

Plant Branch Monthly Dewatering Results¹

November 2022

	Units	Efflu	ent Concenti	ration	Permit Limits			
Parameter		Daily Min ²	Daily Avg ²	Daily Max ²	Daily Min	Daily Avg	Daily Max	
Flow	MGD	0.00	1.23	1.35	***	***	***	
pН	SU	6.6	***	8.4	6.0	***	9.0	
Total Suspended Solids	mg/L	ND^3	ND	ND	***	30.0	100.0	
Oil and Grease	mg/L	ND	ND	ND	***	15.0	20.0	

	Units						
Parameter		Week 1	Week 2	Week 3	Week 4	Week 5	Daily
		11/2/2022	11/9/2022	11/16/2022	11/22/2022	11/29/2022	Average
Turbidity ⁴	NTU	0.18	0.07	0.04	0.04	0.06	0.08
Total Residual Chlorine ⁴	mg/L	ND	ND ND		ND	ND	ND
Total Dissolved Solids	mg/L	35	32	30	56	32	37
Ammonia	mg/L	ND	ND	ND	ND	ND	ND
Total Kjeldahl Nitrogen	mg/L	ND	ND	ND	ND	ND	ND
Nitrate-Nitrite	mg/L	ND	ND	ND	ND	ND	ND
Organic Nitrogen	mg/L	ND	ND	ND	ND	ND	ND
Phosphorus	mg/L	ND	ND	ND	ND	ND	ND
Ortho-Phosphorus	mg/L	ND	ND	ND	ND	ND	ND
Biological Oxygen Demand m		ND	ND	ND	ND	ND	ND
Hardness	mg/L	7	6	7	10	9	8

		Effluent Concentration ⁵					Calculated Receiving Water Concentration⁵					Water Quality Criteria ⁶		
Parameter	Units	Week 1	Week 2	Week 3	Week 4	Week 5	Week 1	Week 2	Week 3	Week 4	Week 5	Average	Acute ⁷	Chronic ⁷
		11/2/2022	11/9/2022	11/16/2022	11/22/2022	11/29/2022	11/2/2022	11/9/2022	11/16/2022	11/22/2022	11/29/2022			
Antimony ⁹	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	***	640
Arsenic	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	340	150
Cadmium	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	0.94	0.43
Chromium ⁸	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	16	11
Copper	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	7	5
Lead	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	30	1.2
Nickel	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	260	29
Selenium ⁹	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	***	5
Thallium ⁹	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	***	0.47
Zinc	μg/L	ND	ND	ND	ND	ND	***	***	***	***	***	***	65	65
Mercury	ng/L	ND	ND	ND	ND	1.0	***	***	***	***	0.4850	0.0970	1400	12

- Tetra Tech verifies the correct laboratory analysis methods were used, any applicable permit limits have been met and other results are protective of Georgia EPD's water quality standards. Daily Min and Daily Max are the lowest and highest values for any day in the morth. Daily Avg is the arithmetic average of all daily values during the entire morth.

 ND = Not Detected (below the lab's reporting limit).

- 13 No = Not Detected (below the lab's reporting limit).
 14 Turbidialy and total residual chlorine are monitored continuously. The value reported is the weekly maximum and the daily average is the average of the weekly maximum values reported.
 15 Calculated Receiving Water Concentration shows the effluent concentration at the discharge once it has fully mixed in the receiving waterbody. This value is calculated as a dissolved concentration for an appropriate comparison to the numeric water quality criteria, which are as also in the dissolved form. Consistent with Georgia EPD, non-detectable effluent concentrations are not translated into Calculated Receiving Water Concentrations.
 16 Numeric Water Quality Criteria is the maximum concentration of a parameter (calculated at a default hardness of 50 mg/s) activated parameters and the receiving water concentrations.
 17 Acute (short-term) water quality criterio in be compared with the weekly calculated receiving water concentration.
 18 Numeric water quality criterion shown is for Hexavalent Chromium.
 19 The numeric water quality criteria shown are the chronic (long-term) water quality criterion to be compared with the average calculated receiving water concentration.
 19 The numeric water quality criteria shown are the chronic (long-term) water quality criterion to be compared with the average calculated receiving water concentration.
 2 Numeric water quality criteria shown are the chronic (long-term) water quality criterion to be compared with the average calculated receiving water concentration.
 2 Numeric water quality criteria shown are the chronic (long-term) water quality criterion to be compared with the average calculated receiving water concentration.
 2 Numeric water quality criteria shown are the chronic (long-term) water quality criterion to be compared with the average calculated receiving water concentration.
 3 Numeric water quality criteria shown are the chronic (long-term) water quality criterion to be compared with the average calculated receiving water c

- mg/L = milligrams per liter = parts per million; µg/L = micrograms per liter = parts per million; µg/L = micrograms per liter = parts per trillion; SU = Standard Units; MGD = Million Gallons Day

Plant Branch

Monthly Instream Results¹

November 2022

		Lake Sinclair ²							
Parameter ³	Units	11/2/2022	11/2/2022	11/9/2022	11/9/2022				
		Upstream	Downstream	Upstream	Downstream				
pН	SU	6.5	6.2	6.6	6.4				
TSS	mg/L	ND⁴	ND	ND	ND				
O&G	mg/L	ND	ND	23.2	ND				
TRC	mg/L	***	***	***	***				
Turbidity	NTU	2.4	3.6	4.1	2.9				
TDS	mg/L	45	42	52	116				
BOD	mg/L	ND	ND	ND	ND				
Antimony	μg/L	ND	ND	ND	ND				
Arsenic	μg/L	ND	ND	ND	ND				
Cadmium	μg/L	ND	ND	ND	ND				
Chromium	μg/L	ND	ND	ND	ND				
Copper	μg/L	ND	ND	ND	ND				
Lead	μg/L	ND	ND	ND	ND				
Mercury	ng/L	ND	ND	0.5	ND				
Nickel	μg/L	ND	ND	ND	ND				
Selenium	μg/L	ND	ND	ND	ND				
Thallium	μg/L	ND	ND	ND	ND				
Zinc	μg/L	ND	ND	ND	ND				
Ammonia	mg/L	ND	ND	ND	ND				
TKN	mg/L	ND	ND	0.55	ND				
Nitrate-Nitrite	mg/L	ND	0.08	ND	ND				
Organic Nitrogen	mg/L	ND	ND	0.51	ND				
Phosphorus	mg/L	ND	ND	ND	ND				
Ortho-phosphorus	mg/L	ND	ND	ND	ND				
Hardness	mg/L	24	23	22	21				

- 1 Tetra Tech verifies the correct laboratory analysis methods were used.
- 2 Lake Sinclair measured upstream near lat 33.196636 and long -83.295389, and downstream near lat 33.180392 and long -83.322964.
- 3 Metals results are total recoverable.
- 4 ND = Non-detect.
- *** = Not Applicable.

mg/L = milligrams per liter = parts per million; $\mu g/L = micrograms$ per liter = parts per billion; ng/L = micrograms per liter = parts per trillion; $SU = Standard\ Units$; $MGD = Million\ Gallons\ Day$