INITIAL SAFETY FACTOR ASSESSMENT 40 C.F.R. PART 257.73 PLANT HAMMOND ASH POND 2 (AP-2) GEORGIA POWER COMPANY

EPA's "Disposal of Coal Combustion Residuals from Electric Utilities" Final Rule (40 C.F.R. Part 257 and Part 261), §257.73(e), requires the owner or operator of an existing CCR surface impoundment to conduct an initial and periodic safety factor assessments. The owner or operator of the CCR unit must conduct an assessment and document that the minimum safety factors outlined in §257.73(e)(1)(i) through (iv) for the critical embankment section are achieved.

The CCR surface impoundment located at Georgia Power Company's Plant Hammond also referred to as the Plant Hammond Ash Pond 2 (AP-2) is located on Plant Hammond property, in Coosa Georgia, 1 mile west of the Rome, Georgia city limits in Floyd County. The CCR surface impoundment is formed by an engineered perimeter embankment. The critical section of this CCR unit has been determined to be located on the northwest side of the perimeter embankment.

The analyses used to determine the minimum safety factor for the critical section resulted in the following minimum safety factors:

Loading Condition	Minimum Calculated	Minimum Required
	Safety Factor	Safety Factor
Long-term Maximum Storage Pool (Static)	1.9	1.5
Maximum Surcharge Pool (Static)	1.9	1.4
Seismic	1.7	1.0

The embankments are constructed of clays and clayey sands that are not susceptible to liquefaction. Therefore, a minimum liquefaction safety factor determination was not required.

This assessment is supported by appropriate engineering calculations which are attached.

I hereby certify that the safety factor assessment was conducted in accordance with 40 C.F.R. Part 257.73 (e)(1).

Gary H. May Frosten ALE

Licensed State of Georgia, # PE012678

Engineering and Construction Services Calculation

Calculation Number: TV-HM-GPC607582-002

Project/Plant:	Unit(s):	Discipline/Area:
Plant Hammond Ash Pond 2	Units 1-4	ES&FS
Title/Subject:		
Slope Stability Analyses of Ash Pond Dike		
Purpose/Objective:		
Analyze slope stability of Ash Pond Dike		
System or Equipment Tag Numbers:	Originator:	
NA	Rajendra S	5. Gondhalekar

Contents

Торіс	Page	Attachments (Computer Printouts, Tech. Papers, Sketches, Correspondence)	# of Pages
Purpose of Calculation	2	Attachment A – Figure 1	1
Methodology	2	Attachment B – Boring Logs	4
Criteria & Assumptions	2-4	Attachment C – Piezometer Logs	2
Summary of Conclusions	4	Attachment D – Soil Laboratory Analyses	31
Design Inputs/References	5	Attachment E – Groundwater Elevations	1
Body of Calculation (print outs)	6-8		
Total # of pages including	52		·

cover sheet & attachments: 52

Revision Record

Rev. No.	Description	Originator Initial / Date	Reviewer Initial / Date	Approver Initial / Date
0	Issued for Information	RSG/10-03-16	JAL/10-03-16	JCP/10-03-16

Notes:

Purpose of Calculation

Georgia Power Company's Plant Hammond has 4 ash ponds, 1, 2, 3, and 4. Ash Pond 2 was originally constructed in the late 1960s and a divider dike was installed in approximately 1998 to 2000. Currently, Ash Pond 2 is used as an ash dewatering pond. Ash is sluiced to Ash Pond 2, excavated and dry stacked on Ash Pond 4 and/or at the Huffaker Road permitted solid waste disposal facility.

The purpose of this calculation is to check the stability of the dike of Ash Pond 2 using current software.

Methodology

The calculation was performed using the following methods and software:

GeoStudio 2012 (Version 8.15, Build 11777), Copyright 1991-2016, GEO-SLOPE International, Ltd.

Strata (Version alpha, Revision 0.2.0), Geotechnical Engineering Center, Department of Civil, Architectural, and Environmental Engineering, University of Texas.

Morgenstern-Price analytical method was run and reported.

Criteria and Assumptions

The slope stability models were run using the following assumptions and design criteria:

- Seismic site response was determined using a one-dimensional equivalent linear site response analysis. The analysis was performed using Strata and utilizing random vibration theory. The input motion consisted of the USGS published 2008 Uniform Hazard Response Spectrum (UHRS) for Site Class B/C at a 2% Probability of Exceedance in 50 years. The UHRS was converted to a Fourier Amplitude Spectrum, and propagated through a representative one dimensional soil column using linear wave propagation with strain-dependent dynamic soil properties. The input soil properties and layer thickness were randomized based on defined statistical distributions to perform Monte Carlo simulations for 100 realizations, which were used to generate a median estimate of the surface ground motions.
- The median surface ground motions were then used to calculate a pseudostatic seismic coefficient for utilization in the stability analysis using the approach suggested by Bray and Tavasarou (2009). The procedure calculates the seismic coefficient for an allowable seismic displacement and a probability exceedance of the displacement. For this analysis, an allowable displacement of 0.5 ft, and a probability of exceedance of 16% were conservatively selected, providing a seismic coefficient of 0.052g for use as a horizontal acceleration in the stability analysis.
- The current required minimum criteria (factors of safety) were taken from the Structural Integrity Criteria for existing CCR surface impoundment from 40 CFR 257.73, published April 17, 2015.

- The soil properties of unit weight, phi angle, and cohesion were obtained from triaxial shear testing performed on UD samples of the fill and foundation soils obtained during drilling in March 2010. The testing was performed according to ASTM D 4767.
- Properties for ash were based on laboratory testing performed on undisturbed and remolded samples of ash from various plants and on engineering judgment.
- In March 2010, piezometers were installed in the dike fill, the foundation soils and in the ash. These piezometers, in conjunction with survey data, were used to obtain current water elevations within the dike and the foundation soils.
- The COE EM 1110-2-1902, October 2003, allows the use of the phreatic surface established for the maximum storage condition (normal pool) in the analysis for the maximum surcharge loading condition. This is based on the short term duration of the surcharge loading relative to the permeability of the embankment and the foundation materials. This method is used in the analysis for the impoundments at this facility with surcharge loading.
- According to the NOAA website, the flood elevation for the Coosa River at Plant Hammond is elevation 570 feet. This elevation is well below the toe of all ash pond dikes. Therefore, flood cases were not evaluated.

Ash Pond 2

- The cross-section of Ash Pond 2 was obtained using the following sources:
 - 1) March 2010 survey for the top of the dike and downstream surface of the dike, the width of the ash "platform" on the upstream side of the dike, and the elevations of water within the pond and in the discharge canal at the toe of the pond.
 - 2) Original design Drawing No. H-401 for the upstream surface of the dike.
 - 3) Drawing No. E8544, Excavation Plan, for the elevation of the ash on the interior of the pond.
- Groundwater elevations through the dike were determined from piezometers installed in March 2010.

Input Data

The following soil properties were used in the analyses. This data was obtained from laboratory triaxial testing performed in March 2010 by S&ME. The laboratory testing consisted of classification testing as well as consolidated undrained triaxial tests with pore pressure measurements in order to provide total as well as effective shear strength parameters of the embankment and foundation soils. Sample disturbance during the sampling effort as well as variations in the soil specimens (wide range of void ratios, initial saturation conditions, gravel content, and dry unit weights) resulted in inconsistencies in the test results. This prevented S&ME from reporting the total stresses for five of the tests and to suggest that these inconsistencies be taken into account when interpreting and applying the data. The laboratory data for the five tests were reviewed in order to arrive at total stress parameters that would conservatively represent the soil types indicated by the classification tests. Failure criteria were established at lower strains occurring near the maximum pore pressures developed during the test procedures. These parameters have been added to the following table and are consistent with the remaining total stress parameters reported by S&ME. The effective stress interpretations provided by S&ME were used in the analyses.

Rev. 0 10/03/2016

Soil Description	Dry Unit	Moist Unit	Effective Param		Total Stress	Parameters
Son Description	Weight, pcf	Weight, pcf	Cohesion,	Phi Angle,	Cohesion,	Phi Angle,
			psf	degrees	psf	degrees
Clayey Sand Dike Fill	112.4	129	140	37.3	300	21
Sandy Clay Fdn Soil	98.8	124	280	29.9	850	18.9
Sluiced Ash		80	0	10	0	10

Hydrologic Considerations

Currently Ash Pond 2 is used as a dewatering pond. The maximum surcharge condition was analyzed using a water elevation of 597.2 in the pond.

Load Conditions

The impoundment dike at Plant Hammond Ash Pond 2 was evaluated for the load cases indicated in the following table. When appropriate, cases were run both in the ash and the dike.

Summary of Conclusions

The following table lists the factors of safety for various slope stability failure conditions. All conditions are steady state except where noted. Construction cases were not considered. Based on the results of these analyses all structures are stable.

Load Conditions	Computed Factor of Safety	Required Minimum Factor of Safety
Long-term Maximum Storage (Static)	1.9	1.5
Maximum Surcharge Pool (Static)	1.9	1.4
Seismic	1.7	1.0

The analyses indicate that in all cases the ash pond dike, for Ash Pond 2, the factors of safety are above the required minimums.

Design Inputs/References

USGS Earthquake Hazards website, http://earthquake.usgs.gov/hazards/hazmaps/.

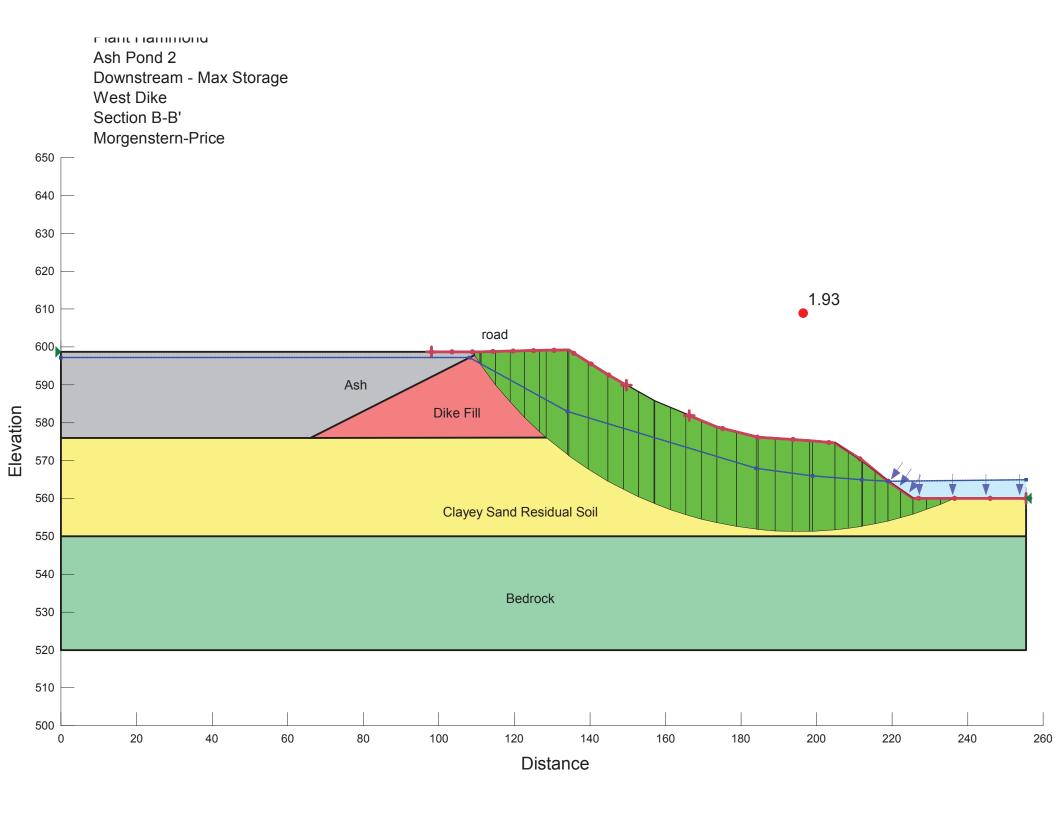
NOAA website, http://www.srh.noaa.gov/ffc/html/rva.php.

GPC Drawing H-35, Plant Hammond Units 1 & 2 Ash Basin Area – Excavation and Drainage

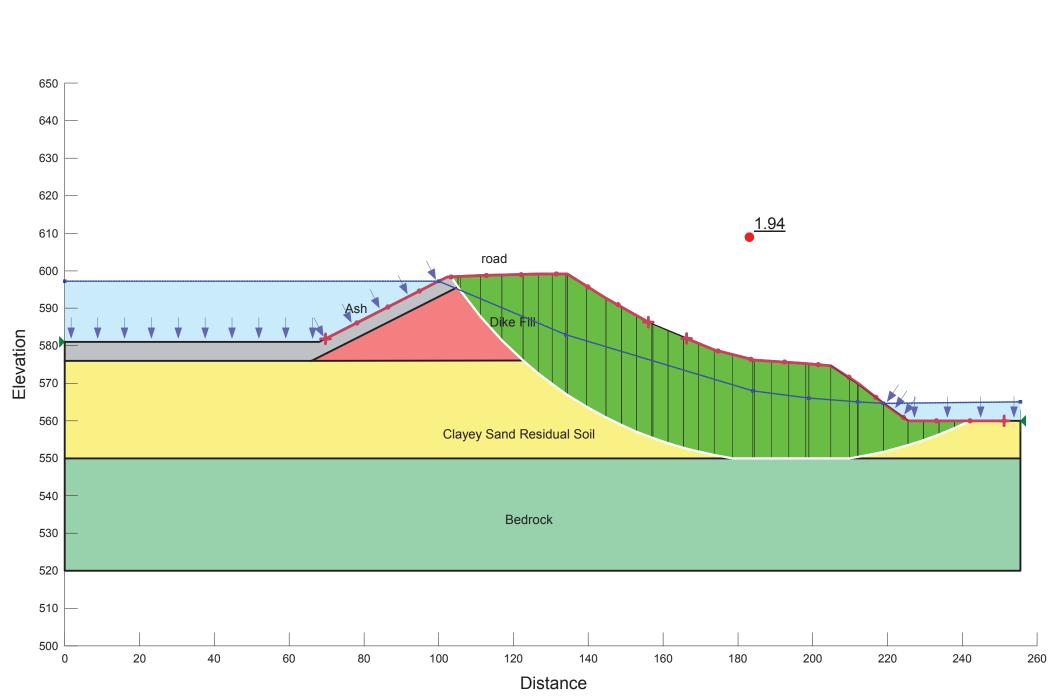
GPC Drawing H-30, Plant Hammond Plot Plan of Drill Holes

Metro Topographic Map, Georgia Power Company, Plant Hammond, February 29, 2000

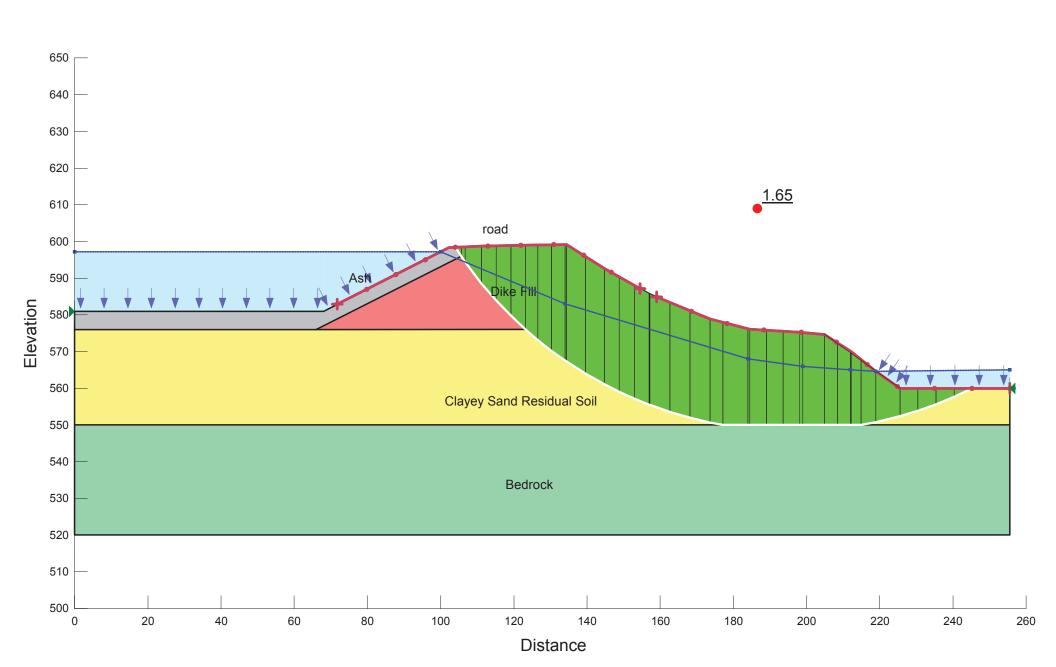
GPC Drawing H-401, Plant Hammond Unit 4 Cross Sections and Volume Calculations for New Ash Pond West of Powerhouse


SCS Drawing E8544, Plant Hammond Ash Pond #2 Excavation Plan for Northern Cell

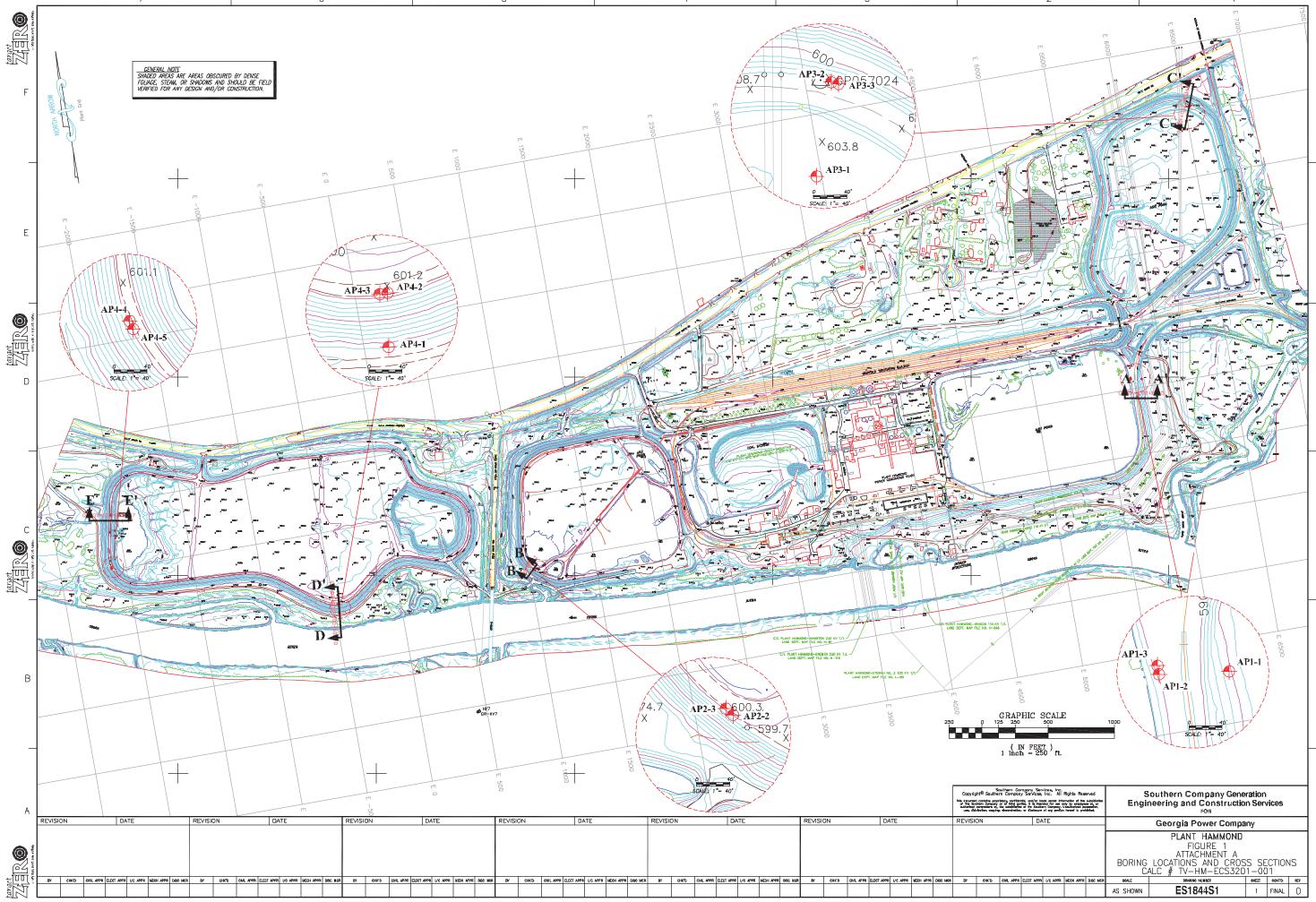
GPC Drawing H-436, Plant Hammond 1973 Ash Pond Plan and Sections


Bray, J. D. and Travasarou, T., *Pseudostatic Coefficient for Use in Simplified Seismic Slope Stability Evaluation*, Journal of Geotechnical and Environmental Engineering, American Society of Civil Engineers, September 2009

Body of Calculation


Calculation consists of Slope-W modeling attached.

Ash Pond 2
Downstream - Max Surcharge
Section B-B'
Morgenstern-Price



Plant Hammond Ash Pond 2 Downstream - Seismic Section B-B' Morgenstern-Price

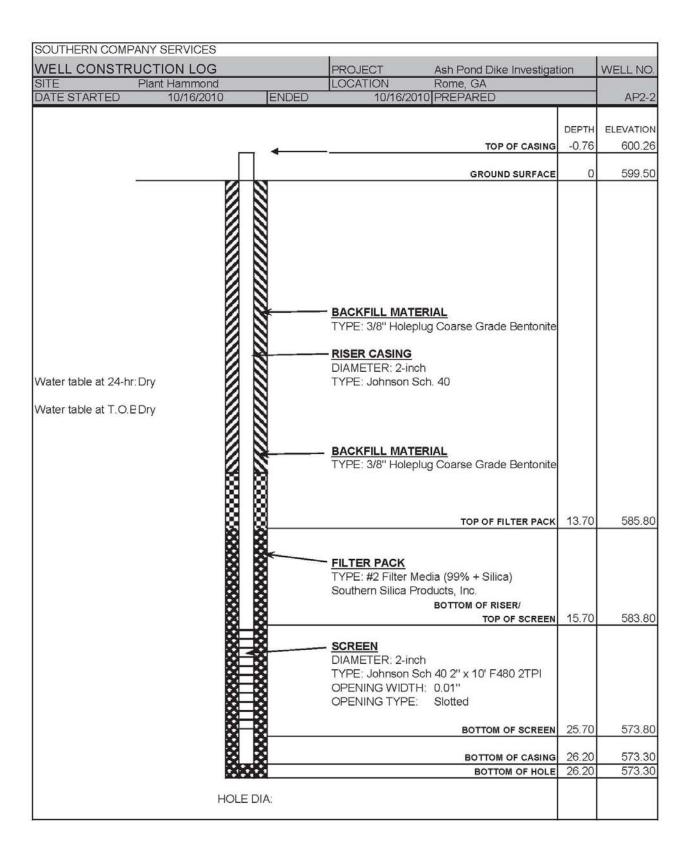
Attachment A

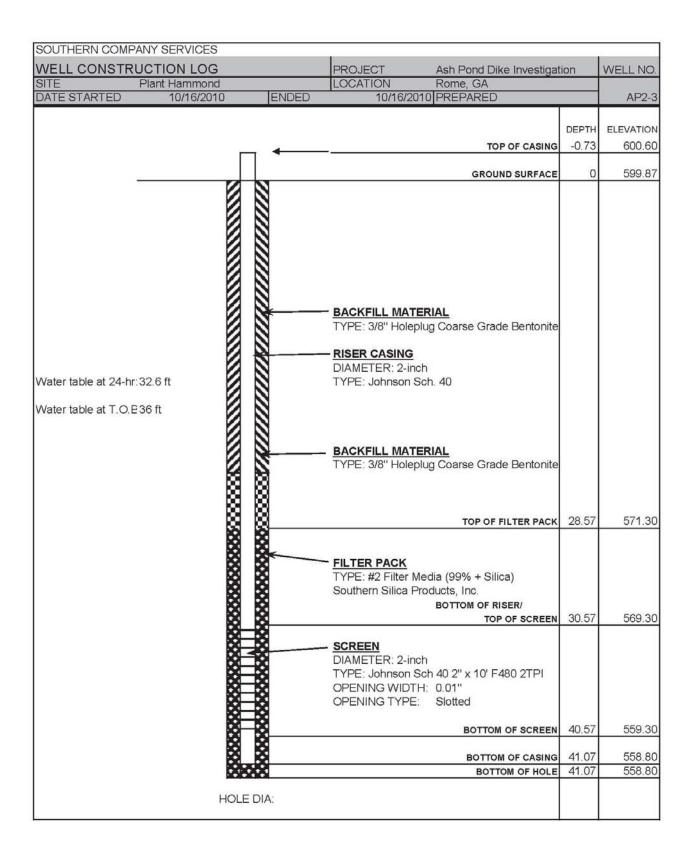
Figures - Boring Location Plans

Attachment B

Boring Logs

	HERN.	DRILLI	NG L	.OG			Hole No	o.	AP2-2	
Energy to	Serve Your	World" GEOLOGIC						Sheet 1		
SITE		Plant Hammond			HOLE DEPTH	25 ft		SURF.ELEV.	599	.50
LOCATI	ON	Rome, GA								
ANGLE		Vertical BEARING	CONTR	RACTOR R	anger Consulting, I	nc D	RILL NO.	CM	E 550X	
DRILLIN	IG METHOD	Hollow stem auger NO. SAMPLE	S	0	NO. U.D.	SAMPL	ES	.()	
CASING	SIZE									
WATER	TABLE DEF	PTH Dry ELEV TI	ME AFTE	R COMP		DAT	ETAKEN .			
		Bentonite QUANTITY	N	fix	DRILLIN	IG STA	RT DATE	3/1	6/2010	_
DRILLE	R	Justin RECORDER J Pugh APPRO	VED _		DRILLIN	NG COM	IP. DATE	3/1	6/2010	
Depth	Elev	Material Description, Classification and Remarks	Sample No.	Stan From To	dard Penetration Test Blows	N			% Rec	RQD
0	599.50	~10 feet from AP2-3 on dike crest				L				
1	598.50					Р	ost hole t	o 3 ft		
2	597.50		1							
3	596.50									
4		Red, orange and tan very silty fine sand with clay and small rock fragments								
5	594.50									
6	593.50									
7	592.50									
8	591.50									
9	590.50	Light brown and orange very silty fine sand with minor clay and abundant small rock fragments								
10	589.50									
11	588.50	,								
12	587.50									
13	586.50	Orango and gray aith, fine to madium grained and								
14	585.50	Orange and gray silty fine to medium grained sand with rock fragments								
15	584.50									
16	583.50		COORDINATES N							
17	582.50									
18	581.50	Brown very silty fine sand with rock fragments								
19	580.50	and the same and t								
20	579.50									
21	578.50									
22	577.50					D	rv at T.O	.В.		
23	576.50	Brown and tan very silty fine sand with rock					170 - 1705/100			
24	575.50	fragments						160		


ou	COMP	DRIL	LING L	OG			Hole No. AP2-2			
nergy	COMP	GEOLOG GEOLOG	ICAL SE	RVICES			Sheet 2 of 2			
2012/2015		Plant Hammond			TOTAL INCOME.	25 ft		59	0.5	
SITE _	-				TOTAL DEPTH	545.31	SURF ELEV		5,5	
Depth	Elev.	Material Description, Classification and Remarks	Sample No.	From To	ndard Penetration Test Blows	N	Comments	% Rec	RQ	
		Brown and tan very silty fine sand with rock		10,100,000						
25	574.50	fragments	_							
		Bottom of hole at 25 ft								
	2									
									l	
									l	
									l	
	_	9							l	
									l	
									l	
		f .							l	
		1								
		2								
									l	
	_									
		1								
	1									
		2								
	_									
									l	
_										


sou	THERN	DRILLI	NG L	.og			Hole I	No.	AP2-3	
Energy i	OMP		AL SE	RVICES				Sheet	of 2	
SITE		Plant Hammond			HOLE DEPTH	40 f		SURF ELEV	599	9.87
		Rome, GA								
ANGLE		Vertical BEARING	CONTR	RACTOR R	anger Consulting	, Inc	DRILL NO	CN		
DRILLI	NG METHO	Hollow stem auger NO. SAMPLES	s	8	NO. U	D. SAME	LES _		3	
CASIN	3 SIZE	LENGTH	_ co	RE SIZE		TOTA	L % REC.			
	TABLE DE									
		Bentonite QUANTITY							6/2010	
DRILLE	R	Justin RECORDER J Pugh APPRO			DRIL	LING CO	MP. DATE	3/1	6/2010	_
Depth	Elev.	Material Description, Classification and Remarks	Sample No.	From To	dard Penetration Test Blows	N.	Cor	nments	% Rec	RQD
0	599.87	Drilled from dike crest								
1	598.87						Post hole	to 3 ft		
2	597.87									
3	596.87									
4	595.87	Red, orange and tan very silty fine sand with clay and small rock fragments	1	3.5-5	5-8-9	17				
5	594.87									
6	593.87									
7	592.87									
8	591.87									
9	590.87	Light brown and orange very silty fine sand with minor clay and abundant small rock fragments	2	8.5-10	4-5-7	12				
10	589.87									
11	588.87						UD #1 (1	0" rec.)		
12	587.87									
13	586.87			Verror de Wee	172-116-16-1				-	
14	585.87	Orange and gray silty fine to medium grained sand with rock fragments	3	13.5-15	5-5-8	13				
15	584.87									
16	583.87						UD #2 (1	6" rec.)		
17	582.87									
18	581.87				1000-1000-100-100-100-100-100-100-100-1				1	
19	580.87	Brown very silty fine sand with rock fragments	4	18.5-20	6-11-15	26				
20	579.87									
21	578.87									
22	577.87									
23	576.87									
24	NAME OF TAXABLE PARTY.	Brown and tan very silty fine sand with rock fragments	5	23.5-25	3-7-7	14				

ou	THERN	ANV	LING L				Hole No. AP2-3		3	
nergy	so Serve You	www.d- GEOLOG	ICAL SE	RVICES			Sheet 2 of 2			
SITE _	,	Plant Hammond			TOTAL DEPTH _	40	ft SURFELEV	599.	87	
Depth	Elev.	Material Description, Classification and Remarks	Sample No.	Stan From To	dard Penetration Test Blows	N	Comments	% Rec	RQ	
25	574.87									
26	573.87									
27	572.87									
28	571.87									
29		Brown and gray clayey sand with rock fragments; slightly moist	6	28.5-30	4-5-8	13				
	569.87	anginty more								
30										
31	568.87						\\(\frac{1}{2} \)			
32	567.87						Water table at 32.6 ft at 24-hr			
33	566.87	Light brown silt with minor very fine sand; slightly	7	33.5-35	3-3-7	10				
34	565.87	moist					Water table at 36 ft at T.O.B.			
35	564.87						UD #3 (30" rec.)			
36	563.87						7000000			
37	562.87									
38	561.87	Light brown silt with minor very fine sand; wet	8	38.5-40	WH-3-5	8				
39	560.87	Light brown sitt with filling very line sand, wet	°	30.3-40	WH-3-3	٥				
40	559.87		_							
		Bottom of hole at 40 ft								
		1								
		4								

Attachment C

Piezometer Logs

Attachment D

Soil Laboratory Analysis

April 21, 2010

Southern Company Services 241 Ralph McGill Boulevard 16th Floor, Bin 10185 Atlanta, Georgia 30308

Attention: Mr. Gary H. McWhorter

Subject: Plant Hammond Ash Pond Dikes

S&ME Job No. 28900

Gentlemen:

S&ME, Inc. has completed the laboratory testing on the soil samples sent by your office. The following tests were performed:

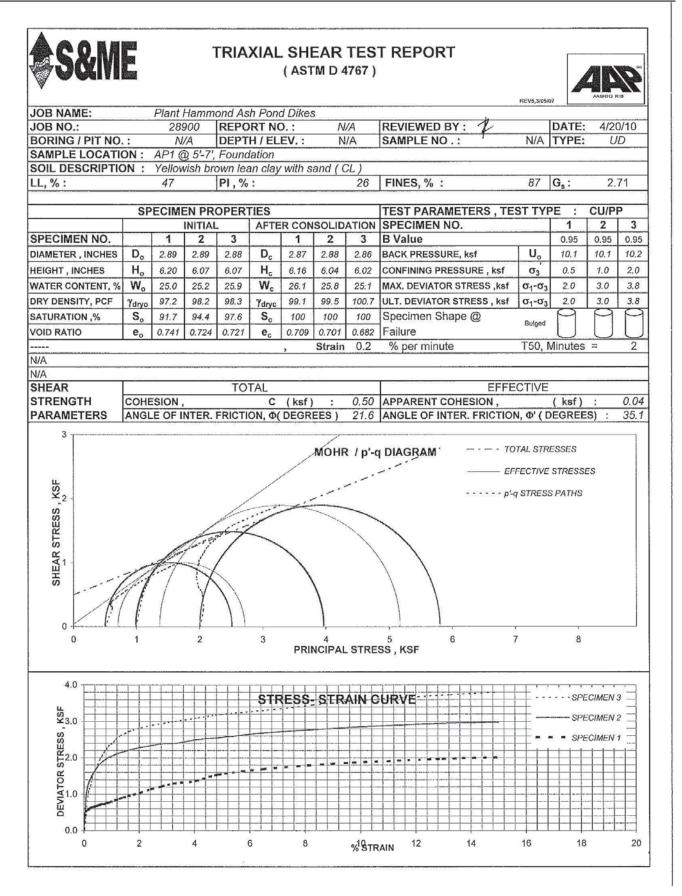
- Atterberg Limits
- Sieve Analysis
- Triaxial Shear

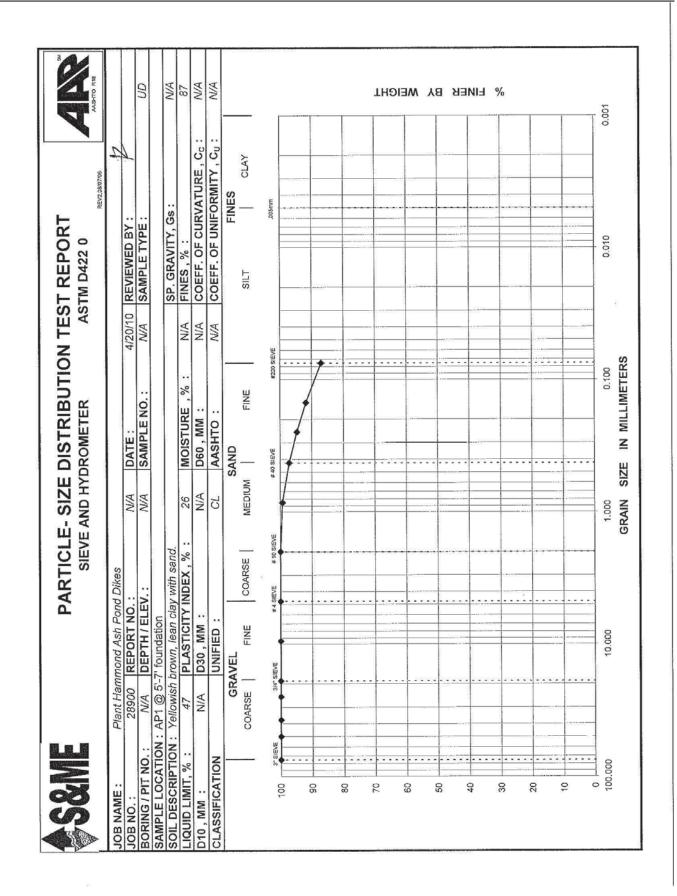
S&ME, Inc. performs soil tests in general accordance with the applicable American Society for Testing and Materials (ASTM) or AASHTO procedures. These procedures are generally recognized as the basis for uniformity and consistency of test results in the geotechnical engineering profession. All the work is supervised by a qualified engineer. Attached are test results for your review. While S&ME is not responsible for the use or interpretation of these data we note that the test results do not appear to be consistent with our expectations for materials with these unified soil classifications.

S&ME, Inc. appreciates the opportunity to provide these laboratory services. Please contact us if you have any questions concerning this report or if we may be of further service.

Richard Mockridge, P.E.

Principal Geotechnical Engineer,

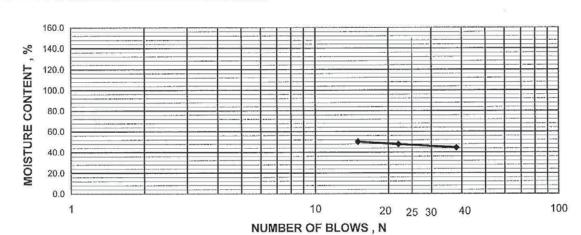

Respectfully submitted,


S&ME, Inc.

Geotechnical Laboratory Manager

AKM/RM/pg

Attachment

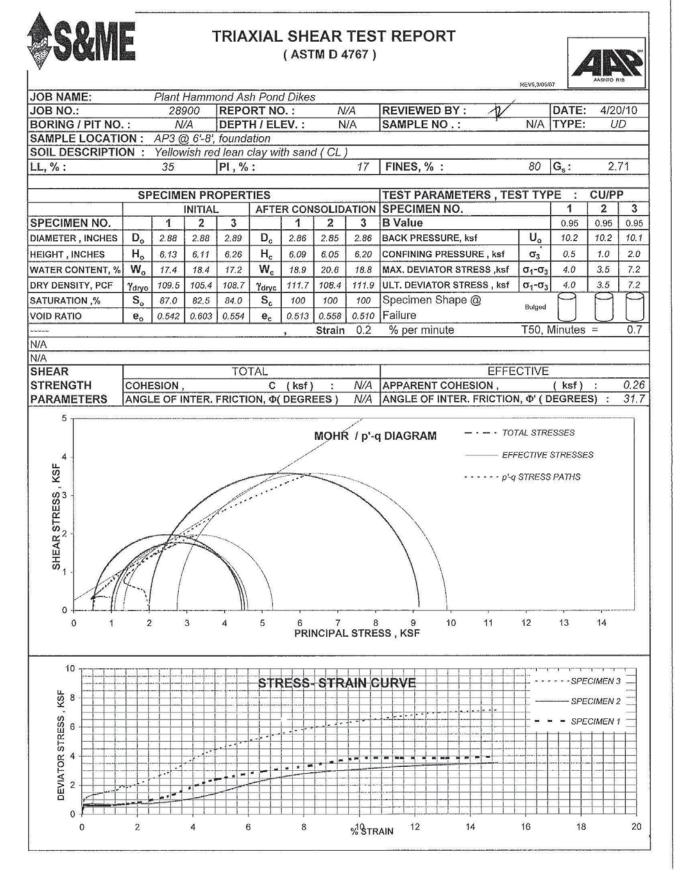

REV₁,5/10/06

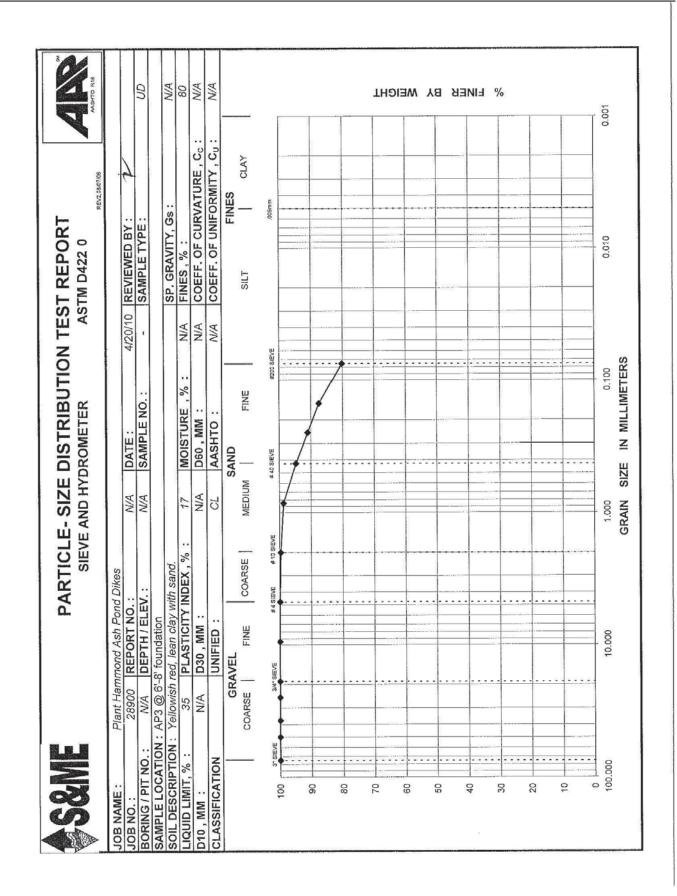
JOB NAME :	Plant Har	nmond Ash Pond Dikes					/
JOB NO. :	28900	REPORT NO. :	w	DATE :	04/20/10	REVIEWED BY :	ν
BORING / PIT NO. :	N/A	DEPTH / ELEV. :	N/A	SAMPLE NO. :	N/A	SAMPLE TYPE :	UD
SAMPLE LOCATION	AP1 @ 5	-7' foundation					
SOIL DESCRIPTION :	Yellowish	brown lean clay with sa	nd.				
LIQUID LIMIT, %:	47	PLASTIC LIMIT,%:	21	PLASTICITY INDEX ,% :	26	MOISTURE, %:	25
CLASSIFICATION :		UNIFIED :	CL	AASHTO :	H1	FINES, %:	87

LIQUID LIMIT, % MOISTURE AT THE ARBITRARY DEFINED BOUNDARY BETWEEN LIQUID & PLASTIC STATES --

% MOISTURE AT WHICH SOIL FLOWS FOR A DISTANCE OF 13 MM (1/2") AT THE BASE OF GROOVE WHEN SUBJECTED TO 25 BLOWS

TEST NO. :	1	2	3	1001 2000	4		5
CONTAINER NO.	1	2	3	BRAND	MODEL	SERIAL	
NUMBER OF BLOWS	38	22	15	BALANCE	PRECISA	2200 C	10 - 20
WT. WET SOIL + CAN (GRAMS)	32.20	31.59	32.70	LL MACHINE	HUMBOLT	1	
WT. DRY SOIL + CAN (GRAMS)	26.92	26.31	26.88	BALANCE	OHAUS-3100 G	ARC120	
WT. OF WATER (GRAMS)	5.28	5.28	5.82	OVEN	DESPATCH-3436	1650032533	
WT. OF CONTAINER (GRAMS)	15.06	15.27	15.27]			
WT, OF DRY SOIL (GRAMS)	11.86	11.04	11.61				
WATER CONTENT, (%)	44.52	47.83	50.13]			

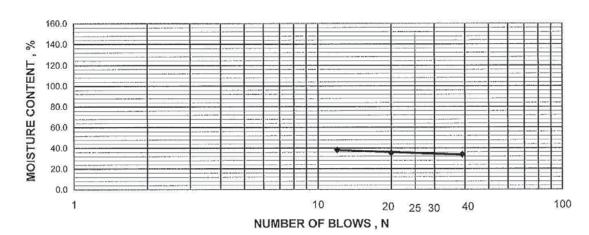

PLASTIC LIMIT, % MOISTURE AT THE ARBITRARY DEFINED BOUNDARY BETWEEN PLASTIC & BRITTLE STATES --


% MOISTURE AT WHICH SOIL CAN NO LONGER BE DEFORMED BY ROLLING INTO 3.2 MM (1/8") IN DIAMETER THREADS WITHOUT CRUMBLING

TEST NO. :	1	2	3	4	5
CONTAINER NO.	4	5			
WT. WET SOIL + CAN (GRAMS)	21.81	21.61			
WT. DRY SOIL + CAN (GRAMS)	20.63	20.54			
WT. OF WATER (GRAMS)	1.18	1.07			
WT. OF CONTAINER (GRAMS)	15.06	15.55			
WT. OF DRY SOIL (GRAMS)	5.57	4.99			
WATER CONTENT, (%)	21.18	21.44			

PLASTICITY INDEX - THE RANGE OF % MOISTURE CONTENT OVER WHICH SOIL BEHAVES PLASTICALLY -

THE DIFFERENCE BETWEEN LIQUID LIMIT & PLASTIC LIMIT PI = LL - PL



JOB NAME :	Plant Han	nmond Ash Pond Dikes					
JOB NO. :	28900	REPORT NO. :	w	DATE :	04/20/10	REVIEWED BY :	
BORING / PIT NO. :	N/A	DEPTH / ELEV. :	N/A	SAMPLE NO. :	N/A	SAMPLE TYPE :	UD
SAMPLE LOCATION:	AP3 @ 6'	-8' foundation					
SOIL DESCRIPTION :	Yellowish	red lean clay with sand.					
LIQUID LIMIT, %:	35	PLASTIC LIMIT,%:	18	PLASTICITY INDEX,%:	17	MOISTURE, %:	17
CLASSIFICATION:		UNIFIED :	CL	AASHTO :	-	FINES, %:	80

LIQUID LIMIT, % MOISTURE AT THE ARBITRARY DEFINED BOUNDARY BETWEEN LIQUID & PLASTIC STATES --

% MOISTURE AT WHICH SOIL FLOWS FOR A DISTANCE OF 13 MM (1/2") AT THE BASE OF GROOVE WHEN SUBJECTED TO 25 BLOWS

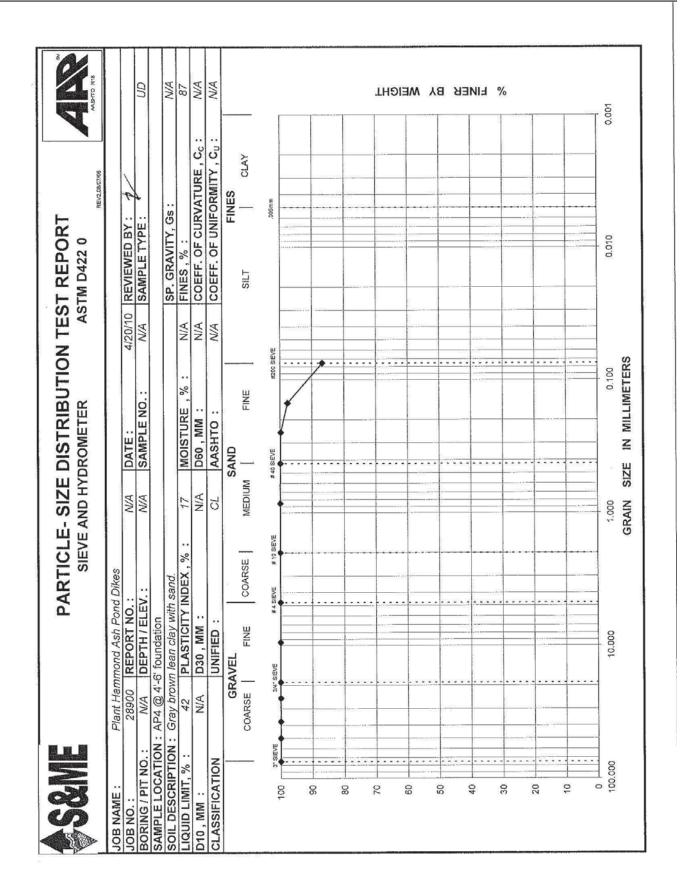
TEST NO. :	1	2	3		4		5
CONTAINER NO.	18	19	20	BRAND	MODEL	SERIAL	W.E. 3034.
NUMBER OF BLOWS	39	20	12	BALANCE	PRECISA	2200 C	
WT. WET SOIL + CAN (GRAMS)	33.32	34.64	35.29	LL MACHINE	HUMBOLT	1 [
WT. DRY SOIL + CAN (GRAMS)	28.77	29.52	29.81	BALANCE	OHAUS-3100 G	ARC120	
WT. OF WATER (GRAMS)	4.55	5.12	5.48	OVEN	DESPATCH-3436	1650032533	
WT. OF CONTAINER (GRAMS)	15.31	15.07	15.48				
WT. OF DRY SOIL (GRAMS)	13.46	14.45	14.33				
WATER CONTENT, (%)	33.80	35.43	38.24				

PLASTIC LIMIT, % MOISTURE AT THE ARBITRARY DEFINED BOUNDARY BETWEEN PLASTIC & BRITTLE STATES --

% MOISTURE AT WHICH SOIL CAN NO LONGER BE DEFORMED BY ROLLING INTO 3.2 MM (1/8")IN DIAMETER THREADS WITHOUT CRUMBLING

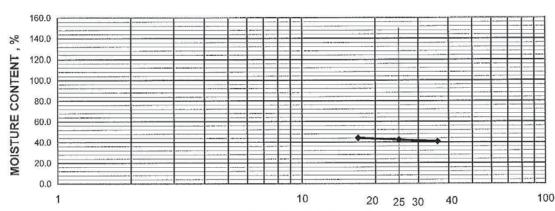
TEST NO. :	1	2	3	4	5
CONTAINER NO.	42	43			
WT. WET SOIL + CAN (GRAMS)	21.59	22.58			
WT. DRY SOIL + CAN (GRAMS)	20.58	21,40			
WT. OF WATER (GRAMS)	1.01	1.18			
WT. OF CONTAINER (GRAMS)	15.05	14.98	200000000000000000000000000000000000000		
WT. OF DRY SOIL (GRAMS)	5.53	6.42			
WATER CONTENT, (%)	18.26	18.38			

PLASTICITY INDEX - THE RANGE OF % MOISTURE CONTENT OVER WHICH SOIL BEHAVES PLASTICALLY -


THE DIFFERENCE BETWEEN LIQUID LIMIT & PLASTIC LIMIT Pl = LL-PL

TRIAXIAL SHEAR TEST REPORT (ASTM D 4767)

REV5,3/05/07 Plant Hammond Ash Pond Dikes 28900 REPORT NO. : N/A REVIEWED BY: DATE: 4/20/10 N/A DEPTH / ELEV. : N/A SAMPLE NO .: N/A TYPE: UD SAMPLE LOCATION: AP 4 @ 4'-6', Foundation SOIL DESCRIPTION: Gray brown lean clay with sand (CL) LL, %: PI, %: FINES, %: 87 Gs: 2.69 17 SPECIMEN PROPERTIES TEST PARAMETERS . TEST TYPE CU/PP INITIAL AFTER CONSOLIDATION SPECIMEN NO. 2 3 SPECIMEN NO. 2 1 2 3 **B** Value 0.95 0.95 0.95 2.89 2.88 DIAMETER, INCHES D_o 2.88 D_c 2.88 2.86 BACK PRESSURE, ksf Uo 10.2 10.1 2.84 10.1 HEIGHT, INCHES Ho 6.09 6.02 6.13 He 6.07 5.98 CONFINING PRESSURE, ksf 0.5 1.0 2.0 6.05 σ_3 WATER CONTENT, % W. W. 32.8 MAX. DEVIATOR STRESS, ksf 2.2 2.5 29.0 28.9 33.2 31.1 30.0 $\sigma_1 - \sigma_3$ 3.0 DRY DENSITY, PCF 90.5 91.1 85.7 91.5 93.0 89.2 ULT. DEVIATOR STRESS, ksf $\sigma_1 - \sigma_3$ 2.2 2.5 3.0 Ydryo Ydryc SATURATION,% S 91.1 92.2 100 Specimen Shape @ 93.1 Sc 100 100 Bulged VOID RATIO 0.884 Failure 0.856 0.844 0.837 0.961 Oc. 0.808 % per minute T50, Minutes = Strain 0.2 0.7 N/A N/A SHEAR TOTAL **EFFECTIVE** 0.75 STRENGTH COHESION APPARENT COHESION 0.00 (ksf) (ksf) ANGLE OF INTER. FRICTION, Φ(DEGREES) **PARAMETERS** 12.5 ANGLE OF INTER. FRICTION, Φ' (DEGREES) 34.5 --- TOTAL STRESSES MOHR / p'-q DIAGRAM - EFFECTIVE STRESSES SHEAR STRESS, KSF · · · · · · p'-q STRESS PATHS 3 8 PRINCIPAL STRESS . KSF STRESS STRAIN CURVE SPECIMEN 3 RSF3 DEVIATOR STRESS, SPECIMEN 1 Ó 0 2 4 6 8 16 18 20 14 STRAIN


REV_{1,5/10/06}

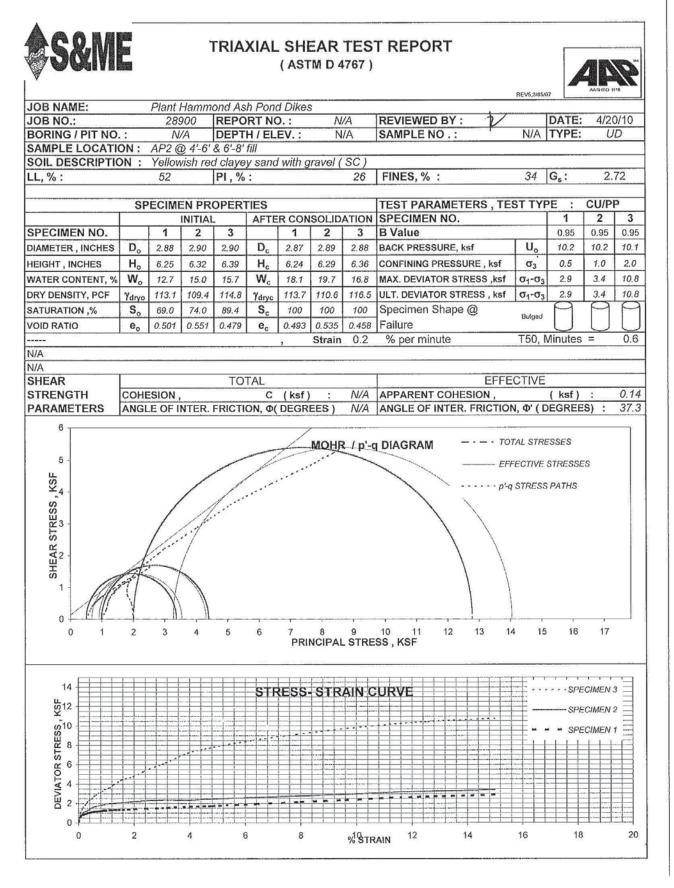
JOB NAME :	Plant Har	nmond Ash Pond Dikes					
JOB NO. :	28900	REPORT NO. :	-	DATE :	04/20/10	REVIEWED BY :	V
BORING / PIT NO. :	N/A	DEPTH / ELEV. :	N/A	SAMPLE NO. :	N/A	SAMPLE TYPE :	, AD
SAMPLE LOCATION:	AP4 @ 4	'-6' foundation					
SOIL DESCRIPTION :	Gray brow	wn lean clay with sand.					
LIQUID LIMIT, %:	42	PLASTIC LIMIT,%:	25	PLASTICITY INDEX ,% :	17	MOISTURE, %:	30
CLASSIFICATION:		UNIFIED :	CL	AASHTO :	-	FINES, %:	87

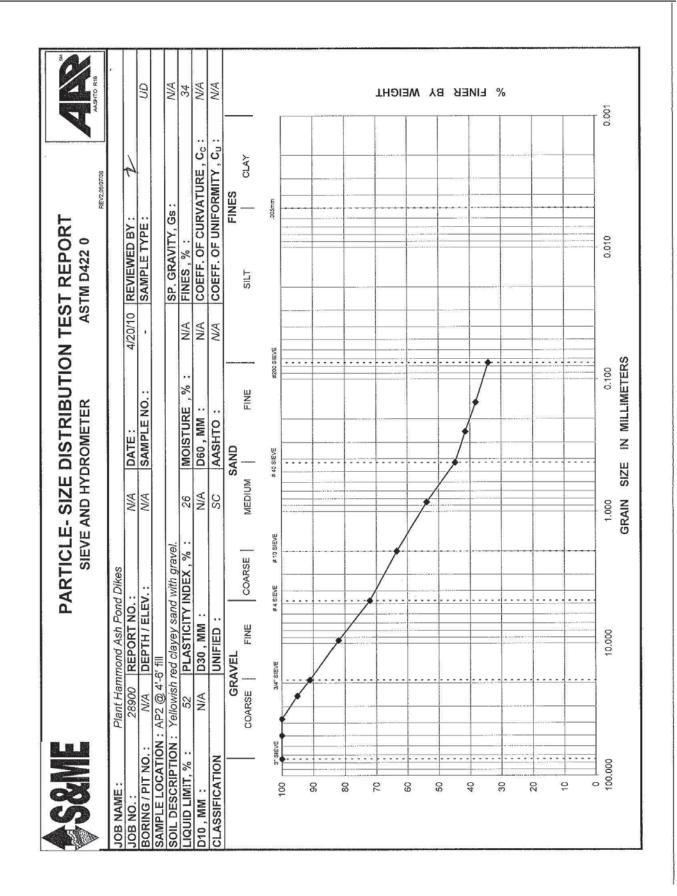
LIQUID LIMIT, % MOISTURE AT THE ARBITRARY DEFINED BOUNDARY BETWEEN LIQUID & PLASTIC STATES --

% MOISTURE AT WHICH SOIL FLOWS FOR A DISTANCE OF 13 MM (1/2 ") AT THE BASE OF GROOVE WHEN SUBJECTED TO 25 BLOWS

TEST NO. :	1	2	3		4		5
CONTAINER NO.	91	92	93	BRAND	MODEL	SERIAL	
NUMBER OF BLOWS	36	25	17	BALANCE	PRECISA	2200 C	
WT. WET SOIL + CAN (GRAMS)	31.84	35.25	34.15	LL MACHINE	HUMBOLT	1	
WT. DRY SOIL + CAN (GRAMS)	27.02	29.27	28.32	BALANCE	OHAUS-3100 G	ARC120	
WT. OF WATER (GRAMS)	4.82	5.98	5.83	OVEN	DESPATCH-3436	1650032533	
WT. OF CONTAINER (GRAMS)	15.18	15.13	15.09				
WT. OF DRY SOIL (GRAMS)	11.84	14.14	13.23]			
WATER CONTENT, (%)	40.71	42.29	44.07]			

NUMBER OF BLOWS, N

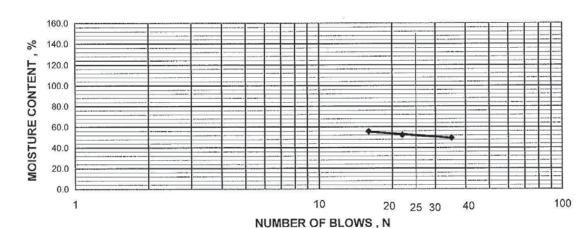

PLASTIC LIMIT, % MOISTURE AT THE ARBITRARY DEFINED BOUNDARY BETWEEN PLASTIC & BRITTLE STATES --


% MOISTURE AT WHICH SOIL CAN NO LONGER BE DEFORMED BY ROLLING INTO 3.2 MM (1/8") IN DIAMETER THREADS WITHOUT CRUMBLING

TEST NO. :	1	2	3	4	5
CONTAINER NO.	44	54			
WT. WET SOIL + CAN (GRAMS)	21.58	23.22			
WT. DRY SOIL + CAN (GRAMS)	20.31	21.62			
WT. OF WATER (GRAMS)	1.27	1.60			
WT. OF CONTAINER (GRAMS)	15.12	15.43			
WT. OF DRY SOIL (GRAMS)	5.19	6.19			
WATER CONTENT, (%)	24.47	25.85	and the second		

PLASTICITY INDEX - THE RANGE OF % MOISTURE CONTENT OVER WHICH SOIL BEHAVES PLASTICALLY -

THE DIFFERENCE BETWEEN LIQUID LIMIT & PLASTIC LIMIT PI = LL - PL

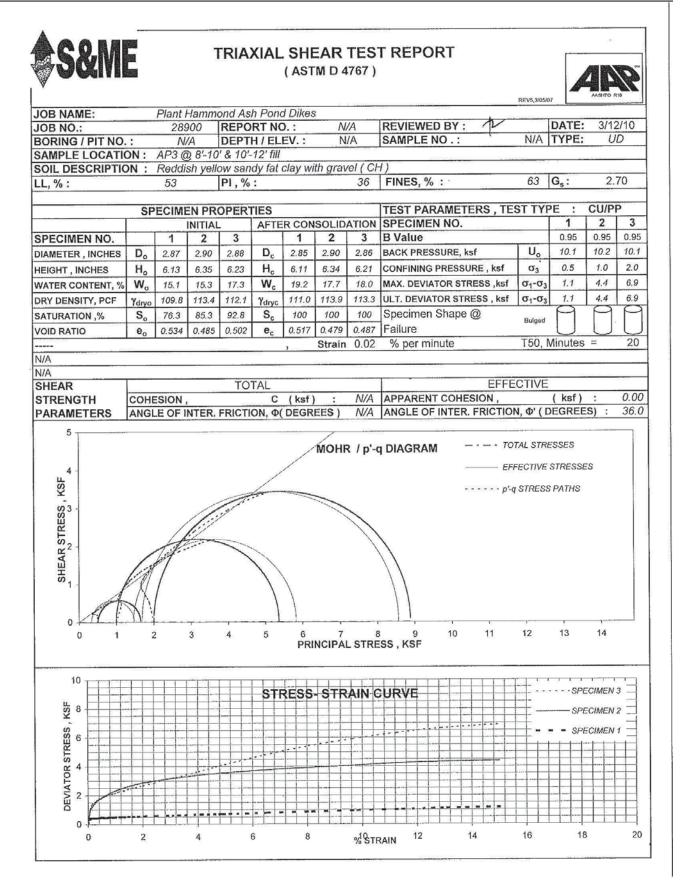


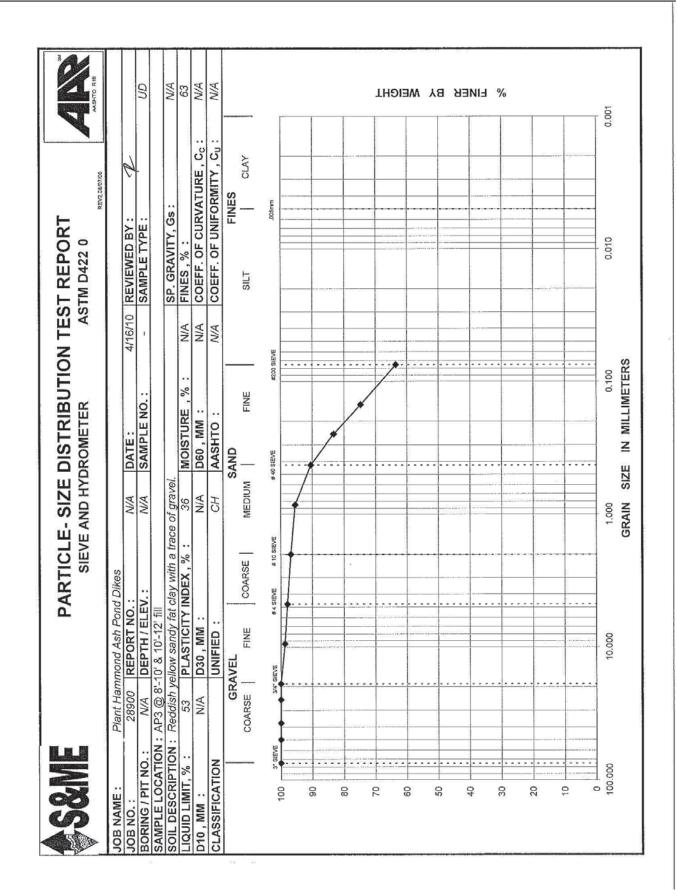
JOB NAME :	Plant Har	nmond Ash Pond Dikes					
JOB NO. :	28900	REPORT NO. :	-	DATE :	04/20/10	REVIEWED BY : 7	/
BORING / PIT NO. :	N/A	DEPTH / ELEV. :	N/A	SAMPLE NO. :	N/A	SAMPLE TYPE :	UD
SAMPLE LOCATION	AP2 Fill (@ 4'-6' & 6'-8'	1.000				
SOIL DESCRIPTION :	Yellowish	red clayey sand with gr	avel.				
LIQUID LIMIT, %:	52	PLASTIC LIMIT,%:	26	PLASTICITY INDEX ,% :	26	MOISTURE, %:	15
CLASSIFICATION :		UNIFIED :	SC	AASHTO :	-	FINES, %:	34

LIQUID LIMIT, % MOISTURE AT THE ARBITRARY DEFINED BOUNDARY BETWEEN LIQUID & PLASTIC STATES --

MOISTURE AT WHICH SOIL FLOWS FOR A DISTANCE OF 13 MM (1/2") AT THE BASE OF GROOVE WHEN SUBJECTED TO 25 BLOWS

TEST NO. :	1	2	3	No. of the last of	4		5
CONTAINER NO.	18	19	20	BRAND	MODEL	SERIAL	
NUMBER OF BLOWS	35	22	16	BALANCE	PRECISA	2200 C	
WT. WET SOIL + CAN (GRAMS)	31.51	30.35	30.84	LL MACHINE	HUMBOLT	1	
WT. DRY SOIL + CAN (GRAMS)	26.13	25.12	25.35	BALANCE	OHAUS-3100 G	ARC120	
WT. OF WATER (GRAMS)	5.38	5.23	5.49	OVEN	DESPATCH-3436	1650032533	
WT. OF CONTAINER (GRAMS)	15.27	15.11	15.47			1	
WT. OF DRY SOIL (GRAMS)	10.86	10.01	9.88				99 9
WATER CONTENT, (%)	49.54	52.25	55.57				

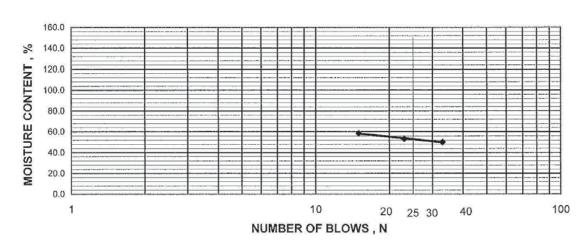

PLASTIC LIMIT, % MOISTURE AT THE ARBITRARY DEFINED BOUNDARY BETWEEN PLASTIC & BRITTLE STATES --


% MOISTURE AT WHICH SOIL CAN NO LONGER BE DEFORMED BY ROLLING INTO 3.2 MM (1/8") IN DIAMETER THREADS WITHOUT CRUMBLING

TEST NO. :	1	2	3	4	5
CONTAINER NO.	42	43			
WT. WET SOIL + CAN (GRAMS)	23.42	23.5			
WT. DRY SOIL + CAN (GRAMS)	21.66	21.74			
WT. OF WATER (GRAMS)	1.76	1.76			
WT. OF CONTAINER (GRAMS)	15.03	14.96	100 100 100 100 100 100		
WT. OF DRY SOIL (GRAMS)	6.63	6.78			200000
WATER CONTENT, (%)	26.55	25.96			

PLASTICITY INDEX - THE RANGE OF % MOISTURE CONTENT OVER WHICH SOIL BEHAVES PLASTICALLY -

THE DIFFERENCE BETWEEN LIQUID LIMIT & PLASTIC LIMIT PI = LL - PL

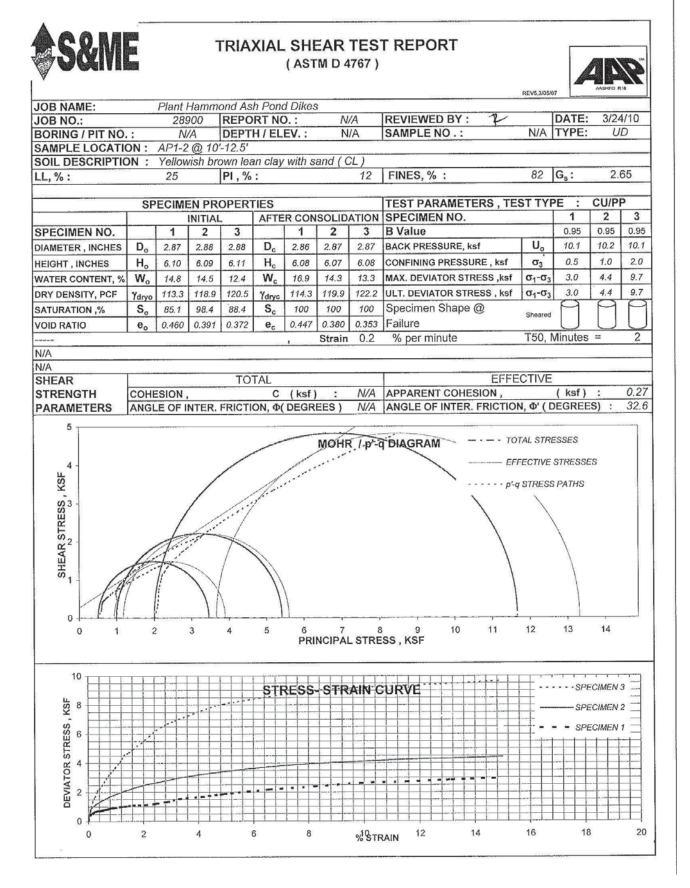

REV₁,5/10/06

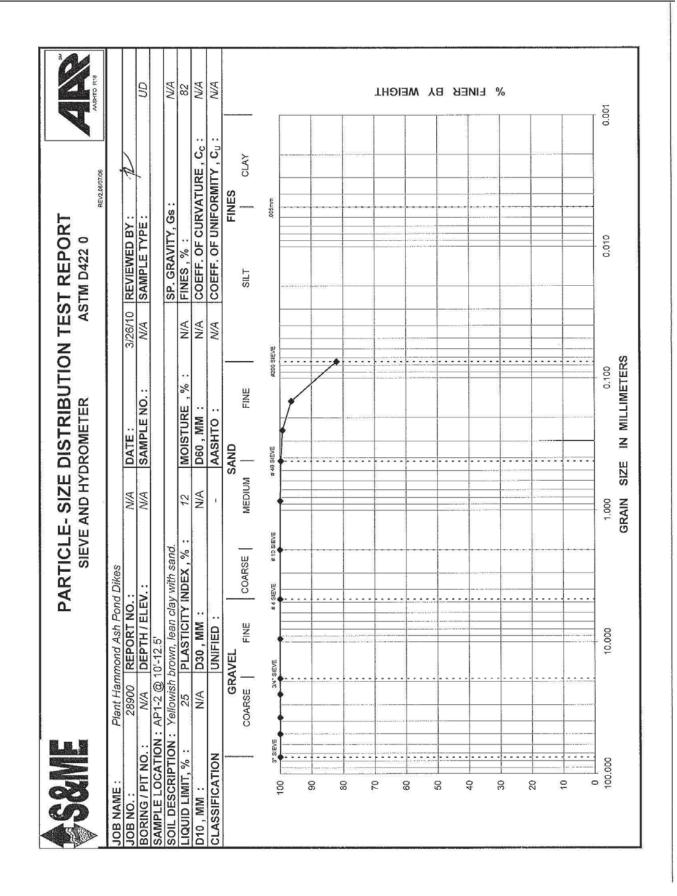
JOB NAME :	Plant Har	nmond Ash Pond Dik	es	** ** ***			
JOB NO. :	28900	REPORT NO. :	-	DATE :	04/13/10	REVIEWED BY :	V
BORING / PIT NO. :	N/A	DEPTH / ELEV. :	N/A	SAMPLE NO. :	N/A	SAMPLE TYPE :	UD
SAMPLE LOCATION :	AP3 @ 8'	-10' & 10'-12' fill				7	
SOIL DESCRIPTION:	Reddish y	ellow sandy fat clay	with gravel.				
LIQUID LIMIT, %:	53	PLASTIC LIMIT,%	: 17	PLASTICITY INDEX,%:	36	MOISTURE, %:	15
CLASSIFICATION:		UNIFIED :	CH	AASHTO :		FINES, %:	63

LIQUID LIMIT, % MOISTURE AT THE ARBITRARY DEFINED BOUNDARY BETWEEN LIQUID & PLASTIC STATES --

% MOISTURE AT WHICH SOIL FLOWS FOR A DISTANCE OF 13 MM (1/2") AT THE BASE OF GROOVE WHEN SUBJECTED TO 25 BLOWS

TEST NO. :	1	2	3		4		5
CONTAINER NO.	1	2	3	BRAND	MODEL	SERIAL	
NUMBER OF BLOWS	33	23	15	BALANCE	PRECISA	2200 C	
WT. WET SOIL + CAN (GRAMS)	29.96	29.97	29.01	LL MACHINE	HUMBOLT	4	
WT. DRY SOIL + CAN (GRAMS)	24.98	24.85	23.93	BALANCE	OHAUS-3100 G	ARC120	
WT. OF WATER (GRAMS)	4.98	5.12	5.08	OVEN	DESPATCH-3436	1650032533	
WT. OF CONTAINER (GRAMS)	15.04	15.24	15.24]			
WT. OF DRY SOIL (GRAMS)	9.94	9.61	8.69]			
WATER CONTENT, (%)	50.10	53.28	58.46	1			

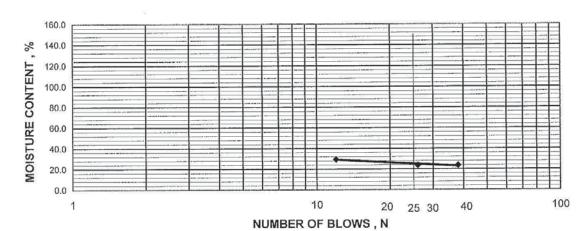



PLASTIC LIMIT, % MOISTURE AT THE ARBITRARY DEFINED BOUNDARY BETWEEN PLASTIC & BRITTLE STATES --

% MOISTURE AT WHICH SOIL CAN NO LONGER BE DEFORMED BY ROLLING INTO 3.2 MM (1/8") IN DIAMETER THREADS WITHOUT CRUMBLING

TEST NO. :	1	2	3	4	5
CONTAINER NO.	4	5			6 si 100.000 paratau
WT. WET SOIL + CAN (GRAMS)	24.45	24.1			
WT. DRY SOIL + CAN (GRAMS)	23.13	22.80			
WT. OF WATER (GRAMS)	1.32	1.30			
WT. OF CONTAINER (GRAMS)	15.01	15.42			
WT. OF DRY SOIL (GRAMS)	8.12	7.38	054035 A 10375 W A555 E		
WATER CONTENT, (%)	16.26	17.62			

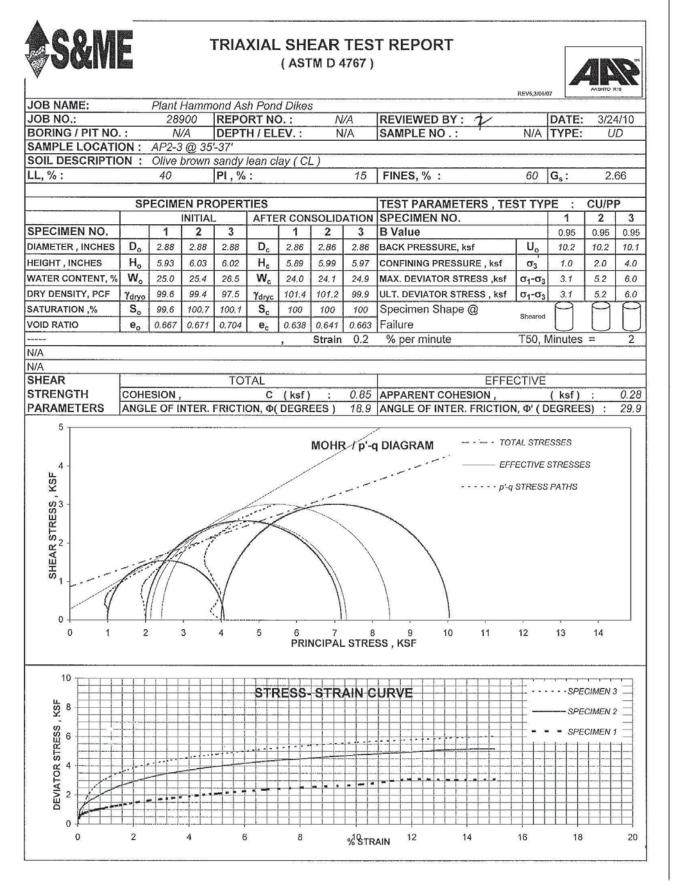
PLASTICITY INDEX - THE RANGE OF % MOISTURE CONTENT OVER WHICH SOIL BEHAVES PLASTICALLY -

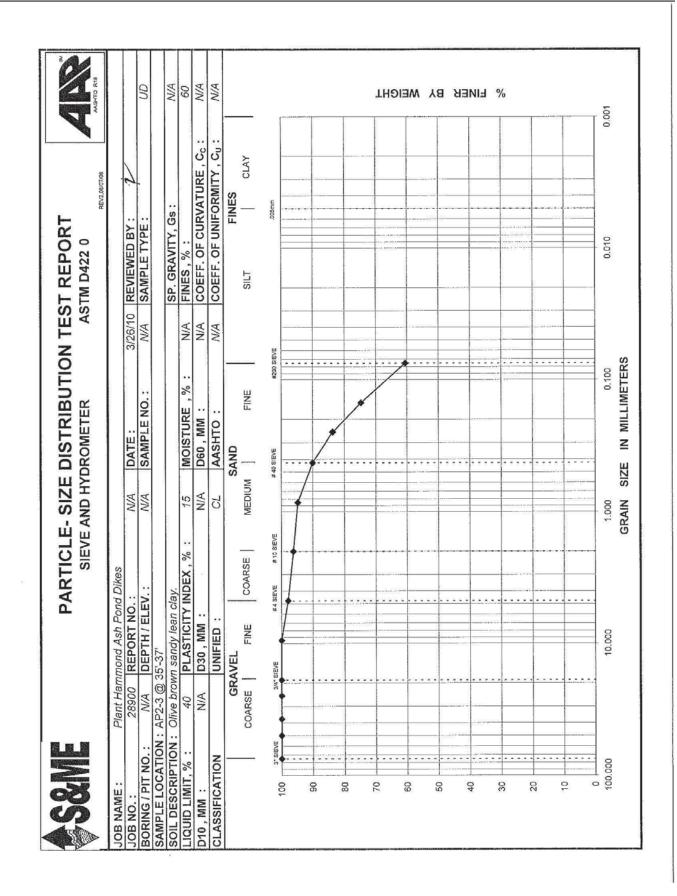

REV₁,5/10/06

JOB NAME :	Plant Han	nmond Ash Pond Dikes					
JOB NO. :	28900	REPORT NO. :	-	DATE :	03/24/10	REVIEWED BY :	V
BORING / PIT NO. :	N/A	DEPTH / ELEV. :	N/A	SAMPLE NO. :	N/A	SAMPLE TYPE :	, ND
SAMPLE LOCATION :	AP1-2@	10'-12.5'					
SOIL DESCRIPTION :	Yellowish	brown lean clay with sa					
LIQUID LIMIT, %:	25	PLASTIC LIMIT,%:	13	PLASTICITY INDEX ,% :	12	MOISTURE, %	: 14
CLASSIFICATION :		UNIFIED :	CL	AASHTO :	-	FINES, %:	82

LIQUID LIMIT, % MOISTURE AT THE ARBITRARY DEFINED BOUNDARY BETWEEN LIQUID & PLASTIC STATES --

% MOISTURE AT WHICH SOIL FLOWS FOR A DISTANCE OF 13 MM (1/2") AT THE BASE OF GROOVE WHEN SUBJECTED TO 25 BLOWS

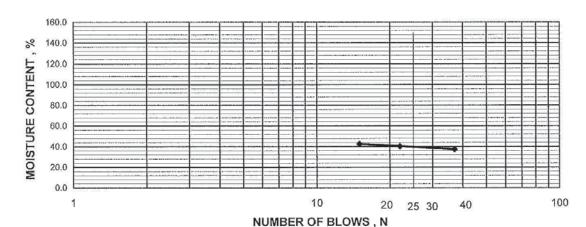

TEST NO. :	1	2	3		4		5
CONTAINER NO.	42	43	44	BRAND	MODEL	SERIAL	
NUMBER OF BLOWS	38	26	12	BALANCE	PRECISA	2200 C	
WT. WET SOIL + CAN (GRAMS)	32.55	28.73	30.87	LL MACHINE	HUMBOLT	1	120
WT. DRY SOIL + CAN (GRAMS)	29.19	26.09	27.28	BALANCE	OHAUS-3100 G	ARC120	
WT. OF WATER (GRAMS)	3.36	2.64	3.59	OVEN	DESPATCH-3436	1650032533	
WT. OF CONTAINER (GRAMS)	15.03	14.96	15.10				
WT. OF DRY SOIL (GRAMS)	14.16	11.13	12.18]			
WATER CONTENT, (%)	23.73	23.72	29.47				



PLASTIC LIMIT, % MOISTURE AT THE ARBITRARY DEFINED BOUNDARY BETWEEN PLASTIC & BRITTLE STATES -% MOISTURE AT WHICH SOIL CAN NO LONGER BE DEFORMED BY ROLLING INTO 3.2 MM (1/8") IN DIAMETER THREADS WITHOUT CRUMBLING

TEST NO. :	1	2	3	4	5
CONTAINER NO.	53	54			
WT. WET SOIL + CAN (GRAMS)	23.27	23.88			
WT. DRY SOIL + CAN (GRAMS)		22.90			
WT. OF WATER (GRAMS)	0.87	0.98			
WT. OF CONTAINER (GRAMS)	15.50	15.14			
WT. OF DRY SOIL (GRAMS)	6.90	7.76			
WATER CONTENT, (%)	12.61	12.63			

PLASTICITY INDEX - THE RANGE OF % MOISTURE CONTENT OVER WHICH SOIL BEHAVES PLASTICALLY THE DIFFERENCE BETWEEN LIQUID LIMIT & PLASTIC LIMIT PI = LL - PL

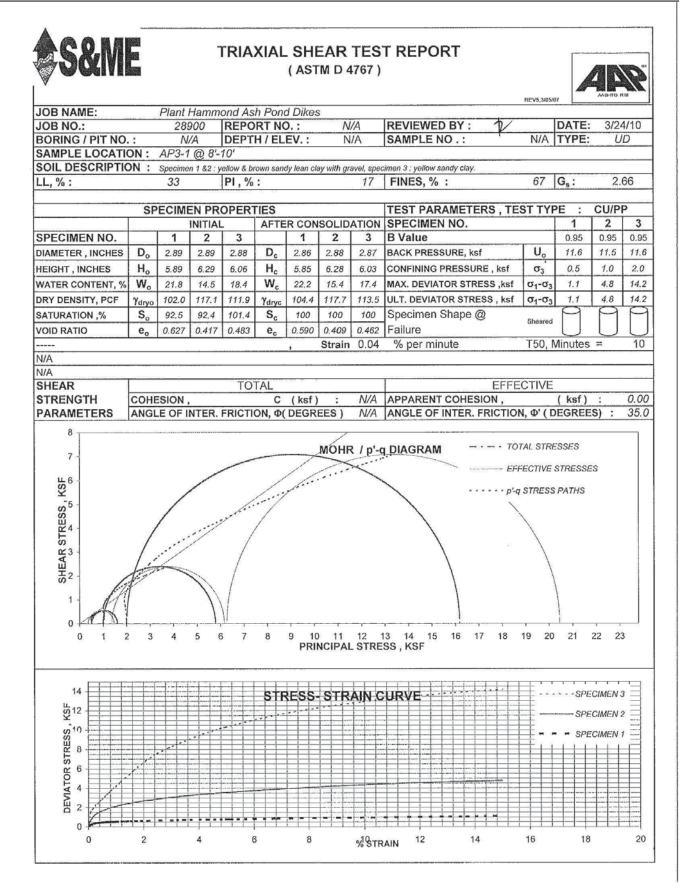

REV₁,5/10/05

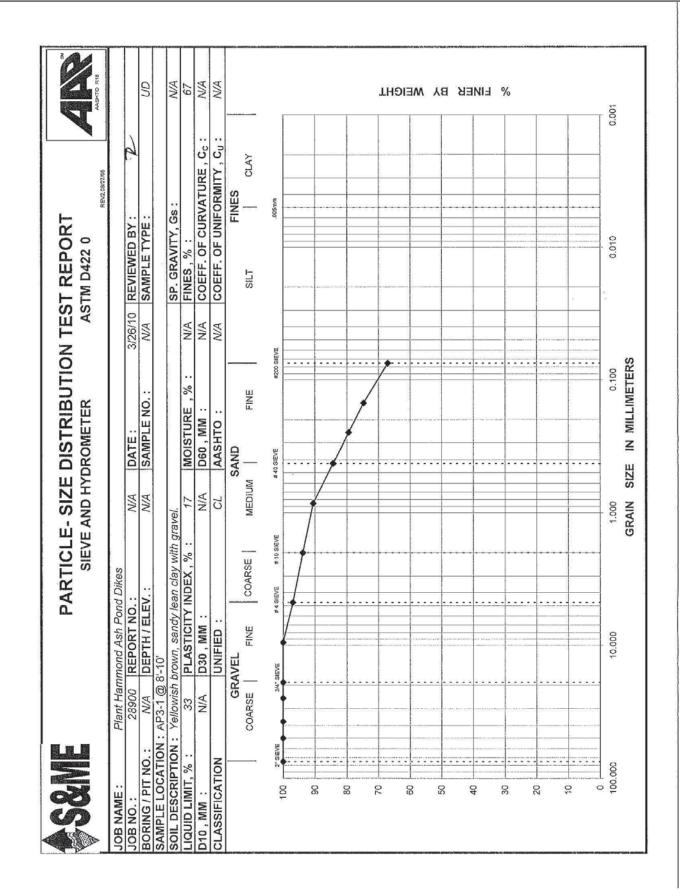
JOB NAME :	Plant Han	nmond Ash Pond Dikes					. /
JOB NO. :	28900	REPORT NO. :	-	DATE :	03/24/10	REVIEWED BY	:V
BORING / PIT NO. :	N/A	DEPTH / ELEV. :	N/A	SAMPLE NO. :	N/A	SAMPLE TYPE	: ' UD
SAMPLE LOCATION:	AP2-3 @	35'-37'					
SOIL DESCRIPTION:	Olive brov	wn sandy lean clay.	- 10 A.M.		1 100 100 100 100 100 100 100 100 100 1	2.0.0000	
LIQUID LIMIT, %:	40	PLASTIC LIMIT,%:	25	PLASTICITY INDEX ,%:	15	MOISTURE, %	: 25
CLASSIFICATION :		UNIFIED :	CL	AASHTO :	-	FINES, %:	60

LIQUID LIMIT, % MOISTURE AT THE ARBITRARY DEFINED BOUNDARY BETWEEN LIQUID & PLASTIC STATES --

% MOISTURE AT WHICH SOIL FLOWS FOR A DISTANCE OF 13 MM (1/2") AT THE BASE OF GROOVE WHEN SUBJECTED TO 25 BLOWS

TEST NO. :	1	2	3		4		5
CONTAINER NO.	91	92	93	BRAND	MODEL.	SERIAL	
NUMBER OF BLOWS	37	22	15	BALANCE	PRECISA	2200 C -	
WT. WET SOIL + CAN (GRAMS)	28.49	29.57	32.23	LL MACHINE	HUMBOLT	1	
WT. DRY SOIL + CAN (GRAMS)	24.84	25.42	27.09	BALANCE	OHAUS-3100 G	ARC120	
WT. OF WATER (GRAMS)	3.65	4.15	5.14	OVEN	DESPATCH-3436	1650032533	
WT. OF CONTAINER (GRAMS)	15.10	15.12	15.05				5 4,500
WT. OF DRY SOIL (GRAMS)	9.74	10.30	12.04				
WATER CONTENT, (%)	37.47	40.29	42.69				

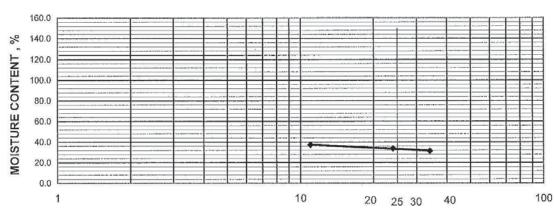



PLASTIC LIMIT, % MOISTURE AT THE ARBITRARY DEFINED BOUNDARY BETWEEN PLASTIC & BRITTLE STATES --

% MOISTURE AT WHICH SOIL CAN NO LONGER BE DEFORMED BY ROLLING INTO 3.2 MM (1/8") IN DIAMETER THREADS WITHOUT CRUMBLING

TEST NO. :	1	2	3	4	5
CONTAINER NO.	94	95			
WT. WET SOIL + CAN (GRAMS)	23.52	22.94			
WT. DRY SOIL + CAN (GRAMS)	21.84	21.39			
WT. OF WATER (GRAMS)	1.68	1.55			
WT. OF CONTAINER (GRAMS)	15.05	15.06			
WT. OF DRY SOIL (GRAMS)	6.79	6.33			
WATER CONTENT, (%)	24.74	24.49			

PLASTICITY INDEX - THE RANGE OF % MOISTURE CONTENT OVER WHICH SOIL BEHAVES PLASTICALLY -


REV_{1,5/10/06}

JOB NAME: Plant Hammond Ash Pond Dikes								
JOB NO. :	28900	REPORT NO. :	**	DATE :	03/31/10	REVIEWED BY :	V	
BORING / PIT NO. :	AP3-1	DEPTH / ELEV. :	8'-10'	SAMPLE NO. :	N/A	SAMPLE TYPE :	UD	
SAMPLE LOCATION	: -							
SOIL DESCRIPTION :	IH.							
LIQUID LIMIT, %:	33	PLASTIC LIMIT,%:	16	PLASTICITY INDEX ,% :	17	MOISTURE, %	18	
CLASSIFICATION :		UNIFIED :	CL	AASHTO :	-	FINES . % :	67	

LIQUID LIMIT, % MOISTURE AT THE ARBITRARY DEFINED BOUNDARY BETWEEN LIQUID & PLASTIC STATES --

% MOISTURE AT WHICH SOIL FLOWS FOR A DISTANCE OF 13 MM (1/2 ") AT THE BASE OF GROOVE WHEN SUBJECTED TO 25 BLOWS

TEST NO. :	1	2	3		4		5
CONTAINER NO.	42	43	44	BRAND	MODEL	SERIAL	
NUMBER OF BLOWS	34	24	11	BALANCE	PRECISA	2200 C	
WT. WET SOIL + CAN (GRAMS)	29.83	29.12	30.57	LL MACHINE	HUMBOLT	91	
WT. DRY SOIL + CAN (GRAMS)	26.29	25.54	26,37	BALANCE	OHAUS-3100 G	ARC120	
WT. OF WATER (GRAMS)	3.54	3.58	4.20	OVEN	DESPATCH-3436	1650032533	
WT. OF CONTAINER (GRAMS)	15.00	14.93	15.07				
WT. OF DRY SOIL (GRAMS)	11.29	10.61	11.30]			
WATER CONTENT, (%)	31.36	33.74	37.17				

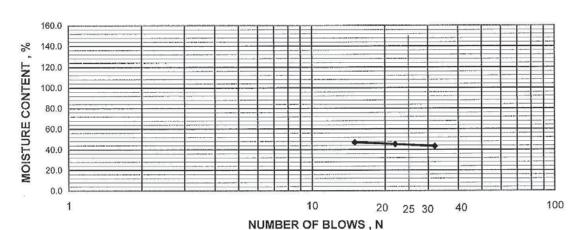
NUMBER OF BLOWS, N

ľ	PLASTIC	_IIMIT	% MOI	STURE AT THE	ARBITRARY	DEFINED	BOUNDAR	Y BETWEEN	PLASTIC & E	BRITTLE STAT	'ES
L						DV			4 (OU VIST BLAZ	ACTED TUDE A	DO WITHOUT OD

% MOISTURE AT WHICH SOIL CAN NO LONGER BE DEFORMED BY ROLLING INTO 3.2 MM (1/8")IN DIAMETER THREADS WITHOUT CRUMBLING

TEST NO. :	1	2	3	4	5
CONTAINER NO.	54	56			
WT. WET SOIL + CAN (GRAMS)	22.5	21.75	And an indicator of the same		
WT. DRY SOIL + CAN (GRAMS)	21.46	20.83			
WT. OF WATER (GRAMS)	1.04	0.92			
WT. OF CONTAINER (GRAMS)	15.11	15.19			
WT. OF DRY SOIL (GRAMS)	6.35	5.64			
WATER CONTENT, (%)	16.38	16.31			

PLASTICITY INDEX - THE RANGE OF % MOISTURE CONTENT OVER WHICH SOIL BEHAVES PLASTICALLY -

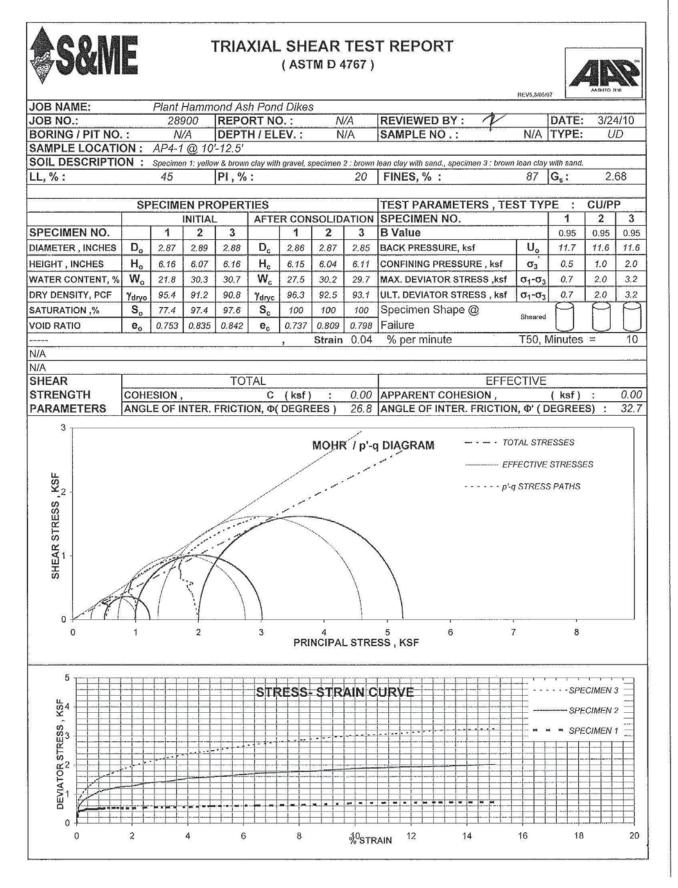

REV_{1.5/10/06}

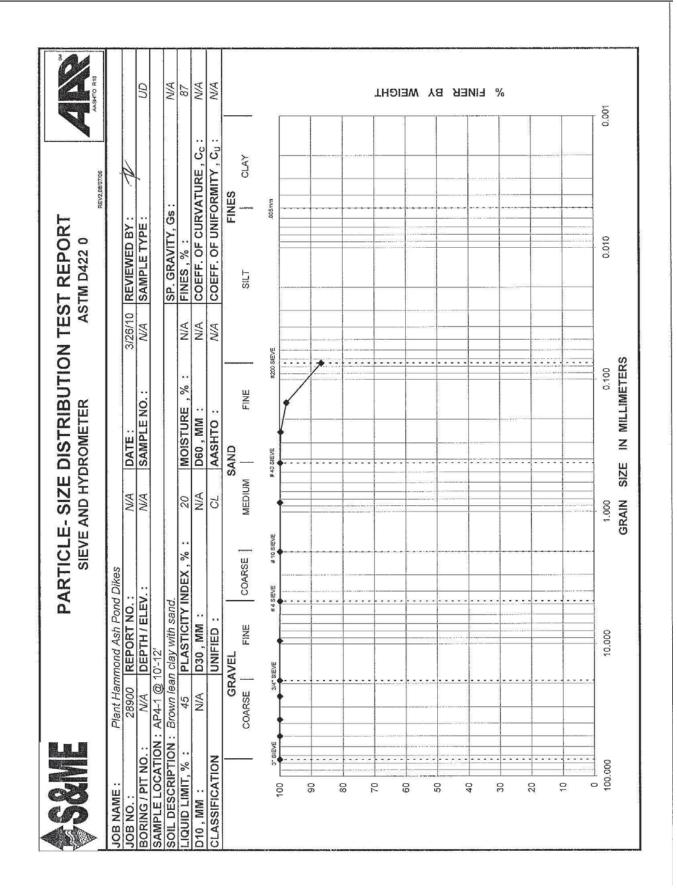
JOB NAME :	Plant Har	nmond Ash Pond Dikes					
JOB NO. :	28900	REPORT NO. :	N/A	DATE :	03/26/10	REVIEWED BY:	V
BORING / PIT NO. :	N/A	DEPTH / ELEV. :	N/A	SAMPLE NO. :	N/A	SAMPLE TYPE :	, ND
SAMPLE LOCATION	AP4-1@	10'-12.5'					
SOIL DESCRIPTION :	H		3 5. 5.				
LIQUID LIMIT, %:	45	PLASTIC LIMIT,%:	25	PLASTICITY INDEX ,% :	20	MOISTURE, %:	30
CLASSIFICATION .		LINIFIED :	CL	AASHTO :	-	FINES . % :	87

LIQUID LIMIT, % MOISTURE AT THE ARBITRARY DEFINED BOUNDARY BETWEEN LIQUID & PLASTIC STATES --

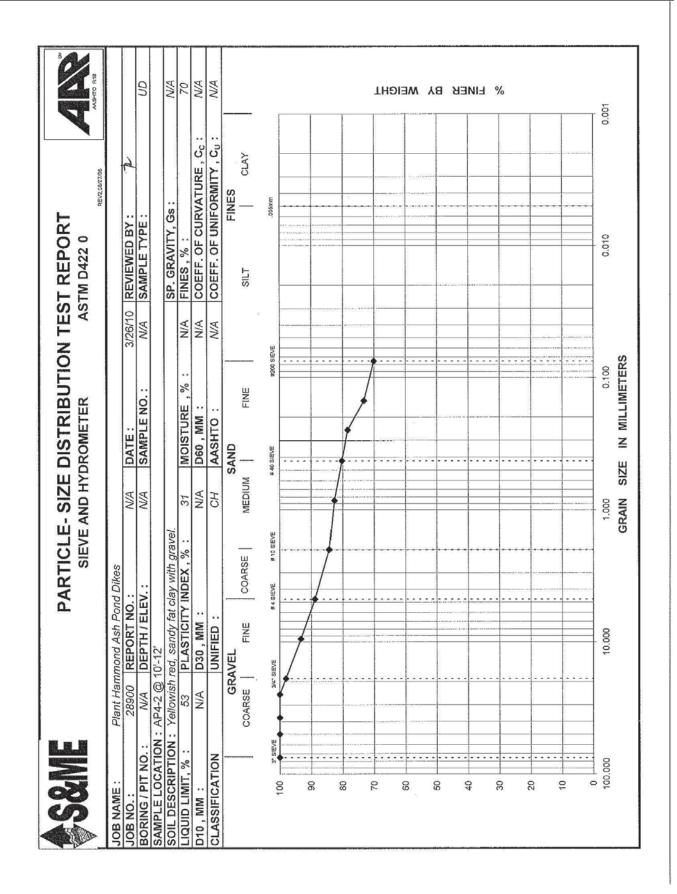
% MOISTURE AT WHICH SOIL FLOWS FOR A DISTANCE OF 13 MM (1/2 ") AT THE BASE OF GROOVE WHEN SUBJECTED TO 25 BLOWS

TEST NO. :	1	2	3		4		5
CONTAINER NO.	6	7	9	BRAND	MODEL	SERIAL	
NUMBER OF BLOWS	32	22	15	BALANCE	PRECISA	2200 C	
WT. WET SOIL + CAN (GRAMS)	29.18	29.88	30.36	LL MACHINE	HUMBOLT	1	
WT. DRY SOIL + CAN (GRAMS)	25.04	25.56	25.64	BALANCE	OHAUS-3100 G	ARC120	
WT. OF WATER (GRAMS)	4.14	4.32	4,72	OVEN	DESPATCH-3436	1650032533	
WT. OF CONTAINER (GRAMS)	15.49	16.00	15.58				
WT. OF DRY SOIL (GRAMS)	9.55	9.56	10.06				2.40.00
WATER CONTENT, (%)	43.35	45.19	46.92]			



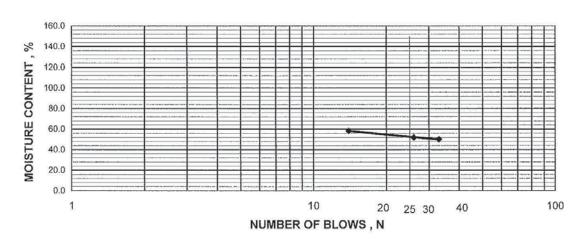

PLASTIC LIMIT, % MOISTURE AT THE ARBITRARY DEFINED BOUNDARY BETWEEN PLASTIC & BRITTLE STATES --

% MOISTURE AT WHICH SOIL CAN NO LONGER BE DEFORMED BY ROLLING INTO 3.2 MM (1/8")IN DIAMETER THREADS WITHOUT CRUMBLING


TEST NO. :	1	2		3	4		5
CONTAINER NO.	28	53				- 550014	
WT. WET SOIL + CAN (GRAMS)	28.13	26.55					
WT. DRY SOIL + CAN (GRAMS)	25.72	24.29					
WT. OF WATER (GRAMS)	2.41	2.26	22				
WT. OF CONTAINER (GRAMS)	16.08	15.49					
WT. OF DRY SOIL (GRAMS)	9.64	8.80					
WATER CONTENT, (%)	25.00	25.68					

PLASTICITY INDEX - THE RANGE OF % MOISTURE CONTENT OVER WHICH SOIL BEHAVES PLASTICALLY -

\$S&N		ı	7	ΓRIA			EAR M D 4		T REPORT	REV5,3/05/0	97	MSHTO R	116
JOB NAME:		Plant I	Hamm	ond As	h Pond	d Dikes	5						
JOB NO.:		289	900	REPO	RT NO	D. :	N	/A	REVIEWED BY: 1/		DATE:	3/24	1/10
BORING / PIT NO	.:	N	/A	DEPT	H/EL	EV.:	N	/A	SAMPLE NO .:	N/A	TYPE:	U	D
SAMPLE LOCATION	ON:	AP4-2	/5@1	0'-12.5	5'				200 V 200				
SOIL DESCRIPTION	ON:	Yellow	vish red	d fat cl	ay with	h grave	el (CH)				20. 20.	
LL, %:		53		PI, %	:			31	FINES, %:	70	G _s :	2.	74
	SP	ECIME	EN PR	OPERT	ΓIES				TEST PARAMETERS, TE	ST TYP	E :	CU/PI	P
			INITIAL	-	AFTE	R CON	SOLID	ATION	SPECIMEN NO.		1	2	3
SPECIMEN NO.		1	2	3	11.31.3.30	1	2	3	B Value		0.95	0.95	0.95
DIAMETER , INCHES	Do	2.87	2.89	2.88	D _c	2.86	2.89	2.87	BACK PRESSURE, ksf	U _o	10.1	10.1	10.1
HEIGHT, INCHES	H _o	5.95	6.12	6.20	H _c	5.93	6.12		CONFINING PRESSURE, ksf	σ_3	0.5	1.0	2.0
WATER CONTENT, %		18.0	20.8	18.6	W _c	22.9	22.7		MAX. DEVIATOR STRESS ,ksf	σ ₁ -σ ₃	1.7	4.0	4.8
		_			-			4.4	ULT. DEVIATOR STRESS, ksf	-	1.7	4.0	4.8
DRY DENSITY, PCF	Ydryo	-103.5	105.1	110.4	Ydryc	104.9	105.3			σ_1 - σ_3	()	4.0	4.0
SATURATION ,%	S _o	75.7	91.4	93.2	S _c	100	100	100	Specimen Shape @	Sheared			
/OID RATIO	eo	0.648	0.624	0.546	e _c	0.627	0.621	0.528	Failure	750	<u>U</u>	Ų	\mathcal{L}
						1	Strain	0.04	% per minute	150, 1	Minutes	=	10
N/A					-								
V/A					TA1		Malio			OT!! /		174	2000
SHEAR				10	TAL			0.04		CTIVE	/ L-C)		0.40
STRENGTH PARAMETERS		ESION,		EDIOTI	C	(ksf)			APPARENT COHESION , ANGLE OF INTER. FRICTIO	N ALCE	(ksf)	: S) :	0.13 30.5
SHEAR STRESS, KSF	1	A. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	2		3	PRI	4 NCIPAL	STRE	5 5 SS, KSF	q STRESS	E PATHS		
DEVIATOR STRESS, KSF							STR	AIN C	URVE		SPE	CIMEN 3	2
0	2		4	6		8		%STR	MM 12 14	16	18		20


REV₁,5/10/06

JOB NAME :	Plant Han	nmond Ash Pond Dikes					A 7
JOB NO. :	28900	REPORT NO. :	lw.	DATE :	03/25/10	REVIEWED BY :	V
BORING / PIT NO. :	N/A	DEPTH / ELEV. :	N/A	SAMPLE NO. :	N/A	SAMPLE TYPE :	UD
SAMPLE LOCATION:	AP4-2 @	10'-12.5'	1000				
SOIL DESCRIPTION:	8						
LIQUID LIMIT, %:	53	PLASTIC LIMIT,%:	22	PLASTICITY INDEX ,% :	31	MOISTURE, %:	18
CLASSIFICATION:		UNIFIED :	CH	AASHTO :	-	FINES, %:	70

LIQUID LIMIT, % MOISTURE AT THE ARBITRARY DEFINED BOUNDARY BETWEEN LIQUID & PLASTIC STATES --

% MOISTURE AT WHICH SOIL FLOWS FOR A DISTANCE OF 13 MM (1/2") AT THE BASE OF GROOVE WHEN SUBJECTED TO 25 BLOWS

TEST NO. :	1	2	3		4		5
CONTAINER NO.	25	26	27	8RAND	MODEL	SERIAL	
NUMBER OF BLOWS	33	26	14	BALANCE	PRECISA	2200 C	
WT. WET SOIL + CAN (GRAMS)	28.47	29.15	29.20	LL MACHINE	HUMBOLT	1	
WT. DRY SOIL + CAN (GRAMS)	24.04	24.66	24.33	BALANCE	OHAUS-3100 G	ARC120	
WT. OF WATER (GRAMS)	4.43	4.49	4.87	OVEN	DESPATCH-3436	1650032533	
WT. OF CONTAINER (GRAMS)	15.20	16.00	15.96]			
WT. OF DRY SOIL (GRAMS)	8.84	8.66	8.37				
WATER CONTENT, (%)	50.11	51.85	58.18	1			

PLASTIC LIMIT, % MOISTURE AT THE ARBITRARY DEFINED BOUNDARY BETWEEN PLASTIC & BRITTLE STATES --

% MOISTURE AT WHICH SOIL CAN NO LONGER BE DEFORMED BY ROLLING INTO 3.2 MM (1/8") IN DIAMETER THREADS WITHOUT CRUMBLING

TEST NO. :	1	2	3		4	5
CONTAINER NO.	18	19		A		
WT. WET SOIL + CAN (GRAMS)	22.72	23.04				
WT. DRY SOIL + CAN (GRAMS)	21.37	21.64				
WT. OF WATER (GRAMS)	1.35	1.40				
WT. OF CONTAINER (GRAMS)	15.24	15.06				
WT. OF DRY SOIL (GRAMS)	6.13	6.58				
WATER CONTENT, (%)	22.02	21.28				

PLASTICITY INDEX - THE RANGE OF % MOISTURE CONTENT OVER WHICH SOIL BEHAVES PLASTICALLY -

Attachment E

Groundwater Levels

Piezometer measurements are taken from the

Top of Casing (reference)

Plant Hammond - Ash Ponds 1, 2, 3 and 4

Monthly Piezometer/Weir Measurement Log

Date Initials Weather Find Past 24 Depth to bottom of Piezometer from Reference (ft.) 1-i4-16 ARL Survey 30° 0 3-i2-16 ARL Survey 30° 0 3-i2-16 ARL Survey 30° 0 4-i1-16 ARL Survey 50° 0 6-i0-16	(ft.)	Ash	Ash Pond 1		Ash Pond 2						Ash Pond 4			
Depth to bottom of Piezometer from Reference (P-14-16 LAM Survey 30° 0 3-12-16 LAM Survey 30° 0 3-11-16 LAM Survey 50° 72" 4-11-16 LAM Survey 50° 72" 5-11-16 LAM Survey 50° 0 5-11-16 LAM Survey 50° 0 5-11-16 LAM Survey 50° 0	_					7 0	Ash	Ash Pond 3				300 t		
Depth to bottom of Piezometer from Reference -i4-16 ANH Survey 30° 0 2-i2-16 ANH Survey 30° 0 3-i2-16 ANH Survey 50° 0 3-i1-16 ANH Survey 50° 0 5-i1-16 ANH Survey 50° 0 5-	(ft.)	AP1-1	AP1-2	AP1-3	AP2-2	AP2-3	AP3-1	AP3-2	AP3-3	AP4-1	AP4-2	AP4-3	AP4-4	AP4-5
2905 JAH SUMUY 30°F SAH SUMUY 39°F SAH SUMUY 50°F SAH SUMUY 50°F SAH SUMUY 50°F		22.3'	31.28'	15.10'	26.96	41.80' 3	32.51'	48.03'	33.30'	22.74'	36 96'	26 27	36 36	107.00
SAL GLOUDY SOPF		41.9	12.56	869	16.65	35.66 24.74	なか	7	27.47	N/		27.76	0 > 0	20.02
SAND CLOUDY SOPF		619	12:79 8:89 17.1	8.89	17.1	7:0%	12,34	38.6	24.00	14.59	24.47	27.19	36.14 22,34 38.16 29,42 14.58 34.17 24.19 26 92 92	22.00.
SAU Samuel SOF		6,65	12.91 8.77 17,13 36.14 20HG 38.2 29.49 12.98 31.32 21.01 17.13	3.77	17,13	36.74	DOH!	38.9	20.40	73.50	37.32	0/10	20.01	2077
290 Synn 685		^	13.27 9.02 17.19 36.98 20.71 38.76 29.57 15.31 38.11 12 20 20 21 21	9.02	17.19 3	6.98	17.00	38.76	29.67	75.31	38 A1	0//6	10 76	2/ 6/
59F		7.16	13.27	8.89	8.89 17.25 37.33	17.33	\		\	15.40 3803	3803	2/,3	0 0 0 0 0 0	2017
		_		7.81	7.81 17.34 37.78	2.78				709		1	25.26	12017
			-										001	J
			-				 							
			-		-									
							+					T		
					+		-	1						
		_			-									
							T							
										 			=	
										-				
						_								

NOTE: HP3-1/AP3-2/AD2-3 HBANDINED