0.0006847	81.82	None	No	0.01	NP (NDs)
Lead (mg/L)	BRGWC-47	0.002	0.00012	0.015	No 22	0.001738	0.0006752	86.36	None	No	0.01	NP (NDs)
Lead (mg/L)	BRGWC-52I	0.002	0.000042	0.015	No 21	0.001907	0.0004273	95.24	None	No	0.01	NP (NDs)
Lead (mg/L)	PZ-68D	0.002	0.000504	0.015	No 4	0.001626	0.000748	75	None	No 		NP (NDs)
Lithium (mg/L)	BRGWC-27I	0.01	0.0014	0.089	No 21	0.004324	0.004119	33.33	None	No 	0.01	NP (normality)
Lithium (mg/L)	BRGWC-29I	0.003547	0.003078	0.089	No 21	0.003312	0.0004253	0	None	No	0.01	Param.
Lithium (mg/L)	BRGWC-30I	0.02116	0.01379	0.089	No 21	0.01748	0.006679	0	None	No	0.01	Param.
Lithium (mg/L)	BRGWC-32S	0.00514	0.0021	0.089	No 21	0.005127	0.006762	9.524	None	No	0.01	NP (normality)
Lithium (mg/L)	BRGWC-44 BRGWC-45	0.006541	0.004827	0.089	No 9	0.005684	0.0008877	0	None	No	0.01	Param.
Lithium (mg/L)	BRGWC-45	0.0043 0.04572	0.003 0.04152	0.089	No 21 No 22	0.004506 0.04362	0.002767 0.003917	19.05 0	None None	No No	0.01	NP (normality) Param.
Lithium (mg/L) Lithium (mg/L)	BRGWC-52I	0.04372	0.04132	0.089		0.04302	0.003917	4.762			0.01	Param.
Lithium (mg/L)	PZ-68D	0.01004	0.004283	0.089	No 21 No 4	0.007803	0.002081	0	None None	sqrt(x) No	0.01	Param.
Mercury (mg/L)	BRGWC-25I	0.0002	0.00083	0.009	No 19		0.002081	89.47	None	No	0.01	NP (NDs)
Mercury (mg/L)	BRGWC-27I	0.0002	0.00005	0.002	No 19	0.0001834	0.00004423	89.47	None	No	0.01	NP (NDs)
Mercury (mg/L)	BRGWC-29I	0.0002	0.000098	0.002	No 19		0.0001467	78.95	None	No	0.01	NP (NDs)
Mercury (mg/L)	BRGWC-30I	0.0002	0.000082	0.002	No 19		0.00005146	84.21	None	No	0.01	NP (NDs)
Mercury (mg/L)	BRGWC-32S	0.0002	0.0001	0.002	No 19		0.00004107	84.21	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	BRGWC-25I	0.01	0.001	0.1	No 20	0.00553	0.004588	50	None	No	0.01	NP (normality)
Molybdenum (mg/L)	BRGWC-27I	0.001	0.000213	0.1	No 20	0.0009212		90	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	BRGWC-30I	0.01	0.00123	0.1	No 20	0.006085	0.004448	55	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	BRGWC-45	0.000207	0.0002	0.1	No 21	0.0002615	0.0001462	76.19	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	BRGWC-47	0.01	0.000296	0.1	No 21	0.007685	0.004243	76.19	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	BRGWC-52I	0.01	0.0007	0.1	No 20	0.004976	0.004179	35	None	No	0.01	NP (normality)
Molybdenum (mg/L)	PZ-68D	0.0134	0.003249	0.1	No 4	0.007588	0.002383	0	None	sqrt(x)	0.01	Param.
Selenium (mg/L)	BRGWC-25I	0.005	0.0021	0.05	No 21	0.004862	0.0006328	95.24	None	No	0.01	NP (NDs)
Selenium (mg/L)	BRGWC-27I	0.005	0.0031	0.05	No 21	0.004062	0.001209	47.62	None	No	0.01	NP (normality)
Selenium (mg/L)	BRGWC-29I	0.005	0.0042	0.05	No 21	0.004733	0.001331	57.14	None	No	0.01	NP (NDs)
Selenium (mg/L)	BRGWC-30I	0.005	0.0045	0.05	No 21	0.00469	0.0007899	80.95	None	No	0.01	NP (NDs)
Selenium (mg/L)	BRGWC-32S	0.1763	0.1016	0.05	Yes 14	0.139	0.05274	0	None	No	0.01	Param.
Selenium (mg/L)	BRGWC-45	0.005	0.0029	0.05	No 22	0.004905	0.0004477	95.45	None	No	0.01	NP (NDs)
Selenium (mg/L)	BRGWC-47	0.005	0.0028	0.05	No 22	0.004164	0.001417	72.73	None	No	0.01	NP (NDs)
Thallium (mg/L)	BRGWC-29I	0.002	0.00017	0.002	No 21	0.0008724	0.0009065	38.1	None	No	0.01	NP (normality)

Appendix IV Trend Tests - Significant Results

Plant Branch Client: Southern Company Data: Plant Branch AP Printed 1/21/2025, 2:03 PM Constituent Well Calc. Critical Sig. <u>N</u> %NDs Normality <u>Alpha</u> Method Slope Cobalt (mg/L) BRGWA-23S (bg) -0.0004853 -113 -66 Yes 21 28.57 n/a 0.05 BRGWA-2S (bg) -0.0002793 Cobalt (mg/L) -150 -66 Yes 21 9.524 n/a 0.05 NP Cobalt (mg/L) BRGWA-5I (bg) -0.00009113 -89 -58 Yes 19 n/a 0.05 NP 12 Cobalt (mg/L) PZ-63I 0.005376 13 Yes 6 0 n/a 0.05 NP 37 Yes 14 Selenium (mg/L) BRGWC-32S 0.02939 41 0 n/a 0.05 NP

Appendix IV Trend Tests - All Results

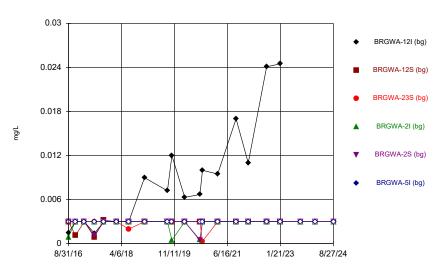
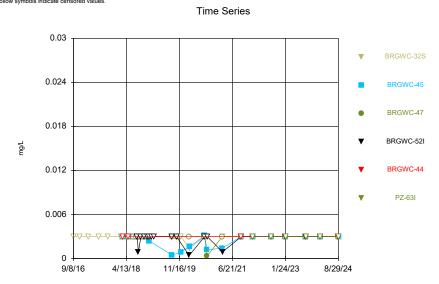
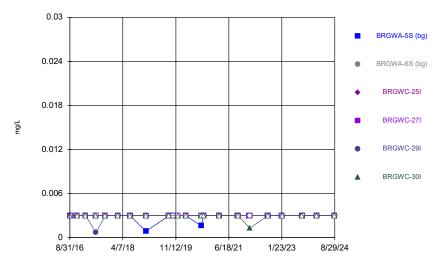

	Plant Branch Client	: Southern Comp	any Data	: Plant Brar	nch AP	Printed 1/2	21/2025, 2:0	3 PM		
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Alpha</u>	Method
Cobalt (mg/L)	BRGWA-12I (bg)	0	0	58	No	19	100	n/a	0.05	NP
Cobalt (mg/L)	BRGWA-12S (bg)	0	0	58	No	19	100	n/a	0.05	NP
Cobalt (mg/L)	BRGWA-23S (bg)	-0.0004853	-113	-66	Yes	21	28.57	n/a	0.05	NP
Cobalt (mg/L)	BRGWA-2I (bg)	0	-64	-66	No	21	57.14	n/a	0.05	NP
Cobalt (mg/L)	BRGWA-2S (bg)	-0.0002793	-150	-66	Yes	21	9.524	n/a	0.05	NP
Cobalt (mg/L)	BRGWA-5I (bg)	-0.00009113	-89	-58	Yes	19	0	n/a	0.05	NP
Cobalt (mg/L)	BRGWA-5S (bg)	0	25	66	No	21	71.43	n/a	0.05	NP
Cobalt (mg/L)	BRGWA-6S (bg)	0	21	66	No	21	76.19	n/a	0.05	NP
Cobalt (mg/L)	PZ-63I	0.005376	13	12	Yes	6	0	n/a	0.05	NP
Selenium (mg/L)	BRGWA-12I (bg)	0	0	53	No	18	100	n/a	0.05	NP
Selenium (mg/L)	BRGWA-12S (bg)	0	0	53	No	18	100	n/a	0.05	NP
Selenium (mg/L)	BRGWA-23S (bg)	0	-6	-66	No	21	42.86	n/a	0.05	NP
Selenium (mg/L)	BRGWA-2I (bg)	0	0	66	No	21	100	n/a	0.05	NP
Selenium (mg/L)	BRGWA-2S (bg)	0	0	66	No	21	100	n/a	0.05	NP
Selenium (mg/L)	BRGWA-5I (bg)	0	0	66	No	21	100	n/a	0.05	NP
Selenium (mg/L)	BRGWA-5S (bg)	0	0	66	No	21	100	n/a	0.05	NP
Selenium (mg/L)	BRGWA-6S (bg)	0	0	66	No	21	100	n/a	0.05	NP
Selenium (mg/L)	BRGWC-32S	0.02939	41	37	Yes	14	0	n/a	0.05	NP

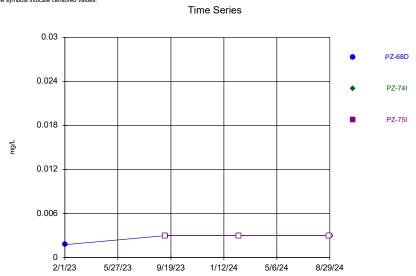
Table of Contents

	Contract of the Contract of th
Figure A. Time Series	27
Figure B. Box Plots	167
Figure C. Outlier Summary	189
Figure D. Appendix III Interwell Prediction Limits	191
Figure E. Appendix III Trend Tests	225
Figure F. Upper Tolerance Limits	251
Figure G. Groundwater Protection Standards	276
Figure H. Confidence Intervals	278
Figure I. Appendix IV Trend Tests	325

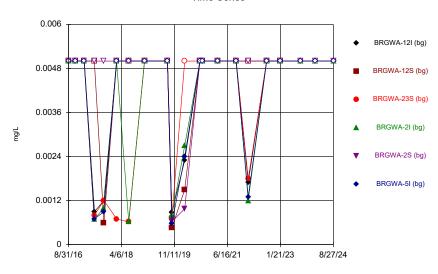

FIGURE A.


Constituent: Antimony Analysis Run 1/10/2025 10:43 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

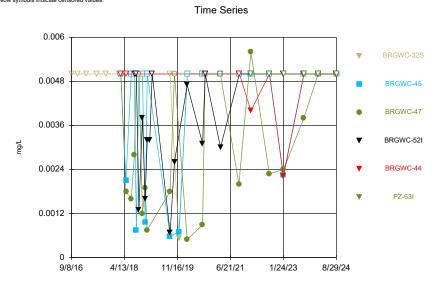
Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Antimony Analysis Run 1/10/2025 10:43 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

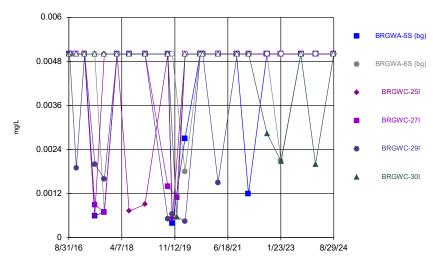
Time Series


Constituent: Antimony Analysis Run 1/10/2025 10:43 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

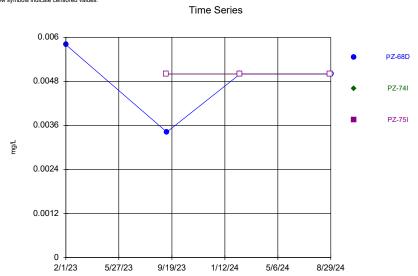
Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Antimony Analysis Run 1/10/2025 10:43 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

Time Series


Constituent: Arsenic Analysis Run 1/10/2025 10:43 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

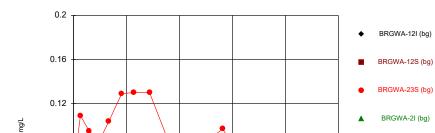
Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Arsenic Analysis Run 1/10/2025 10:43 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

Time Series

Constituent: Arsenic Analysis Run 1/10/2025 10:43 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas^{ru} v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Arsenic Analysis Run 1/10/2025 10:43 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

0.08

0.04

8/31/16

4/6/18

BRGWA-2S (bg)

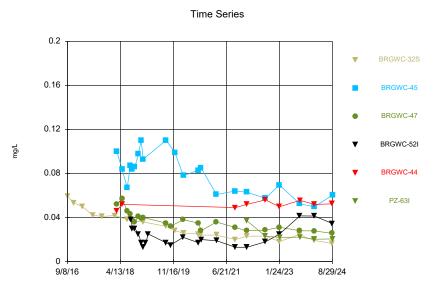
BRGWA-5I (bg)

Time Series

Constituent: Barium Analysis Run 1/10/2025 10:43 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

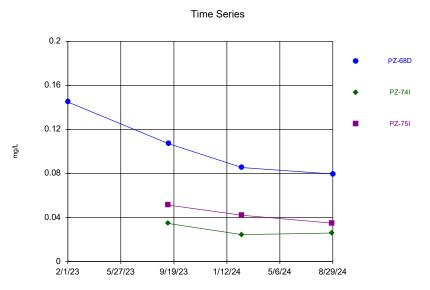
6/16/21

1/21/23

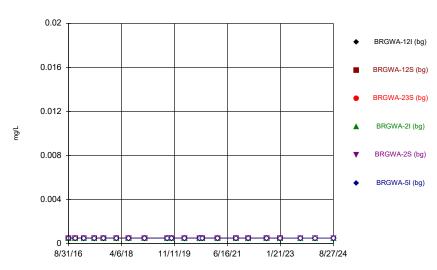

8/27/24

0.2 BRGWA-5S (bg) 0.16 BRGWA-6S (bg) BRGWC-25I 0.12 BRGWC-27I mg/L 0.08 BRGWC-29I BRGWC-30I 0.04 8/31/16 4/7/18 11/12/19 6/18/21 1/23/23 8/29/24

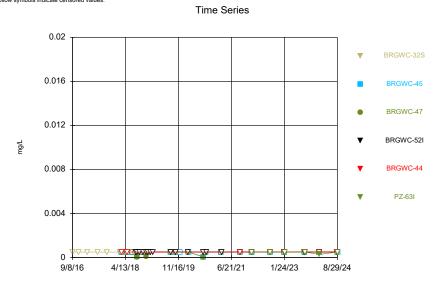
Time Series

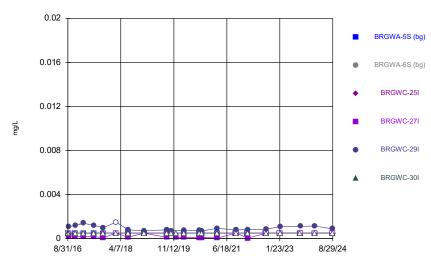

Constituent: Barium Analysis Run 1/10/2025 10:43 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG


Constituent: Barium Analysis Run 1/10/2025 10:43 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

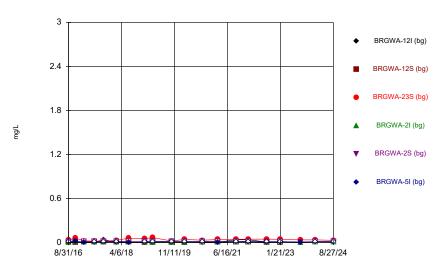

Constituent: Barium Analysis Run 1/10/2025 10:43 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: Beryllium Analysis Run 1/10/2025 10:43 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Beryllium Analysis Run 1/10/2025 10:43 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

Time Series

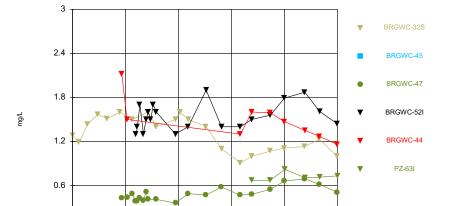

Constituent: Beryllium Analysis Run 1/10/2025 10:43 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series 0.02 PZ-68D 0.016 PZ-74I 0.012 mg/L 0.008 0.004 0 2/1/23 5/27/23 9/19/23 1/12/24 5/6/24 8/29/24

Constituent: Beryllium Analysis Run 1/10/2025 10:43 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

Constituent: Boron Analysis Run 1/10/2025 10:43 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP


Time Series

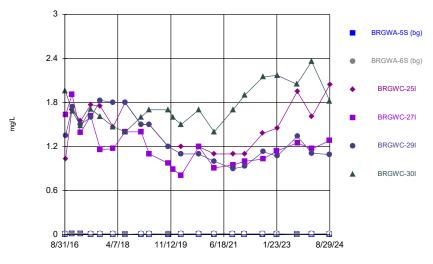
Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

9/8/16

4/13/18

Hollow symbols indicate censored values.

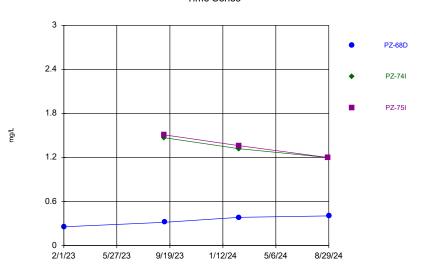
Constituent: Boron Analysis Run 1/10/2025 10:43 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP


6/21/21

1/24/23

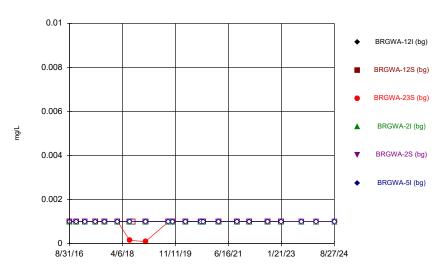
8/29/24

11/16/19

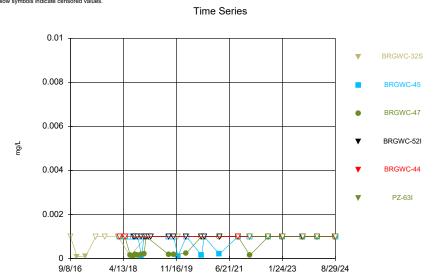

Time Series

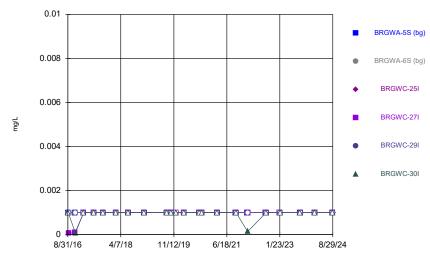
Constituent: Boron Analysis Run 1/10/2025 10:43 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG


Time Series

Constituent: Boron Analysis Run 1/10/2025 10:43 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG


Constituent: Cadmium Analysis Run 1/10/2025 10:43 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Cadmium Analysis Run 1/10/2025 10:43 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

Time Series

Constituent: Cadmium Analysis Run 1/10/2025 10:43 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

Time Series

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

2/1/23

5/27/23

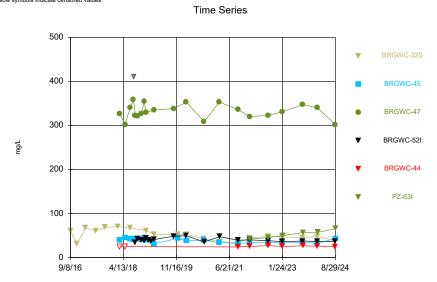
0.01 0.008 0.006 0.004 0.002

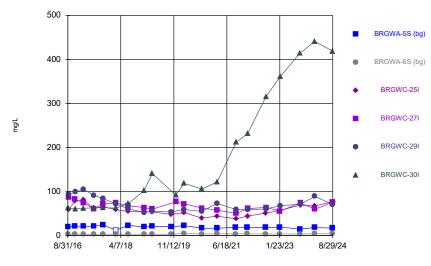
Constituent: Cadmium Analysis Run 1/10/2025 10:43 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP


1/12/24

5/6/24

8/29/24

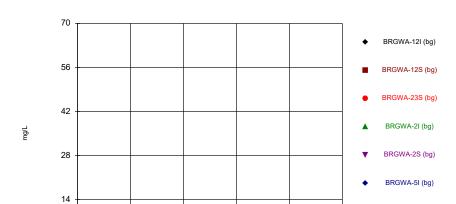

9/19/23


Constituent: Calcium Analysis Run 1/10/2025 10:43 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Calcium Analysis Run 1/10/2025 10:43 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

Time Series



Constituent: Calcium Analysis Run 1/10/2025 10:43 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Time Series PZ-68D 400 PZ-74I PZ-75I PZ-75I PZ-75I

Constituent: Calcium Analysis Run 1/10/2025 10:43 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

Time Series

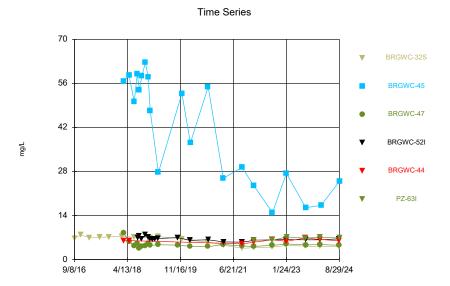
Constituent: Chloride Analysis Run 1/10/2025 10:43 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

6/16/21

1/21/23

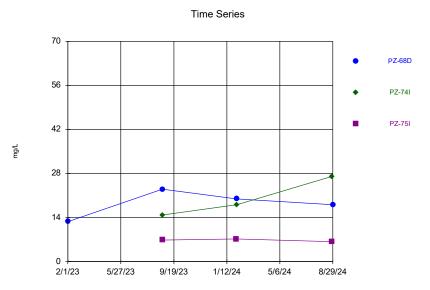
8/27/24

11/11/19


70 BRGWA-5S (bg) 56 BRGWA-6S (bg) BRGWC-25I 42 BRGWC-27I mg/L 28 BRGWC-29I BRGWC-30I 14 8/31/16 6/18/21 8/29/24 11/12/19 1/23/23

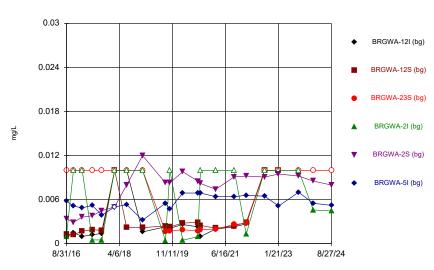
Time Series

Constituent: Chloride Analysis Run 1/10/2025 10:43 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

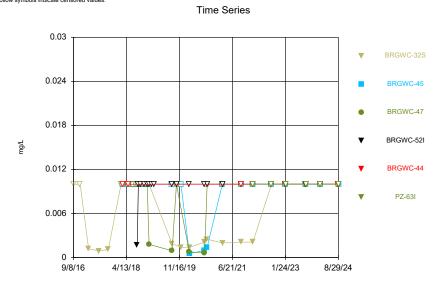

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

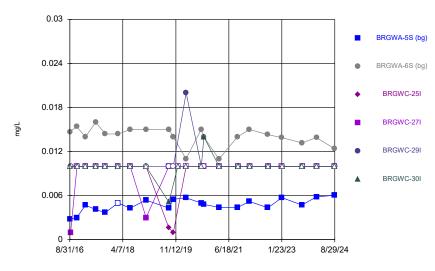
8/31/16




Constituent: Chloride Analysis Run 1/10/2025 10:43 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG


Constituent: Chloride Analysis Run 1/10/2025 10:43 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

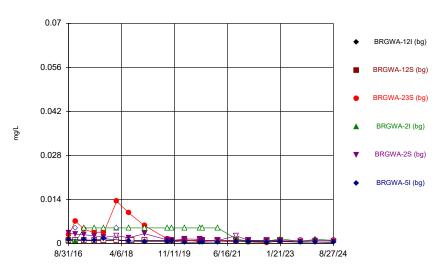

Constituent: Chromium Analysis Run 1/10/2025 10:43 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Chromium Analysis Run 1/10/2025 10:43 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

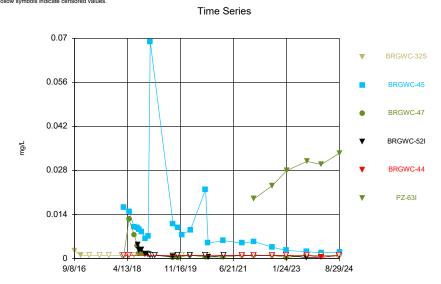
Time Series

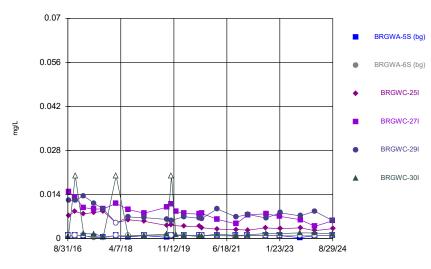
Constituent: Chromium Analysis Run 1/10/2025 10:43 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

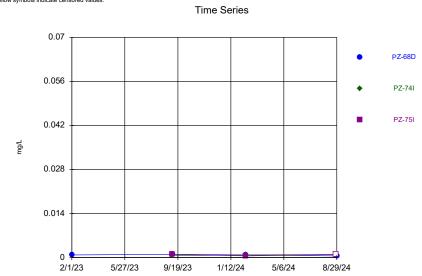
Time Series 0.03 PZ-68D 0.024 PZ-74I PZ-75I 0.018 mg/L 0.012 0.006 2/1/23 5/27/23 9/19/23 1/12/24 5/6/24 8/29/24

Constituent: Chromium Analysis Run 1/10/2025 10:43 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

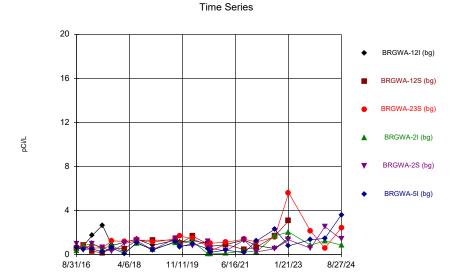

Sanitas^{tw} v.10.0.24 Software licensed to Groundwater Stats Consulting. UG


Constituent: Cobalt Analysis Run 1/10/2025 10:43 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Cobalt Analysis Run 1/10/2025 10:43 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

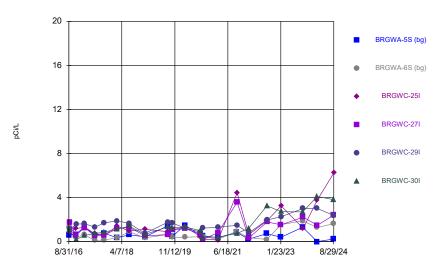
Time Series


Constituent: Cobalt Analysis Run 1/10/2025 10:43 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

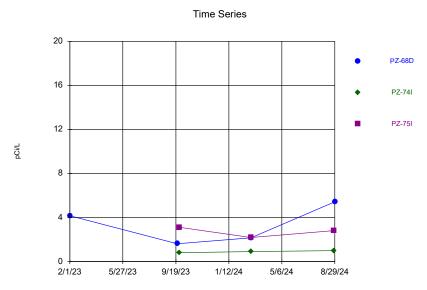
Constituent: Cobalt Analysis Run 1/10/2025 10:43 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

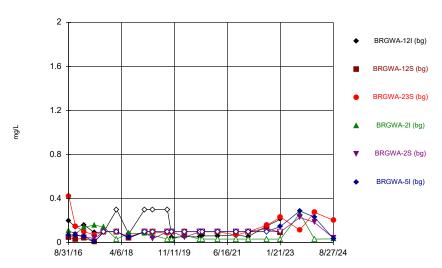
Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG



Constituent: Combined Radium 226 + 228 Analysis Run 1/10/2025 10:43 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

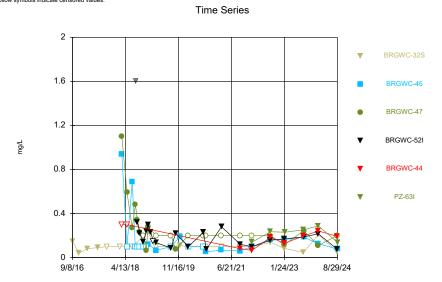
Time Series 20 BRGWC-32S BRGWC-45 BRGWC-47 BRGWC-52I BRGWC-52I PZ-63I


Constituent: Combined Radium 226 + 228 Analysis Run 1/10/2025 10:44 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

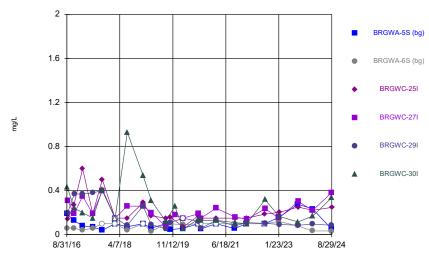


Constituent: Combined Radium 226 + 228 Analysis Run 1/10/2025 10:43 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

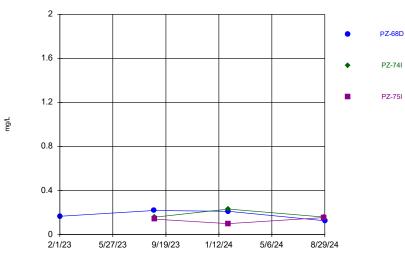


Constituent: Combined Radium 226 + 228 Analysis Run 1/10/2025 10:44 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: Fluoride Analysis Run 1/10/2025 10:44 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Fluoride Analysis Run 1/10/2025 10:44 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

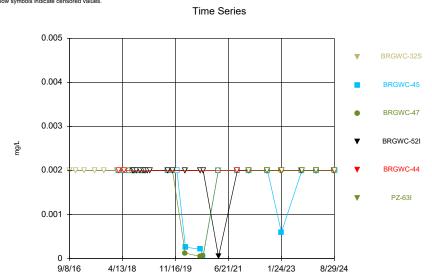

Time Series

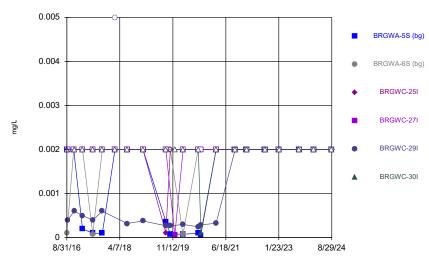
Constituent: Fluoride Analysis Run 1/10/2025 10:44 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

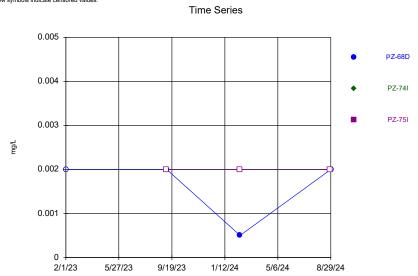
Time Series

Constituent: Fluoride Analysis Run 1/10/2025 10:44 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

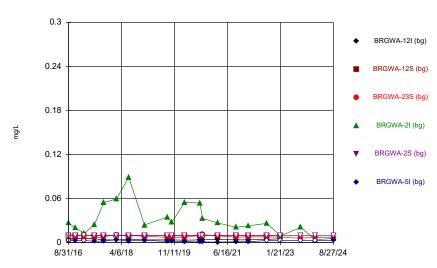

SanitasTM v.10.0.24 Software licensed to Groundwater Stats Consulting, UG


Constituent: Lead Analysis Run 1/10/2025 10:44 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

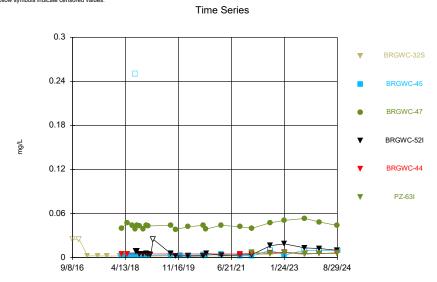
Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

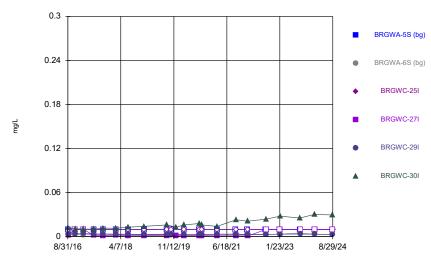

Constituent: Lead Analysis Run 1/10/2025 10:44 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

Time Series


Constituent: Lead Analysis Run 1/10/2025 10:44 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Lead Analysis Run 1/10/2025 10:44 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

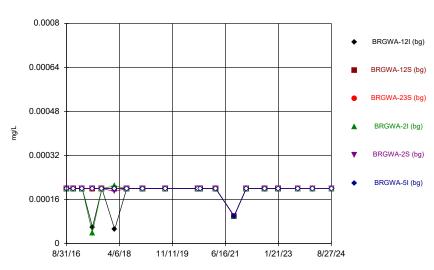

Constituent: Lithium Analysis Run 1/10/2025 10:44 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Lithium Analysis Run 1/10/2025 10:44 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

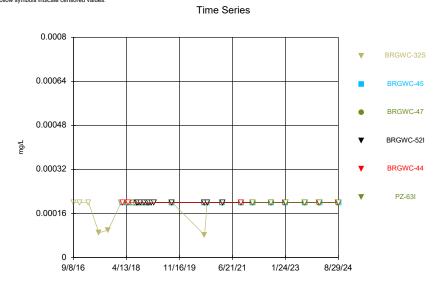
Time Series

Constituent: Lithium Analysis Run 1/10/2025 10:44 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

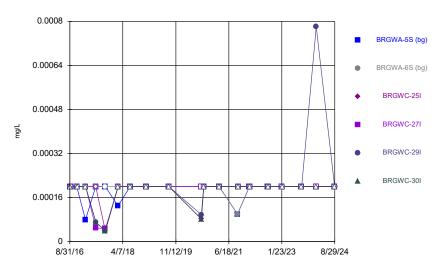

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Time Series 0.3 PZ-68D 0.24 PZ-74I 0.18 mg/L 0.12 0.06 0 2/1/23 5/27/23 9/19/23 1/12/24 5/6/24 8/29/24

Constituent: Lithium Analysis Run 1/10/2025 10:44 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

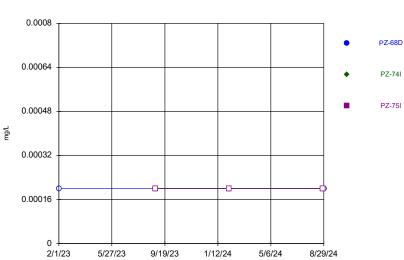

Hollow symbols indicate censored values.

Constituent: Mercury Analysis Run 1/10/2025 10:44 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

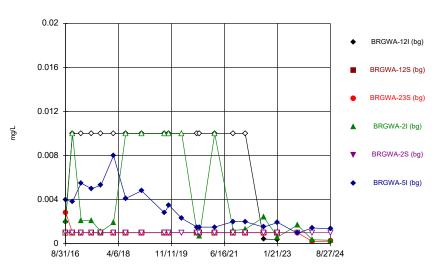
Constituent: Mercury Analysis Run 1/10/2025 10:44 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

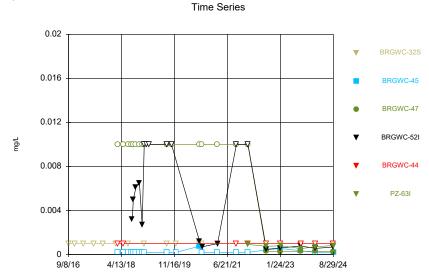

Time Series

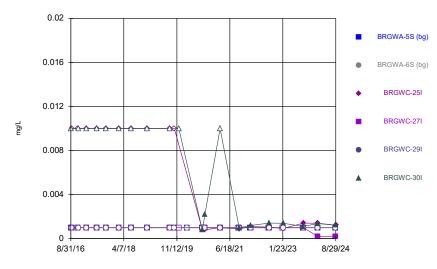
Constituent: Mercury Analysis Run 1/10/2025 10:44 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

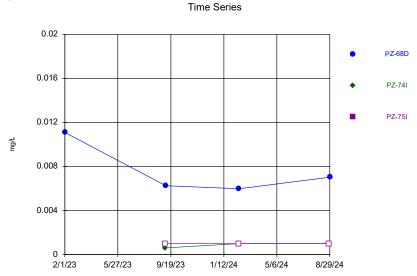

Time Series

Constituent: Mercury Analysis Run 1/10/2025 10:44 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

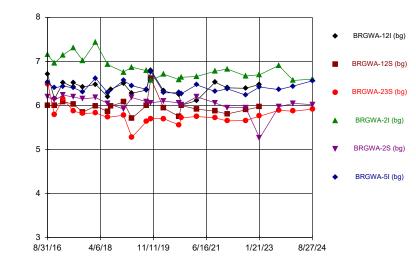

Sanitas^{tw} v. 10.0.24 Software licensed to Groundwater Stats Consulting. UG


Constituent: Molybdenum Analysis Run 1/10/2025 10:44 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

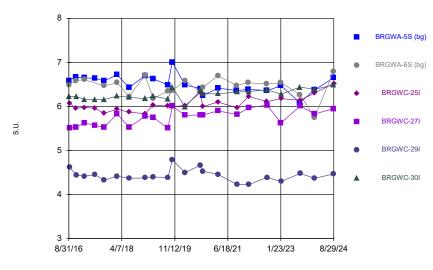
Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Molybdenum Analysis Run 1/10/2025 10:44 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

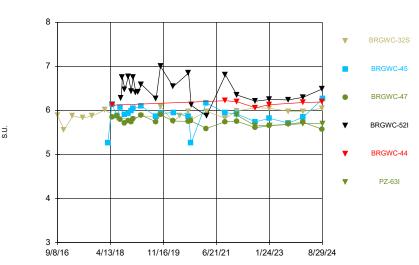
Time Series


Constituent: Molybdenum Analysis Run 1/10/2025 10:44 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

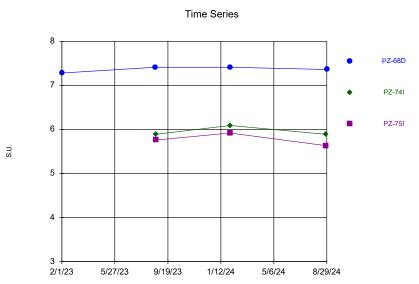
Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

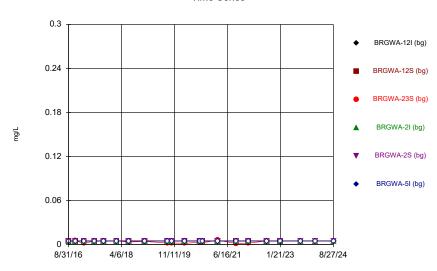


Constituent: Molybdenum Analysis Run 1/10/2025 10:44 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

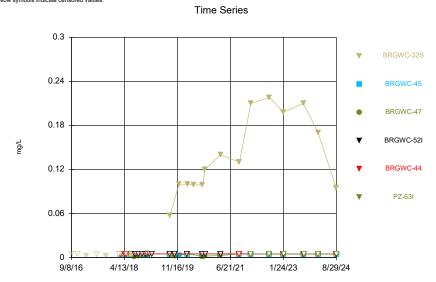

Constituent: pH, Field Analysis Run 1/10/2025 10:44 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

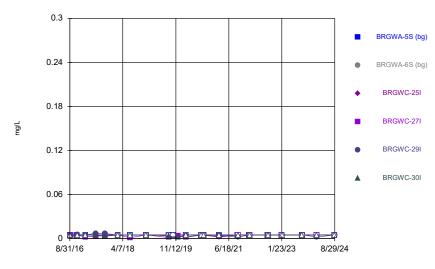
Constituent: pH, Field Analysis Run 1/10/2025 10:44 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas $^{\text{tw}}$ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

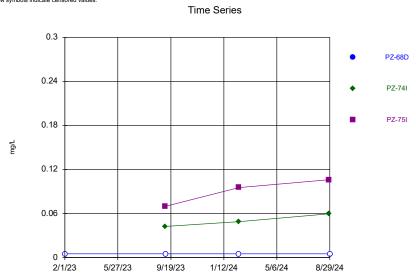

Constituent: pH, Field Analysis Run 1/10/2025 10:44 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

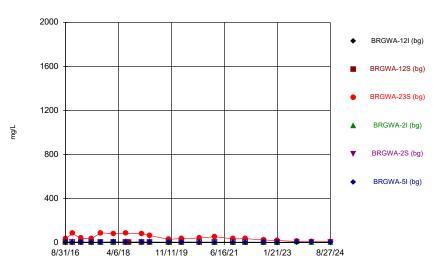

Constituent: pH, Field Analysis Run 1/10/2025 10:44 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: Selenium Analysis Run 1/10/2025 10:44 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

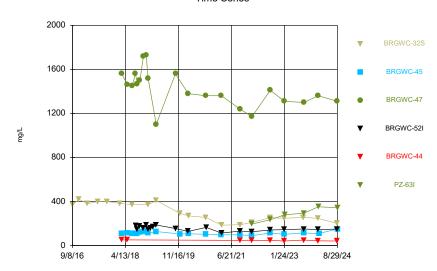

Constituent: Selenium Analysis Run 1/10/2025 10:44 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

Time Series

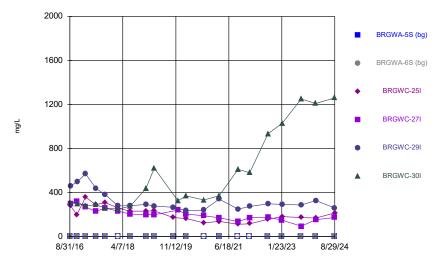

Constituent: Selenium Analysis Run 1/10/2025 10:44 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Selenium Analysis Run 1/10/2025 10:44 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

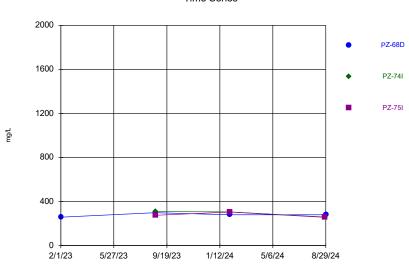


Constituent: Sulfate Analysis Run 1/10/2025 10:44 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

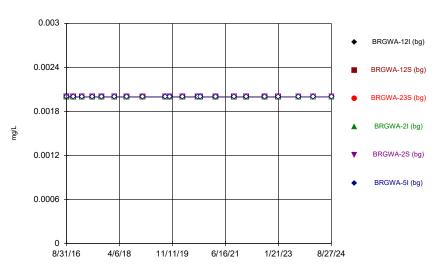
Time Series

Constituent: Sulfate Analysis Run 1/10/2025 10:44 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

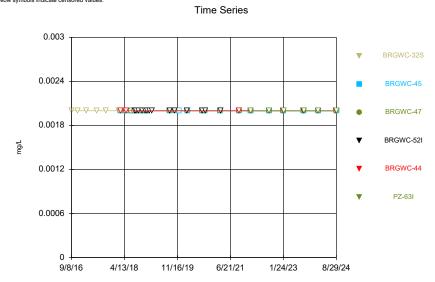

Time Series

Constituent: Sulfate Analysis Run 1/10/2025 10:44 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

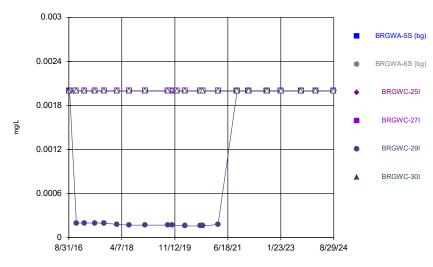
Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG


Time Series

Constituent: Sulfate Analysis Run 1/10/2025 10:44 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

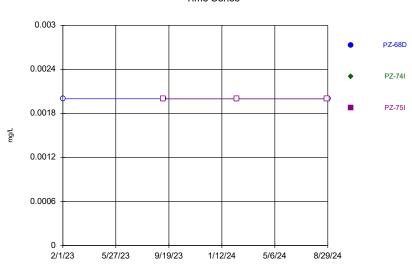

Hollow symbols indicate censored values.

Constituent: Thallium Analysis Run 1/10/2025 10:44 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Thallium Analysis Run 1/10/2025 10:44 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

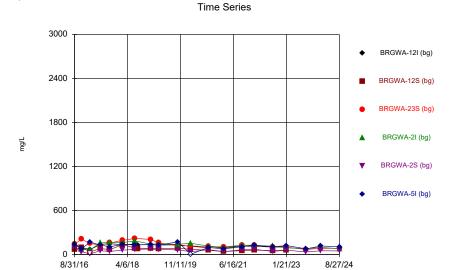
Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG


Time Series

Constituent: Thallium Analysis Run 1/10/2025 10:44 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series



Constituent: Thallium Analysis Run 1/10/2025 10:44 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

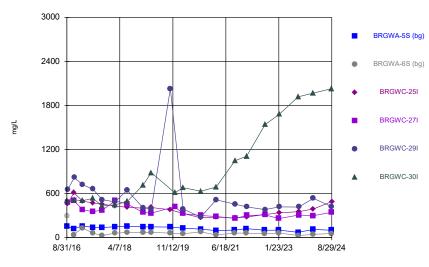
9/8/16

4/13/18

Constituent: Total Dissolved Solids Analysis Run 1/10/2025 10:44 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

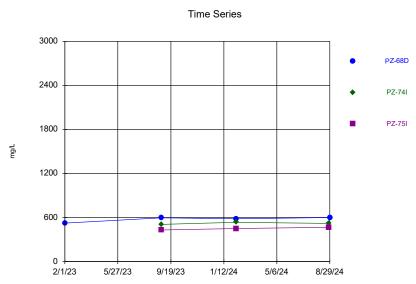
Time Series **BRGWC-32S **BRGWC-45 **BRGWC-47 **BRGWC-52I **PZ-63I

Constituent: Total Dissolved Solids Analysis Run 1/10/2025 10:44 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP


6/21/21

1/24/23

8/29/24


11/16/19

Constituent: Total Dissolved Solids Analysis Run 1/10/2025 10:44 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Constituent: Total Dissolved Solids Analysis Run 1/10/2025 10:44 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)
8/31/2016				0.0009 (J)	<0.003	<0.003
9/1/2016	0.0015 (J)	<0.003				
9/6/2016			<0.003			
11/16/2016	<0.003	0.0011 (J)		<0.003	<0.003	<0.003
11/17/2016			<0.003			
2/20/2017						<0.003
2/21/2017	<0.003	<0.003	<0.003	<0.003	<0.003	
6/12/2017				<0.003		<0.003
6/13/2017		0.0009 (J)	<0.003		0.0011 (J)	
6/14/2017	0.0014 (J)					
9/26/2017	<0.003	0.0032	<0.003	<0.003	<0.003	<0.003
2/13/2018				<0.003	<0.003	<0.003
2/14/2018	<0.003	<0.003	<0.003			
6/26/2018	<0.003	<0.003	0.002 (J)	<0.003	<0.003	<0.003
12/18/2018	0.009	<0.003	<0.003	<0.003	<0.003	<0.003
8/27/2019	0.0072	<0.003		<0.003	<0.003	<0.003
8/29/2019			<0.003			
10/15/2019	0.012	<0.003	<0.003	0.00047 (J)	<0.003	<0.003
3/3/2020	0.0063	<0.003		<0.003	<0.003	<0.003
3/4/2020			<0.003			
8/18/2020	0.0067	<0.003	<0.003	0.00054 (J)	0.00042 (J)	<0.003
9/15/2020	0.01	<0.003	0.00033 (J)	<0.003	<0.003	<0.003
3/1/2021				<0.003		
3/2/2021	0.0095	<0.003	<0.003		<0.003	<0.003
9/21/2021	0.017	<0.003				<0.003
9/22/2021			<0.003	<0.003	<0.003	
2/1/2022	0.011	<0.003	<0.003	<0.003	<0.003	<0.003
8/23/2022	0.0241	<0.003	<0.003	<0.003	<0.003	<0.003
1/24/2023	0.0245	<0.003	<0.003	<0.003	<0.003	<0.003
8/31/2023			<0.003	<0.003	<0.003	<0.003
2/10/2024			<0.003	<0.003	<0.003	<0.003
8/27/2024			<0.003	<0.003	<0.003	<0.003

					,	
	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
8/31/2016	<0.003					
9/1/2016		<0.003				
9/6/2016						<0.003
9/8/2016			<0.003	<0.003	<0.003	
11/15/2016	<0.003	<0.003				
11/17/2016			<0.003			
11/18/2016			0.000	<0.003		
11/21/2016				2.200	<0.003	<0.003
2/20/2017	<0.003	<0.003			5.500	0.000
2/21/2017	-0.000	-0.000	<0.003	<0.003		
2/22/2017			·0.000	~0.000	<0.003	<0.003
	<0.003	<0.003			×0.003	~ 0.003
6/12/2017	<0.003	<0.003	<0.003	<0.002		
6/13/2017			<0.003	<0.003	0.0007 (*)	-0.000
6/14/2017	.0.000				0.0007 (J)	<0.003
9/26/2017	<0.003	<0.003				
9/27/2017			<0.003	<0.003	<0.003	<0.003
2/13/2018	<0.003	<0.003				
2/14/2018			<0.003	<0.003	<0.003	<0.003
6/26/2018	<0.003	<0.003	<0.003			
6/27/2018				<0.003	<0.003	
6/28/2018						<0.003
12/18/2018	0.00087 (J)	<0.003	<0.003		<0.003	<0.003
12/20/2018				<0.003		
8/27/2019	<0.003	<0.003	<0.003			<0.003
8/28/2019				<0.003	<0.003	
10/15/2019	<0.003	<0.003	<0.003			
10/16/2019					<0.003	
12/4/2019				<0.003		<0.003
3/3/2020	<0.003	<0.003				
3/4/2020			<0.003	<0.003	<0.003	
3/5/2020						<0.003
8/18/2020	0.0016 (J)	<0.003				
8/19/2020	(-)		<0.003	<0.003	<0.003	<0.003
9/15/2020	<0.003	<0.003	<0.003	2.200	<0.003	
9/16/2020	-0.000	.0.000	-0.000	<0.003	-0.000	<0.003
3/1/2021		<0.003		-0.000		-0.000
	<0.003	-0.000	<0.003			
3/2/2021	<0.003		\U.UU3	<0.003	<0.003	<0.003
3/3/2021	-0.000			<0.003	<0.003	<0.003
9/21/2021	<0.003					
9/22/2021		<0.003				
9/28/2021			<0.003	<0.003	<0.003	<0.003
2/1/2022	<0.003	<0.003				
2/2/2022			<0.003			0.0013 (J)
2/3/2022					<0.003	
2/4/2022				<0.003		
8/23/2022	<0.003	<0.003	<0.003			
8/24/2022					<0.003	<0.003
8/25/2022				<0.003		
1/24/2023	<0.003	<0.003				
1/25/2023				<0.003		
1/26/2023			<0.003		<0.003	<0.003
8/31/2023	<0.003	<0.003				<0.003

	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
9/6/2023			<0.003	<0.003	<0.003	
2/10/2024	<0.003	<0.003				<0.003
2/13/2024			<0.003	<0.003	<0.003	
8/27/2024	<0.003	<0.003		<0.003	<0.003	
8/28/2024						<0.003
8/29/2024			< 0.003			

					,	
	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44	PZ-63I
9/8/2016	<0.003					
11/21/2016	<0.003					
2/22/2017	<0.003					
6/14/2017	<0.003					
9/27/2017	<0.003					
2/14/2018	<0.003					
3/6/2018		<0.003	<0.003		<0.003	
5/1/2018		<0.003	<0.003 (D)		<0.003	
6/27/2018	<0.003	0.000	<0.003		0.000	
6/28/2018	-0.000	<0.003	-0.000			
7/31/2018		<0.003				
8/1/2018		10.003	<0.003			
8/10/2018			~0.003	<0.003		
		<0.002	~ 0.002			
8/23/2018		<0.003	<0.003	0.00085 (J)		
9/19/2018		<0.003	<0.003	<0.003		
10/29/2018		<0.003	<0.003	<0.003		
11/28/2018		<0.003	<0.003	<0.003		
12/19/2018	<0.003		<0.003			
12/20/2018		0.0024 (J)		<0.003		
1/17/2019				<0.003		
2/13/2019				<0.003		
8/27/2019	<0.003					
8/28/2019		0.00046 (J)	<0.003			
8/29/2019				<0.003		
10/16/2019			<0.003	<0.003		
12/3/2019		0.00088 (J)				
12/4/2019	<0.003					
3/4/2020			<0.003	0.00043 (J)		
3/5/2020	0.0014 (J)	0.0016 (J)				
8/19/2020	<0.003					
8/20/2020		0.0031	<0.003	<0.003		
9/16/2020	<0.003	0.0012 (J)	0.00035 (J)			
9/17/2020		- (-)	(-)	<0.003		
3/2/2021		0.0014 (J)	<0.003	2.000		
3/4/2021	<0.003	0.0017(0)	-0.000	0.00091 (J)		
9/23/2021	-0.003	<0.003	<0.003	0.00031 (0)		
	<0.002	~ 0.003	~ 0.003	<0.002	<0.002	
9/28/2021	<0.003	-0.000	-0.000	<0.003	<0.003	
2/2/2022	<0.003	<0.003	<0.003	<0.003	<0.003	.0.000
2/4/2022						<0.003
8/23/2022			<0.003			
8/25/2022	<0.003	<0.003		<0.003	<0.003	<0.003
1/24/2023	<0.003					
1/25/2023		<0.003		<0.003	<0.003	
1/26/2023			<0.003			
1/30/2023						<0.003
8/31/2023	<0.003					
9/6/2023		<0.003	<0.003	<0.003		
9/8/2023					<0.003	<0.003
2/10/2024	<0.003		<0.003		<0.003	
2/14/2024		<0.003		<0.003		<0.003
8/27/2024					<0.003	
8/28/2024	<0.003		<0.003	<0.003		

Constituent: Antimony (mg/L) Analysis Run 1/10/2025 10:45 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

BRGWC-32S BRGWC-45 BRGWC-47 BRGWC-52I BRGWC-44 PZ-63I 8/29/2024 < 0.003 < 0.003 < 0.003

	PZ-68D	PZ-74I	PZ-75I
2/1/2023	0.00176 (J)		
9/6/2023		<0.003	<0.003
9/8/2023	<0.003		
2/14/2024	<0.003	<0.003	<0.003
8/27/2024		<0.003	<0.003
8/29/2024	<0.003		

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)
8/31/2016				<0.005	<0.005	<0.005
9/1/2016	<0.005	<0.005				
9/6/2016			<0.005			
11/16/2016	<0.005	<0.005		<0.005	<0.005	<0.005
11/17/2016			<0.005			
2/20/2017						<0.005
2/21/2017	<0.005	<0.005	<0.005	<0.005	<0.005	
6/12/2017				0.0007 (J)		0.0007 (J)
6/13/2017		<0.005	0.0008 (J)		<0.005	
6/14/2017	0.0009 (J)					
9/26/2017	0.0012 (J)	0.0006 (J)	0.0012 (J)	0.001 (J)	<0.005	0.0009 (J)
2/13/2018				<0.005	<0.005	<0.005
2/14/2018	<0.005	<0.005	0.0007 (J)			
6/26/2018	<0.005	<0.005	0.00062 (J)	0.00062 (J)	<0.005	<0.005
12/18/2018	<0.005	<0.005	<0.005	<0.005	<0.005 (X)	<0.005 (X)
8/27/2019	<0.005	<0.005		<0.005	<0.005	<0.005
8/29/2019			<0.005			
10/15/2019	0.00088 (J)	0.00046 (J)	0.00075 (J)	0.0008 (J)	0.00063 (J)	0.00058 (J)
3/3/2020	0.0023 (J)	0.0015 (J)		0.0027 (J)	0.00098 (J)	0.0024 (J)
3/4/2020			<0.005			
8/18/2020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
9/15/2020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
3/1/2021				<0.005		
3/2/2021	<0.005	<0.005	<0.005		<0.005	<0.005
9/21/2021	<0.005	<0.005				<0.005
9/22/2021			<0.005	<0.005	<0.005	
2/1/2022	0.0017 (J)	<0.005	0.0018 (J)	0.0012 (J)	<0.005	0.0013 (J)
8/23/2022	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
1/24/2023	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/31/2023			<0.005	<0.005	<0.005	<0.005
2/10/2024			<0.005	<0.005	<0.005	<0.005
8/27/2024			<0.005	<0.005	<0.005	<0.005

		BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
8	3/31/2016	<0.005					
9)/1/2016		<0.005				
9)/6/2016						<0.005
9	9/8/2016			<0.005	<0.005	<0.005	
1	1/15/2016	<0.005	<0.005				
	1/17/2016			<0.005			
	1/18/2016				<0.005		
	1/21/2016					0.0019 (J)	<0.005
	2/20/2017	<0.005	<0.005			(5)	
	2/21/2017			<0.005	<0.005		
	2/22/2017					<0.005	<0.005
	5/12/2017	0.0006 (J)	<0.005			0.000	0.000
	5/13/2017	0.0000 (0)	10.000	0.0006 (J)	0.0009 (J)		
	5/14/2017			0.0000 (3)	0.0003 (3)	0.002 (J)	<0.005
		0.0007 (1)	0.0007 (1)			0.002 (3)	10.003
	0/26/2017	0.0007 (J)	0.0007 (J)	-0.005	0.0007 (1)	0.0010 (1)	10.005
	0/27/2017	<0.00E	<0.00E	<0.005	0.0007 (J)	0.0016 (J)	<0.005
	2/13/2018	<0.005	<0.005	<0.005	<0.00F	~0.00 5	40.005
	2/14/2018			<0.005	<0.005	<0.005	<0.005
	5/26/2018	<0.005	<0.005	0.00072 (J)	0.005		
	5/27/2018				<0.005	<0.005	
	5/28/2018						<0.005 (X)
	2/18/2018	<0.005 (X)	<0.005 (X)	0.00091 (J)		<0.005	<0.005
1	2/20/2018				<0.005		
8	3/27/2019	<0.005	<0.005	<0.005			<0.005
8	3/28/2019				0.0014 (J)	0.00051 (J)	
1	0/15/2019	0.00039 (J)	<0.005	0.00052 (J)			
1	0/16/2019					0.00065 (J)	
1	2/4/2019				0.0011 (J)		0.00056 (J)
3	3/3/2020	0.0027 (J)	0.0018 (J)				
3	3/4/2020			<0.005	<0.005	0.00044 (J)	
3	3/5/2020						<0.005
8	3/18/2020	<0.005	<0.005				
8	3/19/2020			<0.005	<0.005	<0.005	<0.005
9)/15/2020	<0.005	<0.005	<0.005		<0.005	
	9/16/2020				<0.005		<0.005
	3/1/2021		<0.005				
	3/2/2021	<0.005		<0.005			
	3/3/2021				<0.005	0.0015 (J)	<0.005
	0/21/2021	<0.005				` '	
)/22/2021		<0.005				
	0/28/2021			<0.005	<0.005	<0.005	<0.005
	2/1/2022	0.0012 (J)	<0.005	0.000	0.000	0.000	5.555
	2/2/2022	J.00 12 (0)	.0.000	<0.005			<0.005
				÷0.003		<0.005	10.000
	2/3/2022				<0.00E	<0.005	
	2/4/2022	-0.005	-0.005	-0.005	<0.005		
	8/23/2022	<0.005	<0.005	<0.005		-0.005	0.00002 (1)
	8/24/2022					<0.005	0.00283 (J)
	3/25/2022				<0.005		
	/24/2023	<0.005	0.0021 (J)				
	/25/2023				<0.005		
	/26/2023			<0.005		<0.005	0.00208 (J)
8	3/31/2023	<0.005	<0.005				<0.005

	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
9/6/2023			<0.005	<0.005	<0.005	
2/10/2024	<0.005	<0.005				0.002 (J)
2/13/2024			<0.005	<0.005	<0.005	
8/27/2024	<0.005	<0.005		<0.005	<0.005	
8/28/2024						<0.005
8/29/2024			<0.005			

	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44	PZ-63I
9/8/2016	<0.005					
11/21/2016	<0.005					
2/22/2017	<0.005					
6/14/2017	<0.005					
9/27/2017	<0.005					
2/14/2018	<0.005					
3/6/2018		<0.005 (X)	<0.005 (X)		<0.005 (X)	
5/1/2018		0.0021 (J)	0.0018 (JD)		<0.005	
6/27/2018	<0.005		0.0016 (J)			
6/28/2018	0.000	<0.005 (X)	0.0010(0)			
7/31/2018		<0.005				
8/1/2018		0.000	0.0028 (J)			
8/10/2018			0.0020 (3)	<0.005		
8/23/2018		0.00075 (J)	<0.005	<0.005		
9/19/2018		<0.005	<0.005			
				0.0013 (J)		
10/29/2018		<0.005	0.0012 (J)	0.0038 (J)		
11/28/2018	<0.00F	0.00096 (J)	0.0019 (J)	0.0016 (J)		
12/19/2018	<0.005	-0.005	0.00075 (J)	0.0000 (1)		
12/20/2018		<0.005		0.0032 (J)		
1/17/2019				0.0032 (J)		
2/13/2019				<0.005		
8/27/2019	<0.005					
8/28/2019		0.00058 (J)	0.0018 (J)			
8/29/2019				0.00067 (J)		
10/16/2019			<0.005	0.0026 (J)		
12/3/2019		0.0007 (J)				
12/4/2019	0.00053 (J)					
3/4/2020			0.00049 (J)	0.0047 (J)		
3/5/2020	<0.005	<0.005				
8/19/2020	<0.005					
8/20/2020		<0.005	0.00089 (J)	0.0031 (J)		
9/16/2020	<0.005	<0.005	<0.005			
9/17/2020				<0.005		
3/2/2021		<0.005	<0.005			
3/4/2021	<0.005			0.003 (J)		
9/23/2021		<0.005	0.002 (J)			
9/28/2021	<0.005			<0.005	<0.005	
2/2/2022	<0.005	<0.005	0.0056	<0.005	0.004 (J)	
2/4/2022						<0.005
8/23/2022			0.00228 (J)			
8/25/2022	<0.005	<0.005		<0.005	<0.005	<0.005
1/24/2023	<0.005					
1/25/2023		0.00225 (J)		<0.005	0.00221 (J)	
1/26/2023			0.0024 (J)			
1/30/2023						<0.005
8/31/2023	<0.005					
9/6/2023		<0.005	0.0038 (J)	<0.005		
9/8/2023			.,		<0.005	<0.005
2/10/2024	<0.005		<0.005		<0.005	
2/14/2024		<0.005		<0.005		<0.005
8/27/2024					<0.005	
8/28/2024	<0.005		<0.005	<0.005	-	
	-		-	.		

Constituent: Arsenic (mg/L) Analysis Run 1/10/2025 10:45 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

BRGWC-32S BRGWC-45 BRGWC-47 BRGWC-52I BRGWC-44 PZ-63I 8/29/2024 <0.005 <0.005

	PZ-68D	PZ-74I	PZ-75I
2/1/2023	0.0058		
9/6/2023		<0.005	<0.005
9/8/2023	0.00342 (J)		
2/14/2024	<0.005	<0.005	<0.005
8/27/2024		<0.005	<0.005
8/29/2024	<0.005		

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)
8/31/2016				0.0239	0.0099 (J)	0.0273
9/1/2016	0.0454	0.0528				
9/6/2016			0.0624			
11/16/2016	0.0623	0.0509		0.0147	0.0102	0.0365
11/17/2016			0.109			
2/20/2017						0.0336
2/21/2017	0.0644	0.0531	0.095	0.0109	0.0094 (J)	
6/12/2017				0.0094 (J)		0.0322
6/13/2017		0.0543	0.0861		0.0094 (J)	
6/14/2017	0.0726					
9/26/2017	0.0765	0.0547	0.104	0.0156	0.0096 (J)	0.0364
2/13/2018				0.0134	0.0102	0.054
2/14/2018	0.0786	0.0603	0.129			
6/26/2018	0.063	0.059	0.13	0.014	0.0093 (J)	0.032
12/18/2018	0.067	0.056	0.13	0.0076 (J)	0.01	0.038
8/27/2019	0.058	0.057		0.012	0.0095 (J)	0.028
8/29/2019			0.076			
10/15/2019	0.06	0.053	0.069	0.013	0.0091 (J)	0.032
3/3/2020	0.076	0.06		0.017	0.011	0.028
3/4/2020			0.087			
8/18/2020	0.053	0.058	0.067	0.01 (J)	0.01	0.022
9/15/2020	0.059	0.058	0.086	0.0083 (J)	0.0094 (J)	0.022
3/1/2021				0.0074		
3/2/2021	0.053	0.063	0.097		0.0094	0.023
9/21/2021	0.074	0.06				0.025
9/22/2021			0.07	0.0075	0.0097	
2/1/2022	0.057	0.064	0.08	0.0066	0.01	0.028
8/23/2022	0.0602	0.0607	0.0573	0.00954	0.012	0.0241
1/24/2023	0.0512	0.0576	0.0468	0.00453	0.0118	0.0303
8/31/2023			0.0434	0.0068	0.0135	0.0245
2/10/2024			0.0431	0.0124	0.0137	0.0296
8/27/2024			0.0432	0.00493	0.0132	0.0314

		BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
8/	/31/2016	0.0495					
9/	/1/2016		0.0142				
9/	6/2016						0.0206
	/8/2016			0.0378	0.0184	0.0199	
	1/15/2016	0.0512	0.0126				
	1/17/2016			0.0448			
	1/18/2016			0.0110	0.0173		
	1/21/2016				0.0170	0.0221 (J)	0.0237 (J)
	/20/2017	0.0586	0.0142			0.0221 (0)	0.0237 (0)
	/21/2017	0.0360	0.0142	0.0447	0.015		
				0.0447	0.013	0.0179	0.0219
	/22/2017	0.0567	0.0124			0.0179	0.0219
	/12/2017	0.0567	0.0134	0.0251	0.0142		
	/13/2017			0.0351	0.0143	0.0157	0.0407
	/14/2017	0.0500	0.0400			0.0157	0.0197
	/26/2017	0.0586	0.0133				
	27/2017	0.054	0.0145	0.0383	0.017	0.0165	0.0213
	/13/2018	0.054	0.0145				
	/14/2018			0.0327	0.0166	0.0163	0.0236
	/26/2018	0.063	0.014	0.031			
	27/2018				0.015	0.017	
6/	/28/2018						0.023
12	2/18/2018	0.045	0.013	0.03		0.017	0.029
12	2/20/2018				0.015		
8/	27/2019	0.056	0.013	0.027			0.027
8/	/28/2019				0.019	0.02	
10	0/15/2019	0.049	0.013	0.027			
10	0/16/2019					0.019	
12	2/4/2019				0.016		0.021
3/	/3/2020	0.051	0.019				
3/	4/2020			0.026	0.015	0.018	
3/	/5/2020						0.025
8/	18/2020	0.04	0.014				
	19/2020			0.027	0.016	0.019	0.026
	15/2020	0.038	0.013	0.024		0.017	
	16/2020			-	0.016	-	0.022
	/1/2021		0.016				
	/2/2021	0.037	2.0.0	0.026			
	/3/2021	3.007		5.020	0.016	0.021	0.028
	/21/2021	0.038			3.010	J.UZ 1	
	/21/2021	0.030	0.014				
			0.014	0.022	0.012	0.017	0.025
	/28/2021	0.04	0.014	0.023	0.013	0.017	0.035
	/1/2022	0.04	0.014	0.000			0.004
	/2/2022			0.023			0.031
	/3/2022					0.016	
	/4/2022				0.015		
	/23/2022	0.0379	0.014	0.0259			
	/24/2022					0.0175	0.0389
	/25/2022				0.0161		
1/	/24/2023	0.0394	0.0132				
1/	/25/2023				0.0166		
1/	/26/2023			0.0293		0.018	0.0397
8/	/31/2023	0.0352	0.0143				0.04

	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
9/6/2023			0.0271	0.0151	0.0174	
2/10/2024	0.0396	0.0151				0.0349
2/13/2024			0.0276	0.0155	0.0179	
8/27/2024	0.0362	0.0159		0.0164	0.0163	
8/28/2024						0.0339
8/29/2024			0.0291			

		BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44	PZ-63I
9/8/201	16	0.0593					
11/21/2	2016	0.0532 (BR)					
2/22/20)17	0.0498					
6/14/20)17	0.0421					
9/27/20)17	0.0411					
2/14/20		0.0417					
3/6/201			0.1	0.0519		0.0461	
5/1/201			0.084	0.057 (D)		0.052	
6/27/20		0.038		0.046			
6/28/20			0.067				
7/31/20			0.087 (J+X)				
8/1/201			0.007 (0.71)	0.043 (J+X)			
8/10/20				0.040 (0.71)	0.038		
8/23/20			0.084	0.038	0.030 0.03 (JX)		
9/19/20			0.086	0.036	0.03		
10/29/2			0.098 (J+X)	0.041 (J+X)	0.025 (J+X)		
11/28/2		0.026	0.11	0.039	0.017		
12/19/2		0.036	0.000	0.04	0.010		
12/20/2			0.093		0.013		
1/17/20					0.017		
2/13/20					0.025		
8/27/20		0.032					
8/28/20			0.11	0.035			
8/29/20					0.017		
10/16/2	2019			0.032	0.015		
12/3/20			0.099				
12/4/20)19	0.028					
3/4/202	20			0.038	0.022		
3/5/202	20	0.026	0.078				
8/19/20	20	0.025					
8/20/20	20		0.083	0.035	0.017		
9/16/20	20	0.024	0.085	0.028			
9/17/20	20				0.02		
3/2/202	21		0.061	0.036			
3/4/202	21	0.024			0.019		
9/23/20	21		0.064	0.031			
9/28/20)21	0.02			0.013	0.049	
2/2/202	22	0.023	0.063	0.028	0.013	0.052	
2/4/202	22						0.037
8/23/20)22			0.0285			
8/25/20)22	0.0231	0.0574		0.0179	0.056	0.023
1/24/20		0.0182					
1/25/20			0.0695		0.0249	0.0498	
1/26/20				0.0311			
1/30/20							0.022
8/31/20		0.0243					
9/6/202			0.0524	0.028	0.0415		
9/8/202						0.0555	0.0221
2/10/20		0.0192		0.0278		0.052	
2/14/20		J.0102	0.0497	0.0270	0.0414	0.002	0.0202
8/27/20			0.0437		0.0414	0.0524	0.0202
8/27/20		0.0163		0.0257	0.0345	0.0024	
0/20/20	, <u>.</u> 4	0.0103		0.0237	0.0540		

Page 2

Time Series

Constituent: Barium (mg/L) Analysis Run 1/10/2025 10:45 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

BRGWC-32S BRGWC-45 BRGWC-47 BRGWC-52I BRGWC-44 PZ-63I 8/29/2024 0.0602 0.0206

	PZ-68D	PZ-74I	PZ-75I
2/1/2023	0.145		
9/6/2023		0.0346	0.0513
9/8/2023	0.107		
2/14/2024	0.0853	0.0245	0.0421
8/27/2024		0.026	0.035
8/29/2024	0.0796		

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)
8/31/2016				<0.0005	<0.0005	<0.0005
9/1/2016	<0.0005	<0.0005				
9/6/2016			<0.0005			
11/16/2016	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005
11/17/2016			<0.0005			
2/20/2017						<0.0005
2/21/2017	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
6/12/2017				<0.0005		<0.0005
6/13/2017		<0.0005	<0.0005		<0.0005	
6/14/2017	<0.0005					
9/26/2017	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
2/13/2018				<0.0005	<0.0005	<0.0005
2/14/2018	<0.0005	<0.0005	<0.0005			
6/26/2018	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
12/18/2018	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
8/27/2019	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005
8/29/2019			<0.0005			
10/15/2019	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
3/3/2020	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005
3/4/2020			<0.0005			
8/18/2020	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
9/15/2020	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
3/1/2021				<0.0005		
3/2/2021	<0.0005	<0.0005	<0.0005		<0.0005	<0.0005
9/21/2021	<0.0005	<0.0005				<0.0005
9/22/2021			<0.0005	<0.0005	<0.0005	
2/1/2022	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
8/23/2022	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
1/24/2023	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
8/31/2023			<0.0005	<0.0005	<0.0005	<0.0005
2/10/2024			<0.0005	<0.0005	<0.0005	<0.0005
8/27/2024			<0.0005	<0.0005	<0.0005	<0.0005

					,	
	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
8/31/2016	<0.0005					
9/1/2016		<0.0005				
9/6/2016						<0.0005
9/8/2016			<0.0005	0.0002 (J)	0.0011 (J)	
11/15/2016	<0.0005	<0.0005				
11/17/2016			<0.0005			
11/18/2016				0.0002 (J)		
11/21/2016					0.0012 (J)	<0.0005
2/20/2017	<0.0005	<0.0005			. ,	
2/21/2017			<0.0005	0.0002 (J)		
2/22/2017				.,	0.0014 (J)	<0.0005
6/12/2017	<0.0005	<0.0005				
6/13/2017	-0.0000	-0.0000	<0.0005	0.0002 (J)		
6/14/2017			-0.0000	0.0002 (0)	0.0012 (J)	<0.0005
	<0.000E	<0.000E			0.0012 (3)	V0.0003
9/26/2017	<0.0005	<0.0005	0.0005	0.0004 (1)	0.004 (1)	0.0005
9/27/2017	-0.0005	-0.0005	<0.0005	0.0001 (J)	0.001 (J)	<0.0005
2/13/2018	<0.0005	<0.0005				
2/14/2018			<0.0005	<0.0005	<0.003	<0.0005
6/26/2018	<0.0005	<0.0005	<0.0005			
6/27/2018				0.00014 (J)	0.0008 (J)	
6/28/2018						<0.0005
12/18/2018	<0.0005	<0.0005	<0.0005		0.00071 (J)	<0.0005
12/20/2018				<0.0005 (X)		
8/27/2019	<0.0005	<0.0005	<0.0005			<0.0005
8/28/2019				0.00012 (J)	0.0008 (J)	
10/15/2019	<0.0005	<0.0005	<0.0005			
10/16/2019					0.00072 (J)	
10/17/2019				<0.0005		<0.0005
12/4/2019				0.00012 (J)		<0.0005
3/3/2020	<0.0005	<0.0005				
3/4/2020			<0.0005	0.00012 (J)	0.00073 (J)	
3/5/2020						<0.0005
8/18/2020	<0.0005	<0.0005				
8/19/2020			<0.0005	9.9E-05 (J)	0.00074 (J)	<0.0005
9/15/2020	<0.0005	<0.0005	<0.0005	(-)	0.00071 (J)	
9/16/2020				0.00011 (J)		<0.0005
3/1/2021		<0.0005				
3/2/2021	<0.0005	.0.0000	<0.0005			
3/3/2021	-0.0000		-0.0000	7.1E-05 (J)	0.00094	<0.0005
	<0.0005			7.1L-03 (J)	0.00034	~0.0000
9/21/2021	<0.0005	<0.000E				
9/22/2021		<0.0005	-0.0005	-0.0005	0.00070	40,0005
9/28/2021			<0.0005	<0.0005	0.00079	<0.0005
2/1/2022	<0.0005	<0.0005				
2/2/2022			<0.0005			<0.0005
2/3/2022					0.00083	
2/4/2022				5.4E-05 (J)		
8/23/2022	<0.0005	<0.0005	<0.0005			
8/24/2022					0.000845	<0.0005
8/25/2022				<0.0005		
1/24/2023	<0.0005	<0.0005				
1/25/2023				<0.0005		
1/26/2023			<0.0005		0.00109	<0.0005

	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
8/31/2023	<0.0005	<0.0005				<0.0005
9/6/2023			<0.0005	<0.0005	0.00113	
2/10/2024	<0.0005	<0.0005				<0.0005
2/13/2024			<0.0005	<0.0005	0.00114	
8/27/2024	<0.0005	<0.0005		<0.0005	0.000892	
8/28/2024						<0.0005
8/29/2024			<0.0005			

	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44	PZ-63I
9/8/2016	<0.0005					
11/21/2016	<0.0005					
2/22/2017	<0.0005					
6/14/2017	<0.0005					
9/27/2017	<0.0005					
2/14/2018	<0.0005					
3/6/2018		<0.0005	<0.0005		<0.0005	
5/1/2018		<0.0005	<0.0005 (D)		<0.0005	
6/27/2018	<0.0005		<0.0005			
6/28/2018		<0.0005				
7/31/2018		<0.0005				
8/1/2018			<0.0005			
8/10/2018				<0.0005		
8/23/2018		7.9E-05 (J)	5.5E-05 (J)	<0.0005		
9/19/2018		<0.0005	<0.0005	<0.0005		
10/29/2018		<0.0005	<0.0005	<0.0005		
11/28/2018		<0.0005	5.6E-05 (J)	<0.0005		
12/19/2018	<0.0005		<0.0005 (X)			
12/20/2018	0.0000	<0.0005	0.0000 (71)	<0.0005		
1/17/2019		-0.0000		<0.0005		
2/13/2019				<0.0005		
8/27/2019	<0.0005			-0.0000		
8/28/2019	-0.0000	<0.0005	<0.0005			
8/29/2019		10.0000	10.0003	<0.0005		
10/16/2019			<0.0005	<0.0005		
10/17/2019	<0.0005	<0.0005	10.0003	10.0003		
12/3/2019	10.0003	<0.0005				
12/4/2019	<0.0005	-0.0000				
3/4/2020	10.0003		<0.0005	<0.0005		
3/5/2020	<0.0005	<0.0005	10.0003	10.0003		
8/19/2020	<0.0005	<0.0003				
8/20/2020	10.0003	4.6E-05 (J)	4.7E-05 (J)	<0.0005		
9/16/2020	<0.0005	<0.0005	<0.0005	10.0003		
9/17/2020	10.0003	10.0000	10.0003	<0.0005		
3/2/2021		<0.0005	<0.0005	10.0003		
3/4/2021	<0.0005	-0.0000	-0.0000	<0.0005		
9/23/2021	10.0003	<0.0005	<0.0005	10.0003		
9/28/2021	<0.0005	10.0000	10.0003	<0.0005	<0.0005	
2/2/2022	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
2/4/2022	10.0003	10.0000	10.0003	10.0003	10.0000	<0.0005
8/23/2022			<0.0005			V0.0003
8/25/2022	<0.0005	<0.0005	~0.0003	<0.0005	<0.0005	<0.0005
1/24/2023	<0.0005	10.0000		10.0003	10.0000	·0.0000
1/25/2023	~0.0003	<0.0005		<0.0005	<0.0005	
1/26/2023		<0.0003	<0.0005	<0.0003	<0.0003	
1/30/2023			-0.0000			<0.0005
8/31/2023	<0.0005					-0.0000
	~U.UU05	<0.000E	<0.000E	<0.000E		
9/6/2023 9/8/2023		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
2/10/2024	<0.0005		<0.0005		<0.0005	-0.0000
	~U.UU05	<0.000E	C000.07	<0.0005	<0.0005	0.000386 (1)
2/14/2024 8/27/2024		<0.0005		C000.07	<0.0005	0.000286 (J)
0/2//2024					<0.0005	

	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44	PZ-63I
8/28/2024	<0.0005		<0.0005	<0.0005		
8/29/2024		<0.0005				< 0.0005

	PZ-68D	PZ-74I	PZ-75I
2/1/2023	<0.0005		
9/6/2023		<0.0005	<0.0005
9/8/2023	<0.0005		
2/14/2024	<0.0005	<0.0005	<0.0005
8/27/2024		<0.0005	<0.0005
8/29/2024	<0.0005		

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)
8/31/2016				0.0072 (J)	<0.015	<0.015
9/1/2016	0.0093 (J)	<0.015				
9/6/2016			0.0362 (J)			
11/16/2016	0.0127 (J)	0.0081 (J)		0.0117 (J)	0.0109 (J)	0.0187 (J)
11/17/2016			0.0617			
2/20/2017						0.0066 (J)
2/21/2017	0.0071 (J)	<0.015	0.0245 (J)	0.0088 (J)	<0.015	
6/12/2017				0.0133 (J)		<0.015
6/13/2017		<0.015	<0.04		<0.015	
6/14/2017	0.0078 (J)					
9/26/2017	<0.04	<0.015	<0.04	0.0093 (J)	<0.015	<0.015
2/13/2018				0.0141 (J)	<0.015	<0.015
2/14/2018	0.0068 (J)	<0.015	0.0314 (J)			
6/26/2018	0.008 (J)	<0.015	0.062	0.012 (J)	<0.015	0.0042 (J)
12/18/2018	0.0083 (J)	0.0053 (J)	0.055	0.0086 (J)	<0.015	<0.015
3/19/2019	0.008 (J)	<0.015	0.068	0.00565 (JD)	<0.015	<0.015
10/15/2019	0.006 (J)	<0.015	0.022 (J)	0.0067 (J)	<0.015	<0.015
3/3/2020	0.01 (J)	0.0065 (J)		0.0082 (J)	<0.015	<0.015
3/4/2020			0.044 (J)			
9/15/2020	0.0071 (J)	<0.015	0.033 (J)	<0.015	<0.015	<0.015
3/1/2021				<0.015		
3/2/2021	0.0057 (J)	<0.015	0.042		<0.015	0.0053 (J)
9/21/2021	<0.04	<0.015				<0.015
9/22/2021			0.047	<0.015	<0.015	
2/1/2022	<0.04	<0.015	0.046	<0.015	<0.015	<0.015
8/23/2022	0.00653 (J)	<0.015	0.0498	0.00592 (J)	0.00532 (J)	<0.015
1/24/2023	0.00884 (J)	0.0053 (J)	0.0437	<0.015	<0.015	<0.015
8/31/2023			0.039	0.00649 (J)	0.00738 (J)	0.0073 (J)
2/12/2024			0.0389	<0.015	<0.015	<0.015
8/27/2024			0.0315	<0.015	<0.015	<0.015

	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
8/31/2016	<0.0052					
9/1/2016		<0.015				
9/6/2016						1.96
9/8/2016			1.03	1.63	1.35	
11/15/2016	0.0085 (J)	0.0123 (J)				
11/17/2016			1.7			
11/18/2016				1.91		
11/21/2016					1.74	1.68
2/20/2017	0.0093 (J)	0.0157 (J)				
2/21/2017			1.55	1.39		
2/22/2017					1.5	1.48
6/12/2017	<0.0052	<0.015				
6/13/2017			1.77	1.62		
6/14/2017					1.6	1.71
9/26/2017	<0.0052	<0.015				
9/27/2017			1.75	1.16	1.83	1.61
2/13/2018	<0.0052	<0.015				
2/14/2018			1.47	1.17	1.8	1.47
6/26/2018	0.0056 (J)	0.0041 (J)	1.8			
6/27/2018				1.4 (J+X)	1.8 (J+X)	
6/28/2018						1.4
12/18/2018	0.0062 (J)	<0.015	1.5		1.5	1.6
12/20/2018				1.4		
3/19/2019	<0.0052	<0.015		1.1		
3/20/2019			1.5 (D)		1.5	1.7
10/15/2019	0.006 (J)	0.01 (J)	1.2			
10/16/2019					1.2	
10/17/2019				0.97		1.7
12/4/2019				0.89		1.6
3/3/2020	<0.0052	<0.015				
3/4/2020			1.2	0.81	1.1	
3/5/2020						1.5
9/15/2020	<0.0052	<0.015	1.2		1.1	
9/16/2020				1.2		1.7
3/1/2021		<0.015				
3/2/2021	0.0071 (J)		1.1			
3/3/2021				0.91	1	1.4
9/21/2021	<0.0052					
9/22/2021		<0.015				
9/28/2021			1.1	0.95	0.9	1.7
2/1/2022	<0.0052	<0.015				
2/2/2022			1.1			1.9
2/3/2022					0.93	
2/4/2022				1		
8/23/2022	0.00538 (J)	<0.015	1.38			
8/24/2022					1.13	2.15
8/25/2022				1.03		
1/24/2023	<0.0052	<0.015		4.44		
1/25/2023			1 45	1.14	1.07	2.17
1/26/2023	0.0076471	0.0061173	1.45		1.07	2.17
8/31/2023	0.00764 (J)	0.00611 (J)				2.05
9/1/2023						2.05

	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
9/6/2023			1.95	1.25	1.34	
2/12/2024	<0.0052	<0.015				2.36
2/14/2024			1.61	1.17	1.11	
8/27/2024	0.00538 (J)	<0.015		1.28	1.09	
8/28/2024						1.82
8/29/2024			2.04			

		BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44	PZ-63I	
9/8/20	16	1.28						
11/21/		1.19						
2/22/2	017	1.43						
6/14/2		1.57						
9/27/2	017	1.51						
2/14/2		1.6						
3/6/20			0.0198 (J)	0.428		2.12		
5/1/20			0.015 (J)	0.435 (D)		1.5		
6/27/2		1.5 (J+X)	()	0.49 (J+X)				
6/28/2		` ,	<0.04 (X)	, ,				
7/31/2	018		0.035 (J)					
8/1/20			, ,	0.39				
8/10/2					1.3			
8/23/2			0.022 (J)	0.39	1.4			
9/19/2			0.021 (J)	0.43	1.7			
10/29/			0.021 (J)	0.4	1.3			
11/28/			<0.04 (X)	0.51	1.5			
12/19/		1.6	. ,	0.41				
12/20/			0.028 (J)		1.6			
1/17/2			- \-/		1.5			
2/13/2					1.7			
3/19/2				0.41				
3/20/2		1.4	0.043		1.6 (D)			
10/16/				0.36	1.3			
10/17/		1.5	0.064					
12/3/2		·· ·	0.027 (J)					
12/4/2		1.6	3.327 (0)					
3/4/20		•		0.49	1.4			
3/5/20		1.5	0.044 (J)					
9/16/2		1.4	0.028 (J)	0.47				
9/17/2			3.323 (0)	5.	1.9			
3/2/20:			0.044	0.58				
3/4/20		1.1		0.00	1.4			
9/23/2		1.1	0.029 (J)	0.47	1.7			
9/28/2		0.91	0.023 (0)	0.47	1.4	1.3		
2/2/20		1	0.034 (J)	0.48	1.5	1.6		
2/4/20		1	0.004 (0)	0.40	1.0	1.0	0.67	
8/23/2				0.547			0.07	
8/25/2		1.07	0.0458	0.547	1.56	1.59	0.672	
1/24/2		1.07	0.0400		1.50	1.53	0.072	
		1.11	0.0355		1 70	1.47		
1/25/2			0.0355	0.661	1.79	1.47		
1/26/2				0.661			0.92	
1/30/2		1 10					0.82	
9/1/20:		1.13	0.0444	0.690	1.07			
9/6/20			0.0444	0.689	1.87	1.25	0.700	
9/8/20		1.00		0.010		1.35	0.706	
2/12/2		1.23	0.0055	0.618		1.27		
2/14/2			0.0355		1.64		0.714	
2/16/2					1.61	1.16	0.714	
8/27/2		0.006		0.508	1.44	1.16		
8/28/2 8/29/2		0.996	0.0431	0.508	1.44		0.731	
0/29/2	024		U.U43 I				0.731	

	PZ-68D	PZ-74I	PZ-75I
2/1/2023	0.255		
9/6/2023		1.47	1.51
9/8/2023	0.318		
2/16/2024	0.384	1.32	1.36
8/27/2024		1.2	1.2
8/29/2024	0.404		

					. ,	
	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)
8/31/2016				<0.001	<0.001	<0.001
9/1/2016	<0.001	<0.001				
9/6/2016			<0.001			
11/16/2016	<0.001	<0.001		<0.001	<0.001	<0.001
11/17/2016			<0.001			
2/20/2017						<0.001
2/21/2017	<0.001	<0.001	<0.001	<0.001	<0.001	
6/12/2017				<0.001		<0.001
6/13/2017		<0.001	<0.001		<0.001	
6/14/2017	<0.001					
9/26/2017	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
2/13/2018				<0.001	<0.001	<0.001
2/14/2018	<0.001	<0.001	<0.001			
6/26/2018	<0.001	<0.001	0.00015 (J)	<0.001	<0.001	<0.001
7/31/2018	<0.001	<0.001				
12/18/2018	<0.001	<0.001	0.0001 (J)	<0.001	<0.001	<0.001
8/27/2019	<0.001	<0.001		<0.001	<0.001	<0.001
8/29/2019			<0.001			
10/15/2019	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
3/3/2020	<0.001	<0.001		<0.001	<0.001	<0.001
3/4/2020			<0.001			
8/18/2020	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
9/15/2020	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
3/1/2021				<0.001		
3/2/2021	<0.001	<0.001	<0.001		<0.001	<0.001
9/21/2021	<0.001	<0.001				<0.001
9/22/2021			<0.001	<0.001	<0.001	
2/1/2022	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
8/23/2022	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
1/24/2023	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
8/31/2023			<0.001	<0.001	<0.001	<0.001
2/10/2024			<0.001	<0.001	<0.001	<0.001
8/27/2024			<0.001	<0.001	<0.001	<0.001

	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
8/31/2016	<0.001					
9/1/2016		<0.001				
9/6/2016						<0.001
9/8/2016			<0.001	7E-05 (J)	<0.001	
	<0.001	<0.001	-0.00 i	/ L-03 (J)	-0.00 I	
11/15/2016	<0.001	<0.001	0.004			
11/17/2016			<0.001			
11/18/2016				9E-05 (J)		
11/21/2016					<0.001	8E-05 (J)
2/20/2017	<0.001	<0.001				
2/21/2017			<0.001	<0.001		
2/22/2017					<0.001	<0.001
6/12/2017	<0.001	<0.001				
6/13/2017			<0.001	<0.001		
6/14/2017			0.00.	0.001	<0.001	<0.001
	-0.004	-0.00 4			~U.UU I	~U.UU I
9/26/2017	<0.001	<0.001				
9/27/2017			<0.001	<0.001	<0.001	<0.001
2/13/2018	<0.001	<0.001				
2/14/2018			<0.001	<0.001	<0.001	<0.001
6/26/2018	<0.001	<0.001	<0.001			
6/27/2018				<0.001	<0.001	
6/28/2018						<0.001
12/18/2018	<0.001	<0.001	<0.001		<0.001	<0.001
12/20/2018			- -	<0.001	- -	
	<0.001	<0.001	<0.001	-0.00 I		<0.001
8/27/2019	<0.001	~U.UU I	<0.001	10.001	-0.004	~ 0.001
8/28/2019				<0.001	<0.001	
10/15/2019	<0.001	<0.001	<0.001			
10/16/2019					<0.001	
10/17/2019				<0.001		<0.001
12/4/2019				<0.001		<0.001
3/3/2020	<0.001	<0.001				
3/4/2020			<0.001	<0.001	<0.001	
3/5/2020						<0.001
	<0.001	<0.001				-0.001
8/18/2020	<0.001	<0.001	-0.001	10.001	-0.004	10.001
8/19/2020			<0.001	<0.001	<0.001	<0.001
9/15/2020	<0.001	<0.001	<0.001		<0.001	
9/16/2020				<0.001		<0.001
3/1/2021		<0.001				
3/2/2021	<0.001		<0.001			
3/3/2021				<0.001	<0.001	<0.001
9/21/2021	<0.001					
9/22/2021		<0.001				
		-0.001	<0.001	<0.001	<0.001	<0.001
9/28/2021	-0.004	-0.001	<0.001	~ 0.001	<0.001	~ 0.001
2/1/2022	<0.001	<0.001				
2/2/2022			<0.001			0.00014 (J)
2/3/2022					<0.001	
2/4/2022				<0.001		
8/23/2022	<0.001	<0.001	<0.001			
8/24/2022					<0.001	<0.001
8/25/2022				<0.001		
1/24/2023	<0.001	<0.001				
	-0.00 I	-0.001		<0.001		
1/25/2023				<0.001		
1/26/2023			<0.001		<0.001	<0.001

	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
8/31/2023	<0.001	<0.001				<0.001
9/6/2023			<0.001	<0.001	<0.001	
2/10/2024	<0.001	<0.001				<0.001
2/13/2024			<0.001	<0.001	<0.001	
8/27/2024	<0.001	<0.001		<0.001	<0.001	
8/28/2024						<0.001
8/29/2024			<0.001			

	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44	PZ-63I	
9/8/2016	<0.001						
11/21/2016	8E-05 (J)						
2/22/2017	0.0001 (J)						
6/14/2017	<0.001						
9/27/2017	<0.001						
2/14/2018	<0.001						
3/6/2018	\0.001	<0.001	<0.001		<0.001		
					<0.001		
5/1/2018	0.00011 (1)	<0.001	<0.001 (D)		<0.001		
6/27/2018	0.00011 (J)	<0.001	0.00014 (J)				
6/28/2018		<0.001					
7/31/2018		<0.001	0.00011 (1)				
8/1/2018			0.00011 (J)	10.001			
8/10/2018				<0.001			
8/23/2018		<0.001	0.00018 (J)	<0.001			
9/19/2018		<0.001	0.00015 (J)	<0.001			
10/29/2018		9.8E-05 (J)	0.00019 (J)	<0.001			
11/28/2018		<0.001	0.00022 (J)	<0.001			
12/19/2018	<0.001 (X)		<0.001				
12/20/2018		<0.001 (X)		<0.001			
1/17/2019				<0.001			
2/13/2019				<0.001			
8/27/2019	<0.001						
8/28/2019		<0.001	0.00017 (J)				
8/29/2019				<0.001			
10/16/2019			0.00018 (J)	<0.001			
10/17/2019	<0.001	<0.001					
12/3/2019		0.00011 (J)					
12/4/2019	<0.001						
3/4/2020			0.00024 (J)	<0.001			
3/5/2020	<0.001	<0.001					
8/19/2020	<0.001						
8/20/2020		0.00014 (J)	<0.001	<0.001			
9/16/2020	<0.001	<0.001	<0.001				
9/17/2020				<0.001			
3/2/2021		0.0002 (J)	<0.001				
3/4/2021	<0.001			<0.001			
9/23/2021		<0.001	<0.001				
9/28/2021	<0.001			<0.001	<0.001		
2/2/2022	<0.001	<0.001	0.00015 (J)	<0.001	<0.001		
2/4/2022						<0.001	
8/23/2022			<0.001				
8/25/2022	<0.001	<0.001		<0.001	<0.001	<0.001	
1/24/2023	<0.001						
1/25/2023		<0.001		<0.001	<0.001		
1/26/2023			<0.001				
1/30/2023						<0.001	
8/31/2023	<0.001						
9/6/2023		<0.001	<0.001	<0.001			
9/8/2023					<0.001	<0.001	
2/10/2024	<0.001		<0.001		<0.001		
2/14/2024		<0.001		<0.001		<0.001	
8/27/2024		- -			<0.001		

	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44	PZ-63I
8/28/2024	<0.001		<0.001	<0.001		
8/29/2024		<0.001				< 0.001

	PZ-68D	PZ-74I	PZ-75I
2/1/2023	<0.001		
9/6/2023		<0.001	<0.001
9/8/2023	<0.001		
2/14/2024	<0.001	<0.001	<0.001
8/27/2024		<0.001	<0.001
8/29/2024	<0.001		

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)
8/31/2016				12.6	4.09	13.5
9/1/2016	8.98	4.61				
9/6/2016			12.8			
11/16/2016	15.4	4.17		12.1	4.25	14.9
11/17/2016			19.2			
2/20/2017						13.9
2/21/2017	17.4	5	15.1	11.4	4.02	
6/12/2017				9.34		13.7
6/13/2017		4.98	10.2		3.84	
6/14/2017	18.1					
9/26/2017	19.3	4.49	15	14.3	3.31	14.4
2/13/2018				<25	3.94	<25
2/14/2018	<25	<25	<25			
6/26/2018	15.5 (J)	6.4	18.5 (J)	16 (J)	3.6	13.5 (J)
7/31/2018	18.2 (J)	6.1				
12/18/2018	18.7 (J)	5.5	16.8 (J)	14.5 (J)	3.8	16.4 (J)
3/19/2019	15.9 (J)	5.9	13.5 (J)	14.3 (JD)	3.9	12.3 (J)
10/15/2019	15.9	6.2	8.6	15.1	3.7	14.4
3/3/2020	19.4	6.8		20	4	14.9
3/4/2020			11.5			
9/15/2020	14.5	5.7	10.7	14.1	3.9	12.7
3/1/2021				15.4		
3/2/2021	11.7	5.4	11.6		4	13.2
9/21/2021	16.4	5.4				14.1
9/22/2021			9.2	15.9	4.3	
2/1/2022	14.2	5.3	10.7	14.4	4.4	14.5
8/23/2022	15.8	6.09	8.09	13.9	4.65	14.3
1/24/2023	13.7	5.62	6.97	14.2	4.86	15.8
8/31/2023			5.95	12.6	5.02	14.3
2/12/2024			6.19	14.1	5.25	16
8/27/2024			5.88	12.4	5.45	15.9

	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
31/2016	19.6					
1/2016		3.3				
6/2016						63.3
8/2016			59.4	87.2	93.9	
1/15/2016	21.7	3.44				
1/17/2016			78.4			
1/18/2016				82.4		
1/21/2016					99.1	60.7
20/2017	21.1	3.52				
21/2017			80.9	75.1		
22/2017					105	62.1
12/2017	21.5	3.11				
13/2017			62	61		
14/2017					91.3	63.5
26/2017	24	3.15				
27/2017			65.8	72.6	84	63.5
	<25	3.65				
			58.8	74.1	72.1	62.8
	23.5 (J)	3.3				
				68.2	61.1	
						73.3
	19.8 (J)	3.5	54.7		52.9	102
	(-)			63.9		·-
	21.4 (J)	3.6				
	2(0)	0.0	53 95 (D)	00.2	55.4	141
	20	3.5				
	20	0.0	40.0		54	
				76.8	04	92.6
	23.2	5		70.0		52.0
	25.2	3	52	72.3	50.3	
			32	72.5	55.5	119
	16.9	3.7	40.1		55.1	
	10.0	5.7	40.1	62.5	55.1	106
		4.2		02.3		100
	16.9	4.2	44.1			
	10.0		44.1	E0 2	72.2	122
	10.1			36.2	73.3	122
	19.1	4.1				
		4.1	20.4	E0.4	FO F	212
	10.1	4.0	36.4	50.4	59.5	212
	19.1	4.2	44.0			222
			44.3		E 9 7	232
				61.7	58.7	
	10.0	0.07	54.5	61./		
	18.2	3.97	51.5		0.4	242
				24	ы	316
	10.4	2.0		64		
	19.4	3.9		55.7		
			F7.0	55./	60	201
	110	0.70	5/.6		ья	361
	14.9	3.79				
			CO C	74.4	74.4	414
6/2023			b9.b	/4.4	/1.4	
	1/2016 5/2016 8/2016 8/2016 /15/2016 /17/2016 /18/2016 /21/2016 20/2017 21/2017 22/2017 12/2017 13/2017 14/2017	31/2016 19.6 1/2016 3/2016 3/2016 3/2016 3/2016 3/2016 3/2016 3/2016 3/2016 3/2016 3/2016 3/2016 3/2016 3/2017 21.1 21/2017 21.2017 21.5 3/2017 3/2017 3/2017 3/2018 25 3/2018 3/2018 3/2018 3/2018 3/2018 3/2018 3/2018 3/2018 3/2019 3/2020 3/202	31/2016 19.6 1/2016 3.3 5/2016 5/2016 5/2016 5/2016 5/2016 5/2016 5/2016 5/2016 5/2016 5/2016 5/2016 5/2016 5/2017 21.1 3.52 21/2017 22/2017 21.2 3.11 3.52 21/2017 22/2017 24 3.15 22/2018 23.5 (J) 3.3 22/2/2018 22/2018 23.5 (J) 3.5 22/2018 22/2019 21.4 (J) 3.6 20/2019 21.4 (J) 3.6 20/2019 20/15/2019 21.4 (J) 3.6 20/2019 20/15/2019 21.4 (J) 3.6 20/2019 21.4 (J) 3.7 21/2020 15/2021 19.1 4.2 22/2021 4.1 22/2022 23/2022 24/2022 23/2022 24/2022 25/2022 24/2023 19.4 3.9 25/2023	13/2016 19.6	1312016 19.6	1312016

	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
2/12/2024	18.2	4.27				441
2/14/2024			67.4	60	89.3	
8/27/2024	17.2	4.19		75.9	70.5	
8/28/2024						419
8/29/2024			77.6			

	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44	PZ-63I
9/8/2016	60.5					
11/21/2016	31.1					
2/22/2017	67.3					
6/14/2017	60.2					
9/27/2017	68.4					
2/14/2018	70.2					
3/6/2018		39.5	326		<25	
5/1/2018		45.5	302 (D)		<25	
6/27/2018	67.1	40.0	340		-23	
6/28/2018	07.1	41.9	340			
7/31/2018		41.5				
		41.5	250			
8/1/2018			358	410 (0)		
8/10/2018				410 (O)		
8/23/2018		42.3	323	33.9		
9/19/2018		41.9	321	42.3		
10/29/2018		40.8	326	39.8		
11/28/2018		45.1	354	38.2		
12/19/2018	61.2		330			
12/20/2018		39		43.2		
1/17/2019				39.4		
2/13/2019				36.9		
3/19/2019			335			
3/20/2019	52.8	31.2		40.85 (D)		
10/16/2019			338	48.4		
12/3/2019		43.7				
12/4/2019	52.7					
3/4/2020			353	49.5		
3/5/2020	52.1	37.9				
9/16/2020	43.1	39.7	309			
9/17/2020				35.4		
3/2/2021		33.9	353			
3/4/2021	35.7			47.5		
9/23/2021		32	336			
9/28/2021	33.9	02	000	39.5	24.2	
2/2/2022	44.2	33.8	320	40.1	25.1	
2/4/2022	77.4	00.0	020	70.1	20.1	42.2
			323			74.4
8/23/2022	40 E	22 E	323	20.2	27.2	4E 1
8/25/2022	48.5	33.5		38.3	27.2	45.1
1/24/2023	46.6	24.2		20.2	05.4	
1/25/2023		34.3	004	36.3	25.1	
1/26/2023			331			
1/30/2023						49.8
8/31/2023	45.1					
9/6/2023		34	347	37.4		
9/8/2023					26.5	56.8
2/12/2024	47.4		340		26	
2/14/2024		32.8		36.4		
2/16/2024						57.3
8/27/2024					24.9	
8/28/2024	37.4		302	36.8		
8/29/2024		42.9				65.6

	PZ-68D	PZ-74I	PZ-75I
2/1/2023	86.1		
9/6/2023		69.2	47
9/8/2023	86.4		
2/16/2024	94.3	62.5	50.8
8/27/2024		68.8	49.8
8/29/2024	96.7		

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)
8/31/2016				2.3	2	4.4
9/1/2016	3.3	3.5				
9/6/2016			5.8			
11/16/2016	3.6	3.6		2	1.8	4.4
11/17/2016			4.3			
2/20/2017						4.8
2/21/2017	3.2	3.2	3.5	2	1.8	
6/12/2017				2.1		4.2
6/13/2017		3.3	3.2		1.7	
6/14/2017	3.1					
9/26/2017	3.3	3.3	3.5	2	1.8	4.4
2/13/2018				2.1	1.7	4.7
2/14/2018	3.1	3.5	3.8			
6/26/2018	3.4	3.4	3.8	2.4	2.2	4.5
7/31/2018	2.6	2.9				
12/18/2018	2.8	2.9	3.9	1.8	1.9	4.5
3/19/2019	3.2	3.5	3.8	2.45 (D)	2	4.5
10/15/2019	3.1	3.4	3.5	2.2	1.9	4.2
3/3/2020	2.6	3.2		1.9	1.9	3.9
3/4/2020			3.3			
9/15/2020	2.4	3.5	3.1	1.9	1.7	3.7
3/1/2021				1.8		
3/2/2021	2.6	3.7	3.5		1.7	3.8
9/21/2021	2.1	3.5				3.2
9/22/2021			2.8	1.7	1.5	
2/1/2022	2.2	3.6	3.2	1.8	1.6	3.5
8/23/2022	2.5	5.46	3.16	2.02	2.18	3.64
1/24/2023	2.49	3.79	2.88	2.09	2.16	3.93
8/23/2023			2.41	1.9	2.14	3.53
1/31/2024				2.35	2.14	3.98
2/1/2024			2.4			
8/27/2024			2.16	2.16	2.17	3.88

	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
8/31/2016	3.6					
9/1/2016		2.5				
9/6/2016						6.7
9/8/2016			5.5	6	6.4	
11/15/2016	4	2.3				
11/17/2016			7.7			
11/18/2016				6.3		
11/21/2016					6.9	6.5
2/20/2017	3.9	2.4				
2/21/2017			7.3	5.1		
2/22/2017					6.2	5.6
6/12/2017	3.8	2.2				
6/13/2017			7.5	4.7		
6/14/2017					7.2	5.7
9/26/2017	4.1	2.3				
9/27/2017	4.1	2.0	7.9	4.9	8.7	6
2/13/2018	4.1	2.3	7.5	4.5	0.7	
2/14/2018	4.1	2.5	6.7	5.6	7.2	5.9
6/26/2018	4.1	2.6	6.7	5.0	7.2	3.9
6/27/2018	4.1	2.0	0.7	5.9	6.3	
				5.9	0.3	7/17)
6/28/2018	2.0	2.2	6.0		E 4	7 (J-X)
12/18/2018	3.8	2.3	6.2	50(1)0	5.4	5.8
12/20/2018	4.0	2.6		5.6 (J-X)		
3/19/2019	4.2	2.6	0.0 (D)	5.8	5.0	50
3/20/2019			6.3 (D)		5.6	5.8
10/15/2019	3.7	2.4	5			
10/16/2019					6.9	
12/4/2019				5.6		5
3/3/2020	3.6	2.9				
3/4/2020			5	5.1	5.8	
3/5/2020						4.3
9/15/2020	3.7	2.3	4.9		5.5	
9/16/2020				5.4		4.4
3/1/2021		2.1				
3/2/2021	3.7		4.5			
3/3/2021				4.5	5.6	4
9/21/2021	3.2					
9/22/2021		2.1				
9/28/2021			4.2	3.7	5.4	3.4
2/1/2022	3.4	2.1				
2/2/2022			4.2			4
2/3/2022					6.1	
2/4/2022				4.6		
8/23/2022	3.59	2.39	5.38			
8/24/2022					5.84	4.91
8/25/2022				4.65		
1/24/2023	3.56	2.3				
1/25/2023				3.81		
1/26/2023			6.96		5.59	3.82
8/23/2023	3.37	2.34				3.35
8/25/2023			8.47	4.81	6.08	
1/31/2024	3.52	3.23				

	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
2/1/2024			8.73	4.05	7.94	3.52
8/27/2024	3.49	2.28		4.47	8.87	
8/28/2024						3.48
8/29/2024			13.7			

·	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44	PZ-63I
9/8/2016	6.8					
11/21/2016	7.8					
2/22/2017	7					
6/14/2017	7.1					
9/27/2017	7.2					
2/14/2018	7.4					
3/6/2018		56.6	8.4		6	
5/1/2018		58.5	5.7 (JXD)		6	
6/27/2018	7.1	00.0	4.4		· ·	
6/28/2018		50.2 (J-X)	7.7			
7/31/2018		50.2 (J-A) 59				
		ວອ	F 2			
8/1/2018			5.2	6.0		
8/10/2018		F.4	0.0	6.9		
8/23/2018		54	3.6	7.5		
9/19/2018		58.4	4.1	6.6		
10/29/2018		62.6	4.3	7.8		
11/28/2018		58.1	5.1	7.2		
12/19/2018	7 (J-X)		4.5 (J-X)			
12/20/2018		47.2 (J-X)		6.6 (J-X)		
1/17/2019				6.4		
2/13/2019				6.5		
3/19/2019			4.7			
3/20/2019	7.3	27.7		6.7 (D)		
10/16/2019			4.6	7		
12/3/2019		52.8				
12/4/2019	6.6					
3/4/2020			4.2	6.1		
3/5/2020	6	37.1		-		
9/16/2020	5.6	54.9	4.1			
9/17/2020	0.0	04.0	7.1	6.3		
3/2/2021		25.8	4.8	0.0		
	4.6	23.0	4.0	E C		
3/4/2021	4.6	20.2	4.2	5.6		
9/23/2021	0.0	29.3	4.3		-	
9/28/2021	3.6			5.5	5	
2/2/2022	3.8	23.4	4.2	6.1	5.5	
2/4/2022						6.2
8/23/2022			4.49			
8/25/2022	3.96	14.9		6.27	6.28	6.15
1/24/2023	4.49					
1/25/2023		27.4		6.35	5.84	
1/26/2023			4.96			
1/30/2023						7.18
8/23/2023	4.3					
8/24/2023					6.83	6.81
8/25/2023			4.67	6.28		
8/26/2023		16.5				
1/31/2024	4.1					
2/1/2024			4.74		6.36	
2/2/2024				6.3		7.16
2/9/2024		17.2		5.5		
		17.2			5.00	
8/27/2024	4.00		4.57	6 50	5.99	
8/28/2024	4.09		4.57	6.58		

Page 2

Time Series

Constituent: Chloride (mg/L) Analysis Run 1/10/2025 10:45 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

BRGWC-32S BRGWC-45 BRGWC-47 BRGWC-52I BRGWC-44 PZ-63I 8/29/2024 24.8 6.86

	PZ-68D	PZ-74I	PZ-75I
2/1/2023	12.7		
8/25/2023	23		6.84
8/26/2023		14.8	
2/2/2024			7.21
2/3/2024	19.9	18.1	
8/27/2024		27.1	6.31
8/29/2024	18.1		

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)
8/31/2016				0.001 (J)	0.0034 (J)	0.0058 (J)
9/1/2016	0.0009 (J)	0.0013 (J)				
9/6/2016			<0.01			
11/16/2016	0.0015 (J)	0.0012 (J)		<0.01	0.0029 (J)	0.0051 (J)
11/17/2016			<0.01			
2/20/2017						0.0049 (J)
2/21/2017	0.001 (J)	0.0017 (J)	<0.01	<0.01	0.0036 (J)	
6/12/2017				0.0005 (J)		0.0052 (J)
6/13/2017		0.0019 (J)	<0.01		0.0038 (J)	
6/14/2017	0.0012 (J)					
9/26/2017	0.0014 (J)	0.0018 (J)	<0.01	0.0005 (J)	0.0045 (J)	0.0039 (J)
2/13/2018				<0.01	<0.01	<0.01
2/14/2018	<0.01	<0.01	<0.01			
6/26/2018	<0.01	0.0022 (J)	<0.01	<0.01	0.008 (J)	0.0053 (J)
12/18/2018	0.0016 (J)	0.0022 (J)	<0.01	<0.01	0.012	0.0032 (J)
8/27/2019	0.0023 (J)	0.0024 (J)		0.0004 (J)	0.0083 (J)	0.0055 (J)
8/29/2019			0.0016 (J)			
10/15/2019	0.0021 (J)	0.0023 (J)	0.0017 (J)	<0.01	0.0083 (J)	0.0047 (J)
3/3/2020	0.0026 (J)	0.0028 (J)		0.00047 (J)	0.0098 (J)	0.0069 (J)
3/4/2020			0.0019 (J)			
8/18/2020	0.0023 (J)	0.0029 (J)	0.0017 (J)	0.00096 (J)	0.0085 (J)	0.0069 (J)
9/15/2020	0.00096 (J)	0.0025 (J)	0.0019 (J)	<0.01	0.0082 (J)	0.0069 (J)
3/1/2021				<0.01		
3/2/2021	0.002 (J)	0.0021 (J)	0.002 (J)		0.0074	0.0064
9/21/2021	0.0023 (J)	0.0024 (J)				0.0064
9/22/2021			0.0026 (J)	<0.01	0.0091	
2/1/2022	0.0027 (J)	0.0029 (J)	0.0028 (J)	0.0013 (J)	0.0092	0.0066
8/23/2022	<0.01	<0.01	<0.01	<0.01	0.00908 (J)	0.00647 (J)
1/24/2023	<0.01	<0.01	<0.01	<0.01	0.0095 (J)	0.00513 (J)
8/31/2023			<0.01	<0.01	0.00921 (J)	0.00701 (J)
2/10/2024			<0.01	0.00458 (J)	0.00854 (J)	0.00551 (J)
8/27/2024			<0.01	0.00445 (J)	0.00799 (J)	0.00521 (J)

					,	
	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
8/31/2016	0.0028 (J)					
9/1/2016		0.0147				
9/6/2016						<0.01
9/8/2016			<0.01	0.001 (J)	<0.01	
11/15/2016	0.003 (J)	0.0154 (B)		(0)		
11/17/2016	0.000 (0)	0.0104 (B)	<0.01			
11/18/2016			-0.01	<0.01		
				~ 0.01	<0.01	<0.01
11/21/2016	0.004771	0.014			<0.01	<0.01
2/20/2017	0.0047 (J)	0.014	.0.04	.0.04		
2/21/2017			<0.01	<0.01		
2/22/2017					<0.01	<0.01
6/12/2017	0.0041 (J)	0.016				
6/13/2017			<0.01	<0.01		
6/14/2017					<0.01	<0.01
9/26/2017	0.0037 (J)	0.0144				
9/27/2017			<0.01	<0.01	<0.01	<0.01
2/13/2018	<0.01	0.0144				
2/14/2018			<0.01	<0.01	<0.01	<0.01
6/26/2018	0.0043 (J)	0.015	<0.01	0.0.		0.07
	0.0043 (3)	0.015	~U.U1	<0.01	<0.01	
6/27/2018				<0.01	<0.01	-0.01
6/28/2018						<0.01
12/18/2018	0.0054 (J)	0.015	<0.01		<0.01	<0.01
12/20/2018				0.003 (J)		
8/27/2019	0.0043 (J)	0.015	0.0016 (J)			0.0051 (J)
8/28/2019				<0.01	<0.01	
10/15/2019	0.0055 (J)	0.014	0.00098 (J)			
10/16/2019					<0.01	
12/4/2019				<0.01		<0.01
3/3/2020	0.0057 (J)	0.011				
3/4/2020	\-'\		<0.01	<0.01	0.02	
3/5/2020			0.0.	0.0.	0.02	<0.01
8/18/2020	0.005 / !\	0.015				-0.07
	0.005 (J)	0.010	z0.01	-0.01	-0.01	-0.01
8/19/2020			<0.01	<0.01	<0.01	<0.01
9/15/2020	0.0048 (J)	0.014	<0.01		<0.01	
9/16/2020				<0.01		0.014
3/1/2021		0.011				
3/2/2021	0.0044 (J)		<0.01			
3/3/2021				<0.01	<0.01	<0.01
9/21/2021	0.0044 (J)					
9/22/2021	• •	0.014				
9/28/2021		-	<0.01	<0.01	<0.01	<0.01
2/1/2022	0.0052	0.015	-0.01	-0.01	-0.01	-0.07
	0.0032	0.015	-0.01			-0.01
2/2/2022			<0.01			<0.01
2/3/2022					<0.01	
2/4/2022				<0.01		
8/23/2022	0.00435 (J)	0.0143	<0.01			
8/24/2022					<0.01	<0.01
8/25/2022				<0.01		
1/24/2023	0.00572 (J)	0.0139				
1/25/2023				<0.01		
1/26/2023			<0.01		<0.01	<0.01
8/31/2023	0.00472 (J)	0.0132				<0.01
0/3/1/2023	0.00412 (J)	0.0102				~U.U1

	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
9/6/2023			<0.01	<0.01	<0.01	
2/10/2024	0.00582 (J)	0.0139				<0.01
2/13/2024			<0.01	<0.01	<0.01	
8/27/2024	0.00604 (J)	0.0124		<0.01	<0.01	
8/28/2024						<0.01
8/29/2024			<0.01			

	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44	PZ-63I
9/8/2016	<0.01					
11/21/2016	<0.01					
2/22/2017	0.0012 (J)					
6/14/2017	0.0009 (J)					
9/27/2017	0.0011 (J)					
2/14/2018	<0.01					
3/6/2018		<0.01	<0.01		<0.01	
5/1/2018		<0.01	<0.01 (D)		<0.01	
6/27/2018	<0.01	0.01	<0.01		0.01	
6/28/2018	10.01	<0.01	-0.01			
7/31/2018		<0.01				
		<0.01	-0.01			
8/1/2018			<0.01	0.0017 (1)		
8/10/2018		0.04		0.0017 (J)		
8/23/2018		<0.01	<0.01	<0.01		
9/19/2018		<0.01	<0.01	<0.01		
10/29/2018		<0.01	<0.01	<0.01		
11/28/2018		<0.01	<0.01	<0.01		
12/19/2018	<0.01		0.0018 (J)			
12/20/2018		<0.01		<0.01		
1/17/2019				<0.01		
2/13/2019				<0.01		
8/27/2019	0.0019 (J)					
8/28/2019		<0.01	0.00092 (J)			
8/29/2019				<0.01		
10/16/2019			<0.01	<0.01		
12/3/2019		<0.01				
12/4/2019	0.0014 (J)					
3/4/2020	(-/		0.00078 (J)	<0.01		
3/5/2020	0.0014 (J)	0.00053 (J)	(0)			
8/19/2020	0.0014 (J)	0.00000 (0)				
8/20/2020	0.0021(0)	0.001 (J)	0.00064 (J)	<0.01		
	0.0025 / 1)	0.001 (J) 0.0014 (J)		~ 0.01		
9/16/2020	0.0025 (J)	U.UU14 (J)	<0.01	-0.01		
9/17/2020				<0.01		
3/2/2021		<0.01	<0.01			
3/4/2021	0.002 (J)	_	_	<0.01		
9/23/2021		<0.01	<0.01			
9/28/2021	0.0021 (J)			<0.01	<0.01	
2/2/2022	0.0021 (J)	<0.01	<0.01	<0.01	<0.01	
2/4/2022						<0.01
8/23/2022			<0.01			
8/25/2022	<0.01	<0.01		<0.01	<0.01	<0.01
1/24/2023	<0.01					
1/25/2023		<0.01		<0.01	<0.01	
1/26/2023			<0.01			
1/30/2023						<0.01
8/31/2023	<0.01					
9/6/2023		<0.01	<0.01	<0.01		
9/8/2023					<0.01	<0.01
2/10/2024	<0.01		<0.01		<0.01	-0.01
	30.01	<0.01	-0.07	<0.01	NO.0 1	<0.01
2/14/2024		~ ∪.∪1		<0.01	<0.01	~ U.U1
8/27/2024	10.01		-0.01	-0.01	<0.01	
8/28/2024	<0.01		<0.01	<0.01		

Constituent: Chromium (mg/L) Analysis Run 1/10/2025 10:45 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

BRGWC-32S BRGWC-45 BRGWC-47 BRGWC-52I BRGWC-44 PZ-63I 8/29/2024 <0.01 <0.01

	PZ-68D	PZ-74I	PZ-75I
2/1/2023	<0.01		
9/6/2023		<0.01	<0.01
9/8/2023	<0.01		
2/14/2024	<0.01	<0.01	<0.01
8/27/2024		<0.01	<0.01
8/29/2024	<0.01		

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)
8/31/2016				0.0016 (J)	0.0034 (J)	0.0013 (J)
9/1/2016	<0.001	<0.001				
9/6/2016			0.0028 (J)			
11/16/2016	<0.001	<0.001		0.0006 (J)	0.003 (J)	<0.01 (o)
11/17/2016			0.0072 (J)			
2/20/2017						0.0012 (J)
2/21/2017	<0.001	<0.001	0.0045 (J)	<0.005	0.0028 (J)	
6/12/2017				<0.005		0.0011 (J)
6/13/2017		<0.001	0.0036 (J)		0.0025 (J)	
6/14/2017	<0.001					
9/26/2017	<0.001	<0.001	0.0037 (J)	<0.005	0.002 (J)	0.0016 (J)
2/13/2018				<0.005	<0.005	<0.01 (o)
2/14/2018	<0.001	<0.001	0.0135			
6/26/2018	<0.001	<0.001	0.0098 (J)	<0.005	0.0019 (J)	0.0009 (J)
7/31/2018	<0.001	<0.001				
12/18/2018	<0.001	<0.001	0.0057 (J)	<0.005	0.0032 (J)	0.00062 (J)
8/27/2019	<0.001	<0.001		<0.005	0.0012 (J)	0.00068 (J)
8/29/2019			0.0015 (J)			
10/15/2019	<0.001	<0.001	0.0011 (J)	<0.005	0.00097 (J)	0.00083 (J)
3/3/2020	<0.001	<0.001		<0.005	0.0015 (J)	0.00043 (J)
3/4/2020			0.0012 (J)			
8/18/2020	<0.001	<0.001	0.00067 (J)	<0.005	0.0014 (J)	0.00048 (J)
9/15/2020	<0.001	<0.001	0.00076 (J)	<0.005	0.001 (J)	0.0005 (J)
3/1/2021				<0.005		
3/2/2021	<0.001	<0.001	<0.001		0.001 (J)	0.00053 (J)
9/21/2021	<0.001	<0.001				0.00071 (J)
9/22/2021			<0.001	0.0015 (J)	<0.005	
2/1/2022	<0.001	<0.001	0.00052 (J)	0.00079 (J)	0.0011 (J)	0.0007 (J)
8/23/2022	<0.001	<0.001	0.000308 (J)	0.000767 (J)	0.000844 (J)	0.000553 (J)
1/24/2023	<0.001	<0.001	<0.001	0.00154	0.000829 (J)	0.000677 (J)
8/31/2023			<0.001	0.000707 (J)	0.000707 (J)	0.000474 (J)
2/10/2024			<0.001	0.0014	0.000962 (J)	0.000555 (J)
8/27/2024			<0.001	0.00105	0.000772 (J)	0.000396 (J)

	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
8/31/2016	<0.001					
9/1/2016		<0.001				
9/6/2016						0.0006 (J)
9/8/2016			0.0073 (J)	0.0149	0.0122	
11/15/2016	<0.001	<0.001				
11/17/2016			0.0086 (J)			
11/18/2016				0.0131		
11/21/2016					0.0122	<0.04
2/20/2017	0.0009 (J)	<0.001				
2/21/2017			0.0079 (J)	0.0099 (J)		
2/22/2017			. ,	. ,	0.0136	0.0016 (J)
6/12/2017	0.0006 (J)	0.0003 (J)				• •
6/13/2017	(-/	(-,	0.0083 (J)	0.0094 (J)		
6/14/2017			(-)	(-)	0.0113	0.0015 (J)
9/26/2017	0.0005 (J)	0.0003 (J)				\-/
9/27/2017	(0)	(0)	0.0087 (J)	0.0095 (J)	0.0094 (J)	0.0007 (J)
2/13/2018	<0.001	<0.001	2.000. (0)	2.0000 (0)	2.000 . (0)	0007 (0)
2/13/2018	0.001	0.001	<0.01	0.0112	<0.01	<0.04
6/26/2018	0.0005271	<0.001	0.006 (J)	V.U112	-0.01	-0.04
6/27/2018	0.00052 (J)	-U.UU I	0.000 (3)	0.0093 (J)	0.0069 (J)	
6/28/2018				J.0055 (J)	0.0003 (0)	0.00078 (J)
	<0.001	<0.001	0.0055 (!)		0.0067 / 1\	
12/18/2018	<0.001	<0.001	0.0055 (J)	0.008171	0.0067 (J)	0.0011 (J)
12/20/2018	0.0004271	<0.001	0.004271	0.0081 (J)		0.001471
8/27/2019	0.00042 (J)	<0.001	0.0042 (J)	0.01	0.0061	0.0014 (J)
8/28/2019	<0.001	-0.00 1	0.0043 (1)	0.01	0.0061	
10/15/2019	<0.001	<0.001	0.0043 (J)		0.0050	
10/16/2019				0.044.4%	0.0058	-0.04
10/17/2019				0.011 (J)		<0.04
12/4/2019				0.0086		0.0012 (J)
3/3/2020	<0.001	0.0011 (J)				
3/4/2020			0.0039 (J)	0.008	0.007	
3/5/2020						0.0011 (J)
8/18/2020	<0.001	0.00061 (J)				
8/19/2020			0.0039 (J)	0.0078	0.0065	0.0008 (J)
9/15/2020	<0.001	<0.001	0.0035 (J)		0.0064	
9/16/2020				0.008		0.0008 (J)
3/1/2021		<0.001				
3/2/2021	<0.001		0.003 (J)			
3/3/2021				0.0062	0.0095	0.0015 (J)
9/21/2021	<0.001					
9/22/2021		0.00078 (J)				
9/28/2021			0.0029 (J)	0.0047 (J)	0.0069	0.001 (J)
2/1/2022	<0.001	<0.001				
2/2/2022			0.0027 (J)			0.0012 (J)
2/3/2022					0.0077	
2/4/2022				0.0076		
8/23/2022	<0.001	<0.001	0.00342			
8/24/2022					0.0066	0.00163
8/25/2022				0.0079		
1/24/2023	<0.001	<0.001				
1/25/2023				0.00711		
1/26/2023			0.0032		0.00823	0.00158
•						

	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
8/31/2023	0.000327 (J)	<0.001				0.00183
9/6/2023			0.00343	0.00601	0.00724	
2/10/2024	<0.001	<0.001				0.00179
2/13/2024			0.00254	0.00392	0.00874	
8/27/2024	<0.001	<0.001		0.00566	0.00574	
8/28/2024						0.00149
8/29/2024			0.00319			

	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44	PZ-63I
9/8/2016	0.0025 (J)					
11/21/2016	0.001 (J)					
2/22/2017	<0.001					
6/14/2017	<0.001					
9/27/2017	<0.001					
2/14/2018	<0.001					
3/6/2018		0.0162	<0.001		<0.001	
5/1/2018		0.015	0.0125 (D)		<0.001	
6/27/2018	<0.001	0.010	0.0076 (J)		-0.001	
6/28/2018	10.001	0.01	0.0070 (0)			
7/31/2018		0.0098 (J)				
8/1/2018		0.0030 (3)	0.004 (J)			
8/10/2018			0.004 (3)	0.0043 (J)		
		0.0002 (1)	0.0016 (1)			
8/23/2018		0.0093 (J)	0.0016 (J)	0.0026 (J)		
9/19/2018		0.0084 (J)	0.0018 (J)	0.0028 (J)		
10/29/2018		0.0064 (J)	0.0014 (J)	0.0015 (J)		
11/28/2018		0.0071 (J)	0.0016 (J)	0.0012 (J)		
12/19/2018	<0.001		0.0014 (J)			
12/20/2018		0.069		<0.001		
1/17/2019				<0.001		
2/13/2019				<0.001		
8/27/2019	<0.001					
8/28/2019		0.011	0.00037 (J)			
8/29/2019				0.00063 (J)		
10/16/2019			0.00032 (J)	<0.001		
10/17/2019	<0.001	0.0098 (J)				
12/3/2019		0.0076				
12/4/2019	<0.001					
3/4/2020			0.0011 (J)	<0.001		
3/5/2020	<0.001	0.0091				
8/19/2020	<0.001					
8/20/2020		0.022	0.00043 (J)	<0.001		
9/16/2020	<0.001	0.0049 (J)	0.00053 (J)			
9/17/2020				0.00046 (J)		
3/2/2021		0.0057	0.0005 (J)			
3/4/2021	<0.001			<0.001		
9/23/2021		0.0049 (J)	<0.001			
9/28/2021	<0.001			<0.001	<0.001	
2/2/2022	<0.001	0.0054	<0.001	<0.001	<0.001	
2/4/2022						0.019
8/23/2022			<0.001			
8/25/2022	<0.001	0.00357		<0.001	<0.001	0.0232
1/24/2023	<0.001					
1/25/2023		0.00258		<0.001	<0.001	
1/26/2023			0.000376 (J)			
1/30/2023			. ,			0.028
8/31/2023	<0.001					
9/6/2023		0.00221	<0.001	0.000317 (J)		
9/8/2023		5.50 <u>2</u> 21	5.001	3.300017 (0)	<0.001	0.0309
2/10/2024	<0.001		<0.001		0.000408 (J)	
2/10/2024	-0.00 I	0.00181	-0.001	0.00042 (J)	0.000+00 (0)	0.0299
8/27/2024		0.00101		0.00042 (3)	<0.001	0.0255
012112024					~ 0.001	

	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44	PZ-63I
8/28/2024	<0.001		<0.001	<0.001		
8/29/2024		0.00203				0.0335

	PZ-68D	PZ-74I	PZ-75I
2/1/2023	0.000825 (J)		
9/6/2023		0.00059 (J)	0.00105
9/8/2023	0.00106		
2/14/2024	0.000852 (J)	0.000829 (J)	0.000519 (J)
8/27/2024		<0.001	<0.001
8/29/2024	0.000526 (J)		

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 1/10/2025 10:45 AM View: Pond BCD

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)
8/31/2016				0.351 (U)	1 (U)	0.62 (U)
9/1/2016	0.428 (U)	0.566 (U)				
9/6/2016			0.585 (U)			
11/16/2016	0.799 (U)	0.863 (U)		0.824 (U)	0.43 (U)	0.493 (U)
11/17/2016			0.804 (U)			
2/20/2017						0.534 (U)
2/21/2017	1.75 (U)	0.318 (U)	0.595 (U)	1.01 (U)	0.96 (U)	
6/12/2017				0.532 (U)		0.254 (U)
6/13/2017		0.163 (U)	0.618 (U)		0.645 (U)	
6/14/2017	2.66					
9/26/2017	0.841 (U)	0.56 (U)	1.26 (U)	0.845 (U)	0.299 (U)	0.62 (U)
2/13/2018				0.176 (U)	1.01 (U)	0.0914 (U)
2/14/2018	1.13 (UX)	0.537 (U)	1.2 (U)			
6/26/2018	1.42 (J+X)	1.31 (UX)	1.34 (U)	1.02 (U)	1.26 (J+X)	1.11 (U)
12/18/2018	0.855 (U)	1.31 (J+X)	1.13 (U)	0.487 (U)	0.44 (U)	0.42 (U)
8/27/2019	1.31	1.32		1.11	1.47	1.19
8/29/2019			1.45 (U)			
10/15/2019	1.13 (U)	1.05 (U)	1.69	1.02 (U)	0.807 (U)	0.714 (U)
3/3/2020	1.29 (U)	1.68		1.18 (U)	0.818 (U)	0.996 (U)
3/4/2020			1.45			
8/18/2020	0.988 (U)	0.969 (U)	0.784 (U)	0.0861 (U)	1.22 (U)	0.53 (U)
9/15/2020	0.762 (U)	0.359 (U)	1.04 (U)	0.0583 (U)	0.579 (U)	0.215 (U)
3/1/2021				0.127 (U)		
3/2/2021	0.901	0.925	1.12		0.342 (U)	0.409 (U)
9/21/2021	1.33	0.468 (U)				0.182 (U)
9/22/2021			1.4	0.349 (U)	1.33 (U)	
2/1/2022	0.833 (U)	0.659 (U)	1.15	0.233 (U)	0.251 (U)	1.23
8/23/2022	0.558	1.69	1.59	1.7	0.531	2.3
1/24/2023	1.49 (U)	3.07	5.62	2.05 (U)	1.35 (U)	0.811 (U)
9/22/2023			2.16	0.857 (U)	0.592 (U)	1.36
2/27/2024			0.605 (U)	1.25	2.54	1.48 (U)
8/27/2024			2.43	0.864 (U)	1.4 (U)	3.62

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 1/10/2025 10:45 AM View: Pond BCD

Plant Branch	Client: Southern Company	Data: Plant Branch AP
i lant branch	Chefft. Coulifern Company	Data. I lant Dianon Al

	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
8/31/2016	0.603 (U)					
9/1/2016	-	1.33				
9/6/2016						1.01 (U)
9/8/2016			0.862 (U)	1.74	1.13	• •
11/15/2016	0.645 (U)	0.412 (U)	(-)			
11/17/2016	0.0.0 (0)	0.1.2 (0)	1.2 (U)			
11/18/2016			1.2 (0)	0.571 (U)		
				0.571 (0)	1.50	0.201 (11)
11/21/2016	1.00	0.022 (11)			1.59	0.201 (U)
2/20/2017	1.36	0.633 (U)	1.04	100 (1)		
2/21/2017			1.31	1.28 (U)		
2/22/2017					1.64	0.57 (U)
6/12/2017	0.566 (U)	0.112 (U)				
6/13/2017			0.738 (U)	0.521 (U)		
6/14/2017					1.32	0.726 (U)
9/26/2017	0.762 (U)	0.167 (U)				
9/27/2017			0.583 (U)	0.595 (U)	1.7	0.884 (U)
2/13/2018	0.349 (U)	0.347 (U)				
2/14/2018			1.41 (J+X)	1.18 (U)	1.89 (J+X)	1.14 (U)
6/26/2018	0.614 (U)	0.903 (U)	0.968 (U)			
6/27/2018				1.3 (U)	1.66 (J+X)	
6/28/2018						1.4 (UX)
12/18/2018	0.445 (U)	0.353 (U)	1.13 (U)		0.759 (U)	0.661 (U)
12/20/2018				0.527 (U)		
8/27/2019	1.44	0.65 (U)	0.91 (U)			1.35
8/28/2019		` '	. ,	0.643 (U)	1.76	
10/15/2019	0.467 (U)	0.402 (U)	1.06 (U)	(-,		
10/16/2019	0.107 (0)	0.102 (0)	(5)		1.69 (U)	
10/17/2019				1.07 (U)	1.00 (0)	1.25 (U)
	1.5	0.207 (11)		1.07 (0)		1.25 (0)
3/3/2020	1.5	0.397 (U)	1 24	1 10	1 22	
3/4/2020			1.34	1.18	1.23	1.25
3/5/2020	0.504.41	0.452.00				1.35
8/18/2020	0.581 (U)	0.453 (U)				4.00
8/19/2020			0.467 (U)	0.684 (U)	0.876 (U)	1 (U)
9/15/2020	0.55 (U)	0.474 (U)	0.205 (U)		1.23 (U)	
9/16/2020				0.175 (U)		0.43 (U)
3/1/2021		0.215 (U)				
3/2/2021	0.362 (U)		0.161 (U)			
3/3/2021				0.829 (U)	1.31 (U)	0.415 (U)
9/21/2021	0.86 (U)					
9/22/2021		0.943 (U)				
9/28/2021			4.44	3.58	1.49	0.749 (U)
2/1/2022	0.23 (U)	0.349 (U)				
2/2/2022			0.64 (U)			1.21 (U)
2/3/2022					0.798 (U)	
2/4/2022				0.335 (U)	\-/	
8/23/2022	0.735	0.203	1.9	\-/		
8/24/2022					1.97	3.26
8/25/2022				1.79	1.07	0.20
1/24/2023	0.402 (U)	1.55 (U)		1.75		
	0.702 (0)	1.55 (0)		1.53 (11)		
1/25/2023			3.24	1.53 (U)	0.07.415	2.73 (U)
			4 7/1		77/111	7.73 (U)
1/26/2023 9/22/2023	1.31 (U)	1.89 (U)	5.24		2.27 (U)	2.71

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 1/10/2025 10:45 AM View: Pond BCD

Plant Branch	Client: Southern Company	Data: Plant Branch AP
--------------	--------------------------	-----------------------

	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
9/26/2023			1.21 (U)	2.23	3.02	
2/27/2024	0 (U)	1.29				4.11
2/28/2024			3.78	1.49 (U)	3.01	
8/27/2024	0.236 (U)	1.64		2.41	2.39	
8/28/2024						3.82
8/29/2024			6.24			

			i idili	Dianen Chem. 00	dulent Company	Data. Flant Branch Ar
	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44	PZ-63I
9/8/2016	0.706 (U)					
11/21/2016	0.0569 (U)					
2/22/2017	1.07 (U)					
6/14/2017	0.459 (U)					
9/27/2017	0.807 (U)					
2/14/2018	1.67 (J+X)					
3/6/2018	1.07 (31%)	1.25 (U)	1 75 / 1+V)		0.577 (U)	
			1.75 (J+X)			
5/1/2018		0.423 (U)	2.02 (J+XD)		0.27 (U)	
6/27/2018	1.34 (UX)		0.878 (U)			
6/28/2018		0.283 (U)				
7/31/2018		0.243 (U)				
8/1/2018			0.638 (U)			
8/10/2018				1.91		
8/23/2018		1.1 (U)	1.14 (U)	1.86 (J+X)		
9/19/2018		0.369 (U)	1.45 (UX)	1.64 (UX)		
10/29/2018		0.401 (U)	1.09 (U)	1.36 (U)		
11/28/2018		0.901 (U)	1.67 (UX)	1.07 (U)		
12/19/2018	1.21 (U)	. ,	1.3	. ,		
12/20/2018	\-,'	0.657 (U)		0.892 (U)		
1/17/2019		(0)		1.1 (U)		
2/13/2019				1.68		
8/27/2019	0.86 (11)			1.00		
	0.86 (U)	0.538.415	0.804 (11)			
8/28/2019		0.528 (U)	0.804 (U)			
8/29/2019				1.44		
10/16/2019			1.28 (U)	2.13		
10/17/2019	1.2 (U)	0.977 (U)				
3/4/2020			0.862 (U)	2.3		
3/5/2020	0.483 (U)	0.921 (U)				
8/19/2020	0.482 (U)					
8/20/2020		0.501 (U)	1.64	2.97		
9/16/2020	0.195 (U)	0.254 (U)	0.51 (U)			
9/17/2020				2.04		
3/2/2021		0.107 (U)	0.571 (U)			
3/4/2021	0.32 (U)	• •	. ,	2.04		
9/23/2021	\-/	0.619 (U)	0.527 (U)			
9/28/2021	0.947 (U)	(-/	(-)	3.28	0.526 (U)	
2/2/2022	0.0265 (U)	0.219 (U)	0.145 (U)	2.33	0.244 (U)	
2/4/2022	0.0200 (0)	0.213 (0)	0.1 1 0 (0)	2.00	0.277 (0)	0.768
			2 74			0.700
8/23/2022	1.00	1.05	3.74	4.07	1.0	1.50
8/25/2022	1.32	1.65		4.97	1.6	1.52
1/24/2023	2.25					
1/25/2023		1.29 (U)		7.94	2.49 (U)	
1/26/2023			3.28			
1/30/2023						6.03
9/22/2023	2.33				0.477 (U)	2.31
9/26/2023		0.607 (U)	2.39	6.36		
2/27/2024	0.572 (U)		2.63		2.87	
2/29/2024		1.22 (U)		4.51		1.52 (U)
8/27/2024		. ,			2.84	• •
8/28/2024	0.737 (U)			14.7		
8/29/2024	(0)	1.71	1.32 (U)			4.48
012312024		1.71	1.32 (0)			טד.ד

	PZ-68D	PZ-74I	PZ-75I
2/1/2023	4.16		
9/22/2023	1.62		
9/26/2023		0.811 (U)	3.11
2/29/2024	2.16	0.912 (U)	2.19
8/27/2024		0.997 (U)	2.81
8/29/2024	5.43		

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)
8/31/2016				0.11 (J)	0.05 (J)	0.07 (J)
9/1/2016	0.2 (J)	0.05 (J)				
9/6/2016			0.42			
11/16/2016	0.14 (J)	0.03 (J)		0.08 (J)	0.07 (J)	0.07 (J)
11/17/2016			0.15 (J)			
2/20/2017						0.06 (J)
2/21/2017	0.16 (J)	0.04 (J)	0.1 (J)	0.14 (J)	0.05 (J)	
6/12/2017				0.16 (J)		0.008 (J)
6/13/2017		0.008 (J)	0.07 (J)		0.04 (J)	
6/14/2017	0.09 (J)					
9/26/2017	0.1 (J)	<0.1	<0.1	0.14 (J)	<0.1	<0.1
2/13/2018				<0.033	<0.1	<0.1
2/14/2018	<0.3	<0.1	<0.1			
6/26/2018	0.079 (J)	0.042 (J)	0.053 (J)	0.085 (J)	0.048 (J)	0.045 (J)
12/18/2018	<0.3	<0.1	<0.1	0.085 (J)	<0.1	<0.1
3/19/2019	<0.3	<0.1	<0.1	0.0655 (JD)	0.037 (J)	<0.1
8/27/2019	<0.3	<0.1		<0.033	<0.1	<0.1
8/29/2019			0.084 (J)			
10/15/2019	0.047 (J)	<0.1	<0.1	<0.033	<0.1	<0.1
3/3/2020	0.056 (J)	<0.1		0.066 (J)	0.05 (J)	<0.1
3/4/2020			<0.1			
8/18/2020	0.052 (J)	<0.1	<0.1	<0.033	<0.1	<0.1
9/15/2020	0.062 (J)	<0.1	<0.1	<0.033	<0.1	<0.1
3/1/2021				<0.033		
3/2/2021	0.061 (J)	<0.1	<0.1		<0.1	<0.1
9/21/2021	0.071 (J)	<0.1				<0.1
9/22/2021			0.069 (J)	<0.033	<0.1	
2/1/2022	0.055 (J)	<0.1	<0.1	<0.033	<0.1	<0.1
8/23/2022	0.151	0.129	0.157	<0.033	<0.1	<0.1
1/24/2023	0.214	0.0926 (J)	0.231	<0.033	<0.1	0.149
8/23/2023			0.114	0.267	0.229	0.289
1/31/2024				<0.033	0.184	0.232
2/1/2024			0.275			
8/27/2024			0.204	0.0342 (J)	0.0426 (J)	0.0365 (J)

	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
1/26/2023			0.202		0.0935 (J)	0.167
8/23/2023	0.277	0.0787 (J)				0.116
8/25/2023			0.25	0.302	0.0849 (J)	
1/31/2024	0.233	0.0341 (J)				
2/1/2024			0.221	0.222	0.0968 (J)	0.169
8/27/2024	0.0516 (J)	0.0334 (J)		0.382	0.0849 (J)	
8/28/2024						0.336 (J)
8/29/2024			0.248			

	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44	PZ-63I
9/8/2016	0.15 (J)					
11/21/2016	0.04 (J)					
2/22/2017	0.08 (J)					
6/14/2017	0.09 (J)					
9/27/2017	<0.1					
2/14/2018	<0.1					
3/6/2018		0.94	1.1		<0.3	
5/1/2018		<0.1	0.595 (D)		<0.3	
6/27/2018	<0.1		0.27 (J)			
6/28/2018		0.69 (J+X)				
7/31/2018		<0.1				
8/1/2018			0.48			
8/10/2018				1.6 (O)		
8/23/2018		<0.1	0.34	0.32		
9/19/2018		<0.1				
			0.23 (J)	0.22 (J)		
10/29/2018		<0.1	<0.2	0.14 (J)		
11/28/2018	0.00 / "	<0.1	0.063 (J)	0.24 (J)		
12/19/2018	0.23 (J)		0.28 (J)			
12/20/2018		0.12 (J)		0.3		
1/17/2019				0.23 (J)		
2/13/2019				<0.3		
3/19/2019			<0.2			
3/20/2019	<0.1	0.066 (J)		0.135 (JD)		
8/27/2019	<0.1					
8/28/2019		<0.1	<0.2			
8/29/2019				0.087 (J)		
10/16/2019			0.076 (J)	0.22 (J)		
12/3/2019		0.19 (J)				
12/4/2019	0.11 (J)					
3/4/2020			<0.2	0.1 (J)		
3/5/2020	<0.1	<0.1				
8/19/2020	<0.1					
8/20/2020		<0.1	<0.2	0.23		
9/16/2020	<0.1	0.052 (J)	<0.2			
9/17/2020		3.332 (0)	U. <u>L</u>	0.074 (J)		
3/2/2021		0.067 (J)	<0.2	0.07 + (0)		
3/4/2021	<0.1	0.007 (0)	~V.Z	0.28		
	~ 0.1	0.06 (!)	<0.2	0.20		
9/23/2021	-0.1	0.06 (J)	<0.2	0.12	0.08 (!)	
9/28/2021	<0.1	.0.4	0.0	0.12	0.08 (J)	
2/2/2022	<0.1	<0.1	<0.2	0.098 (J)	0.065 (J)	
2/4/2022						0.14
8/23/2022			<0.2			
8/25/2022	0.138	0.166		0.157	0.184	0.235
1/24/2023	0.082 (J)					
1/25/2023		0.163		0.169	0.13	
1/26/2023			0.117			
1/30/2023						0.23
8/23/2023	0.0477 (J)					
8/24/2023					0.195	0.252
8/25/2023		0.185	0.243	0.188 (J)		
1/31/2024	0.207			. ,		
2/1/2024			0.11		0.242	
•						

	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44	PZ-63I
2/2/2024		0.126		0.215		0.289
8/27/2024					0.193	
8/28/2024	0.0511 (J)		<0.2	0.0748 (J)		
8/29/2024		0.078 (J)				0.139

	PZ-68D	PZ-74I	PZ-75I
2/1/2023	0.166		
8/24/2023	0.218		
8/25/2023		0.157	0.14
2/2/2024	0.211	0.232	0.0996 (J)
8/27/2024		0.159	0.155
8/29/2024	0.126		

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)
8/31/2016				<0.002	<0.002	<0.002
9/1/2016	<0.002	<0.002				
9/6/2016			<0.002			
11/16/2016	<0.002	<0.002		<0.002	<0.002	<0.002
11/17/2016			<0.002			
2/20/2017						<0.002
2/21/2017	<0.002	<0.002	<0.002	<0.002	<0.002	
6/12/2017				8E-05 (J)		<0.002
6/13/2017		<0.002	<0.002		<0.002	
6/14/2017	<0.002					
9/26/2017	<0.002	<0.002	<0.002	7E-05 (J)	7E-05 (J)	<0.002
2/13/2018				<0.002	<0.002	<0.002
2/14/2018	<0.002	<0.002	<0.002			
6/26/2018	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
12/18/2018	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
8/27/2019	<0.002	<0.002		<0.002	5.8E-05 (J)	<0.002
8/29/2019			7E-05 (J)			
10/15/2019	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
3/3/2020	<0.002	<0.002		<0.002	<0.002	<0.002
3/4/2020			<0.002			
8/18/2020	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
9/15/2020	<0.002	<0.002	<0.002	<0.002	<0.002	0.0013 (J)
3/1/2021				<0.002		
3/2/2021	<0.002	<0.002	<0.002		<0.002	3.7E-05 (J)
9/21/2021	<0.002	<0.002				<0.002
9/22/2021			<0.002	<0.002	<0.002	
2/1/2022	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
8/23/2022	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
1/24/2023	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
8/31/2023			<0.002	<0.002	<0.002	<0.002
2/10/2024			<0.002	<0.002	<0.002	<0.002
8/27/2024			<0.002	<0.002	<0.002	<0.002

			Fiant	Diancii Ciletti. 30	differin Company	Data. Flant Diantin AF
	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
8/31/2016	<0.002					
9/1/2016		0.0001 (J)				
9/6/2016						<0.002
9/8/2016			<0.002	<0.002	0.0004 (J)	
11/15/2016	<0.002	<0.002				
11/17/2016			<0.002			
11/18/2016				<0.002		
11/21/2016					0.0006 (J)	<0.002
2/20/2017	0.0002 (J)	<0.002			. ,	
2/21/2017	(-,		<0.002	<0.002		
2/22/2017					0.0005 (J)	<0.002
6/12/2017	0.0001 (J)	8E-05 (J)			0.0000 (0)	3.032
6/13/2017	0.0001 (0)	0L 00 (0)	<0.002	<0.002		
6/14/2017			10.002	10.002	0.0004 (J)	<0.002
	0.0001 / 1)	<0.000			0.0004 (3)	V0.002
9/26/2017	0.0001 (J)	<0.002	0.000	.0.000	0.0000 (1)	0.000
9/27/2017	<0.002	<0.000	<0.002	<0.002	0.0006 (J)	<0.002
2/13/2018	<0.002	<0.002	0.000	0.000	.0.005 ()	0.000
2/14/2018			<0.002	<0.002	<0.005 (o)	<0.002
6/26/2018	<0.002	<0.002	<0.002			
6/27/2018				<0.002	0.00032 (J)	
6/28/2018						<0.002
12/18/2018	<0.002	<0.002	<0.002		0.00038 (J)	<0.002
12/20/2018				<0.002		
8/27/2019	0.00036 (J)	<0.002	0.00011 (J)			<0.002
8/28/2019				<0.002	0.00027 (J)	
10/15/2019	7.9E-05 (J)	<0.002	<0.002			
10/16/2019					0.00027 (J)	
12/4/2019				6.3E-05 (J)		<0.002
3/3/2020	7.9E-05 (J)	7.3E-05 (J)				
3/4/2020			<0.002	<0.002	0.0003 (J)	
3/5/2020						<0.002
8/18/2020	0.0001 (J)	<0.002				
8/19/2020			<0.002	<0.002	0.00025 (J)	<0.002
9/15/2020	4.3E-05 (J)	<0.002	<0.002		0.00029 (J)	
9/16/2020	• •			<0.002	.,	0.00011 (J)
3/1/2021		<0.002				
3/2/2021	<0.002		<0.002			
3/3/2021			-	<0.002	0.00033 (J)	<0.002
9/21/2021	<0.002			-	(-)	
9/22/2021		<0.002				
9/28/2021		.0.002	<0.002	<0.002	<0.002	<0.002
2/1/2022	<0.002	<0.002	10.002	~U.UUZ	-0.002	-V-0VE
2/1/2022	~0.00Z	-0.002	<0.002			<0.002
			~U.UUZ		<0.003	10.00 2
2/3/2022				<0.002	<0.002	
2/4/2022	-0.000	<0.000	<0.000	<0.002		
8/23/2022	<0.002	<0.002	<0.002		-0.000	v0.000
8/24/2022					<0.002	<0.002
8/25/2022				<0.002		
1/24/2023	<0.002	<0.002				
1/25/2023				<0.002		
1/26/2023			<0.002		<0.002	<0.002
8/31/2023	<0.002	<0.002				<0.002

	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
9/6/2023			<0.002	<0.002	<0.002	
2/10/2024	<0.002	<0.002				<0.002
2/13/2024			<0.002	<0.002	<0.002	
8/27/2024	<0.002	<0.002		<0.002	<0.002	
8/28/2024						<0.002
8/29/2024			<0.002			

	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44	PZ-63I
9/8/2016	<0.002					
11/21/2016	<0.002					
2/22/2017	<0.002					
6/14/2017	<0.002					
9/27/2017	<0.002					
2/14/2018	<0.002					
3/6/2018		<0.002	<0.002		<0.002	
5/1/2018		<0.002	<0.002 (D)		<0.002	
6/27/2018	<0.002		<0.002			
6/28/2018		<0.002				
7/31/2018		<0.002				
8/1/2018			<0.002			
8/10/2018				<0.002		
8/23/2018		<0.002	<0.002	<0.002		
9/19/2018		<0.002	<0.002	<0.002		
10/29/2018		<0.002	<0.002	<0.002		
11/28/2018		<0.002	<0.002	<0.002		
12/19/2018	<0.002		<0.002			
12/20/2018		<0.002		<0.002		
1/17/2019				<0.002		
2/13/2019				<0.002		
8/27/2019	<0.002					
8/28/2019		<0.002	<0.002			
8/29/2019				<0.002		
10/16/2019			<0.002	<0.002		
12/3/2019		<0.002				
12/4/2019	<0.002					
3/4/2020			0.00012 (J)	<0.002		
3/5/2020	<0.002	0.00026 (J)				
8/19/2020	<0.002					
8/20/2020		0.00021 (J)	4.8E-05 (J)	<0.002		
9/16/2020	<0.002	5.3E-05 (J)	6.6E-05 (J)			
9/17/2020				<0.002		
3/2/2021		<0.002	<0.002			
3/4/2021	<0.002			4.2E-05 (J)		
9/23/2021		<0.002	<0.002			
9/28/2021	<0.002			<0.002	<0.002	
2/2/2022	<0.002	<0.002	<0.002	<0.002	<0.002	
2/4/2022						<0.002
8/23/2022			<0.002			
8/25/2022	<0.002	<0.002		<0.002	<0.002	<0.002
1/24/2023	<0.002					
1/25/2023		0.000595 (J)		<0.002	<0.002	
1/26/2023			<0.002			0.000
1/30/2023	.0.000					<0.002
8/31/2023	<0.002					
9/6/2023		<0.002	<0.002	<0.002		
9/8/2023	.0.005		0.005		<0.002	<0.002
2/10/2024	<0.002	.0.00	<0.002	.0.00	<0.002	0.000
2/14/2024		<0.002		<0.002	0.005	<0.002
8/27/2024	-0.000		-0.000	-0.000	<0.002	
8/28/2024	<0.002		<0.002	<0.002		

Constituent: Lead (mg/L) Analysis Run 1/10/2025 10:45 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

BRGWC-32S BRGWC-45 BRGWC-47 BRGWC-52I BRGWC-44 PZ-63I 8/29/2024 <0.002 <0.002

	PZ-68D	PZ-74I	PZ-75I
2/1/2023	<0.002		
9/6/2023		<0.002	<0.002
9/8/2023	<0.002		
2/14/2024	0.000504 (J)	<0.002	<0.002
8/27/2024		<0.002	<0.002
8/29/2024	<0.002		

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)
8/31/2016				0.0268 (J)	<0.01	<0.003
9/1/2016	0.0061 (J)	<0.01				
9/6/2016			0.0028 (J)			
11/16/2016	0.0054 (J)	<0.01		0.0201 (J)	<0.01	0.0033 (J)
11/17/2016			0.0063 (J)			
2/20/2017						<0.003
2/21/2017	0.0058 (J)	<0.01	0.0052 (J)	0.0128 (J)	<0.01	
6/12/2017				0.0245 (J)		0.0019 (J)
6/13/2017		<0.01	0.0061 (J)		<0.01	
6/14/2017	0.0054 (J)					
9/26/2017	0.0037 (J)	<0.01	0.0087 (J)	0.0549	<0.01	0.0022 (J)
2/13/2018				0.0595	<0.01	0.0041 (J)
2/14/2018	0.0038 (J)	<0.01	0.0104 (J)			
6/26/2018	0.0045 (J)	<0.01	0.0095 (J)	0.089	<0.01	0.0025 (J)
12/18/2018	0.0038 (J)	<0.01	0.0091 (J)	0.024 (J)	<0.01	0.0032 (J)
8/27/2019	0.0039 (J)	<0.01		0.035	<0.01	0.0019 (J)
8/29/2019			0.007 (J)			
10/15/2019	0.0037 (J)	<0.01	0.0069 (J)	0.028 (J)	<0.01	0.002 (J)
3/3/2020	0.0033 (J)	<0.01		0.055	<0.01	0.0013 (J)
3/4/2020			0.0074 (J)			
8/18/2020	0.0039 (J)	<0.01	0.0099 (J)	0.054	<0.01	0.00095 (J)
9/15/2020	0.0037 (J)	<0.01	0.011 (J)	0.033	<0.01	0.001 (J)
3/1/2021				0.027 (J)		
3/2/2021	0.0045 (J)	<0.01	0.0093 (J)		<0.01	0.00081 (J)
9/21/2021	0.0037 (J)	<0.01				0.0012 (J)
9/22/2021			0.0074 (J)	0.021 (J)	<0.01	
2/1/2022	0.0037 (J)	<0.01	0.008 (J)	0.023 (J)	<0.01	0.0011 (J)
8/23/2022	0.00451 (J)	<0.01	0.00792 (J)	0.0262	<0.01	<0.003
1/24/2023	0.00529 (J)	<0.01	0.00749 (J)	0.00919 (J)	<0.01	<0.003
8/31/2023			0.00596 (J)	0.0209	<0.01	<0.003
2/10/2024			0.00729 (J)	0.00407 (J)	<0.01	<0.003
8/27/2024			0.00687 (J)	0.00584 (J)	<0.01	0.00337 (J)

BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
<0.01					
	0.003 (J)				
					0.0117 (J)
		<0.01	0.0021 (J)	0.004 (J)	
<0.01	0.0033 (J)				
	. ,	<0.01			
			<0.01		
				0.0039 (J)	0.0108 (J)
<0.01	0 0025 (J)			(0)	(0)
0.01	0.0020 (0)	<0.01	<0.01		
		0.01	0.01	0.0043 (1)	0.0103 (J)
<0.01	0.0027 (1)			0.0043 (0)	0.0103 (3)
~0.01	0.0027 (3)	<0.01	0.0017 (1)		
		<0.01	0.0017 (3)	0.0000 (1)	0.0101 (1)
-0.01	0.0000 (1)			U.UU36 (J)	0.0101 (J)
<0.01	0.0023 (J)				
		<0.01	0.0016 (J)	0.0038 (J)	0.0116 (J)
<0.01	0.0027 (J)				
		<0.01	0.0018 (J)	0.0034 (J)	0.0115 (J)
<0.01	0.0029 (J)	<0.01			
			0.0016 (J)	0.0034 (J)	
					0.013 (J)
<0.01	0.0026 (J)	<0.01		0.0032 (J)	0.014 (J)
			0.0015 (J)		
<0.01	0.0028 (J)	<0.01			0.016 (J)
			0.0016 (J)	0.0033 (J)	
<0.01	0.0024 (J)	<0.01			
				0.0029 (J)	
			0.0014 (J)		0.013 (J)
<0.01	0.0026 (J)		.,		. ,
	.,	<0.01	0.0014 (J)	0.0029 (J)	
			(0)	(0)	0.016 (J)
<0.01	0.0026 (1)				(0)
-0.01	3.0020 (0)	<0.01	0.0014 (1)	0.0029 (1)	0.018 (J)
<0.01	0.0027 / 1\		0.0014 (3)		0.018 (3)
~ U.U1	∪.∪∪∠/ (J)	~ U.U1	0.001475	0.003 (J)	0.016 / 15
	0.0000 (1)		0.0014 (J)		0.016 (J)
.0.01	0.0036 (J)				
<0.01		<0.01			
			0.0012 (J)	0.0032 (J)	0.014 (J)
<0.01					
	0.0035 (J)				
		<0.01	0.0011 (J)	0.0029 (J)	0.023 (J)
<0.01	0.0029 (J)				
		<0.01			0.021 (J)
				0.0026 (J)	
			0.001 (J)		
<0.01	0.00314 (J)	<0.01			
				0.00304 (J)	0.0238
			<0.01		
<0.01	0.00341 (J)				
	. ,		<0.01		
		<0.01		0.00331 (.1)	0.0279
<0.01	<0.01			0.00001 (0)	0.0273
-0.01	-0.07				0.0200
	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	 <0.01 <0.01 <0.01 <0.01 <0.01 <0.027 (J) <0.01 <0.027 (J) <0.01 <0.0027 (J) <0.01 <0.0029 (J) <0.01 <0.026 (J) <0.01 <0.0026 (J) <0.01 <0.0027 (J) <0.01 <0.0035 (J) <0.01 <0.00314 (J) <0.01 <0.00341 (J) <0.01 <0.00341 (J) 	 <0.01 0.003 (J) <0.01 <0.027 (J) <0.01 <0.01 <0.027 (J) <0.01 <0.01 <0.029 (J) <0.01 <0.01 <0.026 (J) <0.01 <0.01 <0.01 <0.026 (J) <0.01 <0.0035 (J) <0.01 	 <0.01 <0.003 (J) <0.01 <0.01 (J) <0.01 <0.01 (J) <0.01 <0.01 (J) <li< td=""><td>BRGWA-SS (bg) BRGWA-6S (bg) BRGWC-251 BRGWC-271 BRGWC-291 6.001</td></li<>	BRGWA-SS (bg) BRGWA-6S (bg) BRGWC-251 BRGWC-271 BRGWC-291 6.001

	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
9/6/2023			<0.01	<0.01	0.00349 (J)	
2/10/2024	<0.01	0.00317 (J)				0.0305
2/13/2024			<0.01	<0.01	0.00337 (J)	
8/27/2024	<0.01	0.00322 (J)		<0.01	0.00305 (J)	
8/28/2024						0.0295
8/29/2024			<0.01			

		BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44	PZ-63I
9/8/2	2016	<0.05					
	21/2016	<0.05					
	2/2017	0.0023 (J)					
	1/2017	0.0022 (J)					
	7/2017	0.0021 (J)					
	1/2018	0.0021 (J)					
		0.0023 (3)	0.0021 (1)	0.0300 (1)		0.0046 (1)	
	2018		0.0031 (J)	0.0399 (J)		0.0046 (J)	
	2018	0.0000 (1)	0.0038 (J)	0.0475 (JD)		0.0049 (J)	
	7/2018	0.0023 (J)	0.0000 (1)	0.044 (J)			
	3/2018		0.0028 (J)				
	1/2018		<0.25 (o)				
	2018			0.039 (J)			
	0/2018				0.0087 (J)		
	3/2018		0.0033 (J)	0.044 (J)	0.0089 (J)		
	9/2018		0.0033 (J)	0.043 (J)	0.005 (J)		
	29/2018		0.003 (J)	0.039 (J)	0.0048 (J)		
	28/2018		0.0035 (J)	0.044 (J)	0.0052 (J)		
12/1	19/2018	0.0018 (J)		0.043 (J)			
12/2	20/2018		0.003 (J)		0.0042 (J)		
1/17	7/2019				0.0039 (J)		
2/13	3/2019				<0.05		
8/27	7/2019	0.0022 (J)					
8/28	3/2019		0.0034 (J)	0.044			
8/29	9/2019				0.0052 (J)		
10/1	16/2019			0.038	0.0023 (J)		
12/3	3/2019		0.0033 (J)				
12/4	1/2019	0.0022 (J)					
3/4/2	2020			0.042	0.002 (J)		
3/5/2	2020	0.0022 (J)	0.003 (J)				
8/19	9/2020	0.002 (J)					
	0/2020	. ,	0.0034 (J)	0.044	0.0022 (J)		
	6/2020	0.0022 (J)	0.0036 (J)	0.039	. ,		
	7/2020	(-,	(-,		0.0058 (J)		
3/2/2			0.0043 (J)	0.044			
3/4/2		0.002 (J)	, (0)	, . .	0.003 (J)		
	3/2021	(3)	0.0023 (J)	0.042	(3)		
	3/2021	0.0021 (J)	3.0020 (0)	3.0 .2	0.0035 (J)	0.0048 (J)	
	2022	0.0021 (J)	0.0022 (J)	0.04	0.0033 (J)	0.0058 (J)	
	2022	2.0000 (0)	3.0022 (0)	5.0 .	3.00 (0)	3.0000 (0)	0.007 (J)
	3/2022			0.0474			(v)
	5/2022	0.0043 (J)	<0.01	0.0474	0.0162	0.00652 (J)	0.00509 (J)
			~U.U1		0.0102	0.00032 (J)	0.00003 (0)
	1/2023	0.007 (J)	0.00222 (1)		0.0196	0.00729 (1)	
	5/2023		0.00333 (J)	0.0500	0.0186	0.00728 (J)	
	0/2023			0.0506			0.0000 (1)
1/26							0.0066 (J)
1/26/ 1/30/	0/2023	0.00005 (1)					
1/26/ 1/30/ 8/31/	0/2023 1/2023	0.00392 (J)					•
1/26/ 1/30/ 8/31/ 9/6/2	0/2023 1/2023 2023	0.00392 (J)	<0.01	0.0532	0.0131		
1/26/ 1/30/ 8/31/ 9/6/2 9/8/2	0/2023 1/2023 2023 2023		<0.01		0.0131	0.0056 (J)	0.00516 (J)
1/26, 1/30, 8/31, 9/6/2 9/8/2 2/10,	0/2023 1/2023 2023 2023 0/2024	0.00392 (J) 0.00591 (J)		0.0532		0.0056 (J) 0.00537 (J)	0.00516 (J)
1/26/ 1/30/ 8/31/ 9/6/2 9/8/2 2/10/ 2/14/	0/2023 1/2023 2023 2023 0/2024 4/2024		<0.01		0.0131	0.00537 (J)	
1/26. 1/30. 8/31. 9/6/2 9/8/2 2/10. 2/14.	0/2023 1/2023 2023 2023 0/2024						0.00516 (J)

Constituent: Lithium (mg/L) Analysis Run 1/10/2025 10:45 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

BRGWC-32S BRGWC-45 BRGWC-47 BRGWC-52I BRGWC-44 PZ-63I 8/29/2024 <0.01 0.00651 (J)

	PZ-68D	PZ-74I	PZ-75I
2/1/2023	0.00899 (J)		
9/6/2023		0.00711 (J)	0.00579 (J)
9/8/2023	0.00399 (J)		
2/14/2024	0.00564 (J)	0.00702 (J)	0.00411 (J)
8/27/2024		0.00825 (J)	0.00433 (J)
8/29/2024	0.00633 (J)		

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)
8/31/2016				<0.0002	<0.0002	<0.0002
9/1/2016	<0.0002	<0.0002				
9/6/2016			<0.0002			
11/16/2016	<0.0002	<0.0002		<0.0002	<0.0002	<0.0002
11/17/2016			<0.0002			
2/20/2017						<0.0002
2/21/2017	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	
6/12/2017				4E-05 (J)		<0.0002
6/13/2017		<0.0002	<0.0002		<0.0002	
6/14/2017	6E-05 (J)					
9/26/2017	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
2/13/2018				0.00021	0.00019 (J)	<0.0002
2/14/2018	5.2E-05 (J)	<0.0002	<0.0002			
6/26/2018	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
12/18/2018	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
8/27/2019	<0.0002	<0.0002		<0.0002	<0.0002	<0.0002
8/29/2019			<0.0002			
8/18/2020	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
9/15/2020	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
3/1/2021				<0.0002		
3/2/2021	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002
9/21/2021	0.0001 (J)	0.0001 (J)				0.0001 (J)
9/22/2021			0.0001 (J)	0.0001 (J)	0.0001 (J)	
2/1/2022	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
8/23/2022	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
1/24/2023	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
8/25/2023			<0.0002	<0.0002	<0.0002	<0.0002
2/2/2024			<0.0002	<0.0002	<0.0002	<0.0002
8/27/2024			<0.0002	<0.0002	<0.0002	<0.0002

	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
8/31/2016	<0.0002					
9/1/2016		<0.0002				
9/6/2016						<0.0002
9/8/2016			<0.0002	<0.0002	<0.0002	
11/15/2016	<0.0002	<0.0002				
11/17/2016			<0.0002			
11/18/2016				<0.0002		
11/21/2016					<0.0002	<0.0002
2/20/2017	8E-05 (J)	<0.0002				
2/21/2017			<0.0002	<0.0002		
2/22/2017					<0.0002	<0.0002
6/12/2017	<0.0002	<0.0002				
6/13/2017			<0.0002	5E-05 (J)		
6/14/2017					7E-05 (J)	7E-05 (J)
9/26/2017	<0.0002	<0.0002				
9/27/2017			4E-05 (J)	4.7E-05 (J)	4E-05 (J)	4E-05 (J)
2/13/2018	0.00013 (J)	<0.0002				
2/14/2018			<0.0002	<0.0002	<0.0002	<0.0002
6/26/2018	<0.0002	<0.0002	<0.0002			
6/27/2018				<0.0002	<0.0002	
6/28/2018						<0.0002
12/18/2018	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002
12/20/2018				<0.0002		
8/27/2019	<0.0002	<0.0002	<0.0002			<0.0002
8/28/2019				<0.0002	<0.0002	
8/18/2020	<0.0002	<0.0002				
8/19/2020			8.3E-05 (J)	<0.0002	9.8E-05 (J)	8.2E-05 (J)
9/15/2020	<0.0002	<0.0002	<0.0002		<0.0002	
9/16/2020				<0.0002		<0.0002
3/1/2021		<0.0002				
3/2/2021	<0.0002		<0.0002			
3/3/2021				<0.0002	<0.0002	<0.0002
9/21/2021	0.0001 (J)					
9/22/2021		0.0001 (J)				
9/28/2021			<0.0002	<0.0002	<0.0002	<0.0002
2/1/2022	<0.0002	<0.0002				
2/2/2022			<0.0002			<0.0002
2/3/2022					<0.0002	
2/4/2022				<0.0002		
8/23/2022	<0.0002	<0.0002	<0.0002			
8/24/2022					<0.0002	<0.0002
8/25/2022				<0.0002		
1/24/2023	<0.0002	<0.0002				
1/25/2023				<0.0002		
1/26/2023			<0.0002		<0.0002	<0.0002
8/25/2023	<0.0002	<0.0002				<0.0002
8/29/2023			<0.0002	<0.0002	<0.0002	
2/2/2024	<0.0002	<0.0002				<0.0002
2/5/2024			<0.0002	<0.0002	0.00078	
8/27/2024	<0.0002	<0.0002		<0.0002	<0.0002	
8/28/2024						<0.0002
8/29/2024			<0.0002			

					. ,	
	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44	PZ-63I
9/8/2016	<0.0002					
11/21/2016	<0.0002					
2/22/2017	<0.0002					
6/14/2017	9E-05 (J)					
9/27/2017	0.0001 (J)					
2/14/2018	<0.0002					
3/6/2018		<0.0002	<0.0002		<0.0002	
5/1/2018		<0.0002	<0.0002 (D)		<0.0002	
6/27/2018	<0.0002		<0.0002			
6/28/2018		<0.0002				
7/31/2018		<0.0002				
8/1/2018			<0.0002			
8/10/2018				<0.0002		
8/23/2018		<0.0002	<0.0002	<0.0002		
9/19/2018		<0.0002	<0.0002	<0.0002		
10/29/2018		<0.0002	<0.0002	<0.0002		
11/28/2018		<0.0002	<0.0002	<0.0002		
12/19/2018	<0.0002		<0.0002			
12/20/2018		<0.0002		<0.0002		
1/17/2019				<0.0002		
2/13/2019				<0.0002		
8/27/2019	<0.0002					
8/28/2019		<0.0002	<0.0002			
8/29/2019				<0.0002		
8/19/2020	8.2E-05 (J)					
8/20/2020	(1)	<0.0002	<0.0002	<0.0002		
9/16/2020	<0.0002	<0.0002	<0.0002			
9/17/2020				<0.0002		
3/2/2021		<0.0002	<0.0002			
3/4/2021	<0.0002			<0.0002		
9/23/2021		<0.0002	<0.0002			
9/28/2021	<0.0002			<0.0002	<0.0002	
2/2/2022	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	
2/4/2022	0.0002	0.0002	0.000 <u>L</u>	0.0002	0.0002	<0.0002
8/23/2022			<0.0002			
8/25/2022	<0.0002	<0.0002		<0.0002	<0.0002	<0.0002
1/24/2023	<0.0002					
1/25/2023	0.0002	<0.0002		<0.0002	<0.0002	
1/26/2023			<0.0002			
1/30/2023			0.000 <u>L</u>			<0.0002
8/25/2023	<0.0002					
8/29/2023	0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
2/2/2024	<0.0002	0.0002	<0.0002	0.0002	<0.0002	
2/6/2024	0.0002	<0.0002	-0.0002	<0.0002	-0.0002	<0.0002
8/27/2024		0.0002		0.0002	<0.0002	
8/28/2024	<0.0002		<0.0002	<0.0002	0.0002	
8/29/2024	0.0002	<0.0002	0.000 <u>L</u>	0.0002		<0.0002
5,25,2524		-0.0002				0.0002

	PZ-68D	PZ-74I	PZ-75I
2/1/2023	<0.0002		
8/29/2023	<0.0002	<0.0002	<0.0002
2/6/2024	<0.0002	<0.0002	<0.0002
8/27/2024		<0.0002	<0.0002
8/29/2024	<0.0002		

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)
8/31/2016				0.0021 (J)	<0.001	0.004 (J)
9/1/2016	0.002 (J)	<0.001				
9/6/2016			0.0028 (J)			
11/16/2016	<0.01	<0.001		<0.01	<0.001	0.0038 (J)
11/17/2016			<0.001			
2/20/2017						0.0055 (J)
2/21/2017	<0.01	<0.001	<0.001	0.0021 (J)	<0.001	
6/12/2017				0.0021 (J)		0.005 (J)
6/13/2017		<0.001	<0.001		<0.001	
6/14/2017	<0.01					
9/26/2017	<0.01	<0.001	<0.001	0.0011 (J)	<0.001	0.0053 (J)
2/13/2018				0.0019 (J)	<0.001	0.008 (J)
2/14/2018	<0.01	<0.001	<0.001			
6/26/2018	<0.01	<0.001	<0.001	<0.01	<0.001	0.0041 (J)
12/18/2018	<0.01	<0.001	<0.001	<0.01	<0.001	0.0048 (J)
8/27/2019	<0.01	<0.001		<0.01	<0.001	0.0028 (J)
8/29/2019			<0.001			
10/15/2019	<0.01	<0.001	<0.001	<0.01	<0.001	0.0035 (J)
3/3/2020				<0.01	<0.001	0.0023 (J)
8/18/2020	<0.01	<0.001	<0.001	0.0011 (J)	<0.001	0.0015 (J)
9/15/2020	<0.01	<0.001	<0.001	0.0007 (J)	<0.001	0.0015 (J)
3/1/2021				<0.01		
3/2/2021	<0.01	<0.001	<0.001		<0.001	0.0015 (J)
9/21/2021	<0.01	<0.001				0.002 (J)
9/22/2021			<0.001	0.0012 (J)	<0.001	
2/1/2022	<0.01	<0.001	<0.001	0.0013 (J)	<0.001	0.002 (J)
8/23/2022	0.000413 (J)	<0.001	<0.001	0.0024	<0.001	0.00151
1/24/2023	0.000388 (J)	<0.001	<0.001	0.000601 (J)	<0.001	0.00192
8/31/2023			<0.001	0.00169	<0.001	0.000953 (J)
2/10/2024			0.000217 (J)	0.000362 (J)	<0.001	0.00143
8/27/2024			0.000225 (J)	0.000313 (J)	<0.001	0.00134

	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
8/31/2016	<0.001					
9/1/2016		<0.001				
9/6/2016						<0.01
9/8/2016			<0.01	<0.001	<0.001	
11/15/2016	<0.001	<0.001				
11/17/2016			<0.01			
11/18/2016				<0.001		
11/21/2016					<0.001	<0.01
2/20/2017	<0.001	<0.001				
2/21/2017			<0.01	<0.001		
2/22/2017					<0.001	<0.01
6/12/2017	<0.001	<0.001				
6/13/2017			<0.01	<0.001		
6/14/2017					<0.001	<0.01
9/26/2017	<0.001	<0.001				
9/27/2017			<0.01	<0.001	<0.001	<0.01
2/13/2018	<0.001	<0.001				
2/14/2018			<0.01	<0.001	<0.001	<0.01
6/26/2018	<0.001	<0.001	<0.01			
6/27/2018				<0.001	<0.001	
6/28/2018						<0.01
12/18/2018	<0.001	<0.001	<0.01		<0.001	<0.01
12/20/2018				<0.001		
8/27/2019	<0.001	<0.001	<0.01			<0.01
8/28/2019				<0.001	<0.001	
10/15/2019	<0.001	<0.001	<0.01			
10/16/2019					<0.001	
12/4/2019				<0.001		<0.01
3/3/2020	<0.001	<0.001				
8/18/2020	<0.001	<0.001				
8/19/2020			0.00081 (J)	<0.001	<0.001	0.00078 (J)
9/15/2020	<0.001	<0.001	0.0008 (J)		<0.001	
9/16/2020				<0.001		0.0022 (J)
3/1/2021		<0.001				
3/2/2021	<0.001		0.001 (J)			
3/3/2021				<0.001	<0.001	<0.01
9/21/2021	<0.001					
9/22/2021		<0.001				
9/28/2021			0.00089 (J)	<0.001	<0.001	0.001 (J)
2/1/2022	<0.001	<0.001				
2/2/2022			0.0011 (J)			0.0012 (J)
2/3/2022					<0.001	
2/4/2022				<0.001		
8/23/2022	<0.001	<0.001	0.00105			
8/24/2022					<0.001	0.00141
8/25/2022				<0.001		
1/24/2023	<0.001	<0.001				
1/25/2023				<0.001		
1/26/2023			0.00092 (J)		<0.001	0.0014
8/31/2023	<0.001	<0.001				0.00111
9/6/2023			0.00141	<0.001	<0.001	
2/10/2024	<0.001	<0.001				0.00137

	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I	
2/13/2024			0.0014	0.000213 (J)	<0.001		
8/27/2024	<0.001	<0.001		0.000211 (J)	<0.001		
8/28/2024						0.00123	
8/29/2024			0.00123				

	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44	PZ-63I
9/8/2016	<0.001					
11/21/2016	<0.001					
2/22/2017	<0.001					
6/14/2017	<0.001					
9/27/2017	<0.001					
2/14/2018	<0.001					
3/6/2018		<0.0002	<0.01		<0.001	
5/1/2018		<0.0002	<0.01 (D)		<0.001	
6/27/2018	<0.001		<0.01			
6/28/2018		<0.0002				
7/31/2018		<0.0002				
8/1/2018			<0.01			
8/10/2018				0.0032 (J)		
8/23/2018		<0.0002	<0.01	0.005 (J)		
9/19/2018		<0.0002	<0.01	0.0061 (J)		
10/29/2018		<0.0002	<0.01	0.0065 (J)		
11/28/2018		<0.0002	<0.01	0.0027 (J)		
12/19/2018	<0.001		<0.01			
12/20/2018		<0.0002		<0.01		
1/17/2019				<0.01		
2/13/2019				<0.01		
8/27/2019	<0.001			3.01		
	~0.001	<0.0000	-0.01			
8/28/2019		<0.0002	<0.01	-0.01		
8/29/2019				<0.01		
10/16/2019			<0.01	<0.01		
12/3/2019		<0.0002				
12/4/2019	<0.001					
8/19/2020	<0.001					
8/20/2020		0.00076 (J)	<0.01	0.0012 (J)		
9/16/2020	<0.001	<0.0002	<0.01			
9/17/2020				0.0007 (J)		
3/2/2021		<0.0002	<0.01			
3/4/2021	<0.001			0.001 (J)		
9/23/2021		<0.0002	<0.01			
9/28/2021	<0.001			<0.01	<0.001	
2/2/2022	<0.001	<0.0002	<0.01	<0.01	<0.001	
2/4/2022						0.00092 (J)
8/23/2022			0.000296 (J)			,
8/25/2022	<0.001	0.000424 (J)	(-)	0.000471 (J)	<0.001	0.000741 (J)
1/24/2023	<0.001					(0)
1/25/2023	-0.001	0.000545 (J)		0.000609 (J)	<0.001	
		0.000340 (3)	0.0002771	0.000009 (3)	~U.UU I	
1/26/2023			0.00027 (J)			0.000000 (1)
1/30/2023	10.001					0.000803 (J)
8/31/2023	<0.001					
9/6/2023		0.000356 (J)	0.000296 (J)	0.000782 (J)		
9/8/2023					<0.001	0.000539 (J)
2/10/2024	<0.001		0.00028 (J)		<0.001	
2/14/2024		<0.0002		0.000564 (J)		0.0007 (J)
8/27/2024					<0.001	
8/28/2024	<0.001		0.000252 (J)	0.000691 (J)		
8/29/2024		0.000207 (J)				0.000827 (J)

	PZ-68D	PZ-74I	PZ-75I
2/1/2023	0.0111		
9/6/2023		0.000597 (J)	<0.001
9/8/2023	0.00625		
2/14/2024	0.00598	<0.001	<0.001
8/27/2024		<0.001	<0.001
8/29/2024	0.00702		

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)
8/31/2016				7.16	6.2	6.53
9/1/2016	6.71	6				
9/6/2016			6.49			
11/16/2016	6.15	6		6.96	6.12	6.4
11/17/2016			5.79			
2/20/2017						6.44
2/21/2017	6.52	6.09	6.15	7.15	6.24	
6/12/2017				7.31		6.4
6/13/2017	6.42	6.03	5.87		6.19	
6/14/2017	6.51					
9/26/2017	6.42	5.85	5.82	7.02	6.15	6.31
2/13/2018				7.44	6.18	6.62
2/14/2018	6.48	5.99	5.83			
6/26/2018	6.2	5.86	5.73	6.93	6.05	6.29
7/31/2018	6.37	5.99				
12/18/2018	6.5	6.08	5.78	6.76	5.92	6.57
3/19/2019	6.28	5.71	5.28	6.87	6.18	6.45
8/27/2019	6.35	6		6.79	6.09	6.37
8/29/2019			5.64			
10/15/2019	6.8	6.61	5.7	6.57	6.06	6.77
3/3/2020	6.33	5.94		6.71	6.1	6.29
3/4/2020			5.7			
8/18/2020	6.25	5.75	5.56	6.59	6.06	6.29
9/15/2020	6.01	6	5.72	6.64	6.01	6.27
3/1/2021				6.66		
3/2/2021	6.11	5.92	5.75		6.2	6.47
9/21/2021	6.53	5.87				6.32
9/22/2021			5.72	6.78	6.06	
2/1/2022	6.4	5.81	5.65	6.83	5.95	6.38
8/23/2022	6.39	5.9	5.66	6.67	5.95	6.24
1/24/2023	6.48	5.97	5.76	6.7	5.26	6.42
8/22/2023			5.89	6.91	5.97	6.36
1/30/2024			5.87	6.57	6.05	6.44
8/27/2024			5.92	6.6	6.02	6.56

	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
8/31/2016	6.59					
9/1/2016		6.49				
9/6/2016						6.23
9/8/2016			6.07	5.51	4.62	
11/15/2016	6.67	6.59				
11/16/2016			5.96			
11/18/2016				5.53		
11/21/2016					4.44	6.23
2/20/2017	6.65	6.61				
2/21/2017			5.98	5.63		
2/22/2017					4.42	6.16
6/12/2017	6.64					
6/13/2017			5.96	5.57		
6/14/2017					4.45	6.16
9/26/2017	6.58	6.47				
9/27/2017			5.85	5.53	4.33	6.16
2/13/2018	6.72	6.54				
2/14/2018			5.94	5.83	4.42	6.24
6/26/2018	6.43	6.23	5.87			
6/27/2018	0.10	0.20	0.07	5.53	4.37	
6/28/2018						6.21
12/18/2018	6.7	6.71	5.84		4.38	6.18
12/20/2018	0.7	0.71	0.04	5.78	4.00	0.10
3/19/2019	6.63	6.18		5.75		
3/20/2019	0.00	0.10	6.03	0.70	4.4	6.24
8/27/2019	6.49	6.35	6.01		7.7	6.17
8/28/2019	0.49	0.33	0.01	5.51	4.39	0.17
10/15/2019	7.01	6.36	6	5.51	4.33	
10/16/2019	7.01	0.30	0		4.79	
				6 01 (D)	4.79	6.43
10/17/2019 3/3/2020	6.49	6.59		6.01 (D)		0.43
3/4/2020	0.49	0.59	6.02	EO	4.5	
3/5/2020			0.02	5.8	4.5	5.99
	6.41	6.22				5.99
8/18/2020	6.41	6.33	6.22	E 01	4.67	6.26
8/19/2020	6.05	C 42	6.32	5.81	4.67	6.36
9/15/2020	6.25	6.43	0	F 0.1	4.53	6.20
9/16/2020		6.7		5.81		6.29
3/1/2021	6.40	6.7	6.1			
3/2/2021	6.42		6.1	5.0	4.40	0.00
3/3/2021	0.00			5.9	4.46	6.29
9/21/2021	6.36	0.40				
9/22/2021		6.48				
9/28/2021			5.97	5.82	4.23	6.33
2/1/2022	6.39	6.54				
2/2/2022			6.23			6.34
2/3/2022					4.23	
2/4/2022				5.97		
8/23/2022	6.36	6.51	6.11		4.00	0.00
8/24/2022				0.00	4.39	6.38
8/25/2022				6.03		
1/24/2023	6.47	6.54				
1/25/2023				5.63		

	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
1/26/2023			6.18		4.3	6.28
8/22/2023	6.09	6.27				6.44
8/24/2023			6.14	6.01	4.48	
1/30/2024	6.38	5.75				6.39
1/31/2024			6.31	5.83	4.37	
8/27/2024	6.65	6.8		5.95	4.47	
8/28/2024						6.49
8/29/2024			6.52			

	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44	PZ-63I
9/8/2016	5.89					
11/21/2016	5.56					
2/22/2017	5.87					
6/14/2017	5.83					
9/27/2017	5.87					
2/14/2018	6.01					
3/15/2018		5.26				
5/1/2018		6.14	5.85		6.12	
6/27/2018	5.83		5.87			
6/28/2018	0.00	5.88	0.07			
7/31/2018		6.07				
		0.07	F 70			
8/1/2018			5.79	0.00		
8/10/2018				6.28		
8/23/2018				6.75		
9/19/2018		5.9	5.71	6.48		
10/29/2018		5.93	5.76	6.77		
11/28/2018		5.99	5.74	6.44		
12/19/2018	5.79		5.8			
12/20/2018		6.04		6.75		
1/17/2019				6.41		
2/13/2019				6.42		
3/19/2019			5.89			
3/20/2019	5.88	6.1		6.59		
8/27/2019	5.85					
8/28/2019		5.86	5.74			
8/29/2019				6.27		
10/16/2019			5.9	7		
10/17/2019	6.09	5.93		•		
3/4/2020	0.00	0.00	5.76	6.54		
	E 74	E 0E	5.70	0.04		
3/5/2020	5.74	5.95				
5/12/2020	5.88					
8/19/2020	5.97					
8/20/2020		5.86	5.75	6.85		
9/16/2020	5.79	5.27	5.76			
9/17/2020				6.12		
3/2/2021		6.17	5.59			
3/4/2021	5.98			5.87		
9/23/2021		5.95	5.74			
9/28/2021	5.82			6.81	6.22	
2/2/2022	5.99	5.92	5.75	6.35	6.2	
2/4/2022						5.89
8/23/2022			5.61			
8/25/2022	6.06	5.74		6.21	6.06	5.65
1/24/2023	6.05					
1/25/2023		5.82		6.25	6.13	
1/26/2023			5.65			
1/30/2023			5.50			5.66
	E 00					5.00
8/22/2023	5.98					E 60
8/23/2023		F 74	F 60	0.04		5.68
8/24/2023		5.71	5.69	6.24		
1/30/2024	5.98		5.73		6.18	
2/1/2024		5.85		6.3		5.7

Page 2

Time Series

	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44	PZ-63I
8/27/2024					6.19	
8/28/2024	6.05		5.57	6.49		
8/29/2024		6.26				5.7

	PZ-68D	PZ-74I	PZ-75I
2/1/2023	7.28		
8/23/2023	7.41		
8/24/2023		5.89	5.76
2/1/2024	7.41	6.09	5.92
8/27/2024		5.89	5.63
8/29/2024	7.36		

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)
8/31/2016				<0.005	<0.005	<0.005
9/1/2016	<0.005	<0.005				
9/6/2016			<0.005			
11/16/2016	<0.005	<0.005		<0.005	<0.005	<0.005
11/17/2016			0.0052 (J)			
2/20/2017						<0.005
2/21/2017	<0.005	<0.005	0.0018 (J)	<0.005	<0.005	
6/12/2017				<0.005		<0.005
6/13/2017		<0.005	<0.005		<0.005	
6/14/2017	<0.005					
9/26/2017	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2/13/2018				<0.005	<0.005	<0.005
2/14/2018	<0.005	<0.005	<0.005			
6/26/2018	<0.005	<0.005	0.0036 (J)	<0.005	<0.005	<0.005
12/18/2018	<0.005	<0.005	0.0044 (J)	<0.005	<0.005	<0.005
8/27/2019	<0.005	<0.005		<0.005	<0.005	<0.005
8/29/2019			0.0023 (J)			
10/15/2019	<0.005	<0.005	0.0022 (J)	<0.005	<0.005	<0.005
3/3/2020	<0.005	<0.005		<0.005	<0.005	<0.005
3/4/2020			0.0019 (J)			
8/18/2020	<0.005	<0.005	0.0033 (J)	<0.005	<0.005	<0.005
9/15/2020	<0.005	<0.005	0.0028 (J)	<0.005	<0.005	<0.005
3/1/2021				<0.005		
3/2/2021	<0.005	<0.005	0.006		<0.005	<0.005
9/21/2021	<0.005	<0.005				<0.005
9/22/2021			0.0016 (J)	<0.005	<0.005	
2/1/2022	<0.005	<0.005	0.002 (J)	<0.005	<0.005	<0.005
8/23/2022	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
1/24/2023	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/31/2023			<0.005	<0.005	<0.005	<0.005
2/10/2024			<0.005	<0.005	<0.005	<0.005
8/27/2024			<0.005	<0.005	<0.005	<0.005

	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
8/31/2016	<0.005					
9/1/2016		<0.005				
9/6/2016						<0.005
9/8/2016			<0.005	0.0043 (J)	0.0039 (J)	
11/15/2010	6 <0.005	<0.005				
11/17/2010	6		<0.005			
11/18/2010	6			0.0047 (J)		
11/21/2010	6				0.0058 (J)	<0.005
2/20/2017	<0.005	<0.005				
2/21/2017			<0.005	0.0025 (J)		
2/22/2017					0.005 (J)	<0.005
6/12/2017	<0.005	<0.005				
6/13/2017			<0.005	0.0036 (J)		
6/14/2017					0.0074 (J)	0.0045 (J)
9/26/2017	<0.005	<0.005				
9/27/2017			<0.005	0.004 (J)	0.0068 (J)	0.0034 (J)
2/13/2018	<0.005	<0.005				
2/14/2018			<0.005	<0.005	<0.005	<0.005
6/26/2018	<0.005	<0.005	<0.005			
6/27/2018				0.0014 (J)	<0.005	
6/28/2018						<0.005
12/18/2018	8 <0.005	<0.005	<0.005		<0.005	<0.005
12/20/2018	8			<0.005		
8/27/2019	<0.005	<0.005	<0.005			0.0038 (J)
8/28/2019				0.0017 (J)	<0.005	
10/15/2019	9 <0.005	<0.005	<0.005			
10/16/2019	9				<0.005	
12/4/2019				0.0036 (J)		0.0018 (J)
3/3/2020	<0.005	<0.005				
3/4/2020			<0.005	0.0022 (J)	0.0018 (J)	
3/5/2020						<0.005
8/18/2020	<0.005	<0.005				
8/19/2020			<0.005	<0.005	<0.005	<0.005
9/15/2020	<0.005	<0.005	<0.005		<0.005	
9/16/2020				0.0042 (J)		<0.005
3/1/2021		<0.005				
3/2/2021	<0.005		0.0021 (J)			
3/3/2021				0.0031 (J)	0.0042 (J)	<0.005
9/21/2021	<0.005					
9/22/2021		<0.005				
9/28/2021			<0.005	<0.005	0.0022 (J)	<0.005
2/1/2022	<0.005	<0.005				
2/2/2022			<0.005			<0.005
2/3/2022					<0.005	
2/4/2022				<0.005		
8/23/2022		<0.005	<0.005			
8/24/2022					<0.005	<0.005
8/25/2022				<0.005		
1/24/2023		<0.005				
1/25/2023				<0.005		
1/26/2023		0.005	<0.005		<0.005	<0.005
8/31/2023	<0.005	<0.005				<0.005

	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
9/6/2023			<0.005	<0.005	<0.005	
2/10/2024	<0.005	<0.005				<0.005
2/13/2024			<0.005	<0.005	0.00229 (J)	
8/27/2024	<0.005	<0.005		<0.005	<0.005	
8/28/2024						<0.005
8/29/2024			<0.005			

	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44	PZ-63I	
9/8/2016	< 0.01						
11/21/2016	<0.01						
2/22/2017	0.0017 (J)						
6/14/2017	<0.01						
9/27/2017	0.0019 (J)						
2/14/2018	<0.01						
3/6/2018		<0.005	<0.005		<0.005		
5/1/2018		<0.005	<0.005 (D)		<0.005		
6/27/2018	0.0017 (J)		<0.005				
6/28/2018	0.0017 (0)	<0.005	0.000				
7/31/2018		<0.005					
8/1/2018		-0.000	0.0015 (J)				
8/10/2018			0.0013 (0)	<0.005			
		<0.005	<0.005 (Y)	<0.005			
8/23/2018			<0.005 (X)				
9/19/2018		<0.005	0.002 (J)	<0.005			
10/29/2018		<0.005	<0.005	<0.005			
11/28/2018	0.00=0.47	<0.005	<0.005	<0.005			
12/19/2018	0.0059 (J)		<0.005				
12/20/2018		<0.005		<0.005			
1/17/2019				<0.005			
2/13/2019				<0.005			
8/27/2019	0.057						
8/28/2019		<0.005	<0.005				
8/29/2019				<0.005			
10/16/2019			0.0017 (J)	<0.005			
12/3/2019		0.0029 (J)					
12/4/2019	0.1						
3/4/2020			<0.005	<0.005			
3/5/2020	0.1	<0.005					
5/12/2020	0.0989						
8/19/2020	0.099						
8/20/2020		<0.005	0.0016 (J)	<0.005			
9/16/2020	0.12	<0.005	0.002 (J)	-			
9/17/2020	- -		(-)	<0.005			
3/2/2021		<0.005	0.0028 (J)	0.000			
3/4/2021	0.14	-0.000	0.0020 (0)	<0.005			
9/23/2021	0.14	<0.005	<0.005	-0.003			
	0.13	~ 0.005	~ 0.005	<0.00E	<0.00F		
9/28/2021	0.13	10.005	-0.005	<0.005	<0.005		
2/2/2022	0.21	<0.005	<0.005	<0.005	<0.005	.0.005	
2/4/2022						<0.005	
8/23/2022			<0.005				
8/25/2022	0.218	<0.005		<0.005	<0.005	<0.005	
1/24/2023	0.198						
1/25/2023		<0.005		<0.005	<0.005		
1/26/2023			<0.005				
1/30/2023						<0.005	
8/31/2023	0.21						
9/6/2023		<0.005	<0.005	<0.005			
9/8/2023					<0.005	<0.005	
2/10/2024	0.17		<0.005		<0.005		
2/14/2024		<0.005		<0.005		<0.005	
8/27/2024					<0.005		
-					-		

	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44	PZ-63I
8/28/2024	0.0945		<0.005	<0.005		
8/29/2024		< 0.005				< 0.005

	PZ-68D	PZ-74I	PZ-75I
2/1/2023	<0.005		
9/6/2023		0.0423	0.0696
9/8/2023	<0.005		
2/14/2024	<0.005	0.0489	0.0954
8/27/2024		0.0597	0.106
8/29/2024	<0.005		

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)
8/31/2016				7.5	0.38 (J)	2.7
9/1/2016	2.7	1.7				
9/6/2016			38			
11/16/2016	3.6	1.2		6.6	<1 (J)	3.4
11/17/2016			84			
2/20/2017						3.9 (B-01)
2/21/2017	3	1.1	39	6.1	1.5	
6/12/2017				5		3.7
6/13/2017		1.1	35		0.67 (J)	
6/14/2017	2.6					
9/26/2017	2.5	1.3	89	5.4	0.62 (J)	4.1
2/13/2018				4.7 (J)	<1	6.6
2/14/2018	2.1 (J)	<1	82.2			
6/26/2018	2	0.84 (J)	84.2	6.2	0.69 (J)	3.5
7/31/2018	1.9	0.63 (J)				
12/18/2018	2.1	0.66 (J)	83.4	5.9	0.72 (J)	4.3
3/19/2019	2.2	0.75 (J)	65	6 (D)	0.78 (J)	3
10/15/2019	1.9	0.61 (J)	30	5.2	0.47 (J)	3.8
3/3/2020	1.8	0.51 (J)		7.1	0.93 (J)	2.8
3/4/2020			38.6			
9/15/2020	1.7	<1	41.5	5.9	<1	1.7
3/1/2021				4.7		
3/2/2021	1.7	0.51 (J)	54		<1	2.2
9/21/2021	1.7	0.51 (J)				2.3
9/22/2021			34.6	5.2	<1	
2/1/2022	1.4	<1	36.8	5.4	<1	2
8/23/2022	1.84	0.636	24.4	5.66	0.452	2.21
1/24/2023	1.8	0.628	19.7	3.58	0.465	3.34
8/23/2023			11.3	6.85	0.526	1.83
1/31/2024				2.65	0.423	2.74
2/1/2024			10.4			
8/27/2024			9.73	2.58	0.444	2.67

	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
8/31/2016	0.81 (J)					
9/1/2016		0.6 (J)				
9/6/2016						310
9/8/2016			280	300	460	
11/15/2016	<1 (J)	0.68 (J)				
11/17/2016			200			
11/18/2016				320		
11/21/2016					500	300
2/20/2017	1 (B-01)	0.98 (J)				
2/21/2017			360	270		
2/22/2017					570	280
6/12/2017	0.94 (J)	0.54 (J)				
6/13/2017			290	230		
6/14/2017					440	290
9/26/2017	0.92 (J)	0.53 (J)				
9/27/2017	. ,	, ,	310	260	380	260
2/13/2018	<1	<1				
2/14/2018			260	232	280	250
6/26/2018	0.91 (J)	0.54 (J)	231			
6/27/2018	0.0 1 (0)	0.0 1 (0)	20.	205	281	
6/28/2018				200	20.	276
12/18/2018	0.68 (J)	0.39 (J)	231		293	440
12/20/2018	0.00 (0)	0.00 (0)	201	200	230	170
3/19/2019	0.74 (J)	0.68 (J)		199		
3/20/2019	0.74 (3)	0.00 (0)	235 (D)	155	278	623
10/15/2019	0.68 (J)	0.48 (J)	174		270	023
10/15/2019	0.08 (3)	0.46 (3)	174		266	
				241	200	207
12/4/2019	0.74 (1)	0.5		241		327
3/3/2020	0.71 (J)	2.5	105	005	000	
3/4/2020			165	205	238	000
3/5/2020						369
9/15/2020	<1	<1	126		241	
9/16/2020				190		334
3/1/2021		0.74 (J)				
3/2/2021	<1		139			
3/3/2021				172	341	371
9/21/2021	<1					
9/22/2021		<1				
9/28/2021			112	137	250	612
2/1/2022	<1	<1				
2/2/2022			117			580
2/3/2022					274	
2/4/2022				172		
8/23/2022	0.521	0.479	158			
8/24/2022					298	935
8/25/2022				176		
1/24/2023	0.66	0.484				
1/25/2023				150		
1/26/2023			182		293	1030
8/23/2023	0.54	0.467				
8/24/2023						1250
8/25/2023			174			

	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
8/26/2023				94.5	288	
1/31/2024	0.617	0.456				
2/1/2024						1210
2/2/2024			169		328	
2/3/2024				155		
8/27/2024	0.652	0.465		174	261	
8/28/2024						1260
8/29/2024			216			

	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44	PZ-63I
9/8/2016	370					
11/21/2016	420					
2/22/2017	380					
6/14/2017	400					
9/27/2017	400					
2/14/2018	383					
3/6/2018		111	1560		51.8	
5/1/2018		112	1465 (D)		51	
6/27/2018	372		1450			
6/28/2018		109				
7/31/2018		107				
8/1/2018			1560			
8/10/2018			- 	183		
8/23/2018		108	1470	145		
9/19/2018		117	1500	178		
10/29/2018		127	1720	157		
11/28/2018		133	1730	189		
12/19/2018	370		1520			
12/20/2018		113		150		
1/17/2019				157		
2/13/2019				169		
3/19/2019			1100			
3/20/2019	409	127		186.5 (D)		
	403	14/	1560			
10/16/2019		105	1560	155		
12/3/2019		105				
12/4/2019	293					
3/4/2020			1380	129		
3/5/2020	269	106				
9/16/2020	255	103	1360			
9/17/2020				165		
3/2/2021		98.3	1360			
3/4/2021	185	-	- 	114		
	100	07 F	1240	117		
9/23/2021		97.5	1240			
9/28/2021	189			132	47.2	
2/2/2022	210	90.1	1170	126	45.3	
2/4/2022						195
8/23/2022			1410			
8/25/2022	254	114		142	47	234
1/24/2023	247					
1/25/2023		102		145	41	
1/26/2023			1310		• •	
			1310			200
1/30/2023						280
8/24/2023	256					
8/25/2023			1300	150	49.5	294
8/26/2023		114				
2/1/2024	246		1360		42.4	
2/2/2024				145		
2/3/2024						352
2/9/2024		110				
8/27/2024					41.8	
	201		1310	150	71.0	
8/28/2024	201	150	1310	150		044
8/29/2024		150				344

	PZ-68D	PZ-74I	PZ-75I
2/1/2023	258		
8/25/2023	298		
8/26/2023		309	275
2/3/2024	279	306	304
8/27/2024		260	257
8/29/2024	280		

	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)
8/31/2016				<0.002	<0.002	<0.002
9/1/2016	<0.002	<0.002				
9/6/2016			<0.002			
11/16/2016	<0.002	<0.002		<0.002	<0.002	<0.002
11/17/2016			<0.002			
2/20/2017						<0.002
2/21/2017	<0.002	<0.002	<0.002	<0.002	<0.002	
6/12/2017				<0.002		<0.002
6/13/2017		<0.002	<0.002		<0.002	
6/14/2017	<0.002					
9/26/2017	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
2/13/2018				<0.002	<0.002	<0.002
2/14/2018	<0.002	<0.002	<0.002			
6/26/2018	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
12/18/2018	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
8/27/2019	<0.002	<0.002		<0.002	<0.002	<0.002
8/29/2019			<0.002			
10/15/2019	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
3/3/2020	<0.002	<0.002		<0.002	<0.002	<0.002
3/4/2020			<0.002			
8/18/2020	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
9/15/2020	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
3/1/2021				<0.002		
3/2/2021	<0.002	<0.002	<0.002		<0.002	<0.002
9/21/2021	<0.002	<0.002				<0.002
9/22/2021			<0.002	<0.002	<0.002	
2/1/2022	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
8/23/2022	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
1/24/2023	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
8/31/2023			<0.002	<0.002	<0.002	<0.002
2/10/2024			<0.002	<0.002	<0.002	<0.002
8/27/2024			<0.002	<0.002	<0.002	<0.002

			Flant Die	anch Chem. 300ti	leni Company Da	ia. Fiant Dianon Af
	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
8/31/2016	<0.002					
9/1/2016		<0.002				
9/6/2016						<0.002
9/8/2016			<0.002	<0.002	<0.002	
11/15/2016	<0.002	<0.002				
11/17/2016			<0.002			
11/18/2016				<0.002		
11/21/2016					0.0002 (J)	<0.002
2/20/2017	<0.002	<0.002				
2/21/2017			<0.002	<0.002		
2/22/2017					0.0002 (J)	<0.002
6/12/2017	<0.002	<0.002				
6/13/2017			<0.002	<0.002		
6/14/2017					0.0002 (J)	<0.002
9/26/2017	<0.002	<0.002				
9/27/2017			<0.002	<0.002	0.0002 (J)	<0.002
2/13/2018	<0.002	<0.002				
2/14/2018			<0.002	<0.002	0.00018 (J)	<0.002
6/26/2018	<0.002	<0.002	<0.002			
6/27/2018				<0.002	0.00017 (J)	
6/28/2018						<0.002
12/18/2018	<0.002	<0.002	<0.002		0.00017 (J)	<0.002
12/20/2018				<0.002		
8/27/2019	<0.002	<0.002	<0.002			<0.002
8/28/2019				<0.002	0.00017 (J)	
10/15/2019	<0.002	<0.002	<0.002		0.0004777	
10/16/2019				-0.000	0.00017 (J)	40.000
12/4/2019	-0.000	-0.000		<0.002		<0.002
3/3/2020	<0.002	<0.002	<0.002	<0.002	0.00016 (1)	
3/4/2020 3/5/2020			<0.002	<0.002	0.00016 (J)	<0.002
8/18/2020	<0.002	<0.002				V0.002
8/19/2020	<0.002	<0.002	<0.002	<0.002	0.00016 (J)	<0.002
9/15/2020	<0.002	<0.002	<0.002	~0.002	0.00016 (J)	0.002
9/16/2020	~0.002	\0.002	~0.002	<0.002	0.00010 (3)	<0.002
3/1/2021		<0.002		~0.002		0.002
3/2/2021	<0.002	10.002	<0.002			
3/3/2021	-0.00Z		10.002	<0.002	0.00018 (J)	<0.002
9/21/2021	<0.002			-0.002	0.00010 (0)	0.002
9/22/2021	-0.00Z	<0.002				
9/28/2021		-0.002	<0.002	<0.002	<0.002	<0.002
2/1/2022	<0.002	<0.002	10.002	-0.002	10.002	0.002
2/2/2022	0.002	0.002	<0.002			<0.002
2/3/2022					<0.002	
2/4/2022				<0.002		
8/23/2022	<0.002	<0.002	<0.002			
8/24/2022					<0.002	<0.002
8/25/2022				<0.002		
1/24/2023	<0.002	<0.002		-		
1/25/2023				<0.002		
1/26/2023			<0.002		<0.002	<0.002
8/31/2023	<0.002	<0.002				<0.002

	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
9/6/2023			<0.002	<0.002	<0.002	
2/10/2024	<0.002	<0.002				<0.002
2/13/2024			<0.002	<0.002	<0.002	
8/27/2024	<0.002	<0.002		<0.002	<0.002	
8/28/2024						<0.002
8/29/2024			<0.002			

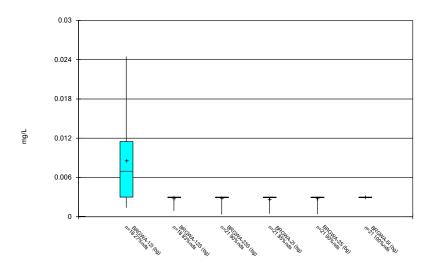
	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44	PZ-63I
9/8/2016	<0.002					
11/21/2016	<0.002					
2/22/2017	<0.002					
6/14/2017	<0.002					
9/27/2017	<0.002					
2/14/2018	<0.002					
3/6/2018		<0.002	<0.002		<0.002	
5/1/2018		<0.002	<0.002 (D)		<0.002	
6/27/2018	<0.002	10.002	<0.002 (B)		10.002	
6/28/2018	~0.002	<0.002	~0.002			
		<0.002				
7/31/2018		<0.002	~0.00 2			
8/1/2018			<0.002	-0.000		
8/10/2018				<0.002		
8/23/2018		<0.002	<0.002	<0.002		
9/19/2018		<0.002	<0.002	<0.002		
10/29/2018		<0.002	<0.002	<0.002		
11/28/2018		<0.002	<0.002	<0.002		
12/19/2018	<0.002		<0.002			
12/20/2018		<0.002		<0.002		
1/17/2019				<0.002		
2/13/2019				<0.002		
8/27/2019	<0.002					
8/28/2019		<0.002	<0.002			
8/29/2019				<0.002		
10/16/2019			<0.002	<0.002		
12/3/2019		<0.002				
12/4/2019	<0.002					
3/4/2020			<0.002	<0.002		
3/5/2020	<0.002	<0.002				
8/19/2020	<0.002					
8/20/2020		<0.002	<0.002	<0.002		
9/16/2020	<0.002	<0.002	<0.002			
9/17/2020				<0.002		
3/2/2021		<0.002	<0.002			
3/4/2021	<0.002			<0.002		
9/23/2021		<0.002	<0.002			
9/28/2021	<0.002	0.002	0.002	<0.002	<0.002	
2/2/2022	<0.002	<0.002	<0.002	<0.002	<0.002	
2/4/2022	-0.002	-0.502	-0.002	-0.002	-0.002	<0.002
8/23/2022			<0.002			-0.002
	<0.002	<0.002	~ 0.002	<0.002	<0.002	<0.002
8/25/2022	<0.002	<0.002		<0.002	<0.002	<0.002
1/24/2023	<0.002	<0.000		-0.000	<0.000	
1/25/2023		<0.002	10.000	<0.002	<0.002	
1/26/2023			<0.002			
1/30/2023						<0.002
8/31/2023	<0.002					
9/6/2023		<0.002	<0.002	<0.002		
9/8/2023					<0.002	<0.002
	<0.002		<0.002		<0.002	
2/10/2024						
2/10/2024 2/14/2024		<0.002		<0.002		<0.002
		<0.002		<0.002	<0.002	<0.002

Constituent: Thallium (mg/L) Analysis Run 1/10/2025 10:45 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

BRGWC-32S BRGWC-45 BRGWC-47 BRGWC-52I BRGWC-44 PZ-63I 8/29/2024 <0.002 <0.002

	PZ-68D	PZ-74I	PZ-75I
2/1/2023	<0.002		
9/6/2023		<0.002	<0.002
9/8/2023	<0.002		
2/14/2024	<0.002	<0.002	<0.002
8/27/2024		<0.002	<0.002
8/29/2024	<0.002		

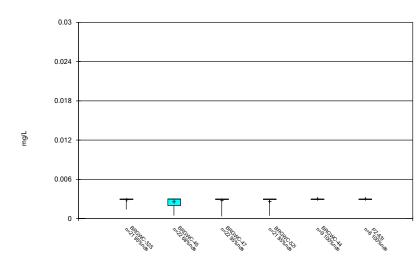
			r lant bit	anon Onone Code	om company Dat	a. Flant Branch / ti
	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)		BRGWA-2S (bg)	BRGWA-5I (bg)
8/31/2016				151	88	138
9/1/2016	142	69				
9/6/2016			146			
11/16/2016	100	100		69	41	77
11/17/2016			211			
2/20/2017						170
2/21/2017	71	37	151	68	<25	
6/12/2017				161		132
6/13/2017		84	130		53	
6/14/2017	140					
9/26/2017	149	68	160	167	45	108
2/13/2018				165	63	141
2/14/2018	137	138	194			
6/26/2018	142	90	221	188	71	133
7/31/2018	133	83				
12/18/2018	135	85	208	145 (X)	78 (X)	138 (X)
3/19/2019	132 (JX)	82 (JX)	161 (JX)	146.5 (D)	68	130
10/15/2019	134	89	124	140	66	175
3/3/2020	115	72		155	41	<10
3/4/2020			118			
9/15/2020	95	60	109	116	69	100
3/1/2021				98		
3/2/2021	93	43	105		43	80
9/21/2021	117	56				108
9/22/2021			128	129	66	
2/1/2022	114	63	130	126	72	129
8/23/2022	104	55	103	117	45	107
1/24/2023	114	59	102	93	63	124
8/25/2023			70		36	
8/28/2023				81		80
2/6/2024			85	98	54	118
8/27/2024			86	82	51	107


	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
8/31/2016	154					
9/1/2016		299 (o)				
9/6/2016						505
9/8/2016			460	478	654	
11/15/2016	123	41				
11/17/2016	0	••	611			
11/18/2016				503		
11/21/2016				505	819	515
	159	133			013	313
2/20/2017 2/21/2017	158	133	407	380		
			497	300	701	E04
2/22/2017	440	0.4			721	504
6/12/2017	142	61	474	054		
6/13/2017			474	354		
6/14/2017					661	536
9/26/2017	138	29				
9/27/2017			457	376	518	432
2/13/2018	150	61				
2/14/2018			431	503 (JX)	487	448
6/26/2018	154	71	414			
6/27/2018				458 (X)	648 (X)	
6/28/2018						494
12/18/2018	147	70 (X)	401		407	715
12/20/2018				344		
3/19/2019	146	72		334 (JX)		
3/20/2019			410.5 (D)	` '	391	885
10/15/2019	144	63	380		2 - -	
10/16/2019			550		2030	
12/4/2019				422		612
	130	54		-1 .		012
3/3/2020	130	54	220	226	201	
3/4/2020			330	326	391	001
3/5/2020						681
9/15/2020	116	79	272		281	
9/16/2020				301		634
3/1/2021		39				
3/2/2021	96		280			
3/3/2021				288	515	690
9/21/2021	104					
9/22/2021		62				
9/28/2021			270	262	457	1050
2/1/2022	124	61				
2/2/2022			283			1110
2/3/2022					419	•
2/4/2022				301		
8/23/2022	101	52	315	501		
	101	J2	515		383	1540
8/24/2022				211	383	1540
8/25/2022	101	64		311		
1/24/2023	104	64				
1/25/2023				260		
1/26/2023			339		419	1680
8/25/2023	73					1920
8/28/2023		30				
8/30/2023			354	309	418	

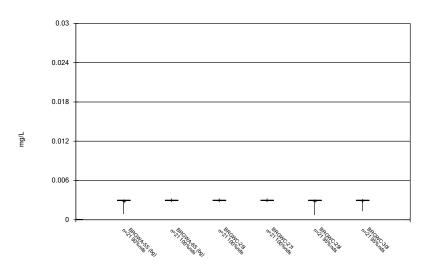
	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I
2/6/2024	113	45				1970
2/7/2024			391	299	535	
8/27/2024	101	57		346	424	
8/28/2024						2030
8/29/2024			492			

			i idili D	rancii Olient. Oou	unern company i	dia. I lant branch A	
	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44	PZ-63I	
9/8/2016	607						
11/21/2016	695						
2/22/2017	635						
6/14/2017	635						
9/27/2017	601						
2/14/2018	628						
3/6/2018		346	2200		191		
5/1/2018		374	2080 (D)		189		
6/27/2018	2280		31 (OX)				
6/28/2018	2200	333	01 (071)				
7/31/2018		393					
8/1/2018			2190				
8/10/2018			2100	344			
8/23/2018		350	2160	333			
9/19/2018		353	2160	364			
10/29/2018		329	2130	334			
11/28/2018		329 358	2320	357			
12/19/2018	605	330	2060	557			
	000	322	2000	355			
12/20/2018		322		355 347			
1/17/2019							
2/13/2019			2050 (120	350			
3/19/2019	504	000	2050 (JX)	000 (D)			
3/20/2019	564	302	0000	360 (D)			
10/16/2019			2220	346			
12/3/2019		362					
12/4/2019	526						
3/4/2020			2140	351			
3/5/2020	489	297					
9/16/2020	428	275	2090				
9/17/2020				329			
3/2/2021		264	1680				
3/4/2021	350			383			
9/23/2021		277	1770				
9/28/2021	375			336	181		
2/2/2022	443	276	1850	160	181		
2/4/2022						403	
8/23/2022			2060				
8/25/2022	437	248		296	167	419	
1/24/2023	425						
1/25/2023		251		276	156		
1/26/2023			2010				
1/30/2023						448	
8/25/2023	412						
8/29/2023						503	
8/30/2023		242	1970	281	184		
2/6/2024	418		2160		179		
2/8/2024		255		303		561	
8/27/2024					180		
8/28/2024	374		1780	310			
8/29/2024		353				625	

	PZ-68D	PZ-74I	PZ-75I
2/1/2023	525		
8/30/2023	597	506	430
2/8/2024	583	536	450
8/27/2024		519	467
8/29/2024	601		

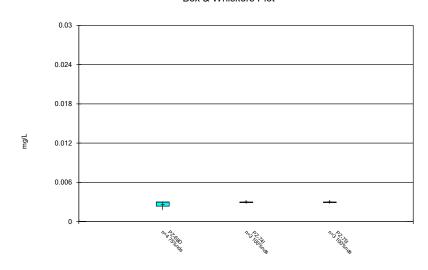

FIGURE B.

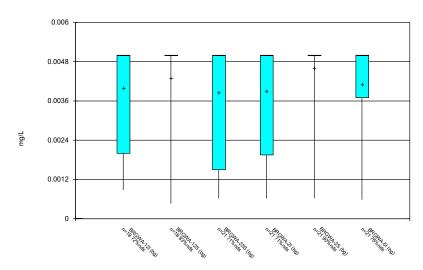
Constituent: Antimony Analysis Run 1/10/2025 10:46 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Antimony Analysis Run 1/10/2025 10:46 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

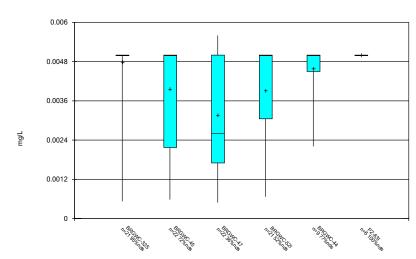

Box & Whiskers Plot



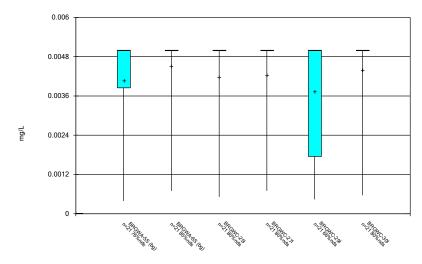
Constituent: Antimony Analysis Run 1/10/2025 10:46 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

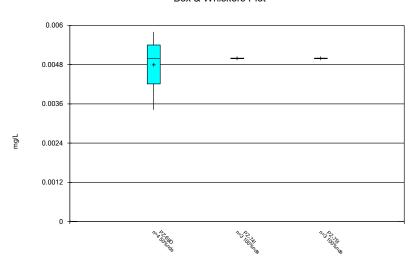
Box & Whiskers Plot



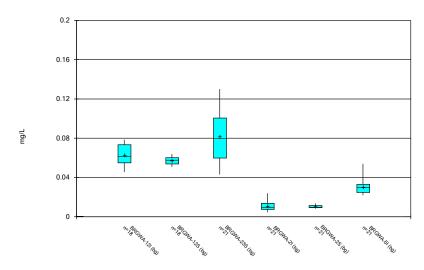
Constituent: Arsenic Analysis Run 1/10/2025 10:46 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

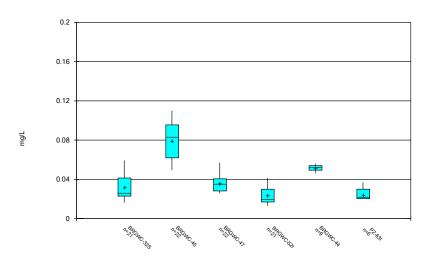

Constituent: Arsenic Analysis Run 1/10/2025 10:46 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

Box & Whiskers Plot

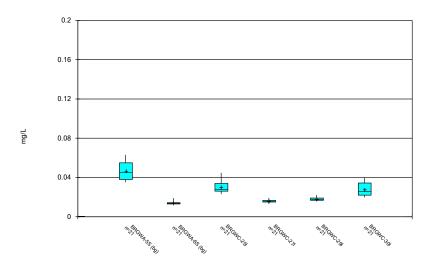


Constituent: Arsenic Analysis Run 1/10/2025 10:46 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

Box & Whiskers Plot

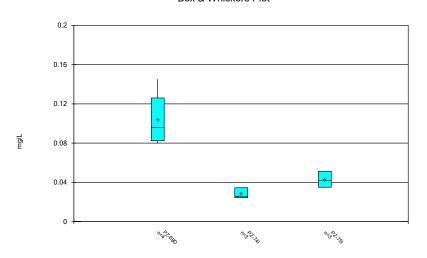


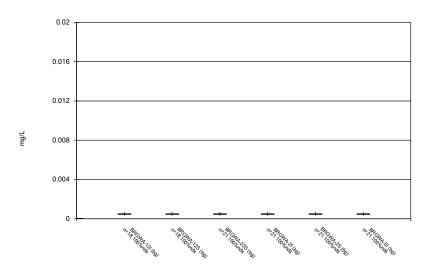
Constituent: Arsenic Analysis Run 1/10/2025 10:46 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: Barium Analysis Run 1/10/2025 10:46 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

Box & Whiskers Plot

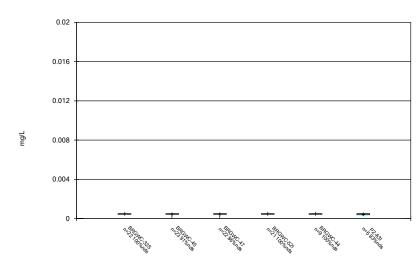
Constituent: Barium Analysis Run 1/10/2025 10:46 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP


Box & Whiskers Plot

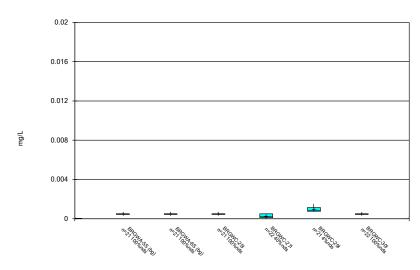

Constituent: Barium Analysis Run 1/10/2025 10:46 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

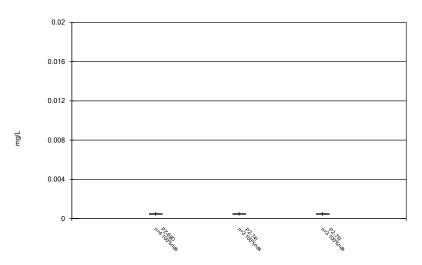
Box & Whiskers Plot


Constituent: Barium Analysis Run 1/10/2025 10:46 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

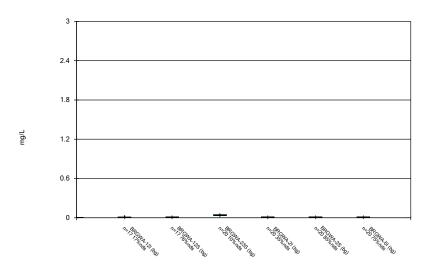
Constituent: Beryllium Analysis Run 1/10/2025 10:46 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

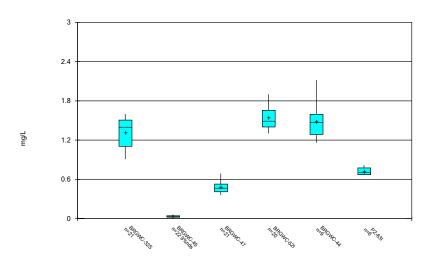

Constituent: Beryllium Analysis Run 1/10/2025 10:46 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

Box & Whiskers Plot

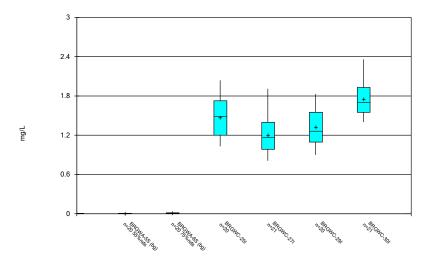


Constituent: Beryllium Analysis Run 1/10/2025 10:46 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

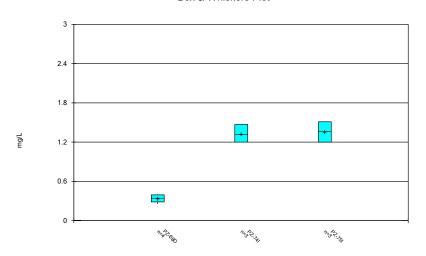
Box & Whiskers Plot


Constituent: Beryllium Analysis Run 1/10/2025 10:46 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

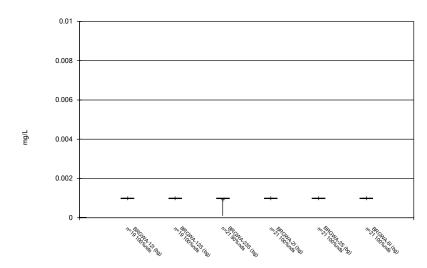
Constituent: Boron Analysis Run 1/10/2025 10:46 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

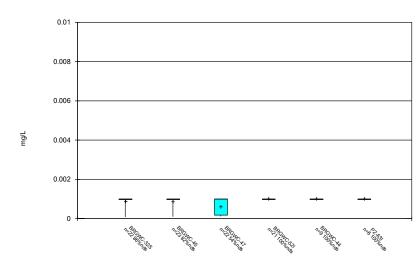

Constituent: Boron Analysis Run 1/10/2025 10:46 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

Box & Whiskers Plot

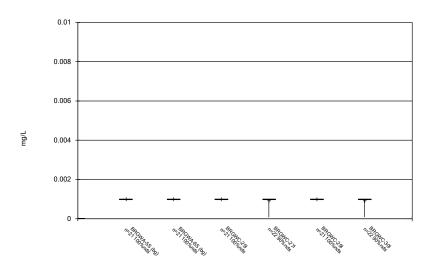


Constituent: Boron Analysis Run 1/10/2025 10:46 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

Box & Whiskers Plot

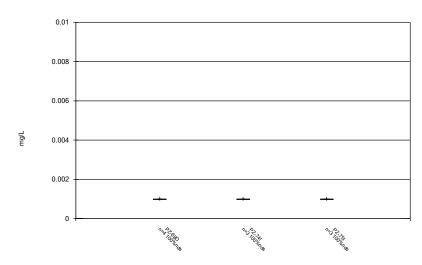

Constituent: Boron Analysis Run 1/10/2025 10:46 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

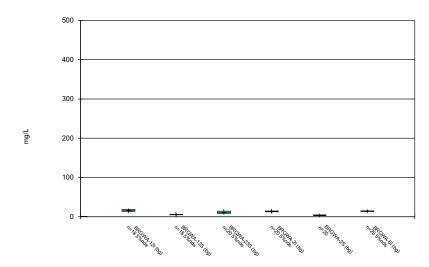
Constituent: Cadmium Analysis Run 1/10/2025 10:46 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Cadmium Analysis Run 1/10/2025 10:46 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

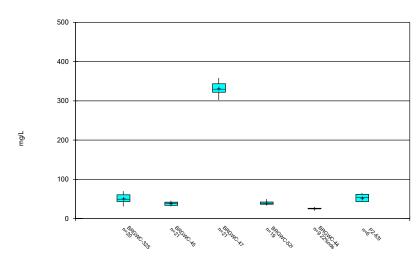

Box & Whiskers Plot



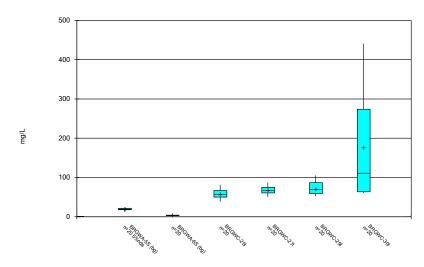
Constituent: Cadmium Analysis Run 1/10/2025 10:46 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

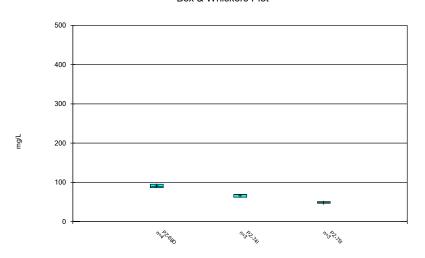
Box & Whiskers Plot



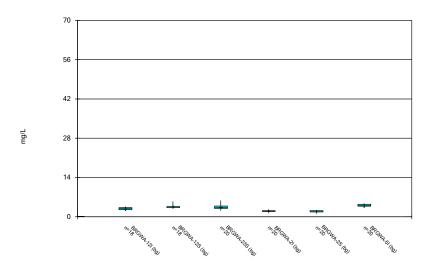
Constituent: Calcium Analysis Run 1/10/2025 10:46 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

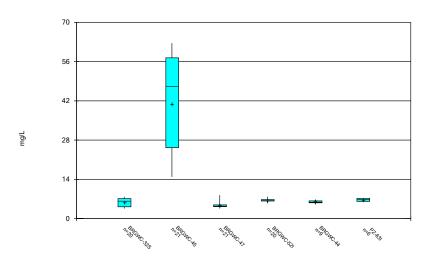

Constituent: Calcium Analysis Run 1/10/2025 10:46 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

Box & Whiskers Plot

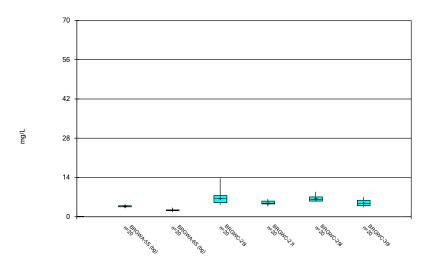


Constituent: Calcium Analysis Run 1/10/2025 10:46 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

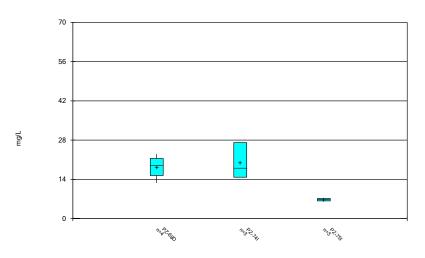
Box & Whiskers Plot


Constituent: Calcium Analysis Run 1/10/2025 10:46 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

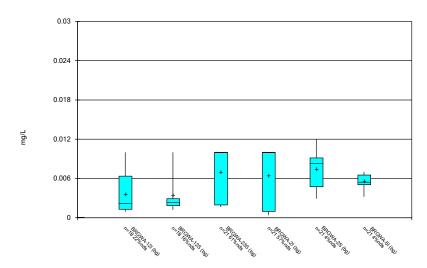
Constituent: Chloride Analysis Run 1/10/2025 10:46 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

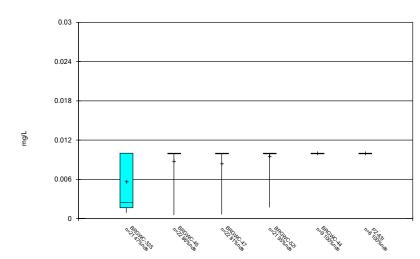

Constituent: Chloride Analysis Run 1/10/2025 10:46 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

Box & Whiskers Plot

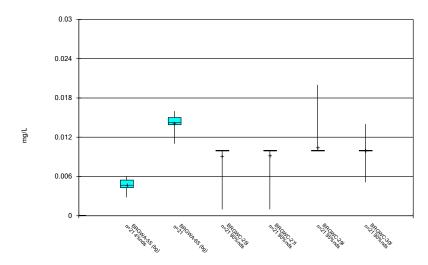


Constituent: Chloride Analysis Run 1/10/2025 10:46 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

Box & Whiskers Plot

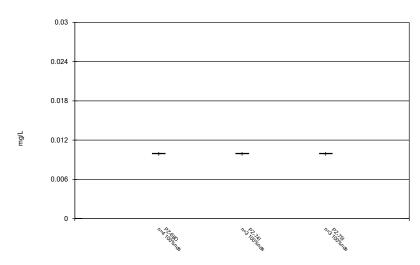

Constituent: Chloride Analysis Run 1/10/2025 10:46 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

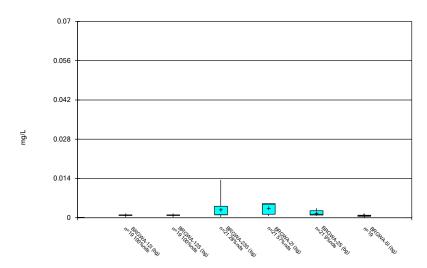
Constituent: Chromium Analysis Run 1/10/2025 10:46 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Chromium Analysis Run 1/10/2025 10:46 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

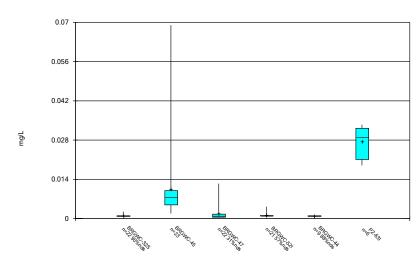

Box & Whiskers Plot



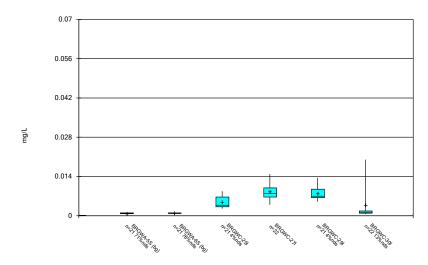
Constituent: Chromium Analysis Run 1/10/2025 10:46 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

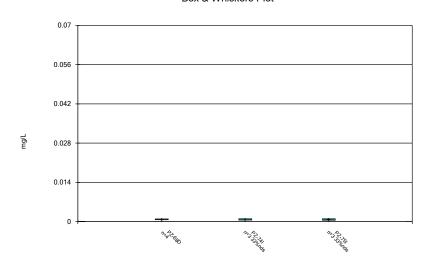
Box & Whiskers Plot



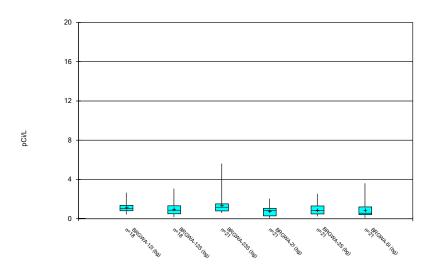
Constituent: Cobalt Analysis Run 1/10/2025 10:46 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

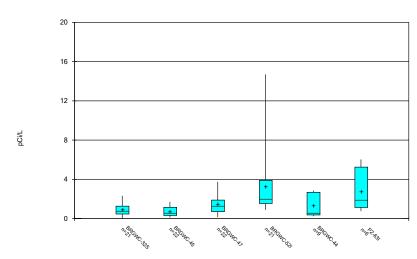

Constituent: Cobalt Analysis Run 1/10/2025 10:46 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

Box & Whiskers Plot

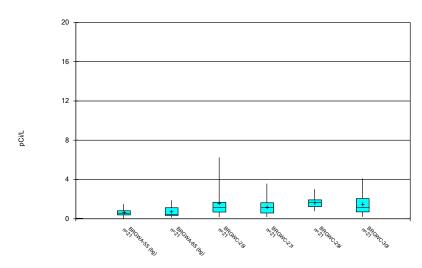


Constituent: Cobalt Analysis Run 1/10/2025 10:46 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

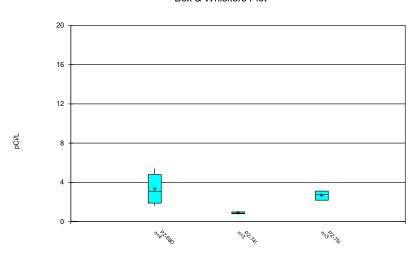
Box & Whiskers Plot

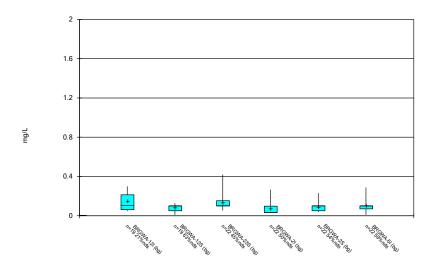

Constituent: Cobalt Analysis Run 1/10/2025 10:46 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

Constituent: Combined Radium 226 + 228 Analysis Run 1/10/2025 10:46 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

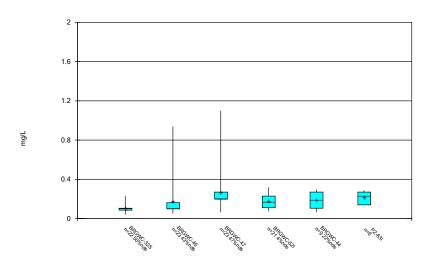
Box & Whiskers Plot


Constituent: Combined Radium 226 + 228 Analysis Run 1/10/2025 10:46 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

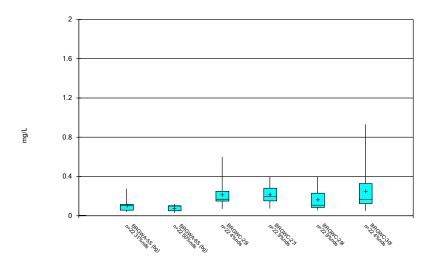

Box & Whiskers Plot

Constituent: Combined Radium 226 + 228 Analysis Run 1/10/2025 10:46 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

Box & Whiskers Plot

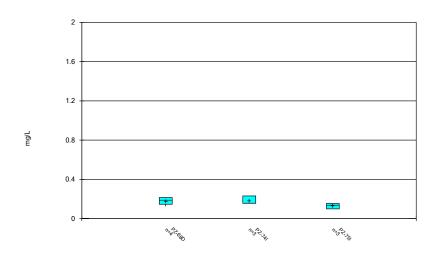


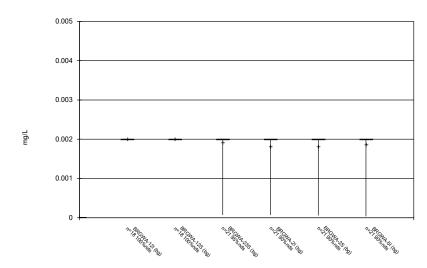
Constituent: Fluoride Analysis Run 1/10/2025 10:47 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Fluoride Analysis Run 1/10/2025 10:47 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

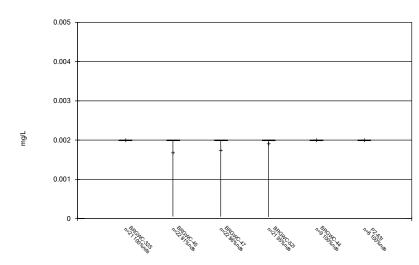

Box & Whiskers Plot



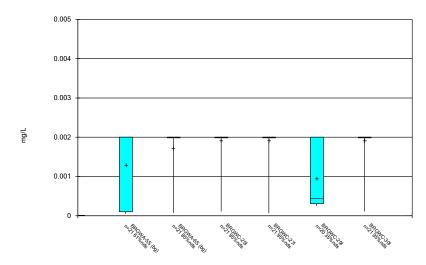
Constituent: Fluoride Analysis Run 1/10/2025 10:47 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

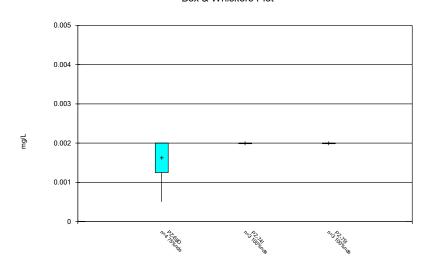
Box & Whiskers Plot



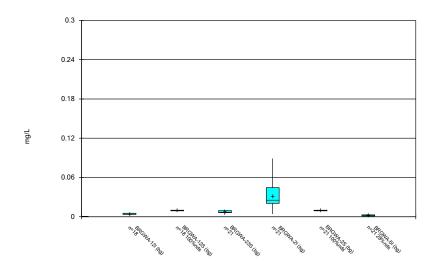
Constituent: Lead Analysis Run 1/10/2025 10:47 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

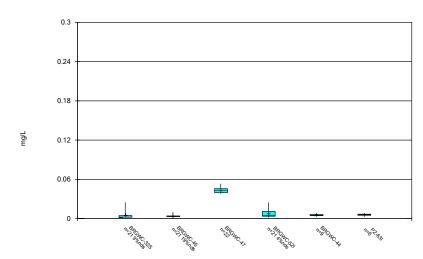

Constituent: Lead Analysis Run 1/10/2025 10:47 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

Box & Whiskers Plot

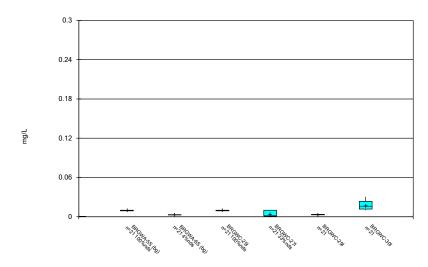


Constituent: Lead Analysis Run 1/10/2025 10:47 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

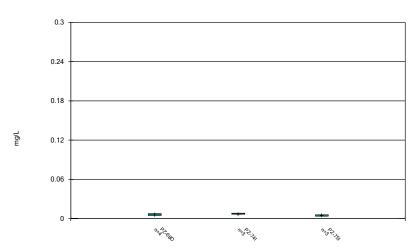
Box & Whiskers Plot


Constituent: Lead Analysis Run 1/10/2025 10:47 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

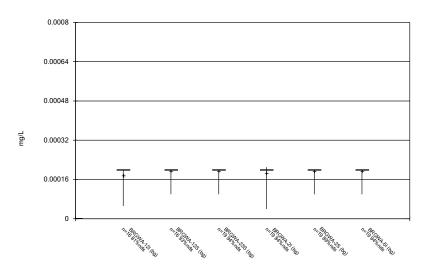
Constituent: Lithium Analysis Run 1/10/2025 10:47 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

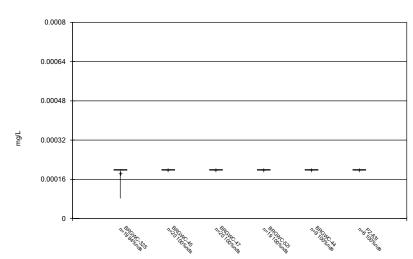

Constituent: Lithium Analysis Run 1/10/2025 10:47 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

Box & Whiskers Plot

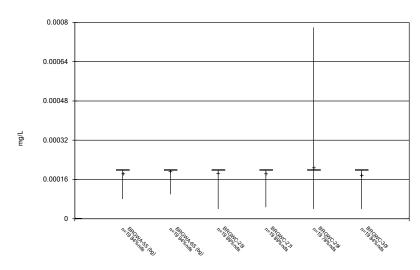


Constituent: Lithium Analysis Run 1/10/2025 10:47 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

Box & Whiskers Plot

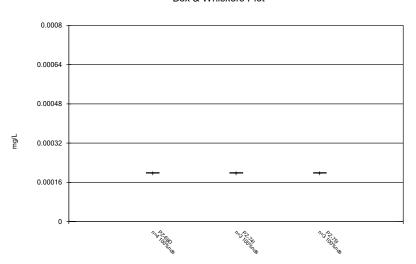

Constituent: Lithium Analysis Run 1/10/2025 10:47 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

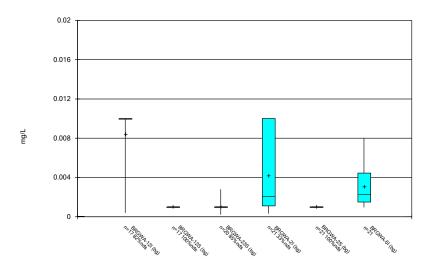
Constituent: Mercury Analysis Run 1/10/2025 10:47 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

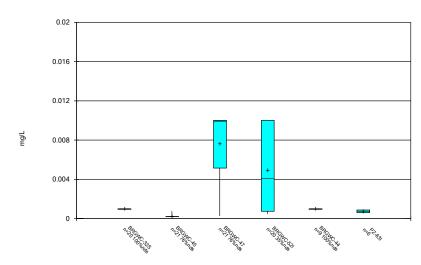
Constituent: Mercury Analysis Run 1/10/2025 10:47 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP


Box & Whiskers Plot

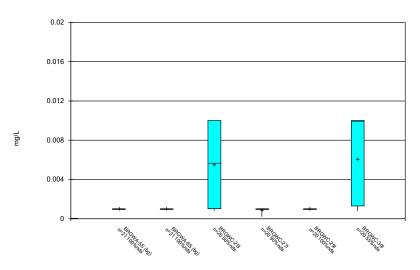

Constituent: Mercury Analysis Run 1/10/2025 10:47 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

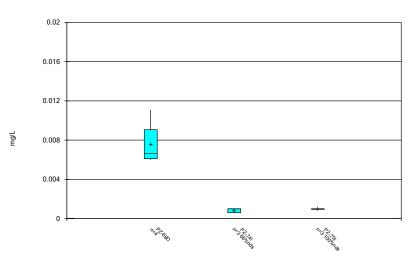

Constituent: Mercury Analysis Run 1/10/2025 10:47 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

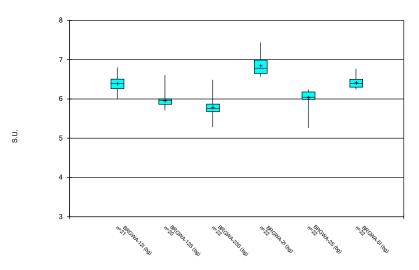
Constituent: Molybdenum Analysis Run 1/10/2025 10:47 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

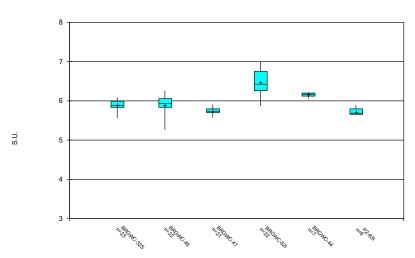
Constituent: Molybdenum Analysis Run 1/10/2025 10:47 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP


Box & Whiskers Plot

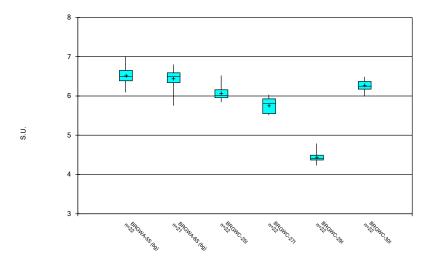

Constituent: Molybdenum Analysis Run 1/10/2025 10:47 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

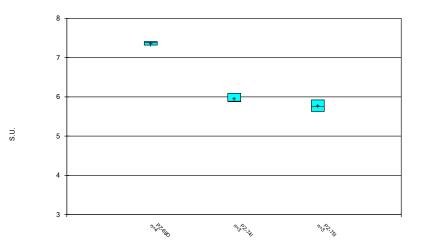

Constituent: Molybdenum Analysis Run 1/10/2025 10:47 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

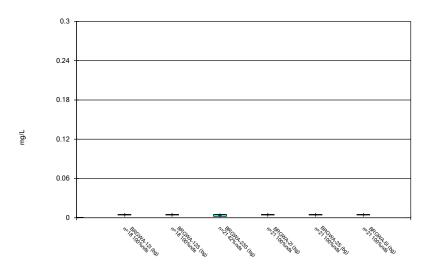
Constituent: pH, Field Analysis Run 1/10/2025 10:47 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

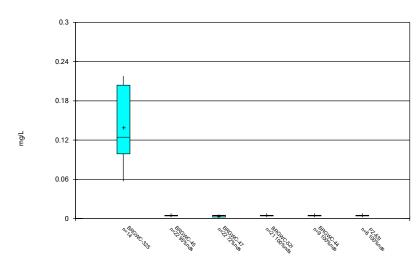
Constituent: pH, Field Analysis Run 1/10/2025 10:47 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP


Box & Whiskers Plot

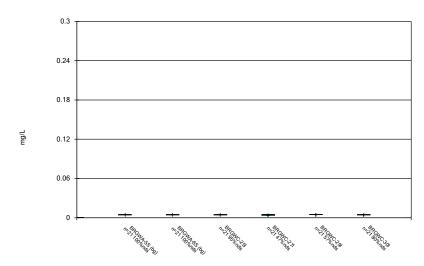

Constituent: pH, Field Analysis Run 1/10/2025 10:47 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

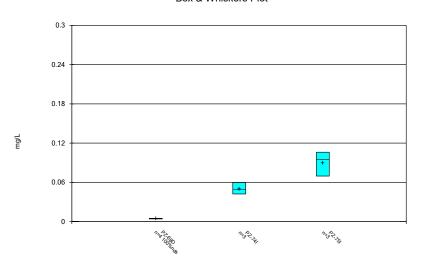

Constituent: pH, Field Analysis Run 1/10/2025 10:47 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

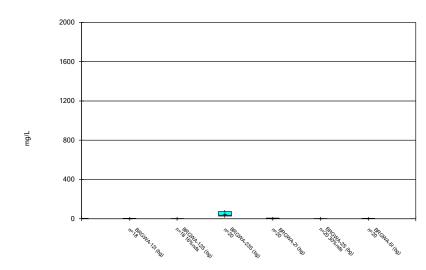
Constituent: Selenium Analysis Run 1/10/2025 10:47 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

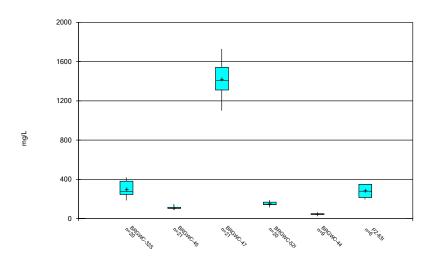
Constituent: Selenium Analysis Run 1/10/2025 10:47 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP


Box & Whiskers Plot

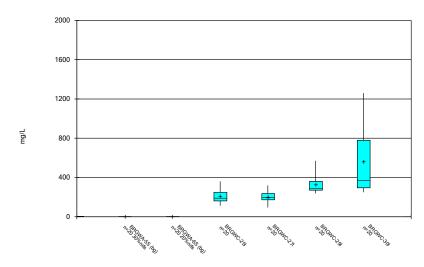

Constituent: Selenium Analysis Run 1/10/2025 10:47 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

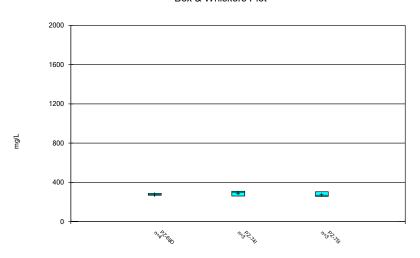

Constituent: Selenium Analysis Run 1/10/2025 10:47 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

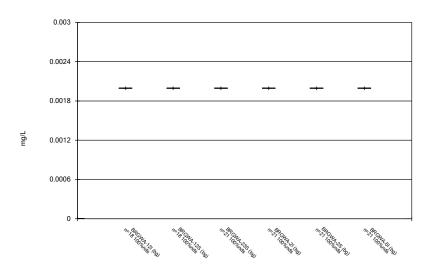
Constituent: Sulfate Analysis Run 1/10/2025 10:47 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

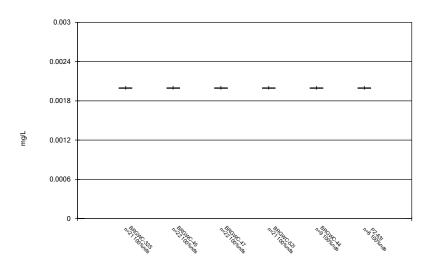
Constituent: Sulfate Analysis Run 1/10/2025 10:47 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP


Box & Whiskers Plot

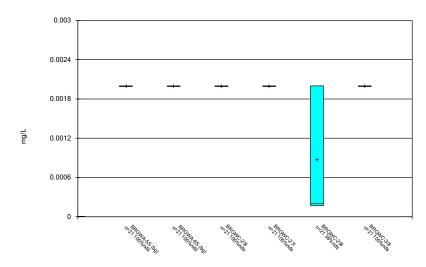

Constituent: Sulfate Analysis Run 1/10/2025 10:47 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

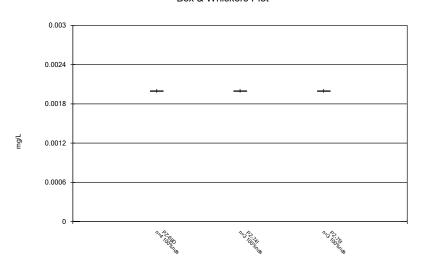

Constituent: Sulfate Analysis Run 1/10/2025 10:47 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP

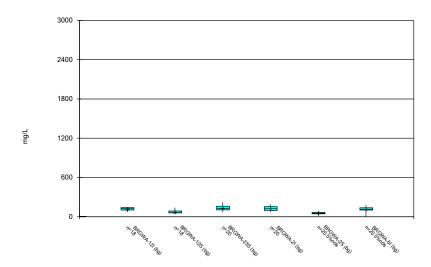
Constituent: Thallium Analysis Run 1/10/2025 10:47 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

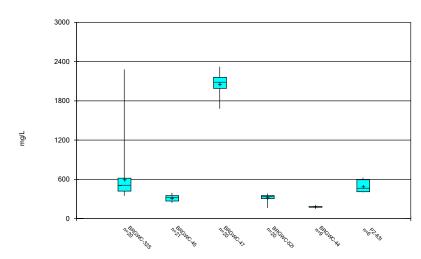
Constituent: Thallium Analysis Run 1/10/2025 10:47 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP


Box & Whiskers Plot

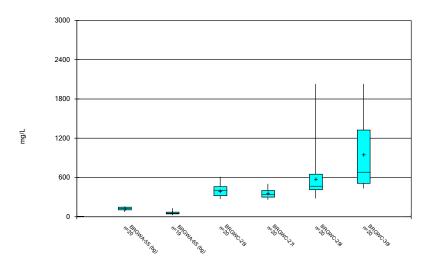

Constituent: Thallium Analysis Run 1/10/2025 10:47 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

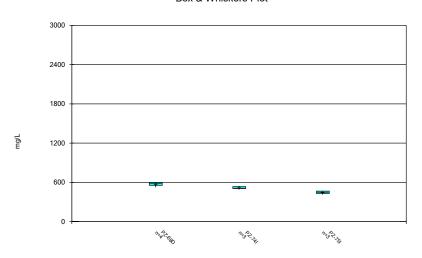

Constituent: Thallium Analysis Run 1/10/2025 10:47 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

Constituent: Total Dissolved Solids Analysis Run 1/10/2025 10:47 AM View: Pond BCD
Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Total Dissolved Solids Analysis Run 1/10/2025 10:47 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP


Box & Whiskers Plot

Constituent: Total Dissolved Solids Analysis Run 1/10/2025 10:47 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Total Dissolved Solids Analysis Run 1/10/2025 10:47 AM View: Pond BCD Plant Branch Client: Southern Company Data: Plant Branch AP

FIGURE C.

Outlier Summary

Plant Branch Client: Southern Company Data: Plant Branch AP Printed 11/15/2024, 4:01 PM

	BRGWC-521 Calcium (m. BRGWA-51	g/L) Cobalt (mg/L) BRGWC-521 Fluoride (m/ BRGWC-2	g/L) 91 Lead (mg/L) BRGWC-45 L	_{ithium (mg/L)} BRGWA-6S	Total Dissolved Solids (mg/L) BRGWC-47 Total Dissolved Solids (mg/L)
9/1/2016				299 (o)	
11/16/2016	<0.01 (o)				
2/13/2018	<0.01 (o)				
2/14/2018		<0.002 (o))		
6/27/2018					31 (OX)
7/31/2018			<0.01 (o)		
8/10/2018	410 (O)	1.6 (O)			

FIGURE D.

Appendix III Interwell Prediction Limits - Significant Results

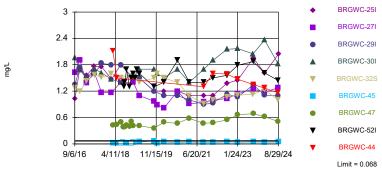
		Plant Branch	Client: Southe	ern Company Dat	a: Plant Branch AP	Printed 1/10/2	025, 11:0	B AM			
Constituent	Well	Upper Lim. L	ower Lim. Da	ate Observ.	Sig. Bg NBg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Boron (mg/L)	BRGWC-25I	0.068 n	n/a 8/2	29/2024 2.04	Yes 154 n/a	n/a	53.9	n/a	n/a	0.00008335	NP Inter (NDs) 1 of 2
Boron (mg/L)	BRGWC-27I	0.068 n	n/a 8/2	27/2024 1.28	Yes 154 n/a	n/a	53.9	n/a	n/a	0.00008335	NP Inter (NDs) 1 of 2
Boron (mg/L)	BRGWC-29I	0.068 n	n/a 8/2	27/2024 1.09	Yes 154 n/a	n/a	53.9	n/a	n/a	0.00008335	NP Inter (NDs) 1 of 2
Boron (mg/L)	BRGWC-30I	0.068 n	n/a 8/2	28/2024 1.82	Yes 154 n/a	n/a	53.9	n/a	n/a	0.00008335	NP Inter (NDs) 1 of 2
Boron (mg/L)	BRGWC-32S	0.068 n	n/a 8/2	28/2024 0.996	Yes 154 n/a	n/a	53.9	n/a	n/a	0.00008335	NP Inter (NDs) 1 of 2
Boron (mg/L)	BRGWC-47	0.068 n	n/a 8/2	28/2024 0.508	Yes 154 n/a	n/a	53.9	n/a	n/a	0.00008335	NP Inter (NDs) 1 of 2
Boron (mg/L)	BRGWC-52I	0.068 n	n/a 8/2	28/2024 1.44	Yes 154 n/a	n/a	53.9	n/a	n/a	0.00008335	NP Inter (NDs) 1 of 2
Boron (mg/L)	BRGWC-44	0.068 n	n/a 8/2	27/2024 1.16	Yes 154 n/a	n/a	53.9	n/a	n/a	0.00008335	NP Inter (NDs) 1 of 2
Calcium (mg/L)	BRGWC-25I	24 n	n/a 8/2	29/2024 77.6	Yes 156 n/a	n/a	3.846	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Calcium (mg/L)	BRGWC-27I	24 n	n/a 8/2	27/2024 75.9	Yes 156 n/a	n/a	3.846	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Calcium (mg/L)	BRGWC-29I	24 n	n/a 8/2	27/2024 70.5	Yes 156 n/a	n/a	3.846	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Calcium (mg/L)	BRGWC-30I	24 n	n/a 8/2	28/2024 419	Yes 156 n/a	n/a	3.846	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Calcium (mg/L)	BRGWC-32S	24 n	n/a 8/2	28/2024 37.4	Yes 156 n/a	n/a	3.846	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Calcium (mg/L)	BRGWC-45	24 n	n/a 8/2	29/2024 42.9	Yes 156 n/a	n/a	3.846	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Calcium (mg/L)	BRGWC-47	24 n	n/a 8/2	28/2024 302	Yes 156 n/a	n/a	3.846	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Calcium (mg/L)	BRGWC-52I	24 n	n/a 8/2	28/2024 36.8	Yes 156 n/a	n/a	3.846	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Calcium (mg/L)	BRGWC-44	24 n	n/a 8/2	27/2024 24.9	Yes 156 n/a	n/a	3.846	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Chloride (mg/L)	BRGWC-25I	5.8 n	n/a 8/2	29/2024 13.7	Yes 156 n/a	n/a	0	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Chloride (mg/L)	BRGWC-29I	5.8 n	n/a 8/2	27/2024 8.87	Yes 156 n/a	n/a	0	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Chloride (mg/L)	BRGWC-45	5.8 n	n/a 8/2	29/2024 24.8	Yes 156 n/a	n/a	0	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Chloride (mg/L)	BRGWC-52I	5.8 n	n/a 8/2	28/2024 6.58	Yes 156 n/a	n/a	0	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Chloride (mg/L)	BRGWC-44	5.8 n	n/a 8/2	27/2024 5.99	Yes 156 n/a	n/a	0	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
pH, Field (S.U.)	BRGWC-29I	7.034 5	5.577 8/2	27/2024 4.47	Yes 172 6.305	0.3796	0	None	No	0.0004179	Param Inter 1 of 2
pH, Field (S.U.)	BRGWC-47	7.034 5	5.577 8/2	28/2024 5.57	Yes 172 6.305	0.3796	0	None	No	0.0004179	Param Inter 1 of 2
Sulfate (mg/L)	BRGWC-25I	89 n	n/a 8/2	29/2024 216	Yes 156 n/a	n/a	12.18	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BRGWC-27I	89 n	n/a 8/2	27/2024 174	Yes 156 n/a	n/a	12.18	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BRGWC-29I	89 n	n/a 8/2	27/2024 261	Yes 156 n/a	n/a	12.18	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BRGWC-30I	89 n	n/a 8/2	28/2024 1260	Yes 156 n/a	n/a	12.18	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BRGWC-32S	89 n	n/a 8/2	28/2024 201	Yes 156 n/a	n/a	12.18	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BRGWC-45	89 n	n/a 8/2	29/2024 150	Yes 156 n/a	n/a	12.18	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BRGWC-47	89 n	n/a 8/2	28/2024 1310	Yes 156 n/a	n/a	12.18	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BRGWC-52I	89 n	n/a 8/2	28/2024 150	Yes 156 n/a	n/a	12.18	n/a	n/a	0.00008104	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	BRGWC-25I	183.3 n	n/a 8/2	29/2024 492	Yes 155 102	42.34	1.29	None	No	0.0008358	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BRGWC-27I	183.3 n	n/a 8/2	27/2024 346	Yes 155 102	42.34	1.29	None	No	0.0008358	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BRGWC-29I	183.3 n	n/a 8/2	27/2024 424	Yes 155 102	42.34	1.29	None	No	0.0008358	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BRGWC-30I	183.3 n	n/a 8/2	28/2024 2030	Yes 155 102	42.34	1.29	None	No	0.0008358	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BRGWC-32S	183.3 n	n/a 8/2	28/2024 374	Yes 155 102	42.34	1.29	None	No	0.0008358	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BRGWC-45	183.3 n	n/a 8/2	29/2024 353	Yes 155 102	42.34	1.29	None	No	0.0008358	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BRGWC-47	183.3 n	n/a 8/2	28/2024 1780	Yes 155 102	42.34	1.29	None	No	0.0008358	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BRGWC-52I	183.3 n	n/a 8/2	28/2024 310	Yes 155 102	42.34	1.29	None	No	0.0008358	Param Inter 1 of 2

Appendix III Interwell Prediction Limits - All Results

Printed 1/10/2025, 11:06 AM Client: Southern Company Data: Plant Branch AP Constituent Well Sig. Bg NBg Mean Std. Dev. %NDs ND Adj. Upper Lim. Lower Lim. Date Observ. Method BRGWC-25I 8/29/2024 2.04 53.9 0.00008335 NP Inter (NDs) 1 of 2 Boron (mg/L) 0.068 Yes 154 n/a n/a n/a n/a n/a Boron (mg/L) Yes 154 n/a 0.00008335 NP Inter (NDs) 1 of 2 BRGWC-27I 0.068 n/a 8/27/2024 1.28 n/a 53.9 n/a n/a BRGWC-29I 8/27/2024 1.09 0.00008335 NP Inter (NDs) 1 of 2 Boron (ma/L) Yes 154 n/a 53.9 0.068 n/a n/a n/a n/a Boron (mg/L) BRGWC-30I 0.068 n/a 8/28/2024 1.82 Yes 154 n/a n/a 53.9 n/a 0.00008335 NP Inter (NDs) 1 of 2 BRGWC-32S 8/28/2024 0.996 Yes 154 n/a 0.00008335 NP Inter (NDs) 1 of 2 53.9 Boron (ma/L) 0.068 n/a n/a n/a n/a BRGWC-45 8/29/2024 0.043 No 154 n/a 53.9 n/a 0.00008335 NP Inter (NDs) 1 of 2 Boron (mg/L) 0.068 n/a n/a n/a BRGWC-47 Yes 154 n/a 0.00008335 NP Inter (NDs) 1 of 2 Boron (mg/L) 0.068 n/a 8/28/2024 0.508 n/a 53.9 n/a n/a Boron (mg/L) BRGWC-52I 8/28/2024 1.44 Yes 154 n/a 53.9 n/a 0.00008335 NP Inter (NDs) 1 of 2 Boron (mg/L) BRGWC-44 0.068 n/a 8/27/2024 1.16 Yes 154 n/a n/a 53.9 n/a n/a 0.00008335 NP Inter (NDs) 1 of 2 Calcium (mg/L) BRGWC-25I n/a 8/29/2024 77.6 Yes 156 n/a n/a 3.846 n/a n/a 0.00008104 NP Inter (normality) 1 of 2 Calcium (mg/L) BRGWC-27I 24 n/a 8/27/2024 75.9 Yes 156 n/a n/a 3.846 n/a n/a 0.00008104 NP Inter (normality) 1 of 2 Calcium (mg/L) BRGWC-29I n/a 8/27/2024 70.5 Yes 156 n/a 3.846 n/a n/a 0.00008104 NP Inter (normality) 1 of 2 n/a BRGWC-30I Yes 156 n/a 0.00008104 NP Inter (normality) 1 of 2 Calcium (mg/L) 24 n/a 8/28/2024 419 n/a 3.846 n/a n/a Calcium (mg/L) BRGWC-32S 8/28/2024 37.4 Yes 156 n/a n/a 3.846 n/a 0.00008104 NP Inter (normality) 1 of 2 Calcium (mg/L) BRGWC-45 24 n/a 8/29/2024 42.9 Yes 156 n/a n/a 3.846 n/a n/a 0.00008104 NP Inter (normality) 1 of 2 Calcium (mg/L) BRGWC-47 8/28/2024 302 Yes 156 n/a 3.846 n/a 0.00008104 NP Inter (normality) 1 of 2 n/a n/a n/a Calcium (mg/L) BRGWC-52I 24 n/a 8/28/2024 36.8 Yes 156 n/a n/a 3.846 n/a n/a 0.00008104 NP Inter (normality) 1 of 2 Calcium (mg/L) BRGWC-44 24 8/27/2024 24.9 Yes 156 n/a 0.00008104 NP Inter (normality) 1 of 2 n/a n/a 3.846 n/a n/a Chloride (mg/L) BRGWC-25I 5.8 n/a 8/29/2024 13.7 Yes 156 n/a n/a 0 n/a n/a 0.00008104 NP Inter (normality) 1 of 2 Chloride (ma/L) BRGWC-27I 5.8 n/a 8/27/2024 4.47 156 n/a 0 n/a n/a 0.00008104 NP Inter (normality) 1 of 2 n/a Chloride (mg/L) BRGWC-29I 8/27/2024 8.87 Yes 156 n/a 0 n/a n/a 0.00008104 NP Inter (normality) 1 of 2 5.8 n/a n/a BRGWC-30I 0 Chloride (mg/L) n/a 8/28/2024 3.48 156 n/a n/a n/a 0.00008104 NP Inter (normality) 1 of 2 5.8 No n/a BRGWC-32S 8/28/2024 4.09 156 n/a 0 n/a 0.00008104 NP Inter (normality) 1 of 2 Chloride (mg/L) 5.8 n/a No n/a BRGWC-45 8/29/2024 24.8 Chloride (mg/L) 5.8 n/a Yes 156 n/a n/a 0 n/a n/a 0.00008104 NP Inter (normality) 1 of 2 Chloride (mg/L) BRGWC-47 5.8 n/a 8/28/2024 4.57 156 n/a n/a 0 n/a n/a 0.00008104 NP Inter (normality) 1 of 2 Chloride (ma/L) BRGWC-52I 8/28/2024 6.58 Yes 156 n/a 0 n/a 0.00008104 NP Inter (normality) 1 of 2 5.8 n/a n/a n/a Chloride (mg/L) BRGWC-44 8/27/2024 5.99 156 n/a n/a 0.00008104 NP Inter (normality) 1 of 2 BRGWC-25I 8/29/2024 0.248 47.06 0.00006849 NP Inter (normality) 1 of 2 Fluoride (mg/L) 170 n/a n/a 0.42 n/a No n/a n/a BRGWC-27I 8/27/2024 0.382 0.00006849 NP Inter (normality) 1 of 2 Fluoride (mg/L) 0.42 n/a 170 n/a 47.06 n/a BRGWC-29I Fluoride (ma/L) 0.42 n/a 8/27/2024 0.0849J No 170 n/a n/a 47.06 n/a n/a 0.00006849 NP Inter (normality) 1 of 2 Fluoride (ma/L) BRGWC-30I 8/28/2024 0.336J 170 n/a n/a 47.06 0.00006849 NP Inter (normality) 1 of 2 BRGWC-32S Fluoride (mg/L) 0.42 n/a 8/28/2024 0 0511.1 Nο 170 n/a n/a 47.06 n/a n/a 0.00006849 NP Inter (normality) 1 of 2 Fluoride (mg/L) BRGWC-45 0.42 n/a 8/29/2024 0.078J n/a 47.06 n/a n/a 0.00006849 NP Inter (normality) 1 of 2 BRGWC-47 0.00006849 NP Inter (normality) 1 of 2 Fluoride (mg/L) 0.42 n/a 8/28/2024 0.033ND No 170 n/a n/a 47.06 n/a n/a Fluoride (mg/L) BRGWC-52I 0.42 n/a 8/28/2024 0.0748J 170 n/a 47.06 n/a 0.00006849 NP Inter (normality) 1 of 2 n/a n/a Fluoride (mg/L) BRGWC-44 0.42 n/a 8/27/2024 0.193 No 170 n/a n/a 47.06 n/a n/a 0.00006849 NP Inter (normality) 1 of 2 pH, Field (S.U.) BRGWC-25I 7.034 5.577 8/29/2024 6.52 Nο 172 6.305 0.3796 0 None No 0.0004179 Param Inter 1 of 2 pH, Field (S.U.) BRGWC-27I 7.034 5.577 8/27/2024 5.95 Nο 172 6.305 0.3796 0 No 0.0004179 Param Inter 1 of 2 None 0 pH, Field (S.U.) BRGWC-29I 5.577 8/27/2024 4.47 Yes 172 6.305 0.3796 No 0.0004179 Param Inter 1 of 2 7.034 None 5.577 pH, Field (S.U.) BRGWC-30I 8/28/2024 6.49 172 6.305 0.3796 0 No 0.0004179 Param Inter 1 of 2 7.034 None pH, Field (S.U.) BRGWC-32S 7.034 5.577 8/28/2024 6.05 172 6.305 0.3796 0 No 0.0004179 Param Inter 1 of 2 None pH, Field (S.U.) BRGWC-45 7.034 5.577 8/29/2024 6 26 No 172 6.305 0.3796 0 No 0.0004179 Param Inter 1 of 2 None pH. Field (S.U.) BRGWC-47 5.577 8/28/2024 5.57 Yes 172 6.305 0.3796 0 No 0.0004179 Param Inter 1 of 2 7.034 None pH, Field (S.U.) BRGWC-52I 7 034 5.577 8/28/2024 6 49 No. 172 6 305 0.3796 0 No 0.0004179 Param Inter 1 of 2 None 8/29/2024 216 BRGWC-25I Yes 156 n/a 0.00008104 NP Inter (normality) 1 of 2 Sulfate (mg/L) 89 12.18 n/a n/a n/a n/a BRGWC-27I 8/27/2024 174 Yes 156 n/a Sulfate (mg/L) 12.18 n/a 0.00008104 NP Inter (normality) 1 of 2 BRGWC-29I 8/27/2024 261 Yes 156 n/a 12.18 0.00008104 NP Inter (normality) 1 of 2 Sulfate (mg/L) 89 n/a n/a n/a n/a BRGWC-30I 8/28/2024 1260 Sulfate (mg/L) Yes 156 n/a n/a 12.18 n/a 0.00008104 NP Inter (normality) 1 of 2 BRGWC-32S 8/28/2024 201 Yes 156 n/a 0.00008104 NP Inter (normality) 1 of 2 Sulfate (mg/L) 89 n/a n/a 12.18 n/a n/a BRGWC-45 8/29/2024 150 Sulfate (mg/L) Yes 156 n/a 12.18 0.00008104 NP Inter (normality) 1 of 2 BRGWC-47 8/28/2024 1310 0.00008104 NP Inter (normality) 1 of 2 Sulfate (mg/L) 89 n/a Yes 156 n/a n/a 12.18 n/a n/a Sulfate (mg/L) BRGWC-52I n/a 8/28/2024 150 Yes 156 n/a n/a 12.18 n/a n/a 0.00008104 NP Inter (normality) 1 of 2 Sulfate (mg/L) BRGWC-44 89 n/a 8/27/2024 41.8 No 156 n/a n/a 12.18 n/a n/a 0.00008104 NP Inter (normality) 1 of 2 Total Dissolved Solids (mg/L) BRGWC-25I 183.3 n/a 8/29/2024 492 Yes 155 102 42.34 1.29 No 0.0008358 Param Inter 1 of 2 None Total Dissolved Solids (mg/L) BRGWC-27I 183.3 n/a 8/27/2024 346 Yes 155 102 42.34 1.29 None No 0.0008358 Param Inter 1 of 2

Page 2

Appendix III Interwell Prediction Limits - All Results


	P	iant Branch	Client: So	utnern Com	ipany Dai	a: Plant Branch AP	Printed 1/10/2	2025, 11:0	o Alvi			
Constituent	Well	Upper Lim	Lower Lim.	<u>Date</u>	Observ.	Sig. Bg NBg Mean	Std. Dev.	%NDs	ND Adj.	Transform	Alpha	Method
Total Dissolved Solids (mg/L)	BRGWC-29I	183.3	n/a	8/27/2024	424	Yes 155 102	42.34	1.29	None	No	0.0008358	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BRGWC-30I	183.3	n/a	8/28/2024	2030	Yes 155 102	42.34	1.29	None	No	0.0008358	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BRGWC-32S	183.3	n/a	8/28/2024	374	Yes 155 102	42.34	1.29	None	No	0.0008358	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BRGWC-45	183.3	n/a	8/29/2024	353	Yes 155 102	42.34	1.29	None	No	0.0008358	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BRGWC-47	183.3	n/a	8/28/2024	1780	Yes 155 102	42.34	1.29	None	No	0.0008358	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BRGWC-52I	183.3	n/a	8/28/2024	310	Yes 155 102	42.34	1.29	None	No	0.0008358	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BRGWC-44	183 3	n/a	8/27/2024	180	No. 155 102	42 34	1 29	None	No	0.0008358	Param Inter 1 of 2

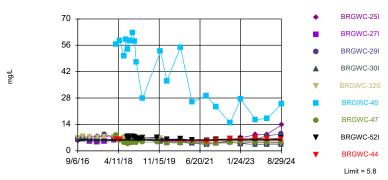
Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Exceeds Limit: BRGWC-25I, BRGWC-27I, BRGWC-29I, BRGWC-30I, BRGWC-32S, BRGWC-47, BRGWC-52I, BRGWC-44

Prediction Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 154 background values. 53.9% NDs. Annual per-constituent alpha = 0.001499. Individual comparison alpha = 0.00008335 (1 of 2). Comparing 9 points to limit.

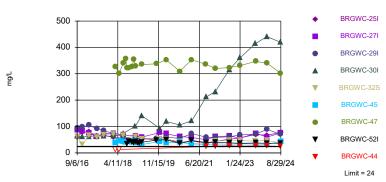

Constituent: Boron Analysis Run 1/10/2025 11:02 AM View: Pond BCD - Appendix III

Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Exceeds Limit: BRGWC-25I, BRGWC-29I, BRGWC-45, BRGWC-52I, BRGWC-44

Prediction Limit Interwell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 156 background values. Annual per-constituent alpha = 0.001458. Individual comparison alpha = 0.00008104 (1 of 2). Comparing 9 points to limit.

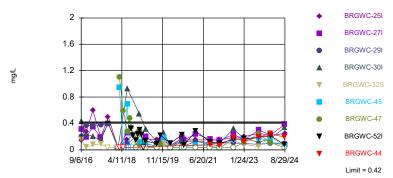
Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Exceeds Limit: BRGWC-25I, BRGWC-27I, BRGWC-29I, BRGWC-30I, BRGWC-32S, BRGWC-45, BRGWC-47, BRGWC-52I,...

Prediction Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 156 background values. 3.846% NDs. Annual perconstituent alpha = 0.001458. Individual comparison alpha = 0.00008104 (1 of 2). Comparing 9 points to limit.

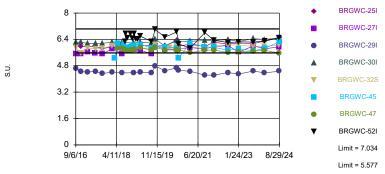

Constituent: Calcium Analysis Run 1/10/2025 11:02 AM View: Pond BCD - Appendix III
Plant Branch Client: Southern Company Data: Plant Branch AP

 $Sanitas^{\text{\tiny M}} \ v.10.0.24 \ Software \ licensed \ to \ Groundwater \ Stats \ Consulting. \ UG \ Hollow \ symbols \ indicate \ censored \ values.$

Hollow symbols indicate censored values.

Within Limit

Prediction Limit Interwell Non-parametric

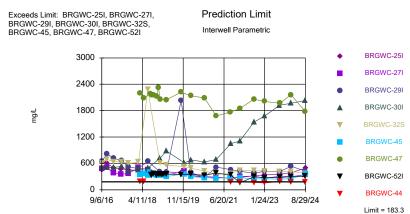


Non-parametric test used in lieu of parametric prediction limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 170 background values. 47.06% NDs. Annual perconstituent alpha = 0.001232. Individual comparison alpha = 0.00006849 (1 of 2). Comparing 9 points to limit.

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

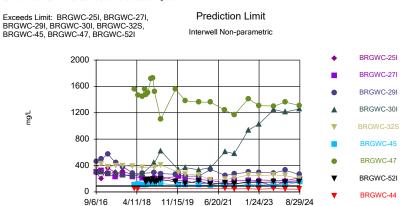
Exceeds Limits: BRGWC-29I, BRGWC-47

Prediction Limit Interwell Parametric



Background Data Summary: Mean=6.305, Std. Dev.=0.3796, n=172. Normality test: Chi Squared @alpha = 0.01, calculated = 7.535, critical = 14.07. Kappa = 1.918 (c=7, w=9, 1 of 2, event alpha = 0.05132). N exceeds UG tables; Kappa based on n=150. Report alpha = 0.007498. Individual comparison alpha = 0.0004179. Comparing 8 points to limit. Assumes 1 future value.

Constituent: pH, Field Analysis Run 1/10/2025 11:02 AM View: Pond BCD - Appendix III


Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Background Data Summary: Mean=102, Std. Dev.=42.34, n=155, 1.29% NDs. Normality test: Chi Squared @alpha = 0.01, calculated = 11.52, critical = 14.07. Kappa = 1.918 (c=7, w=9, 1 of 2, event alpha = 0.05132). N exceeds UG tables; Kappa based on n=150. Report alpha = 0.007498. Individual comparison alpha = 0.008358. Comparing 9 points to limit.

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Non-parametric test used in lieu of parametric prediction limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 156 background values. 12.18% NDs. Annual perconstituent alpha = 0.001458. Individual comparison alpha = 0.00008104 (1 of 2). Comparing 9 points to limit.

Limit = 89

Constituent: Sulfate Analysis Run 1/10/2025 11:02 AM View: Pond BCD - Appendix III

Plant Branch Client: Southern Company Data: Plant Branch AP

 $\label{lem:constituent: Boron (mg/L)} {\it Constituent: Boron (mg/L)} \quad {\it Analysis Run 1/10/2025 11:06 AM} \quad {\it View: Pond BCD - Appendix III} \\ {\it Plant Branch} \quad {\it Client: Southern Company} \quad {\it Data: Plant Branch AP} \\$

			T Idill D	runeri Gilent. Godt	nem company ba	na. Flam Branch / n			
	BRGWA-2S (bg)	BRGWA-2I (bg)	BRGWA-5I (bg)	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWA-12S (bg)	BRGWA-12I (bg)	BRGWA-23S (bg)	BRGWC-30I
8/31/2016	<0.015	0.0072 (J)	<0.015	<0.015	0.045	.0.045	0.0000 (1)		
9/1/2016					<0.015	<0.015	0.0093 (J)	0.0000 (1)	1.00
9/6/2016								0.0362 (J)	1.96
9/8/2016				0.0005 (1)	0.0400 (1)				
11/15/2016	0.0100 (1)	0.0447 (1)	0.0107 (1)	0.0085 (J)	0.0123 (J)	0.0001 (1)	0.0107 (1)		
11/16/2016	0.0109 (J)	0.0117 (J)	0.0187 (J)			0.0081 (J)	0.0127 (J)	0.0017	
11/17/2016								0.0617	
11/18/2016									1.00
11/21/2016 2/20/2017			0.0066 (J)	0.0003 (1)	0.0157 (J)				1.68
2/20/2017	<0.015	0.0000 (1)	0.0000 (3)	0.0093 (J)	0.0157 (3)	<0.01E	0.0071 (1)	0.0245 (1)	
2/21/2017	<0.015	0.0088 (J)				<0.015	0.0071 (J)	0.0245 (J)	1.48
6/12/2017		0.0133 (J)	<0.015	<0.015	<0.015				1.40
6/13/2017	<0.015	0.0133 (0)	10.010	10.015	10.015	<0.015		<0.015	
6/14/2017	10.013					10.013	0.0078 (J)	10.010	1.71
9/26/2017	<0.015	0.0093 (J)	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	1.71
9/27/2017	10.013	0.0055 (0)	10.010	10.015	10.015	10.013	10.010	10.010	1.61
2/13/2018	<0.015	0.0141 (J)	<0.015	<0.015	<0.015				
2/14/2018	0.0.0	0.0111 (0)	0.0.0	0.0.0	0.010	<0.015	0.0068 (J)	0.0314 (J)	1.47
3/6/2018						0.010	0.0000 (0)	0.0011(0)	,
5/1/2018									
6/26/2018	<0.015	0.012 (J)	0.0042 (J)	0.0056 (J)	0.0041 (J)	<0.015	0.008 (J)	0.062	
6/27/2018		(-)	(-,	(1)	(,,		(-)		
6/28/2018									1.4
7/31/2018									
8/1/2018									
8/10/2018									
8/23/2018									
9/19/2018									
10/29/2018									
11/28/2018									
12/18/2018	<0.015	0.0086 (J)	<0.015	0.0062 (J)	<0.015	0.0053 (J)	0.0083 (J)	0.055	1.6
12/19/2018									
12/20/2018									
1/17/2019									
2/13/2019									
3/19/2019	<0.015	0.00565 (JD)	<0.015	<0.015	<0.015	<0.015	0.008 (J)	0.068	
3/20/2019									1.7
10/15/2019	<0.015	0.0067 (J)	<0.015	0.006 (J)	0.01 (J)	<0.015	0.006 (J)	0.022 (J)	
10/16/2019									
10/17/2019									1.7
12/3/2019									
12/4/2019									1.6
3/3/2020	<0.015	0.0082 (J)	<0.015	<0.015	<0.015	0.0065 (J)	0.01 (J)		
3/4/2020								0.044 (J)	
3/5/2020	2.245								1.5
9/15/2020	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	0.0071 (J)	0.033 (J)	4.7
9/16/2020									1.7

<0.015

<0.015

0.0057 (J)

0.042

1.4

0.0071 (J)

<0.015

<0.015

0.0053 (J)

9/17/2020 3/1/2021

3/2/2021

3/3/2021

 $\label{lem:constituent: Boron (mg/L)} {\it Constituent: Boron (mg/L)} \quad {\it Analysis Run 1/10/2025 11:06 AM} \quad {\it View: Pond BCD - Appendix III} \\ {\it Plant Branch} \quad {\it Client: Southern Company} \quad {\it Data: Plant Branch AP} \\$

	BRGWA-2S (bg)	BRGWA-2I (bg)	BRGWA-5I (bg)	BRGWA-5S (bg)	BRGWA-6S (bg)	BRGWA-12S (bg)	BRGWA-12I (bg)	BRGWA-23S (bg)	BRGWC-30I
3/4/2021									
9/21/2021			<0.015	<0.015		<0.015	<0.015		
9/22/2021	<0.015	<0.015			<0.015			0.047	
9/23/2021									
9/28/2021									1.7
2/1/2022	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	0.046	
2/2/2022									1.9
2/3/2022									
2/4/2022									
8/23/2022	0.00532 (J)	0.00592 (J)	<0.015	0.00538 (J)	<0.015	<0.015	0.00653 (J)	0.0498	
8/24/2022									2.15
8/25/2022									
1/24/2023	<0.015	<0.015	<0.015	<0.015	<0.015	0.0053 (J)	0.00884 (J)	0.0437	
1/25/2023									
1/26/2023									2.17
8/31/2023	0.00738 (J)	0.00649 (J)	0.0073 (J)	0.00764 (J)	0.00611 (J)			0.039	
9/1/2023									2.05
9/6/2023									
9/8/2023									
2/12/2024	<0.015	<0.015	<0.015	<0.015	<0.015			0.0389	2.36
2/14/2024									
2/16/2024									
8/27/2024	<0.015	<0.015	<0.015	0.00538 (J)	<0.015			0.0315	
8/28/2024									1.82
8/29/2024									

 $\label{lem:constituent: Boron (mg/L)} {\it Constituent: Boron (mg/L)} \quad {\it Analysis Run 1/10/2025 11:06 AM} \quad {\it View: Pond BCD - Appendix III} \\ {\it Plant Branch} \quad {\it Client: Southern Company} \quad {\it Data: Plant Branch AP} \\$

	BRGWC-27I	BRGWC-29I	BRGWC-32S	BRGWC-25I	BRGWC-47	BRGWC-45	BRGWC-44	BRGWC-52I
8/31/2016								
9/1/2016								
9/6/2016								
9/8/2016	1.63	1.35	1.28	1.03				
11/15/2016								
11/16/2016								
11/17/2016				1.7				
11/18/2016	1.91							
11/21/2016		1.74	1.19					
2/20/2017								
2/21/2017	1.39			1.55				
2/22/2017		1.5	1.43					
6/12/2017								
6/13/2017	1.62			1.77				
6/14/2017		1.6	1.57					
9/26/2017								
9/27/2017	1.16	1.83	1.51	1.75				
2/13/2018								
2/14/2018	1.17	1.8	1.6	1.47				
3/6/2018					0.428	0.0198 (J)	2.12	
5/1/2018					0.435 (D)	0.015 (J)	1.5	
6/26/2018				1.8				
6/27/2018	1.4 (J+X)	1.8 (J+X)	1.5 (J+X)		0.49 (J+X)			
6/28/2018						<0.015 (X)		
7/31/2018						0.035 (J)		
8/1/2018					0.39			
8/10/2018								1.3
8/23/2018					0.39	0.022 (J)		1.4
9/19/2018					0.43	0.021 (J)		1.7
10/29/2018					0.4	0.021 (J)		1.3
11/28/2018					0.51	<0.015 (X)		1.5
12/18/2018		1.5		1.5				
12/19/2018			1.6		0.41			
12/20/2018	1.4					0.028 (J)		1.6
1/17/2019								1.5
2/13/2019								1.7
3/19/2019	1.1				0.41			
3/20/2019		1.5	1.4	1.5 (D)		0.043		1.6 (D)
10/15/2019				1.2				
10/16/2019		1.2			0.36			1.3
10/17/2019	0.97		1.5			0.064		
12/3/2019						0.027 (J)		
12/4/2019	0.89		1.6					
3/3/2020								
3/4/2020	0.81	1.1		1.2	0.49			1.4
3/5/2020			1.5			0.044 (J)		
9/15/2020		1.1		1.2				
9/16/2020	1.2		1.4		0.47	0.028 (J)		
9/17/2020								1.9
3/1/2021								
3/2/2021				1.1	0.58	0.044		
3/3/2021	0.91	1						

Constituent: Boron (mg/L) Analysis Run 1/10/2025 11:06 AM View: Pond BCD - Appendix III
Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWC-27I	BRGWC-29I	BRGWC-32S	BRGWC-25I	BRGWC-47	BRGWC-45	BRGWC-44	BRGWC-52I
3/4/2021			1.1					1.4
9/21/2021								
9/22/2021								
9/23/2021					0.47	0.029 (J)		
9/28/2021	0.95	0.9	0.91	1.1			1.3	1.4
2/1/2022								
2/2/2022			1	1.1	0.48	0.034 (J)	1.6	1.5
2/3/2022		0.93						
2/4/2022	1							
8/23/2022				1.38	0.547			
8/24/2022		1.13						
8/25/2022	1.03		1.07			0.0458	1.59	1.56
1/24/2023			1.11					
1/25/2023	1.14					0.0355	1.47	1.79
1/26/2023		1.07		1.45	0.661			
8/31/2023								
9/1/2023			1.13					
9/6/2023	1.25	1.34		1.95	0.689	0.0444		1.87
9/8/2023							1.35	
2/12/2024			1.23		0.618		1.27	
2/14/2024	1.17	1.11		1.61		0.0355		
2/16/2024								1.61
8/27/2024	1.28	1.09					1.16	
8/28/2024			0.996		0.508			1.44
8/29/2024				2.04		0.0431		

Constituent: Calcium (mg/L) Analysis Run 1/10/2025 11:07 AM View: Pond BCD - Appendix III

8/	31/2016	BRGWA-5I (bg) 13.5	BRGWA-2S (bg) 4.09	BRGWA-5S (bg) 19.6	BRGWA-2I (bg) 12.6	BRGWA-6S (bg)	BRGWA-12S (bg)	BRGWA-12I (bg)	BRGWA-23S (bg)	BRGWC-30I
	1/2016					3.3	4.61	8.98		
9/	6/2016								12.8	63.3
9/	8/2016									
11	1/15/2016			21.7		3.44				
11	1/16/2016	14.9	4.25		12.1		4.17	15.4		
	1/17/2016								19.2	
	1/18/2016									
	1/21/2016									60.7
2/	20/2017	13.9		21.1		3.52				
	21/2017		4.02		11.4		5	17.4	15.1	
	22/2017									62.1
	12/2017	13.7		21.5	9.34	3.11				
	13/2017		3.84				4.98		10.2	
	14/2017							18.1		63.5
	26/2017	14.4	3.31	24	14.3	3.15	4.49	19.3	15	
	27/2017									63.5
	13/2018	<25	3.94	<25	<25	3.65				
	14/2018						<25	<25	<25	62.8
	6/2018									
5/	1/2018									
	26/2018	13.5 (J)	3.6	23.5 (J)	16 (J)	3.3	6.4	15.5 (J)	18.5 (J)	
6/	27/2018									
6/	28/2018									73.3
	31/2018						6.1	18.2 (J)		
8/	1/2018									
8/	10/2018									
8/	23/2018									
9/	19/2018									
10	0/29/2018									
11	1/28/2018									
12	2/18/2018	16.4 (J)	3.8	19.8 (J)	14.5 (J)	3.5	5.5	18.7 (J)	16.8 (J)	102
12	2/19/2018									
12	2/20/2018									
1/	17/2019									
2/	13/2019									
	19/2019	12.3 (J)	3.9	21.4 (J)	14.3 (JD)	3.6	5.9	15.9 (J)	13.5 (J)	
3/	20/2019									141
	0/15/2019	14.4	3.7	20	15.1	3.5	6.2	15.9	8.6	
	0/16/2019									
	2/3/2019									
	2/4/2019									92.6
	3/2020	14.9	4	23.2	20	5	6.8	19.4		
	4/2020								11.5	
	5/2020									119
	15/2020	12.7	3.9	16.8	14.1	3.7	5.7	14.5	10.7	
	16/2020									106
	17/2020				45.4	4.0				
	1/2021	10.0		10.0	15.4	4.2		44.7	44.0	
	2/2021	13.2	4	16.8			5.4	11.7	11.6	100
	3/2021									122
3/	4/2021									

Constituent: Calcium (mg/L) Analysis Run 1/10/2025 11:07 AM View: Pond BCD - Appendix III

	BRGWA-5I (bg)	BRGWA-2S (bg)	BRGWA-5S (bg)	BRGWA-2I (bg)	BRGWA-6S (bg)	BRGWA-12S (bg)	BRGWA-12I (bg)	BRGWA-23S (bg)	BRGWC-30I
9/21/2021	14.1		19.1			5.4	16.4		
9/22/2021		4.3		15.9	4.1			9.2	
9/23/2021									
9/28/2021									212
2/1/2022	14.5	4.4	19.1	14.4	4.2	5.3	14.2	10.7	
2/2/2022									232
2/3/2022									
2/4/2022									
8/23/2022	14.3	4.65	18.2	13.9	3.97	6.09	15.8	8.09	
8/24/2022									316
8/25/2022									
1/24/2023	15.8	4.86	19.4	14.2	3.9	5.62	13.7	6.97	
1/25/2023									
1/26/2023									361
8/31/2023	14.3	5.02	14.9	12.6	3.79			5.95	
9/1/2023									414
9/6/2023									
9/8/2023									
2/12/2024	16	5.25	18.2	14.1	4.27			6.19	441
2/14/2024									
8/27/2024	15.9	5.45	17.2	12.4	4.19			5.88	
8/28/2024									419
8/29/2024									

Constituent: Calcium (mg/L) Analysis Run 1/10/2025 11:07 AM View: Pond BCD - Appendix III

Plant Branch	Client: Southern Company	Data: Plant Branch AP
i lant branch	Chefft. Coulifern Company	Data. I fallt Dialicii Al

	BRGWC-29I	BRGWC-25I	BRGWC-32S	BRGWC-27I	BRGWC-45	BRGWC-47	BRGWC-44	BRGWC-52I
8/31/2016								
9/1/2016								
9/6/2016								
9/8/2016	93.9	59.4	60.5	87.2				
11/15/2016								
11/16/2016								
11/17/2016		78.4						
11/18/2016				82.4				
11/21/2016	99.1		31.1					
2/20/2017								
2/21/2017		80.9		75.1				
2/22/2017	105		67.3					
6/12/2017								
6/13/2017		62		61				
6/14/2017	91.3		60.2					
9/26/2017								
9/27/2017	84	65.8	68.4	72.6				
2/13/2018								
2/14/2018	72.1	58.8	70.2	74.1				
3/6/2018					39.5	326	<25	
5/1/2018					45.5	302 (D)	<25	
6/26/2018		55.5						
6/27/2018	61.1		67.1	68.2		340		
6/28/2018					41.9			
7/31/2018					41.5			
8/1/2018						358		
8/10/2018								410 (O)
8/23/2018					42.3	323		33.9
9/19/2018					41.9	321		42.3
10/29/2018					40.8	326		39.8
11/28/2018					45.1	354		38.2
12/18/2018	52.9	54.7						
12/19/2018			61.2			330		
12/20/2018				63.9	39			43.2
1/17/2019								39.4
2/13/2019								36.9
3/19/2019				60.2		335		
3/20/2019	55.4	53.95 (D)	52.8		31.2			40.85 (D)
10/15/2019		48.3						
10/16/2019	54					338		48.4
12/3/2019					43.7			
12/4/2019			52.7	76.8				
3/3/2020								
3/4/2020	59.3	52		72.3		353		49.5
3/5/2020			52.1		37.9			
9/15/2020	55.1	40.1						
9/16/2020			43.1	62.5	39.7	309		
9/17/2020								35.4
3/1/2021								
3/2/2021		44.1			33.9	353		
3/3/2021	73.3			58.2				
3/4/2021			35.7					47.5

Constituent: Calcium (mg/L) Analysis Run 1/10/2025 11:07 AM View: Pond BCD - Appendix III

	BRGWC-29I	BRGWC-25I	BRGWC-32S	BRGWC-27I	BRGWC-45	BRGWC-47	BRGWC-44	BRGWC-52I
9/21/2021								
9/22/2021								
9/23/2021					32	336		
9/28/2021	59.5	38.4	33.9	50.4			24.2	39.5
2/1/2022								
2/2/2022		44.3	44.2		33.8	320	25.1	40.1
2/3/2022	58.7							
2/4/2022				61.7				
8/23/2022		51.5				323		
8/24/2022	61							
8/25/2022			48.5	64	33.5		27.2	38.3
1/24/2023			46.6					
1/25/2023				55.7	34.3		25.1	36.3
1/26/2023	68	57.6				331		
8/31/2023			45.1					
9/1/2023								
9/6/2023	71.4	69.6		74.4	34	347		37.4
9/8/2023							26.5	
2/12/2024			47.4			340	26	
2/14/2024	89.3	67.4		60	32.8			36.4
8/27/2024	70.5			75.9			24.9	
8/28/2024			37.4			302		36.8
8/29/2024		77.6			42.9			

Constituent: Chloride (mg/L) Analysis Run 1/10/2025 11:07 AM View: Pond BCD - Appendix III

	BRGWA-2S (bg)	BRGWA-5S (bg)	BRGWA-2I (bg)	BRGWA-5I (bg)	BRGWA-12I (bg)	BRGWA-6S (bg)	BRGWA-12S (bg)	BRGWC-30I	BRGWA-23S (bg)
8/31/2016	2	3.6	2.3	4.4					
9/1/2016					3.3	2.5	3.5		
9/6/2016								6.7	5.8
9/8/2016									
11/15/2016		4				2.3			
11/16/2016	1.8		2	4.4	3.6		3.6		
11/17/2016									4.3
11/18/2016									
11/21/2016								6.5	
2/20/2017		3.9		4.8		2.4			
2/21/2017	1.8		2		3.2		3.2		3.5
2/22/2017								5.6	
6/12/2017		3.8	2.1	4.2		2.2			
6/13/2017	1.7						3.3		3.2
6/14/2017					3.1			5.7	
9/26/2017	1.8	4.1	2	4.4	3.3	2.3	3.3		3.5
9/27/2017								6	
2/13/2018	1.7	4.1	2.1	4.7		2.3			
2/14/2018					3.1		3.5	5.9	3.8
3/6/2018									
5/1/2018									
	2.2	4.1	2.4	4.5	3.4	2.6	3.4		3.8
6/27/2018									
6/28/2018								7 (J-X)	
7/31/2018					2.6		2.9		
8/1/2018									
8/10/2018									
8/23/2018									
9/19/2018									
10/29/2018									
11/28/2018									
	1.9	3.8	1.8	4.5	2.8	2.3	2.9	5.8	3.9
12/19/2018									
12/20/2018									
1/17/2019									
2/13/2019									
3/19/2019	2	4.2	2.45 (D)	4.5	3.2	2.6	3.5		3.8
3/20/2019			- ()					5.8	
	1.9	3.7	2.2	4.2	3.1	2.4	3.4		3.5
10/16/2019									
12/3/2019									
12/4/2019								5	
	1.9	3.6	1.9	3.9	2.6	2.9	3.2		
3/4/2020									3.3
3/5/2020								4.3	0.0
	1.7	3.7	1.9	3.7	2.4	2.3	3.5		3.1
9/16/2020		0.7		0.7		2.0	0.0	4.4	
9/17/2020									
3/1/2021			1.8			2.1			
	1.7	3.7		3.8	2.6		3.7		3.5
3/3/2021		J.,		5.5	2.0		J.,	4	0.0
3/4/2021								•	
J. #2021									

Constituent: Chloride (mg/L) Analysis Run 1/10/2025 11:07 AM View: Pond BCD - Appendix III

	BRGWA-2S (bg)	BRGWA-5S (bg)	BRGWA-2I (bg)	BRGWA-5I (bg)	BRGWA-12I (bg)	BRGWA-6S (bg)	BRGWA-12S (bg)	BRGWC-30I	BRGWA-23S (bg)
9/21/2021		3.2		3.2	2.1		3.5		
9/22/2021	1.5		1.7			2.1			2.8
9/23/2021									
9/28/2021								3.4	
2/1/2022	1.6	3.4	1.8	3.5	2.2	2.1	3.6		3.2
2/2/2022								4	
2/3/2022									
2/4/2022									
8/23/2022	2.18	3.59	2.02	3.64	2.5	2.39	5.46		3.16
8/24/2022								4.91	
8/25/2022									
1/24/2023	2.16	3.56	2.09	3.93	2.49	2.3	3.79		2.88
1/25/2023									
1/26/2023								3.82	
8/23/2023	2.14	3.37	1.9	3.53		2.34		3.35	2.41
8/24/2023									
8/25/2023									
8/26/2023									
1/31/2024	2.14	3.52	2.35	3.98		3.23			
2/1/2024								3.52	2.4
2/2/2024									
2/9/2024									
8/27/2024	2.17	3.49	2.16	3.88		2.28			2.16
8/28/2024								3.48	
8/29/2024									

Constituent: Chloride (mg/L) Analysis Run 1/10/2025 11:07 AM View: Pond BCD - Appendix III

	BRGWC-29I	BRGWC-27I	BRGWC-32S	BRGWC-25I	BRGWC-44	BRGWC-47	BRGWC-45	BRGWC-52I
8/31/2016								
9/1/2016								
9/6/2016								
9/8/2016	6.4	6	6.8	5.5				
11/15/2016								
11/16/2016								
11/17/2016				7.7				
11/18/2016		6.3						
11/21/2016	6.9	0.0	7.8					
2/20/2017	0.0		7.0					
2/21/2017		5.1		7.3				
2/22/2017	6.2	0.1	7	7.0				
6/12/2017	0.2		,					
6/13/2017		4.7		7.5				
6/14/2017	7.2	4.7	7.1	7.5				
	7.2		7.1					
9/26/2017	0.7	4.9	7.0	7.9				
9/27/2017	8.7	4.9	7.2	7.9				
2/13/2018	7.0	5.0	7.4	0.7				
2/14/2018	7.2	5.6	7.4	6.7	•	0.4	50.0	
3/6/2018					6	8.4	56.6	
5/1/2018					6	5.7 (JXD)	58.5	
6/26/2018				6.7				
6/27/2018	6.3	5.9	7.1			4.4		
6/28/2018							50.2 (J-X)	
7/31/2018							59	
8/1/2018						5.2		
8/10/2018								6.9
8/23/2018						3.6	54	7.5
9/19/2018						4.1	58.4	6.6
10/29/2018						4.3	62.6	7.8
11/28/2018						5.1	58.1	7.2
12/18/2018	5.4			6.2				
12/19/2018			7 (J-X)			4.5 (J-X)		
12/20/2018		5.6 (J-X)					47.2 (J-X)	6.6 (J-X)
1/17/2019								6.4
2/13/2019								6.5
3/19/2019		5.8				4.7		
3/20/2019	5.6		7.3	6.3 (D)			27.7	6.7 (D)
10/15/2019				5				
10/16/2019	6.9					4.6		7
12/3/2019							52.8	
12/4/2019		5.6	6.6					
3/3/2020								
3/4/2020	5.8	5.1		5		4.2		6.1
3/5/2020			6				37.1	
9/15/2020	5.5			4.9				
9/16/2020		5.4	5.6			4.1	54.9	
9/17/2020								6.3
3/1/2021								
3/2/2021				4.5		4.8	25.8	
3/3/2021	5.6	4.5						
3/4/2021			4.6					5.6

Constituent: Chloride (mg/L) Analysis Run 1/10/2025 11:07 AM View: Pond BCD - Appendix III

	BRGWC-29I	BRGWC-27I	BRGWC-32S	BRGWC-25I	BRGWC-44	BRGWC-47	BRGWC-45	BRGWC-52I
9/21/2021								
9/22/2021								
9/23/2021						4.3	29.3	
9/28/2021	5.4	3.7	3.6	4.2	5			5.5
2/1/2022								
2/2/2022			3.8	4.2	5.5	4.2	23.4	6.1
2/3/2022	6.1							
2/4/2022		4.6						
8/23/2022				5.38		4.49		
8/24/2022	5.84							
8/25/2022		4.65	3.96		6.28		14.9	6.27
1/24/2023			4.49					
1/25/2023		3.81			5.84		27.4	6.35
1/26/2023	5.59			6.96		4.96		
8/23/2023			4.3					
8/24/2023					6.83			
8/25/2023	6.08	4.81		8.47		4.67		6.28
8/26/2023							16.5	
1/31/2024			4.1					
2/1/2024	7.94	4.05		8.73	6.36	4.74		
2/2/2024								6.3
2/9/2024							17.2	
8/27/2024	8.87	4.47			5.99			
8/28/2024			4.09			4.57		6.58
8/29/2024				13.7			24.8	

Constituent: Fluoride (mg/L) Analysis Run 1/10/2025 11:07 AM View: Pond BCD - Appendix III

8/31/2016	BRGWA-5S (bg) 0.19 (J)	BRGWA-5I (bg) 0.07 (J)	BRGWA-2S (bg) 0.05 (J)	BRGWA-2I (bg) 0.11 (J)	BRGWA-6S (bg)	BRGWA-12S (bg)	BRGWA-12I (bg)	BRGWA-23S (bg)	BRGWC-30I
9/1/2016 9/6/2016	(0)	(0)	(0)	(5)	0.06 (J)	0.05 (J)	0.2 (J)	0.42	0.43
9/8/2016 11/15/2016 11/16/2016 11/17/2016	0.13 (J)	0.07 (J)	0.07 (J)	0.08 (J)	0.06 (J)	0.03 (J)	0.14 (J)	0.15 (J)	
11/18/2016 11/21/2016 2/20/2017 2/21/2017	0.08 (J)	0.06 (J)	0.05 (J)	0.14 (J)	0.04 (J)	0.04 (J)	0.16 (J)	0.1 (J)	0.24 (J)
2/22/2017 6/12/2017	0.07 (J)	0.008 (J)		0.14 (J)	0.06 (J)		0.10 (3)		0.2 (J)
6/13/2017 6/14/2017 9/26/2017	0.04 (J)	<0.033	0.04 (J) <0.033	0.14 (J)	<0.033	0.008 (J) <0.033	0.09 (J) 0.1 (J)	0.07 (J) <0.033	0.15 (J)
9/27/2017 2/13/2018 2/14/2018	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	0.41 <0.033
3/6/2018 5/1/2018									
6/26/2018 6/27/2018 6/28/2018	0.072 (J)	0.045 (J)	0.048 (J)	0.085 (J)	0.041 (J)	0.042 (J)	0.079 (J)	0.053 (J)	0.93 (J+X)
7/31/2018 8/1/2018 8/10/2018									
8/23/2018 9/19/2018 10/29/2018 11/28/2018									
12/18/2018 12/19/2018 12/20/2018	<0.033	<0.033	<0.033	0.085 (J)	<0.033	<0.033	<0.033	<0.033	0.54
1/17/2019 2/13/2019 3/19/2019	0.06 (J)	<0.033	0.037 (J)	0.0655 (JD)	0.03 (J)	<0.033	<0.033	<0.033	
3/20/2019 8/27/2019 8/28/2019	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033		0.31 0.12 (J)
8/29/2019 10/15/2019 10/16/2019	0.045 (J)	<0.033	<0.033	<0.033	<0.033	<0.033	0.047 (J)	0.084 (J) <0.033	
12/3/2019 12/4/2019 3/3/2020	0.057 (J)	<0.033	0.05 (J)	0.066 (J)	0.09 (J)	<0.033	0.056 (J)		0.26 (J)
3/4/2020 3/5/2020 8/18/2020	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	0.052 (J)	<0.033	0.051 (J)
8/19/2020 8/20/2020 9/15/2020	0.051 (J)	<0.033	<0.033	<0.033	<0.033	<0.033	0.062 (J)	<0.033	0.14

Constituent: Fluoride (mg/L) Analysis Run 1/10/2025 11:07 AM View: Pond BCD - Appendix III

	BRGWA-5S (bg)	BRGWA-5I (bg)	BRGWA-2S (bg)	BRGWA-2I (bg)	BRGWA-6S (bg)	BRGWA-12S (bg)	BRGWA-12I (bg)	BRGWA-23S (bg)	BRGWC-30I
9/16/2020									0.13
9/17/2020									
3/1/2021				<0.033	<0.033				
3/2/2021	<0.033	<0.033	<0.033			<0.033	0.061 (J)	<0.033	
3/3/2021									0.13
3/4/2021									
9/21/2021	0.056 (J)	<0.033				<0.033	0.071 (J)		
9/22/2021			<0.033	<0.033	<0.033			0.069 (J)	
9/23/2021									
9/28/2021									0.11
2/1/2022	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	0.055 (J)	<0.033	
2/2/2022									0.1
2/3/2022									
2/4/2022									
8/23/2022	<0.033	<0.033	<0.033	<0.033	<0.033	0.129	0.151	0.157	
8/24/2022									0.318
8/25/2022									
1/24/2023	0.158	0.149	<0.033	<0.033	0.12	0.0926 (J)	0.214	0.231	
1/25/2023									
1/26/2023									0.167
8/23/2023	0.277	0.289	0.229	0.267	0.0787 (J)			0.114	0.116
8/24/2023									
8/25/2023									
1/31/2024	0.233	0.232	0.184	<0.033	0.0341 (J)				
2/1/2024								0.275	0.169
2/2/2024									
8/27/2024	0.0516 (J)	0.0365 (J)	0.0426 (J)	0.0342 (J)	0.0334 (J)			0.204	
8/28/2024									0.336 (J)
8/29/2024									

Constituent: Fluoride (mg/L) Analysis Run 1/10/2025 11:07 AM View: Pond BCD - Appendix III Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWC-29I	BRGWC-32S	BRGWC-27I	BRGWC-25I	BRGWC-45	BRGWC-47	BRGWC-44	BRGWC-52I
8/31/2016								
9/1/2016								
9/6/2016								
9/8/2016	0.2 (J)	0.15 (J)	0.31	0.14 (J)				
11/15/2016	.,	. ,		()				
11/16/2016								
11/17/2016				0.27 (J)				
11/18/2016			0.19 (J)	(0)				
11/21/2016	0.37	0.04 (J)	(0)					
2/20/2017	0.07	0.04 (0)						
2/21/2017			0.35	0.6				
2/22/2017	0.37	0.08 (J)	0.00	0.0				
6/12/2017	0.07	0.00 (0)						
6/13/2017			0.19 (J)	0.19 (J)				
6/14/2017	0.38	0.09 (J)	0.13 (0)	0.13 (0)				
9/26/2017	0.50	0.03 (0)						
9/27/2017	0.4	<0.033	0.4	0.5				
2/13/2018	0.4	~ 0.033	0.4	0.5				
	<0.033	<0.033	<0.022	<0.033				
2/14/2018 3/6/2018	<0.033	<0.033	<0.033	<0.033	0.94	1.1	<0.033	
5/1/2018				0.45 (1)	<0.033	0.595 (D)	<0.033	
6/26/2018	0.005 (1)	0.000	0.00 (1)	0.15 (J)		0.07 (1)		
6/27/2018	0.085 (J)	<0.033	0.26 (J)		0.00 (1.30)	0.27 (J)		
6/28/2018					0.69 (J+X)			
7/31/2018					<0.033			
8/1/2018						0.48		10(0)
8/10/2018								1.6 (O)
8/23/2018					<0.033	0.34		0.32
9/19/2018					<0.033	0.23 (J)		0.22 (J)
10/29/2018					<0.033	<0.033		0.14 (J)
11/28/2018					<0.033	0.063 (J)		0.24 (J)
12/18/2018	0.26 (J)			0.29 (J)				
12/19/2018		0.23 (J)				0.28 (J)		
12/20/2018			0.26 (J)		0.12 (J)			0.3
1/17/2019								0.23 (J)
2/13/2019								<0.033
3/19/2019			0.2 (J)			<0.033		
3/20/2019	0.091 (J)	<0.033			0.066 (J)			0.135 (JD)
8/27/2019		<0.033		0.15 (J)				
8/28/2019	0.055 (J)		0.074 (J)		<0.033	<0.033		
8/29/2019								0.087 (J)
10/15/2019				0.16 (J)				
10/16/2019	0.11 (J)					0.076 (J)		0.22 (J)
12/3/2019					0.19 (J)			
12/4/2019		0.11 (J)	0.18 (J)					
3/3/2020								
3/4/2020	<0.033		<0.033	0.07 (J)		<0.033		0.1 (J)
3/5/2020		<0.033			<0.033			
8/18/2020								
8/19/2020	0.12	<0.033	0.19	0.17				
8/20/2020					<0.033	<0.033		0.23
9/15/2020	0.057 (J)			0.15				

Constituent: Fluoride (mg/L) Analysis Run 1/10/2025 11:07 AM View: Pond BCD - Appendix III

Plant Branch	Client: Southern Company	Data: Plant Branch AP
Flatit Branch	Cherri. Southern Company	Data. Flatit Branch AF

	BRGWC-29I	BRGWC-32S	BRGWC-27I	BRGWC-25I	BRGWC-45	BRGWC-47	BRGWC-44	BRGWC-52I
9/16/2020		<0.033	0.15		0.052 (J)	<0.033		
9/17/2020								0.074 (J)
3/1/2021								
3/2/2021				0.15	0.067 (J)	<0.033		
3/3/2021	0.13		0.24					
3/4/2021		<0.033						0.28
9/21/2021								
9/22/2021								
9/23/2021					0.06 (J)	<0.033		
9/28/2021	0.081 (J)	<0.033	0.16	0.15			0.08 (J)	0.12
2/1/2022								
2/2/2022		<0.033		0.15	<0.033	<0.033	0.065 (J)	0.098 (J)
2/3/2022	0.11							
2/4/2022			0.14					
8/23/2022				0.186		<0.033		
8/24/2022	0.103							
8/25/2022		0.138	0.234		0.166		0.184	0.157
1/24/2023		0.082 (J)						
1/25/2023			0.152		0.163		0.13	0.169
1/26/2023	0.0935 (J)			0.202		0.117		
8/23/2023		0.0477 (J)						
8/24/2023							0.195	
8/25/2023	0.0849 (J)		0.302	0.25	0.185	0.243		0.188 (J)
1/31/2024		0.207						
2/1/2024	0.0968 (J)		0.222	0.221		0.11	0.242	
2/2/2024					0.126			0.215
8/27/2024	0.0849 (J)		0.382				0.193	
8/28/2024		0.0511 (J)				<0.033		0.0748 (J)
8/29/2024				0.248	0.078 (J)			

Constituent: pH, Field (S.U.) Analysis Run 1/10/2025 11:07 AM View: Pond BCD - Appendix III

	BRGWA-5S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)	BRGWA-6S (bg)	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWC-30I	BRGWA-23S (bg)
8/31/2016	6.59	7.16	6.2	6.53					
9/1/2016					6.49	6.71	6		
9/6/2016								6.23	6.49
9/8/2016									
11/15/2016	6.67				6.59				
11/16/2016		6.96	6.12	6.4		6.15	6		
11/17/2016									5.79
11/18/2016									
11/21/2016								6.23	
2/20/2017	6.65			6.44	6.61				
2/21/2017		7.15	6.24			6.52	6.09		6.15
2/22/2017								6.16	
6/12/2017	6.64	7.31		6.4				0.10	
6/13/2017	0.04	7.01	6.19	0.4		6.42	6.03		5.87
6/14/2017			0.13			6.51	0.03	6.16	3.07
9/26/2017	6.58	7.02	6.15	6.31	6.47	6.42	5.85	0.10	5.82
	0.56	7.02	0.13	0.51	0.47	0.42	5.65	6 16	5.62
9/27/2017	6.70	7.44	0.10	0.00	0.54			6.16	
2/13/2018	6.72	7.44	6.18	6.62	6.54	C 40	F 00	6.04	F 00
2/14/2018						6.48	5.99	6.24	5.83
3/15/2018									
5/1/2018									
6/26/2018	6.43	6.93	6.05	6.29	6.23	6.2	5.86		5.73
6/27/2018									
6/28/2018								6.21	
7/31/2018						6.37	5.99		
8/1/2018									
8/10/2018									
8/23/2018									
9/19/2018									
10/29/2018									
11/28/2018									
12/18/2018	6.7	6.76	5.92	6.57	6.71	6.5	6.08	6.18	5.78
12/19/2018									
12/20/2018									
1/17/2019									
2/13/2019									
3/19/2019	6.63	6.87	6.18	6.45	6.18	6.28	5.71		5.28
3/20/2019								6.24	
8/27/2019	6.49	6.79	6.09	6.37	6.35	6.35	6	6.17	
8/28/2019									
8/29/2019									5.64
10/15/2019	7.01	6.57	6.06	6.77	6.36	6.8	6.61		5.7
10/16/2019									
10/17/2019								6.43	
3/3/2020	6.49	6.71	6.1	6.29	6.59	6.33	5.94		
3/4/2020									5.7
3/5/2020								5.99	
5/12/2020									
8/18/2020	6.41	6.59	6.06	6.29	6.33	6.25	5.75		5.56
8/19/2020	U. 7 I	5.50	5.50	5.20	5.50	5.20	5.70	6.36	0.00
8/20/2020								5.50	
9/15/2020	6.25	6 64	6.01	6.27	6.43	6.01	6		5.72
J. 1J.ZUZU	0.20	6.64	0.01	U.Z.1	0.40	0.01	v		J./L

Constituent: pH, Field (S.U.) Analysis Run 1/10/2025 11:07 AM View: Pond BCD - Appendix III

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-5S (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)	BRGWA-6S (bg)	BRGWA-12I (bg)	BRGWA-12S (bg)		BRGWA-23S (bg)
9/16/2020								6.29	
9/17/2020									
3/1/2021		6.66			6.7				
3/2/2021	6.42		6.2	6.47		6.11	5.92		5.75
3/3/2021								6.29	
3/4/2021									
9/21/2021	6.36			6.32		6.53	5.87		
9/22/2021		6.78	6.06		6.48				5.72
9/23/2021									
9/28/2021								6.33	
2/1/2022	6.39	6.83	5.95	6.38	6.54	6.4	5.81		5.65
2/2/2022								6.34	
2/3/2022									
2/4/2022									
8/23/2022	6.36	6.67	5.95	6.24	6.51	6.39	5.9		5.66
8/24/2022								6.38	
8/25/2022									
1/24/2023	6.47	6.7	5.26	6.42	6.54	6.48	5.97		5.76
1/25/2023									
1/26/2023								6.28	
8/22/2023	6.09	6.91	5.97	6.36	6.27			6.44	5.89
8/24/2023									
1/30/2024	6.38	6.57	6.05	6.44	5.75			6.39	5.87
1/31/2024									
2/1/2024									
8/27/2024	6.65	6.6	6.02	6.56	6.8				5.92
8/28/2024								6.49	
8/29/2024									

Constituent: pH, Field (S.U.) Analysis Run 1/10/2025 11:07 AM View: Pond BCD - Appendix III

Plant Branch Client: Southern Company Data: Plant Branch AP

					,		
	BRGWC-27I	BRGWC-29I	BRGWC-32S	BRGWC-25I	BRGWC-45	BRGWC-47	BRGWC-52I
8/31/2016							
9/1/2016							
9/6/2016							
9/8/2016	5.51	4.62	5.89	6.07			
11/15/2016							
11/16/2016				5.96			
11/17/2016							
11/18/2016	5.53						
11/21/2016	0.00	4.44	5.56				
2/20/2017		7.77	5.50				
2/20/2017	5.63			5.98			
	5.05	4.40	E 07	3.90			
2/22/2017		4.42	5.87				
6/12/2017				5.00			
6/13/2017	5.57	4.45	5.00	5.96			
6/14/2017		4.45	5.83				
9/26/2017							
9/27/2017	5.53	4.33	5.87	5.85			
2/13/2018							
2/14/2018	5.83	4.42	6.01	5.94			
3/15/2018					5.26		
5/1/2018					6.14	5.85	
6/26/2018				5.87			
6/27/2018	5.53	4.37	5.83			5.87	
6/28/2018					5.88		
7/31/2018					6.07		
8/1/2018						5.79	
8/10/2018							6.28
8/23/2018							6.75
9/19/2018					5.9	5.71	6.48
10/29/2018					5.93	5.76	6.77
11/28/2018					5.99	5.74	6.44
12/18/2018		4.38		5.84			
12/19/2018		4.00	5.79	0.0-1		5.8	
	E 70		5.73		6.04	5.0	6.75
12/20/2018	5.78				6.04		6.75
1/17/2019							6.41
2/13/2019						F.00	6.42
3/19/2019	5.75		5.00	0.00	0.4	5.89	0.50
3/20/2019		4.4	5.88	6.03	6.1		6.59
8/27/2019			5.85	6.01			
8/28/2019	5.51	4.39			5.86	5.74	
8/29/2019							6.27
10/15/2019				6			
10/16/2019		4.79				5.9	7
10/17/2019	6.01 (D)		6.09		5.93		
3/3/2020							
3/4/2020	5.8	4.5		6.02		5.76	6.54
3/5/2020			5.74		5.95		
5/12/2020			5.88				
8/18/2020							
8/19/2020	5.81	4.67	5.97	6.32			
8/20/2020					5.86	5.75	6.85
9/15/2020		4.53		6			
				-			

Constituent: pH, Field (S.U.) Analysis Run 1/10/2025 11:07 AM View: Pond BCD - Appendix III

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWC-27I	BRGWC-29I	BRGWC-32S	BRGWC-25I	BRGWC-45	BRGWC-47	BRGWC-52I
9/16/2020	5.81		5.79		5.27	5.76	
9/17/2020							6.12
3/1/2021							
3/2/2021				6.1	6.17	5.59	
3/3/2021	5.9	4.46					
3/4/2021			5.98				5.87
9/21/2021							
9/22/2021							
9/23/2021					5.95	5.74	
9/28/2021	5.82	4.23	5.82	5.97			6.81
2/1/2022							
2/2/2022			5.99	6.23	5.92	5.75	6.35
2/3/2022		4.23					
2/4/2022	5.97						
8/23/2022				6.11		5.61	
8/24/2022		4.39					
8/25/2022	6.03		6.06		5.74		6.21
1/24/2023			6.05				
1/25/2023	5.63				5.82		6.25
1/26/2023		4.3		6.18		5.65	
8/22/2023			5.98				
8/24/2023	6.01	4.48		6.14	5.71	5.69	6.24
1/30/2024			5.98			5.73	
1/31/2024	5.83	4.37		6.31			
2/1/2024					5.85		6.3
8/27/2024	5.95	4.47					
8/28/2024			6.05			5.57	6.49
8/29/2024				6.52	6.26		

Constituent: Sulfate (mg/L) Analysis Run 1/10/2025 11:07 AM View: Pond BCD - Appendix III

	BRGWA-2S (bg)	BRGWA-5S (bg)	BRGWA-2I (bg)	BRGWA-5I (bg)	BRGWA-12I (bg)	BRGWA-6S (bg)	BRGWA-12S (bg)	BRGWC-30I	BRGWA-23S (bg)
8/31/2016	0.38 (J)	0.81 (J)	7.5	2.7					
9/1/2016					2.7	0.6 (J)	1.7		
9/6/2016								310	38
9/8/2016									
11/15/2016		<1 (J)				0.68 (J)			
11/16/2016	<1 (J)		6.6	3.4	3.6		1.2		
11/17/2016									84
11/18/2016									
11/21/2016								300	
2/20/2017		1 (B-01)		3.9 (B-01)		0.98 (J)			
2/21/2017	1.5		6.1		3		1.1		39
2/22/2017								280	
6/12/2017		0.94 (J)	5	3.7		0.54 (J)			
6/13/2017	0.67 (J)						1.1		35
6/14/2017					2.6			290	
9/26/2017	0.62 (J)	0.92 (J)	5.4	4.1	2.5	0.53 (J)	1.3		89
9/27/2017								260	
2/13/2018	<1	<1	4.7 (J)	6.6		<1			
2/14/2018					2.1 (J)		<1	250	82.2
3/6/2018									
5/1/2018									
6/26/2018	0.69 (J)	0.91 (J)	6.2	3.5	2	0.54 (J)	0.84 (J)		84.2
6/27/2018									
6/28/2018								276	
7/31/2018					1.9		0.63 (J)		
8/1/2018									
8/10/2018									
8/23/2018									
9/19/2018									
10/29/2018									
11/28/2018									
12/18/2018	0.72 (J)	0.68 (J)	5.9	4.3	2.1	0.39 (J)	0.66 (J)	440	83.4
12/19/2018	. ,	. ,				, ,	, ,		
12/20/2018									
1/17/2019									
2/13/2019									
3/19/2019	0.78 (J)	0.74 (J)	6 (D)	3	2.2	0.68 (J)	0.75 (J)		65
3/20/2019		(3)	- ()			(,,	(-)	623	
10/15/2019	0.47 (J)	0.68 (J)	5.2	3.8	1.9	0.48 (J)	0.61 (J)		30
10/16/2019	- (-,	(,,					(-)		
12/3/2019									
12/4/2019								327	
3/3/2020	0.93 (J)	0.71 (J)	7.1	2.8	1.8	2.5	0.51 (J)		
3/4/2020	(0)	(-)					(0)		38.6
3/5/2020								369	00.0
9/15/2020	<1	<1	5.9	1.7	1.7	<1	<1		41.5
9/16/2020	•	•	0			•	•	334	
9/17/2020								554	
3/1/2021			4.7			0.74 (J)			
3/2/2021	<1	<1	,	2.2	1.7	J.74 (J)	0.51 (J)		54
3/3/2021	-1	-1		L.L	1.7		0.01 (0)	371	V-
3/4/2021								571	
5. TIZUZ 1									

	BRGWA-2S (bg)	BRGWA-5S (bg)	BRGWA-2I (bg)	BRGWA-5I (bg)	BRGWA-12I (bg)	BRGWA-6S (bg)	BRGWA-12S (bg)	BRGWC-30I	BRGWA-23S (bg)
9/21/2021		<1		2.3	1.7		0.51 (J)		
9/22/2021	<1		5.2			<1			34.6
9/23/2021									
9/28/2021								612	
2/1/2022	<1	<1	5.4	2	1.4	<1	<1		36.8
2/2/2022								580	
2/3/2022									
2/4/2022									
8/23/2022	0.452	0.521	5.66	2.21	1.84	0.479	0.636		24.4
8/24/2022								935	
8/25/2022									
1/24/2023	0.465	0.66	3.58	3.34	1.8	0.484	0.628		19.7
1/25/2023									
1/26/2023								1030	
8/23/2023	0.526	0.54	6.85	1.83		0.467			11.3
8/24/2023								1250	
8/25/2023									
8/26/2023									
1/31/2024	0.423	0.617	2.65	2.74		0.456			
2/1/2024								1210	10.4
2/2/2024									
2/3/2024									
2/9/2024									
8/27/2024	0.444	0.652	2.58	2.67		0.465			9.73
8/28/2024								1260	
8/29/2024									

	BRGWC-29I	BRGWC-27I	BRGWC-32S	BRGWC-25I	BRGWC-44	BRGWC-47	BRGWC-45	BRGWC-52I
8/31/2016								
9/1/2016								
9/6/2016								
9/8/2016	460	300	370	280				
11/15/2016								
11/16/2016								
11/17/2016				200				
11/18/2016		320						
11/21/2016	500		420					
2/20/2017								
2/21/2017		270		360				
2/22/2017	570		380					
6/12/2017	0.0							
6/13/2017		230		290				
6/14/2017	440		400	200				
9/26/2017	440		400					
9/27/2017	380	260	400	310				
2/13/2018	300	200	400	310				
2/14/2018	200	222	202	260				
	280	232	383	260	E1 0	1560	111	
3/6/2018					51.8	1560	111	
5/1/2018				001	51	1465 (D)	112	
6/26/2018				231				
6/27/2018	281	205	372			1450		
6/28/2018							109	
7/31/2018							107	
8/1/2018						1560		
8/10/2018								183
8/23/2018						1470		145
9/19/2018						1500		178
10/29/2018						1720		157
11/28/2018						1730	133	189
12/18/2018	293			231				
12/19/2018			370			1520		
12/20/2018		200						150
1/17/2019								157
2/13/2019								169
3/19/2019		199				1100		
3/20/2019	278		409	235 (D)			127	186.5 (D)
10/15/2019				174				
10/16/2019	266					1560		155
12/3/2019							105	
12/4/2019		241	293					
3/3/2020								
3/4/2020	238	205		165		1380		129
3/5/2020			269				106	
9/15/2020	241			126				
9/16/2020		190	255			1360	103	
9/17/2020								165
3/1/2021								
3/2/2021				139		1360	98.3	
3/3/2021	341	172						
3/4/2021			185					114

	BRGWC-29I	BRGWC-27I	BRGWC-32S	BRGWC-25I	BRGWC-44	BRGWC-47	BRGWC-45	BRGWC-52I
9/21/2021								
9/22/2021								
9/23/2021						1240	97.5	
9/28/2021	250	137	189	112	47.2			132
2/1/2022								
2/2/2022			210	117	45.3	1170	90.1	126
2/3/2022	274							
2/4/2022		172						
8/23/2022				158		1410		
8/24/2022	298							
8/25/2022		176	254		47		114	142
1/24/2023			247					
1/25/2023		150			41		102	145
1/26/2023	293			182		1310		
8/23/2023								
8/24/2023			256					
8/25/2023				174	49.5	1300		150
8/26/2023	288	94.5					114	
1/31/2024								
2/1/2024			246		42.4	1360		
2/2/2024	328			169				145
2/3/2024		155						
2/9/2024							110	
8/27/2024	261	174			41.8			
8/28/2024			201			1310		150
8/29/2024				216			150	

	BRGWA-5I (bg)	BRGWA-2S (bg)	BRGWA-5S (bg)	BRGWA-2I (bg)	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWC-30I	BRGWA-23S (bg)	BRGWC-25I
8/31/2016	138	88	154	151					
9/1/2016					142	69			
9/6/2016							505	146	
9/8/2016									460
11/15/2016			123						
11/16/2016	77	41		69	100	100			
11/17/2016								211	611
11/18/2016									
11/21/2016							515		
2/20/2017	170		158						
2/21/2017		<10		68	71	37		151	497
2/22/2017							504		
6/12/2017	132		142	161					
6/13/2017		53				84		130	474
6/14/2017					140		536		
9/26/2017	108	45	138	167	149	68		160	
9/27/2017							432		457
2/13/2018	141	63	150	165					
2/14/2018					137	138	448	194	431
3/6/2018									
5/1/2018									
6/26/2018	133	71	154	188	142	90		221	414
6/27/2018									
6/28/2018							494		
7/31/2018					133	83			
8/1/2018									
8/10/2018									
8/23/2018									
9/19/2018									
10/29/2018									
11/28/2018									
12/18/2018	138 (X)	78 (X)	147	145 (X)	135	85	715	208	401
12/19/2018									
12/20/2018									
1/17/2019									
2/13/2019									
3/19/2019	130	68	146	146.5 (D)	132 (JX)	82 (JX)	005	161 (JX)	110 5 (5)
3/20/2019							885		410.5 (D)
10/15/2019	175	66	144	140	134	89		124	380
10/16/2019									
12/3/2019							010		
12/4/2019	-10	44	100	155	115	70	612		
3/3/2020	<10	41	130	155	115	72		110	000
3/4/2020							001	118	330
3/5/2020	100	60	110	110	05	60	681	100	070
9/15/2020	100	69	116	116	95	60	624	109	272
9/16/2020							634		
9/17/2020				98					
3/1/2021 3/2/2021	80	43	96	30	93	43		105	280
3/3/2021	00	70	50		55	70	690	100	200
3/4/2021							000		

0/04/0004	BRGWA-5I (bg)	BRGWA-2S (bg)	BRGWA-5S (bg)	BRGWA-2I (bg)	BRGWA-12I (bg)	BRGWA-12S (bg)	BRGWC-30I	BRGWA-23S (bg)	BRGWC-25I
9/21/2021	108	00	104	100	117	56		100	
9/22/2021		66		129				128	
9/23/2021									
9/28/2021							1050		270
2/1/2022	129	72	124	126	114	63		130	
2/2/2022							1110		283
2/3/2022									
2/4/2022									
8/23/2022	107	45	101	117	104	55		103	315
8/24/2022							1540		
8/25/2022									
1/24/2023	124	63	104	93	114	59		102	
1/25/2023									
1/26/2023							1680		339
8/25/2023		36	73				1920	70	
8/28/2023	80			81					
8/30/2023	00			01					354
2/6/2024	118	54	113	98			1970	85	354
	110	54	113	90			1970	65	004
2/7/2024									391
2/8/2024									
8/27/2024	107	51	101	82				86	
8/28/2024							2030		
8/29/2024									492

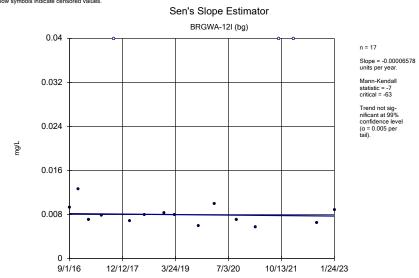
	BRGWC-27I	BRGWC-29I	BRGWC-32S	BRGWA-6S (bg)	BRGWC-47	BRGWC-44	BRGWC-45	BRGWC-52I
8/31/2016								
9/1/2016				299 (o)				
9/6/2016								
9/8/2016	478	654	607					
11/15/2016				41				
11/16/2016								
11/17/2016								
11/18/2016	503							
11/21/2016		819	695					
2/20/2017		0.0	000	133				
2/21/2017	380							
2/22/2017	000	721	635					
6/12/2017		721	000	61				
6/13/2017	354			01				
6/14/2017	334	661	635					
		001	033	20				
9/26/2017	276	E10	601	29				
9/27/2017	376	518	601	0.4				
2/13/2018	/ !!!			61				
2/14/2018	503 (JX)	487	628					
3/6/2018					2200	191	346	
5/1/2018					2080 (D)	189	374	
6/26/2018				71				
6/27/2018	458 (X)	648 (X)	2280		31 (OX)			
6/28/2018							333	
7/31/2018							393	
8/1/2018					2190			
8/10/2018								344
8/23/2018					2160		350	333
9/19/2018					2160		353	364
10/29/2018					2130		329	334
11/28/2018					2320		358	357
12/18/2018		407		70 (X)				
12/19/2018			605		2060			
12/20/2018	344						322	355
1/17/2019								347
2/13/2019								350
3/19/2019	334 (JX)			72	2050 (JX)			
3/20/2019		391	564				302	360 (D)
10/15/2019				63				
10/16/2019		2030			2220			346
12/3/2019							362	
12/4/2019	422		526					
3/3/2020				54				
3/4/2020	326	391			2140			351
3/5/2020			489				297	
9/15/2020		281		79				
9/16/2020	301		428		2090		275	
9/17/2020								329
3/1/2021				39				
3/2/2021					1680		264	
3/3/2021	288	515					-	
3/4/2021			350					383
-								

	BRGWC-27I	BRGWC-29I	BRGWC-32S	BRGWA-6S (bg)	BRGWC-47	BRGWC-44	BRGWC-45	BRGWC-52I
9/21/2021								
9/22/2021				62				
9/23/2021					1770		277	
9/28/2021	262	457	375			181		336
2/1/2022				61				
2/2/2022			443		1850	181	276	160
2/3/2022		419						
2/4/2022	301							
8/23/2022				52	2060			
8/24/2022		383						
8/25/2022	311		437			167	248	296
1/24/2023			425	64				
1/25/2023	260					156	251	276
1/26/2023		419			2010			
8/25/2023			412					
8/28/2023				30				
8/30/2023	309	418			1970	184	242	281
2/6/2024			418	45	2160	179		
2/7/2024	299	535						
2/8/2024							255	303
8/27/2024	346	424		57		180		
8/28/2024			374		1780			310
8/29/2024							353	

FIGURE E.

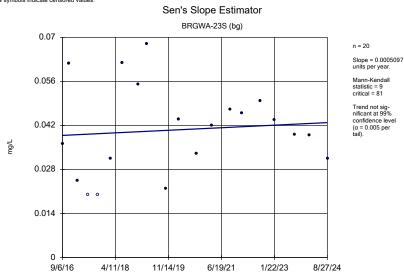
Appendix III - Trend Tests - Significant Results

	Plant Branch Client: \$	Southern Compar	ny Data:	Plant Brand	h AP F	Printed 1/10	/2025, 11:1:	2 AM		
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Alpha</u>	Method
Boron (mg/L)	BRGWC-29I	-0.08779	-95	-81	Yes	20	0	n/a	0.01	NP
Boron (mg/L)	BRGWC-47	0.03101	100	87	Yes	21	0	n/a	0.01	NP
Calcium (mg/L)	BRGWA-23S (bg)	-1.303	-127	-81	Yes	20	5	n/a	0.01	NP
Calcium (mg/L)	BRGWA-2S (bg)	0.1911	100	81	Yes	20	0	n/a	0.01	NP
Calcium (mg/L)	BRGWA-6S (bg)	0.1244	107	81	Yes	20	0	n/a	0.01	NP
Calcium (mg/L)	BRGWC-30I	45.33	165	81	Yes	20	0	n/a	0.01	NP
Calcium (mg/L)	BRGWC-32S	-3.16	-84	-81	Yes	20	0	n/a	0.01	NP
Chloride (mg/L)	BRGWA-12I (bg)	-0.1919	-99	-68	Yes	18	0	n/a	0.01	NP
Chloride (mg/L)	BRGWA-23S (bg)	-0.23	-130	-81	Yes	20	0	n/a	0.01	NP
Chloride (mg/L)	BRGWA-5I (bg)	-0.1245	-93	-81	Yes	20	0	n/a	0.01	NP
Chloride (mg/L)	BRGWA-5S (bg)	-0.06359	-100	-81	Yes	20	0	n/a	0.01	NP
Chloride (mg/L)	BRGWC-45	-7.079	-132	-87	Yes	21	0	n/a	0.01	NP
Chloride (mg/L)	BRGWC-52I	-0.1515	-83	-81	Yes	20	0	n/a	0.01	NP
pH, Field (S.U.)	BRGWA-2I (bg)	-0.06454	-116	-92	Yes	22	0	n/a	0.01	NP
pH, Field (S.U.)	BRGWA-2S (bg)	-0.03038	-116	-92	Yes	22	0	n/a	0.01	NP
pH, Field (S.U.)	BRGWA-5S (bg)	-0.0462	-104	-92	Yes	22	0	n/a	0.01	NP
pH, Field (S.U.)	BRGWC-47	-0.02599	-99	-87	Yes	21	0	n/a	0.01	NP
Sulfate (mg/L)	BRGWA-12I (bg)	-0.2108	-113	-68	Yes	18	0	n/a	0.01	NP
Sulfate (mg/L)	BRGWA-12S (bg)	-0.126	-88	-68	Yes	18	16.67	n/a	0.01	NP
Sulfate (mg/L)	BRGWA-23S (bg)	-9.079	-112	-81	Yes	20	0	n/a	0.01	NP
Sulfate (mg/L)	BRGWC-25I	-18.92	-90	-81	Yes	20	0	n/a	0.01	NP
Sulfate (mg/L)	BRGWC-27I	-19.62	-140	-81	Yes	20	0	n/a	0.01	NP
Sulfate (mg/L)	BRGWC-30I	116.8	128	81	Yes	20	0	n/a	0.01	NP
Sulfate (mg/L)	BRGWC-32S	-27.39	-116	-81	Yes	20	0	n/a	0.01	NP
Sulfate (mg/L)	BRGWC-47	-39.5	-91	-87	Yes	21	0	n/a	0.01	NP
Total Dissolved Solids (mg/L)	BRGWA-23S (bg)	-11.78	-117	-81	Yes	20	0	n/a	0.01	NP
Total Dissolved Solids (mg/L)	BRGWA-5S (bg)	-7.447	-115	-81	Yes	20	0	n/a	0.01	NP
Total Dissolved Solids (mg/L)	BRGWC-25I	-25.85	-88	-81	Yes	20	0	n/a	0.01	NP
Total Dissolved Solids (mg/L)	BRGWC-27I	-20.5	-110	-81	Yes	20	0	n/a	0.01	NP
Total Dissolved Solids (mg/L)	BRGWC-30I	188.3	144	81	Yes	20	0	n/a	0.01	NP
Total Dissolved Solids (mg/L)	BRGWC-32S	-36.68	-135	-81	Yes	20	0	n/a	0.01	NP
Total Dissolved Solids (mg/L)	BRGWC-45	-19.95	-119	-87	Yes	21	0	n/a	0.01	NP
Total Dissolved Solids (mg/L)	BRGWC-47	-40.59	-82	-81	Yes	20	0	n/a	0.01	NP

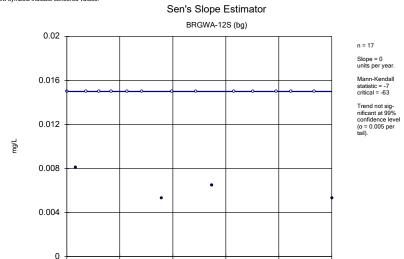

Appendix III - Trend Tests - All Results

Client: Southern Company Data: Plant Branch AP Constituent Well Slope Calc. Critical <u>N</u> %NDs <u>Alpha</u> Method BRGWA-12I (bg) -0.00006578 -7 -63 17 17.65 0.01 NP Boron (mg/L) No n/a BRGWA-12S (bg) Boron (mg/L) 0 -7 -63 No 17 76.47 n/a 0.01 NP Boron (mg/L) BRGWA-23S (bg) 9 81 20 0.01 NP 0.0005097 10 No n/a Boron (mg/L) BRGWA-2I (bg) 0.0002903 43 81 No 20 35 n/a 0.01 NP Boron (mg/L) BRGWA-2S (bg) 0 -10 -81 20 0.01 NP No 85 n/a Boron (mg/L) BRGWA-5I (bg) 0 -9 -81 No 20 75 n/a 0.01 NP BRGWA-5S (bg) 0 0.01 NP Boron (mg/L) -8 -81 No 20 55 n/a Boron (mg/L) BRGWA-6S (bg) 0 -5 -81 No 20 75 n/a 0.01 NP Boron (mg/L) BRGWC-25I 0 -5 -81 No 20 0 n/a 0.01 NP Boron (mg/L) BRGWC-27I -0.05377 -87 No 21 0 n/a 0.01 NP BRGWC-29I -0.08779 Boron (mg/L) -95 -81 Yes 20 0 n/a 0.01 NP BRGWC-30I 0.05462 72 87 21 0 0.01 NP Boron (mg/L) No BRGWC-32S 0 -0.05585 21 0.01 NP Boron (mg/L) -79 -87 No n/a Boron (mg/L) BRGWC-47 0.03101 100 87 Yes 21 0 n/a 0.01 NP BRGWC-52I Boron (mg/L) 0.03284 48 81 No 20 0 n/a 0.01 NP Boron (mg/L) BRGWC-44 -0.1363 -24 -25 n/a 0.01 No Calcium (mg/L) BRGWA-12I (bg) -0.2348 -12 -68 No 18 5.556 n/a 0.01 NP Calcium (mg/L) BRGWA-12S (bg) 0.1273 28 68 18 5.556 0.01 NP No n/a Calcium (mg/L) BRGWA-23S (bg) -1.303 -127 -81 Yes 20 5 n/a 0.01 NP Calcium (mg/L) BRGWA-2I (ba) 0.1344 17 81 No 20 5 n/a 0.01 NP Calcium (mg/L) BRGWA-2S (bg) 0.1911 100 81 Yes 20 0 n/a 0.01 NP BRGWA-5I (bg) 81 5 0.01 NP Calcium (mg/L) 0.1912 52 20 n/a No Calcium (mg/L) BRGWA-5S (bg) -0.5187 -75 -81 20 5 n/a 0.01 NP BRGWA-6S (bg) 0 Calcium (mg/L) 0.1244 107 81 Yes 20 n/a 0.01 NP Calcium (mg/L) BRGWC-25I -2.049 -44 -81 No 20 0 n/a 0.01 NP Calcium (mg/L) BRGWC-27I -2.088 -81 20 0 0.01 NP -66 No n/a Calcium (mg/L) BRGWC-29I -2.357 -38 -81 No 20 0 n/a 0.01 NP BRGWC-30I 0 Calcium (mg/L) 45.33 165 81 Yes 20 n/a 0.01 NP BRGWC-32S Calcium (mg/L) -3.16 -81 Yes 20 n/a 0.01 NP Calcium (mg/L) BRGWC-45 -1.597 -83 -87 No 21 0 n/a 0.01 NP Calcium (mg/L) BRGWC-47 87 No 0 0.01 BRGWC-52I Ω 0.01 Calcium (mg/L) -0.5141 -29 -74 Nο 19 n/a NP BRGWC-44 Calcium (mg/L) 0.02606 8 25 No 22.22 n/a 0.01 NP Chloride (mg/L) BRGWA-12I (bg) -0.1919 -99 -68 Yes 18 0 n/a 0.01 NP Chloride (mg/L) BRGWA-12S (bg) 0.06545 68 No 18 0 n/a 0.01 Chloride (mg/L) BRGWA-23S (bg) -0.23 -130 -81 Yes 20 0 n/a 0.01 NP Chloride (mg/L) BRGWA-2I (bg) -0.01185 -18 -81 No 20 0 n/a 0.01 NF Chloride (mg/L) BRGWA-2S (bg) 0.02985 28 81 No 20 0 n/a 0.01 NP 0 Chloride (mg/L) BRGWA-5I (bg) -0.1245 -81 20 n/a 0.01 NP -93 Yes Chloride (mg/L) BRGWA-5S (bg) -0.06359 -100 -81 Yes 20 0 n/a 0.01 NP Chloride (mg/L) BRGWA-6S (bg) 0 -14 -81 20 0 0.01 NP No n/a Chloride (mg/L) BRGWC-25I -0.1552 -17 -81 No 20 0 n/a 0.01 NP Chloride (ma/L) BRGWC-29I -0.05551 -22 -81 20 0 0.01 NP No n/a Chloride (mg/L) BRGWC-45 -7.079 -132 -87 Yes 21 0 n/a 0.01 NP BRGWC-52I Chloride (ma/L) -0.1515 -81 20 0 0.01 NP -83 Yes n/a Chloride (mg/L) BRGWC-44 0.0637 25 0 0.01 NP No pH, Field (S.U.) BRGWA-12I (bg) -0.02367 -87 21 0 0.01 NP -36 No n/a pH, Field (S.U.) BRGWA-12S (bg) -0.01755 -49 -81 No 20 0 n/a 0.01 NP BRGWA-23S (bg) pH, Field (S.U.) -0.01775 -92 22 0 0.01 NP -30 No n/a pH, Field (S.U.) BRGWA-2I (bg) -0.06454 -92 22 0 0.01 Yes BRGWA-2S (bg) 0.01 pH, Field (S.U.) -0.03038 0 -116 -92 Yes 22 n/a NP pH, Field (S.U.) BRGWA-5I (bg) -0.008211 -26 -92 No 22 0 n/a 0.01 NP pH, Field (S.U.) BRGWA-5S (bg) -0.0462 -104 -92 Yes 22 0 n/a 0.01 NP pH, Field (S.U.) BRGWA-6S (bg) -0.005567 21 0 0.01 -87 No n/a NP pH, Field (S.U.) BRGWC-29I -0.008383 22 ٥ 0.01 NP -25 -92 Nο n/a

Appendix III - Trend Tests - All Results


Plant Branch Client: Southern Company Data: Plant Branch AP Constituent Well Calc. <u>Critical</u> Sig. %NDs <u>Alpha</u> Method pH, Field (S.U.) BRGWC-47 -0.02599 -87 21 0 0.01 NP -99 n/a Yes Sulfate (mg/L) BRGWA-12I (bg) -0.2108 -113 -68 Yes 18 0 n/a 0.01 NP BRGWA-12S (bg) -68 18 0.01 NP Sulfate (mg/L) -0.126 -88 16.67 Yes n/a Sulfate (mg/L) BRGWA-23S (bg) -9.079 -112 -81 Yes 20 0 n/a 0.01 NP Sulfate (mg/L) BRGWA-2I (bg) -0.308 -72 -81 20 0 0.01 NP No n/a Sulfate (mg/L) BRGWA-2S (bg) -0.02433 -35 -81 No 20 30 n/a 0.01 NP BRGWA-5I (bg) Sulfate (mg/L) -0.2157 0.01 NP -74 -81 No 20 0 n/a Sulfate (mg/L) BRGWA-5S (bg) -0.03749 -81 20 30 0.01 NP Sulfate (mg/L) BRGWA-6S (bg) -0.01207 -42 -81 No 20 20 n/a 0.01 NP Sulfate (mg/L) BRGWC-25I -18.92 -81 Yes 20 0.01 ΝP BRGWC-27I 20 0.01 Sulfate (mg/L) -19.62 -140 -81 Yes 0 n/a NP Sulfate (mg/L) BRGWC-29I -18.2 -81 20 0 0.01 NP No BRGWC-30I Sulfate (mg/L) 116.8 128 81 Yes 20 0 n/a 0.01 NP Sulfate (mg/L) BRGWC-32S -27.39 -81 Yes n/a 0.01 NP BRGWC-45 Sulfate (mg/L) -1 369 -26 -87 No 21 0 n/a 0.01 NP Sulfate (mg/L) BRGWC-47 -39.5 -87 n/a 0.01 Yes BRGWC-52I Sulfate (mg/L) -4.768 -63 -81 No 20 0 n/a 0.01 NP Total Dissolved Solids (mg/L) BRGWA-12I (bg) -5.117 -61 -68 18 0 0.01 NP No n/a Total Dissolved Solids (mg/L) BRGWA-12S (bg) -5.699 -57 -68 No 18 0 n/a 0.01 NP Total Dissolved Solids (mg/L) BRGWA-23S (bg) -11.78 -117 -81 Yes 20 0 n/a 0.01 NP Total Dissolved Solids (mg/L) BRGWA-2I (bg) -9.102 -75 -81 No 20 0 n/a 0.01 NP Total Dissolved Solids (mg/L) BRGWA-2S (bg) 5 0.01 NP -0.8471 -12 -81 20 n/a No Total Dissolved Solids (mg/L) BRGWA-5I (bg) -3.51 -81 20 5 n/a 0.01 NP Total Dissolved Solids (mg/L) BRGWA-5S (bg) 0 -7.447 -115 -81 Yes 20 n/a 0.01 NP Total Dissolved Solids (mg/L) BRGWA-6S (bg) -1.988 -30 -74 No 19 0 n/a 0.01 NP Total Dissolved Solids (mg/L) BRGWC-25I -25.85 -88 -81 Yes 20 0 n/a 0.01 NP Total Dissolved Solids (mg/L) BRGWC-27I -20.5 20 0 0.01 Yes Total Dissolved Solids (mg/L) 0 NP BRGWC-29I 20 0.01 -37.85 -72 -81 No n/a Total Dissolved Solids (mg/L) BRGWC-30I 188.3 81 ΝP 144 Yes 20 n/a 0.01 Total Dissolved Solids (mg/L) BRGWC-32S -36.68 -135 -81 Yes 20 0 n/a 0.01 NP Total Dissolved Solids (mg/L) BRGWC-45 Yes 0 Total Dissolved Solids (mg/L) BRGWC-47 0 0.01 NP -40.59 -82 -81 Yes 20 n/a Total Dissolved Solids (mg/L) BRGWC-52I -9.317 -70 0.01 NP -81 No n/a

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Boron Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas[™] v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

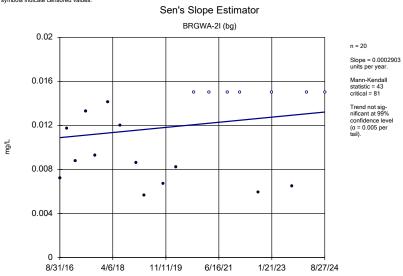
Constituent: Boron Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Boron Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP

7/3/20

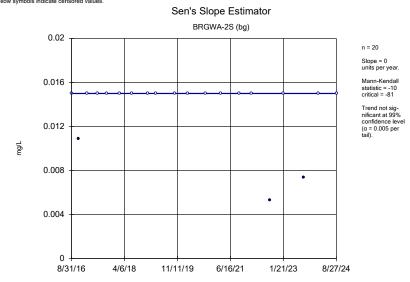
10/13/21


1/24/23

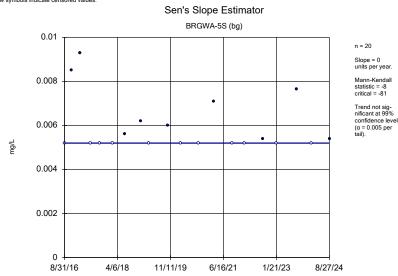
3/24/19

Sanitas^{tw} v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

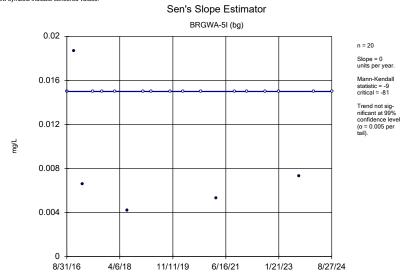
9/1/16


12/12/17

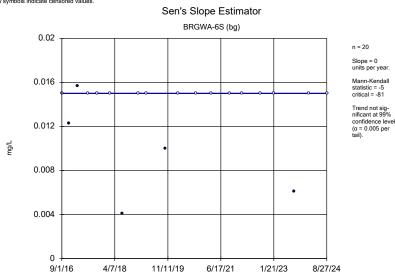
Constituent: Boron Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests


Plant Branch Client: Southern Company Data: Plant Branch AP

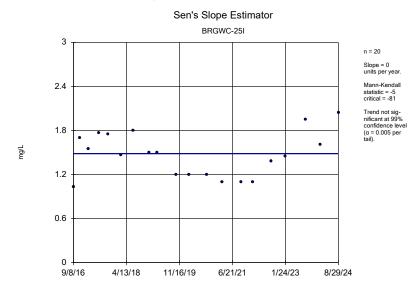
Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Boron Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP

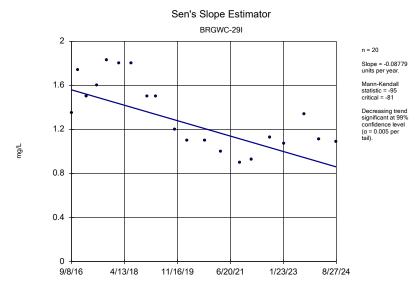
Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Boron Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP

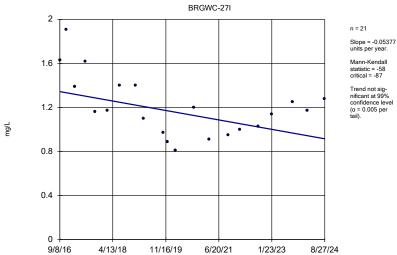
Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



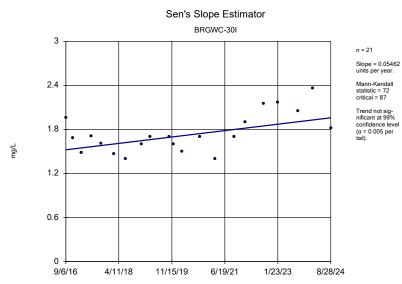
Constituent: Boron Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas^{ru} v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

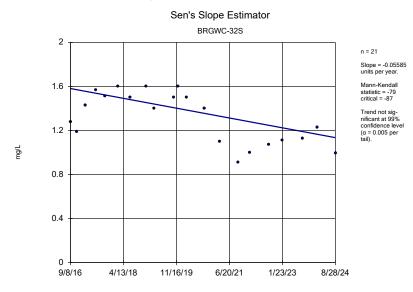
Constituent: Boron Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP

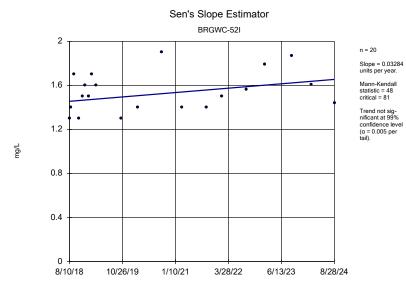


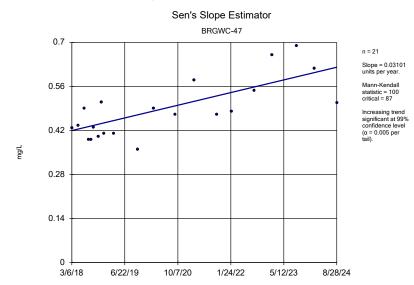
Constituent: Boron Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP

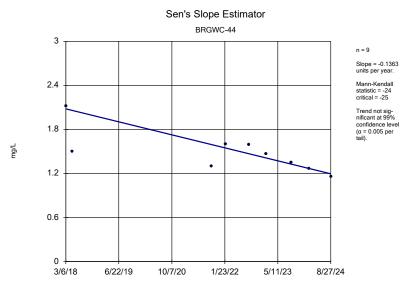


Constituent: Boron Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP

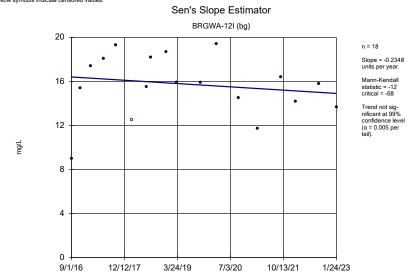

Sen's Slope Estimator


Constituent: Boron Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP

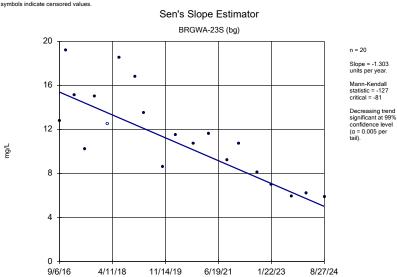

Constituent: Boron Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: Boron Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP

Constituent: Boron Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP

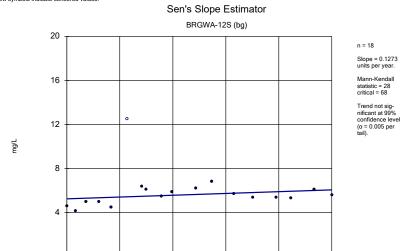


Constituent: Boron Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: Boron Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Calcium Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Calcium Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests

Plant Branch Client: Southern Company Data: Plant Branch AP

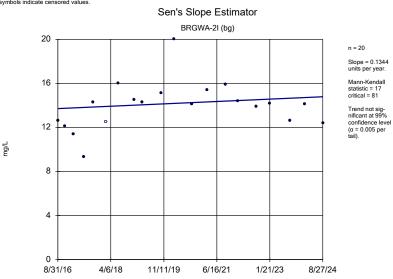
Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Calcium Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests

Plant Branch Client: Southern Company Data: Plant Branch AP

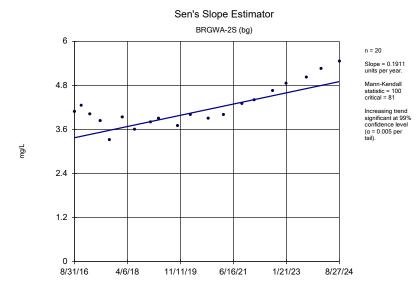
7/3/20

10/13/21

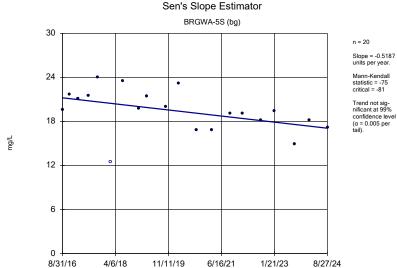

1/24/23

3/24/19

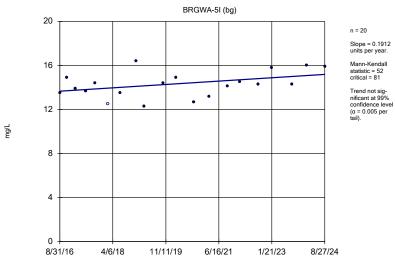
Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

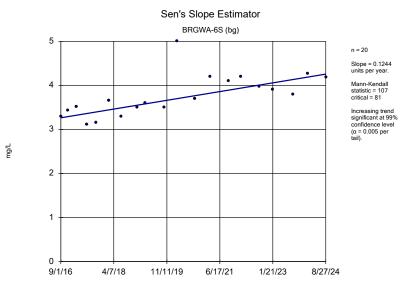

9/1/16

12/12/17

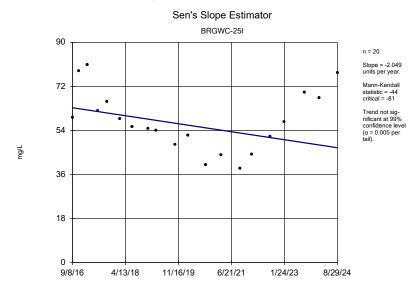

Constituent: Calcium Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests

Plant Branch Client: Southern Company Data: Plant Branch AP

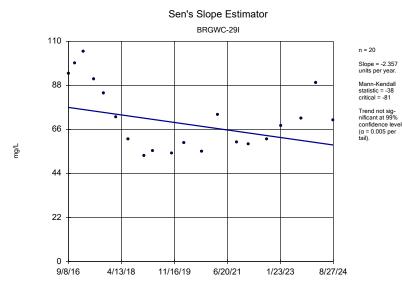

Constituent: Calcium Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: Calcium Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP

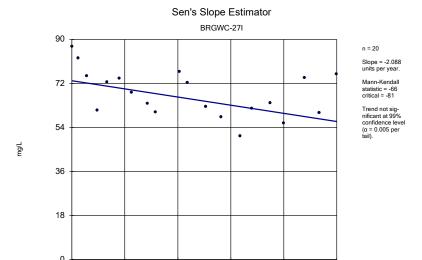
Sen's Slope Estimator


Constituent: Calcium Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests

Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: Calcium Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests

Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: Calcium Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP

Constituent: Calcium Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests

Plant Branch Client: Southern Company Data: Plant Branch AP

Constituent: Calcium Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP

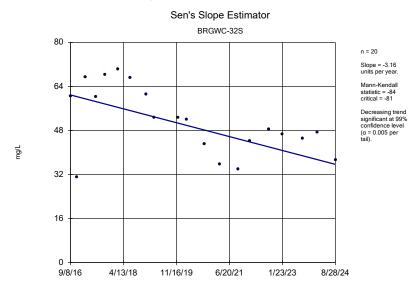
6/20/21

11/16/19

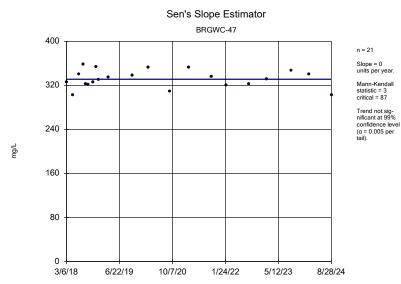
8/27/24

1/23/23

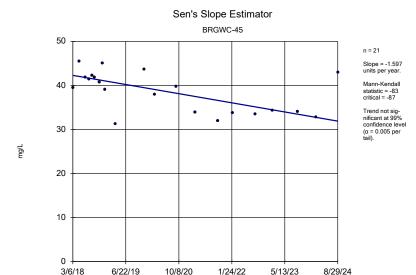
Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG


9/8/16

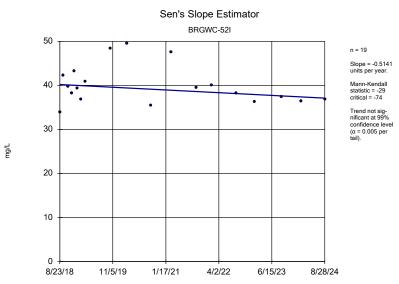
4/13/18


Constituent: Calcium Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests

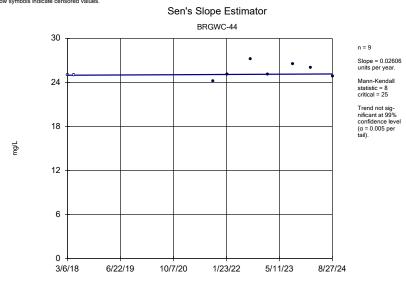
Plant Branch Client: Southern Company Data: Plant Branch AP



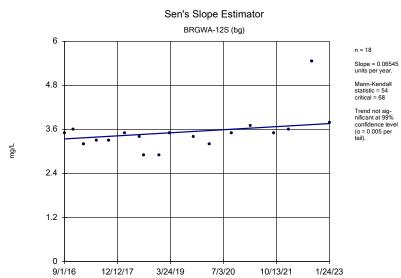
Constituent: Calcium Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP



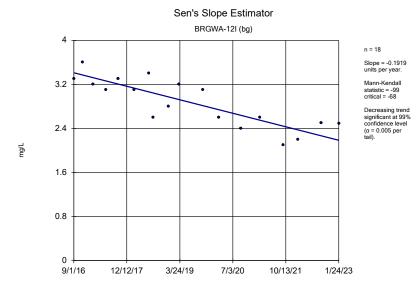
Constituent: Calcium Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: Calcium Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests

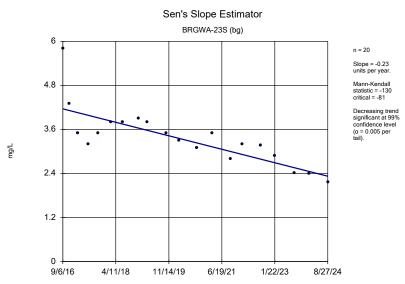
Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: Calcium Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP

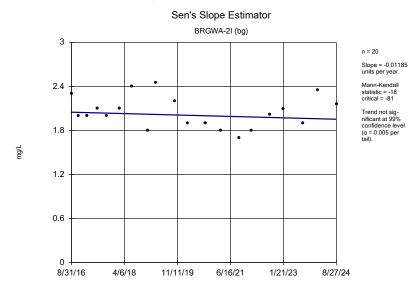
Hollow symbols indicate censored values.


Constituent: Calcium Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests Plant Branch Client: Southern Company Data: Plant Branch AP

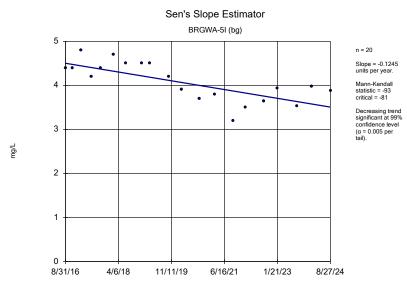
Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG



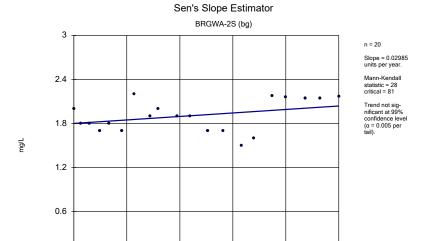
Constituent: Chloride Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Constituent: Chloride Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: Chloride Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests Plant Branch Client: Southern Company Data: Plant Branch AP

Constituent: Chloride Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests


Plant Branch Client: Southern Company Data: Plant Branch AP

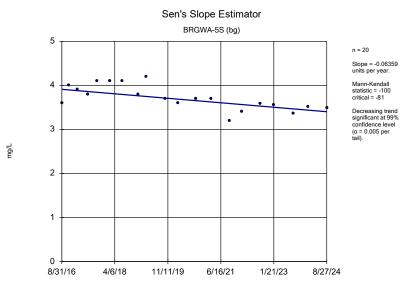
Constituent: Chloride Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests

Plant Branch Client: Southern Company Data: Plant Branch AP

Constituent: Chloride Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP

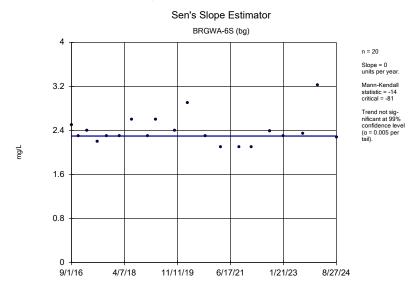
6/16/21

11/11/19


8/27/24

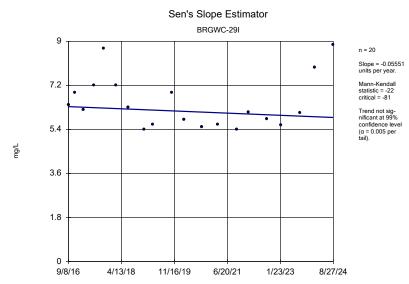
1/21/23

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

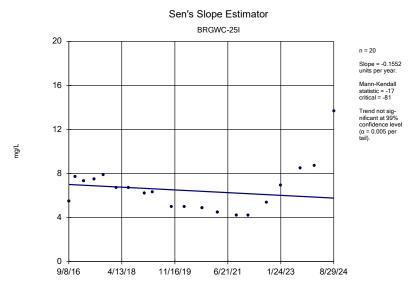

8/31/16

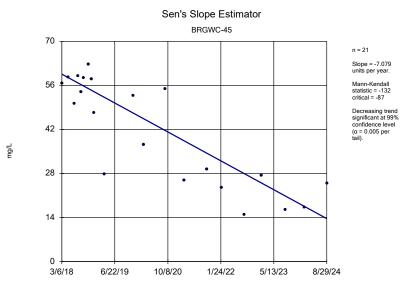
4/6/18

Constituent: Chloride Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests

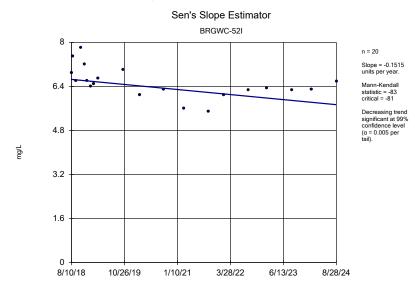

Plant Branch Client: Southern Company Data: Plant Branch AP

Constituent: Chloride Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests

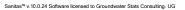

Plant Branch Client: Southern Company Data: Plant Branch AP

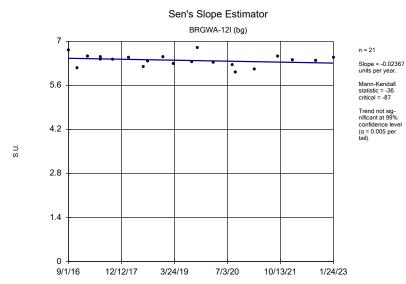

Constituent: Chloride Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests

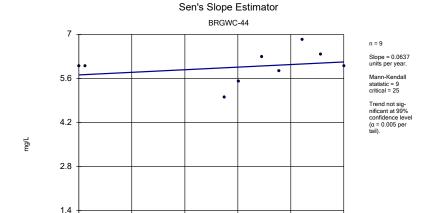
Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: Chloride Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests

Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: Chloride Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests


Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: Chloride Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests

Plant Branch Client: Southern Company Data: Plant Branch AP

Constituent: pH, Field Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP

Constituent: Chloride Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests

Plant Branch Client: Southern Company Data: Plant Branch AP

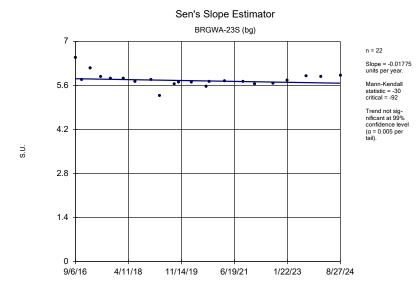
1/23/22

5/11/23

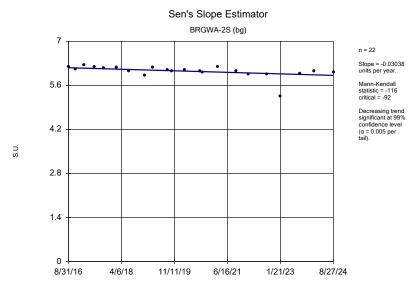

8/27/24

10/7/20

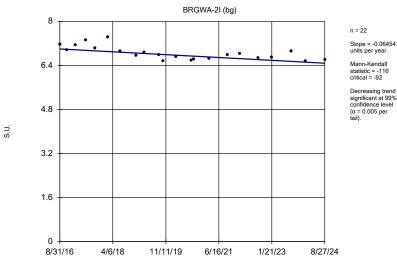
6/22/19


Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

3/6/18


Constituent: pH, Field Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests

Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: pH, Field Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP



Constituent: pH, Field Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP

Sen's Slope Estimator

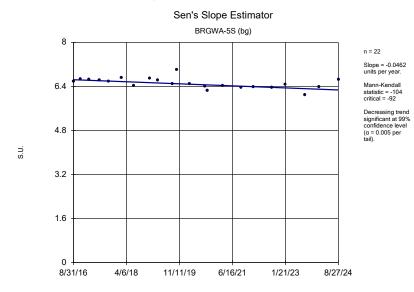
Constituent: pH, Field Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP

Constituent: pH, Field Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests

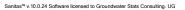
Plant Branch Client: Southern Company Data: Plant Branch AP

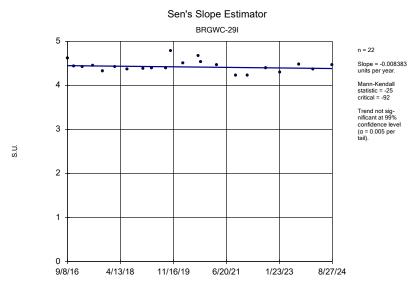
5.6

4.2

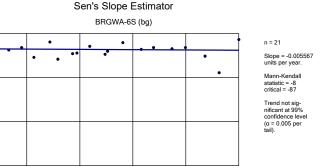

2.8

1.4


9/1/16


4/7/18

S.U.



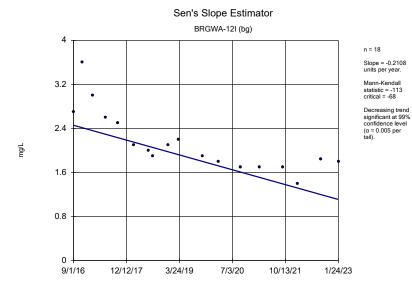
Constituent: pH, Field Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP

Constituent: pH, Field Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP

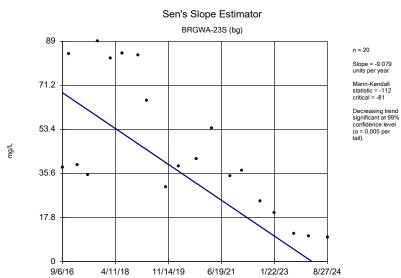
Constituent: pH, Field Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP

11/11/19

6/17/21


8/27/24

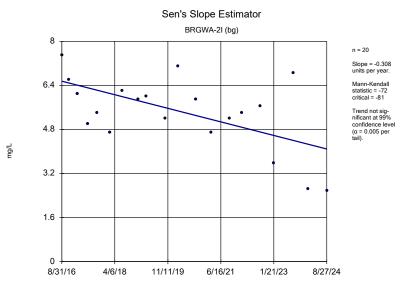
1/21/23


Constituent: pH, Field Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests

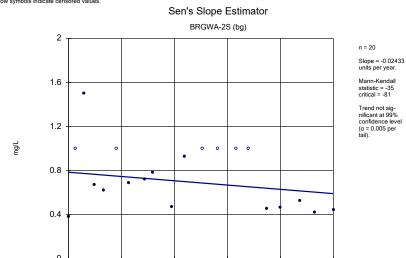
Plant Branch Client: Southern Company Data: Plant Branch AP

Constituent: Sulfate Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests

Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: Sulfate Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests

Plant Branch Client: Southern Company Data: Plant Branch AP



Constituent: Sulfate Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP

Constituent: Sulfate Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests

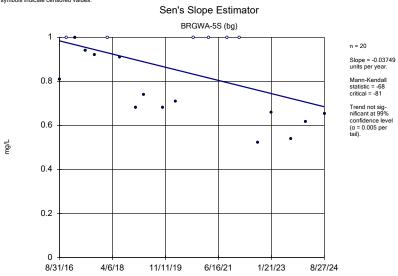
Plant Branch Client: Southern Company Data: Plant Branch AP

Constituent: Sulfate Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests

Plant Branch Client: Southern Company Data: Plant Branch AP

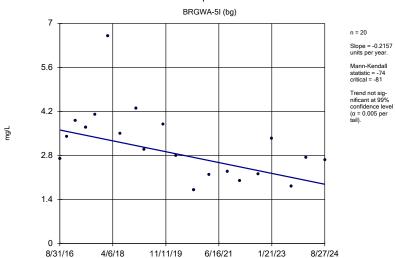
6/16/21

1/21/23

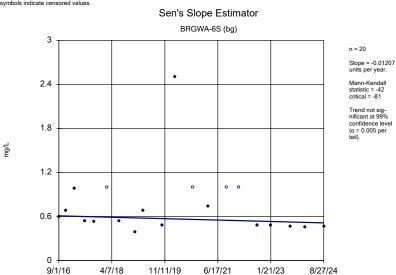

8/27/24

11/11/19

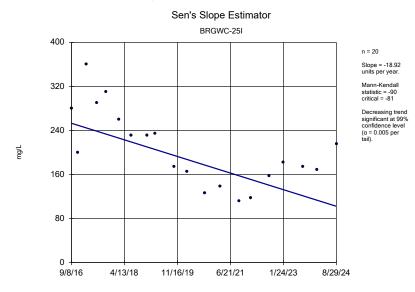
8/31/16


4/6/18

Constituent: Sulfate Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests

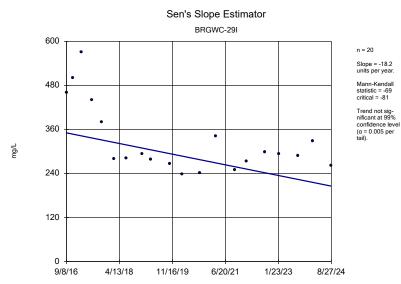

Plant Branch Client: Southern Company Data: Plant Branch AP

Sen's Slope Estimator

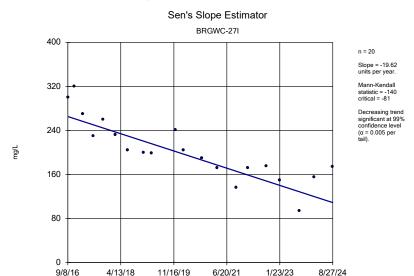

Constituent: Sulfate Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP

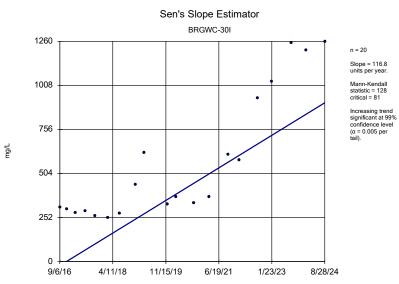
Sanitas^{ru} v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Sulfate Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests


Plant Branch Client: Southern Company Data: Plant Branch AP

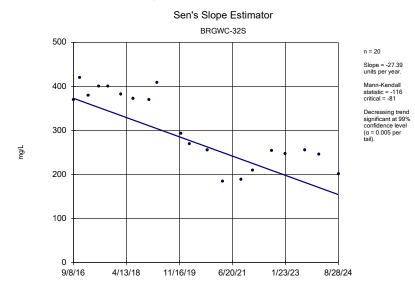
Constituent: Sulfate Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests


Plant Branch Client: Southern Company Data: Plant Branch AP



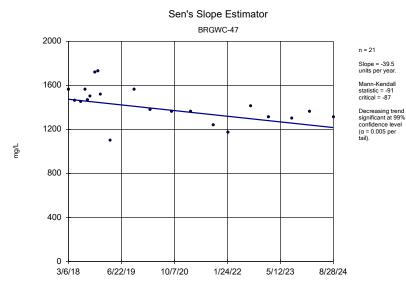
Constituent: Sulfate Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests

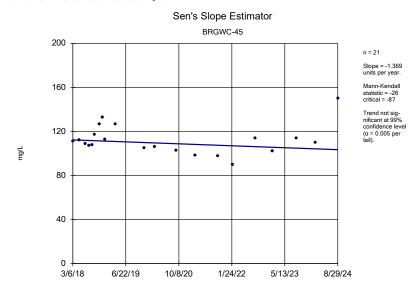
Plant Branch Client: Southern Company Data: Plant Branch AP



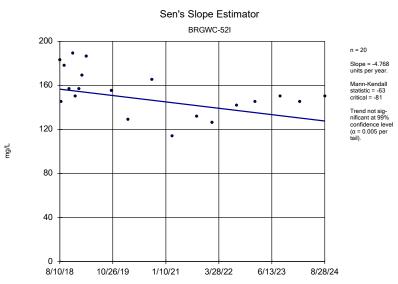
Constituent: Sulfate Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP

Constituent: Sulfate Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests

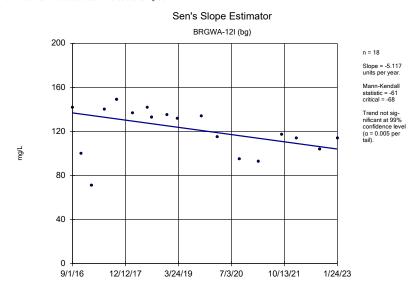

Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: Sulfate Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests

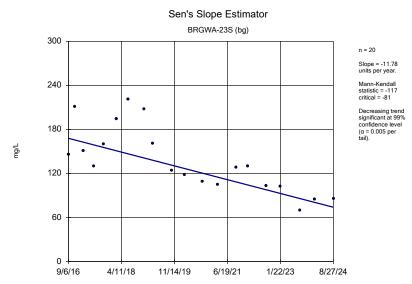
Plant Branch Client: Southern Company Data: Plant Branch AP



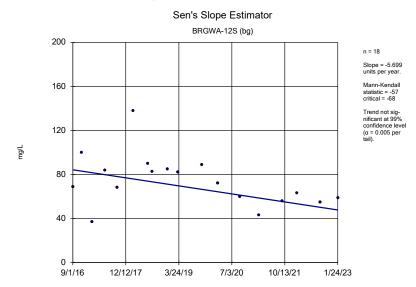
Constituent: Sulfate Analysis Run 1/10/2025 11:11 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP

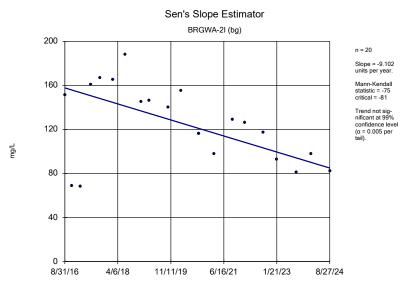


Constituent: Sulfate Analysis Run 1/10/2025 11:10 AM View: Pond BCD - Appendix III Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP

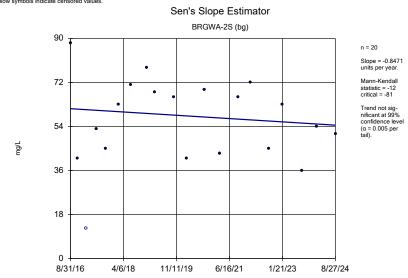


Constituent: Sulfate Analysis Run 1/10/2025 11:11 AM View: Pond BCD - Appendix III Trend Tests

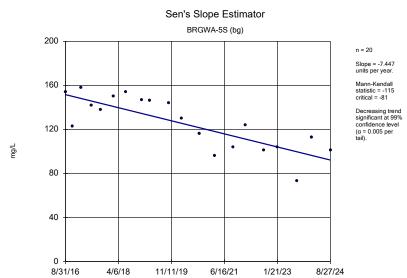

Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: Total Dissolved Solids Analysis Run 1/10/2025 11:11 AM View: Pond BCD - Appendix III Tre
Plant Branch Client: Southern Company Data: Plant Branch AP

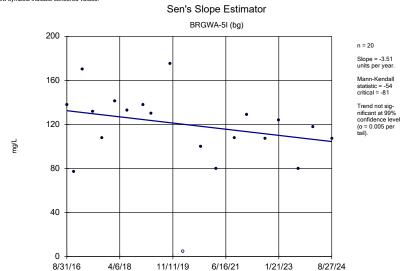
Constituent: Total Dissolved Solids Analysis Run 1/10/2025 11:11 AM View: Pond BCD - Appendix III Tre
Plant Branch Client: Southern Company Data: Plant Branch AP



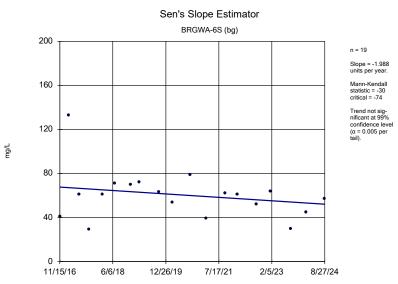
Constituent: Total Dissolved Solids Analysis Run 1/10/2025 11:11 AM View: Pond BCD - Appendix III Tre
Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: Total Dissolved Solids Analysis Run 1/10/2025 11:11 AM View: Pond BCD - Appendix III Tre
Plant Branch Client: Southern Company Data: Plant Branch AP

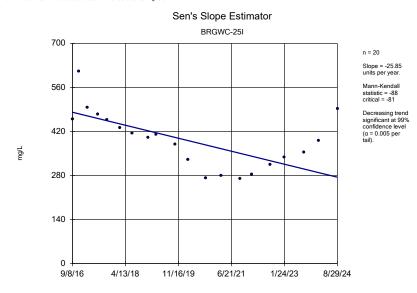
Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Total Dissolved Solids Analysis Run 1/10/2025 11:11 AM View: Pond BCD - Appendix III Tre
Plant Branch Client: Southern Company Data: Plant Branch AP

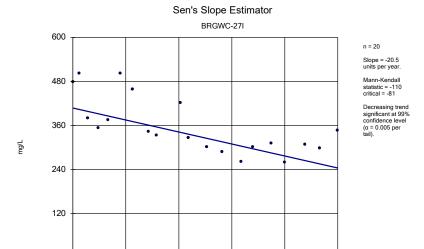
Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG



Constituent: Total Dissolved Solids Analysis Run 1/10/2025 11:11 AM View: Pond BCD - Appendix III Tre
Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Total Dissolved Solids Analysis Run 1/10/2025 11:11 AM View: Pond BCD - Appendix III Tre
Plant Branch Client: Southern Company Data: Plant Branch AP


Constituent: Total Dissolved Solids Analysis Run 1/10/2025 11:11 AM View: Pond BCD - Appendix III Tre
Plant Branch Client: Southern Company Data: Plant Branch AP

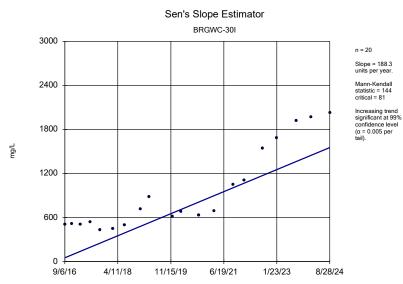
Constituent: Total Dissolved Solids Analysis Run 1/10/2025 11:11 AM View: Pond BCD - Appendix III Tre
Plant Branch Client: Southern Company Data: Plant Branch AP

Constituent: Total Dissolved Solids Analysis Run 1/10/2025 11:11 AM View: Pond BCD - Appendix III Tre
Plant Branch Client: Southern Company Data: Plant Branch AP

Constituent: Total Dissolved Solids Analysis Run 1/10/2025 11:11 AM View: Pond BCD - Appendix III Tre
Plant Branch Client: Southern Company Data: Plant Branch AP

6/20/21

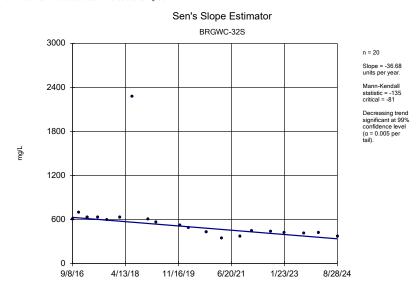
1/23/23


8/27/24

11/16/19

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

9/8/16


4/13/18

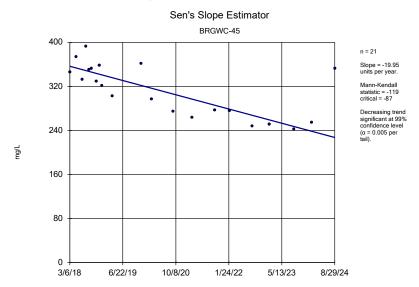
Constituent: Total Dissolved Solids Analysis Run 1/10/2025 11:11 AM View: Pond BCD - Appendix III Tre
Plant Branch Client: Southern Company Data: Plant Branch AP

3/6/18

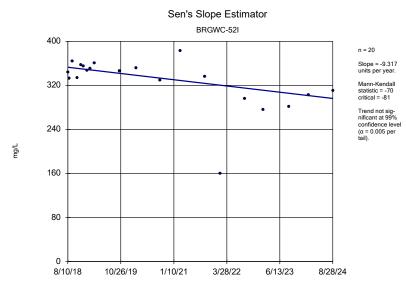
6/22/19

Constituent: Total Dissolved Solids Analysis Run 1/10/2025 11:11 AM View: Pond BCD - Appendix III Tre
Plant Branch Client: Southern Company Data: Plant Branch AP

Sen's Slope Estimator BRGWC-47 3000 n = 20 Slope = -40.59 units per year. 2400 Mann-Kendall statistic = -82 critical = -81 Decreasing trend significant at 99% confidence level 1800 $(\alpha = 0.005 per$ mg/L 1200 600 0


Constituent: Total Dissolved Solids Analysis Run 1/10/2025 11:11 AM View: Pond BCD - Appendix III Tre
Plant Branch Client: Southern Company Data: Plant Branch AP

1/24/22


5/12/23

8/28/24

10/7/20

Constituent: Total Dissolved Solids Analysis Run 1/10/2025 11:11 AM View: Pond BCD - Appendix III Tre
Plant Branch Client: Southern Company Data: Plant Branch AP

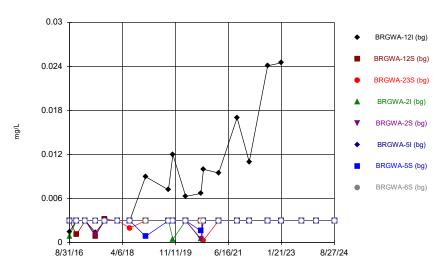
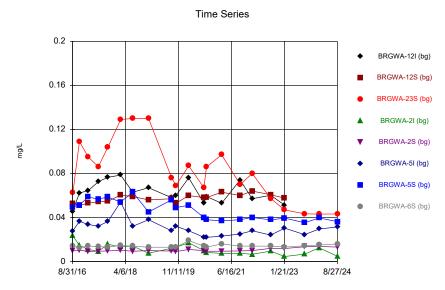
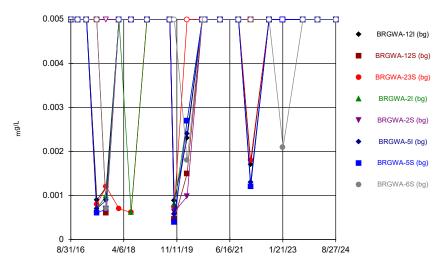

Constituent: Total Dissolved Solids Analysis Run 1/10/2025 11:11 AM View: Pond BCD - Appendix III Tre
Plant Branch Client: Southern Company Data: Plant Branch AP

FIGURE F.

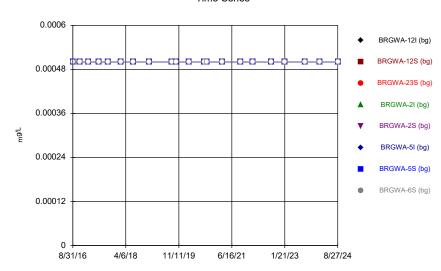
Upper Tolerance Limits


Client: Southern Company Data: Plant Branch AP Printed 11/18/2024, 10:24 AM Constituent Well Upper Lim. Date $\underline{\mathsf{Observ.}} \quad \underline{\mathsf{Sig.}} \quad \underline{\mathsf{Bg}} \; \underline{\mathsf{N}} \quad \underline{\mathsf{Bg}} \; \underline{\mathsf{Mean}} \quad \underline{\mathsf{Std.}} \; \underline{\mathsf{Dev.}\%\mathsf{NDs}} \quad \underline{\mathsf{ND}} \; \underline{\mathsf{Adj.}}$ <u>Alpha</u> Method n/a 162 n/a 84.57 n/a 0.0002462 NP Inter(NDs) Antimony (mg/L) n/a 0.0245 n/a n/a n/a n/a 0.0002462 NP Inter(NDs) Arsenic (mg/L) n/a 0.005 n/a n/a 162 n/a n/a 78.4 n/a n/a Barium (mg/L) n/a 0.13 n/a 162 0 0.0002462 NP Inter(normality) n/a n/a n/a n/a n/a n/a 0.0002462 NP Inter(NDs) Beryllium (mg/L) n/a 0.0005 n/a 162 100 n/a 0.0002222 NP Inter(NDs) Cadmium (mg/L) n/a 0.001 n/a n/a n/a 164 n/a n/a 98.78 n/a n/a 0.0002462 NP Inter(normality) Chromium (mg/L) n/a 0.016 n/a n/a 162 21.6 n/a Cobalt (mg/L) 0.0002462 NP Inter(NDs) n/a 0.0135 n/a n/a 162 n/a 54.94 n/a n/a n/a n/a Combined Radium 226 + 228 (pCi/L) n/a 2.326 n/a 162 0.9094 0.3312 0 0.05 n/a 0.0001633 NP Inter(normality) Fluoride (mg/L) 0.42 n/a n/a n/a 170 n/a n/a 47.06 n/a n/a Lead (mg/L) 0.002 n/a 162 88.89 n/a 0.0002462 NP Inter(NDs) 0.0002462 NP Inter(normality) Lithium (mg/L) n/a 0.089 n/a 162 41.36 n/a n/a n/a n/a n/a n/a Mercury (mg/L) 0.00021 n/a 146 89.73 0.0005593 NP Inter(NDs) 0.0002871 NP Inter(NDs) Molybdenum (mg/L) 0.008 74.21 n/a n/a n/a n/a n/a 159 n/a n/a n/a Selenium (mg/L) 0.006 n/a 162 n/a 0.0002462 NP Inter(NDs) Thallium (mg/L) 0.002 0.0002462 NP Inter(NDs) n/a n/a n/a n/a 162 n/a n/a 100 n/a n/a


Constituent: Antimony Analysis Run 11/18/2024 10:24 AM View: Pond BCD Appendix IV - UTLs

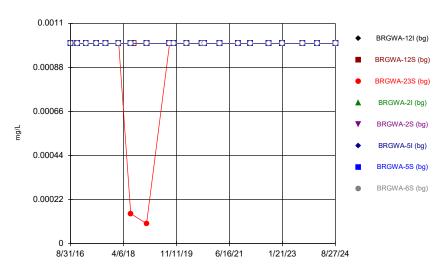
Plant Branch Client: Southern Company Data: Plant Branch AP

Constituent: Barium Analysis Run 11/18/2024 10:24 AM View: Pond BCD Appendix IV - UTLs
Plant Branch Client: Southern Company Data: Plant Branch AP

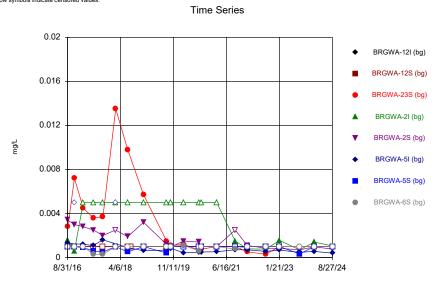


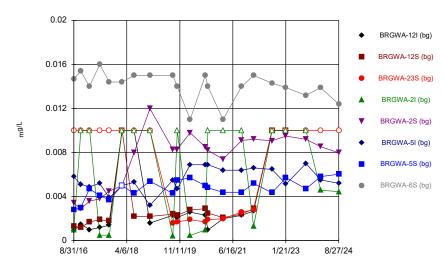
Constituent: Arsenic Analysis Run 11/18/2024 10:24 AM View: Pond BCD Appendix IV - UTLs
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

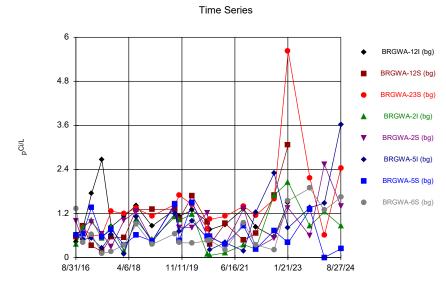

Time Series

Constituent: Beryllium Analysis Run 11/18/2024 10:24 AM View: Pond BCD Appendix IV - UTLs


Plant Branch Client: Southern Company Data: Plant Branch AP

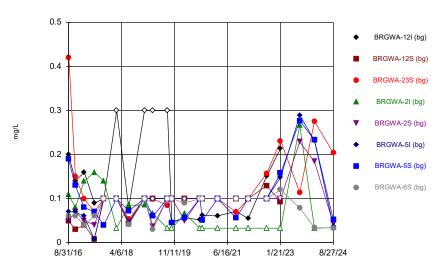

Constituent: Cadmium Analysis Run 11/18/2024 10:24 AM View: Pond BCD Appendix IV - UTLs
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

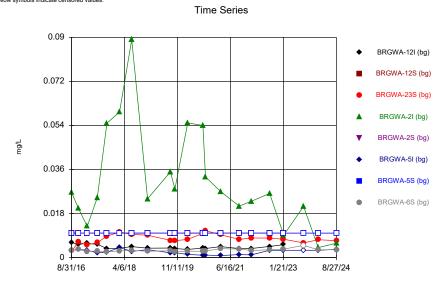

Constituent: Cobalt Analysis Run 11/18/2024 10:24 AM View: Pond BCD Appendix IV - UTLs
Plant Branch Client: Southern Company Data: Plant Branch AP

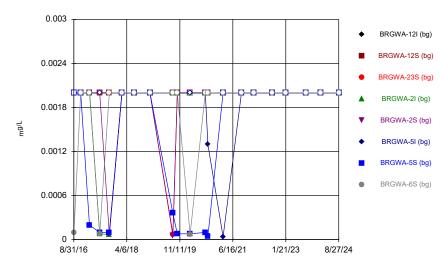
Time Series

Constituent: Chromium Analysis Run 11/18/2024 10:24 AM View: Pond BCD Appendix IV - UTLs
Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Constituent: Combined Radium 226 + 228 Analysis Run 11/18/2024 10:24 AM View: Pond BCD Appendix


Plant Branch Client: Southern Company Data: Plant Branch AP

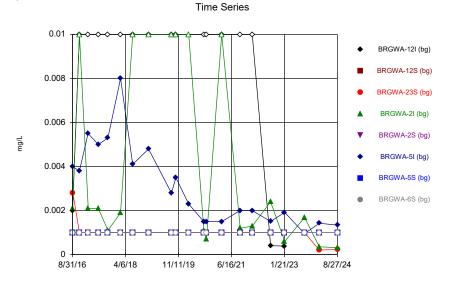

Constituent: Fluoride Analysis Run 11/18/2024 10:24 AM View: Pond BCD Appendix IV - UTLs
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Lithium Analysis Run 11/18/2024 10:24 AM View: Pond BCD Appendix IV - UTLs
Plant Branch Client: Southern Company Data: Plant Branch AP

Time Series

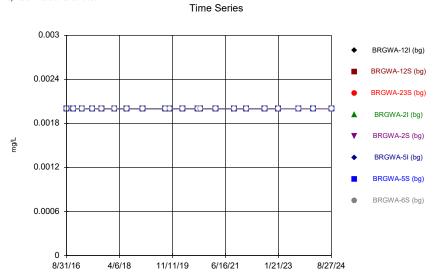
Constituent: Lead Analysis Run 11/18/2024 10:24 AM View: Pond BCD Appendix IV - UTLs
Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

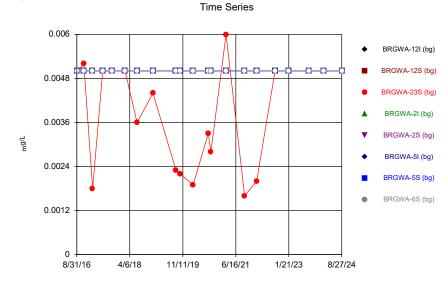
Time Series 0.0003 BRGWA-12I (bg) BRGWA-12S (bg) 0.00024 BRGWA-23S (bg) BRGWA-2I (bg) 0.00018 BRGWA-2S (bg) BRGWA-5I (bg) 0.00012 BRGWA-5S (bg) BRGWA-6S (bg) 0.00006 8/31/16 4/6/18 11/11/19 6/16/21 1/21/23 8/27/24

Constituent: Mercury Analysis Run 11/18/2024 10:24 AM View: Pond BCD Appendix IV - UTLs

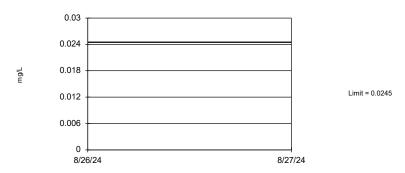
Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Molybdenum Analysis Run 11/18/2024 10:24 AM View: Pond BCD Appendix IV - UTLs


Plant Branch Client: Southern Company Data: Plant Branch AP

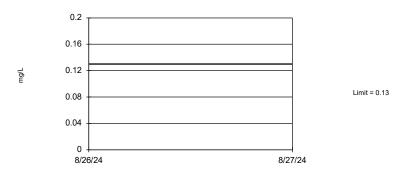
Sanitas[™] v.10.0.20 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Thallium Analysis Run 11/18/2024 10:24 AM View: Pond BCD Appendix IV - UTLs
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

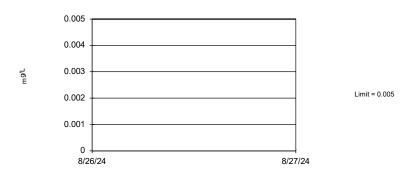
Constituent: Selenium Analysis Run 11/18/2024 10:24 AM View: Pond BCD Appendix IV - UTLs
Plant Branch Client: Southern Company Data: Plant Branch AP

Tolerance Limit Interwell Non-parametric


Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 162 background values. 84.57% NDs. 97.07% coverage at alpha=0.01; 98.24% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha=0.002462.

Constituent: Antimony Analysis Run 11/18/2024 10:22 AM View: Pond BCD Appendix IV - UTLs

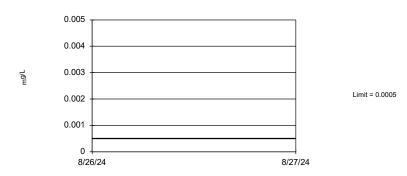
Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Tolerance Limit Interwell Non-parametric

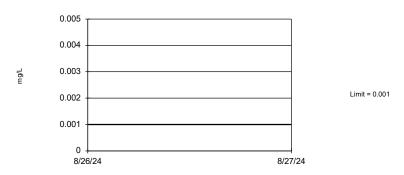
Non-parametric test used in lieu of parametric tolerance limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 162 background values. 97.07% coverage at alpha=0.01; 98.24% coverage at alpha=0.5. Report alpha = 0.0002462.

Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 162 background values. 78.4% NDs. 97.07% coverage at alpha=0.01; 98.24% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha = 0.0002462.

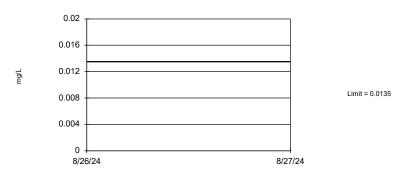
Constituent: Arsenic Analysis Run 11/18/2024 10:22 AM View: Pond BCD Appendix IV - UTLs
Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Tolerance Limit Interwell Non-parametric

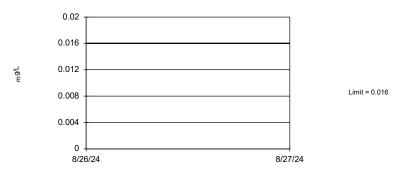
Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. All background values were censored; limit is most recent reporting limit. 97.07% coverage at alpha=0.01; 98.24% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha= 0.0002462.

Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 164 background values. 98.78% NDs. 97.07% coverage at alpha=0.01; 98.24% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha = 0.0002222.

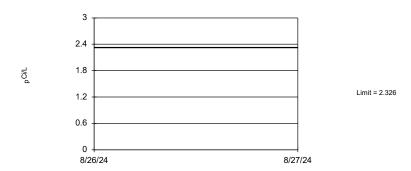
Constituent: Cadmium Analysis Run 11/18/2024 10:22 AM View: Pond BCD Appendix IV - UTLs
Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Tolerance Limit Interwell Non-parametric

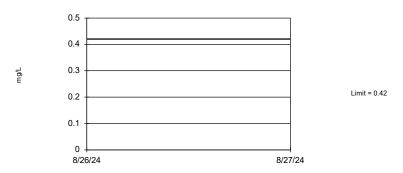
Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 162 background values. 54.94% NDs. 97.07% coverage at alpha=0.01; 98.24% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha = 0.0002462.

Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 162 background values. 21.6% NDs. 97.07% coverage at alpha=0.01; 98.24% coverage at alpha=0.01; 98.24% coverage at alpha=0.05. Report alpha = 0.0002462.

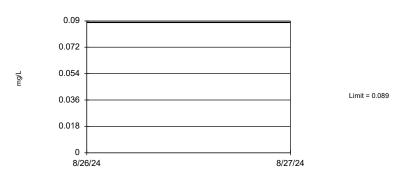
Constituent: Chromium Analysis Run 11/18/2024 10:22 AM View: Pond BCD Appendix IV - UTLs
Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Tolerance Limit Interwell Parametric

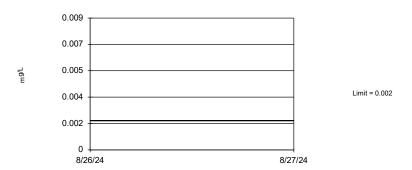
95% coverage. Background Data Summary (based on square root transformation): Mean=0.9094, Std. Dev.=0.3312, n=162. Normality test: Chi Squared @alpha = 0.01, calculated = 10.59, critical = 14.07. Report alpha = 0.05.

Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 170 background values. 47.06% NDs. 97.46% coverage at alpha=0.01; 98.24% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha = 0.0001633.

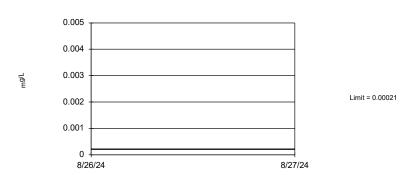
Constituent: Fluoride Analysis Run 11/18/2024 10:22 AM View: Pond BCD Appendix IV - UTLs
Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 162 background values. 41.36% NDs. 97.07% coverage at alpha=0.01; 98.24% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha = 0.0002462.

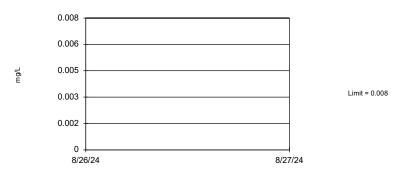
Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 162 background values. 88.89% NDs. 97.07% coverage at alpha=0.01; 98.24% coverage at alpha=0.55; 99.41% coverage at alpha=0.5. Report alpha=0.0002462.

Constituent: Lead Analysis Run 11/18/2024 10:22 AM View: Pond BCD Appendix IV - UTLs
Plant Branch Client: Southern Company Data: Plant Branch AP

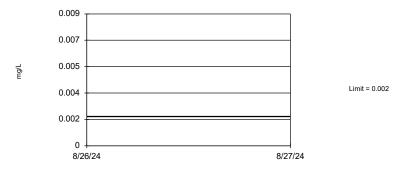
Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG


Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 146 background values. 89.73% NDs. 97.07% coverage at alpha=0.01; 97.85% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha = 0.0005593.

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

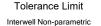
Tolerance Limit
Interwell Non-parametric

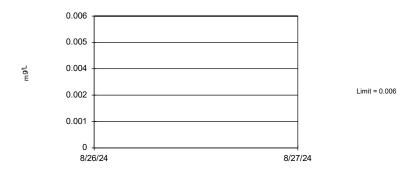

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 159 background values. 74.21% Nbs. 97.07% coverage at alpha=0.01; 98.24% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha = 0.0002871.

Constituent: Molybdenum Analysis Run 11/18/2024 10:22 AM View: Pond BCD Appendix IV - UTLs

Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG


Tolerance Limit
Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. All background values were censored; limit is most recent reporting limit. 97.07% coverage at alpha=0.01; 98.24% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha=0.0002462.

Constituent: Thallium Analysis Run 11/18/2024 10:22 AM View: Pond BCD Appendix IV - UTLs
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.20 Software licensed to Groundwater Stats Consulting. UG

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 162 background values. 92.59% NDs. 97.07% coverage at alpha=0.01; 98.24% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha = 0.0002462.

Constituent: Selenium Analysis Run 11/18/2024 10:22 AM View: Pond BCD Appendix IV - UTLs
Plant Branch Client: Southern Company Data: Plant Branch AP

Constituent: Antimony (mg/L) Analysis Run 11/18/2024 10:24 AM View: Pond BCD Appendix IV - UTLs

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-5I (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5S (bg)	BRGWA-12S (bg)	BRGWA-12I (bg)	BRGWA-6S (bg)	BRGWA-23S (bg)
8/31/2016	<0.003	0.0009 (J)	<0.003	<0.003				
9/1/2016					<0.003	0.0015 (J)	<0.003	
9/6/2016								<0.003
11/15/2016				<0.003			<0.003	
11/16/2016	<0.003	<0.003	<0.003		0.0011 (J)	<0.003		
11/17/2016								<0.003
2/20/2017	<0.003			<0.003			<0.003	
2/21/2017		<0.003	<0.003		<0.003	<0.003		<0.003
6/12/2017	<0.003	<0.003		<0.003			<0.003	
6/13/2017			0.0011 (J)		0.0009 (J)			<0.003
6/14/2017						0.0014 (J)		
9/26/2017	<0.003	<0.003	<0.003	<0.003	0.0032	<0.003	<0.003	<0.003
2/13/2018	<0.003	<0.003	<0.003	<0.003			<0.003	
2/14/2018					<0.003	<0.003		<0.003
6/26/2018	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.002 (J)
12/18/2018	<0.003	<0.003	<0.003	0.00087 (J)	<0.003	0.009	<0.003	<0.003
8/27/2019	<0.003	<0.003	<0.003	<0.003	<0.003	0.0072	<0.003	
8/29/2019								<0.003
10/15/2019	<0.003	0.00047 (J)	<0.003	<0.003	<0.003	0.012	<0.003	<0.003
3/3/2020	<0.003	<0.003	<0.003	<0.003	<0.003	0.0063	<0.003	
3/4/2020								<0.003
8/18/2020	<0.003	0.00054 (J)	0.00042 (J)	0.0016 (J)	<0.003	0.0067	<0.003	<0.003
9/15/2020	<0.003	<0.003	<0.003	<0.003	<0.003	0.01	<0.003	0.00033 (J)
3/1/2021		<0.003					<0.003	
3/2/2021	<0.003		<0.003	<0.003	<0.003	0.0095		<0.003
9/21/2021	<0.003			<0.003	<0.003	0.017		
9/22/2021		<0.003	<0.003				<0.003	<0.003
2/1/2022	<0.003	<0.003	<0.003	<0.003	<0.003	0.011	<0.003	<0.003
8/23/2022	<0.003	<0.003	<0.003	<0.003	<0.003	0.0241	<0.003	<0.003
1/24/2023	<0.003	<0.003	<0.003	<0.003	<0.003	0.0245	<0.003	<0.003
8/31/2023	<0.003	<0.003	<0.003	<0.003			<0.003	<0.003
2/10/2024	<0.003	<0.003	<0.003	<0.003			<0.003	<0.003
8/27/2024	<0.003	<0.003	<0.003	<0.003			<0.003	<0.003

Constituent: Arsenic (mg/L) Analysis Run 11/18/2024 10:24 AM View: Pond BCD Appendix IV - UTLs

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-5I (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5S (bg)	BRGWA-12S (bg)	BRGWA-12I (bg)	BRGWA-6S (bg)	BRGWA-23S (bg)
8/31/2016	<0.005	<0.005	<0.005	<0.005				
9/1/2016					<0.005	<0.005	<0.005	
9/6/2016								<0.005
11/15/2016				<0.005			<0.005	
11/16/2016	<0.005	<0.005	<0.005		<0.005	<0.005		
11/17/2016								<0.005
2/20/2017	<0.005			<0.005			<0.005	
2/21/2017		<0.005	<0.005		<0.005	<0.005		<0.005
6/12/2017	0.0007 (J)	0.0007 (J)		0.0006 (J)			<0.005	
6/13/2017			<0.005		<0.005			0.0008 (J)
6/14/2017						0.0009 (J)		
9/26/2017	0.0009 (J)	0.001 (J)	<0.005	0.0007 (J)	0.0006 (J)	0.0012 (J)	0.0007 (J)	0.0012 (J)
2/13/2018	<0.005	<0.005	<0.005	<0.005			<0.005	
2/14/2018					<0.005	<0.005		0.0007 (J)
6/26/2018	<0.005	0.00062 (J)	<0.005	<0.005	<0.005	<0.005	<0.005	0.00062 (J)
12/18/2018	<0.005 (X)	<0.005	<0.005 (X)	<0.005 (X)	<0.005	<0.005	<0.005 (X)	<0.005
8/27/2019	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
8/29/2019								<0.005
10/15/2019	0.00058 (J)	0.0008 (J)	0.00063 (J)	0.00039 (J)	0.00046 (J)	0.00088 (J)	<0.005	0.00075 (J)
3/3/2020	0.0024 (J)	0.0027 (J)	0.00098 (J)	0.0027 (J)	0.0015 (J)	0.0023 (J)	0.0018 (J)	
3/4/2020								<0.005
8/18/2020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
9/15/2020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
3/1/2021		<0.005					<0.005	
3/2/2021	<0.005		<0.005	<0.005	<0.005	<0.005		<0.005
9/21/2021	<0.005			<0.005	<0.005	<0.005		
9/22/2021		<0.005	<0.005				<0.005	<0.005
2/1/2022	0.0013 (J)	0.0012 (J)	<0.005	0.0012 (J)	<0.005	0.0017 (J)	<0.005	0.0018 (J)
8/23/2022	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
1/24/2023	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.0021 (J)	<0.005
8/31/2023	<0.005	<0.005	<0.005	<0.005			<0.005	<0.005
2/10/2024	<0.005	<0.005	<0.005	<0.005			<0.005	<0.005
8/27/2024	<0.005	<0.005	<0.005	<0.005			<0.005	<0.005

Constituent: Barium (mg/L) Analysis Run 11/18/2024 10:24 AM View: Pond BCD Appendix IV - UTLs

Plant Branch Client: Southern Company Data: Plant Branch AP

8/31/2016	BRGWA-5I (bg) 0.0273	BRGWA-2I (bg) 0.0239	BRGWA-2S (bg) 0.0099 (J)	BRGWA-5S (bg) 0.0495	BRGWA-12S (bg)	BRGWA-12I (bg)	BRGWA-6S (bg)	BRGWA-23S (bg)
9/1/2016	0.0273	0.0239	0.0099 (3)	0.0495	0.0528	0.0454	0.0142	
9/6/2016					0.0328	0.0434	0.0142	0.0624
11/15/2016				0.0512			0.0126	0.0024
11/16/2016	0.0365	0.0147	0.0102	0.0312	0.0509	0.0623	0.0120	
11/17/2016	0.0303	0.0147	0.0102		0.0309	0.0023		0.109
2/20/2017	0.0336			0.0586			0.0142	0.103
2/21/2017	0.0330	0.0109	0.0094 (J)	0.0300	0.0531	0.0644	0.0142	0.095
6/12/2017	0.0322	0.0094 (J)	0.0054 (5)	0.0567	0.0001	0.0044	0.0134	0.000
6/13/2017	0.0322	0.0034 (3)	0.0094 (J)	0.0007	0.0543		0.0134	0.0861
6/14/2017			0.0054 (5)		0.0043	0.0726		0.0001
9/26/2017	0.0364	0.0156	0.0096 (J)	0.0586	0.0547	0.0725	0.0133	0.104
2/13/2018	0.0504	0.0134	0.0090 (3)	0.054	0.0347	0.0703	0.0135	0.104
2/14/2018	0.004	0.0104	0.0102	0.004	0.0603	0.0786	0.0140	0.129
6/26/2018	0.032	0.014	0.0093 (J)	0.063	0.059	0.063	0.014	0.13
12/18/2018	0.032	0.0076 (J)	0.0033 (3)	0.045	0.056	0.067	0.014	0.13
8/27/2019	0.028	0.0070 (3)	0.0095 (J)	0.056	0.057	0.058	0.013	0.13
8/29/2019	0.020	0.012	0.0000 (0)	0.000	0.007	0.000	0.010	0.076
10/15/2019	0.032	0.013	0.0091 (J)	0.049	0.053	0.06	0.013	0.069
3/3/2020	0.028	0.017	0.011	0.051	0.06	0.076	0.019	0.000
3/4/2020								0.087
8/18/2020	0.022	0.01 (J)	0.01	0.04	0.058	0.053	0.014	0.067
9/15/2020	0.022	0.0083 (J)	0.0094 (J)	0.038	0.058	0.059	0.013	0.086
3/1/2021		0.0074					0.016	
3/2/2021	0.023		0.0094	0.037	0.063	0.053		0.097
9/21/2021	0.025			0.038	0.06	0.074		
9/22/2021		0.0075	0.0097				0.014	0.07
2/1/2022	0.028	0.0066	0.01	0.04	0.064	0.057	0.014	0.08
8/23/2022	0.0241	0.00954	0.012	0.0379	0.0607	0.0602	0.014	0.0573
1/24/2023	0.0303	0.00453	0.0118	0.0394	0.0576	0.0512	0.0132	0.0468
8/31/2023	0.0245	0.0068	0.0135	0.0352			0.0143	0.0434
2/10/2024	0.0296	0.0124	0.0137	0.0396			0.0151	0.0431
8/27/2024	0.0314	0.00493	0.0132	0.0362			0.0159	0.0432

Constituent: Beryllium (mg/L) Analysis Run 11/18/2024 10:24 AM View: Pond BCD Appendix IV - UTLs

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-5I (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5S (bg)	BRGWA-12S (bg)	BRGWA-12I (bg)	BRGWA-6S (bg)	BRGWA-23S (bg)
8/31/2016	<0.0005	<0.0005	<0.0005	<0.0005				
9/1/2016					<0.0005	<0.0005	<0.0005	
9/6/2016								<0.0005
11/15/2016				<0.0005			<0.0005	
11/16/2016	<0.0005	<0.0005	<0.0005		<0.0005	<0.0005		
11/17/2016								<0.0005
2/20/2017	<0.0005			<0.0005			<0.0005	
2/21/2017		<0.0005	<0.0005		<0.0005	<0.0005		<0.0005
6/12/2017	<0.0005	<0.0005		<0.0005			<0.0005	
6/13/2017			<0.0005		<0.0005			<0.0005
6/14/2017						<0.0005		
9/26/2017	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
2/13/2018	<0.0005	<0.0005	<0.0005	<0.0005			<0.0005	
2/14/2018					<0.0005	<0.0005		<0.0005
6/26/2018	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
12/18/2018	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
8/27/2019	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
8/29/2019								<0.0005
10/15/2019	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
3/3/2020	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
3/4/2020								<0.0005
8/18/2020	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
9/15/2020	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
3/1/2021		<0.0005					<0.0005	
3/2/2021	<0.0005		<0.0005	<0.0005	<0.0005	<0.0005		<0.0005
9/21/2021	<0.0005			<0.0005	<0.0005	<0.0005		
9/22/2021		<0.0005	<0.0005				<0.0005	<0.0005
2/1/2022	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
8/23/2022	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
1/24/2023	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
8/31/2023	<0.0005	<0.0005	<0.0005	<0.0005			<0.0005	<0.0005
2/10/2024	<0.0005	<0.0005	<0.0005	<0.0005			<0.0005	<0.0005
8/27/2024	<0.0005	<0.0005	<0.0005	<0.0005			<0.0005	<0.0005

Constituent: Cadmium (mg/L) Analysis Run 11/18/2024 10:24 AM View: Pond BCD Appendix IV - UTLs

Plant Branch Client: Southern Company Data: Plant Branch AP

0/04/0046	BRGWA-5S (bg)	BRGWA-5I (bg)	BRGWA-2S (bg)	BRGWA-2I (bg)	BRGWA-12I (bg)	BRGWA-6S (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)
8/31/2016	<0.001	<0.001	<0.001	<0.001	-0.001	-0.001	-0.001	
9/1/2016					<0.001	<0.001	<0.001	.0.004
9/6/2016	0.004					.0.004		<0.001
11/15/2016	<0.001	.0.004	.0.004	.0.004	0.004	<0.001	0.004	
11/16/2016		<0.001	<0.001	<0.001	<0.001		<0.001	.0.004
11/17/2016								<0.001
2/20/2017	<0.001	<0.001				<0.001		
2/21/2017			<0.001	<0.001	<0.001		<0.001	<0.001
6/12/2017	<0.001	<0.001		<0.001		<0.001		
6/13/2017			<0.001				<0.001	<0.001
6/14/2017					<0.001			
9/26/2017	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
2/13/2018	<0.001	<0.001	<0.001	<0.001		<0.001		
2/14/2018					<0.001		<0.001	<0.001
6/26/2018	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.00015 (J)
7/31/2018					<0.001		<0.001	
12/18/2018	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.0001 (J)
8/27/2019	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
8/29/2019								<0.001
10/15/2019	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
3/3/2020	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
3/4/2020								<0.001
8/18/2020	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
9/15/2020	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
3/1/2021				<0.001		<0.001		
3/2/2021	<0.001	<0.001	<0.001		<0.001		<0.001	<0.001
9/21/2021	<0.001	<0.001			<0.001		<0.001	
9/22/2021			<0.001	<0.001		<0.001		<0.001
2/1/2022	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
8/23/2022	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
1/24/2023	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
8/31/2023	<0.001	<0.001	<0.001	<0.001		<0.001		<0.001
2/10/2024	<0.001	<0.001	<0.001	<0.001		<0.001		<0.001
8/27/2024	<0.001	<0.001	<0.001	<0.001		<0.001		<0.001

Constituent: Chromium (mg/L) Analysis Run 11/18/2024 10:24 AM View: Pond BCD Appendix IV - UTLs

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-5I (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5S (bg)	BRGWA-12S (bg)	BRGWA-12I (bg)	BRGWA-6S (bg)	BRGWA-23S (bg)
8/31/2016	0.0058 (J)	0.001 (J)	0.0034 (J)	0.0028 (J)				
9/1/2016					0.0013 (J)	0.0009 (J)	0.0147	
9/6/2016								<0.01
11/15/2016				0.003 (J)			0.0154 (B)	
11/16/2016	0.0051 (J)	<0.01	0.0029 (J)		0.0012 (J)	0.0015 (J)		
11/17/2016								<0.01
2/20/2017	0.0049 (J)			0.0047 (J)			0.014	
2/21/2017		<0.01	0.0036 (J)		0.0017 (J)	0.001 (J)		<0.01
6/12/2017	0.0052 (J)	0.0005 (J)		0.0041 (J)			0.016	
6/13/2017			0.0038 (J)		0.0019 (J)			<0.01
6/14/2017						0.0012 (J)		
9/26/2017	0.0039 (J)	0.0005 (J)	0.0045 (J)	0.0037 (J)	0.0018 (J)	0.0014 (J)	0.0144	<0.01
2/13/2018	<0.01	<0.01	<0.01	<0.01			0.0144	
2/14/2018					<0.01	<0.01		<0.01
6/26/2018	0.0053 (J)	<0.01	0.008 (J)	0.0043 (J)	0.0022 (J)	<0.01	0.015	<0.01
12/18/2018	0.0032 (J)	<0.01	0.012	0.0054 (J)	0.0022 (J)	0.0016 (J)	0.015	<0.01
8/27/2019	0.0055 (J)	0.0004 (J)	0.0083 (J)	0.0043 (J)	0.0024 (J)	0.0023 (J)	0.015	
8/29/2019								0.0016 (J)
10/15/2019	0.0047 (J)	<0.01	0.0083 (J)	0.0055 (J)	0.0023 (J)	0.0021 (J)	0.014	0.0017 (J)
3/3/2020	0.0069 (J)	0.00047 (J)	0.0098 (J)	0.0057 (J)	0.0028 (J)	0.0026 (J)	0.011	
3/4/2020								0.0019 (J)
8/18/2020	0.0069 (J)	0.00096 (J)	0.0085 (J)	0.005 (J)	0.0029 (J)	0.0023 (J)	0.015	0.0017 (J)
9/15/2020	0.0069 (J)	<0.01	0.0082 (J)	0.0048 (J)	0.0025 (J)	0.00096 (J)	0.014	0.0019 (J)
3/1/2021		<0.01					0.011	
3/2/2021	0.0064		0.0074	0.0044 (J)	0.0021 (J)	0.002 (J)		0.002 (J)
9/21/2021	0.0064			0.0044 (J)	0.0024 (J)	0.0023 (J)		
9/22/2021		<0.01	0.0091				0.014	0.0026 (J)
2/1/2022	0.0066	0.0013 (J)	0.0092	0.0052	0.0029 (J)	0.0027 (J)	0.015	0.0028 (J)
8/23/2022	0.00647 (J)	<0.01	0.00908 (J)	0.00435 (J)	<0.01	<0.01	0.0143	<0.01
1/24/2023	0.00513 (J)	<0.01	0.0095 (J)	0.00572 (J)	<0.01	<0.01	0.0139	<0.01
8/31/2023	0.00701 (J)	<0.01	0.00921 (J)	0.00472 (J)			0.0132	<0.01
2/10/2024	0.00551 (J)	0.00458 (J)	0.00854 (J)	0.00582 (J)			0.0139	<0.01
8/27/2024	0.00521 (J)	0.00445 (J)	0.00799 (J)	0.00604 (J)			0.0124	<0.01

Constituent: Cobalt (mg/L) Analysis Run 11/18/2024 10:24 AM View: Pond BCD Appendix IV - UTLs
Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-2S (bg)	BRGWA-5S (bg)	BRGWA-5I (bg)	BRGWA-2I (bg)	BRGWA-6S (bg)	BRGWA-12S (bg)	BRGWA-12I (bg)	BRGWA-23S (bg)
8/31/2016	0.0034 (J)	<0.001	0.0013 (J)	0.0016 (J)				
9/1/2016					<0.001	<0.001	<0.001	
9/6/2016								0.0028 (J)
11/15/2016		<0.001			<0.001			
11/16/2016	0.003 (J)		<0.01 (o)	0.0006 (J)		<0.001	<0.001	
11/17/2016								0.0072 (J)
2/20/2017		0.0009 (J)	0.0012 (J)		<0.001			
2/21/2017	0.0028 (J)			<0.001		<0.001	<0.001	0.0045 (J)
6/12/2017		0.0006 (J)	0.0011 (J)	<0.001	0.0003 (J)			
6/13/2017	0.0025 (J)					<0.001		0.0036 (J)
6/14/2017							<0.001	
9/26/2017	0.002 (J)	0.0005 (J)	0.0016 (J)	<0.001	0.0003 (J)	<0.001	<0.001	0.0037 (J)
2/13/2018	<0.001	<0.001	<0.01 (o)	<0.001	<0.001			
2/14/2018						<0.001	<0.001	0.0135
6/26/2018	0.0019 (J)	0.00052 (J)	0.0009 (J)	<0.001	<0.001	<0.001	<0.001	0.0098 (J)
7/31/2018						<0.001	<0.001	
12/18/2018	0.0032 (J)	<0.001	0.00062 (J)	<0.001	<0.001	<0.001	<0.001	0.0057 (J)
8/27/2019	0.0012 (J)	0.00042 (J)	0.00068 (J)	<0.001	<0.001	<0.001	<0.001	
8/29/2019								0.0015 (J)
10/15/2019	0.00097 (J)	<0.001	0.00083 (J)	<0.001	<0.001	<0.001	<0.001	0.0011 (J)
3/3/2020	0.0015 (J)	<0.001	0.00043 (J)	<0.001	0.0011 (J)	<0.001	<0.001	
3/4/2020								0.0012 (J)
8/18/2020	0.0014 (J)	<0.001	0.00048 (J)	<0.001	0.00061 (J)	<0.001	<0.001	0.00067 (J)
9/15/2020	0.001 (J)	<0.001	0.0005 (J)	<0.001	<0.001	<0.001	<0.001	0.00076 (J)
3/1/2021				<0.001	<0.001			
3/2/2021	0.001 (J)	<0.001	0.00053 (J)			<0.001	<0.001	<0.001
9/21/2021		<0.001	0.00071 (J)			<0.001	<0.001	
9/22/2021	<0.001			0.0015 (J)	0.00078 (J)			<0.001
2/1/2022	0.0011 (J)	<0.001	0.0007 (J)	0.00079 (J)	<0.001	<0.001	<0.001	0.00052 (J)
8/23/2022	0.000844 (J)	<0.001	0.000553 (J)	0.000767 (J)	<0.001	<0.001	<0.001	0.000308 (J)
1/24/2023	0.000829 (J)	<0.001	0.000677 (J)	0.00154	<0.001	<0.001	<0.001	<0.001
8/31/2023	0.000707 (J)	0.000327 (J)	0.000474 (J)	0.000707 (J)	<0.001			<0.001
2/10/2024	0.000962 (J)	<0.001	0.000555 (J)	0.0014	<0.001			<0.001
8/27/2024	0.000772 (J)	<0.001	0.000396 (J)	0.00105	<0.001			<0.001

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 11/18/2024 10:24 AM View: Pond BCD Appendix IV - UTLs

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-5I (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5S (bg)	BRGWA-12S (bg)	BRGWA-12I (bg)	BRGWA-6S (bg)	BRGWA-23S (bg)
8/31/2016	0.62 (U)	0.351 (U)	1 (U)	0.603 (U)				
9/1/2016					0.566 (U)	0.428 (U)	1.33	
9/6/2016								0.585 (U)
11/15/2016				0.645 (U)			0.412 (U)	
11/16/2016	0.493 (U)	0.824 (U)	0.43 (U)		0.863 (U)	0.799 (U)		
11/17/2016								0.804 (U)
2/20/2017	0.534 (U)			1.36			0.633 (U)	
2/21/2017		1.01 (U)	0.96 (U)		0.318 (U)	1.75 (U)		0.595 (U)
6/12/2017	0.254 (U)	0.532 (U)		0.566 (U)			0.112 (U)	
6/13/2017			0.645 (U)		0.163 (U)			0.618 (U)
6/14/2017						2.66		
9/26/2017	0.62 (U)	0.845 (U)	0.299 (U)	0.762 (U)	0.56 (U)	0.841 (U)	0.167 (U)	1.26 (U)
2/13/2018	0.0914 (U)	0.176 (U)	1.01 (U)	0.349 (U)			0.347 (U)	
2/14/2018					0.537 (U)	1.13 (UX)		1.2 (U)
6/26/2018	1.11 (U)	1.02 (U)	1.26 (J+X)	0.614 (U)	1.31 (UX)	1.42 (J+X)	0.903 (U)	1.34 (U)
12/18/2018	0.42 (U)	0.487 (U)	0.44 (U)	0.445 (U)	1.31 (J+X)	0.855 (U)	0.353 (U)	1.13 (U)
8/27/2019	1.19	1.11	1.47	1.44	1.32	1.31	0.65 (U)	
8/29/2019								1.45 (U)
10/15/2019	0.714 (U)	1.02 (U)	0.807 (U)	0.467 (U)	1.05 (U)	1.13 (U)	0.402 (U)	1.69
3/3/2020	0.996 (U)	1.18 (U)	0.818 (U)	1.5	1.68	1.29 (U)	0.397 (U)	
3/4/2020								1.45
8/18/2020	0.53 (U)	0.0861 (U)	1.22 (U)	0.581 (U)	0.969 (U)	0.988 (U)	0.453 (U)	0.784 (U)
9/15/2020	0.215 (U)	0.0583 (U)	0.579 (U)	0.55 (U)	0.359 (U)	0.762 (U)	0.474 (U)	1.04 (U)
3/1/2021		0.127 (U)					0.215 (U)	
3/2/2021	0.409 (U)		0.342 (U)	0.362 (U)	0.925	0.901		1.12
9/21/2021	0.182 (U)			0.86 (U)	0.468 (U)	1.33		
9/22/2021		0.349 (U)	1.33 (U)				0.943 (U)	1.4
2/1/2022	1.23	0.233 (U)	0.251 (U)	0.23 (U)	0.659 (U)	0.833 (U)	0.349 (U)	1.15
8/23/2022	2.3	1.7	0.531	0.735	1.69	0.558	0.203	1.59
1/24/2023	0.811 (U)	2.05 (U)	1.35 (U)	0.402 (U)	3.07	1.49 (U)	1.55 (U)	5.62
9/22/2023	1.36	0.857 (U)	0.592 (U)	1.31 (U)			1.89 (U)	2.16
2/27/2024	1.48 (U)	1.25	2.54	0 (U)			1.29	0.605 (U)
8/27/2024	3.62	0.864 (U)	1.4 (U)	0.236 (U)			1.64	2.43

 $\label{lem:constituent: Fluoride (mg/L)} Constituent: Fluoride (mg/L) & Analysis Run 11/18/2024 10:24 AM & View: Pond BCD Appendix IV - UTLs \\ & Plant Branch & Client: Southern Company & Data: Plant Branch AP \\ & Plant Branc$

	BRGWA-5I (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5S (bg)	BRGWA-12S (bg)	BRGWA-12I (bg)	BRGWA-6S (bg)	BRGWA-23S (bg)
8/31/2016	0.07 (J)	0.11 (J)	0.05 (J)	0.19 (J)				
9/1/2016					0.05 (J)	0.2 (J)	0.06 (J)	
9/6/2016								0.42
11/15/2016				0.13 (J)			0.06 (J)	
11/16/2016	0.07 (J)	0.08 (J)	0.07 (J)		0.03 (J)	0.14 (J)		
11/17/2016								0.15 (J)
2/20/2017	0.06 (J)			0.08 (J)			0.04 (J)	
2/21/2017		0.14 (J)	0.05 (J)		0.04 (J)	0.16 (J)		0.1 (J)
6/12/2017	0.008 (J)	0.16 (J)		0.07 (J)			0.06 (J)	
6/13/2017			0.04 (J)		0.008 (J)			0.07 (J)
6/14/2017						0.09 (J)		
9/26/2017	<0.033	0.14 (J)	<0.033	0.04 (J)	<0.033	0.1 (J)	<0.033	<0.033
2/13/2018	<0.033	<0.033	<0.033	<0.033			<0.033	
2/14/2018					<0.033	<0.033		<0.033
6/26/2018	0.045 (J)	0.085 (J)	0.048 (J)	0.072 (J)	0.042 (J)	0.079 (J)	0.041 (J)	0.053 (J)
12/18/2018	<0.033	0.085 (J)	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033
3/19/2019	<0.033	0.0655 (JD)	0.037 (J)	0.06 (J)	<0.033	<0.033	0.03 (J)	<0.033
8/27/2019	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	<0.033	
8/29/2019								0.084 (J)
10/15/2019	<0.033	<0.033	<0.033	0.045 (J)	<0.033	0.047 (J)	<0.033	<0.033
3/3/2020	<0.033	0.066 (J)	0.05 (J)	0.057 (J)	<0.033	0.056 (J)	0.09 (J)	
3/4/2020								<0.033
8/18/2020	<0.033	<0.033	<0.033	<0.033	<0.033	0.052 (J)	<0.033	<0.033
9/15/2020	<0.033	<0.033	<0.033	0.051 (J)	<0.033	0.062 (J)	<0.033	<0.033
3/1/2021		<0.033					<0.033	
3/2/2021	<0.033		<0.033	<0.033	<0.033	0.061 (J)		<0.033
9/21/2021	<0.033			0.056 (J)	<0.033	0.071 (J)		
9/22/2021		<0.033	<0.033				<0.033	0.069 (J)
2/1/2022	<0.033	<0.033	<0.033	<0.033	<0.033	0.055 (J)	<0.033	<0.033
8/23/2022	<0.033	<0.033	<0.033	<0.033	0.129	0.151	<0.033	0.157
1/24/2023	0.149	<0.033	<0.033	0.158	0.0926 (J)	0.214	0.12	0.231
8/23/2023	0.289	0.267	0.229	0.277			0.0787 (J)	0.114
1/31/2024	0.232	<0.033	0.184	0.233			0.0341 (J)	
2/1/2024								0.275
8/27/2024	0.0365 (J)	0.0342 (J)	0.0426 (J)	0.0516 (J)			0.0334 (J)	0.204

Constituent: Lead (mg/L) Analysis Run 11/18/2024 10:24 AM View: Pond BCD Appendix IV - UTLs
Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-5I (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5S (bg)	BRGWA-12S (bg)	BRGWA-12I (bg)	BRGWA-6S (bg)	BRGWA-23S (bg)
8/31/2016	<0.002	<0.002	<0.002	<0.002				
9/1/2016					<0.002	<0.002	0.0001 (J)	
9/6/2016								<0.002
11/15/2016				<0.002			<0.002	
11/16/2016	<0.002	<0.002	<0.002		<0.002	<0.002		
11/17/2016								<0.002
2/20/2017	<0.002			0.0002 (J)			<0.002	
2/21/2017		<0.002	<0.002		<0.002	<0.002		<0.002
6/12/2017	<0.002	8E-05 (J)		0.0001 (J)			8E-05 (J)	
6/13/2017			<0.002		<0.002			<0.002
6/14/2017						<0.002		
9/26/2017	<0.002	7E-05 (J)	7E-05 (J)	0.0001 (J)	<0.002	<0.002	<0.002	<0.002
2/13/2018	<0.002	<0.002	<0.002	<0.002			<0.002	
2/14/2018					<0.002	<0.002		<0.002
6/26/2018	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
12/18/2018	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
8/27/2019	<0.002	<0.002	5.8E-05 (J)	0.00036 (J)	<0.002	<0.002	<0.002	
8/29/2019								7E-05 (J)
10/15/2019	<0.002	<0.002	<0.002	7.9E-05 (J)	<0.002	<0.002	<0.002	<0.002
3/3/2020	<0.002	<0.002	<0.002	7.9E-05 (J)	<0.002	<0.002	7.3E-05 (J)	
3/4/2020								<0.002
8/18/2020	<0.002	<0.002	<0.002	0.0001 (J)	<0.002	<0.002	<0.002	<0.002
9/15/2020	0.0013 (J)	<0.002	<0.002	4.3E-05 (J)	<0.002	<0.002	<0.002	<0.002
3/1/2021		<0.002					<0.002	
3/2/2021	3.7E-05 (J)		<0.002	<0.002	<0.002	<0.002		<0.002
9/21/2021	<0.002			<0.002	<0.002	<0.002		
9/22/2021		<0.002	<0.002				<0.002	<0.002
2/1/2022	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
8/23/2022	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
1/24/2023	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
8/31/2023	<0.002	<0.002	<0.002	<0.002			<0.002	<0.002
2/10/2024	<0.002	<0.002	<0.002	<0.002			<0.002	<0.002
8/27/2024	<0.002	<0.002	<0.002	<0.002			<0.002	<0.002

Constituent: Lithium (mg/L) Analysis Run 11/18/2024 10:24 AM View: Pond BCD Appendix IV - UTLs

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-5I (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5S (bg)	BRGWA-12S (bg)	BRGWA-12I (bg)	BRGWA-6S (bg)	BRGWA-23S (bg)
8/31/2016	<0.01	0.0268 (J)	<0.01	<0.01				
9/1/2016					<0.01	0.0061 (J)	0.003 (J)	
9/6/2016								0.0028 (J)
11/15/2016				<0.01			0.0033 (J)	
11/16/2016	0.0033 (J)	0.0201 (J)	<0.01		<0.01	0.0054 (J)		
11/17/2016								0.0063 (J)
2/20/2017	<0.01			<0.01			0.0025 (J)	
2/21/2017		0.0128 (J)	<0.01		<0.01	0.0058 (J)		0.0052 (J)
6/12/2017	0.0019 (J)	0.0245 (J)		<0.01			0.0027 (J)	
6/13/2017			<0.01		<0.01			0.0061 (J)
6/14/2017						0.0054 (J)		
9/26/2017	0.0022 (J)	0.0549	<0.01	<0.01	<0.01	0.0037 (J)	0.0023 (J)	0.0087 (J)
2/13/2018	0.0041 (J)	0.0595	<0.01	<0.01			0.0027 (J)	
2/14/2018					<0.01	0.0038 (J)		0.0104 (J)
6/26/2018	0.0025 (J)	0.089	<0.01	<0.01	<0.01	0.0045 (J)	0.0029 (J)	0.0095 (J)
12/18/2018	0.0032 (J)	0.024 (J)	<0.01	<0.01	<0.01	0.0038 (J)	0.0026 (J)	0.0091 (J)
8/27/2019	0.0019 (J)	0.035	<0.01	<0.01	<0.01	0.0039 (J)	0.0028 (J)	
8/29/2019								0.007 (J)
10/15/2019	0.002 (J)	0.028 (J)	<0.01	<0.01	<0.01	0.0037 (J)	0.0024 (J)	0.0069 (J)
3/3/2020	0.0013 (J)	0.055	<0.01	<0.01	<0.01	0.0033 (J)	0.0026 (J)	
3/4/2020								0.0074 (J)
8/18/2020	0.00095 (J)	0.054	<0.01	<0.01	<0.01	0.0039 (J)	0.0026 (J)	0.0099 (J)
9/15/2020	0.001 (J)	0.033	<0.01	<0.01	<0.01	0.0037 (J)	0.0027 (J)	0.011 (J)
3/1/2021		0.027 (J)					0.0036 (J)	
3/2/2021	0.00081 (J)		<0.01	<0.01	<0.01	0.0045 (J)		0.0093 (J)
9/21/2021	0.0012 (J)			<0.01	<0.01	0.0037 (J)		
9/22/2021		0.021 (J)	<0.01				0.0035 (J)	0.0074 (J)
2/1/2022	0.0011 (J)	0.023 (J)	<0.01	<0.01	<0.01	0.0037 (J)	0.0029 (J)	0.008 (J)
8/23/2022	<0.01	0.0262	<0.01	<0.01	<0.01	0.00451 (J)	0.00314 (J)	0.00792 (J)
1/24/2023	<0.01	0.00919 (J)	<0.01	<0.01	<0.01	0.00529 (J)	0.00341 (J)	0.00749 (J)
8/31/2023	<0.01	0.0209	<0.01	<0.01			<0.01	0.00596 (J)
2/10/2024	<0.01	0.00407 (J)	<0.01	<0.01			0.00317 (J)	0.00729 (J)
8/27/2024	0.00337 (J)	0.00584 (J)	<0.01	<0.01			0.00322 (J)	0.00687 (J)

Constituent: Mercury (mg/L) Analysis Run 11/18/2024 10:24 AM View: Pond BCD Appendix IV - UTLs

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-5I (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5S (bg)	BRGWA-12S (bg)	BRGWA-12I (bg)	BRGWA-6S (bg)	BRGWA-23S (bg)
8/31/2016	<0.0002	<0.0002	<0.0002	<0.0002				
9/1/2016					<0.0002	<0.0002	<0.0002	
9/6/2016								<0.0002
11/15/2016				<0.0002			<0.0002	
11/16/2016	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002		
11/17/2016								<0.0002
2/20/2017	<0.0002			8E-05 (J)			<0.0002	
2/21/2017		<0.0002	<0.0002		<0.0002	<0.0002		<0.0002
6/12/2017	<0.0002	4E-05 (J)		<0.0002			<0.0002	
6/13/2017			<0.0002		<0.0002			<0.0002
6/14/2017						6E-05 (J)		
9/26/2017	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
2/13/2018	<0.0002	0.00021	0.00019 (J)	0.00013 (J)			<0.0002	
2/14/2018					<0.0002	5.2E-05 (J)		<0.0002
6/26/2018	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
12/18/2018	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
8/27/2019	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	
8/29/2019								<0.0002
8/18/2020	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
9/15/2020	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
3/1/2021		<0.0002					<0.0002	
3/2/2021	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002		<0.0002
9/21/2021	0.0001 (J)			0.0001 (J)	0.0001 (J)	0.0001 (J)		
9/22/2021		0.0001 (J)	0.0001 (J)				0.0001 (J)	0.0001 (J)
2/1/2022	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
8/23/2022	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
1/24/2023	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
8/25/2023	<0.0002	<0.0002	<0.0002	<0.0002			<0.0002	<0.0002
2/2/2024	<0.0002	<0.0002	<0.0002	<0.0002			<0.0002	<0.0002
8/27/2024	<0.0002	<0.0002	<0.0002	<0.0002			<0.0002	<0.0002

 $Constituent: \ Molybdenum \ (mg/L) \quad Analysis \ Run \ 11/18/2024 \ 10:24 \ AM \quad View: Pond \ BCD \ Appendix \ IV-UTLs$

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5I (bg)	BRGWA-5S (bg)	BRGWA-12I (bg)	BRGWA-6S (bg)	BRGWA-12S (bg)	BRGWA-23S (bg)
8/31/2016	0.0021 (J)	<0.001	0.004 (J)	<0.001				
9/1/2016					0.002 (J)	<0.001	<0.001	
9/6/2016								0.0028 (J)
11/15/2016				<0.001		<0.001		
11/16/2016	<0.001	<0.001	0.0038 (J)		<0.001		<0.001	
11/17/2016								<0.001
2/20/2017			0.0055 (J)	<0.001		<0.001		
2/21/2017	0.0021 (J)	<0.001			<0.001		<0.001	<0.001
6/12/2017	0.0021 (J)		0.005 (J)	<0.001		<0.001		
6/13/2017		<0.001					<0.001	<0.001
6/14/2017					<0.001			
9/26/2017	0.0011 (J)	<0.001	0.0053 (J)	<0.001	<0.001	<0.001	<0.001	<0.001
2/13/2018	0.0019 (J)	<0.001	0.008 (J)	<0.001		<0.001		
2/14/2018					<0.001		<0.001	<0.001
6/26/2018	<0.001	<0.001	0.0041 (J)	<0.001	<0.001	<0.001	<0.001	<0.001
12/18/2018	<0.001	<0.001	0.0048 (J)	<0.001	<0.001	<0.001	<0.001	<0.001
8/27/2019	<0.001	<0.001	0.0028 (J)	<0.001	<0.001	<0.001	<0.001	
8/29/2019								<0.001
10/15/2019	<0.001	<0.001	0.0035 (J)	<0.001	<0.001	<0.001	<0.001	<0.001
3/3/2020	<0.001	<0.001	0.0023 (J)	<0.001		<0.001		
8/18/2020	0.0011 (J)	<0.001	0.0015 (J)	<0.001	<0.001	<0.001	<0.001	<0.001
9/15/2020	0.0007 (J)	<0.001	0.0015 (J)	<0.001	<0.001	<0.001	<0.001	<0.001
3/1/2021	<0.001					<0.001		
3/2/2021		<0.001	0.0015 (J)	<0.001	<0.001		<0.001	<0.001
9/21/2021			0.002 (J)	<0.001	<0.001		<0.001	
9/22/2021	0.0012 (J)	<0.001				<0.001		<0.001
2/1/2022	0.0013 (J)	<0.001	0.002 (J)	<0.001	<0.001	<0.001	<0.001	<0.001
8/23/2022	0.0024	<0.001	0.00151	<0.001	0.000413 (J)	<0.001	<0.001	<0.001
1/24/2023	0.000601 (J)	<0.001	0.00192	<0.001	0.000388 (J)	<0.001	<0.001	<0.001
8/31/2023	0.00169	<0.001	0.000953 (J)	<0.001		<0.001		<0.001
2/10/2024	0.000362 (J)	<0.001	0.00143	<0.001		<0.001		0.000217 (J)
8/27/2024	0.000313 (J)	<0.001	0.00134	<0.001		<0.001		0.000225 (J)

Constituent: Selenium (mg/L) Analysis Run 11/18/2024 10:24 AM View: Pond BCD Appendix IV - UTLs

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-5I (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5S (bg)	BRGWA-12S (bg)	BRGWA-12I (bg)	BRGWA-6S (bg)	BRGWA-23S (bg)
8/31/2016	<0.005	<0.005	<0.005	<0.005				
9/1/2016					<0.005	<0.005	<0.005	
9/6/2016								<0.005
11/15/2016				<0.005			<0.005	
11/16/2016	<0.005	<0.005	<0.005		<0.005	<0.005		
11/17/2016								0.0052 (J)
2/20/2017	<0.005			<0.005			<0.005	
2/21/2017		<0.005	<0.005		<0.005	<0.005		0.0018 (J)
6/12/2017	<0.005	<0.005		<0.005			<0.005	
6/13/2017			<0.005		<0.005			<0.005
6/14/2017						<0.005		
9/26/2017	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2/13/2018	<0.005	<0.005	<0.005	<0.005			<0.005	
2/14/2018					<0.005	<0.005		<0.005
6/26/2018	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.0036 (J)
12/18/2018	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.0044 (J)
8/27/2019	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
8/29/2019								0.0023 (J)
10/15/2019	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.0022 (J)
3/3/2020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
3/4/2020								0.0019 (J)
8/18/2020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.0033 (J)
9/15/2020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.0028 (J)
3/1/2021		<0.005					<0.005	
3/2/2021	<0.005		<0.005	<0.005	<0.005	<0.005		0.006
9/21/2021	<0.005			<0.005	<0.005	<0.005		
9/22/2021		<0.005	<0.005				<0.005	0.0016 (J)
2/1/2022	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.002 (J)
8/23/2022	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
1/24/2023	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/31/2023	<0.005	<0.005	<0.005	<0.005			<0.005	<0.005
2/10/2024	<0.005	<0.005	<0.005	<0.005			<0.005	<0.005
8/27/2024	<0.005	<0.005	<0.005	<0.005			<0.005	<0.005

Constituent: Thallium (mg/L) Analysis Run 11/18/2024 10:24 AM View: Pond BCD Appendix IV - UTLs

Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWA-5I (bg)	BRGWA-2I (bg)	BRGWA-2S (bg)	BRGWA-5S (bg)	BRGWA-12S (bg)	BRGWA-12I (bg)	BRGWA-6S (bg)	BRGWA-23S (bg)
8/31/2016	<0.002	<0.002	<0.002	<0.002				
9/1/2016					<0.002	<0.002	<0.002	
9/6/2016								<0.002
11/15/2016				<0.002			<0.002	
11/16/2016	<0.002	<0.002	<0.002		<0.002	<0.002		
11/17/2016								<0.002
2/20/2017	<0.002			<0.002			<0.002	
2/21/2017		<0.002	<0.002		<0.002	<0.002		<0.002
6/12/2017	<0.002	<0.002		<0.002			<0.002	
6/13/2017			<0.002		<0.002			<0.002
6/14/2017						<0.002		
9/26/2017	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
2/13/2018	<0.002	<0.002	<0.002	<0.002			<0.002	
2/14/2018					<0.002	<0.002		<0.002
6/26/2018	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
12/18/2018	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
8/27/2019	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
8/29/2019								<0.002
10/15/2019	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
3/3/2020	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
3/4/2020								<0.002
8/18/2020	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
9/15/2020	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
3/1/2021		<0.002					<0.002	
3/2/2021	<0.002		<0.002	<0.002	<0.002	<0.002		<0.002
9/21/2021	<0.002			<0.002	<0.002	<0.002		
9/22/2021		<0.002	<0.002				<0.002	<0.002
2/1/2022	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
8/23/2022	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
1/24/2023	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
8/31/2023	<0.002	<0.002	<0.002	<0.002			<0.002	<0.002
2/10/2024	<0.002	<0.002	<0.002	<0.002			<0.002	<0.002
8/27/2024	<0.002	<0.002	<0.002	<0.002			<0.002	<0.002

FIGURE G.

PLANT BRANCH POND BCD GWPS										
		CCR-Rule								
Constituent Name	MCL	Specified	Background Limit	GWPS						
Antimony, Total (mg/L)	0.006		0.025	0.006						
Arsenic, Total (mg/L)	0.01		0.005	0.01						
Barium, Total (mg/L)	2		0.13	2						
Beryllium, Total (mg/L)	0.004		0.0005	0.004						
Cadmium, Total (mg/L)	0.005		0.001	0.005						
Chromium, Total (mg/L)	0.1		0.016	0.1						
Cobalt, Total (mg/L)	n/a	0.006	0.014	0.014						
Combined Radium, Total (pCi/L)	5		2.33	5						
Fluoride, Total (mg/L)	4		0.42	4						
Lead, Total (mg/L)	n/a	0.015	0.002	0.015						
Lithium, Total (mg/L)	n/a	0.04	0.089	0.089						
Mercury, Total (mg/L)	0.002		0.00021	0.002						
Molybdenum, Total (mg/L)	n/a	0.1	0.008	0.1						
Selenium, Total (mg/L)	0.05		0.006	0.05						
Thallium, Total (mg/L)	0.002		0.002	0.002						

^{*}Highlighted cells indicate Background is higher than MCLs

^{*}MCL = Maximum Contaminant Level

^{*}CCR = Coal Combustion Residuals

^{*}GWPS = Groundwater Protection Standard

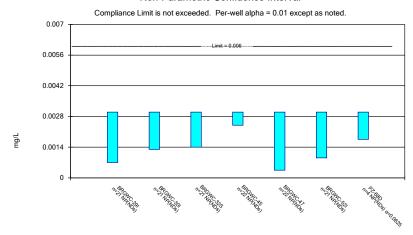
^{**}MCL used in lieu of Background limit for Antimony

FIGURE H.

Confidence Intervals Summary Table - Significant Results

Plant Branch Client: Southern Company Data: Plant Branch AP Printed 1/21/2025, 1:51 PM

Constituent	Well	Upper Lim	Lower Lim.	Compliance	Sig. N	<u>Mean</u>	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Cobalt (mg/L)	PZ-63I	0.0348	0.02004	0.014	Yes 6	0.02742	0.005372	0	None	No	0.01	Param.
Selenium (mg/L)	BRGWC-32S	0.1763	0.1016	0.05	Yes 14	0.139	0.05274	0	None	No	0.01	Param.

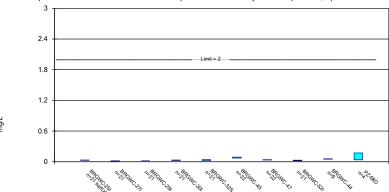

Confidence Intervals Summary Table - All Results

Client: Southern Company Data: Plant Branch AP Printed 1/21/2025, 1:51 PM ND Adj. Constituent Well %NDs Transform Alpha Upper Lim. Lower Lim. Compliance Sig. <u>N</u> Std. Dev. Method Antimony (mg/L) BRGWC-29 0.003 0.0007 21 0.00289 0.0005019 95.24 None No 0.01 NP (NDs) No Antimony (mg/L) BRGWC-30I 0.003 0.0013 0.006 No 21 0.002919 0.000371 95.24 None No 0.01 NP (NDs) Antimony (mg/L) BRGWC-32S 0.003 0.0014 0.006 0.002924 0.0003491 95.24 None No 0.01 NP (NDs) BRGWC-45 0.003 0.0024 0.006 0.01 NP (NDs) Antimony (mg/L) Nο 22 0.002547 0.0008329 68 18 None Nο BRGWC-47 Antimony (mg/L) 0.003 0.00035 0.006 No 22 0.00288 0.000565 95.45 0.01 NP (NDs) BRGWC-52I Antimony (mg/L) 0.003 0.00091 0.006 21 0.002676 0.0008181 85.71 0.01 NP (NDs) No None No Antimony (mg/L) PZ-68D 0.003 0.00176 0.006 No 4 0.00269 0.00062 75 No 0.0625 NP (NDs) None BRGWC-25I 0.005 0.00091 0.01 0.004179 0.001736 0.01 NP (NDs) Arsenic (mg/L) No 21 80.95 No None Arsenic (mg/L) BRGWC-27I 0.005 0.0014 0.01 No 21 0.004243 0.001604 80.95 No 0.01 NP (NDs) Arsenic (mg/L) BRGWC-29I 0.005 0.0016 0.01 No 21 0.003743 0.001859 66.67 No 0.01 NP (NDs) None BRGWC-30I 0.00283 NP (NDs) Arsenic (mg/L) 0.005 0.01 Nο 21 0.004403 0.001313 80.95 None Nο 0.01 Arsenic (mg/L) BRGWC-32S 0.005 0.00053 0.01 No 0.004787 0.0009754 95.24 None 0.01 NP (NDs) BRGWC-44 NP (NDs) Arsenic (mg/L) 0.005 0.00221 0.01 Nο 9 0.004579 0.0009479 77.78 Kaplan-Meier No 0.002 Arsenic (mg/L) BRGWC-45 0.005 0.00225 0.01 No 22 0.00397 0.00176 72.73 0.01 NP (NDs) BRGWC-47 0.0023 0.001182 0.01 22 0.00315 0.001772 36.36 0.01 Param. Arsenic (mg/L) No Kaplan-Meier x^(1/3) BRGWC-52I 0.01 0.003913 0.001424 52.38 Kaplan-Meier No NP (NDs) Arsenic (mg/L) 0.005 0.003 No 21 0.01 PZ-68D 0.006826 0.0001393 0.01 0.004805 50 Arsenic (mg/L) No 4 0.0009974 Kaplan-Meier No 0.01 Param Barium (mg/L) BRGWC-25I 0.03348 0.02673 2 Nο 21 0.0303 0.006413 0 0.01 Param BRGWC-27I 0.01518 2 0.01592 0.001344 0 Barium (mg/L) 0.01666 No No 0.01 Param None 2 Barium (mg/L) BRGWC-29I 0.01886 0.017 Nο 21 0.01793 0.001692 Ω None No 0.01 Param BRGWC-30I Barium (mg/L) 0.03158 0.02415 2 No 0.02787 0.006739 0 None No 0.01 Param BRGWC-32S Barium (mg/L) 0.03843 0.02484 2 Nο 21 0.03163 0.01231 0 None No 0.01 Param BRGWC-44 0.04867 2 Barium (mg/L) 0.05462 No 0.05164 0.003081 0 0.01 BRGWC-45 2 0 Barium (mg/L) 0.08892 0.06937 No 22 0.07915 0.01821 None No 0.01 Param. Barium (mg/L) BRGWC-47 0.04055 0.03182 2 No 22 0.03618 0.008132 0 None No 0.01 Param Barium (mg/L) BRGWC-52I 0.02848 0.0183 2 No 21 0.02339 0.009232 0 No 0.01 Param None 0.03694 Barium (mg/L) PZ-68D 0.1715 Nο 4 0.1042 0.02964 0 No 0.01 Param Beryllium (mg/L) BRGWC-27I 0.0005 0.00011 0.004 No 22 0.0002834 0.0001885 40.91 No 0.01 NP (normality) None Beryllium (mg/L) BRGWC-29I 0.001094 0.0008358 0.004 No 21 0.0009651 0.0002344 4.762 None No 0.01 Param. Beryllium (mg/L) BRGWC-45 0.0005 0.000079 0.004 No 23 0.000462 0.0001261 91.3 None No 0.01 NP (NDs) Beryllium (mg/L) BRGWC-47 0.0005 0.000056 0.004 Nο 22 0.000439 0.0001571 86.36 None No 0.01 NP (NDs) Cadmium (mg/L) BRGWC-27I 0.00009 0.005 22 0.0009164 0.0002707 90.91 0.01 NP (NDs) BRGWC-30I Cadmium (mg/L) 0.001 0.00014 0.005 22 0.0009191 0.000262 90.91 0.01 NP (NDs) Nο None No Cadmium (mg/L) BRGWC-32S 0.001 0.00011 0.005 No 22 0.0008768 0.0003173 86.36 No 0.01 NP (NDs) BRGWC-45 Cadmium (mg/L) 0.001 0.0002 0.005 23 0.0008499 0.0003349 82.61 0.01 NP (NDs) No None No Cadmium (mg/L) BRGWC-47 0.001 0.00017 0.005 No 22 0.0006241 0.0004222 54.55 No 0.01 NP (NDs) Chromium (mg/L) BRGWC-25I 0.01 0.0016 0.1 No 0.00917 0.002622 90.48 No 0.01 NP (NDs) Chromium (mg/L) BRGWC-27I 0.01 0.003 0.1 No 0.009238 0.002427 90.48 No 0.01 NP (NDs) None Chromium (mg/L) BRGWC-29I 0.02 0.01 0.1 No 0.01048 0.002182 95.24 No 0.01 NP (NDs) None Chromium (mg/L) BRGWC-30I 0.014 0.0051 0.1 No 21 0.009957 0.001414 90.48 None No 0.01 NP (NDs) Chromium (ma/L) BRGWC-32S 0.0014 0.1 No 0.005652 0.004263 47.62 NP (normality) BRGWC-45 NP (NDs) 0.0014 22 0.00877 0.003172 Chromium (mg/L) 0.01 0.1 Nο 86.36 None No 0.01 Chromium (mg/L) BRGWC-47 0.0018 No 22 0.00837 0.003545 81.82 0.01 NP (NDs) 0.01 0.1 No BRGWC-52I NP (NDs) Chromium (mg/L) 0.01 0.0017 0.1 No 21 0.009605 0.001811 95.24 No 0.01 None Cobalt (mg/L) BRGWC-25I 0.003608 0.014 No 21 0.004832 0.002109 4.762 0.005785 0.01 Param BRGWC-27I 0.007147 0.014 22 0 Cobalt (mg/L) 0.009934 No 0.008541 0.002596 No 0.01 Param Cobalt (mg/L) BRGWC-29I 0.009419 0.006747 0.014 No 21 0.008083 0.002422 4.762 None No 0.01 Param. Cobalt (mg/L) BRGWC-30I 0.00163 0.001 0.014 No 0.0038 0.006598 13.64 No 0.01 NP (normality) BRGWC-32S 0.001 0.014 0.001068 NP (NDs) Cobalt (mg/L) 0.0025 Nο 22 0.0003198 90.91 None Nο 0.01 BRGWC-44 Cobalt (mg/L) 0.000408 0.014 No 0.0009342 0.0001973 88.89 Kaplan-Meier 0.002 NP (NDs) Cobalt (mg/L) BRGWC-45 0.01111 0.004672 0.014 Nο 23 0.0106 0.01364 0 None ln(x) 0.01 Param. Cobalt (mg/L) BRGWC-47 0.001434 0.000455 0.014 22 0.001933 0.00284 31.82 Kaplan-Meier In(x) 0.01 Param Cobalt (mg/L) BRGWC-52I 0.00063 0.014 57.14 NP (NDs) 0.0012 No 21 0.001249 0.0009195 Kaplan-Meier No 0.01 Cobalt (mg/L) PZ-63I 0.02004 0.005372 0.0348 0.014 0.02742 0 0.01 Param. Cobalt (mg/L) PZ-68D 0.001315 0.0003166 0.014 0.0008158 0.0002199 0 0.01 Param No None No Combined Radium 226 + 228 (pCi/L) BRGWC-25I 2.104 0.7511 5 Nο 21 1.609 1.542 0 None 0.01 Param sqrt(x)

Confidence Intervals Summary Table - All Results

		Plant Branch C	lient: Southern	Company D	ata: Plant l	Branch AP	Printed 1/21/2	025, 1:51 F	РМ			
Constituent	Well	Upper Lim	n. Lower Lim.	Compliance	Sig. N	Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Combined Radium 226 + 228 (pCi/L)	BRGWC-27I	1.671	0.7732	5	No 21	1.222	0.8135	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	BRGWC-29I	1.999	1.309	5	No 21	1.654	0.6257	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	BRGWC-30I	1.901	0.7981	5	No 21	1.475	1.145	0	None	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	BRGWC-32S	1.257	0.5561	5	No 21	0.9067	0.6356	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	BRGWC-44	2.315	0.3329	5	No 9	1.322	1.135	0	None	ln(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	BRGWC-45	0.9907	0.4847	5	No 22	0.7377	0.4713	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	BRGWC-47	1.93	0.9463	5	No 22	1.438	0.916	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	BRGWC-52I	3.627	1.662	5	No 21	3.263	3.193	0	None	ln(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	PZ-68D	5.43	1.62	5	No 4	3.343	1.769	0	None	No	0.0625	NP (selected)
Fluoride (mg/L)	BRGWC-25I	0.245	0.151	4	No 22	0.2144	0.1206	4.545	None	ln(x)	0.01	Param.
Fluoride (mg/L)	BRGWC-27I	0.2674	0.1768	4	No 22	0.2221	0.08435	9.091	None	No	0.01	Param.
Fluoride (mg/L)	BRGWC-29I	0.186	0.09624	4	No 22	0.1628	0.1143	9.091	None	ln(x)	0.01	Param.
Fluoride (mg/L)	BRGWC-30I	0.3169	0.1458	4	No 22	0.2503	0.1968	4.545	None	sqrt(x)	0.01	Param.
Fluoride (mg/L)	BRGWC-32S	0.11	0.09	4	No 22	0.1057	0.04431	50	None	No	0.01	NP (normality)
Fluoride (mg/L)	BRGWC-44	0.2142	0.09695	4	No 9	0.1877	0.08533	22.22	Kaplan-Meie	r No	0.01	Param.
Fluoride (mg/L)	BRGWC-45	0.163	0.078	4	No 23	0.1697	0.2103	43.48	None	No	0.01	NP (normality)
Fluoride (mg/L)	BRGWC-47	0.2194	0.09107	4	No 23	0.2654	0.2163	47.83	Kaplan-Meie	r ln(x)	0.01	Param.
Fluoride (mg/L)	BRGWC-52I	0.2194	0.1376	4	No 21	0.1785	0.07413	4.762	None	No	0.01	Param.
Fluoride (mg/L)	PZ-68D	0.2776	0.08289	4	No 4	0.1803	0.04288	0	None	No	0.01	Param.
Lead (mg/L)	BRGWC-25I	0.002	0.00011	0.015	No 21	0.00191	0.0004124	95.24	None	No	0.01	NP (NDs)
Lead (mg/L)	BRGWC-27I	0.002	0.000063	0.015	No 21	0.001908	0.0004227	95.24	None	No	0.01	NP (NDs)
Lead (mg/L)	BRGWC-29I	0.002	0.0003	0.015	No 20	0.0009455	0.0007996	35	None	No	0.01	NP (normality)
Lead (mg/L)	BRGWC-30I	0.002	0.00011	0.015	No 21	0.00191	0.0004124	95.24	None	No	0.01	NP (NDs)
Lead (mg/L)	BRGWC-45	0.002	0.000595	0.015	No 22	0.001687	0.0006847	81.82	None	No	0.01	NP (NDs)
Lead (mg/L)	BRGWC-47	0.002	0.00012	0.015	No 22	0.001738	0.0006752	86.36	None	No	0.01	NP (NDs)
Lead (mg/L)	BRGWC-52I	0.002	0.000042	0.015	No 21	0.001907	0.0004273	95.24	None	No	0.01	NP (NDs)
Lead (mg/L)	PZ-68D	0.002	0.000504	0.015	No 4	0.001626	0.000748	75	None	No 		NP (NDs)
Lithium (mg/L)	BRGWC-27I	0.01	0.0014	0.089	No 21	0.004324	0.004119	33.33	None	No 	0.01	NP (normality)
Lithium (mg/L)	BRGWC-29I	0.003547	0.003078	0.089	No 21	0.003312	0.0004253	0	None	No	0.01	Param.
Lithium (mg/L)	BRGWC-30I	0.02116	0.01379	0.089	No 21	0.01748	0.006679	0	None	No	0.01	Param.
Lithium (mg/L)	BRGWC-32S	0.00514	0.0021	0.089	No 21	0.005127	0.006762	9.524	None	No	0.01	NP (normality)
Lithium (mg/L)	BRGWC-44 BRGWC-45	0.006541	0.004827	0.089	No 9	0.005684	0.0008877	0	None	No	0.01	Param.
Lithium (mg/L)	BRGWC-45	0.0043 0.04572	0.003 0.04152	0.089	No 21 No 22	0.004506 0.04362	0.002767 0.003917	19.05 0	None None	No No	0.01	NP (normality) Param.
Lithium (mg/L) Lithium (mg/L)	BRGWC-52I	0.04372	0.04132	0.089		0.04302	0.003917	4.762			0.01	Param.
Lithium (mg/L)	PZ-68D	0.01004	0.004283	0.089	No 21 No 4	0.007803	0.002081	0	None None	sqrt(x) No	0.01	Param.
Mercury (mg/L)	BRGWC-25I	0.0002	0.00083	0.009	No 19		0.002081	89.47	None	No	0.01	NP (NDs)
Mercury (mg/L)	BRGWC-27I	0.0002	0.00005	0.002	No 19	0.0001834	0.00004423	89.47	None	No	0.01	NP (NDs)
Mercury (mg/L)	BRGWC-29I	0.0002	0.000098	0.002	No 19		0.0001467	78.95	None	No	0.01	NP (NDs)
Mercury (mg/L)	BRGWC-30I	0.0002	0.000082	0.002	No 19		0.00005146	84.21	None	No	0.01	NP (NDs)
Mercury (mg/L)	BRGWC-32S	0.0002	0.0001	0.002	No 19		0.00004107	84.21	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	BRGWC-25I	0.01	0.001	0.1	No 20	0.00553	0.004588	50	None	No	0.01	NP (normality)
Molybdenum (mg/L)	BRGWC-27I	0.001	0.000213	0.1	No 20	0.0009212		90	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	BRGWC-30I	0.01	0.00123	0.1	No 20	0.006085	0.004448	55	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	BRGWC-45	0.000207	0.0002	0.1	No 21	0.0002615	0.0001462	76.19	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	BRGWC-47	0.01	0.000296	0.1	No 21	0.007685	0.004243	76.19	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	BRGWC-52I	0.01	0.0007	0.1	No 20	0.004976	0.004179	35	None	No	0.01	NP (normality)
Molybdenum (mg/L)	PZ-68D	0.0134	0.003249	0.1	No 4	0.007588	0.002383	0	None	sqrt(x)	0.01	Param.
Selenium (mg/L)	BRGWC-25I	0.005	0.0021	0.05	No 21	0.004862	0.0006328	95.24	None	No	0.01	NP (NDs)
Selenium (mg/L)	BRGWC-27I	0.005	0.0031	0.05	No 21	0.004062	0.001209	47.62	None	No	0.01	NP (normality)
Selenium (mg/L)	BRGWC-29I	0.005	0.0042	0.05	No 21	0.004733	0.001331	57.14	None	No	0.01	NP (NDs)
Selenium (mg/L)	BRGWC-30I	0.005	0.0045	0.05	No 21	0.00469	0.0007899	80.95	None	No	0.01	NP (NDs)
Selenium (mg/L)	BRGWC-32S	0.1763	0.1016	0.05	Yes 14	0.139	0.05274	0	None	No	0.01	Param.
Selenium (mg/L)	BRGWC-45	0.005	0.0029	0.05	No 22	0.004905	0.0004477	95.45	None	No	0.01	NP (NDs)
Selenium (mg/L)	BRGWC-47	0.005	0.0028	0.05	No 22	0.004164	0.001417	72.73	None	No	0.01	NP (NDs)
Thallium (mg/L)	BRGWC-29I	0.002	0.00017	0.002	No 21	0.0008724	0.0009065	38.1	None	No	0.01	NP (normality)

Non-Parametric Confidence Interval



Constituent: Antimony Analysis Run 1/21/2025 1:45 PM View: Pond BCD - Confidence Intervals
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

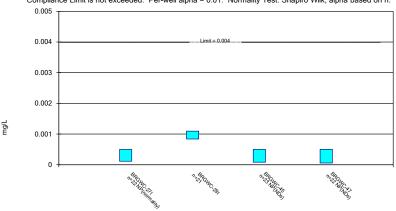
Parametric Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

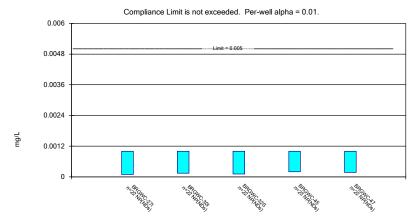
Constituent: Barium Analysis Run 1/21/2025 1:45 PM View: Pond BCD - Confidence Intervals
Plant Branch Client: Southern Company Data: Plant Branch AP

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.



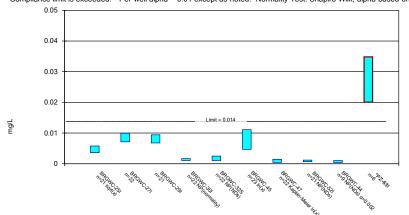
Constituent: Arsenic Analysis Run 1/21/2025 1:45 PM View: Pond BCD - Confidence Intervals
Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

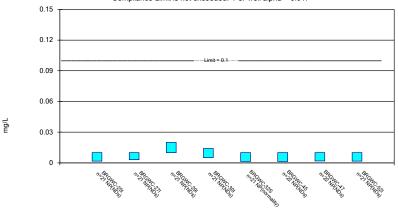
Non-Parametric Confidence Interval



Constituent: Cadmium Analysis Run 1/21/2025 1:45 PM View: Pond BCD - Confidence Intervals Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

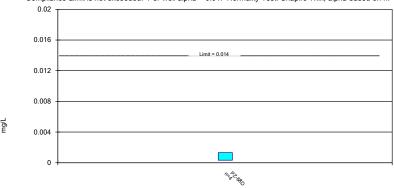
Parametric and Non-Parametric (NP) Confidence Interval


Compliance limit is exceeded.* Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Cobalt Analysis Run 1/21/2025 1:45 PM View: Pond BCD - Confidence Intervals Plant Branch Client: Southern Company Data: Plant Branch AP

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01



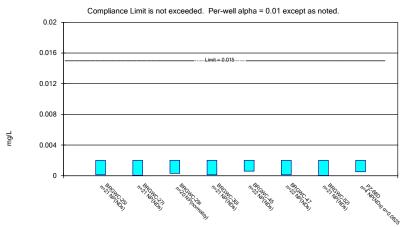
Constituent: Chromium Analysis Run 1/21/2025 1:45 PM View: Pond BCD - Confidence Intervals Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

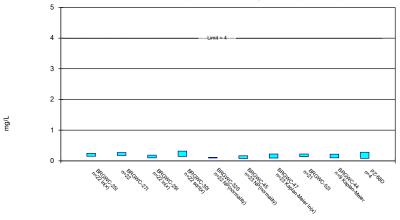
pCi/L


Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n. 4.8 3.6 2.4

Constituent: Combined Radium 226 + 228 Analysis Run 1/21/2025 1:45 PM View: Pond BCD - Confidenc Plant Branch Client: Southern Company Data: Plant Branch AP

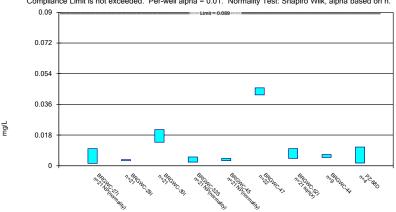
Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG


Non-Parametric Confidence Interval

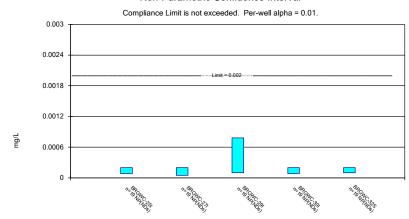
Constituent: Lead Analysis Run 1/21/2025 1:45 PM View: Pond BCD - Confidence Intervals Plant Branch Client: Southern Company Data: Plant Branch AP

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

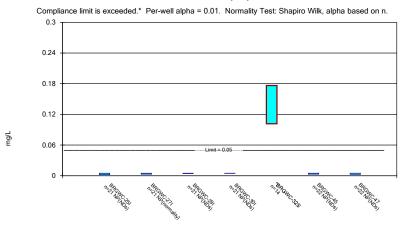


Constituent: Fluoride Analysis Run 1/21/2025 1:45 PM View: Pond BCD - Confidence Intervals Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Non-Parametric Confidence Interval

Constituent: Mercury Analysis Run 1/21/2025 1:45 PM View: Pond BCD - Confidence Intervals
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

0.15

0.12

0.09

0.06

0.03

Constituent: Molybdenum Analysis Run 1/21/2025 1:45 PM View: Pond BCD - Confidence Intervals

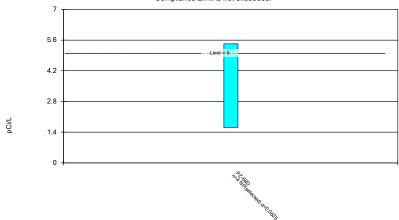
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

0.004


0.0024

0.0016

0.0008

Non-Parametric Confidence Interval

Compliance Limit is not exceeded.

Normality testing disabled.

Constituent: Combined Radium 226 + 228 Analysis Run 1/21/2025 1:47 PM View: Pond BCD - Confidenc
Plant Branch Client: Southern Company Data: Plant Branch AP

Confidence Interval

 $\label{lem:constituent: Antimony (mg/L)} Constituent: Antimony (mg/L) \quad Analysis Run 1/21/2025 1:51 \ PM \quad View: Pond BCD - Confidence Intervals \\ Plant Branch \quad Client: Southern Company \quad Data: Plant Branch AP$

	BRGWC-29I	BRGWC-30I	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	PZ-68D
9/6/2016		<0.003					
9/8/2016	<0.003		<0.003				
11/21/2016	<0.003	<0.003	<0.003				
2/22/2017	<0.003	<0.003	<0.003				
6/14/2017	0.0007 (J)	<0.003	<0.003				
9/27/2017	<0.003	<0.003	<0.003				
2/14/2018	<0.003	<0.003	<0.003				
3/6/2018				<0.003	<0.003		
5/1/2018				<0.003	<0.003 (D)		
6/27/2018	<0.003		<0.003		<0.003		
6/28/2018		<0.003		<0.003			
7/31/2018				<0.003			
8/1/2018					<0.003		
8/10/2018						<0.003	
8/23/2018				<0.003	<0.003	0.00085 (J)	
9/19/2018				<0.003	<0.003	<0.003	
10/29/2018				<0.003	<0.003	<0.003	
11/28/2018				<0.003	<0.003	<0.003	
12/18/2018	<0.003	<0.003					
12/19/2018			<0.003		<0.003		
12/20/2018				0.0024 (J)		<0.003	
1/17/2019				. ,		<0.003	
2/13/2019						<0.003	
8/27/2019		<0.003	<0.003				
8/28/2019	<0.003			0.00046 (J)	<0.003		
8/29/2019						<0.003	
10/16/2019	<0.003				<0.003	<0.003	
12/3/2019				0.00088 (J)			
12/4/2019		<0.003	<0.003				
3/4/2020	<0.003				<0.003	0.00043 (J)	
3/5/2020		<0.003	0.0014 (J)	0.0016 (J)			
8/19/2020	<0.003	<0.003	<0.003				
8/20/2020				0.0031	<0.003	<0.003	
9/15/2020	<0.003						
9/16/2020		<0.003	<0.003	0.0012 (J)	0.00035 (J)		
9/17/2020						<0.003	
3/2/2021				0.0014 (J)	<0.003		
3/3/2021	<0.003	<0.003					
3/4/2021			<0.003			0.00091 (J)	
9/23/2021				<0.003	<0.003		
9/28/2021	<0.003	<0.003	<0.003			<0.003	
2/2/2022		0.0013 (J)	<0.003	<0.003	<0.003	<0.003	
2/3/2022	<0.003						
8/23/2022					<0.003		
8/24/2022	<0.003	<0.003					
8/25/2022			<0.003	<0.003		<0.003	
1/24/2023			<0.003				
1/25/2023				<0.003		<0.003	
1/26/2023	<0.003	<0.003			<0.003		
2/1/2023							0.00176 (J)
8/31/2023		<0.003	<0.003				
9/6/2023	<0.003			<0.003	<0.003	<0.003	

Confidence Interval

Constituent: Antimony (mg/L) Analysis Run 1/21/2025 1:51 PM View: Pond BCD - Confidence Intervals
Plant Branch Client: Southern Company Data: Plant Branch AP

	BRGWC-29I	BRGWC-30I	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	PZ-68D
9/8/2023							<0.003
2/10/2024		<0.003	<0.003		<0.003		
2/13/2024	<0.003						
2/14/2024				<0.003		<0.003	<0.003
8/27/2024	<0.003						
8/28/2024		<0.003	<0.003		<0.003	<0.003	
8/29/2024				<0.003			<0.003
Mean	0.00289	0.002919	0.002924	0.002547	0.00288	0.002676	0.00269
Std. Dev.	0.0005019	0.000371	0.0003491	0.0008329	0.000565	0.0008181	0.00062
Upper Lim.	0.003	0.003	0.003	0.003	0.003	0.003	0.003
Lower Lim.	0.0007	0.0013	0.0014	0.0024	0.00035	0.00091	0.00176

Confidence Interval

 $Constituent: Arsenic \, (mg/L) \quad Analysis \, Run \, 1/21/2025 \, 1:51 \, PM \quad View: Pond \, BCD - Confidence \, Intervals$

Plant Branch Client: Southern Company Data: Plant Branch AP

9/6/20	116	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I <0.005	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44
9/8/20		<0.005	<0.005	<0.005	~ 0.005	<0.005				
11/17		<0.005	~ 0.003	<0.003		~0.003				
11/18		~0.003	<0.005							
			<0.003	0.0019 (J)	<0.00E	<0.00E				
11/21		<0.00E	<0.00E	0.0019 (3)	<0.005	<0.005				
2/21/2		<0.005	<0.005	0.005	.0.005					
2/22/2				<0.005	<0.005	<0.005				
6/13/2		0.0006 (J)	0.0009 (J)							
6/14/2				0.002 (J)	<0.005	<0.005				
9/27/2		<0.005	0.0007 (J)	0.0016 (J)	<0.005	<0.005				
2/14/2		<0.005	<0.005	<0.005	<0.005	<0.005				
3/6/20							<0.005 (X)	<0.005 (X)		<0.005 (X)
5/1/20							0.0021 (J)	0.0018 (JD)		<0.005
6/26/2		0.00072 (J)								
6/27/2			<0.005	<0.005		<0.005		0.0016 (J)		
6/28/2					<0.005 (X)		<0.005 (X)			
7/31/2							<0.005			
8/1/20								0.0028 (J)		
8/10/2	2018								<0.005	
8/23/2	2018						0.00075 (J)	<0.005	<0.005	
9/19/2	2018						<0.005	<0.005	0.0013 (J)	
10/29	/2018						<0.005	0.0012 (J)	0.0038 (J)	
11/28	/2018						0.00096 (J)	0.0019 (J)	0.0016 (J)	
12/18	/2018	0.00091 (J)		<0.005	<0.005					
12/19	/2018					<0.005		0.00075 (J)		
12/20	/2018		<0.005				<0.005		0.0032 (J)	
1/17/2	2019								0.0032 (J)	
2/13/2	2019								<0.005	
8/27/2	2019	<0.005			<0.005	<0.005				
8/28/2	2019		0.0014 (J)	0.00051 (J)			0.00058 (J)	0.0018 (J)		
8/29/2	2019								0.00067 (J)	
10/15	/2019	0.00052 (J)								
10/16	/2019			0.00065 (J)				<0.005	0.0026 (J)	
12/3/2	2019						0.0007 (J)			
12/4/2	2019		0.0011 (J)		0.00056 (J)	0.00053 (J)				
3/4/20	020	<0.005	<0.005	0.00044 (J)				0.00049 (J)	0.0047 (J)	
3/5/20	020				<0.005	<0.005	<0.005			
8/19/2	2020	<0.005	<0.005	<0.005	<0.005	<0.005				
8/20/2	2020						<0.005	0.00089 (J)	0.0031 (J)	
9/15/2	2020	<0.005		<0.005						
9/16/2	2020		<0.005		<0.005	<0.005	<0.005	<0.005		
9/17/2	2020								<0.005	
3/2/20)21	<0.005					<0.005	<0.005		
3/3/20)21		<0.005	0.0015 (J)	<0.005					
3/4/20)21					<0.005			0.003 (J)	
9/23/2	2021						<0.005	0.002 (J)		
9/28/2		<0.005	<0.005	<0.005	<0.005	<0.005			<0.005	<0.005
2/2/20		<0.005			<0.005	<0.005	<0.005	0.0056	<0.005	0.004 (J)
2/3/20				<0.005						• •
2/4/20			<0.005							
8/23/2		<0.005						0.00228 (J)		
8/24/2				<0.005	0.00283 (J)			.,		
					• •					

	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44
8/25/2022		<0.005			<0.005	<0.005		<0.005	<0.005
1/24/2023					<0.005				
1/25/2023		<0.005				0.00225 (J)		<0.005	0.00221 (J)
1/26/2023	<0.005		<0.005	0.00208 (J)			0.0024 (J)		
2/1/2023									
8/31/2023				<0.005	<0.005				
9/6/2023	<0.005	<0.005	<0.005			<0.005	0.0038 (J)	<0.005	
9/8/2023									<0.005
2/10/2024				0.002 (J)	<0.005		<0.005		<0.005
2/13/2024	<0.005	<0.005	<0.005						
2/14/2024						<0.005		<0.005	
8/27/2024		<0.005	<0.005						<0.005
8/28/2024				<0.005	<0.005		<0.005	<0.005	
8/29/2024	<0.005					<0.005			
Mean	0.004179	0.004243	0.003743	0.004403	0.004787	0.00397	0.00315	0.003913	0.004579
Std. Dev.	0.001736	0.001604	0.001859	0.001313	0.0009754	0.00176	0.001772	0.001424	0.0009479
Upper Lim.	0.005	0.005	0.005	0.005	0.005	0.005	0.0023	0.005	0.005
Lower Lim.	0.00091	0.0014	0.0016	0.00283	0.00053	0.00225	0.001182	0.003	0.00221

	Plant Branch	Client: Southern Company	Data: Plant Branch AP	
PZ-68D				
9/6/2016				
9/8/2016				
11/17/2016				
11/18/2016				
11/21/2016				
2/21/2017				
2/22/2017				
6/13/2017				
6/14/2017				
9/27/2017				
2/14/2018				
3/6/2018				
5/1/2018				
6/26/2018				
6/27/2018				
6/28/2018				
7/31/2018				
8/1/2018				
8/10/2018				
8/23/2018				
9/19/2018				
10/29/2018				
11/28/2018				
12/18/2018				
12/19/2018				
12/20/2018				
1/17/2019				
2/13/2019				
8/27/2019				
8/28/2019				
8/29/2019				
10/15/2019				
10/16/2019				
12/3/2019				
12/4/2019				
3/4/2020				
3/5/2020				
8/19/2020				
8/20/2020				
9/15/2020 9/16/2020				
9/17/2020				
3/2/2021				
3/3/2021				
3/4/2021				
9/23/2021				
9/28/2021				
2/2/2022				
2/3/2022				
2/4/2022				
8/23/2022				
8/24/2022				

	PZ-68D
8/25/2022	
1/24/2023	
1/25/2023	
1/26/2023	
2/1/2023	0.0058
8/31/2023	
9/6/2023	
9/8/2023	0.00342 (J)
2/10/2024	
2/13/2024	
2/14/2024	<0.005
8/27/2024	
8/28/2024	
8/29/2024	<0.005
Mean	0.004805
Std. Dev.	0.0009974
Upper Lim.	0.006826
Lower Lim.	0.0001393

0/0/0040	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44
9/6/2016	0.0070	0.0104	0.0100	0.0206	0.0500				
9/8/2016	0.0378	0.0184	0.0199		0.0593				
11/17/2016	0.0448	0.0170							
11/18/2016		0.0173	0.0001 (1)	0.0007 (1)	0.0500 (DD)				
11/21/2016	0.0447	0.045	0.0221 (J)	0.0237 (J)	0.0532 (BR)				
2/21/2017	0.0447	0.015							
2/22/2017			0.0179	0.0219	0.0498				
6/13/2017	0.0351	0.0143							
6/14/2017			0.0157	0.0197	0.0421				
9/27/2017	0.0383	0.017	0.0165	0.0213	0.0411				
2/14/2018	0.0327	0.0166	0.0163	0.0236	0.0417				
3/6/2018						0.1	0.0519		0.0461
5/1/2018						0.084	0.057 (D)		0.052
6/26/2018	0.031								
6/27/2018		0.015	0.017		0.038		0.046		
6/28/2018				0.023		0.067			
7/31/2018						0.087 (J+X)			
8/1/2018							0.043 (J+X)		
8/10/2018								0.038	
8/23/2018						0.084	0.038	0.03 (JX)	
9/19/2018						0.086	0.036	0.03	
10/29/2018						0.098 (J+X)	0.041 (J+X)	0.025 (J+X)	
11/28/2018						0.11	0.039	0.017	
12/18/2018	0.03		0.017	0.029					
12/19/2018					0.036		0.04		
12/20/2018		0.015				0.093		0.013	
1/17/2019								0.017	
2/13/2019								0.025	
8/27/2019	0.027			0.027	0.032				
8/28/2019		0.019	0.02			0.11	0.035		
8/29/2019								0.017	
10/15/2019	0.027								
10/16/2019			0.019				0.032	0.015	
12/3/2019						0.099			
12/4/2019		0.016		0.021	0.028				
3/4/2020	0.026	0.015	0.018				0.038	0.022	
3/5/2020				0.025	0.026	0.078			
8/19/2020	0.027	0.016	0.019	0.026	0.025				
8/20/2020						0.083	0.035	0.017	
9/15/2020	0.024		0.017						
9/16/2020		0.016		0.022	0.024	0.085	0.028		
9/17/2020								0.02	
3/2/2021	0.026					0.061	0.036		
3/3/2021		0.016	0.021	0.028					
3/4/2021					0.024			0.019	
9/23/2021						0.064	0.031		
9/28/2021	0.023	0.013	0.017	0.035	0.02			0.013	0.049
2/2/2022	0.023		0.010	0.031	0.023	0.063	0.028	0.013	0.052
2/3/2022		0.045	0.016						
2/4/2022	0.00=0	0.015					0.000-		
8/23/2022	0.0259		0.0475	0.0000			0.0285		
8/24/2022			0.0175	0.0389					

	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44
8/25/2022		0.0161			0.0231	0.0574		0.0179	0.056
1/24/2023					0.0182				
1/25/2023		0.0166				0.0695		0.0249	0.0498
1/26/2023	0.0293		0.018	0.0397			0.0311		
2/1/2023									
8/31/2023				0.04	0.0243				
9/6/2023	0.0271	0.0151	0.0174			0.0524	0.028	0.0415	
9/8/2023									0.0555
2/10/2024				0.0349	0.0192		0.0278		0.052
2/13/2024	0.0276	0.0155	0.0179						
2/14/2024						0.0497		0.0414	
8/27/2024		0.0164	0.0163						0.0524
8/28/2024				0.0339	0.0163		0.0257	0.0345	
8/29/2024	0.0291					0.0602			
Mean	0.0303	0.01592	0.01793	0.02787	0.03163	0.07915	0.03618	0.02339	0.05164
Std. Dev.	0.006413	0.001344	0.001692	0.006739	0.01231	0.01821	0.008132	0.009232	0.003081
Upper Lim.	0.03348	0.01666	0.01886	0.03158	0.03843	0.08892	0.04055	0.02848	0.05462
Lower Lim.	0.02673	0.01518	0.017	0.02415	0.02484	0.06937	0.03182	0.0183	0.04867

	Plant Branch	Client: Southern Company	Data: Plant Branch AP
PZ-68D			
9/6/2016			
9/8/2016			
11/17/2016			
11/18/2016			
11/21/2016			
2/21/2017			
2/22/2017			
6/13/2017			
6/14/2017			
9/27/2017			
2/14/2018			
3/6/2018			
5/1/2018			
6/26/2018			
6/27/2018			
6/28/2018			
7/31/2018			
8/1/2018			
8/10/2018			
8/23/2018			
9/19/2018			
10/29/2018			
11/28/2018			
12/18/2018			
12/19/2018			
12/20/2018			
1/17/2019			
2/13/2019			
8/27/2019			
8/28/2019 8/29/2019			
10/15/2019			
10/16/2019			
12/3/2019			
12/4/2019			
3/4/2020			
3/5/2020			
8/19/2020			
8/20/2020			
9/15/2020			
9/16/2020			
9/17/2020			
3/2/2021			
3/3/2021			
3/4/2021			
9/23/2021			
9/28/2021			
2/2/2022			
2/3/2022			
2/4/2022			
8/23/2022			
8/24/2022			

	PZ-68D
8/25/2022	
1/24/2023	
1/25/2023	
1/26/2023	
2/1/2023	0.145
8/31/2023	
9/6/2023	
9/8/2023	0.107
2/10/2024	
2/13/2024	
2/14/2024	0.0853
8/27/2024	
8/28/2024	
8/29/2024	0.0796
Mean	0.1042
Std. Dev.	0.02964
Upper Lim.	0.1715
Lower Lim.	0.03694

 $\label{lem:constituent: Beryllium (mg/L)} Constituent: Beryllium (mg/L) \quad Analysis Run 1/21/2025 \ 1:51 \ PM \quad View: Pond BCD - Confidence Intervals \\ Plant Branch \quad Client: Southern Company \quad Data: Plant Branch AP$

	BRGWC-27I	BRGWC-29I	BRGWC-45	BRGWC-47
9/8/2016	0.0002 (J)	0.0011 (J)		
11/18/2016	0.0002 (J)			
11/21/2016		0.0012 (J)		
2/21/2017	0.0002 (J)			
2/22/2017		0.0014 (J)		
6/13/2017	0.0002 (J)			
6/14/2017		0.0012 (J)		
9/27/2017	0.0001 (J)	0.001 (J)		
2/14/2018	<0.0005	<0.003		
3/6/2018			<0.0005	<0.0005
5/1/2018			<0.0005	<0.0005 (D)
6/27/2018	0.00014 (J)	0.0008 (J)		<0.0005
6/28/2018			<0.0005	
7/31/2018			<0.0005	
8/1/2018				<0.0005
8/23/2018			7.9E-05 (J)	5.5E-05 (J)
9/19/2018			<0.0005	<0.0005
10/29/2018			<0.0005	<0.0005
11/28/2018			<0.0005	5.6E-05 (J)
12/18/2018		0.00071 (J)		
12/19/2018				<0.0005 (X)
12/20/2018	<0.0005 (X)		<0.0005	
8/28/2019	0.00012 (J)	0.0008 (J)	<0.0005	<0.0005
10/16/2019		0.00072 (J)		<0.0005
10/17/2019	<0.0005		<0.0005	
12/3/2019			<0.0005	
12/4/2019	0.00012 (J)			
3/4/2020	0.00012 (J)	0.00073 (J)		<0.0005
3/5/2020			<0.0005	
8/19/2020	9.9E-05 (J)	0.00074 (J)		
8/20/2020			4.6E-05 (J)	4.7E-05 (J)
9/15/2020		0.00071 (J)		
9/16/2020	0.00011 (J)		<0.0005	<0.0005
3/2/2021			<0.0005	<0.0005
3/3/2021	7.1E-05 (J)	0.00094		
9/23/2021	.0.005	0.00070	<0.0005	<0.0005
9/28/2021	<0.0005	0.00079	-0.0005	10,0005
2/2/2022		0.00000	<0.0005	<0.0005
2/3/2022	E 4E 0E (I)	0.00083		
2/4/2022	5.4E-05 (J)			10,0005
8/23/2022		0.000945		<0.0005
8/24/2022	<0.000E	0.000845	<0.000E	
8/25/2022	<0.0005		<0.0005	
1/25/2023 1/26/2023	<0.0005	0.00109	<0.0005	<0.0005
	<0.000E		<0.000E	<0.0005
9/6/2023 2/10/2024	<0.0005	0.00113	<0.0005	<0.0005
	<0.0005	0.00114		~0.0000
2/13/2024 2/14/2024	<0.0005	0.00114	<0.0005	
8/27/2024	<0.0005	0.000892	-0.0000	
8/28/2024	-0.0003	0.000032		<0.0005
8/29/2024			<0.0005	~0.0000
5,25,2027			-0.0000	

 $\label{lem:constituent: Beryllium (mg/L)} Constituent: Beryllium (mg/L) \quad Analysis Run 1/21/2025 \ 1:51 \ PM \quad View: Pond BCD - Confidence Intervals \\ Plant Branch \quad Client: Southern Company \quad Data: Plant Branch AP$

	BRGWC-27I	BRGWC-29I	BRGWC-45	BRGWC-47
Mean	0.0002834	0.0009651	0.000462	0.000439
Std. Dev.	0.0001885	0.0002344	0.0001261	0.0001571
Upper Lim.	0.0005	0.001094	0.0005	0.0005
Lower Lim.	0.00011	0.0008358	7.9E-05	5.6E-05

 $\label{lem:constituent: Cadmium (mg/L)} Constituent: Cadmium (mg/L) \quad Analysis Run 1/21/2025 1:51 \ PM \quad View: Pond BCD - Confidence Intervals \\ Plant Branch \quad Client: Southern Company \quad Data: Plant Branch AP$

	BRGWC-27I	BRGWC-30I	BRGWC-32S	BRGWC-45	BRGWC-47
9/6/2016		<0.001			
9/8/2016	7E-05 (J)		<0.001		
11/18/2016	9E-05 (J)				
11/21/2016		8E-05 (J)	8E-05 (J)		
2/21/2017	<0.001				
2/22/2017		<0.001	0.0001 (J)		
6/13/2017	<0.001				
6/14/2017		<0.001	<0.001		
9/27/2017	<0.001	<0.001	<0.001		
2/14/2018	<0.001	<0.001	<0.001		
3/6/2018				<0.001	<0.001
5/1/2018				<0.001	<0.001 (D)
6/27/2018	<0.001		0.00011 (J)		0.00014 (J)
6/28/2018		<0.001	. ,	<0.001	· ·
7/31/2018				<0.001	
8/1/2018					0.00011 (J)
8/23/2018				<0.001	0.00018 (J)
9/19/2018				<0.001	0.00015 (J)
10/29/2018				9.8E-05 (J)	0.00019 (J)
11/28/2018				<0.001	0.00022 (J)
12/18/2018		<0.001			
12/19/2018		0.001	<0.001 (X)		<0.001
12/20/2018	<0.001		10.001 (X)	<0.001 (X)	-0.001
8/27/2019	-0.501	<0.001	<0.001	-0.501 (A)	
8/28/2019	<0.001	-0.001	-0.001	<0.001	0.00017 (J)
10/16/2019	-0.00 I			-0.00 I	0.00017 (3) 0.00018 (J)
10/10/2019	<0.001	<0.001	<0.001	<0.001	3.333 (0)
12/3/2019	0.501	0.501	5.501	0.0001 0.00011 (J)	
12/4/2019	<0.001	<0.001	<0.001	0.00011(0)	
3/4/2020	<0.001	-0.00 I	-0.00 I		0.00024 (J)
3/5/2020	~0.001	<0.001	<0.001	<0.001	0.00027 (0)
8/19/2020	<0.001	<0.001	<0.001	-0.00 I	
8/20/2020	-0.00 I	-0.00 i	50.00 I	0.00014 (J)	<0.001
	<0.001	<0.001	<0.001		<0.001
9/16/2020	<0.001	~ 0.001	~ 0.001	<0.001	<0.001
3/2/2021 3/3/2021	<0.001	<0.001		0.0002 (J)	N.00 I
	<0.001	<0.001	<0.001		
3/4/2021 9/23/2021			<0.001	<0.001	<0.001
9/28/2021	<0.001	<0.001	<0.001	<0.001	<0.001
	<0.001	<0.001	<0.001	<0.001	0.00015 (J)
2/2/2022	~0.001	0.00014 (J)	<0.001	<0.001	0.00013 (J)
2/4/2022	<0.001				<0.001
8/23/2022		-0.001			<0.001
8/24/2022	-0.004	<0.001	-0.004	-0.004	
8/25/2022	<0.001		<0.001	<0.001	
1/24/2023	-0.001		<0.001	-0.004	
1/25/2023	<0.001	-0.004		<0.001	-0.004
1/26/2023		<0.001			<0.001
8/31/2023	.0.001	<0.001	<0.001	.0.651	0.004
9/6/2023	<0.001			<0.001	<0.001
2/10/2024		<0.001	<0.001		<0.001
2/13/2024	<0.001				
2/14/2024				<0.001	

 $\label{lem:constituent: Cadmium (mg/L)} Constituent: Cadmium (mg/L) \quad Analysis Run 1/21/2025 1:51 \ PM \quad View: Pond BCD - Confidence Intervals \\ Plant Branch \quad Client: Southern Company \quad Data: Plant Branch AP$

	BRGWC-27I	BRGWC-30I	BRGWC-32S	BRGWC-45	BRGWC-47
8/27/2024	<0.001				
8/28/2024		<0.001	<0.001		<0.001
8/29/2024				<0.001	
Mean	0.0009164	0.0009191	0.0008768	0.0008499	0.0006241
Std. Dev.	0.0002707	0.000262	0.0003173	0.0003349	0.0004222
Upper Lim.	0.001	0.001	0.001	0.001	0.001
Lower Lim.	9E-05	0.00014	0.00011	0.0002	0.00017

	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I
9/6/2016				<0.01				
9/8/2016	<0.01	0.001 (J)	<0.01		<0.01			
11/17/2016	<0.01							
11/18/2016		<0.01						
11/21/2016			<0.01	<0.01	<0.01			
2/21/2017	<0.01	<0.01						
2/22/2017			<0.01	<0.01	0.0012 (J)			
6/13/2017	<0.01	<0.01						
6/14/2017			<0.01	<0.01	0.0009 (J)			
9/27/2017	<0.01	<0.01	<0.01	<0.01	0.0011 (J)			
2/14/2018	<0.01	<0.01	<0.01	<0.01	<0.01			
3/6/2018						<0.01	<0.01	
5/1/2018						<0.01	<0.01 (D)	
6/26/2018	<0.01							
6/27/2018		<0.01	<0.01		<0.01		<0.01	
6/28/2018				<0.01		<0.01		
7/31/2018						<0.01		
8/1/2018							<0.01	
8/10/2018								0.0017 (J)
8/23/2018						<0.01	<0.01	<0.01
9/19/2018						<0.01	<0.01	<0.01
10/29/2018						<0.01	<0.01	<0.01
11/28/2018						<0.01	<0.01	<0.01
12/18/2018	<0.01		<0.01	<0.01				
12/19/2018					<0.01		0.0018 (J)	
12/20/2018		0.003 (J)				<0.01		<0.01
1/17/2019								<0.01
2/13/2019								<0.01
8/27/2019	0.0016 (J)			0.0051 (J)	0.0019 (J)			
8/28/2019		<0.01	<0.01			<0.01	0.00092 (J)	
8/29/2019								<0.01
10/15/2019	0.00098 (J)							
10/16/2019			<0.01				<0.01	<0.01
12/3/2019						<0.01		
12/4/2019		<0.01		<0.01	0.0014 (J)			
3/4/2020	<0.01	<0.01	0.02				0.00078 (J)	<0.01
3/5/2020				<0.01	0.0014 (J)	0.00053 (J)		
8/19/2020	<0.01	<0.01	<0.01	<0.01	0.0021 (J)			
8/20/2020						0.001 (J)	0.00064 (J)	<0.01
9/15/2020	<0.01		<0.01					
9/16/2020		<0.01		0.014	0.0025 (J)	0.0014 (J)	<0.01	
9/17/2020								<0.01
3/2/2021	<0.01					<0.01	<0.01	
3/3/2021		<0.01	<0.01	<0.01				
3/4/2021					0.002 (J)			<0.01
9/23/2021						<0.01	<0.01	
9/28/2021	<0.01	<0.01	<0.01	<0.01	0.0021 (J)			<0.01
2/2/2022	<0.01			<0.01	0.0021 (J)	<0.01	<0.01	<0.01
2/3/2022			<0.01					
2/4/2022		<0.01						
8/23/2022	<0.01						<0.01	
8/24/2022			<0.01	<0.01				

		BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I
8/2	5/2022		<0.01			<0.01	<0.01		<0.01
1/2	4/2023					<0.01			
1/2	5/2023		<0.01				<0.01		<0.01
1/2	6/2023	<0.01		<0.01	<0.01			<0.01	
8/3	1/2023				<0.01	<0.01			
9/6/	/2023	<0.01	<0.01	<0.01			<0.01	<0.01	<0.01
2/10	0/2024				<0.01	<0.01		<0.01	
2/13	3/2024	<0.01	<0.01	<0.01					
2/14	4/2024						<0.01		<0.01
8/2	7/2024		<0.01	<0.01					
8/28	8/2024				<0.01	<0.01		<0.01	<0.01
8/29	9/2024	<0.01					<0.01		
Mea	an	0.00917	0.009238	0.01048	0.009957	0.005652	0.00877	0.00837	0.009605
Std	. Dev.	0.002622	0.002427	0.002182	0.001414	0.004263	0.003172	0.003545	0.001811
Upp	oer Lim.	0.01	0.01	0.02	0.014	0.01	0.01	0.01	0.01
Lov	ver Lim.	0.0016	0.003	0.01	0.0051	0.0014	0.0014	0.0018	0.0017

9/6/2016	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44
9/8/2016	0.0073 (J)	0.0149	0.0122	0.0006 (J)	0.0025 (J)				
11/17/2016	0.0075 (J)	0.0149	0.0122		0.0023 (3)				
11/17/2016	0.0080 (3)	0.0131							
11/21/2016		0.0131	0.0122	<0.04	0.001 (J)				
2/21/2017	0.0079 (J)	0.0099 (J)	0.0122	10.04	0.001 (0)				
2/22/2017	0.0075 (0)	0.0055 (0)	0.0136	0.0016 (J)	<0.001				
6/13/2017	0.0083 (J)	0.0094 (J)	0.0130	0.0010 (0)	40.001				
6/14/2017	0.0005 (0)	0.0054 (0)	0.0113	0.0015 (J)	<0.001				
9/27/2017	0.0087 (J)	0.0095 (J)	0.0094 (J)	0.0007 (J)	<0.001				
2/14/2018	<0.01	0.0112	<0.01	<0.04	<0.001				
3/6/2018	-0.01	0.0112	-0.01	-0.04	-0.001	0.0162	<0.001		<0.001
5/1/2018						0.015	0.0125 (D)		<0.001
6/26/2018	0.006 (J)					0.010	0.0120(2)		0.001
6/27/2018	0.000 (0)	0.0093 (J)	0.0069 (J)		<0.001		0.0076 (J)		
6/28/2018		0.0000 (0)	0.0000 (0)	0.00078 (J)	10.001	0.01	0.0070 (0)		
7/31/2018				0.00070 (0)		0.0098 (J)			
8/1/2018							0.004 (J)		
8/10/2018							0.001 (0)	0.0043 (J)	
8/23/2018						0.0093 (J)	0.0016 (J)	0.0026 (J)	
9/19/2018						0.0084 (J)	0.0018 (J)	0.0028 (J)	
10/29/2018						0.0064 (J)	0.0014 (J)	0.0015 (J)	
11/28/2018						0.0071 (J)	0.0016 (J)	0.0012 (J)	
12/18/2018	0.0055 (J)		0.0067 (J)	0.0011 (J)		. ,	()	()	
12/19/2018	. ,		, ,	.,	<0.001		0.0014 (J)		
12/20/2018		0.0081 (J)				0.069	, ,	<0.001	
1/17/2019		. ,						<0.001	
2/13/2019								<0.001	
8/27/2019	0.0042 (J)			0.0014 (J)	<0.001				
8/28/2019		0.01	0.0061			0.011	0.00037 (J)		
8/29/2019								0.00063 (J)	
10/15/2019	0.0043 (J)								
10/16/2019			0.0058				0.00032 (J)	<0.001	
10/17/2019		0.011 (J)		<0.04	<0.001	0.0098 (J)			
12/3/2019						0.0076			
12/4/2019		0.0086		0.0012 (J)	<0.001				
3/4/2020	0.0039 (J)	0.008	0.007				0.0011 (J)	<0.001	
3/5/2020				0.0011 (J)	<0.001	0.0091			
8/19/2020	0.0039 (J)	0.0078	0.0065	0.0008 (J)	<0.001				
8/20/2020						0.022	0.00043 (J)	<0.001	
9/15/2020	0.0035 (J)		0.0064						
9/16/2020		0.008		0.0008 (J)	<0.001	0.0049 (J)	0.00053 (J)		
9/17/2020								0.00046 (J)	
3/2/2021	0.003 (J)					0.0057	0.0005 (J)		
3/3/2021		0.0062	0.0095	0.0015 (J)					
3/4/2021					<0.001			<0.001	
9/23/2021						0.0049 (J)	<0.001		
9/28/2021	0.0029 (J)	0.0047 (J)	0.0069	0.001 (J)	<0.001			<0.001	<0.001
2/2/2022	0.0027 (J)			0.0012 (J)	<0.001	0.0054	<0.001	<0.001	<0.001
2/3/2022			0.0077						
2/4/2022		0.0076							
8/23/2022	0.00342						<0.001		

	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44
8/24/2022			0.0066	0.00163					
8/25/2022		0.0079			<0.001	0.00357		<0.001	<0.001
1/24/2023					<0.001				
1/25/2023		0.00711				0.00258		<0.001	<0.001
1/26/2023	0.0032		0.00823	0.00158			0.000376 (J)		
1/30/2023									
8/31/2023				0.00183	<0.001				
9/6/2023	0.00343	0.00601	0.00724			0.00221	<0.001	0.000317 (J)	
9/8/2023									<0.001
2/10/2024				0.00179	<0.001		<0.001		0.000408 (J)
2/13/2024	0.00254	0.00392	0.00874						
2/14/2024						0.00181		0.00042 (J)	
8/27/2024		0.00566	0.00574						<0.001
8/28/2024				0.00149	<0.001		<0.001	<0.001	
8/29/2024	0.00319					0.00203			
Mean	0.004832	0.008541	0.008083	0.0038	0.001068	0.0106	0.001933	0.001249	0.0009342
Std. Dev.	0.002109	0.002596	0.002422	0.006598	0.0003198	0.01364	0.00284	0.0009195	0.0001973
Upper Lim.	0.005785	0.009934	0.009419	0.00163	0.0025	0.01111	0.001434	0.0012	0.001
Lower Lim.	0.003608	0.007147	0.006747	0.001	0.001	0.004672	0.000455	0.00063	0.000408

Constituent: Cobalt (mg/L) Analysis Run 1/21/2025 1:51 PM View: Pond BCD - Confidence Intervals

		Plant Branch	Client: Southern Company	Data: Plant Branch AP
	PZ-63I			
9/6/2016				
9/8/2016				
11/17/2016				
11/18/2016				
11/21/2016				
2/21/2017				
2/22/2017				
6/13/2017				
6/14/2017				
9/27/2017				
2/14/2018				
3/6/2018				
5/1/2018				
6/26/2018				
6/27/2018				
6/28/2018				
7/31/2018				
8/1/2018				
8/10/2018				
8/23/2018				
9/19/2018				
10/29/2018				
11/28/2018				
12/18/2018				
12/19/2018				
12/20/2018				
1/17/2019				
2/13/2019				
8/27/2019				
8/28/2019				
8/29/2019				
10/15/2019				
10/16/2019				
10/17/2019				
12/3/2019				
12/4/2019				
3/4/2020				
3/5/2020				
8/19/2020				
8/20/2020				
9/15/2020				
9/16/2020				
9/17/2020				
3/2/2021				
3/3/2021				
3/4/2021				
9/23/2021				
9/28/2021				
2/2/2022				
2/3/2022	0.040			
2/4/2022	0.019			
8/23/2022				

	PZ-63I
8/24/2022	
8/25/2022	0.0232
1/24/2023	
1/25/2023	
1/26/2023	
1/30/2023	0.028
8/31/2023	
9/6/2023	
9/8/2023	0.0309
2/10/2024	
2/13/2024	
2/14/2024	0.0299
8/27/2024	
8/28/2024	
8/29/2024	0.0335
Mean	0.02742
Std. Dev.	0.005372
Upper Lim.	0.0348
Lower Lim.	0.02004

	PZ-68D
2/1/2023	0.000825 (J)
9/8/2023	0.00106
2/14/2024	0.000852 (J)
8/29/2024	0.000526 (J)
Mean	0.0008158
Std. Dev.	0.0002199
Upper Lim.	0.001315
Lower Lim.	0.0003166

	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44
9/6/2016				1.01 (U)					
9/8/2016	0.862 (U)	1.74	1.13		0.706 (U)				
11/17/2016	1.2 (U)								
11/18/2016		0.571 (U)							
11/21/2016			1.59	0.201 (U)	0.0569 (U)				
2/21/2017	1.31	1.28 (U)							
2/22/2017			1.64	0.57 (U)	1.07 (U)				
6/13/2017	0.738 (U)	0.521 (U)							
6/14/2017			1.32	0.726 (U)	0.459 (U)				
9/27/2017	0.583 (U)	0.595 (U)	1.7	0.884 (U)	0.807 (U)				
2/14/2018	1.41 (J+X)	1.18 (U)	1.89 (J+X)	1.14 (U)	1.67 (J+X)				
3/6/2018						1.25 (U)	1.75 (J+X)		0.577 (U)
5/1/2018						0.423 (U)	2.02 (J+XD)		0.27 (U)
6/26/2018	0.968 (U)								
6/27/2018		1.3 (U)	1.66 (J+X)		1.34 (UX)		0.878 (U)		
6/28/2018				1.4 (UX)		0.283 (U)			
7/31/2018						0.243 (U)			
8/1/2018							0.638 (U)		
8/10/2018								1.91	
8/23/2018						1.1 (U)	1.14 (U)	1.86 (J+X)	
9/19/2018						0.369 (U)	1.45 (UX)	1.64 (UX)	
10/29/2018						0.401 (U)	1.09 (U)	1.36 (U)	
11/28/2018						0.901 (U)	1.67 (UX)	1.07 (U)	
12/18/2018	1.13 (U)		0.759 (U)	0.661 (U)		. ,	,	,	
12/19/2018					1.21 (U)		1.3		
12/20/2018		0.527 (U)				0.657 (U)		0.892 (U)	
1/17/2019		, ,				. ,		1.1 (U)	
2/13/2019								1.68	
8/27/2019	0.91 (U)			1.35	0.86 (U)				
8/28/2019	, ,	0.643 (U)	1.76			0.528 (U)	0.804 (U)		
8/29/2019		, ,				. ,	, ,	1.44	
10/15/2019	1.06 (U)								
10/16/2019			1.69 (U)				1.28 (U)	2.13	
10/17/2019		1.07 (U)		1.25 (U)	1.2 (U)	0.977 (U)			
3/4/2020	1.34	1.18	1.23	. ,	, ,	. ,	0.862 (U)	2.3	
3/5/2020				1.35	0.483 (U)	0.921 (U)			
8/19/2020	0.467 (U)	0.684 (U)	0.876 (U)	1 (U)	0.482 (U)				
8/20/2020						0.501 (U)	1.64	2.97	
9/15/2020	0.205 (U)		1.23 (U)						
9/16/2020		0.175 (U)		0.43 (U)	0.195 (U)	0.254 (U)	0.51 (U)		
9/17/2020								2.04	
3/2/2021	0.161 (U)					0.107 (U)	0.571 (U)		
3/3/2021		0.829 (U)	1.31 (U)	0.415 (U)					
3/4/2021					0.32 (U)			2.04	
9/23/2021						0.619 (U)	0.527 (U)		
9/28/2021	4.44	3.58	1.49	0.749 (U)	0.947 (U)			3.28	0.526 (U)
2/2/2022	0.64 (U)			1.21 (U)	0.0265 (U)	0.219 (U)	0.145 (U)	2.33	0.244 (U)
2/3/2022			0.798 (U)						
2/4/2022		0.335 (U)							
8/23/2022	1.9						3.74		
8/24/2022			1.97	3.26					
8/25/2022		1.79			1.32	1.65		4.97	1.6

	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44
1/24/2023					2.25				
1/25/2023		1.53 (U)				1.29 (U)		7.94	2.49 (U)
1/26/2023	3.24		2.27 (U)	2.73 (U)			3.28		
9/22/2023				2.71	2.33				0.477 (U)
9/26/2023	1.21 (U)	2.23	3.02			0.607 (U)	2.39	6.36	
2/27/2024				4.11	0.572 (U)		2.63		2.87
2/28/2024	3.78	1.49 (U)	3.01						
2/29/2024						1.22 (U)		4.51	
8/27/2024		2.41	2.39						2.84
8/28/2024				3.82	0.737 (U)			14.7	
8/29/2024	6.24					1.71	1.32 (U)		
Mean	1.609	1.222	1.654	1.475	0.9067	0.7377	1.438	3.263	1.322
Std. Dev.	1.542	0.8135	0.6257	1.145	0.6356	0.4713	0.916	3.193	1.135
Upper Lim.	2.104	1.671	1.999	1.901	1.257	0.9907	1.93	3.627	2.315
Lower Lim.	0.7511	0.7732	1.309	0.7981	0.5561	0.4847	0.9463	1.662	0.3329

	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44
9/6/2016				0.43					
9/8/2016	0.14 (J)	0.31	0.2 (J)		0.15 (J)				
11/17/2016	0.27 (J)								
11/18/2016		0.19 (J)							
11/21/2016			0.37	0.24 (J)	0.04 (J)				
2/21/2017	0.6	0.35							
2/22/2017			0.37	0.2 (J)	0.08 (J)				
6/13/2017	0.19 (J)	0.19 (J)							
6/14/2017			0.38	0.15 (J)	0.09 (J)				
9/27/2017	0.5	0.4	0.4	0.41	<0.1				
2/14/2018	<0.3	<0.3	<0.3	<0.3	<0.1				
3/6/2018						0.94	1.1		<0.3
5/1/2018						<0.1	0.595 (D)		<0.3
6/26/2018	0.15 (J)								
6/27/2018		0.26 (J)	0.085 (J)		<0.1		0.27 (J)		
6/28/2018				0.93 (J+X)		0.69 (J+X)			
7/31/2018						<0.1			
8/1/2018							0.48		
8/10/2018								1.6 (O)	
8/23/2018						<0.1	0.34	0.32	
9/19/2018						<0.1	0.23 (J)	0.22 (J)	
10/29/2018						<0.1	<0.2	0.14 (J)	
11/28/2018						<0.1	0.063 (J)	0.24 (J)	
12/18/2018	0.29 (J)		0.26 (J)	0.54					
12/19/2018					0.23 (J)		0.28 (J)		
12/20/2018		0.26 (J)				0.12 (J)		0.3	
1/17/2019								0.23 (J)	
2/13/2019								<0.3	
3/19/2019		0.2 (J)					<0.2		
3/20/2019	0.17 (JD)		0.091 (J)	0.31	<0.1	0.066 (J)		0.135 (JD)	
8/27/2019	0.15 (J)			0.12 (J)	<0.1				
8/28/2019		0.074 (J)	0.055 (J)			<0.1	<0.2		
8/29/2019								0.087 (J)	
10/15/2019	0.16 (J)								
10/16/2019			0.11 (J)				0.076 (J)	0.22 (J)	
12/3/2019						0.19 (J)			
12/4/2019		0.18 (J)		0.26 (J)	0.11 (J)				
3/4/2020	0.07 (J)	<0.3	<0.3				<0.2	0.1 (J)	
3/5/2020				0.051 (J)	<0.1	<0.1			
8/19/2020	0.17	0.19	0.12	0.14	<0.1				
8/20/2020						<0.1	<0.2	0.23	
9/15/2020	0.15		0.057 (J)						
9/16/2020		0.15		0.13	<0.1	0.052 (J)	<0.2		
9/17/2020								0.074 (J)	
3/2/2021	0.15					0.067 (J)	<0.2		
3/3/2021		0.24	0.13	0.13					
3/4/2021					<0.1			0.28	
9/23/2021	0.45	0.40	0.004 ("	0.44	.0.4	0.06 (J)	<0.2	0.40	0.00 (1)
9/28/2021	0.15	0.16	0.081 (J)	0.11	<0.1	.0.4		0.12	0.08 (J)
2/2/2022	0.15		0.44	0.1	<0.1	<0.1	<0.2	0.098 (J)	0.065 (J)
2/3/2022		0.14	0.11						
2/4/2022		0.14							

	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44
8/23/2022	0.186						<0.2		
8/24/2022			0.103	0.318					
8/25/2022		0.234			0.138	0.166		0.157	0.184
1/24/2023					0.082 (J)				
1/25/2023		0.152				0.163		0.169	0.13
1/26/2023	0.202		0.0935 (J)	0.167			0.117		
2/1/2023									
8/23/2023				0.116	0.0477 (J)				
8/24/2023									0.195
8/25/2023	0.25	0.302	0.0849 (J)			0.185	0.243	0.188 (J)	
1/31/2024					0.207				
2/1/2024	0.221	0.222	0.0968 (J)	0.169			0.11		0.242
2/2/2024						0.126		0.215	
8/27/2024		0.382	0.0849 (J)						0.193
8/28/2024				0.336 (J)	0.0511 (J)		<0.2	0.0748 (J)	
8/29/2024	0.248					0.078 (J)			
Mean	0.2144	0.2221	0.1628	0.2503	0.1057	0.1697	0.2654	0.1785	0.1877
Std. Dev.	0.1206	0.08435	0.1143	0.1968	0.04431	0.2103	0.2163	0.07413	0.08533
Upper Lim.	0.245	0.2674	0.186	0.3169	0.11	0.163	0.2194	0.2194	0.2142
Lower Lim.	0.151	0.1768	0.09624	0.1458	0.09	0.078	0.09107	0.1376	0.09695

		Plant Branch	Client: Southern Company	Data: Plant Branch AP
	PZ-68D			
9/6/2016				
9/8/2016				
11/17/2016				
11/18/2016				
11/21/2016				
2/21/2017				
2/22/2017				
6/13/2017				
6/14/2017				
9/27/2017				
2/14/2018				
3/6/2018				
5/1/2018				
6/26/2018				
6/27/2018				
6/28/2018				
7/31/2018				
8/1/2018				
8/10/2018				
8/23/2018				
9/19/2018				
10/29/2018				
11/28/2018				
12/18/2018				
12/19/2018				
12/20/2018 1/17/2019				
2/13/2019				
3/19/2019				
3/20/2019				
8/27/2019				
8/28/2019				
8/29/2019				
10/15/2019				
10/16/2019				
12/3/2019				
12/4/2019				
3/4/2020				
3/5/2020				
8/19/2020				
8/20/2020				
9/15/2020				
9/16/2020				
9/17/2020				
3/2/2021				
3/3/2021 3/4/2021				
9/23/2021				
9/28/2021				
2/2/2022				
2/3/2022				
2/4/2022				

	PZ-68D
8/23/2022	
8/24/2022	
8/25/2022	
1/24/2023	
1/25/2023	
1/26/2023	
2/1/2023	0.166
8/23/2023	
8/24/2023	0.218
8/25/2023	
1/31/2024	
2/1/2024	
2/2/2024	0.211
8/27/2024	
8/28/2024	
8/29/2024	0.126
Mean	0.1803
Std. Dev.	0.04288
Upper Lim.	0.2776
Lower Lim.	0.08289

Constituent: Lead (mg/L) Analysis Run 1/21/2025 1:51 PM View: Pond BCD - Confidence Intervals

Plant Branch Client: Southern Company Data: Plant Branch AP

9/6/2016	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I <0.002	BRGWC-45	BRGWC-47	BRGWC-52I	PZ-68D
9/8/2016	<0.002	<0.002	0.0004 (J)	\0.002				
		<0.002	0.0004 (3)					
11/17/2016	<0.002	10,000						
11/18/2016		<0.002	0.0000 (1)	-0.000				
11/21/2016	0.000	.0.000	0.0006 (J)	<0.002				
2/21/2017	<0.002	<0.002						
2/22/2017			0.0005 (J)	<0.002				
6/13/2017	<0.002	<0.002						
6/14/2017			0.0004 (J)	<0.002				
9/27/2017	<0.002	<0.002	0.0006 (J)	<0.002				
2/14/2018	<0.002	<0.002	<0.005 (o)	<0.002				
3/6/2018					<0.002	<0.002		
5/1/2018					<0.002	<0.002 (D)		
6/26/2018	<0.002							
6/27/2018		<0.002	0.00032 (J)			<0.002		
6/28/2018				<0.002	<0.002			
7/31/2018					<0.002			
8/1/2018						<0.002		
8/10/2018							<0.002	
8/23/2018					<0.002	<0.002	<0.002	
9/19/2018					<0.002	<0.002	<0.002	
10/29/2018					<0.002	<0.002	<0.002	
11/28/2018					<0.002	<0.002	<0.002	
12/18/2018	<0.002		0.00038 (J)	<0.002				
12/19/2018						<0.002		
12/20/2018		<0.002			<0.002		<0.002	
1/17/2019							<0.002	
2/13/2019							<0.002	
8/27/2019	0.00011 (J)			<0.002				
8/28/2019		<0.002	0.00027 (J)		<0.002	<0.002		
8/29/2019							<0.002	
10/15/2019	<0.002							
10/16/2019			0.00027 (J)			<0.002	<0.002	
12/3/2019			. ,		<0.002			
12/4/2019		6.3E-05 (J)		<0.002				
3/4/2020	<0.002	<0.002	0.0003 (J)			0.00012 (J)	<0.002	
3/5/2020			. ,	<0.002	0.00026 (J)	,		
8/19/2020	<0.002	<0.002	0.00025 (J)	<0.002	(,,			
8/20/2020			(-,		0.00021 (J)	4.8E-05 (J)	<0.002	
9/15/2020	<0.002		0.00029 (J)			(,,		
9/16/2020	0.002	<0.002	0.00020 (0)	0.00011 (J)	5.3E-05 (J)	6.6E-05 (J)		
9/17/2020		-0.002		0.00011(0)	0.02 00 (0)	0.02 00 (0)	<0.002	
3/2/2021	<0.002				<0.002	<0.002	-0.002	
3/3/2021	-0.002	<0.002	0.00033 (J)	<0.002	-0.002	-0.002		
3/4/2021		10.002	0.00033 (0)	-0.00Z			4.2E-05 (J)	
9/23/2021					<0.002	<0.002	4.22-03 (3)	
9/28/2021	<0.002	<0.002	<0.002	<0.002	-0.002	-0.002	<0.002	
		~0.002	~0.002		<0.002	<0.002		
2/2/2022	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	
2/3/2022		<0.002	<0.002					
2/4/2022	z0.002	<0.002				-0.002		
8/23/2022	<0.002		-0.002	-0.002		<0.002		
8/24/2022			<0.002	<0.002				

	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-45	BRGWC-47	BRGWC-52I	PZ-68D
8/25/2022		<0.002			<0.002		<0.002	
1/25/2023		<0.002			0.000595 (J)		<0.002	
1/26/2023	<0.002		<0.002	<0.002		<0.002		
2/1/2023								<0.002
8/31/2023				<0.002				
9/6/2023	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	
9/8/2023								<0.002
2/10/2024				<0.002		<0.002		
2/13/2024	<0.002	<0.002	<0.002					
2/14/2024					<0.002		<0.002	0.000504 (J)
8/27/2024		<0.002	<0.002					
8/28/2024				<0.002		<0.002	<0.002	
8/29/2024	<0.002				<0.002			<0.002
Mean	0.00191	0.001908	0.0009455	0.00191	0.001687	0.001738	0.001907	0.001626
Std. Dev.	0.0004124	0.0004227	0.0007996	0.0004124	0.0006847	0.0006752	0.0004273	0.000748
Upper Lim.	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
Lower Lim.	0.00011	6.3E-05	0.0003	0.00011	0.000595	0.00012	4.2E-05	0.000504

 $\label{lem:constituent: Lithium (mg/L)} Constituent: Lithium (mg/L) \quad Analysis Run 1/21/2025 \ 1:51 \ PM \quad View: Pond BCD - Confidence Intervals$

Plant Branch Client: Southern Company Data: Plant Branch AP

0/6/2016	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44	PZ-68D
9/6/2016 9/8/2016	0.0021 (J)	0.004 (J)	0.0117 (J)	<0.05					
11/18/2010		0.004 (3)		~0.03					
11/21/2010		0.0030 (1)	0.0109 (1)	<0.0E					
		0.0039 (J)	0.0108 (J)	<0.05					
2/21/2017 2/22/2017		0.0043 (1)	0.0102 (1)	0.0022 (1)					
		0.0043 (J)	0.0103 (J)	0.0023 (J)					
6/13/2017		0.0036 (1)	0.010171	0.0022 (1)					
6/14/2017		0.0036 (J)	0.0101 (J)	0.0022 (J)					
9/27/2017		0.0038 (J)	0.0116 (J)	0.0021 (J)					
2/14/2018	0.0018 (J)	0.0034 (J)	0.0115 (J)	0.0023 (J)	0.0031 (1)	0.0200 (1)		0.0046 (1)	
3/6/2018					0.0031 (J)	0.0399 (J)		0.0046 (J)	
5/1/2018 6/27/2018	0.0016 (J)	0.0034 (1)		0.0023 (J)	0.0038 (J)	0.0475 (JD)		0.0049 (J)	
		0.0034 (J)	0.013 (J)	0.0023 (3)	0.0038 (1)	0.044 (J)			
6/28/2018			0.013 (3)		0.0028 (J)				
7/31/2018					<0.25 (o)	0.020 (1)			
8/1/2018						0.039 (J)	0.0097 / 1)		
8/10/2018					0.0022 (1)	0.044 (1)	0.0087 (J)		
8/23/2018					0.0033 (J)	0.044 (J)	0.0089 (J)		
9/19/2018					0.0033 (J)	0.043 (J)	0.005 (J)		
11/28/2018					0.003 (J)	0.039 (J)	0.0048 (J)		
12/18/2018		0.002271	0.01471)		0.0035 (J)	0.044 (J)	0.0052 (J)		
		0.0032 (J)	0.014 (J)	0.0018 (1)		0.042 (1)			
12/19/2018 12/20/2018				0.0018 (J)	0.003 (J)	0.043 (J)	0.0042 (J)		
1/17/2019					0.003 (3)		0.0042 (J)		
2/13/2019							<0.05		
8/27/2019			0.016 (J)	0.0022 (J)			~ 0.03		
8/28/2019		0.0033 (J)	0.010 (0)	0.0022 (0)	0.0034 (J)	0.044			
8/29/2019		0.0033 (3)			0.0034 (0)	0.044	0.0052 (J)		
10/16/2019		0.0029 (J)				0.038	0.0023 (J)		
12/3/2019		0.0020 (0)			0.0033 (J)	0.000	0.0020 (0)		
12/4/2019			0.013 (J)	0.0022 (J)	0.0000 (0)				
3/4/2020	0.0014 (J)	0.0029 (J)	0.0.0	0.0022 (0)		0.042	0.002 (J)		
3/5/2020	0.0014 (0)	0.0020 (0)	0.016 (J)	0.0022 (J)	0.003 (J)	0.042	0.002 (0)		
8/19/2020	0.0014 (J)	0.0029 (J)	0.018 (J)	0.002 (J)	0.000 (0)				
8/20/2020		(4)	(-)	(-)	0.0034 (J)	0.044	0.0022 (J)		
9/15/2020		0.003 (J)					(,,		
9/16/2020			0.016 (J)	0.0022 (J)	0.0036 (J)	0.039			
9/17/2020			(1)	(-,	(-,		0.0058 (J)		
3/2/2021					0.0043 (J)	0.044			
3/3/2021	0.0012 (J)	0.0032 (J)	0.014 (J)		(0)				
3/4/2021		(0)		0.002 (J)			0.003 (J)		
9/23/2021				(-)	0.0023 (J)	0.042	(-)		
9/28/2021		0.0029 (J)	0.023 (J)	0.0021 (J)	(0)		0.0035 (J)	0.0048 (J)	
2/2/2022		(4)	0.021 (J)	0.0035 (J)	0.0022 (J)	0.04	0.0041 (J)	0.0058 (J)	
2/3/2022		0.0026 (J)	(2)	(1)	(1)		(,,	(-)	
2/4/2022	0.001 (J)	.,							
8/23/2022						0.0474			
8/24/2022		0.00304 (J)	0.0238						
8/25/2022		- (-/	-	0.0043 (J)	<0.01		0.0162	0.00652 (J)	
1/24/2023				0.007 (J)				` '	
1/25/2023				.,	0.00333 (J)		0.0186	0.00728 (J)	
					, ,			• •	

	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	BRGWC-45	BRGWC-47	BRGWC-52I	BRGWC-44	PZ-68D
1/26/2023		0.00331 (J)	0.0279			0.0506			
2/1/2023									0.00899 (J)
8/31/2023			0.0253	0.00392 (J)					
9/6/2023	<0.01	0.00349 (J)			<0.01	0.0532	0.0131		
9/8/2023								0.0056 (J)	0.00399 (J)
2/10/2024			0.0305	0.00591 (J)		0.0484		0.00537 (J)	
2/13/2024	<0.01	0.00337 (J)							
2/14/2024					<0.01		0.0122		0.00564 (J)
8/27/2024	<0.01	0.00305 (J)						0.00629 (J)	
8/28/2024			0.0295	0.00514 (J)		0.0436	0.00997 (J)		
8/29/2024					<0.01				0.00633 (J)
Mean	0.004324	0.003312	0.01748	0.005127	0.004506	0.04362	0.007803	0.005684	0.006238
Std. Dev.	0.004119	0.0004253	0.006679	0.006762	0.002767	0.003917	0.006125	0.0008877	0.002081
Upper Lim.	0.01	0.003547	0.02116	0.00514	0.0043	0.04572	0.01004	0.006541	0.01096
Lower Lim.	0.0014	0.003078	0.01379	0.0021	0.003	0.04152	0.004285	0.004827	0.001513

	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S
9/6/2016				<0.0002	
9/8/2016	<0.0002	<0.0002	<0.0002		<0.0002
11/17/2016	<0.0002				
11/18/2016		<0.0002			
11/21/2016			<0.0002	<0.0002	<0.0002
2/21/2017	<0.0002	<0.0002			
2/22/2017			<0.0002	<0.0002	<0.0002
6/13/2017	<0.0002	5E-05 (J)			
6/14/2017			7E-05 (J)	7E-05 (J)	9E-05 (J)
9/27/2017	4E-05 (J)	4.7E-05 (J)	4E-05 (J)	4E-05 (J)	0.0001 (J)
2/14/2018	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
6/26/2018	<0.0002				
6/27/2018		<0.0002	<0.0002		<0.0002
6/28/2018				<0.0002	
12/18/2018	<0.0002		<0.0002	<0.0002	
12/19/2018					<0.0002
12/20/2018		<0.0002			
8/27/2019	<0.0002			<0.0002	<0.0002
8/28/2019		<0.0002	<0.0002		
8/19/2020	8.3E-05 (J)	<0.0002	9.8E-05 (J)	8.2E-05 (J)	8.2E-05 (J)
9/15/2020	<0.0002		<0.0002		
9/16/2020		<0.0002		<0.0002	<0.0002
3/2/2021	<0.0002				
3/3/2021		<0.0002	<0.0002	<0.0002	
3/4/2021					<0.0002
9/28/2021	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
2/2/2022	<0.0002			<0.0002	<0.0002
2/3/2022			<0.0002		
2/4/2022		<0.0002			
8/23/2022	<0.0002				
8/24/2022			<0.0002	<0.0002	
8/25/2022		<0.0002			<0.0002
1/24/2023					<0.0002
1/25/2023		<0.0002			
1/26/2023	<0.0002		<0.0002	<0.0002	
8/25/2023				<0.0002	<0.0002
8/29/2023	<0.0002	<0.0002	<0.0002		
2/2/2024				<0.0002	<0.0002
2/5/2024	<0.0002	<0.0002	0.00078		
8/27/2024		<0.0002	<0.0002		
8/28/2024				<0.0002	<0.0002
8/29/2024	<0.0002				
Mean	0.0001854	0.0001841	0.0002099	0.0001785	0.0001827
Std. Dev.	4.425E-05	4.777E-05	0.0001467	5.146E-05	4.107E-05
Upper Lim.	0.0002	0.0002	0.00078	0.0002	0.0002
Lower Lim.	8.3E-05	5E-05	9.8E-05	8.2E-05	0.0001

	BRGWC-25I	BRGWC-27I	BRGWC-30I	BRGWC-45	BRGWC-47	BRGWC-52I	PZ-68D
9/6/2016			<0.01				
9/8/2016	<0.01	<0.001					
11/17/2016	<0.01						
11/18/2016		<0.001					
11/21/2016			<0.01				
2/21/2017	<0.01	<0.001					
2/22/2017			<0.01				
6/13/2017	<0.01	<0.001					
6/14/2017			<0.01				
9/27/2017	<0.01	<0.001	<0.01				
2/14/2018	<0.01	<0.001	<0.01				
3/6/2018				<0.0002	<0.01		
5/1/2018				<0.0002	<0.01 (D)		
6/26/2018	<0.01						
6/27/2018		<0.001			<0.01		
6/28/2018			<0.01	<0.0002			
7/31/2018				<0.0002			
8/1/2018					<0.01		
8/10/2018						0.0032 (J)	
8/23/2018				<0.0002	<0.01	0.005 (J)	
9/19/2018				<0.0002	<0.01	0.0061 (J)	
10/29/2018				<0.0002	<0.01	0.0065 (J)	
11/28/2018				<0.0002	<0.01	0.0027 (J)	
12/18/2018	<0.01		<0.01	0.0002	0.01	0.0027 (0)	
12/19/2018	0.0.		0.01		<0.01		
12/20/2018		<0.001		<0.0002	0.01	<0.01	
1/17/2019		-0.001		-0.0002		<0.01	
2/13/2019						<0.01	
8/27/2019	<0.01		<0.01			-0.01	
8/28/2019	10.01	<0.001	40.01	<0.0002	<0.01		
8/29/2019		~0.001		<0.000 <u>2</u>	~0.01	<0.01	
10/15/2019	<0.01					\0.01	
	<0.01				<0.01	<0.01	
10/16/2019				<0.0000	<0.01	<0.01	
12/3/2019		-0.001	-0.01	<0.0002			
12/4/2019	0.00001 (1)	<0.001	<0.01				
8/19/2020	0.00081 (J)	<0.001	0.00078 (J)	0.00070 (1)		0.0040 (1)	
8/20/2020	0.0000 / 1)			0.00076 (J)	<0.01	0.0012 (J)	
9/15/2020	0.0008 (J)	.0.004	0.0000 (1)				
9/16/2020		<0.001	0.0022 (J)	<0.0002	<0.01		
9/17/2020						0.0007 (J)	
3/2/2021	0.001 (J)			<0.0002	<0.01		
3/3/2021		<0.001	<0.01				
3/4/2021						0.001 (J)	
9/23/2021				<0.0002	<0.01		
9/28/2021	0.00089 (J)	<0.001	0.001 (J)			<0.01	
2/2/2022	0.0011 (J)		0.0012 (J)	<0.0002	<0.01	<0.01	
2/4/2022		<0.001					
8/23/2022	0.00105				0.000296 (J)		
8/24/2022			0.00141				
8/25/2022		<0.001		0.000424 (J)		0.000471 (J)	
1/25/2023		<0.001		0.000545 (J)		0.000609 (J)	
1/26/2023	0.00092 (J)		0.0014		0.00027 (J)		

	BRGWC-25I	BRGWC-27I	BRGWC-30I	BRGWC-45	BRGWC-47	BRGWC-52I	PZ-68D
2/1/2023							0.0111
8/31/2023			0.00111				
9/6/2023	0.00141	<0.001		0.000356 (J)	0.000296 (J)	0.000782 (J)	
9/8/2023							0.00625
2/10/2024			0.00137		0.00028 (J)		
2/13/2024	0.0014	0.000213 (J)					
2/14/2024				<0.0002		0.000564 (J)	0.00598
8/27/2024		0.000211 (J)					
8/28/2024			0.00123		0.000252 (J)	0.000691 (J)	
8/29/2024	0.00123			0.000207 (J)			0.00702
Mean	0.00553	0.0009212	0.006085	0.0002615	0.007685	0.004976	0.007588
Std. Dev.	0.004588	0.0002425	0.004448	0.0001462	0.004243	0.004179	0.002383
Upper Lim.	0.01	0.001	0.01	0.000207	0.01	0.01	0.0134
Lower Lim.	0.001	0.000213	0.00123	0.0002	0.000296	0.0007	0.003249

	BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	BRGWC-45	BRGWC-47
9/6/2016				<0.005			
9/8/2016	<0.005	0.0043 (J)	0.0039 (J)		<0.01		
11/17/2016	<0.005						
11/18/2016		0.0047 (J)					
11/21/2016			0.0058 (J)	<0.005	<0.01		
2/21/2017	<0.005	0.0025 (J)					
2/22/2017			0.005 (J)	<0.005	0.0017 (J)		
6/13/2017	<0.005	0.0036 (J)					
6/14/2017			0.0074 (J)	0.0045 (J)	<0.01		
9/27/2017	<0.005	0.004 (J)	0.0068 (J)	0.0034 (J)	0.0019 (J)		
2/14/2018	<0.005	<0.005	<0.005	<0.005	<0.01		
3/6/2018						<0.005	<0.005
5/1/2018						<0.005	<0.005 (D)
6/26/2018	<0.005						
6/27/2018		0.0014 (J)	<0.005		0.0017 (J)		<0.005
6/28/2018				<0.005		<0.005	
7/31/2018						<0.005	
8/1/2018							0.0015 (J)
8/23/2018						<0.005	<0.005 (X)
9/19/2018						<0.005	0.002 (J)
10/29/2018						<0.005	<0.005
11/28/2018						<0.005	<0.005
12/18/2018	<0.005		<0.005	<0.005		-0.000	-0.000
12/19/2018	10.003		10.003	10.003	0.0059 (J)		<0.005
12/20/2018		<0.005			0.0000 (0)	<0.005	10.000
8/27/2019	<0.005	~0.003		0.0038 (J)	0.057	~0.003	
8/28/2019	<0.005	0.0017 (J)	<0.005	0.0038 (3)	0.037	<0.005	<0.005
	<0.00E	0.0017 (3)	<0.005			<0.005	\0.005
10/15/2019	<0.005		<0.00E				0.0017 (1)
10/16/2019			<0.005			0.0000 (1)	0.0017 (J)
12/3/2019		0.0036 (1)		0.0018 (1)	0.1	0.0029 (J)	
12/4/2019	10.005	0.0036 (J)	0.0010 (1)	0.0018 (J)	0.1		10.005
3/4/2020	<0.005	0.0022 (J)	0.0018 (J)	.0.005	0.4	.0.005	<0.005
3/5/2020				<0.005	0.1	<0.005	
5/12/2020	.0.005	.0.005	.0.005	.0.005	0.0989		
8/19/2020	<0.005	<0.005	<0.005	<0.005	0.099		
8/20/2020						<0.005	0.0016 (J)
9/15/2020	<0.005		<0.005				
9/16/2020		0.0042 (J)		<0.005	0.12	<0.005	0.002 (J)
3/2/2021	0.0021 (J)					<0.005	0.0028 (J)
3/3/2021		0.0031 (J)	0.0042 (J)	<0.005			
3/4/2021					0.14		
9/23/2021						<0.005	<0.005
9/28/2021	<0.005	<0.005	0.0022 (J)	<0.005	0.13		
2/2/2022	<0.005			<0.005	0.21	<0.005	<0.005
2/3/2022			<0.005				
2/4/2022		<0.005					
8/23/2022	<0.005						<0.005
8/24/2022			<0.005	<0.005			
8/25/2022		<0.005			0.218	<0.005	
1/24/2023					0.198		
1/25/2023		<0.005				<0.005	
1/26/2023	<0.005		<0.005	<0.005			<0.005

		BRGWC-25I	BRGWC-27I	BRGWC-29I	BRGWC-30I	BRGWC-32S	BRGWC-45	BRGWC-47
8	/31/2023				<0.005	0.21		
9	/6/2023	<0.005	<0.005	<0.005			<0.005	<0.005
2	/10/2024				<0.005	0.17		<0.005
2	/13/2024	<0.005	<0.005	0.00229 (J)				
2	/14/2024						<0.005	
8	/27/2024		<0.005	<0.005				
8	/28/2024				<0.005	0.0945		<0.005
8	/29/2024	<0.005					<0.005	
N	/lean	0.004862	0.004062	0.004733	0.00469	0.139	0.004905	0.004164
S	Std. Dev.	0.0006328	0.001209	0.001331	0.0007899	0.05274	0.0004477	0.001417
U	Jpper Lim.	0.005	0.005	0.005	0.005	0.1763	0.005	0.005
L	ower Lim.	0.0021	0.0031	0.0042	0.0045	0.1016	0.0029	0.0028

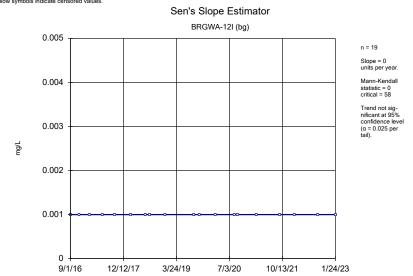
	BRGWC-29I
9/8/2016	<0.002
11/21/2016	0.0002 (J)
2/22/2017	0.0002 (J)
6/14/2017	0.0002 (J)
9/27/2017	0.0002 (J)
2/14/2018	0.00018 (J)
6/27/2018	0.00017 (J)
12/18/2018	0.00017 (J)
8/28/2019	0.00017 (J)
10/16/2019	0.00017 (J)
3/4/2020	0.00016 (J)
8/19/2020	0.00016 (J)
9/15/2020	0.00016 (J)
3/3/2021	0.00018 (J)
9/28/2021	<0.002
2/3/2022	<0.002
8/24/2022	<0.002
1/26/2023	<0.002
9/6/2023	<0.002
2/13/2024	<0.002
8/27/2024	<0.002
Mean	0.0008724
Std. Dev.	0.0009065
Upper Lim.	0.002
Lower Lim.	0.00017

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 1/21/2025 1:51 PM View: Pond BCD - Confidence Intervals (Non-Parametric)

Plant Branch Client: Southern Company Data: Plant Branch AP

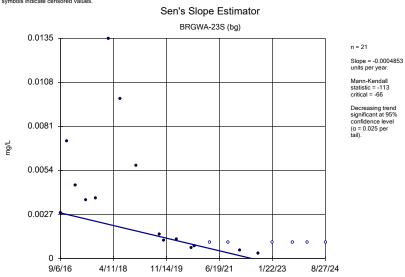
	PZ-68D
2/1/2023	4.16
9/22/2023	1.62
2/29/2024	2.16
8/29/2024	5.43
Mean	3.343
Std. Dev.	1.769
Upper Lim.	5.43
Lower Lim.	1.62

FIGURE I.

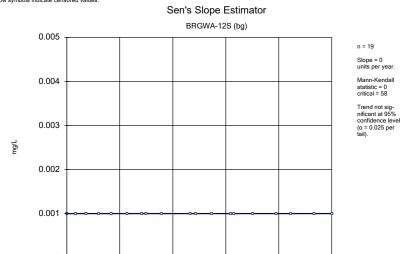

Appendix IV Trend Tests - Significant Results

Plant Branch Client: Southern Company Data: Plant Branch AP Printed 1/21/2025, 2:03 PM Constituent Well Calc. Critical Sig. <u>N</u> %NDs Normality <u>Alpha</u> Method Slope Cobalt (mg/L) BRGWA-23S (bg) -0.0004853 -113 -66 Yes 21 28.57 n/a 0.05 BRGWA-2S (bg) -0.0002793 Cobalt (mg/L) -150 -66 Yes 21 9.524 n/a 0.05 NP Cobalt (mg/L) BRGWA-5I (bg) -0.00009113 -89 -58 Yes 19 n/a 0.05 NP 12 Cobalt (mg/L) PZ-63I 0.005376 13 Yes 6 0 n/a 0.05 NP 37 Yes 14 Selenium (mg/L) BRGWC-32S 0.02939 41 0 n/a 0.05 NP

Appendix IV Trend Tests - All Results


	Plant Branch Client	: Southern Comp	any Data	: Plant Brar	nch AP	Printed 1/2	1/2025, 2:0	3 PM		
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Alpha</u>	Method
Cobalt (mg/L)	BRGWA-12I (bg)	0	0	58	No	19	100	n/a	0.05	NP
Cobalt (mg/L)	BRGWA-12S (bg)	0	0	58	No	19	100	n/a	0.05	NP
Cobalt (mg/L)	BRGWA-23S (bg)	-0.0004853	-113	-66	Yes	21	28.57	n/a	0.05	NP
Cobalt (mg/L)	BRGWA-2I (bg)	0	-64	-66	No	21	57.14	n/a	0.05	NP
Cobalt (mg/L)	BRGWA-2S (bg)	-0.0002793	-150	-66	Yes	21	9.524	n/a	0.05	NP
Cobalt (mg/L)	BRGWA-5I (bg)	-0.00009113	-89	-58	Yes	19	0	n/a	0.05	NP
Cobalt (mg/L)	BRGWA-5S (bg)	0	25	66	No	21	71.43	n/a	0.05	NP
Cobalt (mg/L)	BRGWA-6S (bg)	0	21	66	No	21	76.19	n/a	0.05	NP
Cobalt (mg/L)	PZ-63I	0.005376	13	12	Yes	6	0	n/a	0.05	NP
Selenium (mg/L)	BRGWA-12I (bg)	0	0	53	No	18	100	n/a	0.05	NP
Selenium (mg/L)	BRGWA-12S (bg)	0	0	53	No	18	100	n/a	0.05	NP
Selenium (mg/L)	BRGWA-23S (bg)	0	-6	-66	No	21	42.86	n/a	0.05	NP
Selenium (mg/L)	BRGWA-2I (bg)	0	0	66	No	21	100	n/a	0.05	NP
Selenium (mg/L)	BRGWA-2S (bg)	0	0	66	No	21	100	n/a	0.05	NP
Selenium (mg/L)	BRGWA-5I (bg)	0	0	66	No	21	100	n/a	0.05	NP
Selenium (mg/L)	BRGWA-5S (bg)	0	0	66	No	21	100	n/a	0.05	NP
Selenium (mg/L)	BRGWA-6S (bg)	0	0	66	No	21	100	n/a	0.05	NP
Selenium (mg/L)	BRGWC-32S	0.02939	41	37	Yes	14	0	n/a	0.05	NP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Cobalt Analysis Run 1/21/2025 1:56 PM View: Pond BCD - Appendix IV Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

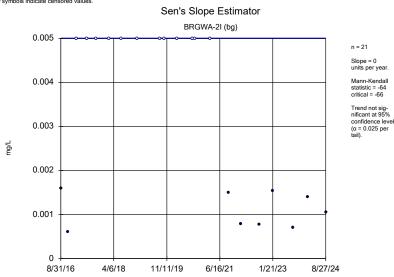
Constituent: Cobalt Analysis Run 1/21/2025 1:56 PM View: Pond BCD - Appendix IV Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Cobalt Analysis Run 1/21/2025 1:56 PM View: Pond BCD - Appendix IV Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP

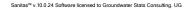
7/3/20

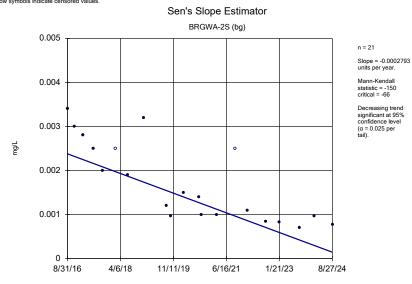
10/13/21


1/24/23

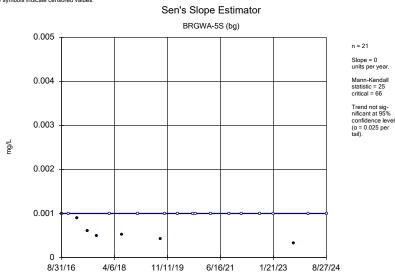
3/24/19

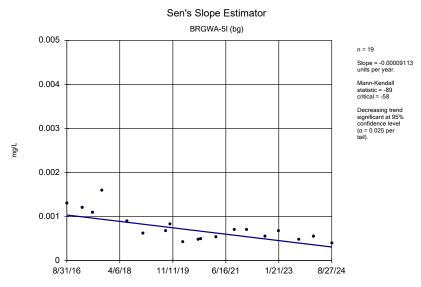
Sanitas^{nu} v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


9/1/16

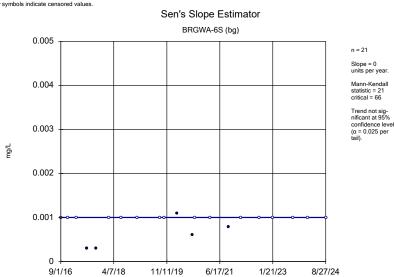

12/12/17

Constituent: Cobalt Analysis Run 1/21/2025 1:56 PM View: Pond BCD - Appendix IV Trend Tests

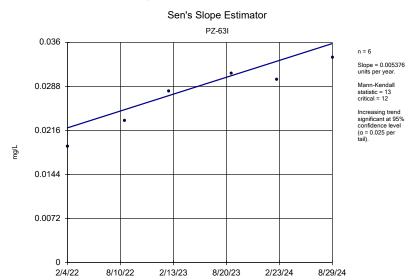

Plant Branch Client: Southern Company Data: Plant Branch AP



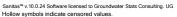
Constituent: Cobalt Analysis Run 1/21/2025 1:56 PM View: Pond BCD - Appendix IV Trend Tests Plant Branch Client: Southern Company Data: Plant Branch AP

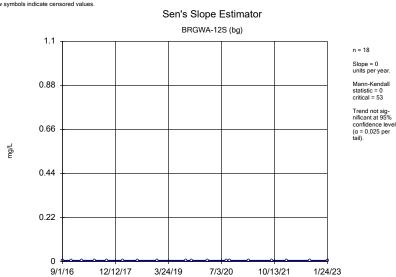


Constituent: Cobalt Analysis Run 1/21/2025 1:56 PM View: Pond BCD - Appendix IV Trend Tests Plant Branch Client: Southern Company Data: Plant Branch AP



Constituent: Cobalt Analysis Run 1/21/2025 1:56 PM View: Pond BCD - Appendix IV Trend Tests Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Cobalt Analysis Run 1/21/2025 1:56 PM View: Pond BCD - Appendix IV Trend Tests Plant Branch Client: Southern Company Data: Plant Branch AP

Constituent: Cobalt Analysis Run 1/21/2025 1:56 PM View: Pond BCD - Appendix IV Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP

Constituent: Selenium Analysis Run 1/21/2025 1:56 PM View: Pond BCD - Appendix IV Trend Tests

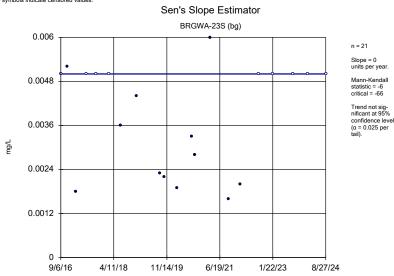
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Selenium Analysis Run 1/21/2025 1:56 PM View: Pond BCD - Appendix IV Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP

7/3/20

3/24/19


1/24/23

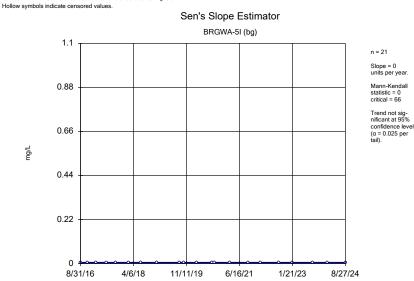
10/13/21

Sanitas^{ru} v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

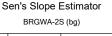
9/1/16

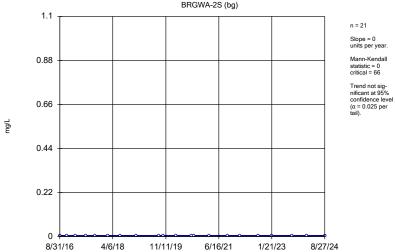
12/12/17

Constituent: Selenium Analysis Run 1/21/2025 1:56 PM View: Pond BCD - Appendix IV Trend Tests


Plant Branch Client: Southern Company Data: Plant Branch AP

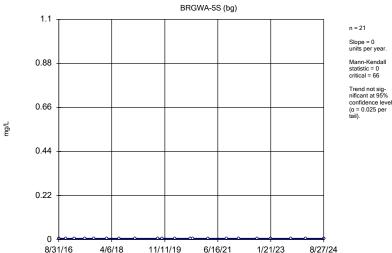
Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Selenium Analysis Run 1/21/2025 1:56 PM View: Pond BCD - Appendix IV Trend Tests Plant Branch Client: Southern Company Data: Plant Branch AP

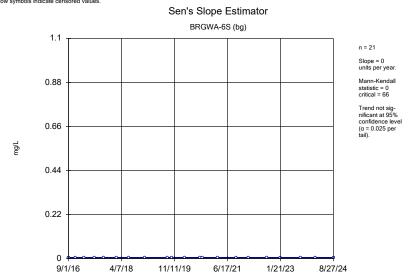


Constituent: Selenium Analysis Run 1/21/2025 1:56 PM View: Pond BCD - Appendix IV Trend Tests Plant Branch Client: Southern Company Data: Plant Branch AP

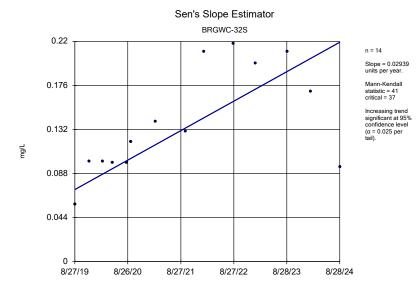
Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Selenium Analysis Run 1/21/2025 1:56 PM View: Pond BCD - Appendix IV Trend Tests Plant Branch Client: Southern Company Data: Plant Branch AP


Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Sen's Slope Estimator BRGWA-5S (bg)


Constituent: Selenium Analysis Run 1/21/2025 1:56 PM View: Pond BCD - Appendix IV Trend Tests Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas[™] v.10.0.24 Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Selenium Analysis Run 1/21/2025 1:56 PM View: Pond BCD - Appendix IV Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP

Sanitas™ v.10.0.24 Software licensed to Groundwater Stats Consulting. UG

Constituent: Selenium Analysis Run 1/21/2025 1:56 PM View: Pond BCD - Appendix IV Trend Tests
Plant Branch Client: Southern Company Data: Plant Branch AP

APPENDIX D

Potable Well Survey

Plant Branch 1078-1074 Milledgeville Rd Eatonton, GA 31024

Inquiry Number: 07808115.1r

October 31, 2024

The EDR GeoCheck® Report

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

TABLE OF CONTENTS

SECTION	PAGE
GEOCHECK ADDENDUM	
Physical Setting Source Addendum	A-1
Physical Setting Source Summary	A-2
Physical Setting Source Map.	A-7
Physical Setting Source Map Findings.	A-8
Physical Setting Source Records Searched	PSGR-1

Thank you for your business.
Please contact EDR at 1-800-352-0050
with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, LLC. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. This Report is provided on an "AS IS", "AS AVAILABLE" basis. NO WARRANTY EXPRESS OR IMPLIED IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, LLC AND ITS SUBSIDIARIES, AFFILIATES AND THIRD PARTY SUPPLIERS DISCLAIM ALL WARRANTIES, OF ANY KIND OR NATURE, EXPRESS OR IMPLIED, ARISING OUT OF OR RELATED TO THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES REGARDING ACCURACY, QUALITY, CORRECTNESS, COMPLETENESS, COMPREHENSIVENESS, SUITABILITY, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, MISAPPROPRIATION, OR OTHERWISE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, LLC OR ITS SUBSIDIARIES, AFFILIATES OR THIRD PARTY SUPPLIERS BE LIABLE TO ANYONE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES OF ANY TYPE OR KIND (INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS, LOSS OF USE, OR LOSS OF DATA) INFORMATION PROVIDED IN THIS REPORT. Any analyses, estimates, ratings, environmental risk levels, or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only an assessment performed by a qualified environmental professional can provide findings, opinions or conclusions regarding the environmental risk or conditions in, on or at any property.

Copyright 2024 by Environmental Data Resources, LLC. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, LLC, or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, LLC or its affiliates. All other trademarks used herein are the property of their respective owners.

GEOCHECK® - PHYSICAL SETTING SOURCE REPORT

TARGET PROPERTY ADDRESS

PLANT BRANCH 1078-1074 MILLEDGEVILLE RD EATONTON, GA 31024

TARGET PROPERTY COORDINATES

Latitude (North): 33.202258 - 33° 12' 8.13" Longitude (West): 83.322819 - 83° 19' 22.15"

Universal Tranverse Mercator: Zone 17 UTM X (Meters): 283479.7 UTM Y (Meters): 3675922.0

Elevation: 382 ft. above sea level

USGS TOPOGRAPHIC MAP

Target Property Map: 33083-B3 LAKE SINCLAIR WEST, GA

Version Date: 1972

EDR's GeoCheck Physical Setting Source Addendum is provided to assist the environmental professional in forming an opinion about the impact of potential contaminant migration.

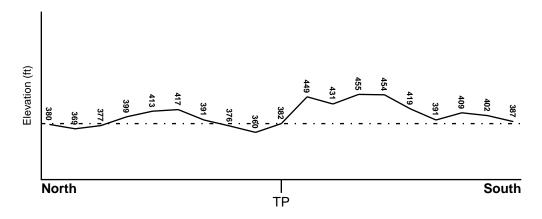
Assessment of the impact of contaminant migration generally has two principle investigative components:

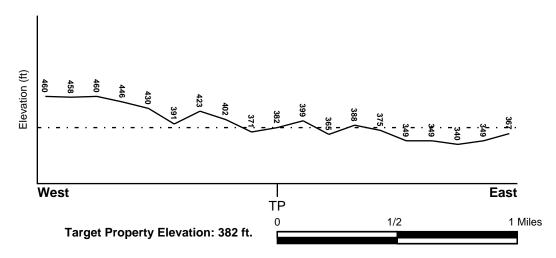
- 1. Groundwater flow direction, and
- 2. Groundwater flow velocity.

Groundwater flow direction may be impacted by surface topography, hydrology, hydrogeology, characteristics of the soil, and nearby wells. Groundwater flow velocity is generally impacted by the nature of the geologic strata.

GROUNDWATER FLOW DIRECTION INFORMATION

Groundwater flow direction for a particular site is best determined by a qualified environmental professional using site-specific well data. If such data is not reasonably ascertainable, it may be necessary to rely on other sources of information, such as surface topographic information, hydrologic information, hydrogeologic data collected on nearby properties, and regional groundwater flow information (from deep aquifers).


TOPOGRAPHIC INFORMATION


Surface topography may be indicative of the direction of surficial groundwater flow. This information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

TARGET PROPERTY TOPOGRAPHY

General Topographic Gradient: General NE

SURROUNDING TOPOGRAPHY: ELEVATION PROFILES

Source: Topography has been determined from the USGS 7.5' Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified.

HYDROLOGIC INFORMATION

Surface water can act as a hydrologic barrier to groundwater flow. Such hydrologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

Refer to the Physical Setting Source Map following this summary for hydrologic information (major waterways and bodies of water).

FEMA FLOOD ZONE

Flood Plain Panel at Target Property FEMA Source Type

13009C0050D FEMA FIRM Flood data

Additional Panels in search area: FEMA Source Type

Not Reported

NATIONAL WETLAND INVENTORY

NWI Quad at Target Property Data Coverage

LAKE SINCLAIR WEST YES - refer to the Overview Map and Detail Map

HYDROGEOLOGIC INFORMATION

Hydrogeologic information obtained by installation of wells on a specific site can often be an indicator of groundwater flow direction in the immediate area. Such hydrogeologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

AQUIFLOW®

Search Radius: 1.000 Mile.

EDR has developed the AQUIFLOW Information System to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted by environmental professionals to regulatory authorities at select sites and has extracted the date of the report, groundwater flow direction as determined hydrogeologically, and the depth to water table.

 MAP ID
 FROM TP
 GROUNDWATER FLOW

 Not Reported
 GROUNDWATER FLOW

GROUNDWATER FLOW VELOCITY INFORMATION

Groundwater flow velocity information for a particular site is best determined by a qualified environmental professional using site specific geologic and soil strata data. If such data are not reasonably ascertainable, it may be necessary to rely on other sources of information, including geologic age identification, rock stratigraphic unit and soil characteristics data collected on nearby properties and regional soil information. In general, contaminant plumes move more quickly through sandy-gravelly types of soils than silty-clayey types of soils.

GEOLOGIC INFORMATION IN GENERAL AREA OF TARGET PROPERTY

Geologic information can be used by the environmental professional in forming an opinion about the relative speed at which contaminant migration may be occurring.

ROCK STRATIGRAPHIC UNIT

GEOLOGIC AGE IDENTIFICATION

Era: Paleozoic Category: Metamorphic Rocks

System: Pennsylvanian

Series: Felsic paragneiss and schist

Code: mm1 (decoded above as Era, System & Series)

Geologic Age and Rock Stratigraphic Unit Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - a digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

DOMINANT SOIL COMPOSITION IN GENERAL AREA OF TARGET PROPERTY

The U.S. Department of Agriculture's (USDA) Soil Conservation Service (SCS) leads the National Cooperative Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps. The following information is based on Soil Conservation Service STATSGO data.

Soil Component Name: CECIL

Soil Surface Texture: sandy clay loam

Hydrologic Group: Class B - Moderate infiltration rates. Deep and moderately deep,

moderately well and well drained soils with moderately coarse

textures.

Soil Drainage Class: Well drained. Soils have intermediate water holding capacity. Depth to

water table is more than 6 feet.

Hydric Status: Soil does not meet the requirements for a hydric soil.

Corrosion Potential - Uncoated Steel: HIGH

Depth to Bedrock Min: > 60 inches

Depth to Bedrock Max: > 60 inches

Soil Layer Information								
Boundary				Classi	fication			
Layer	Upper	Lower	Soil Texture Class	AASHTO Group Unified Soil		Permeability Rate (in/hr)	Soil Reaction (pH)	
1	0 inches	7 inches	sandy clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 2.00 Min: 0.60	Max: 6.50 Min: 4.50	
2	7 inches	11 inches	sandy clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 2.00 Min: 0.60	Max: 5.50 Min: 4.50	
3	11 inches	50 inches	clay	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit 50% or more), Elastic silt.	Max: 2.00 Min: 0.60	Max: 5.50 Min: 4.50	
4	50 inches	75 inches	variable	Not reported	Not reported	Max: 0.00 Min: 0.00	Max: 0.00 Min: 0.00	

OTHER SOIL TYPES IN AREA

Based on Soil Conservation Service STATSGO data, the following additional subordinant soil types may appear within the general area of target property.

Soil Surface Textures: sandy loam

loam

fine sandy loam

Surficial Soil Types: sandy loam

loam

fine sandy loam

Shallow Soil Types: clay

sandy clay gravelly - loam

Deeper Soil Types: loamy fine sand

sandy loam weathered bedrock

LOCAL / REGIONAL WATER AGENCY RECORDS

EDR Local/Regional Water Agency records provide water well information to assist the environmental professional in assessing sources that may impact ground water flow direction, and in forming an opinion about the impact of contaminant migration on nearby drinking water wells.

WELL SEARCH DISTANCE INFORMATION

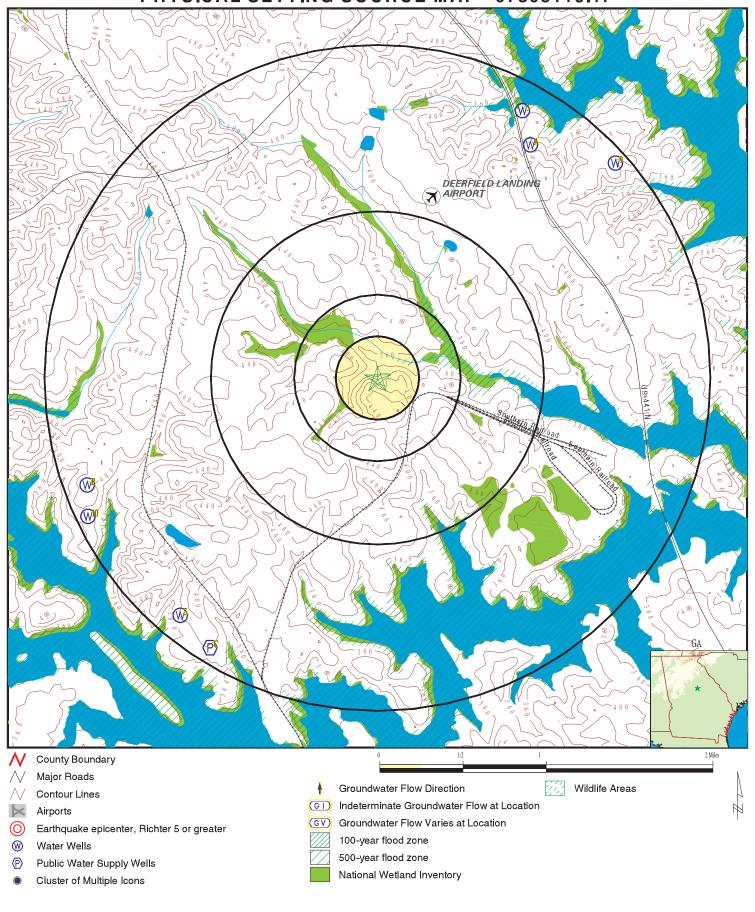
DATABASE SEARCH DISTANCE (miles)

Federal USGS 2.000 Federal FRDS PWS 2.000 State Database 2.000

FEDERAL USGS WELL INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
A1	USGS40000262392	1 - 2 Miles NNE
A2	USGS40000262391	1 - 2 Miles NNE
3	USGS40000262403	1 - 2 Miles NNE
B4	USGS40000262292	1 - 2 Miles WSW
5	USGS40000262254	1 - 2 Miles SW
B6	USGS40000262290	1 - 2 Miles WSW
9	USGS40000262386	1 - 2 Miles NE
10	USGS40000262278	1 - 2 Miles WSW

FEDERAL FRDS PUBLIC WATER SUPPLY SYSTEM INFORMATION


MAP ID	WELL ID	LOCATION FROM TP		
	GA2370006	1 - 2 Miles SSW		
C8	GA2370008	1 - 2 Miles SSW		

Note: PWS System location is not always the same as well location.

STATE DATABASE WELL INFORMATION

		LOCATION
MAP ID	WELL ID	FROM TP
No Wells Found		

PHYSICAL SETTING SOURCE MAP - 07808115.1r

SITE NAME: Plant Branch

ADDRESS: 1078-1074 Milledgeville Rd

Eatonton GA 31024 LAT/LONG: 33.202258 / 83.322819 CLIENT: Geosyntec Consultants CONTACT: Tristan Halterman

INQUIRY #: 07808115.1r DATE: October 31, 2024 7:56 am

Map ID Direction Distance

Elevation Database EDR ID Number

A1 NNE 1 - 2 Miles

FED USGS USGS40000262392

1 - 2 Miles Higher

Organization ID: USGS-GA Organization Name: USGS Georgia Water Science Center

Monitor Location: Type: Well 19Z016 HUC: 03070101 Description: Not Reported Drainage Area: Not Reported Drainage Area Units: Not Reported Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported Aquifer: Not Reported Formation Type: Not Reported Aquifer Type: Not Reported Construction Date: Not Reported Well Depth: Well Depth Units: Not Reported Not Reported Well Hole Depth: Not Reported Well Hole Depth Units: Not Reported

A2 NNE FED USGS USGS40000262391

1 - 2 Miles Higher

Lower

Organization ID: USGS-GA Organization Name: USGS Georgia Water Science Center

Monitor Location: 19Z017 Type: Well HUC: 03070101 Description: Not Reported Drainage Area Units: Not Reported Drainage Area: Not Reported Contrib Drainage Area Unts: Contrib Drainage Area: Not Reported Not Reported Aquifer: Not Reported Formation Type: Not Reported Aquifer Type: Not Reported Construction Date: Not Reported Well Depth: Not Reported Well Depth Units: Not Reported Well Hole Depth: Not Reported Well Hole Depth Units: Not Reported

3 NNE FED USGS USGS40000262403 1 - 2 Miles

Organization ID: USGS-GA Organization Name: USGS Georgia Water Science Center

Monitor Location: 19Z013 Well Type: Description: Not Reported HUC: 03070101 Drainage Area: Not Reported Drainage Area Units: Not Reported Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported Aquifer: Not Reported Formation Type: Not Reported Construction Date: Aquifer Type: Not Reported Not Reported Well Depth: Not Reported Well Depth Units: Not Reported Well Hole Depth: Not Reported Well Hole Depth Units: Not Reported

MSW FED USGS USGS40000262292 1 - 2 Miles

Higher

Organization ID: USGS-GA Organization Name: USGS Georgia Water Science Center

Monitor Location:19Z021Type:WellDescription:Not ReportedHUC:03070101Drainage Area:Not ReportedDrainage Area Units:Not Reported

TC07808115.1r Page 8

Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported Aquifer: Not Reported Formation Type: Not Reported Aquifer Type: Not Reported Construction Date: Not Reported Well Depth: Well Depth Units: Not Reported Not Reported Well Hole Depth: Not Reported Well Hole Depth Units: Not Reported

5 SW FED USGS USGS40000262254

1 - 2 Miles Lower

Organization ID: USGS-GA Organization Name: USGS Georgia Water Science Center

Monitor Location: 19Z020 Type: Well 03070101 Description: Not Reported HUC: Drainage Area: Not Reported **Drainage Area Units:** Not Reported Not Reported Contrib Drainage Area Unts: Not Reported Contrib Drainage Area: Not Reported Formation Type: Not Reported Aquifer: Aquifer Type: Not Reported Construction Date: Not Reported Well Depth: Not Reported Well Depth Units: Not Reported Well Hole Depth: Not Reported Well Hole Depth Units: Not Reported

B6 WSW FED USGS USGS40000262290

1 - 2 Miles Higher

Lower

Organization ID: USGS-GA Organization Name: USGS Georgia Water Science Center

Monitor Location: 19Z023 Type: Well HUC: 03070101 Description: Not Reported Not Reported Drainage Area Units: Not Reported Drainage Area: Not Reported Contrib Drainage Area: Contrib Drainage Area Unts: Not Reported Aquifer: Not Reported Formation Type: Not Reported Not Reported Construction Date: Not Reported Aquifer Type: Well Depth: Not Reported Well Depth Units: Not Reported Well Hole Depth: Not Reported Well Hole Depth Units: Not Reported

C7 SSW 1 - 2 Miles

Epa region: 04 State: GA

Pwsid: GA2370006 Pwsname: PINE FOREST SUBDIVISION

Cityserved: Not Reported Stateserved: GΑ Zipserved: Not Reported Fipscounty: 13237 Status: Closed Retpopsrvd: 1003 Pwssvcconn: 388 Psource longname: Groundwater **CWS** Pwstype: Owner: Private

Contact: ARCHEBELLE, DONNA Contactorgname: ARCHEBELLE, DONNA

Contactphone:706-485-5252Contactaddress1:POB 3639Contactaddress2:Not ReportedContactcity:EATONTONContactstate:GAContactzip:31024-3639

Pwsactivitycode:

Pwsid: GA2370006 Facid: 15132

Facname: PARCEL B/451 AVANT RD PLANT #4

Factype: Treatment_plant Facactivitycode: A

Trtobjective: disinfection Trtprocess: hypochlorination, post

Factypecode: TP

Pwsid: GA2370006 Facid: 16589

Facname: 160 BEAR CREEK EAST PLANT #5

Factype: Treatment_plant Facactivitycode: A

Trtobjective: disinfection Trtprocess: hypochlorination, post

Factypecode: TP

Pwsid: GA2370006 Facid: 16646

Facname: 143 EDGEWATER DRIVE PLANT #6

Factype: Treatment_plant Facactivitycode: A

Trtobjective: disinfection Trtprocess: hypochlorination, post

Factypecode: TP

 Pwsid:
 GA2370006
 Facid:
 3517

 Facname:
 L525/308 LITTLE RIVER TRAILPLANT #3

Factype: Treatment_plant Facactivitycode: A

Trtobjective: disinfection Trtprocess: hypochlorination, post

Factypecode: TP

PWS ID: GA2370006 PWS name: PINE FOREST SUBDIVISION
Address: POB 390 Care of: GREAT SOUTHEAST UTILITY CO.

City: GREENSBORO State: GA

Zip: 306420390 Owner: PINE FOREST SUBDIVISION

Source code: Ground water Population: 629

PWS ID:GA2370006PWS type:Not ReportedPWS name:Not ReportedPWS address:Not ReportedPWS city:Not ReportedPWS state:Not Reported

PWS zip: Not Reported PWS name: PINE FOREST SUBDIVISION

PWS type code: C Retail population served: 1003

Contact: ARCHEBELLE, DONNA Contact address: 663 GODFREY RD.

Contact address: EATONTON Contact city: GA

Contact state: 31 Contact zip: 706-485-52

Contact telephone: Not Reported

County: PUTNAM Source: Ground water

Treatment Objective: DISINFECTION Process: HYPOCHLORINATION, POST

Population: 629

PWS ID: GA2370006 Activity status: Active
Date system activated: Not Reported Date system deactivated: Not Reported

Retail population: 00000564 System name: PINE FOREST SUBDIVISION

System address: GREAT SE UTILITY COMPANY System address: POB 390

System city: GREENSBORO System state: GA

System zip: 306420390

Population served: 501 - 1,000 Persons Treatment: Treated

Latitude: 335554 Longitude: 0832024

Latitude: 331044 Longitude: 0832025

State:GALatitude degrees:33Latitude minutes:10Latitude seconds:44.0000Longitude degrees:83Longitude minutes:20

Longitude seconds: 25.0000

State: GA Latitude degrees: 33 Latitude minutes: 19 Latitude seconds: 39.0000

Longitude degrees: 83 Longitude minutes: 21

Longitude seconds: 6.0000

Violation id:20101Orig code:SState:GAViolation Year:2000Contamination code:1040Contamination Name:Nitrate

Violation code:03Violation name:Monitoring, RegularRule code:331Rule name:NitratesViolation measur:0Unit of measure:Not Reported

 State mcl:
 0
 Cmp bdt:

 Cmp edt:
 12/31/2000

Violation id:20301Orig code:SState:GAViolation Year:1997

Contamination code: 5000 Contamination Name: Lead and Copper Rule

Violation code: 52 Violation name: Follow-up Or Routine LCR Tap M/R

Rule code:350Rule name:LCRViolation measur:Not ReportedUnit of measure:Not ReportedState mcl:Not ReportedCmp bdt:10/01/1997

Cmp edt: Not Reported

Violation id:20401Orig code:SState:GAViolation Year:2000

Contamination code: 5000 Contamination Name: Lead and Copper Rule

Violation code: 52 Violation name: Follow-up Or Routine LCR Tap M/R

Rule code: 350 Rule name: LCR
Violation measur: Not Reported Unit of measure: Not Reported

Violation measur: Not Reported Unit of measure: Not Reported State mcl: Not Reported Cmp bdt: 10/01/2000

Cmp edt: Not Reported

Violation id:20604Orig code:SState:GAViolation Year:2004

Contamination code: 7000 Contamination Name: Consumer Confidence Rule
Violation code: 71 Violation name: CCR Complete Failure to Report

Rule code: 420 Rule name: CCR

Violation measur:

Not Reported

Unit of measure:

Not Reported

State mcl:

Not Reported

Cmp bdt:

07/01/2004

Cmp edt:

Not Reported

Violation id:20705Orig code:SState:GAViolation Year:2003

Contamination code: 5000 Contamination Name: Lead and Copper Rule

Violation code: 52 Violation name: Follow-up Or Routine LCR Tap M/R

Cmp bdt:

Rule code: 350 Rule name: LCR
Violation measur: Not Reported Unit of measure: Not Reported

State mcl: Not Reported Cmp edt: Not Reported

Violation id:20805Orig code:SState:GAViolation Year:2005

Contamination code: 7000 Contamination Name: Consumer Confidence Rule Violation code: 71 Violation name: CCR Complete Failure to Report

Rule code: 420 Rule name: CCR
Violation measur: Not Reported Unit of measure: Not Reported

State mcl: Not Reported Cmp bdt: 07/01/2005 Cmp edt: Not Reported

Violation id:21008Orig code:SState:GAViolation Year:2008

Contamination code: 7000 Contamination Name: Consumer Confidence Rule
Violation code: 71 Violation name: CCR Complete Failure to Report

Rule code: 420 Rule name: CCR

10/01/2003

01/01/2000

Violation measur:Not ReportedUnit of measure:Not ReportedState mcl:Not ReportedCmp bdt:07/01/2008

Cmp edt: Not Reported

Violation id:21109Orig code:SState:GAViolation Year:2009

Contamination code: 7000 Contamination Name: Consumer Confidence Rule
Violation code: 71 Violation name: CCR Complete Failure to Report

Rule code: 420 Rule name: CCR

Violation measur: Not Reported Unit of measure: Not Reported State mcl: Not Reported Cmp bdt: 07/01/2009

Cmp edt: Not Reported

Violation id:21209Orig code:SState:GAViolation Year:2009

Contamination code: 3100 Contamination Name: Coliform (TCR)

Violation code: 23 Violation name: Monitoring, Routine Major (TCR)

Rule code: 110 Rule name: TCR

Violation measur:Not ReportedUnit of measure:Not ReportedState mcl:Not ReportedCmp bdt:07/01/2009

Cmp edt: 07/31/2009

Violation ID: 20101 Orig Code: S

Enforcement FY: 2001 Enforcement Action: 09/06/2001

Enforcement Detail: St No addtl Formal Action needed

Enforcement Category: Informal

Violation ID: 20101 Orig Code: S

Enforcement FY: 2001 Enforcement Action: 09/06/2001 Enforcement Detail: St Public Notif received Enforcement Category: Informal

Violation ID: 20101 Orig Code: S

Enforcement FY: 2001 Enforcement Action: 09/06/2001

Enforcement Detail: St Violation/Reminder Notice

Enforcement Category: Informal

Violation ID: 20201 Orig Code: S

Enforcement FY: 2001 Enforcement Action: 09/20/2001 Enforcement Detail: St Intentional no-action Enforcement Category: Informal

Violation ID: 20301 Orig Code: S

Enforcement FY: 2001 Enforcement Action: 09/20/2001 Enforcement Detail: St Intentional no-action Enforcement Category: Informal

Violation ID: 20301 Orig Code: S

Enforcement FY: 2001 Enforcement Action: 09/20/2001 Enforcement Detail: St Intentional no-action Enforcement Category: Informal

Violation ID: 20401 Orig Code: S

Enforcement FY: 2001 Enforcement Action: 07/24/2001 Enforcement Detail: St Compliance achieved Enforcement Category: Resolving

Violation ID: 20401 Orig Code: S

Enforcement FY: 2003 Enforcement Action: 07/22/2003
Enforcement Detail: St Intentional no-action Enforcement Category: Informal

Violation ID: 20604 Orig Code: S

Enforcement FY: 2004 Enforcement Action: 07/23/2004 Enforcement Detail: St Compliance achieved Enforcement Category: Resolving

Violation ID: 20604 Orig Code: S

Enforcement FY: 2004 Enforcement Action: 07/01/2004

Enforcement Detail: St Intentional no-action Enforcement Category: Resolving

Violation ID: 20705 Orig Code: S

Enforcement FY: 2004 Enforcement Action: 07/27/2004 Enforcement Detail: St Compliance achieved Enforcement Category: Resolving

Violation ID: 20705 Orig Code: S

Enforcement FY: 2005 Enforcement Action: 07/14/2005 Enforcement Detail: St Public Notif received Enforcement Category: Informal

Violation ID: 20705 Orig Code: S

Enforcement FY: 2005 Enforcement Action: 12/01/2004 Enforcement Detail: St Public Notif requested Enforcement Category: Informal

Violation ID: 20705 Orig Code: S

Enforcement FY: 2005 Enforcement Action: 12/01/2004

Enforcement Detail: St Violation/Reminder Notice
Enforcement Category: Informal

20805

Enforcement FY: 2005 Enforcement Action: 07/08/2005

Enforcement Detail: St Compliance achieved Enforcement Category: Resolving

Orig Code:

Violation ID: 20805 Orig Code: S

Enforcement FY: 2005 Enforcement Action: 07/01/2005

Enforcement Detail: St Intentional no-action Enforcement Category: Resolving

Violation ID: 21008 Orig Code: S

Enforcement FY: 2008 Enforcement Action: 07/09/2008 Enforcement Detail: St Compliance achieved Enforcement Category: Resolving

Violation ID: 21109 Orig Code: S

Enforcemnt FY: 2009 Enforcement Action: 08/05/2009

Enforcement Detail: State CCR Follow-up Notice

Enforcement Category: Informal

Violation ID:

Violation ID: 21109 Orig Code: S

Enforcemnt FY: 2010 Enforcement Action: 10/07/2009

Enforcement Detail: State CCR Follow-up Notice
Enforcement Category: Informal

÷ ,

Violation ID:21209Orig Code:SEnforcemnt FY:2009Enforcement Action:08/19/2009

Enforcement Detail: St Public Notif requested Enforcement Category: Informal

Violation ID: 21209 Orig Code: S

Enforcemnt FY: 2009 Enforcement Action: 08/19/2009

Enforcement Detail: St Violation/Reminder Notice

Enforcement Category: Informal

PWS name: PINE FOREST SUBDIVISION Population served: 1003
PWS type code: C Violation ID: 20101

Contaminant: Nitrate Violation type: 3
Compliance start date: 1/1/2000 0:00:00 Compliance end date: 12/31/2000 0:00:00

Enforcement date: 9/6/2001 0:00:00 Enforcement action: State Violation/Reminder Notice

Violation measurement: 0

PWS name: PINE FOREST SUBDIVISION Population served: 1003
PWS type code: C Violation ID: 20101

Contaminant: Nitrate Violation type: 3

Compliance start date: 1/1/2000 0:00:00 Compliance end date: 12/31/2000 0:00:00 Enforcement date: 9/6/2001 0:00:00 Enforcement action: State Public Notif Received

Violation measurement: 0

PWS name: PINE FOREST SUBDIVISION Population served: 1003
PWS type code: C Violation ID: 20101
Contaminant: Nitrate Violation type: 3

Enforcement date: 9/6/2001 0:00:00

Enforcement action: State No Additional Formal Action Needed

Violation measurement: 0

PWS name: PINE FOREST SUBDIVISION Population served: 1003
PWS type code: C Violation ID: 20301

Contaminant: Lead & Copper Rule Violation type: Follow-up and Routine Tap Sampling Compliance start date: 10/1/1997 0:00:00 Compliance end date: 12/31/2025 0:00:00 Enforcement date: 9/20/2001 0:00:00 Enforcement action: State Intentional no-action

Enforcement date: 9/20/2001 0:0
Violation measurement: Not Reported

PWS name: PINE FOREST SUBDIVISION Population served: 1003

PWS type code: Violation ID: 2040

PWS type code: C Violation ID: 20401
Contaminant: Lead & Copper Rule Violation type: Follow

Contaminant: Lead & Copper Rule Violation type: Follow-up and Routine Tap Sampling Compliance start date: 10/1/2000 0:00:00 Compliance end date: 7/24/2001 0:00:00 Enforcement action: State Intentional no-action

Violation measurement: Not Reported

PWS name: PINE FOREST SUBDIVISION Population served: 1003

PWS type code: C Violation ID: 20401

Contaminant: Lead & Copper Rule Violation type: Follow-up and Routine Tap Sampling Compliance start date: 10/1/2000 0:00:00 Compliance end date: 7/24/2001 0:00:00

Enforcement date: 7/24/2001 0:00:00 Enforcement action: State Compliance Achieved

Violation measurement: Not Reported

PWS name: PINE FOREST SUBDIVISION Population served: 1003
PWS type code: C Violation ID: 20604
Contaminant: 7000 Violation type: 71

Compliance start date: 7/1/2004 0:00:00 Compliance end date: 7/23/2004 0:00:00

Enforcement date: 7/1/2004 0:00:00 Enforcement action: State Intentional no-action

Violation measurement: Not Reported

PWS name: PINE FOREST SUBDIVISION Population served: 1003
PWS type code: C Violation ID: 20604
Contaminant: 7000 Violation type: 71

Enforcement date: 7/23/2004 0:00:00 Enforcement action: State Compliance Achieved Violation measurement: Not Reported

PWS name: PINE FOREST SUBDIVISION Population served: 1003

PWS type code: C Violation ID: 20705

Contaminant: Lead & Copper Rule Violation type: Follow-up and Routine Tap Sampling

Compliance start date: 10/1/2003 0:00:00 Compliance end date: 7/27/2004 0:00:00

Enforcement date: 12/1/2004 0:00:00 Enforcement action: State Violation/Reminder Notice

Violation measurement: Not Reported

PWS name: PINE FOREST SUBDIVISION Population served: 1003
PWS type code: C Violation ID: 20705

Contaminant: Lead & Copper Rule Violation type: Follow-up and Routine Tap Sampling

Enforcement date: 12/1/2004 0:00:00 Enforcement action: State Public Notif Requested

Violation measurement: Not Reported

PWS name: PINE FOREST SUBDIVISION Population served: 1003
PWS type code: C Violation ID: 20705

Contaminant: Lead & Copper Rule Violation type: Follow-up and Routine Tap Sampling

Compliance start date: 10/1/2003 0:00:00 Compliance end date: 7/27/2004 0:00:00

Enforcement date: 7/14/2005 0:00:00 Enforcement action: State Public Notif Received

Violation measurement: Not Reported

PWS name: PINE FOREST SUBDIVISION Population served: 1003

PWS type code: C Violation ID: 20705

Contaminant: Lead & Copper Rule Violation type: Follow-up and Routine Tap Sampling

Compliance start date: 10/1/2003 0:00:00 Compliance end date: 7/27/2004 0:00:00

Enforcement date: 7/27/2004 0:00:00 Enforcement action: State Compliance Achieved Violation measurement: Not Reported

PWS name: PINE FOREST SUBDIVISION Population served: 1003
PWS type code: C Violation ID: 20805

Contaminant: 7000 Violation type: 71

Compliance start date: 7/1/2005 0:00:00 Compliance end date: 7/8/2005 0:00:00 Enforcement date: 7/1/2005 0:00:00 Enforcement action: State Intentional no-action of the compliance end date: 7/8/2005 0:00:00

Enforcement date: 7/1/2005 0:00:00 Enforcement action: State Intentional no-action Violation measurement: Not Reported

PWS name: PINE FOREST SUBDIVISION Population served: 1003
PWS type code: C Violation ID: 20805

Contaminant: 7000 Violation type: 71

Compliance start date: 7/1/2005 0:00:00 Compliance end date: 7/8/2005 0:00:00

Enforcement date: 7/8/2005 0:00:00 Enforcement action: State Compliance Achieved Violation measurement: Not Reported

PWS name: PINE FOREST SUBDIVISION Population served: 1003

PWS type code:CViolation ID:21008Contaminant:7000Violation type:71

Compliance start date: 7/1/2008 0:00:00 Compliance end date: 12/31/2025 0:00:00 Enforcement date: No Enf Action as of Enforcement action: 7/8/2009 0:00:00 Violation measurement: Not Reported

C8
SSW FRDS PWS GA2370008

1 - 2 Miles Lower

Epa region: 04 State: GA

Pwsid: GA2370008 Pwsname: TALL TIMBERS-OAK OPENINGS

Cityserved: Not Reported Stateserved: GΑ 13237 Zipserved: Not Reported Fipscounty: Closed Retpopsrvd: Status: 733 Psource longname: Pwssvcconn: 279 Groundwater **CWS** Owner: Private Pwstype:

Contact: ARCHEBELLE, DONNA Contactorgname: ARCHEBELLE, DONNA

Contactphone: 706-485-5252 Contactaddress1: POB 3639
Contactaddress2: Not Reported Contactcity: EATONTON
Contactstate: GA Contactzip: 31024-3639

Pwsactivitycode: I

Pwsid: GA2370008 Facid: 15117

Facname: WELLS 2 & 3 PLANT Factype: Treatment_plant Facactivitycode: A Trobjective: disinfection

Trtprocess: hypochlorination, post Factypecode: TP

Pwsid: GA2370008 Facid: 15126

Facname: 116 BLUEGILL RD/L#1 - WELL #5 PLANT

Factype: Treatment_plant Facactivitycode: A

Trtobjective: disinfection Trtprocess: hypochlorination, post

Factypecode: TP

Pwsid: GA2370008 Facid: 21184

Facname: 308 BLUEGILL ROAD-LOT 215 WELL #6 PLANT
Factype: Treatment_plant Facactivitycode:

Trtobjective: disinfection Trtprocess: hypochlorination, post

Factypecode: TP

PWS ID: GA2370008 PWS name: TALL TIMBERS-OAK OPENINGS Address: POB 390 Care of: GREAT SOUTHEAST UTILITY CO.

City: GREENSBORO State: G/

Zip: 306420390 Owner: TALL TIMBERS-OAK OPENINGS

Source code: Ground water Population: 465

PWS ID: GA2370008 PWS type: Not Reported PWS name: Not Reported PWS address: Not Reported PWS city: Not Reported PWS state: Not Reported **PUTNAM** PWS zip: Not Reported County: DISINFECTION Source: Ground water Treatment Objective:

Process: HYPOCHLORINATION, POST Population: 465

PWS ID: GA2370008 Activity status: Active

Date system activated: Not Reported Date system deactivated: Not Reported

Retail population: O0000465 System name: TALL TIMBERS-OAK OPENINGS

System address: GREAT SE UTILITY COMPANY System address: POB 390

System city: GREENSBORO System state:
System zip: 306420390

Population served: 101 - 500 Persons Treatment: Treated

Latitude: 335554 Longitude: 0832024

Latitude: 331042 Longitude: 0832025

State:GALatitude degrees:33Latitude minutes:10Latitude seconds:42.0000Longitude degrees:83Longitude minutes:20

Longitude seconds: 25.0000

Violation id:10101Orig code:SState:GAViolation Year:2000Contamination code:1040Contamination Name:Nitrate

Violation code:03Violation name:Monitoring, RegularRule code:331Rule name:Nitrates

Violation measur:0Unit of measure:Not ReportedState mcl:0Cmp bdt:01/01/2000

Cmp edt: 12/31/2000

Violation id:10201Orig code:SState:GAViolation Year:2000Contamination code:1040Contamination Name:Nitrate

Violation code: 03 Violation name: Monitoring, Regular

Rule code:331Rule name:NitratesViolation measur:0Unit of measure:Not ReportedState mcl:0Cmp bdt:01/01/2000

Cmp edt: 12/31/2000

Violation id:10301Orig code:SState:GAViolation Year:1995

Contamination code: 5000 Contamination Name: Lead and Copper Rule

Violation code: 52 Violation name: Follow-up Or Routine LCR Tap M/R

Rule code: 350 Rule name: LCR Violation measur: Not Reported Unit of measure: Not F

Violation measur:Not ReportedUnit of measure:Not ReportedState mcl:Not ReportedCmp bdt:10/01/1995

GA

Cmp edt: Not Reported

Violation id:10501Orig code:SState:GAViolation Year:2000

Contamination code: 5000 Contamination Name: Lead and Copper Rule

Violation code: 52 Violation name: Follow-up Or Routine LCR Tap M/R

Rule code: 350 Rule name: LCR

Violation measur: Not Reported Unit of measure: Not Reported State mcl: Not Reported Cmp bdt: 10/01/2000

Cmp edt: Not Reported

Violation id:10704Orig code:SState:GAViolation Year:2004

Contamination code: 7000 Contamination Name: Consumer Confidence Rule
Violation code: 71 Violation name: CCR Complete Failure to Report

Rule code: 420 Rule name: CCR
Violation measur: Not Reported Unit of measure: Not Reported
State mcl: Not Reported Cmp bdt: 07/01/2004

Cmp edt: Not Reported

Violation id:10805Orig code:SState:GAViolation Year:2005

Contamination code: 7000 Contamination Name: Consumer Confidence Rule
Violation code: 71 Violation name: CCR Complete Failure to Report

Rule code: 420 Rule name: CCR
Violation measur: Not Reported Unit of measure: Not Reported
State mcl: Not Reported Cmp bdt: 07/01/2005

Cmp edt: Not Reported

Violation id:10906Orig code:SState:GAViolation Year:2005

Contamination code: 5000 Contamination Name: Lead and Copper Rule

Violation code: 52 Violation name: Follow-up Or Routine LCR Tap M/R

Rule code: 350 Rule name: LCR

Violation measur: Not Reported Unit of measure: Not Reported State mcl: Not Reported Cmp bdt: 10/01/2005

Cmp edt: Not Reported

Violation id:11008Orig code:SState:GAViolation Year:2008

Contamination code: 7000 Contamination Name: Consumer Confidence Rule
Violation code: 71 Violation name: CCR Complete Failure to Report

Rule code:420Rule name:CCRViolation measur:Not ReportedUnit of measure:Not ReportedState mcl:Not ReportedCmp bdt:07/01/2008

Cmp edt: Not Reported

PWS currently has or had major violation(s) or enforcement. Yes

Violation ID:9200002Violation source ID:Not ReportedPWS telephone:Not ReportedContaminant:Coliform (Tcr)

Violation type: Max Contaminant Level, Monthly (TCR)

Violation start date: 070192 Violation end date: 073192 Violation period (months): 001 Not Reported Violation awareness date: Major violator: Not Reported Maximum contaminant level: Not Reported Number of required samples: Not Reported Number of samples taken: Not Reported Analysis method: Not Reported Analysis result: Not Reported

Violation ID: 10101 Orig Code: S

Enforcement FY: 2001 Enforcement Action: 09/06/2001

Enforcement Detail: St No addtl Formal Action needed

Enforcement Category: Informal

Violation ID: 10101 Orig Code:

Enforcemnt FY: 2001 **Enforcement Action:** 09/06/2001

Enforcement Detail: St Violation/Reminder Notice **Enforcement Category:** Informal

Violation ID: 10101 Orig Code:

Enforcemnt FY: 2001 **Enforcement Action:** 05/15/2001

Enforcement Detail: St Violation/Reminder Notice

Enforcement Category: Informal

Violation ID: 10101 Orig Code: S

Enforcemnt FY: 2001 **Enforcement Action:** 05/15/2001 **Enforcement Detail:** St Public Notif requested **Enforcement Category:** Informal

Violation ID: 10101 Orig Code: S

10/03/2001 Enforcemnt FY: 2002 **Enforcement Action: Enforcement Detail:** St Compliance achieved **Enforcement Category:** Resolving

Violation ID: 10201 Orig Code:

09/06/2001 Enforcemnt FY: 2001 **Enforcement Action:**

Enforcement Detail: St Public Notif received **Enforcement Category:** Informal

Violation ID: 10201 Orig Code:

09/06/2001 Enforcemnt FY: 2001 **Enforcement Action:**

Enforcement Detail: St No addtl Formal Action needed

Enforcement Category: Informal

10201 Orig Code: Violation ID:

Enforcement Action: Enforcemnt FY: 2002 10/03/2001 **Enforcement Detail:** St Compliance achieved **Enforcement Category:** Resolving

Violation ID: 10201 Orig Code:

09/06/2001 Enforcement Action: Enforcemnt FY: 2001

St Violation/Reminder Notice **Enforcement Detail:**

Enforcement Category: Informal

10301 Orig Code: Violation ID:

2001 Enforcement Action: 09/20/2001 Enforcemnt FY: **Enforcement Detail:** St Intentional no-action **Enforcement Category:** Informal

Violation ID: 10501 Orig Code: S

08/17/2001 Enforcemnt FY: 2001 **Enforcement Action:**

Enforcement Detail: St Compliance achieved **Enforcement Category:** Resolving

Violation ID: 10501 Orig Code:

Enforcemnt FY: 2003 **Enforcement Action:** 07/22/2003

Enforcement Detail: St Intentional no-action **Enforcement Category:** Informal

Violation ID: 10704 Orig Code:

Enforcemnt FY: 2004 **Enforcement Action:** 07/01/2004 **Enforcement Detail:** St Intentional no-action

Enforcement Category: Resolving

Violation ID: 10704 Orig Code:

Enforcemnt FY: 2004 **Enforcement Action:** 07/23/2004 **Enforcement Detail:** St Compliance achieved **Enforcement Category:** Resolving

Violation ID: 10805 Orig Code:

Enforcemnt FY: 2005 **Enforcement Action:** 07/08/2005 **Enforcement Detail:** St Compliance achieved **Enforcement Category:** Resolving

Violation ID: 10805 Orig Code:

Enforcemnt FY: 2005 **Enforcement Action:** 07/01/2005

Enforcement Detail: St Intentional no-action **Enforcement Category:** Resolving

Violation ID: 10906 Orig Code: S

07/12/2006 Enforcemnt FY: 2006 **Enforcement Action: Enforcement Detail:** St Public Notif received **Enforcement Category:** Informal

Violation ID: 10906 Orig Code:

Enforcemnt FY: 2006 **Enforcement Action:** 02/07/2006 **Enforcement Detail:** St Public Notif requested

Enforcement Category: Informal

Violation ID: 10906 Orig Code:

Enforcemnt FY: 2006 **Enforcement Action:** 07/17/2006 **Enforcement Detail:** St Compliance achieved **Enforcement Category:** Resolving

Violation ID: 10906 Orig Code: S

Enforcemnt FY: 2006 **Enforcement Action:** 02/07/2006

Enforcement Detail: St Violation/Reminder Notice

Enforcement Category: Informal

Violation ID: 11008 Orig Code:

Enforcemnt FY: 2008 **Enforcement Action:** 07/09/2008 **Enforcement Detail:** St Compliance achieved **Enforcement Category:** Resolving

NE **FED USGS** USGS40000262386 1 - 2 Miles

Organization ID: USGS-GA Organization Name: **USGS Georgia Water Science Center**

Monitor Location: 19Z015 Type: Well Description: Not Reported HUC: 03070101 Drainage Area Units: Not Reported Drainage Area: Not Reported Not Reported Contrib Drainage Area Unts: Not Reported Contrib Drainage Area: Formation Type: Aquifer: Not Reported Not Reported Aquifer Type: Not Reported Construction Date: Not Reported Well Depth Units: Not Reported Well Depth: Not Reported Not Reported Well Hole Depth: Not Reported Well Hole Depth Units:

10 WSW **FED USGS** USGS40000262278

1 - 2 Miles Higher

Higher

Organization ID: USGS-GA Organization Name: USGS Georgia Water Science Center

Monitor Location: 19Z022 Type: Well Description: Not Reported HUC: 03070101 Drainage Area: Not Reported Drainage Area Units: Not Reported Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported Aquifer: Not Reported Formation Type: Not Reported Not Reported Aquifer Type: Construction Date: Not Reported Well Depth: Well Depth Units: Not Reported Not Reported Well Hole Depth: Not Reported Well Hole Depth Units: Not Reported

AREA RADON INFORMATION

Federal EPA Radon Zone for PUTNAM County: 3

Note: Zone 1 indoor average level > 4 pCi/L.

: Zone 2 indoor average level >= 2 pCi/L and <= 4 pCi/L.

: Zone 3 indoor average level < 2 pCi/L.

Federal Area Radon Information for Zip Code: 31024

Number of sites tested: 10

Area	Average Activity	% <4 pCi/L	% 4-20 pCi/L	% >20 pCi/L
Living Area - 1st Floor Living Area - 2nd Floor	1.190 pCi/L Not Reported	100% Not Reported	0% Not Reported	0% Not Reported
Basement	Not Reported	Not Reported	Not Reported	Not Reported

PHYSICAL SETTING SOURCE RECORDS SEARCHED

TOPOGRAPHIC INFORMATION

USGS 7.5' Digital Elevation Model (DEM)

Source: United States Geologic Survey

EDR acquired the USGS 7.5' Digital Elevation Model in 2002 and updated it in 2006. The 7.5 minute DEM corresponds to the USGS 1:24,000- and 1:25,000-scale topographic quadrangle maps. The DEM provides elevation data with consistent elevation units and projection.

HYDROLOGIC INFORMATION

Flood Zone Data: This data was obtained from the Federal Emergency Management Agency (FEMA). It depicts 100-year and 500-year flood zones as defined by FEMA. It includes the National Flood Hazard Layer (NFHL) which incorporates Flood Insurance Rate Map (FIRM) data and Q3 data from FEMA in areas not covered by NFHL.

Source: FEMA

Telephone: 877-336-2627

Date of Government Version: 2003, 2015

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002, 2005, 2010 and 2015 from the U.S. Fish and Wildlife Service.

State Wetlands Data: Wetlands Inventory Source: Georgia GIS Clearinghouse

Telephone: 706-542-1581

HYDROGEOLOGIC INFORMATION

AQUIFLOW^R Information System

Source: EDR proprietary database of groundwater flow information

EDR has developed the AQUIFLOW Information System (AIS) to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted to regulatory authorities at select sites and has extracted the date of the report, hydrogeologically determined groundwater flow direction and depth to water table information.

GEOLOGIC INFORMATION

Geologic Age and Rock Stratigraphic Unit

Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - A digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

STATSGO: State Soil Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Service (NRCS)

The U.S. Department of Agriculture's (USDA) Natural Resources Conservation Service (NRCS) leads the national Conservation Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps.

SSURGO: Soil Survey Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Service (NRCS)

Telephone: 800-672-5559

SSURGO is the most detailed level of mapping done by the Natural Resources Conservation Service, mapping scales generally range from 1:12,000 to 1:63,360. Field mapping methods using national standards are used to construct the soil maps in the Soil Survey Geographic (SSURGO) database. SSURGO digitizing duplicates the original soil survey maps. This level of mapping is designed for use by landowners, townships and county natural resource planning and management.

PHYSICAL SETTING SOURCE RECORDS SEARCHED

LOCAL / REGIONAL WATER AGENCY RECORDS

FEDERAL WATER WELLS

PWS: Public Water Systems

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Public Water System data from the Federal Reporting Data System. A PWS is any water system which provides water to at least 25 people for at least 60 days annually. PWSs provide water from wells, rivers and other sources.

PWS ENF: Public Water Systems Violation and Enforcement Data

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Violation and Enforcement data for Public Water Systems from the Safe Drinking Water Information System (SDWIS) after August 1995. Prior to August 1995, the data came from the Federal Reporting Data System (FRDS).

USGS Water Wells: USGS National Water Inventory System (NWIS)

This database contains descriptive information on sites where the USGS collects or has collected data on surface water and/or groundwater. The groundwater data includes information on wells, springs, and other sources of groundwater.

OTHER STATE DATABASE INFORMATION

A listing of Private Water Well locations Georgia Department of Public Health Telephone: (404) 657-2700

A listing of Private Water Well locations

Georgia Public Supply Wells

Source: Georgia Department of Community Affairs

Telephone: 404-894-0127

USGS Georgia Water Wells

Source: USGS, Georgia District Office

Telephone: 770-903-9100

DNR Managed Lands

Source: Department of Natural Resources

Telephone: 706-557-3032

This dataset provides 1:24,000-scale data depicting boundaries of land parcels making up the public lands managed by the Georgia Department of Natural Resources (GDNR). It includes polygon representations of State Parks, State Historic Parks, State Conservation Parks, State Historic Sites, Wildlife Management Areas, Public Fishing Areas, Fish Hatcheries, Natural Areas and other specially-designated areas. The data were collected and located by the Georgia Department of Natural Resources. Boundaries were digitized from survey plats or other information.

RADON

Area Radon Information

Source: USGS

Telephone: 703-356-4020

The National Radon Database has been developed by the U.S. Environmental Protection Agency (USEPA) and is a compilation of the EPA/State Residential Radon Survey and the National Residential Radon Survey.

The study covers the years 1986 - 1992. Where necessary data has been supplemented by information collected at

private sources such as universities and research institutions.

EPA Radon Zones

Source: EPA

Telephone: 703-356-4020

Sections 307 & 309 of IRAA directed EPA to list and identify areas of U.S. with the potential for elevated indoor

radon levels.

PHYSICAL SETTING SOURCE RECORDS SEARCHED

OTHER

Airport Landing Facilities: Private and public use landing facilities

Source: Federal Aviation Administration, 800-457-6656

Epicenters: World earthquake epicenters, Richter 5 or greater

Source: Department of Commerce, National Oceanic and Atmospheric Administration

Earthquake Fault Lines: The fault lines displayed on EDR's Topographic map are digitized quaternary faultlines, prepared

in 1975 by the United State Geological Survey

STREET AND ADDRESS INFORMATION

© 2015 TomTom North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.