

Plant Branch Monthly Dewatering Results¹ July 2022

	Units	Efflu	ent Concent	ration	Permit Limits			
Parameter		Daily Min ²	Daily Avg ²	Daily Max ²	Daily Min	Daily Avg	Daily Max	
Flow	MGD	0.00	0.00	0.00	***	***	***	
pН	SU				6.0	***	9.0	
Total Suspended Solids	mg/L				***	30.0	100.0	
Oil and Grease	mg/L				***	15.0	20.0	

Parameter	Units		Daily			
Parameter		Week 1	Week 2	Week 3	Week 4	Average
		No Discharge	No Discharge	No Discharge	No Discharge	
Turbidity ⁴	NTU					
Total Residual Chlorine ⁴	mg/L					
Total Dissolved Solids	mg/L					
Ammonia	mg/L					
Total Kjeldahl Nitrogen	mg/L					
Nitrate-Nitrite	mg/L					
Organic Nitrogen	mg/L					
Phosphorus	mg/L					
Ortho-Phosphorus	mg/L					
Biological Oxygen Demand	mg/L					
Hardness	mg/L					

			Effluent Co	ncentration ⁵		Calculated Receiving Water Concentration⁵					Water Quality Criteria ⁶	
Parameter	Units	Week 1	Week 2	Week 3	Week 4	Week 1	Week 2	Week 3	Week 4	Average	7	Chronic ⁷
		No Discharge	No Discharge	No Discharge	No Discharge	No Discharge	No Discharge	No Discharge	No Discharge		Acute ⁷	
Antimony ⁹	μg/L										***	640
Arsenic	μg/L										340	150
Cadmium	μg/L										0.94	0.43
Chromium ⁸	μg/L										16	11
Copper	μg/L										7	5
Lead	μg/L										30	1.2
Nickel	μg/L										260	29
Selenium ⁹	μg/L										***	5
Thallium ⁹	μg/L										***	0.47
Zinc	μg/L										65	65
Mercury	ng/L										1400	12

- Tetra Tech verifies the correct laboratory analysis methods were used, any applicable permit limits have been met and other results are protective of Georgia EPD's water quality standards.
- Daily Min and Daily Max are the lowest and highest values for any day in the month. Daily Avg is the arithmetic average of all daily values during the entire month.

- 2 Daily Min and Daily Max are the lowest and highest values for any day in the month. Daily Avg is the arithmetic average of all daily values during the entire month.

 No Not Detected (below the lab's reporting limit).

 Turbidly and total residual chlorine are monitored continuously. The value reported is the weekly maximum and the daily average is the average of the weekly maximum values reported.

 Calculated Receiving Water Concentration shows the effluent concentration at the discharge once it has fully mixed in the receiving waterbody. This value is calculated as a dissolved concentration for an appropriate comparison to the numeric water quality criteria, which are also in the discoved form. Consistent with Georgia EPD, non-detectable effluent concentrations are not translated freezing water Concentrations.

 Numeric Water Quality Criteria is the maximum concentration of a parameter (calculated at a default hardness of 50 mg/L as calcium carbonate) established for the receiving waterbody that will be protective of the designated use per Georgia EPD's rules and regulations. Calculated Receiving Water Concentrations is exhibited to the calculated and the protective of the designated use per Georgia EPD's rules and regulations. Calculated Receiving Water Concentrations is exhibited for the receiving waterbody that will be protective of the designated use per Georgia EPD's rules and regulations. Calculated Receiving Water concentrations is exhibited for the receiving water oncentration.

 Note that the protective of the water quality criterion to be compared with the weekly calculated receiving water concentration; Chronic (long-term) water quality criterion to be compared with the weekly calculated receiving water concentration.

 The numeric water quality criteria shown are the chronic (long-term) water quality criterion to be compared with the weekly calculated receiving water concentration.

 *** A Note of the protective of the variety criteria for antimony, selenium, and thallium since these parameters do not

mg/L = milligrams per liter = parts per million; µg/L = micrograms per liter = parts per billion; ng/L = nanograms per liter = parts per trillion; SU = Standard Units; MGD = Million Gallons Day

Plant Branch

Monthly Instream Results¹

July 2022

		Lake Sinclair ²							
Parameter ³	Units	No Discharge	No Discharge	No Discharge	No Discharge				
		Upstream	Downstream	Upstream	Downstream				
pН	SU								
TSS	mg/L								
O&G	mg/L								
TRC	mg/L								
Turbidity	NTU								
TDS	mg/L								
BOD	mg/L								
Antimony	μg/L								
Arsenic	μg/L								
Cadmium	μg/L								
Chromium	μg/L								
Copper	μg/L								
Lead	μg/L								
Mercury	ng/L								
Nickel	μg/L								
Selenium	μg/L								
Thallium	μg/L								
Zinc	μg/L								
Ammonia	mg/L								
TKN	mg/L								
Nitrate-Nitrite	mg/L								
Organic Nitrogen	mg/L								
Phosphorus	mg/L								
Ortho-phosphorus	mg/L								
Hardness	mg/L								

- 1 Tetra Tech verifies the correct laboratory analysis methods were used.
- 2 Lake Sinclair measured upstream near lat 33.196636 and long -83.295389, and downstream near lat 33.180392 and long -83.322964.
- 3 Metals results are total recoverable.
- 4 ND = Non-detect.
- *** = Not Applicable.

mg/L = milligrams per liter = parts per million; $\mu g/L = micrograms$ per liter = parts per billion; ng/L = micrograms per liter = parts per trillion; ng/L = micrograms per liter = parts per trillion; ng/L = micrograms per liter = parts per trillion; ng/L = micrograms per liter = parts per trillion; ng/L = micrograms per liter = parts per trillion; ng/L = micrograms per liter = parts per billion;