Prepared for

Georgia Power Company 241 Ralph McGill Blvd NE Atlanta, Georgia 30308

2023 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

PLANT HAMMOND HUFFAKER ROAD LANDFILL

Prepared by

engineers | scientists | innovators

1255 Roberts Boulevard, Suite 200 Kennesaw, Georgia 30144

Project Number GW6581E

January 2024

CERTIFICATION STATEMENT

This 2023 Annual Groundwater Monitoring and Corrective Action Report, Plant Hammond Huffaker Road Landfill has been prepared in accordance with the United States Environmental Protection Agency Coal Combustion Residual Rule (40 Code of Federal Regulations [CFR] 257 Subpart D), specifically § 257.90(e), and the Georgia Environmental Protection Division Rules for Solid Waste Management, Rule 391-3-4-.10 Coal Combustion Residuals and Rule 391-3-4-.14 Groundwater Monitoring and Corrective Action by a qualified groundwater scientist or engineer with Geosyntec Consultants, Inc. I hereby certify that I am a qualified groundwater scientist, in accordance with the Georgia Rules of Solid Waste Management 391-3-4-.01.

January 31, 2024

Date

Whitney Law Georgia Professional Engineer No. 36641

SUMMARY

This summary of the 2023 Annual Groundwater Monitoring and Corrective Action Report provides the status of groundwater monitoring and corrective action program for the reporting period of January through December 2023 (referred to herein as the "annual reporting period") at Georgia Power Company's (Georgia Power's) Plant Hammond Huffaker Road Landfill (the landfill or the site). This summary was prepared by Geosyntec Consultants, Inc. (Geosyntec) on behalf of Georgia Power to meet the requirements listed in Part A, Section 6¹ of the United States Environmental Protection Agency (USEPA) Coal Combustion Residual Rule (federal CCR Rule) (40 Code of Federal Regulations [CFR] 257 Subpart D).

Plant Hammond Huffaker Road Landfill is located at 2181 Huffaker Road, approximately five miles northeast of Plant Hammond in Floyd County, Georgia. The landfill is comprised of constructed Parcels A, B, and E, with Parcels C, D, and F proposed for future expansion. CCR material resulting from power generation have historically been transferred and stored at the site. Currently, Parcels A and B are active, and Parcel E is temporarily inactive and covered with an intermediate closure system. The landfill is located on the western portion of Georgia Power's property.

Plant Hammond Huffaker Road Landfill

The groundwater monitoring program for the landfill is managed in accordance with the landfill's solid waste permit number 057-022D (LI), as issued by the Georgia Environmental Protection Division (GA EPD), and in accordance with Georgia Solid Waste Management Rules for Groundwater Monitoring and Corrective Action of a municipal solid waste landfill, Rule 391-3-4.14. The landfill is also subject to the federal CCR Rule and the GA EPD Rules for Solid Waste Management 391-3-4-.10. Groundwater at the site is monitored using a comprehensive monitoring system of wells installed to meet federal and state monitoring requirements. Groundwater monitoring in accordance with the permit-issued Design and Operations (D&O) Plan began in 2007,

 $^{^1}$ 80 FR 21468, Apr. 17, 2015, as amended at 81 FR 51807, Aug. 5, 2016; 83 FR 36452, July 30, 2018; 85 FR 53561, Aug. 28, 2020

prior to disposal activities, and continues to date. Routine sampling and reporting in accordance with the federal CCR Rule began after the background groundwater conditions were established between March 2016 to March 2017. Based on groundwater conditions at the landfill, a detection monitoring program has been established since October 2017.

During the annual reporting period, Geosyntec conducted two groundwater sampling events in January and August 2023. Groundwater samples were submitted to Pace Analytical Services, LLC, for analysis. Per the federal CCR Rule, groundwater results for the January and August 2023 data set were evaluated in accordance with the certified statistical methods. That evaluation showed no statistically significant values of Appendix III² constituents.

Based on review of the Appendix III statistical results completed for the groundwater monitoring and corrective action program for the annual reporting period, the site will continue in detection monitoring. Georgia Power will continue routine groundwater monitoring and reporting at the landfill. Reports will be posted to the website and provided to GA EPD semiannually.

² Boron, calcium, chloride, fluoride, pH, sulfate, and total dissolved solids (TDS)

TABLE OF CONTENTS

SUM	MAR'	Y		ii
1.0	INT	RODUG	CTION	1
	1.1		Description and Background	
	1.2		nal Geology and Hydrogeologic Setting	
	1.3		ndwater Monitoring Well Network	
	1.4		ill Underdrain Monitoring Point	
2.0	GRO	OUNDV	WATER MONITORING ACTIVITIES	5
	2.1	Monit	toring Well Installation and Maintenance	5
	2.2	Detect	tion Monitoring	5
3.0	SAN	MPLE M	METHODOLOGY AND ANALYSIS	6
	3.1	Groun	ndwater Level Measurement	6
	3.2	Groun	ndwater Gradient and Flow Velocity	6
	3.3	Groun	ndwater Sampling Procedures	7
	3.4	Labora	atory Analyses	8
	3.5	Qualit	ty Assurance and Quality Control	8
4.0	STA	ATISTIC	CAL ANALYSES	10
	4.1	Statist	tical Methods	10
		4.1.1	Statistical Methods – Appendix III Constituents	11
		4.1.2	Statistical Methods - Appendix I D&O Constituents	11
	4.2	Statist	tical Analysis Results	11
		4.2.1	January 2023 Semiannual Event	11
		4.2.2	August 2023 Semiannual Event	12
5.0	МО	NITOR	ING PROGRAM STATUS	13
6.0	COl	NCLUS	IONS AND FUTURE ACTIONS	14
7.0	REF	FERENC	CES	15

LIST OF TABLES

Table 1	Monitoring Well Network Summary
Table 2	Groundwater Sampling Event Summary
Table 3	Summary of Groundwater Elevations
Table 4	Horizontal Groundwater Gradient and Flow Velocity Calculations
Table 5	Summary of Groundwater Analytical Data

LIST OF FIGURES

Figure 1	Site Location Map
Figure 2	Monitoring Well Network Map
Figure 3	Potentiometric Surface Contour Map – January 2023
Figure 4	Potentiometric Surface Contour Map – August 2023

LIST OF APPENDICES

Appendix A	Well Maintenance and Repair Documentation Memoranda
Appendix B	Analytical Laboratory Results and Field Sampling Forms
Appendix C	Statistical Analysis Reports

LIST OF ACRONYMS

CCR coal combustion residuals
CFR Code of Federal Regulations

cm/sec centimeters per second
D&O Design and Operations
DO dissolved oxygen

ft feet

ft/ft feet per foot ft/day feet per day

GA EPD Georgia Environmental Protection Division

Georgia Power Georgia Power Company
Geosyntec Geosyntec Consultants, Inc.
GSC Groundwater Stats Consulting
i horizontal hydraulic gradient
Kh horizontal hydraulic conductivity

mg/L milligram per liter n_e effective porosity

NELAP National Environmental Laboratory Accreditation Program

NTU nephelometric turbidity unit
ORP oxidation reduction potential
Pace Analytical Pace Analytical Services, LLC.

PE professional engineer
PL prediction limit

QA/QC Quality Assurance/Quality Control

SAR Site Acceptability Report
SCS Southern Company Services
SSI statistically significant increase

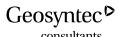
s.u. standard unit

TDS total dissolved solids

Unified Guidance Statistical Analysis of Groundwater Data at RCRA Facilities Unified

Guidance

USEPA United States Environmental Protection Agency


1.0 INTRODUCTION

Groundwater monitoring is currently conducted at the Georgia Power Company (Georgia Power) Plant Hammond, Huffaker Road Landfill (the landfill or the site) to comply with the landfill's solid waste permit number 057-022D (LI), as issued by the Georgia Environmental Protection Division (GA EPD), and in accordance with Georgia Solid Waste Management Rules for Groundwater Monitoring and Corrective Action of a municipal solid waste landfill, Rule 391-3-4.14. The landfill is also subject to the United States Environmental Protection Agency (USEPA) Coal Combustion Residual Rule (federal CCR Rule) (40 Code of Federal Regulations [CFR] 257 Subpart D) and the GA EPD Rules for Solid Waste Management 391-3-4-.10. Geosyntec Consultants, Inc. (Geosyntec) has prepared this 2023 Annual Groundwater Monitoring and Corrective Action Report to document groundwater monitoring activities at the landfill. This report documents groundwater monitoring activities conducted at the landfill for the reporting period of January through December 2023 (referred to herein as the "annual reporting period"). This report satisfies the reporting requirements of applicable federal and state CCR Rule [§ 257.90(e), 391-3-4-.10] and GA EPD Solid Waste Management Rules (391-3-4-.14). For ease of reference when discussing aspects of the CCR Rule, only the federal CCR Rule is cited within this report.

1.1 Site Description and Background

The landfill is a Georgia Power-owned property located in Floyd County approximately five miles northeast of Plant Hammond (Figure 1). The physical address of the site is 2181 Huffaker Road, Rome, Georgia, 30165. The landfill was built between 2005 and 2007 over a closed surface clay mine, previously owned by Boral Bricks, Inc. The landfill is comprised of constructed Parcels A, B, and E, with Parcels C, D, and F proposed for future expansion. The three existing parcels were permitted and constructed with a minimum 24-inch compacted clay liner with a maximum hydraulic conductivity of 1 x 10⁻⁶ centimeters per second (cm/sec) underlain with a compacted soil barrier designed to provide a minimum five-foot thick barrier between the bottom of the clay liner and seasonal high groundwater levels. GA EPD approved solid waste permit no. 057-022D (LI) in a letter dated May 26, 2006, and disposal operations commenced on May 5, 2008. No CCR materials were stored in the landfill prior to May 2008 (Environmental Resource Management, 2018). In 2016, Parcels A and B were retrofitted with a leachate collection system and a 60-millimeter high-density polyethylene geomembrane overlaying the 24inch clay liner, which was recompacted to obtain a maximum hydraulic conductivity of 1×10^{-7} cm/sec (Georgia Power, 2016).

Parcels A and B have historically received coal ash whereas Parcel E has typically received gypsum. Currently, Parcels A and B are active, and Parcel E is temporarily

inactive and covered with an intermediate closure system of 18-inches of soil compacted to obtain a maximum hydraulic conductivity of 1×10^{-6} cm/sec.

To accommodate the disposal of CCR material excavated from Ash Pond 4 located at Plant Hammond, Georgia Power proposes an expansion of the existing landfill to include the construction of Parcel F located south of Parcels A, B, and E. To this end, Georgia Power is preparing a permit application. The proposed lateral expansion of Parcel F will increase the total permitted area of the landfill by approximately 214 acres, for a total of 413 acres. Infrastructure installed in support of the Parcel F expansion is documented in the Site Acceptability Report submitted to GA EPD in July 2023.

A groundwater monitoring plan was developed as part of the landfill's pre-construction Design and Operations (D&O) Plan and approved in September 2004 with subsequent modifications submitted to GA EPD in September 2005, April 2009, and May 2013. Groundwater monitoring in accordance with the D&O Plan began in 2007, prior to disposal activities, and continues to date.


Groundwater monitoring and reporting activities in accordance with § 257.90 through § 257.94 of the federal CCR Rule were initiated in 2016. Pursuant to § 257.94(b), the eight baseline sampling events were conducted between March 2016 and March 2017, with the initial detection monitoring event occurring October 2017.

Groundwater samples from wells in the detection monitoring system are collected from each monitoring well and analyzed for:

- Appendix III constituents according to § 257.94(a); and
- A state-modified Appendix I list of detection constituents according to GA EPD Rules for Solid Waste Management 391-3-4-.14 and the approved D&O plan. The state-modified analyte list includes antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, nickel, selenium, silver, thallium, vanadium, and zinc.
- Field parameters that are to be recorded include: pH, temperature, turbidity, dissolved oxygen, specific conductance, and oxidation-reduction potential.

1.2 <u>Regional Geology and Hydrogeologic Setting</u>

The regional geology was summarized in the Southern Company Services (SCS) prepared Site Acceptability Report (SAR) (SCS, 2002) based on the work of Cressler (1970). The landfill is located in the Floyd Shale member of the Judy Mountain Syncline. The Floyd

Shale is Mississippian in age and ranges from 200 to 1,200 feet thick in Floyd County. The unit is composed of clay and shale, transitioning to limestone at its base.

Boring logs presented in the SAR indicate sandy clayey silt and silty clay with rock fragments described as shale extending to depths of up to approximately 30 feet below ground surface. Underlying this material is a medium gray to dark gray and dark olive gray, heavily to moderately weathered shale. Rock cores collected at the site are described as slightly weathered to unweathered, thinly bedded shale. Descriptions provided in the boring logs are representative of recorded observations on the Floyd Shale.

The landfill is underlain by a regional unconfined groundwater aquifer that occurs within the overburden. Groundwater recharge at the landfill is from infiltration of precipitation. Prior site investigations indicate groundwater within the unconfined aquifer flows predominantly through the heavily to moderately weathered shale layer (SCS, 2002). Groundwater occurring in bedrock below the site is controlled by the degree of enhanced secondary permeability. In general, groundwater occurring in the bedrock is a result of water infiltrating through areas in the overburden where enhanced permeability exists. Review of the available boring logs does not identify a confined aquifer beneath the landfill.

1.3 Groundwater Monitoring Well Network

The existing groundwater monitoring system meets the requirements listed in § 257.91 and 391-3-4.14; a groundwater monitoring system was installed at the landfill that consists of a sufficient number of wells installed at appropriate locations and depths to yield groundwater samples from the uppermost aquifer to represent the groundwater quality both upgradient of the unit (i.e., background conditions) and passing the waste boundary of the unit. The number, spacing, and depths of the groundwater monitoring wells were selected based on the characterization of site specific hydrogeologic conditions. The locations of the detection monitoring wells are presented on **Figure 2**; well construction details are listed in **Table 1**.

1.4 Landfill Underdrain Monitoring Point

In addition to the groundwater monitoring well network, the D&O Plan requires collecting a water sample from the landfill underdrain monitoring point, SWC-1, during each semiannual monitoring event. The water sample is analyzed for the same constituents monitored in groundwater. The monitoring point is located west of Parcels A and B, as shown on **Figure 2**. Historically, there has been no liquid discharge from this underdrain monitoring point to collect a sample, as was the case for the annual

reporting period. The discharge status of the monitoring point is confirmed during each sampling event.

2.0 GROUNDWATER MONITORING ACTIVITIES

In accordance with § 257.90(e), the following describes monitoring-related activities performed during the annual reporting period and discusses any change in status of the monitoring program. Groundwater sampling was performed in accordance with § 257.93 and the D&O Plan.

2.1 <u>Monitoring Well Installation and Maintenance</u>

Monitoring wells are inspected semiannually to evaluate if any repairs or corrective actions are necessary to meet the requirements of the Georgia Water Well Standards Act (O.C.G.A. § 12-5-134(5)(d)(vii)). In January and August 2023, monitoring wells were inspected, necessary corrective actions were identified and subsequently completed, as documented in **Appendix A**. This documentation was performed under the direction of a professional geologist or engineer registered in the State of Georgia.

2.2 <u>Detection Monitoring</u>

Georgia Power currently monitors groundwater associated with the landfill under the detection groundwater monitoring program in accordance with federal CCR Rule § 257.94 and Solid Waste Management Rule 391-3-4-.14(22). The semiannual detection monitoring events occurred in January and August 2023 (**Table 2**). Groundwater samples were collected from each detection monitoring well shown on **Figure 2** and analyzed for the state-modified list of Appendix I constituents and Appendix III constituents stipulated by the August 2017 permit modification (GA EPD, 2017) (list of constituents presented in Section 1.1 of this report). The analytical and statistical results of the event conducted during the annual reporting period are discussed in Sections 3 and 4, respectively.

3.0 SAMPLE METHODOLOGY AND ANALYSIS

The following section presents a summary of the field sampling procedures that were implemented, and the groundwater sampling results that were obtained in connection with the compliance monitoring program conducted at the landfill during the annual reporting period.

3.1 Groundwater Level Measurement

A synoptic round of depth-to-groundwater-level measurements were recorded from the monitoring well network during the January and August 2023 detection monitoring events and used to calculate the corresponding groundwater elevations, which are presented in **Table 3**. The January and August 2023 reported elevations are consistent with groundwater elevations reported for prior monitoring events.

The groundwater elevation data were used to prepare a potentiometric surface map for the January and August 2023 events, which is presented on **Figure 3** and **Figure 4**, respectively. Interpretation of the potentiometric surface contours indicate that groundwater flow beneath the landfill is generally to the southeast in vicinity of Parcels A and B, and then south-southwest beneath Parcel E. These observed flow directions are consistent with previous observations.

3.2 Groundwater Gradient and Flow Velocity

The horizontal groundwater hydraulic gradients beneath the landfill were calculated using the groundwater elevation data from the January and August 2023 events, and between two pairs of data points located approximately along interpreted groundwater flow paths to account for changing flow directions across the site, as discussed in Section 3.1. For Parcels A and B, the horizontal hydraulic gradient was calculated between GWA-1 and GWC-7; for Parcel E, GWC-9 and GWC-20 were used for the gradient calculation. The gradient calculations are presented in **Table 4.** The general trajectories of the flow paths used in the calculations are shown on **Figure 3**.

As presented in **Table 4**, the hydraulic gradient underneath Parcels A and B applying the data from January and August 2023, was calculated to be 0.021 feet per foot (ft/ft), whereas the hydraulic gradient underneath Parcel E was calculated to be 0.016 ft/ft.

The approximate horizontal flow velocities associated with the Site were calculated using the following derivative of Darcy's Law. The calculations are presented on **Table 4**.

6

$$V = \frac{K_h * i}{n_e}$$

where:

V =Groundwater flow velocity $\left(\frac{feet}{day}\right)$

 K_h = Horizontal Hydraulic Conductivity $\left(\frac{feet}{day}\right)$

 $i = \text{Horizontal hydraulic gradient } \left(\frac{feet}{foot}\right) = \frac{h_1 - h_2}{L}$

 h_1 and h_2 = Groundwater elevation at location 1 and 2

L = distance between location 1 and 2

 n_e = Effective porosity

Prior site investigations indicate groundwater within the unconfined aquifer flows predominantly through the heavily to moderately weathered shale layer (SCS, 2002). The average hydraulic conductivity for this zone (0.248 feet per day [ft/day]) was computed from slug test data derived from five locations across the site (SCS, 2002). An estimated effective porosity of 0.20 is used for the flow rate calculation, based on interpreted values for weathered shale (Freeze/Cherry, 1979). With these variables determined, and accounting for the hydraulic gradients discussed above, the groundwater flow velocity underneath Parcels A and B was calculated to be 0.026 ft/day. Similarly, the flow velocity underneath Parcel E was calculated to be 0.020 ft/day. Calculated groundwater velocities across the Site are generally consistent with historical calculations and site specific geology, therefore, confirming the groundwater monitoring network as properly located to monitor the uppermost aquifer.

3.3 Groundwater Sampling Procedures

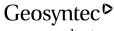
Groundwater samples were collected from the detection monitoring well network in accordance with § 257.93(a) and the D&O Plan using low-flow purging techniques performed with a peristaltic pump with disposable polyethylene tubing. The intake point of the tubing was lowered to the midpoint of the well screen. Each well was sampled with a new segment of tubing; all tubing was disposed of following the sampling event. All non-disposable equipment was decontaminated before use and between well locations.

Geosyntec D

consultants

An in-situ water quality field meter (Aqua TROLL400) was used to monitor and record field water quality parameters [i.e., pH, conductivity, dissolved oxygen (DO), temperature, and oxidation reduction potential (ORP)] during well purging to verify stabilization prior to sampling. Turbidity was monitored using a portable turbidity meter (i.e., LaMotte 2020we or similar). Groundwater samples were collected once the following stabilization criteria were met:

- pH \pm 0.1 standard units (s.u.).
- Conductivity \pm 5%.
- \pm 0.2 milligrams per liter (mg/L) or \pm 10% (whichever is greater) for DO > 0.5 mg/L. No criterion applies if DO < 0.5 mg/L, record only.
- Turbidity measured less than 5 nephelometric turbidity units (NTU) or measured between 5 and 10 NTU following three hours of purging.


Following purging, and once stabilization was achieved, unfiltered samples were collected into appropriately preserved laboratory-supplied sample containers. Sample bottles were placed in ice-packed coolers and submitted to Pace Analytical Services, LLC (Pace Analytical) in Peachtree Corners, Georgia, following chain-of-custody protocol. The field sampling and equipment calibration forms generated during the annual reporting period are provided in **Appendix B**.

3.4 Laboratory Analyses

Laboratory analyses were performed by Pace Analytical, which is accredited by the National Environmental Laboratory Accreditation Program (NELAP). Pace Analytical maintains a NELAP certification for the permit specified constituents analyzed for this project. Analytical methods used for groundwater sample analysis, and associated results, are listed in the analytical laboratory reports included in **Appendix B**. The groundwater results from the January and August 2023 detection monitoring events are summarized in **Table 5**.

3.5 Quality Assurance and Quality Control

Quality assurance/quality control (QA/QC) samples were collected during the detection monitoring events at the minimum rate of one QA/QC sample per 10 groundwater samples and included the following: field duplicates, equipment blanks, and field blank samples. QA/QC samples were collected in appropriately preserved laboratory-supplied

consultants

sample containers and submitted under the same chain of custody as the primary samples for analysis of the same constituents by Pace Analytical.

In addition to collecting QA/QC samples, the data were validated based on the pertinent methods referenced in the laboratory reports, professional and technical judgment, and applicable federal guidance documents (USEPA, 2011; USEPA, 2017). Where necessary, the data were qualified with supporting documentation and justifications. The validated data meet project objectives and the associated data validation reports are provided in **Appendix B**, along with the laboratory reports.

4.0 STATISTICAL ANALYSES

The following section summarizes the statistical approach applied to assess the groundwater data for this annual reporting period for potential statistically significant increases (SSIs) of permit stipulated constituents reported in downgradient detection wells relative to the available historical dataset. Because the landfill is currently independently managed under both Georgia's Solid Waste Management Rule 391-3-4.14 and Georgia's CCR Rule 391-3-4.10, which references the federal CCR Rule, two datasets are statistically evaluated per monitoring event. One dataset contains Appendix III constituents, which is applicable to both of the beforementioned rule sets. The other dataset contains the D&O-specified state-modified list of Appendix I constituents, applicable to Rule 391-3-4.14. The January and August 2023 data were analyzed by Groundwater Stats Consulting (GSC); the report generated from the analyses is provided in **Appendix C**.

4.1 <u>Statistical Methods</u>

Statistical analysis of the January and August 2023 groundwater data for Appendix III constituents was performed pursuant to § 257.93 and in accordance with the PE-certified statistical method. Statistical analysis of the January and August 2023 groundwater data for the D&O Appendix I constituents was performed pursuant to Rule 391-3-4-.14 and in accordance with the *Background Data Screening & Recommended Statistical Methods* report prepared by GSC (GSC, 2019) and the USEPA document *Statistical Analysis of Groundwater Data at RCRA Facilities Unified Guidance* (Unified Guidance) (USEPA, 2009).

On February 26, 2021, Georgia Power submitted a minor modification to implement a two-step statistical approach for the detection monitoring program to address initial SSIs over background for constituents currently using an intrawell statistical approach. This approach was approved by GA EPD in a letter dated April 19, 2021. The two-step analysis is similar in concept to the procedure used in detection monitoring programs where an interwell statistical limit is used to determine "background" (Unified Guidance, Chapter 7, Section 7.5).

The Sanitas groundwater statistical software was used to perform the statistical analyses. Sanitas is a decision-support software package that incorporates the statistical tests required of Subtitle C and D facilities by USEPA regulations and guidance as recommended in the Unified Guidance. Detailed statistical methods used for Appendix III and D&O Appendix I constituents are discussed in statistical analysis reports provided in **Appendix C** and summarized in Sections 4.1.1 and 4.1.2.

4.1.1 Statistical Methods – Appendix III Constituents

The PE-certified statistical approach used to evaluate groundwater data for the landfill for Appendix III constituents is the intrawell prediction limit (PL) method combined with a 1-of-2 resample plan. The intrawell PLs utilize historical data from within a given well to establish a statistical limit for comparison of compliance data at the same well. In this case, the data from the monitoring events conducted between March 2016 and August 2023 were used to establish background conditions. An "initial exceedance" occurs when any data from the well exceeds the PL. Intrawell statistical methods are a conservative first step that may be overly sensitive to natural variation, particularly for nonparametric limits with small background sample sizes. Therefore, for instances where an apparent exceedance over the PL is identified by intrawell statistical methods, interwell statistical methods may be used as a reasonable second step to determine if the initial exceedance is below sitewide background based on pooled upgradient well data.

The 1-of-2 resample plan allows for collection of an independent resample. Once again, the most recent sample from each downgradient well (in this case, the resample) is compared to the PL to evaluate exceedances over background. A confirmed exceedance is noted only when the resample confirms the initial exceedance by also exceeding the statistical limit. If the resample falls within its respective prediction limit, no exceedance is declared.

4.1.2 Statistical Methods – Appendix I D&O Constituents

The intrawell PL statistical approach was also used to evaluate groundwater data for the landfill for Appendix I D&O constituents with a 1-of-2 resample plan (GSC, 2019). As with the Appendix III methodology, instances where an intrawell statistical exceedance is identified, interwell statistical methods may be used to determine sitewide background for comparison prior to SSI identification.

4.2 Statistical Analysis Results

The January and August 2023 groundwater data were analyzed by GSC, with the results from these analyses presented in the statistical analysis report included in **Appendix C**. Summaries of the statistical analysis are presented below for the annual reporting period.

4.2.1 January 2023 Semiannual Event

No confirmed SSI was observed for either Appendix III or Appendix I D&O constituents during the January 2023 sampling event.

4.2.2 August 2023 Semiannual Event

No confirmed SSI was observed for either Appendix III or Appendix I D&O constituents during the August 2023 sampling event.

Intrawell and interwell statistical analyses of the of the Appendix III constituents identified an exceedance of pH in well GWC-6 during the August 2023 sampling event. A verification sample was collected on November 7, 2023, in accordance with the 1-of-2 resampling plan. The result of the verification sample did not confirm the initial PL exceedance of pH at GWC-6. Consequently, no confirmed SSI was observed for this Appendix III constituent during the August 2023 sampling event.

5.0 MONITORING PROGRAM STATUS

Groundwater monitoring at the landfill is currently being conducted under a detection monitoring program pursuant to the federal CCR Rule § 257.94 and Georgia's Solid Waste Management Rule 391-3-4.14(21).

6.0 CONCLUSIONS AND FUTURE ACTIONS

This 2023 Annual Groundwater Monitoring and Corrective Action Report for Georgia Power's Plant Hammond Huffaker Road Landfill was prepared to fulfill the requirements of both the federal CCR Rule (§ 257.90(e)) and Georgia's Solid Waste Management Rules (391-3-4-.14). No SSIs were verified during the January and August 2023 groundwater monitoring events. Groundwater monitoring at the landfill will continue under a detection monitoring program pursuant to the federal CCR Rule § 257.94 and Georgia's Solid Waste Management Rule 391-3-4.14(21-23). The next routine semiannual assessment monitoring event is scheduled for January 2024.

7.0 REFERENCES

- Cressler, C.W., 1970. Geology and Ground-water Resources of Floyd and Polk Counties, Georgia. Atlanta: Geological Survey of Georgia. 1970.
- Environmental Resource Management, 2018. 2017 Annual Groundwater Monitoring and Corrective Action Report, Plant Hammond Huffaker Road Landfill, Permit No. 057-022D (LI). January, 2018.
- Freeze, R. Allan and Cherry, John A. 1979. *Groundwater*. Englewood Cliffs, Prentice-Hall, Inc. Print.
- GA EPD, 2017. CCR Rule Compliance: Minor Modification Request to Add Appendix III & IV Sample Parameters To The Groundwater Monitoring Plan (GWMP), Floyd County Georgia Power, Huffaker Road, Permit No. 057-022D(LI). Issued 9 August 2017 to Timothy Earl, Georgia Power Company.
- GA EPD, 2019. Minor Modification Groundwater Monitoring Plan Update Approval, Georgia Power Company Multiple Private Industry Soil Waste Disposal Facilities. Issued 20 August 2019 to Jalpa Patel, Georgia Power Company.
- Georgia Power, 2016. Plant Hammond Huffaker Road Coal Combustion By-Products Disposal Facility, Design and Operations Plan Minor Modification 9/16/2016, Georgia Power Company. September 2016.
- GSC, 2019. Plant Hammond Huffaker Road Landfill Background Data Screening & Recommended Statistical Methods. August 2019.
- Sanitas: Groundwater Statistical Software, v. 9.6.26 (2020). Sanitas Technologies[©], Boulder, CO.
- SCS, 2002. Plant Hammond Proposed Huffaker Road Coal Combustion By-Products Storage Facility Site Acceptability Report. Birmingham, Alabama: Earth Science and Environmental Engineering. December 2002.
- USEPA, 2009. Statistical Analysis of Groundwater Data at RCRA Facilities Unified Guidance. Office of Solid Waste Management Division, EPA. Washington, D.C. March 2009.
- USEPA, 2011. *Region IV Data Validation Standard Operating Procedures*. Science and Ecosystem Support Division. Region IV. Athens, GA. September 2011.

Geosyntec D

consultants

USEPA, 2017. *National Functional Guidelines for Inorganic Superfund Methods Data Review*. Office of Superfund Remediation and Technology Innovation. OLEM 9355.0-135 [EPA-540-R-2017-001]. Washington, DC. January 2017.

TABLES

Table 1

Monitoring Well Network Summary

Plant Hammond, Huffaker Road Landfill, Floyd County, Georgia

Well ID	Hydraulic Location	Installation Date	Northing (1)	Easting (1)	Top of Casing Elevation (2) (ft)	Top of Screen Elevation ⁽²⁾ (ft)	Bottom of Screen Elevation ⁽²⁾ (ft)	Well Depth (3) (ft BTOC)	Screen Interval Length (ft)
GWA-1	Upgradient	9/11/2001	1565643.81	1952067.94	701.96	672.96	662.96	39.30	10
GWA-2	Upgradient	2/5/2007	1565590.06	1952640.89	681.59	666.08	656.08	25.81	10
GWA-3	Upgradient	2/6/2007	1565520.24	1953199.93	659.24	648.45	638.45	21.09	10
GWA-4	Upgradient	2/6/2007	1565519.87	1953687.10	656.93	645.84	635.84	21.39	10
GWA-11	Upgradient	7/21/2006	1564946.55	1952008.03	682.36	656.76	646.76	35.90	10
GWC-5	Downgradient	2/7/2007	1565159.15	1953566.67	649.42	638.31	628.31	21.41	10
GWC-6	Downgradient	7/20/2006	1564397.56	1953919.86	656.35	624.07	614.07	42.58	10
GWC-7	Downgradient	7/19/2006	1564079.14	1953595.85	657.20	635.59 625.59		31.91	10
GWC-8	Downgradient	7/18/2006	1564000.62	1953095.72	656.64	639.81	629.81	27.13	10
GWC-9	Downgradient	7/18/2006	1563876.81	1952392.97	659.46	617.85	607.85	51.91	10
GWC-10	Downgradient	7/20/2006	1564308.39	1951975.66	667.58	643.90	633.90	33.98	10
GWC-18	Downgradient	7/12/2006	1563320.44	1953391.49	641.31	594.59	584.59	57.02	10
GWC-19	Downgradient	7/11/2006	1562843.12	1952979.72	642.89	595.91	585.91	57.51	10
GWC-20	Downgradient	7/17/2006	1562472.78	1952332.31	625.76	601.88	591.88	34.18	10
GWC-21	Downgradient	7/12/2006	1562099.56	1951612.93	618.33	610.65	600.65	18.23	10
GWC-22	Downgradient	7/13/2006	1562778.89	1951618.67	625.00	593.39	583.39	41.91	10
GWC-23	Downgradient	7/19/2006	1563558.66	1951604.97	654.84	615.41	605.41	49.73	10

Notes:

ft = feet

ft BTOC = feet below top of casing

- (1) Coordinates in North American Datum (NAD) 1983, State Plane, Georgia-West, feet. Survey completed by GEL Solutions obtained June 26, 2020.
- (2) Elevations referenced to the North American Vertical Datum of 1988 (NAVD88). Survey completed by GEL Solutions obtained June 26, 2020.
- (3) Total well depth accounts for sump if data provided on well construction logs.

Table 2
Groundwater Sampling Event Summary
Plant Hammond, Huffaker Road Landfill, Floyd County, Georgia

Well ID	Hydraulic Location	January 2023	August 2023	November 2023	Status of Monitoring Well
Purpose of S	Sampling Event:	Detection	Detection	Verification	
GWA-1	Upgradient	X	X		Detection
GWA-2	Upgradient	X	X		Detection
GWA-3	Upgradient	X	X		Detection
GWA-4	Upgradient	X	X		Detection
GWA-11	Upgradient	X	X		Detection
GWC-5	Downgradient	X	X		Detection
GWC-6	Downgradient	X	X	X	Detection
GWC-7	Downgradient	X	X		Detection
GWC-8	Downgradient	X	X		Detection
GWC-9	Downgradient	X	X		Detection
GWC-10	Downgradient	X	X		Detection
GWC-18	Downgradient	X	X		Detection
GWC-19	Downgradient	X	X		Detection
GWC-20	Downgradient	X	X		Detection
GWC-21	Downgradient	X	X		Detection
GWC-22	Downgradient	X	X		Detection
GWC-23	Downgradient	X	X		Detection

Table 3
Summary of Groundwater Elevations
Plant Hammond, Huffaker Road Landfill, Floyd County, Georgia

	Top of Casing	January	27, 2023	August	14, 2023
Well ID	Elevation (1) (ft)	Depth to Water (ft BTOC)	Groundwater Elevation ⁽¹⁾ (ft)	Depth to Water (ft BTOC)	Groundwater Elevation ⁽¹⁾ (ft)
GWA-1	701.96	10.40	691.56	15.22	686.74
GWA-2	681.59	5.56	676.03	6.31	675.28
GWA-3	659.24	3.91	655.33	4.6	654.64
GWA-4	656.93	8.60	648.33	11.35	645.58
GWA-11	682.36	15.64	666.72	17.35	665.01
GWC-5	649.42	4.78	644.64	5.03	644.39
GWC-6	656.35	15.19	641.16	16.86	639.49
GWC-7	657.20	14.06	643.14	16.52	640.68
GWC-8	656.64	10.36	646.28	13.14	643.50
GWC-9	659.46	12.82	646.64	15.99	643.47
GWC-10	667.58	12.22	655.36	17.28	650.30
GWC-18	641.31	12.75	628.56	14.03	627.28
GWC-19	642.89	18.16	624.73	21.28	621.61
GWC-20	625.76	3.08	622.68	4.83	620.93
GWC-21	618.33	3.90	614.43	6.43	611.90
GWC-22	625.00	1.19	623.81	3.57	621.43
GWC-23	654.84	7.35	647.49	13.90	640.94

Notes:

ft = feet

ft BTOC = feet below top of casing

(1) Elevations referenced to the North American Vertical Datum of 1988 (NAVD88). Survey completed by GEL Solutions obtained June 26, 2020.

Table 4 Horizontal Groundwater Gradient and Flow Velocity Calculations Plant Hammond, Huffaker Road Landfill, Floyd County, Georgia

1,450

Horizontal Hydraulic Gradient - January 27, 2023 Horizontal Hydraulic Gradient - August 14, 2023 \mathbf{h}_1 h_2 \mathbf{h}_1 h_2 \mathbf{L} L Average i **Landfill Parcels** (ft) (ft/ft) (ft) (ft/ft) (ft) (ft) (ft) (ft/ft) (ft) A & B (GWA-1 to GWC-7) 691.56 643.14 2,300 0.021 686.74 640.68 2,200 0.021 0.021

0.017

643.47

620.93

1,430

0.016

0.016

	Averaged for 2024			
Landfill Parcels	K _h (ft/day) n _e		i (ft/ft)	V (ft/day) ⁽¹⁾
A & B	0.248	0.20	0.021	0.026
E	0.248	0.20	0.016	0.020

646.64

622.68

Notes:

ft = feet

ft/day = feet per day

ft/ft = feet per foot

 h_1 and h_2 = groundwater elevation at location 1 and 2

E (GWC-9 to GWC-20)

 $i = h_1 - h_2/L = horizontal hydraulic gradient$

K_h = horizontal hydraulic conductivity

L = distance between location 1 and 2 along the flow path

 $n_e = effective porosity$

V = groundwater flow velocity

(1) Groundwater flow velocity equation: $V = [K_h * i] / n_e$

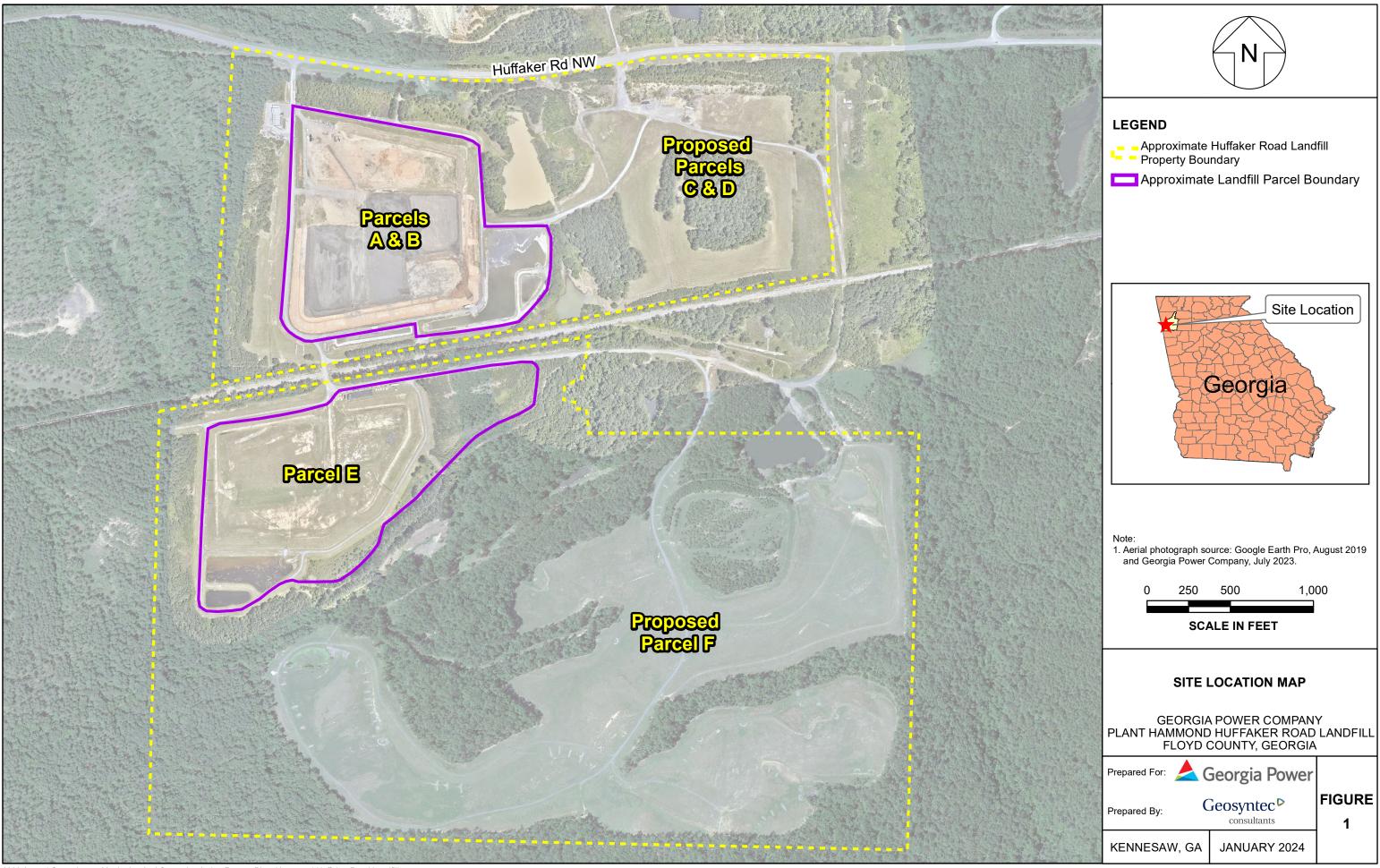
Table 5 Summary of Groundwater Analytical Data Plant Hammond, Huffaker Road Landfill, Floyd County, Georgia

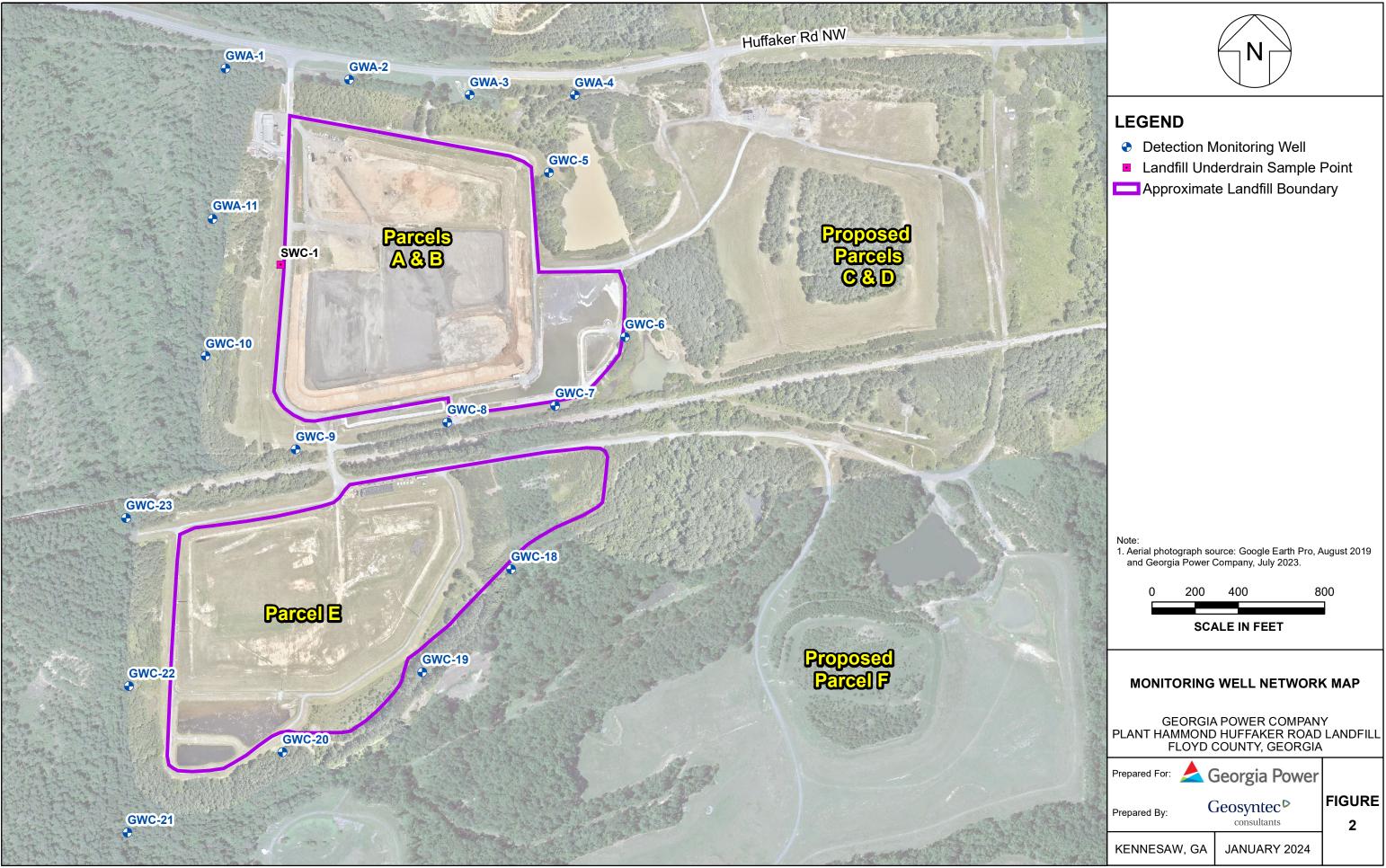
	W 11 IN	CWA 1	CWA 1	CWA 2	CWA 2	CWA 2	GWA-3	GWA-4	CWA 4	CWA 11	CWA 11	GWC-5	GWC-5	GWC-6	GWC-6	GWC-6	GWC-7	GWC-7
	Well ID:	GWA-1	GWA-1	GWA-2	GWA-2	GWA-3			GWA-4	GWA-11	GWA-11							
	Sample Date:	1/30/2023	8/14/2023	1/30/2023	8/14/2023	1/30/2023	8/14/2023	1/30/2023	8/14/2023	1/30/2023	8/14/2023	1/31/2023	8/15/2023	1/31/2023	8/14/2023	11/7/2023	1/31/2023	8/15/2023
	Parameter (1,2)																	
	Antimony	< 0.00078	0.0028 J	< 0.00078	< 0.0012	< 0.00078	< 0.0012	< 0.00078	< 0.0012	< 0.00078	< 0.0012	< 0.00078	< 0.0012	< 0.00078	< 0.0012		< 0.00078	< 0.0012
	Arsenic	< 0.0022	< 0.0037	< 0.0022	< 0.0037	< 0.0022	< 0.0037	< 0.0022	< 0.0037	< 0.0011	< 0.0037	< 0.0011	< 0.0037	< 0.0011	< 0.0037		0.0028 J	0.0077 J
	Barium	0.037	0.039	0.20	0.19	0.070	0.087	0.037	0.045	0.030	0.028	0.064	0.072	0.15	0.15		0.047	0.041
	Beryllium	< 0.000054	< 0.000054	< 0.000054	< 0.000054	< 0.000054	< 0.000054	< 0.000054	< 0.000054	< 0.000054	< 0.000054	< 0.000054	< 0.000054	< 0.000054	< 0.000054		0.00021 J	0.00027 J
	Cadmium	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011		< 0.00011	< 0.00011
-	Chromium	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011		< 0.0011	< 0.0011
AN	Cobalt	0.0005 J	0.00043 J	< 0.00039	< 0.00039	< 0.00039	0.00095 J	< 0.00039	< 0.00039	0.00043 J	0.00045 J	< 0.00039	0.00046 J	< 0.00039	< 0.00039		0.031	0.021
PL.	Copper	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.00050	< 0.0010	< 0.00050	< 0.0010	< 0.00050	< 0.0010		< 0.00050	< 0.0010
D&O	Lead	< 0.00089	< 0.00012	< 0.00089	< 0.00012	< 0.00089	< 0.00012	< 0.00089	< 0.00012	< 0.00089	< 0.00012	< 0.00089	< 0.00012	< 0.00089	< 0.00012		< 0.00089	< 0.00012
D	Nickel	< 0.00071	< 0.00071	< 0.00071	< 0.00071	0.00082 J	0.0021 J	< 0.00071	< 0.00071	0.0017 J	0.0016 J	< 0.00071	< 0.00071	< 0.00071	< 0.00071		0.11	0.095
	Selenium	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014		< 0.0014	< 0.0014
	Silver	< 0.00044	< 0.00044	< 0.00044	< 0.00044	< 0.00044	< 0.00044	< 0.00044	< 0.00044	< 0.00044	< 0.00044	< 0.00044	< 0.00044	< 0.00044	< 0.00044		< 0.00044	< 0.00044
	Thallium	0.00022 J	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018		< 0.00018	< 0.00018
	Vanadium	0.0022 J	< 0.0025	< 0.0019	< 0.0025	< 0.0019	< 0.0025	< 0.0019	< 0.0025	< 0.0019	< 0.0025	< 0.0019	< 0.0025	< 0.0019	< 0.0025		< 0.0019	< 0.0025
	Zinc	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070		0.19	0.20
	Boron	0.026 J	0.049	0.09	0.097	0.09	0.15	0.06	0.082	0.038 J	0.038 J	0.043	0.060	0.037 J	0.039 J		0.025 J	0.030 J
Η	Calcium	15.8	17.2	46.8	53.1	53.1	57.2	73.6	73.5	20.4	21.8	75.5	75.8	62.5	69.1		19.0	18.4
	Chloride	1.1	0.99 J	2.2	2.2	1.2	1.3	3.4	2.5	1.2	1.0	2.1	2.1	1.7	1.6		1.7	1.7
Ę.	Fluoride	0.11	0.076 J	0.11	0.080 J	0.12	0.089 J	0.12	0.11	0.09 J	0.066 J	0.074 J	0.052 J	0.098 J	0.054 J		0.26	0.13
APPENDIX	pH ⁽³⁾	7.22	7.22	7.05	6.91	6.82	6.54	6.94	6.74	7.00	6.99	5.96	6.85	7.24	7.68	7.15	5.85	5.94
AP	Sulfate	3.8	3.9	19.8	23.4	78.4	72.3	156	122	9.5	8.9	90.6	77.2	95.7	99.5		118	122
	TDS	94.0	98.0	263	266	367	341	459	429	130	107	385	428	335	368		223	267
	Bicarbonate Alkalinity		78.0		237		221		190		86.5		258		160			44.1
M.	Iron		1.1		2.1		0.96		< 0.025		2.0		1.7		2.9			39.4
GEOCHEM	Magnesium		6.4		20.5		25.6		29.4		6.6		23.8		17.5			13.0
)	Manganese		0.17		0.19		0.57		0.055	-	0.088		0.24		0.074		-	1.1
E	Potassium		0.40 J 4.0		0.61		0.82 21.7		2.3 9.7		0.34 J 8.0		0.75 15.1		0.42 J 11.6			6.0
9	Sodium Sulfide		<0.022		<0.022		<0.022		<0.022		<0.022		<0.022		<0.022			<0.022
	Sumue		<u>\0.022</u>		<u>\0.022</u>		<u>\0.022</u>		<u></u> \0.0∠∠		<u>\0.022</u>	-	\0.02Z	-	<u></u> \0.0∠∠			<u></u> \0.0∠∠

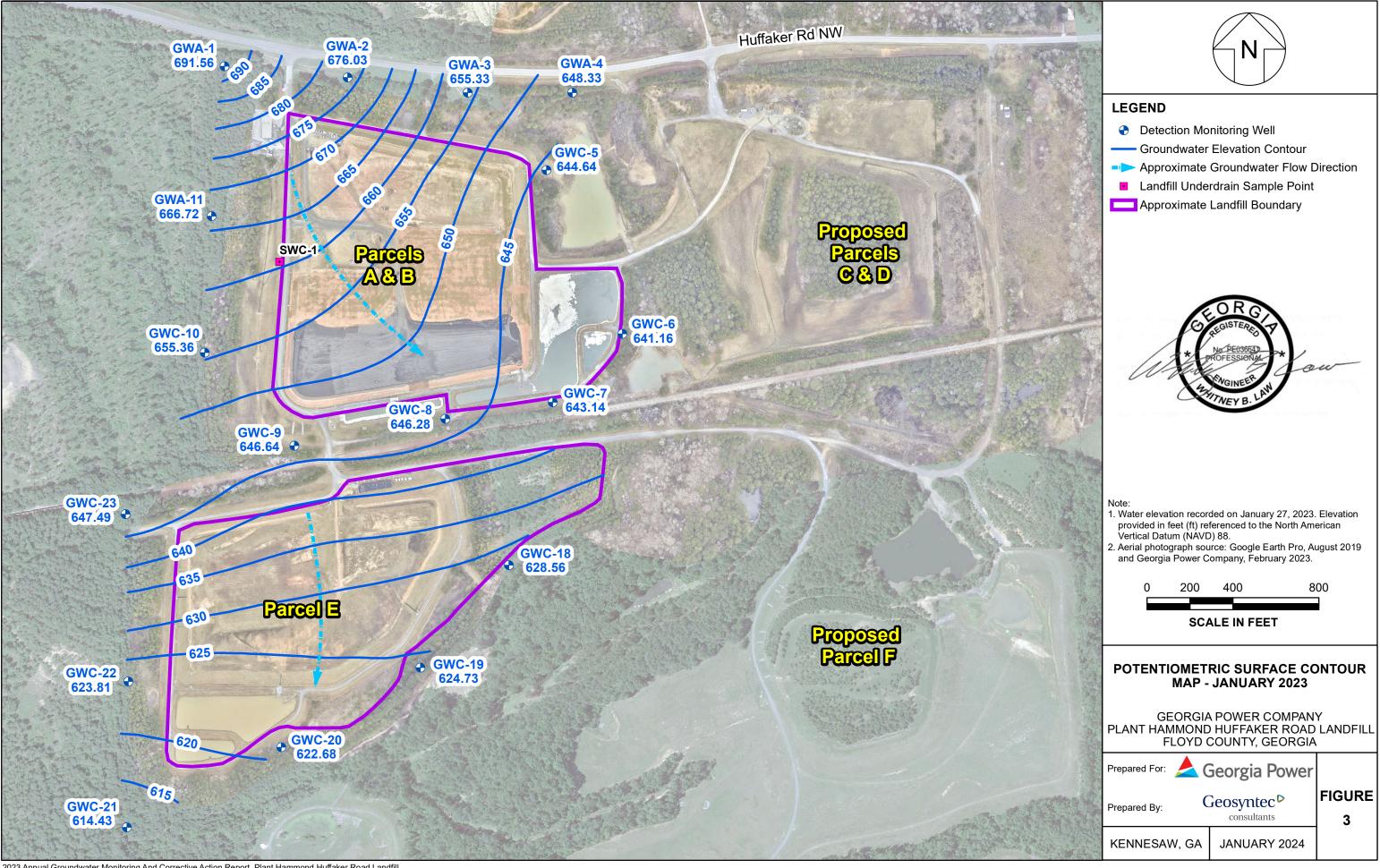
- Notes:
 --- = Parameter was not analyzed.
 --- = Indicates the parameter was not detected above the analytical method detection limit.

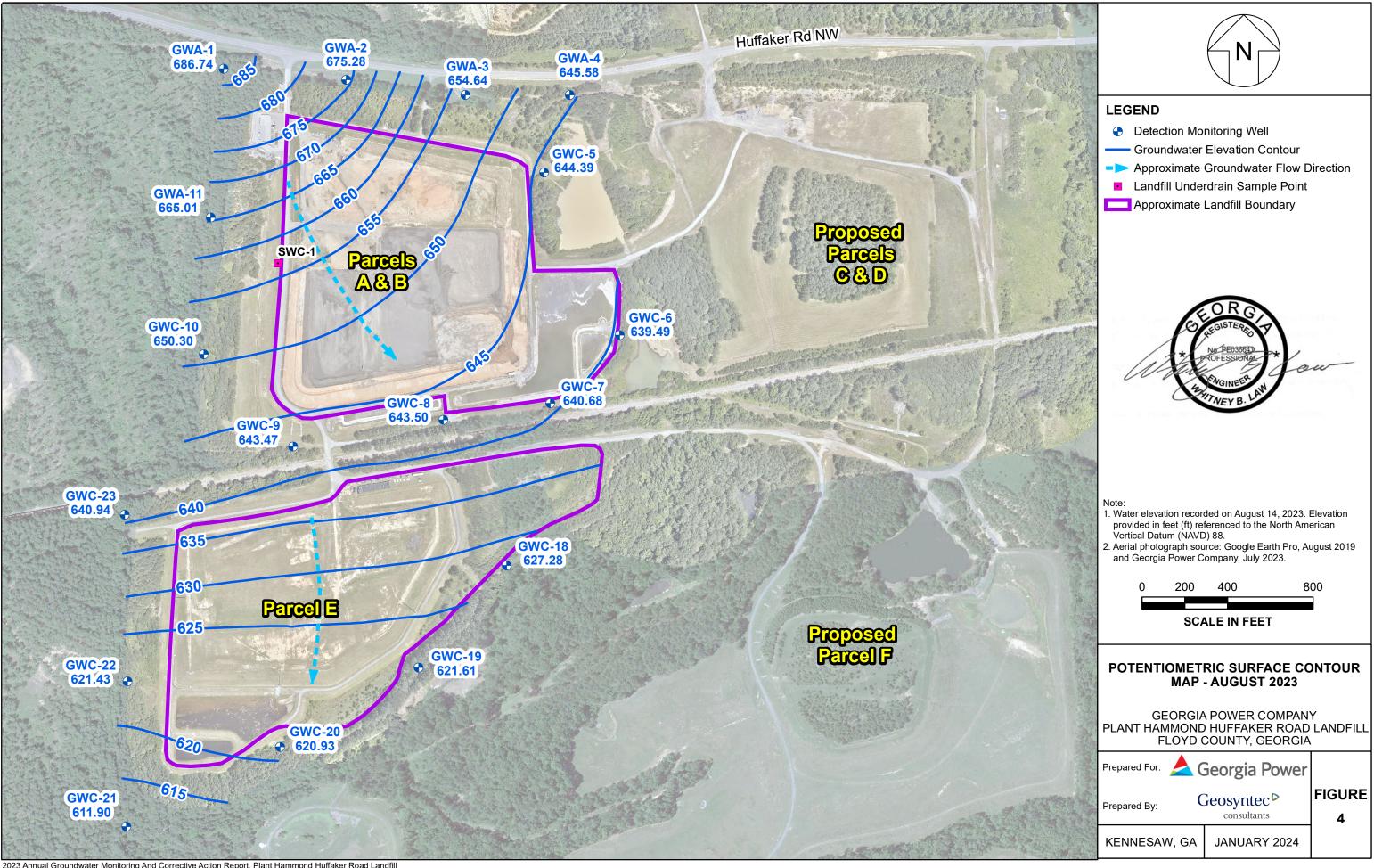
 J = Indicates the parameter was estimated and detected between the MDL and the reporting limit (RL).

 TDS = Total dissolved solids
 (1) Parameters are reported in units of milligrams per liter (mg/L), except for pH reported as s.u. (standard units).
 (2) Metals were analyzed by EPA Method 6010D and 6020B, anions were analyzed by EPA Method 300.0, TDS was analyzed by SM2540C, and sulfide was analyzed by SM4500-S2D.
 (3) The pH value presented was recorded at the time of sample collection in the field.


Table 5
Summary of Groundwater Analytical Data
Plant Hammond, Huffaker Road Landfill, Floyd County, Georgia


		GIVE A	GTT:G 0	GIVE 0	CIVIC A	Green to	GTT:G 10	GWG 40	GWG 40	G771G 40	GIVIG 40	GIVE AS	GWG 40	arra M	GWG M	GWG AA	CITICI AA	GIVIG AA	Gwe an
	Well ID:	GWC-8	GWC-8	GWC-9	GWC-9	GWC-10	GWC-10	GWC-18	GWC-18	GWC-19	GWC-19	GWC-20	GWC-20	GWC-21	GWC-21	GWC-22	GWC-22	GWC-23	GWC-23
	Sample Date:	1/31/2023	8/15/2023	1/31/2023	8/15/2023	1/30/2023	8/14/2023	1/31/2023	8/15/2023	1/31/2023	8/15/2023	1/31/2023	8/15/2023	1/31/2023	8/15/2023	1/31/2023	8/15/2023	1/31/2023	8/14/2023
	Parameter (1,2)																		
	Antimony	< 0.00078	< 0.0012	< 0.00078	< 0.0012	< 0.00078	< 0.0012	< 0.00078	0.0028 J	< 0.00078	< 0.0012	< 0.00078	< 0.0012	< 0.00078	< 0.0012	< 0.00078	< 0.0012	< 0.00078	< 0.0012
	Arsenic	0.0015 J	< 0.0037	< 0.0011	< 0.0037	< 0.0011	< 0.0037	< 0.0011	< 0.0037	< 0.0011	< 0.0037	< 0.0011	< 0.0037	< 0.0011	< 0.0037	< 0.0011	< 0.0037	< 0.0011	< 0.0037
	Barium	0.12	0.12	0.064	0.064	0.17	0.12	0.077	0.077	0.15	0.15	0.14	0.16	0.033	0.058	0.090	0.092	0.11	0.071
	Beryllium	< 0.000054	< 0.000054	< 0.000054	< 0.000054	< 0.000054	< 0.000054	< 0.000054	< 0.000054	< 0.000054	< 0.000054	< 0.000054	< 0.000054	< 0.000054	< 0.000054	< 0.000054	< 0.000054	< 0.000054	< 0.000054
	Cadmium	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011
7	Chromium	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	0.0015 J	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011
AN	Cobalt	0.00055 J	0.00077 J	< 0.00039	< 0.00039	< 0.00039	< 0.00039	< 0.00039	< 0.00039	< 0.00039	< 0.00039	< 0.00039	< 0.00039	0.002 J	0.0032 J	< 0.00039	< 0.00039	< 0.00039	< 0.00039
) PL	Copper	< 0.00050	< 0.0010	< 0.00050	< 0.0010	< 0.00050	< 0.0010	< 0.00050	< 0.0010	< 0.00050	< 0.0010	< 0.00050	< 0.0010	0.0012 J	< 0.0010	< 0.00050	< 0.00100	0.00088 J	< 0.00100
D&O	Lead	< 0.00089	< 0.00012	< 0.00089	< 0.00012	< 0.00089	< 0.00012	< 0.00089	< 0.00012	< 0.00089	< 0.00012	< 0.00089	< 0.00012	< 0.00089	< 0.00012	< 0.00089	< 0.00012	< 0.00089	< 0.00012
D	Nickel	< 0.00071	< 0.00071	0.002 J	0.0017 J	< 0.00071	< 0.00071	0.00078 J	< 0.00071	< 0.00071	< 0.00071	< 0.00071	< 0.00071	0.005 J	0.0054	< 0.00071	< 0.00071	< 0.00072	< 0.00071
	Selenium	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014
	Silver	< 0.00044	< 0.00044	< 0.00044	< 0.00044	< 0.00044	< 0.00044	< 0.00044	< 0.00044	< 0.00044	< 0.00044	< 0.00044	< 0.00044	< 0.00044	< 0.00044	< 0.00044	< 0.00044	< 0.00044	< 0.00044
	Thallium	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018
	Vanadium	< 0.0019	< 0.0025	< 0.0019	< 0.0025	< 0.0019	< 0.0025	< 0.0019	< 0.0025	< 0.0019	< 0.0025	< 0.0019	< 0.0025	< 0.0019	< 0.0025	< 0.0019	< 0.0025	< 0.0019	< 0.0025
	Zinc	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070
	Boron	0.029 J	0.031 J	0.012 J	0.022 J	0.038 J	0.032 J	0.12	0.14	0.13	0.16	0.015 J	0.019 J	0.013 J	0.030 J	0.052	0.068	0.06	0.019 J
H	Calcium	69.2	70.5	34.1	37.6	43.7	39.8	40.4	41.0	42.5	44.6	62.0	63.5	16.2	31.5	43.8	47.3	58.3	40.7
	Chloride	1.6	1.6	0.72 J	0.65 J	1.3	1.0	0.8 J	0.85 J	1.2	1.1	1.1	1.1	1.5	5.3	1.0	0.95 J	< 0.60	1.1
APPENDIX	Fluoride	0.18	0.13	0.11	0.060 J	0.096 J	0.077 J	0.15	0.10	0.14	0.092 J	0.094 J	0.055 J	0.062 J	< 0.050	0.095 J	0.065 J	0.11	0.075 J
PE	pH ⁽³⁾	7.09	7.34	6.74	7.09	7.6	7.48	7.56	7.63	7.65	7.61	7.44	7.54	6.23	6.17	7.67	7.68	7.03	7.21
AF	Sulfate	31.30	28.1	70.0	63.9	11.5	9.0	8.4	7.7	22.8	19.1	69.8	67.1	12.4	18.9	8.8	5.6	19.5	4.6
	TDS	284	280	216	246	190	162	284	193	239	227	329	291	76.0	152	221	212	243	163
	Bicarbonate Alkalinity	-	232		93.9		150		187		199		163		97.8		191		153
EΜ	Iron		0.51		5.8		1.4		0.030 J		0.12		2.6		3.7		0.97		3.0
GEOCHE	Magnesium		12.1		13.8		8.9		13.5		11.9		13.1		6.2		11.1		9.5
00	Manganese Potassium		0.37		0.15 0.26 J		0.070		0.019 J 0.44 J		0.053 0.28 J		0.12 0.29 J		0.76 0.48 J		0.090 0.26 J		0.051
Ä	Sodium		11.0		7.2		7.0		11.5		22.6		4.9		4.0		11.5		5.2
	Sulfide		<0.022		<0.022		<0.022		<0.022		<0.022		<0.022		<0.022		<0.022		<0.022


2 of 2 January 2024



FIGURES

APPENDIX A

Well Maintenance and Repair Documentation Memoranda

January 2023

MEMORANDUM

DATE: June 22, 2023

TO: Kristen Jurinko, P.G., Southern Company Services, Inc.

CC: Ben Hodges, P.G. Georgia Power Company

FROM: Geosyntec Consultants

SUBJECT: Plant Hammond Huffaker Road Landfill - Well Maintenance and Repair

Documentation, Georgia Power Company

Geosyntec Consultants has prepared this memorandum to provide documentation of groundwater monitoring well maintenance and/or repair performed at the Plant Hammond Huffaker Road Landfill during the 2023 semiannual reporting period. All repairs and maintenance were completed in accordance with the Georgia Environmental Protection Division (GA EPD) guidance on routine visual inspections of groundwater monitoring wells. Documentation of the well inspections are provided as an attachment to this memorandum.

Georgia Power Site/Unit	Date Performed	Well ID	Maintenance/ Repair Performed
Hammond/Huffaker	1/27/2023	All Wells	Checked and cleared weep holes of debris.

ATTACHMENT

Field T	Jame/Unit Name Munt Hammons Huffesh and June Municipal Manual Man		mm/dd/yyyy <u>)</u> Conditions	81/7 Samon	71.7083
Well ID	- GwA-1			,	
J		Yes	No		Comments
	ation/Identification				
а	Is the well visible and accessible?				
b	Is the well properly identified with the correct well ID?	-	0/ -		
C	Is the well in a high traffic area?	150	y		
d	Are appropriate measures in place to protect the well (e.g., bollards)? Is the drainage around the well acceptable? (no standing water, nor				
е	is well located in obvious drainage flow path)	_			
2 Prof	tective Casing				
а	Is the protective casing free from apparent damage and able to be				
-	secured?				
b	Is the casing free of degradation or deterioration?				
c	Does the casing have a functioning weep hole?				
d	Is the annular space between casings clear of debris and water, or				
_	filled with pea gravel/sand?				
е	Is the well locked?	<u> </u>			
f	If locked, is the well lock in good condition?				
g	Is the well lid in good condition?				
9	to the work he in good contactor.	-			
3 Surf	face Pad				
а	Is the well pad in good condition (not cracked or broken)?	_			
b	Is the well pad sloped away from the protective casing?	_			
С	Is the well pad in complete contact with the protective casing?				
d	Is the well pad in complete contact with the ground surface and				
	stable (not undermined by erosion, animal burrows, and does not				
	move when stepped on)?				
е	Is the pad surface clean (not covered with sediment or debris)?		= $=$		
4 Inte	rnal Casing				
a	Does the cap prevent entry of foreign material into the well?				
b	Is the casing free of kinks or bends, or any obstructions from foreign	-			
-	objects (such as bailers)?				
С	Is the well properly vented for equilibration of air pressure?	1			
ď	Is the survey point clearly marked on the inner casing?	-			
e	Is the depth of the well consistent with the original well log?				
f	Is the casing stable? (or does the pvc move easily when touched or	_			
•	can it be taken apart by hand due to lack of grout or use of slip				
	couplings in construction)	_	- 1		
		_			
5 San	npling and Data Collection Equipment				
а	Indicate if the well is equipped with dedicated sampling equipment,				
	a dedicated water quality sonde, and/or dedicated water level			11	
	data logger.		U	14	
b	If equipped with dedicated sampling equipment, is it in good operational condition?			W/2	4
С	If equipped with a dedicated water quality sonde, is it in good operational condition?			with	
d	Does the desiccant need to be replaced on the water quality sonde?	_		111	
e	If equipped with a water level data logger, is it in good operational			10/0	
C	condition?			//	
£		-		NH	
f g	Does the well recharge adequately when purged? Does the well require redevelopment (low flow, excess turbidity)?				
_		-	Ballin		
	rective Actions	T	1000		
a Is	Are corrective actions needed?	-4			
If ye	s, indicate here:				
_					

	Name/Unit Name Plant Hammone Huffel		mm/dd/yyyy	
Well II	Dechnician thomas flogs for I	rieid	Conditions	Screening, 400
		Yes	No	Comments
	eation/Identification		-	
а	Is the well visible and accessible?			
b	Is the well properly identified with the correct well ID?	1 ***		
C	Is the well in a high traffic area?	- Pe		
d	Are appropriate measures in place to protect the well (e.g., bollards)?	_		
е	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)			
2 Pro	tective Casing			
а	Is the protective casing free from apparent damage and able to be			
	secured?			
b	Is the casing free of degradation or deterioration?			
С	Does the casing have a functioning weep hole?			
d	Is the annular space between casings clear of debris and water, or			
	filled with pea gravel/sand?			
е	Is the well locked?			
f	If locked, is the well lock in good condition?	-		
g	Is the well lid in good condition?	-		
9	is the maining my good contained.			
3 Sur	face Pad			
а	Is the well pad in good condition (not cracked or broken)?	-		
b	Is the well pad sloped away from the protective casing?	-		
С	Is the well pad in complete contact with the protective casing?			
d	Is the well pad in complete contact with the ground surface and			
	stable (not undermined by erosion, animal burrows, and does not			
	move when stepped on)?			
е	Is the pad surface clean (not covered with sediment or debris)?		= :	
4 Inte	rnal Casing			
a	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from foreign			
	objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?	-		
d	Is the survey point clearly marked on the inner casing?	-		
e	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched or			
•	can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	-		
		-		
5 <u>Sar</u>	npling and Data Collection Equipment			
а	Indicate if the well is equipped with dedicated sampling equipment,			
	a dedicated water quality sonde, and/or dedicated water level			111
	data logger.			MIS
b	If equipped with dedicated sampling equipment, is it in good			411.1
	operational condition?			NIA
С	If equipped with a dedicated water quality sonde, is it in good operational condition?			WH
d	Does the desiccant need to be replaced on the water quality sonde?			Mila
е	If equipped with a water level data logger, is it in good operational condition?			w/1_
f	Does the well recharge adequately when purged?	1/		
g	Does the well require redevelopment (low flow, excess turbidity)?			
6 Cor	rective Actions			
a <u>ooi</u>	Are corrective actions needed?			
	es, indicate here:	_		
,				
-				

Plant Name/Unit Name Man Minn Minn Muffelow		Pate (mm/dd/yyyy) 61/7//663 Field Conditions Surry 400			
		Yes	No	Comments	
1 Loca	ation/Identification				
а	Is the well visible and accessible?				
b	Is the well properly identified with the correct well ID?				
С	Is the well in a high traffic area?	1119	/		
d	Are appropriate measures in place to protect the well (e.g., bollards)?	1		*	
е	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)				
	ective Casing				
а	Is the protective casing free from apparent damage and able to be secured?				
b	Is the casing free of degradation or deterioration?				
С	Does the casing have a functioning weep hole?			<u> </u>	
d	Is the annular space between casings clear of debris and water, or				
	filled with pea gravel/sand?				
е	Is the well locked?):		
Ť	If locked, is the well lock in good condition?	_	-		
g	Is the well lid in good condition?				
3 Surfa	ace Pad				
а	Is the well pad in good condition (not cracked or broken)?				
b	Is the well pad sloped away from the protective casing?				
С	Is the well pad in complete contact with the protective casing?			7	
d	Is the well pad in complete contact with the ground surface and				
	stable (not undermined by erosion, animal burrows, and does not				
	move when stepped on)?			:(-	
е	Is the pad surface clean (not covered with sediment or debris)?		_	3=	
4 Inter	nal Casing				
а	Does the cap prevent entry of foreign material into the well?			Y	
b	Is the casing free of kinks or bends, or any obstructions from foreign				
	objects (such as bailers)?				
C	Is the well properly vented for equilibration of air pressure?			(6	
d	Is the survey point clearly marked on the inner casing?			8	
e	Is the depth of the well consistent with the original well log?	-		0	
f	Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip				
	couplings in construction)	_			
				0	
55	pling and Data Collection Equipment				
а	Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level				
	data logger.			11/1	
b	If equipped with dedicated sampling equipment, is it in good			V C/ W	
2	operational condition?			WH	
С	If equipped with a dedicated water quality sonde, is it in good operational condition?			WIA	
d	Does the desiccant need to be replaced on the water quality sonde?			-11	
е	If equipped with a water level data logger, is it in good operational condition?			wit	
f	Does the well recharge adequately when purged?				
g	Does the well require redevelopment (low flow, excess turbidity)?				
6 Corre	ective Actions				
а	Are corrective actions needed?				
If yes	s, indicate here:		72		
-					

Plant N Field To Well ID	echnician August Augusta Augu	Date (mm/dd/yyyy) Field Conditions	01/27/2023 SUNYY 40
VVCII ID	(70 G-4)		
1 <u>Loca</u> a b	ation/Identification Is the well visible and accessible? Is the well properly identified with the correct well ID?	Yes No	Comments
С	Is the well in a high traffic area?	-KV	
d	Are appropriate measures in place to protect the well (e.g., bollards)?		
е	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)		
2 Prot	ective Casing		
a	Is the protective casing free from apparent damage and able to be secured?		
b C	Is the casing free of degradation or deterioration? Does the casing have a functioning weep hole?	-	
d	Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?		
е	Is the well locked?		
f	If locked, is the well lock in good condition?		
g	Is the well lid in good condition?	-	
3 <u>Surf</u> a	ace Pad Is the well pad in good condition (not cracked or broken)?		
b	Is the well pad sloped away from the protective casing?		
c d	Is the well pad in complete contact with the protective casing? Is the well pad in complete contact with the ground surface and		
u	stable (not undermined by erosion, animal burrows, and does not move when stepped on)?		
е	Is the pad surface clean (not covered with sediment or debris)?		
4 Intor	nal Casing		
a IIIICI	Does the cap prevent entry of foreign material into the well?	SE	
b	Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?		
С	Is the well properly vented for equilibration of air pressure?		
d	Is the survey point clearly marked on the inner casing?		
e f	Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched or	\leq – –	
ī	can it be taken apart by hand due to lack of grout or use of slip couplings in construction)		
5 Sam	pling and Data Collection Equipment		
а	Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger.		12/1
b	If equipped with dedicated sampling equipment, is it in good operational condition?	<i>t</i>	Whit
С	If equipped with a dedicated water quality sonde, is it in good operational condition?		ept
d	Does the desiccant need to be replaced on the water quality sonde?		wist
е	If equipped with a water level data logger, is it in good operational condition?		N14
f g	Does the well recharge adequately when purged? Does the well require redevelopment (low flow, excess turbidity)?		Car
6 Corr	ective Actions		
а	Are corrective actions needed?		
If yes	s, indicate here:		
1.			

Plant Name/Unit Name Plant Hammong Huffelu Field Technician Well ID Color of the Solo of th	Date (mm/dd/yyyy)Field Conditions	01/27/2023 summy 40°
1 Location/Identification a Is the well visible and accessible? b Is the well properly identified with the correct well ID? c Is the well in a high traffic area? d Are appropriate measures in place to protect the well (e.g., bollards)? e Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)		Comments
2 Protective Casing a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? e Is the well locked? f If locked, is the well lock in good condition? g Is the well lid in good condition? 3 Surface Pad		
a Is the well pad in good condition (not cracked or broken)? b Is the well pad sloped away from the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)?		
4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)		
5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. b If equipped with dedicated sampling equipment, is it in good		U/A
operational condition? C If equipped with a dedicated water quality sonde, is it in good operational condition? Does the desiccant need to be replaced on the water quality sonde? If equipped with a water level data logger, is it in good operational condition? Does the well recharge adequately when purged? Does the well require redevelopment (low flow, excess turbidity)?		W/A W/A W/A
a Are corrective actions needed? If yes, indicate here:		

Plant Name/Unit Name Field Technician Well ID Plant Manue/Unit Name Plant Manue/Unit Na	Date (mm/dd/yyyy) 0 1/27/2043 Field Conditions43°
Location/Identification a Is the well visible and accessible? b Is the well properly identified with the correct well If c Is the well in a high traffic area? d Are appropriate measures in place to protect the well is the drainage around the well acceptable? (no statis well located in obvious drainage flow path)	Il (e.g., bollards)?
2 Protective Casing a Is the protective casing free from apparent damage secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debi filled with pea gravel/sand? e Is the well locked? f If locked, is the well lock in good condition? g Is the well lid in good condition?	<u> </u>
a Is the well pad in good condition (not cracked or bribble Is the well pad sloped away from the protective case Is the well pad in complete contact with the protect Is the well pad in complete contact with the ground stable (not undermined by erosion, animal burrows move when stepped on)? e Is the pad surface clean (not covered with sediments)	ng? e casing? urface and and does not
4 Internal Casing a Does the cap prevent entry of foreign material into b Is the casing free of kinks or bends, or any obstruct objects (such as bailers)? c Is the well properly vented for equilibration of air pred d Is the survey point clearly marked on the inner casi e Is the depth of the well consistent with the original of f Is the casing stable? (or does the pvc move easily can it be taken apart by hand due to lack of grout of couplings in construction)	se well? ons from foreign ssure? g? ell log? when touched or
5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sam a dedicated water quality sonde, and/or dedicate data logger.	d water level
 b If equipped with dedicated sampling equipment, is operational condition? c If equipped with a dedicated water quality sonde, is operational condition? d Does the desiccant need to be replaced on the water level data logger, is it in go condition? f Does the well recharge adequately when purged? g Does the well require redevelopment (low flow, exception) 	t in good r quality sonde? d operational
6 Corrective Actions a Are corrective actions needed? If yes, indicate here:	

Plant Name/Unit Name Field Technician Well ID Plant Hammon (Huffelin William Hammon) Plant Hammon (Huffelin William Hammon)	Date (mm/dd/yyyy) Col 17917678 Field Conditions Sunny, 45	
 1 Location/Identification a Is the well visible and accessible? b Is the well properly identified with the correct well ID? c Is the well in a high traffic area? d Are appropriate measures in place to protect the well (e.g., bollards)? e Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path) 	Yes No Comments	
2 Protective Casing a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? e Is the well locked? f If locked, is the well lock in good condition? g Is the well lid in good condition?		
a Is the well pad in good condition (not cracked or broken)? b Is the well pad sloped away from the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)?		
4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)		
 5 Sampling and Data Collection Equipment Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. If equipped with dedicated sampling equipment, is it in good operational condition? C If equipped with a dedicated water quality sonde, is it in good operational condition? Does the desiccant need to be replaced on the water quality sonde? If equipped with a water level data logger, is it in good operational condition? Does the well recharge adequately when purged? Does the well require redevelopment (low flow, excess turbidity)? 		
6 Corrective Actions a Are corrective actions needed? If yes, indicate here:		

	Name/Unit Name Technician D Technician	Date (mm/dd/yyyy)_ Field Conditions	01/27/2023 sumy 450
vveii ii	<u> </u>		
		Yes No	Comments
	cation/Identification		
a	Is the well visible and accessible?		
b	Is the well properly identified with the correct well ID?		
c d	Is the well in a high traffic area? Are appropriate measures in place to protect the well (e.g., bollards)?	Agus -	
e	Is the drainage around the well acceptable? (no standing water, nor		
Ū	is well located in obvious drainage flow path)		
2 Pro	otective Casing		
а	Is the protective casing free from apparent damage and able to be		
	secured?		
b	Is the casing free of degradation or deterioration?		
С	Does the casing have a functioning weep hole?		
d	Is the annular space between casings clear of debris and water, or		
	filled with pea gravel/sand?		
e	Is the well locked?		
f	If locked, is the well lock in good condition?		
g	Is the well lid in good condition?	<u> </u>	
3 <u>Sur</u>	face Pad		
а	Is the well pad in good condition (not cracked or broken)?		
b	Is the well pad sloped away from the protective casing?		
c d	Is the well pad in complete contact with the protective casing?		
ū	Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not		
	move when stepped on)?		
е	Is the pad surface clean (not covered with sediment or debris)?		
	ernal Casing Does the cap prevent entry of foreign material into the well?		
a b	Is the casing free of kinks or bends, or any obstructions from foreign		
· ·	objects (such as bailers)?		
С	Is the well properly vented for equilibration of air pressure?		
d	Is the survey point clearly marked on the inner casing?		
е	Is the depth of the well consistent with the original well log?		
f	Is the casing stable? (or does the pvc move easily when touched or		
	can it be taken apart by hand due to lack of grout or use of slip		
	couplings in construction)		
5 Sar	npling and Data Collection Equipment		
а	Indicate if the well is equipped with dedicated sampling equipment,		
	a dedicated water quality sonde, and/or dedicated water level		VIA
L	data logger.	<i>\times_\t</i>	79
b	If equipped with dedicated sampling equipment, is it in good operational condition?		Wid
С	If equipped with a dedicated water quality sonde, is it in good		111
	operational condition?		114
d	Does the desiccant need to be replaced on the water quality sonde?		WA
е	If equipped with a water level data logger, is it in good operational condition?		N/4
f g	Does the well recharge adequately when purged? Does the well require redevelopment (low flow, excess turbidity)?		
6 Cor	rective Actions		
a <u>Cor</u>	Are corrective actions needed?		
_	es, indicate here:		
-			

Plant Name/Unit Name Field Technician Well ID Field Technician Well ID		Pield Conditions Bunny 45°			
vveii iD	_	GWC-8			
1 000	tion/Identification		Yes	No	Comments
a Loca	tion/Identification Is the well visible	and accessible?			
b		y identified with the correct well ID?	_		
c	Is the well in a hig				
d		easures in place to protect the well (e.g., bollards)?			
е	Is the drainage are	ound the well acceptable? (no standing water, nor bylous drainage flow path)			
0.0		· , ,	_		
	ective Casing	anima from from annount demands and able to be			
а	secured?	asing free from apparent damage and able to be			
b		of degradation or deterioration?			
С		ave a functioning weep hole?	_		
d		ce between casings clear of debris and water, or	-		
u	filled with pea grav				
е	Is the well locked?		-		
f		ell lock in good condition?	_		
	Is the well lid in go				
g			-		
3 Surfa	ice Pad				
а		good condition (not cracked or broken)?			
b		ped away from the protective casing?			
С		complete contact with the protective casing?			
ď		complete contact with the ground surface and			
		nined by erosion, animal burrows, and does not			
	move when steppe	•			
е	Is the pad surface	clean (not covered with sediment or debris)?			
4 Intern	nal Casing				
a		ent entry of foreign material into the well?			
b		of kinks or bends, or any obstructions from foreign	-		
~	objects (such as b		-		
С		y vented for equilibration of air pressure?			
ď		clearly marked on the inner casing?			
e		well consistent with the original well log?			
f		e? (or does the pvc move easily when touched or			
		art by hand due to lack of grout or use of slip			
	couplings in const				
-		CANAL STREET, NO.			
-	pling and Data Coll				
а		is equipped with dedicated sampling equipment,			
		r quality sonde, and/or dedicated water level			1111
	data logger.		_		00/4
ь		edicated sampling equipment, is it in good			111
	operational condit				N/ut
С	If equipped with a operational condit	dedicated water quality sonde, is it in good on?			~e/14
d	Does the desiccar	it need to be replaced on the water quality sonde?			Wif
е	If equipped with a condition?	water level data logger, is it in good operational			111
f	Does the well rech	arge adequately when purged?			
g		ire redevelopment (low flow, excess turbidity)?			
6 Corre	ective Actions				
a	Are corrective acti	ons needed?		-	
-	s, indicate here:				
, 50					

Plant Name/Unit Name Field Technician Well ID Plant Flummond Fluffely - Plant Name/Unit Name Plant Name Pl	Date (mm/dd/yyyy) 01/77/7073 Field Conditions Survey 45
1 Location/Identification a Is the well visible and accessible? b Is the well properly identified with the correct well ID? c Is the well in a high traffic area? d Are appropriate measures in place to protect the well (e.g., bol e Is the drainage around the well acceptable? (no standing water is well located in obvious drainage flow path)	
2 Protective Casing a Is the protective casing free from apparent damage and able to secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and wate filled with pea gravel/sand? e Is the well locked? f If locked, is the well lock in good condition? g Is the well lid in good condition?	
a Is the well pad in good condition (not cracked or broken)? b Is the well pad sloped away from the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does now when stepped on)? e Is the pad surface clean (not covered with sediment or debris)?	not
4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from for objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touch can it be taken apart by hand due to lack of grout or use of slip couplings in construction)	ned or
5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equip a dedicated water quality sonde, and/or dedicated water lev data logger. b If equipped with dedicated sampling equipment, is it in good operational condition?	
 If equipped with a dedicated water quality sonde, is it in good operational condition? Does the desiccant need to be replaced on the water quality so If equipped with a water level data logger, is it in good operation condition? Does the well recharge adequately when purged? Does the well require redevelopment (low flow, excess turbidity 	nal
6 Corrective Actions a Are corrective actions needed? If yes, indicate here:	

	Name/Unit Name Mant Hummone / Hullede	Date (mm/dd/yyyy	01/77/7073
Field T	Dechnician thomas Massler Cowc-10	Field (Conditions	Sunny 98"
		Yes	No	Comments
1 <u>Loc</u>	cation/Identification			
а	Is the well visible and accessible?	_		
b	Is the well properly identified with the correct well ID?			
С	Is the well in a high traffic area?		W.	
d	Are appropriate measures in place to protect the well (e.g., bollards)?	_		
е	Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)			
2 Pro	tective Casing			
а	Is the protective casing free from apparent damage and able to be secured?	_		
b	Is the casing free of degradation or deterioration?		-	
C	Does the casing have a functioning weep hole?	_		
d	Is the annular space between casings clear of debris and water, or			
_	filled with pea gravel/sand?			
е	Is the well locked?			
f	If locked, is the well lock in good condition?			
g	Is the well lid in good condition?			
_				
	face Pad			
а	Is the well pad in good condition (not cracked or broken)?			
b	Is the well pad sloped away from the protective casing?			
C	Is the well pad in complete contact with the protective casing?	_		
d	Is the well pad in complete contact with the ground surface and			
	stable (not undermined by erosion, animal burrows, and does not			
_	move when stepped on)?			
е	Is the pad surface clean (not covered with sediment or debris)?			
4 Inte	rnal Casing			
а	Does the cap prevent entry of foreign material into the well?			
b	Is the casing free of kinks or bends, or any obstructions from foreign			
	objects (such as bailers)?			
С	Is the well properly vented for equilibration of air pressure?			
d	Is the survey point clearly marked on the inner casing?			
е	Is the depth of the well consistent with the original well log?			
f	Is the casing stable? (or does the pvc move easily when touched or			
	can it be taken apart by hand due to lack of grout or use of slip			
	couplings in construction)	_		
5 San	npling and Data Collection Equipment			
а	Indicate if the well is equipped with dedicated sampling equipment,			
	a dedicated water quality sonde, and/or dedicated water level			2.1
	data logger.	_		Whot
b	If equipped with dedicated sampling equipment, is it in good operational condition?			Whl
С	If equipped with a dedicated water quality sonde, is it in good operational condition?			WW
d	Does the desiccant need to be replaced on the water quality sonde?	_		12/1
е	If equipped with a water level data logger, is it in good operational condition?			1/1/1
f	Does the well recharge adequately when purged?			VV 14
g	Does the well require redevelopment (low flow, excess turbidity)?			
6 Cor	rective Actions			
a	Are corrective actions needed?		-	
	es, indicate here:	_		
,,,,				
_				

Plant Nar	ne/Unit Name Much Hammon (Muffeelen		nm/dd/yyyy <u>)</u>	01/27/2023
Field Tec	hnician Albanus Massill	Field C	onditions	gumy 45
Well ID	@wc-18			
		Yes	No	Comments
1 Location	on/Identification		110	33111113113
	s the well visible and accessible?	-		
b Is	s the well properly identified with the correct well ID?			
	s the well in a high traffic area?	190		
	Are appropriate measures in place to protect the well (e.g., bollards)?	_		
	s the drainage around the well acceptable? (no standing water, nor swell located in obvious drainage flow path)			
2 Dente	tive Continu			
	tive Casing			
	s the protective casing free from apparent damage and able to be			
	ecured? s the casing free of degradation or deterioration?			
	Does the casing have a functioning weep hole?			
	s the annular space between casings clear of debris and water, or			
	illed with pea gravel/sand?			
	s the well locked?			
	flocked, is the well lock in good condition?			
	s the well lid in good condition?		-	
_				
3 <u>Surfac</u>				
	s the well pad in good condition (not cracked or broken)?			
	s the well pad sloped away from the protective casing?			
	s the well pad in complete contact with the protective casing?			
	s the well pad in complete contact with the ground surface and			
	table (not undermined by erosion, animal burrows, and does not nove when stepped on)?			
	· · · · ·			
e Is	s the pad surface clean (not covered with sediment or debris)?			
4 Interna				
	Does the cap prevent entry of foreign material into the well?			
	s the casing free of kinks or bends, or any obstructions from foreign			
	bjects (such as bailers)?			
	s the well properly vented for equilibration of air pressure?	-		
	s the survey point clearly marked on the inner casing?	-	i/	
	s the depth of the well consistent with the original well log?	_		
	s the casing stable? (or does the pvc move easily when touched or			
	an it be taken apart by hand due to lack of grout or use of slip	~		
C	ouplings in construction)			
	ing and Data Collection Equipment			
	ndicate if the well is equipped with dedicated sampling equipment,			
	dedicated water quality sonde, and/or dedicated water level			11
	ata logger.	-		
	equipped with dedicated sampling equipment, is it in good			1.1
	perational condition?			N M
	equipped with a dedicated water quality sonde, is it in good perational condition?			~/4
d D	Ooes the desiccant need to be replaced on the water quality sonde?	000 0000 0000 0000		W M
	equipped with a water level data logger, is it in good operational ondition?	50		N/I
f D	loes the well recharge adequately when purged?			- 1 Vk
	Does the well require redevelopment (low flow, excess turbidity)?			
•				
	tive Actions re corrective actions needed?			
a 1				
	indicate here:			

	ame/Unit Name Mont Housen / Hufferle - echnician verprettee thomas Massh		mm/dd/yyyy) Conditions _	01/27 Sunuy	12023
				_	-
4 1	Ai - 11 d - Ai E - Ai - A	Yes	No	Con	nments
	ation/Identification Is the well visible and accessible?	-			
a	Is the well properly identified with the correct well ID?				
b	Is the well in a high traffic area?				
c d	Are appropriate measures in place to protect the well (e.g., bollards)?	1/2			
e	Is the drainage around the well acceptable? (no standing water, nor				
C	is well located in obvious drainage flow path)	_	<u> </u>		
2 Prot	ective Casing				
a	Is the protective casing free from apparent damage and able to be				
a	secured?	-			
b	Is the casing free of degradation or deterioration?				
c	Does the casing have a functioning weep hole?				
ď	Is the annular space between casings clear of debris and water, or				
•	filled with pea gravel/sand?				
е	Is the well locked?				
f	If locked, is the well lock in good condition?		* -		
g	Is the well lid in good condition?				
_					
	ace Pad	100.2mm			
а	Is the well pad in good condition (not cracked or broken)?				
b	Is the well pad sloped away from the protective casing?	\leq			
C	Is the well pad in complete contact with the protective casing?				
d	Is the well pad in complete contact with the ground surface and				
	stable (not undermined by erosion, animal burrows, and does not move when stepped on)?				
_					
е	Is the pad surface clean (not covered with sediment or debris)?				
4 Inter	nal Casing				
а	Does the cap prevent entry of foreign material into the well?	_			
b	Is the casing free of kinks or bends, or any obstructions from foreign				
	objects (such as bailers)?				
C	Is the well properly vented for equilibration of air pressure?				
d	Is the survey point clearly marked on the inner casing?				
е	Is the depth of the well consistent with the original well log?				
f	Is the casing stable? (or does the pvc move easily when touched or				
	can it be taken apart by hand due to lack of grout or use of slip				
	couplings in construction)				
5 Sam	pling and Data Collection Equipment				
а	Indicate if the well is equipped with dedicated sampling equipment,				
	a dedicated water quality sonde, and/or dedicated water level			1111	
	data logger.			00 15	
b	If equipped with dedicated sampling equipment, is it in good operational condition?			Mobile	
С	If equipped with a dedicated water quality sonde, is it in good			a com	
	operational condition?			WI	£
d	Does the desiccant need to be replaced on the water quality sonde?			1/4	
е	If equipped with a water level data logger, is it in good operational condition?			wl	1
f	Does the well recharge adequately when purged?			76	/
g	Does the well require redevelopment (low flow, excess turbidity)?				
6 Corr	ective Actions				
a <u>con</u>	Are corrective actions needed?				
	s, indicate here:				
,-					
-					

Plant Name/Unit Name Field Technician Well ID Location/Identification a Is the well visible and accessible? b Is the well visible and accessible? b Is the well properly identified with the correct well ID? c Is the well in a high traffic area? d Are appropriate measures in place to protect the well (e.g., bollards)? e Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path) 2 Protective Casing a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea grave/Isand? e Is the well locked? f If locked, is the well lock in good condition? g Is the well lid in good condition? Is the well lid in good condition? Is the well pad in complete contact with the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the well pad in complete contact with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment and dedicated water level	
1 Location/Identification a Is the well visible and accessible? b Is the well properly identified with the correct well ID? c Is the well in a high traffic area? d Are appropriate measures in place to protect the well (e.g., bollards)? e Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path) 2 Protective Casing a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? e Is the well locked? f If locked, is the well lock in good condition? g Is the well lid in good condition? 3 Surface Pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad in complete contact with the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment Indicate if the well is equipped with dedicated sampling equipment,	Suny, 450
a Is the well visible and accessible? b Is the well properly identified with the correct well ID? c Is the well in a high traffic area? d Are appropriate measures in place to protect the well (e.g., bollards)? e Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path) 2 Protective Casing a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? e Is the well locked? f If locked, is the well lock in good condition? g Is the well lid in good condition? 3 Surface Pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad in complete contact with the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment,	Comments
b Is the well properly identified with the correct well ID? c Is the well in a high traffic area? d Are appropriate measures in place to protect the well (e.g., bollards)? e Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path) 2 Protective Casing a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? e Is the well locked? f If locked, is the well lock in good condition? g Is the well lid in good condition? 3 Surface Pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad in complete contact with the protective casing? c Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment,	
c Is the well in a high traffic area? d Are appropriate measures in place to protect the well (e.g., bollards)? e Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path) 2 Protective Casing a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? e Is the well locked? f If locked, is the well lock in good condition? g Is the well pad in good condition? s Surface Pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad in complete contact with the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the protective cand stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment,	
d Are appropriate measures in place to protect the well (e.g., bollards)? list he drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path) 2 Protective Casing a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? e Is the well locked? f If locked, is the well lock in good condition? g Is the well lid in good condition? 3 Surface Pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad in complete contact with the protective casing? c Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment,	
e Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path) 2 Protective Casing a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? e Is the well locked? f If locked, is the well lock in good condition? g Is the well lid in good condition? 3 Surface Pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad in complete contact with the protective casing? c Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment,	
is well located in obvious drainage flow path) 2 Protective Casing a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? e Is the well locked? f If locked, is the well lock in good condition? g Is the well lid in good condition? 3 Surface Pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad sloped away from the protective casing? c Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment and Indicate if the well is equipped with dedicated sampling equipment,	
2 Protective Casing a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? e Is the well locked? f If locked, is the well lock in good condition? g Is the well lid in good condition? 3 Surface Pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad sloped away from the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment,	
a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? e Is the well locked? f If locked, is the well lock in good condition? g Is the well lid in good condition? 3 Surface Pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad sloped away from the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment,	But not topping well say
secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? e Is the well locked? f If locked, is the well lock in good condition? g Is the well lid in good condition? 3 Surface Pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad sloped away from the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment,	post that topp of court is
c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? e Is the well locked? f If locked, is the well lock in good condition? g Is the well lid in good condition? 3 Surface Pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad in complete contact with the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment,	
d Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? e Is the well locked? f If locked, is the well lock in good condition? g Is the well lid in good condition? 3 Surface Pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad sloped away from the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment,	
filled with pea gravel/sand? e Is the well locked? f If locked, is the well lock in good condition? g Is the well lid in good condition? 3 Surface Pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad sloped away from the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment,	
e Is the well locked? f If locked, is the well lock in good condition? g Is the well lid in good condition? 3 Surface Pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad sloped away from the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment,	
f If locked, is the well lock in good condition? g Is the well lid in good condition? 3 Surface Pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad sloped away from the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment,	
g Is the well lid in good condition? 3 Surface Pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad sloped away from the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment,	
a Is the well pad in good condition (not cracked or broken)? b Is the well pad sloped away from the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment,	
a Is the well pad in good condition (not cracked or broken)? b Is the well pad sloped away from the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment,	
b Is the well pad sloped away from the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment,	
c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment,	
d Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment,	
stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment,	
move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment,	
e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment,	
4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment,	
a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment,	
b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment,	
objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment,	
c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment,	
d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment,	
e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment,	
f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment,	
can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment,	
5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment,	
a Indicate if the well is equipped with dedicated sampling equipment,	
a Indicate if the well is equipped with dedicated sampling equipment,	
a dedicated water quality sonde, and/or dedicated water level	
	, ,
data logger.	A Comment of the Comm
b If equipped with dedicated sampling equipment, is it in good operational condition?	WA
If equipped with a dedicated water quality sonde, is it in good operational condition?	1111-
d Does the desiccant need to be replaced on the water quality sonde?	WIL
e If equipped with a water level data logger, is it in good operational condition?	
f Does the well recharge adequately when purged?	NA
g Does the well require redevelopment (low flow, excess turbidity)?	
6 Corrective Actions	
a Are corrective actions needed?	
If yes, indicate here:	
no clear your to drain low aren where	well is located

Plant Name/Unit Name Field Technician Well ID Plant Name/Unit Name Plant Heamnow Muffuln Repear Nessell Repear 1	Date (mm/dd/yyyy)_ Field Conditions	01/27/2023 Sunny, 450
 1 Location/Identification a Is the well visible and accessible? b Is the well properly identified with the correct well ID? c Is the well in a high traffic area? d Are appropriate measures in place to protect the well (e.g., bollards)? e Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path) 	Yes No	Comments vell , n ex pour ~6 in when where (200)
a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? e Is the well locked? f If locked, is the well lock in good condition?		
g Is the well lid in good condition? 3 Surface Pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad sloped away from the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)?		
e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)		
5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. b If equipped with dedicated sampling equipment, is it in good operational condition? c If equipped with a dedicated water quality sonde, is it in good		1st
operational condition? d Does the desiccant need to be replaced on the water quality sonde? e If equipped with a water level data logger, is it in good operational condition? f Does the well recharge adequately when purged? g Does the well require redevelopment (low flow, excess turbidity)?		wh
6 Corrective Actions a Are corrective actions needed? If yes, indicate here:	a Journeys u	neos, unsure cos

Field Conditions Location/Identification	Plant N	Name/Unit Name Many Hammons / Nuffecter		mm/dd/yyyy)	01/7/7075
1 Location/identification 1 a Is the well visible and accessible? b Is the well visible and accessible? c Is the well in a high traffic area? d Are appropriate measures in place to protect the well (e.g., bollards)? s Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path) 2 Protective Casing a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea grave/isand? f If locked, is the well lock in good condition? s Is the well lock in good condition? s Is the well pad in good condition (not cracked or broken)? b Is the well pad in good condition (not cracked or broken)? b Is the well pad in good condition (not cracked or broken)? c Is the well pad in oppote contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? Is the unit properly verted for equilibration of air pressure? Is the well properly verted for equilibration of air pressure? Is the taken apart by hand due to tack of grout or use of slip couplings in construction) Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, a fit in good operational condition? I requipped with a dedicated water quality sonde, is it in good operational condition? I Does the well recharge adequately when purged? Does the		The file of the state of the	Field (Conditions _	Genry 450
1 Location/dentification a Is the well visible and accessible? b Is the well properly identified with the correct well ID? c Is the well properly identified well acceptable? d Are appropriate measures in place to protect the well (e.g., bollards)? c Is the devianage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path) 2 Protective Casing a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? c Doss the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? f If locked, is the well lock in good condition? g Is the well and in good condition? g Is the well pad in good condition (not cracked or broken)? b Is the well pad in good away from the protective casing? c Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the deviation of the well consistent with the original well lock of south or survey point clearly marked on the inner casing? c Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as balies?) c Is the well properly vented for equilibration of air pressure? c Is the well properly well of the well consistent with the original well log? c Is the debrian of the well consistent with the original well log? c Is the well properly well and dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water quality sond	Well II				71
1 Location/dentification a Is the well visible and accessible? b Is the well properly identified with the correct well ID? c Is the well properly identified well acceptable? d Are appropriate measures in place to protect the well (e.g., bollards)? c Is the devianage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path) 2 Protective Casing a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? c Doss the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? f If locked, is the well lock in good condition? g Is the well and in good condition? g Is the well pad in good condition (not cracked or broken)? b Is the well pad in good away from the protective casing? c Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the deviation of the well consistent with the original well lock of south or survey point clearly marked on the inner casing? c Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as balies?) c Is the well properly vented for equilibration of air pressure? c Is the well properly well of the well consistent with the original well log? c Is the debrian of the well consistent with the original well log? c Is the well properly well and dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water quality sond					
a is the well visible and accessible? b is the well properly identified with the correct well ID? c is the well in a high traffic area? d Are appropriate measures in place to protect the well (e.g., bollards)? e is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path) 2 Protective Casing a is the protective casing free from apparent damage and able to be secured? b is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d is the annular space between casings clear of debris and water, or filled with pag gravel/sand? e is the well locked? f if locked is the well lock in good condition? g is the well lock in good condition? s Surface Pad a is the well pad in good condition (not cracked or broken)? b is the well pad in good condition (not cracked or broken)? b is the well pad in complete contact with the protective casing? d is the well pad in complete contact with the protective casing? d is the well pad in complete contact with the protective casing? d is the well pad in complete contact with the protective casing? d is the well pad in complete contact with the protective casing? d is the well pad in complete contact with the protective casing? d is the well pad in complete contact with the protective casing? d is the well pad in complete contact with the ground surface and stable (not undemined by revision, animal burrows, and does not move when stepped on)? I Internal Casing a Does the cap prevent entry of foreign material into the well? b is the casing free of kinks or bends, or any obstructions from foreign objects (such as baliers? c is the well protective casing stable? (or does the pur move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction? 5 Samplina and Data Collection Equipment is it in good operational condition? d Does the well recharge adequately when purged? g Does the well recharge adequately when purged? g Does the well recharge	4.1.00		Yes	No	Comments
b is the well properly identified with the correct well ID? c is the well in a high traffic area? d Are appropriate measures in place to protect the well (e.g., bollards)? e is the deriange around he well acceptable? (no standing water, nor is well located in obvious drainage flow path) 2 Protective Casing a is the protective casing free from apparent damage and able to be secured? b is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d is the annular space between casings clear of debris and water, or filled with pas gravel/sand? f if locked, is the well lock in good condition? g is the well lock in good condition? g is the well pad in good condition (not cracked or broken)? b is the well pad in good condition (not cracked or broken)? b is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e is the pell pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b is the casing free of kinks or bends, or any obstructions from foreign objects (such as balies?) c is the well properly vented for equilibration of air pressure? c is the well properly vented for equilibration of air pressure? c is the depth of the well consistent with the original well log? f is the casing stable? (or does the pow move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction? 5 Sampling and Data Collection Equipment a feduripped with a dedicated sampling equipment, a dedicated water level data logger. If equipped with dedicated sampling equipment, is it in good operational condition? 6 Does the well recharge adequately when purged? g Does the well recharge adequately when purged? g Does the well recharge ad			-		
c is the well in a high traffic area? Are appropriate measures in place to protect the well (e.g., bollards)? Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path) Protective Casing a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? C Does the casing have a functioning weep hole? d Is the amuliar space between casings clear of debris and water, or filled with pea gravel/sand? is the well locked? f If locked, is the well cock in good condition? s Is the evell lot in good condition? Surface Pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad in good condition (not cracked or broken)? b Is the well pad in good condition (not cracked or broken)? b Is the well pad in complete contact with the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable (not undemlined by errows, and does not move when stepped on)? list the well pad in complete contact with the ground surface and stable (not undemlined by errows, and does not move when stepped on)? list he well pad in complete contact with the ground surface and stable (not undemlined by errows, and does not move when stepped on)? Is the well pad in complete contact with the ground surface and stable (not undemlined by errows, and does not move when stepped on)? Is the well pad in complete contact with the ground surface and stable (not undemlined by errows, and does not move when stepped on)? Is the well pad in complete contact with the ground surface and stable (not undemlined by errows, and does not move when stepped on)? Is the well pad in complete contact with the original well (ground the control of the casing free of kinks or bends, or any obstructions from foreign objects (such as ballers)? Is the well properly wented for equilibration of air pressure? Is the well proper					
d Are appropriate measures in place to protect the well (e.g., bollards)? Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path) 2 Protective Casing Is the protective casing free from apparent damage and able to be secured? Is the protective casing free of degradation or deterioration? Does the casing have a functioning weep hole? Is the well coked? Is the well locked? Is flocked, is the well block in good condition? Is the well good in good condition? Is the well pad in omplete contact with the protective casing? Is the well pad in complete contact with the protective casing? Is the well pad in complete contact with the protective casing? Is the well pad in complete contact with the ground surface and stable (not undemined by persoin, animal burrows, and does not move when stepped on)? Is the pad surface clean (not covered with sediment or debris)? Internal Casing Does the cap prevent entry of foreign material into the well? Is the well properly vented for equilibration of air pressure? Is the well properly vented for equilibration of air pressure? Is the well properly vented for equilibration of air pressure? Is the depth of the well consistent with the original well log? Is the casing free of kinks or bends, or any obstructions from foreign objects (such as ballers)? Is the casing free of kinks or bends, or any obstructions from foreign objects (such as ballers)? Is the casing free of kinks or bends, or any obstructions from foreign objects (such as ballers)? Is the casing free of kinks or bends, or any obstructions from foreign objects (such as ballers)? Is the well properly vented for equilibration of air pressure? Is the depth of the well consistent with the original well of the vente of the properties of the vente of the vente of the vente of			_		
e Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path) 2 Protective Casing a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? c Does the casing fave of a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea gravefisand? e Is the well locked? f If flocked, is the well lock in good condition? s Is the well pad in good condition? s Is the well pad in good condition (not cracked or broken)? b Is the well pad in good condition (not cracked or broken)? b Is the well pad in good condition (not cracked or broken)? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the protective casing? e Is the pad surface clean (not covered with sediment or debris)? l Is the pad surface clean (not covered with sediment or debris)? l Is the vell pad in complete contact with the protective casing? l Is the survey point clearly marked on the inner casing? l Is the depth of the well consistent with the original well (g)? l Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, is it in good operational condition? C If equi			10	_	
si well located in obvious drainage flow path) 2 Protective Casing a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea grave/Isand? e Is the well locked? f If locked, is the well both in good condition? g Is the well pad in good condition (not cracked or broken)? b Is the well pad in good condition (not cracked or broken)? b Is the well pad in good condition (not cracked or broken)? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the protective casing? l Is the well pad in complete contact with the ground surface and stable (not undemined by persoin, animal burrows, and does not move when stepped on)? Is the pad surface clean (not covered with sediment or debris)? Internal Casing a Does the cap prevent entry of foreign material into the well? Is the osaing free of kinks or bends, or any obstructions from foreign objects (such as ballers)? Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? Is the well properly vented for equilibration of air pressure? Is the deplication consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction.) 5 Sampling and Data Collection Equipment, a dedicated water quality sonde, and/or dedicated water level data logger. If equipped with a dedicated sampling equipment, is it in good operational condition? Does the desiccant need to be replaced on the water quality sonde? If equipped with a dedicated water quality sonde, is it in good operational condition? Does the well require redevelopment (low flow, excess turbidity)? C	d		-		
2 Protective Casing a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea grave/sand? s Is the well locked? f If locked, is the well lock in good condition? g Is the well lad in good condition (not cracked or broken)? b Is the well pad in good condition (not cracked or broken)? b Is the well pad in good condition (not cracked or broken)? b Is the well pad in complete contact with the protective casing? c Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as ballers)? c Is the well properly vented for equilibration of air pressure? c Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing free of kinks or bends, or any obstructions from foreign objects (such as ballers)? c Is the survey point clearly marked on the inner casing? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. b If equipped with dedicated sampling equipment, is it in good operational condition? C If equipped with a dedicated water quality sonde? If equipped with a dedicated water quality sonde? If equipped with dedicated sampling equipment, is it in good operational condition? Does the well require redevelopment (low flow, excess tur	е				
2 Protective Casing a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea grave/sand? e Is the well locked? f If locked, is the well lock in good condition? g Is the well lad in good condition? s Surface Pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad sloped away from the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as baliers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the proc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. 6 If equipped with a dedicated water quality sonde, is it in good operational condition? 7 Does the well recharge adequately when purged? 9 Does the well recharge adequately when purged? 10 Does the well recharge adequately when purged? 11 Does the well recharge adequately when purged? 22 Does the well recharge adequately when purged? 3 Does the well recharge adequately when purged? 4 Does the well require redevelopment (low flow, excess turbidity)?		is well located in obvious drainage flow path)		دا	Remark Deally as a feet to
a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea grave/sand? s Is the well locked? f If locked, is the well lock in good condition? g Is the well lod in good condition? 3 Surface Pad a Is the well pad in good condition (not cracked or broken)? Is the well pad in good condition (not cracked or broken)? Is the well pad in good condition (not cracked or broken)? Is the well pad in complete contact with the protective casing? c Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as balaers)? c Is the well property vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing free of kinks or bends, or any obstructions from foreign objects (such as balaers)? 5 Sampling and Data Collection Equipment and or deficiated water level data logger. 5 If equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. 6 If equipped with dedicated sampling equipment, a dedicated water quality sonde, is it in good operational condition? 6 Does the desiccant need to be replaced on the water quality sonde? f if equipped with a dedicated water quality sonde? f if equipped with a dedicated water quality sonde? f if equipped with dedicated sampling equipment, a dedicated water level data logger. f if equipped with dedicated sampling equipment is it in good operational condition? C If equipped with edicated sampling				u	2011
secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? e Is the well locked? f If locked, is the well lock in good condition? g Is the well pad in good condition? 3 Surface Pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad in proplete contact with the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the protective casing? l Is the well pad in complete contact with the protective casing? l Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? l Is the existing the surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibiration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pow move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water apart by hand due to lack of grout or use of slip couplings in construction? d Does the desiccant need to be replaced on the water quality sonde? e If equipped with a dedicated water quality sonde, is it in good operational condition? d Does the well require redevelopment (low flow, excess turbidity)? 6 Corrective Actions a Are corrective actions needed? If yes, indicate here:	2 Pro	tective Casing			
secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? e Is the well locked? f If locked, is the well lock in good condition? g Is the well pad in good condition? 3 Surface Pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad in proplete contact with the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the protective casing? l Is the well pad in complete contact with the protective casing? l Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? l Is the existing the surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibiration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pow move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water apart by hand due to lack of grout or use of slip couplings in construction? d Does the desiccant need to be replaced on the water quality sonde? e If equipped with a dedicated water quality sonde, is it in good operational condition? d Does the well require redevelopment (low flow, excess turbidity)? 6 Corrective Actions a Are corrective actions needed? If yes, indicate here:	а	Is the protective casing free from apparent damage and able to be			
c Does the casing have a functioning weep hole? I sith earnular space between casings clear of debris and water, or filled with pea gravel/sand? I sith ewell locked? If I flocked, is the well lock in good condition? Surface Pad Is the well pad in good condition (not cracked or broken)? Is the well pad in good condition (not cracked or broken)? Is the well pad in good condition (not cracked or broken)? Is the well pad in good condition (not cracked or broken)? Is the well pad in complete contact with the protective casing? Is the well pad in complete contact with the protective casing? Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? Internal Casing Does the cap prevent entry of foreign material into the well? Is the well properly vented for equilibration of air pressure? Is the well properly vented for equilibration of air pressure? Is the depth of the well consistent with the original well log? Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. If equipped with a dedicated water quality sonde, is it in good operational condition? C If equipped with a dedicated water quality sonde, is it in good operational condition? Does the desiccant need to be replaced on the water quality sonde? If equipped with a vater level data logger, is it in good operational condition? Does the well recharge adequately when purged? Does the well require redevelopment (low flow, excess turbidity)?					
c Does the casing have a functioning weep hole? I sith earnular space between casings clear of debris and water, or filled with pea gravel/sand? I sith ewell locked? If I flocked, is the well lock in good condition? Surface Pad Is the well pad in good condition (not cracked or broken)? Is the well pad in good condition (not cracked or broken)? Is the well pad in good condition (not cracked or broken)? Is the well pad in good condition (not cracked or broken)? Is the well pad in complete contact with the protective casing? Is the well pad in complete contact with the protective casing? Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? Internal Casing Does the cap prevent entry of foreign material into the well? Is the well properly vented for equilibration of air pressure? Is the well properly vented for equilibration of air pressure? Is the depth of the well consistent with the original well log? Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. If equipped with a dedicated water quality sonde, is it in good operational condition? C If equipped with a dedicated water quality sonde, is it in good operational condition? Does the desiccant need to be replaced on the water quality sonde? If equipped with a vater level data logger, is it in good operational condition? Does the well recharge adequately when purged? Does the well require redevelopment (low flow, excess turbidity)?	b	Is the casing free of degradation or deterioration?			
d Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? e Is the well locked? f If locked, is the well lock in good condition? g Is the well lock in good condition? 3 Surface Pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad in complete contact with the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the protective casing? e Is the well pad in complete contact with the protective casing? e Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. b If equipped with a dedicated water quality sonde, is it in good operational condition? d Does the desiccant need to be replaced on the water quality sonde? If equipped with a decicated water quality sonde, is it in good operational condition? f Does the well recharge adequately when purged? g Does the well recharge adequately when purged? g Does the well recharge adequately when purged? g Does the well reclarge adequately when purged? g Does the well reclarge adequately when purged? g Does the well reclarge adequately when pu					
filled with pea gravel/sand? e Is the well locked? f If locked, is the well lock in good condition? g Is the well lid in good condition? 3 Surface Pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad in complete contact with the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as ballers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the por move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. b If equipped with a dedicated water quality sonde, is it in good operational condition? d Does the desiccant need to be replaced on the water quality sonde? If equipped with a dedicated water level data logger, is it in good operational condition? d Does the well recharge adequately when purged? g Does the well recharge adequately when purged?					
e Is the well locked? f If locked, is the well lock in good condition? g Is the well lid in good condition? 3 Surface Pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad in complete contact with the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the protective cas and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? le Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? I Is the casing stable? (or does the por move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. b If equipped with a dedicated water quality sonde, is it in good operational condition? d Does the desiccant need to be replaced on the water quality sonde? If equipped with a water level data logger, is it in good operational condition? d Does the well recharge adequately when purged? g Does the well recharge adequately when purged?	u	· · · · · · · · · · · · · · · · · · ·			
f If locked, is the well lock in good condition? g Is the well and in good condition? 3 Surface Pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad in complete contact with the protective casing? c Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as ballers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. b If equipped with dedicated sampling equipment, is it in good operational condition? c If equipped with dedicated sampling equipment, is it in good operational condition? d Does the well recharge adequately when purged? g Does the well recharge adequately when purged?	_				
g Is the well lid in good condition? 3 Surface Pad a Is the well pad in good condition (not cracked or broken)? b Is the well pad in complete contact with the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? d Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the prov move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. b If equipped with dedicated sampling equipment, is it in good operational condition? c If equipped with a dedicated water quality sonde, is it in good operational condition? d Does the desiccant need to be replaced on the water quality sonde? e If equipped with a water level data logger, is it in good operational condition? Does the well recharge adequately when purged? g Does the well recharge adequately when purged? g Does the well recharge adequately when purged? g Does the well recharge adequately when purged? f Corrective Actions a Are corrective actions needed? If yes, incidate here:			_		
a Is the well pad in good condition (not cracked or broken)? b Is the well pad in good condition (not cracked or broken)? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. b If equipped with a dedicated sampling equipment, is it in good operational condition? c If equipped with a dedicated water quality sonde, is it in good operational condition? d Does the desiccant need to be replaced on the water quality sonde? e If equipped with a water level data logger, is it in good operational condition? Does the desiccant need to be replaced on the water quality sonde? f Does the well recharge adequately when purged? g Does the well require redevelopment (low flow, excess turbidity)?	f				
a Is the well pad in good condition (not cracked or broken)? b Is the well pad sloped away from the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. b If equipped with dedicated sampling equipment, is it in good operational condition? c If equipped with a dedicated water quality sonde, is it in good operational condition? C If equipped with a water level data logger, is it in good operational condition? Does the desiccant need to be replaced on the water quality sonde? e If equipped with a water level data logger, is it in good operational condition? Does the well recharge adequately when purged? g Does the well rechar	g	Is the well lid in good condition?			
a Is the well pad in good condition (not cracked or broken)? b Is the well pad sloped away from the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. b If equipped with dedicated sampling equipment, is it in good operational condition? c If equipped with a dedicated water quality sonde, is it in good operational condition? C If equipped with a water level data logger, is it in good operational condition? Does the desiccant need to be replaced on the water quality sonde? e If equipped with a water level data logger, is it in good operational condition? Does the well recharge adequately when purged? g Does the well rechar	3 Sur	face Pad			
b Is the well pad sloped away from the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? d Internal Casing a Does the cas prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. b If equipped with a dedicated water quality sonde, is it in good operational condition? c If equipped with a dedicated water quality sonde, is it in good operational condition? d Does the desiccant need to be replaced on the water quality sonde? e If equipped with a water level data logger, is it in good operational condition? f Does the well recharge adequately when purged? g Does the well recharge adequately when purged? g Does the well require redevelopment (low flow, excess turbidity)?					
c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. b If equipped with a dedicated water quality sonde, is it in good operational condition? c If equipped with a dedicated water quality sonde, is it in good operational condition? d Does the desiccant need to be replaced on the water quality sonde? If equipped with a water level data logger, is it in good operational condition? d Does the well recharge adequately when purged? g Does the well recharge adequately when purged? g Does the well recharge adequately when purged? g Does the well require redevelopment (low flow, excess turbidity)?					
d Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as ballers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. b If equipped with dedicated sampling equipment, is it in good operational condition? c If equipped with a dedicated water quality sonde, is it in good operational condition? d Does the desiccant need to be replaced on the water quality sonde? e If equipped with a water level data logger, is it in good operational condition? f Does the well recharge adequately when purged? g Does the well recharge adequately when purged? g Does the well require redevelopment (low flow, excess turbidity)? 6 Corrective Actions a Are corrective actions needed? If yes, indicate here:					
stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. b If equipped with dedicated sampling equipment, is it in good operational condition? c If equipped with a dedicated water quality sonde, is it in good operational condition? d Does the desiccant need to be replaced on the water quality sonde? e If equipped with a water level data logger, is it in good operational condition? f Does the well recharge adequately when purged? g Does the well recharge adequately when purged? g Does the well recharge adequately when purged? g Does the well require redevelopment (low flow, excess turbidity)?			_		
move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. b If equipped with dedicated sampling equipment, is it in good operational condition? c If equipped with a dedicated water quality sonde, is it in good operational condition? d Does the desiccant need to be replaced on the water quality sonde? e If equipped with a water level data logger, is it in good operational condition? f Does the well recharge adequately when purged? g Toes the corrective actions needed? If yes, indicate here:	đ				
e Is the pad surface clean (not covered with sediment or debris)? 4 Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. b If equipped with a dedicated water quality sonde, is it in good operational condition? c If equipped with a dedicated water quality sonde, is it in good operational condition? d Does the desiccant need to be replaced on the water quality sonde? e If equipped with a water level data logger, is it in good operational condition? f Does the well recharge adequately when purged? g Does the well recharge adequately when purged? g Does the well require redevelopment (low flow, excess turbidity)? 6 Corrective Actions a Are corrective actions needed? If yes, indicate here:					
A Internal Casing a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. b If equipped with dedicated sampling equipment, is it in good operational condition? c If equipped with a dedicated water quality sonde, is it in good operational condition? d Does the desiccant need to be replaced on the water quality sonde? e If equipped with a water level data logger, is it in good operational condition? f Does the well recharge adequately when purged? g Does the well require redevelopment (low flow, excess turbidity)? 6 Corrective Actions a Are corrective actions needed? [f yes, indicate here:		move when stepped on)?			
a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. b If equipped with a dedicated water quality sonde, is it in good operational condition? c If equipped with a dedicated water quality sonde, is it in good operational condition? d Does the desiccant need to be replaced on the water quality sonde? e If equipped with a water level data logger, is it in good operational condition? f Does the well recharge adequately when purged? g Does the well require redevelopment (low flow, excess turbidity)? 6 Corrective Actions a Are corrective actions needed? If yes, indicate here:	е	Is the pad surface clean (not covered with sediment or debris)?			
a Does the cap prevent entry of foreign material into the well? b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. b If equipped with a dedicated water quality sonde, is it in good operational condition? c If equipped with a dedicated water quality sonde, is it in good operational condition? d Does the desiccant need to be replaced on the water quality sonde? e If equipped with a water level data logger, is it in good operational condition? f Does the well recharge adequately when purged? g Does the well require redevelopment (low flow, excess turbidity)? 6 Corrective Actions a Are corrective actions needed? If yes, indicate here:					
b Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. b If equipped with dedicated sampling equipment, is it in good operational condition? c If equipped with a dedicated water quality sonde, is it in good operational condition? d Does the desiccant need to be replaced on the water quality sonde? e If equipped with a water level data logger, is it in good operational condition? f Does the well recharge adequately when purged? g Does the well require redevelopment (low flow, excess turbidity)? 6 Corrective Actions a Are corrective actions needed? If yes, indicate here:					
objects (such as bailers)? c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. b If equipped with dedicated sampling equipment, is it in good operational condition? c If equipped with a dedicated water quality sonde, is it in good operational condition? d Does the desiccant need to be replaced on the water quality sonde? e If equipped with a water level data logger, is it in good operational condition? f Does the well recharge adequately when purged? g Torrective Actions a Are corrective actions needed? If yes, indicate here:			-		
c Is the well properly vented for equilibration of air pressure? d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. b If equipped with dedicated sampling equipment, is it in good operational condition? c If equipped with a dedicated water quality sonde, is it in good operational condition? d Does the desiccant need to be replaced on the water quality sonde? e If equipped with a water level data logger, is it in good operational condition? f Does the well recharge adequately when purged? g Does the well recharge adequately when purged? g Does the well require redevelopment (low flow, excess turbidity)? 6 Corrective Actions a Are corrective actions needed? If yes, indicate here:	b				
d Is the survey point clearly marked on the inner casing? e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. b If equipped with dedicated sampling equipment, is it in good operational condition? c If equipped with a dedicated water quality sonde, is it in good operational condition? d Does the desiccant need to be replaced on the water quality sonde? e If equipped with a water level data logger, is it in good operational condition? f Does the well recharge adequately when purged? g Does the well require redevelopment (low flow, excess turbidity)? 6 Corrective Actions a Are corrective actions needed? If yes, indicate here:					
e Is the depth of the well consistent with the original well log? f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. b If equipped with dedicated sampling equipment, is it in good operational condition? c If equipped with a dedicated water quality sonde, is it in good operational condition? d Does the desiccant need to be replaced on the water quality sonde? e If equipped with a water level data logger, is it in good operational condition? f Does the well recharge adequately when purged? g Does the well recharge adequately when purged? g Does the well require redevelopment (low flow, excess turbidity)? 6 Corrective Actions a Are corrective actions needed? If yes, indicate here:	С		_		
f Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. b If equipped with dedicated sampling equipment, is it in good operational condition? c If equipped with a dedicated water quality sonde, is it in good operational condition? d Does the desiccant need to be replaced on the water quality sonde? e If equipped with a water level data logger, is it in good operational condition? f Does the well recharge adequately when purged? g Does the well require redevelopment (low flow, excess turbidity)? 6 Corrective Actions a Are corrective actions needed? If yes, indicate here:	d	Is the survey point clearly marked on the inner casing?	-		
can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. b If equipped with dedicated sampling equipment, is it in good operational condition? c If equipped with a dedicated water quality sonde, is it in good operational condition? d Does the desiccant need to be replaced on the water quality sonde? e If equipped with a water level data logger, is it in good operational condition? f Does the well recharge adequately when purged? g Does the well require redevelopment (low flow, excess turbidity)? 6 Corrective Actions a Are corrective actions needed? If yes, indicate here:	е	Is the depth of the well consistent with the original well log?			
can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. b If equipped with dedicated sampling equipment, is it in good operational condition? c If equipped with a dedicated water quality sonde, is it in good operational condition? d Does the desiccant need to be replaced on the water quality sonde? e If equipped with a water level data logger, is it in good operational condition? f Does the well recharge adequately when purged? g Does the well require redevelopment (low flow, excess turbidity)? 6 Corrective Actions a Are corrective actions needed? If yes, indicate here:	f	Is the casing stable? (or does the pvc move easily when touched or			
couplings in construction) 5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. b If equipped with dedicated sampling equipment, is it in good operational condition? c If equipped with a dedicated water quality sonde, is it in good operational condition? d Does the desiccant need to be replaced on the water quality sonde? e If equipped with a water level data logger, is it in good operational condition? f Does the well recharge adequately when purged? g Does the well require redevelopment (low flow, excess turbidity)? 6 Corrective Actions a Are corrective actions needed? If yes, indicate here:					
5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. b If equipped with dedicated sampling equipment, is it in good operational condition? c If equipped with a dedicated water quality sonde, is it in good operational condition? d Does the desiccant need to be replaced on the water quality sonde? e If equipped with a water level data logger, is it in good operational condition? f Does the well recharge adequately when purged? g Does the well require redevelopment (low flow, excess turbidity)? 6 Corrective Actions a Are corrective actions needed? If yes, indicate here:			-		
Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. b If equipped with dedicated sampling equipment, is it in good operational condition? c If equipped with a dedicated water quality sonde, is it in good operational condition? d Does the desiccant need to be replaced on the water quality sonde? e If equipped with a water level data logger, is it in good operational condition? f Does the well recharge adequately when purged? g Does the well require redevelopment (low flow, excess turbidity)? 6 Corrective Actions a Are corrective actions needed? If yes, indicate here:					
a dedicated water quality sonde, and/or dedicated water level data logger. b If equipped with dedicated sampling equipment, is it in good operational condition? c If equipped with a dedicated water quality sonde, is it in good operational condition? d Does the desiccant need to be replaced on the water quality sonde? e If equipped with a water level data logger, is it in good operational condition? f Does the well recharge adequately when purged? g Does the well require redevelopment (low flow, excess turbidity)? 6 Corrective Actions a Are corrective actions needed? If yes, indicate here:	5 San				
data logger. b If equipped with dedicated sampling equipment, is it in good operational condition? c If equipped with a dedicated water quality sonde, is it in good operational condition? d Does the desiccant need to be replaced on the water quality sonde? e If equipped with a water level data logger, is it in good operational condition? f Does the well recharge adequately when purged? g Does the well require redevelopment (low flow, excess turbidity)? 6 Corrective Actions a Are corrective actions needed? If yes, indicate here:	а				
b If equipped with dedicated sampling equipment, is it in good operational condition? c If equipped with a dedicated water quality sonde, is it in good operational condition? d Does the desiccant need to be replaced on the water quality sonde? e If equipped with a water level data logger, is it in good operational condition? f Does the well recharge adequately when purged? g Does the well require redevelopment (low flow, excess turbidity)? 6 Corrective Actions a Are corrective actions needed? If yes, indicate here:		a dedicated water quality sonde, and/or dedicated water level			1
operational condition? C If equipped with a dedicated water quality sonde, is it in good operational condition? d Does the desiccant need to be replaced on the water quality sonde? e If equipped with a water level data logger, is it in good operational condition? f Does the well recharge adequately when purged? g Does the well require redevelopment (low flow, excess turbidity)? 6 Corrective Actions a Are corrective actions needed? If yes, indicate here:		data logger.		1	NA.
operational condition? C If equipped with a dedicated water quality sonde, is it in good operational condition? d Does the desiccant need to be replaced on the water quality sonde? e If equipped with a water level data logger, is it in good operational condition? f Does the well recharge adequately when purged? g Does the well require redevelopment (low flow, excess turbidity)? 6 Corrective Actions a Are corrective actions needed? If yes, indicate here:	b	If equipped with dedicated sampling equipment, is it in good			7W
C If equipped with a dedicated water quality sonde, is it in good operational condition? d Does the desiccant need to be replaced on the water quality sonde? e If equipped with a water level data logger, is it in good operational condition? f Does the well recharge adequately when purged? g Does the well require redevelopment (low flow, excess turbidity)? 6 Corrective Actions a Are corrective actions needed? If yes, indicate here:					1 12 1
operational condition? d Does the desiccant need to be replaced on the water quality sonde? e If equipped with a water level data logger, is it in good operational condition? f Does the well recharge adequately when purged? g Does the well require redevelopment (low flow, excess turbidity)? 6 Corrective Actions a Are corrective actions needed? If yes, indicate here:	r		-		2/0/03
d Does the desiccant need to be replaced on the water quality sonde? e If equipped with a water level data logger, is it in good operational condition? f Does the well recharge adequately when purged? g Does the well require redevelopment (low flow, excess turbidity)? 6 Corrective Actions a Are corrective actions needed? If yes, indicate here:	·				12. 1
e If equipped with a water level data logger, is it in good operational condition? f Does the well recharge adequately when purged? g Does the well require redevelopment (low flow, excess turbidity)? 6 Corrective Actions a Are corrective actions needed? If yes, indicate here:		·			NA
condition? f Does the well recharge adequately when purged? g Does the well require redevelopment (low flow, excess turbidity)? 6 Corrective Actions a Are corrective actions needed? If yes, indicate here:	d				VIA
f Does the well recharge adequately when purged? g Does the well require redevelopment (low flow, excess turbidity)? 6 Corrective Actions a Are corrective actions needed? If yes, indicate here:	е	If equipped with a water level data logger, is it in good operational			11.
g Does the well require redevelopment (low flow, excess turbidity)? 6 Corrective Actions a Are corrective actions needed? If yes, indicate here:		condition?			4/1/
g Does the well require redevelopment (low flow, excess turbidity)? 6 Corrective Actions a Are corrective actions needed? If yes, indicate here:	f	Does the well recharge adequately when purged?	_		
6 Corrective Actions a Are corrective actions needed? If yes, indicate here:			_		
a Are corrective actions needed? If yes, indicate here:	3	= 111 mil iron roquito roccoronomic (lott hott) oncodo taibidity):	_		
If yes, indicate here:	6 Corr	rective Actions			
	а	Are corrective actions needed?	5		
	If ye	es, indicate here:			

Plant Name/Unit Name Field Technician Well ID Manual Manu	Date (mm/dd/yyyy) OI/77/COTS Field Conditions Samuel 40°
 Location/Identification Is the well visible and accessible? Is the well properly identified with the correct well ID? Is the well in a high traffic area? Are appropriate measures in place to protect the well (e.g., bollards)? Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path) 	Yes No Comments
 2 Protective Casing a Is the protective casing free from apparent damage and able to be secured? b Is the casing free of degradation or deterioration? c Does the casing have a functioning weep hole? d Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? e Is the well locked? f If locked, is the well lock in good condition? g Is the well lid in good condition? 	
a Is the well pad in good condition (not cracked or broken)? b Is the well pad sloped away from the protective casing? c Is the well pad in complete contact with the protective casing? d Is the well pad in complete contact with the ground surface and stable (not undermined by erosion, animal burrows, and does not move when stepped on)? e Is the pad surface clean (not covered with sediment or debris)?	
 4 Internal Casing Does the cap prevent entry of foreign material into the well? Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)? Is the well properly vented for equilibration of air pressure? Is the survey point clearly marked on the inner casing? Is the depth of the well consistent with the original well log? Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) 	
5 Sampling and Data Collection Equipment a Indicate if the well is equipped with dedicated sampling equipment, a dedicated water quality sonde, and/or dedicated water level data logger. b If equipped with dedicated sampling equipment, is it in good operational condition? c If equipped with a dedicated water quality sonde, is it in good operational condition? d Does the desiccant need to be replaced on the water quality sonde? e If equipped with a water level data logger, is it in good operational condition? f Does the well recharge adequately when purged? g Does the well require redevelopment (low flow, excess turbidity)?	What pages
6 <u>Corrective Actions</u> a Are corrective actions needed? If yes, indicate here:	

August 2023

MEMORANDUM

DATE: November 21, 2023

TO: Kristen Jurinko, P.G., Southern Company Services, Inc.

CC: Ben Hodges, P.G. Georgia Power Company

FROM: Geosyntec Consultants

SUBJECT: Plant Hammond Huffaker Road Landfill - Well Maintenance and Repair

Documentation, Georgia Power Company

Geosyntec Consultants has prepared this memorandum to provide documentation of groundwater monitoring well maintenance and/or repair performed at the Plant Hammond Huffaker Road Landfill during the August 2023 sampling event. All repairs and maintenance were completed in accordance with the Georgia Environmental Protection Division (GA EPD) guidance on routine visual inspections of groundwater monitoring wells. Documentation of the well inspections are provided as an attachment to this memorandum.

Georgia Power Site/Unit	Date Performed	Well ID	Maintenance/ Repair Performed
Hammond/Huffaker	8/14/2023	All Wells	Checked and cleared weep holes of debris.

ATTACHMENT

Well Inspection Summary

Site Name: Huffaker Date: 08/07/2023

	Location/Identification							
Well ID:	Visible and accessible	Properly identified with correct well ID	Located in high traffic area; does the well require protection from traffic	Acceptable drainage around well (no standing water, not located in obvious drainage flow path)				
GWA-1	Yes	Yes	No	Yes				
GWA-2	Yes	Yes	No	Yes				
GWA-3	Yes	Yes	No	Yes				
GWA-4	Yes	Yes	No	Yes				
GWA-11	Yes	Yes	No	Yes				
GWC-5	Yes	Yes	No	Yes				
GWC-6	Yes	Yes	No	Yes				
GWC-7	Yes	Yes	No	Yes				
GWC-8	Yes	Yes	No	Yes				
GWC-9	Yes	Yes	No	Yes				
GWC-10	Yes	Yes	No	Yes				
GWC-18	Yes	Yes	No	Yes				
GWC-19	Yes	Yes	No	Yes				
GWC-20	Yes	Yes	No	Yes				
GWC-21	Yes	Yes	No	Yes				
GWC-22	Yes	Yes	No	Yes				
GWC-23	Yes	Yes	No	Yes				

Site Name: Huffaker Date: 08/07/2023

	Protective Casing							
Well ID:	Free from apparent damage and able to be secured	No degradation or deterioration	Functioning weep hole	Annular space clear of debris and water, or filled with pea gravel/sand	Locked and is the lock in good condition			
GWA-1	Yes	Yes	Yes	Yes	Yes			
GWA-2	Yes	Yes	Yes	Yes	Yes			
GWA-3	Yes	Yes	Yes	Yes	Yes			
GWA-4	Yes	Yes	Yes	Yes	Yes			
GWA-11	Yes	Yes	Yes	Yes	Yes			
GWC-5	Yes	Yes	Yes	Yes	Yes			
GWC-6	Yes	Yes	Yes	Yes	Yes			
GWC-7	Yes	Yes	Yes	Yes	Yes			
GWC-8	Yes	Yes	Yes	Yes	Yes			
GWC-9	Yes	Yes	Yes	Yes	Yes			
GWC-10	Yes	Yes	Yes	Yes	Yes			
GWC-18	Yes	Yes	Yes	Yes	Yes			
GWC-19	Yes	Yes	Yes	Yes	Yes			
GWC-20	Yes	Yes	Yes	Yes	Yes			
GWC-21	Yes	Yes	Yes	Yes	Yes			
GWC-22	Yes	Yes	Yes	Yes	Yes			
GWC-23	Yes	Yes	Yes	Yes	Yes			

Site Name: Huffaker Date: 08/07/2023

		Surface Pad		Internal Casing		
Well ID:	Good condition (not cracked/ broken)	Sloped away from the protective casing	In complete contact with the ground surface and stable	Cap prevents entry of foreign material into the well	Free of kinks/bends, or any obstructions from foreign objects (such as bailers)	Properly vented for equilibration of air pressure
GWA-1	Yes	Yes	Yes	Yes	Yes	Yes
GWA-2	Yes	Yes	Yes	Yes	Yes	Yes
GWA-3	Yes	Yes	Yes	Yes	Yes	Yes
GWA-4	Yes	Yes	Yes	Yes	Yes	Yes
GWA-11	Yes	Yes	Yes	Yes	Yes	Yes
GWC-5	Yes	Yes	Yes	Yes	Yes	Yes
GWC-6	Yes	Yes	Yes	Yes	Yes	Yes
GWC-7	Yes	Yes	Yes	Yes	Yes	Yes
GWC-8	Yes	Yes	Yes	Yes	Yes	Yes
GWC-9	Yes	Yes	Yes	Yes	Yes	Yes
GWC-10	Yes	Yes	Yes	Yes	Yes	Yes
GWC-18	Yes	Yes	Yes	Yes	Yes	Yes
GWC-19	Yes	Yes	Yes	Yes	Yes	Yes
GWC-20	Yes	Yes	Yes	Yes	Yes	Yes
GWC-21	Yes	Yes	Yes	Yes	Yes	Yes
GWC-22	Yes	Yes	Yes	Yes	Yes	Yes
GWC-23	Yes	Yes	No	Yes	Yes	Yes

Site Name: Huffaker Date: 08/07/2023

· · · · · · · · · · · · · · · · · · ·		
	Compative estimates manded by date.	
	Corrective actions as needed, by date:	
Well ID:		
GWA-1	N/A	
GWA-2	N/A	
GWA-3	N/A	
GWA-4	N/A	
GWA-11	N/A	
GWC-5	N/A	
GWC-6	N/A	
GWC-7	N/A	
GWC-8	N/A	
GWC-9	N/A	
GWC-10	N/A	
GWC-18	N/A	
GWC-19	N/A	
GWC-20	N/A	
GWC-21	N/A	
GWC-22	N/A	
GWC-23	N/A	

APPENDIX B

Analytical Laboratory Results and Field Sampling Forms

LABORATORY ANALYTICAL REPORTS

January 2023

March 16, 2023

Joju Abraham Georgia Power-CCR 2480 Maner Road Atlanta, GA 30339

RE: Project: Huffaker Road Landfill

Pace Project No.: 92649923

Dear Joju Abraham:

Enclosed are the analytical results for sample(s) received by the laboratory on February 01, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Charlotte
- Pace Analytical Services Peachtree Corners, GA

Revision 1: Amend collected dates and "collcted by" in field notes.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Bonnie Vang bonnie.vang@pacelabs.com

Bonnie Vary

(704)875-9092 Project Manager

Enclosures

cc: Noelia Gangi, Georgia Power
Ben Hodges, Georgia Power-CCR
Christine Hug, Geosyntec Consultants, Inc.
Kristen Jurinko
Thomas Kessler, Geosyntec
Whitney Law, Geosyntec Consultants
Laura Midkiff, Georgia Power

Michael Smilley, Georgia Power

Tina Sullivan, ERM Anthony Szwast, Geosyntec Nardos Tilahun, GeoSyntec Dawit Yifru, Geosyntec Consultants, Inc.

CERTIFICATIONS

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Pace Analytical Services Charlotte

South Carolina Laboratory ID: 99006 South Carolina Certification #: 99006001

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 South Carolina Drinking Water Cert. #: 99006003

North Carolina Drinking Water Certification #: 37706 Florida/NELAP Certification #: E87627 North Carolina Field Services Certification #: 5342 Kentucky UST Certification #: 84 North Carolina Wastewater Certification #: 12 Louisiana DoH Drinking Water #: LA029 Virginia/VELAP Certification #: 460221

South Carolina Laboratory ID: 99006

Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 South Carolina Laboratory ID: 99030 Florida/NELAP Certification #: E87648 South Carolina Certification #: 99030001

North Carolina Drinking Water Certification #: 37712 Virginia/VELAP Certification #: 460222 North Carolina Wastewater Certification #: 40

Pace Analytical Services Peachtree Corners

110 Technology Pkwy, Peachtree Corners, GA 30092

Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812 North Carolina Certification #: 381 South Carolina Certification #: 98011001

SAMPLE SUMMARY

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92649923001	HAM-GWA-1	Water	01/30/23 15:11	02/01/23 12:45
92649923002	HAM-GWA-2	Water	01/30/23 13:48	02/01/23 12:45
92649923003	HAM-GWA-3	Water	01/30/23 11:59	02/01/23 12:45
92649923004	HAM-GWA-4	Water	01/30/23 10:37	02/01/23 12:45
92649923005	HAM-GWA-11	Water	01/30/23 16:30	02/01/23 12:45
92649923006	HAM-GWC-10	Water	01/30/23 18:11	02/01/23 12:45
92649923007	HAM-GWC-5	Water	01/31/23 13:20	02/01/23 12:45
92649923008	HAM-HLF-GWC-6	Water	01/31/23 15:20	02/01/23 12:45
92649923009	HAM-GWC-7	Water	01/31/23 14:29	02/01/23 12:45
92649923010	HAM-HLF-GWC-8	Water	01/31/23 16:02	02/01/23 12:45
92649923011	HAM-GWC-9	Water	01/31/23 11:34	02/01/23 12:45
92649923012	HAM-GWC-18	Water	01/31/23 10:11	02/01/23 12:45
92649923013	HAM-HLF-GWC-19	Water	01/31/23 14:44	02/01/23 12:45
92649923014	HAM-GWC-20	Water	01/31/23 10:50	02/01/23 12:45
92649923015	HAM-GWC-21	Water	01/31/23 12:16	02/01/23 12:45
92649923016	HAM-GWC-22	Water	01/31/23 10:13	02/01/23 12:45
92649923017	HAM-GWC-23	Water	01/31/23 13:43	02/01/23 12:45
92649923018	HAM-HLF-EB-05	Water	01/31/23 16:05	02/01/23 12:45
92649923019	HAM-HLF-FB-05	Water	01/31/23 16:10	02/01/23 12:45
92649923020	HAM-HLF-FD-05	Water	01/30/23 00:00	02/01/23 12:46

SAMPLE ANALYTE COUNT

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Lab ID	Sample ID	Method	Analysts	Analytes Reported
92649923001	HAM-GWA-1	EPA 6010D		1
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		EPA 300.0 Rev 2.1 1993	JCM	3
92649923002	HAM-GWA-2	EPA 6010D	MS	1
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		EPA 300.0 Rev 2.1 1993	JCM	3
92649923003	HAM-GWA-3	EPA 6010D	MS	1
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		EPA 300.0 Rev 2.1 1993	JCM	3
92649923004	HAM-GWA-4	EPA 6010D	MS	1
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		EPA 300.0 Rev 2.1 1993	JCM	3
92649923005	HAM-GWA-11	EPA 6010D	MS	1
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		EPA 300.0 Rev 2.1 1993	JCM	3
92649923006	HAM-GWC-10	EPA 6010D	MS	1
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		EPA 300.0 Rev 2.1 1993	JCM	3
92649923007	HAM-GWC-5	EPA 6010D	MS	1
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		EPA 300.0 Rev 2.1 1993	JCM	3
92649923008	HAM-HLF-GWC-6	EPA 6010D	MS	1
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92649923009	HAM-GWC-7	EPA 6010D	MS	1
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92649923010	HAM-HLF-GWC-8	EPA 6010D	MS	1

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SAMPLE ANALYTE COUNT

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Lab ID	Sample ID	Method	Analysts	Analytes Reported
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92649923011	HAM-GWC-9	EPA 6010D	MS	1
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92649923012	HAM-GWC-18	EPA 6010D	MS	1
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92649923013	HAM-HLF-GWC-19	EPA 6010D	MS	1
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92649923014	HAM-GWC-20	EPA 6010D	MS	1
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92649923015	HAM-GWC-21	EPA 6010D	MS	1
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92649923016	HAM-GWC-22	EPA 6010D	MS	1
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92649923017	HAM-GWC-23	EPA 6010D	MS	1
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92649923018	HAM-HLF-EB-05	EPA 6010D	DRB	1
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92649923019	HAM-HLF-FB-05	EPA 6010D	DRB	1
		EPA 6020B	CW1	16

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SAMPLE ANALYTE COUNT

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Lab ID	Sample ID	Method	Analysts	Analytes Reported
		SM 2540C-2015	DL1	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92649923020	HAM-HLF-FD-05	EPA 6010D	DRB	1
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		EPA 300.0 Rev 2.1 1993	CDC	3

PASI-A = Pace Analytical Services - Asheville PASI-C = Pace Analytical Services - Charlotte

PASI-GA = Pace Analytical Services - Peachtree Corners, GA

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifier
2649923001	HAM-GWA-1					
	Performed by	Client			02/15/23 11:00	
	Collected By	TK			02/15/23 11:00	
	Collected Date	1/30/23			02/15/23 11:00	
	Collected Time	15:11			02/15/23 11:00	
	рН	7.22	Std. Units		02/15/23 11:00	
PA 6010D	Calcium	15.8	mg/L	1.0	02/13/23 21:30	M1
PA 6020B	Barium	0.037	mg/L	0.0050	02/14/23 13:21	
PA 6020B	Boron	0.026J	mg/L	0.040	02/14/23 13:21	
PA 6020B	Cobalt	0.00050J	mg/L	0.0050	02/14/23 13:21	
PA 6020B	Thallium	0.00022J	mg/L	0.0010	02/14/23 13:21	
PA 6020B	Vanadium	0.0022J	mg/L	0.010	02/14/23 13:21	
M 2540C-2015	Total Dissolved Solids	94.0	mg/L	25.0	02/02/23 20:27	
PA 300.0 Rev 2.1 1993	Chloride	1.1	mg/L	1.0	02/04/23 05:18	
PA 300.0 Rev 2.1 1993	Fluoride	0.11	mg/L	0.10	02/04/23 05:18	
PA 300.0 Rev 2.1 1993	Sulfate	3.8	mg/L	1.0	02/04/23 05:18	
2649923002	HAM-GWA-2					
	Performed by	Client			02/15/23 11:01	
	Collected By	TK			02/15/23 11:01	
	Collected Date	1/30/23			02/15/23 11:01	
	Collected Time	13:48			02/15/23 11:01	
	pН	7.05	Std. Units		02/15/23 11:01	
PA 6010D	Calcium	46.8	mg/L	1.0	02/13/23 21:48	
PA 6020B	Barium	0.20	mg/L	0.0050	02/14/23 13:27	
PA 6020B	Boron	0.086	mg/L	0.040	02/14/23 13:27	
M 2540C-2015	Total Dissolved Solids	263	mg/L	25.0	02/02/23 20:27	
PA 300.0 Rev 2.1 1993	Chloride	2.2	mg/L	1.0	02/04/23 05:33	
PA 300.0 Rev 2.1 1993	Fluoride	0.11	mg/L	0.10	02/04/23 05:33	
PA 300.0 Rev 2.1 1993	Sulfate	19.8	mg/L	1.0	02/04/23 05:33	
649923003	HAM-GWA-3					
	Performed by	Client			02/15/23 11:06	
	Collected By	TK			02/15/23 11:06	
	Collected Date	1/30/23			02/15/23 11:06	
	Collected Time	11:59			02/15/23 11:06	
	рН	6.82	Std. Units		02/15/23 11:06	
PA 6010D	Calcium	53.1	mg/L	1.0	02/13/23 21:53	
PA 6020B	Barium	0.070	mg/L	0.0050	02/14/23 13:33	
PA 6020B	Boron	0.094	mg/L	0.040	02/14/23 13:33	
PA 6020B	Nickel	0.00082J	mg/L	0.0050	02/14/23 13:33	
M 2540C-2015	Total Dissolved Solids	367	mg/L	25.0	02/02/23 20:27	
PA 300.0 Rev 2.1 1993	Chloride	1.2	mg/L	1.0	02/04/23 05:47	
PA 300.0 Rev 2.1 1993	Fluoride	0.12	mg/L	0.10	02/04/23 05:47	
PA 300.0 Rev 2.1 1993	Sulfate	78.4	mg/L	1.0	02/04/23 05:47	
649923004	HAM-GWA-4					
	Performed by	Client			02/15/23 11:06	
	Collected By	TK			02/15/23 11:06	
	Collected Date	1/30/23			02/15/23 11:06	

REPORT OF LABORATORY ANALYSIS

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
2649923004	HAM-GWA-4					
	Collected Time	10:37			02/15/23 11:06	
	pН	6.94	Std. Units		02/15/23 11:06	
PA 6010D	Calcium	73.6	mg/L	1.0	02/13/23 21:58	
PA 6020B	Barium	0.037	mg/L	0.0050	02/14/23 13:39	
PA 6020B	Boron	0.058	mg/L	0.040	02/14/23 13:39	
SM 2540C-2015	Total Dissolved Solids	459	mg/L	25.0	02/02/23 20:27	
PA 300.0 Rev 2.1 1993	Chloride	3.4	mg/L	1.0	02/04/23 06:02	
PA 300.0 Rev 2.1 1993	Fluoride	0.12	mg/L	0.10	02/04/23 06:02	
PA 300.0 Rev 2.1 1993	Sulfate	156	mg/L	3.0	02/04/23 16:24	
649923005	HAM-GWA-11					
	Performed by	Client			02/15/23 11:07	
	Collected By	TK			02/15/23 11:07	
	Collected Date	1/30/23			02/15/23 11:07	
	Collected Time	16:30			02/15/23 11:07	
	рН	7.00	Std. Units		02/15/23 11:07	
PA 6010D	Calcium	20.4	mg/L	1.0	02/13/23 22:03	
PA 6020B	Barium	0.030	mg/L	0.0050	02/14/23 13:45	
PA 6020B	Boron	0.038J	mg/L	0.040	02/14/23 13:45	
PA 6020B	Cobalt	0.00043J	mg/L	0.0050	02/14/23 13:45	
PA 6020B	Nickel	0.0017J	mg/L	0.0050	02/14/23 13:45	
M 2540C-2015	Total Dissolved Solids	130	mg/L	25.0	02/02/23 20:27	
PA 300.0 Rev 2.1 1993	Chloride	1.2	mg/L	1.0	02/04/23 06:17	
PA 300.0 Rev 2.1 1993	Fluoride	0.090J	mg/L	0.10	02/04/23 06:17	
PA 300.0 Rev 2.1 1993	Sulfate	9.5	mg/L	1.0	02/04/23 06:17	
2649923006	HAM-GWC-10					
	Performed by	Client			02/15/23 11:08	
	Collected By	TK			02/15/23 11:08	
	Collected Date	1/30/23			02/15/23 11:08	
	Collected Time	18:11			02/15/23 11:08	
	pН	7.60	Std. Units		02/15/23 11:08	
PA 6010D	Calcium	43.7	mg/L	1.0	02/13/23 22:08	
PA 6020B	Barium	0.17	mg/L	0.0050	02/14/23 14:21	
PA 6020B	Boron	0.038J	mg/L	0.040	02/14/23 14:21	
M 2540C-2015	Total Dissolved Solids	190	mg/L	25.0	02/02/23 20:28	
PA 300.0 Rev 2.1 1993	Chloride	1.3	mg/L	1.0	02/04/23 07:17	
PA 300.0 Rev 2.1 1993	Fluoride	0.096J	mg/L	0.10	02/04/23 07:17	
PA 300.0 Rev 2.1 1993	Sulfate	11.5	mg/L	1.0	02/04/23 07:17	
2649923007	HAM-GWC-5					
	Performed by	Client			02/15/23 11:09	
	Collected By	CC			02/15/23 11:09	
	Collected Date	1/31/23			02/15/23 11:09	
	Collected Time	13:20			02/15/23 11:09	
	рН	5.96	Std. Units		02/15/23 11:09	
PA 6010D	Calcium	75.5	mg/L	1.0		
PA 6020B	Barium	0.064	mg/L	0.0050		
PA 6020B	Boron	0.043	mg/L	0.040		

REPORT OF LABORATORY ANALYSIS

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
2649923007	HAM-GWC-5					
SM 2540C-2015	Total Dissolved Solids	385	mg/L	25.0	02/03/23 15:47	
PA 300.0 Rev 2.1 1993	Chloride	2.1	mg/L	1.0	02/04/23 07:32	
PA 300.0 Rev 2.1 1993	Fluoride	0.074J	mg/L	0.10	02/04/23 07:32	
EPA 300.0 Rev 2.1 1993	Sulfate	90.6	mg/L	1.0	02/04/23 07:32	
2649923008	HAM-HLF-GWC-6					
	Performed by	Client			02/15/23 11:10	
	Collected By	CC			02/15/23 11:10	
	Collected Date	1/31/23			02/15/23 11:10	
	Collected Time	15:20			02/15/23 11:10	
	рН	7.24	Std. Units		02/15/23 11:10	
PA 6010D	Calcium	62.5	mg/L	1.0	02/13/23 22:27	
PA 6020B	Barium	0.15	mg/L	0.0050	02/14/23 14:32	
PA 6020B	Boron	0.037J	mg/L	0.040	02/14/23 14:32	
SM 2540C-2015	Total Dissolved Solids	335	mg/L	25.0	02/03/23 15:48	
PA 300.0 Rev 2.1 1993	Chloride	1.7	mg/L	1.0	02/03/23 17:47	
PA 300.0 Rev 2.1 1993	Fluoride	0.098J	mg/L	0.10	02/03/23 17:47	
PA 300.0 Rev 2.1 1993	Sulfate	95.7	mg/L	2.0	02/04/23 11:21	
2649923009	HAM-GWC-7					
	Performed by	Client			02/15/23 11:10	
	Collected By	AS			02/15/23 11:10	
	Collected Date	1/31/23			02/15/23 11:10	
	Collected Time	14:29			02/15/23 11:10	
	рН	5.84	Std. Units		02/15/23 11:10	
PA 6010D	Calcium	19.0	mg/L	1.0	02/13/23 22:32	
PA 6020B	Arsenic	0.0028J	mg/L	0.0050	02/14/23 14:38	
PA 6020B	Barium	0.047	mg/L	0.0050	02/14/23 14:38	
PA 6020B	Beryllium	0.00021J	mg/L	0.00050	02/14/23 14:38	
PA 6020B	Boron	0.025J	mg/L	0.040	02/14/23 14:38	
PA 6020B	Cobalt	0.031	mg/L	0.0050	02/14/23 14:38	
PA 6020B	Nickel	0.11	mg/L	0.0050	02/14/23 14:38	
PA 6020B	Zinc	0.19	mg/L	0.010	02/14/23 14:38	
M 2540C-2015	Total Dissolved Solids	223	mg/L		02/03/23 15:48	
PA 300.0 Rev 2.1 1993	Chloride	1.7	mg/L	1.0	02/03/23 18:35	
PA 300.0 Rev 2.1 1993	Fluoride	0.26	mg/L	0.10	02/03/23 18:35	
PA 300.0 Rev 2.1 1993	Sulfate	118	mg/L	3.0	02/04/23 12:38	
2649923010	HAM-HLF-GWC-8					
	Performed by	Client			02/15/23 11:11	
	Collected By	AS			02/15/23 11:11	
	Collected Date	1/31/23			02/15/23 11:11	
	Collected Time	16:02			02/15/23 11:11	
	рН	7.09	Std. Units		02/15/23 11:11	
PA 6010D	Calcium	69.2	mg/L	1.0		
PA 6020B	Barium	0.12	mg/L	0.0050		
PA 6020B	Boron	0.029J	mg/L	0.040	02/14/23 14:44	
PA 6020B	Cobalt	0.00055J	mg/L	0.0050		
SM 2540C-2015	Total Dissolved Solids	284	mg/L	25.0		

REPORT OF LABORATORY ANALYSIS

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92649923010	HAM-HLF-GWC-8					
EPA 300.0 Rev 2.1 1993	Chloride	1.6	mg/L	1.0	02/03/23 18:51	
EPA 300.0 Rev 2.1 1993	Fluoride	0.18	mg/L	0.10	02/03/23 18:51	
EPA 300.0 Rev 2.1 1993	Sulfate	31.3	mg/L	1.0	02/03/23 18:51	
2649923011	HAM-GWC-9					
	Performed by	Client			02/15/23 11:11	
	Collected By	AS			02/15/23 11:11	
	Collected Date	1/31/23			02/15/23 11:11	
	Collected Time	11:34			02/15/23 11:11	
	рН	6.74	Std. Units		02/15/23 11:11	
EPA 6010D	Calcium	34.1	mg/L	1.0	02/13/23 22:42	
EPA 6020B	Barium	0.064	mg/L	0.0050	02/14/23 14:50	
EPA 6020B	Boron	0.012J	mg/L	0.040	02/14/23 14:50	
EPA 6020B	Nickel	0.0020J	mg/L	0.0050	02/14/23 14:50	
SM 2540C-2015	Total Dissolved Solids	216	mg/L	25.0	02/03/23 15:48	
EPA 300.0 Rev 2.1 1993	Chloride	0.72J	mg/L	1.0	02/03/23 19:07	
EPA 300.0 Rev 2.1 1993	Fluoride	0.11	mg/L	0.10	02/03/23 19:07	
EPA 300.0 Rev 2.1 1993	Sulfate	70.0	mg/L	1.0	02/03/23 19:07	
		70.0	mg/L	1.0	02/03/23 19.07	
2649923012	HAM-GWC-18	Client			02/15/23 11:12	
	Performed by	AS				
	Collected By				02/15/23 11:12	
	Collected Date	1/31/23			02/15/23 11:12	
	Collected Time	10:11	0.111.		02/15/23 11:12	
-DA 0040D	pH	7.56	Std. Units	4.0	02/15/23 11:12	
EPA 6010D	Calcium	40.4	mg/L		02/13/23 22:46	
EPA 6020B	Barium	0.077	mg/L	0.0050	02/14/23 14:56	
EPA 6020B	Boron	0.12	mg/L	0.040	02/14/23 14:56	
SM 2540C-2015	Total Dissolved Solids	284	mg/L	25.0	02/03/23 15:48	
EPA 300.0 Rev 2.1 1993	Chloride	0.80J	mg/L	1.0	02/03/23 19:23	
EPA 300.0 Rev 2.1 1993	Fluoride	0.15	mg/L	0.10	02/03/23 19:23	
EPA 300.0 Rev 2.1 1993	Sulfate	8.4	mg/L	1.0	02/03/23 19:23	
2649923013	HAM-HLF-GWC-19					
	Performed by	Client			02/15/23 11:12	
	Collected By	TK			02/15/23 11:12	
	Collected Date	1/31/23			02/15/23 11:12	
	Collected Time	14:44			02/15/23 11:12	
	pН	7.65	Std. Units		02/15/23 11:12	
EPA 6010D	Calcium	42.5	mg/L	1.0	02/13/23 22:51	
EPA 6020B	Barium	0.15	mg/L	0.0050	02/14/23 15:02	
EPA 6020B	Boron	0.13	mg/L	0.040	02/14/23 15:02	
SM 2540C-2015	Total Dissolved Solids	239	mg/L		02/03/23 15:48	
EPA 300.0 Rev 2.1 1993	Chloride	1.2	mg/L	1.0	02/03/23 20:11	
EPA 300.0 Rev 2.1 1993	Fluoride	0.14	mg/L	0.10	02/03/23 20:11	
EPA 300.0 Rev 2.1 1993	Sulfate	22.8	mg/L	1.0	02/03/23 20:11	
2649923014	HAM-GWC-20					

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
2649923014	HAM-GWC-20					
	Collected By	CC			02/15/23 11:28	
	Collected Date	1/31/23			02/15/23 11:28	
	Collected Time	10:50			02/15/23 11:28	
	рН	7.44	Std. Units		02/15/23 11:28	
PA 6010D	Calcium	62.0	mg/L	1.0	02/13/23 22:56	
PA 6020B	Barium	0.14	mg/L	0.0050	02/14/23 15:08	
PA 6020B	Boron	0.015J	mg/L	0.040	02/14/23 15:08	
M 2540C-2015	Total Dissolved Solids	329	mg/L	25.0	02/03/23 15:49	
PA 300.0 Rev 2.1 1993	Chloride	1.1	mg/L	1.0	02/03/23 20:27	
PA 300.0 Rev 2.1 1993	Fluoride	0.094J	mg/L	0.10	02/03/23 20:27	
PA 300.0 Rev 2.1 1993	Sulfate	69.8	mg/L	1.0	02/03/23 20:27	
649923015	HAM-GWC-21					
	Performed by	Client			02/15/23 11:29	
	Collected By	TK			02/15/23 11:29	
	Collected Date	1/31/23			02/15/23 11:29	
	Collected Time	12:16			02/15/23 11:29	
	рH	6.23	Std. Units		02/15/23 11:29	
PA 6010D	Calcium	16.2	mg/L	1.0	02/13/23 23:01	
PA 6020B	Barium	0.033	mg/L	0.0050	02/14/23 15:14	
PA 6020B	Boron	0.013J	mg/L	0.040	02/14/23 15:14	
PA 6020B	Cobalt	0.0020J	mg/L	0.0050	02/14/23 15:14	
PA 6020B	Copper	0.0012J	mg/L	0.0050	02/14/23 15:14	
PA 6020B	Nickel	0.0050J	mg/L	0.0050	02/14/23 15:14	
M 2540C-2015	Total Dissolved Solids	76.0	mg/L	25.0	02/03/23 15:49	D6
PA 300.0 Rev 2.1 1993	Chloride	1.5	mg/L	1.0	02/03/23 20:43	20
PA 300.0 Rev 2.1 1993	Fluoride	0.062J	mg/L	0.10	02/03/23 20:43	
PA 300.0 Rev 2.1 1993	Sulfate	12.4	mg/L	1.0	02/03/23 20:43	
649923016	HAM-GWC-22		9/=		02,00,20 20 10	
.010020010	Performed by	Client			02/15/23 11:31	
	Collected By	TK			02/15/23 11:31	
	Collected Date	1/31/23			02/15/23 11:31	
	Collected Time	10:13			02/15/23 11:31	
	pH	7.67	Std. Units		02/15/23 11:31	
PA 6010D	Calcium	43.8	mg/L	1.0	02/13/23 11:31	
PA 6020B	Barium	0.090	mg/L	0.0050	02/14/23 15:35	
PA 6020B	Boron	0.052	mg/L		02/14/23 15:35	
M 2540C-2015	Total Dissolved Solids	221	mg/L	25.0		
PA 300.0 Rev 2.1 1993	Chloride	1.0	mg/L		02/03/23 13:50	
PA 300.0 Rev 2.1 1993 PA 300.0 Rev 2.1 1993	Fluoride	0.095J	mg/L		02/03/23 20:58	
PA 300.0 Rev 2.1 1993 PA 300.0 Rev 2.1 1993	Sulfate	8.8	mg/L	1.0	02/03/23 20:58	
2649923017	HAM-GWC-23	0.0	mg/L	1.0	02/00/20 20.00	
LU 1 3323U I I		Cliont			02/15/23 11:32	
	Performed by	Client				
	Collected By	TK			02/15/23 11:32	
	Collected Date	1/31/23			02/15/23 11:32	
	Collected Time	13:43	Otal III-ii-		02/15/23 11:32	
	рН	7.03	Std. Units		02/15/23 11:32	

REPORT OF LABORATORY ANALYSIS

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
			Office		Analyzed	Qualificis
92649923017	HAM-GWC-23					
EPA 6010D	Calcium	58.3	mg/L	1.0	02/13/23 23:10	
EPA 6020B	Barium	0.11	mg/L	0.0050	02/14/23 15:41	
EPA 6020B	Boron	0.060	mg/L	0.040	02/14/23 15:41	
SM 2540C-2015	Total Dissolved Solids	243	mg/L	25.0	02/03/23 15:50	
EPA 300.0 Rev 2.1 1993	Fluoride	0.11	mg/L	0.10	02/03/23 21:14	
EPA 300.0 Rev 2.1 1993	Sulfate	19.5	mg/L	1.0	02/03/23 21:14	
2649923018	HAM-HLF-EB-05					
SM 2540C-2015	Total Dissolved Solids	76.0	mg/L	25.0	02/03/23 15:50	
2649923020	HAM-HLF-FD-05					
EPA 6010D	Calcium	44.8	mg/L	1.0	02/14/23 15:10	
EPA 6020B	Barium	0.16	mg/L	0.0050	02/14/23 15:59	
EPA 6020B	Boron	0.029J	mg/L	0.040	02/14/23 15:59	
SM 2540C-2015	Total Dissolved Solids	604	mg/L	25.0	02/02/23 20:29	
EPA 300.0 Rev 2.1 1993	Chloride	1.3	mg/L	1.0	02/04/23 00:10	
EPA 300.0 Rev 2.1 1993	Fluoride	0.11	mg/L	0.10	02/04/23 00:10	
EPA 300.0 Rev 2.1 1993	Sulfate	12.9	mg/L	1.0	02/04/23 00:10	

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Date: 03/16/2023 04:09 PM

Sample: HAM-GWA-1	Lab ID:	92649923001	Collecte	ed: 01/30/23	3 15:11	Received: 02/	01/23 12:45 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	Client				1		02/15/23 11:00		
Collected By	TK				1		02/15/23 11:00		
Collected Date	1/30/23				1		02/15/23 11:00		
Collected Time	15:11				1		02/15/23 11:00		
ρΗ	7.22	Std. Units			1		02/15/23 11:00		
6010D ATL ICP	-	Method: EPA 6				PA 3010A			
Calcium	15.8	mg/L	1.0	0.12	1	02/09/23 11:50	02/13/23 21:30	7440-70-2	M1
6020 MET ICPMS	Analytical	Method: EPA 6	5020B Prei	naration Met	hod: FF	PA 3005A			
7020 III.21 101 III.0	•	lytical Services				7.00007.			
Antimony	ND	mg/L	0.0030	0.00078	1	02/13/23 17:11	02/14/23 13:21	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0022	1	02/13/23 17:11	02/14/23 13:21	7440-38-2	
Barium	0.037	mg/L	0.0050	0.00067	1	02/13/23 17:11	02/14/23 13:21	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	02/13/23 17:11	02/14/23 13:21	7440-41-7	
Boron	0.026J	mg/L	0.040	0.0086	1	02/13/23 17:11	02/14/23 13:21	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	02/13/23 17:11	02/14/23 13:21	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	02/13/23 17:11	02/14/23 13:21	7440-47-3	
Cobalt	0.00050J	mg/L	0.0050	0.00039	1	02/13/23 17:11	02/14/23 13:21	7440-48-4	
Copper	ND	mg/L	0.0050	0.0010	1	02/13/23 17:11	02/14/23 13:21	7440-50-8	
_ead	ND	mg/L	0.0010	0.00089	1	02/13/23 17:11	02/14/23 13:21	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00071	1	02/13/23 17:11	02/14/23 13:21	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	02/13/23 17:11	02/14/23 13:21	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	02/13/23 17:11	02/14/23 13:21		
Thallium	0.00022J	mg/L	0.0010	0.00018	1	02/13/23 17:11	02/14/23 13:21		
√anadium	0.0022J	mg/L	0.010	0.0019	1	02/13/23 17:11	02/14/23 13:21		
Zinc	ND	mg/L	0.010	0.0070	1	02/13/23 17:11	02/14/23 13:21	7440-66-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2015						
	Pace Ana	lytical Services	- Peachtre	e Corners, C	SA.				
Total Dissolved Solids	94.0	mg/L	25.0	25.0	1		02/02/23 20:27		
300.0 IC Anions 28 Days	•	Method: EPA 3 lytical Services		2.1 1993					
Chloride	1.1	mg/L	1.0	0.60	1		02/04/23 05:18	16887-00-6	
Fluoride	0.11	mg/L	0.10	0.050	1		02/04/23 05:18	16984-48-8	
Sulfate	3.8	mg/L	1.0	0.50	1		02/04/23 05:18	14808-79-8	

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Date: 03/16/2023 04:09 PM

Sample: HAM-GWA-2	Lab ID:	92649923002	Collecte	d: 01/30/23	3 13:48	Received: 02/	01/23 12:45 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	Client				1		02/15/23 11:01		
Collected By	TK				1		02/15/23 11:01		
Collected Date	1/30/23				1		02/15/23 11:01		
Collected Time	13:48				1		02/15/23 11:01		
Н	7.05	Std. Units			1		02/15/23 11:01		
6010D ATL ICP	Analytical	Method: EPA 6	010D Prep	aration Met	thod: EF	PA 3010A			
	Pace Anal	ytical Services	- Peachtree	e Corners, C	3A				
Calcium	46.8	mg/L	1.0	0.12	1	02/09/23 11:50	02/13/23 21:48	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: EF	PA 3005A			
	Pace Anal	ytical Services	- Peachtree	Corners, C	3A				
Antimony	ND	mg/L	0.0030	0.00078	1	02/13/23 17:11	02/14/23 13:27	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0022	1	02/13/23 17:11	02/14/23 13:27	7440-38-2	
Barium	0.20	mg/L	0.0050	0.00067	1	02/13/23 17:11	02/14/23 13:27	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	02/13/23 17:11	02/14/23 13:27	7440-41-7	
Boron	0.086	mg/L	0.040	0.0086	1	02/13/23 17:11	02/14/23 13:27	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	02/13/23 17:11	02/14/23 13:27	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	02/13/23 17:11	02/14/23 13:27	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	02/13/23 17:11	02/14/23 13:27	7440-48-4	
Copper	ND	mg/L	0.0050	0.0010	1	02/13/23 17:11	02/14/23 13:27	7440-50-8	
-ead	ND	mg/L	0.0010	0.00089	1	02/13/23 17:11	02/14/23 13:27	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00071	1	02/13/23 17:11	02/14/23 13:27	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	02/13/23 17:11	02/14/23 13:27	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	02/13/23 17:11	02/14/23 13:27	7440-22-4	
Γhallium	ND	mg/L	0.0010	0.00018	1	02/13/23 17:11	02/14/23 13:27	7440-28-0	
/anadium	ND	mg/L	0.010	0.0019	1	02/13/23 17:11	02/14/23 13:27	7440-62-2	
Zinc	ND	mg/L	0.010	0.0070	1	02/13/23 17:11	02/14/23 13:27		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Anal	ytical Services	- Peachtree	e Corners, C	βA				
Total Dissolved Solids	263	mg/L	25.0	25.0	1		02/02/23 20:27		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	.1 1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	2.2	mg/L	1.0	0.60	1		02/04/23 05:33	16887-00-6	
Fluoride	0.11	mg/L	0.10	0.050	1		02/04/23 05:33	16984-48-8	

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Date: 03/16/2023 04:09 PM

Sample: HAM-GWA-3	Lab ID:	92649923003	Collecte	ed: 01/30/23	3 11:59	Received: 02/	01/23 12:45 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	Client				1		02/15/23 11:06		
Collected By	TK				1		02/15/23 11:06		
Collected Date	1/30/23				1		02/15/23 11:06		
Collected Time	11:59				1		02/15/23 11:06		
Н	6.82	Std. Units			1		02/15/23 11:06		
6010D ATL ICP	Analytical	Method: EPA 6	010D Pre	paration Met	thod: EF	PA 3010A			
	Pace Anal	ytical Services	- Peachtre	e Corners, C	3A				
Calcium	53.1	mg/L	1.0	0.12	1	02/09/23 11:50	02/13/23 21:53	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Anal	ytical Services	- Peachtre	e Corners, C	3A				
Antimony	ND	mg/L	0.0030	0.00078	1	02/13/23 17:11	02/14/23 13:33	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0022	1	02/13/23 17:11	02/14/23 13:33	7440-38-2	
Barium	0.070	mg/L	0.0050	0.00067	1	02/13/23 17:11	02/14/23 13:33	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	02/13/23 17:11	02/14/23 13:33	7440-41-7	
Boron	0.094	mg/L	0.040	0.0086	1	02/13/23 17:11	02/14/23 13:33	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	02/13/23 17:11	02/14/23 13:33	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	02/13/23 17:11	02/14/23 13:33	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	02/13/23 17:11	02/14/23 13:33	7440-48-4	
Copper	ND	mg/L	0.0050	0.0010	1	02/13/23 17:11	02/14/23 13:33	7440-50-8	
-ead	ND	mg/L	0.0010	0.00089	1	02/13/23 17:11	02/14/23 13:33	7439-92-1	
Nickel	0.00082J	mg/L	0.0050	0.00071	1	02/13/23 17:11	02/14/23 13:33	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	02/13/23 17:11	02/14/23 13:33	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	02/13/23 17:11	02/14/23 13:33	7440-22-4	
Γhallium	ND	mg/L	0.0010	0.00018	1	02/13/23 17:11	02/14/23 13:33	7440-28-0	
√anadium	ND	mg/L	0.010	0.0019	1	02/13/23 17:11	02/14/23 13:33	7440-62-2	
Zinc	ND	mg/L	0.010	0.0070	1	02/13/23 17:11	02/14/23 13:33	7440-66-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Anal	ytical Services	- Peachtre	e Corners, C	βA				
Total Dissolved Solids	367	mg/L	25.0	25.0	1		02/02/23 20:27		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	2.1 1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	1.2	mg/L	1.0	0.60	1		02/04/23 05:47	16887-00-6	
Fluoride	0.12	mg/L	0.10	0.050	1		02/04/23 05:47	16984-48-8	
		-	1.0	0.50	1				

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Date: 03/16/2023 04:09 PM

Sample: HAM-GWA-4	Lab ID:	92649923004	Collecte	ed: 01/30/23	3 10:37	Received: 02/	01/23 12:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	Client				1		02/15/23 11:06		
Collected By	TK				1		02/15/23 11:06		
Collected Date	1/30/23				1		02/15/23 11:06		
Collected Time	10:37				1		02/15/23 11:06		
Н	6.94	Std. Units			1		02/15/23 11:06		
6010D ATL ICP	•	Method: EPA 6 ytical Services				PA 3010A			
Calcium	73.6	mg/L	1.0	0.12	1	02/09/23 11:50	02/13/23 21:58	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prei	paration Met	hod: EF	PA 3005A			
	-	ytical Services							
Antimony	ND	mg/L	0.0030	0.00078	1	02/13/23 17:11	02/14/23 13:39	7440-36-0	
rsenic	ND	mg/L	0.0050	0.0022	1	02/13/23 17:11	02/14/23 13:39	7440-38-2	
Barium	0.037	mg/L	0.0050	0.00067	1	02/13/23 17:11	02/14/23 13:39	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	02/13/23 17:11	02/14/23 13:39	7440-41-7	
Boron	0.058	mg/L	0.040	0.0086	1	02/13/23 17:11	02/14/23 13:39	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	02/13/23 17:11	02/14/23 13:39	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	02/13/23 17:11	02/14/23 13:39	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	02/13/23 17:11	02/14/23 13:39	7440-48-4	
Copper	ND	mg/L	0.0050	0.0010	1	02/13/23 17:11	02/14/23 13:39	7440-50-8	
_ead	ND	mg/L	0.0010	0.00089	1	02/13/23 17:11	02/14/23 13:39	7439-92-1	
lickel	ND	mg/L	0.0050	0.00071	1	02/13/23 17:11	02/14/23 13:39	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	02/13/23 17:11	02/14/23 13:39	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	02/13/23 17:11	02/14/23 13:39	7440-22-4	
⁻ Thallium	ND	mg/L	0.0010	0.00018	1	02/13/23 17:11	02/14/23 13:39	7440-28-0	
/anadium	ND	mg/L	0.010	0.0019	1	02/13/23 17:11	02/14/23 13:39	7440-62-2	
Zinc	ND	mg/L	0.010	0.0070	1	02/13/23 17:11	02/14/23 13:39	7440-66-6	
540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Anal	ytical Services	- Peachtre	e Corners, C	S A				
Total Dissolved Solids	459	mg/L	25.0	25.0	1		02/02/23 20:27		
800.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	2.1 1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	3.4	mg/L	1.0	0.60	1		02/04/23 06:02	16887-00-6	
Fluoride	0.12	mg/L	0.10	0.050	1		02/04/23 06:02		
Sulfate	156	mg/L	3.0	1.5	3		02/04/23 16:24		

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Date: 03/16/2023 04:09 PM

Sample: HAM-GWA-11	Lab ID:	92649923005	Collecte	ed: 01/30/23	3 16:30	Received: 02/	01/23 12:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	Client				1		02/15/23 11:07		
Collected By	TK				1		02/15/23 11:07		
Collected Date	1/30/23				1		02/15/23 11:07		
Collected Time	16:30				1		02/15/23 11:07		
Н	7.00	Std. Units			1		02/15/23 11:07		
6010D ATL ICP	•	Method: EPA 6 ytical Services				PA 3010A			
Calcium	20.4	mg/L	1.0	0.12	1	02/09/23 11:50	02/13/23 22:03	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prei	paration Met	hod: EF	PA 3005A			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	ytical Services							
Antimony	ND	mg/L	0.0030	0.00078	1	02/13/23 17:11	02/14/23 13:45	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0022	1	02/13/23 17:11	02/14/23 13:45		
Barium	0.030	mg/L	0.0050	0.00067	1	02/13/23 17:11	02/14/23 13:45		
Beryllium	ND	mg/L	0.00050	0.000054	1	02/13/23 17:11	02/14/23 13:45		
Boron	0.038J	mg/L	0.040	0.0086	1	02/13/23 17:11	02/14/23 13:45		
Cadmium	ND	mg/L	0.00050	0.00011	1	02/13/23 17:11	02/14/23 13:45		
Chromium	ND	mg/L	0.0050	0.0011	1	02/13/23 17:11	02/14/23 13:45		
Cobalt	0.00043J	mg/L	0.0050	0.00039	1	02/13/23 17:11	02/14/23 13:45		
Copper	ND	mg/L	0.0050	0.0010	1	02/13/23 17:11	02/14/23 13:45		
_ead	ND	mg/L	0.0010	0.00089	1	02/13/23 17:11	02/14/23 13:45		
Nickel	0.0017J	mg/L	0.0050	0.00071	1	02/13/23 17:11	02/14/23 13:45		
Selenium	ND	mg/L	0.0050	0.0014	1	02/13/23 17:11	02/14/23 13:45		
Silver	ND	mg/L	0.0050	0.00044	1	02/13/23 17:11	02/14/23 13:45		
Thallium	ND	mg/L	0.0010	0.00018	1	02/13/23 17:11	02/14/23 13:45	_	
/anadium	ND	mg/L	0.010	0.0019	1	02/13/23 17:11	02/14/23 13:45		
Zinc	ND	mg/L	0.010	0.0070	1	02/13/23 17:11	02/14/23 13:45		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Anal	ytical Services	- Peachtre	e Corners, C	ЭΑ				
Total Dissolved Solids	130	mg/L	25.0	25.0	1		02/02/23 20:27		
800.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	2.1 1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	1.2	mg/L	1.0	0.60	1		02/04/23 06:17	16887-00-6	
Fluoride	0.090J	mg/L	0.10	0.050	1		02/04/23 06:17	16984-48-8	
Sulfate	9.5	mg/L	1.0	0.50	1		02/04/23 06:17		

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Date: 03/16/2023 04:09 PM

Sample: HAM-GWC-10	Lab ID:	92649923006	Collecte	ed: 01/30/23	3 18:11	Received: 02/	01/23 12:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	ytical Services	- Charlotte	:					
Performed by	Client				1		02/15/23 11:08		
Collected By	TK				1		02/15/23 11:08		
Collected Date	1/30/23				1		02/15/23 11:08		
Collected Time	18:11				1		02/15/23 11:08		
Н	7.60	Std. Units			1		02/15/23 11:08		
6010D ATL ICP	•	Method: EPA 6	'			PA 3010A			
	Pace Ana	ytical Services	- Peachtre	e Corners, C	3A				
Calcium	43.7	mg/L	1.0	0.12	1	02/09/23 11:50	02/13/23 22:08	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Ana	ytical Services	- Peachtre	e Corners, C	ЭΑ				
Antimony	ND	mg/L	0.0030	0.00078	1	02/13/23 17:11	02/14/23 14:21	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0022	1	02/13/23 17:11	02/14/23 14:21	7440-38-2	
Barium	0.17	mg/L	0.0050	0.00067	1	02/13/23 17:11	02/14/23 14:21	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	02/13/23 17:11	02/14/23 14:21	7440-41-7	
Boron	0.038J	mg/L	0.040	0.0086	1	02/13/23 17:11	02/14/23 14:21	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	02/13/23 17:11	02/14/23 14:21	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	02/13/23 17:11	02/14/23 14:21	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	02/13/23 17:11	02/14/23 14:21	7440-48-4	
Copper	ND	mg/L	0.0050	0.0010	1	02/13/23 17:11	02/14/23 14:21	7440-50-8	
₋ead	ND	mg/L	0.0010	0.00089	1	02/13/23 17:11	02/14/23 14:21	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00071	1	02/13/23 17:11	02/14/23 14:21	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	02/13/23 17:11	02/14/23 14:21	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	02/13/23 17:11	02/14/23 14:21	7440-22-4	
Γhallium	ND	mg/L	0.0010	0.00018	1	02/13/23 17:11	02/14/23 14:21		
/anadium	ND	mg/L	0.010	0.0019	1	02/13/23 17:11	02/14/23 14:21		
Zinc	ND	mg/L	0.010	0.0070	1	02/13/23 17:11	02/14/23 14:21		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Ana	ytical Services	- Peachtre	e Corners, C	βA				
Total Dissolved Solids	190	mg/L	25.0	25.0	1		02/02/23 20:28		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	2.1 1993					
	Pace Ana	ytical Services	- Asheville						
Chloride	1.3	mg/L	1.0	0.60	1		02/04/23 07:17	16887-00-6	
Fluoride	0.096J	mg/L	0.10	0.050	1		02/04/23 07:17	16984-48-8	

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Date: 03/16/2023 04:09 PM

Sample: HAM-GWC-5	Lab ID:	92649923007	Collecte	ed: 01/31/23	3 13:20	Received: 02/	01/23 12:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte	•					
Performed by	Client				1		02/15/23 11:09		
Collected By	CC				1		02/15/23 11:09		
Collected Date	1/31/23				1		02/15/23 11:09		
Collected Time	13:20				1		02/15/23 11:09		
Н	5.96	Std. Units			1		02/15/23 11:09		
6010D ATL ICP	-	Method: EPA				PA 3010A			
Calcium		ytical Services		0.12	эA 1	02/00/22 44.50	02/13/23 22:13	7440 70 0	
	75.5	mg/L	1.0			02/09/23 11:50	02/13/23 22:13	1440-10-2	
6020 MET ICPMS	Analytical	Method: EPA 6	6020B Pre	paration Met	thod: El	PA 3005A			
	Pace Anal	ytical Services	- Peachtre	e Corners, C	ЭΑ				
Antimony	ND	mg/L	0.0030	0.00078	1	02/13/23 17:11	02/14/23 14:27	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0022	1	02/13/23 17:11	02/14/23 14:27	7440-38-2	
Barium	0.064	mg/L	0.0050	0.00067	1	02/13/23 17:11	02/14/23 14:27	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	02/13/23 17:11	02/14/23 14:27	7440-41-7	
Boron	0.043	mg/L	0.040	0.0086	1	02/13/23 17:11	02/14/23 14:27	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	02/13/23 17:11	02/14/23 14:27	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	02/13/23 17:11	02/14/23 14:27	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	02/13/23 17:11	02/14/23 14:27	7440-48-4	
Copper	ND	mg/L	0.0050	0.0010	1	02/13/23 17:11	02/14/23 14:27	7440-50-8	
∟ead	ND	mg/L	0.0010	0.00089	1	02/13/23 17:11	02/14/23 14:27		
Nickel	ND	mg/L	0.0050	0.00071	1	02/13/23 17:11	02/14/23 14:27	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	02/13/23 17:11	02/14/23 14:27	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	02/13/23 17:11	02/14/23 14:27	7440-22-4	
Γhallium	ND	mg/L	0.0010	0.00018	1	02/13/23 17:11	02/14/23 14:27		
/anadium	ND	mg/L	0.010	0.0019	1	02/13/23 17:11	02/14/23 14:27		
Zinc	ND	mg/L	0.010	0.0070	1	02/13/23 17:11	02/14/23 14:27	7440-66-6	
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2015						
	Pace Anal	ytical Services	- Peachtre	e Corners, C	ЭΑ				
Total Dissolved Solids	385	mg/L	25.0	25.0	1		02/03/23 15:47		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	2.1 1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	2.1	mg/L	1.0	0.60	1		02/04/23 07:32	16887-00-6	
Fluoride	0.074J	mg/L	0.10	0.050	1		02/04/23 07:32		
Sulfate	90.6	mg/L	1.0	0.50	1		02/04/23 07:32		

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Date: 03/16/2023 04:09 PM

Sample: HAM-HLF-GWC-6	Lab ID:	92649923008	Collecte	ed: 01/31/23	3 15:20	Received: 02/	01/23 12:45 M	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	Client				1		02/15/23 11:10		
Collected By	CC				1		02/15/23 11:10		
Collected Date	1/31/23				1		02/15/23 11:10		
Collected Time	15:20				1		02/15/23 11:10		
Н	7.24	Std. Units			1		02/15/23 11:10		
6010D ATL ICP	•	Method: EPA 6 lytical Services				PA 3010A			
Calcium	62.5		- Peachire 1.0	e Corners, C 0.12	эA 1	02/09/23 11:50	02/13/23 22:27	7 7440 70 2	
Jaicium		mg/L					02/13/23 22:27	7440-70-2	
6020 MET ICPMS		Method: EPA 6				PA 3005A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	SA.				
Antimony	ND	mg/L	0.0030	0.00078	1	02/13/23 17:11	02/14/23 14:32	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0022	1	02/13/23 17:11	02/14/23 14:32	7440-38-2	
Barium	0.15	mg/L	0.0050	0.00067	1	02/13/23 17:11	02/14/23 14:32	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	02/13/23 17:11	02/14/23 14:32	7440-41-7	
Boron	0.037J	mg/L	0.040	0.0086	1	02/13/23 17:11	02/14/23 14:32	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	02/13/23 17:11	02/14/23 14:32	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	02/13/23 17:11	02/14/23 14:32	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	02/13/23 17:11	02/14/23 14:32	7440-48-4	
Copper	ND	mg/L	0.0050	0.0010	1	02/13/23 17:11	02/14/23 14:32	7440-50-8	
_ead	ND	mg/L	0.0010	0.00089	1	02/13/23 17:11	02/14/23 14:32	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00071	1	02/13/23 17:11	02/14/23 14:32	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	02/13/23 17:11	02/14/23 14:32	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	02/13/23 17:11	02/14/23 14:32	7440-22-4	
Γhallium	ND	mg/L	0.0010	0.00018	1	02/13/23 17:11	02/14/23 14:32	7440-28-0	
√anadium	ND	mg/L	0.010	0.0019	1	02/13/23 17:11	02/14/23 14:32	7440-62-2	
Zinc	ND	mg/L	0.010	0.0070	1	02/13/23 17:11	02/14/23 14:32	7440-66-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Ana	lytical Services	- Peachtre	e Corners, C	βA				
Total Dissolved Solids	335	mg/L	25.0	25.0	1		02/03/23 15:48	;	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	2.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	1.7	mg/L	1.0	0.60	1		02/03/23 17:47	16887-00-6	
Fluoride	0.098J	mg/L	0.10	0.050	1		02/03/23 17:47		
Sulfate	95.7	mg/L	2.0	1.0	2		02/04/23 11:21		

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Date: 03/16/2023 04:09 PM

Sample: HAM-GWC-7	Lab ID:	92649923009	Collecte	ed: 01/31/23	3 14:29	Received: 02/	01/23 12:45 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	Client				1		02/15/23 11:10		
Collected By	AS				1		02/15/23 11:10		
Collected Date	1/31/23				1		02/15/23 11:10		
Collected Time	14:29				1		02/15/23 11:10		
Н	5.84	Std. Units			1		02/15/23 11:10		
6010D ATL ICP	•	Method: EPA 6				PA 3010A			
0.1.		lytical Services		·		00/00/00 44 50	00/40/00 00 00	7440 70 0	
Calcium	19.0	mg/L	1.0	0.12	1	02/09/23 11:50	02/13/23 22:32	7440-70-2	
6020 MET ICPMS		Method: EPA 6				PA 3005A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	βA				
Antimony	ND	mg/L	0.0030	0.00078	1	02/13/23 17:11	02/14/23 14:38	7440-36-0	
Arsenic	0.0028J	mg/L	0.0050	0.0022	1	02/13/23 17:11	02/14/23 14:38	7440-38-2	
Barium	0.047	mg/L	0.0050	0.00067	1	02/13/23 17:11	02/14/23 14:38	7440-39-3	
Beryllium	0.00021J	mg/L	0.00050	0.000054	1	02/13/23 17:11	02/14/23 14:38	7440-41-7	
Boron	0.025J	mg/L	0.040	0.0086	1	02/13/23 17:11	02/14/23 14:38	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	02/13/23 17:11	02/14/23 14:38	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	02/13/23 17:11	02/14/23 14:38	7440-47-3	
Cobalt	0.031	mg/L	0.0050	0.00039	1	02/13/23 17:11	02/14/23 14:38	7440-48-4	
Copper	ND	mg/L	0.0050	0.0010	1	02/13/23 17:11	02/14/23 14:38	7440-50-8	
Lead	ND	mg/L	0.0010	0.00089	1	02/13/23 17:11	02/14/23 14:38	7439-92-1	
Nickel	0.11	mg/L	0.0050	0.00071	1	02/13/23 17:11	02/14/23 14:38		
Selenium	ND	mg/L	0.0050	0.0014	1	02/13/23 17:11	02/14/23 14:38	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	02/13/23 17:11	02/14/23 14:38	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00018	1	02/13/23 17:11	02/14/23 14:38	7440-28-0	
Vanadium	ND	mg/L	0.010	0.0019	1	02/13/23 17:11	02/14/23 14:38	7440-62-2	
Zinc	0.19	mg/L	0.010	0.0070	1	02/13/23 17:11	02/14/23 14:38	7440-66-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Ana	lytical Services	- Peachtre	e Corners, C	βA				
Total Dissolved Solids	223	mg/L	25.0	25.0	1		02/03/23 15:48		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	2.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	1.7	mg/L	1.0	0.60	1		02/03/23 18:35	16887-00-6	
Fluoride	0.26	mg/L	0.10	0.050	1		02/03/23 18:35	16984-48-8	
Sulfate	118	mg/L	3.0	1.5	3		02/04/23 12:38		

Project: Huffaker Road Landfill

Date: 03/16/2023 04:09 PM

Sample: HAM-HLF-GWC-8	Lab ID:	92649923010	Collecte	d: 01/31/23	3 16:02	Received: 02/	01/23 12:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	Client				1		02/15/23 11:11		
Collected By	AS				1		02/15/23 11:11		
Collected Date	1/31/23				1		02/15/23 11:11		
Collected Time	16:02				1		02/15/23 11:11		
PΗ	7.09	Std. Units			1		02/15/23 11:11		
6010D ATL ICP	Analytical	Method: EPA	6010D Pre	paration Met	thod: Ef	PA 3010A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	βA				
Calcium	69.2	mg/L	1.0	0.12	1	02/09/23 11:50	02/13/23 22:37	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA	6020B Prep	paration Met	hod: EF	PA 3005A			
	•	lytical Services							
Antimony	ND	mg/L	0.0030	0.00078	1	02/13/23 17:11	02/14/23 14:44	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0022	1	02/13/23 17:11	02/14/23 14:44		
Barium	0.12	mg/L	0.0050	0.00067	1	02/13/23 17:11	02/14/23 14:44		
Beryllium	ND	mg/L	0.00050	0.000054	1	02/13/23 17:11	02/14/23 14:44		
Boron	0.029J	mg/L	0.040	0.0086	1	02/13/23 17:11	02/14/23 14:44		
Cadmium	ND	mg/L	0.00050	0.00011	1	02/13/23 17:11	02/14/23 14:44	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	02/13/23 17:11	02/14/23 14:44	7440-47-3	
Cobalt	0.00055J	mg/L	0.0050	0.00039	1	02/13/23 17:11	02/14/23 14:44	7440-48-4	
Copper	ND	mg/L	0.0050	0.0010	1	02/13/23 17:11	02/14/23 14:44	7440-50-8	
_ead	ND	mg/L	0.0010	0.00089	1	02/13/23 17:11	02/14/23 14:44	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00071	1	02/13/23 17:11	02/14/23 14:44	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	02/13/23 17:11	02/14/23 14:44	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	02/13/23 17:11	02/14/23 14:44	7440-22-4	
- Thallium	ND	mg/L	0.0010	0.00018	1	02/13/23 17:11	02/14/23 14:44	7440-28-0	
√anadium	ND	mg/L	0.010	0.0019	1	02/13/23 17:11	02/14/23 14:44		
Zinc	ND	mg/L	0.010	0.0070	1	02/13/23 17:11	02/14/23 14:44		
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2015						
	Pace Ana	lytical Services	- Peachtre	e Corners, C	S A				
Total Dissolved Solids	284	mg/L	25.0	25.0	1		02/03/23 15:48		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	1.6	mg/L	1.0	0.60	1		02/03/23 18:51	16887-00-6	
Fluoride	0.18	mg/L	0.10	0.050	1		02/03/23 18:51	16984-48-8	
i iuonu c									

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Date: 03/16/2023 04:09 PM

Sample: HAM-GWC-9	Lab ID:	92649923011	Collecte	ed: 01/31/23	3 11:34	Received: 02/	01/23 12:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte)					
Performed by	Client				1		02/15/23 11:11		
Collected By	AS				1		02/15/23 11:11		
Collected Date	1/31/23				1		02/15/23 11:11		
Collected Time	11:34				1		02/15/23 11:11		
рН	6.74	Std. Units			1		02/15/23 11:11		
6010D ATL ICP	•	Method: EPA 6		•		PA 3010A			
		ytical Services							
Calcium	34.1	mg/L	1.0	0.12	1	02/09/23 11:50	02/13/23 22:42	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	thod: El	PA 3005A			
	Pace Anal	ytical Services	- Peachtre	e Corners, C	ЭA				
Antimony	ND	mg/L	0.0030	0.00078	1	02/13/23 17:11	02/14/23 14:50	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0022	1	02/13/23 17:11	02/14/23 14:50	7440-38-2	
Barium	0.064	mg/L	0.0050	0.00067	1	02/13/23 17:11	02/14/23 14:50	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	02/13/23 17:11	02/14/23 14:50	7440-41-7	
Boron	0.012J	mg/L	0.040	0.0086	1	02/13/23 17:11	02/14/23 14:50	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	02/13/23 17:11	02/14/23 14:50	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	02/13/23 17:11	02/14/23 14:50	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	02/13/23 17:11	02/14/23 14:50	7440-48-4	
Copper	ND	mg/L	0.0050	0.0010	1	02/13/23 17:11	02/14/23 14:50	7440-50-8	
Lead	ND	mg/L	0.0010	0.00089	1	02/13/23 17:11	02/14/23 14:50	7439-92-1	
Nickel	0.0020J	mg/L	0.0050	0.00071	1	02/13/23 17:11	02/14/23 14:50	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	02/13/23 17:11	02/14/23 14:50	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	02/13/23 17:11	02/14/23 14:50	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00018	1	02/13/23 17:11	02/14/23 14:50	_	
Vanadium	ND	mg/L	0.010	0.0019	1	02/13/23 17:11	02/14/23 14:50		
Zinc	ND	mg/L	0.010	0.0070	1	02/13/23 17:11	02/14/23 14:50		
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2015	;					
	Pace Anal	ytical Services	- Peachtre	e Corners, C	GΑ				
Total Dissolved Solids	216	mg/L	25.0	25.0	1		02/03/23 15:48		
300.0 IC Anions 28 Days	•	Method: EPA 3							
Chloride	0.72J	mg/L	1.0	0.60	1		02/03/23 19:07	16887-00-6	
Fluoride	0.11	mg/L	0.10	0.050	1		02/03/23 19:07		
Sulfate	70.0	mg/L	1.0	0.030	1		02/03/23 19:07		
Juliate	70.0	mg/L	1.0	0.50	1		02/03/23 13.07	14000-13-0	

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Date: 03/16/2023 04:09 PM

Sample: HAM-GWC-18	Lab ID:	92649923012	Collecte	ed: 01/31/23	3 10:11	Received: 02/	01/23 12:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	Client				1		02/15/23 11:12		
Collected By	AS				1		02/15/23 11:12		
Collected Date	1/31/23				1		02/15/23 11:12		
Collected Time	10:11				1		02/15/23 11:12		
Н	7.56	Std. Units			1		02/15/23 11:12		
6010D ATL ICP	•	Method: EPA 6				PA 3010A			
Calcium	40.4	mg/L	1.0	0.12	1	02/09/23 11:50	02/13/23 22:46	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prei	paration Met	hod: Ef	PA 3005A			
	-	ytical Services							
antimony	ND	mg/L	0.0030	0.00078	1	02/13/23 17:11	02/14/23 14:56	7440-36-0	
rsenic	ND	mg/L	0.0050	0.0022	1	02/13/23 17:11	02/14/23 14:56	7440-38-2	
Barium	0.077	mg/L	0.0050	0.00067	1	02/13/23 17:11	02/14/23 14:56	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	02/13/23 17:11	02/14/23 14:56	7440-41-7	
Boron	0.12	mg/L	0.040	0.0086	1	02/13/23 17:11	02/14/23 14:56	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	02/13/23 17:11	02/14/23 14:56	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	02/13/23 17:11	02/14/23 14:56	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	02/13/23 17:11	02/14/23 14:56	7440-48-4	
Copper	ND	mg/L	0.0050	0.0010	1	02/13/23 17:11	02/14/23 14:56	7440-50-8	
₋ead	ND	mg/L	0.0010	0.00089	1	02/13/23 17:11	02/14/23 14:56	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00071	1	02/13/23 17:11	02/14/23 14:56	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	02/13/23 17:11	02/14/23 14:56		
Silver	ND	mg/L	0.0050	0.00044	1	02/13/23 17:11	02/14/23 14:56		
hallium	ND	mg/L	0.0010	0.00018	1	02/13/23 17:11	02/14/23 14:56	-	
/anadium	ND	mg/L	0.010	0.0019	1	02/13/23 17:11	02/14/23 14:56		
Zinc	ND	mg/L	0.010	0.0070	1	02/13/23 17:11	02/14/23 14:56		
540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Anal	ytical Services	- Peachtre	e Corners, C	€A				
Total Dissolved Solids	284	mg/L	25.0	25.0	1		02/03/23 15:48		
800.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	2.1 1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	0.80J	mg/L	1.0	0.60	1		02/03/23 19:23	16887-00-6	
Fluoride	0.15	mg/L	0.10	0.050	1		02/03/23 19:23		
Sulfate	8.4	mg/L	1.0	0.50	1		02/03/23 19:23		

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Date: 03/16/2023 04:09 PM

Sample: HAM-HLF-GWC-19	Lab ID:	92649923013	Collecte	ed: 01/31/23	3 14:44	Received: 02/	01/23 12:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	ytical Services	s - Charlotte						
Performed by	Client				1		02/15/23 11:12		
Collected By	TK				1		02/15/23 11:12		
Collected Date	1/31/23				1		02/15/23 11:12		
Collected Time	14:44				1		02/15/23 11:12		
Н	7.65	Std. Units			1		02/15/23 11:12		
6010D ATL ICP	Analytical	Method: EPA	6010D Pre	paration Met	hod: EF	PA 3010A			
	Pace Ana	ytical Services	s - Peachtre	e Corners, C	βA				
Calcium	42.5	mg/L	1.0	0.12	1	02/09/23 11:50	02/13/23 22:51	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA	6020B Prep	paration Met	hod: EF	PA 3005A			
	Pace Ana	ytical Services	s - Peachtre	e Corners, C	βA				
Antimony	ND	mg/L	0.0030	0.00078	1	02/13/23 17:11	02/14/23 15:02	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0022	1	02/13/23 17:11	02/14/23 15:02	7440-38-2	
Barium	0.15	mg/L	0.0050	0.00067	1	02/13/23 17:11	02/14/23 15:02	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	02/13/23 17:11	02/14/23 15:02	7440-41-7	
Boron	0.13	mg/L	0.040	0.0086	1	02/13/23 17:11	02/14/23 15:02	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	02/13/23 17:11	02/14/23 15:02	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	02/13/23 17:11	02/14/23 15:02	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	02/13/23 17:11	02/14/23 15:02	7440-48-4	
Copper	ND	mg/L	0.0050	0.0010	1	02/13/23 17:11	02/14/23 15:02	7440-50-8	
-ead	ND	mg/L	0.0010	0.00089	1	02/13/23 17:11	02/14/23 15:02	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00071	1	02/13/23 17:11	02/14/23 15:02		
Selenium	ND	mg/L	0.0050	0.0014	1	02/13/23 17:11	02/14/23 15:02		
Silver	ND	mg/L	0.0050	0.00044	1	02/13/23 17:11	02/14/23 15:02		
Γhallium	ND	mg/L	0.0010	0.00018	1	02/13/23 17:11	02/14/23 15:02		
/anadium	ND	mg/L	0.010	0.0019	1	02/13/23 17:11	02/14/23 15:02		
Zinc	ND	mg/L	0.010	0.0070	1	02/13/23 17:11	02/14/23 15:02		
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C-2015						
	•	ytical Services		e Corners, C	βA				
Total Dissolved Solids	239	mg/L	25.0	25.0	1		02/03/23 15:48		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	2.1 1993					
·		ytical Services							
Chloride	1.2	mg/L	1.0	0.60	1		02/03/23 20:11	16887-00-6	
Fluoride	0.14	mg/L	0.10	0.050	1		02/03/23 20:11	16984-48-8	

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Date: 03/16/2023 04:09 PM

Sample: HAM-GWC-20	Lab ID:	92649923014	Collecte	ed: 01/31/23	3 10:50	Received: 02/	01/23 12:45 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	ytical Services	- Charlotte						
Performed by	Client				1		02/15/23 11:28		
Collected By	CC				1		02/15/23 11:28		
Collected Date	1/31/23				1		02/15/23 11:28		
Collected Time	10:50				1		02/15/23 11:28		
Н	7.44	Std. Units			1		02/15/23 11:28		
6010D ATL ICP	•	Method: EPA 6				PA 3010A			
		ytical Services		e Corners, (3A				
Calcium	62.0	mg/L	1.0	0.12	1	02/09/23 11:50	02/13/23 22:56	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Ana	ytical Services	- Peachtre	e Corners, C	3A				
Antimony	ND	mg/L	0.0030	0.00078	1	02/13/23 17:11	02/14/23 15:08	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0022	1	02/13/23 17:11	02/14/23 15:08	7440-38-2	
Barium	0.14	mg/L	0.0050	0.00067	1	02/13/23 17:11	02/14/23 15:08	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	02/13/23 17:11	02/14/23 15:08	7440-41-7	
Boron	0.015J	mg/L	0.040	0.0086	1	02/13/23 17:11	02/14/23 15:08	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	02/13/23 17:11	02/14/23 15:08	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	02/13/23 17:11	02/14/23 15:08	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	02/13/23 17:11	02/14/23 15:08	7440-48-4	
Copper	ND	mg/L	0.0050	0.0010	1	02/13/23 17:11	02/14/23 15:08	7440-50-8	
-ead	ND	mg/L	0.0010	0.00089	1	02/13/23 17:11	02/14/23 15:08	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00071	1	02/13/23 17:11	02/14/23 15:08	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	02/13/23 17:11	02/14/23 15:08	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	02/13/23 17:11	02/14/23 15:08	7440-22-4	
Γhallium	ND	mg/L	0.0010	0.00018	1	02/13/23 17:11	02/14/23 15:08		
√anadium	ND	mg/L	0.010	0.0019	1	02/13/23 17:11	02/14/23 15:08	7440-62-2	
Zinc	ND	mg/L	0.010	0.0070	1	02/13/23 17:11	02/14/23 15:08		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Ana	ytical Services	- Peachtre	e Corners, C	3A				
Total Dissolved Solids	329	mg/L	25.0	25.0	1		02/03/23 15:49		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	2.1 1993					
	Pace Ana	ytical Services	- Asheville						
Chloride	1.1	mg/L	1.0	0.60	1		02/03/23 20:27	16887-00-6	
Fluoride	0.094J	mg/L	0.10	0.050	1		02/03/23 20:27	16984-48-8	
		-	1.0	0.50	1				

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Date: 03/16/2023 04:09 PM

Sample: HAM-GWC-21	Lab ID:	92649923015	Collecte	ed: 01/31/23	3 12:16	Received: 02/	01/23 12:45 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	Client				1		02/15/23 11:29		
Collected By	TK				1		02/15/23 11:29		
Collected Date	1/31/23				1		02/15/23 11:29		
Collected Time	12:16				1		02/15/23 11:29		
Н	6.23	Std. Units			1		02/15/23 11:29		
6010D ATL ICP	-	Method: EPA 6 lytical Services				PA 3010A			
Calcium	16.2	•	1.0	0.12	1	02/09/23 11:50	02/13/23 23:01	7440 70 2	
		mg/L					02/13/23 23.01	7440-70-2	
6020 MET ICPMS	-	Method: EPA 6				PA 3005A			
	Pace Ana	lytical Services	 Peachtre 	e Corners, C	€A.				
Antimony	ND	mg/L	0.0030	0.00078	1	02/13/23 17:11	02/14/23 15:14	7440-36-0	
rsenic	ND	mg/L	0.0050	0.0022	1	02/13/23 17:11	02/14/23 15:14	7440-38-2	
Barium	0.033	mg/L	0.0050	0.00067	1	02/13/23 17:11	02/14/23 15:14	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	02/13/23 17:11	02/14/23 15:14	7440-41-7	
Boron	0.013J	mg/L	0.040	0.0086	1	02/13/23 17:11	02/14/23 15:14	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	02/13/23 17:11	02/14/23 15:14	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	02/13/23 17:11	02/14/23 15:14	7440-47-3	
Cobalt	0.0020J	mg/L	0.0050	0.00039	1	02/13/23 17:11	02/14/23 15:14	7440-48-4	
Copper	0.0012J	mg/L	0.0050	0.0010	1	02/13/23 17:11	02/14/23 15:14	7440-50-8	
_ead	ND	mg/L	0.0010	0.00089	1	02/13/23 17:11	02/14/23 15:14	7439-92-1	
Nickel	0.0050J	mg/L	0.0050	0.00071	1	02/13/23 17:11	02/14/23 15:14	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	02/13/23 17:11	02/14/23 15:14	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	02/13/23 17:11	02/14/23 15:14	7440-22-4	
Гhallium	ND	mg/L	0.0010	0.00018	1	02/13/23 17:11	02/14/23 15:14	7440-28-0	
/anadium	ND	mg/L	0.010	0.0019	1	02/13/23 17:11	02/14/23 15:14	7440-62-2	
Zinc	ND	mg/L	0.010	0.0070	1	02/13/23 17:11	02/14/23 15:14	7440-66-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Ana	lytical Services	- Peachtre	e Corners, C	βA				
Total Dissolved Solids	76.0	mg/L	25.0	25.0	1		02/03/23 15:49	1	D6
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	2.1 1993					
	Pace Ana	lytical Services	- Asheville						
Chloride	1.5	mg/L	1.0	0.60	1		02/03/23 20:43	16887-00-6	
Fluoride	0.062J	mg/L	0.10	0.050	1		02/03/23 20:43		
Sulfate	12.4	mg/L	1.0	0.50	1		02/03/23 20:43		

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Date: 03/16/2023 04:09 PM

Sample: HAM-GWC-22	Lab ID:	92649923016	Collecte	ed: 01/31/23	3 10:13	Received: 02/	/01/23 12:45 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Charlotte						
Performed by	Client				1		02/15/23 11:31		
Collected By	TK				1		02/15/23 11:31		
Collected Date	1/31/23				1		02/15/23 11:31		
Collected Time	10:13				1		02/15/23 11:31		
H	7.67	Std. Units			1		02/15/23 11:31		
6010D ATL ICP	Analytical	Method: EPA 6	010D Pre	paration Met	hod: EF	PA 3010A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	βA				
Calcium	43.8	mg/L	1.0	0.12	1	02/09/23 11:50	02/13/23 23:06	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	paration Met	hod: EF	A 3005A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	βA				
Antimony	ND	mg/L	0.0030	0.00078	1	02/13/23 17:11	02/14/23 15:35	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0022	1	02/13/23 17:11	02/14/23 15:35	7440-38-2	
Barium	0.090	mg/L	0.0050	0.00067	1	02/13/23 17:11	02/14/23 15:35	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	02/13/23 17:11	02/14/23 15:35	7440-41-7	
Boron	0.052	mg/L	0.040	0.0086	1	02/13/23 17:11	02/14/23 15:35	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	02/13/23 17:11	02/14/23 15:35	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	02/13/23 17:11	02/14/23 15:35	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	02/13/23 17:11	02/14/23 15:35	7440-48-4	
Copper	ND	mg/L	0.0050	0.0010	1	02/13/23 17:11	02/14/23 15:35	7440-50-8	
_ead	ND	mg/L	0.0010	0.00089	1	02/13/23 17:11	02/14/23 15:35	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00071	1	02/13/23 17:11	02/14/23 15:35	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	02/13/23 17:11	02/14/23 15:35	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	02/13/23 17:11	02/14/23 15:35	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00018	1	02/13/23 17:11	02/14/23 15:35	7440-28-0	
√anadium	ND	mg/L	0.010	0.0019	1	02/13/23 17:11	02/14/23 15:35	7440-62-2	
Zinc	ND	mg/L	0.010	0.0070	1	02/13/23 17:11	02/14/23 15:35	7440-66-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Ana	lytical Services	- Peachtre	e Corners, C	€A				
Total Dissolved Solids	221	mg/L	25.0	25.0	1		02/03/23 15:50)	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	2.1 1993					
-	Pace Ana	lytical Services	- Asheville						
Chloride	1.0	mg/L	1.0	0.60	1		02/03/23 20:58	16887-00-6	
Fluoride	0.095J	mg/L	0.10	0.050	1		02/03/23 20:58	16984-48-8	
i ladilac									

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Date: 03/16/2023 04:09 PM

Sample: HAM-GWC-23	Lab ID:	92649923017	Collecte	ed: 01/31/23	3 13:43	Received: 02/	01/23 12:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:							
	Pace Anal	ytical Services	- Charlotte						
Performed by	Client				1		02/15/23 11:32		
Collected By	TK				1		02/15/23 11:32		
Collected Date	1/31/23				1		02/15/23 11:32		
Collected Time	13:43				1		02/15/23 11:32		
Н	7.03	Std. Units			1		02/15/23 11:32		
6010D ATL ICP	•	Method: EPA 6 ytical Services				PA 3010A			
Calcium	58.3	mg/L	1.0	0.12	1	02/09/23 11:50	02/13/23 23:10	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prei	paration Met	hod: EF	PA 3005A			
	-	ytical Services							
Antimony	ND	mg/L	0.0030	0.00078	1	02/13/23 17:11	02/14/23 15:41	7440-36-0	
rsenic	ND	mg/L	0.0050	0.0022	1	02/13/23 17:11	02/14/23 15:41		
Barium	0.11	mg/L	0.0050	0.00067	1	02/13/23 17:11	02/14/23 15:41		
Beryllium	ND	mg/L	0.00050	0.000054	1	02/13/23 17:11	02/14/23 15:41		
Boron	0.060	mg/L	0.040	0.0086	1	02/13/23 17:11	02/14/23 15:41		
Cadmium	ND	mg/L	0.00050	0.00011	1	02/13/23 17:11	02/14/23 15:41		
Chromium	ND	mg/L	0.0050	0.0011	1	02/13/23 17:11	02/14/23 15:41		
Cobalt	ND	mg/L	0.0050	0.00039	1	02/13/23 17:11	02/14/23 15:41		
Copper	ND	mg/L	0.0050	0.0010	1	02/13/23 17:11	02/14/23 15:41		
_ead	ND	mg/L	0.0010	0.00089	1	02/13/23 17:11	02/14/23 15:41		
Vickel	ND	mg/L	0.0050	0.00071	1	02/13/23 17:11	02/14/23 15:41	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	02/13/23 17:11	02/14/23 15:41		
Silver	ND	mg/L	0.0050	0.00044	1	02/13/23 17:11	02/14/23 15:41		
- Thallium	ND	mg/L	0.0010	0.00018	1	02/13/23 17:11	02/14/23 15:41	7440-28-0	
/anadium	ND	mg/L	0.010	0.0019	1	02/13/23 17:11	02/14/23 15:41		
Zinc	ND	mg/L	0.010	0.0070	1	02/13/23 17:11	02/14/23 15:41		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Anal	ytical Services	- Peachtre	e Corners, C	€A				
Total Dissolved Solids	243	mg/L	25.0	25.0	1		02/03/23 15:50		
800.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	2.1 1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	ND	mg/L	1.0	0.60	1		02/03/23 21:14	16887-00-6	
Fluoride	0.11	mg/L	0.10	0.050	1		02/03/23 21:14	16984-48-8	
Sulfate	19.5	mg/L	1.0	0.50	1		02/03/23 21:14	14808-79-8	

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Date: 03/16/2023 04:09 PM

Sample: HAM-HLF-EB-05	Lab ID:	92649923018	Collecte	ed: 01/31/23	3 16:05	Received: 02/	01/23 12:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL_	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical I	Method: EPA 6	010D Pre	paration Met	hod: EF	PA 3010A			
	Pace Analy	tical Services	- Peachtre	e Corners, C	βA				
Calcium	ND	mg/L	1.0	0.12	1	02/09/23 11:50	02/14/23 15:00	7440-70-2	
6020 MET ICPMS	Analytical I	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Analy	tical Services	- Peachtre	e Corners, C	SA.				
Antimony	ND	mg/L	0.0030	0.00078	1	02/13/23 17:11	02/14/23 15:47	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0022	1	02/13/23 17:11	02/14/23 15:47	7440-38-2	
Barium	ND	mg/L	0.0050	0.00067	1	02/13/23 17:11	02/14/23 15:47	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	02/13/23 17:11	02/14/23 15:47	7440-41-7	
Boron	ND	mg/L	0.040	0.0086	1	02/13/23 17:11	02/14/23 15:47	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	02/13/23 17:11	02/14/23 15:47	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	02/13/23 17:11	02/14/23 15:47	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	02/13/23 17:11	02/14/23 15:47	7440-48-4	
Copper	ND	mg/L	0.0050	0.0010	1	02/13/23 17:11	02/14/23 15:47	7440-50-8	
Lead	ND	mg/L	0.0010	0.00089	1	02/13/23 17:11	02/14/23 15:47	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00071	1	02/13/23 17:11	02/14/23 15:47	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	02/13/23 17:11	02/14/23 15:47	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	02/13/23 17:11	02/14/23 15:47	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00018	1	02/13/23 17:11	02/14/23 15:47	7440-28-0	
Vanadium	ND	mg/L	0.010	0.0019	1	02/13/23 17:11	02/14/23 15:47	7440-62-2	
Zinc	ND	mg/L	0.010	0.0070	1	02/13/23 17:11	02/14/23 15:47	7440-66-6	
2540C Total Dissolved Solids	Analytical I	Method: SM 25	540C-2015						
	Pace Analy	tical Services	- Peachtre	e Corners, C	βA				
Total Dissolved Solids	76.0	mg/L	25.0	25.0	1		02/03/23 15:50		
300.0 IC Anions 28 Days	Analytical I	Method: EPA 3	300.0 Rev 2	2.1 1993					
	Pace Analy	tical Services	- Asheville						
Chloride	ND	mg/L	1.0	0.60	1		02/03/23 21:30	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		02/03/23 21:30	16984-48-8	
Sulfate	ND	mg/L	1.0	0.50	1		02/03/23 21:30	14808-79-8	

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Date: 03/16/2023 04:09 PM

Sample: HAM-HLF-FB-05	Lab ID: 9	92649923019	Collecte	ed: 01/31/23	3 16:10	Received: 02/	01/23 12:45 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical N	Method: EPA 6	010D Pre	paration Met	hod: EF	PA 3010A			
	Pace Analy	tical Services	- Peachtre	e Corners, C	€A				
Calcium	ND	mg/L	1.0	0.12	1	02/09/23 11:50	02/14/23 15:05	7440-70-2	
6020 MET ICPMS	Analytical N	Лethod: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Analy	tical Services	- Peachtre	e Corners, C	SA.				
Antimony	ND	mg/L	0.0030	0.00078	1	02/13/23 17:11	02/14/23 15:53	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0022	1	02/13/23 17:11	02/14/23 15:53	7440-38-2	
Barium	ND	mg/L	0.0050	0.00067	1	02/13/23 17:11	02/14/23 15:53	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	02/13/23 17:11	02/14/23 15:53	7440-41-7	
Boron	ND	mg/L	0.040	0.0086	1	02/13/23 17:11	02/14/23 15:53	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	02/13/23 17:11	02/14/23 15:53	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	02/13/23 17:11	02/14/23 15:53	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	02/13/23 17:11	02/14/23 15:53	7440-48-4	
Copper	ND	mg/L	0.0050	0.0010	1	02/13/23 17:11	02/14/23 15:53	7440-50-8	
Lead	ND	mg/L	0.0010	0.00089	1	02/13/23 17:11	02/14/23 15:53	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00071	1	02/13/23 17:11	02/14/23 15:53	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	02/13/23 17:11	02/14/23 15:53	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	02/13/23 17:11	02/14/23 15:53	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00018	1	02/13/23 17:11	02/14/23 15:53	7440-28-0	
Vanadium	ND	mg/L	0.010	0.0019	1	02/13/23 17:11	02/14/23 15:53	7440-62-2	
Zinc	ND	mg/L	0.010	0.0070	1	02/13/23 17:11	02/14/23 15:53	7440-66-6	
2540C Total Dissolved Solids	Analytical N	леthod: SM 25	540C-2015						
	Pace Analy	tical Services	- Peachtre	e Corners, C	€A				
Total Dissolved Solids	ND	mg/L	25.0	25.0	1		02/03/23 15:50		
300.0 IC Anions 28 Days	Analytical N	Method: EPA 3	00.0 Rev 2	2.1 1993					
	Pace Analy	tical Services	- Asheville						
Chloride	ND	mg/L	1.0	0.60	1		02/03/23 22:18	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		02/03/23 22:18	16984-48-8	
Sulfate	ND	mg/L	1.0	0.50	1		02/03/23 22:18	14808-79-8	

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Date: 03/16/2023 04:09 PM

Sample: HAM-HLF-FD-05	Lab ID:	92649923020	Collecte	ed: 01/30/23	3 00:00	Received: 02/	01/23 12:46 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical	Method: EPA 6	010D Pre	paration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Peachtre	e Corners, C	βA				
Calcium	44.8	mg/L	1.0	0.12	1	02/09/23 11:50	02/14/23 15:10	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EF	PA 3005A			
	Pace Anal	ytical Services	- Peachtre	e Corners, C	SA.				
Antimony	ND	mg/L	0.0030	0.00078	1	02/13/23 17:11	02/14/23 15:59	7440-36-0	
Arsenic	ND	mg/L	0.0050	0.0022	1	02/13/23 17:11	02/14/23 15:59	7440-38-2	
Barium	0.16	mg/L	0.0050	0.00067	1	02/13/23 17:11	02/14/23 15:59	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	02/13/23 17:11	02/14/23 15:59	7440-41-7	
Boron	0.029J	mg/L	0.040	0.0086	1	02/13/23 17:11	02/14/23 15:59	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	02/13/23 17:11	02/14/23 15:59	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	02/13/23 17:11	02/14/23 15:59	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	02/13/23 17:11	02/14/23 15:59	7440-48-4	
Copper	ND	mg/L	0.0050	0.0010	1	02/13/23 17:11	02/14/23 15:59	7440-50-8	
_ead	ND	mg/L	0.0010	0.00089	1	02/13/23 17:11	02/14/23 15:59	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00071	1	02/13/23 17:11	02/14/23 15:59	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	02/13/23 17:11	02/14/23 15:59	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	02/13/23 17:11	02/14/23 15:59	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00018	1	02/13/23 17:11	02/14/23 15:59	7440-28-0	
Vanadium	ND	mg/L	0.010	0.0019	1	02/13/23 17:11	02/14/23 15:59	7440-62-2	
Zinc	ND	mg/L	0.010	0.0070	1	02/13/23 17:11	02/14/23 15:59	7440-66-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Anal	ytical Services	- Peachtre	e Corners, C	S A				
Total Dissolved Solids	604	mg/L	25.0	25.0	1		02/02/23 20:29		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	2.1 1993					
	Pace Anal	ytical Services	- Asheville						
Chloride	1.3	mg/L	1.0	0.60	1		02/04/23 00:10	16887-00-6	
Fluoride	0.11	mg/L	0.10	0.050	1		02/04/23 00:10	16984-48-8	
Sulfate	12.9	mg/L	1.0	0.50	1		02/04/23 00:10	14808-79-8	

Project: Huffaker Road Landfill

Pace Project No.: 92649923

QC Batch: 754274 Analysis Method: EPA 6010D
QC Batch Method: EPA 3010A Analysis Description: 6010D ATL

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92649923001, 92649923002, 92649923003, 92649923004, 92649923005, 92649923006, 92649923007,

92649923008, 92649923009, 92649923010, 92649923011, 92649923012, 92649923013, 92649923014,

92649923015, 92649923016, 92649923017, 92649923018, 92649923019, 92649923020

METHOD BLANK: 3918393 Matrix: Water

Associated Lab Samples: 92649923001, 92649923002, 92649923003, 92649923004, 92649923005, 92649923006, 92649923007,

92649923008, 92649923009, 92649923010, 92649923011, 92649923012, 92649923013, 92649923014,

92649923015, 92649923016, 92649923017, 92649923018, 92649923019, 92649923020

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Calcium mg/L ND 1.0 0.12 02/13/23 21:10

MSD

LABORATORY CONTROL SAMPLE: 3918394

Date: 03/16/2023 04:09 PM

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Calcium 0.95J 95 80-120 mg/L

MS

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3918395 3918396

92649923001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual 20 M1 Calcium 16.5 16.4 75-125 mg/L 15.8 77 63

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Date: 03/16/2023 04:09 PM

QC Batch: 755529 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92649923001, 92649923002, 92649923003, 92649923004, 92649923005, 92649923006, 92649923007,

92649923008, 92649923009, 92649923010, 92649923011, 92649923012, 92649923013, 92649923014,

92649923015, 92649923016, 92649923017, 92649923018, 92649923019, 92649923020

METHOD BLANK: 3925554 Matrix: Water

Associated Lab Samples: 92649923001, 92649923002, 92649923003, 92649923004, 92649923005, 92649923006, 92649923007,

92649923008, 92649923009, 92649923010, 92649923011, 92649923012, 92649923013, 92649923014,

92649923015, 92649923016, 92649923017, 92649923018, 92649923019, 92649923020

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Antimony	mg/L	0.00086J	0.0030	0.00078	02/14/23 13:09	
Arsenic	mg/L	ND	0.0050	0.0022	02/14/23 13:09	
Barium	mg/L	ND	0.0050	0.00067	02/14/23 13:09	
Beryllium	mg/L	ND	0.00050	0.000054	02/14/23 13:09	
Boron	mg/L	ND	0.040	0.0086	02/14/23 13:09	
Cadmium	mg/L	ND	0.00050	0.00011	02/14/23 13:09	
Chromium	mg/L	ND	0.0050	0.0011	02/14/23 13:09	
Cobalt	mg/L	ND	0.0050	0.00039	02/14/23 13:09	
Copper	mg/L	ND	0.0050	0.0010	02/14/23 13:09	
Lead	mg/L	ND	0.0010	0.00089	02/14/23 13:09	
Nickel	mg/L	ND	0.0050	0.00071	02/14/23 13:09	
Selenium	mg/L	ND	0.0050	0.0014	02/14/23 13:09	
Silver	mg/L	ND	0.0050	0.00044	02/14/23 13:09	
Thallium	mg/L	ND	0.0010	0.00018	02/14/23 13:09	
Vanadium	mg/L	ND	0.010	0.0019	02/14/23 13:09	
Zinc	mg/L	ND	0.010	0.0070	02/14/23 13:09	

LABORATORY CONTROL SAMPLE:	3925555					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	0.1	0.11	105	80-120	_
Arsenic	mg/L	0.1	0.097	97	80-120	
Barium	mg/L	0.1	0.098	98	80-120	
Beryllium	mg/L	0.1	0.098	98	80-120	
Boron	mg/L	1	0.96	96	80-120	
Cadmium	mg/L	0.1	0.099	99	80-120	
Chromium	mg/L	0.1	0.099	99	80-120	
Cobalt	mg/L	0.1	0.097	97	80-120	
Copper	mg/L	0.1	0.098	98	80-120	
Lead	mg/L	0.1	0.10	101	80-120	
Nickel	mg/L	0.1	0.097	97	80-120	
Selenium	mg/L	0.1	0.097	97	80-120	
Silver	mg/L	0.1	0.099	99	80-120	
Thallium	mg/L	0.1	0.10	101	80-120	
Vanadium	mg/L	0.1	0.099	99	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Date: 03/16/2023 04:09 PM

LABORATORY CONTROL SAMPLE: 3925555

> Spike LCS LCS % Rec

> > 99

80-120

0.099

Parameter Units Conc. Result % Rec Limits Qualifiers Zinc mg/L 0.1

3925556 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3925557 MS MSD 92649923005 MS MSD MS MSD Spike Spike % Rec Max **RPD** RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits Qual 0.1 75-125 2 20 **Antimony** mg/L ND 0.1 0.11 0.11 107 109 Arsenic ND 0.1 0.098 0.10 75-125 2 20 mg/L 0.1 97 99 Barium mg/L 0.030 0.1 0.1 0.13 0.13 98 100 75-125 1 20 Beryllium mg/L ND 0.1 0.1 0.094 0.095 94 95 75-125 2 20 Boron mg/L 0.038J 1 1 0.97 1.0 93 96 75-125 3 20 Cadmium mg/L ND 0.1 0.1 0.096 0.097 96 97 75-125 1 20 Chromium mg/L ND 0.1 0.094 0.095 94 94 75-125 0 20 0.00043J 0.095 94 95 Cobalt mg/L 0.1 0.1 0.095 75-125 0 20 mg/L ND 0.1 0.1 0.094 0.094 94 94 75-125 0 20 Copper ND 0.1 0.1 0.10 0.10 100 101 75-125 20 Lead mg/L 1 0.0017J 0.1 0.1 0.096 94 96 75-125 2 20 Nickel 0.098 mg/L 0.1 0.1 0.097 97 100 3 Selenium ND 0.10 75-125 20 mg/L 98 Silver ND 0.1 0.1 0.098 0.098 98 75-125 20 mg/L 1 Thallium mg/L ND 0.1 0.1 0.10 0.10 102 101 75-125 1 20 Vanadium mg/L ND 0.1 0.1 0.095 0.097 95 97 75-125 3 20 2 Zinc mg/L ND 0.1 0.1 0.097 0.098 96 98 75-125 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Huffaker Road Landfill

Pace Project No.: 92649923

QC Batch: 753440 Analysis Method: SM 2540C-2015

QC Batch Method: SM 2540C-2015 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92649923001, 92649923002, 92649923003, 92649923004, 92649923005, 92649923006, 92649923020

METHOD BLANK: 3914565 Matrix: Water

Associated Lab Samples: 92649923001, 92649923002, 92649923003, 92649923004, 92649923005, 92649923006, 92649923020

Blank Reporting

ParameterUnitsResultLimitMDLAnalyzedQualifiersTotal Dissolved Solidsmg/LND25.025.002/02/23 20:25

LABORATORY CONTROL SAMPLE: 3914566

Spike LCS LCS % Rec Conc. % Rec Limits Qualifiers Parameter Units Result **Total Dissolved Solids** 391 98 80-120 mg/L

SAMPLE DUPLICATE: 3914567

 Parameter
 Units
 Result
 Result
 RPD
 Max

 Total Dissolved Solids
 mg/L
 1280
 1300
 1
 10

SAMPLE DUPLICATE: 3914568

Date: 03/16/2023 04:09 PM

92649923004 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 459 mg/L 505 10 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Total Dissolved Solids

Date: 03/16/2023 04:09 PM

QC Batch: 753740 Analysis Method: SM 2540C-2015

mg/L

QC Batch Method: SM 2540C-2015 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Peachtree Corners, GA

103

80-120

Associated Lab Samples: 92649923007, 92649923008, 92649923009, 92649923010, 92649923011, 92649923012, 92649923013,

92649923014, 92649923015, 92649923016, 92649923017, 92649923018, 92649923019

METHOD BLANK: 3916052 Matrix: Water

Associated Lab Samples: 92649923007, 92649923008, 92649923009, 92649923010, 92649923011, 92649923012, 92649923013,

92649923014, 92649923015, 92649923016, 92649923017, 92649923018, 92649923019

Blank Reporting Limit MDL Qualifiers Parameter Units Result Analyzed mg/L **Total Dissolved Solids** ND 25.0 25.0 02/03/23 15:47 LABORATORY CONTROL SAMPLE: 3916053 LCS LCS % Rec Spike Units % Rec Limits Qualifiers Parameter Conc. Result

413

SAMPLE DUPLICATE: 3916054 92649885002 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 78.0 76.0 3 10 **Total Dissolved Solids** mg/L

400

SAMPLE DUPLICATE: 3916055 92649923015 Dup Max RPD Parameter Units Result Result RPD Qualifiers **Total Dissolved Solids** mg/L 76.0 103 30 10 D6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Huffaker Road Landfill

LABORATORY CONTROL CAMPLE: 2015752

Date: 03/16/2023 04:09 PM

Pace Project No.: 92649923

QC Batch: 753661 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92649923001, 92649923002, 92649923003, 92649923004, 92649923005, 92649923006, 92649923007

METHOD BLANK: 3915752 Matrix: Water

Associated Lab Samples: 92649923001, 92649923002, 92649923003, 92649923004, 92649923005, 92649923006, 92649923007

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND ND	1.0	0.60	02/03/23 23:05	
Fluoride	mg/L	ND	0.10	0.050	02/03/23 23:05	
Sulfate	ma/L	ND	1.0	0.50	02/03/23 23:05	

LABORATORT CONTROL SAMPLE.	3913733	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	50.7	101	90-110	
Fluoride	mg/L	2.5	2.6	103	90-110	
Sulfate	mg/L	50	48.7	97	90-110	

MATRIX SPIKE & MATRIX SP	3915755											
		92649698004	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	4.9	50	50	54.7	55.5	100	101	90-110	2	10	
Fluoride	mg/L	0.15	2.5	2.5	2.6	2.6	97	98	90-110	1	10	
Sulfate	mg/L	153	50	50	199	199	91	91	90-110	0	10	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3915756 3915757												
			MS	MSD								
		92649698014	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	8.4	50	50	57.9	57.8	99	99	90-110	0	10	
Fluoride	mg/L	1.2	2.5	2.5	3.7	3.7	101	101	90-110	0	10	
Sulfate	mg/L	108	50	50	155	158	95	101	90-110	2	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Date: 03/16/2023 04:09 PM

QC Batch: 753665 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92649923008, 92649923009, 92649923010, 92649923011, 92649923012, 92649923013, 92649923014,

92649923015, 92649923016, 92649923017, 92649923018, 92649923019, 92649923020

METHOD BLANK: 3915765 Matrix: Water

Associated Lab Samples: 92649923008, 92649923009, 92649923010, 92649923011, 92649923012, 92649923013, 92649923014,

92649923015, 92649923016, 92649923017, 92649923018, 92649923019, 92649923020

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	0.60	02/03/23 16:59	
Fluoride	mg/L	ND	0.10	0.050	02/03/23 16:59	
Sulfate	mg/L	ND	1.0	0.50	02/03/23 16:59	

LABORATORY CONTROL SAMPLE:	3915766	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	49.2	98	90-110	
Fluoride	mg/L	2.5	2.5	100	90-110	
Sulfate	mg/L	50	49.4	99	90-110	

MATRIX SPIKE & MATRIX SP		3915768										
			MS	MSD								
	(92649923008	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	1.7	50	50	52.1	53.0	101	103	90-110	2	10	
Fluoride	mg/L	0.098J	2.5	2.5	2.7	2.7	103	105	90-110	2	10	
Sulfate	mg/L	95.7	50	50	142	144	92	97	90-110	2	10	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3915	769		3915770							
			MS	MSD					_			
		92649923018	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	ND	50	50	50.3	51.2	101	102	90-110	2	10	
Fluoride	mg/L	ND	2.5	2.5	2.6	2.6	104	103	90-110	1	10	
Sulfate	mg/L	ND	50	50	50.5	51.3	101	103	90-110	2	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Huffaker Road Landfill

Pace Project No.: 92649923

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 03/16/2023 04:09 PM

D6 The precision between the sample and sample duplicate exceeded laboratory control limits.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Date: 03/16/2023 04:09 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92649923001	HAM-GWA-1			_	
92649923002	HAM-GWA-2				
2649923003	HAM-GWA-3				
2649923004	HAM-GWA-4				
2649923005	HAM-GWA-11				
2649923006	HAM-GWC-10				
2649923007	HAM-GWC-5				
2649923008	HAM-HLF-GWC-6				
2649923009	HAM-GWC-7				
2649923010	HAM-HLF-GWC-8				
2649923011	HAM-GWC-9				
2649923012	HAM-GWC-18				
2649923013	HAM-HLF-GWC-19				
2649923014	HAM-GWC-20				
2649923015	HAM-GWC-21				
2649923016	HAM-GWC-22				
2649923017	HAM-GWC-23				
2649923001	HAM-GWA-1	EPA 3010A	754274	EPA 6010D	754977
2649923002	HAM-GWA-2	EPA 3010A	754274	EPA 6010D	754977
2649923003	HAM-GWA-3	EPA 3010A	754274	EPA 6010D	754977
2649923004	HAM-GWA-4	EPA 3010A	754274	EPA 6010D	754977
2649923005	HAM-GWA-11	EPA 3010A	754274	EPA 6010D	754977
2649923006	HAM-GWC-10	EPA 3010A	754274	EPA 6010D	754977
2649923007	HAM-GWC-5	EPA 3010A	754274	EPA 6010D	754977
2649923008	HAM-HLF-GWC-6	EPA 3010A	754274	EPA 6010D	754977
2649923009	HAM-GWC-7	EPA 3010A	754274	EPA 6010D	754977
2649923010	HAM-HLF-GWC-8	EPA 3010A	754274	EPA 6010D	754977
2649923011	HAM-GWC-9	EPA 3010A	754274	EPA 6010D	754977
2649923012	HAM-GWC-18	EPA 3010A	754274	EPA 6010D	754977
2649923013	HAM-HLF-GWC-19	EPA 3010A	754274	EPA 6010D	754977
2649923014	HAM-GWC-20	EPA 3010A	754274	EPA 6010D	754977
2649923015	HAM-GWC-21	EPA 3010A	754274	EPA 6010D	754977
2649923016	HAM-GWC-22	EPA 3010A	754274	EPA 6010D	754977
2649923017	HAM-GWC-23	EPA 3010A	754274	EPA 6010D	754977
2649923018	HAM-HLF-EB-05	EPA 3010A	754274	EPA 6010D	754977
2649923019	HAM-HLF-FB-05	EPA 3010A	754274	EPA 6010D	754977
2649923020	HAM-HLF-FD-05	EPA 3010A	754274	EPA 6010D	754977
2649923001	HAM-GWA-1	EPA 3005A	755529	EPA 6020B	755681
2649923002	HAM-GWA-2	EPA 3005A	755529	EPA 6020B	755681
2649923003	HAM-GWA-3	EPA 3005A	755529	EPA 6020B	755681
2649923004	HAM-GWA-4	EPA 3005A	755529	EPA 6020B	755681
2649923005	HAM-GWA-11	EPA 3005A	755529	EPA 6020B	755681
2649923006	HAM-GWC-10	EPA 3005A	755529	EPA 6020B	755681
2649923007	HAM-GWC-5	EPA 3005A	755529	EPA 6020B	755681
2649923008	HAM-HLF-GWC-6	EPA 3005A	755529	EPA 6020B	755681
2649923009	HAM-GWC-7	EPA 3005A	755529	EPA 6020B	755681
2649923010	HAM-HLF-GWC-8	EPA 3005A	755529	EPA 6020B	755681
2649923011	HAM-GWC-9	EPA 3005A	755529	EPA 6020B	755681

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Date: 03/16/2023 04:09 PM

ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
2649923012	HAM-GWC-18	EPA 3005A	755529	EPA 6020B	755681
2649923013	HAM-HLF-GWC-19	EPA 3005A	755529	EPA 6020B	755681
2649923014	HAM-GWC-20	EPA 3005A	755529	EPA 6020B	755681
2649923015	HAM-GWC-21	EPA 3005A	755529	EPA 6020B	755681
2649923016	HAM-GWC-22	EPA 3005A	755529	EPA 6020B	755681
2649923017	HAM-GWC-23	EPA 3005A	755529	EPA 6020B	755681
2649923018	HAM-HLF-EB-05	EPA 3005A	755529	EPA 6020B	755681
2649923019	HAM-HLF-FB-05	EPA 3005A	755529	EPA 6020B	755681
2649923020	HAM-HLF-FD-05	EPA 3005A	755529	EPA 6020B	755681
2649923001	HAM-GWA-1	SM 2540C-2015	753440		
2649923002	HAM-GWA-2	SM 2540C-2015	753440		
2649923003	HAM-GWA-3	SM 2540C-2015	753440		
2649923004	HAM-GWA-4	SM 2540C-2015	753440		
2649923005	HAM-GWA-11	SM 2540C-2015	753440		
2649923006	HAM-GWC-10	SM 2540C-2015	753440		
2649923007	HAM-GWC-5	SM 2540C-2015	753740		
2649923008	HAM-HLF-GWC-6	SM 2540C-2015	753740		
2649923009	HAM-GWC-7	SM 2540C-2015	753740		
2649923010	HAM-HLF-GWC-8	SM 2540C-2015	753740		
2649923011	HAM-GWC-9	SM 2540C-2015	753740		
2649923012	HAM-GWC-18	SM 2540C-2015	753740		
2649923013	HAM-HLF-GWC-19	SM 2540C-2015	753740		
2649923014	HAM-GWC-20	SM 2540C-2015	753740		
2649923015	HAM-GWC-21	SM 2540C-2015	753740		
2649923016	HAM-GWC-22	SM 2540C-2015	753740		
2649923017	HAM-GWC-23	SM 2540C-2015	753740		
2649923018	HAM-HLF-EB-05	SM 2540C-2015	753740		
649923019	HAM-HLF-FB-05	SM 2540C-2015	753740		
2649923020	HAM-HLF-FD-05	SM 2540C-2015	753440		
2649923001	HAM-GWA-1	EPA 300.0 Rev 2.1 1993	753661		
2649923002	HAM-GWA-2	EPA 300.0 Rev 2.1 1993	753661		
2649923003	HAM-GWA-3	EPA 300.0 Rev 2.1 1993	753661		
2649923004	HAM-GWA-4	EPA 300.0 Rev 2.1 1993	753661		
2649923005	HAM-GWA-11	EPA 300.0 Rev 2.1 1993	753661		
2649923006	HAM-GWC-10	EPA 300.0 Rev 2.1 1993	753661		
2649923007	HAM-GWC-5	EPA 300.0 Rev 2.1 1993	753661		
2649923008	HAM-HLF-GWC-6	EPA 300.0 Rev 2.1 1993	753665		
2649923009	HAM-GWC-7	EPA 300.0 Rev 2.1 1993	753665		
649923010	HAM-HLF-GWC-8	EPA 300.0 Rev 2.1 1993	753665		
649923011	HAM-GWC-9	EPA 300.0 Rev 2.1 1993	753665		
2649923012	HAM-GWC-18	EPA 300.0 Rev 2.1 1993	753665		
649923013	HAM-HLF-GWC-19	EPA 300.0 Rev 2.1 1993	753665		
2649923014	HAM-GWC-20	EPA 300.0 Rev 2.1 1993	753665		
2649923015	HAM-GWC-21	EPA 300.0 Rev 2.1 1993	753665		
649923016	HAM-GWC-22	EPA 300.0 Rev 2.1 1993	753665		
2649923017	HAM-GWC-23	EPA 300.0 Rev 2.1 1993	753665		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Huffaker Road Landfill

Pace Project No.: 92649923

Date: 03/16/2023 04:09 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92649923018	HAM-HLF-EB-05	EPA 300.0 Rev 2.1 1993	753665		
92649923019	HAM-HLF-FB-05	EPA 300.0 Rev 2.1 1993	753665		
92649923020	HAM-HLF-FD-05	EPA 300.0 Rev 2.1 1993	753665		

	5
1	Dana
1-	Tall
•	

Effective Date: 11/14/2022	 		

Asheville Eden Greenwood Hu	untersville [7	Raleigh _	Mec	nanicsville Atlar	nta	∕ (ernersville□
Sample Condition Client Name:					WO#: 926		The body of the Carlot And I was a fact a fact of the Carlot and C
	wer		Pre	oject#:	MOII - 020	TOO	20
Courier: Fed Ex UPS Commercial Pace	USPS Other	TO SEC	Clien		26499 23		
Custody Seal Present? Yes ANO Seals Int	act?	Yes	□No		Date/Initials Person Exami	ning Conter	2/1/23
Packing Material: Bubble Wrap Bubble	e Bags	None	Othe	er	Biological 1	Tissue Froz	en? (al
Thermometer:	Type of Ice:		_		□Yes □N		<i>y</i> .
Correction Factor:	00			ر	, in E		
Cooler Temp: Add/Subtract (°C) Cooler Temp Corrected (°C): ZeB USDA Regulated Soil (N/A, water sample)					should be above freezing Samples out of temp criteri has begun		on ice, cooling process
Did samples originate in a quarantine zone within the Un (check maps)? Yes No	ited States: CA	, NY, o	or SC		mples originate from a forei		
				moud	ing Hawaii and Puerto Rico) Comments/Dis		∐No
Chain of Custody Present?	Dres []No	□N/A	1.			V LOSE MAN AND AND AND AND AND AND AND AND AND A
Samples Arrived within Hold Time?	ATES [οMC	□N/A	2,			
Short Hold Time Analysis (<72 hr.)?	□Yes →	₫No	□N/A	3.			
Rush Turn Around Time Requested?	□Yes Æ	JNO	□N/A	4.			
Sufficient Volume?	eres c	No	□N/A	5.			1100
Correct Containers Used? -Pace Containers Used?	ØYes □	No No	□N/A □N/A	6.			
Containers Intact?]No	□N/A	7.			
Dissolved analysis: Samples Field Filtered?	□Yes □	JNo	DATA	8.	ALX.	**	
Sample Labels Match COC?	EYes []No	□N/A	9.			V
-Includes Date/Time/ID/Analysis Matrix:	W			9			
Headspace in VOA Vials (>5-6mm)?	□Yes □]No	DNIA	10.			
Trip Blank Present?]No	□N⁄A	11.		-	
Trip Blank Custody Seals Present?	□Yes □]No	DN/A				
COMMENTS/SAMPLE DISCREPANCY				· Consultation	Field Data	Required?	Yes No
CLIENT NOTIFICATION/RESOLUTION			Lo	t ID of spl	t containers:		
	·					,,	
Person contacted:			Date/Time:	i 	The state of the s		
					Date:		
Project Manager SRF Review:				_	Date:		

Effective Date: 11/14/2022

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

***Check all unpreserved Nitrates for chlorine

Project #

WO#: 92649923

PM: BV

Due Date: 02/15/23

CLIENT: GA-GA Power

ltem#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mt Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP45-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N-250 mt. plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP48-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCI (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H25O4 (pH < 2)	DG94-40 mL Amber NH4Cl (N/A)(CI-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mE VOA Unpreserved (N/A)	DG9V-40 mL VOA H3PO4 (N/A)	KP7U-50 mL Plastic Unpreserved (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3R-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AGOU-100 mL Amber Unpreserved (N/A) (CI-)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1		1				V							1	/										1				
2	1	1	١			V	/	/					/	/										/	1			
3	1	1	1			10					/		1	/														
4	1	1	1			V	7	1			/			1						-								
5	1	1				V	1	/					/	/														
6		((X							/	1														
7					1									1														
8						/							1	1														
9	1							/																/				
10	1												/															
11													/										1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
12																												

pH Adjustment Log for Preserved Samples													
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot#							
						-							
					*								

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DENR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

Pace
AND THE REPORT

Effective Date: 11/14/2022	×.

Laboratory receiving samples:		
Asheville Eden Greenwood Huntersville	Raleigh	Mechanicsville Atlanta Kernersville
Sample Condition Upon Receipt Client Name:	Pro	Diject #: WO#: 92649923
Courier: Fed Ex UPS USPS	Clien	PM: BV Due Date: 02/15/23
Commercial Pace Other:_		CLIENT: GA-GA Power
	Yes No	Date/Initials Person Examining Contents 2/1/23
Packing Material: Bubble Wrap Bubble Bags Thermometer:	None Othe	Biological Tissue Frozen?
Type of Ice:	⊟Wet □ Blue	
Cooler Temp: 28 Correction Factor: D D	*	Tomo should be about fraging to 6°C
Add/Sabtlact (c)	-	Temp should be above freezing to 6°C Samples out of temp criteria. Samples on ice, cooling process
Cooler Temp Corrected (°C):		has begun
USDA Regulated Soil (☐ N/A, water sample) Did samples originate in a quarantine zone within the United States: CA	NV aces	N.J. Carlotte and
(check maps)? Yes No	A, NY, or SC	Did samples originate from a foreign source (Internationally, including Hawaii and Puerto Rico)? ☐ Yes ☐ No
		Comments/Discrepancy:
Chain of Custody Present?	No □N/A	1.
Samples Arrived within Hold Time?	□No □N/A	2.
Short Hold Time Analysis (<72 hr.)?	No □N/A	3.
	ONO □N/A	4.
		5.
	□N0 □N/A	6.
	No □N/A	
Containers Intact?	No □N/A	7.
	NO 7 DATA	8.
Sample Labels Match COC?	2√0 □N/A	present but not listed on COC
-Includes Date/Time/ID/Analysis Matrix:		1/30/23 0_000
Headspace in VOA Vials (>5-6mm)?	No DATA	10.
	No □N/A	11.
Trip Blank Custody Seals Present?	DNO DNA	-
COMMENTS/SAMPLE DISCREPANCY	2.00	Field Data Required? Yes No
	Lo	t ID of split containers:
CLIENT NOTIFICATION/RESOLUTION		HARMONIA DE LA CONTRACTOR DEL CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR
Person contacted:	Date/Time:	
Project Manager SCURF Review:	-	Date:
Project Manager SRF Review:		Date:

Effective Date: 11/14/2022

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

***Check all unpreserved Nitrates for chlorine

Project # WO#: 92649923

PM: BV

Due Date: 02/15/23

CLIENT: GA-GA Power

ltem#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP45-125 mL Plastic H25O4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP4B-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG15-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2SO4 (pH < 2)	DG94-40 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unpreserved (N/A)	DG9V-40 mL VOA H3PO4 (N/A)	KP7U-50 mL Plastic Unpreserved (N/A)	V/GK (3 vials per kit}-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3R-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AGOU-100 mL Amber Unpreserved (N/A) (CI-)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1		1	1			Y																				_		
2		1				1																						
3		1	1			V		/					1	/														
4		1	1		/	1	/	/			/		1	/										/				
5	1	1	1			10	/	/			/		/	1										/				
6		1				X							/	/										/				
7		i	1		1	1	1	/			1		1	1										/		-		
8		1	Ì		/	Tu	/						/	/	/													
9		1	1			1	1						1	1														
10		1	1			V	/						1	/														
11		1	}			Y	1						/	/										/				
12		l	l			Ja																						

		pH Ac	ljustment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #
, team				A		

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DENR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

Effective Date: 11/14/2022

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

***Check all unpreserved Nitrates for chlorine

Project # W0#: 92649923

Due Date: 02/15/23

CLIENT: GA-GA Power

tem#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP4S-125 mL Plastic H2SO4 (pH < 2) (Cl-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP4B-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (Cl-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG15-1 liter Amber H2SO4 (pH < 2)	AG35-250 mL Amber H2SO4 (pH < 2)	DG94-40 mL Amber NH4CI (N/A)(CI-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na252O3 (N/A)	VG9U-40 mL VOA Unpreserved (N/A)	DG9V-40 mL VOA H3PO4 (N/A)	KP7U-50 mL Plastic Unpreserved (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3R-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AG0U-100 mL Amber Unpreserved (N/A) (CI-)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1		1	1			Y	\setminus							1														
2		1	1		/	X								/										7				
3			•		/	/							1															
4																		4										
5	/				1		1	/			1																	
6	/						1				1			1							, =			1				
7	/			•	1	1	1				1		1	1														
8 .	/				/	/							/											1				
9	/				/	1	1	/			1		1	/										1				
10	/		7								1																	
11	/				1																				1			
12												Į.																

	pH Ac	ljustment Log for Pres	erved Samples		
Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #
	Type of Preservative			Type of the service o	Type of Preservative pH upon receipt Date preservation adjusted Time preservation Amount of Preservative

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DENR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

Important Note: By signing this form you are accepting Peccé NET 30 day payment terms and agreeing to take charges of 1.5% per month for any breakes not paid within 30 days.

F-ALL-Q-020rev.07, 15-Feb-2007

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT All relevant fields must be completed accurately.

					and Cond	Task Code	1	2	8	9		-	6	8	4	3	2	-	ITEM#			xequest	100.00	Email 10.		Address	Company:	Required
					Contraction of the Contraction o	ADDITIONAL COMMENTS		The state of the s					I	ı	_	-	_	7	SAMPLE ID (AZ, 0-81) Sample 1Ds MUST BE UNIQUE	Required Client Information	Section D	sednessed rote rette (VI)	L	SCS Contacts		Atlanta, GA		Clies
					1001	COMMENTS							HAM-GWC-10	HAM-GWA-11	HAM-GWA-4	HAM-GWA-3	HAM-GWA-2	HAM-GWA-1	WATER WATER PRODUCT SOLUTIONS OF AMERICAN OTHER			To Cay	765					
			1	Kyan	Thomas		-	L		L	\parallel		_						2 5 4 2 4 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3000		Project Number	Project Name:	Purchase Order No		Copy To:	Report To: SCS Contacts	Required Project Information:
				3	143	Ę	L	\perp	╀	\perp	1		-	-	_			ě	MATRIX CODE (see valid code		4	3	1	nder N		Goos	SCS	dect
		1		1	No.	Į	H	╀	+	-	-	Н	6	6	G 1	G 1	3	9	SAMPLE TYPE (G=GRAB C=	COMP	4		tuffal			yntec	Cont	morn
	_			Hinn	" ppsa	ED BY 1 A	L	L		L			1/30/2023	1/30/2023	1/30/2023	1/30/2023	1/30/2023	1/30/2023	рате		-		ker Road			Geosyntec Contacts	ects	ation:
	P	SAMPLE		1 Pace	(Descy	RELINQUISHED BY / AFFILIATION	L						1811	1630	1037	1169	1348	1511	TIME	COLL			Huffaker Road Landfill			5		
	RIMT Nam	RNAME		2	Cours With a	×			[J 1/30			rJ 1/30						1	DATE	COLLECTED								
	PRINT Name of SAMPLER:	SAMPLER NAME AND SIGNATURE		11.14	£11/2053	DATE			1/30/2023	I		1/30/2023					_		TIME .		-							
	ĕ	ᇍ		1223	£3.c	6							5	ñ	ಕ	15	15	16	SAMPLE TEMP AT COLLECTION	N	1				-			
_	\downarrow	"[T	7436	17	1	Γ	Π	Γ	T		7	3	3	ü	3	ω.	s	# OF CONTAINERS	-	1	Pace Profile 8.	Marie	Pace Quota Reference	Address	Com	Altention:	invoice infor
To see a		1		19%	37	BMIL		L				\Box	N	N	N	ĸ)	N	2	Unpreserved	Г	1	Profile	Project	Pace Quota Reference	98	Company Name	g	invoice information
		ŀ	╁	1	-	-	H	+			\dashv	7	-	-	=	-	-	-	H ₂ SO ₄ HNO ₃	3	1					ame:	8	ORDERELLA
-4		1		40	273		Г	L	Н			_	4	\Box				\Box	HCI	Preservatives		10839	Bonnie Vang		-	-	Southern Co.	
1000		1	ı	7		8	-	+	Н		\dashv	1	+	-	+	-	-		NaOH Na ₂ S ₂ O ₃	ative	l		Van			1	Š	
00	ŧ	1	-	L	1. A	ACCEPTED BY / ASFILIATION			H			\Box	コ	\Box	コ	\exists			Methanol	1	ı				-	-	1	
l		1		1	7	B GE	H	_	4					_			\perp	-	Other Analysis Test	Y/ N	Ļ	1				1	١	
	ı	ı	_	1	1	YIAS	-	T	\dagger		Т	Т	×T	×	×	×	×	×	Chloride, Fluoride, Suttate	Z	1				İ	1	-	
DATE SIGNAL	١	-	-	To	Pare	FILM			L		\Box		_	×	×	$\overline{}$	-	×	rds .	z	Reques						-	
	.	l		4	~	NON	-	-	L	Н	-	-	\rightarrow	-	-	-	\rightarrow	-	Sb. As, Ba, Ba, B, Cd, Cr, Co, Cu	Z						-		
2000				E			┝	+	-	Н	-	+	×	×	×	×	×	×	Pb. NJ, Se. Ag, Ti, V, Zn	<u>z</u> _	昬	H	-		ᅡ	ᆰ	_,	
Yme		r		7	19	L						1	7	7	1	T	7				暑		8	UST	z	9		
Š				1	2023	BATE	L	Н			1	4	4	\exists	4	4	4]=	STATE:	Site Location	31	NPDES	됣		
Ceosymec Consumants, inc		H	+	1/28	1/4	Н	┝	H	-	H	-	+	+	+	+	\dashv	+	\dashv		-	ted Analysis Filtered (Y/N)	Til.	3			REGULATORY AGENCY		
arrus,				T.	1245	ЭМП	H	H			1	\forall	+	+	7	7	+	7		\vdash	łŝ	1		RCRA	g l	à l		
Ę,		_	_	W		_		\blacksquare				1	1	\Box		\Box		╗			1°	1	2	\$	ğ	2	Ī	Page
omp	in "	c		7			_	₩	-	Ц	-	+	+	+	+	4	_	ᅴ	Desidual Chlories (12)	_	L	1			N/O			
		+	+	+	Н		-	+	-	H	+	+	z :	+	z	Z	z	z	Residual Chlorina (Y/N)			330			☐ GROUND WATER□	ı		
	red (Y/N)					MAR												١	S C			510		(9		I		
teus bed	Coo N)	alor				SAMPLE CONDITIONS						1	2	2	P.	9	위	- 1						OTHER	DRINK			9
nple	s fint	act	1			SNOTT							780	DH = 700 00	H 6 92	DH = 6.82	3	d	19023					8	DRINKING WATER	-		-

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT All relevant fields must be completed accurately.

				ask Code		12	=	ē	6	a	7	•	Ca .	4	3	2	-	ITEM#		Raquesta	THORSE	Email To		Address:	Company:	Raquired C
				Tesk Code: HAM-CCR-ASSMT-2023S1	ADDITIONAL COMMENTS	HAM	HA	¥	HA.	HA	HA	HA	£	£	¥	¥	Ä	Sample IDs MUST BE UNIQUE		Requested Due Detu/TAT: 10		SCS Contacts		Atlanta, GA	GA Power	E G
				181	MMENTS	HAM-HUF-EB-05	HAM-GWC-23	HAM-GWC-22	HAM-GWC-21	HAM-GWC-20	HAM-GWC-19	HAM-GWC-18	HAM-GWC-9	HAM-GWC-8	HAM-GWC-7	HAM-GWC-6	HAM-GWC-5	Walld Metrix Codes MAIRIX CXX MAIRIX CXX MAIRIX MATR WATE WATE WATE WATE WATE WATE WATE MAIRIX MATR WATE MAIRIX MATR WATE MAIRIX MATR MAT		10 Day	X					
			Ryan	Alc. sc	Д	٧	٧	٧	٧	٧	V	V	_	V	·	V	×	의 인수 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등	-	Project Number	Project Name:	Purchase Order No.		Copy To: (Report To: SCS Contacts	Regulated Project Information
			-		DAITIE	a DAM	w	W G	WG G	wa a	wa G	DWG G	WG G	wa a	WG G	WG G	WG G	MATRIX CODE (see valid codes to left SAMPLE TYPE (G=GRAB C=COMP)	4	ğ		der No.		eosy	CSC	oject In
			Millian	Hessel	HEN	_	-		-	\vdash	-	-	_	_	-	_	-				uffak			ntec	onta	format
	8		1	14/6	RELINQUISHED BY I AFFILIATION				1/31/2023		-	_	_	1/31/2023	1/31/2023	1/31/2023	1/31/2023	COMPOSITE	ACCORD COMPANY		Huffaker Road Landfill			Geosyntec Contacts	38	on:
PR4	SAMPLER NAME AND SIGNATURE		Pace	Georged	NOTTALLIF	[1] 5081	1343	1013	1216	1050	1444	1031	1134	1602	1429	1520	1320	COLLECTED COMPO			andfill					
PRINT Name of SAMPLER: Through	IAME AND	4	100	2 2 F		1/31/2023					1				_			COMPOSITE								
RAMPL	SIGNA		hope	11/201	DATE	023									10000			TIME								
ER: 71	DRE	4	-	×	Щ	5	5	ä	12	ĩ.	6	6	16	18	17	17	15	SAMPLE TEMP AT COLLECTION	4	9	2 70	20	-		ᅱ	-
100th			1433	1245	TIME	ę,	ω	ß	3	ω	ω	ω	3	w	3	3	3	# OF CONTAINERS	4	Pace Profile 8	Pace Project Menager	Page Quoto Reference:	Address:	Company Name:	Attention:	Invoice information
	COLUMN		18	3	M	2	2	2	2	2	2	2	2	2	2	2	2	Unpreserved H ₂ SO ₄	П	8 919	jact	* 3		NA VIEN	7	inform
hes	000000		2	124		-	-	-	-	-1	-1	-	1	1	4	1	1	HNO ₃ Presented to the control of t	П	10839	Bonr			Ä	Sor	ation:
1	-		hus	Lyan														NaOH 8	П	9	Bonnie Veng			-	Southern Co.	
64			1	2-	ACC					_		Ц							П		P.	l		-	S	
Corting	-		3	/	EPTE!	Н	\exists	\dashv		\vdash							Н	Methanol Other	П				-	-		
	-		Him	11.4-	ACCEPTED BY / AFFILIATION													Analysis Test Y/N	П				-		١	
Carlo bathering			8	4	AFF	_		×	×	×	×	×	×	×	×	-	×	Chloride, Fluoride, Sulfate Z	اردا					-	-	
1			4	Perc	LIATA	×	×	×	-	×	×	×	×	×	×	×	_	TCS Z 5b, As, Ba, Be, B, Cd, Cr, Co, Cu Z	Request					-		
36 G	-			٠,٠	2			-	-	-	-	\rightarrow	_	$\overline{}$	-	1200		Pb, Ni, Se, Ag, Ti, V, Zn Z								
BOBY	-		2												_				1		811			교		
ntec			1	1/2	9	Н	4	_	4	_	\dashv	\dashv	_	_	_	_	4		Age	53	-	UST	NPDES	訚		
Cons			2	21.15	DATE	Н	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv		\dashv		-	-		录	STATE:	Site Location		ES.	ğ		
Geosyntec Consultants, Inc.	-		1435	1246	BMIL			4	\exists										ed Analysis Filtered (Y/N)	ı		□ RCRA	□ GR	REGULATORY AGENCY		
	+	+	7	\dashv	_	\dashv	-	-	\dashv	\dashv	+	\dashv			-	\dashv	-			SA.		Š	GND	9		Page:
np in	·c	_	\perp	Ц	-	z	z	z	z	z	z	z	z	z	z	z	z	Residual Chlorine (Y/N)		'			GROUND WATER	Ì		
e (YA					SAME		3										-	Page								-
ustod ed Co (Y/N)					SAMPLE CONDITIONS	2	모	모	밁	PH.	뭐	울	PH H	Hg	pH.	PH	PH	2649923				OTHER	DRINKING WATER			8
	+	+	+-	\dashv	NOUS	NA	pH = 7.03	pH = 7.67	pH = 6.23	DH = 7.44	PH=7.65	pH = 7.56	pH = 6.74	pH = 7.09	pH = 5.84	pH = 7.24	pH = 6.96	\$ 00 m				8	W DN			
plas ir	stocal				٦	9	0	0	0	0	0	0	0	\mathcal{E}	8	0	Ğ	EC3				ſ	TER	1	1	
(NW)					ł	20	7	6	B	2	N	2	1	3	0	8	9	p							١	

Supertant Note: By skyring this form you are eccepting Pace's NET 30 day payment terms and egreeing to late charges of 1.5% per month for any involves not paid within 30 days.

F-ALL-Q-020rev.07, 15-Feb-2007

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT All relevant fields must be completed accurately.

				fask Code		12	=	10	0	•	7	a	54	۵	3	2	-	ITEM #	5			Requested	Phone:	Emuli To:		Address:	Company	Required C
				rask Code: HAM-CCR-ASSMT-2023S1	ADDITIONAL COMMENTS	CANAL PARTY OF THE											#	SAMPLE (D (AZ, 0.97.) Sample IDs MUST BE UNIQUE	aquired Client information	Section D		Requested Due Ditte/TAT:		SCS Contacts		Atlanta, GA	GA Power	Required Client Information:
				12351	COMMENTS												HAM-HUF-FB-05			Valid Matrix Codes		10 Day	Fax					
		+	Kyan	47101616														# # * 4 Q } & 4 P B	TODE	fx Codes	-	Project Number	Project Name:	Purchase Order No.:		Copy to:	Report To: SCS Contacts	Required Project Information
	1		2	16164	RELIN	L	L	L	L		227		_	_			ě	MATRIX CODE (see valid or		-1	1	Der.		rder No		Geos	SCS	roject t
			-	2	HEND	H	┝	-	H	Н	_	_	+	pattypes	_	_	9 1/	SAMPLE TYPE (G=GRAB C	C=COM	P)	1	١	iuffak	r.		mtec	Conta	nomat
	-		line 1	The sale	RELINGUISHED BY I ASFELATION					Ц			\perp				1031/2023	DATE		-			Huffaker Road Landfill			Geosyntec Contacts	cts	llon
2 3	AMPLES		Park	ant6	FFILLATIO												1610	THE	COLLECTED	1			Landfill					
PRINT Name of SAMPLER: SIGNATURE OF SAMPLER:	SAMPLER NAME AND SIGNATURE			Grasset	2						TJ 1/31					J 1/31		DATE	CTED									
of BAM	ND SIGN		1.10	2/1/23	DATE						1/31/2023					1/31/2023		TIME		1								
PLEA	1		123	11123	7	-	-	-		-	7	_	-	-	-	_	15	SAMPLE TEMP AT COLLECT	ION	\dashv	1							
13	l fi	十	1435	7						П	7				٦		3	# OF CONTAINERS	-	7	Ì	900	Pood of	Refer	Address	CO	Alle	lowol
Jame!			35	245	THE						\perp						12	Unpreserved	T	7	l	Page Profile &	Project	Pace Quote Reference	856	Company Name:	Attention	invoice information
3 6	1 }	+	H		\dashv	Н	-	-	-	Н	Н	_	-	-	\dashv	_	-	H ₂ SO ₄ HNO ₃	7	1	ı	-	- 1			dune	- 1	Ž
3] [1	1 0	4							Н							HCI	Preservatives	1	I	10839	Bonnie Vang				Southern Co.	ž
1	11	-	P	22														NeOH	٦¥		I		o Va				8	
-	П		1	7	8		L	_	_	H	-	_	-	_	_	_	_	Na ₂ S ₂ O ₃ Methanol	28	-	ı		2				δ	
	Н		6	=	BIG		-	-	Н	H	\dashv	Н	\dashv		\dashv		Н	Other	\dashv		I			-				
	П			William	ACCEPTED BY I ASFILIATION	******	-	-		7	-					-		Analysis Test	Y/	N	1			- 1		-		
5		-	17-1		3												×	Chlorida, Fluorida, Sulfata	z	٥,	J				-	- 1	1	
DATE Signed		'	B	Pare	F.												_	ros	z	Keduesu			-	1		- 1	1	
			how		2				Ц			_	_	_	_	_	×	Sb, As, Ba, Ba, B, Cd, Cr, Co, C	Z				1		- 1	- 1	-	
ျိန္တ	П		14			Н	Ц	H	Н	\dashv	\dashv	4	\dashv	-	-	4	×	Pb. Nl. Sa. Ag. Ti, V, Zn	2			_	4	ᆜ	닉	7		
SYM.	H	+	O	N	-	-	-	-	+		-	-	-	-	-	-	-	***	+	1	1		88		9	0		
8				-1	DATE			-	Н	Н	\dashv	-		-			┪		+	15		ST	Site Location	rsu	NPDES	5		
15	П		M	Still	7												┫		\top	o Analysia Fusered		STATE:	ğ		S	힒		
osyntec Consultant	lľ		1	-	٦			\Box											\mathbf{I}		·		٦			Ă		
Geosyntec Consultants, Inc.	П		12	3	II.			\downarrow								\Box						L	ı	RCRA	GROUND WATER	REGULATORY AGENCY		
हि	Ц	_	7	_'	4	Н		1	Н	\dashv	4	4	-	\dashv	\dashv	4	-	***************************************	+	4		8		>	Š.	욉	-	Page:
emp in	1°C	-		1	1	_	-	1		\dashv	\dashv	-	\dashv	+	ᅱ	-	-	Residual Chlorine (Y/N)	-	_	1	l			*	١	١	
	\rightarrow	+-	\vdash	\dashv	1	-	-	-		H	\dashv	-	+	-	-	\dashv	픡	Residual Chickine (17N)	-		ŀ	1000	60		ER	-	١	
ice (Y/				-	8							I				1		2			1			C		-	١	•
	_	+	╁┤	\dashv	SAMPLE CONDITIONS						- 1	-		1				293			1			Q	ا		1	2
Custon saind C	coter				8	1					-	1		-		2	١	Project No.			1			OTHER	DRINKING WATER	- 1	١	
(YM)					N N						1	1	1	- 1		Last sample	Z.	2-2			-			XI	ŝ	-	J	
	T				SNO	1								-		룡			20		1			6	WA	1	J	٨
mples i	intact							Salles				-		- 1		1	9				-			ı	Ē	- [-	
(Y/N)	E [- 1	- 1							١			- [+	0	PV/	188		1				- 1	- 1	- 1	

August 2023

(704)875-9092

September 05, 2023

Kristen Jurinko Southern Company 241 Ralph McGill Blvd NE Bin 10160 Atlanta, GA 30308

RE: Project: Huffaker Road LF Pace Project No.: 92683141

Dear Kristen Jurinko:

Enclosed are the analytical results for sample(s) received by the laboratory on August 16, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

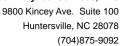
- Pace Analytical Services Asheville
- Pace Analytical Services Peachtree Corners, GA

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Bonnie Vang bonnie.vang@pacelabs.com (704)875-9092

Bonnie Vary


Project Manager

Enclosures

cc: Kip Gray, Geosyntec

Christine Hug, Geosyntec Consultants, Inc. Thomas Kessler, Geosyntec Consultants Whitney Law, Geosyntec Consultants Laura Midkiff, Southern Company Caroline Nelson, Geosyntec

CERTIFICATIONS

Project: Huffaker Road LF

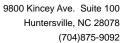
Pace Project No.: 92683141

Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648

North Carolina Drinking Water Certification #: 37712 North Carolina Wastewater Certification #: 40

South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222


South Carolina Laboratory ID: 99030

Pace Analytical Services Peachtree Corners

110 Technology Pkwy, Peachtree Corners, GA 30092

Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812 North Carolina Certification #: 381 South Carolina Certification #: 98011001

Virginia Certification #: 460204

SAMPLE SUMMARY

Project: Huffaker Road LF

Pace Project No.: 92683141

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92683141001	HAM-GWA-1	Water	08/14/23 12:31	08/16/23 14:02
92683141002	HAM-GWA-2	Water	08/14/23 14:11	08/16/23 14:02
92683141003	HAM-GWA-3	Water	08/14/23 14:19	08/16/23 14:02
92683141004	HAM-GWA-4	Water	08/14/23 13:20	08/16/23 14:02
92683141005	HAM-GWA-11	Water	08/14/23 13:25	08/16/23 14:02
92683141006	HAM-HLF-GWC-6	Water	08/14/23 17:30	08/16/23 14:02
92683141007	HAM-GWC-10	Water	08/14/23 16:50	08/16/23 14:02
92683141008	HAM-GWC-23	Water	08/14/23 17:02	08/16/23 14:02
92683141009	HAM-HLF-FD-05	Water	08/14/23 00:00	08/16/23 14:02
92683141010	HAM-GWC-5	Water	08/15/23 12:40	08/16/23 14:02
92683141011	HAM-GWC-7	Water	08/15/23 17:23	08/16/23 14:02
92683141012	HAM-HLF-GWC-8	Water	08/15/23 14:20	08/16/23 14:02
92683141013	HAM-GWC-9	Water	08/15/23 16:11	08/16/23 14:02
92683141014	HAM-GWC-18	Water	08/15/23 14:57	08/16/23 14:02
92683141015	HAM-HLF-GWC-19	Water	08/15/23 16:14	08/16/23 14:02
92683141016	HAM-GWC-20	Water	08/15/23 13:52	08/16/23 14:02
92683141017	HAM-GWC-21	Water	08/15/23 14:52	08/16/23 14:02
92683141018	HAM-GWC-22	Water	08/15/23 13:11	08/16/23 14:02
92683141019	HAM-HLF-EB-05	Water	08/15/23 17:45	08/16/23 14:02
92683141020	HAM-HLF-FB-05	Water	08/15/23 17:40	08/16/23 14:02

Project: Huffaker Road LF

Pace Project No.: 92683141

Lab ID	Sample ID	Method	Analysts	Analytes Reported
92683141001	HAM-GWA-1	EPA 6010D	 MS	6
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		SM 2320B-2011	YEG	3
		SM 4500-S2D-2011	JP1	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92683141002	HAM-GWA-2	EPA 6010D	MS	6
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		SM 2320B-2011	YEG	3
		SM 4500-S2D-2011	JP1	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92683141003	HAM-GWA-3	EPA 6010D	MS	6
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		SM 2320B-2011	YEG	3
		SM 4500-S2D-2011	JP1	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92683141004	HAM-GWA-4	EPA 6010D	MS	6
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		SM 2320B-2011	YEG	3
		SM 4500-S2D-2011	JP1	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92683141005	HAM-GWA-11	EPA 6010D	MS	6
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		SM 2320B-2011	YEG	3
		SM 4500-S2D-2011	JP1	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92683141006	HAM-HLF-GWC-6	EPA 6010D	MS	6
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		SM 2320B-2011	YEG	3
		SM 4500-S2D-2011	JP1	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92683141007	HAM-GWC-10	EPA 6010D	MS	6

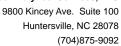
REPORT OF LABORATORY ANALYSIS

Project: Huffaker Road LF

Pace Project No.: 92683141

Lab ID	Sample ID	Method	Analysts	Analytes Reported
		EPA 6020B		16
		SM 2540C-2015	DL1	1
		SM 2320B-2011	YEG	3
		SM 4500-S2D-2011	JP1	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92683141008	HAM-GWC-23	EPA 6010D	MS	6
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		SM 2320B-2011	YEG	3
		SM 4500-S2D-2011	JP1	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92683141009	HAM-HLF-FD-05	EPA 6010D	MS	6
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		SM 2320B-2011	YEG	3
		SM 4500-S2D-2011	JP1	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92683141010	HAM-GWC-5	EPA 6010D	DRB	6
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		SM 2320B-2011	YEG	3
		SM 4500-S2D-2011	JP1	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92683141011	HAM-GWC-7	EPA 6010D	DRB	6
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		SM 2320B-2011	YEG	3
		SM 4500-S2D-2011	JP1	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92683141012	HAM-HLF-GWC-8	EPA 6010D	DRB	6
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		SM 2320B-2011	YEG	3
		SM 4500-S2D-2011	JP1	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92683141013	HAM-GWC-9	EPA 6010D	DRB	6
		EPA 6020B	CW1	16

REPORT OF LABORATORY ANALYSIS



Project: Huffaker Road LF

Pace Project No.: 92683141

Lab ID	Sample ID	Method	Analysts	Analytes Reported
	_	SM 2540C-2015	 DL1	1
		SM 2320B-2011	YEG	3
		SM 4500-S2D-2011	JP1	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92683141014	HAM-GWC-18	EPA 6010D	DRB	6
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		SM 2320B-2011	YEG	3
		SM 4500-S2D-2011	JP1	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92683141015	HAM-HLF-GWC-19	EPA 6010D	DRB	6
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		SM 2320B-2011	YEG	3
		SM 4500-S2D-2011	JP1	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92683141016	HAM-GWC-20	EPA 6010D	DRB	6
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		SM 2320B-2011	YEG	3
		SM 4500-S2D-2011	JP1	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92683141017	HAM-GWC-21	EPA 6010D	DRB	6
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		SM 2320B-2011	YEG	3
		SM 4500-S2D-2011	JP1	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92683141018	HAM-GWC-22	EPA 6010D	DRB	6
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		SM 2320B-2011	YEG	3
		SM 4500-S2D-2011	JP1	1
		EPA 300.0 Rev 2.1 1993	CDC	3
92683141019	HAM-HLF-EB-05	EPA 6010D	DRB	1
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1

REPORT OF LABORATORY ANALYSIS

Project: Huffaker Road LF

Pace Project No.: 92683141

Lab ID	Sample ID	Method	Analysts	Analytes Reported
		EPA 300.0 Rev 2.1 1993	CDC	3
92683141020	HAM-HLF-FB-05	EPA 6010D	DRB	1
		EPA 6020B	CW1	16
		SM 2540C-2015	DL1	1
		EPA 300.0 Rev 2.1 1993	CDC	3

PASI-A = Pace Analytical Services - Asheville

PASI-GA = Pace Analytical Services - Peachtree Corners, GA

Project: Huffaker Road LF

Pace Project No.: 92683141

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifier
2683141001	HAM-GWA-1					
EPA 6010D	Iron	1.1	mg/L	0.040	08/29/23 21:12	
EPA 6010D	Manganese	0.17	mg/L	0.040	08/29/23 21:12	
EPA 6010D	Potassium	0.40J	mg/L	0.50	08/29/23 21:12	
EPA 6010D	Sodium	4.0	mg/L	1.0	08/29/23 21:12	
EPA 6010D	Calcium	17.2	mg/L	1.0	08/29/23 21:12	
EPA 6010D	Magnesium	6.4	mg/L	0.050	08/29/23 21:12	
PA 6020B	Antimony	0.0028J	mg/L	0.0030	08/28/23 16:26	
PA 6020B	Barium	0.039	mg/L	0.0050	08/28/23 16:26	
PA 6020B	Boron	0.049	mg/L	0.040	08/28/23 16:26	
PA 6020B	Cobalt	0.00043J	mg/L	0.0050	08/28/23 16:26	
M 2540C-2015	Total Dissolved Solids	98.0	mg/L	25.0	08/18/23 18:33	
M 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	78.0	mg/L	5.0	08/21/23 16:36	
M 2320B-2011	Alkalinity, Total as CaCO3	78.0	mg/L	5.0	08/21/23 16:36	
PA 300.0 Rev 2.1 1993	Chloride	0.99J	mg/L	1.0	08/19/23 07:21	
EPA 300.0 Rev 2.1 1993	Fluoride	0.993 0.076J	-	0.10	08/19/23 07:21	
			mg/L			
PA 300.0 Rev 2.1 1993	Sulfate	3.9	mg/L	1.0	08/19/23 07:21	
2683141002	HAM-GWA-2					
PA 6010D	Iron	2.1	mg/L	0.040	08/29/23 21:27	
PA 6010D	Manganese	0.19	mg/L	0.040	08/29/23 21:27	
PA 6010D	Potassium	0.61	mg/L	0.50	08/29/23 21:27	
PA 6010D	Sodium	12.1	mg/L	1.0	08/29/23 21:27	
PA 6010D	Calcium	53.1	mg/L	1.0	08/29/23 21:27	
PA 6010D	Magnesium	20.5	mg/L	0.050	08/29/23 21:27	
PA 6020B	Barium	0.19	mg/L	0.0050	08/28/23 16:32	
PA 6020B	Boron	0.097	mg/L	0.040	08/28/23 16:32	
SM 2540C-2015	Total Dissolved Solids	266	mg/L	25.0	08/18/23 18:33	
M 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	237	mg/L	5.0	08/21/23 20:54	
M 2320B-2011	Alkalinity, Total as CaCO3	237	mg/L	5.0	08/21/23 20:54	
PA 300.0 Rev 2.1 1993	Chloride	2.2	mg/L	1.0	08/19/23 00:29	
PA 300.0 Rev 2.1 1993	Fluoride	0.080J	mg/L	0.10	08/19/23 00:29	M1
PA 300.0 Rev 2.1 1993	Sulfate	23.4	mg/L	1.0	08/19/23 00:29	M1
2683141003	HAM-GWA-3					
PA 6010D	Iron	0.96	mg/L	0.040	08/29/23 21:32	
PA 6010D	Manganese	0.57	mg/L	0.040	08/29/23 21:32	
PA 6010D	Potassium	0.82	mg/L	0.50	08/29/23 21:32	
PA 6010D	Sodium	21.7	mg/L	1.0	08/29/23 21:32	
PA 6010D	Calcium	57.2	mg/L	1.0	08/29/23 21:32	
PA 6010D	Magnesium	25.6	mg/L	0.050	08/29/23 21:32	
PA 6020B	Barium	0.087	mg/L	0.0050	08/28/23 16:50	
PA 6020B	Boron	0.15	mg/L	0.040	08/28/23 16:50	
PA 6020B	Cobalt	0.00095J	mg/L	0.0050	08/28/23 16:50	
PA 6020B	Nickel	0.0021J	mg/L	0.0050	08/28/23 16:50	
M 2540C-2015	Total Dissolved Solids	341	mg/L	25.0	08/18/23 18:33	
M 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	221	mg/L	5.0	08/21/23 17:22	
M 2320B-2011	Alkalinity, Total as CaCO3	221	mg/L	5.0	08/21/23 17:22	
EPA 300.0 Rev 2.1 1993	Chloride	1.3	mg/L	1.0	08/19/23 01:13	

Project: Huffaker Road LF

Pace Project No.: 92683141

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
2683141003	HAM-GWA-3					
EPA 300.0 Rev 2.1 1993	Fluoride	0.089J	mg/L	0.10	08/19/23 01:13	
EPA 300.0 Rev 2.1 1993	Sulfate	72.3	mg/L	1.0	08/19/23 01:13	
92683141004	HAM-GWA-4					
EPA 6010D	Manganese	0.055	mg/L	0.040	08/29/23 21:38	
EPA 6010D	Potassium	2.3	mg/L	0.50	08/29/23 21:38	
EPA 6010D	Sodium	9.7	mg/L	1.0	08/29/23 21:38	
EPA 6010D	Calcium	73.5	mg/L	1.0	08/29/23 21:38	
EPA 6010D	Magnesium	29.4	mg/L	0.050	08/29/23 21:38	
EPA 6020B	Barium	0.045	mg/L	0.0050	08/28/23 16:56	
EPA 6020B	Boron	0.082	mg/L	0.040	08/28/23 16:56	
SM 2540C-2015	Total Dissolved Solids	429	mg/L	25.0	08/18/23 18:33	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	190	mg/L	5.0	08/21/23 17:53	
SM 2320B-2011	Alkalinity, Total as CaCO3	190	mg/L	5.0	08/21/23 17:53	
EPA 300.0 Rev 2.1 1993	Chloride	2.5	mg/L	1.0	08/19/23 01:28	
EPA 300.0 Rev 2.1 1993	Fluoride	0.11	mg/L	0.10	08/19/23 01:28	
EPA 300.0 Rev 2.1 1993	Sulfate	122	mg/L	2.0	08/19/23 10:22	
2683141005	HAM-GWA-11					
EPA 6010D	Iron	2.0	mg/L	0.040	08/29/23 21:43	
PA 6010D	Manganese	0.088	mg/L	0.040	08/29/23 21:43	
PA 6010D	Potassium	0.34J	mg/L	0.50	08/29/23 21:43	
EPA 6010D	Sodium	8.0	mg/L	1.0	08/29/23 21:43	
EPA 6010D	Calcium	21.8	mg/L	1.0	08/29/23 21:43	
EPA 6010D	Magnesium	6.6	mg/L	0.050	08/29/23 21:43	
EPA 6020B	Barium	0.028	mg/L	0.0050	08/28/23 17:02	
EPA 6020B	Boron	0.038J	mg/L	0.040	08/28/23 17:02	
EPA 6020B	Cobalt	0.00045J	mg/L	0.0050	08/28/23 17:02	
EPA 6020B	Nickel	0.0016J	mg/L	0.0050	08/28/23 17:02	
SM 2540C-2015	Total Dissolved Solids	107	mg/L	25.0	08/18/23 18:34	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	86.5	mg/L	5.0	08/21/23 18:05	
SM 2320B-2011	Alkalinity, Total as CaCO3	86.5	mg/L	5.0	08/21/23 18:05	
EPA 300.0 Rev 2.1 1993	Chloride	1.0	mg/L	1.0	08/19/23 01:43	
EPA 300.0 Rev 2.1 1993	Fluoride	0.066J	mg/L	0.10	08/19/23 01:43	
PA 300.0 Rev 2.1 1993	Sulfate	8.9	mg/L	1.0	08/19/23 01:43	
2683141006	HAM-HLF-GWC-6					
EPA 6010D	Iron	2.9	mg/L	0.040	08/29/23 21:48	
EPA 6010D	Manganese	0.074	mg/L	0.040	08/29/23 21:48	
EPA 6010D	Potassium	0.42J	mg/L	0.50	08/29/23 21:48	
EPA 6010D	Sodium	11.6	mg/L	1.0	08/29/23 21:48	
EPA 6010D	Calcium	69.1	mg/L	1.0	08/29/23 21:48	
EPA 6010D	Magnesium	17.5	mg/L	0.050	08/29/23 21:48	
EPA 6020B	Barium	0.15	mg/L	0.0050	08/28/23 17:08	
EPA 6020B	Boron	0.039J	mg/L	0.040	08/28/23 17:08	
SM 2540C-2015	Total Dissolved Solids	368	mg/L	25.0	08/18/23 18:34	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	160	mg/L	5.0	08/21/23 18:12	
SM 2320B-2011	Alkalinity, Total as CaCO3	160	mg/L	5.0	08/21/23 18:12	
EPA 300.0 Rev 2.1 1993	Chloride	1.6	mg/L	1.0	08/19/23 01:57	

Project: Huffaker Road LF

Pace Project No.: 92683141

Lab Sample ID	Client Sample ID					
Method	Parameters —	Result	Units	Report Limit	Analyzed	Qualifiers
92683141006	HAM-HLF-GWC-6					
EPA 300.0 Rev 2.1 1993	Fluoride	0.054J	mg/L	0.10	08/19/23 01:57	
EPA 300.0 Rev 2.1 1993	Sulfate	99.5	mg/L	2.0	08/19/23 10:37	
92683141007	HAM-GWC-10					
EPA 6010D	Iron	1.4	mg/L	0.040	08/29/23 21:53	
EPA 6010D	Manganese	0.070	mg/L	0.040	08/29/23 21:53	
EPA 6010D	Potassium	0.55	mg/L	0.50	08/29/23 21:53	
EPA 6010D	Sodium	7.0	mg/L	1.0	08/29/23 21:53	
EPA 6010D	Calcium	39.8	mg/L	1.0	08/29/23 21:53	
EPA 6010D	Magnesium	8.9	mg/L	0.050	08/29/23 21:53	
EPA 6020B	Barium	0.12	mg/L	0.0050	08/28/23 17:14	
EPA 6020B	Boron	0.032J	mg/L	0.040	08/28/23 17:14	
EPA 6020B	Chromium	0.0015J	mg/L	0.0050	08/28/23 17:14	
SM 2540C-2015	Total Dissolved Solids	162	mg/L	25.0	08/18/23 18:34	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	150	mg/L	5.0	08/21/23 18:23	
SM 2320B-2011	Alkalinity, Total as CaCO3	150	mg/L	5.0	08/21/23 18:23	
EPA 300.0 Rev 2.1 1993	Chloride	1.0	mg/L	1.0	08/19/23 02:12	
EPA 300.0 Rev 2.1 1993	Fluoride	0.077J	mg/L	0.10	08/19/23 02:12	
EPA 300.0 Rev 2.1 1993	Sulfate	9.0	mg/L	1.0	08/19/23 02:12	
2683141008	HAM-GWC-23					
EPA 6010D	Iron	3.0	mg/L	0.040	08/29/23 21:58	
EPA 6010D	Manganese	0.051	mg/L	0.040	08/29/23 21:58	
EPA 6010D	Potassium	0.79	mg/L	0.50	08/29/23 21:58	
EPA 6010D	Sodium	5.2	mg/L	1.0	08/29/23 21:58	
EPA 6010D	Calcium	40.7	mg/L	1.0	08/29/23 21:58	
EPA 6010D	Magnesium	9.5	mg/L	0.050	08/29/23 21:58	
EPA 6020B	Barium	0.071	mg/L	0.0050	08/28/23 17:20	
EPA 6020B	Boron	0.019J	mg/L	0.040	08/28/23 17:20	
SM 2540C-2015	Total Dissolved Solids	163	mg/L	25.0	08/18/23 18:34	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	153	mg/L	5.0	08/21/23 18:42	
SM 2320B-2011	Alkalinity, Total as CaCO3	153	mg/L	5.0	08/21/23 18:42	
EPA 300.0 Rev 2.1 1993	Chloride	1.1	mg/L	1.0	08/19/23 02:57	
EPA 300.0 Rev 2.1 1993	Fluoride	0.075J	mg/L	0.10	08/19/23 02:57	
EPA 300.0 Rev 2.1 1993	Sulfate	4.6	mg/L	1.0	08/19/23 02:57	
2683141009	HAM-HLF-FD-05					
EPA 6010D	Iron	1.0	mg/L	0.040	08/29/23 22:04	
EPA 6010D	Manganese	0.070	mg/L	0.040	08/29/23 22:04	
EPA 6010D	Potassium	0.54	mg/L	0.50	08/29/23 22:04	
EPA 6010D	Sodium	7.2	mg/L	1.0	08/29/23 22:04	
EPA 6010D	Calcium	40.1	mg/L	1.0	08/29/23 22:04	
EPA 6010D	Magnesium	9.0	mg/L	0.050	08/29/23 22:04	
EPA 6020B	Barium	0.12	mg/L	0.0050	08/28/23 17:26	
EPA 6020B	Boron	0.032J	mg/L	0.040	08/28/23 17:26	
EPA 6020B	Zinc	0.028	mg/L	0.010	08/28/23 17:26	
SM 2540C-2015	Total Dissolved Solids	168	mg/L	25.0	08/18/23 18:34	
SM 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	151	mg/L	5.0	08/21/23 18:52	
SM 2320B-2011	Alkalinity, Total as CaCO3	151	mg/L	5.0	08/21/23 18:52	

REPORT OF LABORATORY ANALYSIS

Project: Huffaker Road LF

Pace Project No.: 92683141

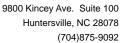
Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92683141009	HAM-HLF-FD-05					
EPA 300.0 Rev 2.1 1993	Chloride	1.1	mg/L	1.0	08/19/23 03:12	
EPA 300.0 Rev 2.1 1993	Fluoride	0.092J	mg/L	0.10	08/19/23 03:12	
EPA 300.0 Rev 2.1 1993	Sulfate	8.9	mg/L	1.0	08/19/23 03:12	
2683141010	HAM-GWC-5					
EPA 6010D	Calcium	75.8	mg/L	1.0	08/30/23 20:00	M1
EPA 6010D	Iron	1.7	mg/L	0.040	08/30/23 20:00	
EPA 6010D	Magnesium	23.8	mg/L	0.050	08/30/23 20:00	M1
EPA 6010D	Manganese	0.24	mg/L	0.040	08/30/23 20:00	
EPA 6010D	Potassium	0.75	mg/L	0.50	09/02/23 14:02	
EPA 6010D	Sodium	15.1	mg/L	1.0	08/30/23 20:00	M1
EPA 6020B	Barium	0.072	mg/L	0.0050	08/28/23 17:32	
EPA 6020B	Boron	0.060	mg/L	0.040	08/28/23 17:32	
EPA 6020B	Cobalt	0.00046J	mg/L	0.0050	08/28/23 17:32	
SM 2540C-2015	Total Dissolved Solids	428	mg/L	25.0	08/21/23 17:37	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	258	mg/L	5.0	08/25/23 08:36	
SM 2320B-2011	Alkalinity, Total as CaCO3	258	mg/L	5.0	08/25/23 08:36	
EPA 300.0 Rev 2.1 1993	Chloride	2.1	mg/L	1.0	08/19/23 03:26	
EPA 300.0 Rev 2.1 1993	Fluoride	0.052J	mg/L	0.10	08/19/23 03:26	
EPA 300.0 Rev 2.1 1993	Sulfate	77.2	mg/L	1.0	08/19/23 03:26	
2683141011	HAM-GWC-7					
EPA 6010D	Potassium	2.4	mg/L	0.50	09/02/23 14:28	
EPA 6010D	Iron	39.4	mg/L	0.040	08/30/23 20:21	
EPA 6010D	Manganese	1.1	mg/L	0.040	08/30/23 20:21	
EPA 6010D	Sodium	6.0	mg/L	1.0	08/30/23 20:21	
EPA 6010D	Calcium	18.4	mg/L	1.0	08/30/23 20:21	
EPA 6010D	Magnesium	13.0	mg/L	0.050	08/30/23 20:21	
EPA 6020B	Arsenic	0.0077J	mg/L	0.010	08/28/23 17:38	
EPA 6020B	Barium	0.041	mg/L	0.0050	08/28/23 17:38	
EPA 6020B	Beryllium	0.00027J	mg/L	0.00050	08/28/23 17:38	
EPA 6020B	Boron	0.030J	mg/L	0.040	08/28/23 17:38	
EPA 6020B	Cobalt	0.021	mg/L	0.0050	08/28/23 17:38	
EPA 6020B	Nickel	0.021		0.0050	08/28/23 17:38	
			mg/L			
EPA 6020B	Zinc	0.20	mg/L	0.010	08/28/23 17:38	
SM 2540C-2015	Total Dissolved Solids	267	mg/L	25.0	08/21/23 17:37	
SM 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	44.1	mg/L	5.0	08/24/23 16:46	
SM 2320B-2011	Alkalinity, Total as CaCO3	44.1	mg/L		08/24/23 16:46	
EPA 300.0 Rev 2.1 1993	Chloride	1.7	mg/L	1.0	08/19/23 03:41	
EPA 300.0 Rev 2.1 1993	Fluoride	0.13	mg/L	0.10	08/19/23 03:41	
EPA 300.0 Rev 2.1 1993	Sulfate	122	mg/L	3.0	08/19/23 10:51	
2683141012	HAM-HLF-GWC-8					
EPA 6010D	Iron	0.51	mg/L	0.040	08/30/23 20:26	
EPA 6010D	Manganese	0.37	mg/L	0.040	08/30/23 20:26	
EPA 6010D	Sodium	11.0	mg/L	1.0	08/30/23 20:26	
EPA 6010D	Calcium	70.5	mg/L	1.0	08/30/23 20:26	
EPA 6010D	Magnesium	12.1	mg/L	0.050	08/30/23 20:26	
EPA 6010D	Potassium	0.53	mg/L	0.50	09/02/23 14:33	

Project: Huffaker Road LF

Pace Project No.: 92683141

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifier
92683141012	HAM-HLF-GWC-8					
EPA 6020B	Barium	0.12	mg/L	0.0050	08/28/23 17:43	
EPA 6020B	Boron	0.031J	mg/L	0.040	08/28/23 17:43	
EPA 6020B	Cobalt	0.00077J	mg/L	0.0050	08/28/23 17:43	
SM 2540C-2015	Total Dissolved Solids	280	mg/L	25.0	08/21/23 17:38	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	232	mg/L	5.0	08/25/23 08:45	
SM 2320B-2011	Alkalinity, Total as CaCO3	232	mg/L	5.0	08/25/23 08:45	
EPA 300.0 Rev 2.1 1993	Chloride	1.6	mg/L	1.0	08/19/23 03:56	
EPA 300.0 Rev 2.1 1993	Fluoride	0.13	mg/L	0.10	08/19/23 03:56	
EPA 300.0 Rev 2.1 1993	Sulfate	28.1	mg/L	1.0	08/19/23 03:56	
2683141013	HAM-GWC-9					
EPA 6010D	Potassium	0.26J	mg/L	0.50	09/02/23 14:38	
EPA 6010D	Iron	5.8	mg/L	0.040	08/30/23 20:41	
EPA 6010D	Manganese	0.15	mg/L	0.040	08/30/23 20:41	
EPA 6010D	Sodium	7.2	mg/L	1.0	08/30/23 20:41	
EPA 6010D	Calcium	37.6	mg/L	1.0	08/30/23 20:41	
EPA 6010D	Magnesium	13.8	mg/L	0.050	08/30/23 20:41	
EPA 6020B	Barium	0.064	mg/L	0.0050	08/29/23 19:37	
EPA 6020B	Boron	0.022J	mg/L	0.040	08/29/23 19:37	
EPA 6020B	Nickel	0.0017J	mg/L	0.0050	08/29/23 19:37	
SM 2540C-2015	Total Dissolved Solids	246	mg/L	25.0	08/21/23 17:38	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	93.9	mg/L	5.0	08/24/23 17:03	
SM 2320B-2011	Alkalinity, Total as CaCO3	93.9	mg/L	5.0	08/24/23 17:03	
EPA 300.0 Rev 2.1 1993	Chloride	0.65J	mg/L	1.0	08/19/23 04:40	
EPA 300.0 Rev 2.1 1993	Fluoride	0.060J	mg/L	0.10	08/19/23 04:40	
EPA 300.0 Rev 2.1 1993	Sulfate	63.9	mg/L	1.0	08/19/23 04:40	
2683141014	HAM-GWC-18					
EPA 6010D	Potassium	0.44J	mg/L	0.50	09/02/23 14:43	
EPA 6010D	Iron	0.030J	mg/L	0.040	08/30/23 20:46	
EPA 6010D	Manganese	0.019J	mg/L	0.040	08/30/23 20:46	
EPA 6010D	Sodium	11.5	mg/L	1.0	08/30/23 20:46	
EPA 6010D	Calcium	41.0	mg/L	1.0	08/30/23 20:46	
EPA 6010D	Magnesium	13.5	mg/L	0.050	08/30/23 20:46	
EPA 6020B	Antimony	0.0028J	mg/L	0.0030	08/29/23 20:01	
EPA 6020B	Barium	0.077	mg/L	0.0050	08/29/23 20:01	
EPA 6020B	Boron	0.14	mg/L	0.040	08/29/23 20:01	
SM 2540C-2015	Total Dissolved Solids	193	mg/L	25.0	08/21/23 17:38	
SM 2320B-2011	Alkalinity,Bicarbonate (CaCO3)	187	mg/L	5.0	08/24/23 17:12	
SM 2320B-2011	Alkalinity, Total as CaCO3	187	mg/L	5.0	08/24/23 17:12	
EPA 300.0 Rev 2.1 1993	Chloride	0.85J	mg/L	1.0	08/19/23 04:55	
EPA 300.0 Rev 2.1 1993	Fluoride	0.10	mg/L	0.10	08/19/23 04:55	
EPA 300.0 Rev 2.1 1993	Sulfate	7.7	mg/L	1.0	08/19/23 04:55	
2683141015	HAM-HLF-GWC-19					
EPA 6010D	Iron	0.12	mg/L	0.040	08/30/23 20:52	
EPA 6010D	Manganese	0.053	mg/L	0.040	08/30/23 20:52	
EPA 6010D	Sodium	22.6	mg/L	1.0	08/30/23 20:52	
EPA 6010D	Calcium	44.6	mg/L	1.0	08/30/23 20:52	

REPORT OF LABORATORY ANALYSIS



Project: Huffaker Road LF

Pace Project No.: 92683141

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92683141015	HAM-HLF-GWC-19					
EPA 6010D	Magnesium	11.9	mg/L	0.050	08/30/23 20:52	
EPA 6010D	Potassium	0.28J	mg/L	0.50	09/02/23 14:49	
EPA 6020B	Barium	0.15	mg/L	0.0050	08/29/23 20:07	
EPA 6020B	Boron	0.16	mg/L	0.040	08/29/23 20:07	
SM 2540C-2015	Total Dissolved Solids	227	mg/L	25.0	08/21/23 17:39	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	199	mg/L	5.0	08/24/23 17:23	
SM 2320B-2011	Alkalinity, Total as CaCO3	199	mg/L	5.0	08/24/23 17:23	
EPA 300.0 Rev 2.1 1993	Chloride	1.1	mg/L	1.0	08/19/23 05:10	
EPA 300.0 Rev 2.1 1993	Fluoride	0.092J	mg/L	0.10	08/19/23 05:10	
EPA 300.0 Rev 2.1 1993	Sulfate	19.1	mg/L	1.0	08/19/23 05:10	
2683141016	HAM-GWC-20					
EPA 6010D	Potassium	0.29J	mg/L	0.50	09/02/23 14:54	
EPA 6010D	Iron	2.6	mg/L	0.040	08/30/23 20:57	
EPA 6010D	Manganese	0.12	mg/L	0.040	08/30/23 20:57	
EPA 6010D	Sodium	4.9	mg/L	1.0	08/30/23 20:57	
EPA 6010D	Calcium	63.5	mg/L	1.0	08/30/23 20:57	
EPA 6010D	Magnesium	13.1	mg/L	0.050	08/30/23 20:57	
PA 6020B	Barium	0.16	mg/L	0.0050	08/29/23 20:13	
PA 6020B	Boron	0.019J	mg/L	0.040	08/29/23 20:13	
SM 2540C-2015	Total Dissolved Solids	291	mg/L	25.0	08/21/23 17:39	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	163	mg/L	5.0	08/24/23 17:45	
SM 2320B-2011	Alkalinity, Total as CaCO3	163	mg/L	5.0	08/24/23 17:45	
PA 300.0 Rev 2.1 1993	Chloride	1.1	mg/L	1.0	08/19/23 06:09	
PA 300.0 Rev 2.1 1993	Fluoride	0.055J	mg/L	0.10	08/19/23 06:09	
EPA 300.0 Rev 2.1 1993	Sulfate	67.1	mg/L	1.0	08/19/23 06:09	
2683141017	HAM-GWC-21					
EPA 6010D	Iron	3.7	mg/L	0.040	08/30/23 21:02	
EPA 6010D	Manganese	0.76	mg/L	0.040	08/30/23 21:02	
PA 6010D	Sodium	4.0	mg/L	1.0	08/30/23 21:02	
EPA 6010D	Calcium	31.5	mg/L	1.0	08/30/23 21:02	
EPA 6010D	Magnesium	6.2	mg/L	0.050	08/30/23 21:02	
EPA 6010D	Potassium	0.48J	mg/L	0.50	09/02/23 14:59	
EPA 6020B	Barium	0.058	mg/L	0.0050	08/29/23 20:19	
EPA 6020B	Boron	0.030J	mg/L	0.040	08/29/23 20:19	
EPA 6020B	Cobalt	0.0032J	mg/L	0.0050	08/29/23 20:19	
EPA 6020B	Nickel	0.0054	mg/L	0.0050	08/29/23 20:19	
SM 2540C-2015	Total Dissolved Solids	152	mg/L	25.0	08/21/23 17:40	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	97.8	mg/L	5.0	08/24/23 17:56	
SM 2320B-2011	Alkalinity, Total as CaCO3	97.8	mg/L	5.0	08/24/23 17:56	
EPA 300.0 Rev 2.1 1993	Chloride	5.3	mg/L	1.0	08/19/23 06:24	
EPA 300.0 Rev 2.1 1993	Sulfate	18.9	mg/L	1.0	08/19/23 06:24	
2683141018	HAM-GWC-22					
EPA 6010D	Potassium	0.26J	mg/L	0.50	09/02/23 15:04	
EPA 6010D	Iron	0.97	mg/L	0.040	08/30/23 21:07	
EPA 6010D	Manganese	0.090	mg/L	0.040	08/30/23 21:07	
		11.5	mg/L		08/30/23 21:07	

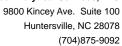
REPORT OF LABORATORY ANALYSIS

Project: Huffaker Road LF

Pace Project No.: 92683141

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
- Ivictiou	- Tarameters		Office	_ Troport Ellillit	- Analyzed	Qualificis
92683141018	HAM-GWC-22					
EPA 6010D	Calcium	47.3	mg/L	1.0	08/30/23 21:07	
EPA 6010D	Magnesium	11.1	mg/L	0.050	08/30/23 21:07	
EPA 6020B	Barium	0.092	mg/L	0.0050	08/29/23 20:37	
EPA 6020B	Boron	0.068	mg/L	0.040	08/29/23 20:37	
SM 2540C-2015	Total Dissolved Solids	212	mg/L	25.0	08/21/23 17:40	
SM 2320B-2011	Alkalinity, Bicarbonate (CaCO3)	191	mg/L	5.0	08/24/23 18:19	
SM 2320B-2011	Alkalinity, Total as CaCO3	191	mg/L	5.0	08/24/23 18:19	
EPA 300.0 Rev 2.1 1993	Chloride	0.95J	mg/L	1.0	08/19/23 06:39	
EPA 300.0 Rev 2.1 1993	Fluoride	0.065J	mg/L	0.10	08/19/23 06:39	
EPA 300.0 Rev 2.1 1993	Sulfate	5.6	mg/L	1.0	08/19/23 06:39	

(704)875-9092


ANALYTICAL RESULTS

Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

Sample: HAM-GWA-1	Lab ID: 9268	3141001	Collecte	ed: 08/14/23	12:31	Received: 08/	/16/23 14:02 N	latrix: Water	
			Report						
Parameters	Results Ur	nits ————————————————————————————————————	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical Meth	od: EPA 6	010D Prei	paration Met	hod: EF	PA 3010A			
	Pace Analytical								
ron	1.1 m	g/L	0.040	0.025	1	08/29/23 09:23	08/29/23 21:12	7439-89-6	
Manganese	0.17 m	g/L	0.040	0.011	1	08/29/23 09:23	08/29/23 21:12	7439-96-5	
Potassium	0.40J m	g/L	0.50	0.15	1	08/29/23 09:23	08/29/23 21:12	7440-09-7	
Sodium		g/L	1.0	0.58	1	08/29/23 09:23	08/29/23 21:12	7440-23-5	
Calcium		g/L	1.0	0.12	1	08/29/23 09:23			
Magnesium		g/L	0.050	0.012	1	08/29/23 09:23			
6020 MET ICPMS	Analytical Methor	od: EPA 6	020B Prep	paration Metl	nod: EF	PA 3005A			
	Pace Analytical								
Antimony	0.0028J m	g/L	0.0030	0.0012	1	08/21/23 18:00	08/28/23 16:26	7440-36-0	
Arsenic	ND m	g/L	0.010	0.0037	1	08/21/23 18:00	08/28/23 16:26	7440-38-2	
Barium	0.039 m	g/L	0.0050	0.00067	1	08/21/23 18:00	08/28/23 16:26	7440-39-3	
Beryllium		g/L	0.00050	0.000054	1	08/21/23 18:00	08/28/23 16:26	7440-41-7	
Boron		g/L	0.040	0.0086	1	08/21/23 18:00	08/28/23 16:26	7440-42-8	
Cadmium		g/L	0.00050	0.00011	1	08/21/23 18:00		7440-43-9	
Chromium		g/L	0.0050	0.0011	1	08/21/23 18:00			
Cobalt		g/L	0.0050	0.00039	1	08/21/23 18:00			
Copper		g/L	0.0050	0.0010	1	08/21/23 18:00			
ead.		g/L	0.0010	0.00012	1	08/21/23 18:00			
lickel		g/L g/L	0.0010	0.00012	1	08/21/23 18:00			
		-							
Selenium		g/L	0.0050	0.0014	1	08/21/23 18:00			
Silver		g/L	0.0050	0.00044	1	08/21/23 18:00			
Fhallium		g/L	0.0010	0.00018	1	08/21/23 18:00			
/anadium		g/L	0.010	0.0025	1	08/21/23 18:00	08/28/23 16:26		
Zinc	ND m	g/L	0.010	0.0070	1	08/21/23 18:00	08/28/23 16:26	7440-66-6	
2540C Total Dissolved Solids	Analytical Methor								
	Pace Analytical	Services	- Peachtre	e Corners, G	iA				
Total Dissolved Solids	98.0 m	g/L	25.0	25.0	1		08/18/23 18:33	}	
2320B Alkalinity	Analytical Meth	od: SM 23	20B-2011						
	Pace Analytical	Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	78.0 m	g/L	5.0	5.0	1		08/21/23 16:36	;	
Alkalinity,Carbonate (CaCO3)	ND m	g/L	5.0	5.0	1		08/21/23 16:36	5	
Alkalinity, Total as CaCO3	78.0 m	g/L	5.0	5.0	1		08/21/23 16:36	3	
500S2D Sulfide Water	Analytical Meth	od: SM 45	00-S2D-20	011					
	Pace Analytical	Services	- Asheville						
Sulfide	ND m	g/L	0.10	0.022	1		08/18/23 05:01	18496-25-8	
300.0 IC Anions 28 Days	Analytical Methor	od: EPA 3	00.0 Rev 2	2.1 1993					
•	Pace Analytical								
Chloride	0.99J m	g/L	1.0	0.60	1		08/19/23 07:21	16887-00-6	
Fluoride		g/L	0.10	0.050	1		08/19/23 07:21	16984-48-8	

ANALYTICAL RESULTS

Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

Sample: HAM-GWA-1	Lab ID:	92683141001	Collecte	d: 08/14/23	3 12:31	Received: 08	/16/23 14:02 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	.1 1993					
	Pace Ana	lytical Services	- Asheville						
Sulfate	3.9	mg/L	1.0	0.50	1		08/19/23 07:21	14808-79-8	

(704)875-9092

ANALYTICAL RESULTS

Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

Sample: HAM-GWA-2	Lab ID: 926	83141002	Collecte	ed: 08/14/23	14:11	Received: 08/	16/23 14:02 N	latrix: Water	
			Report						
Parameters	Results U	Jnits ————————————————————————————————————	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical Meth	nod: EPA 60	010D Pre	paration Met	hod: EF	PA 3010A			
	Pace Analytica								
ron	2.1 m	ng/L	0.040	0.025	1	08/29/23 09:23	08/29/23 21:27	7439-89-6	
Manganese		ng/L	0.040	0.011	1	08/29/23 09:23	08/29/23 21:27	7439-96-5	
Potassium		ng/L	0.50	0.15	1	08/29/23 09:23	08/29/23 21:27	7440-09-7	
Sodium		ng/L	1.0	0.58	1	08/29/23 09:23	08/29/23 21:27		
Calcium		ng/L	1.0	0.12	1	08/29/23 09:23			
Magnesium		ng/L	0.050	0.012	1	08/29/23 09:23	08/29/23 21:27		
6020 MET ICPMS	Analytical Meth	nod: EPA 60	020B Prei	paration Met	nod: EF	A 3005A			
	Pace Analytica								
Antimony	ND m	ng/L	0.0030	0.0012	1	08/21/23 18:00	08/28/23 16:32	7440-36-0	
Arsenic		ng/L	0.010	0.0037	1	08/21/23 18:00			
Barium		ng/L	0.0050	0.00067	1	08/21/23 18:00	08/28/23 16:32	7440-39-3	
Beryllium		ng/L	0.00050	0.000054	1	08/21/23 18:00			
Boron		ng/L	0.040	0.0086	1	08/21/23 18:00			
Cadmium		ng/L	0.00050	0.00011	1	08/21/23 18:00			
Chromium		ng/L	0.0050	0.0011	1	08/21/23 18:00			
Cobalt		ng/L	0.0050	0.00011	1	08/21/23 18:00			
Copper		ng/L	0.0050	0.00039	1	08/21/23 18:00			
• •		-							
ead		ng/L	0.0010	0.00012	1	08/21/23 18:00			
lickel		ng/L	0.0050	0.00071	1	08/21/23 18:00			
Selenium		ng/L	0.0050	0.0014	1	08/21/23 18:00			
Silver		ng/L	0.0050	0.00044	1	08/21/23 18:00			
hallium		ng/L	0.0010	0.00018	1	08/21/23 18:00			
/anadium		ng/L	0.010	0.0025	1	08/21/23 18:00	08/28/23 16:32		
Zinc	ND n	ng/L	0.010	0.0070	1	08/21/23 18:00	08/28/23 16:32	7440-66-6	
2540C Total Dissolved Solids	Analytical Meth	nod: SM 25	40C-2015						
	Pace Analytica	I Services -	Peachtre	e Corners, G	iΑ				
Total Dissolved Solids	266 m	ng/L	25.0	25.0	1		08/18/23 18:33	1	
2320B Alkalinity	Analytical Meth	nod: SM 23	20B-2011						
	Pace Analytica	I Services -	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	237 m	ng/L	5.0	5.0	1		08/21/23 20:54		
Alkalinity,Carbonate (CaCO3)	ND m	ng/L	5.0	5.0	1		08/21/23 20:54		
Alkalinity, Total as CaCO3	237 m	ng/L	5.0	5.0	1		08/21/23 20:54		
500S2D Sulfide Water	Analytical Meth	nod: SM 45	00-S2D-20	011					
	Pace Analytica								
Sulfide	ND m	ng/L	0.10	0.022	1		08/18/23 05:02	18496-25-8	
800.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	00.0 Rev 2	2.1 1993					
	Pace Analytica								
Chloride	2.2 m	ng/L	1.0	0.60	1		08/19/23 00:29	16887-00-6	
Fluoride		ng/L	0.10	0.050	1		08/19/23 00:29		M1

REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS

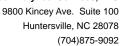
Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

Sample: HAM-GWA-2	Lab ID:	9268314100	2 Collecte	d: 08/14/2	3 14:11	Received: 08	/16/23 14:02 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0 Rev 2	.1 1993					
	Pace Ana	lytical Service	s - Asheville						
Sulfate	23.4	mg/L	1.0	0.50	1		08/19/23 00:29	14808-79-8	M1

(704)875-9092


ANALYTICAL RESULTS

Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

Sample: HAM-GWA-3	Lab ID: 92	2683141003	Collecte	d: 08/14/23	14:19	Received: 08/	16/23 14:02 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical Me	ethod: EPA 60	010D Pred	paration Met	nod: EF	A 3010A			
	•	cal Services -							
ron	0.96	mg/L	0.040	0.025	1	08/29/23 09:23	08/29/23 21:32	7439-89-6	
Manganese	0.57	mg/L	0.040	0.011	1	08/29/23 09:23	08/29/23 21:32		
Potassium	0.82	mg/L	0.50	0.15	1	08/29/23 09:23	08/29/23 21:32		
Sodium	21.7	mg/L	1.0	0.58	1	08/29/23 09:23	08/29/23 21:32		
Calcium	57.2	mg/L	1.0	0.12	1	08/29/23 09:23			
Magnesium	25.6	mg/L	0.050	0.012	1	08/29/23 09:23	08/29/23 21:32		
020 MET ICPMS	Analytical Me	ethod: EPA 60	020B Pren		nod: FF	Δ 3005Δ			
OZO MILI ICI MIS	-	cal Services				A 3003A			
Antimony	ND	mg/L	0.0030	0.0012	1	08/21/23 18:00	08/28/23 16:50	7440-36-0	
Arsenic	ND	mg/L	0.010	0.0012	1	08/21/23 18:00	08/28/23 16:50		
Barium	0.087	mg/L	0.0050	0.00067	1	08/21/23 18:00			
Beryllium	ND	mg/L	0.0050	0.00007	1	08/21/23 18:00			
Boron	0.15	mg/L	0.00030	0.000034	1	08/21/23 18:00			
Cadmium	0.13 ND	•	0.00050	0.00011	1	08/21/23 18:00	08/28/23 16:50	-	
		mg/L							
Chromium	ND	mg/L	0.0050	0.0011	1	08/21/23 18:00	08/28/23 16:50		
Cobalt	0.00095J	mg/L	0.0050	0.00039	1	08/21/23 18:00			
Copper	ND	mg/L	0.0050	0.0010	1	08/21/23 18:00			
ead	ND	mg/L	0.0010	0.00012	1	08/21/23 18:00			
lickel	0.0021J	mg/L	0.0050	0.00071	1	08/21/23 18:00			
Selenium	ND	mg/L	0.0050	0.0014	1	08/21/23 18:00			
Bilver	ND	mg/L	0.0050	0.00044	1	08/21/23 18:00			
hallium	ND	mg/L	0.0010	0.00018	1	08/21/23 18:00	08/28/23 16:50	7440-28-0	
/anadium	ND	mg/L	0.010	0.0025	1	08/21/23 18:00	08/28/23 16:50	7440-62-2	
linc	ND	mg/L	0.010	0.0070	1	08/21/23 18:00	08/28/23 16:50	7440-66-6	
2540C Total Dissolved Solids	Analytical Me	ethod: SM 25	40C-2015						
	Pace Analytic	cal Services -	- Peachtree	e Corners, G	iΑ				
otal Dissolved Solids	341	mg/L	25.0	25.0	1		08/18/23 18:33	3	
2320B Alkalinity	Analytical Me	ethod: SM 23	20B-2011						
,	•	cal Services -							
Alkalinity, Bicarbonate (CaCO3)	221	mg/L	5.0	5.0	1		08/21/23 17:22) -	
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		08/21/23 17:22	2	
Alkalinity, Total as CaCO3	221	mg/L	5.0	5.0	1		08/21/23 17:22		
500S2D Sulfide Water	Analytical Me	ethod: SM 45	00-S2D-20)11					
	•	cal Services -		· •					
Sulfide	ND	mg/L	0.10	0.022	1		08/18/23 05:02	18496-25-8	
300.0 IC Anions 28 Days		ethod: EPA 30							
out to Amond 20 Days	•	cal Services		1000					
Chloride	1.3	mg/L	1.0	0.60	1		08/19/23 01:13	16887-00-6	
	0.089J	mg/L	0.10	0.050	1		08/19/23 01:13		

ANALYTICAL RESULTS

Project: Huffaker Road LF

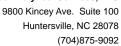
Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

Sample: HAM-GWA-3 Lab ID: 92683141003 Collected: 08/14/23 14:19 Received: 08/16/23 14:02 Matrix: Water Report **Parameters** Results Units Limit MDL DF Prepared CAS No. Analyzed Qual Analytical Method: EPA 300.0 Rev 2.1 1993 300.0 IC Anions 28 Days Pace Analytical Services - Asheville Sulfate 72.3 mg/L 1.0 0.50 08/19/23 01:13 14808-79-8

(704)875-9092

ANALYTICAL RESULTS


Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

Sample: HAM-GWA-4	Lab ID: 92	2683141004	Collecte	ed: 08/14/23	13:20	Received: 08/	'16/23 14:02 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical Me	ethod: EPA 60	010D Prer	paration Met	nod: EF	A 3010A			
	Pace Analytic								
ron	ND	mg/L	0.040	0.025	1	08/29/23 09:23	08/29/23 21:38	7439-89-6	
Manganese	0.055	mg/L	0.040	0.011	1	08/29/23 09:23	08/29/23 21:38	7439-96-5	
Potassium	2.3	mg/L	0.50	0.15	1	08/29/23 09:23	08/29/23 21:38	7440-09-7	
Sodium	9.7	mg/L	1.0	0.58	1	08/29/23 09:23	08/29/23 21:38	7440-23-5	
Calcium	73.5	mg/L	1.0	0.12	1	08/29/23 09:23			
Magnesium	29.4	mg/L	0.050	0.012	1	08/29/23 09:23	08/29/23 21:38		
6020 MET ICPMS	Analytical Me	ethod: EPA 60	020B Prep	paration Metl	nod: EP	A 3005A			
	Pace Analytic								
Antimony	ND	mg/L	0.0030	0.0012	1	08/21/23 18:00	08/28/23 16:56	7440-36-0	
Arsenic	ND	mg/L	0.010	0.0037	1	08/21/23 18:00	08/28/23 16:56	7440-38-2	
Barium	0.045	mg/L	0.0050	0.00067	1	08/21/23 18:00	08/28/23 16:56	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/21/23 18:00	08/28/23 16:56	7440-41-7	
Boron	0.082	mg/L	0.040	0.0086	1	08/21/23 18:00			
Cadmium	ND	mg/L	0.00050	0.00011	1	08/21/23 18:00	08/28/23 16:56		
Chromium	ND	mg/L	0.0050	0.0011	1	08/21/23 18:00	08/28/23 16:56		
Cobalt	ND	mg/L	0.0050	0.00039	1	08/21/23 18:00			
Copper	ND	mg/L	0.0050	0.0010	1	08/21/23 18:00			
ead	ND	mg/L	0.0030	0.0010	1	08/21/23 18:00			
lickel	ND	-		0.00012	1	08/21/23 18:00			
		mg/L	0.0050						
Selenium	ND	mg/L	0.0050	0.0014	1	08/21/23 18:00			
Silver	ND	mg/L	0.0050	0.00044	1	08/21/23 18:00			
hallium 	ND	mg/L	0.0010	0.00018	1	08/21/23 18:00			
/anadium	ND	mg/L	0.010	0.0025	1	08/21/23 18:00	08/28/23 16:56		
linc	ND	mg/L	0.010	0.0070	1	08/21/23 18:00	08/28/23 16:56	7440-66-6	
540C Total Dissolved Solids	Analytical Me								
	Pace Analytic	cal Services -	- Peachtre	e Corners, G	iA				
otal Dissolved Solids	429	mg/L	25.0	25.0	1		08/18/23 18:33		
2320B Alkalinity	Analytical Me	ethod: SM 23	20B-2011						
	Pace Analytic	cal Services -	- Asheville						
Alkalinity, Bicarbonate (CaCO3)	190	mg/L	5.0	5.0	1		08/21/23 17:53		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		08/21/23 17:53	i	
Alkalinity, Total as CaCO3	190	mg/L	5.0	5.0	1		08/21/23 17:53		
500S2D Sulfide Water	Analytical Me	ethod: SM 45	00-S2D-20	011					
	Pace Analytic	cal Services -	- Asheville						
Sulfide	ND	mg/L	0.10	0.022	1		08/18/23 05:02	18496-25-8	
300.0 IC Anions 28 Days	Analytical Me	ethod: EPA 30	00.0 Rev 2	2.1 1993					
•	Pace Analytic								
Chloride	2.5	mg/L	1.0	0.60	1		08/19/23 01:28	16887-00-6	
Fluoride	0.11	mg/L	0.10	0.050	1		08/19/23 01:28	16984-48-8	

REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS

Project: Huffaker Road LF

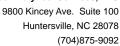
Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

Sample: HAM-GWA-4 Lab ID: 92683141004 Collected: 08/14/23 13:20 Received: 08/16/23 14:02 Matrix: Water Report **Parameters** Results Units Limit MDL DF Prepared CAS No. Analyzed Qual Analytical Method: EPA 300.0 Rev 2.1 1993 300.0 IC Anions 28 Days Pace Analytical Services - Asheville Sulfate 122 mg/L 2.0 1.0 2 08/19/23 10:22 14808-79-8

(704)875-9092

ANALYTICAL RESULTS


Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

Sample: HAM-GWA-11	Lab ID: 926	683141005	Collecte	d: 08/14/23	13:25	Received: 08/	16/23 14:02 M	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical Me	thod: EPA 60	010D Prep	paration Met	hod: EF	A 3010A			
	Pace Analytic	al Services -	- Peachtre	e Corners, G	iΑ				
ron	2.0	mg/L	0.040	0.025	1	08/29/23 09:23	08/29/23 21:43	7439-89-6	
Manganese	0.088	mg/L	0.040	0.011	1	08/29/23 09:23	08/29/23 21:43	7439-96-5	
Potassium	0.34J	mg/L	0.50	0.15	1	08/29/23 09:23	08/29/23 21:43	7440-09-7	
Sodium	8.0	mg/L	1.0	0.58	1	08/29/23 09:23	08/29/23 21:43	7440-23-5	
Calcium	21.8	mg/L	1.0	0.12	1	08/29/23 09:23	08/29/23 21:43	7440-70-2	
Magnesium		mg/L	0.050	0.012	1	08/29/23 09:23	08/29/23 21:43		
6020 MET ICPMS	Analytical Me	thod: EPA 60	020B Prep	aration Metl	nod: EF	A 3005A			
	Pace Analytic	al Services -	Peachtre	e Corners, G	iΑ				
Antimony	ND	mg/L	0.0030	0.0012	1	08/21/23 18:00	08/28/23 17:02	7440-36-0	
Arsenic	ND	mg/L	0.010	0.0037	1	08/21/23 18:00	08/28/23 17:02	7440-38-2	
Barium	0.028	mg/L	0.0050	0.00067	1	08/21/23 18:00	08/28/23 17:02	7440-39-3	
Beryllium		mg/L	0.00050	0.000054	1	08/21/23 18:00	08/28/23 17:02	7440-41-7	
Boron	0.038J	mg/L	0.040	0.0086	1	08/21/23 18:00	08/28/23 17:02	7440-42-8	
Cadmium		mg/L	0.00050	0.00011	1	08/21/23 18:00	08/28/23 17:02	7440-43-9	
Chromium		mg/L	0.0050	0.0011	1	08/21/23 18:00	08/28/23 17:02		
Cobalt		mg/L	0.0050	0.00039	1	08/21/23 18:00			
Copper		mg/L	0.0050	0.0010	1	08/21/23 18:00			
ead.		mg/L	0.0010	0.00012	1	08/21/23 18:00			
lickel		mg/L	0.0010	0.00012	1	08/21/23 18:00			
Selenium		mg/L	0.0050	0.00071	1	08/21/23 18:00			
		•							
Silver		mg/L	0.0050	0.00044	1	08/21/23 18:00			
Fhallium		mg/L	0.0010	0.00018	1	08/21/23 18:00			
/anadium 		mg/L	0.010	0.0025	1	08/21/23 18:00	08/28/23 17:02		
Zinc	ND	mg/L	0.010	0.0070	1	08/21/23 18:00	08/28/23 17:02	7440-66-6	
2540C Total Dissolved Solids	Analytical Me								
	Pace Analytic	al Services -	- Peachtre	e Corners, G	iA				
Total Dissolved Solids	107	mg/L	25.0	25.0	1		08/18/23 18:34		
2320B Alkalinity	Analytical Me	thod: SM 23	20B-2011						
	Pace Analytic	al Services -	Asheville						
Alkalinity,Bicarbonate (CaCO3)	86.5	mg/L	5.0	5.0	1		08/21/23 18:05	,	
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		08/21/23 18:05	;	
Alkalinity, Total as CaCO3	86.5	mg/L	5.0	5.0	1		08/21/23 18:05	i	
500S2D Sulfide Water	Analytical Me	thod: SM 45	00-S2D-20)11					
	Pace Analytic	al Services -	- Asheville						
Sulfide	ND	mg/L	0.10	0.022	1		08/18/23 05:03	18496-25-8	
300.0 IC Anions 28 Days	Analytical Me	thod: EPA 30	00.0 Rev 2	.1 1993					
	Pace Analytic			-					
Chloride	1.0	mg/L	1.0	0.60	1		08/19/23 01:43	16887-00-6	
Fluoride		mg/L	0.10	0.050	1		08/19/23 01:43		

08/19/23 01:43 14808-79-8

Sulfate

ANALYTICAL RESULTS

Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

Sample: HAM-GWA-11 Lab ID: 92683141005 Collected: 08/14/23 13:25 Received: 08/16/23 14:02 Matrix: Water Report **Parameters** Results Units Limit MDL DF Prepared CAS No. Analyzed Qual Analytical Method: EPA 300.0 Rev 2.1 1993 300.0 IC Anions 28 Days Pace Analytical Services - Asheville

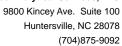
0.50

1.0

8.9

mg/L

(704)875-9092


ANALYTICAL RESULTS

Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

Sample: HAM-HLF-GWC-6	Lab ID: 926831	41006 Colle	cted: 08/14/2	3 17:30	Received: 08/	/16/23 14:02 N	Matrix: Water	
		Report						
Parameters	Results Unit	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical Method	: EPA 6010D F	reparation Me	thod: Ef	PA 3010A			
	Pace Analytical S	ervices - Peach	tree Corners,	GA				
Iron	2.9 mg/l	_ 0.04	0.025	1	08/29/23 09:23	08/29/23 21:48	8 7439-89-6	
Manganese	0.074 mg/l	0.04	0.011	1	08/29/23 09:23	08/29/23 21:48	8 7439-96-5	
Potassium	0.42J mg/l	_ 0.5	0.15	1	08/29/23 09:23	08/29/23 21:48	8 7440-09-7	
Sodium	11.6 mg/l	_ 1.	.0 0.58	1	08/29/23 09:23	08/29/23 21:48	8 7440-23-5	
Calcium	69.1 mg/l		.0 0.12	1	08/29/23 09:23	08/29/23 21:48	8 7440-70-2	
Magnesium	17.5 mg/l		0.012	1	08/29/23 09:23	08/29/23 21:48	8 7439-95-4	
6020 MET ICPMS	Analytical Method	: EPA 6020B F	reparation Me	thod: EF	PA 3005A			
	Pace Analytical S							
Antimony	ND mg/l	0.003	0.0012	1	08/21/23 18:00	08/28/23 17:08	3 7440-36-0	
Arsenic	ND mg/l		0 0.0037	1	08/21/23 18:00	08/28/23 17:08	8 7440-38-2	
Barium	0.15 mg/l			1	08/21/23 18:00			
Beryllium	ND mg/l			1	08/21/23 18:00			
Boron	0.039J mg/l			1	08/21/23 18:00			
Cadmium	ND mg/l			1	08/21/23 18:00			
Chromium	ND mg/l			1	08/21/23 18:00			
Cobalt	ND mg/l			1	08/21/23 18:00			
	ND mg/l			1	08/21/23 18:00			
Copper	•							
Lead	ND mg/l			1	08/21/23 18:00			
Nickel	ND mg/l			1	08/21/23 18:00			
Selenium	ND mg/l			1	08/21/23 18:00			
Silver	ND mg/l			1	08/21/23 18:00			
Thallium	ND mg/l			1	08/21/23 18:00			
Vanadium	ND mg/l			1	08/21/23 18:00	08/28/23 17:08		
Zinc	ND mg/l	_ 0.01	0 0.0070	1	08/21/23 18:00	08/28/23 17:08	8 7440-66-6	
2540C Total Dissolved Solids	Analytical Method	: SM 2540C-20	15					
	Pace Analytical S	ervices - Peach	tree Corners,	GA				
Total Dissolved Solids	368 mg/l	_ 25	.0 25.0	1		08/18/23 18:34	4	
2320B Alkalinity	Analytical Method	: SM 2320B-20	11					
	Pace Analytical S	ervices - Ashev	ille					
Alkalinity,Bicarbonate (CaCO3)	160 mg/l	_ 5	.0 5.0	1		08/21/23 18:12	2	
Alkalinity, Carbonate (CaCO3)	ND mg/l		.0 5.0	1		08/21/23 18:12	2	
Alkalinity, Total as CaCO3	160 mg/l			1		08/21/23 18:12	2	
4500S2D Sulfide Water	Analytical Method	: SM 4500-S2D	-2011					
	Pace Analytical S							
Sulfide	ND mg/l	_ 0.1	0 0.022	1		08/18/23 05:04	4 18496-25-8	
300.0 IC Anions 28 Days	Analytical Method	: EPA 300.0 Re	v 2.1 1993					
 , -	Pace Analytical S							
Chloride	1.6 mg/l	_ 1.	.0 0.60	1		08/19/23 01:5	7 16887-00-6	
Fluoride	0.054J mg/l			1		08/19/23 01:5		

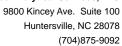
ANALYTICAL RESULTS

Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

Sample: HAM-HLF-GWC-6	Lab ID: 92683141006		Collected: 08/14/23 17:30			Received: 08/16/23 14:02 M		Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical Method: EPA 300.0 Rev 2.1 1993								
	Pace Ana	alytical Services	- Asheville						
Sulfate	99.5	mg/L	2.0	1.0	2		08/19/23 10:37	14808-79-8	


ANALYTICAL RESULTS

Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

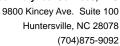
Sample: HAM-GWC-10	Lab ID: 92	2683141007	Collecte	ed: 08/14/23	16:50	Received: 08/	16/23 14:02 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical Me	ethod: EPA 6	010D Prei	paration Met	hod: EF	A 3010A			
	Pace Analytic								
ron	1.4	mg/L	0.040	0.025	1	08/29/23 09:23	08/29/23 21:53	7439-89-6	
Manganese	0.070	mg/L	0.040	0.011	1	08/29/23 09:23	08/29/23 21:53	7439-96-5	
Potassium	0.55	mg/L	0.50	0.15	1	08/29/23 09:23	08/29/23 21:53	7440-09-7	
Sodium	7.0	mg/L	1.0	0.58	1	08/29/23 09:23	08/29/23 21:53		
Calcium	39.8	mg/L	1.0	0.12	1	08/29/23 09:23			
Magnesium	8.9	mg/L	0.050	0.012	1	08/29/23 09:23	08/29/23 21:53		
020 MET ICPMS	Analytical Me	ethod: EPA 6	020B Prer	paration Metl	nod: EP	A 3005A			
	Pace Analytic								
Antimony	ND	mg/L	0.0030	0.0012	1	08/21/23 18:00	08/28/23 17:14	7440-36-0	
Arsenic	ND	mg/L	0.010	0.0037	1	08/21/23 18:00	08/28/23 17:14		
Barium	0.12	mg/L	0.0050	0.00067	1	08/21/23 18:00			
Beryllium	ND	mg/L	0.00050	0.000054	1	08/21/23 18:00			
Boron	0.032J	mg/L	0.040	0.0086	1	08/21/23 18:00			
Cadmium	ND	mg/L	0.00050	0.00011	1	08/21/23 18:00	08/28/23 17:14		
Chromium	0.0015J	mg/L	0.0050	0.0011	1	08/21/23 18:00	08/28/23 17:14		
Cobalt	0.00133 ND	mg/L	0.0050	0.00011	1	08/21/23 18:00			
Copper	ND ND	mg/L	0.0050	0.00039	1	08/21/23 18:00			
• •		•				08/21/23 18:00			
ead	ND	mg/L	0.0010	0.00012	1				
lickel	ND	mg/L	0.0050	0.00071	1	08/21/23 18:00			
Selenium	ND	mg/L	0.0050	0.0014	1	08/21/23 18:00			
Silver	ND	mg/L	0.0050	0.00044	1	08/21/23 18:00			
hallium	ND	mg/L	0.0010	0.00018	1	08/21/23 18:00			
/anadium	ND	mg/L	0.010	0.0025	1	08/21/23 18:00	08/28/23 17:14		
linc	ND	mg/L	0.010	0.0070	1	08/21/23 18:00	08/28/23 17:14	7440-66-6	
2540C Total Dissolved Solids	Analytical Me	ethod: SM 25	40C-2015						
	Pace Analytic	cal Services	- Peachtre	e Corners, G	iΑ				
otal Dissolved Solids	162	mg/L	25.0	25.0	1		08/18/23 18:34		
2320B Alkalinity	Analytical Me	ethod: SM 23	20B-2011						
	Pace Analytic	cal Services	- Asheville						
Alkalinity, Bicarbonate (CaCO3)	150	mg/L	5.0	5.0	1		08/21/23 18:23		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		08/21/23 18:23	i	
Alkalinity, Total as CaCO3	150	mg/L	5.0	5.0	1		08/21/23 18:23		
500S2D Sulfide Water	Analytical Me	ethod: SM 45	00-S2D-20	011					
	Pace Analytic	cal Services	- Asheville						
Sulfide	ND	mg/L	0.10	0.022	1		08/18/23 05:05	18496-25-8	
300.0 IC Anions 28 Days	Analytical Me	ethod: EPA 3	00.0 Rev 2	2.1 1993					
	Pace Analytic								
Chloride	1.0	mg/L	1.0	0.60	1		08/19/23 02:12	16887-00-6	
Fluoride	0.077J	mg/L	0.10	0.050	1		08/19/23 02:12		

Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

Sample: HAM-GWC-10	Lab ID:	92683141007	Collected	d: 08/14/23	3 16:50	Received: 08	3/16/23 14:02 N	Matrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	•	Method: EPA 3 lytical Services		.1 1993					
Sulfate	9.0	mg/L	1.0	0.50	1		08/19/23 02:12	2 14808-79-8	


ANALYTICAL RESULTS

Project: Huffaker Road LF

Date: 09/05/2023 02:44 PM

Sample: HAM-GWC-23	Lab ID:	92683141008	Collected	d: 08/14/23	17:02	Received: 08/	16/23 14:02 Ma	atrix: Water	
·			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	- ——— - Analytical	Method: EPA 6	010D Prep	aration Metl	nod: EF	PA 3010A		•	
	•	lytical Services	•						
				•					
ron	3.0	mg/L	0.040	0.025	1	08/29/23 09:23	08/29/23 21:58		
Manganese	0.051	mg/L	0.040	0.011	1	08/29/23 09:23	08/29/23 21:58		
Potassium	0.79	mg/L	0.50	0.15	1	08/29/23 09:23			
Sodium	5.2	mg/L	1.0	0.58	1	08/29/23 09:23			
Calcium	40.7	mg/L	1.0	0.12	1	08/29/23 09:23			
Magnesium	9.5	mg/L	0.050	0.012	1	08/29/23 09:23	08/29/23 21:58	7439-95-4	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Meth	nod: EF	PA 3005A			
	Pace Ana	lytical Services	- Peachtree	Corners, G	Α				
Antimony	ND	mg/L	0.0030	0.0012	1	08/21/23 18:00	08/28/23 17:20	7440-36-0	
Arsenic	ND	mg/L	0.010	0.0037	1	08/21/23 18:00	08/28/23 17:20	7440-38-2	
Barium	0.071	mg/L	0.0050	0.00067	1	08/21/23 18:00	08/28/23 17:20	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/21/23 18:00	08/28/23 17:20	7440-41-7	
Boron	0.019J	mg/L	0.040	0.0086	1	08/21/23 18:00	08/28/23 17:20	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	08/21/23 18:00	08/28/23 17:20	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	08/21/23 18:00	08/28/23 17:20	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	08/21/23 18:00	08/28/23 17:20	7440-48-4	
Copper	ND	mg/L	0.0050	0.0010	1	08/21/23 18:00	08/28/23 17:20	7440-50-8	
-ead	ND	mg/L	0.0010	0.00012	1	08/21/23 18:00	08/28/23 17:20	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00071	1	08/21/23 18:00	08/28/23 17:20	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	08/21/23 18:00	08/28/23 17:20	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	08/21/23 18:00	08/28/23 17:20	7440-22-4	
Γhallium	ND	mg/L	0.0010	0.00018	1	08/21/23 18:00	08/28/23 17:20	7440-28-0	
√anadium	ND	mg/L	0.010	0.0025	1	08/21/23 18:00			
Zinc	ND	mg/L	0.010	0.0070	1	08/21/23 18:00			
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
10400 Total Dissolved Collas	•	lytical Services		Corners, G	Α				
Total Dissolved Solids	163	mg/L	25.0	25.0	1		08/18/23 18:34		
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
•	Pace Ana	lytical Services	- Asheville						
Alkalinity, Bicarbonate (CaCO3)	153	mg/L	5.0	5.0	1		08/21/23 18:42		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		08/21/23 18:42		
Alkalinity, Total as CaCO3	153	mg/L	5.0	5.0	1		08/21/23 18:42		
•		Ü					00/21/20 10:12		
I500S2D Sulfide Water		Method: SM 45		11					
	Pace Ana	lytical Services	- Asheville						
Sulfide	ND	mg/L	0.10	0.022	1		08/18/23 05:05	18496-25-8	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2.	1 1993					
	•	lytical Services		-					
Chloride	1.1	mg/L	1.0	0.60	1		08/19/23 02:57	16887 00 6	
SHIUHUE	1.1	IIIg/∟	1.0	0.00	1		00/13/23 02.5/	10001-00-0	

08/19/23 02:57 14808-79-8

Sulfate

ANALYTICAL RESULTS

Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

Sample: HAM-GWC-23 Lab ID: 92683141008 Collected: 08/14/23 17:02 Received: 08/16/23 14:02 Matrix: Water Report **Parameters** Results Units Limit MDL DF Prepared CAS No. Analyzed Qual Analytical Method: EPA 300.0 Rev 2.1 1993 300.0 IC Anions 28 Days Pace Analytical Services - Asheville

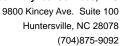
0.50

1.0

4.6

mg/L

ANALYTICAL RESULTS


Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

Sample: HAM-HLF-FD-05	Lab ID:	92683141009	Collecte	ed: 08/14/23	3 00:00	Received: 08/	16/23 14:02 Ma	atrix: Water	
			Report						
Parameters	Results	Units -	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical	Method: EPA 6	010D Pre	paration Met	thod: EF	A 3010A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	βA				
ron	1.0	mg/L	0.040	0.025	1	08/29/23 09:23	08/29/23 22:04	7439-89-6	
Manganese	0.070	mg/L	0.040	0.011	1	08/29/23 09:23	08/29/23 22:04	7439-96-5	
Potassium	0.54	mg/L	0.50	0.15	1	08/29/23 09:23	08/29/23 22:04	7440-09-7	
Sodium	7.2	mg/L	1.0	0.58	1	08/29/23 09:23	08/29/23 22:04	7440-23-5	
Calcium	40.1	mg/L	1.0	0.12	1	08/29/23 09:23	08/29/23 22:04	7440-70-2	
Magnesium	9.0	mg/L	0.050	0.012	1	08/29/23 09:23	08/29/23 22:04	7439-95-4	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	hod: EP	A 3005A			
	Pace Ana	lytical Services	- Peachtre	e Corners, C	3A				
Antimony	ND	mg/L	0.0030	0.0012	1	08/21/23 18:00	08/28/23 17:26	7440-36-0	
Arsenic	ND	mg/L	0.010	0.0037	1	08/21/23 18:00	08/28/23 17:26	7440-38-2	
Barium	0.12	mg/L	0.0050	0.00067	1	08/21/23 18:00	08/28/23 17:26	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/21/23 18:00	08/28/23 17:26	7440-41-7	
Boron	0.032J	mg/L	0.040	0.0086	1	08/21/23 18:00	08/28/23 17:26	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	08/21/23 18:00	08/28/23 17:26	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	08/21/23 18:00		7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	08/21/23 18:00			
Copper	ND	mg/L	0.0050	0.0010	1	08/21/23 18:00			
_ead	ND	mg/L	0.0010	0.00012	1	08/21/23 18:00			
Nickel	ND	mg/L	0.0050	0.00071	1	08/21/23 18:00			
Selenium	ND	mg/L	0.0050	0.0014	1	08/21/23 18:00			
Silver	ND	mg/L	0.0050	0.00044	1	08/21/23 18:00			
Thallium	ND ND	mg/L	0.0030	0.00044	1	08/21/23 18:00			
√anadium	ND ND		0.0010	0.0025	1	08/21/23 18:00	08/28/23 17:26		
Zinc	0.028	mg/L mg/L	0.010	0.0025	1	08/21/23 18:00			
2540C Total Dissolved Solids	Analytical	Method: SM 25	:40C-2015	•					
20400 Total Dissolved Solids	•	lytical Services			3A				
Total Dissolved Solids	168	mg/L	25.0	25.0	1		08/18/23 18:34		
2320B Alkalinity	Analytical	Method: SM 23	20R-2011						
2320B Alkallilly	-	lytical Services		:					
Alkalinity,Bicarbonate (CaCO3)	151	mg/L	5.0	5.0	1		08/21/23 18:52		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		08/21/23 18:52		
Alkalinity, Total as CaCO3	151	mg/L	5.0	5.0	1		08/21/23 18:52		
4500S2D Sulfide Water		Method: SM 45							
TOUGOLD Guilluc Walei	-	lytical Services							
Sulfide	ND	mg/L	0.10	0.022	1		08/18/23 05:05	18496-25-8	
300.0 IC Anions 28 Days	-	Method: EPA 3							
	Pace Ana	lytical Services	- Asheville	:					
Chloride	1.1	mg/L	1.0	0.60	1		08/19/23 03:12		
Fluoride	0.092J	mg/L	0.10	0.050	1		08/19/23 03:12	16984-48-8	

08/19/23 03:12 14808-79-8

Sulfate

ANALYTICAL RESULTS

Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

Sample: HAM-HLF-FD-05 Lab ID: 92683141009 Collected: 08/14/23 00:00 Received: 08/16/23 14:02 Matrix: Water Report **Parameters** Results Units Limit MDL DF Prepared CAS No. Analyzed Qual Analytical Method: EPA 300.0 Rev 2.1 1993 300.0 IC Anions 28 Days Pace Analytical Services - Asheville

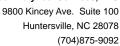
0.50

1.0

8.9

mg/L

ANALYTICAL RESULTS


Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

Sample: HAM-GWC-5	Lab ID:	92683141010	Collecte	ed: 08/15/23	12:40	Received: 08/	16/23 14:02 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
						· 		-	
6010D ATL ICP	•	Method: EPA 6		•		PA 3010A			
	Pace Analy	tical Services	 Peachtre 	e Corners, G	A				
Calcium	75.8	mg/L	1.0	0.12	1	08/29/23 15:11	08/30/23 20:00	7440-70-2	M1
ron	1.7	mg/L	0.040	0.025	1	08/29/23 15:11	08/30/23 20:00	7439-89-6	
Magnesium	23.8	mg/L	0.050	0.012	1	08/29/23 15:11	08/30/23 20:00	7439-95-4	M1
Manganese	0.24	mg/L	0.040	0.011	1	08/29/23 15:11	08/30/23 20:00	7439-96-5	
Potassium	0.75	mg/L	0.50	0.15	1	08/29/23 15:11	09/02/23 14:02	7440-09-7	
Sodium	15.1	mg/L	1.0	0.58	1	08/29/23 15:11	08/30/23 20:00	7440-23-5	M1
6020 MET ICPMS	Analytical I	Method: EPA 6	020B Pre	paration Meth	nod: EF	PA 3005A			
	Pace Analy	tical Services	- Peachtre	e Corners, G	A				
Antimony	ND	mg/L	0.0030	0.0012	1	08/21/23 18:00	08/28/23 17:32	7440-36-0	
Arsenic	ND	mg/L	0.010	0.0037	1	08/21/23 18:00	08/28/23 17:32	7440-38-2	
Barium	0.072	mg/L	0.0050	0.00067	1	08/21/23 18:00	08/28/23 17:32	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/21/23 18:00	08/28/23 17:32	7440-41-7	
Boron	0.060	mg/L	0.040	0.0086	1	08/21/23 18:00	08/28/23 17:32	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	08/21/23 18:00	08/28/23 17:32	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	08/21/23 18:00	08/28/23 17:32	7440-47-3	
Cobalt	0.00046J	mg/L	0.0050	0.00039	1	08/21/23 18:00	08/28/23 17:32	7440-48-4	
Copper	ND	mg/L	0.0050	0.0010	1	08/21/23 18:00	08/28/23 17:32	7440-50-8	
_ead	ND	mg/L	0.0010	0.00012	1	08/21/23 18:00	08/28/23 17:32	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00071	1	08/21/23 18:00	08/28/23 17:32	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	08/21/23 18:00	08/28/23 17:32	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	08/21/23 18:00	08/28/23 17:32	7440-22-4	
Thallium	ND	mg/L	0.0010	0.00018	1	08/21/23 18:00	08/28/23 17:32	7440-28-0	
Vanadium	ND	mg/L	0.010	0.0025	1	08/21/23 18:00	08/28/23 17:32	7440-62-2	
Zinc	ND	mg/L	0.010	0.0070	1	08/21/23 18:00	08/28/23 17:32	7440-66-6	
2540C Total Dissolved Solids	Analytical I	Method: SM 25	40C-2015						
	Pace Analy	tical Services	- Peachtre	e Corners, G	Α				
Total Dissolved Solids	428	mg/L	25.0	25.0	1		08/21/23 17:37		
2320B Alkalinity	Analytical I	Method: SM 23	20B-2011						
·	Pace Analy	tical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	258	mg/L	5.0	5.0	1		08/25/23 08:36		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		08/25/23 08:36		
Alkalinity, Total as CaCO3	258	mg/L	5.0	5.0	1		08/25/23 08:36		
1500S2D Sulfide Water	Analytical I	Method: SM 45	00-S2D-2	011					
	Pace Analy	tical Services	- Asheville						
Sulfide	ND	mg/L	0.10	0.022	1		08/18/23 05:06	18496-25-8	
300.0 IC Anions 28 Days	Analytical I	Method: EPA 3	00.0 Rev 2	2.1 1993					
	Pace Analy	tical Services	- Asheville						
Chloride	2.1	mg/L	1.0	0.60	1		08/19/23 03:26		
Fluoride	0.052J	mg/L	0.10	0.050	1		08/19/23 03:26	16984-48-8	

08/19/23 03:26 14808-79-8

Sulfate

ANALYTICAL RESULTS

Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

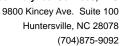
Sample: HAM-GWC-5 Lab ID: 92683141010 Collected: 08/15/23 12:40 Received: 08/16/23 14:02 Matrix: Water Report **Parameters** Results Units Limit MDL DF Prepared CAS No. Analyzed Qual Analytical Method: EPA 300.0 Rev 2.1 1993 300.0 IC Anions 28 Days Pace Analytical Services - Asheville

1.0

0.50

77.2

mg/L


ANALYTICAL RESULTS

Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

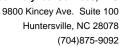
Sample: HAM-GWC-7	Lab ID: 926	683141011	Collecte	d: 08/15/23	17:23	Received: 08/	/16/23 14:02 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical Me	thod: EPA 6	010D Prei	paration Met	hod: EF	A 3010A			
	Pace Analytic								
Potassium	2.4	mg/L	0.50	0.15	1	08/29/23 15:11	09/02/23 14:28	7440-09-7	
ron	39.4	mg/L	0.040	0.025	1	08/29/23 15:11	08/30/23 20:21	7439-89-6	
Manganese		mg/L	0.040	0.011	1	08/29/23 15:11	08/30/23 20:21	7439-96-5	
Sodium		mg/L	1.0	0.58	1	08/29/23 15:11	08/30/23 20:21	7440-23-5	
Calcium		mg/L	1.0	0.12	1	08/29/23 15:11	08/30/23 20:21		
Magnesium		mg/L	0.050	0.012	1	08/29/23 15:11	08/30/23 20:21		
6020 MET ICPMS	Analytical Me	thod: EPA 6	020B Prep	paration Met	hod: EP	A 3005A			
	Pace Analytic								
Antimony	ND	mg/L	0.0030	0.0012	1	08/21/23 18:00	08/28/23 17:38	7440-36-0	
Arsenic		mg/L	0.010	0.0037	1	08/21/23 18:00	08/28/23 17:38	7440-38-2	
Barium		mg/L	0.0050	0.00067	1	08/21/23 18:00	08/28/23 17:38	7440-39-3	
Beryllium		mg/L	0.00050	0.000054	1	08/21/23 18:00			
Boron		mg/L	0.040	0.0086	1	08/21/23 18:00			
Cadmium		mg/L	0.00050	0.00011	1	08/21/23 18:00		7440-43-9	
Chromium		mg/L	0.0050	0.0011	1	08/21/23 18:00			
Cobalt		mg/L	0.0050	0.00039	1	08/21/23 18:00			
Copper		mg/L	0.0050	0.00039	1	08/21/23 18:00			
• •		-	0.0030	0.0010		08/21/23 18:00			
ead		mg/L			1				
Nickel		mg/L	0.0050	0.00071	1	08/21/23 18:00			
Selenium		mg/L	0.0050	0.0014	1	08/21/23 18:00			
Silver 		mg/L	0.0050	0.00044	1	08/21/23 18:00			
Fhallium		mg/L	0.0010	0.00018	1	08/21/23 18:00			
/anadium		mg/L	0.010	0.0025	1	08/21/23 18:00	08/28/23 17:38		
Zinc	0.20	mg/L	0.010	0.0070	1	08/21/23 18:00	08/28/23 17:38	7440-66-6	
2540C Total Dissolved Solids	Analytical Me								
	Pace Analytic	al Services	- Peachtre	e Corners, G	SA .				
Total Dissolved Solids	267	mg/L	25.0	25.0	1		08/21/23 17:37		
2320B Alkalinity	Analytical Me	thod: SM 23	320B-2011						
	Pace Analytic	al Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	44.1	mg/L	5.0	5.0	1		08/24/23 16:46		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		08/24/23 16:46		
Alkalinity, Total as CaCO3	44.1	mg/L	5.0	5.0	1		08/24/23 16:46		
500S2D Sulfide Water	Analytical Me	thod: SM 45	500-S2D-20	011					
	Pace Analytic	al Services	- Asheville						
Sulfide	ND	mg/L	0.10	0.022	1		08/18/23 05:08	18496-25-8	
300.0 IC Anions 28 Days	Analytical Me	thod: EPA 3	00.0 Rev 2	.1 1993					
•	Pace Analytic								
Chloride	1.7	mg/L	1.0	0.60	1		08/19/23 03:41	16887-00-6	
Fluoride		mg/L	0.10	0.050	1		08/19/23 03:41		

Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

Sample: HAM-GWC-7 Lab ID: 92683141011 Collected: 08/15/23 17:23 Received: 08/16/23 14:02 Matrix: Water Report **Parameters** Results Units Limit MDL DF Prepared CAS No. Analyzed Qual Analytical Method: EPA 300.0 Rev 2.1 1993 300.0 IC Anions 28 Days Pace Analytical Services - Asheville Sulfate 122 mg/L 3.0 1.5 3 08/19/23 10:51 14808-79-8



ANALYTICAL RESULTS

Project: Huffaker Road LF

Date: 09/05/2023 02:44 PM

Sample: HAM-HLF-GWC-8	Lab ID:	92683141012	Collecte	ed: 08/15/23	14:20	Received: 08/	16/23 14:02 Ma	atrix: Water	
Devenuetore	Daguita	Llaita	Report	MDI	סר	Duamanad	A l	CACNE	0
Parameters	Results -	Units -	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical	Method: EPA 6	010D Pre	paration Met	hod: EF	PA 3010A			
	Pace Ana	lytical Services	- Peachtre	e Corners, G	iΑ				
ron	0.51	mg/L	0.040	0.025	1	08/29/23 15:11	08/30/23 20:26	7439-89-6	
Manganese	0.37	mg/L	0.040	0.011	1	08/29/23 15:11	08/30/23 20:26	7439-96-5	
Sodium	11.0	mg/L	1.0	0.58	1	08/29/23 15:11	08/30/23 20:26	7440-23-5	
Calcium	70.5	mg/L	1.0	0.12	1	08/29/23 15:11	08/30/23 20:26	7440-70-2	
Magnesium	12.1	mg/L	0.050	0.012	1	08/29/23 15:11	08/30/23 20:26	7439-95-4	
Potassium	0.53	mg/L	0.50	0.15	1	08/29/23 15:11	09/02/23 14:33	7440-09-7	
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	nod: EF	PA 3005A			
	Pace Ana	lytical Services	- Peachtre	e Corners, G	iΑ				
Antimony	ND	mg/L	0.0030	0.0012	1	08/21/23 18:00	08/28/23 17:43	7440-36-0	
Arsenic	ND	mg/L	0.010	0.0037	1	08/21/23 18:00	08/28/23 17:43	7440-38-2	
Barium	0.12	mg/L	0.0050	0.00067	1	08/21/23 18:00	08/28/23 17:43	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/21/23 18:00	08/28/23 17:43	7440-41-7	
Boron	0.031J	mg/L	0.040	0.0086	1	08/21/23 18:00	08/28/23 17:43	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	08/21/23 18:00	08/28/23 17:43	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	08/21/23 18:00			
Cobalt	0.00077J	mg/L	0.0050	0.00039	1	08/21/23 18:00	08/28/23 17:43	7440-48-4	
Copper	ND	mg/L	0.0050	0.0010	1	08/21/23 18:00	08/28/23 17:43	7440-50-8	
-ead	ND	mg/L	0.0010	0.00012	1	08/21/23 18:00			
Nickel	ND	mg/L	0.0050	0.00071	1	08/21/23 18:00			
Selenium	ND	mg/L	0.0050	0.0014	1	08/21/23 18:00			
Silver	ND	mg/L	0.0050	0.00044	1	08/21/23 18:00	08/28/23 17:43		
Thallium	ND	mg/L	0.0010	0.00011	1	08/21/23 18:00			
Vanadium	ND	mg/L	0.010	0.0025	1	08/21/23 18:00			
Zinc	ND	mg/L	0.010	0.0070	1	08/21/23 18:00			
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
20400 Total Dissolved Collas	•	lytical Services			iΑ				
Total Dissolved Solids	280	mg/L	25.0	25.0	1		08/21/23 17:38		
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
·	Pace Ana	lytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	232	mg/L	5.0	5.0	1		08/25/23 08:45		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		08/25/23 08:45		
Alkalinity, Total as CaCO3	232	mg/L	5.0	5.0	1		08/25/23 08:45		
4500S2D Sulfide Water	Analytical	Method: SM 45	500-S2D-2	011					
		lytical Services							
Sulfide	ND	mg/L	0.10	0.022	1		08/18/23 05:08	18496-25-8	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0 Rev 2	2.1 1993					
•	•	lytical Services							
Chloride	1.6	mg/L	1.0	0.60	1		08/19/23 03:56	16887-00-6	
Fluoride	0.13	mg/L	0.10	0.050	1		08/19/23 03:56		

Pace Project No.:

Date: 09/05/2023 02:44 PM

ANALYTICAL RESULTS

Project: Huffaker Road LF

92683141

Sample: HAM-HLF-GWC-8 Lab ID: 92683141012 Collected: 08/15/23 14:20 Received: 08/16/23 14:02 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Rev 2.1 1993

Pace Analytical Services - Asheville

Sulfate **28.1** mg/L 1.0 0.50 1 08/19/23 03:56 14808-79-8

ANALYTICAL RESULTS

Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

Sample: HAM-GWC-9	Lab ID: 9	92683141013	Collecte	ed: 08/15/23	3 16:11	Received: 08/	/16/23 14:02 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical N	Method: EPA 6	010D Pre	paration Met	hod: EF	PA 3010A			
	-	tical Services		•					
Potassium	0.26J	mg/L	0.50	0.15	1	08/29/23 15:11	09/02/23 14:38	3 7440-09-7	
ron	5.8	mg/L	0.040	0.025	1	08/29/23 15:11	08/30/23 20:41	7439-89-6	
Manganese	0.15	mg/L	0.040	0.011	1	08/29/23 15:11	08/30/23 20:41		
Sodium	7.2	mg/L	1.0	0.58	1	08/29/23 15:11	08/30/23 20:41		
Calcium	37.6	mg/L	1.0	0.12	1	08/29/23 15:11	08/30/23 20:41		
Magnesium	13.8	mg/L	0.050	0.012	1	08/29/23 15:11	08/30/23 20:41		
6020 MET ICPMS	Analytical N	Method: EPA 6	020B Pre	paration Met	hod: FF	PA 3005A			
3020 III.2 1 101 III.0		tical Services				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Antimony	ND	mg/L	0.0030	0.0012	1	08/22/23 10:04	08/29/23 19:37	7440-36-0	
Arsenic	ND	mg/L	0.010	0.0037	1	08/22/23 10:04	08/29/23 19:37		
Barium	0.064	mg/L	0.0050	0.0007	1	08/22/23 10:04			
Beryllium	ND	mg/L	0.0050	0.00007	1	08/22/23 10:04	08/29/23 19:37		
Boron	0.022J	mg/L	0.040	0.0086	1	08/22/23 10:04			
Cadmium	ND	mg/L	0.0050	0.00011	1	08/22/23 10:04			
Chromium	ND ND	-	0.0050	0.00011	1	08/22/23 10:04			
		mg/L							
Cobalt	ND	mg/L	0.0050	0.00039	1	08/22/23 10:04			
Copper	ND	mg/L	0.0050	0.0010	1	08/22/23 10:04			
Lead	ND	mg/L	0.0010	0.00012	1	08/22/23 10:04			
Nickel	0.0017J	mg/L	0.0050	0.00071	1	08/22/23 10:04			
Selenium	ND	mg/L	0.0050	0.0014	1	08/22/23 10:04	08/29/23 19:37		
Silver	ND	mg/L	0.0050	0.00044	1	08/22/23 10:04			
Γhallium	ND	mg/L	0.0010	0.00018	1	08/22/23 10:04	08/29/23 19:37		
√anadium	ND	mg/L	0.010	0.0025	1	08/22/23 10:04	08/29/23 19:37		
Zinc	ND	mg/L	0.010	0.0070	1	08/22/23 10:04	08/29/23 19:37	7440-66-6	
2540C Total Dissolved Solids	Analytical N	Method: SM 25	40C-2015						
	Pace Analy	tical Services	- Peachtre	e Corners, G	βA				
Total Dissolved Solids	246	mg/L	25.0	25.0	1		08/21/23 17:38	3	
2320B Alkalinity	Analytical N	Method: SM 23	20B-2011						
	Pace Analy	tical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	93.9	mg/L	5.0	5.0	1		08/24/23 17:03	3	
Alkalinity, Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		08/24/23 17:03	3	
Alkalinity, Total as CaCO3	93.9	mg/L	5.0	5.0	1		08/24/23 17:03	}	
4500S2D Sulfide Water	Analytical N	Method: SM 45	00-S2D-2	011					
	Pace Analy	tical Services	- Asheville						
Sulfide	ND	mg/L	0.10	0.022	1		08/18/23 05:09	18496-25-8	
300.0 IC Anions 28 Days	Analytical N	Method: EPA 3	00.0 Rev 2	2.1 1993					
		tical Services							
Chloride	0.65J	mg/L	1.0	0.60	1		08/19/23 04:40	16887-00-6	
Fluoride	0.060J	mg/L	0.10	0.050	1		08/19/23 04:40		

08/19/23 04:40 14808-79-8

Sulfate

ANALYTICAL RESULTS

Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

Sample: HAM-GWC-9	Lab ID:	92683141013	Collecte	ed: 08/15/2	23 16:11	Received: 08/1	6/23 14:02 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	•	l Method: EPA 3 alytical Services							

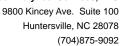
0.50

1.0

63.9

mg/L

ANALYTICAL RESULTS


Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

Sample: HAM-GWC-18	Lab ID: 9	2683141014	Collecte	d: 08/15/23	14:57	Received: 08/	16/23 14:02 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical M	ethod: EPA 6	010D Prep	paration Met	hod: EF	A 3010A			
	Pace Analyti	ical Services	- Peachtre	e Corners, G	iΑ				
Potassium	0.44J	mg/L	0.50	0.15	1	08/29/23 15:11	09/02/23 14:43	7440-09-7	
ron	0.030J	mg/L	0.040	0.025	1	08/29/23 15:11	08/30/23 20:46	7439-89-6	
Manganese	0.019J	mg/L	0.040	0.011	1	08/29/23 15:11	08/30/23 20:46	7439-96-5	
Sodium	11.5	mg/L	1.0	0.58	1	08/29/23 15:11	08/30/23 20:46	7440-23-5	
Calcium	41.0	mg/L	1.0	0.12	1	08/29/23 15:11	08/30/23 20:46	7440-70-2	
Magnesium	13.5	mg/L	0.050	0.012	1	08/29/23 15:11	08/30/23 20:46		
6020 MET ICPMS	Analytical M	ethod: EPA 6	020B Prep	aration Met	nod: EF	A 3005A			
		ical Services							
Antimony	0.0028J	mg/L	0.0030	0.0012	1	08/22/23 10:04	08/29/23 20:01	7440-36-0	
Arsenic	ND	mg/L	0.010	0.0037	1	08/22/23 10:04	08/29/23 20:01	7440-38-2	
Barium	0.077	mg/L	0.0050	0.00067	1	08/22/23 10:04	08/29/23 20:01	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/22/23 10:04	08/29/23 20:01	7440-41-7	
Boron	0.14	mg/L	0.040	0.0086	1	08/22/23 10:04	08/29/23 20:01	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	08/22/23 10:04	08/29/23 20:01		
Chromium	ND	mg/L	0.0050	0.0011	1	08/22/23 10:04	08/29/23 20:01		
Cobalt	ND	mg/L	0.0050	0.00039	1	08/22/23 10:04	08/29/23 20:01	-	
Copper	ND	mg/L	0.0050	0.0010	1	08/22/23 10:04			
ead.	ND	mg/L	0.0030	0.0010	1	08/22/23 10:04			
		-							
Nickel	ND	mg/L	0.0050	0.00071	1	08/22/23 10:04	08/29/23 20:01		
Selenium	ND	mg/L	0.0050	0.0014	1	08/22/23 10:04			
Silver 	ND	mg/L	0.0050	0.00044	1	08/22/23 10:04	08/29/23 20:01		
Thallium	ND	mg/L	0.0010	0.00018	1	08/22/23 10:04			
/anadium	ND	mg/L	0.010	0.0025	1	08/22/23 10:04	08/29/23 20:01		
Zinc	ND	mg/L	0.010	0.0070	1	08/22/23 10:04	08/29/23 20:01	7440-66-6	
2540C Total Dissolved Solids	Analytical M	ethod: SM 25	40C-2015						
	Pace Analyti	ical Services	Peachtre	e Corners, G	iA				
Total Dissolved Solids	193	mg/L	25.0	25.0	1		08/21/23 17:38		
2320B Alkalinity	Analytical M	ethod: SM 23	20B-2011						
	Pace Analyti	ical Services	Asheville						
Alkalinity, Bicarbonate (CaCO3)	187	mg/L	5.0	5.0	1		08/24/23 17:12		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		08/24/23 17:12		
Alkalinity, Total as CaCO3	187	mg/L	5.0	5.0	1		08/24/23 17:12		
500S2D Sulfide Water	Analytical M	ethod: SM 45	00-S2D-20)11					
	Pace Analyti	ical Services	Asheville						
Sulfide	ND	mg/L	0.10	0.022	1		08/18/23 05:09	18496-25-8	
300.0 IC Anions 28 Days	Analytical M	ethod: EPA 3	00.0 Rev 2	.1 1993					
•	•	ical Services							
Chloride	0.85J	mg/L	1.0	0.60	1		08/19/23 04:55	16887-00-6	
Fluoride	0.10	mg/L	0.10	0.050	1		08/19/23 04:55	16984-48-8	

08/19/23 04:55 14808-79-8

Sulfate

ANALYTICAL RESULTS

Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

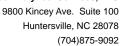
Sample: HAM-GWC-18 Lab ID: 92683141014 Collected: 08/15/23 14:57 Received: 08/16/23 14:02 Matrix: Water Report **Parameters** Results Units Limit MDL DF Prepared CAS No. Analyzed Qual Analytical Method: EPA 300.0 Rev 2.1 1993 300.0 IC Anions 28 Days Pace Analytical Services - Asheville

0.50

1.0

7.7

mg/L


ANALYTICAL RESULTS

Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

Sample: HAM-HLF-GWC-19	Lab ID:	92683141015	Collecte	ed: 08/15/23	16:14	Received: 08/	16/23 14:02 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical I	Method: EPA 6	010D Pre	paration Met	hod: EF	PA 3010A			
	Pace Analy	tical Services	- Peachtre	e Corners, G	iΑ				
ron	0.12	mg/L	0.040	0.025	1	08/29/23 15:11	08/30/23 20:52	7439-89-6	
Manganese	0.053	mg/L	0.040	0.011	1	08/29/23 15:11	08/30/23 20:52	7439-96-5	
Sodium	22.6	mg/L	1.0	0.58	1	08/29/23 15:11	08/30/23 20:52	7440-23-5	
Calcium	44.6	mg/L	1.0	0.12	1	08/29/23 15:11	08/30/23 20:52	7440-70-2	
Magnesium	11.9	mg/L	0.050	0.012	1	08/29/23 15:11	08/30/23 20:52	7439-95-4	
Potassium	0.28J	mg/L	0.50	0.15	1	08/29/23 15:11	09/02/23 14:49		
6020 MET ICPMS	Analytical I	Method: EPA 6	020B Pre	paration Met	nod: EF	A 3005A			
		tical Services							
Antimony	ND	mg/L	0.0030	0.0012	1	08/22/23 10:04	08/29/23 20:07	7440-36-0	
Arsenic	ND	mg/L	0.010	0.0037	1	08/22/23 10:04	08/29/23 20:07	7440-38-2	
Barium	0.15	mg/L	0.0050	0.00067	1	08/22/23 10:04			
Beryllium	ND	mg/L	0.00050	0.000054	1	08/22/23 10:04	08/29/23 20:07		
Boron	0.16	mg/L	0.040	0.0086	1	08/22/23 10:04			
Cadmium	ND	mg/L	0.00050	0.00011	1	08/22/23 10:04			
Chromium	ND ND	mg/L	0.0050	0.00011	1	08/22/23 10:04			
Cobalt	ND ND	mg/L	0.0050	0.0011		08/22/23 10:04			
		ū			1				
Copper	ND	mg/L	0.0050	0.0010	1	08/22/23 10:04			
ead	ND	mg/L	0.0010	0.00012	1	08/22/23 10:04			
lickel	ND	mg/L	0.0050	0.00071	1	08/22/23 10:04			
Selenium	ND	mg/L	0.0050	0.0014	1	08/22/23 10:04	08/29/23 20:07		
Silver	ND	mg/L	0.0050	0.00044	1	08/22/23 10:04			
hallium	ND	mg/L	0.0010	0.00018	1	08/22/23 10:04	08/29/23 20:07		
/anadium	ND	mg/L	0.010	0.0025	1	08/22/23 10:04	08/29/23 20:07	7440-62-2	
Zinc	ND	mg/L	0.010	0.0070	1	08/22/23 10:04	08/29/23 20:07	7440-66-6	
2540C Total Dissolved Solids	Analytical I	Method: SM 25	40C-2015						
	Pace Analy	tical Services	- Peachtre	e Corners, G	iΑ				
Total Dissolved Solids	227	mg/L	25.0	25.0	1		08/21/23 17:39		
2320B Alkalinity	Analytical I	Method: SM 23	20B-2011						
	Pace Analy	tical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	199	mg/L	5.0	5.0	1		08/24/23 17:23		
Alkalinity, Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		08/24/23 17:23		
Alkalinity, Total as CaCO3	199	mg/L	5.0	5.0	1		08/24/23 17:23		
500S2D Sulfide Water	Analytical I	Method: SM 45	00-S2D-2	011					
	Pace Analy	tical Services	- Asheville						
Sulfide	ND	mg/L	0.10	0.022	1		08/18/23 05:10	18496-25-8	
800.0 IC Anions 28 Days	Analytical I	Method: EPA 3	00.0 Rev 2	2.1 1993					
	-	tical Services							
Chloride	1.1	mg/L	1.0	0.60	1		08/19/23 05:10	16887-00-6	
Fluoride	0.092J	mg/L	0.10	0.050	1		08/19/23 05:10		

Qual

ANALYTICAL RESULTS

Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

Sample: HAM-HLF-GWC-19

Lab ID: 92683141015

Collected: 08/15/23 16:14

Received: 08/16/23 14:02 Matrix: Water

Report

Parameters

Results

Units

Limit

MDL

DF

Prepared

Analyzed

CAS No.

300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Rev 2.1 1993

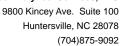
Pace Analytical Services - Asheville

Sulfate **19.1** mg/L 1.0 0.50 1 08/19/23 05:10 14808-79-8

ANALYTICAL RESULTS

Project: Huffaker Road LF

Pace Project No.: 92683141


Date: 09/05/2023 02:44 PM

Sample: HAM-GWC-20	Lab ID: 92	2683141016	Collecte	d: 08/15/23	13:52	Received: 08/	16/23 14:02 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical Me	ethod: EPA 6	010D Prep	aration Meth	nod: EF	A 3010A			
	Pace Analyti								
Potassium	0.29J	mg/L	0.50	0.15	1	08/29/23 15:11	09/02/23 14:54	7440-09-7	
ron	2.6	mg/L	0.040	0.025	1	08/29/23 15:11	08/30/23 20:57	7439-89-6	
Manganese	0.12	mg/L	0.040	0.011	1	08/29/23 15:11	08/30/23 20:57	7439-96-5	
Sodium	4.9	mg/L	1.0	0.58	1	08/29/23 15:11	08/30/23 20:57	7440-23-5	
Calcium	63.5	mg/L	1.0	0.12	1	08/29/23 15:11	08/30/23 20:57	7440-70-2	
Magnesium	13.1	mg/L	0.050	0.012	1	08/29/23 15:11	08/30/23 20:57	7439-95-4	
6020 MET ICPMS	Analytical Me	ethod: EPA 60	020B Prep	aration Meth	nod: EP	A 3005A			
	Pace Analytic	cal Services	- Peachtree	e Corners, G	Α				
Antimony	ND	mg/L	0.0030	0.0012	1	08/22/23 10:04	08/29/23 20:13	7440-36-0	
Arsenic	ND	mg/L	0.010	0.0037	1	08/22/23 10:04	08/29/23 20:13	7440-38-2	
Barium	0.16	mg/L	0.0050	0.00067	1	08/22/23 10:04	08/29/23 20:13	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/22/23 10:04	08/29/23 20:13	7440-41-7	
Boron	0.019J	mg/L	0.040	0.0086	1	08/22/23 10:04	08/29/23 20:13	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	08/22/23 10:04	08/29/23 20:13	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	08/22/23 10:04	08/29/23 20:13	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	08/22/23 10:04	08/29/23 20:13	7440-48-4	
Copper	ND	mg/L	0.0050	0.0010	1	08/22/23 10:04			
ead	ND	mg/L	0.0010	0.00012	1	08/22/23 10:04			
lickel	ND	mg/L	0.0050	0.00071	1	08/22/23 10:04	08/29/23 20:13		
Selenium	ND	mg/L	0.0050	0.0014	1	08/22/23 10:04			
Silver	ND	-	0.0050	0.0014	1	08/22/23 10:04	08/29/23 20:13		
Fhallium	ND ND	mg/L	0.0030	0.00044					
		mg/L			1	08/22/23 10:04			
/anadium	ND	mg/L	0.010	0.0025	1	08/22/23 10:04	08/29/23 20:13		
Zinc	ND	mg/L	0.010	0.0070	1	08/22/23 10:04	08/29/23 20:13	7440-66-6	
2540C Total Dissolved Solids	-	ethod: SM 25							
	Pace Analytic								
Total Dissolved Solids	291	mg/L	25.0	25.0	1		08/21/23 17:39		
2320B Alkalinity	Analytical Me	ethod: SM 23	20B-2011						
	Pace Analytic	cal Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	163	mg/L	5.0	5.0	1		08/24/23 17:45		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		08/24/23 17:45		
Alkalinity, Total as CaCO3	163	mg/L	5.0	5.0	1		08/24/23 17:45		
500S2D Sulfide Water	Analytical Me	ethod: SM 45	00-S2D-20)11					
	Pace Analytic	cal Services	- Asheville						
Sulfide	ND	mg/L	0.10	0.022	1		08/18/23 05:10	18496-25-8	
300.0 IC Anions 28 Days	Analytical Me	ethod: EPA 30	00.0 Rev 2	.1 1993					
-	Pace Analytic	cal Services	- Asheville						
Chloride	1.1	mg/L	1.0	0.60	1		08/19/23 06:09	16887-00-6	
Fluoride	0.055J	mg/L	0.10	0.050	1		08/19/23 06:09	16984-48-8	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

08/19/23 06:09 14808-79-8

Sulfate

ANALYTICAL RESULTS

Project: Huffaker Road LF

67.1

mg/L

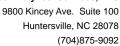
Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

Sample: HAM-GWC-20 Lab ID: 92683141016 Collected: 08/15/23 13:52 Received: 08/16/23 14:02 Matrix: Water Report **Parameters** Results Units Limit MDL DF Prepared CAS No. Analyzed Qual Analytical Method: EPA 300.0 Rev 2.1 1993 300.0 IC Anions 28 Days Pace Analytical Services - Asheville

0.50

1.0


ANALYTICAL RESULTS

Project: Huffaker Road LF

Date: 09/05/2023 02:44 PM

Sample: HAM-GWC-21	Lab ID:	92683141017	Collected	d: 08/15/23	14:52	Received: 08/	/16/23 14:02 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical	Method: EPA 6	010D Prep	aration Met	nod: EF	PA 3010A			
	Pace Ana	lytical Services	- Peachtree	Corners, G	Α				
ron	3.7	mg/L	0.040	0.025	1	08/29/23 15:11	08/30/23 21:02	7439-89-6	
Manganese	0.76	mg/L	0.040	0.020	1	08/29/23 15:11	08/30/23 21:02		
Sodium	4.0	mg/L	1.0	0.58	1	08/29/23 15:11	08/30/23 21:02		
Calcium	31.5	mg/L	1.0	0.12	1	08/29/23 15:11	08/30/23 21:02		
Magnesium	6.2	mg/L	0.050	0.012	1	08/29/23 15:11	08/30/23 21:02		
Potassium	0.48J	mg/L	0.50	0.15	1	08/29/23 15:11	09/02/23 14:59		
6020 MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Metl	nod: FF	PA 3005A			
5020 IIIE 1 101 IIIO		lytical Services				7.00007.			
Antimony	ND	•	0.0030	0.0012	1	08/22/23 10:04	08/29/23 20:19	7440-26.0	
Antimony	ND ND	mg/L	0.0030	0.0012					
Arsenic		mg/L			1	08/22/23 10:04			
Barium	0.058	mg/L	0.0050	0.00067	1	08/22/23 10:04			
Beryllium	ND	mg/L		0.000054	1	08/22/23 10:04			
Boron	0.030J	mg/L	0.040	0.0086	1	08/22/23 10:04			
Cadmium	ND	mg/L	0.00050	0.00011	1	08/22/23 10:04			
Chromium	ND	mg/L	0.0050	0.0011	1	08/22/23 10:04			
Cobalt	0.0032J	mg/L	0.0050	0.00039	1	08/22/23 10:04			
Copper	ND	mg/L	0.0050	0.0010	1	08/22/23 10:04			
Lead	ND	mg/L	0.0010	0.00012	1	08/22/23 10:04			
Nickel	0.0054	mg/L	0.0050	0.00071	1	08/22/23 10:04			
Selenium	ND	mg/L	0.0050	0.0014	1	08/22/23 10:04			
Silver	ND	mg/L	0.0050	0.00044	1	08/22/23 10:04			
Γhallium	ND	mg/L	0.0010	0.00018	1	08/22/23 10:04			
/anadium	ND	mg/L	0.010	0.0025	1	08/22/23 10:04			
Zinc	ND	mg/L	0.010	0.0070	1	08/22/23 10:04	08/29/23 20:19	7440-66-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C-2015						
	Pace Ana	lytical Services	- Peachtree	Corners, G	Α				
Total Dissolved Solids	152	mg/L	25.0	25.0	1		08/21/23 17:40		
2320B Alkalinity	Analytical	Method: SM 23	320B-2011						
•		lytical Services							
Alkalinity,Bicarbonate (CaCO3)	97.8	mg/L	5.0	5.0	1		08/24/23 17:56		
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		08/24/23 17:56		
Alkalinity, Total as CaCO3	97.8	mg/L	5.0	5.0	1		08/24/23 17:56		
1500S2D Sulfide Water	Analytical	Method: SM 45	500-S2D-20	11					
130002D Guillac Water		lytical Services							
Sulfide	ND	mg/L	0.10	0.022	1		08/18/23 05:10	18496-25-8	
		ŭ			-		20, 12, 20 00.10	2.23.200	
300.0 IC Anions 28 Days	•	Method: EPA 3 lytical Services		1 1993					
Chloride	5.3	mg/L	1.0	0.60	1		08/19/23 06:24	16887-00-6	
· · · · · · · · · · · · · · · · · · ·	ND	mg/L	0.10	0.050	1		08/19/23 06:24		

08/19/23 06:24 14808-79-8

Sulfate

ANALYTICAL RESULTS

Project: Huffaker Road LF

18.9

mg/L

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

Sample: HAM-GWC-21 Lab ID: 92683141017 Collected: 08/15/23 14:52 Received: 08/16/23 14:02 Matrix: Water Report **Parameters** Results Units Limit MDL DF Prepared CAS No. Analyzed Qual Analytical Method: EPA 300.0 Rev 2.1 1993 300.0 IC Anions 28 Days Pace Analytical Services - Asheville

0.50

1.0

ANALYTICAL RESULTS

Project: Huffaker Road LF

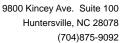
Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

Sample: HAM-GWC-22	Lab ID:	92683141018	Collecte	ed: 08/15/23	13:11	Received: 08/	/16/23 14:02 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical	Method: EPA 6	010D Pre	paration Met	hod: EF	PA 3010A			
	•	ytical Services		•					
Potassium	0.26J	mg/L	0.50	0.15	1	08/29/23 15:11	09/02/23 15:04	7440-09-7	
ron	0.97	mg/L	0.040	0.025	1	08/29/23 15:11	08/30/23 21:07		
Vanganese	0.090	mg/L	0.040	0.011	1	08/29/23 15:11	08/30/23 21:07		
Sodium	11.5	mg/L	1.0	0.58	1	08/29/23 15:11	08/30/23 21:07		
Calcium	47.3	mg/L	1.0	0.12	1	08/29/23 15:11	08/30/23 21:07		
Magnesium	11.1	mg/L	0.050	0.012	1	08/29/23 15:11	08/30/23 21:07		
6020 MET ICPMS	Analytical	Method: EPA 6	020B Pre	paration Met	nod: FF	PA 3005A			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		ytical Services							
antimony	ND .	mg/L	0.0030	0.0012	1	08/22/23 10:04	08/29/23 20:37	7440-36-0	
Arsenic	ND	mg/L	0.010	0.0037	1	08/22/23 10:04	08/29/23 20:37		
Barium	0.092	mg/L	0.0050	0.00067	1	08/22/23 10:04			
Beryllium	ND	mg/L	0.00050	0.000054	1	08/22/23 10:04	08/29/23 20:37		
Boron	0.068	mg/L	0.040	0.0086	1	08/22/23 10:04			
Cadmium	ND	mg/L	0.00050	0.00011	1	08/22/23 10:04			
Chromium	ND	mg/L	0.0050	0.0011	1	08/22/23 10:04			
Cobalt	ND	mg/L	0.0050	0.00011	1	08/22/23 10:04			
	ND ND	ū		0.00039		08/22/23 10:04			
Copper		mg/L	0.0050		1				
Lead	ND	mg/L	0.0010	0.00012	1	08/22/23 10:04			
Nickel	ND	mg/L	0.0050	0.00071	1	08/22/23 10:04			
Selenium	ND	mg/L	0.0050	0.0014	1	08/22/23 10:04	08/29/23 20:37		
Silver	ND	mg/L	0.0050	0.00044	1	08/22/23 10:04			
Thallium	ND	mg/L	0.0010	0.00018	1	08/22/23 10:04	08/29/23 20:37		
/anadium	ND	mg/L	0.010	0.0025	1	08/22/23 10:04	08/29/23 20:37		
Zinc	ND	mg/L	0.010	0.0070	1	08/22/23 10:04	08/29/23 20:37	7440-66-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C-2015						
	Pace Anal	ytical Services	- Peachtre	e Corners, G	iΑ				
Total Dissolved Solids	212	mg/L	25.0	25.0	1		08/21/23 17:40)	
2320B Alkalinity	Analytical	Method: SM 23	20B-2011						
	Pace Anal	ytical Services	- Asheville						
Alkalinity,Bicarbonate (CaCO3)	191	mg/L	5.0	5.0	1		08/24/23 18:19)	
Alkalinity,Carbonate (CaCO3)	ND	mg/L	5.0	5.0	1		08/24/23 18:19)	
Alkalinity, Total as CaCO3	191	mg/L	5.0	5.0	1		08/24/23 18:19)	
1500S2D Sulfide Water	Analytical	Method: SM 45	00-S2D-2	011					
	Pace Anal	ytical Services	- Asheville						
Sulfide	ND	mg/L	0.10	0.022	1		08/18/23 05:11	18496-25-8	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0 Rev 2	2.1 1993					
-	Pace Anal	ytical Services	- Asheville						
Chloride	0.95J	mg/L	1.0	0.60	1		08/19/23 06:39	16887-00-6	
Fluoride	0.065J	mg/L	0.10	0.050	1		08/19/23 06:39	16984-48-8	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

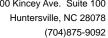


Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

Sample: HAM-GWC-22	Lab ID:	92683141018	Collecte	d: 08/15/23	3 13:11	Received: 08/	16/23 14:02 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	•	l Method: EPA							
	Pace Ana	alytical Services	s - Asheville						
Sulfate	5.6	mg/L	1.0	0.50	1		08/19/23 06:39	14808-79-8	


Project: Huffaker Road LF

Date: 09/05/2023 02:44 PM

Pace Project No.: 92683141

Sample: HAM-HI F-FR-05 | Lab ID: 92683141019 | Collected: 08/15/23 17:45 | Received: 08/16/23 14:02 | Matrix: Water

Sample: HAM-HLF-EB-05	Lab ID:	9268314101	19 Collecte	ed: 08/15/23	3 17:45	Received: 08/	/16/23 14:02 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010D ATL ICP	Analytical	Method: EPA	A 6010D Pre	paration Met	hod: E	PA 3010A			
	Pace Anal	lytical Service	es - Peachtre	ee Corners, G	βA				
Calcium	ND	mg/L	1.0	0.12	1	08/29/23 15:11	08/30/23 21:13	7440-70-2	
6020 MET ICPMS	Analytical	Method: EPA	A 6020B Pre	paration Met	hod: E	PA 3005A			
	Pace Anal	lytical Service	es - Peachtre	e Corners, G	βA				
Antimony	ND	mg/L	0.0030	0.0012	1	08/22/23 10:04	08/29/23 20:43	7440-36-0	
Arsenic	ND	mg/L	0.010	0.0037	1	08/22/23 10:04	08/29/23 20:43	7440-38-2	
3arium	ND	mg/L	0.0050	0.00067	1	08/22/23 10:04	08/29/23 20:43	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/22/23 10:04	08/29/23 20:43	7440-41-7	
Boron	ND	mg/L	0.040	0.0086	1	08/22/23 10:04	08/29/23 20:43	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	08/22/23 10:04	08/29/23 20:43	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	08/22/23 10:04	08/29/23 20:43	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	08/22/23 10:04	08/29/23 20:43	7440-48-4	
Copper	ND	mg/L	0.0050	0.0010	1	08/22/23 10:04	08/29/23 20:43	7440-50-8	
ead	ND	mg/L	0.0010	0.00012	1	08/22/23 10:04	08/29/23 20:43	7439-92-1	
lickel	ND	mg/L	0.0050	0.00071	1	08/22/23 10:04	08/29/23 20:43	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	08/22/23 10:04	08/29/23 20:43	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	08/22/23 10:04	08/29/23 20:43	7440-22-4	
⁻ hallium	ND	mg/L	0.0010	0.00018	1	08/22/23 10:04	08/29/23 20:43	7440-28-0	
/anadium	ND	mg/L	0.010	0.0025	1	08/22/23 10:04	08/29/23 20:43	7440-62-2	
Zinc	ND	mg/L	0.010	0.0070	1	08/22/23 10:04	08/29/23 20:43	7440-66-6	
2540C Total Dissolved Solids	Analytical	Method: SM	2540C-2015	;					
	Pace Anal	lytical Service	es - Peachtre	e Corners, G	βA				
Total Dissolved Solids	ND	mg/L	25.0	25.0	1		08/21/23 17:41		
300.0 IC Anions 28 Days	Analytical	Method: EPA	A 300.0 Rev 2	2.1 1993					
	Pace Anal	lytical Service	es - Asheville	;					
Chloride	ND	mg/L	1.0	0.60	1		08/19/23 06:54	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		08/19/23 06:54	16984-48-8	
Sulfate	ND	mg/L	1.0	0.50	1		08/19/23 06:54	14808-79-8	

Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

Sample: HAM-HLF-FB-05	Lab ID: 9	92683141020	Collecte	d: 08/15/23	3 17:40	Received: 08/	16/23 14:02 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010D ATL ICP	Analytical N	Method: EPA 6	010D Prep	paration Met	thod: EF	PA 3010A			
	Pace Analy	tical Services	- Peachtre	e Corners, C	βA				
Calcium	ND	mg/L	1.0	0.12	1	08/29/23 15:11	08/30/23 21:18	7440-70-2	
6020 MET ICPMS	Analytical N	Method: EPA 6	020B Prep	paration Met	hod: EF	PA 3005A			
	•	tical Services							
Antimony	ND	mg/L	0.0030	0.0012	1	08/22/23 10:04	08/29/23 20:49	7440-36-0	
Arsenic	ND	mg/L	0.010	0.0037	1	08/22/23 10:04	08/29/23 20:49	7440-38-2	
Barium	ND	mg/L	0.0050	0.00067	1	08/22/23 10:04	08/29/23 20:49	7440-39-3	
Beryllium	ND	mg/L	0.00050	0.000054	1	08/22/23 10:04	08/29/23 20:49	7440-41-7	
Boron	ND	mg/L	0.040	0.0086	1	08/22/23 10:04	08/29/23 20:49	7440-42-8	
Cadmium	ND	mg/L	0.00050	0.00011	1	08/22/23 10:04	08/29/23 20:49	7440-43-9	
Chromium	ND	mg/L	0.0050	0.0011	1	08/22/23 10:04	08/29/23 20:49	7440-47-3	
Cobalt	ND	mg/L	0.0050	0.00039	1	08/22/23 10:04	08/29/23 20:49	7440-48-4	
Copper	ND	mg/L	0.0050	0.0010	1	08/22/23 10:04	08/29/23 20:49	7440-50-8	
₋ead	ND	mg/L	0.0010	0.00012	1	08/22/23 10:04	08/29/23 20:49	7439-92-1	
Nickel	ND	mg/L	0.0050	0.00071	1	08/22/23 10:04	08/29/23 20:49	7440-02-0	
Selenium	ND	mg/L	0.0050	0.0014	1	08/22/23 10:04	08/29/23 20:49	7782-49-2	
Silver	ND	mg/L	0.0050	0.00044	1	08/22/23 10:04	08/29/23 20:49	7440-22-4	
Γhallium	ND	mg/L	0.0010	0.00018	1	08/22/23 10:04	08/29/23 20:49	7440-28-0	
/anadium	ND	mg/L	0.010	0.0025	1	08/22/23 10:04	08/29/23 20:49	7440-62-2	
Zinc	ND	mg/L	0.010	0.0070	1	08/22/23 10:04	08/29/23 20:49	7440-66-6	
2540C Total Dissolved Solids	Analytical N	леthod: SM 25	540C-2015						
	Pace Analy	tical Services	- Peachtre	e Corners, C	βA				
Total Dissolved Solids	ND	mg/L	25.0	25.0	1		08/21/23 17:41		
300.0 IC Anions 28 Days	Analytical N	Method: EPA 3	00.0 Rev 2	.1 1993					
	Pace Analy	tical Services	- Asheville						
Chloride	ND	mg/L	1.0	0.60	1		08/19/23 07:08	16887-00-6	
Fluoride	ND	mg/L	0.10	0.050	1		08/19/23 07:08	16984-48-8	
Sulfate	ND	mg/L	1.0	0.50	1		08/19/23 07:08	14808-79-8	

QUALITY CONTROL DATA

Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

QC Batch: 796454 Analysis Method: EPA 6010D QC Batch Method: EPA 3010A Analysis Description: 6010D ATL

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92683141001, 92683141002, 92683141003, 92683141004, 92683141005, 92683141006, 92683141007,

92683141008, 92683141009

METHOD BLANK: 4126638 Matrix: Water

Associated Lab Samples: 92683141001, 92683141002, 92683141003, 92683141004, 92683141005, 92683141006, 92683141007,

92683141008, 92683141009

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Calcium	mg/L	ND	1.0	0.12	08/29/23 20:25	
Iron	mg/L	ND	0.040	0.025	08/29/23 20:25	
Magnesium	mg/L	ND	0.050	0.012	08/29/23 20:25	
Manganese	mg/L	ND	0.040	0.011	08/29/23 20:25	
Potassium	mg/L	ND	0.50	0.15	08/29/23 20:25	
Sodium	mg/L	ND	1.0	0.58	08/29/23 20:25	

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Calcium	mg/L		1.0	101	80-120	
Iron	mg/L	1	1.1	105	80-120	
Magnesium	mg/L	1	1.0	104	80-120	
Manganese	mg/L	1	0.97	97	80-120	
Potassium	mg/L	1	0.93	93	80-120	
Sodium	mg/L	1	0.94J	94	80-120	

MATRIX SPIKE & MATRIX S	SPIKE DUPL	ICATE: 4126	640		4126641							
		92683139003	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Calcium	mg/L	34.6	1	1	34.9	36.9	31	227	75-125	5	20	M1
Iron	mg/L	0.17	1	1	1.2	1.2	103	106	75-125	2	20	
Magnesium	mg/L	27.3	1	1	27.7	29.2	33	187	75-125	5	20	M1
Manganese	mg/L	1.2	1	1	2.1	2.2	89	99	75-125	5	20	
Potassium	mg/L	1.5	1	1	2.4	2.5	92	101	75-125	4	20	
Sodium	mg/L	13.1	1	1	13.9	14.7	79	152	75-125	5	20	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

QC Batch: 796576 Analysis Method: EPA 6010D QC Batch Method: EPA 3010A Analysis Description: 6010D ATL

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92683141010, 92683141011, 92683141012, 92683141013, 92683141014, 92683141015, 92683141016,

92683141017, 92683141018, 92683141019, 92683141020

METHOD BLANK: 4127050 Matrix: Water

Associated Lab Samples: 92683141010, 92683141011, 92683141012, 92683141013, 92683141014, 92683141015, 92683141016,

92683141017, 92683141018, 92683141019, 92683141020

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Calcium	mg/L	ND	1.0	0.12	08/30/23 19:50	
Iron	mg/L	ND	0.040	0.025	08/30/23 19:50	
Magnesium	mg/L	ND	0.050	0.012	08/30/23 19:50	
Manganese	mg/L	ND	0.040	0.011	08/30/23 19:50	
Potassium	mg/L	ND	0.50	0.15	09/02/23 13:52	
Sodium	mg/L	ND	1.0	0.58	08/30/23 19:50	

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Calcium	mg/L		0.98J	98	80-120	
Iron	mg/L	1	1.0	103	80-120	
Magnesium	mg/L	1	1.1	107	80-120	
Manganese	mg/L	1	1.0	100	80-120	
Potassium	mg/L	1	0.93	93	80-120	
Sodium	mg/L	1	1.0J	100	80-120	

MATRIX SPIKE & MATRIX	SPIKE DUPLIC	CATE: 4127	052		4127053							
		2683141010	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Calcium	mg/L	75.8	1	1	75.6	77.2	-27	136	75-125	2	20	M1
Iron	mg/L	1.7	1	1	2.6	2.7	98	103	75-125	2	20	
Magnesium	mg/L	23.8	1	1	24.4	25.0	62	116	75-125	2	20	M1
Manganese	mg/L	0.24	1	1	1.2	1.2	98	100	75-125	2	20	
Potassium	mg/L	0.75	1	1	1.8	1.7	100	96	75-125	3	20	
Sodium	mg/L	15.1	1	1	15.9	16.2	74	113	75-125	2	20	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

QC Batch: 794952 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92683141001, 92683141002, 92683141003, 92683141004, 92683141005, 92683141007,

92683141008, 92683141009, 92683141010, 92683141011, 92683141012

METHOD BLANK: 4119069 Matrix: Water

Associated Lab Samples: 92683141001, 92683141002, 92683141003, 92683141004, 92683141005, 92683141006, 92683141007,

92683141008, 92683141009, 92683141010, 92683141011, 92683141012

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Antimony	mg/L	ND	0.0030	0.0012	08/28/23 15:38	
Arsenic	mg/L	ND	0.010	0.0037	08/28/23 15:38	
Barium	mg/L	ND	0.0050	0.00067	08/28/23 15:38	
Beryllium	mg/L	ND	0.00050	0.000054	08/28/23 15:38	
Boron	mg/L	ND	0.040	0.0086	08/28/23 15:38	
Cadmium	mg/L	ND	0.00050	0.00011	08/28/23 15:38	
Chromium	mg/L	ND	0.0050	0.0011	08/28/23 15:38	
Cobalt	mg/L	ND	0.0050	0.00039	08/28/23 15:38	
Copper	mg/L	ND	0.0050	0.0010	08/28/23 15:38	
Lead	mg/L	ND	0.0010	0.00012	08/28/23 15:38	
Nickel	mg/L	ND	0.0050	0.00071	08/28/23 15:38	
Selenium	mg/L	ND	0.0050	0.0014	08/28/23 15:38	
Silver	mg/L	ND	0.0050	0.00044	08/28/23 15:38	
Thallium	mg/L	ND	0.0010	0.00018	08/28/23 15:38	
Vanadium	mg/L	ND	0.010	0.0025	08/28/23 15:38	
Zinc	mg/L	ND	0.010	0.0070	08/28/23 15:38	

LABORATORY CONTROL SAMPLE:	4119070						
		Spike	LCS	LCS	% Rec		
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Antimony	mg/L	0.1	0.10	105	80-120		
Arsenic	mg/L	0.1	0.10	100	80-120		
Barium	mg/L	0.1	0.095	95	80-120		
Beryllium	mg/L	0.1	0.10	102	80-120		
Boron	mg/L	1	1.1	106	80-120		
Cadmium	mg/L	0.1	0.10	102	80-120		
Chromium	mg/L	0.1	0.10	104	80-120		
Cobalt	mg/L	0.1	0.10	102	80-120		
Copper	mg/L	0.1	0.10	103	80-120		
Lead	mg/L	0.1	0.099	99	80-120		
Nickel	mg/L	0.1	0.10	102	80-120		
Selenium	mg/L	0.1	0.10	103	80-120		
Silver	mg/L	0.1	0.097	97	80-120		
Thallium	mg/L	0.1	0.096	96	80-120		
Vanadium	mg/L	0.1	0.11	105	80-120		
Zinc	mg/L	0.1	0.11	106	80-120		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

MATRIX SPIKE & MATRIX	SPIKE DUPLI	CATE: 4119	071 MS	MSD	4119072							
	Ç	92683139004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L	ND	0.1	0.1	0.10	0.11	104	105	75-125	1	20	
Arsenic	mg/L	ND	0.1	0.1	0.10	0.10	103	100	75-125	3	20	
Barium	mg/L	0.022	0.1	0.1	0.12	0.12	103	100	75-125	2	20	
Beryllium	mg/L	ND	0.1	0.1	0.10	0.096	101	96	75-125	5	20	
Boron	mg/L	1.6	1	1	2.7	2.6	111	99	75-125	4	20	
Cadmium	mg/L	ND	0.1	0.1	0.10	0.10	102	102	75-125	0	20	
Chromium	mg/L	ND	0.1	0.1	0.10	0.10	99	101	75-125	1	20	
Cobalt	mg/L	0.0014J	0.1	0.1	0.10	0.10	99	99	75-125	0	20	
Copper	mg/L	ND	0.1	0.1	0.099	0.098	98	97	75-125	1	20	
Lead	mg/L	ND	0.1	0.1	0.092	0.095	92	95	75-125	2	20	
Nickel	mg/L	0.0015J	0.1	0.1	0.099	0.097	97	96	75-125	1	20	
Selenium	mg/L	0.0021J	0.1	0.1	0.11	0.11	106	103	75-125	2	20	
Silver	mg/L	ND	0.1	0.1	0.029	0.094	29	94	75-125	107	20	M1,R1
Thallium	mg/L	ND	0.1	0.1	0.094	0.094	94	94	75-125	1	20	
Vanadium	mg/L	ND	0.1	0.1	0.10	0.10	102	103	75-125	0	20	
Zinc	mg/L	ND	0.1	0.1	0.11	0.10	104	101	75-125	3	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

QC Batch: 795012 Analysis Method: EPA 6020B
QC Batch Method: EPA 3005A Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92683141013, 92683141014, 92683141015, 92683141016, 92683141017, 92683141019,

92683141020

METHOD BLANK: 4119549 Matrix: Water

Associated Lab Samples: 92683141013, 92683141014, 92683141015, 92683141016, 92683141017, 92683141019,

92683141020

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Antimony	mg/L	ND	0.0030	0.0012	08/29/23 19:25	
Arsenic	mg/L	ND	0.010	0.0037	08/29/23 19:25	
Barium	mg/L	ND	0.0050	0.00067	08/29/23 19:25	
Beryllium	mg/L	ND	0.00050	0.000054	08/29/23 19:25	
Boron	mg/L	ND	0.040	0.0086	08/29/23 19:25	
Cadmium	mg/L	ND	0.00050	0.00011	08/29/23 19:25	
Chromium	mg/L	ND	0.0050	0.0011	08/29/23 19:25	
Cobalt	mg/L	ND	0.0050	0.00039	08/29/23 19:25	
Copper	mg/L	ND	0.0050	0.0010	08/29/23 19:25	
Lead	mg/L	ND	0.0010	0.00012	08/29/23 19:25	
Nickel	mg/L	ND	0.0050	0.00071	08/29/23 19:25	
Selenium	mg/L	ND	0.0050	0.0014	08/29/23 19:25	
Silver	mg/L	ND	0.0050	0.00044	08/29/23 19:25	
Thallium	mg/L	ND	0.0010	0.00018	08/29/23 19:25	
Vanadium	mg/L	ND	0.010	0.0025	08/29/23 19:25	
Zinc	mg/L	ND	0.010	0.0070	08/29/23 19:25	

LABORATORY CONTROL SAMPLE:	4119550					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	0.1	0.11	105	80-120	
Arsenic	mg/L	0.1	0.099	99	80-120	
Barium	mg/L	0.1	0.096	96	80-120	
Beryllium	mg/L	0.1	0.098	98	80-120	
Boron	mg/L	1	1.0	100	80-120	
Cadmium	mg/L	0.1	0.10	101	80-120	
Chromium	mg/L	0.1	0.097	97	80-120	
Cobalt	mg/L	0.1	0.098	98	80-120	
Copper	mg/L	0.1	0.099	99	80-120	
Lead	mg/L	0.1	0.096	96	80-120	
Nickel	mg/L	0.1	0.099	99	80-120	
Selenium	mg/L	0.1	0.10	101	80-120	
Silver	mg/L	0.1	0.099	99	80-120	
Thallium	mg/L	0.1	0.095	95	80-120	
Vanadium	mg/L	0.1	0.098	98	80-120	
Zinc	mg/L	0.1	0.098	98	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

MATRIX SPIKE & MATRIX	SPIKE DUPI	LICATE: 4119	551 MS	MSD	4119552							
		92683141013	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L		0.1	0.1	0.11	0.11	107	108	75-125	1	20	
Arsenic	mg/L	ND	0.1	0.1	0.099	0.10	99	102	75-125	3	20	
Barium	mg/L	0.064	0.1	0.1	0.17	0.17	110	110	75-125	0	20	
Beryllium	mg/L	ND	0.1	0.1	0.094	0.097	94	97	75-125	4	20	
Boron	mg/L	0.022J	1	1	0.98	1.0	96	100	75-125	4	20	
Cadmium	mg/L	ND	0.1	0.1	0.10	0.10	101	103	75-125	2	20	
Chromium	mg/L	ND	0.1	0.1	0.093	0.095	93	95	75-125	2	20	
Cobalt	mg/L	ND	0.1	0.1	0.093	0.095	93	95	75-125	2	20	
Copper	mg/L	ND	0.1	0.1	0.093	0.094	93	94	75-125	1	20	
Lead	mg/L	ND	0.1	0.1	0.093	0.096	93	96	75-125	3	20	
Nickel	mg/L	0.0017J	0.1	0.1	0.095	0.096	93	94	75-125	1	20	
Selenium	mg/L	ND	0.1	0.1	0.099	0.10	99	103	75-125	4	20	
Silver	mg/L	ND	0.1	0.1	0.095	0.099	95	99	75-125	4	20	
Thallium	mg/L	ND	0.1	0.1	0.092	0.094	92	94	75-125	2	20	
Vanadium	mg/L	ND	0.1	0.1	0.093	0.096	93	96	75-125	3	20	
Zinc	mg/L	ND	0.1	0.1	0.096	0.098	95	98	75-125	3	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

QC Batch: 794564 Analysis Method: SM 2540C-2015

QC Batch Method: SM 2540C-2015 Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Peachtree Corners, GA

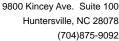
Associated Lab Samples: 92683141001, 92683141002, 92683141003, 92683141004, 92683141005, 92683141006, 92683141007,

92683141008, 92683141009

METHOD BLANK: 4117094 Matrix: Water

Associated Lab Samples: 92683141001, 92683141002, 92683141003, 92683141004, 92683141005, 92683141006, 92683141007,

92683141008, 92683141009


Blank Reporting Parameter Units Limit MDL Qualifiers Result Analyzed mg/L **Total Dissolved Solids** ND 25.0 25.0 08/18/23 18:28 LABORATORY CONTROL SAMPLE: 4117095

LCS LCS % Rec Spike Parameter Units Result % Rec Limits Qualifiers Conc. **Total Dissolved Solids** mg/L 400 434 108 80-120

SAMPLE DUPLICATE: 4117096 92681886012 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 1910 1890 10 **Total Dissolved Solids** 1 mg/L

SAMPLE DUPLICATE: 4117097 92683141005 Dup Max RPD RPD Parameter Units Result Result Qualifiers **Total Dissolved Solids** mg/L 107 97.0 10 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Huffaker Road LF

Pace Project No.: 92683141

QC Batch: 794903 Analysis Method: SM 2540C-2015

QC Batch Method: SM 2540C-2015 Analysis Description: 2540C Total Dissolved Solids

> Laboratory: Pace Analytical Services - Peachtree Corners, GA

Associated Lab Samples: 92683141010, 92683141011, 92683141012, 92683141013, 92683141014, 92683141015, 92683141016,

92683141017, 92683141018, 92683141019, 92683141020

METHOD BLANK: 4118696 Matrix: Water

92683141010, 92683141011, 92683141012, 92683141013, 92683141014, 92683141015, 92683141016, Associated Lab Samples: Blank

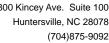
92683141017, 92683141018, 92683141019, 92683141020

Reporting Qualifiers Units Limit MDL Parameter Result Analyzed mg/L **Total Dissolved Solids** ND 25.0 25.0 08/21/23 17:34

LABORATORY CONTROL SAMPLE: 4118697

LCS LCS % Rec Spike Parameter Units Result % Rec Limits Qualifiers Conc. **Total Dissolved Solids** mg/L 400 381 95 80-120

SAMPLE DUPLICATE: 4118698


92683137003 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 404 434 7 10 **Total Dissolved Solids** mg/L

SAMPLE DUPLICATE: 4118699

Date: 09/05/2023 02:44 PM

92683141011 Dup Max RPD RPD Parameter Units Result Result Qualifiers **Total Dissolved Solids** mg/L 267 261 2 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Huffaker Road LF

Pace Project No.: 92683141

QC Batch: 794917

QC Batch Method: SM 2320B-2011

Analysis Method: SM 2320B-2011

Analysis Description:

2320B Alkalinity

Laboratory:

Pace Analytical Services - Asheville

Associated Lab Samples: 92683141001, 92683141002

METHOD BLANK: 4118840 Matrix: Water

Associated Lab Samples: 92683141001, 92683141002

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Alkalinity, Total as CaCO3	mg/L	ND	5.0	5.0	08/21/23 13:30	
Alkalinity, Bicarbonate (CaCO3)	mg/L	ND	5.0	5.0	08/21/23 13:30	
Alkalinity, Carbonate (CaCO3)	mg/L	ND	5.0	5.0	08/21/23 13:30	

LABORATORY CONTROL SAMPLE: 4118841 Spike LCS LCS % Rec Units Conc. Result % Rec Limits Qualifiers Parameter Alkalinity, Total as CaCO3 50 51.5 103 80-120 mg/L

LABORATORY CONTROL SAMPLE: 4118842

Date: 09/05/2023 02:44 PM

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Alkalinity, Total as CaCO3 mg/L 50 51.0 102 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4118843 4118844 MS MSD 92683221004 MS MSD MS MSD Spike Spike % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Alkalinity, Total as CaCO3 ND 50 50 56.0 56.1 103 80-120 0 25 mg/L 103

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4118845 4118846 MS MSD 92682751002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec **RPD** RPD Result Conc. Limits Qual Alkalinity, Total as CaCO3 77.5 130 2 mg/L 50 50 127 99 104 80-120 25

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

QC Batch: 794918 Analysis Method: SM 2320B-2011
QC Batch Method: SM 2320B-2011 Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92683141003, 92683141004, 92683141005, 92683141006, 92683141007, 92683141008, 92683141009

METHOD BLANK: 4118869 Matrix: Water

Associated Lab Samples: 92683141003, 92683141004, 92683141005, 92683141006, 92683141007, 92683141008, 92683141009

Associated Lab Samples. 9		103, 9266314100	Blar		Reporting	, 02000 0	0., 020					
Parameter		Units	Res	ult	Limit	MDI	L	Analyze	d Qı	ualifiers	;	
Alkalinity, Total as CaCO3		mg/L		ND	5	5.0	5.0	08/21/23 17				
Alkalinity, Bicarbonate (CaCO3	3)	mg/L		ND	5	5.0	5.0	08/21/23 17	7:04			
Alkalinity, Carbonate (CaCO3)		mg/L		ND	5	5.0	5.0	08/21/23 17	7:04			
LABORATORY CONTROL SA	MPLE:	4118870										
			Spike	L	CS	LCS	%	Rec				
Parameter		Units	Conc.	Re	sult	% Rec	L	imits	Qualifiers			
Alkalinity, Total as CaCO3		mg/L	5	60	51.2	102	2	80-120				
LABORATORY CONTROL SA	MPLE:	4118871										
			Spike	Le	CS	LCS	%	Rec				
Parameter		Units	Conc.	Re	sult	% Rec	L	imits	Qualifiers			
Alkalinity, Total as CaCO3		mg/L	5	60	51.6	103	3	80-120				
MATRIX SPIKE & MATRIX SP	PIKE DUPI	LICATE: 4118	872		411887	3						
			MS	MSD								
_		92683141003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Red	% Rec	Limits	RPD	RPD	Qual
Alkalinity, Total as CaCO3	mg/L	221	50	50	277	274	1	11 10	7 80-120	1	25	
		LICATE 4440	874		411887	5						
MATRIX SPIKE & MATRIX SP	PIKE DUP	LICATE: 4118	· · ·									
MATRIX SPIKE & MATRIX SF	PIKE DUPI	LICATE: 4118	MS	MSD								
MATRIX SPIKE & MATRIX SF	PIKE DUPI	92682906004	MS Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
MATRIX SPIKE & MATRIX SP	PIKE DUPI		MS	_	MS Result	MSD Result	MS % Red	_	% Rec	RPD	Max RPD	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

QUALITY CONTROL DATA

Project: Huffaker Road LF

Pace Project No.: 92683141

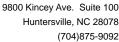
Date: 09/05/2023 02:44 PM

QC Batch: 795764 Analysis Method: SM 2320B-2011
QC Batch Method: SM 2320B-2011 Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92683141010, 92683141011, 92683141012, 92683141013, 92683141014, 92683141015, 92683141016,

92683141017, 92683141018


METHOD BLANK: 4123396 Matrix: Water

Associated Lab Samples: 92683141010, 92683141011, 92683141012, 92683141013, 92683141014, 92683141015, 92683141016,

92683141017, 92683141018

;	20031410	117, 9200314101	0									
			Blaı	nk	Reporting							
Parameter		Units	Res	ult	Limit	MD	L	Analyze	d Qı	ualifiers	i	
Alkalinity, Total as CaCO3		mg/L		ND	5	.0	5.0	08/24/23 16	5:08			
Alkalinity, Bicarbonate (CaCO)	3)	mg/L		ND	5	.0	5.0	08/24/23 16	8:08			
Alkalinity, Carbonate (CaCO3)		mg/L		ND	5	.0	5.0	08/24/23 16	8:08			
LABORATORY CONTROL SA	AMPLE:	4123397										
			Spike	LC	CS	LCS	%	Rec				
Parameter		Units	Conc.	Re	sult	% Rec	L	imits	Qualifiers			
Alkalinity, Total as CaCO3		mg/L		50	51.6	10	3	80-120		_		
LABORATORY CONTROL SA	AMPLE:	4123398										
			Spike	LC	CS	LCS	%	Rec				
Parameter		Units	Conc.	Re	sult	% Rec	L	imits	Qualifiers			
Alkalinity, Total as CaCO3		mg/L	5	50	51.9	10	4	80-120		_		
MATRIX SPIKE & MATRIX SI	PIKE DUPI	_ICATE: 4123	399		412340	0						
			MS	MSD								
		92683141017	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Red	% Rec	Limits	RPD	RPD	Qual
Alkalinity, Total as CaCO3	mg/L	97.8	50	50	146	149	!	95 10	2 80-120	2	25	
MATRIX SPIKE & MATRIX SI	PIKE DUPI	_ICATE: 4123	401		412340	2						
			MS	MSD								
		92683141018	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Red	% Rec	Limits	RPD	RPD	Qual
Alkalinity, Total as CaCO3	mg/L	191	50	50	248	248	1	14 11	4 80-120	0	25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Huffaker Road LF

LABORATORY CONTROL SAMPLE:

Date: 09/05/2023 02:44 PM

Pace Project No.: 92683141

QC Batch: 794424 Analysis Method: SM 4500-S2D-2011
QC Batch Method: SM 4500-S2D-2011 Analysis Description: 4500S2D Sulfide Water

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92683141001, 92683141002, 92683141003, 92683141004, 92683141005, 92683141006, 92683141007,

92683141008, 92683141009, 92683141010, 92683141011, 92683141012, 92683141013, 92683141014,

92683141015, 92683141016, 92683141017, 92683141018

METHOD BLANK: 4116502 Matrix: Water

4116503

Associated Lab Samples: 92683141001, 92683141002, 92683141003, 92683141004, 92683141005, 92683141006, 92683141007,

92683141008, 92683141009, 92683141010, 92683141011, 92683141012, 92683141013, 92683141014,

92683141015, 92683141016, 92683141017, 92683141018

ParameterUnitsBlank ResultReporting LimitMDLAnalyzedQualifiersSulfidemg/LND0.100.02208/18/23 04:59

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Sulfide 0.5 0.47 95 80-120 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4116504 4116505 MSD MS 92682927022 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Sulfide ND 0.47 92 80-120 10 mg/L 0.5 0.5 0.47 93

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4116506 4116507 MS MSD 92683141010 MSD MS MSD Spike Spike MS % Rec Max % Rec RPD Parameter Units Result Conc. Conc. Result Result % Rec Limits **RPD** Qual Sulfide ND 0.5 0.5 0.47 0.52 94 104 80-120 10 10 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

QUALITY CONTROL DATA

Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

QC Batch: 794488

QC Batch Method: EPA 300.0 Rev 2.1 1993

Analysis Method: EPA 300.0 Rev 2.1 1993

Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92683141001

METHOD BLANK: 4116660 Matrix: Water

Associated Lab Samples: 92683141001

Blank Reporting MDL Parameter Units Result Limit Analyzed Qualifiers Chloride ND 1.0 0.60 08/18/23 23:54 mg/L Fluoride ND 0.10 0.050 08/18/23 23:54 mg/L Sulfate ND 08/18/23 23:54 mg/L 1.0 0.50

LABORATORY CONTROL SAMPLE: 4116661 Spike LCS LCS % Rec Units Conc. Result % Rec Limits Qualifiers Parameter Chloride 50 49.7 99 90-110 mg/L Fluoride mg/L 2.5 2.5 99 90-110 mg/L Sulfate 50 48.2 96 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4116662 4116663 MS MSD MSD 92683124010 Spike Spike MS MS MSD % Rec Max Qual Parameter Conc. Result % Rec **RPD** RPD Units Result Conc. Result % Rec Limits 53.2 Chloride 4.1 50 50 51.8 96 98 90-110 3 10 mg/L Fluoride mg/L ND 2.5 2.5 2.3 2.4 93 96 90-110 4 10 Sulfate mg/L 6.0 50 50 52.3 53.7 93 95 90-110 2 10

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4116664 4116665 MS MSD 92683137003 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Chloride mg/L 5.6 50 50 53.8 54.5 96 98 90-110 1 10 Fluoride mg/L 0.070J 2.5 2.5 2.3 2.4 91 93 90-110 2 10 Sulfate mg/L 154 50 50 194 194 79 79 90-110 0 10 M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

QC Batch: 794489 Analysis Method: EPA 300.0 Rev 2.1 1993

QC Batch Method: EPA 300.0 Rev 2.1 1993 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Asheville

Associated Lab Samples: 92683141002, 92683141003, 92683141004, 92683141005, 92683141006, 92683141007, 92683141008,

92683141009, 92683141010, 92683141011, 92683141012, 92683141013, 92683141014, 92683141015,

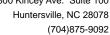
92683141016, 92683141017, 92683141018, 92683141019, 92683141020

METHOD BLANK: 4116666 Matrix: Water

Associated Lab Samples: 92683141002, 92683141003, 92683141004, 92683141005, 92683141006, 92683141007, 92683141008,

92683141009, 92683141010, 92683141011, 92683141012, 92683141013, 92683141014, 92683141015,

92683141016, 92683141017, 92683141018, 92683141019, 92683141020


Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND ND	1.0	0.60	08/18/23 23:59	
Fluoride	mg/L	ND	0.10	0.050	08/18/23 23:59	
Sulfate	mg/L	ND	1.0	0.50	08/18/23 23:59	

LABORATORY CONTROL SAMPLE:	4116667	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	50	45.3	91	90-110	
Fluoride	mg/L	2.5	2.3	90	90-110	
Sulfate	mg/L	50	45.2	90	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 4116	668		4116669							
			MS	MSD								
		92683141002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	2.2	50	50	48.0	50.1	91	96	90-110	4	10	
Fluoride	mg/L	0.080J	2.5	2.5	2.2	2.3	86	90	90-110	4	10	M1
Sulfate	mg/L	23.4	50	50	68.0	71.2	89	95	90-110	4	10	M1

MATRIX SPIKE & MATRIX S	PIKE DUPLIC		4116671									
Parameter	g Units	92683141012 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride	mg/L	1.6	50	50	49.6	50.2	96	97	90-110	1	10	
Fluoride	mg/L	0.13	2.5	2.5	2.4	2.4	90	91	90-110	1	10	
Sulfate	mg/L	28.1	50	50	75.6	76.2	95	96	90-110	1	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Huffaker Road LF

Pace Project No.: 92683141

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 09/05/2023 02:44 PM

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

R1 RPD value was outside control limits.

(704)875-9092

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92683141001	HAM-GWA-1	EPA 3010A	796454	EPA 6010D	796604
2683141002	HAM-GWA-2	EPA 3010A	796454	EPA 6010D	796604
2683141003	HAM-GWA-3	EPA 3010A	796454	EPA 6010D	796604
2683141004	HAM-GWA-4	EPA 3010A	796454	EPA 6010D	796604
2683141005	HAM-GWA-11	EPA 3010A	796454	EPA 6010D	796604
2683141006	HAM-HLF-GWC-6	EPA 3010A	796454	EPA 6010D	796604
2683141007	HAM-GWC-10	EPA 3010A	796454	EPA 6010D	796604
2683141008	HAM-GWC-23	EPA 3010A	796454	EPA 6010D	796604
2683141009	HAM-HLF-FD-05	EPA 3010A	796454	EPA 6010D	796604
2683141010	HAM-GWC-5	EPA 3010A	796576	EPA 6010D	796707
2683141011	HAM-GWC-7	EPA 3010A	796576	EPA 6010D	796707
2683141012	HAM-HLF-GWC-8	EPA 3010A	796576	EPA 6010D	796707
2683141013	HAM-GWC-9	EPA 3010A	796576	EPA 6010D	796707
2683141014	HAM-GWC-18	EPA 3010A	796576	EPA 6010D	796707
2683141015	HAM-HLF-GWC-19	EPA 3010A	796576	EPA 6010D	796707
2683141016	HAM-GWC-20	EPA 3010A	796576	EPA 6010D	796707
2683141017	HAM-GWC-21	EPA 3010A	796576	EPA 6010D	796707
2683141018	HAM-GWC-22	EPA 3010A	796576	EPA 6010D	796707
2683141019	HAM-HLF-EB-05	EPA 3010A	796576	EPA 6010D	796707
2683141020	HAM-HLF-FB-05	EPA 3010A	796576	EPA 6010D	796707
2683141001	HAM-GWA-1	EPA 3005A	794952	EPA 6020B	795123
2683141002	HAM-GWA-2	EPA 3005A	794952	EPA 6020B	795123
2683141003	HAM-GWA-3	EPA 3005A	794952	EPA 6020B	795123
2683141004	HAM-GWA-4	EPA 3005A	794952	EPA 6020B	795123
2683141005	HAM-GWA-11	EPA 3005A	794952	EPA 6020B	795123
2683141006	HAM-HLF-GWC-6	EPA 3005A	794952	EPA 6020B	795123
2683141007	HAM-GWC-10	EPA 3005A	794952	EPA 6020B	795123
2683141008	HAM-GWC-23	EPA 3005A	794952	EPA 6020B	795123
2683141009	HAM-HLF-FD-05	EPA 3005A	794952	EPA 6020B	795123
2683141010	HAM-GWC-5	EPA 3005A	794952	EPA 6020B	795123
2683141011	HAM-GWC-7	EPA 3005A	794952	EPA 6020B	795123
2683141012	HAM-HLF-GWC-8	EPA 3005A	794952	EPA 6020B	795123
2683141013	HAM-GWC-9	EPA 3005A	795012	EPA 6020B	795206
2683141014	HAM-GWC-18	EPA 3005A	795012	EPA 6020B	795206
2683141015	HAM-HLF-GWC-19	EPA 3005A	795012	EPA 6020B	795206
2683141016	HAM-GWC-20	EPA 3005A	795012	EPA 6020B	795206
2683141017	HAM-GWC-21	EPA 3005A	795012	EPA 6020B	795206
2683141018	HAM-GWC-22	EPA 3005A	795012	EPA 6020B	795206
2683141019	HAM-HLF-EB-05	EPA 3005A	795012	EPA 6020B	795206
2683141020	HAM-HLF-FB-05	EPA 3005A	795012	EPA 6020B	795206
2683141001	HAM-GWA-1	SM 2540C-2015	794564		
2683141002	HAM-GWA-2	SM 2540C-2015	794564		
2683141003	HAM-GWA-3	SM 2540C-2015	794564		
2683141004	HAM-GWA-4	SM 2540C-2015	794564		
2683141005	HAM-GWA-11	SM 2540C-2015	794564		
2683141006	HAM-HLF-GWC-6	SM 2540C-2015	794564		
2683141007	HAM-GWC-10	SM 2540C-2015	794564		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

_ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
2683141008	HAM-GWC-23	SM 2540C-2015	794564	_	
2683141009	HAM-HLF-FD-05	SM 2540C-2015	794564		
2683141010	HAM-GWC-5	SM 2540C-2015	794903		
2683141011	HAM-GWC-7	SM 2540C-2015	794903		
2683141012	HAM-HLF-GWC-8	SM 2540C-2015	794903		
2683141013	HAM-GWC-9	SM 2540C-2015	794903		
2683141014	HAM-GWC-18	SM 2540C-2015	794903		
2683141015	HAM-HLF-GWC-19	SM 2540C-2015	794903		
2683141016	HAM-GWC-20	SM 2540C-2015	794903		
2683141017	HAM-GWC-21	SM 2540C-2015	794903 794903		
	HAM-GWC-21				
2683141018		SM 2540C-2015	794903		
2683141019	HAM-HLF-EB-05	SM 2540C-2015	794903		
2683141020	HAM-HLF-FB-05	SM 2540C-2015	794903		
2683141001	HAM-GWA-1	SM 2320B-2011	794917		
2683141002	HAM-GWA-2	SM 2320B-2011	794917		
2683141003	HAM-GWA-3	SM 2320B-2011	794918		
2683141004	HAM-GWA-4	SM 2320B-2011	794918		
2683141005	HAM-GWA-11	SM 2320B-2011	794918		
2683141006	HAM-HLF-GWC-6	SM 2320B-2011	794918		
2683141007	HAM-GWC-10	SM 2320B-2011	794918		
2683141008	HAM-GWC-23	SM 2320B-2011	794918		
2683141009	HAM-HLF-FD-05	SM 2320B-2011	794918		
2683141010	HAM-GWC-5	SM 2320B-2011	795764		
2683141011	HAM-GWC-7	SM 2320B-2011	795764		
2683141012	HAM-HLF-GWC-8	SM 2320B-2011	795764		
2683141013	HAM-GWC-9	SM 2320B-2011	795764		
2683141014	HAM-GWC-18	SM 2320B-2011	795764		
2683141015	HAM-HLF-GWC-19	SM 2320B-2011	795764		
2683141016	HAM-GWC-20	SM 2320B-2011	795764		
2683141017	HAM-GWC-21	SM 2320B-2011	795764		
2683141018	HAM-GWC-22	SM 2320B-2011	795764		
2683141001	HAM-GWA-1	SM 4500-S2D-2011	794424		
2683141001	HAM-GWA-1	SM 4500-S2D-2011	-		
			794424		
2683141003	HAM-GWA-4	SM 4500-S2D-2011 SM 4500-S2D-2011	794424		
2683141004	HAM-GWA-4		794424		
2683141005	HAM-GWA-11	SM 4500-S2D-2011	794424		
2683141006	HAM-HLF-GWC-6	SM 4500-S2D-2011	794424		
2683141007	HAM-GWC-10	SM 4500-S2D-2011	794424		
2683141008	HAM-GWC-23	SM 4500-S2D-2011	794424		
2683141009	HAM-HLF-FD-05	SM 4500-S2D-2011	794424		
2683141010	HAM-GWC-5	SM 4500-S2D-2011	794424		
2683141011	HAM-GWC-7	SM 4500-S2D-2011	794424		
2683141012	HAM-HLF-GWC-8	SM 4500-S2D-2011	794424		
2683141013	HAM-GWC-9	SM 4500-S2D-2011	794424		
2683141014	HAM-GWC-18	SM 4500-S2D-2011	794424		
2683141015	HAM-HLF-GWC-19	SM 4500-S2D-2011	794424		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Huffaker Road LF

Pace Project No.: 92683141

Date: 09/05/2023 02:44 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92683141016	HAM-GWC-20	SM 4500-S2D-2011	794424		
92683141017	HAM-GWC-21	SM 4500-S2D-2011	794424		
92683141018	HAM-GWC-22	SM 4500-S2D-2011	794424		
92683141001	HAM-GWA-1	EPA 300.0 Rev 2.1 1993	794488		
92683141002	HAM-GWA-2	EPA 300.0 Rev 2.1 1993	794489		
92683141003	HAM-GWA-3	EPA 300.0 Rev 2.1 1993	794489		
92683141004	HAM-GWA-4	EPA 300.0 Rev 2.1 1993	794489		
92683141005	HAM-GWA-11	EPA 300.0 Rev 2.1 1993	794489		
92683141006	HAM-HLF-GWC-6	EPA 300.0 Rev 2.1 1993	794489		
92683141007	HAM-GWC-10	EPA 300.0 Rev 2.1 1993	794489		
92683141008	HAM-GWC-23	EPA 300.0 Rev 2.1 1993	794489		
92683141009	HAM-HLF-FD-05	EPA 300.0 Rev 2.1 1993	794489		
92683141010	HAM-GWC-5	EPA 300.0 Rev 2.1 1993	794489		
92683141011	HAM-GWC-7	EPA 300.0 Rev 2.1 1993	794489		
92683141012	HAM-HLF-GWC-8	EPA 300.0 Rev 2.1 1993	794489		
92683141013	HAM-GWC-9	EPA 300.0 Rev 2.1 1993	794489		
92683141014	HAM-GWC-18	EPA 300.0 Rev 2.1 1993	794489		
92683141015	HAM-HLF-GWC-19	EPA 300.0 Rev 2.1 1993	794489		
92683141016	HAM-GWC-20	EPA 300.0 Rev 2.1 1993	794489		
92683141017	HAM-GWC-21	EPA 300.0 Rev 2.1 1993	794489		
92683141018	HAM-GWC-22	EPA 300.0 Rev 2.1 1993	794489		
92683141019	HAM-HLF-EB-05	EPA 300.0 Rev 2.1 1993	794489		
92683141020	HAM-HLF-FB-05	EPA 300.0 Rev 2.1 1993	794489		

Pace	DC#_Title: ENV-FRM-HUN1-0083 v02_S	ample Condition Upon Receipt
MATER STATE	Effective Date: 11/14/2022	
Asheville	eiving samples: Eden Greenwood Huntersville	Raleigh Mechanicsville Atlan
Sample Cond Upon Receip		Project #: WO#: 926

__UPS USPS Client Commercial Other: **Custody Seal Present?** Seals Intact? No Date/Initials Person Examining Contents Packing Material: Bubble Wrap Bubble Bags Other Biological Tissue Frozen? Thermometer ☐Yes ☐No ☐N/A IR Gun ID: Type of Ice: Wet Blue None **Correction Factor:** Cooler Temp: Add/Subtract (°C) Temp should be above freezing to 6°C Samples out of temp criteria. Samples on ice, cooling process Cooler Temp Corrected (°C): has begun USDA Regulated Soil (N/A, water sample) Did samples originate in a quarantine zone within the United States: CA, NY, or SC Did samples originate from a foreign source (internationally, (check maps)? Yes No including Hawaii and Puerto Rico)? Yes No Comments/Discrepancy: Chain of Custody Present? □No □N/A 1. Samples Arrived within Hold Time? □No □N/A 2. Short Hold Time Analysis (<72 hr.)? Yes No □N/A 3. Rush Turn Around Time Requested? No Yes □N/A 4. Sufficient Volume? Tes □No □N/A 5. Correct Containers Used? Yes □No □N/A 6. -Pace Containers Used? Ves □No □N/A Containers Intact? Tes □No □N/A 7. Dissolved analysis: Samples Field Filtered? BN/A □No 8. Sample Labels Match COC? Yes □No □N/A 9. -Includes Date/Time/ID/Analysis Matrix: Headspace in VOA Vials (>5-6mm)? □Yes □No 10. Trip Blank Present? Yes □No DR/A 11. Trip Blank Custody Seals Present? Yes □No COMMENTS/SAMPLE DISCREPANCY Field Data Required? Yes No Lot ID of split containers: LIENT NOTIFICATION/RESOLUTION Person contacted: Date/Time: Project Manager SCURF Review: Date: **Project Manager SRF Review:** Date:

DC#_Title: ENV-FRM-HUN1-0083 v02_Sample Condition Upon Receipt

Effective Date: 11/14/2022

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

Project #

WO#: 92683141

PM: BV

Due Date: 08/31/23

CLIENT: 92- GP-HAM

**Bottom half of box is to list number of bottles

***Check all unpreserved Nitrates for chlorine

Item#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP45-125 mL Plastic H2SO4 (pH < 2) (Cl-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP42-125 mL Plastic ZN Acetate & NaOH (>9)	BP48-125 mL Plastic NaOH {pH > 12} (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG15-1 liter Amber H25O4 (pH < 2)	AG35-250 mL Amber H2504 (pH < 2)	DG94-40 mL Amber NH4C! (N/A)(CI-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mt VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unpreserved (N/A)	DG9V-40 mL VOA H3PO4 (N/A)	KP7U-50 mt Plastic Unpreserved (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		8P3R-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AGOU-100 mL Amber Unpreserved (N/A) (CI-)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1		2	Ì			X	No	\times						/														
2		2	1		/	1	X						/	/	/									/	J			
3		2	1			V	N				/		/	/	/									/	1			
4		1	T		/	Y	V	1			/		/	/	7										1			
5		1	1		/	V	1	/					/	/										/	7			
6	/	2	1		/	1	Ź	/			/		/	/											7	ī		
7		2	71		/	1	4)	/					/	/	/		-								1			
8	/	2	1		/	V	$\langle \cdot \rangle$				/		/	/	/										7			
9		2	1		/	4	V				/		/	/	/										1			
10	/				/	1	1	/			/		/	/	7									7	7			
11	/				/		/				/		/	/	/									7	7			
12							/	/			/		/	/	/									7	7			

pH Adjustment Log for Preserved Samples										
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #				
					•					

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DENR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

-
*
~
_
_
1
റ
$\boldsymbol{\gamma}$
Ò
$\overline{}$
-2
9
~
w
-
'n
٠,
_
-
_
G
1
-71
•
-
т
2
0
5
=
-

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

				ask Code		12	=	10	9	•	7	-	cn	4	3	2	-	ITEM #				Request	Phone:	Email To		Address	Company	Required C
				Tesk Code: HAM-CCR-ASSMT-2023S2	ADDITIONA				+		Į.							SAMPLE ID (A-Z, 0-91) Sample IDs MUST BE UNIQUE		Section D Required Client Information		Requested Due Date/TAT:		SCS Contacts		Atlanta, GA		흕,
				2023S2	ADDITIONAL COMMENTS				HAM-HUF-FD-05	HAM-GWC-23	HAM-GWC-10	HAM-GWC-6	HAM-GWA-11	HAM-GWA-4	HAM-GWA-3	HAM-GWA-2	HAM-GWA-1	BE UNIQUE TISSUE	WATER			10 Day	Fax					
	F	1	Z	de														# # # # # # # # # # # # # # # # # # #	W W W	Codes		Project Number:	Project Name:	Purchase Order No.		Сору То:	Report To: SCS Contacts	Required Project Information:
	ı	1	5	2	RELING	_	Н					WG	WG	WG	WG	WG	WG	MATRIX CODE (see valid				nber:		Order No		Geos	SCS	Project I
			,	2:0	HEID	Н	H	\vdash	ଜ	6	6	G 8/	G 8/	G 8/	g 82	6	G &	SAMPLE TYPE (G=GRAB	C=C	OMP)	-		luffak			yntec	Conta	nforma
T	-			168	RELINQUISHED BY / AFFILIATION		\parallel		1.0	8/14/2023	8/14/2023	8/14/2023	8/14/2023	8/14/2023	8/14/2023	8/14/2023	8/14/2023	DATE	COMPOSITE				Huffaker Road Landfill			Geosyntec Contacts	cts	tion:
R	AMPLER		Por		PRIATION			\vdash	_	1702	1650	1730	1325	1320	1419	1411	1231	TIME		COLLECTED			Landfill			67		
PRINT Name of SAMPLER: C. 494	SAMPLER NAME AND SIGNATURE				8	TK 8/14			K 8/14/2023			100		/	/			DATE	сомРозпа	CTED								
of SAMPI	ND SIGNA	11	× Hed	Sa/1/18	DATE	2023			2023		/							TIME	m									
F.		N -	B						21	18	18	22	18	23	26	21	19	SAMPLE TEMP AT COLLEC	TION						ale.			
\$			302	王	TIME	Ц			5	5	5	5	5	5	5	5	5	# OF CONTAINERS				Pace Profile #:	Pace P Manage	Pace Quote Reference:	Address	Company Name	Attention:	Invoice Infor
12			2	ì	æ	Н			ω	ω	3	3	အ	3	3	w	3	Unpreserved H ₂ SO ₄	\dashv			rofile #:	ar oject	note:	8	any Na	3	Invoice Information
T. Konfer	Г		N	7		П		\Box	-	-	1	1	-	1	1	1	1	HNO ₃	ゴ	Pres		10839				me	Sot	nation
2			10	K	Ì	H		H	\dashv									HCI NaOH	\dashv	Preservatives		39	Bonnie Vang				Southern Co.	
2		1	F:	M	ACC	П												Na ₂ S ₂ O ₃		tíves			/ang				00	
20		1	6	. '	ACCEPTED BY / AFFILIATION	Н	-	\dashv			_	_			1	1	1	Methanol Other	\dashv									
. 5zm			农		AS G	۲												Analysis Test		Y/N	H							
1			2	3	AFF		7		×	×	×	×	×	×	×	×	×	Chloride, Fluoride, Sulfate	寸	z	_							
<i>↑</i> /Ge			6	1	E				×	×	×	×	×	×	×	×	×	TDS	\Box	z	ş							
-		1	1		ğ	Н	-	-		×	×	×	×	×	×	×		Sb, As, Ba, Be, B, Cd, Cr, Co,	-	z	eete							
G 80			9			Н	Н	-	_		×	×	×	×	×	×	-	Pb, Ni, Se, Ag, Ti, V, Zn Major lons (Profile 10839-2):		z	ě	Н]	-	20		
SAUL S	r	1	7	A						2	ì	^		_	Ĥ	_	â	major totta (r totta 10002).	-	-	aly:		8	0 (EGI		
S S	H		6	191	DATE														7	- T	equested Analysis Filtered	STATE:	Sitto Location	UST	NPDES	Š		
Den	L		V	E.																13	No.	7E:	9	l.		OR.		
/ Geosyntec Consultants, Inc.		-	7	=	3				4			Н							4		3	,				REGULATORY AGENCY		
E I			2	241	THANK	Н	Н	\dashv	\dashv					-		Н	_		\dashv		(M/A)		,	RCRA	BRO	MN	1	v
	+	+	8	1				\dashv							_				┪			8		_	No.	¥		Page:
mp in *(C		,						z	z	z	z	z	z	z	z	z	Residual Chlorine (Y/N)	,		7773	1			×			
ceived o					SAI				S	CU	23	nu.	B	M	Š	(1))(J	2						Ø	GROUND WATER			_,
Custody sled Cool					SAMPLE CONDITIONS			ľ	5	96	4	8	U	2	S	7	Ŋ	926 Project N						OTHER	DRIN			of
(Y/N)	+	F	F	H	DITIO	П	П		\exists									Z							SNG G			_
mples Into	tact				SNC													2653141 Page Project No.J Lab I.D.						000	DRINKING WATER			

Pace DC#_1	Fitle: ENV-FRM-HUN	1-0083	v02_S	ample	Cond	dition Upon Receipt
Effectiv	re Date: 11/14/2022					
.aboratory receiving sair Asheville Eden Sample Condition Upon Receipt Courier: Commercial Custody Seal Present?	7		Yes		Proje	Mechanicsville Atlanta Kernersville WO#: 92683141 PM: BV Due Date: 08/31/23 CLIENT: 92- GP-HAM Date/initials Person Examining Contents 8/14/23 Biological Tissue Frozen? Yes No No
Cooler Temp: Cooler Temp Corrected (°C): USDA Regulated Soil (N/A Did samples originate in a q (check maps)? Yes	A, water sample)	}	0	-)		Temp should be above freezing to 6°C Samples out of temp criteria. Samples on ice, cooling process has begun Did samples originate from a foreign source (internationally)
Chain of Custody Present	,					including Hawaii and Puerto Rico)? Yes No Comments/Discrepancy:
Samples Arrived within He		Zives	_ No	□N/A	1.	
Short Hold Time Analysis		Yes	□No	□N/A	2.	
Rush Turn Around Time R		Yes	No	□N/A	3.	
	icquesteu:	Yes	No	□N/A	4.	
Sufficient Volume?		Tes	□No	□N/A	5.	
Correct Containers Used? -Pace Containers Used?		Yes	□No	□N/A	6.	
Containers Intact?		Yes	□No	□N/A		
Dissolved analysis: Sample	es Field Filtered?	Yes	□No	□N/A	7.	
Sample Labels Match COC		Yes	□No □No	DN/A	8.	
-Includes Date/Time/ID				□N/A	9.	
Headspace in VOA Vials (>: Trip Blank Present?	5-6mm)?	□Yes	□No	BN/A	10.	
		Yes	□No	EN/A	11.	
Trip Blank Custody Seals Properties of the Discrepance of the Discrepa	resent?	Yes	□No			Field Data Required? Yes No
ENT NOTIFICATION/RESOLUTION				Le	ot ID of	of split containers:
erson contacted: Project Manager SCURF Rev	J		D	ate/Time:	_	
					-	Date:
Project Manager SRF Review	w:					Date:

Page 74 of 76

DC#_Title: ENV-FRM-HUN1-0083 v02_Sample Condition Upon Receipt

Effective Date: 11/14/2022

'Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

xceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

***Check all unpreserved Nitrates for chlorine

Project #

WO#:92683141

PM: BV

Due Date: 08/31/23

CLIENT: 92- GP-HAM

Item#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	8P3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP45-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP4B-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG15-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2504 (pH < 2)	DG94-40 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCF (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unpreserved (N/A)	DG9V-40 mL VOA H3PO4 (N/A)	KP7U-50 mL Plastic Unpreserved (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3R-250 mL Plastic (NH2)25O4 (9.3-9.7)	AG0U-100 mL Amber Unpreserved (N/A) (CI-)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
ι		2	-			K	N																	1				
!		2	-			X	X						1											/	/			
3		2	1		1	10	X	1					1											/				
ţ		2				Y	N	/					1	1	1									/				
;		2	1		1	Y	1	1			1		/	/	/									/	/			
5	1	2			1	X	·	1			/		/	/	/									/				
7		2	-1		1	1	1	1			/		/	/	/									/	/			
3	1	2	1		1	X	X				/		/	/	/							4.14		/	/			
9	/	2	1		/	1	V	/			/		/	/	/									/	/			
10	1	2	i		1	Y	K	X,			/		/	/	/									/	/			
11	1	2	(1	V	X	/			7		/	/	/									/	/			
12								/					/											/				

		pH Ac	ljustment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #
			1			
		1000				

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DENR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

=	
#	
×	
nodmi.	
1	
3	
=	
4	
2	
3	
**	
8	
٧.	
-	
푯	
*	
ning this form you are a	
R	
•	
3	
E.	
=	
6	
3	
3	
·	
6	
c	
3	
•	
0	
2	
주	
ä	
5	
ď	
-	
ď	
ng Pece's NET 30 day payr	
ö	
e.	
-	
₹	
щ	
-	
w	
0	
•	
-	
₹	
-	
Ħ	
₹	
3	
z	
3	
~	
8	
3	
3	
5	
9	
2	
2	
Se pue	
and agr	
ange bre	
and agree!	
and agreein	
end agreeing	
and agreeing to	
and agreeing to	
and agreeing to la	
and agreeing to late	
and agreeing to late	
and agreeing to late ch	
and agreeing to late cha	
and agreeing to late char	
and agreeing to late charge	
and agreeing to late charges	
and agreeing to late charges	
and agreeing to late charges of	
and agreeing to late charges of 1	
and agreeing to late charges of 1.	
and agreeing to late charges of 1.51	
and agreeing to late charges of 1.5%	
and agreeing to late charges of 1.5% p	
and agreeing to late charges of 1.5% pe	
and agreeing to late charges of 1.5% per	
and agreeing to late charges of 1.5% per n	
and agreeing to late charges of 1.5% per mo	
and agreeing to late charges of 1.5% per mon	
and agreeing to late charges of 1.5% per monti	
and agreeing to late charges of 1.5% per month	
and agreeing to late charges of 1.5% per month to	
and agreeing to late charges of 1.5% per month for	
and agreeing to late charges of 1.5% per month for a	
and agreeing to late charges of 1.5% per month for an	
and agreeing to late charges of 1.5% per month for any	
and agreeing to late charges of 1.5% per month for any in	
and agreeing to late charges of 1.5% per month for any inv	
and agreeing to late charges of 1.5% per month for any invo	
and agreeing to late charges of 1.5% per month for any invok	
and agreeing to late charges of 1.5% per month for any invoice	
and agreeing to late charges of 1.5% per month for any invoices	
and agreeing to late charges of 1.5% per month for any invoices r	
and agreeing to late charges of 1.5% per month for any invoices no	
and agreeing to late charges of 1.5% per month for any invoices not	
and agreeing to late charges of 1.5% per month for any invoices not p	
and agreeing to late charges of 1.5% per month for any invoices not pa	
and agreeing to late charges of 1.5% per month for any invoices not paid	
and agreeing to late charges of 1.5% per month for any invoices not paid to	
and agreeing to late charges of 1.5% per month for any invoices not paid wi	
and agreeing to late charges of 1.5% per month for any invoices not paid with	
and agreeing to late charges of 1.5% per month for any invoices not paid within	
and agreeing to late charges of 1.5% per month for any invoices not paid within	
and agreeing to late charges of 1.5% per month for any invoices not paid within 3	
and agreeing to late charges of 1.5% per month for any invoices not paid within 30	
and agreeing to late charges of 1.5% per month for any invoices not paid within 30 of	
and agreeing to late charges of 1.5% per month for any invoices not paid within 30 da	

т
-
₽
_
'n
×
Ò
73
õ
3
0
-5
0
7
•
_
Çī
-
٠,
*
~
N
0
0
7

						Task Code		12	=	6		60	7	0.	5	۵	3	22	3	ITEM#			Request	Phone:	Email To:		Address:	Company:	Required C	
						Task Code: HAM-CCR-ASSMT-2023S2	ADDITIONAL COMMENTS		HAM-HUF-FB-05	HAM-HUF-EB-05	HAM-GWC-22	HAM-GWC-21	HAM-GWC-20	HAM-GWC-19	HAM-GWC-18	HAM-GWC-9	HAM-GWC-8	HAM-GWC-7	HAM-GWC-5	SAMPLE ID (A-Z. 0-9 / -) Sample IDs MUST BE UNIQUE	Section D Required Client Information		Requested Due Date/TAT: 10 Day		SCS Contacts		Atlanta, GA		Section A Required Client Information:	Pace Analytical
					L	Comm														WATER WATER WAY WASTE WATER WAY PROCUCT P SOLUTION SL OL WATER WATER AR OTHER OT TISSLIE TS	MATRIX CODE MATRIX CODE		Project Number	Project Name:	Purchase Order No.		Copy To: (Report To: SCS Contacts	Section B Required Project Information	
				Ý			DMITE	\mathbb{H}	WQ G	₩Q G	WG G	WG G	w _G _G	WG G	WG	w _G	WG	WG	WG	MATRIX CODE (see valid cod SAMPLE TYPE (G=GRAB C=			ber		der No		Geosy	SCSC	roject In	
				1	8	1	HEIL	${\mathbb H}$	_		_	_	_	_	G 8/1	G 8/1	G 8/1	G 8/1	G 8/1		COMP			uffake	**		mtec (ontac	formati	
		SAI		1	Porte	1650	RELINQUISHED BY I AFFILIATION	H	П	8/15/2023 17			8/15/2023 13		B/15/2023 14	8/15/2023 16	8/15/2023 14		8/15/2023 12	COMPOSITE TI	0			Huffaker Road Landfill			Geosyntec Contacts	is	On:	
	SIGN	MPLER N			"	"	LIATION			1745	1311	1452	1352	1614	1457	1611	1420	1723	1240 JK	TIME	COLLECTED			andfill						∌ ∩
	T Name	AME A						61.0							_				TK 8/15/2023	COMPOSITE	Ē									Chain
	SIGNATURE of SAMPLER: ()	SAMPLER NAME AND SIGNATURE		history	<u>ا</u> ک	2411/2	DATE	1K 8/15/2023											2023	TIME										CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT All relevant fields must be completed accurately.
	ES.	TURE		_	_	7		I	21	21	21	22	10	21	21	20	19	21	23	SAMPLE TEMP AT COLLECTIO	N	1	Ļ							<u> </u>
	1 3				(MA)	1145	TIME	\parallel	Ch	5	65	5	5	ζī.	5	cs	υ	5	Ø1	# OF CONTAINERS	_		Pace Profile #:	Pace Project Manager:	Pace Quote Reference:	Address:	Company Name:	Attention:	Section C Invoice Information:	STC
1	1 1			1	1	2	m	\Vdash	ω	3	ω	ω	ω	ω	ω	ω	ω	3	G	Unpreserved H₂SO ₄	+		ofile #:	7 oc	oe:	9	ny Na	JN:	Inform	YO.
	13			1	1	2			=	-	-	-	-	=	-	-3	-	-	1	HNO ₃	Pag		10839				me:	Sot	nation:	UME
1	1 3			7	6	2		╫		\vdash	-			H	-				H	HCI NaOH	Preservatives		39	Bonnie Vang				Southern Co.		150
١	Thomas			1	9	7	ACCE													Na ₂ S ₂ O ₃	tives			/ang				00		
I				Š	-	'	EPTE	\vdash				_		-						Methanol Other	-									n 2
	Kark			4			PTED BY / AFFILIATION	۲		_	_	-	_	_	_	=	-	_	_	Analysis Test	Y/N	H								
ŀ	= 3			100	7	2	IAF		×	×	×	×	×	×	×	×	×	×	×	Chloride, Fluoride, Sulfate	z									ng d
l	DATE Signed			l	2	Ž	FILM.		×	×	×	×	×	×	×	×	×	×	×	TDS	z	Requested		9						8 8
	393						MOL	L	×	×	×	×	×	×	×	×	×	×	_	Sb. As, Ba, Be, B, Cd, Cr, Co, Cu	-	980								
ŀ	00 8			1	B			H	×	×	×	×	×	×	×	×	×	×	×	Pb, Ni, Se, Ag, Ti, V, Zn Major lons (Profile 10839-2):	z	Ą	_	_			Z			98 CL
			\Box	Ī		छ		T													 -	alye		1			EGU			
	Roth Beosynted Consultants, Inc. TE Signed MDDryn: 8/16/2-3	1		7	元	-	DATE															Analysis Filtered	STATE:	Site Location	UST	NPDES	REGULATORY AGENCY			* nt
ſ	nsult		\vdash	-	2	22	_	L	┝	-	-	_	_		L	L	_	_	_		_	eres	ių	9			ORY			
l	ants			-	5	7	TIME	H		H	H		H		\vdash	H	\vdash		H		+-	(N/A)	1		□ 2		AGE			
	in in			1	3	エか/	Ħ		Г							Н	H		H			3	8	2	RCRA	ROU	NC)	1	Page:	1
Ì	Temp is	n 'C		T																			ľ			NO V			ě	
١	Tamp ii			\perp					z	z	z	z	z	z	z	z	z	z	z	Residual Chlorine (Y/N)	Γ					GROUND WATER				
	Receive Ice (Y			l			ţo.													2					C	Ä			->	
ļ	100 (11	/i \		_	_		AMPL		a a	2	Z,	13)	G	2	5	C	G	0	0	926 8	l				_				_	
	Custo Sealed C (Y/N	cooler					SAMPLE CONDITIONS	Last Sample	3	2	9	4	~	7	ک	13	7		D	63					OTHER	DRINKING WATER			9	
Ì				Ħ	T	T	TIONS	ampl												No.1 L					8	IG W			7	
	Samples (Y/N						•	3												2 (6 8 3 V) ace Project No./ Lab I.D.					ſ	\TER				Page 76 of 76

VALIDATION REPORTS

January 2023

180A Market Place Boulevard Knoxville, TN 37922 PH 865.330.0037 www.geosyntec.com

Memorandum

Date: April 26, 2023

To: Christine Hug

From: Ashley Wilson

CC: J. Caprio

Subject: Stage 2A Data Validation - Level II Data Deliverable - Pace

Analytical Project No.: 92649923

SITE: Huffaker Road Landfill

INTRODUCTION

This report summarizes the findings of the Stage 2A data validation of seventeen aqueous samples, one field blank, one equipment blank and one field duplicate, collected 30-31 January 2023, as part of the Huffaker Road Landfill sampling event.

The samples were analyzed at Pace Analytical Services – Peachtree Corners, Peachtree Corners, Georgia, for the following analytical tests:

- Metals by United States (US) Environmental Protection Agency (EPA) Methods 3005A/6020B
- Calcium by US EPA Methods 3010A/6010D
- Total Dissolved Solids (TDS) by Standard Method (SM) 2540C-2015

The samples were analyzed at Pace Analytical Services - Asheville, Asheville, North Carolina, for the following analytical test:

• Anions (chloride, fluoride and sulfate) by US EPA Method 300.0 Rev 2.1 1993

EXECUTIVE SUMMARY

Based on the Stage 2A data validation covering the quality control (QC) parameters listed below and the information provided, the data as qualified are usable for supporting project objectives. Qualified data should be used within the limitation of the qualification.

The data were reviewed based on the pertinent methods referenced in the laboratory reports, professional and technical judgment and the following documents:

- United States Environmental Protection Agency (US EPA) Region IV Data Validation Standard Operating Procedures (US EPA Region IV, September 2011) and
- USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review, November 2020 (EPA 540-R-20-006).

The following samples were analyzed and reported in the laboratory report:

Laboratory IDs	Client IDs
92649923001	HAM-GWA-1
92649923002	HAM-GWA-2
92649923003	HAM-GWA-3
92649923004	HAM-GWA-4
92649923005	HAM-GWA-11
92649923006	HAM-GWC-10
92649923007	HAM-GWC-5
92649923008	HAM-HLF-GWC-6
92649923009	HAM-GWC-7
92649923010	HAM-HLF-GWC-8

Laboratory IDs	Client IDs
92649923011	HAM-GWC-9
92649923012	HAM-GWC-18
92649923013	HAM-HLF-GWC-19
92649923014	HAM-GWC-20
92649923015	HAM-GWC-21
92649923016	HAM-GWC-22
92649923017	HAM-GWC-23
92649923018	HAM-HLF-EB-05
92649923019	HAM-HLF-FB-05
92649923020	HAM-HLF-FD-05

Final Review: K Henderson 04/27/2023

The chain of custody (COC) indicates the samples were received between 0-6 °C. No preservation issues were noted by the laboratory.

1.0 METALS

The samples were analyzed for metals by US EPA methods 3005A/6020B and for calcium by US EPA Methods 3010A/6010D.

The areas of data review are listed below. A leading check mark (\checkmark) indicates an area of review in which the data were acceptable. A preceding crossed circle (\otimes) signifies areas where issues were raised during the course of the validation review and should be considered to determine any impact on data quality and usability.

- ✓ Overall Assessment
- ✓ Holding Time
- ✓ Method Blank
- ✓ Matrix Spike/Matrix Spike Duplicate
- ✓ Laboratory Control Sample
- ✓ Equipment Blank
- ✓ Field Blank
- ✓ Field Duplicate
- ✓ Sensitivity
- ✓ Electronic Data Deliverable Review

1.1 Overall Assessment

The metals data reported in this data package are considered usable for supporting project objectives. The results are considered valid; the analytical completeness defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for this analysis, for this dataset is 100%.

1.2 Holding Time

The holding time for the metals analysis of a water sample is 180 days from sample collection to analysis. The holding times were met for the sample analyses.

1.3 Method Blank

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One method blank was reported for metals by US EPA methods 3005A/6020B (batch 755529) and one method blank for calcium by US EPA Methods 3010A/6010D (batch 754274). Metals were not detected in the method blanks above the method detection limits (MDLs), with the following exception.

Antimony was detected in the method blank in batch 755529 at an estimated concentration greater than the MDL and less than the reporting limit (RL). Since antimony was not detected in the associated samples, no qualifications were applied to the data.

1.4 <u>Matrix Spike/Matrix Spike Duplicate (MS/MSD)</u>

MS/MSDs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One sample set specific MS/MSD pair was reported for metals by US EPA methods 3005A/6020B, using sample HAM-GWA-11, and one sample set specific MS/MSD pair was reported for calcium by US EPA Methods 3010A/6010D, using sample HAM-GWA-1. The recovery and relative percent difference (RPD) results were within the laboratory specified acceptance criteria, with the following exceptions.

The MSD recovery of calcium in the MS/MSD pair using sample HAM-GWA-1 was low and outside the laboratory specified acceptance criteria. Since the concentration of calcium was greater than four times the spike concentration, the recovery limits were not applicable. Therefore, no qualifications were applied to the calcium data.

1.5 <u>Laboratory Control Sample (LCS)</u>

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). LCSs were reported with each batch. The recovery results were within the laboratory specified acceptance criteria.

1.6 Equipment Blank

One equipment blank was collected with the sample set, HAM-HLF-EB-05. Metals were not detected in the equipment blank above the MDLs.

1.7 Field Blank

One field blank was collected with the sample set, HAM-HLF-FB-05. Metals were not detected in the field blank above the MDLs.

1.8 Field Duplicate

One field duplicate was collected with the sample set, HAM-HLF-FD-05. Acceptable precision (RPD \leq 30%) was demonstrated between the field duplicate and the original sample, HAM-GWC-10.

1.9 **Sensitivity**

The samples were reported to the MDLs. Elevated non-detect results were reported due to dilutions analyzed.

1.10 Electronic Data Deliverable (EDD) Review

The results and sample IDs in the EDD were reviewed against the information provided by the associated level II report at a minimum of 20% as part of the data validation process. No discrepancies were identified between the level II report and the EDD.

2.0 WET CHEMISTRY

The samples were analyzed for chloride, fluoride and sulfate by US EPA method 300.0 Rev 2.1 1993 and TDS by SM 2540C-2015.

The areas of data review are listed below. A leading check mark (\checkmark) indicates an area of review in which the data were acceptable. A preceding crossed circle (\otimes) signifies areas where issues were raised during the course of the validation review and should be considered to determine any impact on data quality and usability.

Plant Hammond Data Validation 26 April 2023 Page 5

- ✓ Overall Assessment
- ✓ Holding Times
- ✓ Method Blank
- ✓ Matrix Spike/Matrix Spike Duplicate
- ✓ Laboratory Control Sample
- ✓ Laboratory Duplicate
- ⊗ Equipment Blank
- ✓ Field Blank
- ⊗ Field Duplicate
- ✓ Sensitivity
- ✓ Electronic Data Deliverable Review

2.1 Overall Assessment

The wet chemistry data reported in this data package are considered usable for supporting project objectives. The results are considered valid; the analytical completeness defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for these analyses, for this dataset is 100%.

2.2 **Holding Times**

The holding time for the fluoride, chloride and sulfate analysis of a water sample is 28 days from sample collection to analysis. The holding time for the TDS analysis of a water sample is 7 days from sample collection to analysis. The holding times were met for the sample analyses.

2.3 Method Blank

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Two method blanks were reported for TDS (batches 753440 and 753740) and two method blanks were reported for the anions (batches 753661 and 753665). The wet chemistry parameters were not detected in the method blanks above the MDLs.

2.4 Matrix Spike/Matrix Spike Duplicate

MS/MSDs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Two sample set specific MS/MSD pairs were reported for the anions using samples HAM-HLF-GWC-6 and HAM-HLF-EB-05. The recovery and RPD results were within the laboratory specified acceptance criteria.

Plant Hammond Data Validation 26 April 2023 Page 6

Two batch MS/MSD pairs were reported. Since these were batch QC, the results do not affect the samples in this data set and qualifications were not applied to the data.

2.5 <u>Laboratory Control Sample</u>

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). LCSs were reported for each analysis and batch. The recovery results were within the laboratory specified acceptance criteria.

2.6 <u>Laboratory Duplicate</u>

Laboratory duplicates were reported for TDS using samples HAM-GWA-4 and HAM-GWC-21. The recovery results were within the laboratory specified acceptance criteria, with the following exception.

The TDS RPD for the laboratory duplicate using sample HAM-GWC-21 was high and outside of laboratory specified acceptance criteria. Since the concentration of TDS in sample HAM-GWC-21 was U qualified due to equipment blank contamination and based on professional and technical judgment and based on professional and technical judgment, no additional qualifications were applied to the data.

Two batch laboratory duplicates were also reported for TDS. Since these were batch QC, the results do not affect the samples in this data set and qualifications were not applied to the data.

2.7 Equipment Blank

One equipment blank was collected with the sample set, HAM-HLF-EB-05. The wet chemistry parameters were not detected in the equipment blank above the MDLs, with the following exception.

TDS (76.0 mg/L) was detected at a concentration greater than the RL. Therefore, the TDS concentration in sample HAM-GWC-21 was U qualified as not detected at the reported concentrations and the TDS concentrations greater than the equipment blank concentration and less than ten times the equipment blank concentrations were J+ qualified as estimated with high bias.

Sample	Analyte	Laboratory Result (mg/L)	Laboratory Flag	Validation Result (mg/L)	Validation Qualifier	Reason Code
HAM-GWA-1	TDS	94	NA	94	J+	3
HAM-GWA-2	TDS	263	NA	263	J+	3
HAM-GWA-3	TDS	367	NA	367	J+	3
HAM-GWA-4	TDS	459	NA	459	J+	3

Sample	Analyte	Laboratory Result (mg/L)	Laboratory Flag	Validation Result (mg/L)	Validation Qualifier	Reason Code
HAM-GWA-11	TDS	130	NA	130	J+	3
HAM-GWC-10	TDS	190	NA	190	J	3
HAM-GWC-5	TDS	385	NA	385	J+	3
HAM-HLF-GWC-6	TDS	335	NA	335	J+	3
HAM-GWC-7	TDS	223	NA	223	J+	3
HAM-HLF-GWC-8	TDS	284	NA	284	J+	3
HAM-GWC-9	TDS	216	NA	216	J+	3
HAM-GWC-18	TDS	284	NA	284	J+	3
HAM-HLF-GWC-19	TDS	239	NA	239	J+	3
HAM-GWC-20	TDS	329	NA	329	J+	3
HAM-GWC-21	TDS	76	D6	76	U	3
HAM-GWC-22	TDS	221	NA	221	J+	3
HAM-GWC-23	TDS	243	NA	243	J+	3
HAM-HLF-FD-05	TDS	604	NA	604	J	3

mg/L- milligram per liter

D6-the precision between the sample and sample duplicate exceeded laboratory control limits.

NA-not applicable

2.8 Field Blank

One field blank was collected with the sample set, HAM-HLF-FB-05. The wet chemistry parameters were not detected in the field blank above the MDLs.

2.9 Field Duplicate

One field duplicate was collected with the sample set, HAM-HLF-FD-05. Acceptable precision (RPD \leq 30%) was demonstrated between the field duplicate and the original sample, HAM-GWC-10, with the following exceptions.

The RPD of TDS was greater than 30%. Therefore, based on professional and technical judgment, the concentrations of TDS were J qualified as estimated in the field duplicate pair.

Fluoride was detected in sample HAM-GWC-10 at an estimated concentration greater than the MDL and less than the RL and detected in field duplicate HAM-HLF-FD-05 at a concentration greater than the RL, resulting in a noncalculable RPD between the results. Therefore, based on professional and technical judgment, the concentrations of fluoride were J qualified as estimated in the field duplicate pair.

Sample	Analyte	Laboratory Result (mg/l)	Laboratory Flag	RPD	Validation Result (mg/l)	Validation Qualifier	Reason Code
HAM-GWC-10	Fluoride	0.096	J	NC	0.096	J	7
HAM-HLF-FD-05	Fluoride	0.11	NA		0.11	J	7
HAM-GWC-10	TDS	190	NA	104	190	J	7
HAM-HLF-FD-05	TDS	604	NA		604	J	7

mg/L- milligram per liter

NA-not applicable

NC-non-calculable

J-estimated concentration greater than the MDL and less than the RL

2.10 **Sensitivity**

The samples were reported to the MDLs. Elevated non-detect results were not reported.

2.11 <u>Electronic Data Deliverable Review</u>

The results and sample IDs in the EDD were reviewed against the information provided by the associated level II report at a minimum of 20% as part of the data validation process. No discrepancies were identified between the level II report and the EDD.

* * * * *

ATTACHMENT 1 DATA VALIDATION QUALIFIER DEFINITIONS AND INTERPRETATION KEY Assigned by Geosyntec's Data Validation Team

DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit. Upon application of the U qualifier to a reported result, the definition changes to "not detected at or above the reported result".
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The analyte was positively identified; however, the associated numerical value is likely to be higher than the concentration of the analyte in the sample due to positive bias of associated QC or calibration data or attributable to matrix interference.
- J- The analyte was positively identified; however, the associated numerical value is likely to be lower than the concentration of the analyte in the sample due to negative bias of associated QC or calibration data or attributable to matrix interference.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

ATTACHMENT 2 DATA VALIDATION REASON CODES Assigned by Geosyntec's Data Validation Team

Valid Value	Description
1	Preservation requirement not met
2	Analysis holding time exceeded
3	Blank contamination (i.e., method, trip, equipment, etc.)
4	Matrix spike/matrix spike duplicate recovery or RPD outside limits
5	LCS recovery outside limits
6	Surrogate recovery outside limits
7	Field Duplicate RPD exceeded
8	Serial dilution percent difference exceeded
9	Calibration criteria not met
10	Linear range exceeded
11	Internal standard criteria not met
12	Lab duplicates RPD exceeded
13	Other

RPD-relative percent difference

August 2023

180A Market Place Boulevard Knoxville, TN 37922 PH 865.330.0037 www.geosyntec.com

Date: 8 November 2023

To: Thomas Kessler

From: Derek Yeadon

CC: Kristoffer Henderson

Subject: Huffaker Road LF - Stages 2A Validation - Level II Data

Deliverable – Pace Analytical Services, Project Number: 92683141

SITE: Plant Huffaker Road LF

INTRODUCTION

This report summarizes the findings of the Stage 2A data validation of seventeen aqueous samples, one field duplicate, one field blank, and one equipment blank, collected 14-15 August 2023, as part of the Huffaker Road LF on-site sampling event.

The samples were analyzed at Pace Analytical Services Atlanta, Peachtree Corners, Georgia, for the following analytical tests:

- Metals by United States Environmental Protection Agency (US EPA) Methods 3010A/6010D
- Metals by USEPA Methods 3005A/6020B
- Total Dissolved Solids (TDS) by Standard Method (SM) 2540C

The samples were analyzed at Pace Analytical Services Asheville, North Carolina, for the following analytical test:

- Alkalinity by SM 2320B
- Anions (Chloride, Fluoride and Sulfate) by USEPA Method 300.0
- Sulfide by SM 4500-S2D

EXECUTIVE SUMMARY

Overall, based on this Stage 2A data validation covering the quality control (QC) parameters listed below and based on the information provided, the data as qualified are usable for supporting project objectives. The qualified data should be used within the limitations of the qualifications. If there are results with two or more different qualifications due to multiple QC failures, the final qualification is reconciled in the electronic data deliverable (EDD) with qualifications.

The data were reviewed based on the pertinent methods referenced in the laboratory reports, professional and technical judgment, and the following documents:

Plant Hammond AP Site Data Validation

8 November 2023

Page 2

- US EPA Region IV Data Validation Standard Operating Procedures (US EPA Region IV, September 2011);
- USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review, November 2020 (EPA 542-R-20-006); and
- American National Standard, Verification and Validation of Radiological Data for use in Waste Management and Environmental Remediation, February 15, 2012 (ANSI/ANS-41.5-2012).

The following samples were analyzed and reported in the laboratory reports:

Laboratory ID	Client ID
92683141001	HAM-GWA-1
92683141002	HAM-GWA-2
92683141003	HAM-GWA-3
92683141004	HAM-GWA-4
92683141005	HAM-GWA-11
92683141006	HAM-HLF-GWC-6
92683141007	HAM-GWC-10
92683141008	HAM-GWC-23
92683141009	HAM-HLF-FD-05
92683141010	HAM-GWC-5
92683141011	HAM-GWC-7
92683141012	HAM-HLF-GWC-8
92683141013	HAM-GWC-9
92683141014	HAM-GWC-18
92683141015	HAM-HLF-GWC-19
92683141016	HAM-GWC-20
92683141017	HAM-GWC-21
92683141018	HAM-GWC-22
92683141019	HAM-HLF-EB-05
92683141020	HAM-HLF-FB-05

The samples were received within 0-6 degrees Celsius (°C). No sample preservation issues were noted by the laboratory.

Sample HAM-HLF-FD-05 was not listed on the COC; sample was not noted on Pace sample receipt form and logged in by the lab with a sampling time of 00:00.

The laboratory reports revised on 22 August and 3 October 2023 were used for data validation.

The results flagged as "ND" in the EDD were changed to U.

The field pH data included in the laboratory report were not validated.

Plant Hammond AP Site Data Validation 8 November 2023 Page 3

1.0 METALS

The samples were analyzed for metals by USEPA methods 3010A/6010D and USEPA methods 3005A/6020B. (Mercury was evaluated separately in Section 2.0, below).

The areas of data review are listed below. A leading check mark (\checkmark) indicates an area of review in which the data were acceptable. A preceding crossed circle (\otimes) signifies areas where issues were raised during the course of the validation review and should be considered to determine any impact on data quality and usability.

- ✓ Overall Assessment
- ✓ Holding Time
- ✓ Method Blank
- ✓ Matrix Spike/Matrix Spike Duplicate
- ✓ Laboratory Control Sample
- ✓ Equipment Blank
- ✓ Field Blank
- ⊗ Field Duplicate
- ✓ Sensitivity
- ✓ Electronic Data Deliverables Review

1.1 Overall Assessment

The metals data reported in this data set are considered usable for supporting project objectives. The results are considered valid; the analytical completeness defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for this analysis, for this data set is 100%.

1.2 **Holding Time**

The holding time for the metals analysis of a water sample is 180 days from sample collection to analysis. The holding times were met for the sample analyses.

1.3 Method Blank

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Four method blanks were reported (batches 796454, 796576, 794952, and 795012). No metals were detected in the method blanks above the method detection limits (MDLs).

1.4 Matrix Spike/Matrix Spike Duplicate (MS/MSD)

MS/MSDs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Three sample set specific MS/MSD pairs were reported, using samples HAM-GWC-5 and HAM-GWC-9. The recovery and relative percent difference SCS Huffaker Stage2A DVR Final Review: K Henderson 11/12/2023

Plant Hammond AP Site Data Validation

8 November 2023

Page 4

(RPD) results were within the laboratory specified acceptance criteria except as noted below.

The recoveries of calcium, magnesium, and sodium in the MS using sample HAM-GWC-5 were low and outside the laboratory specified acceptance criteria. Since the calcium, magnesium, and sodium concentrations in sample HAM-GWC-5 were greater than four times the spiked amount, no qualifications were applied to the data.

Two batch MS/MSD pairs were also reported. Since these were batch OC, the results do not affect the samples in this data set and qualifications were not applied to the data.

1.5 **Laboratory Control Sample (LCS)**

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Four LCSs were reported. The recovery results were within the laboratory specified acceptance criteria.

1.6 **Equipment Blank**

One equipment blank was collected with the sample HAM-HLF-EB-05. Metals were not detected in the equipment blank above the MDLs. No qualifications were applied to the data.

1.7 Field Blank

One field blank was collected with the sample HAM-HLF-FB-05. Metals were not detected in the field blank above the MDLs. No additional qualifications were applied to the data.

1.8 **Field Duplicate**

One field duplicate sample was collected with the sample set, HAM-HLF-FD-05. Acceptable precision (RPD < 30%) was demonstrated between the field duplicate and the original sample, HAM-GWC-10, with the following exceptions.

The RPD between the iron concentration in the field duplicate pair was greater than 50%; therefore, the iron concentrations in the field duplicate pair were J qualified as estimated.

Zinc was not detected in HAM-GWC-10 and was detected in HAM-HLF-FD-05 at a concentration greater than the reporting limit (RL) and chromium was detected in HAM-GWC-10 at an estimated concentrations greater than the MDL and less than the RL and was not detected in HAM-HLF-FD-05, resulting in noncalculable RPDs. Therefore, the non-detect chromium and zinc results in the field duplicate were UJ qualified as estimated less than the MDLs and the chromium and zinc concentrations were J qualified as estimated.

engineers | scientists | innovators

Plant Hammond AP Site Data Validation

8 November 2023

Page 5

Sample	Analyte	Laboratory Result (mg/L)	Laboratory Flag	RPD	Validation Result (mg/L)	Validation Qualifier*	Reason Code**
HAM-GWC-10	Chromium	0.0015	J	NC	0.0015	J	7
HAM-HLF-FD-05	Chromium	0.0011	U		0.0011	UJ	7
HAM-GWC-10	Iron	1.4	NA	33	1.4	J	7
HAM-HLF-FD-05	Iron	1.0	NA		1.0	J	7
HAM-GWC-10	Zinc	0.007	U	NC	0.007	UJ	7
HAM-HLF-FD-05	Zinc	0.028	NA		0.028	J	7

mg/L-milligrams per liter

J-estimated concentration greater than the MDL and less than the RL

U-not detected at or above the MDL

NA-not applicable

NC-not calculable

1.9 **Sensitivity**

The samples were reported to the MDLs. Elevated non-detect results were reported due to dilutions analyzed.

1.10 Electronic Data Deliverable Review

The results and sample IDs in the EDD were reviewed against the information provided by the associated level II report at a minimum of 20% as part of the data validation process. No discrepancies were identified between the level II report and the EDD.

2.0 WET CHEMISTRY

The samples were analyzed for TDS by Standard method 2540C, alkalinity by Standard method 2320B, TDS by Standard method 2540C, sulfides by Standard method 4500-S2D, and anions by USEPA method 300.0.

The areas of data review are listed below. A leading check mark (\checkmark) indicates an area of review in which the data were acceptable. A preceding crossed circle (\otimes) signifies areas where issues were raised during the course of the validation review and should be considered to determine any impact on data quality and usability.

Final Review: K Henderson 11/12/2023

- ✓ Overall Assessment
- ✓ Holding Time
- ✓ Method Blank
- ⊗ Matrix Spike/Matrix Spike Duplicate
- ✓ Laboratory Control Sample
- ✓ Equipment Blank
- ✓ Field Blank
- ✓ Field Duplicate

SCS_Huffaker_Stage2A_DVR

^{*} Validation qualifiers are defined in Attachment 1 at the end of this report

^{**}Reason codes are defined in Attachment 2 at the end of this report

Plant Hammond AP Site Data Validation 8 November 2023

Page 6

- ✓ Sensitivity
- ✓ Electronic Data Deliverables Review

2.1 Overall Assessment

The mercury data reported in this data set are considered usable for supporting project objectives. The results are considered valid; the analytical completeness defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for this analysis, for this data set is 100%.

2.2 Holding Time

The holding times for the wet chemistry parameters are listed below.

Analyte	Method	Holding Time
Anions	US EPA Method 300	28 days from collection to analysis
Alkalinity	SM 2320B	14 days from collection to analysis
TDS	SM 2540C	7 days from collection to analysis
Sulfide	SM 4500-S2D	28 days from collection to analysis

The holding times were met for the sample analyses.

2.3 Method Blank

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Two method blanks were reported for TDS (batches 794564 and 794903), three method blanks were reported for alkalinity (batches 794917, 794918, and 795764), one method blank was reported for sulfide (batch 794424), and two method blanks were reported for anions (batches 794488 and 794489). The wet chemistry parameters were not detected in the method blanks above the MDLs.

2.4 <u>Matrix Spike/Matrix Spike Duplicate</u>

MS/MSDs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Three sample set specific MS/MSD pairs were reported for alkalinity, using samples HAM-GWA-3, HAM-GWC-21, and HAM-GWC-22. One sample set specific MS/MSD pair was reported for sulfide, using sample HAM-GWC-5. Two sample set specific MS/MSD pairs were reported for anions, using samples HAM-GWA-2 and HAM-HLF-GWC-8. The recovery and relative percent difference (RPD) results were within the laboratory specified acceptance criteria, with the following exceptions:

The recoveries of fluoride and sulfate in the MS/MSD pair using sample HAM-GWA-2 were low and outside the laboratory specified acceptance criteria. Therefore, the sulfate concentration in sample HAM-HGWC-11 was J- qualified as estimated with low bias and the estimated fluoride concentration was J qualified as estimated in sample HAM-GWA-2.

SCS_Huffaker_Stage2A_DVR Final Review: K Henderson 11/12/2023

Plant Hammond AP Site Data Validation

8 November 2023

Page 7

MS/MSD pairs for TDS were not reported. No additional qualifications were applied to the data.

Sample	Analyte	Laboratory Result (mg/L)	Laboratory Flag	Validation Result (mg/L)	Validation Qualifier	Reason Code
HAM-GWA-2	Fluoride	0.080	J M1	0.080	J	4
HAM-GWA-2	Sulfate	23.4	M1	23.4	J-	4

mg/L-milligrams per liter

Three batch MS/MSD pairs were reported for alkalinity, one batch MS/MSD pair was reported for sulfide, and two batch MS/MSD pairs were reported for anions. Since these were batch QC, the results do not affect the samples in this data set and qualifications were not applied to the data.

2.5 <u>Laboratory Control Sample</u>

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Two LCSs were reported for TDS, six LCSs were reported for alkalinity, one LCS was reported for sulfide, and two LCSs were reported for anions. The recovery results were within the laboratory specified acceptance criteria.

Equipment Blank

One equipment blank was collected with the sample set, HAM-HLF-EB-05. Mercury was not detected in the equipment blank above the MDL.

2.7 Field Blank

One field blank was collected with the sample set, HAM-HLF-FB-05. The wet chemistry parameters were not detected in the field blank above the MDLs.

2.8 Laboratory Duplicate

Two sample set specific laboratory duplicates were reported for TDS, using samples HAM-GWA-11and HAM-GWC-7. Results were within the laboratory specified acceptance criteria.

Two batch laboratory duplicates were reported for TDS. Since these were batch QC, the results do not affect the samples in this data set and qualifications were not applied to the data.

2.9 Field Duplicate

One field duplicate sample was collected with the sample set, HAM-HLF-FD-05. Acceptable precision (RPD \leq 30%) was demonstrated between the field duplicate and the original sample, HAM-GWC-10.

Final Review: K Henderson 11/12/2023

J- Estimated concentration greater than or equal to the MDL and less than the RL.

M1- Matrix spike recovery exceeded QC limits. Batch accepted based on LCS recovery.

Plant Hammond AP Site Data Validation 8 November 2023 Page 8

2.10 **Sensitivity**

The samples were reported to the MDL. No elevated non-detect results were reported.

2.11 Electronic Data Deliverable Review

The results and sample IDs in the EDD were reviewed against the information provided by the associated level II report at a minimum of 20% as part of the data validation process. No discrepancies were identified between the level II report and the EDD.

* * * * *

Final Review: K Henderson 11/12/2023

ATTACHMENT 1 DATA VALIDATION QUALIFIER DEFINITIONS AND INTERPRETATION KEY Assigned by Geosyntec's Data Validation Team

DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for but was not detected at or above the reported sample quantitation limit. Upon application of the U qualifier to a reported result, the definition changes to "not detected at or above the reported result."
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The analyte was positively identified; however, the associated numerical value is likely to be higher than the concentration of the analyte in the sample due to positive bias of associated OC or calibration data or attributable to matrix interference.
- J- The analyte was positively identified; however, the associated numerical value is likely to be lower than the concentration of the analyte in the sample due to negative bias of associated QC or calibration data or attributable to matrix interference.
- UJ The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

Final Review: K Henderson 11/12/2023

ATTACHMENT 2 DATA VALIDATION REASON CODES Assigned by Geosyntec's Data Validation Team

Valid Value	Description
1	Preservation requirement not met
2	Analysis holding time exceeded
3	Blank contamination (i.e., method, trip, equipment, etc.)
4	Matrix spike/matrix spike duplicate recovery or RPD outside limits
5	LCS or RPD recovery outside limits (LCS/LCSD)
6	Surrogate recovery outside limits
7	Field Duplicate RPD exceeded
8	Serial dilution percent difference exceeded
9	Calibration criteria not met
10	Linear range exceeded
11	Internal standard criteria not met
12	Lab duplicates RPD exceeded
13	Other
14	Lab flag removed or modified: no validation qualification required

LCS - Laboratory Control Sample LCSD - Laboratory Control Sample duplicate

RPD - Relative percent difference

Final Review: K Henderson 11/12/2023

FIELD SAMPLING REPORTS

January 2023

Test Date / Time: 1/30/2023 2:36:40 PM

Project: GP-Plant Hammond **Operator Name:** Thomas Kessler

Location Name: GWA-1
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 29.3 ft
Total Depth: 40.04 ft

Initial Depth to Water: 10.22 ft

Pump Type: Peristaltic Tubing Type: Poly

Pump Intake From TOC: 24.3 ft Estimated Total Volume Pumped:

7 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.46 ft Instrument Used: Aqua TROLL 400

Serial Number: 850724

Test Notes:

Three bottle; Metals, TDS, Inorganics

Weather Conditions: Cloudy, 50 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 5	
1/30/2023 2:36 PM	00:00	7.35 pH	14.85 °C	164.61 μS/cm	0.42 mg/L	3.25 NTU	-78.0 mV	10.63 ft	200.00 ml/min
1/30/2023 2:41 PM	05:00	7.34 pH	15.25 °C	163.41 μS/cm	0.29 mg/L	2.51 NTU	-94.9 mV	10.65 ft	200.00 ml/min
1/30/2023 2:46 PM	10:00	7.31 pH	15.30 °C	156.33 μS/cm	0.28 mg/L	2.26 NTU	-83.6 mV	10.68 ft	200.00 ml/min
1/30/2023 2:51 PM	15:00	7.30 pH	15.29 °C	155.72 μS/cm	0.32 mg/L	1.83 NTU	-80.8 mV	10.68 ft	200.00 ml/min
1/30/2023 2:56 PM	20:00	7.27 pH	15.30 °C	149.53 μS/cm	1.02 mg/L	2.18 NTU	-88.2 mV	10.68 ft	200.00 ml/min
1/30/2023 3:01 PM	25:00	7.25 pH	15.30 °C	148.25 μS/cm	0.96 mg/L	1.91 NTU	-86.3 mV	10.68 ft	200.00 ml/min
1/30/2023 3:06 PM	30:00	7.22 pH	15.30 °C	144.76 μS/cm	1.00 mg/L	2.01 NTU	-71.7 mV	10.68 ft	200.00 ml/min

Sample ID:	Description:
HAM-GWA-1	Grab.

Test Date / Time: 1/30/2023 12:28:29 PM

Project: GP-Plant Hammond **Operator Name:** Thomas Kessler

Location Name: GWA-2
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 15.81 ft
Total Depth: 25.11 ft

Initial Depth to Water: 5.14 ft

Pump Type: Peristaltic Tubing Type: Poly

Pump Intake From TOC: 20.81 ft Estimated Total Volume Pumped:

16 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.36 ft Instrument Used: Aqua TROLL 400

Serial Number: 850724

Test Notes:

Three bottle; Metals, TDS, Inorganics

Weather Conditions: Rainy, 50 degrees F

ramy, oo dogrooo r

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 5	
1/30/2023 12:28 PM	00:00	7.04 pH	14.85 °C	408.58 μS/cm	0.22 mg/L	43.60 NTU	-36.5 mV	5.50 ft	200.00 ml/min
1/30/2023 12:33 PM	05:00	7.03 pH	15.03 °C	408.62 μS/cm	0.14 mg/L	32.20 NTU	-49.9 mV	5.50 ft	200.00 ml/min
1/30/2023 12:38 PM	10:00	7.03 pH	15.16 °C	408.13 μS/cm	0.11 mg/L	19.40 NTU	-38.7 mV	5.50 ft	200.00 ml/min
1/30/2023 12:43 PM	15:00	7.04 pH	15.06 °C	404.83 μS/cm	0.13 mg/L	14.70 NTU	-39.4 mV	5.50 ft	200.00 ml/min
1/30/2023 12:48 PM	20:00	7.04 pH	15.03 °C	406.13 μS/cm	0.13 mg/L	11.40 NTU	-40.0 mV	5.50 ft	200.00 ml/min
1/30/2023 12:53 PM	25:00	7.04 pH	15.05 °C	406.67 μS/cm	0.11 mg/L	9.47 NTU	-53.6 mV	5.50 ft	200.00 ml/min
1/30/2023 12:58 PM	30:00	7.04 pH	15.18 °C	407.45 μS/cm	0.10 mg/L	9.51 NTU	-40.3 mV	5.50 ft	200.00 ml/min
1/30/2023 1:03 PM	35:00	7.04 pH	15.39 °C	407.91 μS/cm	0.08 mg/L	7.18 NTU	-41.4 mV	5.50 ft	200.00 ml/min
1/30/2023 1:08 PM	40:00	7.04 pH	15.31 °C	405.78 μS/cm	0.09 mg/L	6.09 NTU	-40.9 mV	5.50 ft	200.00 ml/min
1/30/2023 1:13 PM	45:00	7.04 pH	15.44 °C	406.75 μS/cm	0.09 mg/L	7.85 NTU	-52.1 mV	5.50 ft	200.00 ml/min
1/30/2023 1:18 PM	50:00	7.04 pH	15.53 °C	408.02 μS/cm	0.08 mg/L	17.20 NTU	-39.4 mV	5.50 ft	200.00 ml/min
1/30/2023 1:23 PM	55:00	7.04 pH	15.61 °C	407.46 μS/cm	0.07 mg/L	7.78 NTU	-52.7 mV	5.50 ft	200.00 ml/min
1/30/2023 1:28 PM	01:00:00	7.05 pH	15.59 °C	407.83 μS/cm	0.07 mg/L	5.50 NTU	-41.9 mV	5.50 ft	200.00 ml/min

1/30/2023	01:05:00	7.05 pH	15.56 °C	408.05 μS/cm	0.07 mg/L	8.51 NTU	-52.1 mV	5.50 ft	200.00 ml/min
1:33 PM	01.00.00	7.00 pm	10.00	400.00 μο/οπ	0.07 mg/L	0.011110	02.11111	0.00 11	200.00 111/111111
1/30/2023	01:10:00	7.05 pH	05 pH 15.48 °C	407.22 uS/cm	0.07 mg/L	6.24 NTU	-39.3 mV	5.50 ft	200.00 ml/min
1:38 PM	01.10.00	7.05 pn	13.46 C	407.22 μ3/011	0.07 mg/L	0.24 NTO	-39.3 1117	5.50 11	200.00 111/111111
1/30/2023	04.45.00	7.05 511	15.39 °C	406.00 uC/om	0.00	2 CE NITH	F2.0 m)/	F FO #	200.00 ml/min
1:43 PM	01:15:00	7.05 pH	15.39 °C	406.98 μS/cm	0.08 mg/L	3.65 NTU	-53.0 mV	5.50 ft	200.00 ml/min

Samples

Sample ID:	Description:
HAM-GWA-2	Grab.

Test Date / Time: 1/30/2023 11:04:24 AM

Project: GP-Plant Hammond **Operator Name:** Thomas Kessler

Location Name: GWA-3
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 11.09 ft

Total Depth: 21.65 ft

Initial Depth to Water: 3.36 ft

Pump Type: Bladder Tubing Type: Poly

Pump Intake From TOC: 16.08 ft Estimated Total Volume Pumped:

11 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.39 ft Instrument Used: Aqua TROLL 400

Serial Number: 850724

Test Notes:

Three bottle; Metals, TDS, Inorganics

Weather Conditions: Cloudy, 50 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 5	
1/30/2023 11:04 AM	00:00	7.09 pH	14.28 °C	537.07 μS/cm	5.15 mg/L	7.47 NTU	74.8 mV	3.72 ft	200.00 ml/min
1/30/2023 11:09 AM	05:00	7.05 pH	14.32 °C	531.00 μS/cm	4.50 mg/L	6.03 NTU	43.4 mV	3.75 ft	200.00 ml/min
1/30/2023 11:14 AM	10:00	6.98 pH	14.30 °C	524.26 μS/cm	3.67 mg/L	3.23 NTU	27.0 mV	3.75 ft	200.00 ml/min
1/30/2023 11:19 AM	15:00	6.93 pH	14.45 °C	520.93 μS/cm	2.96 mg/L	2.93 NTU	23.2 mV	3.75 ft	200.00 ml/min
1/30/2023 11:24 AM	20:00	6.89 pH	14.53 °C	516.37 μS/cm	2.31 mg/L	3.02 NTU	17.7 mV	3.75 ft	200.00 ml/min
1/30/2023 11:29 AM	25:00	6.88 pH	14.58 °C	515.65 μS/cm	2.12 mg/L	2.62 NTU	16.6 mV	3.75 ft	200.00 ml/min
1/30/2023 11:34 AM	30:00	6.85 pH	14.58 °C	512.30 μS/cm	1.68 mg/L	1.35 NTU	13.5 mV	3.75 ft	200.00 ml/min
1/30/2023 11:39 AM	35:00	6.84 pH	14.60 °C	512.80 μS/cm	1.55 mg/L	1.28 NTU	12.5 mV	3.75 ft	200.00 ml/min
1/30/2023 11:44 AM	40:00	6.83 pH	14.58 °C	510.76 μS/cm	1.22 mg/L	1.63 NTU	11.3 mV	3.75 ft	200.00 ml/min
1/30/2023 11:49 AM	45:00	6.83 pH	14.62 °C	511.34 μS/cm	1.23 mg/L	1.75 NTU	10.3 mV	3.75 ft	200.00 ml/min
1/30/2023 11:54 AM	50:00	6.82 pH	14.64 °C	510.97 μS/cm	1.06 mg/L	1.44 NTU	9.0 mV	3.75 ft	200.00 ml/min

Sample ID:	Description:
HAM-GWA-3	Grab.

Test Date / Time: 1/30/2023 9:37:28 AM

Project: GP-Plant Hammond **Operator Name:** Thomas Kessler

Location Name: GWA-4
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 19.39 ft
Total Depth: 21.76 ft

Initial Depth to Water: 8.16 ft

Pump Type: Bladder Tubing Type: Poly

Pump Intake From TOC: 16.39 ft Estimated Total Volume Pumped:

12 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.49 ft Instrument Used: Aqua TROLL 400

Serial Number: 850724

Test Notes:

Three bottle; Metals, TDS, Inorganics

Weather Conditions:

Cloudy, 50 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 5	
1/30/2023 9:37 AM	00:00	7.23 pH	14.37 °C	550.41 μS/cm	2.08 mg/L	11.56 NTU	88.8 mV	8.50 ft	200.00 ml/min
1/30/2023 9:42 AM	05:00	7.25 pH	14.53 °C	530.21 μS/cm	1.97 mg/L	3.65 NTU	62.8 mV	8.65 ft	200.00 ml/min
1/30/2023 9:47 AM	10:00	7.26 pH	14.49 °C	526.93 μS/cm	1.87 mg/L	2.34 NTU	53.6 mV	8.65 ft	200.00 ml/min
1/30/2023 9:52 AM	15:00	7.21 pH	14.49 °C	536.34 μS/cm	1.62 mg/L	2.13 NTU	66.5 mV	8.65 ft	200.00 ml/min
1/30/2023 9:57 AM	20:00	7.18 pH	14.49 °C	542.26 μS/cm	1.49 mg/L	2.50 NTU	66.0 mV	8.65 ft	200.00 ml/min
1/30/2023 10:02 AM	25:00	7.14 pH	14.53 °C	546.07 μS/cm	1.34 mg/L	1.78 NTU	49.2 mV	8.65 ft	200.00 ml/min
1/30/2023 10:07 AM	30:00	7.11 pH	14.58 °C	561.30 μS/cm	1.20 mg/L	1.45 NTU	61.9 mV	8.65 ft	200.00 ml/min
1/30/2023 10:12 AM	35:00	7.06 pH	14.63 °C	573.78 μS/cm	0.96 mg/L	1.29 NTU	61.9 mV	8.65 ft	200.00 ml/min
1/30/2023 10:17 AM	40:00	7.02 pH	14.61 °C	582.96 μS/cm	0.81 mg/L	1.35 NTU	62.2 mV	8.65 ft	200.00 ml/min
1/30/2023 10:22 AM	45:00	7.00 pH	14.58 °C	590.61 μS/cm	0.73 mg/L	1.61 NTU	46.5 mV	8.65 ft	200.00 ml/min
1/30/2023 10:27 AM	50:00	6.97 pH	14.62 °C	602.17 μS/cm	0.66 mg/L	1.40 NTU	59.1 mV	8.65 ft	200.00 ml/min
1/30/2023 10:32 AM	55:00	6.94 pH	14.63 °C	604.39 μS/cm	0.59 mg/L	1.29 NTU	46.5 mV	8.65 ft	200.00 ml/min

Sample ID:	Description:
HAM-GWA-4	Grab.

Test Date / Time: 1/30/2023 3:40:47 PM

Project: GP-Plant Hammond **Operator Name:** Thomas Kessler

Location Name: GWA-11
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 20.9 ft
Total Depth: 36.45 ft

Initial Depth to Water: 15.49 ft

Pump Type: Peristaltic Tubing Type: Poly

Pump Intake From TOC: 30.9 ft Estimated Total Volume Pumped:

10 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.32 ft Instrument Used: Aqua TROLL 400

Serial Number: 850724

Test Notes:

Three bottle; Metals, TDS, Inorganics

Weather Conditions: Cloudy, 50 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 5	
1/30/2023 3:40 PM	00:00	7.05 pH	15.05 °C	177.10 μS/cm	0.33 mg/L	26.80 NTU	-43.1 mV	15.81 ft	200.00 ml/min
1/30/2023 3:45 PM	05:00	7.03 pH	15.15 °C	176.58 μS/cm	0.24 mg/L	29.80 NTU	-43.0 mV	15.81 ft	200.00 ml/min
1/30/2023 3:50 PM	10:00	7.02 pH	15.16 °C	176.60 μS/cm	0.21 mg/L	21.70 NTU	-43.6 mV	15.81 ft	200.00 ml/min
1/30/2023 3:55 PM	15:00	7.02 pH	15.19 °C	175.57 μS/cm	0.22 mg/L	18.10 NTU	-50.5 mV	15.81 ft	200.00 ml/min
1/30/2023 4:00 PM	20:00	7.03 pH	15.17 °C	175.49 μS/cm	0.23 mg/L	15.90 NTU	-34.6 mV	15.81 ft	200.00 ml/min
1/30/2023 4:05 PM	25:00	7.02 pH	15.17 °C	175.28 μS/cm	0.22 mg/L	14.30 NTU	-33.6 mV	15.81 ft	200.00 ml/min
1/30/2023 4:10 PM	30:00	7.01 pH	15.17 °C	175.19 μS/cm	0.21 mg/L	7.72 NTU	-41.8 mV	15.81 ft	200.00 ml/min
1/30/2023 4:15 PM	35:00	7.01 pH	15.21 °C	175.76 μS/cm	0.20 mg/L	6.73 NTU	-30.7 mV	15.81 ft	200.00 ml/min
1/30/2023 4:20 PM	40:00	7.01 pH	15.17 °C	175.93 μS/cm	0.20 mg/L	5.45 NTU	-30.8 mV	15.81 ft	200.00 ml/min
1/30/2023 4:25 PM	45:00	7.00 pH	15.16 °C	176.09 μS/cm	0.19 mg/L	4.95 NTU	-32.3 mV	15.81 ft	200.00 ml/min

Sample ID:	Description:
HAM-GWA-11	Grab.

Test Date / Time: 1/31/2023 12:15:18 PM

Project: GP-Plant Hammond **Operator Name:** Connor Cain

Location Name: GWC-5 Well Diameter: 2 in **Casing Type: PVC** Screen Length: 10 ft Top of Screen: 11.4 ft Total Depth: 21.4 ft

Initial Depth to Water: 4.52 ft

Pump Type: Peri **Tubing Type: Poly**

> Pump Intake From TOC: 16.4 ft **Estimated Total Volume Pumped:**

12 liter

Flow Cell Volume: 90 ml

Final Flow Rate: 200 ml/min Final

Draw Down: 0.10 ft

Instrument Used: Aqua TROLL 400

Serial Number: 966090

Test Notes:

Three bottle; Metals, TDS, Inorganics

Weather Conditions: Cloudy, 50 degrees F

Low-Flow Readings:

Data Time	Flores d Time		T	Specific	RDO	Total Saliton	ODD	Depth to	Floor
Date Time	Elapsed Time	рН	Temperature	Conductivity	Concentration	Turbidity	ORP	Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 5	
1/31/2023	00:00	7.07 pH	13.39 °C	581.73 µS/cm	4.22 mg/L	1.82 NTU	67.3 mV	4.60 ft	200.00 ml/min
12:15 PM	00.00	7.07 pm	10.00	301.73 μο/οπ	4.22 mg/L	1.02 1110	07.51117	4.00 10	200.00 111/111111
1/31/2023	05:00	7.05 pH	13.72 °C	581.92 μS/cm	3.88 mg/L	1.86 NTU	44.0 mV	4.60 ft	200.00 ml/min
12:20 PM		·		•					
1/31/2023 12:25 PM	10:00	7.02 pH	13.86 °C	587.33 μS/cm	3.47 mg/L	1.62 NTU	23.6 mV	4.62 ft	200.00 ml/min
1/31/2023									
12:30 PM	15:00	7.00 pH	14.05 °C	584.80 μS/cm	3.06 mg/L	1.96 NTU	15.4 mV	4.62 ft	200.00 ml/min
1/31/2023			_					_	
12:35 PM	20:00	6.98 pH	14.21 °C	586.24 µS/cm	2.65 mg/L	1.81 NTU	2.7 mV	4.62 ft	200.00 ml/min
1/31/2023	25:00	6.99 pH	14.24 °C	586.29 μS/cm	2.51 mg/L	1.42 NTU	-0.6 mV	4.62 ft	200.00 ml/min
12:40 PM	25.00	0.99 μπ	14.24 C	566.29 μ5/cm	2.51 Hig/L	1.42 NTO	0.0 111 V	4.02 11	200.00 1111/111111
1/31/2023	30:00	6.98 pH	14.27 °C	588.57 µS/cm	2.24 mg/L	1.43 NTU	-5.6 mV	4.62 ft	200.00 ml/min
12:45 PM				регент					
1/31/2023	35:00	6.98 pH	14.34 °C	588.72 μS/cm	2.09 mg/L	1.47 NTU	1.1 mV	4.62 ft	200.00 ml/min
12:50 PM 1/31/2023				-					
1/31/2023 12:55 PM	40:00	6.97 pH	14.39 °C	589.43 μS/cm	1.91 mg/L	1.38 NTU	-11.2 mV	4.62 ft	200.00 ml/min
1/31/2023									
1:00 PM	45:00	6.95 pH	14.45 °C	590.14 μS/cm	1.75 mg/L	1.40 NTU	-1.8 mV	4.62 ft	200.00 ml/min
1/31/2023	50.00	0.00 11	444000	500.45 0/	4.00 //	4.40 NITH	45.0 \	4.00.5	000 00 1/ :
1:05 PM	50:00	6.98 pH	14.48 °C	590.15 μS/cm	1.66 mg/L	1.48 NTU	-15.3 mV	4.62 ft	200.00 ml/min
1/31/2023	55:00	6.96 pH	14.48 °C	591.18 μS/cm	1.52 mg/L	1.33 NTU	-3.9 mV	4.62 ft	200.00 ml/min
1:10 PM	33.00	0.30 pri	14.40 C	391.10 μ3/CIII	1.52 Hig/L	1.33 1410	-3.9 1110	4.02 11	200.00 111/111111
1/31/2023 1:15 PM	01:00:00	6.96 pH	14.57 °C	589.79 μS/cm	1.52 mg/L	1.37 NTU	-15.0 mV	4.62 ft	200.00 ml/min

Samples

Sample ID:	Description:
HAM-GWC-5	Grab sample.

Test Date / Time: 1/31/2023 2:35:33 PM

Project: GP-Plant Hammond **Operator Name:** Connor Cain

Location Name: GWC-6
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 32.58 ft
Total Depth: 42.58 ft

Initial Depth to Water: 14.74 ft

Pump Type: Peri Tubing Type: Poly

Pump Intake From TOC: 42.58 ft Estimated Total Volume Pumped:

8 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.09 ft Instrument Used: Aqua TROLL 400

Serial Number: 966090

Test Notes:

Three bottle; Metals, TDS, Inorganics

Weather Conditions: Cloudy, 54 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 5	
1/31/2023 2:35 PM	00:00	7.49 pH	16.82 °C	474.07 μS/cm	4.87 mg/L	11.20 NTU	58.6 mV	14.82 ft	200.00 ml/min
1/31/2023 2:40 PM	05:00	7.33 pH	17.14 °C	475.25 μS/cm	3.27 mg/L	6.11 NTU	43.9 mV	14.83 ft	200.00 ml/min
1/31/2023 2:45 PM	10:00	7.27 pH	17.27 °C	487.13 μS/cm	1.77 mg/L	4.41 NTU	-48.0 mV	14.83 ft	200.00 ml/min
1/31/2023 2:50 PM	15:00	7.26 pH	17.31 °C	483.52 μS/cm	1.37 mg/L	1.67 NTU	-86.8 mV	14.83 ft	200.00 ml/min
1/31/2023 2:55 PM	20:00	7.25 pH	17.28 °C	484.36 μS/cm	1.46 mg/L	0.61 NTU	-64.7 mV	14.83 ft	200.00 ml/min
1/31/2023 3:00 PM	25:00	7.25 pH	17.33 °C	472.40 μS/cm	1.44 mg/L	1.15 NTU	-93.8 mV	14.83 ft	200.00 ml/min
1/31/2023 3:05 PM	30:00	7.24 pH	17.31 °C	485.05 μS/cm	1.16 mg/L	0.41 NTU	-66.9 mV	14.83 ft	200.00 ml/min
1/31/2023 3:10 PM	35:00	7.25 pH	17.34 °C	486.03 μS/cm	1.13 mg/L	1.48 NTU	-67.5 mV	14.83 ft	200.00 ml/min
1/31/2023 3:15 PM	40:00	7.24 pH	17.35 °C	488.24 μS/cm	1.09 mg/L	0.45 NTU	-94.5 mV	14.83 ft	200.00 ml/min

Sample ID:	Description:
HAM-HLF-GWC-6	Grab.

Test Date / Time: 1/31/2023 12:59:03 PM

Project: GP-Plant Hammond **Operator Name:** Anthony Szwast

Location Name: GWC-7 Well Diameter: 2 in **Casing Type: PVC** Screen Length: 10 ft Top of Screen: 21.91 ft

Total Depth: 31.91 ft

Initial Depth to Water: 13.68 ft

Pump Type: Peristaltic Tubing Type: Poly

Pump Intake From TOC: 27 ft **Estimated Total Volume Pumped:**

18 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.08 ft

Instrument Used: Aqua TROLL 400

Serial Number: 883533

Test Notes:

Three bottles: Metals, TDS, Inorganics.

Weather Conditions: Cloudy, rainy, 55 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
1/31/2023 12:59 PM	00:00	5.83 pH	16.11 °C	334.71 μS/cm	0.84 mg/L	88.60 NTU	50.1 mV	13.79 ft	200.00 ml/min
1/31/2023 1:04 PM	05:00	5.81 pH	16.33 °C	348.77 μS/cm	0.47 mg/L	81.30 NTU	24.0 mV	13.79 ft	200.00 ml/min
1/31/2023 1:09 PM	10:00	5.83 pH	16.47 °C	355.81 μS/cm	0.34 mg/L	42.50 NTU	16.8 mV	13.79 ft	200.00 ml/min
1/31/2023 1:14 PM	15:00	5.84 pH	16.56 °C	357.66 μS/cm	0.28 mg/L	29.90 NTU	15.9 mV	13.80 ft	200.00 ml/min
1/31/2023 1:19 PM	20:00	5.84 pH	16.60 °C	358.67 μS/cm	0.24 mg/L	27.10 NTU	14.9 mV	13.80 ft	200.00 ml/min
1/31/2023 1:24 PM	25:00	5.83 pH	16.60 °C	358.29 μS/cm	0.22 mg/L	21.40 NTU	13.9 mV	13.79 ft	200.00 ml/min
1/31/2023 1:29 PM	30:00	5.84 pH	16.65 °C	360.08 μS/cm	0.19 mg/L	16.40 NTU	12.7 mV	13.79 ft	200.00 ml/min
1/31/2023 1:34 PM	35:00	5.85 pH	16.69 °C	361.23 μS/cm	0.16 mg/L	15.00 NTU	8.2 mV	13.79 ft	200.00 ml/min
1/31/2023 1:39 PM	40:00	5.85 pH	16.76 °C	360.93 μS/cm	0.14 mg/L	12.50 NTU	10.9 mV	13.78 ft	200.00 ml/min
1/31/2023 1:44 PM	45:00	5.85 pH	16.72 °C	360.85 μS/cm	0.13 mg/L	8.75 NTU	10.6 mV	13.78 ft	200.00 ml/min
1/31/2023 1:49 PM	50:00	5.84 pH	16.72 °C	360.40 μS/cm	0.13 mg/L	11.40 NTU	11.9 mV	13.78 ft	200.00 ml/min
1/31/2023 1:54 PM	55:00	5.84 pH	16.70 °C	361.45 μS/cm	0.12 mg/L	7.58 NTU	9.8 mV	13.78 ft	200.00 ml/min
1/31/2023 1:59 PM	01:00:00	5.84 pH	16.69 °C	361.07 μS/cm	0.11 mg/L	7.32 NTU	11.3 mV	13.78 ft	200.00 ml/min

1/31/2023	01:05:00	5.84 pH	16.67 °C	360.89 µS/cm	0.10 mg/L	7.62 NTU	10.5 mV	13.78 ft	200.00 ml/min
2:04 PM	01.00.00	0.0 T p. 1	10.07	σοσ.σο μο/σιτι	0.10 mg/L	7.021110	10.0 111	10.7011	200:00 111/111111
1/31/2023	01:10:00	5.84 pH	16.76 °C	361.41 µS/cm	0.09 mg/L	5.52 NTU	7.5 mV	13.78 ft	200.00 ml/min
2:09 PM	01.10.00	3.64 pm	10.70 C	301.41 μ3/cm	0.09 mg/L	3.32 N10	7.5 1110	13.7611	200.00 1111/111111
1/31/2023	01:15:00	:00 5.86 pH	16.80 °C	361.90 μS/cm	0.09 mg/L	5.35 NTU	8.0 mV	13.77 ft	200.00 ml/min
2:14 PM									200.00 1111/111111
1/31/2023	01:20:00	5.83 pH	16.85 °C	360.55 µS/cm	0.09 mg/L	5.73 NTU	11.9 mV	13.76 ft	200.00 ml/min
2:19 PM	19 PM	3.63 pri	10.05 C	300.55 μ3/cm	0.09 mg/L	3.73 1010	11.91110	13.7611	200.00 1111/111111
1/31/2023	01:25:00	4.25.00 E 94.5H	16.78 °C	260 77 uC/om	0.00/	4.60 NTU	8.2 mV	13.76 ft	200.00 ml/min
2:24 PM		5.84 pH	10.78 C	360.77 μS/cm	0.09 mg/L	4.00 NTO	0.2 1110	13.7011	200.00 111/111111

Samples

Sample ID:	Description:
HAM-GWC-7	Grab.

Test Date / Time: 1/31/2023 3:27:22 PM

Project: GP-Plant Hammond **Operator Name:** Anthony Szwast

Location Name: GWC-8
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 17.13 ft

Total Depth: 27.13 ft

Initial Depth to Water: 9.81 ft

Pump Type: Peristaltic Tubing Type: Poly

Pump Intake From TOC: 25 ft Estimated Total Volume Pumped:

7 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 3.5 ft Instrument Used: Aqua TROLL 400

Serial Number: 883533

Test Notes:

Three bottles: Metals, TDS, Inorganics.

Weather Conditions:

Cloudy, rainy, 55 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
1/31/2023 3:27 PM	00:00	6.95 pH	16.05 °C	513.73 μS/cm	0.58 mg/L	28.00 NTU	19.4 mV	11.22 ft	200.00 ml/min
1/31/2023 3:32 PM	05:00	7.03 pH	16.16 °C	512.60 μS/cm	0.45 mg/L	14.90 NTU	18.2 mV	12.01 ft	200.00 ml/min
1/31/2023 3:37 PM	10:00	7.05 pH	16.16 °C	509.30 μS/cm	0.38 mg/L	8.96 NTU	-0.9 mV	12.48 ft	200.00 ml/min
1/31/2023 3:42 PM	15:00	7.06 pH	16.20 °C	501.72 μS/cm	0.30 mg/L	6.94 NTU	-2.7 mV	12.86 ft	200.00 ml/min
1/31/2023 3:47 PM	20:00	7.07 pH	16.17 °C	497.61 μS/cm	0.28 mg/L	7.29 NTU	-20.8 mV	13.09 ft	200.00 ml/min
1/31/2023 3:52 PM	25:00	7.08 pH	16.21 °C	489.96 μS/cm	0.23 mg/L	3.96 NTU	-17.5 mV	13.21 ft	200.00 ml/min
1/31/2023 3:57 PM	30:00	7.09 pH	16.29 °C	485.46 μS/cm	0.24 mg/L	4.70 NTU	-24.7 mV	13.31 ft	200.00 ml/min

Sample ID:	Description:
HAM-HLF-GWC-8	Grab.

Test Date / Time: 1/31/2023 10:59:02 AM

Project: GP-Plant Hammond **Operator Name:** Anthony Szwast

Location Name: GWC-9
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 41.91 ft
Total Depth: 51.91 ft

Initial Depth to Water: 12.38 ft

Pump Type: Peristaltic Tubing Type: Poly

Pump Intake From TOC: 46.91 ft Estimated Total Volume Pumped:

7 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.27 ft Instrument Used: Aqua TROLL 400

Serial Number: 883533

Test Notes:

Three bottles: Metals, TDS, Inorganics.

Weather Conditions:

Cloudy, rainy, 55 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
1/31/2023 10:59 AM	00:00	6.57 pH	15.72 °C	345.19 μS/cm	0.28 mg/L	2.85 NTU	-44.1 mV	12.64 ft	200.00 ml/min
1/31/2023 11:04 AM	05:00	6.57 pH	15.84 °C	345.77 μS/cm	0.14 mg/L	1.86 NTU	-60.8 mV	12.64 ft	200.00 ml/min
1/31/2023 11:09 AM	10:00	6.60 pH	15.93 °C	344.01 μS/cm	0.11 mg/L	1.12 NTU	-78.5 mV	12.65 ft	200.00 ml/min
1/31/2023 11:14 AM	15:00	6.64 pH	15.89 °C	341.68 μS/cm	0.09 mg/L	1.16 NTU	-81.7 mV	12.65 ft	200.00 ml/min
1/31/2023 11:19 AM	20:00	6.68 pH	15.93 °C	341.03 μS/cm	0.08 mg/L	1.21 NTU	-92.3 mV	12.65 ft	200.00 ml/min
1/31/2023 11:24 AM	25:00	6.71 pH	15.96 °C	339.37 μS/cm	0.08 mg/L	1.22 NTU	-92.0 mV	12.65 ft	200.00 ml/min
1/31/2023 11:29 AM	30:00	6.74 pH	15.84 °C	339.03 μS/cm	0.18 mg/L	1.10 NTU	-100.1 mV	12.65 ft	200.00 ml/min

Sample ID:	Description:
HAM-GWC-9	Grab.

Test Date / Time: 1/30/2023 4:56:21 PM

Project: GP-Plant Hammond **Operator Name:** Thomas Kessler

Location Name: GWC-10
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 23.98 ft
Total Depth: 34.52 ft

Initial Depth to Water: 11.95 ft

Pump Type: Peristaltic Tubing Type: Poly

Pump Intake From TOC: 28.98 ft Estimated Total Volume Pumped:

14000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.03 ft Instrument Used: Aqua TROLL 400

Serial Number: 850724

Test Notes:

Three bottles: Metals, TDS, Inorganics.

Weather Conditions: Cloudy, 50 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 5	
1/30/2023 4:56 PM	00:00	7.52 pH	14.75 °C	319.77 μS/cm	0.61 mg/L	73.10 NTU	24.9 mV	11.98 ft	200.00 ml/min
1/30/2023 5:01 PM	05:00	7.57 pH	15.21 °C	318.44 μS/cm	0.56 mg/L	47.60 NTU	-20.3 mV	11.98 ft	200.00 ml/min
1/30/2023 5:06 PM	10:00	7.59 pH	15.33 °C	317.83 μS/cm	0.46 mg/L	37.90 NTU	-48.5 mV	11.98 ft	200.00 ml/min
1/30/2023 5:11 PM	15:00	7.59 pH	15.36 °C	317.56 μS/cm	0.44 mg/L	37.40 NTU	-47.5 mV	11.98 ft	200.00 ml/min
1/30/2023 5:16 PM	20:00	7.58 pH	15.34 °C	317.74 μS/cm	0.44 mg/L	33.10 NTU	-74.7 mV	11.98 ft	200.00 ml/min
1/30/2023 5:21 PM	25:00	7.58 pH	15.39 °C	317.32 μS/cm	0.40 mg/L	24.40 NTU	-81.4 mV	11.98 ft	200.00 ml/min
1/30/2023 5:26 PM	30:00	7.59 pH	15.43 °C	317.33 µS/cm	0.36 mg/L	17.20 NTU	-87.7 mV	11.98 ft	200.00 ml/min
1/30/2023 5:31 PM	35:00	7.58 pH	15.41 °C	316.94 µS/cm	0.37 mg/L	15.70 NTU	-93.5 mV	11.98 ft	200.00 ml/min
1/30/2023 5:36 PM	40:00	7.57 pH	15.43 °C	317.23 μS/cm	0.61 mg/L	11.20 NTU	-95.4 mV	11.98 ft	200.00 ml/min
1/30/2023 5:41 PM	45:00	7.58 pH	15.41 °C	317.13 µS/cm	0.64 mg/L	10.16 NTU	-97.5 mV	11.98 ft	200.00 ml/min
1/30/2023 5:46 PM	50:00	7.60 pH	15.34 °C	317.02 μS/cm	0.53 mg/L	8.35 NTU	-97.3 mV	11.98 ft	200.00 ml/min
1/30/2023 5:51 PM	55:00	7.59 pH	15.30 °C	317.38 μS/cm	0.36 mg/L	6.30 NTU	-101.1 mV	11.98 ft	200.00 ml/min
1/30/2023 5:56 PM	01:00:00	7.59 pH	15.30 °C	317.05 µS/cm	0.46 mg/L	6.05 NTU	-100.2 mV	11.98 ft	200.00 ml/min

1/30/2023	01:05:00	7.59 pH	15.34 °C	317.10 µS/cm	0.59 mg/L	4.85 NTU	-100.1 mV	11.98 ft	200.00 ml/min
6:01 PM	01.05.00	7.59 pm	15.54 C	317.10 μ3/011	0.59 Hig/L	4.65 NTO	-100.11110	11.9011	200.00 1111/111111
1/30/2023	01:10:00	7.60 ml l	15.30 °C	216 77	0.44 mg/l	4.70 NTU	102.0 m)/	11 00 H	200.00
6:06 PM	01.10.00	7.60 pH	15.30 °C	316.77 µS/cm	0.44 mg/L	4.70 NTO	-102.9 mV	11.98 ft	200.00 ml/min

Samples

Sample ID:	Description:
HAM-GWC-10	Grab.
HAM-HLF-FD-05	Grab.

Test Date / Time: 1/31/2023 9:36:39 AM

Project: GP-Plant Hammond **Operator Name:** Anthony Szwast

Location Name: GWC-18 Well Diameter: 2 in **Casing Type: PVC** Screen Length: 10 ft Top of Screen: 47.02 ft Total Depth: 57.02 ft

Initial Depth to Water: 12.5 ft

Pump Type: Peristaltic Tubing Type: Poly

> Pump Intake From TOC: 52.02 ft **Estimated Total Volume Pumped:**

7 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 1.40 ft

Instrument Used: Aqua TROLL 400

Serial Number: 883533

Test Notes:

Three bottles: Metals, TDS, Inorganics.

Weather Conditions:

Rainy, 55 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
1/31/2023 9:36 AM	00:00	7.44 pH	15.75 °C	414.02 μS/cm	1.27 mg/L	0.57 NTU	72.7 mV	13.72 ft	200.00 ml/min
1/31/2023 9:41 AM	05:00	7.49 pH	15.71 °C	410.09 μS/cm	1.06 mg/L	0.84 NTU	69.7 mV	13.81 ft	200.00 ml/min
1/31/2023 9:46 AM	10:00	7.52 pH	15.75 °C	405.47 μS/cm	0.88 mg/L	0.78 NTU	53.7 mV	13.83 ft	200.00 ml/min
1/31/2023 9:51 AM	15:00	7.53 pH	15.84 °C	396.28 μS/cm	0.66 mg/L	0.61 NTU	55.0 mV	13.86 ft	200.00 ml/min
1/31/2023 9:56 AM	20:00	7.54 pH	15.82 °C	388.30 μS/cm	0.52 mg/L	1.00 NTU	47.6 mV	13.88 ft	200.00 ml/min
1/31/2023 10:01 AM	25:00	7.55 pH	15.83 °C	382.18 μS/cm	0.42 mg/L	1.04 NTU	41.4 mV	13.88 ft	200.00 ml/min
1/31/2023 10:06 AM	30:00	7.56 pH	15.88 °C	379.39 μS/cm	0.39 mg/L	0.93 NTU	36.2 mV	13.90 ft	200.00 ml/min

Sample ID:	Description:
HAM-GWC-18	Grab.

Test Date / Time: 1/31/2023 2:09:03 PM

Project: GP-Plant Hammond **Operator Name:** Thomas Kessler

Location Name: GWC-19
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 47.51 ft
Total Depth: 56.91 ft

Initial Depth to Water: 17.64 ft

Pump Type: Peristaltic Tubing Type: Poly

Pump Intake From TOC: 52.51 ft Estimated Total Volume Pumped:

7 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.41 ft Instrument Used: Aqua TROLL 400

Serial Number: 850724

Test Notes:

Three bottles: Metals, TDS, Inorganics.

Weather Conditions: Cloudy, 50 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 5	
1/31/2023 2:09 PM	00:00	7.62 pH	15.55 °C	396.93 μS/cm	0.44 mg/L	2.56 NTU	-91.1 mV	17.96 ft	200.00 ml/min
1/31/2023 2:14 PM	05:00	7.63 pH	15.84 °C	394.29 μS/cm	0.26 mg/L	3.72 NTU	-95.0 mV	17.96 ft	200.00 ml/min
1/31/2023 2:19 PM	10:00	7.64 pH	15.99 °C	396.70 μS/cm	0.20 mg/L	1.30 NTU	-111.1 mV	18.02 ft	200.00 ml/min
1/31/2023 2:24 PM	15:00	7.64 pH	16.05 °C	400.59 μS/cm	0.15 mg/L	3.08 NTU	-111.5 mV	18.05 ft	200.00 ml/min
1/31/2023 2:29 PM	20:00	7.63 pH	16.06 °C	405.51 μS/cm	0.13 mg/L	1.45 NTU	-95.5 mV	18.05 ft	200.00 ml/min
1/31/2023 2:34 PM	25:00	7.65 pH	16.06 °C	406.98 μS/cm	0.13 mg/L	1.13 NTU	-110.3 mV	18.05 ft	200.00 ml/min
1/31/2023 2:39 PM	30:00	7.65 pH	15.97 °C	410.59 μS/cm	0.13 mg/L	3.43 NTU	-93.9 mV	18.05 ft	200.00 ml/min

Sample ID:	Description:
HAM-HLF-GWC-19	Grab.

Test Date / Time: 1/31/2023 9:45:28 AM

Project: GP-Plant Hammond **Operator Name:** Connor Cain

Location Name: GWC-20
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 24.18 ft
Total Depth: 34.18 ft

Initial Depth to Water: 2.75 ft

Pump Type: Peri Tubing Type: Poly

Pump Intake From TOC: 29.18 ft Estimated Total Volume Pumped:

12 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.51 ft Instrument Used: Aqua TROLL 400

Serial Number: 966090

Test Notes:

Three bottles: Metals, TDS, Inorganics.

Weather Conditions:

Rain, 54 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 5	
1/31/2023 9:45 AM	00:00	7.17 pH	14.54 °C	428.23 μS/cm	0.99 mg/L	11.30 NTU	156.5 mV	3.10 ft	200.00 ml/min
1/31/2023 9:50 AM	05:00	7.36 pH	13.94 °C	424.17 μS/cm	0.38 mg/L	12.70 NTU	81.5 mV	3.20 ft	200.00 ml/min
1/31/2023 9:55 AM	10:00	7.38 pH	14.02 °C	424.44 μS/cm	0.32 mg/L	12.40 NTU	2.5 mV	3.28 ft	200.00 ml/min
1/31/2023 10:00 AM	15:00	7.39 pH	14.03 °C	424.40 μS/cm	0.31 mg/L	11.90 NTU	-21.4 mV	3.30 ft	200.00 ml/min
1/31/2023 10:05 AM	20:00	7.40 pH	14.04 °C	425.03 μS/cm	0.31 mg/L	10.87 NTU	-45.2 mV	3.31 ft	200.00 ml/min
1/31/2023 10:10 AM	25:00	7.40 pH	14.05 °C	427.32 μS/cm	0.32 mg/L	9.41 NTU	-56.7 mV	3.30 ft	200.00 ml/min
1/31/2023 10:15 AM	30:00	7.42 pH	14.07 °C	427.66 μS/cm	0.30 mg/L	7.64 NTU	-65.5 mV	3.28 ft	200.00 ml/min
1/31/2023 10:20 AM	35:00	7.42 pH	14.11 °C	428.29 μS/cm	0.28 mg/L	7.34 NTU	-44.0 mV	3.27 ft	200.00 ml/min
1/31/2023 10:25 AM	40:00	7.42 pH	14.11 °C	426.81 μS/cm	0.28 mg/L	7.37 NTU	-39.1 mV	3.26 ft	200.00 ml/min
1/31/2023 10:30 AM	45:00	7.42 pH	14.21 °C	430.46 μS/cm	0.25 mg/L	7.07 NTU	-74.3 mV	3.25 ft	200.00 ml/min
1/31/2023 10:35 AM	50:00	7.43 pH	14.39 °C	429.70 μS/cm	0.24 mg/L	5.73 NTU	-49.9 mV	3.28 ft	200.00 ml/min
1/31/2023 10:40 AM	55:00	7.44 pH	14.47 °C	430.87 μS/cm	0.23 mg/L	5.03 NTU	-84.4 mV	3.26 ft	200.00 ml/min
1/31/2023 10:45 AM	01:00:00	7.44 pH	14.41 °C	430.58 μS/cm	0.25 mg/L	4.98 NTU	-52.1 mV	3.26 ft	200.00 ml/min

Samples

Sample ID:	Description:
HAM-GWC-20	Grab.

Test Date / Time: 1/31/2023 10:41:22 AM

Project: GP-Plant Hammond **Operator Name:** Thomas Kessler

Location Name: GWC-21
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 8.23 ft
Total Depth: 18.41 ft

Initial Depth to Water: 3.71 ft

Pump Type: Peristaltic Tubing Type: Poly

Pump Intake From TOC: 13.23 ft Estimated Total Volume Pumped:

19 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.23 ft Instrument Used: Aqua TROLL 400

Serial Number: 850724

Test Notes:

Three bottles: Metals, TDS, Inorganics.

Weather Conditions: Cloudy, 50 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 5	
1/31/2023 10:41 AM	00:00	6.75 pH	12.50 °C	180.26 μS/cm	1.57 mg/L	27.90 NTU	100.5 mV	3.94 ft	200.00 ml/min
1/31/2023 10:46 AM	05:00	6.55 pH	12.29 °C	179.06 μS/cm	1.41 mg/L	21.80 NTU	69.6 mV	3.94 ft	200.00 ml/min
1/31/2023 10:51 AM	10:00	6.47 pH	11.99 °C	175.49 μS/cm	1.17 mg/L	22.40 NTU	46.7 mV	3.94 ft	200.00 ml/min
1/31/2023 10:56 AM	15:00	6.42 pH	11.79 °C	170.63 μS/cm	0.93 mg/L	17.20 NTU	38.1 mV	3.94 ft	200.00 ml/min
1/31/2023 11:01 AM	20:00	6.41 pH	11.81 °C	171.16 μS/cm	0.96 mg/L	15.60 NTU	37.2 mV	3.94 ft	200.00 ml/min
1/31/2023 11:06 AM	25:00	6.37 pH	11.74 °C	166.82 μS/cm	0.73 mg/L	12.60 NTU	34.2 mV	3.94 ft	200.00 ml/min
1/31/2023 11:11 AM	30:00	6.35 pH	11.63 °C	163.19 μS/cm	0.64 mg/L	11.10 NTU	33.0 mV	3.94 ft	200.00 ml/min
1/31/2023 11:16 AM	35:00	6.32 pH	11.61 °C	156.02 μS/cm	0.56 mg/L	12.78 NTU	33.8 mV	3.94 ft	200.00 ml/min
1/31/2023 11:21 AM	40:00	6.32 pH	11.61 °C	156.48 μS/cm	0.54 mg/L	10.97 NTU	33.3 mV	3.94 ft	200.00 ml/min
1/31/2023 11:26 AM	45:00	6.29 pH	11.52 °C	151.05 μS/cm	0.46 mg/L	10.32 NTU	33.8 mV	3.94 ft	200.00 ml/min
1/31/2023 11:31 AM	50:00	6.28 pH	11.52 °C	149.78 μS/cm	0.48 mg/L	10.84 NTU	34.4 mV	3.94 ft	200.00 ml/min
1/31/2023 11:36 AM	55:00	6.27 pH	11.53 °C	146.69 μS/cm	0.41 mg/L	9.60 NTU	34.1 mV	3.94 ft	200.00 ml/min
1/31/2023 11:41 AM	01:00:00	6.26 pH	11.56 °C	146.00 μS/cm	0.38 mg/L	8.58 NTU	35.6 mV	3.94 ft	200.00 ml/min

1/31/2023	01:05:00	6.26 pH	11.58 °C	146.97 µS/cm	0.38 mg/L	7.65 NTU	35.2 mV	3.94 ft	200.00 ml/min
11:46 AM	01.00.00	0.20 p			0.00g/ =		33.2	0.0 1 1.0	200100 1111111111
1/31/2023	01:10:00	6.25 pH	11.52 °C	145.44 µS/cm	0.32 mg/L	7.56 NTU	35.8 mV	3.94 ft	200 001/
11:51 AM	01.10.00	6.25 pm	11.52 °C	145.44 µ5/cm	0.32 mg/L	7.50 1110	35.6 1110	3.94 11	200.00 ml/min
1/31/2023	01:15:00	6.24 pH	11.56 °C	140.89 µS/cm	0.28 mg/L	6.45 NTU	36.7 mV	3.94 ft	200.00 ml/min
11:56 AM	01.15.00	6.24 pn	11.50 C	140.69 μ3/6111	0.20 mg/L	6.45 NTO	30.7 1110	3.54 11	200.00 111/111111
1/31/2023	01:20:00	6.24 pH	11.47 °C	141.13 µS/cm	0.27 mg/L	6.12 NTU	36.4 mV	3.94 ft	200.00 ml/min
12:01 PM	01.20.00	0.24 pm	11.47	141.13 μ3/011	0.27 mg/L	6.12 NTU	30.4 1117	3.94 π	200.00 111/111111
1/31/2023	01:25:00	6.23 pH	11.52 °C	142.21 µS/cm	0.27 mg/L	6.52 NTU	36.5 mV	3.94 ft	200.00 ml/min
12:06 PM	01.23.00	0.23 pm	11.52 C	142.21 μ3/6111	0.27 Hig/L	0.52 1010	30.3 111	3.94 11	200.00 111/111111
1/31/2023	01:30:00	6.23 pH	11.55 °C	140.47 µS/cm	0.29 mg/L	3.75 NTU	36.0 mV	3.94 ft	200.00 ml/min
12:11 PM	01.30.00	6.23 pH	11.55 C	140.47 μ3/611	0.29 Hig/L	3.75 NTU	36.0 1110	3.94 II	200.00 111/111111

Samples

Sample ID:	Description:
HAM-GWC-21	Grab.

Test Date / Time: 1/31/2023 9:37:48 AM

Project: GP-Plant Hammond **Operator Name:** Thomas Kessler

Location Name: GWC-22
Well Diameter: 2 in Casing

Type: PVC

Screen Length: 10 ft Top of Screen: 31.91 ft Total Depth: 42.30 ft

Initial Depth to Water: 0.70 ft

Pump Type: Peristaltic Tubing Type: Poly

Pump Intake From TOC: 36.91 ft Estimated Total Volume Pumped:

7 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.52 ft Instrument Used: Aqua TROLL 400

Serial Number: 850724

Test Notes:

Three bottles: Metals, TDS, Inorganics.

Weather Conditions:

Rainy, 50 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 5	
1/31/2023 9:37 AM	00:00	7.35 pH	14.23 °C	344.13 μS/cm	0.97 mg/L	8.64 NTU	-40.5 mV	1.18 ft	200.00 ml/min
1/31/2023 9:42 AM	05:00	7.50 pH	13.97 °C	345.77 μS/cm	0.52 mg/L	5.06 NTU	-96.2 mV	1.22 ft	200.00 ml/min
1/31/2023 9:47 AM	10:00	7.57 pH	14.06 °C	346.10 μS/cm	0.46 mg/L	4.96 NTU	-102.1 mV	1.22 ft	200.00 ml/min
1/31/2023 9:52 AM	15:00	7.61 pH	14.14 °C	346.27 μS/cm	0.42 mg/L	4.71 NTU	-85.5 mV	1.22 ft	200.00 ml/min
1/31/2023 9:57 AM	20:00	7.65 pH	14.16 °C	345.78 μS/cm	0.46 mg/L	4.77 NTU	-82.5 mV	1.22 ft	200.00 ml/min
1/31/2023 10:02 AM	25:00	7.66 pH	14.24 °C	346.07 μS/cm	0.48 mg/L	4.77 NTU	-98.4 mV	1.22 ft	200.00 ml/min
1/31/2023 10:07 AM	30:00	7.67 pH	14.26 °C	344.75 μS/cm	0.53 mg/L	4.96 NTU	-75.4 mV	1.22 ft	200.00 ml/min

Sample ID:	Description:
HAM-GWC-22	Grab.

Test Date / Time: 1/31/2023 12:57:51 PM

Project: GP-Plant Hammond **Operator Name:** Thomas Kessler

Location Name: GWC-23
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 39.73 ft
Total Depth: 50.14 ft

Initial Depth to Water: 6.93 ft

Pump Type: Peristaltic Tubing Type: Poly

Pump Intake From TOC: 44.73 ft Estimated Total Volume Pumped:

7 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.47 ft Instrument Used: Aqua TROLL 400

Serial Number: 850724

Test Notes:

Three bottles: Metals, TDS, Inorganics.

Weather Conditions:

Rainy, 50 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 5	
1/31/2023 12:57 PM	00:00	6.94 pH	14.40 °C	435.54 μS/cm	0.57 mg/L	5.49 NTU	64.9 mV	7.32 ft	200.00 ml/min
1/31/2023 1:02 PM	05:00	6.96 pH	14.79 °C	438.80 μS/cm	0.36 mg/L	5.08 NTU	8.1 mV	7.32 ft	200.00 ml/min
1/31/2023 1:07 PM	10:00	6.99 pH	14.94 °C	444.31 μS/cm	0.30 mg/L	3.65 NTU	-7.2 mV	7.32 ft	200.00 ml/min
1/31/2023 1:12 PM	15:00	7.00 pH	15.09 °C	447.15 μS/cm	0.23 mg/L	4.34 NTU	-28.9 mV	7.40 ft	200.00 ml/min
1/31/2023 1:17 PM	20:00	7.01 pH	15.16 °C	446.55 μS/cm	0.21 mg/L	3.15 NTU	-26.5 mV	7.40 ft	200.00 ml/min
1/31/2023 1:22 PM	25:00	7.03 pH	15.28 °C	445.72 μS/cm	0.17 mg/L	3.43 NTU	-41.7 mV	7.40 ft	200.00 ml/min
1/31/2023 1:27 PM	30:00	7.03 pH	15.30 °C	443.09 μS/cm	0.16 mg/L	4.51 NTU	-35.7 mV	7.40 ft	200.00 ml/min

Sample ID:	Description:
HGAM-GWC-23	Grab.

August 2023

Test Date / Time: 8/14/2023 12:01:14 PM

Project: GP-Plant Hammond **Operator Name:** Anthony Szwast

Location Name: GWA-1
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 29.3 ft
Total Depth: 40.02 ft

Initial Depth to Water: 15.2 ft

Pump Type: Peri Tubing Type: Poly

Pump Intake From TOC: 34.3 ft Estimated Total Volume Pumped:

6 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.45 ft Instrument Used: Aqua TROLL 400

Serial Number: 883530

Test Notes:

Metals, TDS, Inorganics, Major Ions.

Weather Conditions:

Partly cloudy, 80 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 10	+/- 10	+/- 0.3	
8/14/2023 12:01 PM	00:00	7.13 pH	19.56 °C	182.77 μS/cm	0.17 mg/L	2.81 NTU	159.3 mV	15.55 ft	200.00 ml/min
8/14/2023 12:06 PM	05:00	7.29 pH	19.17 °C	178.71 μS/cm	0.11 mg/L	3.64 NTU	487.9 mV	15.58 ft	200.00 ml/min
8/14/2023 12:11 PM	10:00	7.29 pH	19.00 °C	179.31 μS/cm	0.07 mg/L	1.91 NTU	406.1 mV	15.61 ft	200.00 ml/min
8/14/2023 12:16 PM	15:00	7.25 pH	19.06 °C	174.42 μS/cm	0.06 mg/L	1.43 NTU	1.7 mV	15.62 ft	200.00 ml/min
8/14/2023 12:21 PM	20:00	7.21 pH	19.11 °C	169.15 μS/cm	0.05 mg/L	0.92 NTU	-44.1 mV	15.62 ft	200.00 ml/min
8/14/2023 12:26 PM	25:00	7.22 pH	19.24 °C	167.75 μS/cm	0.04 mg/L	1.70 NTU	-43.9 mV	15.65 ft	200.00 ml/min

Samples

Sample ID:	Description:
HAM-GWA-1	Grab

Test Date / Time: 8/14/2023 1:36:44 PM

Project: GP-Plant Hammond **Operator Name:** Anthony Szwast

Location Name: GWA-2
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 15.81 ft T

otal Depth: 26.09 ft

Initial Depth to Water: 6.28 ft

Pump Type: Peri Tubing Type: Poly

Pump Intake From TOC: 20.81 ft Estimated Total Volume Pumped:

7 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.51 ft Instrument Used: Aqua TROLL 400

Serial Number: 883530

Test Notes:

Metals, TDS, Inorganics, Major Ions.

Weather Conditions:

Sunny, 89 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 10	+/- 10	+/- 0.3	
8/14/2023 1:36 PM	00:00	6.85 pH	22.45 °C	453.28 μS/cm	0.13 mg/L	24.90 NTU	-57.8 mV	6.66 ft	200.00 ml/min
8/14/2023 1:41 PM	05:00	6.88 pH	21.65 °C	456.05 μS/cm	0.07 mg/L	15.60 NTU	-31.1 mV	6.72 ft	200.00 ml/min
8/14/2023 1:46 PM	10:00	6.89 pH	20.90 °C	454.66 μS/cm	0.03 mg/L	8.49 NTU	-25.1 mV	6.76 ft	200.00 ml/min
8/14/2023 1:51 PM	15:00	6.89 pH	20.71 °C	456.79 μS/cm	0.02 mg/L	5.18 NTU	-21.7 mV	6.77 ft	200.00 ml/min
8/14/2023 1:56 PM	20:00	6.90 pH	20.53 °C	455.14 μS/cm	0.01 mg/L	3.34 NTU	-19.6 mV	6.77 ft	200.00 ml/min
8/14/2023 2:01 PM	25:00	6.90 pH	20.51 °C	451.81 μS/cm	0.00 mg/L	5.07 NTU	-18.1 mV	6.79 ft	200.00 ml/min
8/14/2023 2:06 PM	30:00	6.91 pH	20.53 °C	450.41 μS/cm	0.00 mg/L	2.10 NTU	-17.3 mV	6.79 ft	200.00 ml/min

Sample ID:	Description:
HAM-GWA-2	Grab

Test Date / Time: 8/14/2023 1:44:34 PM

Project: GP-Plant Hammond **Operator Name:** Thomas Kessler

Location Name: GWA-3
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 11.09 ft
Total Depth: 21.65 ft

Initial Depth to Water: 4.65 ft

Pump Type: peri Tubing Type: Poly

Pump Intake From TOC: 16.09 ft Estimated Total Volume Pumped:

8 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.35 ft Instrument Used: Aqua TROLL 400

Serial Number: 850724

Test Notes:

Five bottles: Metals, TDS, Inorganics, Major Ions.

Weather Conditions:

Sunny, 90 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/14/2023 1:44 PM	00:00	6.62 pH	27.70 °C	566.40 μS/cm	0.29 mg/L	4.62 NTU	45.2 mV	5.00 ft	200.00 ml/min
8/14/2023 1:49 PM	05:00	6.58 pH	26.25 °C	563.72 μS/cm	0.18 mg/L	6.89 NTU	31.4 mV	5.00 ft	200.00 ml/min
8/14/2023 1:54 PM	10:00	6.56 pH	25.91 °C	557.90 μS/cm	0.15 mg/L	5.78 NTU	24.8 mV	5.00 ft	200.00 ml/min
8/14/2023 1:59 PM	15:00	6.54 pH	25.78 °C	555.18 μS/cm	0.13 mg/L	5.00 NTU	16.5 mV	5.00 ft	200.00 ml/min
8/14/2023 2:04 PM	20:00	6.55 pH	25.82 °C	555.53 μS/cm	0.14 mg/L	4.93 NTU	17.6 mV	5.00 ft	200.00 ml/min
8/14/2023 2:09 PM	25:00	6.54 pH	26.01 °C	550.34 μS/cm	0.16 mg/L	4.51 NTU	15.4 mV	5.00 ft	200.00 ml/min
8/14/2023 2:14 PM	30:00	6.54 pH	26.05 °C	548.48 μS/cm	0.17 mg/L	4.77 NTU	10.1 mV	5.00 ft	200.00 ml/min

Sample ID:	Description:
HAM-GWA-3	Grab

Test Date / Time: 8/14/2023 12:25:36 PM

Project: GP-Plant Hammond **Operator Name:** Thomas Kessler

Location Name: GWA-4
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft

Top of Screen: 11.39 ft Total

Depth: 21.75 ft

Initial Depth to Water: 11.32 ft

Pump Type: peri Tubing Type: Poly

Pump Intake From TOC: 16.09 ft Estimated Total Volume Pumped:

12 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.18 ft Instrument Used: Aqua TROLL 400

Serial Number: 850724

Test Notes:

Five bottles: Metals, TDS, Inorganics, Major Ions.

Weather Conditions:

Clear, 85 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/14/2023 12:25 PM	00:00	7.12 pH	23.12 °C	640.36 μS/cm	0.22 mg/L	3.44 NTU	78.8 mV	11.50 ft	200.00 ml/min
8/14/2023 12:30 PM	05:00	6.93 pH	22.85 °C	562.16 μS/cm	0.75 mg/L	3.31 NTU	99.0 mV	11.50 ft	200.00 ml/min
8/14/2023 12:35 PM	10:00	6.89 pH	23.16 °C	559.07 μS/cm	0.68 mg/L	3.21 NTU	96.2 mV	11.50 ft	200.00 ml/min
8/14/2023 12:40 PM	15:00	6.88 pH	23.41 °C	559.04 μS/cm	0.66 mg/L	3.05 NTU	75.3 mV	11.50 ft	200.00 ml/min
8/14/2023 12:45 PM	20:00	7.02 pH	23.07 °C	601.57 μS/cm	0.37 mg/L	2.95 NTU	87.8 mV	11.50 ft	200.00 ml/min
8/14/2023 12:50 PM	25:00	6.95 pH	23.07 °C	604.94 μS/cm	0.41 mg/L	3.16 NTU	93.5 mV	11.50 ft	200.00 ml/min
8/14/2023 12:55 PM	30:00	6.82 pH	23.43 °C	563.85 μS/cm	0.80 mg/L	3.10 NTU	99.7 mV	11.50 ft	200.00 ml/min
8/14/2023 1:00 PM	35:00	6.79 pH	23.12 °C	566.65 μS/cm	0.82 mg/L	2.98 NTU	78.3 mV	11.50 ft	200.00 ml/min
8/14/2023 1:05 PM	40:00	6.78 pH	23.16 °C	568.26 μS/cm	1.10 mg/L	3.14 NTU	78.8 mV	11.50 ft	200.00 ml/min
8/14/2023 1:10 PM	45:00	6.76 pH	23.20 °C	579.70 μS/cm	1.13 mg/L	3.61 NTU	79.5 mV	11.50 ft	200.00 ml/min
8/14/2023 1:15 PM	50:00	6.74 pH	23.47 °C	590.79 μS/cm	0.96 mg/L	2.37 NTU	79.7 mV	11.50 ft	200.00 ml/min

Sample ID:	Description:
HAM-GWA-4	Grab

Test Date / Time: 8/14/2023 12:50:05 PM

Project: GP-Plant Hammond **Operator Name:** C. Cain

Location Name: GWA-11
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 25.9 ft
Total Depth: 35.9 ft

Initial Depth to Water: 17.35 ft

Pump Type: Peri Tubing Type: Poly

Pump Intake From TOC: 30.9 ft Estimated Total Volume Pumped:

7 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.45 ft Instrument Used: Aqua TROLL 400

Serial Number: 883553

Test Notes:

Metals, TDS, Inorganics, Major Ions.

Weather Conditions:

Sunny, 84 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/14/2023	00:00	6.99 pH	21.11 °C	160.49 µS/cm	0.49 mg/L	15.70 NTU	-19.6 mV	17.74 ft	200.00 ml/min
12:50 PM			_						
8/14/2023	05:00	7.00 pH	19.02 °C	162.05 µS/cm	0.28 mg/L	7.82 NTU	-20.9 mV	17.76 ft	200.00 ml/min
12:55 PM	03.00	7.00 pm	13.02 0	102.03 μο/οπ	0.20 mg/L	7.02 1110	20.5 111	17.7010	200.00 1111/111111
8/14/2023	10:00	7.00 pH	18.48 °C	161.91 µS/cm	0.23 mg/L	2.63 NTU	-40.3 mV	17.78 ft	200.00 ml/min
1:00 PM	10.00	7.00 pm	10.40 C	101.91 μ3/611	0.23 Hig/L	2.03 1110	-40.3 1110	17.7610	200.00 111/111111
8/14/2023	15:00	7.00 pH	18.35 °C	162.30 µS/cm	0.21 mg/L	1.66 NTU	-20.1 mV	17.80 ft	200.00 ml/min
1:05 PM	15.00	7.00 pm	16.35 C	162.30 μ3/011	0.21 Hig/L	1.00 N10	-20.11117	17.0011	200.00 111/111111
8/14/2023	20:00	7.00 pH	18.45 °C	100.00 - 0/	0.19 mg/L	1.72 NTU	-39.6 mV	17.80 ft	200.00 ml/min
1:10 PM	20.00	7.00 pm	16.45 C	162.99 μS/cm	0.19 Hig/L	1.72 N10	-39.6 1117	17.0011	200.00 111/111111
8/14/2023	05.00	6.00 all	10.26.00	160 20 uC/om	0.10 mg/l	4 50 NTU	10.0 m)/	47.00.6	200 00 ml/min
1:15 PM	25:00	6.99 pH	18.26 °C	162.38 μS/cm	0.19 mg/L	1.58 NTU	-18.9 mV	17.80 ft	200.00 ml/min
8/14/2023	30:00	6 00 ×U	18.12 °C	162 92 uS/om	0.16 mg/l	1 64 NTU	10.0 m\/	17.80 ft	200.00 ml/min
1:20 PM	30:00	6.99 pH	10.12 0	162.82 μS/cm	0.16 mg/L	1.64 NTU	-19.0 mV	17.8011	200.00 mi/min

Sample ID:	Description:
HAM-GWA-11	Grab

Test Date / Time: 8/15/2023 12:20:44 PM

Project: GP-Plant Hammond **Operator Name:** Anthony Szwast

Location Name: GWC-5
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 11.41 ft
Total Depth: 21.73 ft

Initial Depth to Water: 5.25 ft

Pump Type: Peri Tubing Type: Poly

Pump Intake From TOC: 16.41 ft Estimated Total Volume Pumped:

40 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: -0.03 ft Instrument Used: Aqua TROLL 400

Serial Number: 883530

Test Notes:

Metals, TDS, Inorganics, Major Ions.

Weather Conditions:

Cloudy, 75 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 10	+/- 10	+/- 0.3	
8/15/2023	00:00	6.86 pH	21.56 °C	573.63 µS/cm	0.05 mg/L	4.18 NTU	-32.5 mV	5.25 ft	200.00 ml/min
12:20 PM		6.66 рп	21.50 C	373.03 μ3/6/11	0.05 mg/L	4.16 1010	-32.3 IIIV	J.25 II	200.00 1111/111111
8/15/2023	05:00	05:00 6.86 pH	21.97 °C	570.43 μS/cm	0.05 mg/L	1.18 NTU	-28.9 mV	5.24 ft	200.00 ml/min
12:25 PM	05.00								
8/15/2023	10:00	6.86 pH	22.50 °C	565.45 µS/cm	0.05 mg/L	1.07 NTU	-28.0 mV	5.23 ft	200.00 ml/min
12:30 PM	10.00	6.66 рп	22.50 C	365.45 µ3/cm	0.05 Hig/L	1.07 N10	-20.0 1110	5.23 II	200.00 1111/111111
8/15/2023	15:00	6.85 pH	22.65 °C	563.68 µS/cm	0.05 mg/L	0.70 NTU	-22.8 mV	5,22 ft	200.00 ml/min
12:35 PM	15.00	0.65 μπ	22.05 C	303.00 μ3/cm	0.03 Hig/L	0.70 NTO	-22.0 IIIV	3.22 IL	200.00 1111/111111

Samples

Sample ID:	Description:
HAM-GWC-5	Grab

Test Date / Time: 8/14/2023 4:35:00 PM

Project: GP-Plant Hammond **Operator Name:** Anthony Szwast

Location Name: GWC-6
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 32.58 ft
Total Depth: 43.05 ft

Initial Depth to Water: 16.8 ft

Pump Type: Peri Tubing Type: Poly

Pump Intake From TOC: 37.58 ft Estimated Total Volume Pumped:

10 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.08 ft Instrument Used: Aqua TROLL 400

Serial Number: 883530

Test Notes:

Metals, TDS, Inorganics, Major Ions.

Weather Conditions:

Sunny, 92 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 10	+/- 10	+/- 0.3	
8/14/2023 4:35 PM	00:00	7.54 pH	22.17 °C	494.04 μS/cm	0.24 mg/L	10.10 NTU	-101.8 mV	16.87 ft	200.00 ml/min
8/14/2023 4:40 PM	05:00	7.61 pH	21.78 °C	492.07 μS/cm	0.18 mg/L	3.54 NTU	-90.1 mV	16.88 ft	200.00 ml/min
8/14/2023 4:45 PM	10:00	7.66 pH	21.60 °C	492.86 μS/cm	0.14 mg/L	3.24 NTU	-89.9 mV	16.88 ft	200.00 ml/min
8/14/2023 4:50 PM	15:00	7.67 pH	22.02 °C	486.15 μS/cm	0.13 mg/L	4.65 NTU	-88.9 mV	16.88 ft	200.00 ml/min
8/14/2023 4:55 PM	20:00	7.67 pH	21.96 °C	489.69 μS/cm	0.11 mg/L	2.56 NTU	-85.1 mV	16.88 ft	200.00 ml/min
8/14/2023 5:00 PM	25:00	7.67 pH	21.95 °C	492.75 μS/cm	0.10 mg/L	3.70 NTU	-81.8 mV	16.88 ft	200.00 ml/min
8/14/2023 5:05 PM	30:00	7.68 pH	21.69 °C	497.64 μS/cm	0.09 mg/L	2.72 NTU	-79.3 mV	16.88 ft	200.00 ml/min
8/14/2023 5:10 PM	35:00	7.68 pH	21.65 °C	496.95 μS/cm	0.09 mg/L	1.15 NTU	-79.5 mV	16.88 ft	200.00 ml/min
8/14/2023 5:15 PM	40:00	7.68 pH	21.51 °C	502.69 μS/cm	0.07 mg/L	4.30 NTU	-80.0 mV	16.88 ft	200.00 ml/min
8/14/2023 5:20 PM	45:00	7.68 pH	21.60 °C	496.59 μS/cm	0.05 mg/L	1.73 NTU	-79.7 mV	16.88 ft	200.00 ml/min

Sample ID:	Description:
HAM-HLF-GWC-6	Grab

Test Date / Time: 8/15/2023 3:18:28 PM

Project: Plant Hammond GPC **Operator Name:** Anthony Szwast

Location Name: GWC-7
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 21.91 ft
Total Depth: 32.27 ft

Initial Depth to Water: 16.41 ft

Pump Type: Peri Tubing Type: Poly

Pump Intake From TOC: 26.91 ft Estimated Total Volume Pumped:

25 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.2 ft Instrument Used: Aqua TROLL 400

Serial Number: 883530

Test Notes:

Metals, TDS, Inorganics, Major Ions.

Weather Conditions:

Partly cloudy, 84 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 10	+/- 10	+/- 0.3	
8/15/2023 3:18 PM	00:00	6.08 pH	21.11 °C	345.19 μS/cm	0.21 mg/L		10.9 mV	16.61 ft	200.00 ml/min
8/15/2023 3:23 PM	05:00	5.96 pH	20.71 °C	347.31 μS/cm	0.15 mg/L	102.40 NTU	27.7 mV	16.61 ft	200.00 ml/min
8/15/2023 3:28 PM	10:00	5.95 pH	20.70 °C	347.20 μS/cm	0.10 mg/L	88.70 NTU	35.6 mV	16.61 ft	200.00 ml/min
8/15/2023 3:33 PM	15:00	5.94 pH	20.76 °C	347.83 μS/cm	0.09 mg/L	68.90 NTU	40.7 mV	16.61 ft	200.00 ml/min
8/15/2023 3:38 PM	20:00	5.94 pH	20.80 °C	347.43 μS/cm	0.09 mg/L	58.00 NTU	46.2 mV	16.61 ft	200.00 ml/min
8/15/2023 3:43 PM	25:00	5.95 pH	20.99 °C	347.12 μS/cm	0.05 mg/L	46.20 NTU	50.8 mV	16.61 ft	200.00 ml/min
8/15/2023 3:48 PM	30:00	5.95 pH	20.98 °C	347.59 μS/cm	0.06 mg/L	33.80 NTU	52.9 mV	16.61 ft	200.00 ml/min
8/15/2023 3:53 PM	35:00	5.95 pH	20.96 °C	348.72 μS/cm	0.09 mg/L	68.20 NTU	54.8 mV	16.61 ft	200.00 ml/min
8/15/2023 3:58 PM	40:00	5.94 pH	20.62 °C	349.46 μS/cm	0.08 mg/L	34.60 NTU	59.6 mV	16.61 ft	200.00 ml/min
8/15/2023 4:03 PM	45:00	5.94 pH	20.88 °C	350.70 μS/cm	0.08 mg/L	27.20 NTU	58.2 mV	16.61 ft	200.00 ml/min
8/15/2023 4:08 PM	50:00	5.96 pH	20.61 °C	352.70 μS/cm	0.08 mg/L	22.40 NTU	56.3 mV	16.61 ft	200.00 ml/min
8/15/2023 4:13 PM	55:00	5.95 pH	21.07 °C	352.50 μS/cm	0.07 mg/L	18.11 NTU	57.1 mV	16.60 ft	200.00 ml/min
8/15/2023 4:18 PM	01:00:00	5.96 pH	20.87 °C	353.39 μS/cm	0.07 mg/L	11.70 NTU	58.3 mV	16.60 ft	200.00 ml/min

8/15/2023 4:23 PM	01:05:00	5.96 pH	20.60 °C	352.83 μS/cm	0.07 mg/L	13.00 NTU	61.2 mV	16.60 ft	200.00 ml/min
8/15/2023 4:28 PM	01:10:00	5.96 pH	20.89 °C	353.36 μS/cm	0.06 mg/L	11.00 NTU	59.6 mV	16.60 ft	200.00 ml/min
8/15/2023 4:33 PM	01:15:00	5.93 pH	20.98 °C	351.57 μS/cm	0.05 mg/L	10.20 NTU	59.1 mV	16.60 ft	200.00 ml/min
8/15/2023 4:38 PM	01:20:00	5.94 pH	21.00 °C	354.90 μS/cm	0.06 mg/L	9.64 NTU	63.2 mV	16.60 ft	200.00 ml/min
8/15/2023 4:43 PM	01:25:00	5.94 pH	21.02 °C	354.77 μS/cm	0.07 mg/L	8.62 NTU	64.2 mV	16.60 ft	200.00 ml/min
8/15/2023 4:48 PM	01:30:00	5.94 pH	21.00 °C	354.76 μS/cm	0.04 mg/L	7.71 NTU	65.9 mV	16.61 ft	200.00 ml/min
8/15/2023 4:53 PM	01:35:00	5.94 pH	20.96 °C	354.23 μS/cm	0.06 mg/L	8.01 NTU	67.3 mV	16.61 ft	200.00 ml/min
8/15/2023 4:58 PM	01:40:00	5.94 pH	20.96 °C	353.07 μS/cm	0.05 mg/L	7.75 NTU	65.5 mV	16.61 ft	200.00 ml/min
8/15/2023 5:03 PM	01:45:00	5.94 pH	20.75 °C	350.87 μS/cm	0.05 mg/L	8.40 NTU	68.0 mV	16.61 ft	200.00 ml/min
8/15/2023 5:08 PM	01:50:00	5.94 pH	20.96 °C	349.31 μS/cm	0.03 mg/L	5.86 NTU	69.2 mV	16.61 ft	200.00 ml/min
8/15/2023 5:13 PM	01:55:00	5.94 pH	20.98 °C	352.90 μS/cm	0.06 mg/L	8.23 NTU	70.3 mV	16.61 ft	200.00 ml/min
8/15/2023 5:18 PM	02:00:00	5.94 pH	20.89 °C	352.35 μS/cm	0.04 mg/L	4.48 NTU	71.7 mV	16.61 ft	200.00 ml/min

Samples

Sample ID:	Description:
HAM-GWC-7	Grab

Test Date / Time: 8/15/2023 1:35:27 PM

Project: GP-Plant Hammond **Operator Name:** Anthony Szwast

Location Name: GWC-8
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 17.13 ft
Total Depth: 27.60 ft

Initial Depth to Water: 13.07 ft

Pump Type: Peri Tubing Type: Poly

Pump Intake From TOC: 22.13 ft Estimated Total Volume Pumped:

9 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 3.87 ft Instrument Used: Aqua TROLL 400

Serial Number: 883530

Test Notes:

Metals, TDS, Inorganics, Major Ions.

Weather Conditions:

Cloudy, 85 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 10	+/- 10	+/- 0.3	
8/15/2023 1:35 PM	00:00	7.21 pH	20.30 °C	460.10 μS/cm	0.14 mg/L	44.70 NTU	73.3 mV	14.62 ft	200.00 ml/min
8/15/2023 1:40 PM	05:00	7.27 pH	19.87 °C	448.71 μS/cm	0.09 mg/L	31.30 NTU	415.3 mV	15.31 ft	200.00 ml/min
8/15/2023 1:45 PM	10:00	7.29 pH	19.80 °C	447.68 μS/cm	0.07 mg/L	15.80 NTU	420.2 mV	15.82 ft	200.00 ml/min
8/15/2023 1:50 PM	15:00	7.29 pH	19.95 °C	448.50 μS/cm	0.08 mg/L	12.30 NTU	382.0 mV	16.14 ft	200.00 ml/min
8/15/2023 1:55 PM	20:00	7.30 pH	19.86 °C	450.03 μS/cm	0.09 mg/L	8.08 NTU	330.8 mV	16.44 ft	200.00 ml/min
8/15/2023 2:00 PM	25:00	7.31 pH	19.64 °C	448.53 μS/cm	0.08 mg/L	7.40 NTU	294.5 mV	16.61 ft	200.00 ml/min
8/15/2023 2:05 PM	30:00	7.31 pH	19.62 °C	443.73 μS/cm	0.09 mg/L	5.60 NTU	156.9 mV	16.74 ft	200.00 ml/min
8/15/2023 2:10 PM	35:00	7.32 pH	19.41 °C	440.89 μS/cm	0.08 mg/L	7.23 NTU	35.8 mV	16.86 ft	200.00 ml/min
8/15/2023 2:15 PM	40:00	7.34 pH	19.33 °C	441.62 μS/cm	0.07 mg/L	3.66 NTU	-2.3 mV	16.94 ft	200.00 ml/min

Sample ID:	Description:
HAM-HLF-GWC-8	Grab

Test Date / Time: 8/15/2023 3:36:10 PM

Project: GP-Plant Hammond **Operator Name:** C. Cain

Location Name: GWC-9
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 41.91 ft
Total Depth: 52.50 ft

Initial Depth to Water: 15.91 ft

Pump Type: Peri Tubing Type: Poly

Pump Intake From TOC: 46.91 ft Estimated Total Volume Pumped:

7 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.33 ft Instrument Used: Aqua TROLL 400

Serial Number: 883553

Test Notes:

Metals, TDS, Inorganics, Major Ions.

Weather Conditions:

Cloudy, 78 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/15/2023 3:36 PM	00:00	7.27 pH	20.48 °C	317.49 μS/cm	3.50 mg/L	2.43 NTU	94.2 mV	16.23 ft	200.00 ml/min
8/15/2023 3:41 PM	05:00	7.01 pH	19.86 °C	331.37 μS/cm	2.99 mg/L	2.36 NTU	-31.1 mV	16.23 ft	200.00 ml/min
8/15/2023 3:46 PM	10:00	7.08 pH	19.96 °C	346.84 μS/cm	0.81 mg/L	2.76 NTU	-65.0 mV	16.24 ft	200.00 ml/min
8/15/2023 3:51 PM	15:00	7.10 pH	19.82 °C	348.59 μS/cm	0.41 mg/L	1.20 NTU	-86.7 mV	16.24 ft	200.00 ml/min
8/15/2023 3:56 PM	20:00	7.09 pH	19.72 °C	351.22 μS/cm	0.30 mg/L	1.56 NTU	-87.9 mV	16.24 ft	200.00 ml/min
8/15/2023 4:01 PM	25:00	7.09 pH	19.70 °C	351.28 μS/cm	0.25 mg/L	1.59 NTU	-72.1 mV	16.24 ft	200.00 ml/min
8/15/2023 4:06 PM	30:00	7.09 pH	19.77 °C	351.68 μS/cm	0.22 mg/L	1.43 NTU	-72.1 mV	16.24 ft	200.00 ml/min

Sample ID:	Description:
HAM-GWC-9	Grab

Test Date / Time: 8/14/2023 2:34:31 PM

Project: GWC-10 **Operator Name:** C. Cain

Location Name: GWC-10
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 23.98 ft
Total Depth: 33.98 ft

Initial Depth to Water: 17.28 ft

Pump Type: Peri Tubing Type: Poly

Pump Intake From TOC: 28.98 ft Estimated Total Volume Pumped:

26 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.02 ft Instrument Used: Aqua TROLL 400

Serial Number: 883553

Test Notes:

Metals, TDS, Inorganics, Major Ions.

Weather Conditions:

Sunny, 88 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/14/2023 2:34 PM	00:00	7.48 pH	19.46 °C	252.89 μS/cm	0.18 mg/L	33.00 NTU	-73.2 mV	17.28 ft	200.00 ml/min
8/14/2023 2:39 PM	05:00	7.49 pH	19.37 °C	254.83 μS/cm	0.15 mg/L	31.80 NTU	-71.4 mV	17.28 ft	200.00 ml/min
8/14/2023 2:44 PM	10:00	7.49 pH	19.55 °C	253.83 μS/cm	0.13 mg/L		-67.3 mV	17.28 ft	200.00 ml/min
8/14/2023 4:20 PM	01:45:43	7.50 pH	18.30 °C	252.04 μS/cm	0.08 mg/L	4.05 NTU	-77.6 mV	17.30 ft	200.00 ml/min
8/14/2023 4:25 PM	01:50:43	7.50 pH	18.30 °C	251.56 μS/cm	0.08 mg/L	3.81 NTU	-94.9 mV	17.30 ft	200.00 ml/min
8/14/2023 4:30 PM	01:55:43	7.50 pH	18.30 °C	252.84 μS/cm	0.08 mg/L	3.76 NTU	-66.8 mV	17.30 ft	200.00 ml/min
8/14/2023 4:35 PM	02:00:43	7.49 pH	18.29 °C	252.66 μS/cm	0.08 mg/L	3.54 NTU	-65.5 mV	17.30 ft	200.00 ml/min
8/14/2023 4:40 PM	02:05:43	7.48 pH	18.21 °C	252.75 μS/cm	0.08 mg/L	1.89 NTU	-64.4 mV	17.30 ft	200.00 ml/min
8/14/2023 4:45 PM	02:10:43	7.48 pH	18.30 °C	253.33 μS/cm	0.08 mg/L	2.10 NTU	-64.8 mV	17.30 ft	200.00 ml/min

Sample ID:	Description:
HAM-GWC-10	Grab
HAM-HLF-FD-05	Grab

Test Date / Time: 8/15/2023 2:22:08 PM

Project: GP-Plant Hammond **Operator Name:** C. Cain

Location Name: GWC-18
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 47.02 ft
Total Depth: 57.10 ft

Initial Depth to Water: 13.98 ft

Pump Type: Peri Tubing Type: Poly

Pump Intake From TOC: 29.18 ft Estimated Total Volume Pumped:

7 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 1.46 ft Instrument Used: Aqua TROLL 400

Serial Number: 883553

Test Notes:

Metals, TDS, Inorganics, Major Ions.

Weather Conditions:

Cloudy, 78 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/15/2023 2:22 PM	00:00	7.59 pH	21.06 °C	369.68 μS/cm	1.01 mg/L	1.87 NTU	55.7 mV	14.92 ft	200.00 ml/min
8/15/2023 2:27 PM	05:00	7.59 pH	20.23 °C	372.88 μS/cm	0.69 mg/L	1.22 NTU	48.4 mV	15.17 ft	200.00 ml/min
8/15/2023 2:32 PM	10:00	7.60 pH	20.55 °C	366.82 μS/cm	0.70 mg/L	0.42 NTU	46.5 mV	15.35 ft	200.00 ml/min
8/15/2023 2:37 PM	15:00	7.61 pH	20.50 °C	361.30 μS/cm	0.61 mg/L	0.16 NTU	39.1 mV	15.40 ft	200.00 ml/min
8/15/2023 2:42 PM	20:00	7.60 pH	20.57 °C	364.05 μS/cm	0.58 mg/L	0.21 NTU	39.6 mV	15.44 ft	200.00 ml/min
8/15/2023 2:47 PM	25:00	7.62 pH	20.88 °C	358.15 μS/cm	0.52 mg/L	0.14 NTU	38.2 mV	15.44 ft	200.00 ml/min
8/15/2023 2:52 PM	30:00	7.63 pH	20.98 °C	355.97 μS/cm	0.39 mg/L	0.12 NTU	26.5 mV	15.44 ft	200.00 ml/min

Sample ID:	Description:
HAM-GWC-18	Grab

Test Date / Time: 8/15/2023 3:33:54 PM

Project: GP-Plant Hammond **Operator Name:** Thomas Kessler

Location Name: GWC-19
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 47.51 ft
Total Depth: 56.94 ft

Initial Depth to Water: 21.17 ft

Pump Type: peri Tubing Type: Poly

Pump Intake From TOC: 52.51 ft Estimated Total Volume Pumped:

4 liter

Flow Cell Volume: 90 ml Final Flow Rate: 100 ml/min Final Draw Down: 0.17 ft Instrument Used: Aqua TROLL 400

Serial Number: 850724

Test Notes:

Five bottles: Metals, TDS, Inorganics, Major Ions.

Weather Conditions: Sunny, 80 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/15/2023 3:33 PM	00:00	7.51 pH	22.98 °C	367.47 μS/cm	0.61 mg/L	5.71 NTU	34.6 mV	21.34 ft	100.00 ml/min
8/15/2023 3:38 PM	05:00	7.57 pH	22.73 °C	369.08 μS/cm	0.65 mg/L	3.85 NTU	25.3 mV	21.34 ft	100.00 ml/min
8/15/2023 3:43 PM	10:00	7.58 pH	23.46 °C	370.76 μS/cm	0.65 mg/L	2.99 NTU	27.1 mV	21.34 ft	100.00 ml/min
8/15/2023 3:48 PM	15:00	7.60 pH	22.89 °C	369.09 μS/cm	0.45 mg/L	3.00 NTU	24.6 mV	21.34 ft	100.00 ml/min
8/15/2023 3:53 PM	20:00	7.60 pH	22.93 °C	371.39 μS/cm	0.47 mg/L	2.50 NTU	25.6 mV	21.34 ft	100.00 ml/min
8/15/2023 3:58 PM	25:00	7.62 pH	21.39 °C	364.11 μS/cm	0.31 mg/L	5.29 NTU	23.3 mV	21.34 ft	100.00 ml/min
8/15/2023 4:03 PM	30:00	7.62 pH	21.19 °C	371.50 μS/cm	0.29 mg/L	4.52 NTU	25.0 mV	21.34 ft	100.00 ml/min
8/15/2023 4:08 PM	35:00	7.61 pH	21.22 °C	373.15 μS/cm	0.26 mg/L	4.47 NTU	4.9 mV	21.34 ft	100.00 ml/min

Sample ID:	Description:
HAM-HLF-GWC-19	Grab

Test Date / Time: 8/15/2023 12:42:07 PM

Project: GP-Plant Hammond **Operator Name:** C. Cain

Location Name: GWC-20
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 24.18 ft
Total Depth: 31.49 ft

Initial Depth to Water: 4.88 ft

Pump Type: Peri Tubing Type: Poly

Pump Intake From TOC: 29.18 ft Estimated Total Volume Pumped:

14 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 1.36 ft Instrument Used: Aqua TROLL 400

Serial Number: 883553

Test Notes:

Metals, TDS, Inorganics, Major Ions.

Weather Conditions:

Cloudy, 72 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/15/2023 12:42 PM	00:00	7.43 pH	20.08 °C	442.96 μS/cm	0.18 mg/L	54.10 NTU	-92.9 mV	5.75 ft	200.00 ml/min
8/15/2023 12:47 PM	05:00	7.48 pH	19.68 °C	443.04 μS/cm	0.13 mg/L	44.10 NTU	-120.5 mV	5.85 ft	200.00 ml/min
8/15/2023 12:52 PM	10:00	7.50 pH	19.58 °C	444.22 μS/cm	0.12 mg/L	32.70 NTU	-92.7 mV	5.95 ft	200.00 ml/min
8/15/2023 12:57 PM	15:00	7.52 pH	19.46 °C	443.76 μS/cm	0.10 mg/L	25.50 NTU	-121.7 mV	6.03 ft	200.00 ml/min
8/15/2023 1:02 PM	20:00	7.52 pH	19.39 °C	443.88 μS/cm	0.10 mg/L	21.60 NTU	-122.1 mV	6.07 ft	200.00 ml/min
8/15/2023 1:07 PM	25:00	7.53 pH	19.35 °C	444.81 μS/cm	0.09 mg/L	16.00 NTU	-94.3 mV	6.11 ft	200.00 ml/min
8/15/2023 1:12 PM	30:00	7.54 pH	19.03 °C	444.04 μS/cm	0.08 mg/L	12.00 NTU	-93.1 mV	6.14 ft	200.00 ml/min
8/15/2023 1:17 PM	35:00	7.54 pH	18.80 °C	445.32 μS/cm	0.08 mg/L	10.07 NTU	-93.2 mV	6.17 ft	200.00 ml/min
8/15/2023 1:22 PM	40:00	7.54 pH	18.83 °C	445.21 μS/cm	0.08 mg/L	9.82 NTU	-93.6 mV	6.20 ft	200.00 ml/min
8/15/2023 1:27 PM	45:00	7.54 pH	18.83 °C	445.74 μS/cm	0.08 mg/L	9.61 NTU	-120.9 mV	6.22 ft	200.00 ml/min
8/15/2023 1:32 PM	50:00	7.54 pH	18.92 °C	446.90 μS/cm	0.07 mg/L	7.34 NTU	-94.9 mV	6.22 ft	200.00 ml/min
8/15/2023 1:37 PM	55:00	7.54 pH	19.01 °C	445.76 μS/cm	0.06 mg/L	6.52 NTU	-94.8 mV	6.22 ft	200.00 ml/min
8/15/2023 1:42 PM	01:00:00	7.54 pH	18.89 °C	446.69 μS/cm	0.06 mg/L	5.59 NTU	-121.0 mV	6.22 ft	200.00 ml/min
8/15/2023 1:47 PM	01:05:00	7.54 pH	19.01 °C	445.42 μS/cm	0.06 mg/L	4.71 NTU	-95.4 mV	6.24 ft	200.00 ml/min

Samples

Sample ID:	Description:
HAM-GWC-20	Grab

Created using VuSitu from In-Situ, Inc.

Test Date / Time: 8/15/2023 1:37:33 PM

Project: GP-Plant Hammond **Operator Name:** Thomas Kessler

Location Name: GWC-21 Well Diameter: 2 in **Casing Type: PVC** Screen Length: 10 ft Top of Screen: 8.23 ft Total Depth: 18.48 ft

Initial Depth to Water: 6.35 ft

Pump Type: peri **Tubing Type: Poly**

> Pump Intake From TOC: 13.23 ft **Estimated Total Volume Pumped:**

16 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.15 ft

Instrument Used: Aqua TROLL 400

Serial Number: 850724

Test Notes:

Metals, TDS, Inorganics, Major Ions.

Weather Conditions:

Cloudy, 80 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/15/2023 1:37 PM	00:00	7.29 pH	21.14 °C	493.29 μS/cm	0.27 mg/L	8.89 NTU	-9.6 mV	6.50 ft	200.00 ml/min
8/15/2023 1:42 PM	05:00	7.27 pH	21.06 °C	497.32 μS/cm	0.19 mg/L	11.18 NTU	-8.8 mV	6.50 ft	200.00 ml/min
8/15/2023 1:47 PM	10:00	7.26 pH	21.37 °C	496.19 μS/cm	0.17 mg/L	8.54 NTU	11.7 mV	6.50 ft	200.00 ml/min
8/15/2023 1:52 PM	15:00	7.19 pH	21.73 °C	489.02 μS/cm	0.19 mg/L	7.53 NTU	-7.1 mV	6.50 ft	200.00 ml/min
8/15/2023 1:57 PM	20:00	7.08 pH	21.96 °C	465.50 μS/cm	0.26 mg/L	5.64 NTU	-30.2 mV	6.50 ft	200.00 ml/min
8/15/2023 2:02 PM	25:00	6.89 pH	22.30 °C	413.91 μS/cm	0.41 mg/L	3.73 NTU	-25.5 mV	6.50 ft	200.00 ml/min
8/15/2023 2:07 PM	30:00	6.67 pH	22.13 °C	348.90 μS/cm	0.62 mg/L	3.39 NTU	-9.0 mV	6.50 ft	200.00 ml/min
8/15/2023 2:12 PM	35:00	6.53 pH	21.83 °C	321.04 μS/cm	0.68 mg/L	3.21 NTU	6.4 mV	6.50 ft	200.00 ml/min
8/15/2023 2:17 PM	40:00	6.46 pH	21.91 °C	304.93 μS/cm	0.67 mg/L	3.05 NTU	7.1 mV	6.50 ft	200.00 ml/min
8/15/2023 2:22 PM	45:00	6.39 pH	21.95 °C	288.40 μS/cm	0.63 mg/L	2.99 NTU	16.4 mV	6.50 ft	200.00 ml/min
8/15/2023 2:27 PM	50:00	6.32 pH	22.00 °C	271.67 μS/cm	0.54 mg/L	3.51 NTU	18.9 mV	6.50 ft	200.00 ml/min
8/15/2023 2:32 PM	55:00	6.27 pH	22.16 °C	259.88 μS/cm	0.45 mg/L	3.07 NTU	25.7 mV	6.50 ft	200.00 ml/min
8/15/2023 2:37 PM	01:00:00	6.22 pH	22.11 °C	248.96 μS/cm	0.37 mg/L	3.41 NTU	28.1 mV	6.50 ft	200.00 ml/min

8/15/2023 2:42 PM	01:05:00	6.19 pH	22.04 °C	243.50 μS/cm	0.30 mg/L	3.02 NTU	31.6 mV	6.50 ft	200.00 ml/min
8/15/2023 2:47 PM	01:10:00	6.17 pH	22.08 °C	239.27 μS/cm	0.27 mg/L	2.21 NTU	33.4 mV	6.50 ft	200.00 ml/min

Samples

Sample ID:	Description:
HAM-GWC-21	Grab

Created using VuSitu from In-Situ, Inc.

Test Date / Time: 8/15/2023 12:26:25 PM

Project: GP-Plant Hammond **Operator Name:** Thomas Kessler

Location Name: GWC-22
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 31.91 ft
Total Depth: 42.30 ft

Initial Depth to Water: 3.62 ft

Pump Type: peri Tubing Type: Poly

Pump Intake From TOC: 36.91 ft Estimated Total Volume Pumped:

10 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.58 ft Instrument Used: Aqua TROLL 400

Serial Number: 850724

Test Notes:

Metals, TDS, Inorganics, Major Ions.

Weather Conditions:

Cloudy, 80 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/15/2023 12:26 PM	00:00	7.57 pH	21.26 °C	349.20 μS/cm	0.51 mg/L	12.00 NTU	-117.5 mV	4.20 ft	200.00 ml/min
8/15/2023 12:31 PM	05:00	7.64 pH	21.37 °C	347.59 μS/cm	0.22 mg/L	10.06 NTU	-138.0 mV	4.20 ft	200.00 ml/min
8/15/2023 12:36 PM	10:00	7.66 pH	21.50 °C	343.94 μS/cm	0.18 mg/L	16.30 NTU	-153.7 mV	4.20 ft	200.00 ml/min
8/15/2023 12:41 PM	15:00	7.67 pH	21.46 °C	343.62 μS/cm	0.15 mg/L	16.40 NTU	-135.3 mV	4.20 ft	200.00 ml/min
8/15/2023 12:46 PM	20:00	7.67 pH	21.43 °C	343.92 μS/cm	0.16 mg/L	13.60 NTU	-147.1 mV	4.20 ft	200.00 ml/min
8/15/2023 12:51 PM	25:00	7.67 pH	21.60 °C	342.80 μS/cm	0.13 mg/L	7.82 NTU	-131.4 mV	4.20 ft	200.00 ml/min
8/15/2023 12:56 PM	30:00	7.68 pH	21.41 °C	340.58 μS/cm	0.11 mg/L	7.10 NTU	-129.1 mV	4.20 ft	200.00 ml/min
8/15/2023 1:01 PM	35:00	7.68 pH	21.06 °C	341.52 μS/cm	0.11 mg/L	5.57 NTU	-128.3 mV	4.20 ft	200.00 ml/min
8/15/2023 1:06 PM	40:00	7.68 pH	21.07 °C	340.31 µS/cm	0.11 mg/L	4.46 NTU	-124.5 mV	4.20 ft	200.00 ml/min

Sample ID:	Description:
HAM-GWC-22	Grab

Test Date / Time: 8/14/2023 4:27:09 PM

Project: GP-Plant Hammond **Operator Name:** Thomas Kessler

Location Name: GWC-23
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 39.73 ft
Total Depth: 50.13 ft

Initial Depth to Water: 13.65 ft

Pump Type: peri Tubing Type: Poly

Pump Intake From TOC: 44.73 ft Estimated Total Volume Pumped:

8 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.6 ft Instrument Used: Aqua TROLL 400

Serial Number: 850724

Test Notes:

Metals, TDS, Inorganics, Major Ions.

Weather Conditions:

Clear, 85 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3	
8/14/2023 4:27 PM	00:00	7.15 pH	20.59 °C	292.16 μS/cm	0.30 mg/L	5.98 NTU	-115.7 mV	14.25 ft	200.00 ml/min
8/14/2023 4:32 PM	05:00	7.16 pH	19.63 °C	296.26 μS/cm	0.19 mg/L	4.55 NTU	-124.4 mV	14.25 ft	200.00 ml/min
8/14/2023 4:37 PM	10:00	7.17 pH	19.29 °C	296.68 μS/cm	0.16 mg/L	4.31 NTU	-106.5 mV	14.25 ft	200.00 ml/min
8/14/2023 4:42 PM	15:00	7.19 pH	19.23 °C	298.03 μS/cm	0.14 mg/L	6.08 NTU	-119.0 mV	14.25 ft	200.00 ml/min
8/14/2023 4:47 PM	20:00	7.20 pH	19.50 °C	299.28 μS/cm	0.13 mg/L	5.44 NTU	-104.1 mV	14.25 ft	200.00 ml/min
8/14/2023 4:52 PM	25:00	7.21 pH	19.14 °C	297.05 μS/cm	0.12 mg/L	4.25 NTU	-101.4 mV	14.25 ft	200.00 ml/min
8/14/2023 4:57 PM	30:00	7.21 pH	19.23 °C	296.03 μS/cm	0.11 mg/L	4.82 NTU	-112.9 mV	14.25 ft	200.00 ml/min

Sample ID:	Description:
HAM-GWC-23	Grab

Novmeber 2023

Test Date / Time: 11/7/2023 9:32:51 AM

Project: Huffaker

Operator Name: Zain Webb

Location Name: GWC-6
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 32.58 ft
Total Depth: 42.58 ft

Initial Depth to Water: 19.45 ft

Pump Type: Bladder Pump Tubing Type: Polyethylene Pump Intake From TOC: 37.58 ft Estimated Total Volume Pumped:

4 liter

Flow Cell Volume: 90 ml Final Flow Rate: 100 ml/min Final Draw Down: 0.06 ft Instrument Used: Aqua TROLL 400

Serial Number: 980712

Test Notes:

Resample for pH.

Weather Conditions:

Clear, 60 degrees F.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow	
		+/- 0.1	+/- 0.5	+/- 5 %	+/- 0.2	+/- 5	+/- 10	+/- 0.3		
11/7/2023	00:00	7.11 pH	18.16 °C	429.26 µS/cm	2.52 mg/L	39.60 NTU	-46.7 mV	19.51 ft	100.00 ml/min	
9:32 AM	00.00	7.11 pm	10.10 C	429.20 μ3/CIII	2.32 Hg/L	39.00 1410	-40.7 IIIV	19.5111	100.00 1111/111111	
11/7/2023	05:00	7.12 pH	18.15 °C	431.38 µS/cm	2.50 mg/L	27.50 NTU	-48.7 mV	19.51 ft	100.00 ml/min	
9:37 AM	05.00	05.00	7.12 pm	10.10	401.00 μο/οπ	2.50 Hig/L	27.50 1410	- 4 0.7 IIIV	13.5110	100.00 1111/111111
11/7/2023	10:00	7.13 pH	18.16 °C	424.07 µS/cm	2.50 mg/L	25.90 NTU	-62.3 mV	19.51 ft	100.00 ml/min	
9:42 AM	10.00	7.10 pm	10.10	424.07 μο/οπ	2.00 mg/L	20.00 1110	02.01117	10.011	100.00 1111/111111	
11/7/2023	15:00	7.14 pH	18.20 °C	417.48 µS/cm	2.45 mg/L	25.20 NTU	-64.1 mV	19.51 ft	100.00 ml/min	
9:47 AM	10.00	7.11 pi	10.20	ттт то дологи	2.101119/2	20.20 1110	01.1111	10.0111	100.00 1111/111111	
11/7/2023	20:00	7.14 pH	18.21 °C	424.52 μS/cm	2.46 mg/L	24.40 NTU	-65.0 mV	19.51 ft	100.00 ml/min	
9:52 AM	20.00	7.11 pi	10.21	121.02 μο/οιτί	2.101119/2	21.101110	00.01117	10.0111	100.00 1111/111111	
11/7/2023	25:00	7.14 pH	18.28 °C	424.05 µS/cm	2.48 mg/L	23.20 NTU	-55.2 mV	19.51 ft	100.00 ml/min	
9:57 AM	23.00	7.17 pi i	10.20	12 1.00 μο/οπ	2.10 mg/L	20.20 1410	00.E IIIV	10.0111	100.00 1111/111111	
11/7/2023	30:00	7.15 pH	18.29 °C	425.57 μS/cm	2.43 mg/L	18.30 NTU	-68.6 mV	19.51 ft	100.00 ml/min	
10:02 AM	00.00	7.13 pm	10.20	120.07 μο/οπ	2.10 mg/L	10.00 1110	55.5 III V	13.51 10	100.00 1111/111111	

Sample ID:	Description:
N/A	Resample for pH.

CALIBRATION REPORTS

January 2023

Geosyntec consultants	J. Para		E	QUIPMENT CA	LIBRATION L	OG			
Field Technician A. 520	vust			Date: 1/30/	2013		Time (start):	230 Time (finish) 750	
smarTroll SN	5.77			Turbidity Meter Type:	LaMote 2020we		SN 7007-1416		
Weather Conditions Cloudy				Facility and Unit	ant Hammon	Project NoGW6581			
		Key!		Calibi	ration log				
	Standard Lot # / Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?	Comments	
Specific Conductance (μS/cm)	22250153	13.17	4490	4225.0	4490	+/- 5 %	Yes No		
pH (4)	11/2023	12.86	4.00	4.06	4.00	+/- 0.1 SU	No No		
Mid-Day pH (4) check			4.00			+/- 0.1 SU	Yes No		
pH (7)	2216893	12,42	7.00	7.06	7.00	+/- 0 1 SU	Yes No		
Mid-Day pH (7) check			7.00			+/> 0.1 SU	Yes No		
рН (10)	21320202	12,36	10.00	10,09	10.00	+/- 0 1 SU	(Yes) No		
Mid-Day pH (10) check			10.00			+/- 0 1 80	Yes No		
ORP (mV)	21390144	12.39	228	212,5	228.0	+/- 20mV	(Yes) No		
DO (%) (1pt, 100% water saturated air cal			100	106.82	100.0	+/- 6 % saturation	Yes No		
Turbidity 0 NTU			0	0.00		+/- 0.5 NTU	Yes No		
Turbidity 1 NTU			1.00	1.04	0,98	+/- 0.5 NTU	Yes No		
Turbidity 10 NTU			10.00	9.24	10,00	+/- 0 5 NTU	(Yes) No		

Geosyntec Consultants			E	QUIPMENT CA	LIBRATION LO	OG			
Field Technician C. CAW				Date 1/30/	23		Time (start):	Time (finish):	
marTroll SN966 040		====		Turbidity Meter Type	LaMote 2020we	_	SN:		
Veather Conditions	50F			Facility and Unit	lant Hamm	nand	Project NoGW6581		
			V	Calibr	ation log				
	Standard Lot #/ Date o	f Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?	Comments	
Specific Conductance (µS/cm)	22250153	14.79	4490	4435	4996	+/- 5 %	No No		
рН (4)	11/23	1100	4.00	4.05	4.00	+/- 0 1 SU	No No		
Mid-Day pH (4) check	- D.	/	4.00	3.99	4.0	+/- 0 1 SU	No No		
рН (7)	22168 93		7.00	6.99	7.00	+/- 0 1 SU	₩ No		
Mid-Day pH (7) check	V	/	7.00	7.04	7.0	+/- 0 1 SU	No No		
pH (10)	212320202	13.09	10.00	10-03	10.0	+/- 0,1 SU	No No		
Mid-Day pH (10) check	T.		10.00	9.92	10.0	+/- 0.1 SU	Ø No		
ORP (mV)	2390144	12.80	228	219	228	+/- 20mV	No No		
DO (%) (1pt, 100% water saturated air cal			100	100.14	w	+/- 6 % saturation	€ No		
Turbidity 0 NTU			0	0.00	0.00	+/- 0.5 NTU	No No		
Turbidity 1 NTU			1.00	1.18	1.00	+/- 0.5 NTU	(G) No		
Turbidity 10 NTU			10.00	9.86	le.av	+/- 0_5 NTU	No No		

Geosyntec consultants												
Field Technician Majna	Messhe			Date	12027		Time (start):	7 > 5 Time (finish): _07 4 5				
smarTroll SN	774	_		Turbidity Meter Type	LaMote 2020we		SN 5896-	37/5				
Weather Conditions	Jy, 50°			Facility and Unit	Hennmon		Project NoGW65	581				
Calibration log												
	Standard Lot #/ Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?	Comments				
Specific Conductance (µS/cm)	72750 53	13.40	4490	45591	4490	+/- 5 %	Yes No					
pH (4)	11/23	12.1	4.00	3.48	4.0	+/- 0 1 SU	Yes No					
Mid-Day pH (4) check			4.00	3.96		+/- 0 1 SU	Yes No					
рН (7)	221646 (13	12.546	7.00	7.70	7.00	+/- 0.1 SU	No No					
Mid-Day pH (7) check			7.00	7.43		+/- 0 1 SU	Yes No					
pH (10)	2130202	11:43	10.00	10.18	10.00	+/- 0 1 SU	Yes No					
Mid-Day pH (10) check			10.00	10.67		+/- 0 1 SU	Yes- No					
ORP (mV)	21396144	1117	228	279.4	278	+/- 20mV	Yes No					
DO (%) (1pt, 100% water saturated air cal)			100	94.1	we	+/- 6 % saturation	Yes No					
Turbidity 0 NTU			0	0.50	0.00	+/- 0.5 NTU	Yes No					
Turbidity 1 NTU			1.00	0.84	0.99	+/- 0 5 NTU	Yes No					
Turbidity 10 NTU			10.00	11.6	[0.0]	+/- 0.5 NTU	Yes No					

Geosyntec D			E	QUIPMENT CA	LIBRATION L	OG		
Field Technician A. Sau	ast			Date 1/31/28	73		Time (start)	156 Time (finish) 815
smarTroll SN		PE		Turbidity Meter Type: Facility and Unit:		_	SN: 700 7 Project No. GW6	
				Calibr	ation log			
	Standard Lot #/ Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?	Comments
Specific Conductance (µS/cm)	22250153	13, 45	4490	4,682.0	4490	+/- 5 %	(Yes) No	
pH (4)	11/2023		4.00	3.98	4,00	+/- 0 1 SU	Yes No	
Mid-Day pH (4) check	22250153 (Vev23	13.88	4.00	4.11	Ý. OO	+/- 0 1 SU	(Yes) No	
pH (7)	2216893	13.95	7.00	7.07	7.00	+/- 0.1 SU	(Yes) No	
Mid-Day pH (7) check	2216893	14,04	7.00	7.07	7.00	+/- 0 1 SU	Yes No	
pH (10)	21320202	14,32	10.00	10:12	10.00	+/- 0 1 SU	(Yes) No	
Mid-Day pH (10) check	21320202	14,20	10.00	10.09	10.00	+/- 0 1 SU	(Yes No	
ORP (mV)	2/390144	14.37	228	223,6	228,0	+/- 20mV	(Yos) No	
DO (%) (1pt, 100% water saturated air cal			100	(00.41	100.0	+/- 6 % saturation	Yes No	
Turbidity 0 NTU			0	0.01	_	+/- 0.5 NTU	Yes No	
Turbidity I NTU			1.00	1.16	0.97	+/- 0 5 NTU	Yes No	
Turbidity 10 NTU			10.00	9,21	9,96	+/- 0 5 NTU	Yes No	

.

Geosyntec Consultants			E	QUIPMENT CA	LIBRATION L	OG		
Field Technician C. CF smarTroll SN 966.040					LaMote 2020we		Time (start)	Time (finish):
Weather Conditions Claude	L 54F	-		Facility and Unit	nt Hamm	and	Project NoGW6581	
				Calibi	ration log			
	Standard Lot # / Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?	Comments
Specific Conductance (μS/cm)	22250153	15.87	4490	4709.3	4490	+/- 5 %	No No	
pH (4)	11/23		4.00	3.97	4.0	+/- 0,1 SU	₩ No	
Mid-Day pH (4) check	•	/	4.00	4.01		+/- 0_1 SU	No No	
pH (7)	2132 020 216 FT	16.48	7.00	7.02	7.0	+/- 0_1 SU	₩ No	
Mid-Day pH (7) check	V (4	1/31/23	7.00	6.97.	/	+/- 0.1 SU	No No	
рН (10)	2/2320202 12/23	16.69	10.00	10.12	10.0	+/- 0.1 SU	No No	
Mid-Day pH (10) check	4	/	10.00	9.94	/	+/- 0.1 SU	No No	
ORP (mV)	213 90144	16.79	228	219.8	228	+/- 20mV	€ No	
DO (%) (1pt, 100% water saturated air cal			100	99.07	lav	+/- 6 % saturation	Øs No	
Turbidity 0 NTU			0	-0-01	0.00	+/- 0.5 NTU	No No	
Turbidity 1 NTU			1.00	1.18	1.00	+/- 0.5 NTU	Ø No	
Turbidity 10 NTU			10.00	9. 73	10.00	+/- 0.5 NTU	No No	

Geosyntec consultants			E	QUIPMENT CA	LIBRATION LO	OG		
Field Technician	thesilar			Date +136720	573 1131 2023	3	Time (start)	Time (finish)
smarTroll SN85 672	24	_		Turbidity Meter Type	LaMote 2020we		sn _ 58°	963119
smarTroll SN	Dy So			Facility and Unit	PlantHen	union	Project NoGW65	581
				Calibra	ation log			
	Standard Lot # / Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?	Comments
Specific Conductance (µS/cm)	77756953	2	4490	4183.7	4490	+/- 5 %	Yes No	
p H (4)	11/23	14.71	4.00	4.07	4.0	+/- 0.1 SU	No No	
Mid-Day pH (4) check			4.00	4.00		+/- 0 1 S U	Yes No	
ρН (7)	7714893	14.51	7.00	7,06	7.60	+/- 0.1 SU	Yes No	
Mid-Day pH (7) check			7.00	7.02		+/- 0.1 SU	Yes No	
рН (10)	21326262	14.62	10.00	10.07	10.00	+/- 0.1 SU	Yes No	
Mid-Day pH (10) check			10.00	9.97		+/- 0 1 SU	Yes No	
ORP (mV)	713/10144	15.09	228	719.7	228	+/- 20mV	Yes No	2
DO (%) (1pt, 100% water saturated air cal)			100	98.15	160	+/- 6 % saturation	Yes No	
Turbidity 0 NTU			0	0.49	0.60	+/- 0 5 NTU	Yes No	
Turbidity I NTU			1.00	0.63	0.93	+/- 0.5 NTU	(Yes/ No	
Turbidity 10 NTU			10.00	to.75	10.01	+/- 0.5 NTU	Yes No	

August 2023

Geosyntec consultants	Int. Y		E	QUIPMENT CA	LIBRATION L	OG		
Field Technician: † 1/125	5111			Date: 8/11/12	073		Time (start):	Time (finish): 1700
smarTroll SN: 85077				Turbidity Meter Type:	lemeste à	2020we	sn: 1475	9011
Weather Conditions: <u>Class</u>	2.850	1		Facility and Unit:	Commenc)-Hulfela	Project No.:	-li658 (
				Calibra	ation log		dir 17.	
	Standard Lot # / Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?	Comments
Specific Conductance (µS/cm)	24.2		4440	47167	4440	+/- 5 %	Yes No	
рН (4)	11 123	36.77	4,00	4.10	4.00	+/- 0 1 SU	Yes No	
Mid-Day pH (4) check						+/- 0,1 SU	(Yes No	
рН (7)	22/6893	27.06	7.60	7.04		+/- 0 ₄ 1 SU	Yes No	
Mid-Day pH (7) check						+/- 0 ₋ 1 SU	CYes No	
рН (10)	71370702	75.57	10,60	9.93	10.00	+/- 0.1 SU	Yes No	
Mid-Day pH (10) check						+/- 0_1 SU	Yes No	
ORP (mV)	22762085	25.14	775	225,4	778	+/- 20mV	Yes No	
DO (%) (1pt, 100% water saturated air cal)			100	(01, 14	100	+/- 6 % saturation	Yes No	
Turbidity 0 NTU			0	1158	S	+/- 0 5 NTU	Yes No	
Turbidity 1 NTU			(0.84	(93	+/- 0,5 NTU	Yes No	
Turbidity 10 NTU			10	9.86	9.86	+/- 0 5 NTU	(Yes No	

Geosyntec consultants			E	QUIPMENT CA	LIBRATION LO	OG		
eld Technician: C·CAIN				Date: 5/14/2	23		Time (start): 1/50	Time (finish):
marTroll SN: <u>883553</u>				Turbidity Meter Type:	TOTOT	==	SN: 4124-26	623
eather Conditions: P. Clore	dy 82°	_		Facility and Unit:	lant Hamr	nond	Project No.: _Gh	(659)
				Calibr	ation log			
	Standard Lot # / Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?	Comments
Specific Conductance (μS/cm)	22250153	25.71	4496	4100	4496	+/- 5 %	No No	
рН (4)	11/23		4.0	3.98	И.О	+/- 0 _, 1 SU	(Yes) No	
Mid-Day pH (4) check				-X, V 44 X		+/- 0.1 SU	Yes No	
pH (7)	22/6893	25.79	7.0	6.97	7.6	+/- 0 ₋ 1 SU	Yes No	
Mid-Day pH (7) check	-					+/- 0.1 SU	Yes No	ALT MENTS
рН (10)	22110130	25.49	10.0	9.97	10.0	+/- 0.} SU	No No	
Mid-Day pH (10) check						+/- 0.1 SU	Yes No	
ORP (mV)	21390144	25.33	228	224.7	228	+/- 20mV	€ No	
DO (%) 1pt, 100% water saturated air cal)		100	10367	100	+/- 6 % saturation	Yes No	
Turbidity 0 NTU			6	0	c	+/- 0,5 NTU	26 No	
Turbidity 1 NTU			1	0.85	ì	+/- 0.5 NTU	A No	
Turbidity 10 NTU			10	9.45	10	+/- 0.5 NTU	Ø No	

Geosyntec consultants			E	QUIPMENT CA	LIBRATION L	oG		
Field Technician:	west			Date: 8-14 -	2623		Time (start): 1100	Time (finish):
smarTroll SN:	30			Turbidity Meter Type: _	CaMothe wo	<u>(</u>	SN: 4139-262	3
Weather Conditions: 5 Mm					lant Hamme		Project No.: Lw6581	
				Calibr	ration log			
	Standard Lot # / Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?	Comments
Specific Conductance (μS/cm)	22750153	27.28	4490.0	4308.2	4490.0	+/- 5 %	Yes No	
pH (4)	11/2023	26,69	4.00	414	4,09	+/- 0 ₋ 1 SU	Yes No	
Mid-Day pH (4) check	22250[53 11/20-3	29.55	4.00	4.16	4,08	+/- 0 1 SU	Yes No	
pH (7)	2216847	26.54	7.00	6,99	7.00	+/- 0 ₋ 1 SU	(Yes) No	
Mid-Day pH (7) check	2216893	28.36	7.00	6.49	7.00	+/- 0,1 SU	Yes No	
pH (10)	21320202	25,83	10,00	9,94	[0.00	+/- 0 ₊ 1 SU	Yes No	
Mid-Day pH (10) check	21320202	27,46	(0.00	9.48	10.00	+/- 0 1 SU	Yes No	
ORP (mV)	21300144	25,60	228.0	234,7	228.0	+/- 20mV	Yes No	
DO (%) (1pt, 100% water saturated air cal			100,0	99.00	100.0	+/- 6 % saturation	Yes No	
Turbidity 0 NTU			0,00	0,00		+/- 0:5 NTU	Yes No	
Turbidity 1 NTU			1.00	1.21	0,92	+/- 0,5 NTU	Yes No	
Turbidity 10 NTU			10.0	10,4	16.1	+/- 0.5 NTU	Yes No	

Geosyntec consultants			E	QUIPMENT CA	ALIBRATION L	OG			
Field Technician Thomas	hesslu.			Date : 8/15/	てひてろ		Time (start):	775	
smarTroll SN: \$50	17724 SO'	=			lenneste so lemmo vo		SN: 1479	59011 wc>81	0750
					ration log				
	Standard Lot # / Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?		Comments
Specific Conductance (µS/cm)	72750153	2211	4496	4699,1	Lycic	+/- 5 %	(Yes No		
pH (4)	11/23	77.60	4	3.97	L1. 0	+/- 0_1 SU	Yes No		
Mid-Day pH (4) check						+/- 0 1 SU	Yes No		
pH (7)	7716893 1173	27,72	7.00	6.94	7.00	+/- 0_1 SU	Yes No		
Mid-Day pH (7) check	<u></u>					+/- 0 1 SU	Yes No		
рН (10)	7:370207	77.70	10.00	9.97	10.00	+/- 0.1 SU	Yes No		
Mid-Day pH (10) check						+/- 0,1 SU	Yes No		
ORP (mV)	22700035	79,08	८८४	72g. Z	278	+/- 20mV	Yes No		
DO (%) (1pt, 100% water saturated air cal)			100	98 6	100	+/- 6 % saturation	Yes/ No		
Turbidity 0 NTU			0	1.13	0	+/- 0,5 NTU	(Yes) No		
Turbidity 1 NTU				1.08	1.08	+/- 0.5 NTU	(es) No		
Turbidity 10 NTU			10	9.68	10.10	+/- 0.5 NTU	Yes No		

Geosyntec Consultants			E	QUIPMENT CA	ALIBRATION L	OG		
Field Technician:				Date : 8/15/23			Time (start): <u>07</u>	45 Time (finish): <u>C805</u>
smarTroll SN: 883553		-		Turbidity Meter Type:		_	sn: 412-26	
Weather Conditions:	76			"Version of the	ant Hammon		Project No.: GW	<u>(688)</u>
	Standard Lot # / Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?	Comments
Specific Conductance (µS/cm)	22250153	27.31	4496	4656.6	4490	+/- 5 %	₩ No	
рН (4)	11/23		4.0	4.04	4.0	+/- 0_1 SU	₩ No	
Mid-Day pH (4) check						+/- 0 1 SU	Yes No	
pH (7)	2216893	27.80	7.0	7.01	7.0	+/- 0_1 SU	₩ No	
Mid-Day pH (7) check		24				+/- 0 1 SU	Yes No	
рН (10)	22110 130	27.77	10.0	le-01	10.0	+/- 0.1 SU	(Fe) No	
Mid-Day pH (10) check	100000					+/- 0.1 SU	Yes No	
ORP (mV)	21390144	27.58	228	219,2	228	+/- 20mV	No No	
DO (%) (1pt, 100% water saturated air cal)			100	101.23	100	+/- 6 % saturation	Yes No	
Turbidity 0 NTU			0	0	0	+/- 0 ₋ 5 NTU	& No	
Turbidity 1 NTU			1	6-85	1	+/- 0.5 NTU	O No	
Turbidity 10 NTU			10	10.12	10	+/- 0 5 NTU	⊗ No	

Geosyntec consultants			E	QUIPMENT CA	LIBRATION L	OG			
Field Technician: A. SZU	vust			Date : 8-15 = 7	2023		Time (start): 7	-50	Time (finish): \$10
smarTroll SN:	D	c		Turbidity Meter Type: _	La Motte 202	ot	sn: 4139	-2623	
Weather Conditions: Cloudy)	78°F				ant Hammond		Project No.	W6581	
				Calibi	ration log				
	Standard Lot # / Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?		Comments
Specific Conductance (µS/cm)	22250153	27.07	4490.0	4629.9	4490,0	+/- 5 %	Yes No		
pH (4)	11/2023	27.09	4.00	4,93	4.00	+/- 0 ₋ 1 SU	Yes No		
Mid-Day pH (4) check	22250153	24.42	4.00	4.09		+/- 0 ₋ 1 SU	Yes No		
рН (7)	22/6893	27.03	7.00	7,54	7.00	+/- 0 ₊ 1 SU	Yes No		
Mid-Day pH (7) check	2216843	24.42	7.00	7.03		+/- 0.1 SU	Yes No		
рН (10)	21320202	27,02	00.00	10.16	10,00	+/- 0.1 SU	Ye No		
Mid-Day pH (10) check	21320202	24.61	10.00	10.02		+/- 0 1 SU	Yes No		
ORP (mV)	2/390144	26,98	228,0	220,9	228.0	+/- 20mV	Yes No		
DO (%) (1pt, 100% water saturated air cal)			100.0	99.03	100.0	+/- 6 % saturation	Yes No		
Turbidity 0 NTU	7 11-		0,00	0.00	_	+/- 0.5 NTU	Yes No		
Turbidity 1 NTU			1.00	0.78	0,87	+/- 0,5 NTU	Yes No		
Turbidity 10 NTU			10.0	ĵU.5	10.2	+/- 0 5 NTU	Yes No		

November 2023

Field Instrumentation Calibration Form

Site Name: Hammond

Date: H-123 11-7-23
Field Conditions: Clear, 50°F

Calibrated By: Zerm Webt

Instrument

Water Quality Meter

Turbidity Meter

Manufactuer/ Model

Serial Number

4 Sibn Agratollah 9 80 7 1 2

HACH 2100 Q 150 50 C0 91579

Calibration Standard Information									
Parameter	Standard	Lot#	Date of Expiration	Brand					
Specific Conductance (µS/cm)	4,490	24000044	05/24	ATR					
pH (SU)	4.00	7	¥						
pH (SU)	7,00	22290139	OU 124						
pH (SU)	10.00	22110130	04/24						
D.O. (%)	N/A	2							
ORP (mV)	228.0	24002258	06/24	1					

		Calibra	ation		
Time Start		Time Finish			
Parameter	Standard	Calibration Value	Calibration Solution Temperature (°C)	Acceptance Criteria	Reference
Specific Conductance (µS/cm)	4,490	4490	17.76	± 10% of standard	EPA 2023
pH (SU)	4.00	4.00	17.98	± 0.1	GWMP
pH (SU)	7.00	7.00	18.07	± 0.1	GWMP
pH (SU)	10.00	10.00	18.07	± 0.1	GWMP
D.O. (%)	N/A	10007-	15 met 48	± 10%	NA
ORP (mV)	228.0	223.0	17.20	± 10	EPA 2023

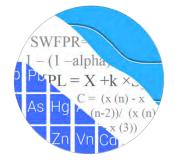
	Standard	Calibration Value	Acceptance Criteria	Reference
	10	(0)		
Turbidity (NTU)	20	20	1 100/ of standard	ED4 0000
	100	100	± 10% of standard	EPA 2023
	800	800		

Calibration Check							
Time Start	Time Finish						
Parameter	Standard	Calibration Value	Calibration Solution Temperature (°C)	Acceptance Criteria	Reference		
Specific Conductance (µS/cm)	4,490	4490	21.04	± 10% of standard	EPA 2023		
pH (SU)	4.00	4,00	12.77	± 0.1	GWMP		
pH (SU)	7.00	7.00	21.27	± 0.1	GWMP		
pH (SU)	10.00	10.00	20.78	± 0.1	GWMP		

Turbidity (NTU)	Standard	Calibration Value	Acceptance Criteria	Reference
	10	Lo		EPA 2023
	20	20	± 10% of standard	
	100	100	± 10% of standard	
	800	800		

Notes:

APPENDIX C


Statistical Analysis Reports

January 2023

GROUNDWATER STATS CONSULTING

August 31, 2023

Southern Company Services Attn: Ms. Kristen Jurinko 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

Re: Plant Hammond's Huffaker Road Landfill

Statistical Analysis – January 2023

Dear Ms. Jurinko,

Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the January 2023 Semi-Annual Groundwater Detection Monitoring statistical analysis of groundwater data for Georgia Power Company's Plant Hammond's Huffaker Road Landfill. The analysis complies with the federal rule for the Disposal of Coal Combustion Residuals (CCR) from Electric Utilities (CCR Rule, 2015), the Georgia Environmental Protection Division (EPD) Rules for Solid Waste Management Chapter 391-3-4-.10 and follows the United States Environmental Protection Agency (USEPA) Unified Guidance (2009).

Sampling began for the Georgia EPD parameters in 2007 and for the CCR program in 2016. At least 8 background samples have been collected at each of the groundwater monitoring wells. Semi-annual sampling for select constituents has been performed for several years in accordance with the Georgia Department of Natural Resources, Environmental Protection Division groundwater monitoring regulations; and all available data are screened in this report.

The monitoring well network, as provided by Southern Company Services, consists of the following:

- o **Upgradient:** GWA-1, GWA-11, GWA-2, GWA-3, and GWA-4
- Downgradient: GWC-10, GWC-18, GWC-19, GWC-20, GWC-21, GWC-22, GWC-23, GWC-5, GWC-6, GWC-7, GWC-8, and GWC-9

Data were sent electronically to Groundwater Stats Consulting, and the statistical analysis was prepared according to the recommended statistical methodology provided in the Fall 2017 by Dr. Kirk Cameron, PhD Statistician with MacStat Consulting, primary author of the USEPA Unified Guidance. The analysis was reviewed by Andrew Collins, Project Manager for Groundwater Stats Consulting.

The following constituents were evaluated:

- Georgia EPD Appendix I antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, nickel, selenium, silver, thallium, vanadium, and zinc
- CCR Appendix III boron, calcium, chloride, fluoride, pH, sulfate, and TDS

Note that when there are no detections present in downgradient wells for a given constituent, statistical analyses are not required. A summary of well/constituent pairs with 100% non-detects follows this letter. Note that no Appendix III well/constituent pairs contained 100% non-detects.

A substitution of the most recent reporting limit is used for non-detect data. Reporting limits often decrease over time due to improved laboratory practices, which sometimes results in more conservative statistical limits compared to the previous statistical analysis. Such changes in reporting limits have occurred for beryllium, cadmium, chromium, cobalt, copper, fluoride, lead, nickel, selenium, silver, and zinc; therefore, prediction limits for these constituents have decreased over time at some of the wells.

The most recent reporting limit is substituted on a well-by-well basis for computing intrawell prediction limits. Therefore, individual wells can have different substitutions for a given parameter depending on what the laboratory has reported for each well.

Time series plots for all well/constituent pairs are provided and are particularly useful for screening parameters detected in downgradient wells which require statistical analyses (Figure A). Additionally, a separate section of box plots is included for all constituents at upgradient and downgradient wells (Figure B). The time series plots are used to initially screen for suspected outliers and trends, while the box plots provide visual representation of variation within individual wells and between all wells. Values in background which have been flagged as outliers may be seen in a lighter font and as a disconnected symbol on the graphs. A summary of flagged outliers follows this report (Figure C).

In earlier analyses, data at all wells for constituents detected in downgradient wells were evaluated for the following: 1) outliers; 2) trends; 3) most appropriate statistical method

based on site characteristics of groundwater data upgradient of the facility; and 4) eligibility of downgradient wells when intrawell statistical methods are recommended. Power curves were provided in the previous background update to demonstrate that the selected statistical methods for the parameters listed above comply with the USEPA Unified Guidance and the Georgia Environmental Protection Division Rules for Solid Waste Management Chapter 391-3-4-.10. The EPA suggests the selected statistical method should provide at least 55% power at 3 standard deviations or at least 80% power at 4 standard deviations. During the initial background screening of the Appendix III parameters, the 1-of-2 resample plan did not provide sufficient power; therefore, a 1-of-3 resample plan was initially recommended due to the limited background sample sizes in each of the wells at that time.

During the March 2020 background update for the Appendix III parameters, however, the background sample sizes increased in each of the wells, and power curves were provided to demonstrate that the 1-of-2 resample plan provides sufficient power to meet the EPA recommendation mentioned above. Power Curves were based on the following:

Georgia EPD Appendix I Constituents:

- Semi-Annual Sampling
- Intrawell Prediction Limits with 1-of-2 resample plan
- # Constituents: 13 (silver and thallium are 100% non-detects or trace measurements)
- # Downgradient wells: 12

CCR Appendix III Constituents:

- Semi-Annual Sampling
- Intrawell Prediction Limits with 1-of-2 resample plan
- # Constituents: 7 (all Appendix III parameters)
- # Downgradient wells: 12

Parametric prediction limits are utilized when the screened historical data follow a normal or transformed-normal distribution. When data cannot be normalized or the majority of data are non-detects, a nonparametric test is utilized. While the false positive rate associated with the parametric limits is based on an annual 10% (5% per semi-annual event) as recommended by the EPA Unified Guidance (2009), the false positive rate associated with the nonparametric limits is dependent upon the available background sample size, number of future comparisons, and verification resample plan. The distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. After testing for normality and performing any adjustments as discussed below (US EPA,

2009), data are analyzed using either parametric or non-parametric prediction limits. Nondetects are handled as follows.

- No statistical analyses are required on wells and analytes containing 100% non-detects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% non-detects, simple substitution of one-half the reporting limit is utilized in the statistical analysis. The reporting limit utilized for non-detects is the most recent practical quantification limit (PQL) as reported by the laboratory.
- When data contain between 15-50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric prediction limits are used on data containing greater than 50% non-detects.

Natural systems continuously evolve due to physical changes made to the environment. Examples include capping a landfill, paving areas near a well, or lining a drainage channel to prevent erosion. Periodic updating of background statistical limits is necessary to accommodate these types of changes. In the interwell case, prediction limits are updated with upgradient well data during each event after careful screening for any new outliers. In the intrawell case, data for all wells and constituents may re-evaluated when a minimum of 4 new data points are available to determine whether earlier concentrations are representative of present-day groundwater quality. In some cases, an earlier portion of data is deselected prior to construction of limits to provide sensitive limits that will rapidly detect changes in groundwater quality. Even though the data are excluded from the calculation, the values will continue to be reported and shown in tables and graphs.

Two-Step Statistical Analysis

Intrawell statistical methods, combined with a 1-of-2 resample plan, may be used as a conservative first step for identifying potential facility impacts in downgradient wells. Intrawell methods use background data for individual wells and may be overly sensitive to natural variation. In particular for nonparametric limits with small background sample sizes, the probability of a false positive is much higher than the desired annual sitewide rate of 10%. Therefore, a large number of exceedances may occur as a result of natural variation rather than facility impacts. A second step can be used to further evaluate those exceedances and reduce the overall number of SSIs that result from natural variation. In instances where intrawell statistical methods identify an apparent SSI, a second step of interwell statistical evaluation may be used to determine whether the measurement

exceeds the sitewide background limit based on pooled upgradient well data. This is similar in concept to the procedure used in compliance monitoring programs where an interwell statistical limit is used to determine "background" (USEPA Unified Guidance (2009), Chapter 7, Section 7.5). For the detection monitoring program, if the result does not exceed sitewide (interwell) background, an SSI is not declared.

When the result exceeds the sitewide (interwell) background, the 1-of-2 resample plan allows for collection of an independent resample to confirm the apparent exceedance or declare the initial finding a false positive result. A statistically significant increase is not declared unless the resample also exceeds the intrawell prediction limit (United States Environmental Protection Agency (USEPA) Unified Guidance, March 2009, Chapter 19). When the resample confirms the initial exceedance, further research would be required to identify the cause of the exceedance (i.e., impact from the site, natural variation, or an off-site source). When any resample falls within the statistical limit, the initial exceedance is considered to be a false positive result, and no further action is necessary. In cases where intrawell and interwell exceedances are noted and no resamples are collected, the initial exceedance will be considered a confirmed statistically significant increase (SSI).

Trend tests, in addition to interwell prediction limits, are recommended for well/constituent pairs found to have an initial intrawell SSI. Trend analysis will provide for detection of long-term changes and potential facility impacts at a given well in cases where the concentrations at that well remain below the sitewide upgradient limits. Thus, the two-step approach, with trend testing for intrawell exceedances, has additional capability to detect long-term changes at downgradient wells compared to interwell methods alone. While a trend may be identified by visual inspection, a quantification of the trend and its significance is needed to identify whether concentrations are statistically significantly increasing, decreasing, or remaining stable over time. The absence of a statistically significant increasing trend indicates that an initial intrawell exceedance is short-term and may be the result of natural variation rather than facility impact to groundwater. If a facility impact has occurred, it will likely result in additional exceedances in future sampling events. When a statistically significant increasing trend is noted, additional data may be needed to determine whether the initial intrawell statistical exceedance is a result of natural variation or an impact to groundwater quality downgradient of the facility.

Georgia EPD Appendix I Background Screening Summary – Conducted in August 2019

Outlier Analysis

Time series plots were used to identify suspected outliers, or extreme values that would result in limits that are not representative of the current background data population. Suspected outliers for all wells and parameters are formally tested using Tukey's box plot method and, when identified, flagged in the computer database with "o" and deselected prior to construction of statistical limits.

Using the Tukey box plot method, several outliers were identified. When the most recent values were identified as outliers, values were not flagged in the database (except in cases where they would cause background limits to be elevated) as they may represent a possible trend. If future values do not remain at similar concentrations, these values will be flagged as outliers and deselected. Several low values exist in the data sets and appear on the graphs as possible low outliers relative to the laboratory's Practical Quantitation Limit. However, these values are observed trace values (i.e., measurements reported by the laboratory between the Method Detection Limit and the Practical Quantitation Limit) and, therefore, were not flagged as outliers. Due to changing reporting limits for many constituents, when the non-detects were replaced with the most recent reporting limit, previously flagged "J" values (or estimated values) required flagging as outliers because they were much higher than current reporting limits.

Of the outliers identified by Tukey's method, several values were flagged in the database, and the remaining values were similar to other measurements within a given well or neighboring wells or were reported non-detects. In some cases, values were flagged in addition to those identified by Tukey's because the values were higher than all remaining concentrations and would cause the statistical limits to be elevated. These values are plotted in a disconnected and lighter symbol on the time series graph. The accompanying data pages display the flagged values in a lighter font as well. A substitution of the most recent reporting limit was applied when varying detection limits existed in data. A summary of all flagged values is included in Figure C.

Seasonality

No obvious seasonal patterns were observed on the time series plots for any of the detected data; therefore, no deseasonalizing adjustments were made. When seasonal patterns are observed, data may be deseasonalized so that the resulting limits will

correctly account for the seasonality as a predictable pattern rather than random variation or a release.

Trend Testing

While trends may be identified by visual inspection, a quantification of the trend and its significance is needed. The Sen's Slope/Mann Kendall trend test, which tests for statistically significant increasing or decreasing trends, was used to evaluate data at all upgradient and downgradient wells with detections.

In the absence of suspected contamination, significant trending data are typically not included as part of the background data used for construction of prediction limits. This step serves to eliminate the trend and, thus, reduce variation in background. When statistically significant decreasing trends are present, all available data are evaluated to determine whether earlier concentration levels are significantly different from current reported concentrations, and earlier data will be deselected as necessary. Several statistically significant decreasing trends were noted, as well as a few statistically significant increasing trends for barium. The magnitudes of most of these trends were low relative to the average concentrations and, therefore, required no adjustments to the record.

However, background adjustments were made for barium in wells GWA-2, GWC-19, GWC-22, GWC-6, GWC-7, and GWC-9; and cobalt, nickel, and zinc in well GWC-7. Earlier data for each of these well/constituent pairs were deselected to reduce variation and utilize samples that were more representative of current groundwater concentrations. For those cases with increasing trends in barium, the assumption is that the increase is a result of natural variation and not the result of the facility. Under that assumption, the more recent data would represent unimpacted conditions. Thorough evaluation of that assumption requires a separate geochemical investigation that is beyond the scope of services provided by Groundwater Stats Consulting. However, increasing barium concentrations were noted in both upgradient and downgradient wells, suggesting that the groundwater quality is changing due to natural spatial variation. The trends for cobalt, nickel and zinc are decreasing, and using only the more recent data results in more conservative prediction limits. Complete trend analysis results were presented with the August 2019 screening report. A date range summary table is provided with this report to show the adjusted date ranges used in construction of the statistical limits.

Determination of Spatial Variation

The Analysis of Variance (ANOVA) was used to statistically evaluate differences in average concentrations among upgradient wells for constituents detected in downgradient wells. The ANOVA assists in identifying the most appropriate statistical approach. Interwell tests, which compare downgradient well data to statistical limits constructed from pooled upgradient well data, are appropriate when average concentrations are similar across upgradient wells. Intrawell tests, which compare compliance data from a single well to screened historical data within the same well, are appropriate when upgradient wells exhibit spatial variation; when statistical limits constructed from upgradient wells are not representative of the current background data population; and when downgradient water quality is unimpacted compared to upgradient water quality for the same parameter.

The ANOVA identified statistically significant variation among upgradient well data for: arsenic, barium, cobalt, and nickel. The ANOVA did not identify variation for antimony, beryllium, cadmium, chromium, copper, lead, selenium, and zinc. The ANOVA could not test the following constituents because the data had no variation among the upgradient wells: silver, thallium, and vanadium.

Where significant spatial variation is not identified, this suggests that interwell analysis would be the most appropriate statistical method for these constituents. However, because this is a lined landfill with pre-waste data showing that metals occur naturally in low level detections, intrawell methods are recommended as the primary statistical method for all detected well/constituent pairs. Intrawell methods are generally based on an assumption of no existing impacts of the facility in background data. While the assumption is supported by pre-waste data, thorough evaluation of that assumption requires a separate geochemical investigation, especially for the cases of increasing trends in concentration following waste placement. That study is beyond the scope of services provided by Groundwater Stats Consulting.

CCR Appendix III Background Update Summary – Conducted in March 2020

Outlier Testing

Prior to updating background data, Tukey's outlier test and visual screening were used to evaluate Appendix III data from both upgradient and downgradient wells through November 2019. Tukey's test noted potential outliers in downgradient wells for all parameters, but not all of these values were flagged as some appeared to be representative of natural variation. Any flagged data are displayed in a lighter font and as

a disconnected symbol on the time series reports, as well as in a lighter font on the accompanying data pages. A summary of flagged outliers follows this letter (Figure C).

Mann Whitney Testing

For constituents requiring intrawell prediction limits (all constituents in this instance), the Mann-Whitney (Wilcoxon Rank Sum) test was used to compare the medians of historical data through March 2017 to the new compliance samples at each well through November 2019. If the medians of the two groups are not significantly different at the 99% confidence level, background data are typically updated to include the newer compliance data. Statistically significant differences were found between the two groups for the following well/constituent pairs: boron in downgradient wells GWC-19 and GWC-7; chloride in downgradient well GWC-8; pH in downgradient wells GWC-20 and GWC-22; sulfate in downgradient well GWC-20; and TDS in downgradient wells GWC-6 and GWC-8.

Although not statistically significant at the 99% confidence level, the increase in median concentrations between background and compliance data for boron at GWC-8 was significant at the 98% confidence level.

Typically, when the test concludes that the medians of the two groups are significantly different, particularly in the downgradient wells, the background data are not updated to include the newer data unless it can be reasonably justified that the change in concentrations reflects a naturally occurring shift unrelated to practices at the site. In studies in which at least one of the segments being compared is of short duration, the comparison is complicated by the fact that normal short-term variation may be mistaken for long-term change in medians. In this analysis, all but one of the cases with statistically significant Mann-Whitney results were updated. The individual cases are discussed below.

Boron in wells GWC-19 and GWC-7 trended over time toward more stable concentrations at slightly lower levels. Boron at GWC-8 had higher values recently, but the higher concentrations were similar to those in upgradient wells. The measured pH in downgradient wells GWC-20 and GWC-22 stabilized at slightly lower levels, closer to a neutral pH of 7. Chloride in GWC-8 and TDS in both GWC-6 and GWC-8 showed moderate increases in median concentrations due to a short-term spike with the most recent concentrations similar to those in one or more background wells.

In light of these considerations, the only case that was not updated at the time of the update was sulfate at well GWC-20, which has a marked and steadily increasing trend that was not present in the upgradient wells. However, it was later determined through an

alternate source demonstration that this trend is either short-term or not the result of the facility, and this record was appropriately updated. Since the update, the upward trend in sulfate has continued and will continue to be evaluated. Concentrations remain below those in upgradient wells GWA-3 and GWA-4. A list of well/constituent pairs that use a truncated portion of their record follows this report in the date range table mentioned above.

Appendix I and Appendix III Background Update Summary – Conducted in March 2022

Outlier Testing

Prior to updating background data, Tukey's outlier test and visual screening were used to evaluate Appendix III data from both upgradient and downgradient wells through February 2022. Tukey's test noted potential outliers in downgradient wells for all parameters, but not all of these values were flagged as some measurements appeared to be representative of natural variation. Additionally, while Tukey's test did not identify the highest reported measurement of boron at 0.125 mg/L as an outlier in downgradient well GWC-23, this value was flagged as an outlier which results in slightly lower prediction limits. The highest measurements of beryllium and nickel were flagged in downgradient well GWC-7 as the values did not appear to represent the overall population at this well. The value of 0.23 mg/L for barium at well GWC-8 was flagged as an outlier and will be reevaluated during the next background update. This step results in conservative (i.e., lower) limits from a regulatory perspective. Any flagged data are displayed in a lighter font and as a disconnected symbol on the time series reports, as well as in a lighter font on the accompanying data pages. A summary of flagged outliers follows this letter (Figure C).

Mann Whitney Testing

For constituents requiring intrawell prediction limits (all constituents in this instance), the Mann-Whitney (Wilcoxon Rank Sum) test was used to compare the medians of historical data through November 2018 for Appendix I constituents and through November 2019 for Appendix III constituents to the new compliance samples at each well through August 2021. Previously truncated data sets discussed above were also compared to the most recent set of measurements through August 2021. If the medians of the two groups are not significantly different at the 99% confidence level, background data are typically updated to include the newer compliance data.

Several statistically significant differences were found between the two groups for the Appendix I and II constituents. Typically, when the test concludes that the medians of the

two groups are significantly different, particularly in the downgradient wells, the background data are not updated to include the newer data unless it can be reasonably justified that the change in concentrations reflects a naturally occurring shift unrelated to practices at the site. In studies in which at least one of the segments being compared is of short duration, the comparison is complicated by the fact that normal short-term variation may be mistaken for long-term change in medians.

In most cases with significant differences, either the current reported measurements were similar to those reported historically, or the magnitudes of the differences in medians were low relative to average concentrations. Exceptions were the increasing medians for sulfate in downgradient well GWC-20 and boron at downgradient well GWC-8. While steady increasing trends were observed in these cases, reported measurements are lower than those recorded at upgradient wells GWA-3 and GWA-4. For sulfate at well GWC-20, however, only the more recent portion of the record was used in the construction of prediction limits in order to represent present-day groundwater quality. The increasing trend will be re-evaluated periodically so that limit does not become elevated over time compared with upgradient concentrations.

In the case of barium at wells GWC-20, GWC-23, and GWC-8, while the Mann Whitney test identified significantly higher medians in the more recent data, concentrations are similar throughout the entire records and lower than those reported in upgradient well GWA-2. Therefore, these records were updated and the assumption is that the observed changes are due to natural variation in groundwater quality.

All other records were updated through August 2021. A summary of special cases with background data sets utilizing a truncated portion of their record follows this letter.

Evaluation of Georgia EPD Appendix I and CCR Appendix III Constituents – January 2023

Prediction Limits

Intrawell limits constructed from screened background data from within each well serve to provide statistical limits that are representative of the background data population, and that will rapidly identify a change in more recent compliance data from within a given well. The most recent sample from the same well is compared to its respective background. This statistical method removes the element of variation from across wells and eliminates the chance of mistaking natural spatial variation for a release from the facility.

In cases where downgradient average concentrations are higher than observed upgradient concentrations for a given constituent where intrawell analyses are recommended, the current assumption is that this is due to natural spatial variation rather than a result of practices at the landfill. Validation of this assumption requires a separate analysis or investigation that is beyond the scope of this data screening study. However, for this site, the pre-waste data support the assumption of natural variation rather than impacts of the landfill.

Evaluation of Georgia EPD Appendix I Parameters – January 2023

For all Georgia EPD Appendix I parameters, intrawell prediction limits, combined with a 1-of-2 resample plan, were constructed using all available data for each well through August 2021, except for the cases mentioned above (Figure D). The January 2023 compliance data were compared to these intrawell background limits. No statistical analyses were included for well/constituent pairs with 100% non-detects.

A summary of the Georgia EPD Appendix I intrawell prediction limits follows this report. Exceedances were noted for the following well/constituent pairs:

• Barium: GWA-2 (upgradient) and GWC-23

Two-Step Approach

Following the Two-Step approach, interwell prediction limits are constructed for any apparent intrawell prediction limit exceedances using pooled upgradient well data to further evaluate the exceedance (Figure E). No intrawell prediction limit exceedances were noted; therefore, no further action was required for the Appendix I parameters.

Trend Analysis

When prediction limit exceedances occur in any of the downgradient wells, data are further evaluated using the Sen's Slope/Mann Kendall trend test to determine whether concentrations are statistically increasing, decreasing, or stable at the 99% confidence level (Figure F). Upgradient wells are included in the trend analyses to identify whether increasing or decreasing patterns exist upgradient of the site which is an indication of variability in groundwater unrelated to practices at the site. The following statistically significant trends were identified:

Increasing:

• Barium: GWA-2 (upgradient) and GWC-23

Decreasing:

• Barium: GWA-3, GWA-4, and GWA-11 (all upgradient)

Evaluation of CCR Appendix III Parameters – January 2023

For all CCR Appendix III parameters, intrawell prediction limits, combined with a 1-of-2 resample plan, were constructed using all historical data through August 2021 (Figure G). The January 2023 sample from each downgradient well is compared to the background limit to determine whether there are exceedances over background. A summary of the Appendix III prediction limits follows this report. Exceedances were noted for the following well/constituent pairs:

Calcium: GWC-23Sulfate: GWC-19

• TDS: GWC-18 and GWC-20

Two-Step Approach

When interwell prediction limits were constructed for the apparent intrawell prediction limit exceedances in downgradient wells, no exceedance was identified (Figure H). Therefore, the initial statistical exceedances are considered a false positive result, and no further action is required. Data that exceeded intrawell background limits are further evaluated using trend tests as discussed below.

Trend Tests

Data from downgradient well/constituent pairs found to exceed their respective intrawell prediction limit were further evaluated using the Sen's Slope/Mann Kendall trend test using a 99% confidence level, along with upgradient wells for the same constituents. A summary of the trend test results follows this letter (Figure I). The following statistically significant trends were identified:

Increasing:

Calcium: GWC-23

Sulfate: GWA-2 (upgradient)TDS: GWC-20 (upgradient)

Decreasing:

• TDS: GWA-4 (upgradient)

Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for Plant Hammond's Huffaker Road Landfill. If you have any questions or comments, please feel free to contact us.

For Groundwater Stats Consulting,

Abdul Diane

Groundwater Analyst

Andrew Collins

Project Manager

Sanitas™ v.9.6.37 . U0

Page 1

Date Ranges

Date: 3/29/2023 2:13 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Barium (mg/L)

GWA-2 background:4/13/2010-8/9/2021

GWC-19 background:4/13/2010-8/10/2021

GWC-22 background:4/13/2010-8/10/2021

GWC-6 background:4/13/2010-8/10/2021

GWC-7 background:4/3/2012-10/4/2018

GWC-9 background:4/13/2010-8/10/2021

Cobalt (mg/L)

GWC-7 background:3/12/2013-8/10/2021

Nickel (mg/L)

GWC-7 background:3/12/2013-8/10/2021

Sulfate (mg/L)

GWC-20 background:4/9/2019-8/10/2021

Zinc (mg/L)

GWC-7 background:3/12/2013-8/10/2021

Sanitas™ v.9.6.37 . UC

100% Non-Detects: Appendix I

Analysis Run 4/3/2023 2:04 PM View: Appendix I - ND
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Antimony (mg/L) GWC-20, GWC-21, GWC-22, GWC-23

Arsenic (mg/L)

GWC-10, GWC-19, GWC-20, GWC-22, GWC-6

Beryllium (mg/L)

GWC-10, GWC-18, GWC-20, GWC-21, GWC-22, GWC-23, GWC-5, GWC-6, GWC-8, GWC-9

Cadmium (mg/L)

GWC-19, GWC-22, GWC-6

Cobalt (mg/L)

GWC-18, GWC-19, GWC-20, GWC-22

Lead (mg/L)

GWC-9

Selenium (mg/L)

GWC-18, GWC-19, GWC-20, GWC-23, GWC-5, GWC-6, GWC-7, GWC-8

Silver (mg/L)

GWC-10, GWC-18, GWC-19, GWC-20, GWC-22, GWC-23, GWC-5, GWC-6, GWC-7, GWC-8, GWC-9

Thallium (mg/L)

GWC-10, GWC-18, GWC-19, GWC-20, GWC-21, GWC-22, GWC-23, GWC-5, GWC-6, GWC-8, GWC-9

Vanadium (mg/L)

GWC-10, GWC-18, GWC-19, GWC-20, GWC-22, GWC-6, GWC-8

Appendix I - Intrawell Prediction Limits - Significant Results

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 4/5/2023, 5:31 PM

Constituent	<u>Well</u>	Upper Lim	n. Lower Lim	n. Date	Observ.	Sig.	Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Barium (mg/L)	GWA-2	0.1957	n/a	1/30/2023	0.2	Yes	29	0.1666	0.01321	0	None	No	0.0006269	Param Intra 1 of 2
Barium (mg/L)	GWC-23	0.08756	n/a	1/31/2023	0.11	Yes	38	0.06495	0.0106	0	None	No	0.0006269	Param Intra 1 of 2

Appendix I - Intrawell Prediction Limits - All Results

Data: Huffaker Road Landfill Printed 4/5/2023, 5:31 PM Client: Southern Company Constituent Well Bg N Bg Mean Std. Dev. %NDs ND Adj. Sig. **Transform** Alpha Method GWA-1 1/30/2023 0.003ND 0.001294 NP Intra (NDs) 1 of 2 Antimony (ma/L) 0.003 n/a No 38 n/a n/a 97.37 n/a n/a Antimony (mg/L) GWA-11 0.003 n/a 1/30/2023 0.003ND No 38 n/a n/a 94.74 n/a 0.001294 NP Intra (NDs) 1 of 2 Antimony (mg/L) GWA-2 0.003 n/a 1/30/2023 0.003ND No 37 n/a n/a 91.89 n/a n/a 0.001361 NP Intra (NDs) 1 of 2 GWA-3 97.37 0.001294 NP Intra (NDs) 1 of 2 Antimony (ma/L) 0.003 n/a 1/30/2023 0.003ND No 38 n/a n/a n/a n/a Antimony (mg/L) GWA-4 0.003 n/a 1/30/2023 0.003ND No 38 n/a n/a 94.74 n/a 0.001294 NP Intra (NDs) 1 of 2 NP Intra (NDs) 1 of 2 GWC-10 0.003 1/30/2023 0.003ND No 38 97 37 0.001294 Antimony (mg/L) n/a n/a n/a n/a n/a GWC-18 0.003ND No 97.37 0.001294 NP Intra (NDs) 1 of 2 Antimony (mg/L) 0.003 n/a 1/31/2023 38 n/a n/a n/a n/a Antimony (mg/L) GWC-19 0.003 n/a 1/31/2023 0.003ND No 38 n/a n/a 97.37 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 GWC-5 0.003ND No 94.74 0.001294 NP Intra (NDs) 1 of 2 Antimony (mg/L) 0.003 n/a 1/31/2023 38 n/a n/a n/a n/a Antimony (mg/L) GWC-6 0.003 n/a 1/31/2023 0.003ND No 38 n/a n/a 97.37 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 NP Intra (NDs) 1 of 2 GWC-7 0.003 n/a 1/31/2023 0.003ND Nο 37 n/a n/a 94.59 n/a n/a 0.001361 Antimony (mg/L) NP Intra (NDs) 1 of 2 GWC-8 0.003 1/31/2023 0.003ND Nο 36 94 44 0.001429 Antimony (mg/L) n/a n/a n/a n/a n/a GWC-9 Antimony (ma/L) 0.003 n/a 1/31/2023 0.003ND No 38 n/a n/a 94.74 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 GWA-1 0.005 n/a 1/30/2023 0.005ND No 38 100 n/a 0.001294 NP Intra (NDs) 1 of 2 Arsenic (mg/L) n/a n/a Arsenic (mg/L) GWA-11 0.005 n/a 1/30/2023 0.005ND No 38 n/a n/a 97 37 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 0.001294 NP Intra (NDs) 1 of 2 Arsenic (ma/L) GWA-2 0.005 n/a 1/30/2023 0.005ND No 38 n/a n/a 100 n/a n/a GWA-3 1/30/2023 0.005ND 38 68.42 NP Intra (NDs) 1 of 2 Arsenic (mg/L) 0.005 n/a No n/a n/a n/a 0.001294 n/a NP Intra (NDs) 1 of 2 GWA-4 0.0065 n/a 1/30/2023 0.005ND No 38 n/a n/a 86.84 n/a n/a 0.001294 Arsenic (ma/L) GWC-18 0.005 n/a 1/31/2023 0.005ND Nο 38 n/a n/a 92 11 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 Arsenic (mg/L) GWC-21 0.005 n/a 1/31/2023 0.005ND No 36 n/a n/a 80.56 n/a n/a 0.001429 NP Intra (NDs) 1 of 2 GWC-23 0.001294 Arsenic (mg/L) 0.005 n/a 1/31/2023 0.005ND No 38 n/a n/a 94.74 n/a n/a NP Intra (NDs) 1 of 2 Arsenic (mg/L) GWC-5 0.005 n/a 1/31/2023 0.005ND No 38 n/a n/a 94.74 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 GWC-7 37 37.84 0.011 n/a 1/31/2023 0.0028J No n/a n/a n/a n/a 0.001361 NP Intra (normality) 1 of 2 Arsenic (mg/L) GWC-8 0.005 n/a 1/31/2023 0.005ND No 37 n/a n/a 72.97 n/a n/a 0.001361 NP Intra (NDs) 1 of 2 Arsenic (ma/L) GWC-9 0.005 n/a 1/31/2023 0.005ND No 38 n/a n/a 97.37 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 GWA-1 0.04924 1/30/2023 0.037 38 0.03897 0.004812 0 0.0006269 Param Intra 1 of 2 Barium (mg/L) n/a No None No Barium (mg/L) GWA-11 0.0425 n/a 1/30/2023 0.03 No 38 n/a n/a 0 n/a n/a 0.001294 NP Intra (normality) 1 of 2 Barium (mg/L) GWA-2 0.1957 n/a 1/30/2023 0.2 Yes 29 0.1666 0.01321 0 None No 0.0006269 Param Intra 1 of 2 GWA-3 1/30/2023 38 0 0.0006269 Param Intra 1 of 2 0.2212 n/a 0.07 No 0.1656 0.02606 No Barium (mg/L) None Barium (mg/L) GWA-4 0.14 n/a 1/30/2023 0.037 No 38 0 n/a 0.001294 NP Intra (normality) 1 of 2 Barium (mg/L) GWC-10 0 1945 n/a 1/30/2023 0.17 Nο 41 0.1273 0.03174 Ω Nο 0.0006269 Param Intra 1 of 2 None Barium (mg/L) GWC-18 0.09031 n/a 1/31/2023 0.077 No 38 0.07443 0.007441 ٥ None No 0.0006269 Param Intra 1 of 2 Barium (mg/L) **GWC-19** 0.1691 1/31/2023 0.15 No 29 0.00041950.0001801 0 None x^4 0.0006269 Param Intra 1 of 2 Barium (mg/L) GWC-20 0.149 n/a 1/31/2023 0.14 Nο 38 0.1177 0.01465 0 None No 0.0006269 Param Intra 1 of 2 GWC-21 n/a 36 0.19 1/31/2023 0.033 No 0 0.001429 NP Intra (normality) 1 of 2 Barium (mg/L) n/a n/a n/a n/a Barium (mg/L) GWC-22 0.1105 n/a 1/31/2023 0.09 No 29 -2.374 0.07763 0 ln(x) 0.0006269 Param Intra 1 of 2 Barium (mg/L) **GWC-23** 0.08756 n/a 1/31/2023 0.11 Yes 38 0.06495 0.0106 0 No 0.0006269 Param Intra 1 of 2 Barium (mg/L) GWC-5 0.01511 0.0006269 Param Intra 1 of 2 1/31/2023 0.064 38 0.09723 0 0.1295 n/a No None No Barium (mg/L) GWC-6 0.2071 n/a 1/31/2023 0.15 No 29 0.1469 0.0273 None No 0.0006269 Param Intra 1 of 2 Barium (mg/L) GWC-7 0.3697 n/a 1/31/2023 0.047 Nο 19 0.3226 0.1206 Ω None sart(x) 0.0006269 Param Intra 1 of 2 GWC-8 1/31/2023 37 0 Barium (mg/L) 0.17 n/a 0.12 No n/a 0.001361 NP Intra (normality) 1 of 2 n/a n/a n/a Barium (mg/L) GWC-9 0.07234 n/a 1/31/2023 No 28 0.06145 0.004913 0 No 0.0006269 Param Intra 1 of 2 n/a Beryllium (mg/L) GWA-1 0.0005 n/a 1/30/2023 0.0005ND No. 38 n/a 100 0.001294 NP Intra (NDs) 1 of 2 n/a n/a Bervllium (ma/L) GWA-11 0.0005 n/a 1/30/2023 0.0005ND No 38 100 0.001294 NP Intra (NDs) 1 of 2 n/a n/a n/a n/a Bervllium (ma/L) GWA-2 0.0005 n/a 1/30/2023 0.0005ND No 38 n/a n/a 100 n/a 0.001294 NP Intra (NDs) 1 of 2 n/a n/a n/a Beryllium (mg/L) GWA-3 0.0005 1/30/2023 0.0005ND No 38 n/a 97.37 n/a 0.001294 NP Intra (NDs) 1 of 2 GWA-4 38 NP Intra (NDs) 1 of 2 Beryllium (mg/L) 0.0005 n/a 1/30/2023 0.0005ND No n/a n/a 100 n/a n/a 0.001294 Beryllium (mg/L) GWC-19 0.0005 n/a 1/31/2023 0.0005ND No 38 n/a 97.37 n/a 0.001294 NP Intra (NDs) 1 of 2 Beryllium (mg/L) GWC-7 0.01841 n/a 1/31/2023 0.00021J No 33 -7.926 1.812 27.27 Kaplan-Meier In(x) 0.0006269 Param Intra 1 of 2 GWA-1 0.0005ND No 0.001294 NP Intra (NDs) 1 of 2 Cadmium (mg/L) 0.0005 n/a 1/30/2023 38 n/a n/a 100 n/a n/a Cadmium (mg/L) GWA-11 0.0005 n/a 1/30/2023 0.0005ND No 38 100 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 n/a n/a Cadmium (mg/L) GWA-2 0.0005 1/30/2023 0.0005ND No 38 100 0.001294 NP Intra (NDs) 1 of 2 n/a n/a n/a n/a n/a GWA-3 0.001294 Cadmium (mg/L) 0.0005 n/a 1/30/2023 0.0005ND No 38 n/a n/a 100 n/a n/a NP Intra (NDs) 1 of 2 Cadmium (mg/L) GWA-4 0.0005 n/a 1/30/2023 0.0005ND No 38 n/a n/a 97.37 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 Cadmium (mg/L) n/a GWC-10 0.0005 n/a 1/30/2023 0.0005ND No 38 n/a 97.37 n/a 0.001294 NP Intra (NDs) 1 of 2 n/a GWC-18 0.0005 1/31/2023 0.0005ND No 38 97.37 0.001294 NP Intra (NDs) 1 of 2 Cadmium (mg/L) n/a n/a n/a n/a n/a Cadmium (mg/L) GWC-20 0.0005 n/a 1/31/2023 0.0005ND No 37 n/a n/a 97.3 n/a 0.001361 NP Intra (NDs) 1 of 2 Cadmium (mg/L) GWC-21 0.0005 n/a 1/31/2023 0.0005ND No 36 n/a n/a 94 44 n/a n/a 0.001429 NP Intra (NDs) 1 of 2 Cadmium (mg/L) GWC-23 0.0005 n/a 1/31/2023 0.0005ND No 38 n/a n/a 97.37 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 Cadmium (mg/L) GWC-5 0.0015 n/a 1/31/2023 0.0005ND No 38 n/a n/a 97.37 n/a 0.001294 NP Intra (NDs) 1 of 2 NP Intra (NDs) 1 of 2 Cadmium (mg/L) GWC-7 0.0035 n/a 1/31/2023 0.0005ND No 35 n/a n/a 85 71 n/a n/a 0.001497 Cadmium (mg/L) GWC-8 0.0005 n/a 1/31/2023 0.0005ND No 37 n/a n/a 97.3 n/a n/a 0.001361 NP Intra (NDs) 1 of 2 Cadmium (mg/L) GWC-9 0.0005 1/31/2023 0.0005ND No 38 94.74 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 n/a n/a n/a Chromium (mg/L) GWA-1 1/30/2023 0.005ND No 94.74 0.001294 0.016 n/a 38 n/a n/a n/a n/a NP Intra (NDs) 1 of 2 Chromium (ma/L) **GWA-11** 0.005 n/a 1/30/2023 0.005ND No 38 n/a n/a 92.11 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 Chromium (mg/L) GWA-2 0.005 n/a 1/30/2023 0.005ND No 38 n/a n/a 97.37 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 GWA-3 No Chromium (mg/L) 0.005 n/a 1/30/2023 0.005ND 38 n/a n/a 94.74 n/a n/a 0.001294 NP Intra (NDs) 1 of 2

0.005ND

No 38 n/a

n/a

94.74 n/a

1/30/2023

0.001294

n/a

NP Intra (NDs) 1 of 2

GWA-4

0.005

n/a

Chromium (ma/L)

Appendix I - Intrawell Prediction Limits - All Results

Data: Huffaker Road Landfill

Printed 4/5/2023, 5:31 PM

Client: Southern Company

Constituent Well Bg N Bg Mean Std. Dev. %NDs ND Adj. Method Upper Lim. Lower Lim. Date Sig. **Transform** Alpha GWC-10 0.005ND 0.001294 NP Intra (NDs) 1 of 2 Chromium (ma/L) 0.005 n/a 1/30/2023 No 38 n/a n/a 92.11 n/a n/a Chromium (mg/L) GWC-18 0.005 n/a 1/31/2023 0.005ND No 38 n/a n/a 94.74 n/a 0.001294 NP Intra (NDs) 1 of 2 Chromium (mg/L) GWC-19 0.005 n/a 1/31/2023 0.005ND No 38 n/a n/a 92 11 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 GWC-20 37 91.89 0.001361 NP Intra (NDs) 1 of 2 Chromium (ma/L) 0.0064 n/a 1/31/2023 0.005ND No n/a n/a n/a n/a Chromium (mg/L) GWC-21 0.005 n/a 1/31/2023 0.005ND No 36 n/a n/a 94.44 n/a NP Intra (NDs) 1 of 2 GWC-22 Chromium (mg/L) 0.005 1/31/2023 0.005ND Nο 38 n/a 89 47 n/s 0.001294 NP Intra (NDs) 1 of 2 n/a n/a n/a GWC-23 0.005ND No 38 94.74 0.001294 NP Intra (NDs) 1 of 2 Chromium (mg/L) 0.0051 n/a 1/31/2023 n/a n/a n/a n/a Chromium (mg/L) GWC-5 0.005 n/a 1/31/2023 0.005ND No 38 n/a n/a 97.37 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 Chromium (mg/L) GWC-6 1/31/2023 0.005ND No 97.37 0.001294 NP Intra (NDs) 1 of 2 0.005 n/a 38 n/a n/a n/a n/a Chromium (ma/L) GWC-7 0.005 n/a 1/31/2023 0.005ND No 36 n/a n/a 83.33 n/a n/a 0.001429 NP Intra (NDs) 1 of 2 NP Intra (NDs) 1 of 2 Chromium (mg/L) GWC-8 0.005 n/a 1/31/2023 0.005ND Nο 37 n/a n/a 89.19 n/a n/a 0.001361 NP Intra (NDs) 1 of 2 Chromium (mg/L) GWC-9 0.005 1/31/2023 0.005ND Nο 38 n/a 92 11 0.001294 n/a n/a n/a n/a Cobalt (mg/L) GWA-1 0.005 n/a 1/30/2023 0.0005J No 38 n/a n/a 60.53 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 Cobalt (mg/L) GWA-11 0.01 n/a 1/30/2023 0.00043J No 38 52.63 n/a 0.001294 NP Intra (NDs) 1 of 2 n/a n/a Cobalt (mg/L) GWA-2 0.005 n/a 1/30/2023 0.005ND No 38 n/a n/a 97 37 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 0.001294 NP Intra (NDs) 1 of 2 Cobalt (mg/L) GWA-3 0.005 n/a 1/30/2023 0.005ND No 38 n/a n/a 89.47 n/a n/a GWA-4 1/30/2023 0.005ND 38 63.16 NP Intra (NDs) 1 of 2 Cobalt (mg/L) 0.005 n/a No n/a n/a n/a 0.001294 n/a GWC-10 No 38 97.37 NP Intra (NDs) 1 of 2 Cobalt (mg/L) 0.005 n/a 1/30/2023 0.005ND n/a n/a n/a n/a 0.001294 Cobalt (mg/L) GWC-21 0.01 n/a 1/31/2023 0.002.1 Nο 36 n/a n/a 52 78 n/a n/a 0.001429 NP Intra (NDs) 1 of 2 Cobalt (mg/L) GWC-23 0.005 n/a 1/31/2023 0.005ND No 38 n/a n/a 89.47 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 GWC-5 89.47 0.001294 Cobalt (mg/L) 0.005 n/a 1/31/2023 0.005ND No 38 n/a n/a n/a n/a NP Intra (NDs) 1 of 2 Cobalt (mg/L) GWC-6 0.005 n/a 1/31/2023 0.005ND No 38 n/a n/a 97.37 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 GWC-7 No 23 Cobalt (mg/L) 0.06885 n/a 1/31/2023 0.028 0.01788 0 No 0.0006269 Param Intra 1 of 2 0.031 None Cobalt (mg/L) GWC-8 0.01 1/31/2023 0.00055J No 37 81.08 n/a n/a 0.001361 NP Intra (NDs) 1 of 2 Cobalt (mg/L) GWC-9 0.005 n/a 1/31/2023 0.005ND No 38 n/a n/a 84.21 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 GWA-1 0.005 1/30/2023 0.005ND No 33 100 0.001701 NP Intra (NDs) 1 of 2 Copper (mg/L) n/a n/a n/a n/a n/a Copper (mg/L) GWA-11 0.005 n/a 1/30/2023 0.005ND No 33 n/a n/a 90.91 n/a n/a 0.001701 NP Intra (NDs) 1 of 2 Copper (mg/L) GWA-2 0.005 n/a 1/30/2023 0.005ND No 33 n/a n/a 90.91 n/a n/a 0.001701 NP Intra (NDs) 1 of 2 GWA-3 1/30/2023 0.005ND 33 90.91 NP Intra (NDs) 1 of 2 0.005 n/a No n/a n/a n/a 0.001701 Copper (mg/L) n/a Copper (mg/L) GWA-4 0.0066 n/a 1/30/2023 0.005ND No 33 n/a 90.91 n/a n/a 0.001701 NP Intra (NDs) 1 of 2 Copper (mg/L) GWC-10 0.005 n/a 1/30/2023 0.005ND Nο 33 n/a n/a 93 94 n/a n/a 0.001701 NP Intra (NDs) 1 of 2 Copper (ma/L) GWC-18 0.005 n/a 1/31/2023 0.005ND No 33 n/a 90.91 n/a n/a 0.001701 NP Intra (NDs) 1 of 2 n/a Copper (mg/L) GWC-19 0.005 n/a 1/31/2023 0.005ND No 33 n/a n/a 84.85 n/a 0.001701 NP Intra (NDs) 1 of 2 Copper (mg/L) GWC-20 0.005 n/a 1/31/2023 0.005ND No 32 n/a n/a 93.75 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 GWC-21 0.0012J 1/31/2023 No 31 74.19 n/a n/a 0.001905 NP Intra (NDs) 1 of 2 Copper (mg/L) 0.005 n/a n/a n/a Copper (mg/L) GWC-22 0.005 1/31/2023 0.005ND No 33 n/a 90.91 n/a n/a 0.001701 NP Intra (NDs) 1 of 2 Copper (mg/L) GWC-23 0.0084 n/a 1/31/2023 0.005ND No 33 n/a n/a 75.76 n/a n/a 0.001701 NP Intra (NDs) 1 of 2 GWC-5 0.001701 NP Intra (NDs) 1 of 2 Copper (mg/L) 1/31/2023 0.005ND No 33 84.85 n/a 0.005 n/a n/a n/a n/a Copper (mg/L) GWC-6 0.005 n/a 1/31/2023 0.005ND No 33 n/a n/a 96.97 n/a 0.001701 NP Intra (NDs) 1 of 2 Copper (mg/L) GWC-7 0.016 n/a 1/31/2023 0.005ND Nο 31 n/a n/a 77 42 n/a n/a 0.001905 NP Intra (NDs) 1 of 2 GWC-8 1/31/2023 0.005ND 32 NP Intra (NDs) 1 of 2 Copper (mg/L) 0.005 n/a No n/a n/a 96.88 n/a n/a 0.001803 Copper (mg/L) GWC-9 0.005 n/a 1/31/2023 0.005ND No 33 93.94 n/a n/a 0.001701 NP Intra (NDs) 1 of 2 Lead (mg/L) GWA-1 0.001 n/a 1/30/2023 0.001ND Nο 38 n/a n/a 100 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 97.37 Lead (mg/L) GWA-11 0.001 1/30/2023 0.001ND No 38 n/a 0.001294 NP Intra (NDs) 1 of 2 n/a n/a n/a n/a Lead (mg/L) GWA-2 0.001 n/a 1/30/2023 0.001ND No 38 n/a n/a 100 n/a 0.001294 NP Intra (NDs) 1 of 2 Lead (mg/L) n/a n/a GWA-3 0.001 1/30/2023 0.001ND No 38 94 74 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 n/a GWA-4 38 0.001294 NP Intra (NDs) 1 of 2 Lead (mg/L) 0.001 n/a 1/30/2023 0.001ND No n/a n/a 100 n/a n/a Lead (mg/L) GWC-10 0.001 n/a 1/30/2023 0.001ND No 38 n/a 97.37 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 Lead (mg/L) GWC-18 0.001 n/a 1/31/2023 0.001ND No 38 n/a n/a 97.37 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 GWC-19 0.001294 0.001ND No 38 92.11 NP Intra (NDs) 1 of 2 Lead (mg/L) 0.001 n/a 1/31/2023 n/a n/a n/a n/a Lead (mg/L) GWC-20 0.001 n/a 1/31/2023 0.001ND No 37 97.3 n/a 0.001361 NP Intra (NDs) 1 of 2 n/a n/a GWC-21 0.001 1/31/2023 0.001ND No 36 88.89 n/a 0.001429 NP Intra (NDs) 1 of 2 Lead (mg/L) n/a n/a n/a n/a GWC-22 38 0.001294 Lead (mg/L) 0.001 n/a 1/31/2023 0.001ND No n/a n/a 89.47 n/a n/a NP Intra (NDs) 1 of 2 Lead (mg/L) GWC-23 0.001 n/a 1/31/2023 0.001ND No 38 n/a n/a 84.21 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 Lead (mg/L) n/a GWC-5 0.001 n/a 1/31/2023 0.001ND Nο 38 n/a 94 74 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 GWC-6 0.001 1/31/2023 0.001ND No 38 97.37 0.001294 NP Intra (NDs) 1 of 2 Lead (mg/L) n/a n/a n/a n/a n/a Lead (mg/L) GWC-7 0.0016 n/a 1/31/2023 0.001ND No 37 n/a n/a 75.68 n/a 0.001361 NP Intra (NDs) 1 of 2 n/a Lead (mg/L) GWC-8 0.001 n/a 1/31/2023 0.001ND No 37 n/a n/a 94 59 n/a 0.001361 NP Intra (NDs) 1 of 2 Nickel (ma/L) GWA-1 0.005 n/a 1/30/2023 0.005ND No 33 n/a n/a 78.79 n/a n/a 0.001701 NP Intra (NDs) 1 of 2 Nickel (mg/L) GWA-11 0.01 n/a 1/30/2023 0.0017J No 33 n/a n/a 54.55 n/a 0.001701 NP Intra (NDs) 1 of 2 NP Intra (NDs) 1 of 2 Nickel (mg/L) GWA-2 0.005 n/a 1/30/2023 0.005ND Nο 33 n/a n/a 96 97 n/a n/a 0.001701 NP Intra (NDs) 1 of 2 Nickel (mg/L) GWA-3 0.005 n/a 1/30/2023 0.00082J No 33 n/a n/a 87.88 n/a n/a 0.001701 Nickel (mg/L) GWA-4 0.0055 n/a 1/30/2023 0.005ND No 33 51.52 n/a 0.001701 NP Intra (NDs) 1 of 2 n/a n/a GWC-10 1/30/2023 0.005ND No 33 96.97 0.001701 NP Intra (NDs) 1 of 2 Nickel (mg/L) 0.005 n/a n/a n/a n/a n/a Nickel (ma/L) GWC-18 0.005 n/a 1/31/2023 0.005ND No 33 n/a n/a 78.79 n/a n/a 0.001701 NP Intra (NDs) 1 of 2 Nickel (mg/L) GWC-19 0.0062 n/a 1/31/2023 0.005ND Nο 33 n/a n/a 90.91 n/a n/a 0.001701 NP Intra (NDs) 1 of 2 GWC-20 No Nickel (mg/L) 0.005 n/a 1/31/2023 0.005ND 32 n/a 93.75 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 GWC-21 0.009689 0.0164 0.0006269 Param Intra 1 of 2 Nickel (ma/L) n/a 1/31/2023 0.005J No 32 0.06271 18.75 Kaplan-Meier sqrt(x)

Appendix I - Intrawell Prediction Limits - All Results Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 4/5/2023, 5:31 PM

Constituent	Well	Upper Lim	n. Lower Lim	. Date	Observ.	Sig.	Bq N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	Alpha	Method
Nickel (mg/L)	GWC-22	0.005	n/a	1/31/2023	0.005ND	No	33	n/a	n/a	96.97	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-23	0.005	n/a	1/31/2023	0.005ND	No	33	n/a	n/a	69.7	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-5	0.005	n/a	1/31/2023	0.005ND	No	33	n/a	n/a	78.79	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-6	0.005	n/a	1/31/2023	0.005ND	No	33	n/a	n/a	90.91	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-7	0.2685	n/a	1/31/2023	0.11	No	18	0.1037	0.06873	0	None	No	0.0006269	Param Intra 1 of 2
Nickel (mg/L)	GWC-8	0.0073	n/a	1/31/2023	0.005ND	No	32	n/a	n/a	81.25	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-9	0.01	n/a	1/31/2023	0.002J	No	33	n/a	n/a	54.55	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWA-1	0.005	n/a	1/30/2023	0.005ND	No	38	n/a	n/a	100	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWA-11	0.005	n/a	1/30/2023	0.005ND	No	38	n/a	n/a	100	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWA-2	0.005	n/a	1/30/2023	0.005ND	No	38	n/a	n/a	100	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWA-3	0.005	n/a	1/30/2023	0.005ND	No	38	n/a	n/a	100	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWA-4	0.005	n/a	1/30/2023	0.005ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWC-10	0.005	n/a	1/30/2023	0.005ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWC-21	0.005	n/a	1/31/2023	0.005ND	No	36	n/a	n/a	94.44	n/a	n/a	0.001429	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWC-22	0.005	n/a	1/31/2023	0.005ND	No	38	n/a	n/a	94.74	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWC-9	0.005	n/a	1/31/2023	0.005ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Silver (mg/L)	GWA-1	0.005	n/a	1/30/2023	0.005ND	No	33	n/a	n/a	100	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Silver (mg/L)	GWA-11	0.005	n/a	1/30/2023	0.005ND	No	33	n/a	n/a	100	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Silver (mg/L)	GWA-2	0.005	n/a	1/30/2023	0.005ND	No	33	n/a	n/a	100	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Silver (mg/L)	GWA-3	0.005	n/a	1/30/2023	0.005ND	No	33	n/a	n/a	100	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Silver (mg/L)	GWA-4	0.005	n/a	1/30/2023	0.005ND	No	33	n/a	n/a	100	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Silver (mg/L)	GWC-21	0.005	n/a	1/31/2023	0.005ND	No	31	n/a	n/a	96.77	n/a	n/a	0.001905	NP Intra (NDs) 1 of 2
Thallium (mg/L)	GWA-1	0.001	n/a	1/30/2023	0.00022J	No	37	n/a	n/a	100	n/a	n/a	0.001361	NP Intra (NDs) 1 of 2
Thallium (mg/L)	GWA-11	0.001	n/a	1/30/2023	0.001ND	No	37	n/a	n/a	100	n/a	n/a	0.001361	NP Intra (NDs) 1 of 2
Thallium (mg/L)	GWA-2	0.001	n/a	1/30/2023	0.001ND	No	37	n/a	n/a	100	n/a	n/a	0.001361	NP Intra (NDs) 1 of 2
Thallium (mg/L)	GWA-3	0.001	n/a	1/30/2023	0.001ND	No	37	n/a	n/a	100	n/a	n/a	0.001361	NP Intra (NDs) 1 of 2
Thallium (mg/L)	GWA-4	0.001	n/a	1/30/2023	0.001ND	No	37	n/a	n/a	100	n/a	n/a	0.001361	NP Intra (NDs) 1 of 2
Thallium (mg/L)	GWC-7	0.001	n/a	1/31/2023	0.001ND	No	36	n/a	n/a	97.22	n/a	n/a	0.001429	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWA-1	0.01	n/a	1/30/2023	0.0022J	No	33	n/a	n/a	96.97	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWA-11	0.01	n/a	1/30/2023	0.01ND	No	33	n/a	n/a	100	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWA-2	0.01	n/a	1/30/2023	0.01ND	No	33	n/a	n/a	100	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWA-3	0.01	n/a	1/30/2023	0.01ND	No	33	n/a	n/a	100	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWA-4	0.01	n/a	1/30/2023	0.01ND	No	33	n/a	n/a	100	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-21	0.01	n/a	1/31/2023	0.01ND	No	31	n/a	n/a	93.55	n/a	n/a	0.001905	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-23	0.01	n/a	1/31/2023	0.01ND	No	33	n/a	n/a	96.97	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-5	0.01	n/a	1/31/2023	0.01ND	No	33	n/a	n/a	96.97	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-7	0.01	n/a	1/31/2023	0.01ND	No	32	n/a	n/a	84.38	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-9	0.01	n/a	1/31/2023	0.01ND	No	33	n/a	n/a	96.97	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-1	0.01	n/a	1/30/2023	0.01ND	No	33	n/a	n/a	75.76	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-11	0.01	n/a	1/30/2023	0.01ND	No	33	n/a	n/a	66.67	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-2	0.01	n/a	1/30/2023	0.01ND	No	33	n/a	n/a	69.7	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-3	0.01	n/a	1/30/2023	0.01ND	No	33	n/a	n/a	57.58	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-4	0.01	n/a	1/30/2023	0.01ND	No	33	n/a	n/a	33.33	n/a	n/a	0.001701	NP Intra (normality) 1 of 2
Zinc (mg/L)	GWC-10	0.01	n/a	1/30/2023	0.01ND	No	33	n/a	n/a	78.79	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-18	0.01	n/a	1/31/2023	0.01ND	No	33	n/a	n/a	69.7	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-19	0.013	n/a	1/31/2023	0.01ND	No	33	n/a	n/a	60.61	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-20	0.01	n/a	1/31/2023	0.01ND	No	32	n/a	n/a	81.25	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-21	0.008879	n/a	1/31/2023	0.01ND	No	31	0.1676	0.01806	16.13	Kaplan-Meier		0.0006269	
Zinc (mg/L)	GWC-22	0.01	n/a	1/31/2023	0.01ND	No	33	n/a	n/a	81.82	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-23	0.01	n/a	1/31/2023	0.01ND	No	33	n/a	n/a	54.55	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-5	0.01	n/a	1/31/2023	0.01ND	No	33	n/a	n/a	60.61	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-6	0.01	n/a	1/31/2023	0.01ND	No	33	n/a	n/a	72.73	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-7	0.4964	n/a	1/31/2023	0.19	No	18	0.1863	0.1294	0	None	No		Param Intra 1 of 2
Zinc (mg/L)	GWC-8	0.01	n/a	1/31/2023	0.01ND	No	32	n/a	n/a	71.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-9	0.01	n/a	1/31/2023	0.01ND	No	33	n/a	n/a	66.67	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2

Appendix I - Interwell Prediction Limits - All Result (No Significant)

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 4/3/2023, 2:03 AM

 Constituent
 Well
 Upper Lim. Lower Lim. Date
 Observ.
 Sig. Bg N Bg Mean
 Std. Dev.
 %NDs VD. Adj.
 Transform
 Alpha Method

 Barium (mg/L)
 GWC-23
 0.21 n/a
 1/31/2023
 0.11 No 205 n/a
 n/a
 n/a
 0 n/a
 n/a
 0.00004912 NP Inter (normality) 1 of 2

Appendix I - Trend Tests - Significant Results

	Plant Hammond	Client: Southern	Data: Huffal	ker Road L	andfill	Printed 4/2/202	3, 8:02 PM					
Constituent	Well	<u>Slope</u>	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method	
Barium (mg/L)	GWA-11 (bg)	-0.0002519	-2.852	-2.58	Yes	41	0	n/a	n/a	0.01	NP	
Barium (mg/L)	GWA-2 (bg)	0.003856	5.566	2.58	Yes	41	0	n/a	n/a	0.01	NP	
Barium (mg/L)	GWA-3 (bg)	-0.005786	-6.132	-2.58	Yes	41	0	n/a	n/a	0.01	NP	
Barium (mg/L)	GWA-4 (bg)	-0.002509	-4.026	-2.58	Yes	41	0	n/a	n/a	0.01	NP	
Barium (mg/L)	GWC-23	0.001661	4.09	2.58	Yes	41	0	n/a	n/a	0.01	NP	

Appendix I - Trend Tests - All Results

	Plant Hammond	Client: Southern Company		Data: Huffaker Road Landfill			Printed 4/2/202	3, 8:02 PM			
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Barium (mg/L)	GWA-1 (bg)	-0.00004299	-0.3488	-2.58	No	41	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWA-11 (bg)	-0.0002519	-2.852	-2.58	Yes	41	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWA-2 (bg)	0.003856	5.566	2.58	Yes	41	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWA-3 (bg)	-0.005786	-6.132	-2.58	Yes	41	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWA-4 (bg)	-0.002509	-4.026	-2.58	Yes	41	0	n/a	n/a	0.01	NP
Barium (mg/L)	GWC-23	0.001661	4.09	2.58	Yes	41	0	n/a	n/a	0.01	NP

Appendix III - Intrawell Prediction Limits - Significant Results

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 4/19/2023, 4:43 PM Constituent Well Observ. Sig. Bg N Bg Mean Std. Dev. %NDs ND Adj. Upper Lim. Lower Lim. Date <u>Transform</u> <u>Alpha</u> Method GWC-23 53.47 n/a 1/31/2023 58.3 Yes 17 39.06 5.938 0 Calcium (mg/L) 0.0006269 Param Intra 1 of 2 None No Sulfate (mg/L) GWC-19 20.64 n/a 1/31/2023 22.8 Yes 17 16.5 1.709 0 0.0006269 Param Intra 1 of 2
 248.3
 n/a
 1/31/2023
 284
 Yes
 16
 202.1
 18.8
 0

 310.9
 n/a
 1/31/2023
 329
 Yes
 17
 237.4
 30.3
 0
 None GWC-18 No Total Dissolved Solids (mg/L) 0.0006269 Param Intra 1 of 2 Total Dissolved Solids (mg/L) GWC-20 No 0.0006269 Param Intra 1 of 2 None

Appendix III - Intrawell Prediction Limits - All Results

Client: Southern Company Data: Huffaker Road Landfill Printed 4/19/2023, 4:43 PM Constituent <u>Well</u> %NDs ND Adj Method Observ. Bg N Bg Mean Std. Dev. **Transform** Alpha GWA-1 1/30/2023 0.005914 NP Intra (normality) 1 of 2 Boron (ma/L) 0.05 n/a 0.026J No 17 n/a n/a 11.76 n/a n/a Boron (mg/L) GWA-11 0.04333 n/a 1/30/2023 0.038J No 17 0.03634 0.002879 0 None No 0.0006269 Param Intra 1 of 2 Boron (mg/L) GWA-2 0.1026 n/a 1/30/2023 0.086 No 17 0.08614 0.006798 0 None No 0.0006269 Param Intra 1 of 2 17 0 0.0006269 Boron (ma/L) GWA-3 0.1862 n/a 1/30/2023 0.094 No 0.1478 0.01583 None No Param Intra 1 of 2 Boron (mg/L) GWA-4 0.1386 n/a 1/30/2023 0.058 No 17 0 No Param Intra 1 of 2 n/a GWC-10 0.04341 1/30/2023 0.038 Nο 17 0.03398 0.003885 0 No 0.0006269 Param Intra 1 of 2 Boron (mg/L) None GWC-18 17 0.13 0.008789 0 No 0.0006269 Param Intra 1 of 2 Boron (mg/L) 0.1513 n/a 1/31/2023 0.12 No None Boron (mg/L) **GWC-19** 0.2063 n/a 1/31/2023 0.13 No 17 0.1738 0.01337 0 None No 0.0006269 Param Intra 1 of 2 NP Intra (normality) 1 of 2 GWC-20 1/31/2023 0.015 No 17 5.882 n/a 0.005914 Boron (mg/L) 0.05 n/a n/a n/a n/a 17 Boron (mg/L) GWC-21 0.1228 n/a 1/31/2023 0.013JNo 0.3332 0.06753 0 None x^(1/3) 0.0006269 Param Intra 1 of 2 1/31/2023 GWC-22 0.08087 n/a 0.052 No 17 0.06702 0.00571 0 None No 0.0006269 Param Intra 1 of 2 Boron (mg/L) GWC-23 0.06 0.1789 0.0809 n/a 1/31/2023 No 16 0.04295 6.25 0.0006269 Param Intra 1 of 2 Boron (mg/L) None sqrt(x) Boron (ma/L) GWC-5 0.08192 n/a 1/31/2023 0.043 No 17 0.05951 0.009236 0 None No 0.0006269 Param Intra 1 of 2 Boron (mg/L) GWC-6 0.04728 1/31/2023 0.037 No 18 0.03999 0.003041 None No 0.0006269 Param Intra 1 of 2 n/a Boron (mg/L) GWC-7 0.07297 n/a 1/31/2023 0.025J Nο 17 0.05303 0.008219 0 None No 0.0006269 Param Intra 1 of 2 1/31/2023 0.005373 Boron (mg/L) GWC-8 0.088 n/a 0.029J No 18 n/a n/a 0 n/a n/a NP Intra (normality) 1 of 2 GWC-9 0.05 1/31/2023 0.012J 17 5.882 0.005914 NP Intra (normality) 1 of 2 n/a No n/a n/a Boron (mg/L) n/a n/a 17 Calcium (mg/L) GWA-1 20.89 n/a 1/30/2023 15.8 No 16.2 1.932 5.882 No 0.0006269 Param Intra 1 of 2 Calcium (mg/L) GWA-11 26 42 n/a 1/30/2023 20.4 Nο 17 20 14 2 587 5.882 None Nο 0.0006269 Param Intra 1 of 2 Calcium (mg/L) GWA-2 52.85 n/a 1/30/2023 46.8 No 17 43.1 4.018 0 None No 0.0006269 Param Intra 1 of 2 GWA-3 1/30/2023 No 17 75.75 0.0006269 Param Intra 1 of 2 Calcium (mg/L) 90.64 n/a 53.1 6.137 0 None No Calcium (mg/L) GWA-4 122.6 n/a 1/30/2023 73.6 No 17 86.21 14.99 0 None No 0.0006269 Param Intra 1 of 2 19 0 No GWC-10 60.32 n/a 1/30/2023 43.7 No 40.93 8.193 None 0.0006269 Param Intra 1 of 2 Calcium (mg/L) Calcium (mg/L) GWC-18 49.06 n/a 1/31/2023 40.4 No 18 40.94 3.386 0 None No 0.0006269 Param Intra 1 of 2 Calcium (mg/L) GWC-19 51.43 n/a 1/31/2023 42.5 No 18 44.52 2.882 0 None No 0.0006269 Param Intra 1 of 2 GWC-20 68.63 1/31/2023 62 18 55.11 5.638 0 No 0.0006269 Param Intra 1 of 2 Calcium (mg/L) n/a No None 0.0006269 Calcium (mg/L) GWC-21 94.52 n/a 1/31/2023 16.2 No 19 48.75 19.33 0 None No Param Intra 1 of 2 Calcium (mg/L) GWC-22 52.63 n/a 1/31/2023 43.8 No 17 47.89 1.955 0 None No 0.0006269 Param Intra 1 of 2 GWC-23 1/31/2023 17 39.06 0 0.0006269 Calcium (mg/L) 53.47 58.3 Yes 5.938 No Param Intra 1 of 2 n/a None Calcium (mg/L) GWC-5 91.67 n/a 1/31/2023 75.5 No 17 75.27 6.759 0 No 0.0006269 Param Intra 1 of 2 Calcium (mg/L) GWC-6 75 59 n/a 1/31/2023 62.5 Nο 17 64 12 4 724 n None Nο 0.0006269 Param Intra 1 of 2 Calcium (mg/L) GWC-7 73.87 n/a 1/31/2023 19 No 17 39 29 14.25 0 None No 0.0006269 Param Intra 1 of 2 Calcium (mg/L) GWC-8 107.1 1/31/2023 69.2 No 19 68.9 16.13 0 No 0.0006269 Param Intra 1 of 2 Calcium (mg/L) GWC-9 39.64 n/a 1/31/2023 34.1 No 17 35.42 1.737 0 None No 0.0006269 Param Intra 1 of 2 17 0 GWA-1 1/30/2023 No 0.1658 0.1303 ln(x) 0.0006269 Param Intra 1 of 2 Chloride (mg/L) 1.619 n/a 1.1 None Chloride (mg/L) GWA-11 2.058 n/a 1/30/2023 1.2 No 17 1.43 0.2592 0 No 0.0006269 Param Intra 1 of 2 Chloride (mg/L) GWA-2 3.046 n/a 1/30/2023 2.2 No 17 2.365 0.2806 0 None No 0.0006269 Param Intra 1 of 2 GWA-3 1/30/2023 17 0.0006269 Chloride (mg/L) 5.301 1.2 3.626 0.6902 0 None No Param Intra 1 of 2 n/a No Chloride (mg/L) GWA-4 10.38 n/a 1/30/2023 3.4 No 17 5.864 1.863 0 None No 0.0006269 Param Intra 1 of 2 Chloride (ma/L) GWC-10 2 237 n/a 1/30/2023 13 Nο 19 1 512 0.3062 n None Nο 0.0006269 Param Intra 1 of 2 GWC-18 1/31/2023 0.8J No 17 0 x^2 Chloride (ma/L) 1.802 n/a 1.711 0.6329 None 0.0006269 Param Intra 1 of 2 Chloride (mg/L) GWC-19 n/a 1/31/2023 1.2 No 17 1.764 0.3539 0 No 0.0006269 Param Intra 1 of 2 Chloride (mg/L) GWC-20 2 379 n/a 1/31/2023 1 1 Nο 18 1 577 0.3346 0 Nο 0.0006269 Param Intra 1 of 2 None Chloride (ma/L) GWC-21 3.92 1/31/2023 1.5 No 18 2.504 0.5908 0 No 0.0006269 Param Intra 1 of 2 n/a None Chloride (ma/L) GWC-22 2.086 1/31/2023 No 17 1.436 0.2681 0 No 0.0006269 Param Intra 1 of 2 Chloride (mg/L) GWC-23 2 249 n/a 1/31/2023 0.5ND No 17 1.397 0.3512 0 No 0.0006269 Param Intra 1 of 2 None GWC-5 1/31/2023 2.1 17 2.822 0 None No 0.0006269 Chloride (mg/L) 4.201 n/a No 0.5683 Param Intra 1 of 2 Chloride (mg/L) GWC-6 2.452 n/a 1/31/2023 1.7 No 17 1.86 0.2439 0 No 0.0006269 Param Intra 1 of 2 Chloride (mg/L) GWC-7 2.289 n/a 1/31/2023 1.7 Nο 17 1.612 0.2791 0 None No 0.0006269 Param Intra 1 of 2 Chloride (mg/L) GWC-8 3.284 1/31/2023 1.6 19 2.034 0.5279 0 No 0.0006269 n/a No None Param Intra 1 of 2 Chloride (mg/L) GWC-9 1.765 n/a 1/31/2023 0.72J No 17 1.099 0.2742 0 None No 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) GWA-1 0.1904 n/a 1/30/2023 0.11 No 17 0.1011 0.03681 5.882 Νo 0.0006269 Param Intra 1 of 2 None 17 0.0006269 Fluoride (ma/L) GWA-11 0.1938 n/a 1/30/2023 0.09JNo 0.2673 0.07126 17.65 Kaplan-Meier sart(x) Param Intra 1 of 2 Fluoride (mg/L) GWA-2 0.2383 n/a 1/30/2023 0.11 No 17 0.1233 0.04738 5.882 None No 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) GWA-3 0 484 n/a 1/30/2023 0.12 No 17 0.2083 0.1136 5.882 No 0.0006269 Param Intra 1 of 2 None Fluoride (mg/L) GWA-4 0.4826 1/30/2023 0.12 17 0.4315 0.1085 0 0.0006269 Param Intra 1 of 2 n/a No None sart(x) Fluoride (mg/L) GWC-10 0.1902 n/a 1/30/2023 0.096 No 17 0.1044 0.03536 11.76 No 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) GWC-18 0.218 n/a 1/31/2023 0.15 No 17 0.1375 0.03319 5.882 None No 0.0006269 Param Intra 1 of 2 Fluoride (ma/L) GWC-19 0.2528 n/a 1/31/2023 0.14 No 17 0.1435 0.04503 5.882 None No 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) GWC-20 0.1931 n/a 1/31/2023 0.094 No 17 0.2872 0.06277 5.882 0.0006269 Param Intra 1 of 2 sqrt(x) 0.08559 Fluoride (mg/L) GWC-21 0.2126 n/a 1/31/2023 0.062 Nο 17 0.05234 23.53 Kaplan-Meier Nο 0.0006269 Param Intra 1 of 2 0.0006269 Fluoride (mg/L) GWC-22 0.151 n/a 1/31/2023 0.095J No 17 0.08591 0.02682 5.882 None No Param Intra 1 of 2 Fluoride (mg/L) GWC-23 0.1833 n/a 1/31/2023 0.11 No 17 0.1043 0.03254 5.882 None No 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) GWC-5 1/31/2023 0.074J No 17 n/a 0.005914 NP Intra (normality) 1 of 2 0.33 n/a n/a n/a 17.65 n/a 17 0.1013 Fluoride (ma/L) GWC-6 0.3078 n/a 1/31/2023 0.098 No 0.3089 11.76 None sqrt(x) 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) GWC-7 0.514 n/a 1/31/2023 0.26 No 17 0.6093 0.07904 0 None x^(1/3) 0.0006269 Param Intra 1 of 2 GWC-8 Fluoride (mg/L) 0.4 n/a 1/31/2023 0.18 No 18 n/a 0.005373 NP Intra (normality) 1 of 2

0.03293

0.0917

5.882

None

No

0.0006269

Param Intra 1 of 2

GWC-9

Fluoride (ma/L)

0.1716

n/a

1/31/2023

0.11

No 17

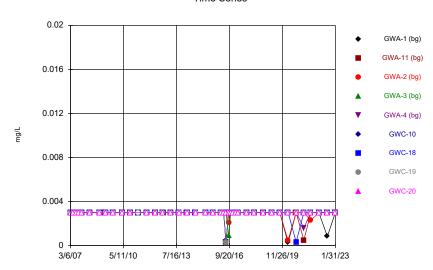
Appendix III - Intrawell Prediction Limits - All Results

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 4/19/2023, 4:43 PM Constituent <u>Well</u> Observ. Bg N Bg Mean Std. Dev. %NDs ND Adj Transform Alpha Method Sig. pH (SU) GWA-1 1/30/2023 0.0003135 Param Intra 1 of 2 7.381 6.536 7.22 No 17 6.958 0.1741 0 None No pH (SU) GWA-11 7.054 6.388 1/30/2023 No 17 6.721 0.1372 0 None No 0.0003135 Param Intra 1 of 2 pH (SU) GWA-2 7.234 6.539 1/30/2023 7.05 No 17 6.886 0.1432 0 None No 0.0003135 Param Intra 1 of 2 GWA-3 7.212 1/30/2023 17 6.771 0 0.0003135 pH (SU) 6.33 6.82 No 0.1818 None No Param Intra 1 of 2 pH (SU) GWA-4 1/30/2023 6.94 No 17 6.762 0.1637 0 No 0.0003135 pH (SU) GWC-10 7.72 6.825 1/30/2023 7.6 Nο 18 7.272 0.1867 0 None No 0.0003135 Param Intra 1 of 2 GWC-18 7.787 1/31/2023 17 7.585 0.08345 0 0.0003135 Param Intra 1 of 2 pH (SU) 7.382 7.56 No None No pH (SU) GWC-19 7.783 7.194 1/31/2023 7.65 No 19 7.488 0.1243 0 None No 0.0003135 Param Intra 1 of 2 pH (SU) GWC-20 7.608 6.972 1/31/2023 No 20 7.29 0.1358 0 No 0.0003135 Param Intra 1 of 2 7.44 None 17 6.652 pH (SU) GWC-21 7.693 5.612 1/31/2023 6.23 No 0.4288 0 None No 0.0003135 Param Intra 1 of 2 pH (SU) GWC-22 7.958 7.287 1/31/2023 7.67 No 18 7.623 0.1399 0 None No 0.0003135 Param Intra 1 of 2 pH (SU) GWC-23 7.52 6 662 1/31/2023 7.03 No 17 7 091 0.1769 0 No 0.0003135 Param Intra 1 of 2 None GWC-5 pH (SU) 7.21 6.445 1/31/2023 6.96 No 17 6.828 0.1576 0 None No 0.0003135 Param Intra 1 of 2 pH (SU) GWC-6 7.319 6.708 1/31/2023 7.24 18 7.014 0.1274 0 None No 0.0003135 Param Intra 1 of 2 No pH (SU) GWC-7 6.768 5 558 1/31/2023 5.84 No 18 6.163 0.2524 0 None Nο 0.0003135 Param Intra 1 of 2 GWC-8 1/31/2023 20 0.0003135 pH (SU) 7.787 6.575 7.09 No 7.181 0.259 0 None No Param Intra 1 of 2 GWC-9 7.324 1/31/2023 6.74 17 6.819 0.2084 0 No 0.0003135 Param Intra 1 of 2 pH (SU) 6.313 No GWA-1 1/30/2023 17 0.005914 Sulfate (mg/L) 6.6 3.8 No n/a 0 n/a NP Intra (normality) 1 of 2 Sulfate (mg/L) GWA-11 15 25 n/a 1/30/2023 9.5 Nο 17 12 17 1 271 n None Nο 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) GWA-2 22.46 n/a 1/30/2023 19.8 No 17 15.77 2.757 0 None No 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) GWA-3 1/30/2023 No 17 0.0006269 Param Intra 1 of 2 215.8 n/a 78.4 11 1.519 0 None sqrt(x) Sulfate (mg/L) GWA-4 321.2 n/a 1/30/2023 156 No 17 177.4 59.29 0 None No 0.0006269 Param Intra 1 of 2 GWC-10 1/30/2023 18 0 0.005373 NP Intra (normality) 1 of 2 Sulfate (mg/L) 33.9 n/a 11.5 No n/a n/a n/a n/a Sulfate (mg/L) GWC-18 14.45 n/a 1/31/2023 8.4 No 17 10.5 1.628 0 None No 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) **GWC-19** 20.64 n/a 1/31/2023 22.8 Yes 17 16.5 1.709 0 None No 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) GWC-20 80.7 1/31/2023 69.8 53.13 8.981 None No 0.0006269 Param Intra 1 of 2 n/a No 0 Sulfate (mg/L) GWC-21 54.24 n/a 1/31/2023 12.4 No 17 31.49 9.375 0 None No 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) GWC-22 13.34 n/a 1/31/2023 8.8 No 17 7.635 2.352 0 None No 0.0006269 Param Intra 1 of 2 GWC-23 43 1/31/2023 19.5 17 0 0.005914 NP Intra (normality) 1 of 2 Sulfate (mg/L) n/a No n/a n/a n/a GWC-5 1/31/2023 17 4.427 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) 145.9 n/a 90.6 No 0.2289 0 In(x) Sulfate (mg/L) GWC-6 144 4 n/a 1/31/2023 95.7 Nο 21 108.3 15.56 n None Nο 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) GWC-7 178.3 n/a 1/31/2023 118 No 17 109.7 28.29 0 None No 0.0006269 Param Intra 1 of 2 1/31/2023 Sulfate (mg/L) GWC-8 60.46 31.3 No 17 40.99 8.027 0 No 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) GWC-9 85.39 n/a 1/31/2023 70 No 18 69.08 6.805 0 None No 0.0006269 Param Intra 1 of 2 17 Total Dissolved Solids (mg/L) GWA-1 163.4 n/a 1/30/2023 94 No 102.9 24.95 0 None No 0.0006269 Param Intra 1 of 2 17 Total Dissolved Solids (mg/L) GWA-11 179.4 n/a 1/30/2023 130 No 121.6 23.82 0 No 0.0006269 Param Intra 1 of 2 Total Dissolved Solids (mg/L) GWA-2 268.6 n/a 1/30/2023 263 No 17 221.5 19.41 0 None No 0.0006269 Param Intra 1 of 2 Total Dissolved Solids (mg/L) GWA-3 17 0.005914 653 1/30/2023 367 No 0 n/a NP Intra (normality) 1 of 2 n/a n/a n/a n/a Total Dissolved Solids (mg/L) GWA-4 733.8 n/a 1/30/2023 459 No 17 507.8 93.12 0 0.0006269 Param Intra 1 of 2 Total Dissolved Solids (mg/L) GWC-10 268.9 n/a 1/30/2023 190 Nο 17 1794 36.87 n None Nο 0.0006269 Param Intra 1 of 2 Total Dissolved Solids (mg/L) **GWC-18** 248.3 1/31/2023 284 16 202.1 18.8 0 No 0.0006269 Param Intra 1 of 2 n/a Yes None GWC-19 1/31/2023 Total Dissolved Solids (mg/L) 281.8 n/a 239 No 16 233.4 19.68 0 No 0.0006269 Param Intra 1 of 2 Total Dissolved Solids (mg/L) GWC-20 310.9 n/a 1/31/2023 329 Yes 17 237.4 30.3 0 None Nο 0.0006269 Param Intra 1 of 2 Total Dissolved Solids (mg/L) GWC-21 398.1 1/31/2023 76 No 19 200.5 83.46 0 None No 0.0006269 Param Intra 1 of 2 n/a Total Dissolved Solids (mg/L) GWC-22 324 1/31/2023 221 No 17 n/a n/a 0 n/a 0.005914 NP Intra (normality) 1 of 2 Total Dissolved Solids (mg/L) GWC-23 290.6 n/a 1/31/2023 243 No 17 196.4 38.83 0 None No 0.0006269 Param Intra 1 of 2 GWC-5 17 Total Dissolved Solids (mg/L) 1/31/2023 0 0.005914 NP Intra (normality) 1 of 2 511 n/a 385 No n/a n/a n/a n/a Total Dissolved Solids (mg/L) GWC-6 423.2 n/a 1/31/2023 335 No 19 332.2 38.42 0 No 0.0006269 Param Intra 1 of 2 Total Dissolved Solids (mg/L) GWC-7 358.6 n/a 1/31/2023 223 Nο 17 264.9 38.59 0 None No 0.0006269 Param Intra 1 of 2 GWC-8 Total Dissolved Solids (mg/L) 444.9 1/31/2023 284 19 285 67.54 None No 0.0006269 Param Intra 1 of 2 n/a No 0 Total Dissolved Solids (mg/L) GWC-9 310.7 n/a 1/31/2023 216 No 17 226.2 34.82 None Param Intra 1 of 2

Appendix III - Interwell Prediction Limits - All Results (No Significant)

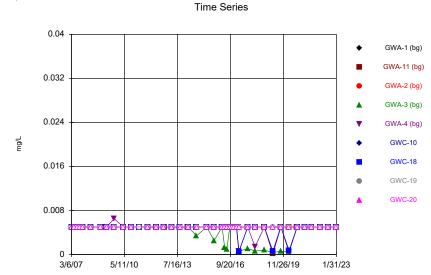
	Plant	Hammond	Client: S	outhern Comp	pany Da	ta: Hu	ffaker l	Road Land	fill Printe	d 4/19/2	023, 4:50 PM			
Constituent	Well	Upper Lim	. Lower Lim	<u>Date</u>	Observ.	Sig.	Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Calcium (mg/L)	GWC-23	123	n/a	1/31/2023	58.3	No	100	n/a	n/a	2	n/a	n/a	0.0001921	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-19	302.3	n/a	1/31/2023	22.8	No	100	n/a	n/a	0	n/a	n/a	0.0001921	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-18	686	n/a	1/31/2023	284	No	100	n/a	n/a	0	n/a	n/a	0.0001921	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-20	686	n/a	1/31/2023	320	No	100	n/a	n/a	Λ	n/a	n/a	0.0001021	NP Inter (normality) 1 of 2

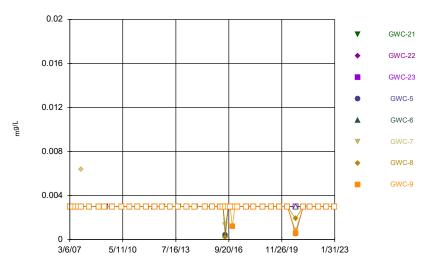
Appendix III - Trend Tests - Significant Results Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 4/19/2023, 4:54 PM


	Client: Southern	Company	рата: нитан	ker Road La	andīli P	rinted 4/19/20	23, 4:54 PM				
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Calcium (mg/L)	GWC-23	2.525	91	81	Yes	20	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-2 (bg)	0.9964	101	81	Yes	20	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GWA-4 (bg)	-30.51	-93	-81	Yes	20	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GWC-20	12.82	118	81	Yes	20	0	n/a	n/a	0.01	NP

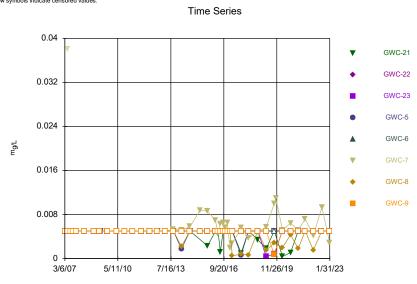
Appendix III - Trend Tests - All Results

	Plant Hammond	Client: Southern Company		Data: Huffaker Road Landfill			Printed 4/19/202				
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Calcium (mg/L)	GWA-1 (bg)	0.143	36	81	No	20	5	n/a	n/a	0.01	NP
Calcium (mg/L)	GWA-11 (bg)	0.1088	14	81	No	20	5	n/a	n/a	0.01	NP
Calcium (mg/L)	GWA-2 (bg)	1.331	74	81	No	20	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWA-3 (bg)	-1.365	-62	-81	No	20	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWA-4 (bg)	-3.201	-66	-81	No	20	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-23	2.525	91	81	Yes	20	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-1 (bg)	0	-7	-81	No	20	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-11 (bg)	-0.3201	-72	-81	No	20	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-2 (bg)	0.9964	101	81	Yes	20	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-3 (bg)	-6.533	-77	-81	No	20	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-4 (bg)	-11.69	-77	-81	No	20	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWC-19	0.4657	38	81	No	20	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GWA-1 (bg)	0.9253	11	81	No	20	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GWA-11 (bg)	-0.1605	-5	-81	No	20	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GWA-2 (bg)	4.186	65	81	No	20	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GWA-3 (bg)	-16.09	-59	-81	No	20	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GWA-4 (bg)	-30.51	-93	-81	Yes	20	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GWC-18	3.363	32	74	No	19	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GWC-20	12.82	118	81	Yes	20	0	n/a	n/a	0.01	NP

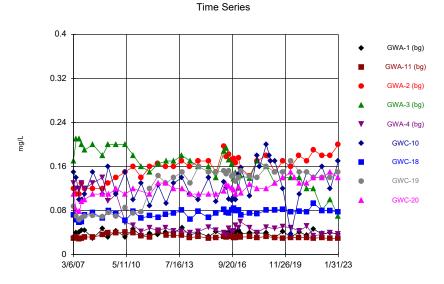

FIGURE A.


Constituent: Antimony Analysis Run 4/19/2023 4:30 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

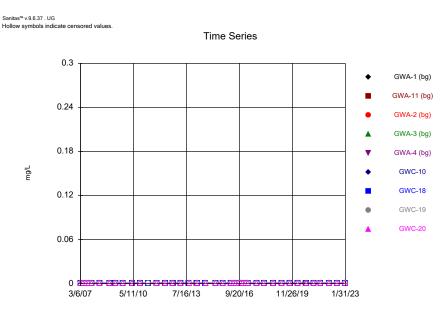
Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.


Constituent: Arsenic Analysis Run 4/19/2023 4:30 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

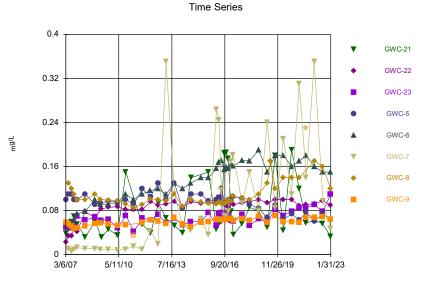
Time Series

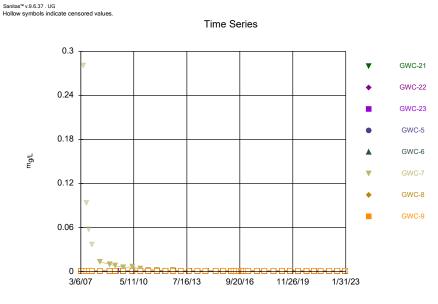

Constituent: Antimony Analysis Run 4/19/2023 4:30 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

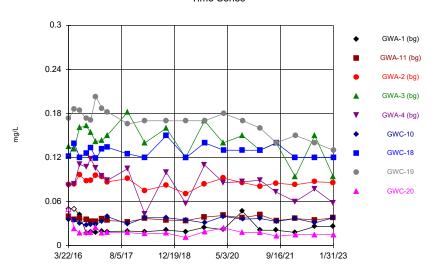


Constituent: Arsenic Analysis Run 4/19/2023 4:30 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

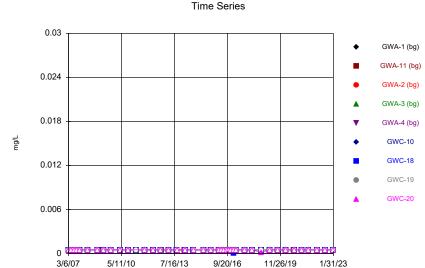

Sanitas™ v.9.6.37 . UG Sanitas™ v.9.6.37 . UG

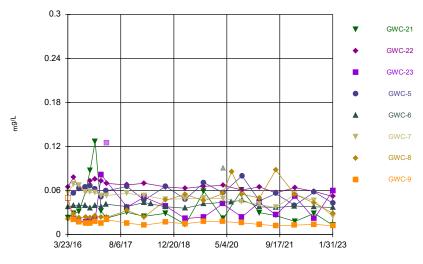

Constituent: Barium Analysis Run 4/19/2023 4:30 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Beryllium Analysis Run 4/19/2023 4:30 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

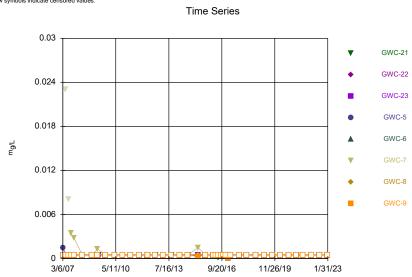


Constituent: Barium Analysis Run 4/19/2023 4:30 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Constituent: Beryllium Analysis Run 4/19/2023 4:30 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Constituent: Boron Analysis Run 4/19/2023 4:30 PM View: Constituents View Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

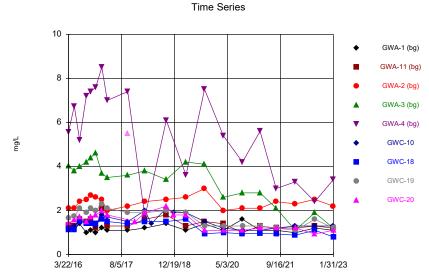
Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.


Constituent: Cadmium Analysis Run 4/19/2023 4:30 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

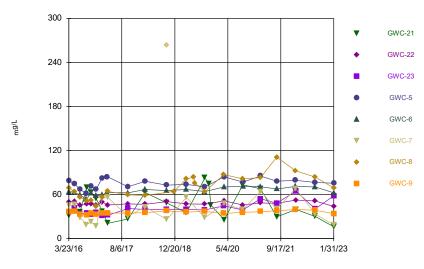
Time Series

Constituent: Boron Analysis Run 4/19/2023 4:30 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

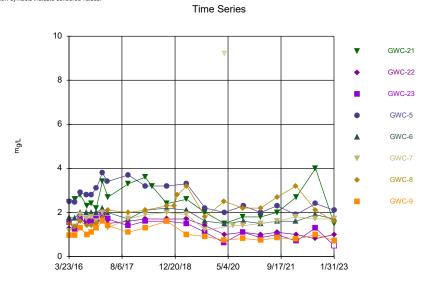
Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.


Constituent: Cadmium Analysis Run 4/19/2023 4:30 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

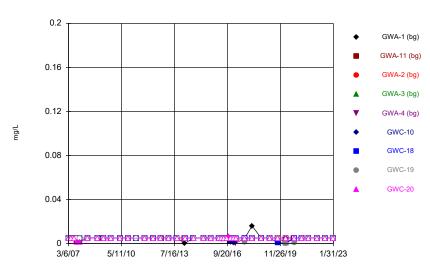
Sanitas™ v.9.6.37 . UG Sanitas™ v.9.6.37 . UG


Constituent: Calcium Analysis Run 4/19/2023 4:30 PM View: Constituents View Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

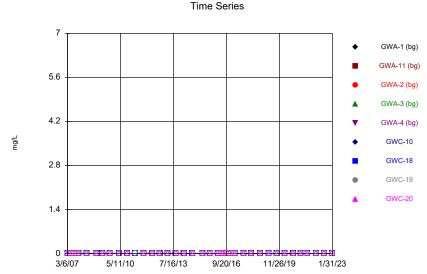
Sanitas™ v.9.6.37 . UG

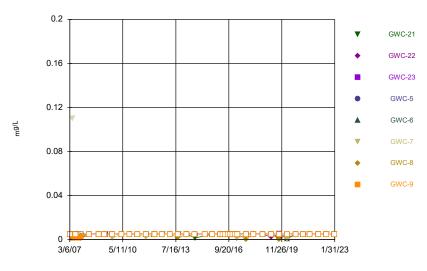

Constituent: Chloride Analysis Run 4/19/2023 4:30 PM View: Constituents View Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Time Series

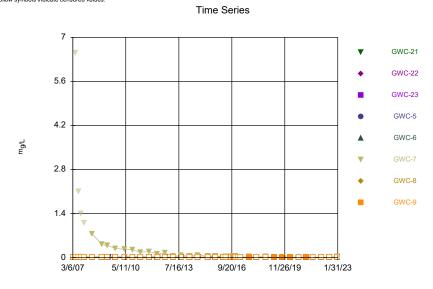

Constituent: Calcium Analysis Run 4/19/2023 4:30 PM View: Constituents View Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.


Analysis Run 4/19/2023 4:30 PM View: Constituents View Constituent: Chloride Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Constituent: Chromium Analysis Run 4/19/2023 4:30 PM View: Constituents View Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values


Constituent: Cobalt Analysis Run 4/19/2023 4:30 PM View: Constituents View Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Time Series

Constituent: Chromium Analysis Run 4/19/2023 4:30 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.


Constituent: Cobalt Analysis Run 4/19/2023 4:30 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

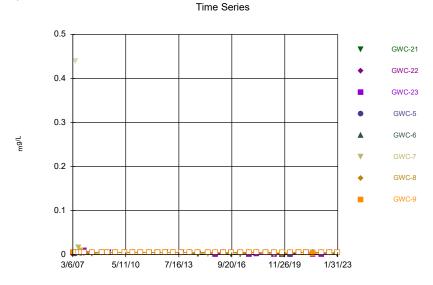
Hollow symbols indicate censored values

3/22/16

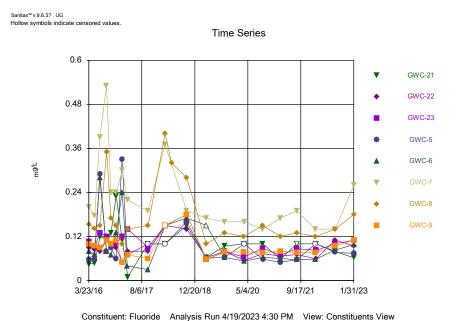
8/5/17

Constituent: Copper Analysis Run 4/19/2023 4:30 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Time Series 0.6 0.48 0.48 0.36 0.36 0.36 0.36 0.36 0.37 0.38 0.39 □ GWA-4 (bg) □ GWA-4 (bg) □ GWC-10 □ GWC-18 □ GWC-19 □ GWC-19

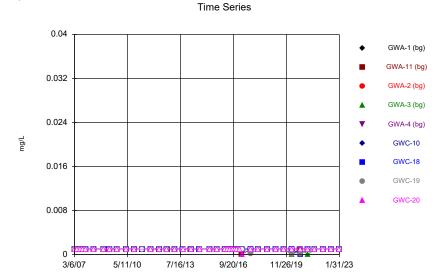

Constituent: Fluoride Analysis Run 4/19/2023 4:30 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

5/3/20

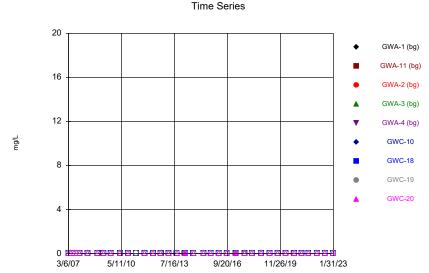

9/16/21

1/31/23

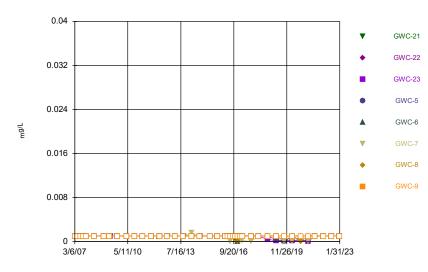
12/19/18


Constituent: Copper Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

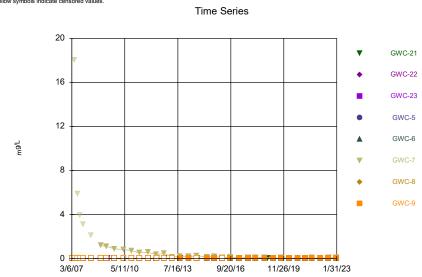
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

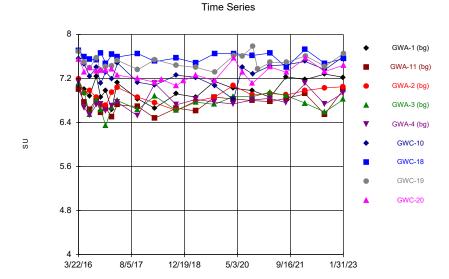


Constituent: Lead Analysis Run 4/19/2023 4:30 PM View: Constituents View Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

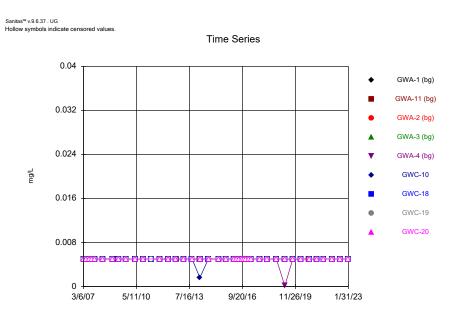

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values

Constituent: Nickel Analysis Run 4/19/2023 4:30 PM View: Constituents View Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

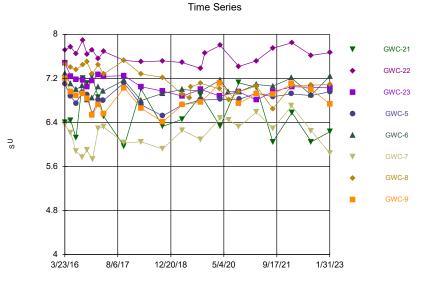

Sanitas™ v.9.6.37 . UG

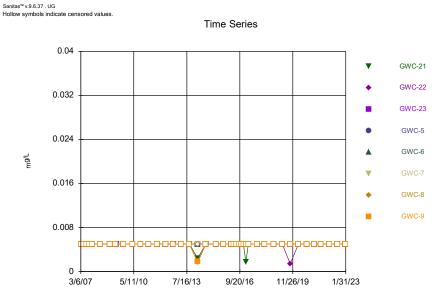

Constituent: Lead Analysis Run 4/19/2023 4:30 PM View: Constituents View Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

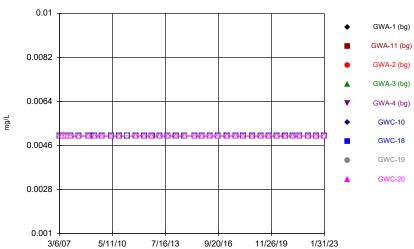


Constituent: Nickel Analysis Run 4/19/2023 4:31 PM View: Constituents View Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG

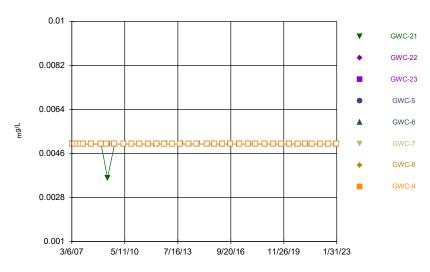

Constituent: pH Analysis Run 4/19/2023 4:31 PM View: Constituents View Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Selenium Analysis Run 4/19/2023 4:31 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

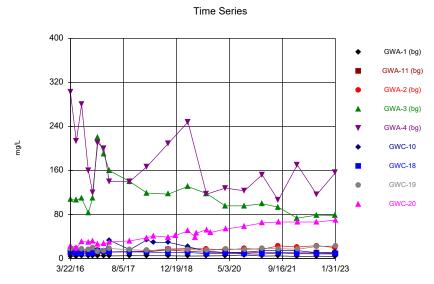


Constituent: pH Analysis Run 4/19/2023 4:31 PM View: Constituents View Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

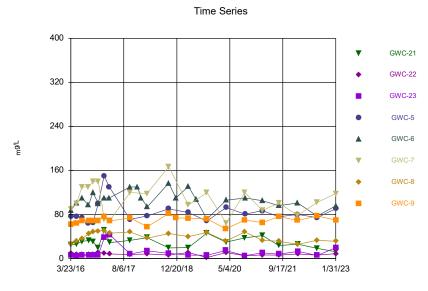
Constituent: Selenium Analysis Run 4/19/2023 4:31 PM View: Constituents View Plant Hammond Client: Southern Company Data: Huffaker Road Landfill



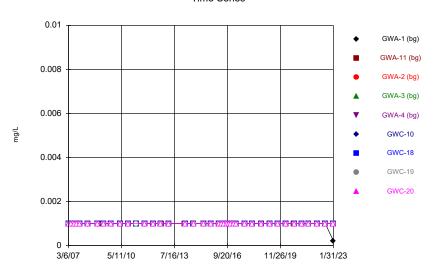
Plant Hammond


Constituent: Silver Analysis Run 4/19/2023 4:31 PM View: Constituents View Client: Southern Company Data: Huffaker Road Landfill

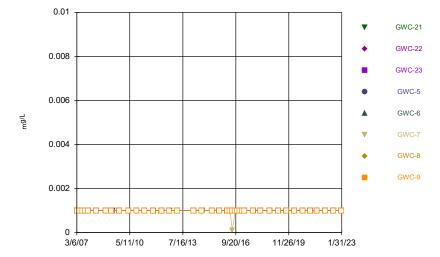
Time Series


Constituent: Silver Analysis Run 4/19/2023 4:31 PM View: Constituents View Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

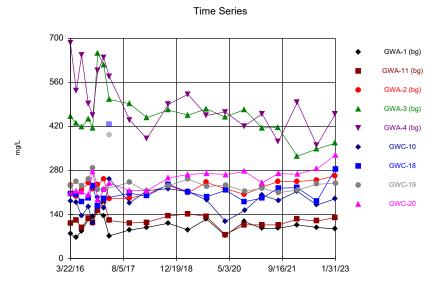
Sanitas™ v.9.6.37 . UG


Constituent: Sulfate Analysis Run 4/19/2023 4:31 PM View: Constituents View Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

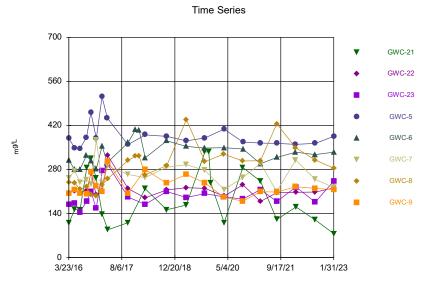
Sanitas™ v.9.6.37 . UG



Analysis Run 4/19/2023 4:31 PM View: Constituents View Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

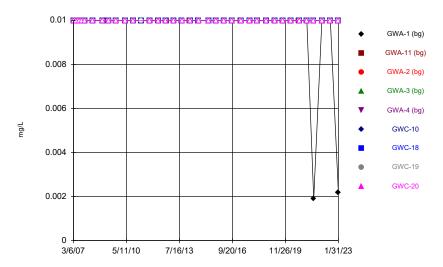

Constituent: Thallium Analysis Run 4/19/2023 4:31 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Time Series

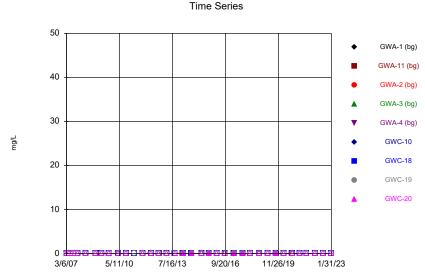

Constituent: Thallium Analysis Run 4/19/2023 4:31 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

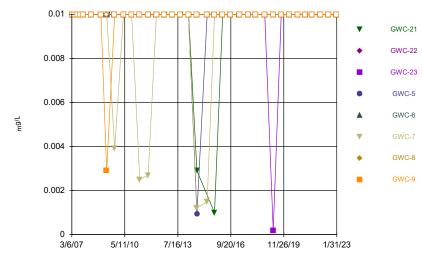
Sanitas™ v.9.6.37 . UG

Constituent: Total Dissolved Solids Analysis Run 4/19/2023 4:31 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

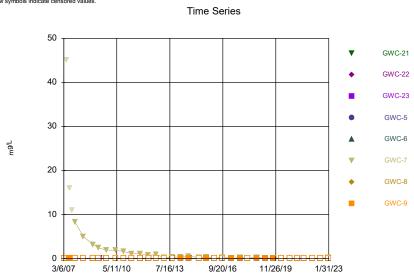

Sanitas™ v.9.6.37 . UG

Constituent: Total Dissolved Solids Analysis Run 4/19/2023 4:31 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.


Constituent: Vanadium Analysis Run 4/19/2023 4:31 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values


Constituent: Zinc Analysis Run 4/19/2023 4:31 PM View: Constituents View Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Time Series

Constituent: Vanadium Analysis Run 4/19/2023 4:31 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

Constituent: Zinc Analysis Run 4/19/2023 4:31 PM View: Constituents View Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.003		<0.003	<0.003	<0.003			<0.003	
3/7/2007		<0.003				<0.003	<0.003		<0.003
5/8/2007	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003			
5/9/2007							<0.003	<0.003	<0.003
7/7/2007	<0.003		<0.003						
7/17/2007		<0.003		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
8/28/2007	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	
8/29/2007									<0.003
11/6/2007	<0.003		<0.003	<0.003	<0.003				
11/7/2007		<0.003				<0.003	<0.003	<0.003	<0.003
5/7/2008							<0.003	<0.003	<0.003
5/8/2008				<0.003	<0.003				
5/9/2008	<0.003	<0.003	<0.003			<0.003			
12/2/2008		<0.003				<0.003			
12/3/2008	<0.003		<0.003	<0.003	<0.003		<0.003		
12/4/2008								<0.003	
12/5/2008									<0.003
4/7/2009	<0.003		<0.003	<0.003	<0.003				
4/8/2009		<0.003				<0.003			0.000
4/14/2009							<0.003	<0.003	<0.003
9/30/2009	0.000	0.000	0.000						<0.003
10/1/2009	<0.003	<0.003	<0.003			<0.003	<0.003		
10/2/2009				<0.003	<0.003			<0.003	0.000
4/13/2010							<0.003	<0.003	<0.003
4/14/2010	<0.003	<0.003	0.000	<0.003	<0.003	<0.003			
10/7/2010			<0.003				-0.000	-0.000	-0.000
10/12/2010	-0.000	-0.000				-0.000	<0.003	<0.003	<0.003
10/13/2010	<0.003	<0.003		-0.000	-0.000	<0.003			
10/14/2010				<0.003	<0.003				
4/5/2011 4/6/2011	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	
10/4/2011	<0.003	<0.003	<0.003			<0.003	<0.003	<0.003	
10/4/2011		<0.003	<0.003			<0.003			
10/0/2011	<0.003		<0.003						
10/10/2011	<0.003			<0.003	<0.003		<0.003	<0.003	<0.003
4/3/2012	<0.003		<0.003	~0.003	~0.003		~0.003	~0.003	~ 0.003
4/4/2012	10.003		10.003	<0.003	<0.003				
4/5/2012				~0.003	~0.003		<0.003	<0.003	
4/9/2012							10.003	10.000	<0.003
4/10/2012		<0.003				<0.003			10.000
9/19/2012		10.003	<0.003			10.003	<0.003		
9/24/2012	<0.003		~0.003		<0.003		~0.003		
9/25/2012	10.003				10.000			<0.003	<0.003
9/26/2012		<0.003		<0.003		<0.003		10.000	10.000
3/12/2013	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003			
3/13/2013	10.003	10.003	10.003	10.003	10.000	10.003	<0.003	<0.003	<0.003
9/9/2013			<0.003				5.000	5.000	0.000
9/10/2013		<0.003	0.000	<0.003	<0.003	<0.003	<0.003		
9/10/2013	<0.003	-0.000		-0.000	-0.000	-0.000	-0.000	<0.003	<0.003
3/4/2014	<0.003	<0.003	<0.003			<0.003		5.000	0.000
3/10/2014	5.000	5.000	5.000			5.000	<0.003	<0.003	<0.003
3/11/2014				<0.003	<0.003		5.000	5.000	0.000
0/11/2014				-0.000	-0.000				

0/2/201	4	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3/201 9/8/201		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003		
					<0.003	<0.003			<0.002	<0.003
9/9/201		-0.000	-0.000		-0.000	-0.000	-0.000		<0.003	<0.003
4/21/20		<0.003	<0.003		<0.003	<0.003	<0.003		.0.000	
4/22/20				<0.003				<0.003	<0.003	.0.000
4/23/20										<0.003
9/29/20			<0.003		<0.003	<0.003				
9/30/20		<0.003		<0.003			<0.003	<0.003	<0.003	<0.003
3/22/20		<0.003	<0.003	<0.003	<0.003	<0.003				
3/23/20							<0.003			<0.003
3/24/20								<0.003	<0.003	
5/17/20		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003			
5/18/20								<0.003	<0.003	<0.003
7/5/201		<0.003		<0.003	<0.003					
7/6/201			0.0003 (J)			0.0003 (J)	0.0005 (J)		0.0003 (J)	
7/7/201								<0.003		<0.003
9/7/201		<0.003	<0.003	0.0021 (J)	0.0009 (J)	<0.003	<0.003			
9/8/201								<0.003	<0.003	<0.003
10/18/2		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003		<0.003	
10/19/2								<0.003		<0.003
12/6/20		<0.003	<0.003		<0.003	<0.003	<0.003			
12/7/20				<0.003					<0.003	<0.003
12/8/20								<0.003		
1/31/20		<0.003		<0.003						
2/1/201			<0.003		<0.003	<0.003				
2/2/201							<0.003	<0.003	<0.003	
2/3/201										<0.003
3/23/20		<0.003		<0.003	<0.003					
3/24/20			<0.003			<0.003				
3/27/20							<0.003	<0.003	<0.003	<0.003
10/4/20		<0.003		<0.003	<0.003	<0.003				
10/5/20			<0.003				<0.003	<0.003	<0.003	<0.003
3/14/20		<0.003		<0.003						
3/15/20			<0.003		<0.003	<0.003	<0.003		<0.003	
3/16/20								<0.003		<0.003
10/4/20		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003		<0.003	
10/5/20								<0.003		<0.003
4/5/201					<0.003					
4/8/201		<0.003	<0.003	<0.003		<0.003				
4/9/201							<0.003	<0.003	<0.003	<0.003
9/30/20		<0.003	<0.003	<0.003	<0.003	<0.003				
10/1/20							<0.003	<0.003	<0.003	<0.003
3/26/20		0.00028 (J)	<0.003	0.00049 (J)	<0.003	<0.003				
3/27/20							<0.003			
3/30/20								<0.003		
3/31/20									<0.003	<0.003
9/21/20				<0.003						
9/22/20			<0.003							
9/23/20		<0.003			<0.003	<0.003				<0.003
9/24/20								0.00033 (J)		
9/25/20							<0.003			
9/28/20	120								<0.003	

3/8/2021	GWA-1 (bg) <0.003	GWA-11 (bg) 0.0005 (J)	GWA-2 (bg)	GWA-3 (bg) <0.003	GWA-4 (bg) 0.0016 (J)	GWC-10	GWC-18	GWC-19	GWC-20
3/9/2021			<0.003			<0.003	<0.003		
3/10/2021								<0.003	<0.003
8/9/2021	<0.003		0.0023 (J)	<0.003	<0.003				
8/10/2021		<0.003				<0.003	<0.003	<0.003	<0.003
2/4/2022	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003		
2/7/2022								<0.003	<0.003
8/8/2022	0.00084 (J)	<0.003	<0.003	<0.003	<0.003				
8/9/2022						<0.003	<0.003	<0.003	<0.003
1/30/2023	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003			
1/31/2023							<0.003	<0.003	<0.003

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.003	<0.003	<0.003					
3/7/2007				<0.003	<0.003			<0.003
5/8/2007				<0.003				<0.003
5/9/2007	<0.003	<0.003	<0.003		<0.003	<0.003	<0.003	
7/6/2007				<0.003		<0.003	<0.003	<0.003
7/17/2007	<0.003	<0.003	<0.003		<0.003			
8/28/2007				<0.003	<0.003	<0.003	<0.003	<0.003
8/29/2007	<0.003	<0.003	<0.003					
11/6/2007				<0.003	<0.003	<0.003	0.0064 (o)	<0.003
11/7/2007	<0.003	<0.003	<0.003					
5/7/2008	<0.003	<0.003	<0.003					
5/8/2008				<0.003	<0.003	<0.003	<0.003	<0.003
12/2/2008						<0.003	<0.003	<0.003
12/3/2008				<0.003	<0.003			
12/5/2008	<0.003	<0.003	<0.003					
4/7/2009	0.000	0.000	0.000	<0.003	<0.003			
4/8/2009				-0.000	10.000	<0.003	<0.003	<0.003
4/14/2009		<0.003	<0.003			-0.000	-0.000	-0.000
4/27/2009	<0.003	-0.003	10.000					
9/30/2009	<0.003	<0.003					<0.003	<0.003
10/1/2009	~0.003	~ 0.003	<0.003	<0.003	<0.003	<0.003	~ 0.003	~0.003
	<0.003	<0.003	~0.003	~0.003		<0.003	<0.003	<0.003
4/13/2010	<0.003	<0.003	10,000	-0.000	<0.003	<0.003	<0.003	<0.003
4/14/2010			<0.003	<0.003	-0.000			
10/6/2010					<0.003	-0.000		
10/7/2010	.0.000					<0.003		
10/12/2010	<0.003	<0.003					0.000	0.000
10/13/2010			<0.003				<0.003	<0.003
10/14/2010				<0.003				
4/5/2011				<0.003	<0.003	<0.003	<0.003	<0.003
4/6/2011		<0.003	<0.003					
10/4/2011					<0.003	<0.003	<0.003	<0.003
10/5/2011	<0.003	<0.003						
10/12/2011			<0.003	<0.003				
4/3/2012					<0.003	<0.003	<0.003	
4/4/2012				<0.003				<0.003
4/9/2012		<0.003	<0.003					
4/10/2012	<0.003							
9/18/2012					<0.003	<0.003		
9/19/2012			<0.003				<0.003	<0.003
9/24/2012				<0.003				
9/25/2012		<0.003						
9/26/2012	<0.003							
3/12/2013				<0.003	<0.003	<0.003	<0.003	<0.003
3/13/2013	<0.003	<0.003	<0.003					
9/9/2013					<0.003			
9/10/2013			<0.003	<0.003		<0.003	<0.003	<0.003
9/11/2013	<0.003	<0.003						
3/5/2014				<0.003	<0.003	<0.003	<0.003	<0.003
3/11/2014	<0.003	<0.003	<0.003					
9/3/2014			<0.003					<0.003
9/8/2014					<0.003	<0.003		
9/9/2014	<0.003	<0.003		<0.003			<0.003	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.003		<0.003		<0.003
4/22/2015					<0.003		<0.003	
4/23/2015		<0.003	<0.003					
9/29/2015				<0.003	<0.003	<0.003	<0.003	<0.003
9/30/2015	<0.003	<0.003	<0.003					
3/23/2016		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
3/24/2016	<0.003							
5/17/2016				<0.003	<0.003			
5/18/2016	<0.003	<0.003				<0.003	<0.003	<0.003
5/19/2016			<0.003					
7/6/2016				0.0004 (J)	0.0005 (J)	0.0013 (J)	0.0002 (J)	<0.003
7/7/2016	<0.003	<0.003	<0.003					
9/7/2016				<0.003	<0.003	<0.003		
9/8/2016	<0.003	<0.003	<0.003				<0.003	<0.003
10/18/2016				<0.003	<0.003	<0.003	<0.003	
10/19/2016	<0.003	<0.003	<0.003					<0.003
12/7/2016	<0.003	<0.003	<0.003					
12/8/2016				<0.003	<0.003	<0.003	<0.003	0.0012 (J)
2/1/2017				<0.003	<0.003			
2/2/2017	<0.003	<0.003				<0.003	<0.003	<0.003
2/3/2017			<0.003					
3/23/2017				<0.003	<0.003			
3/24/2017						<0.003	<0.003	
3/27/2017	<0.003	<0.003	<0.003					<0.003
10/4/2017				<0.003	<0.003	<0.003		
10/5/2017	<0.003	<0.003	<0.003				<0.003	<0.003
3/14/2018							<0.003	
3/15/2018	<0.003	<0.003	<0.003			<0.003		<0.003
3/16/2018				<0.003	<0.003			
10/4/2018	<0.003	<0.003		<0.003	<0.003	<0.003	<0.003	
10/5/2018			<0.003					<0.003
4/8/2019			<0.003		<0.003	<0.003	<0.003	<0.003
4/9/2019	<0.003	<0.003		<0.003				
10/1/2019	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
3/26/2020			<0.003					
3/27/2020							<0.003	<0.003
3/30/2020						<0.003		
3/31/2020	<0.003	<0.003		<0.003	<0.003			
9/23/2020		<0.003	<0.003					
9/24/2020	<0.003					0.0008 (J)	0.0019 (J)	0.00056 (J)
9/25/2020				0.00052 (J)	<0.003			
3/9/2021	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
8/10/2021	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
2/4/2022	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
2/7/2022	<0.003	<0.003	<0.003		<0.003			
8/8/2022	<0.003	<0.003	<0.003	<0.003	<0.003		<0.003	<0.003
8/9/2022	<0.003	<0.003		<0.003		<0.003	<0.003	<0.003
8/10/2022 1/31/2023	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003 <0.003	<0.003	<0.003
1/31/2023	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.000	-0.003

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.005		<0.005	<0.005	<0.005			<0.005	
3/7/2007		<0.005				<0.005	<0.005		<0.005
5/8/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
5/9/2007							<0.005	<0.005	<0.005
7/7/2007	<0.005		<0.005						
7/17/2007		<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/28/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
8/29/2007									<0.005
11/6/2007	<0.005		<0.005	<0.005	<0.005				
11/7/2007		<0.005				<0.005	<0.005	<0.005	<0.005
5/7/2008							<0.005	<0.005	<0.005
5/8/2008				<0.005	<0.005				
5/9/2008	<0.005	<0.005	<0.005			<0.005			
12/2/2008		<0.005				<0.005			
12/3/2008	<0.005		<0.005	<0.005	<0.005		<0.005		
12/4/2008								<0.005	
12/5/2008									<0.005
4/7/2009	<0.005		<0.005	<0.005	<0.005				
4/8/2009		<0.005				<0.005			
4/14/2009							<0.005	<0.005	<0.005
9/30/2009									<0.005
10/1/2009	<0.005	<0.005	<0.005			<0.005	<0.005		
10/2/2009				<0.005	0.0065			<0.005	
4/13/2010			<0.005				<0.005	<0.005	<0.005
4/14/2010	<0.005	<0.005		<0.005	<0.005	<0.005			
10/7/2010			<0.005						
10/12/2010							<0.005	<0.005	<0.005
10/13/2010	<0.005	<0.005				<0.005			
10/14/2010				<0.005	<0.005				
4/5/2011				<0.005	<0.005				
4/6/2011	<0.005	<0.005	<0.005			<0.005	<0.005	<0.005	
10/4/2011		<0.005				<0.005			
10/6/2011			<0.005						
10/10/2011	<0.005			.0.005	0.005		0.005	0.005	.0.005
10/12/2011	.0.005		0.005	<0.005	<0.005		<0.005	<0.005	<0.005
4/3/2012	<0.005		<0.005	.0.005	0.005				
4/4/2012				<0.005	<0.005		0.005	0.005	
4/5/2012							<0.005	<0.005	.0.005
4/9/2012		.0.005				0.005			<0.005
4/10/2012		<0.005	0.005			<0.005	0.005		
9/19/2012	.0.005		<0.005		0.005		<0.005		
9/24/2012	<0.005				<0.005			0.005	.0.005
9/25/2012		.0.005		.0.005		0.005		<0.005	<0.005
9/26/2012	-0.005	<0.005	10.005	<0.005	-0.005	<0.005			
3/12/2013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.005	.0.005	0.005
3/13/2013			0.005				<0.005	<0.005	<0.005
9/9/2013		<0.00E	<0.005	<0.00E	<0.00E	<0.00E	<0.00E		
9/10/2013	<0.00E	<0.005		<0.005	<0.005	<0.005	<0.005	<0.00E	<0.00F
9/11/2013	<0.005	<0.00E	<0.00E			<0.00E		<0.005	<0.005
3/4/2014	<0.005	<0.005	<0.005			<0.005	<0.00E	<0.00E	<0.00F
3/10/2014				0.005	<0.00E		<0.005	<0.005	<0.005
3/11/2014				0.005	<0.005				

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3/2014	<0.005	<0.005	<0.005			<0.005	<0.005		
9/8/2014				0.0034 (J)	<0.005				
9/9/2014								<0.005	<0.005
4/21/2015	<0.005	<0.005		<0.005	<0.005	<0.005			
4/22/2015			<0.005				<0.005	<0.005	
4/23/2015									<0.005
9/29/2015		<0.005		0.0025 (J)	<0.005				
9/30/2015	<0.005		<0.005			<0.005	<0.005	<0.005	<0.005
3/22/2016	<0.005	<0.005	<0.005	<0.005	<0.005				
3/23/2016						<0.005			<0.005
3/24/2016							<0.005	<0.005	
5/17/2016	<0.005	<0.005	<0.005	0.00129 (J)	<0.005	<0.005			
5/18/2016							<0.005	<0.005	<0.005
7/5/2016	<0.005		<0.005	0.001 (J)					
7/6/2016		<0.005			<0.005	<0.005		<0.005	
7/7/2016							<0.005		<0.005
9/7/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
9/8/2016							<0.005	<0.005	<0.005
10/18/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	
10/19/2016							<0.005		<0.005
12/6/2016	<0.005	<0.005		<0.005	<0.005	<0.005			
12/7/2016			<0.005					<0.005	<0.005
12/8/2016							<0.005		
1/31/2017	<0.005		<0.005						
2/1/2017		<0.005		<0.005	<0.005				
2/2/2017						<0.005	<0.005	<0.005	
2/3/2017									<0.005
3/23/2017	<0.005		<0.005	0.0006 (J)					
3/24/2017		<0.005			0.0006 (J)				
3/27/2017						<0.005	0.0005 (J)	<0.005	<0.005
10/4/2017	<0.005		<0.005	0.0011 (J)	<0.005				
10/5/2017		<0.005				<0.005	<0.005	<0.005	<0.005
3/14/2018	<0.005		<0.005						
3/15/2018		<0.005		0.00066 (J)	0.0014 (J)	<0.005		<0.005	
3/16/2018							<0.005		<0.005
10/4/2018	<0.005	<0.005	<0.005	0.0008 (J)	<0.005	<0.005		<0.005	
10/5/2018							<0.005		<0.005
4/5/2019				0.00035 (J)					
4/8/2019	<0.005	0.00012 (J)	<0.005		0.00023 (J)				
4/9/2019						<0.005	0.00063 (J)	<0.005	<0.005
9/30/2019	<0.005	<0.005	<0.005	0.00058 (J)	<0.005				
10/1/2019						<0.005	<0.005	<0.005	<0.005
3/26/2020	<0.005	<0.005	<0.005	0.00048 (J)	0.00044 (J)				
3/27/2020						<0.005			
3/30/2020							0.00073 (J)		
3/31/2020								<0.005	<0.005
9/21/2020			<0.005						
9/22/2020		<0.005							
9/23/2020	<0.005			<0.005	<0.005				<0.005
9/24/2020							<0.005		
9/25/2020						<0.005			
9/28/2020								<0.005	

2/0/2001	,	(0)	GWA-2 (bg)	(0)	(- 3)	GWC-10	GWC-18	GWC-19	GWC-20
3/8/2021	<0.005	<0.005		<0.005	<0.005				
3/9/2021			<0.005			<0.005	<0.005		
3/10/2021								<0.005	<0.005
8/9/2021	<0.005		<0.005	<0.005	<0.005				
8/10/2021		<0.005				<0.005	<0.005	<0.005	<0.005
2/4/2022	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		
2/7/2022								<0.005	<0.005
8/8/2022	<0.005	<0.005	<0.005	<0.005	<0.005				
8/9/2022						<0.005	<0.005	<0.005	<0.005
1/30/2023	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
1/31/2023							<0.005	<0.005	<0.005

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.005	<0.005	<0.005					
3/7/2007				<0.005	<0.005			<0.005
5/8/2007				<0.005				<0.005
5/9/2007	<0.005	<0.005	<0.005		<0.005	0.038 (o)	<0.005	
7/6/2007				<0.005		<0.005	<0.005	<0.005
7/17/2007	<0.005	<0.005	<0.005		<0.005			
8/28/2007				<0.005	<0.005	<0.005	<0.005	<0.005
8/29/2007	<0.005	<0.005	<0.005					
11/6/2007				<0.005	<0.005	<0.005	<0.005	<0.005
11/7/2007	<0.005	<0.005	<0.005					
5/7/2008	<0.005	<0.005	<0.005					
5/8/2008				<0.005	<0.005	<0.005	<0.005	<0.005
12/2/2008						<0.005	<0.005	<0.005
12/3/2008				<0.005	<0.005			
12/5/2008	<0.005	<0.005	<0.005					
4/7/2009				<0.005	<0.005			
4/8/2009						<0.005	<0.005	<0.005
4/14/2009		<0.005	<0.005					
4/27/2009	<0.005							
9/30/2009	<0.005	<0.005					<0.005	<0.005
10/1/2009			<0.005	<0.005	<0.005	<0.005		
4/13/2010	<0.005	<0.005			<0.005	<0.005	<0.005	<0.005
4/14/2010			<0.005	<0.005				
10/6/2010					<0.005			
10/7/2010						<0.005		
10/12/2010	<0.005	<0.005						
10/13/2010			<0.005				<0.005	<0.005
10/14/2010				<0.005				
4/5/2011				<0.005	<0.005	<0.005	<0.005	<0.005
4/6/2011		<0.005	<0.005					
10/4/2011					<0.005	<0.005	<0.005	<0.005
10/5/2011	<0.005	<0.005						
10/12/2011			<0.005	<0.005				
4/3/2012					<0.005	<0.005	<0.005	
4/4/2012				<0.005				<0.005
4/9/2012		<0.005	<0.005					
4/10/2012	<0.005							
9/18/2012					<0.005	<0.005		
9/19/2012			<0.005				<0.005	<0.005
9/24/2012				<0.005				
9/25/2012		<0.005						
9/26/2012	<0.005							
3/12/2013				<0.005	<0.005	<0.005	<0.005	<0.005
3/13/2013	<0.005	<0.005	<0.005					
9/9/2013					<0.005			
9/10/2013			<0.005	<0.005		0.0053	<0.005	<0.005
9/11/2013	<0.005	<0.005						
3/5/2014				0.0017 (J)	<0.005	0.0052	0.0022 (J)	<0.005
3/11/2014	<0.005	<0.005	<0.005					
9/3/2014			<0.005					<0.005
9/8/2014					<0.005	0.0058		
9/9/2014	<0.005	<0.005		<0.005			<0.005	

					,			
	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.005		0.0088		<0.005
4/22/2015					<0.005		<0.005	
4/23/2015		<0.005	<0.005					
9/29/2015				<0.005	<0.005	0.0086	<0.005	<0.005
9/30/2015	0.0023 (J)	<0.005	<0.005					
3/23/2016		<0.005	<0.005	<0.005	<0.005	0.00693	<0.005	<0.005
3/24/2016	<0.005							
5/17/2016				<0.005	<0.005			
5/18/2016	<0.005	<0.005				0.00451 (J)	<0.005	<0.005
5/19/2016			<0.005					
7/6/2016				<0.005	<0.005	0.0063	<0.005	<0.005
7/7/2016	0.0012 (J)	<0.005	<0.005					
9/7/2016				<0.005	<0.005	0.0065		
9/8/2016	<0.005	<0.005	<0.005				<0.005	<0.005
10/18/2016	i			<0.005	<0.005	0.0056	<0.005	
10/19/2016	< 0.005	<0.005	<0.005					<0.005
12/7/2016	<0.005	<0.005	<0.005					
12/8/2016				<0.005	<0.005	0.0065	<0.005	<0.005
2/1/2017				<0.005	<0.005			
2/2/2017	<0.005	<0.005				0.002 (J)	<0.005	<0.005
2/3/2017			<0.005					
3/23/2017				<0.005	<0.005			
3/24/2017						0.0027 (J)	0.0005 (J)	
3/27/2017	<0.005	<0.005	<0.005			, ,	, ,	<0.005
10/4/2017				0.0006 (J)	<0.005	0.0056		
10/5/2017	0.001 (J)	<0.005	<0.005				0.0008 (J)	<0.005
3/14/2018	. ,						0.00064 (J)	
3/15/2018	<0.005	<0.005	<0.005			0.0037 (J)		<0.005
3/16/2018				<0.005	<0.005	()		
10/4/2018	0.0034 (J)	<0.005		<0.005	<0.005	0.0049 (J)	<0.005	
10/5/2018	(,,		<0.005			(1)		<0.005
4/8/2019			0.00034 (J)		<0.005	0.0057	0.0015 (J)	<0.005
4/9/2019	0.0018 (J)	<0.005	. ,	<0.005			. ,	
10/1/2019	<0.005	<0.005	0.00082 (J)	<0.005	<0.005	0.01	0.0028 (J)	0.00071 (J)
11/6/2019			(-,			0.011	(,,	(-,
3/26/2020			<0.005					
3/27/2020							0.002 (J)	<0.005
3/30/2020						0.0052	(-)	
3/31/2020	0.00035 (J)	<0.005		<0.005	<0.005			
9/23/2020	(-,	<0.005	<0.005					
9/24/2020	0.0011 (J)					0.0064	0.0043 (J)	<0.005
9/25/2020	0.0011 (0)			<0.005	<0.005	0.0001	0.00 10 (0)	0.000
3/9/2021	<0.005	<0.005	<0.005	<0.005	<0.005	0.0052	0.0018 (J)	<0.005
8/10/2021	<0.005	<0.005	<0.005	<0.005	<0.005	0.0072	0.005	<0.005
2/4/2022	0.000	0.000	0.000	<0.005	<0.005	0.0042 (J)	0.0015 (J)	<0.005
2/7/2022	<0.005	<0.005	<0.005	2.000	3.000	55.2 (6)	2.20.0 (0)	2.000
8/8/2022	0.300	0.000	<0.005		<0.005			
8/9/2022	<0.005	<0.005	2.500	<0.005	0.000		<0.005	<0.005
8/10/2022	-0.000	3.000		5.000		0.0093	0.000	3.000
1/31/2023	<0.005	<0.005	<0.005	<0.005	<0.005	0.0033 0.0028 (J)	<0.005	<0.005
1,01,2023	-0.000	-0.000	-0.000	-0.000	-0.000	0.0020 (0)	-0.000	-0.000

GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
	(0,							
	0.03				0.15	0.072		0.11
0.04		0.11	0.21	0.12				
						0.063	0.07	0.082
0.041		0.11				0.000	0.07	0.002
0.041	0.028	0.11	0.21	0.12	0.1	0.058	0.063	0.078
0.044		0.13						0.070
0.044	0.03	0.13	0.2	0.13	0.1	0.00	0.000	0.096
0.044		0.12	0.10	0.12				0.030
0.044	0.032	0.12	0.19	0.12	0.11	0.072	0.07	0.1
	0.032				0.11			0.11
			0.2	0.13		0.070	0.071	0.11
0.03	0.032	0.12	0.2	0.13	0.15			
		0.12						
	0.030	0.12	0.10	0.14	0.11	0.066		
0.047		0.12	0.16	0.14		0.000	0.069	
							0.008	0.11
		0.12	0.2	0.007				0.11
0.032	0.04	0.13	0.2	0.097	0.10			
	0.04				0.16	0.00	0.070	0.11
						0.08	0.076	0.11
0.040	0.000	0.44			0.44	0.074		0.12
	0.039	0.14	0.0	0.44	0.11	0.074	0.07	
		0.15	0.2	0.11		0.000		0.11
	0.044	0.15	0.0	0.050	0.45	0.062	0.085	0.11
	0.041	0.40	0.2	0.059	0.15			
		0.16				0.070	0.075	0.10
						0.078	0.075	0.12
	0.039				0.1			
U								
0.004	0.004	0.44	0.16	0.042	0.40	0.000	0.077	
		0.14				0.066	0.077	
	0.032				0.089			
		0.16						
			0.45	0.040		0.074	0.40	0.44
		0.405	0.15	0.048		0.071	0.12	0.11
0.0363		0.165	0.105	0.044				
			0.165	0.044		0.0075	0.140	
						0.0675	0.143	0.40
	0.0405				0.400			0.13
	0.0425				0.126			
		0.16		0.040		0.073		
				0.048			0.40	0.40
	0.005		0.47		0.000		0.13	0.13
		0.40		0.040				
	0.035	U. 16	0.17	0.043	0.13	0.075	0.14	0.12
		0.17				0.075	U. 14	0.12
	0.005	0.17	0.46	0.040	0.14	0.004		
	0.035		0.18	0.042	U.14	0.081	0.15	0.10
	0.004	0.40			0.44		0.15	0.12
	0.031	0.16			U.11	0.004	0.40	0.44
			0.17	0.04		0.064	0.13	0.11
			0.17	0.04				
	GWA-1 (bg) 0.032 0.04 0.041 0.044 0.032 0.043 0.032 0.043 0.032 0.046 0.034 1 0.038 1 0.0363 0.041 0.041 0.041 0.041	0.032 0.04 0.032 0.041 0.028 0.044 0.032 0.032 0.032 0.032 0.036 0.047 0.032 0.041 0.032 0.041 0.032 0.034 0.039 0.034 0.032 0.034 0.032 1 0.038 1 0.0363 0.041 0.035 0.041 0.035	0.032	0.032	0.032 0.12 0.17 0.13 0.04 0.032 0.11 0.21 0.12 0.041 0.028 0.21 0.12 0.044 0.03 0.13 0.2 0.13 0.044 0.032 0.12 0.19 0.12 0.03 0.032 0.12 0.18 0.14 0.037 0.04 0.12 0.18 0.14 0.032 0.04 0.13 0.2 0.097 0.043 0.039 0.14 0.2 0.059 0.032 0.041 0.16 0.2 0.059 0.0 0.046 0.039 0.16 0.18 0.053 0.0 0.046 0.039 0.16 0.16 0.042 0.036 0.034 0.14 0.035 0.16 0.042 0.041 0.035 0.165 0.048 0.044 0.041 0.035 0.16 0.17 0.043 0.041 0.035 0.16 0.17 0.043 0.048 0.049 0.16 <	0.032	0.032	0.032 0.03

		GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3/2014	ļ	0.04	0.033	0.17			0.1	0.078		
9/8/2014	ļ				0.16	0.042				
9/9/2014	ļ								0.16	0.11
4/21/201		0.033	0.03		0.16	0.05	0.14			
4/22/201				0.17				0.067	0.15	
4/23/201										0.11
9/29/201			0.031		0.14	0.044				
9/30/201		0.042		0.15			0.096	0.075	0.15	0.11
3/22/201		0.0326	0.0327	0.197	0.188	0.0397	0.000	0.070	55	
3/23/201		0.0020	0.0027	0.107	0.100	0.0007	0.132			0.115
3/24/201								0.0818	0.152	
5/17/201		0.0387	0.0323	0.178	0.193	0.0351	0.122			
5/18/201		0.0007	0.0020	00	0.100	0.000	022	0.0763	0.146	0.128
7/5/2016		0.0403		0.182	0.172			0.0700	56	0.120
7/6/2016		0.0.00	0.0344	0.102	0.172	0.0475	0.101		0.152	
7/7/2016			0.0011			0.0170	0.101	0.0747	0.102	0.124
9/7/2016		0.0413	0.0324	0.172	0.164	0.0415	0.0985	0.0747		0.124
9/8/2016		0.0413	0.0324	0.172	0.104	0.0413	0.0000	0.081	0.142	0.121
10/18/20		0.0409	0.0311	0.174	0.138	0.0424	0.104	0.001	0.142	0.121
10/19/20		0.0403	0.0311	0.174	0.130	0.0424	0.104	0.084	0.145	0.117
12/6/201		0.0408	0.0311		0.149	0.0528	0.1	0.004		0.117
12/7/201		0.0408	0.0311	0.167	0.149	0.0326	0.1		0.133	0.11
12/7/201				0.107				0.0799	0.133	0.11
1/31/201		0.0435		0.176				0.0799		
2/1/2017		0.0433	0.0332	0.170	0.121	0.0482				
2/1/2017			0.0332		0.121	0.0462	0.147	0.0813	0.14	
2/3/2017							0.147	0.0613	0.14	0.123
3/23/2017		0.038		0.157	0.143					0.123
3/24/201		0.036	0.032	0.137	0.143	0.0595				
3/27/201			0.032			0.0595	0.158	0.0714	0.152	0.112
10/4/201		0.0396		0.143	0.139	0.0486	0.136	0.0714	0.132	0.112
10/4/201		0.0390	0.0325	0.143	0.139	0.0480	0.106	0.0755	0.142	0.128
3/14/201		0.039	0.0323	0.17			0.100	0.0733	0.142	0.120
3/15/201		0.039	0.031	0.17	0.17	0.04	0.18		0.14	
3/16/201			0.031		0.17	0.04	0.16	0.074	0.14	0.12
5/15/201							0.16	0.074		0.12
10/4/201		0.039	0.033	0.18	0.16	0.05	0.2		0.16	
10/4/201		0.039	0.033	0.10	0.10	0.03	0.2	0.081	0.10	0.12
12/11/20							0.18	0.001		0.12
1/11/201							0.17			
4/5/2019					0.13		0.17			
4/8/2019		0.031	0.031	0.15	0.13	0.047				
4/9/2019		0.031	0.031	0.13		0.047	0.17	0.081	0.15	0.13
9/30/201		0.042	0.03	0.17	0.14	0.051	0.17	0.001	0.13	0.13
10/1/201		0.042	0.03	0.17	0.14	0.031	0.12	0.082	0.15	0.14
3/26/202		0.032	0.031	0.16	0.14	0.049	0.12	0.002	0.13	0.14
3/27/202		0.032	0.031	0.10	0.14	0.043	0.037			
3/30/202							0.037	0.077		
3/31/202								3.077	0.17	0.15
6/19/202									V.17	0.14 (R)
9/21/202				0.18						0.77 (11)
9/22/202			0.031	0.10						
5/22/202			0.001							

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/23/2020	0.041			0.14	0.043				0.13
9/24/2020							0.079		
9/25/2020						0.11			
9/28/2020								0.15	
3/8/2021	0.035	0.031		0.12	0.052				
3/9/2021			0.17			0.15	0.077		
3/10/2021								0.15	0.13
8/9/2021	0.046		0.19	0.12	0.034				
8/10/2021		0.03				0.14	0.093	0.14	0.14
2/4/2022	0.038	0.031	0.18	0.081	0.037	0.16	0.08		
2/7/2022								0.14	0.14
8/8/2022	0.04	0.029	0.18	0.1	0.04				
8/9/2022						0.12	0.08	0.14	0.15
1/30/2023	0.037	0.03	0.2	0.07	0.037	0.17			
1/31/2023							0.077	0.15	0.14

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	0.038	0.023	0.05					
3/7/2007				0.1	0.057			0.059
5/8/2007				0.11				0.055
5/9/2007	0.046	0.034	0.055		0.054	0.011	0.13	
7/6/2007				0.11		0.0065	0.12	0.052
7/17/2007	0.06	0.034	0.048		0.059			
8/28/2007				0.1	0.061	0.0095	0.11	0.047
8/29/2007	0.07	0.048	0.056					
11/6/2007				0.1	0.074	0.013	0.1	0.048
11/7/2007	0.055	0.042	0.07					
5/7/2008	0.032	0.078	0.063					
5/8/2008				0.11	0.079	0.011	0.1	0.052
12/2/2008						0.011	0.11	0.056
12/3/2008				0.091	0.1			
12/5/2008	0.06	0.067	0.068					
4/7/2009				0.094	0.091			
4/8/2009						0.0091	0.1	0.057
4/14/2009		0.083	0.062					
4/27/2009	0.032							
9/30/2009	0.046	0.086					0.099	0.055
10/1/2009			0.064	0.097	0.092	0.0098		
4/13/2010	0.035	0.087			0.095	0.0084	0.098	0.053
4/14/2010			0.048	0.096				
10/6/2010					0.11			
10/7/2010						0.01		
10/12/2010	0.15	0.082						
10/13/2010			0.071				0.092	0.054
10/14/2010				0.1				
4/5/2011				0.092	0.1	0.015	0.085	0.035 (o)
4/6/2011		0.082	0.042					
10/4/2011					0.11	0.01	0.091	0.058
10/5/2011	0.055	0.082						
10/12/2011			0.066	0.12				
4/3/2012					0.116	0.0426	0.101	
4/4/2012				0.105				0.0632
4/9/2012		0.0959	0.0628					
4/10/2012	0.0399							
9/18/2012					0.12	0.02		
9/19/2012			0.073				0.1	0.061
9/24/2012				0.13				
9/25/2012		0.09						
9/26/2012	0.093							
3/12/2013				0.1	0.11	0.35	0.098	0.056
3/13/2013	0.066	0.092	0.057					
9/9/2013					0.13			
9/10/2013			0.066	0.13		0.11	0.11	0.067
9/11/2013	0.053	0.096						
3/5/2014	0.030	0.085	0.054	0.084	0.12	0.054	0.087	0.055
3/11/2014	0.039	0.085	0.054					0.051
9/3/2014			0.06		0.12	0.044		0.051
9/8/2014 9/9/2014	0.14	0.096		0.11	0.13	0.044	0.1	
3131ZU 14	0.14	0.030		0.11			0.1	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				0.11		0.065		0.059
4/22/2015					0.14		0.095	
4/23/2015		0.093	0.06					
9/29/2015				0.097	0.14	0.036	0.093	0.06
9/30/2015	0.15	0.096	0.076					
3/23/2016		0.0938	0.0533	0.0993	0.156	0.263	0.0918	0.0636
3/24/2016	0.046							
5/17/2016				0.104	0.168			
5/18/2016	0.0557	0.0983				0.245	0.0957	0.0629
5/19/2016			0.074					
7/6/2016				0.104	0.171	0.117	0.0935	0.0646
7/7/2016	0.0596	0.121	0.0766					
9/7/2016				0.0945	0.154	0.0703		
9/8/2016	0.184	0.0917	0.0726				0.0925	0.063
10/18/2016				0.0928	0.159	0.068	0.0939	
10/19/2016	0.186	0.091	0.072					0.0644
12/7/2016	0.174	0.0868	0.0732					0.0011
12/8/2016		0.0000	0.0702	0.1	0.156	0.0791	0.0996	0.0648
2/1/2017				0.0972	0.163	0.0701	0.0000	0.0010
2/2/2017	0.0783	0.0939		0.0072	0.100	0.17	0.096	0.0656
2/3/2017	0.0700	0.0000	0.0619			0.17	0.000	0.0000
3/23/2017			0.0010	0.105	0.161			
3/24/2017				0.103	0.101	0.181	0.106	
3/27/2017	0.0363	0.0905	0.0602			0.101	0.100	0.0619
10/4/2017	0.0000	0.0303	0.0002	0.102	0.171	0.0937		0.0013
10/5/2017	0.0562	0.0945	0.0734	0.102	0.171	0.0337	0.103	0.0655
3/14/2018	0.0302	0.0943	0.0734				0.103	0.0033
3/15/2018	0.086	0.096	0.053			0.15	0.1	0.062
3/16/2018	0.000	0.000	0.000	0.091	0.17	0.13		0.002
10/4/2018	0.079	0.1		0.084	0.17	0.08	0.11	
10/4/2018	0.079	0.1	0.065	0.004	0.19	0.00	0.11	0.07
4/8/2019			0.059		0.15	0.24	0.13	0.058
	0.05	0.094	0.059	0.067	0.15	0.24	0.13	0.056
4/9/2019	0.03	0.094		0.007			0.17	
6/18/2019 10/1/2019	0.18	0.1	0.082	0.09	0.18	0.085	0.17 0.12	0.071
3/26/2020	0.16	0.1	0.082	0.09	0.16	0.065	0.12	0.071
			0.071				0.14	0.06
3/27/2020						0.21	0.14	0.06
3/30/2020	0.044	0.1		0.064	0.10	0.21		
3/31/2020 9/23/2020	0.044	0.1 0.1	0.079	0.064	0.18			
	0.10	0.1	0.079			0.11	0.14	0.00
9/24/2020	0.19			0.074	0.10	0.11	0.14	0.06
9/25/2020	0.12	0.000	0.005	0.074	0.16	0.21	0.14	0.050
3/9/2021	0.12	0.089	0.085	0.063	0.17	0.31	0.14	0.059
8/10/2021	0.057	0.091	0.085	0.077	0.18	0.14	0.23 (o)	0.067
2/4/2022	0.000	0.000	0.001	0.061	0.16	0.35	0.17	0.067
2/7/2022	0.063	0.092	0.091		0.45			
8/8/2022			0.078		0.15			
8/9/2022	0.056	0.098		0.074			0.16	0.068
8/10/2022						0.098		
1/31/2023	0.033	0.09	0.11	0.064	0.15	0.047	0.12	0.064

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.0005		<0.0005	<0.0005	<0.0005			<0.0005	
3/7/2007		<0.0005				<0.0005	<0.0005		<0.0005
5/8/2007	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
5/9/2007							<0.0005	<0.0005	<0.0005
7/7/2007	<0.0005		<0.0005						
7/17/2007		<0.0005		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
8/28/2007	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
8/29/2007									<0.0005
11/6/2007	<0.0005		<0.0005	<0.0005	<0.0005				
11/7/2007		<0.0005				<0.0005	<0.0005	<0.0005	<0.0005
5/7/2008							<0.0005	<0.0005	<0.0005
5/8/2008				<0.0005	<0.0005				
5/9/2008	<0.0005	<0.0005	<0.0005			<0.0005			
12/2/2008		<0.0005				<0.0005			
12/3/2008	<0.0005		<0.0005	<0.0005	<0.0005		<0.0005		
12/4/2008								<0.0005	
12/5/2008									<0.0005
4/7/2009	<0.0005		<0.0005	<0.0005	<0.0005				
4/8/2009		<0.0005				<0.0005			
4/14/2009							<0.0005	<0.0005	<0.0005
9/30/2009									<0.0005
10/1/2009	<0.0005	<0.0005	<0.0005			<0.0005	<0.0005		
10/2/2009				<0.0005	<0.0005			<0.0005	
4/13/2010			<0.0005				<0.0005	<0.0005	<0.0005
4/14/2010	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005			
10/7/2010			<0.0005						
10/12/2010							<0.0005	<0.0005	<0.0005
10/13/2010	<0.0005	<0.0005				<0.0005			
10/14/2010				<0.0005	<0.0005				
4/5/2011				<0.0005	<0.0005				
4/6/2011	<0.0005	<0.0005	<0.0005			<0.0005	<0.0005	<0.0005	
10/4/2011		<0.0005				<0.0005			
10/6/2011			<0.0005						
10/10/2011	<0.0005								
10/12/2011				<0.0005	<0.0005		<0.0005	<0.0005	<0.0005
4/3/2012	<0.0005		<0.0005						
4/4/2012				<0.0005	<0.0005				
4/5/2012							<0.0005	<0.0005	
4/9/2012									<0.0005
4/10/2012		<0.0005				<0.0005			
9/19/2012			<0.0005				<0.0005		
9/24/2012	<0.0005				<0.0005				
9/25/2012								<0.0005	<0.0005
9/26/2012		<0.0005		<0.0005		<0.0005			
3/12/2013	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
3/13/2013							<0.0005	<0.0005	<0.0005
9/9/2013			<0.0005					-	
9/10/2013		<0.0005		<0.0005	<0.0005	<0.0005	<0.0005		
9/11/2013	<0.0005	3.0000		5.0000	3.0000	5.0000	5.0000	<0.0005	<0.0005
3/4/2014	<0.0005	<0.0005	<0.0005			<0.0005		3.0000	0.0000
3/10/2014	3.0000	5.0000	3.000			5.0000	<0.0005	<0.0005	<0.0005
3/11/2014				<0.0005	<0.0005		-0.0000	-0.0000	-0.0000
5/11/2014				-0.0000	-0.0000				

		GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/	/3/2014	<0.0005	<0.0005	<0.0005			<0.0005	<0.0005		
9/	/8/2014				<0.0005	<0.0005				
9/	/9/2014								<0.0005	<0.0005
4/	/21/2015	<0.0005	<0.0005		8E-05 (J)	<0.0005	<0.0005			
4/	/22/2015			<0.0005				<0.0005	<0.0005	
4/	/23/2015									<0.0005
9/	/29/2015		<0.0005		<0.0005	<0.0005				
9/	/30/2015	<0.0005		<0.0005			<0.0005	<0.0005	<0.0005	<0.0005
3/	/22/2016	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005				
3/	/23/2016						<0.0005			<0.0005
3/	/24/2016							<0.0005	<0.0005	
5/	/17/2016	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
5/	/18/2016							<0.0005	<0.0005	<0.0005
7/	/5/2016	<0.0005		<0.0005	<0.0005					
7/	/6/2016		<0.0005			<0.0005	<0.0005		<0.0005	
7/	/7/2016							<0.0005		<0.0005
9/	/7/2016	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
9/	/8/2016							<0.0005	<0.0005	<0.0005
10	0/18/2016	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		<0.0005	
10	0/19/2016							<0.0005		<0.0005
12	2/6/2016	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005			
12	2/7/2016			<0.0005					<0.0005	<0.0005
12	2/8/2016							<0.0005		
1/	/31/2017	<0.0005		<0.0005						
2/	/1/2017		<0.0005		<0.0005	<0.0005				
	/2/2017						<0.0005	<0.0005	<0.0005	
	/3/2017									<0.0005
	/23/2017	<0.0005		<0.0005	<0.0005					
	/24/2017		<0.0005			<0.0005				
	/27/2017						<0.0005	<0.0005	<0.0005	<0.0005
	0/4/2017	<0.0005		<0.0005	<0.0005	<0.0005				
	0/5/2017		<0.0005				<0.0005	<0.0005	<0.0005	<0.0005
	/14/2018	<0.0005		<0.0005						
	/15/2018		<0.0005		<0.0005	<0.0005	<0.0005	-0.0005	<0.0005	-0.0005
	/16/2018	<0.000E	<0.000E	<0.000E	<0.000E	<0.000E	<0.000E	<0.0005	<0.000E	<0.0005
	0/4/2018	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	-0.0005	<0.0005	-0.0005
	0/5/2018				<0.0005			<0.0005		<0.0005
	/5/2019 /8/2019	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005				
	/9/2019	<0.0005	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
	/30/2019	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0003	<0.0005	<0.0005	<0.0003
	0/1/2019	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
	/26/2020	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	~0.0003	~0.0003	10.0003	<0.0003
	/27/2020	10.0003	10.0003	10.0000	10.0003	10.0003	<0.0005			
	/30/2020						10.0003	<0.0005		
	/31/2020							-0.0000	<0.0005	<0.0005
	/21/2020			<0.0005					2.0000	0.0000
	/22/2020		<0.0005	3.0000						
	/23/2020	<0.0005	3.0000		<0.0005	<0.0005				<0.0005
	/24/2020	y			,	y		<0.0005		
	/25/2020						<0.0005			
	/28/2020								0.0001 (J)	
٥,	-								\-/	

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/8/2021	<0.0005	<0.0005		<0.0005	<0.0005				
3/9/2021			<0.0005			<0.0005	<0.0005		
3/10/2021								<0.0005	<0.0005
8/9/2021	<0.0005		<0.0005	<0.0005	<0.0005				
8/10/2021		<0.0005				<0.0005	<0.0005	<0.0005	<0.0005
2/4/2022	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		
2/7/2022								<0.0005	<0.0005
8/8/2022	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005				
8/9/2022						<0.0005	<0.0005	<0.0005	<0.0005
1/30/2023	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
1/31/2023							<0.0005	<0.0005	<0.0005

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.0005	<0.0005	<0.0005					
3/7/2007				<0.0005	<0.0005			<0.0005
5/8/2007				<0.0005				<0.0005
5/9/2007	<0.0005	<0.0005	<0.0005		<0.0005	0.28 (o)	<0.0005	
7/6/2007				<0.0005		0.093 (o)	<0.0005	<0.0005
7/17/2007	<0.0005	<0.0005	<0.0005		<0.0005			
8/28/2007				<0.0005	<0.0005	0.057 (o)	<0.0005	<0.0005
8/29/2007	<0.0005	<0.0005	<0.0005					
11/6/2007				<0.0005	<0.0005	0.036 (o)	<0.0005	<0.0005
11/7/2007	<0.0005	<0.0005	<0.0005					
5/7/2008	<0.0005	<0.0005	<0.0005					
5/8/2008				<0.0005	<0.0005	0.013	<0.0005	<0.0005
12/2/2008						0.01	<0.0005	<0.0005
12/3/2008				<0.0005	<0.0005			
12/5/2008	<0.0005	<0.0005	<0.0005					
4/7/2009				<0.0005	<0.0005			
4/8/2009						0.0076	<0.0005	<0.0005
4/14/2009		<0.0005	<0.0005					
4/27/2009	<0.0005							
9/30/2009	<0.0005	<0.0005					<0.0005	<0.0005
10/1/2009			<0.0005	<0.0005	<0.0005	0.0057		
4/13/2010	<0.0005	<0.0005			<0.0005	0.0061	<0.0005	<0.0005
4/14/2010			<0.0005	<0.0005				
10/6/2010					<0.0005			
10/7/2010						0.0039		
10/12/2010	<0.0005	<0.0005						
10/13/2010			<0.0005				<0.0005	<0.0005
10/14/2010				<0.0005				
4/5/2011				<0.0005	<0.0005	0.0025	<0.0005	<0.0005
4/6/2011		<0.0005	<0.0005					
10/4/2011					<0.0005	0.0024	<0.0005	<0.0005
10/5/2011	<0.0005	<0.0005						
10/12/2011			<0.0005	<0.0005				
4/3/2012					<0.0005	0.0008	<0.0005	
4/4/2012				<0.0005				<0.0005
4/9/2012		<0.0005	<0.0005					
4/10/2012	<0.0005							
9/18/2012					<0.0005	0.002		
9/19/2012			<0.0005				<0.0005	<0.0005
9/24/2012				<0.0005				
9/25/2012		<0.0005						
9/26/2012	<0.0005							
3/12/2013				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
3/13/2013	<0.0005	<0.0005	<0.0005					
9/9/2013					<0.0005			
9/10/2013			<0.0005	<0.0005		<0.0005	<0.0005	<0.0005
9/11/2013	<0.0005	<0.0005						
3/5/2014	0.0005	.0.005	.0.005	<0.0005	<0.0005	0.00037 (J)	<0.0005	<0.0005
3/11/2014	<0.0005	<0.0005	<0.0005					0.000=
9/3/2014			<0.0005					<0.0005
9/8/2014	-0.0005	-0.0005		-0.0005	<0.0005	0.00055 (J)	-0.0005	
9/9/2014	<0.0005	<0.0005		<0.0005			<0.0005	

					. ,			
	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.0005		0.00033 (J)		<0.0005
4/22/2015					<0.0005		<0.0005	
4/23/2015		<0.0005	<0.0005					
9/29/2015				<0.0005	<0.0005	0.00046 (J)	<0.0005	<0.0005
9/30/2015	<0.0005	<0.0005	<0.0005					
3/23/2016		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
3/24/2016	<0.0005							
5/17/2016				<0.0005	<0.0005			
5/18/2016	<0.0005	<0.0005				<0.0005	<0.0005	<0.0005
5/19/2016			<0.0005					
7/6/2016				<0.0005	<0.0005	0.0002 (J)	<0.0005	<0.0005
7/7/2016	<0.0005	<0.0005	<0.0005					
9/7/2016				<0.0005	<0.0005	0.0002 (J)		
9/8/2016	<0.0005	<0.0005	<0.0005				<0.0005	<0.0005
10/18/2016				<0.0005	<0.0005	0.0002 (J)	<0.0005	
10/19/2016	<0.0005	<0.0005	<0.0005					<0.0005
12/7/2016	<0.0005	<0.0005	<0.0005					
12/8/2016				<0.0005	<0.0005	0.0003 (J)	<0.0005	<0.0005
2/1/2017				<0.0005	<0.0005			
2/2/2017	<0.0005	<0.0005				<0.0005	<0.0005	<0.0005
2/3/2017			<0.0005					
3/23/2017				<0.0005	<0.0005			
3/24/2017						<0.0005	<0.0005	
3/27/2017	<0.0005	<0.0005	<0.0005					<0.0005
10/4/2017				<0.0005	<0.0005	0.0001 (J)		
10/5/2017	<0.0005	<0.0005	<0.0005				<0.0005	<0.0005
3/14/2018							<0.0005	
3/15/2018	<0.0005	<0.0005	<0.0005			<0.0005		<0.0005
3/16/2018				<0.0005	<0.0005			
10/4/2018	<0.0005	<0.0005		<0.0005	<0.0005	0.0002 (J)	<0.0005	
10/5/2018			<0.0005					<0.0005
4/8/2019			<0.0005		<0.0005	5.8E-05 (J)	<0.0005	<0.0005
4/9/2019	<0.0005	<0.0005		<0.0005				
10/1/2019	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.0001 (J)	<0.0005	<0.0005
3/26/2020			<0.0005					
3/27/2020							<0.0005	<0.0005
3/30/2020						<0.0005		
3/31/2020	<0.0005	<0.0005		<0.0005	<0.0005			
9/23/2020		<0.0005	<0.0005					
9/24/2020	<0.0005					5E-05 (J)	<0.0005	<0.0005
9/25/2020				<0.0005	<0.0005			
3/9/2021	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
8/10/2021	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	6.1E-05 (J)	<0.0005	<0.0005
2/4/2022				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
2/7/2022	<0.0005	<0.0005	<0.0005					
8/8/2022			<0.0005		<0.0005			
8/9/2022	<0.0005	<0.0005		<0.0005			<0.0005	<0.0005
8/10/2022						7.6E-05 (J)		
1/31/2023	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.00021 (J)	<0.0005	<0.0005

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/22/2016	<0.1	0.04 (J)	0.0828 (J)	0.135	0.0815 (J)				
3/23/2016						0.0354 (J)			<0.1
3/24/2016							0.122	0.173	
5/17/2016	<0.1	0.0358 (J)	0.0844 (J)	0.132	0.0838 (J)	0.0349 (J)			
5/18/2016	0.0440 (1)		0.0000 (1)	0.404			0.139	0.186	0.0229 (J)
7/5/2016	0.0419 (J)		0.0962 (J)	0.161					
7/6/2016		0.0373 (J)			0.111	0.0308 (J)	0.40	0.184	0.0400 (1)
7/7/2016	0.0474 (1)	0.0050 (1)	0.000470	0.400	0.407	0.0000 (1)	0.12		0.0169 (J)
9/7/2016	0.0174 (J)	0.0352 (J)	0.0884 (J)	0.163	0.107	0.0283 (J)	0.126	0.172	0.0170 (1)
9/8/2016	0.0102 (1)	0.0222 (1)	0.0000 (1)	0.154	0.110	0.0202 (1)	0.126	0.173	0.0178 (J)
10/18/2016	0.0192 (J)	0.0332 (J)	0.0889 (J)	0.134	0.118	0.0292 (J)	0.122	0.171	0.019 (1)
10/19/2016 12/6/2016	0.0182 (J)	0.033 (J)		0.142	0.106	0.0287 (J)	0.133		0.018 (J)
12/7/2016	0.0162 (3)	0.033 (3)	0.0954	0.142	0.100	0.0287 (3)		0.203	0.0248 (J)
12/7/2016			0.0954				0.119	0.203	0.0246 (3)
1/31/2017	0.0193 (J)		0.0939				0.119		
2/1/2017	0.0193 (3)	0.0365 (J)	0.0939	0.143	0.0949				
2/2/2017		0.0303 (3)		0.143	0.0343	0.0334 (J)	0.132	0.187	
2/3/2017						0.0334 (0)	0.132	0.107	0.0171 (J)
3/23/2017	0.0192 (J)		0.0869	0.15					0.0171 (3)
3/24/2017	0.0102 (0)	0.0343 (J)	0.0000	0.10	0.0887				
3/27/2017		0.0040 (0)			0.0007	0.0396 (J)	0.134	0.182	0.0181 (J)
10/4/2017	0.0199 (J)		0.0914	0.182	0.105	0.0000 (0)	0.101	0.102	0.0.01
10/5/2017	0.0100 (0)	0.0325 (J)	0.0014	0.102	0.100	0.0294 (J)	0.125	0.166	0.0178 (J)
3/14/2018	0.019 (J)	0.0020 (0)	0.075			0.020 : (0)	0.120	0.100	0.0170 (0)
3/15/2018	0.0.0	0.037 (J)	0.070	0.14	0.043	0.038 (J)		0.17	
3/16/2018							0.12		0.016 (J)
10/4/2018	0.021 (J)	0.035 (J)	0.082	0.16	0.1	0.038 (J)		0.17	(-)
10/5/2018	(-)	(1)				(-)	0.15		0.017 (J)
4/5/2019				0.12					(-)
4/8/2019	0.019 (J)	0.034 (J)	0.071 (J)		0.057 (J)				
4/9/2019	.,	, ,	. ,		, ,	0.035 (J)	0.12	0.17	0.011 (J)
9/30/2019	0.025 (J)	0.039 (J)	0.084	0.17	0.11				
10/1/2019						0.031 (J)	0.14	0.17	0.019 (J)
3/26/2020	0.022 (J)	0.041 (J)	0.092 (J)	0.14	0.086 (J)				
3/27/2020						0.04 (J)			
3/30/2020							0.13		
3/31/2020								0.18	0.024 (J)
9/21/2020			0.086 (J)						
9/22/2020		0.038 (J)							
9/23/2020	0.047 (J)			0.15	0.087 (J)				0.018 (J)
9/24/2020							0.13		
9/25/2020						0.036 (J)			
9/28/2020								0.17	
3/8/2021	0.021 (J)	0.042		0.13	0.089				
3/9/2021			0.081			0.037 (J)	0.13		
3/10/2021								0.16	0.018 (J)
8/9/2021	0.021 (J)		0.085	0.14	0.073				
8/10/2021		0.034 (J)				0.033 (J)	0.14	0.14	0.013 (J)
2/4/2022	0.018 (J)	0.037 (J)	0.083	0.094	0.06	0.037 (J)	0.12		
2/7/2022								0.15	0.015 (J)
8/8/2022	0.026 (J)	0.035 (J)	0.087	0.15	0.077				

Page 2

Time Series

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
8/9/2022						0.031 (J)	0.12	0.14	0.015 (J)
1/30/2023	0.026 (J)	0.038 (J)	0.086	0.094	0.058	0.038 (J)			
1/31/2023							0.12	0.13	0.015 (J)

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/23/2016		0.0649 (J)	<0.1	0.0509 (J)	0.0379 (J)	0.0574 (J)	0.0213 (J)	<0.1
3/24/2016	0.0232 (J)	0.0040 (0)	-0.1	0.0000 (0)	0.0070 (0)	0.0074 (0)	0.0210 (0)	-0.1
5/17/2016	0.0202 (0)			0.0565 (J)	0.0395 (J)			
5/18/2016	0.0289 (J)	0.0781 (J)				0.0686 (J)	0.028 (J)	0.0202 (J)
5/19/2016	0.0200 (0)	0.0701 (0)	0.0212 (J)			0.0000 (0)	0.020 (0)	0.0202 (0)
7/6/2016			0.02.12 (0)	0.0628 (J)	0.0393 (J)	0.0675 (J)	0.0231 (J)	0.0171 (J)
7/7/2016	0.0313 (J)	0.0621 (J)	0.0183 (J)			(0)		(-)
9/7/2016	(-)		(2)	0.0648 (J)	0.04 (J)	0.0582 (J)		
9/8/2016	0.0593 (J)	0.0607 (J)	0.017 (J)	(0)		(-)	0.0234 (J)	0.0157 (J)
10/18/2016	(-)	(,,	(-)	0.0666 (J)	0.0366 (J)	0.0577 (J)	0.0228 (J)	(-)
10/19/2016	0.087 (J)	0.0733 (J)	0.0203 (J)	(,,	(-,	(-)	(-)	0.0152 (J)
12/7/2016	0.127	0.0758	0.0215 (J)					(-)
12/8/2016			(,,	0.062	0.0397 (J)	0.0572	0.0251 (J)	0.0178 (J)
2/1/2017				0.0516	0.0381 (J)		()	. ,
2/2/2017	0.0318 (J)	0.0729			. ,	0.0534	0.0238 (J)	0.0151 (J)
2/3/2017	. ,		0.0812				()	. ,
3/23/2017				0.0597	0.0416			
3/24/2017						0.0532	0.0234 (J)	
3/27/2017	0.0225 (J)	0.0698	0.125 (o)					0.0203 (J)
10/4/2017				0.0658	0.0382 (J)	0.0563		
10/5/2017	0.0304 (J)	0.0677	0.0375 (J)				0.0329 (J)	0.0157 (J)
3/14/2018							0.024 (J)	
3/15/2018	0.025 (J)	0.07	0.051			0.053		0.013 (J)
3/16/2018				0.047	0.044			
5/16/2018					0.042			
10/4/2018	0.029 (J)	0.065		0.066	0.038 (J)	0.048	0.047 (J)	
10/5/2018			0.039 (J)					0.017 (J)
4/8/2019			0.022 (J)		0.036 (J)	0.049 (J)	0.055 (J)	0.015 (J)
4/9/2019	0.014 (J)	0.063		0.048				
10/1/2019	0.059	0.066	0.024 (J)	0.071	0.042	0.05	0.046	0.018 (J)
3/26/2020			0.042 (J)					
3/27/2020							0.056 (J)	0.018 (J)
3/30/2020						0.049 (J)		
3/31/2020	0.022 (J)	0.067 (J)		0.057 (J)	0.091 (Jo)			
6/18/2020					0.045 (JR)			
6/19/2020							0.086 (JR)	
9/23/2020		0.061 (J)	0.024 (J)					
9/24/2020	0.061 (J)					0.045 (J)	0.055 (J)	0.016 (J)
9/25/2020				0.08 (J)	0.047 (J)			
3/9/2021	0.03 (J)	0.065	0.044	0.046	0.038 (J)	0.041	0.05	0.014 (J)
8/10/2021	0.026 (J)	0.057	0.027 (J)	0.056	0.037 (J)	0.037 (J)	0.088	0.012 (J)
2/4/2022				0.04	0.039 (J)	0.055	0.055	0.013 (J)
2/7/2022	0.018 (J)	0.064	0.052					
8/8/2022			0.022 (J)		0.038 (J)			
8/9/2022	0.029 (J)	0.059		0.058			0.043	0.014 (J)
8/10/2022						0.046		
1/31/2023	0.013 (J)	0.052	0.06	0.043	0.037 (J)	0.025 (J)	0.029 (J)	0.012 (J)

GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
7 <0.0005		<0.0005	<0.0005	<0.0005			<0.0005	
7	<0.0005				<0.0005	<0.0005		<0.0005
7 <0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
7						<0.0005	<0.0005	<0.0005
7 <0.0005		<0.0005						
07	<0.0005		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
07 <0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
07								<0.0005
07 <0.0005		<0.0005	<0.0005	<0.0005				
07	<0.0005				<0.0005			<0.0005
8						<0.0005	<0.0005	<0.0005
8			<0.0005	<0.0005				
8 <0.0005	<0.0005	<0.0005			<0.0005			
08	<0.0005				<0.0005			
08 <0.0005		<0.0005	<0.0005	<0.0005		<0.0005		
08							<0.0005	
08								<0.0005
9 <0.0005		<0.0005	<0.0005	<0.0005				
9	<0.0005				<0.0005			
09						<0.0005	<0.0005	<0.0005
09								<0.0005
09 <0.0005	<0.0005	<0.0005			<0.0005	<0.0005		
09			<0.0005	<0.0005			<0.0005	
10		<0.0005				<0.0005	<0.0005	<0.0005
10 <0.0005	<0.0005		<0.0005	<0.0005	<0.0005			
10		<0.0005						
010						<0.0005	<0.0005	<0.0005
010 <0.0005	<0.0005				<0.0005			
010			<0.0005	<0.0005				
1			<0.0005	<0.0005				
1 <0.0005	<0.0005	<0.0005			<0.0005	<0.0005	<0.0005	
11	<0.0005				<0.0005			
11		<0.0005						
011 <0.0005								
011			<0.0005	<0.0005		<0.0005	<0.0005	<0.0005
2 <0.0005		<0.0005						
2			<0.0005	<0.0005				
2						<0.0005	<0.0005	
2								<0.0005
12	<0.0005				<0.0005			
		< 0.0005				<0.0005		
12		<0.0003						
12 12 <0.0005		<0.0003		<0.0005				
		<0.0003		<0.0005			<0.0005	<0.0005
12 <0.0005	<0.0005	~0.0003	<0.0005	<0.0005	<0.0005		<0.0005	<0.0005
12 <0.0005 12	<0.0005 <0.0005	<0.0005	<0.0005 <0.0005	<0.0005 <0.0005	<0.0005 <0.0005		<0.0005	<0.0005
12 <0.0005 12 12						<0.0005	<0.0005 <0.0005	<0.0005 <0.0005
12 <0.0005 12 12 13 <0.0005						<0.0005		
12 <0.0005 12 12 13 <0.0005 13		<0.0005				<0.0005 <0.0005		
12 <0.0005 12 12 13 <0.0005 13	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
12 <0.0005 12 12 13 <0.0005 13 3	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		<0.0005	<0.0005
12 <0.0005 12 12 13 <0.0005 13 3 13 <0.0005	<0.0005 <0.0005	<0.0005 <0.0005	<0.0005	<0.0005	<0.0005		<0.0005	<0.0005
	7	7	7 <0.0005					

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3/2014	<0.0005	<0.0005	<0.0005			<0.0005	<0.0005		
9/8/2014				<0.0005	<0.0005				
9/9/2014								<0.0005	<0.0005
4/21/2015	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005			
4/22/2015			<0.0005				<0.0005	<0.0005	
4/23/2015									<0.0005
9/29/2015		<0.0005		<0.0005	<0.0005				
9/30/2015	<0.0005		<0.0005			<0.0005	<0.0005	<0.0005	<0.0005
3/22/2016	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005				
3/23/2016						<0.0005			<0.0005
3/24/2016							<0.0005	<0.0005	
5/17/2016	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
5/18/2016							<0.0005	<0.0005	<0.0005
7/5/2016	<0.0005		<0.0005	<0.0005					
7/6/2016		<0.0005			<0.0005	<0.0005		< 0.0005	
7/7/2016							<0.0005		<0.0005
9/7/2016	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
9/8/2016							<0.0005	<0.0005	<0.0005
10/18/2016	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		<0.0005	
10/19/2016							<0.0005		<0.0005
12/6/2016	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005			
12/7/2016			<0.0005					< 0.0005	<0.0005
12/8/2016							<0.0005		
1/31/2017	<0.0005		<0.0005						
2/1/2017		<0.0005		<0.0005	0.0001 (J)				
2/2/2017					(-,	9E-05 (J)	8E-05 (J)	<0.0005	
2/3/2017						52 55 (5)	5= 55 (5)		<0.0005
3/23/2017	<0.0005		<0.0005	<0.0005					
3/24/2017		<0.0005			<0.0005				
3/27/2017						<0.0005	<0.0005	<0.0005	<0.0005
10/4/2017	<0.0005		<0.0005	<0.0005	<0.0005				
10/5/2017		<0.0005				<0.0005	<0.0005	<0.0005	<0.0005
3/14/2018	<0.0005	0.000	<0.0005			0.0000	0.0000	0.0000	0.000
3/15/2018	-0.0000	<0.0005	10.0000	<0.0005	<0.0005	<0.0005		<0.0005	
3/16/2018		-0.0000		-0.0000	10.0000	-0.0000	<0.0005	-0.0000	<0.0005
10/4/2018	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	-0.0000	<0.0005	-0.0000
10/5/2018	-0.0000	-0.0000	10.0000	-0.0000	10.0000	-0.0000	<0.0005	-0.0000	0.00011 (J)
4/5/2019				<0.0005			10.0003		0.00011(0)
4/8/2019	<0.0005	<0.0005	<0.0005	10.0000	<0.0005				
4/9/2019	<0.0003	<0.0003	<0.0003		<0.0003	<0.0005	<0.0005	<0.0005	<0.0005
9/30/2019	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
10/1/2019	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.000E	<0.000E	<0.000E	<0.000E
	-0.0005	-0.0005	-0.0005	-0.0005	-0.0005	<0.0005	<0.0005	<0.0005	<0.0005
3/26/2020	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005				
3/27/2020						<0.0005	-0.0005		
3/30/2020							<0.0005	0.0005	.0.0005
3/31/2020								<0.0005	<0.0005
9/21/2020		.0.005	<0.0005						
9/22/2020	.0.00=	<0.0005		.0.005	.0.005				.0.000
9/23/2020	<0.0005			<0.0005	<0.0005		0.055-		<0.0005
9/24/2020						.0.005	<0.0005		
9/25/2020						<0.0005		-0.000=	
9/28/2020								<0.0005	

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/8/2021	<0.0005	<0.0005		<0.0005	<0.0005				
3/9/2021			<0.0005			<0.0005	<0.0005		
3/10/2021								<0.0005	<0.0005
8/9/2021	<0.0005		<0.0005	<0.0005	<0.0005				
8/10/2021		<0.0005				<0.0005	<0.0005	<0.0005	<0.0005
2/4/2022	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		
2/7/2022								<0.0005	<0.0005
8/8/2022	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005				
8/9/2022						<0.0005	<0.0005	<0.0005	<0.0005
1/30/2023	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
1/31/2023							<0.0005	<0.0005	<0.0005

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.0005	<0.0005	<0.0005					
3/7/2007				0.0015	<0.0005			<0.0005
5/8/2007				<0.0005				<0.0005
5/9/2007	<0.0005	<0.0005	<0.0005		<0.0005	0.023 (o)	<0.0005	
7/6/2007				<0.0005		0.0081 (o)	<0.0005	<0.0005
7/17/2007	<0.0005	<0.0005	<0.0005		<0.0005			
8/28/2007				<0.0005	<0.0005	0.0035	<0.0005	<0.0005
8/29/2007	<0.0005	<0.0005	<0.0005					
11/6/2007				<0.0005	<0.0005	0.0028	<0.0005	<0.0005
11/7/2007	<0.0005	<0.0005	<0.0005					
5/7/2008	<0.0005	<0.0005	<0.0005					
5/8/2008				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
12/2/2008						<0.0005	<0.0005	<0.0005
12/3/2008				<0.0005	<0.0005			
12/5/2008	<0.0005	<0.0005	<0.0005					
4/7/2009				<0.0005	<0.0005			
4/8/2009						0.0013	<0.0005	<0.0005
4/14/2009		<0.0005	<0.0005					
4/27/2009	<0.0005							
9/30/2009	<0.0005	<0.0005					<0.0005	<0.0005
10/1/2009			<0.0005	<0.0005	<0.0005	<0.0005		
4/13/2010	<0.0005	<0.0005			<0.0005	<0.0005	<0.0005	<0.0005
4/14/2010			<0.0005	<0.0005				
10/6/2010					<0.0005			
10/7/2010						<0.0005		
10/12/2010	<0.0005	<0.0005						
10/13/2010			<0.0005				<0.0005	<0.0005
10/14/2010				<0.0005				
4/5/2011				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
4/6/2011		<0.0005	<0.0005					
10/4/2011					<0.0005	<0.0005	<0.0005	<0.0005
10/5/2011	<0.0005	<0.0005						
10/12/2011			<0.0005	<0.0005				
4/3/2012					<0.0005	<0.0005	<0.0005	
4/4/2012				<0.0005				<0.0005
4/9/2012		<0.0005	<0.0005					
4/10/2012	<0.0005							
9/18/2012					<0.0005	<0.0005		
9/19/2012			<0.0005				<0.0005	<0.0005
9/24/2012				<0.0005				
9/25/2012		<0.0005						
9/26/2012	<0.0005							
3/12/2013				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
3/13/2013	<0.0005	<0.0005	<0.0005					
9/9/2013					<0.0005			
9/10/2013			<0.0005	<0.0005		<0.0005	<0.0005	<0.0005
9/11/2013	<0.0005	<0.0005						
3/5/2014				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
3/11/2014	<0.0005	<0.0005	<0.0005					
9/3/2014			<0.0005					<0.0005
9/8/2014					<0.0005	<0.0005		
9/9/2014	<0.0005	<0.0005		<0.0005			<0.0005	

					. ,			
	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.0005		0.0015		0.00029 (J)
4/22/2015					<0.0005		<0.0005	
4/23/2015		<0.0005	<0.0005					
9/29/2015				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
9/30/2015	<0.0005	<0.0005	<0.0005					
3/23/2016		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
3/24/2016	<0.0005							
5/17/2016				<0.0005	<0.0005			
5/18/2016	<0.0005	<0.0005				<0.0005	<0.0005	<0.0005
5/19/2016			<0.0005					
7/6/2016				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
7/7/2016	0.0001 (J)	<0.0005	<0.0005					
9/7/2016				<0.0005	<0.0005	<0.0005		
9/8/2016	<0.0005	<0.0005	<0.0005				<0.0005	<0.0005
10/18/2016				<0.0005	<0.0005	<0.0005	<0.0005	
10/19/2016	<0.0005	<0.0005	<0.0005					<0.0005
12/7/2016	<0.0005	<0.0005	<0.0005					
12/8/2016				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
2/1/2017				<0.0005	<0.0005			
2/2/2017	0.0001 (J)	<0.0005				0.0001 (J)	8E-05 (J)	8E-05 (J)
2/3/2017			8E-05 (J)					
3/23/2017				<0.0005	<0.0005			
3/24/2017						<0.0005	<0.0005	
3/27/2017	<0.0005	<0.0005	<0.0005					<0.0005
10/4/2017				<0.0005	<0.0005	<0.0005		
10/5/2017	<0.0005	<0.0005	<0.0005				<0.0005	<0.0005
3/14/2018							<0.0005	
3/15/2018	<0.0005	<0.0005	<0.0005			<0.0005		<0.0005
3/16/2018				<0.0005	<0.0005			
10/4/2018	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005	<0.0005	
10/5/2018			<0.0005					<0.0005
4/8/2019			<0.0005		<0.0005	<0.0005	<0.0005	<0.0005
4/9/2019	<0.0005	<0.0005		<0.0005				
10/1/2019	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
3/26/2020			<0.0005					
3/27/2020							<0.0005	<0.0005
3/30/2020						<0.0005		
3/31/2020	<0.0005	<0.0005		<0.0005	<0.0005			
9/23/2020		<0.0005	<0.0005					
9/24/2020	<0.0005					<0.0005	<0.0005	<0.0005
9/25/2020				<0.0005	<0.0005			
3/9/2021	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
8/10/2021	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
2/4/2022				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
2/7/2022	<0.0005	<0.0005	<0.0005					
8/8/2022			<0.0005		<0.0005			
8/9/2022	<0.0005	<0.0005		<0.0005			<0.0005	<0.0005
8/10/2022						<0.0005		
1/31/2023	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/22/2016	13.9	23.8	47.4	79.3	123				
3/23/2016						43.9			56.3
3/24/2016	15.0	0.1.5	45.5	75.0	00.0	40.4	40.7	43.9	
5/17/2016	15.6	21.5	45.5	75.8	99.2	40.1	44.0	10.0	50
5/18/2016	15.7		40.5	05.0			41.9	48.2	59
7/5/2016	15.7	20.0	40.5	65.3	100	22.2		45.0	
7/6/2016		20.6			109	32.3	20.0	45.8	50.0
7/7/2016	10.0	10.7	27.2	50.0	67.0	20.0	36.8		50.9
9/7/2016	18.2	16.7	37.3	59.8	67.2	28.9	25.0	40.0	40
9/8/2016 10/18/2016	177	20.3	46.6	72.4	77.9	35.4	35.9	40.9 45.5	48
10/19/2016	17.7	20.3	40.0	72.4	77.9	33.4	38.7	45.5	49.7
12/6/2016	16.9	19.7		78.6	93.3	34.3	30.7		49.7
12/7/2016	10.5	19.7	43.5	76.0	93.3	34.3		40.6	46.4
12/8/2016			43.3				39.4	40.0	40.4
1/31/2017	17.9		39.2				33.4		
2/1/2017	17.9	18.1	39.2	85	92.8				
2/2/2017		10.1		65	92.0	38.1	41.5	42.4	
2/3/2017						36.1	41.5	42.4	49
3/23/2017	13.9		38.7	81.2					43
3/24/2017	10.0	21.1	30.7	01.2	96.3				
3/27/2017		21.1			30.3	45.4	39.1	45.5	50.7
10/4/2017	15.9		36.5	78.8	75.1	40.4	33.1	45.5	30.7
10/5/2017	10.5	20.1	30.3	70.0	75.1	35.8	41.6	42.9	52
3/14/2018	<25	20.1	39.5			00.0	41.0	72.0	02
3/15/2018	120	<25	33.3	83.5	69.9	52.4		43.3	
3/16/2018		-25		00.0	03.3	52.4	45.9	45.5	53.4
5/15/2018						48.4	40.0		00.4
5/16/2018						40.4	40		
10/4/2018	15.9 (J)	21.3 (J)	41.7	75.2	77.8	51.2	40	43.7	
10/5/2018	10.5 (0)	21.0 (0)	71.7	70.2	77.0	01.2	39.6	40.7	52.7
12/11/2018						49.3	66.6		02.7
4/5/2019				76.5					
4/8/2019	15.7	22.4	44.1	7 0.0	86.6				
4/9/2019					00.0	48.8	41.4	45.8	57.1
9/30/2019	17.6	19.6	44.6	74.7	78.3				
10/1/2019						36.8	38.7	42.3	59.1
3/26/2020	14	22.4	43.2	78.7	87.4				
3/27/2020						22.9			
3/30/2020							45.7		
3/31/2020								52.3	63.6
6/19/2020								41.3 (R)	61.4 (R)
9/21/2020			45.8						
9/22/2020		19.5							
9/23/2020	17.6			76.2	74.9				55.8
9/24/2020							36.9		
9/25/2020						39.4			
9/28/2020								44.7	
3/8/2021	16.2 (M1)	22		73.5	87.2				
3/9/2021			48.7			48.7	44.9		
3/10/2021								47.4	64.9
8/9/2021	20.2		49.9	73.2	69.7				

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
8/10/2021		20.8				45.5	48.2	44.9	62
2/4/2022	18.3	23.7	57.6	59 (M1)	97.3	52.8	56.1		
2/7/2022								49	68.7
8/8/2022	17.2	21.1	51.2	61	68.9				
8/9/2022						43.9	44.4	48.7	66.3
1/30/2023	15.8 (M1)	20.4	46.8	53.1	73.6	43.7			
1/31/2023							40.4	42.5	62

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/23/2016		49.9	36.4	79	64.1	45.2	69.1	36
3/24/2016	31.4							
5/17/2016				74.6	62.8			
5/18/2016	39.2	50.7				46.5	63.7	37.3
5/19/2016			41.5					
7/6/2016				66.9	59.5	29.1	56.8	32.8
7/7/2016	36	45.5	33.5					
9/7/2016				61.6	53.7	19.2		
9/8/2016	70	46.8	34.7				51.3	32.1
10/18/2016				71.6	62.3	22.6	52.6	
10/19/2016	63	47.3	33.4					35
12/7/2016	54.7	45.3	35.5					
12/8/2016				67.6	58.8	17.5	43.7	33.4
2/1/2017				82.5	59.6			
2/2/2017	37.4	49.9				54.4	56.5	34.3
2/3/2017			31.7					
3/23/2017				84.4	62.9			
3/24/2017						56.8	64.4	
3/27/2017	20.9	45.8	32					34.9
10/4/2017				70.8	62.4	30.5		
10/5/2017	26.8	47.3	41				59.9	34.7
3/14/2018							58.8	
3/15/2018	62.8	46.8	39.8			43.4		35.3
3/16/2018				78.1	66.9			
10/4/2018	48.6	50.4		73	65.5	26.1	264 (o)	
10/5/2018			39.3					37.8
12/11/2018							64.3	
4/8/2019			39.8		67	56.1	81.5	36.3
4/9/2019	35.4	47.3		73.9				
6/18/2019							83.7	
6/27/2019							75.9	
10/1/2019	82.8	46.9	39.1	70.6	64.2	28.5	64	37.2
11/6/2019	74.9							
11/26/2019	45.8							
3/26/2020			44.7					
3/27/2020							87.3	34.3
3/30/2020						47.8		
3/31/2020	25.6	51.5		84.2	70.6			
9/23/2020		45.9	39.2					
9/24/2020	73.4					39.5	81.4	35.9
9/25/2020				77.1	71.3			
3/9/2021	67.8	48.7	54.3	85.4	70.8	64.3	83.2	36.8
8/10/2021	29.7	48.1	48.2	78.3	67.7	40.5	111	38.1
2/4/2022				79.5	71.2	68.3	92.6	39.8
2/7/2022	39.7	52.6	64.9					
8/8/2022			40.6		70.5			
8/9/2022	30.2	51.3		76.6			83.8	38.6
8/10/2022						33.3		
1/31/2023	16.2	43.8	58.3	75.5	62.5	19	69.2	34.1

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/22/2016 3/23/2016	1.1933	1.3137	2.0975	4.0352	5.549	1.3507			1.4238
3/24/2016						1.3507	1.1313	1.6497	1.4230
	1 14	1 20	2.1	2 01	6.74	1 20	1.1313	1.0497	
5/17/2016	1.14	1.29	2.1	3.81	6.74	1.28		1 74	1.57
5/18/2016							1 12	1.74	1.57
5/19/2016	4.4		2.4	4			1.13		
7/5/2016	1.4		2.4	4	5.0			0.1	
7/6/2016		1.6			5.2	1.5		2.1	
7/7/2016	4	4.5	0.5	4.0	7.0	1.5	1.5		1.7
9/7/2016	1	1.5	2.5	4.2	7.2	1.5		4.0	4.5
9/8/2016			0.7		7.4		1.4	1.9	1.5
10/18/2016	1.1	1.6	2.7	4.4	7.4	1.4		2.1	4.7
10/19/2016							1.4		1.7
12/6/2016	1	1.2		4.6	7.6	1.3		_	
12/7/2016			2.6					2	1.8
12/8/2016							1.4		
1/31/2017	1.2		2.5						
2/1/2017		2.1		3.7	8.5				
2/2/2017						1.8	1.6	2.3	
2/3/2017									2
3/23/2017	1.1		2	3.5					
3/24/2017		1.3			7				
3/27/2017						1.7	1.5	2.1	1.8
10/4/2017	1.1		2.2	3.6	7.4				
10/5/2017		1.3				1.5	1.4	1.9	5.5 (o)
12/14/2017									1.5
3/14/2018	1.2		2.4						
3/15/2018		1.6		3.8	1.7	2		1.9	
3/16/2018							1.5		1.9
5/15/2018						1.4			
10/4/2018	1.4	1.8	2.5	3.4	6.1	2.1		2	
10/5/2018							1.5		2.2
12/11/2018						1.9			1.8
4/5/2019				4.2					
4/8/2019	1.1	1.3	2.6		3.6				
4/9/2019						1.9	1.6	1.9	1.8
9/30/2019	1.4	1.5	3	4.1	7.5				
10/1/2019						1.5	0.94 (J)	1.3	1.1
3/26/2020	1.1	1.4	2	2.6	5.4				
3/27/2020						1.2			
3/30/2020							1		
3/31/2020								1.3	1.1
9/21/2020			2.1						
9/22/2020		1							
9/23/2020	1.6			2.8	4.2				1.1
9/24/2020							0.94 (J)		
9/25/2020						1.1			
9/28/2020								1.3	
3/8/2021	1.1	1.3		2.8	5.6				
3/9/2021			2.1			1.1	0.97 (J)		
3/10/2021								1.3	1.2
8/9/2021	1.1		2.4	2.1	3				

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
8/10/2021		1.2				1.2	0.93 (J)	1.2	1.2
2/4/2022	0.99 (J)	1.2	2.3	1.1	3.3 (M1)	1.3	0.88 (J)		
2/7/2022								1.1	1.2
8/8/2022	1.2	1.3	2.5	1.9	2.4				
8/9/2022						1.3	1.1	1.6	0.93 (J)
1/30/2023	1.1	1.2	2.2	1.2	3.4	1.3			
1/31/2023							0.8 (J)	1.2	1.1

						. ,			
		GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3	3/23/2016		1.2595	1.5409	2.5045	1.7709	1.1569	1.4936	0.9561
3	3/24/2016	2.461							
5	5/17/2016				2.47	1.75			
5	5/18/2016	2.61	1.25				1.35		
5	5/19/2016			1.23				1.35	0.972
	7/6/2016				2.9	2	1.9	1.6	1.3
	7/7/2016	2.8	1.7	1.7					
	9/7/2016				2.8	2	1.7		
	9/8/2016	2.3	1.5	1.6				1.4	1
	10/18/2016				2.8	2	1.8	1.4	
	10/19/2016	2.4	1.6	1.6					1.1
	12/7/2016	2.2	1.5	1.7					
	12/8/2016				3.1	2	1.6	1.5	1.3
	2/1/2017				3.8	2.2			
	2/2/2017	3.4	1.8				2	1.7	1.6
	2/3/2017			1.9					
	3/23/2017				3.4	2			
	3/24/2017						1.3	2.1	
	3/27/2017	2.7	1.5	1.7					1.4
	10/4/2017				3.7	1.7	1.7		
	10/5/2017	3.3	1.6	1.4				2	1.1
	3/14/2018							2.1	
	3/15/2018	3.6	1.7	1.6			1.9		1.3
	3/16/2018				3.2	2.1			
	5/15/2018	3.2							
	10/4/2018	2.4	1.7		3.2	2.2	2	2.3	
	10/5/2018			1.6			_		1.6
	12/11/2018							2.3	
	1/11/2019							2.8	
	4/8/2019			1.5		2.1	1.9	3.2	1
	4/9/2019	2.6	1.7		3.3				
	10/1/2019	2	1.4	1.1	2.2	1.6	1.2	1.8	0.91 (J)
	3/26/2020			0.63 (J)					
	3/27/2020			(-)				2.5	0.74 (J)
	3/30/2020						9.2 (o)		
	3/31/2020	1.5	1		2	1.5			
	6/19/2020						1.4 (R)		
	9/23/2020		1.1	1.1			()		
	9/24/2020	1.8					1.4	2.2	0.82 (J)
	9/25/2020				2.3	1.6			, ,
	3/9/2021	1.8	1	0.85 (J)	2		1.5	2.2	0.74 (J)
	3/10/2021		1.1	1	2.3		1.6	2.7	0.85 (J)
	2/4/2022				1.9		1.8	3.2	0.78 (J)
	2/7/2022	2.7	1	0.7 (J)	-	-			(*)
	3/8/2022			1.3		1.9			
	3/9/2022	4	0.81 (J)	-	2.4	-		2.1	1
	3/10/2022		(-)		-		1.7	•	
	1/31/2023	1.5	1	<1	2.1		1.7	1.6	0.72 (J)
		-		•	•	•		-	· (-)

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.005		<0.005	<0.005	<0.005			<0.005	
3/7/2007		<0.005				<0.005	<0.005		<0.005
5/8/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
5/9/2007							<0.005	<0.005	<0.005
7/7/2007	<0.005		<0.005						
7/17/2007		<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/28/2007	<0.005	0.0013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
8/29/2007									0.0016
11/6/2007	<0.005		<0.005	0.0014	<0.005				
11/7/2007		0.0024				<0.005	<0.005	<0.005	0.0016
5/7/2008							<0.005	<0.005	<0.005
5/8/2008				<0.005	<0.005				
5/9/2008	<0.005	<0.005	<0.005			<0.005			
12/2/2008		<0.005				<0.005			
12/3/2008	<0.005		<0.005	<0.005	<0.005		<0.005		
12/4/2008								<0.005	
12/5/2008									<0.005
4/7/2009	<0.005		<0.005	<0.005	<0.005				
4/8/2009		<0.005				<0.005			
4/14/2009							<0.005	<0.005	<0.005
9/30/2009									<0.005
10/1/2009	<0.005	<0.005	<0.005			<0.005	<0.005		
10/2/2009				<0.005	<0.005			<0.005	
4/13/2010			<0.005				<0.005	<0.005	<0.005
4/14/2010	<0.005	<0.005		<0.005	<0.005	<0.005			
10/7/2010			<0.005						
10/12/2010							<0.005	<0.005	<0.005
10/13/2010	<0.005	<0.005				<0.005			
10/14/2010				<0.005	<0.005				
4/5/2011				<0.005	<0.005				
4/6/2011	<0.005	<0.005	<0.005			<0.005	<0.005	<0.005	
10/4/2011		<0.005				<0.005			
10/6/2011			<0.005						
10/10/2011	<0.005								
10/12/2011				<0.005	<0.005		<0.005	<0.005	<0.005
4/3/2012	<0.005		<0.005						
4/4/2012				<0.005	<0.005				
4/5/2012							<0.005	<0.005	
4/9/2012									<0.005
4/10/2012		<0.005				<0.005			
9/19/2012			<0.005				<0.005		
9/24/2012	<0.005				<0.005				
9/25/2012								<0.005	<0.005
9/26/2012		<0.005		<0.005		<0.005			
3/12/2013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
3/13/2013							<0.005	<0.005	<0.005
9/9/2013			<0.005						
9/10/2013		<0.005		<0.005	<0.005	<0.005	<0.005		
9/11/2013	<0.005							<0.005	<0.005
3/4/2014	0.00032 (J)	<0.005	<0.005			<0.005			
3/10/2014							<0.005	<0.005	<0.005
3/11/2014				<0.005	<0.005				

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3/2014	<0.005	<0.005	<0.005			<0.005	<0.005		
9/8/2014				<0.005	<0.005				
9/9/2014								<0.005	<0.005
4/21/2015	<0.005	<0.005		<0.005	<0.005	<0.005			
4/22/2015			<0.005				<0.005	<0.005	
4/23/2015									<0.005
9/29/2015		<0.005		<0.005	<0.005				
9/30/2015	<0.005		<0.005			<0.005	<0.005	<0.005	<0.005
3/22/2016	<0.005	<0.005	<0.005	<0.005	<0.005				
3/23/2016						<0.005			<0.005
3/24/2016							<0.005	<0.005	
5/17/2016	<0.005	<0.005	<0.005	<0.005	<0.005	0.00424 (J)			
5/18/2016							<0.005	<0.005	<0.005
7/5/2016	<0.005		<0.005	<0.005					
7/6/2016		<0.005			<0.005	<0.005		<0.005	
7/7/2016							<0.005		<0.005
9/7/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
9/8/2016							<0.005	<0.005	<0.005
10/18/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	
10/19/2016							<0.005		0.0064 (J)
12/6/2016	<0.005	0.0018 (J)		<0.005	<0.005	0.0013 (J)			
12/7/2016			<0.005					<0.005	<0.005
12/8/2016							<0.005		
1/31/2017	<0.005		<0.005						
2/1/2017		<0.005		<0.005	<0.005				
2/2/2017						0.001 (J)	<0.005	<0.005	
2/3/2017									<0.005
3/23/2017	<0.005		<0.005	<0.005					
3/24/2017		<0.005			0.0004 (J)				
3/27/2017						<0.005	<0.005	<0.005	<0.005
10/4/2017	<0.005		<0.005	<0.005	<0.005				
10/5/2017		<0.005				<0.005	<0.005	0.0012 (J)	<0.005
3/14/2018	0.016		<0.005						
3/15/2018		<0.005		<0.005	<0.005	<0.005		<0.005	
3/16/2018							<0.005		<0.005
10/4/2018	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	
10/5/2018							<0.005		<0.005
4/5/2019				<0.005					
4/8/2019	<0.005	<0.005	<0.005		<0.005				
4/9/2019						<0.005	<0.005	<0.005	<0.005
9/30/2019	<0.005	<0.005	<0.005	<0.005	<0.005				
10/1/2019						<0.005	0.00086 (J)	<0.005	<0.005
3/26/2020	<0.005	<0.005	0.00043 (J)	0.00062 (J)	0.0013 (J)		· · ·		
3/27/2020			(-,	(-,	(-,	<0.005			
3/30/2020							0.00071 (J)		
3/31/2020							\-/	0.00042 (J)	<0.005
9/21/2020			<0.005					(-)	
9/22/2020		<0.005							
9/23/2020	<0.005			<0.005	<0.005				<0.005
9/24/2020							<0.005		
9/25/2020						<0.005			
9/28/2020						-		0.00063 (J)	
								\-/	

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/8/2021	<0.005	<0.005		<0.005	<0.005				
3/9/2021			<0.005			<0.005	<0.005		
3/10/2021								<0.005	<0.005
8/9/2021	<0.005		<0.005	<0.005	<0.005				
8/10/2021		<0.005				<0.005	<0.005	<0.005	<0.005
2/4/2022	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		
2/7/2022								<0.005	<0.005
8/8/2022	<0.005	<0.005	<0.005	<0.005	<0.005				
8/9/2022						<0.005	<0.005	<0.005	<0.005
1/30/2023	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
1/31/2023							<0.005	<0.005	<0.005

		GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6	6/2007	<0.005	<0.005	<0.005					
3/7	7/2007				<0.005	<0.005			<0.005
5/8	8/2007				<0.005				0.0013
5/9	9/2007	<0.005	0.002	0.0013		<0.005	0.11 (o)	<0.005	
7/6	6/2007				<0.005		0.0029	<0.005	<0.005
7/	17/2007	<0.005	<0.005	<0.005		<0.005			
8/2	28/2007				<0.005	<0.005	0.0038	<0.005	0.0014
8/2	29/2007	<0.005	<0.005	<0.005					
11	/6/2007				<0.005	<0.005	<0.005	0.0035	0.0024
11	/7/2007	<0.005	0.0013	<0.005					
5/7	7/2008	<0.005	<0.005	<0.005					
5/8	8/2008				<0.005	<0.005	<0.005	<0.005	<0.005
12	2/2/2008						<0.005	<0.005	<0.005
12	2/3/2008				<0.005	<0.005			
12	2/5/2008	<0.005	<0.005	<0.005					
4/7	7/2009				<0.005	<0.005			
4/8	8/2009						<0.005	<0.005	<0.005
4/	14/2009		<0.005	<0.005					
4/2	27/2009	<0.005							
9/3	30/2009	<0.005	<0.005					<0.005	<0.005
10	/1/2009			<0.005	<0.005	<0.005	0.0016		
4/	13/2010	<0.005	<0.005			<0.005	<0.005	<0.005	<0.005
4/	14/2010			<0.005	<0.005				
10)/6/2010					<0.005			
10)/7/2010						<0.005		
10	/12/2010	<0.005	<0.005						
10)/13/2010			<0.005				<0.005	<0.005
10)/14/2010				<0.005				
4/5	5/2011				<0.005	<0.005	<0.005	<0.005	<0.005
4/6	6/2011		<0.005	<0.005					
10)/4/2011					<0.005	0.0018	<0.005	<0.005
10)/5/2011	<0.005	<0.005						
10)/12/2011			<0.005	<0.005				
4/3	3/2012					<0.005	<0.005	<0.005	
4/4	4/2012				<0.005				<0.005
4/9	9/2012		<0.005	<0.005					
4/	10/2012	<0.005							
9/	18/2012					<0.005	<0.005		
9/	19/2012			<0.005				<0.005	<0.005
9/2	24/2012				<0.005				
9/2	25/2012		<0.005						
9/2	26/2012	<0.005							
3/	12/2013				<0.005	<0.005	<0.005	<0.005	<0.005
3/	13/2013	<0.005	<0.005	<0.005					
9/9	9/2013					<0.005			
9/	10/2013			<0.005	<0.005		<0.005	0.0017	<0.005
	11/2013	<0.005	<0.005						
	5/2014				<0.005	<0.005	<0.005	<0.005	<0.005
	11/2014	<0.005	<0.005	<0.005					
	3/2014			<0.005					<0.005
	8/2014					<0.005	<0.005		
9/9	9/2014	0.0015	<0.005		<0.005			<0.005	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.005		<0.005		<0.005
4/22/2015					<0.005		<0.005	
4/23/2015		<0.005	<0.005					
9/29/2015				<0.005	<0.005	<0.005	<0.005	<0.005
9/30/2015	<0.005	<0.005	<0.005					
3/23/2016		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
3/24/2016	<0.005							
5/17/2016				<0.005	<0.005			
5/18/2016	<0.005	<0.005				<0.005	<0.005	<0.005
5/19/2016			<0.005					
7/6/2016				<0.005	<0.005	<0.005	<0.005	<0.005
7/7/2016	<0.005	<0.005	<0.005					
9/7/2016				<0.005	<0.005	<0.005		
9/8/2016	<0.005	<0.005	<0.005				<0.005	<0.005
10/18/2016				<0.005	<0.005	<0.005	<0.005	
10/19/2016	<0.005	<0.005	<0.005					<0.005
12/7/2016	<0.005	<0.005	<0.005					
12/8/2016				<0.005	<0.005	<0.005	<0.005	<0.005
2/1/2017				<0.005	<0.005			
2/2/2017	<0.005	<0.005				<0.005	<0.005	<0.005
2/3/2017			<0.005					
3/23/2017				<0.005	<0.005			
3/24/2017						0.0011 (J)	<0.005	
3/27/2017	<0.005	<0.005	<0.005					<0.005
10/4/2017				<0.005	<0.005	<0.005		
10/5/2017	<0.005	<0.005	<0.005				0.0005 (J)	<0.005
3/14/2018							<0.005	
3/15/2018	<0.005	<0.005	<0.005			<0.005		<0.005
3/16/2018				<0.005	<0.005			
10/4/2018	<0.005	<0.005		<0.005	<0.005	<0.005	<0.005	
10/5/2018			<0.005					<0.005
4/8/2019			<0.005		<0.005	<0.005	<0.005	<0.005
4/9/2019	<0.005	0.0023 (J)		<0.005				
10/1/2019	<0.005	<0.005	0.0051 (J)	0.0012 (J)	<0.005	<0.005	0.0005 (J)	<0.005
3/26/2020			<0.005					
3/27/2020							<0.005	<0.005
3/30/2020						0.00041 (J)		
3/31/2020	0.00093 (J)	0.0015 (J)		<0.005	0.00085 (J)			
9/23/2020		<0.005	<0.005					
9/24/2020	<0.005					<0.005	<0.005	<0.005
9/25/2020				<0.005	<0.005			
3/9/2021	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/10/2021	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2/4/2022				<0.005	<0.005	<0.005	<0.005	<0.005
2/7/2022	<0.005	<0.005	<0.005					
8/8/2022			<0.005		<0.005			
8/9/2022	<0.005	<0.005		<0.005			<0.005	<0.005
8/10/2022						<0.005		
1/31/2023	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.005		<0.005	<0.005	<0.005			<0.005	
3/7/2007		<0.01				<0.005	<0.005		<0.005
5/8/2007	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005			
5/9/2007							<0.005	<0.005	<0.005
7/7/2007	<0.005		<0.005						
7/17/2007		<0.01		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/28/2007	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
8/29/2007									<0.005
11/6/2007	<0.005		<0.005	<0.005	<0.005				
11/7/2007		<0.01				<0.005	<0.005	<0.005	<0.005
5/7/2008							<0.005	<0.005	<0.005
5/8/2008				<0.005	<0.005				
5/9/2008	<0.005	<0.01	<0.005			<0.005			
12/2/2008		<0.01				<0.005			
12/3/2008	<0.005		<0.005	<0.005	<0.005		<0.005		
12/4/2008								<0.005	
12/5/2008									<0.005
4/7/2009	<0.005		<0.005	<0.005	<0.005				
4/8/2009		<0.01				<0.005			
4/14/2009							<0.005	<0.005	<0.005
9/30/2009									<0.005
10/1/2009	<0.005	<0.01	<0.005			<0.005	<0.005		
10/2/2009				<0.005	<0.005			<0.005	
4/13/2010			<0.005				<0.005	<0.005	<0.005
4/14/2010	<0.005	<0.01		<0.005	<0.005	<0.005			
10/7/2010			<0.005						
10/12/2010							<0.005	<0.005	<0.005
10/13/2010	<0.005	<0.01				<0.005			
10/14/2010				<0.005	<0.005				
4/5/2011				<0.005	<0.005				
4/6/2011	<0.005	<0.01	<0.005			<0.005	<0.005	<0.005	
10/4/2011		<0.01				<0.005			
10/6/2011			<0.005						
10/10/2011	<0.005			.0.005	0.005		0.005	0.005	
10/12/2011	.0.005		0.005	<0.005	<0.005		<0.005	<0.005	<0.005
4/3/2012	<0.005		<0.005	.0.005	0.005				
4/4/2012				<0.005	<0.005		0.005	0.005	
4/5/2012							<0.005	<0.005	
4/9/2012		.0.04				0.005			<0.005
4/10/2012		<0.01	0.005			<0.005	0.005		
9/19/2012	.0.005		<0.005		0.0010		<0.005		
9/24/2012	<0.005				0.0016			0.005	
9/25/2012		.0.04		.0.005		0.005		<0.005	<0.005
9/26/2012	-0.005	<0.01	10.005	<0.005	-0.005	<0.005			
3/12/2013	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	0.005	.0.005	.0.005
3/13/2013			<0.00E				<0.005	<0.005	<0.005
9/9/2013		10.01	<0.005	10.005	0.000	-0.005	-0.005		
9/10/2013	<0.00E	<0.01		<0.005	0.002	<0.005	<0.005	<0.00E	<0.00F
9/11/2013	<0.005	0.0004771	<0.00E			<0.00E		<0.005	<0.005
3/4/2014	0.00043 (J)	0.00047 (J)	<0.005			<0.005	<0.00E	<0.00E	<0.00F
3/10/2014				<0.00E	<0.00E		<0.005	<0.005	<0.005
3/11/2014				<0.005	<0.005				

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3/2014	0.00076 (J)	0.00065 (J)	<0.005			<0.005	<0.005		
9/8/2014				<0.005	0.001 (J)				
9/9/2014								<0.005	<0.005
4/21/2015	0.00051 (J)	0.00062 (J)		<0.005	<0.005	<0.005			
4/22/2015			<0.005				<0.005	<0.005	
4/23/2015									<0.005
9/29/2015		0.0009 (J)		<0.005	0.0025 (J)				
9/30/2015	0.0006 (J)		<0.005			<0.005	<0.005	<0.005	<0.005
3/22/2016	<0.005	<0.01	<0.005	<0.005	<0.005				
3/23/2016						<0.005			<0.005
3/24/2016							<0.005	<0.005	
5/17/2016	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005			
5/18/2016							<0.005	<0.005	<0.005
7/5/2016	0.0004 (J)		<0.005	0.0003 (J)					
7/6/2016		0.0009 (J)			0.0004 (J)	<0.005		<0.005	
7/7/2016		. ,			, ,		<0.005		<0.005
9/7/2016	<0.005	0.0011 (J)	<0.005	<0.005	0.0008 (J)	<0.005			
9/8/2016		.,			()		<0.005	<0.005	<0.005
10/18/2016	<0.005	0.0011 (J)	<0.005	<0.005	<0.005	<0.005		<0.005	
10/19/2016		(-,					<0.005		<0.005
12/6/2016	0.0006 (J)	0.0011 (J)		0.0007 (J)	0.0026 (J)	<0.005			
12/7/2016	(-)	(-,	<0.005	(-,	(-)			<0.005	<0.005
12/8/2016							<0.005		
1/31/2017	0.0006 (J)		<0.005						
2/1/2017	(-)	0.0011 (J)		<0.005	0.0013 (J)				
2/2/2017		(-,			(-)	<0.005	<0.005	<0.005	
2/3/2017									<0.005
3/23/2017	0.0007 (J)		<0.005	<0.005					
3/24/2017	(,)	0.0008 (J)			0.0014 (J)				
3/27/2017		(-)				<0.005	<0.005	<0.005	<0.005
10/4/2017	0.0006 (J)		<0.005	<0.005	0.0012 (J)				
10/5/2017	(,,	0.0008 (J)			(0)	<0.005	<0.005	<0.005	<0.005
3/14/2018	<0.005	(-,	<0.005						
3/15/2018		<0.01		<0.005	<0.005	<0.005		<0.005	
3/16/2018		0.01		0.000	0.000	0.000	<0.005	0.000	<0.005
10/4/2018	0.00058 (J)	0.00072 (J)	<0.005	<0.005	<0.005	<0.005		<0.005	
10/5/2018	0.0000 (0)	0.00072 (0)	0.000	0.000	0.000	0.000	<0.005	0.000	<0.005
4/5/2019				0.00031 (J)					
4/8/2019	0.00026 (J)	0.00076 (J)	6.1E-05 (J)	0.0000 (0)	0.00044 (J)				
4/9/2019	0.00020 (0)	0.00070 (0)	0.12 00 (0)		0.00011(0)	<0.005	<0.005	<0.005	<0.005
9/30/2019	0.00042 (J)	0.00054 (J)	<0.005	<0.005	0.00079 (J)	0.000	0.000	0.000	0.000
10/1/2019	0.00042 (0)	0.00004 (0)	-0.000	-0.000	0.00070 (0)	<0.005	<0.005	<0.005	<0.005
3/26/2020	0.00049 (J)	0.00063 (J)	<0.005	<0.005	0.00082 (J)	0.000	0.000	0.000	0.000
3/27/2020	0.000 10 (0)	0.00000 (0)	0.000	0.000	0.00002 (0)	0.00082 (J)			
3/30/2020						0.00002 (0)	<0.005		
3/31/2020							3.000	<0.005	<0.005
9/21/2020			<0.005					3.000	0.000
9/22/2020		0.00049 (J)	5.000						
9/23/2020	0.00051 (J)	0.000+0 (0)		<0.005	<0.005				<0.005
9/24/2020	0.00001 (0)			5.000	5.000		<0.005		0.000
9/25/2020						<0.005	-0.000		
9/28/2020						-0.000		<0.005	
3,20,2020								0.000	

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/8/2021	0.0005 (J)	0.00049 (J)		<0.005	0.00061 (J)				
3/9/2021			<0.005			<0.005	<0.005		
3/10/2021								<0.005	<0.005
8/9/2021	<0.005		<0.005	0.00042 (J)	<0.005				
8/10/2021		0.00047 (J)				<0.005	<0.005	<0.005	<0.005
2/4/2022	0.00057 (J)	0.00051 (J)	<0.005	0.00052 (J)	<0.005	<0.005	<0.005		
2/7/2022								<0.005	<0.005
8/8/2022	0.00045 (J)	0.00058 (J)	<0.005	0.0013 (J)	<0.005				
8/9/2022						<0.005	<0.005	<0.005	<0.005
1/30/2023	0.0005 (J)	0.00043 (J)	<0.005	<0.005	<0.005	<0.005			
1/31/2023							<0.005	< 0.005	<0.005

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.01	<0.005	<0.005					
3/7/2007				<0.005	<0.005			<0.005
5/8/2007				<0.005				<0.005
5/9/2007	<0.01	<0.005	<0.005		<0.005	6.5 (o)	<0.01	
7/6/2007				<0.005		2.1 (o)	<0.01	<0.005
7/17/2007	<0.01	<0.005	<0.005		<0.005			
8/28/2007				<0.005	<0.005	1.4 (o)	<0.01	<0.005
8/29/2007	<0.01	<0.005	<0.005					
11/6/2007				<0.005	<0.005	1.1 (o)	<0.01	<0.005
11/7/2007	<0.01	<0.005	<0.005					
5/7/2008	<0.01	<0.005	<0.005					
5/8/2008				<0.005	<0.005	0.75	<0.01	<0.005
12/2/2008						0.41	<0.01	<0.005
12/3/2008				<0.005	<0.005			
12/5/2008	<0.01	<0.005	<0.005					
4/7/2009				<0.005	<0.005			
4/8/2009						0.38	<0.01	<0.005
4/14/2009		<0.005	<0.005					
4/27/2009	<0.01							
9/30/2009	<0.01	<0.005					<0.01	<0.005
10/1/2009			<0.005	<0.005	<0.005	0.29		
4/13/2010	<0.01	<0.005			<0.005	0.26	<0.01	<0.005
4/14/2010			<0.005	<0.005				
10/6/2010					<0.005			
10/7/2010						0.24		
10/12/2010	<0.01	<0.005						
10/13/2010			<0.005				<0.01	<0.005
10/14/2010				<0.005				
4/5/2011				<0.005	<0.005	0.17	<0.01	<0.005
4/6/2011		<0.005	<0.005					
10/4/2011					<0.005	0.19	<0.01	<0.005
10/5/2011	<0.01	<0.005						
10/12/2011			<0.005	<0.005				
4/3/2012					<0.005	0.114	<0.01	
4/4/2012				<0.005				<0.005
4/9/2012		<0.005	<0.005					
4/10/2012	<0.01							
9/18/2012					<0.005	0.14		
9/19/2012			<0.005				<0.01	<0.005
9/24/2012				<0.005				
9/25/2012		<0.005						
9/26/2012	0.0033							
3/12/2013				<0.005	<0.005	0.041	<0.01	<0.005
3/13/2013	<0.01	<0.005	<0.005					
9/9/2013					<0.005			
9/10/2013			<0.005	<0.005		0.06	<0.01	<0.005
9/11/2013	0.0018	<0.005						
3/5/2014				<0.005	<0.005	0.049	<0.01	<0.005
3/11/2014	0.00029 (J)	<0.005	<0.005					
9/3/2014			<0.005					<0.005
9/8/2014					<0.005	0.068		
9/9/2014	0.0011 (J)	<0.005		<0.005			<0.01	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.005		0.043		<0.005
4/22/2015					<0.005		<0.01	
4/23/2015		<0.005	<0.005					
9/29/2015				<0.005	<0.005	0.0525	<0.01	<0.005
9/30/2015	<0.01	<0.005	<0.005					
3/23/2016		<0.005	<0.005	<0.005	<0.005	0.0172	<0.01	<0.005
3/24/2016	<0.01							
5/17/2016				<0.005	<0.005			
5/18/2016	<0.01	<0.005				0.021	<0.01	<0.005
5/19/2016			<0.005					
7/6/2016				<0.005	<0.005	0.0278	<0.01	0.0004 (J)
7/7/2016	0.0016 (J)	<0.005	<0.005					
9/7/2016				<0.005	<0.005	0.0334		
9/8/2016	0.0006 (J)	<0.005	<0.005				<0.01	<0.005
10/18/2016				<0.005	<0.005	0.0368	<0.01	
10/19/2016	0.0006 (J)	<0.005	<0.005					<0.005
12/7/2016	0.0006 (J)	<0.005	<0.005					
12/8/2016				<0.005	<0.005	0.0419	<0.01	<0.005
2/1/2017				<0.005	<0.005			
2/2/2017	<0.01	<0.005				0.0113	<0.01	<0.005
2/3/2017			<0.005					
3/23/2017				0.0007 (J)	<0.005			
3/24/2017						0.0094 (J)	<0.01	
3/27/2017	0.001 (J)	<0.005	<0.005					<0.005
10/4/2017				<0.005	<0.005	0.0237		
10/5/2017	0.0051 (J)	<0.005	<0.005				0.0003 (J)	0.0004 (J)
3/14/2018							<0.01	
3/15/2018	<0.01	<0.005	<0.005			0.014		<0.005
3/16/2018				<0.005	<0.005			
10/4/2018	0.0065 (J)	<0.005		<0.005	<0.005	0.024	<0.01	
10/5/2018			0.00058 (J)					<0.005
4/8/2019			0.00046 (J)		0.00022 (J)	0.0086 (J)	0.0017 (J)	0.00041 (J)
4/9/2019	0.0023 (J)	<0.005		<0.005				
10/1/2019	0.00046 (J)	<0.005	0.00033 (J)	<0.005	<0.005	0.017	0.00081 (J)	0.00041 (J)
3/26/2020			0.00035 (J)					
3/27/2020							0.0016 (J)	0.00063 (J)
3/30/2020						0.012		
3/31/2020	0.0019 (J)	<0.005		<0.005	<0.005			
9/23/2020		<0.005	<0.005					
9/24/2020	0.00068 (J)					0.01	0.0011 (J)	<0.005
9/25/2020				0.00057 (J)	<0.005			
3/9/2021	0.00049 (J)	<0.005	<0.005	0.00043 (J)	<0.005	0.0093	0.0013 (J)	0.00042 (J)
8/10/2021	0.0041 (J)	<0.005	<0.005	0.00098 (J)	<0.005	0.013	0.004 (J)	<0.005
2/4/2022				<0.005	<0.005	0.0092	0.0019 (J)	<0.005
2/7/2022	0.0028 (J)	<0.005	<0.005					
8/8/2022			<0.005		<0.005			
8/9/2022	0.0027 (J)	<0.005		0.00061 (J)			0.0013 (J)	<0.005
8/10/2022						0.013		
1/31/2023	0.002 (J)	<0.005	<0.005	<0.005	<0.005	0.031	0.00055 (J)	<0.005

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.005		<0.005	<0.005	<0.005			<0.005	
3/7/2007		<0.005				0.0025	<0.005		<0.005
5/8/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
5/9/2007							<0.005	<0.005	<0.005
7/7/2007	<0.005		<0.005						
7/17/2007		<0.005		0.0028	<0.005	<0.005	<0.005	<0.005	<0.005
8/28/2007	<0.005	0.0032	0.0032	0.0039	0.0061	<0.005	<0.005	<0.005	
8/29/2007									<0.005
11/6/2007	<0.005		<0.005	<0.005	<0.005				
11/7/2007		0.0036				<0.005	0.0029	0.0035	0.0028
5/7/2008							<0.005	<0.005	<0.005
5/8/2008				<0.005	<0.005				
5/9/2008	<0.005	<0.005	<0.005			<0.005			
12/2/2008		<0.005				<0.005			
12/3/2008	<0.005		<0.005	<0.005	<0.005		<0.005		
12/4/2008								<0.005	
12/5/2008									<0.005
4/7/2009	<0.005		<0.005	<0.005	<0.005				
4/8/2009		<0.005				<0.005			
4/14/2009							<0.005	<0.005	<0.005
9/30/2009									<0.005
10/1/2009	<0.005	<0.005	<0.005			<0.005	<0.005		
10/2/2009				<0.005	<0.005			<0.005	
4/13/2010			<0.005				<0.005	<0.005	<0.005
4/14/2010	<0.005	<0.005		<0.005	<0.005	<0.005			
10/7/2010			<0.005						
10/12/2010							<0.005	<0.005	<0.005
10/13/2010	<0.005	<0.005				<0.005			
10/14/2010				<0.005	0.0066				
4/5/2011				<0.005	<0.005				
4/6/2011	<0.005	<0.005	<0.005			<0.005	<0.005	<0.005	
10/4/2011		<0.005							
10/6/2011			<0.005						
10/10/2011	<0.005			.0.005	.0.005	0.005	0.005	.0.005	0.005
10/12/2011	0.005		0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
4/3/2012	<0.005		<0.005	.0.005	.0.005				
4/4/2012				<0.005	<0.005		-0.005	10.005	
4/5/2012							<0.005	<0.005	-0.005
4/9/2012		10.005				-0.005			<0.005
4/10/2012		<0.005	10.005			<0.005	-0.005		
9/19/2012	<0.00E		<0.005		<0.005		<0.005		
9/24/2012	<0.005				<0.005			<0.00E	<0.005
9/25/2012		<0.00E		<0.00E		<0.00E		<0.005	<0.005
9/26/2012 3/12/2013	<0.00E	<0.005	<0.005	<0.005	<0.00E	<0.005 <0.005			
	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.00E	<0.00E	<0.00E
3/13/2013 9/9/2013			<0.005				<0.005	<0.005	<0.005
9/9/2013		<0.005	~0.000	<0.005	<0.005	<0.005	<0.005		
9/10/2013	<0.005	-0.003		-0.003	-0.003	-0.003	~0.003	<0.005	<0.005
3/4/2014	<0.005	<0.005	<0.005			<0.005		-0.003	-0.003
3/10/2014	-0.000	-0.000	-0.000			-0.000	<0.005	<0.005	<0.005
3/10/2014				<0.005	<0.005		0.000	0.000	-0.000
5/11/2014				-0.000	-0.000				

		GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3	3/2014	<0.005	<0.005	0.0011 (J)			<0.005	0.00099 (J)		
9/8	8/2014				<0.005	<0.005				
9/9	9/2014								<0.005	<0.005
4/2	21/2015	<0.005	<0.005		<0.005	<0.005	<0.005			
4/2	22/2015			<0.005				<0.005	<0.005	
4/2	23/2015									<0.005
9/2	29/2015		<0.005		<0.005	<0.005				
9/3	30/2015	<0.005		<0.005			<0.005	<0.005	<0.005	<0.005
	22/2016	<0.005	<0.005	<0.005	<0.005	<0.005				
	23/2016						<0.005			<0.005
	24/2016							<0.005	<0.005	
	7/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
	8/2016							<0.005	<0.005	<0.005
	23/2017	<0.005		<0.005	<0.005					
	24/2017		<0.005			<0.005				
	27/2017						<0.005	<0.005	0.0004 (J)	<0.005
)/4/2017	<0.005		<0.005	<0.005	<0.005				
)/5/2017		<0.005				<0.005	<0.005	0.0005 (J)	<0.005
	14/2018	<0.005		<0.005						
	15/2018		<0.005		<0.005	<0.005	<0.005		<0.005	
	16/2018							<0.005		<0.005
)/4/2018	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	
)/5/2018							<0.005		<0.005
	5/2019				<0.005					
	8/2019	<0.005	0.0013 (J)	0.00029 (J)		<0.005				
	9/2019						<0.005	<0.005	0.0014 (J)	<0.005
	30/2019	<0.005	<0.005	<0.005	<0.005	<0.005				
)/1/2019						<0.005	0.00037 (J)	0.00019 (J)	0.00023 (J)
	26/2020	<0.005	<0.005	<0.005	0.00022 (J)	<0.005				
	27/2020						0.00022 (J)			
	30/2020							<0.005		
	31/2020								<0.005	<0.005
	21/2020			<0.005						
	22/2020		<0.005							
	23/2020	<0.005			<0.005	<0.005				<0.005
	24/2020							<0.005		
	25/2020						<0.005		.0.005	
	28/2020	.0.005	.0.005		.0.005	.0.005			<0.005	
	8/2021	<0.005	<0.005	-0.005	<0.005	<0.005	10.005	-0.005		
	9/2021			<0.005			<0.005	<0.005	.0.005	.0.005
	10/2021	-0.005		-0.005	10.005	0.00054 (1)			<0.005	<0.005
	9/2021	<0.005	-0.005	<0.005	<0.005	0.00051 (J)	10.005	-0.005	10.005	-0.005
	10/2021	-0.005	<0.005	-0.005	10.005	10.005	<0.005	<0.005	<0.005	<0.005
	4/2022	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.00E	<0.00E
	7/2022	<0.00E	<0.00E	<0.00E	<0.00E	<0.00E			<0.005	<0.005
	8/2022	<0.005	<0.005	<0.005	<0.005	<0.005	0.0022 / 15	<0.00E	<0.00E	<0.00E
	9/2022	<0.00E	<0.00E	<0.00E	<0.00E	<0.00E	0.0023 (J)	<0.005	<0.005	<0.005
	30/2023	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.00E	<0.00E	<0.00E
1/3	31/2023							<0.005	<0.005	<0.005

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.005	<0.005	<0.005					
3/7/2007				0.0027	<0.005			0.0043
5/8/2007				0.0026				<0.005
5/9/2007	<0.005	<0.005	<0.005		<0.005	0.44 (o)	<0.005	
7/6/2007				<0.005		0.016	<0.005	<0.005
7/17/2007	<0.005	<0.005	<0.005		<0.005			
8/28/2007				0.0036	<0.005	0.0091	<0.005	<0.005
8/29/2007	<0.005	<0.005	<0.005					
11/6/2007				<0.005	<0.005	<0.005	<0.005	<0.005
11/7/2007	0.0029	0.0033	0.0084					
5/7/2008	0.0026	<0.005	<0.005					
5/8/2008				<0.005	<0.005	<0.005	<0.005	<0.005
12/2/2008						0.003	<0.005	<0.005
12/3/2008				<0.005	<0.005			
12/5/2008	<0.005	<0.005	<0.005					
4/7/2009				<0.005	<0.005			
4/8/2009						<0.005	<0.005	<0.005
4/14/2009		<0.005	<0.005					
4/27/2009	<0.005							
9/30/2009	<0.005	<0.005					<0.005	<0.005
10/1/2009			<0.005	<0.005	<0.005	<0.005		
4/13/2010	<0.005	<0.005			<0.005	<0.005	<0.005	<0.005
4/14/2010			<0.005	<0.005				
10/6/2010					<0.005			
10/7/2010						<0.005		
10/12/2010	<0.005	<0.005						
10/13/2010			<0.005				<0.005	<0.005
10/14/2010				<0.005				
4/5/2011				<0.005	<0.005	<0.005	<0.005	<0.005
4/6/2011		<0.005	<0.005					
10/4/2011					<0.005	<0.005	<0.005	<0.005
10/5/2011	<0.005	<0.005						
10/12/2011			<0.005	<0.005				
4/3/2012					<0.005	<0.005	<0.005	
4/4/2012				<0.005				<0.005
4/9/2012		<0.005	<0.005					
4/10/2012	<0.005							
9/18/2012					<0.005	<0.005		
9/19/2012			<0.005				<0.005	<0.005
9/24/2012				<0.005				
9/25/2012		<0.005						
9/26/2012	<0.005							
3/12/2013				<0.005	<0.005	<0.005	<0.005	<0.005
3/13/2013	<0.005	<0.005	<0.005					
9/9/2013					<0.005			
9/10/2013			<0.005	<0.005		<0.005	<0.005	<0.005
9/11/2013	<0.005	<0.005						
3/5/2014				<0.005	<0.005	<0.005	<0.005	<0.005
3/11/2014	<0.005	<0.005	<0.005					
9/3/2014			<0.005					<0.005
9/8/2014					<0.005	<0.005		
9/9/2014	0.0013 (J)	<0.005		<0.005			<0.005	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.005		0.00082 (J)		<0.005
4/22/2015					<0.005		<0.005	
4/23/2015		<0.005	<0.005					
9/29/2015				<0.005	<0.005	<0.005	<0.005	<0.005
9/30/2015	0.0008 (J)	<0.005	0.0012 (J)					
3/23/2016		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
3/24/2016	<0.005							
9/7/2016				<0.005	<0.005	<0.005		
9/8/2016	0.0006 (J)	<0.005	<0.005				<0.005	<0.005
3/23/2017				<0.005	<0.005			
3/24/2017						0.0007 (J)	<0.005	
3/27/2017	0.0005 (J)	<0.005	<0.005					<0.005
10/4/2017				<0.005	<0.005	<0.005		
10/5/2017	<0.005	<0.005	0.0003 (J)				<0.005	<0.005
3/14/2018							<0.005	
3/15/2018	<0.005	<0.005	0.0016 (J)			<0.005		<0.005
3/16/2018				<0.005	<0.005			
10/4/2018	<0.005	<0.005		<0.005	<0.005	<0.005	<0.005	
10/5/2018			<0.005					<0.005
4/8/2019			0.0005 (J)		<0.005	0.00025 (J)	<0.005	<0.005
4/9/2019	<0.005	<0.005		<0.005				
10/1/2019	0.00084 (J)	0.00031 (J)	0.00083 (J)	0.00031 (J)	0.00023 (J)	0.00034 (J)	0.00036 (J)	<0.005
3/26/2020			0.00067 (J)					
3/27/2020							<0.005	<0.005
3/30/2020						<0.005		
3/31/2020	0.00082 (J)	0.0002 (J)		0.00019 (J)	<0.005			
9/23/2020		<0.005	<0.005					
9/24/2020	<0.005					<0.005	<0.005	<0.005
9/25/2020				<0.005	<0.005			
3/9/2021	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/10/2021	<0.005	<0.005	0.00078 (J)	<0.005	<0.005	<0.005	<0.005	0.0018 (J)
2/4/2022				<0.005	<0.005	<0.005	<0.005	<0.005
2/7/2022	<0.005	<0.005	0.00088 (J)					
8/8/2022			<0.005		<0.005			
8/9/2022	<0.005	<0.005		<0.005			<0.005	<0.005
8/10/2022						<0.005		
1/31/2023	0.0012 (J)	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/22/2016	0.119 (J)	0.0811 (J)	0.1252 (J)	0.1415 (J)	0.1754 (J)				
3/23/2016						0.1069 (J)			0.0905 (J)
3/24/2016							0.1459 (J)	0.1652 (J)	
5/17/2016	0.1049 (J)	0.0706 (J)	0.1091 (J)	0.1293 (J)	0.1385 (J)	0.0991 (J)			
5/18/2016								0.1459 (J)	0.0864 (J)
5/19/2016							0.1408 (J)		
7/5/2016	0.1 (J)		0.16 (J)	0.21 (J)					
7/6/2016		0.09 (J)			0.22 (J)	0.09 (J)		0.21 (J)	
7/7/2016							0.2 (J)		0.16 (J)
9/7/2016	0.13 (J)	0.04 (J)	0.18 (J)	0.21 (J)	0.2 (J)	0.13 (J)			
9/8/2016							0.14 (J)	0.15 (J)	0.08 (J)
10/18/2016	0.15 (J)	0.07 (J)	0.13 (J)	0.15 (J)	0.16 (J)	0.16 (J)		0.19 (J)	
10/19/2016							0.14 (J)		0.09 (J)
12/6/2016	0.11 (J)	0.13 (J)		0.19 (J)	0.29 (J)	0.12 (J)			
12/7/2016			0.13 (J)					0.24 (J)	0.11 (J)
12/8/2016			. ,				0.16 (J)	. ,	,
1/31/2017	0.02 (J)		0.04 (J)						
2/1/2017	(-)	<0.3	(-)	0.35	0.48				
2/2/2017						0.07 (J)	0.17 (J)	0.1 (J)	
2/3/2017						0.07 (0)	0 (0)	J. 1 (J)	0.06 (J)
3/23/2017	0.08 (J)		0.08 (J)	0.39					0.00 (0)
3/24/2017	0.00 (0)	0.01 (J)	0.00 (0)	0.00	0.12 (J)				
3/27/2017		0.01 (0)			0.12 (0)	0.05 (J)	0.11 (J)	0.11 (J)	0.04 (J)
10/4/2017	0.07 (J)		0.11 (J)	0.49	0.2 (J)	0.03 (3)	0.11(3)	0.11(3)	0.04 (3)
10/5/2017	0.07 (3)	<0.3	0.11(3)	0.43	0.2 (3)	0.11 / 1)	0.12 (1)	0.12 / 1)	0.05 (1)
3/14/2018	<0.3	~0.3	<0.3			0.11 (J)	0.13 (J)	0.13 (J)	0.05 (J)
3/15/2018	<0.3	<0.3	<0.3	<0.3	0.4	<0.3		<0.3	
		<0.3		<0.3	0.4	<0.3	-0.2	<0.3	-0.2
3/16/2018	0.4771	0.45 (1)	0.05 (1)	0.04 (1)	0.04 (1)	0.4071)	<0.3	0.04 (1)	<0.3
10/4/2018	0.17 (J)	0.15 (J)	0.25 (J)	0.24 (J)	0.24 (J)	0.16 (J)	0.04 (1)	0.21 (J)	0.47 (1)
10/5/2018				0.04			0.21 (J)		0.17 (J)
4/5/2019				0.31					
4/8/2019	0.057 (J)	0.035 (J)	0.072 (J)		0.12 (J)				
4/9/2019						0.067 (J)	0.1 (J)	0.1 (J)	0.056 (J)
9/30/2019	0.11 (J)	0.099 (J)	0.14 (J)	0.15 (J)	0.17 (J)				
10/1/2019						0.07 (J)	0.11 (J)	0.11 (J)	0.069 (J)
3/26/2020	0.082 (J)	0.057 (J)	0.12 (J)	0.09 (J)	0.089 (J)				
3/27/2020						<0.3			
3/30/2020							0.1 (J)		
3/31/2020								0.099 (J)	0.054 (J)
9/21/2020			0.12						
9/22/2020		0.061 (J)							
9/23/2020	0.089 (J)			0.11	0.13				0.065 (J)
9/24/2020							0.11		
9/25/2020						0.085 (J)			
9/28/2020								0.11	
3/8/2021	0.094 (J)	0.11		0.13	0.1				
3/9/2021			0.099 (J)			0.078 (J)	0.11		
3/10/2021								0.11	0.068 (J)
8/9/2021	0.083 (J)		0.081 (J)	0.1	0.12				
8/10/2021		0.068 (J)				0.078 (J)	0.11	0.11	0.066 (J)
2/4/2022	0.087 (J)	0.068 (J)	0.085 (J)	0.084 (J)	0.11 (M1)	0.07 (J)	0.12		
2/7/2022								0.1	0.058 (J)

Page 2

Time Series

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
8/8/2022	0.11	0.1	0.1	0.11	0.12				
8/9/2022						0.096 (J)	0.13	0.14	0.11
1/30/2023	0.11	0.09 (J)	0.11	0.12	0.12	0.096 (J)			
1/31/2023							0.15	0.14	0.094 (J)

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/23/2016		0.0886 (J)	0.1064 (J)	0.0582 (J)	0.0791 (J)	0.2004 (J)	0.1537 (J)	0.0993 (J)
3/24/2016	0.0445 (J)							
5/17/2016				0.0571 (J)	0.0712 (J)			
5/18/2016	0.0476 (J)	0.0839 (J)				0.1766 (J)		
5/19/2016			0.0928 (J)				0.1414 (J)	0.0936 (J)
7/6/2016				0.29 (J)	0.28 (J)	0.39	0.15 (J)	0.09 (J)
7/7/2016	0.12 (J)	0.08 (J)	0.13 (J)					
9/7/2016				0.08 (J)	0.08 (J)	0.53		
9/8/2016	0.11 (J)	0.11 (J)	0.12 (J)				0.35	0.11 (J)
10/18/2016				0.09 (J)	0.07 (J)	0.24 (J)	0.17 (J)	
10/19/2016	0.13 (J)	0.1 (J)	0.1 (J)					0.1 (J)
12/7/2016	0.23 (J)	0.09 (J)	0.1 (J)					
12/8/2016				0.06 (J)	0.13 (J)	0.24 (J)	0.15 (J)	0.11 (J)
2/1/2017				0.33	0.24 (J)			
2/2/2017	0.11 (J)	0.05 (J)				0.3 (J)	0.1 (J)	0.05 (J)
2/3/2017			0.12 (J)					
3/23/2017				0.07 (J)	0.04 (J)			
3/24/2017						0.22 (J)	0.14 (J)	
3/27/2017	0.01 (J)	0.08 (J)	0.14 (J)					0.07 (J)
10/4/2017				<0.1	0.03 (J)	0.19 (J)		
10/5/2017	<0.1	0.08 (J)	0.09 (J)				0.15 (J)	0.06 (J)
3/14/2018							0.4	
3/15/2018	<0.1	<0.3	<0.3			0.37		<0.3
3/16/2018				<0.1	<0.3			
5/16/2018							0.32	
10/4/2018	0.15 (J)	0.14 (J)		0.16 (J)	0.17 (J)	0.19 (J)	0.28 (J)	
10/5/2018			0.18 (J)					0.18 (J)
4/8/2019			0.057 (J)		<0.3	0.17 (J)	0.1 (J)	0.058 (J)
4/9/2019	0.063 (J)	0.063 (J)		0.061 (J)				
10/1/2019	0.094 (J)	0.079 (J)	0.079 (J)	0.064 (J)	0.063 (J)	0.16 (J)	0.13 (J)	0.078 (J)
3/26/2020			0.064 (J)					
3/27/2020							0.12 (J)	0.078 (J)
3/30/2020						0.16 (J)		
3/31/2020	<0.1	0.055 (J)		<0.1	0.053 (J)			
9/23/2020		0.073 (J)	0.088 (J)					
9/24/2020	0.1					0.14	0.15	0.076 (J)
9/25/2020				0.058 (J)	0.063 (J)			
3/9/2021	0.058 (J)	0.067 (J)	0.069 (J)	0.05 (J)	0.06 (J)	0.17	0.12	0.08 (J)
8/10/2021	<0.1	0.071 (J)	0.087 (J)	0.057 (J)	0.057 (J)	0.19	0.13	0.076 (J)
2/4/2022				<0.1	0.058 (J)	0.14	0.12	0.076 (J)
2/7/2022	<0.1	0.059 (J)	0.082 (J)					
8/8/2022			0.1		0.083 (J)			
8/9/2022	0.079 (J)	0.11		0.077 (J)			0.14	0.094 (J)
8/10/2022						0.14		
1/31/2023	0.062 (J)	0.095 (J)	0.11	0.074 (J)	0.098 (J)	0.26	0.18	0.11

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.001		<0.001	<0.001	<0.001			<0.001	
3/7/2007		<0.001				<0.001	<0.001		<0.001
5/8/2007	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
5/9/2007							<0.001	<0.001	<0.001
7/7/2007	<0.001		<0.001						
7/17/2007		<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
8/28/2007	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
8/29/2007									<0.001
11/6/2007	<0.001		<0.001	<0.001	<0.001				
11/7/2007		<0.001				<0.001	<0.001	<0.001	<0.001
5/7/2008							<0.001	<0.001	<0.001
5/8/2008				<0.001	<0.001				
5/9/2008	<0.001	<0.001	<0.001			<0.001			
12/2/2008		<0.001				<0.001			
12/3/2008	<0.001		<0.001	<0.001	<0.001		<0.001		
12/4/2008								<0.001	
12/5/2008									<0.001
4/7/2009	<0.001		<0.001	<0.001	<0.001				
4/8/2009		<0.001				<0.001			
4/14/2009							<0.001	<0.001	<0.001
9/30/2009									<0.001
10/1/2009	<0.001	<0.001	<0.001			<0.001	<0.001		
10/2/2009				<0.001	<0.001			<0.001	
4/13/2010			<0.001				<0.001	<0.001	<0.001
4/14/2010	<0.001	<0.001		<0.001	<0.001	<0.001			
10/7/2010			<0.001						
10/12/2010							<0.001	<0.001	<0.001
10/13/2010	<0.001	<0.001		0.004	.0.004	<0.001			
10/14/2010				<0.001	<0.001				
4/5/2011				<0.001	<0.001	0.004		.0.004	
4/6/2011	<0.001	<0.001	<0.001			<0.001	<0.001	<0.001	
10/4/2011		<0.001	-0.001			<0.001			
10/6/2011	-0.001		<0.001						
10/10/2011	<0.001			-0.001	10.001		-0.001	-0.001	-0.001
10/12/2011	-0.001		-0.001	<0.001	<0.001		<0.001	<0.001	<0.001
4/3/2012	<0.001		<0.001	-0.001	-0.001				
4/4/2012				<0.001	<0.001		<0.001	<0.001	
4/5/2012							<0.001	<0.001	-0.001
4/9/2012						0.004			<0.001
4/10/2012		<0.001				<0.001			
9/19/2012	-0.001		<0.001		-0.001		<0.001		
9/24/2012	<0.001				<0.001			-0.004	-0.001
9/25/2012		-0.004		-0.001		10.001		<0.001	<0.001
9/26/2012	<0.001	<0.001	<0.001	<0.001	~0.001	<0.001			
3/12/2013	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
3/13/2013			<0.001				<0.001	<0.001	<0.001
9/9/2013		<0.001	<0.001	-0.001	-0.001	-0.001	-0.001		
9/10/2013	<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
9/11/2013	<0.001	<0.001	<0.001			<0.001		<0.001	<0.001
3/4/2014	<0.001	<0.001	<0.001			<0.001	<0.001	<0.001	<0.001
3/10/2014				<0.001	<0.001		<0.001	<0.001	<0.001
3/11/2014				<0.001	<0.001				

		GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3	/2014	<0.001	<0.001	<0.001			<0.001	<0.001		
9/8	/2014				<0.001	<0.001				
9/9	/2014								<0.001	<0.001
4/2	1/2015	<0.001	<0.001		<0.001	<0.001	<0.001			
4/2	2/2015			<0.001				<0.001	<0.001	
4/2	3/2015									<0.001
9/2	9/2015		<0.001		<0.001	<0.001				
9/3	0/2015	<0.001		<0.001			<0.001	<0.001	<0.001	<0.001
	2/2016	<0.001	<0.001	<0.001	<0.001	<0.001				
	3/2016						<0.001			<0.001
	4/2016							<0.001	<0.001	
	7/2016	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
	8/2016							<0.001	<0.001	<0.001
	/2016	<0.001		<0.001	<0.001					
	/2016		<0.001			<0.001	<0.001		<0.001	
	/2016		0.001			0.001	0.001	<0.001	0.001	<0.001
	/2016	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001		0.001
	/2016	0.001	0.001	0.001	0.001	0.001	0.001	<0.001	<0.001	<0.001
	18/2016	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	-0.001	<0.001	-0.001
	19/2016	10.001	40.001	10.001	10.001	10.001	40.001	<0.001	40.001	<0.001
	6/2016	<0.001	<0.001		<0.001	<0.001	<0.001	40.001		40.001
	7/2016	~0.001	~0.001	<0.001	\0.001	\0.001	~0.001		<0.001	<0.001
	8/2016			<0.001				<0.001	<0.001	\0.001
	1/2017	~0.001		<0.001				<0.001		
	/2017	<0.001	<0.001	<0.001	<0.001	<0.001				
			<0.001		<0.001	<0.001	-0.001	-0.001	-0.001	
	/2017						<0.001	<0.001	<0.001	-0.001
	/2017	-0.001		10.001	-0.004					<0.001
	3/2017	<0.001	75.05 (1)	<0.001	<0.001	0.004				
	4/2017		7E-05 (J)			<0.001	.0.004			75.05 (1)
	7/2017	-0.001		10.001	-0.004	-0.004	<0.001	<0.001	<0.001	7E-05 (J)
	4/2017	<0.001		<0.001	<0.001	<0.001	.0.004		0.0000 (1)	
	5/2017		<0.001	0.004			<0.001	<0.001	0.0002 (J)	<0.001
	4/2018	<0.001		<0.001						
	5/2018		<0.001		<0.001	<0.001	<0.001		<0.001	
	6/2018	0.004	0.004	.0.004	0.004	.0.004	0.004	<0.001	0.004	<0.001
	4/2018	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	
	5/2018							<0.001		<0.001
	/2019	0.004	0.004	.0.004	<0.001	.0.004				
	/2019	<0.001	<0.001	<0.001		<0.001				
	/2019						<0.001	<0.001	<0.001	<0.001
	0/2019	<0.001	<0.001	<0.001	<0.001	<0.001				
	1/2019						<0.001	<0.001	<0.001	<0.001
	6/2020	<0.001	<0.001	<0.001	4.7E-05 (J)	<0.001				
	7/2020						5.4E-05 (J)			
	0/2020							<0.001		
	1/2020								6.1E-05 (J)	<0.001
	1/2020			<0.001						
	2/2020		<0.001							
	3/2020	<0.001			<0.001	<0.001				<0.001
	4/2020							4E-05 (J)		
	5/2020						<0.001			
9/2	8/2020								0.00014 (J)	

3/8/2021	GWA-1 (bg) <0.001	GWA-11 (bg) <0.001	(0,	GWA-3 (bg) 4E-05 (J)	GWA-4 (bg) <0.001	GWC-10	GWC-18	GWC-19	GWC-20
3/9/2021			<0.001			<0.001	<0.001		
3/10/2021								<0.001	<0.001
8/9/2021	<0.001		<0.001	<0.001	<0.001				
8/10/2021		<0.001				<0.001	<0.001	<0.001	<0.001
2/4/2022	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		
2/7/2022								<0.001	<0.001
8/8/2022	<0.001	<0.001	<0.001	<0.001	<0.001				
8/9/2022						<0.001	<0.001	<0.001	<0.001
1/30/2023	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
1/31/2023							<0.001	<0.001	<0.001

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.001	<0.001	<0.001					
3/7/2007				<0.001	<0.001			<0.001
5/8/2007				<0.001				<0.001
5/9/2007	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	
7/6/2007				<0.001		<0.001	<0.001	<0.001
7/17/2007	<0.001	<0.001	<0.001		<0.001			
8/28/2007				<0.001	<0.001	<0.001	<0.001	<0.001
8/29/2007	<0.001	<0.001	<0.001					
11/6/2007				<0.001	<0.001	<0.001	<0.001	<0.001
11/7/2007	<0.001	<0.001	<0.001					
5/7/2008	<0.001	<0.001	<0.001					
5/8/2008				<0.001	<0.001	<0.001	<0.001	<0.001
12/2/2008						<0.001	<0.001	<0.001
12/3/2008				<0.001	<0.001			
12/5/2008	<0.001	<0.001	<0.001					
4/7/2009				<0.001	<0.001			
4/8/2009						<0.001	<0.001	<0.001
4/14/2009		<0.001	<0.001					
4/27/2009	<0.001							
9/30/2009	<0.001	<0.001					<0.001	<0.001
10/1/2009			<0.001	<0.001	<0.001	<0.001		
4/13/2010	<0.001	<0.001			<0.001	<0.001	<0.001	<0.001
4/14/2010			<0.001	<0.001				
10/6/2010					<0.001			
10/7/2010						<0.001		
10/12/2010	<0.001	<0.001						
10/13/2010			<0.001				<0.001	<0.001
10/14/2010				<0.001				
4/5/2011				<0.001	<0.001	<0.001	<0.001	<0.001
4/6/2011		<0.001	<0.001					
10/4/2011					<0.001	<0.001	<0.001	<0.001
10/5/2011	<0.001	<0.001						
10/12/2011			<0.001	<0.001				
4/3/2012					<0.001	<0.001	<0.001	
4/4/2012				<0.001				<0.001
4/9/2012		<0.001	<0.001					
4/10/2012	<0.001							
9/18/2012					<0.001	<0.001		
9/19/2012			<0.001				<0.001	<0.001
9/24/2012				<0.001				
9/25/2012		<0.001						
9/26/2012	<0.001							
3/12/2013				<0.001	<0.001	<0.001	<0.001	<0.001
3/13/2013	<0.001	<0.001	<0.001					
9/9/2013					<0.001			
9/10/2013			<0.001	<0.001		<0.001	<0.001	<0.001
9/11/2013	<0.001	<0.001						
3/5/2014				<0.001	<0.001	0.0016 (J)	<0.001	<0.001
3/11/2014	<0.001	<0.001	<0.001					
9/3/2014			<0.001					<0.001
9/8/2014					<0.001	<0.001		
9/9/2014	<0.001	<0.001		<0.001			<0.001	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.001		<0.001		<0.001
4/22/2015					<0.001		<0.001	
4/23/2015		<0.001	<0.001					
9/29/2015				<0.001	<0.001	<0.001	<0.001	<0.001
9/30/2015	<0.001	<0.001	<0.001					
3/23/2016		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
3/24/2016	<0.001							
5/17/2016				<0.001	<0.001			
5/18/2016	<0.001	<0.001				<0.001	<0.001	<0.001
5/19/2016			<0.001					
7/6/2016				<0.001	<0.001	0.0001 (J)	<0.001	<0.001
7/7/2016	<0.001	<0.001	<0.001					
9/7/2016				<0.001	<0.001	<0.001		
9/8/2016	<0.001	<0.001	<0.001				<0.001	<0.001
10/18/2016				<0.001	<0.001	<0.001	<0.001	
10/19/2016	<0.001	<0.001	<0.001					<0.001
12/7/2016	0.0001 (J)	<0.001	<0.001					
12/8/2016				<0.001	0.0001 (J)	<0.001	0.0002 (J)	<0.001
2/1/2017				<0.001	<0.001			
2/2/2017	<0.001	<0.001				0.0003 (J)	<0.001	<0.001
2/3/2017			<0.001					
3/23/2017				<0.001	<0.001			
3/24/2017						0.0002 (J)	<0.001	
3/27/2017	<0.001	<0.001	<0.001					<0.001
10/4/2017				<0.001	<0.001	7E-05 (J)		
10/5/2017	<0.001	<0.001	<0.001				<0.001	<0.001
3/14/2018							<0.001	
3/15/2018	<0.001	<0.001	<0.001			<0.001		<0.001
3/16/2018				<0.001	<0.001			
10/4/2018	<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	
10/5/2018			0.00042 (J)					<0.001
4/8/2019			0.00018 (J)		<0.001	<0.001	<0.001	<0.001
4/9/2019	<0.001	<0.001		0.00039 (J)				
10/1/2019	7.5E-05 (J)	0.00012 (J)	0.00022 (J)	6.5E-05 (J)	<0.001	5E-05 (J)	<0.001	<0.001
3/26/2020			0.00016 (J)					
3/27/2020							<0.001	<0.001
3/30/2020						4.8E-05 (J)		
3/31/2020	<0.001	0.00013 (J)		<0.001	<0.001			
9/23/2020		6.6E-05 (J)	0.00036 (J)					
9/24/2020	0.00012 (J)					6E-05 (J)	4.9E-05 (J)	<0.001
9/25/2020				<0.001	<0.001			
3/9/2021	0.00013 (J)	3.8E-05 (J)	0.00011 (J)	<0.001	<0.001	8.5E-05 (J)	<0.001	<0.001
8/10/2021	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
2/4/2022				<0.001	<0.001	<0.001	<0.001	<0.001
2/7/2022	<0.001	<0.001	<0.001					
8/8/2022			<0.001		<0.001			
8/9/2022	<0.001	<0.001		<0.001			<0.001	<0.001
8/10/2022						<0.001		
1/31/2023	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001

3/6/2007	GWA-1 (bg) <0.005	GWA-11 (bg)	GWA-2 (bg) <0.005	GWA-3 (bg) <0.005	GWA-4 (bg) <0.005	GWC-10	GWC-18	GWC-19 <0.005	GWC-20
3/7/2007	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
5/8/2007	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	10.000		10.000
5/9/2007	10.000	10.01	10.003	10.003	10.000	10.000	<0.005	<0.005	<0.005
7/7/2007	<0.005		<0.005				10.000	10.005	10.000
7/17/2007	10.000	<0.01	10.003	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/28/2007	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	10.000
8/29/2007	10.000	10.01	-0.000	-0.000	10.000	-0.000	10.000	-0.000	<0.005
11/6/2007	<0.005		<0.005	<0.005	<0.005				-0.000
11/7/2007	10.000	<0.01	-0.000	-0.000	10.000	<0.005	<0.005	<0.005	<0.005
5/7/2008		0.01				0.000	<0.005	<0.005	<0.005
5/8/2008				<0.005	<0.005				
5/9/2008	<0.005	<0.01	<0.005			<0.005			
12/2/2008		<0.01				<0.005			
12/3/2008	<0.005		<0.005	<0.005	<0.005		<0.005		
12/4/2008								<0.005	
12/5/2008								0.000	<0.005
4/7/2009	<0.005		<0.005	<0.005	<0.005				
4/8/2009		<0.01				<0.005			
4/14/2009							<0.005	<0.005	<0.005
9/30/2009									<0.005
10/1/2009	<0.005	<0.01	<0.005			<0.005	<0.005		
10/2/2009				<0.005	<0.005			<0.005	
4/13/2010			<0.005				<0.005	<0.005	<0.005
4/14/2010	<0.005	<0.01		<0.005	<0.005	<0.005			
10/7/2010			<0.005						
10/12/2010							<0.005	<0.005	<0.005
10/13/2010	<0.005	<0.01				<0.005			
10/14/2010				<0.005	<0.005				
4/5/2011				<0.005	0.0032				
4/6/2011	<0.005	<0.01	<0.005			<0.005	<0.005	<0.005	
10/4/2011		<0.01				<0.005			
10/6/2011			<0.005						
10/10/2011	<0.005								
10/12/2011				<0.005	<0.005		<0.005	<0.005	<0.005
4/3/2012	<0.005		<0.005						
4/4/2012				<0.005	<0.005				
4/5/2012							<0.005	<0.005	
4/9/2012									<0.005
4/10/2012		<0.01				<0.005			
9/19/2012			<0.005				<0.005		
9/24/2012	<0.005				0.0032				
9/25/2012								<0.005	<0.005
9/26/2012		<0.01		<0.005		<0.005			
3/12/2013	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005			
3/13/2013							<0.005	<0.005	<0.005
9/9/2013			<0.005						
9/10/2013		<0.01		<0.005	<0.005	<0.005	<0.005		
9/11/2013	<0.005							<0.005	<0.005
3/4/2014	0.001 (J)	0.002 (J)	0.0007 (J)			<0.005			
3/10/2014							0.0013 (J)	0.00072 (J)	0.00074 (J)
3/11/2014				0.0013 (J)	0.0026				

9/3/2014	GWA-1 (bg) <0.005	GWA-11 (bg) 0.002 (J)	GWA-2 (bg) <0.005	GWA-3 (bg)	GWA-4 (bg)	GWC-10 <0.005	GWC-18 <0.005	GWC-19	GWC-20
9/8/2014				<0.005	0.0017 (J)				
9/9/2014								<0.005	<0.005
4/21/2015	<0.005	0.002 (J)		<0.005	0.0016 (J)	<0.005			
4/22/2015			<0.005				<0.005	<0.005	
4/23/2015									<0.005
9/29/2015		0.0022 (J)		<0.005	0.0055				
9/30/2015	<0.005		<0.005			<0.005	<0.005	<0.005	<0.005
3/22/2016	<0.005	<0.01	<0.005	<0.005	<0.005				
3/23/2016						<0.005			<0.005
3/24/2016							<0.005	<0.005	
9/7/2016	0.0008 (J)	0.0026 (J)	<0.005	<0.005	0.0014 (J)	<0.005			
9/8/2016							0.0009 (J)	<0.005	<0.005
3/23/2017	0.0007 (J)		<0.005	0.0022 (J)					
3/24/2017		0.0024 (J)			0.0017 (J)				
3/27/2017						<0.005	0.0006 (J)	0.0062 (J)	0.0006 (J)
10/4/2017	0.0006 (J)		<0.005	<0.005	0.0023 (J)				
10/5/2017		0.0023 (J)				<0.005	0.0008 (J)	0.0005 (J)	<0.005
3/14/2018	<0.005		<0.005						
3/15/2018		0.0026 (J)		<0.005	0.0024 (J)	<0.005		<0.005	
3/16/2018							<0.005		<0.005
10/4/2018	<0.005	0.0023 (J)	<0.005	<0.005	0.0013 (J)	<0.005		<0.005	
10/5/2018							<0.005		<0.005
4/5/2019				0.00075 (J)					
4/8/2019	0.00034 (J)	0.0023 (J)	<0.005		0.00089 (J)				
4/9/2019						<0.005	<0.005	<0.005	<0.005
9/30/2019	0.00037 (J)	0.0017 (J)	<0.005	<0.005	0.0013 (J)				
10/1/2019						<0.005	0.0015 (J)	<0.005	<0.005
3/26/2020	0.00065 (J)	0.002 (J)	<0.005	0.0011 (J)	0.00096 (J)				
3/27/2020						0.0023 (J)			
3/30/2020							0.00048 (J)		
3/31/2020								<0.005	<0.005
9/21/2020			<0.005						
9/22/2020		0.0014 (J)							
9/23/2020	<0.005			<0.005	0.00091 (J)				<0.005
9/24/2020							0.0011 (J)		
9/25/2020						<0.005			
9/28/2020								<0.005	
3/8/2021	<0.005	0.001 (J)		<0.005	<0.005				
3/9/2021			<0.005			<0.005	<0.005		
3/10/2021								<0.005	<0.005
8/9/2021	<0.005		<0.005	<0.005	0.001 (J)				
8/10/2021		0.0017 (J)				<0.005	<0.005	<0.005	<0.005
2/4/2022	<0.005	0.0019 (J)	<0.005	0.0009 (J)	0.00087 (J)	<0.005	0.00078 (J)		
2/7/2022								<0.005	<0.005
8/8/2022	<0.005	0.0017 (J)	<0.005	0.00092 (J)	<0.005				
8/9/2022						<0.005	0.00074 (J)	<0.005	<0.005
1/30/2023	<0.005	0.0017 (J)	<0.005	0.00082 (J)	<0.005	<0.005			
1/31/2023							<0.005	<0.005	<0.005

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.005	<0.005	<0.005					
3/7/2007				<0.005	<0.005			<0.01
5/8/2007				<0.005				<0.01
5/9/2007	<0.005	<0.005	<0.005		<0.005	18 (o)	<0.005	
7/6/2007				<0.005		5.9 (o)	<0.005	<0.01
7/17/2007	<0.005	<0.005	<0.005		<0.005			
8/28/2007				<0.005	<0.005	3.9 (o)	<0.005	<0.01
8/29/2007	0.0055	<0.005	<0.005					
11/6/2007				<0.005	<0.005	3.1 (o)	<0.005	<0.01
11/7/2007	0.0044	<0.005	<0.005					
5/7/2008	0.0047	<0.005	<0.005					
5/8/2008				<0.005	<0.005	2.1 (o)	<0.005	<0.01
12/2/2008						1.2	<0.005	<0.01
12/3/2008				<0.005	<0.005			
12/5/2008	<0.005	<0.005	<0.005					
4/7/2009	0.000	0.000	0.000	<0.005	<0.005			
4/8/2009				10.000	10.000	1.1	<0.005	<0.01
4/14/2009		<0.005	<0.005				-0.000	-0.01
4/27/2009	0.0027	~ 0.003	<0.005					
9/30/2009	0.0027	<0.005					<0.005	<0.01
	0.0051	<0.005	<0.00E	<0.00E	<0.00E	0.00	<0.005	<0.01
10/1/2009	0.0021	<0.00E	<0.005	<0.005	<0.005	0.88	<0.00E	-0.01
4/13/2010	0.0031	<0.005	-0.005	-0.005	<0.005	0.82	<0.005	<0.01
4/14/2010			<0.005	<0.005	-0.005			
10/6/2010					<0.005	0.70		
10/7/2010						0.72		
10/12/2010	<0.005	<0.005						
10/13/2010			<0.005				<0.005	<0.01
10/14/2010				<0.005				
4/5/2011				<0.005	<0.005	0.52	<0.005	<0.01
4/6/2011		<0.005	<0.005					
10/4/2011					<0.005	0.56	<0.005	<0.01
10/5/2011	0.0032	<0.005						
10/12/2011			<0.005	<0.005				
4/3/2012					<0.005	0.365	<0.005	
4/4/2012				<0.005				<0.01
4/9/2012		<0.005	<0.005					
4/10/2012	<0.005							
9/18/2012					<0.005	0.45		
9/19/2012			<0.005				<0.005	<0.01
9/24/2012				<0.005				
9/25/2012		<0.005						
9/26/2012	0.0063							
3/12/2013				<0.005	<0.005	0.13	<0.005	<0.01
3/13/2013	0.0029	<0.005	<0.005					
9/9/2013					<0.005			
9/10/2013			<0.005	<0.005		0.2	<0.005	0.003
9/11/2013	0.0046	<0.005						
3/5/2014				0.001 (J)	0.00092 (J)	0.17	0.00079 (J)	0.0022 (J)
3/11/2014	0.002 (J)	0.00059 (J)	0.0016 (J)					
9/3/2014			<0.005					<0.01
9/8/2014					<0.005	0.25		
9/9/2014	0.0029	<0.005		<0.005			<0.005	

4/21/2015	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015					41100	arro /	GVVO-0	GVVC-3
				<0.005		0.15		0.0019 (J)
4/22/2015					<0.005		<0.005	
4/23/2015		<0.005	<0.005					
9/29/2015				<0.005	<0.005	0.203	<0.005	0.0019 (J)
9/30/2015	0.0025 (J)	<0.005	<0.005					
3/23/2016		<0.005	<0.005	<0.005	<0.005	0.0607	<0.005	<0.01
3/24/2016	0.00317 (J)							
9/7/2016				<0.005	<0.005	0.141		
9/8/2016	0.0038 (J)	<0.005	0.0011 (J)				<0.005	0.0023 (J)
3/23/2017				0.0008 (J)	<0.005			
3/24/2017						0.0313	<0.005	
3/27/2017	0.0024 (J)	<0.005	0.0007 (J)					0.0023 (J)
10/4/2017				<0.005	<0.005	0.093		
10/5/2017	0.0104	<0.005	<0.005				<0.005	0.0024 (J)
3/14/2018							<0.005	
3/15/2018	0.0026 (J)	<0.005	0.001 (J)			0.057		0.0023 (J)
3/16/2018				<0.005	<0.005			
10/4/2018	0.012	<0.005		<0.005	<0.005	0.11	<0.005	
10/5/2018			0.0014 (J)					0.0025 (J)
12/11/2018	0.0052 (J)							
4/8/2019			0.0011 (J)		0.00032 (J)	0.03	0.00064 (J)	0.0021 (J)
4/9/2019	0.0048 (J)	<0.005		0.00098 (J)				
10/1/2019	0.0031 (J)	<0.005	0.0035 (J)	0.00088 (J)	0.00042 (J)	0.07	0.00063 (J)	0.0022 (J)
3/26/2020			0.001 (J)					
3/27/2020							0.00053 (J)	0.0022 (J)
3/30/2020						0.037		
3/31/2020	0.0039 (J)	<0.005		0.0013 (J)	<0.005			
9/23/2020		<0.005	0.00079 (J)					
9/24/2020	0.0068					0.042	0.001 (J)	0.0024 (J)
9/25/2020				0.00078 (J)	<0.005			
3/9/2021	0.0013 (J)		<0.005	<0.005	<0.005	0.035	<0.005	0.0014 (J)
8/10/2021	0.0076	<0.005	0.0008 (J)	0.00085 (J)	<0.005	0.057	0.0073	0.0019 (J)
2/4/2022				<0.005	<0.005	0.039	<0.005	0.0018 (J)
	0.0055	<0.005						
			<0.005		<0.005			
8/9/2022	0.0053	<0.005		<0.005			<0.005	0.0018 (J)
1/31/2023	0.005 (J)	<0.005	<0.005	<0.005	<0.005	0.11	<0.005	0.002 (J)
	4/23/2015 9/29/2015 9/30/2015 3/23/2016 3/23/2016 3/23/2016 9/7/2016 9/8/2016 3/23/2017 3/24/2017 3/24/2017 10/4/2017 10/5/2018 10/4/2018 10/4/2018 10/4/2018 10/4/2018 10/1/2018 10/1/2018 10/1/2019 10/1/2019 3/26/2020 3/27/2020 3/3/27/2020 3/3/27/2020 9/23/2020 9/23/2020 9/23/2020 9/24/2020 9/25/2020 3/9/2021 8/9/25/2020 3/9/25/25/25/25/25/25/25/25/25/25/25/25/25/	4/23/2015 9/29/2015 9/30/2015 0.0025 (J) 3/23/2016 3/24/2016 0.00317 (J) 9/7/2016 9/8/2016 0.0038 (J) 3/23/2017 3/24/2017 0.0024 (J) 10/4/2017 10/5/2017 0.0104 3/14/2018 3/15/2018 0.0026 (J) 3/16/2018 10/4/2018 10/4/2018 0.0052 (J) 4/8/2019 4/9/2019 0.0048 (J) 10/1/2019 0.0031 (J) 3/26/2020 3/37/2020 3/37/2020 0/3/31/2020 0/24/2020 0/3/31/2020 0/24/2020 0/3/39/2021 0/3/39/2022 0/3/39/2022 0/3/39/2022 0/3/39/2022 0/3/39/2022 0/3/39/2022 0/3/39/2022 0/3/39/2022 0/3/39/2022 0/3/39/2022 0/3/39/2022 0/3/39/2022 0/3/39/2022 0/3/39/2022 0/3/39/2022 0/3/39/2022	4/23/2015	A/23/2015	A/23/2015	4/23/2015	4/23/2015	A232015

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/22/2016	7.07	7	7.19	7.11	7.14				
3/23/2016						7.56			7.55
3/24/2016							7.71	7.69	
5/17/2016	7	6.77	6.94	6.95	6.67	7.46			
5/18/2016							7.59	7.49	7.32
7/5/2016	6.88		6.98	6.55					
7/6/2016		6.64			6.53	7.24		7.39	
7/7/2016							7.55		7.39
9/7/2016	7.24	6.83	6.86	6.81	6.72	7.4			
9/8/2016							7.54	7.57	7.34
10/18/2016	6.86	6.58	6.71	6.64	6.73	7.11		7.35	
10/19/2016							7.66		7.35
12/6/2016	6.98	6.66		6.34	6.61	7.32			
12/7/2016			6.71					7.42	7.35
12/8/2016							7.47		
1/31/2017	6.63		6.95						
2/1/2017		6.5		6.68	6.7				
2/2/2017						7.19	7.64	7.43	
2/3/2017									7.37
3/23/2017	7.12		7.04	6.8					
3/24/2017		6.72			6.77				
3/27/2017						7.48	7.59	7.53	7.26
10/4/2017	6.83		6.86	6.64	6.52				
10/5/2017		6.69				7.13	7.65	7.36	7.2
3/14/2018	6.66		6.76						
3/15/2018		6.48		6.88	7.11	7.08		7.54	
3/16/2018							7.51		7.13
5/15/2018									7.18
10/4/2018	6.92	6.66	6.62	6.62	6.72	7.26		7.44	
10/5/2018							7.57		7.07
12/11/2018									7.16
4/5/2019				6.77					
4/8/2019	6.86	6.61	6.79		6.82				
4/9/2019						7.22	7.48	7.4	7.26
9/30/2019	7.15	6.86	6.86	6.73	6.77				
10/1/2019						7.07	7.65	7.31	7.16
3/26/2020	7.02	6.83	7.07	6.87	6.74				
3/27/2020						6.82			
3/30/2020							7.65		
3/31/2020								7.62	7.57
6/19/2020						7.4 (R)		7.61 (R)	7.31 (R)
9/21/2020			6.9						
9/22/2020		6.8							
9/23/2020	6.98			6.87	6.81				7.11
9/24/2020							7.62		
9/25/2020						7.28			
9/28/2020								7.78	
11/10/2020								7.37 (R)	
3/8/2021	6.86	6.78		6.95	6.84				
3/9/2021			6.93			7.43	7.66		
3/10/2021								7.49	7.41
8/9/2021	7.23		6.9	6.89	6.76				

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
8/10/2021		6.84				7.45	7.4	7.49	7.31
2/4/2022	7.18	6.92	6.98	6.75	7.11	7.51	7.73		
2/7/2022								7.61	7.57
8/8/2022	7.28	6.55	7.03	6.59	6.73				
8/9/2022						7.36	7.47	7.42	7.33
1/30/2023	7.22	7	7.05	6.82	6.94	7.6			
1/31/2023							7.56	7.65	7.44

		GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/2	/23/2016		7.72	7.48	7.1	7.29	6.36	7.46	7.2
	/24/2016	6.4							
5/	17/2016				6.88	7.1			
	18/2016	6.44	7.77				6.21	7.4	6.96
	19/2016			7.24					
	/6/2016				6.75	7	5.88	7.36	6.89
	7/2016	6.12	7.65	7.18					
	7/2016				6.95	7.07	5.77		
	/8/2016	7.2	7.89	7.17				7.45	6.93
	0/18/2016				6.9	6.81	5.9	7.5	
	0/19/2016	7.11	7.64	7.05					6.84
	2/7/2016	7.24	7.72	7.16					
	2/8/2016				6.55	6.85		7.28	6.54
	2/9/2016						5.73		
	/1/2017				6.81	7.05			
	/2/2017	6.86	7.56				6.29	7.45	6.72
	/3/2017	0.00	7.00	7.27			0.20	7.10	0.72
	/23/2017				6.8	6.97			
	/24/2017						6.32	7.28	
	27/2017	6.51	7.69	7.24					6.56
	0/4/2017				7.12	7.17	6.03		
	0/5/2017	5.97	7.53	7.25				7.53	7.03
	/14/2018							7.28	
	15/2018	7.01	7.5	7.05			6.05	7.20	6.66
	/16/2018				6.72	6.8			
	0/4/2018	6.33	7.52		6.52	6.93	5.92	7.22	
	0/5/2018	0.00	7.02	6.97	0.02	0.00	0.02	7.22	6.41
	/8/2019			6.88		7	6.26	6.91	6.72
	9/2019	6.46	7.49		6.72				
	18/2019							6.85	
	27/2019							7.05	
	0/1/2019	6.9	7.38	7	6.81	6.97	6.09	7.11	6.77
	1/6/2019		7.66						
	/26/2020			6.88					
	27/2020							7.01	7.11
	/30/2020						6.48		
	/31/2020	6.33	7.8		6.82	7.17			
	18/2020					6.96 (R)			
	19/2020					, ,	6.45 (R)	6.81 (R)	
	/23/2020		7.42	6.96			,	,	
	/24/2020	7.12					6.32	6.96	6.75
	/25/2020				6.82	6.96			
	/9/2021	7.04	7.52	6.81	6.93	7.09	6.59	7.06	6.92
	/10/2021	6.05	7.75	6.96	6.87	7.06	6.29	6.65	6.91
	4/2022				6.92	7.21	6.7	7.07	7.1
	7/2022	6.58	7.85	7.05					
	/8/2022			7.04		6.9			
	9/2022	6.05	7.62		6.89			7.08	7
	10/2022						6.25		
	/31/2023	6.23	7.67	7.03	6.96	7.24	5.84	7.09	6.74

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.005		<0.005	<0.005	<0.005			<0.005	
3/7/2007		<0.005				<0.005	<0.005		<0.005
5/8/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
5/9/2007							<0.005	<0.005	<0.005
7/7/2007	<0.005		<0.005						
7/17/2007		<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/28/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
8/29/2007									<0.005
11/6/2007	<0.005		<0.005	<0.005	<0.005				
11/7/2007		<0.005				<0.005	<0.005	<0.005	<0.005
5/7/2008							<0.005	<0.005	<0.005
5/8/2008				<0.005	<0.005				
5/9/2008	<0.005	<0.005	<0.005			<0.005			
12/2/2008		<0.005				<0.005			
12/3/2008	<0.005		<0.005	<0.005	<0.005		<0.005		
12/4/2008								<0.005	
12/5/2008									<0.005
4/7/2009	<0.005		<0.005	<0.005	<0.005				
4/8/2009		<0.005				<0.005			
4/14/2009							<0.005	<0.005	<0.005
9/30/2009									<0.005
10/1/2009	<0.005	<0.005	<0.005			<0.005	<0.005		
10/2/2009				<0.005	<0.005			<0.005	
4/13/2010			<0.005				<0.005	<0.005	<0.005
4/14/2010	<0.005	<0.005		<0.005	<0.005	<0.005			
10/7/2010			<0.005						
10/12/2010							<0.005	<0.005	<0.005
10/13/2010	<0.005	<0.005				<0.005			
10/14/2010				<0.005	<0.005				
4/5/2011				<0.005	<0.005				
4/6/2011	<0.005	<0.005	<0.005			<0.005	<0.005	<0.005	
10/4/2011		<0.005				<0.005			
10/6/2011			<0.005						
10/10/2011	<0.005								
10/12/2011				<0.005	<0.005		<0.005	<0.005	<0.005
4/3/2012	<0.005		<0.005						
4/4/2012				<0.005	<0.005		0.005	0.005	
4/5/2012							<0.005	<0.005	
4/9/2012		0.005				.0.005			<0.005
4/10/2012		<0.005	0.005			<0.005	0.005		
9/19/2012	0.005		<0.005		0.005		<0.005		
9/24/2012	<0.005				<0.005			0.005	
9/25/2012		0.005		0.005		.0.005		<0.005	<0.005
9/26/2012	-0.005	<0.005	-0.005	<0.005	-0.005	<0.005			
3/12/2013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		.0.005	.0.005
3/13/2013			<0.00F				<0.005	<0.005	<0.005
9/9/2013		<0.00E	<0.005	<0.00E	<0.00E	<0.00E	<0.00E		
9/10/2013	<0.00E	<0.005		<0.005	<0.005	<0.005	<0.005	<0.00E	<0.00F
9/11/2013	<0.005 <0.005	<0.005	<0.005			0.0016 (1)		<0.005	<0.005
3/4/2014 3/10/2014	~U.UU3	~U.UU3	~U.UU3			0.0016 (J)	<0.00E	<0.00E	<0.00E
3/10/2014				<0.005	<0.005		<0.005	<0.005	<0.005
3/11/2014				~U.UU3	~0.000				

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3/2014	<0.005	<0.005	<0.005			<0.005	<0.005		
9/8/2014				<0.005	<0.005				
9/9/2014								<0.005	<0.005
4/21/2015	<0.005	<0.005		<0.005	<0.005	<0.005			
4/22/2015			<0.005				<0.005	<0.005	
4/23/2015									<0.005
9/29/2015		<0.005		<0.005	<0.005				
9/30/2015	<0.005		<0.005			<0.005	<0.005	<0.005	<0.005
3/22/2016	<0.005	<0.005	<0.005	<0.005	<0.005				
3/23/2016						<0.005			<0.005
3/24/2016							<0.005	<0.005	
5/17/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
5/18/2016							<0.005	<0.005	<0.005
7/5/2016	<0.005		<0.005	<0.005					
7/6/2016		<0.005			<0.005	<0.005		<0.005	
7/7/2016							<0.005		<0.005
9/7/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
9/8/2016							<0.005	<0.005	<0.005
10/18/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	
10/19/2016							<0.005		<0.005
12/6/2016	<0.005	<0.005		<0.005	<0.005	<0.005			
12/7/2016			<0.005					<0.005	<0.005
12/8/2016							<0.005		
1/31/2017	<0.005		<0.005						
2/1/2017		<0.005		<0.005	<0.005				
2/2/2017						<0.005	<0.005	<0.005	
2/3/2017									<0.005
3/23/2017	<0.005		<0.005	<0.005					
3/24/2017		<0.005			<0.005				
3/27/2017						<0.005	<0.005	<0.005	<0.005
10/4/2017	<0.005		<0.005	<0.005	<0.005				
10/5/2017		<0.005				<0.005	<0.005	<0.005	<0.005
3/14/2018	<0.005		<0.005						
3/15/2018		<0.005		<0.005	<0.005	<0.005		<0.005	
3/16/2018							<0.005		<0.005
10/4/2018	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	
10/5/2018							<0.005		<0.005
4/5/2019				<0.005					
4/8/2019	<0.005	<0.005	<0.005		0.00014 (J)				
4/9/2019						<0.005	<0.005	<0.005	<0.005
9/30/2019	<0.005	<0.005	<0.005	<0.005	<0.005				
10/1/2019						<0.005	<0.005	<0.005	<0.005
3/26/2020	<0.005	<0.005	<0.005	<0.005	<0.005				
3/27/2020						<0.005			
3/30/2020							<0.005		
3/31/2020								<0.005	<0.005
9/21/2020			<0.005						
9/22/2020		<0.005							
9/23/2020	<0.005			<0.005	<0.005				<0.005
9/24/2020							<0.005		
9/25/2020						<0.005			
9/28/2020								<0.005	

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/8/2021	<0.005	<0.005		<0.005	<0.005				
3/9/2021			<0.005			<0.005	<0.005		
3/10/2021								<0.005	<0.005
8/9/2021	<0.005		<0.005	<0.005	<0.005				
8/10/2021		<0.005				<0.005	<0.005	<0.005	<0.005
2/4/2022	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		
2/7/2022								<0.005	<0.005
8/8/2022	<0.005	<0.005	<0.005	<0.005	<0.005				
8/9/2022						<0.005	<0.005	<0.005	<0.005
1/30/2023	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
1/31/2023							<0.005	<0.005	<0.005

		GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/20	07	<0.005	<0.005	<0.005					
3/7/20	07				<0.005	<0.005			<0.005
5/8/20	07				<0.005				<0.005
5/9/20	07	<0.005	<0.005	<0.005		<0.005	<0.005	<0.005	
7/6/20	07				<0.005		<0.005	<0.005	<0.005
7/17/2	2007	<0.005	<0.005	<0.005		<0.005			
8/28/2	2007				<0.005	<0.005	<0.005	<0.005	<0.005
8/29/2	2007	<0.005	<0.005	<0.005					
11/6/2					<0.005	<0.005	<0.005	<0.005	<0.005
11/7/2		<0.005	<0.005	<0.005					
5/7/20		<0.005	<0.005	<0.005					
5/8/20					<0.005	<0.005	<0.005	<0.005	<0.005
12/2/2							<0.005	<0.005	<0.005
12/3/2					<0.005	<0.005			
12/5/2		<0.005	<0.005	<0.005	0.000	0.000			
4/7/20		0.000	0.000	0.000	<0.005	<0.005			
4/8/20					-0.000	10.000	<0.005	<0.005	<0.005
4/14/2			<0.005	<0.005			10.000	-0.000	-0.000
4/27/2		<0.005	10.003	10.003					
9/30/2		<0.005	<0.005					<0.005	<0.005
10/1/2		~0.003	~0.003	<0.005	<0.005	<0.005	<0.005	~0.003	-0.003
		<0.00E	<0.005	<0.005	\0.005		<0.005	<0.005	<0.005
4/13/2		<0.005	<0.005	<0.00E	<0.00E	<0.005	<0.005	<0.005	<0.005
4/14/2				<0.005	<0.005	<0.00E			
10/6/2						<0.005	<0.00E		
10/7/2		-0.005	10.005				<0.005		
10/12/		<0.005	<0.005	<0.00E				<0.00E	<0.00E
10/13/				<0.005	-0.005			<0.005	<0.005
10/14/					<0.005	0.005	0.005	.0.005	.0.005
4/5/20			.0.005		<0.005	<0.005	<0.005	<0.005	<0.005
4/6/20			<0.005	<0.005		.0.005	.0.005	0.005	.0.005
10/4/2						<0.005	<0.005	<0.005	<0.005
10/5/2		<0.005	<0.005						
10/12/				<0.005	<0.005				
4/3/20						<0.005	<0.005	<0.005	
4/4/20					<0.005				<0.005
4/9/20			<0.005	<0.005					
4/10/2		<0.005							
9/18/2						<0.005	<0.005		
9/19/2				<0.005				<0.005	<0.005
9/24/2					<0.005				
9/25/2			<0.005						
9/26/2		<0.005							
3/12/2					<0.005	<0.005	<0.005	<0.005	<0.005
3/13/2		<0.005	<0.005	<0.005					
9/9/20						<0.005			
9/10/2				<0.005	<0.005		<0.005	<0.005	<0.005
9/11/2		<0.005	<0.005						
3/5/20					<0.005	<0.005	<0.005	<0.005	0.0018 (J)
3/11/2		0.0024 (J)	0.0017 (J)	<0.005					
9/3/20				<0.005					<0.005
9/8/20						<0.005	<0.005		
9/9/20	114	<0.005	<0.005		<0.005			<0.005	

					. ,			
	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.005		<0.005		<0.005
4/22/2015					<0.005		<0.005	
4/23/2015		<0.005	<0.005					
9/29/2015				<0.005	<0.005	<0.005	<0.005	<0.005
9/30/2015	<0.005	<0.005	<0.005					
3/23/2016		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
3/24/2016	<0.005							
5/17/2016				<0.005	<0.005			
5/18/2016	<0.005	<0.005				<0.005	<0.005	<0.005
5/19/2016			<0.005					
7/6/2016				<0.005	<0.005	<0.005	<0.005	<0.005
7/7/2016	<0.005	<0.005	<0.005					
9/7/2016				<0.005	<0.005	<0.005		
9/8/2016	<0.005	<0.005	<0.005				<0.005	<0.005
10/18/2016				<0.005	<0.005	<0.005	<0.005	
10/19/2016	<0.005	<0.005	<0.005					<0.005
12/7/2016	<0.005	<0.005	<0.005					
12/8/2016				<0.005	<0.005	<0.005	<0.005	<0.005
2/1/2017				<0.005	<0.005			
2/2/2017	0.0017 (J)	<0.005				<0.005	<0.005	<0.005
2/3/2017	. ,		<0.005					
3/23/2017				<0.005	<0.005			
3/24/2017						<0.005	<0.005	
3/27/2017	<0.005	<0.005	<0.005					<0.005
10/4/2017				<0.005	<0.005	<0.005		
10/5/2017	<0.005	<0.005	<0.005				<0.005	<0.005
3/14/2018							<0.005	
3/15/2018	<0.005	<0.005	<0.005			<0.005		<0.005
3/16/2018				<0.005	<0.005			
10/4/2018	<0.005	<0.005		<0.005	<0.005	<0.005	<0.005	
10/5/2018			<0.005					<0.005
4/8/2019			<0.005		<0.005	<0.005	<0.005	<0.005
4/9/2019	<0.005	<0.005		<0.005				
10/1/2019	<0.005	0.0014 (J)	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
3/26/2020			<0.005					
3/27/2020							<0.005	<0.005
3/30/2020						<0.005		
3/31/2020	<0.005	<0.005		<0.005	<0.005			
9/23/2020		<0.005	<0.005					
9/24/2020	<0.005					<0.005	<0.005	<0.005
9/25/2020				<0.005	<0.005			
3/9/2021	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/10/2021	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2/4/2022				<0.005	<0.005	<0.005	<0.005	<0.005
2/7/2022	<0.005	<0.005	<0.005					
8/8/2022			<0.005		<0.005			
8/9/2022	<0.005	<0.005		<0.005			<0.005	<0.005
8/10/2022						<0.005		
1/31/2023	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.005		<0.005	<0.005	<0.005			<0.005	
3/7/2007		<0.005				<0.005	<0.005		<0.005
5/8/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
5/9/2007							<0.005	<0.005	<0.005
7/7/2007	<0.005		<0.005						
7/17/2007		<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/28/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
8/29/2007									<0.005
11/6/2007	<0.005		<0.005	<0.005	<0.005				
11/7/2007		<0.005				<0.005	<0.005	<0.005	<0.005
5/7/2008							<0.005	<0.005	<0.005
5/8/2008				<0.005	<0.005				
5/9/2008	<0.005	<0.005	<0.005			<0.005			
12/2/2008		<0.005				<0.005			
12/3/2008	<0.005		<0.005	<0.005	<0.005		<0.005		
12/4/2008								<0.005	
12/5/2008									<0.005
4/7/2009	<0.005		<0.005	<0.005	<0.005				
4/8/2009		<0.005				<0.005			
4/14/2009							<0.005	<0.005	<0.005
9/30/2009									<0.005
10/1/2009	<0.005	<0.005	<0.005			<0.005	<0.005		
10/2/2009				<0.005	<0.005			<0.005	
4/13/2010			<0.005				<0.005	<0.005	<0.005
4/14/2010	<0.005	<0.005		<0.005	<0.005	<0.005			
10/7/2010			<0.005						
10/12/2010							<0.005	<0.005	<0.005
10/13/2010	<0.005	<0.005				<0.005			
10/14/2010				<0.005	<0.005				
4/5/2011				<0.005	<0.005				
4/6/2011	<0.005	<0.005	<0.005			<0.005	<0.005	<0.005	
10/4/2011		<0.005				<0.005			
10/6/2011			<0.005						
10/10/2011	<0.005			0.005	0.005		0.005	0.005	.0.005
10/12/2011	0.005		0.005	<0.005	<0.005		<0.005	<0.005	<0.005
4/3/2012	<0.005		<0.005	0.005	0.005				
4/4/2012				<0.005	<0.005		0.005	0.005	
4/5/2012							<0.005	<0.005	.0.005
4/9/2012		0.005				0.005			<0.005
4/10/2012		<0.005	0.005			<0.005	0.005		
9/19/2012	0.005		<0.005		0.005		<0.005		
9/24/2012	<0.005				<0.005			0.005	.0.005
9/25/2012		0.005		0.005		0.005		<0.005	<0.005
9/26/2012	-0.005	<0.005	-0.005	<0.005	-0.005	<0.005			
3/12/2013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.005	.0.005	0.005
3/13/2013			<0.00E				<0.005	<0.005	<0.005
9/9/2013		<0.00E	<0.005	<0.00E	<0.00E	<0.00E	<0.00E		
9/10/2013	<0.00E	<0.005		<0.005	<0.005	<0.005	<0.005	<0.00E	<0.005
9/11/2013	<0.005	<0.00E	<0.00E			<0.00E		<0.005	<0.005
3/4/2014	<0.005	<0.005	<0.005			<0.005	<0.00E	<0.00E	<0.00F
3/10/2014				<0.00E	<0.00E		<0.005	<0.005	<0.005
3/11/2014				<0.005	<0.005				

9/3/2014	GWA-1 (bg) <0.005	GWA-11 (bg) <0.005	GWA-2 (bg) <0.005	GWA-3 (bg)	GWA-4 (bg)	GWC-10 <0.005	GWC-18 <0.005	GWC-19	GWC-20
9/8/2014				<0.005	<0.005				
9/9/2014								<0.005	<0.005
4/21/2015	<0.005	<0.005		<0.005	<0.005	<0.005			
4/22/2015			<0.005				<0.005	<0.005	
4/23/2015									<0.005
9/29/2015		<0.005		<0.005	<0.005				
9/30/2015	<0.005		<0.005			<0.005	<0.005	<0.005	<0.005
3/22/2016	<0.005	<0.005	<0.005	<0.005	<0.005				
3/23/2016						<0.005			<0.005
3/24/2016							<0.005	<0.005	
9/7/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
9/8/2016							<0.005	<0.005	<0.005
3/23/2017	<0.005		<0.005	<0.005					
3/24/2017		<0.005			<0.005				
3/27/2017						<0.005	<0.005	<0.005	<0.005
10/4/2017	<0.005		<0.005	<0.005	<0.005				
10/5/2017		<0.005				<0.005	<0.005	<0.005	<0.005
3/14/2018	<0.005		<0.005						
3/15/2018		<0.005		<0.005	<0.005	<0.005		<0.005	
3/16/2018							<0.005		<0.005
10/4/2018	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	
10/5/2018							<0.005		<0.005
4/5/2019				<0.005					
4/8/2019	<0.005	<0.005	<0.005		<0.005				
4/9/2019						<0.005	<0.005	<0.005	<0.005
9/30/2019	<0.005	<0.005	<0.005	<0.005	<0.005				
10/1/2019						<0.005	<0.005	<0.005	<0.005
3/26/2020	<0.005	<0.005	<0.005	<0.005	<0.005				
3/27/2020						<0.005			
3/30/2020							<0.005		
3/31/2020								<0.005	<0.005
9/21/2020			<0.005						
9/22/2020		<0.005							
9/23/2020	<0.005			<0.005	<0.005				<0.005
9/24/2020							<0.005		
9/25/2020						<0.005			
9/28/2020								<0.005	
3/8/2021	<0.005	<0.005		<0.005	<0.005				
3/9/2021			<0.005			<0.005	<0.005		
3/10/2021								<0.005	<0.005
8/9/2021	<0.005		<0.005	<0.005	<0.005				
8/10/2021		<0.005				<0.005	<0.005	<0.005	<0.005
2/4/2022	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		
2/7/2022								<0.005	<0.005
8/8/2022	<0.005	<0.005	<0.005	<0.005	<0.005				
8/9/2022						<0.005	<0.005	<0.005	<0.005
1/30/2023	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
1/31/2023							<0.005	<0.005	<0.005

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.005	<0.005	<0.005					
3/7/2007				<0.005	<0.005			<0.005
5/8/2007				<0.005				<0.005
5/9/2007	<0.005	<0.005	<0.005		<0.005	<0.005	<0.005	
7/6/2007				<0.005		<0.005	<0.005	<0.005
7/17/2007	<0.005	<0.005	<0.005		<0.005			
8/28/2007				<0.005	<0.005	<0.005	<0.005	<0.005
8/29/2007	<0.005	<0.005	<0.005					
11/6/2007				<0.005	<0.005	<0.005	<0.005	<0.005
11/7/2007	<0.005	<0.005	<0.005					
5/7/2008	<0.005	<0.005	<0.005					
5/8/2008				<0.005	<0.005	<0.005	<0.005	<0.005
12/2/2008						<0.005	<0.005	<0.005
12/3/2008				<0.005	<0.005			
12/5/2008	<0.005	<0.005	<0.005					
4/7/2009				<0.005	<0.005			
4/8/2009						<0.005	<0.005	<0.005
4/14/2009		<0.005	<0.005					
4/27/2009	0.0036							
9/30/2009	<0.005	<0.005					<0.005	<0.005
10/1/2009			<0.005	<0.005	<0.005	<0.005		
4/13/2010	<0.005	<0.005			<0.005	<0.005	<0.005	<0.005
4/14/2010			<0.005	<0.005				
10/6/2010					<0.005			
10/7/2010						<0.005		
10/12/2010	<0.005	<0.005						
10/13/2010			<0.005				<0.005	<0.005
10/14/2010				<0.005				
4/5/2011				<0.005	<0.005	<0.005	<0.005	<0.005
4/6/2011		<0.005	<0.005					
10/4/2011					<0.005	<0.005	<0.005	<0.005
10/5/2011	<0.005	<0.005						
10/12/2011			<0.005	<0.005				
4/3/2012					<0.005	<0.005	<0.005	
4/4/2012				<0.005				<0.005
4/9/2012		<0.005	<0.005					
4/10/2012	<0.005							
9/18/2012					<0.005	<0.005		
9/19/2012			<0.005				<0.005	<0.005
9/24/2012				<0.005				
9/25/2012		<0.005						
9/26/2012	<0.005							
3/12/2013				<0.005	<0.005	<0.005	<0.005	<0.005
3/13/2013	<0.005	<0.005	<0.005					
9/9/2013					<0.005			
9/10/2013			<0.005	<0.005		<0.005	<0.005	<0.005
9/11/2013	<0.005	<0.005						
3/5/2014				<0.005	<0.005	<0.005	<0.005	<0.005
3/11/2014	<0.005	<0.005	<0.005					
9/3/2014			<0.005					<0.005
9/8/2014					<0.005	<0.005		
9/9/2014	<0.005	<0.005		<0.005			<0.005	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.005		<0.005		<0.005
4/22/2015					<0.005		<0.005	
4/23/2015		<0.005	<0.005					
9/29/2015				<0.005	<0.005	<0.005	<0.005	<0.005
9/30/2015	<0.005	<0.005	<0.005					
3/23/2016		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
3/24/2016	<0.005							
9/7/2016				<0.005	<0.005	<0.005		
9/8/2016	<0.005	<0.005	<0.005				<0.005	<0.005
3/23/2017				<0.005	<0.005			
3/24/2017						<0.005	<0.005	
3/27/2017	<0.005	<0.005	<0.005					<0.005
10/4/2017				<0.005	<0.005	<0.005		
10/5/2017	<0.005	<0.005	<0.005				<0.005	<0.005
3/14/2018							<0.005	
3/15/2018	<0.005	<0.005	<0.005			<0.005		<0.005
3/16/2018				<0.005	<0.005			
10/4/2018	<0.005	<0.005		<0.005	<0.005	<0.005	<0.005	
10/5/2018			<0.005					<0.005
4/8/2019			<0.005		<0.005	<0.005	<0.005	<0.005
4/9/2019	<0.005	<0.005		<0.005				
10/1/2019	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
3/26/2020			<0.005					
3/27/2020							<0.005	<0.005
3/30/2020						<0.005		
3/31/2020	<0.005	<0.005		<0.005	<0.005			
9/23/2020		<0.005	<0.005					
9/24/2020	<0.005					<0.005	<0.005	<0.005
9/25/2020				<0.005	<0.005			
3/9/2021	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/10/2021	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2/4/2022				<0.005	<0.005	<0.005	<0.005	<0.005
2/7/2022	<0.005	<0.005	<0.005					
8/8/2022			<0.005		<0.005			
8/9/2022	<0.005	<0.005		<0.005			<0.005	<0.005
8/10/2022						<0.005		
1/31/2023	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/22/2016 3/23/2016	4.4409	11.6823	13.0789	107.476	302.2975	14.6529			22.9683
3/24/2016						14.0020	10.1818	16.8473	22.0000
5/17/2016	4.43	11.4	15.3	106	213	13.3	10.1010	10.0473	
5/18/2016	4.43	11.4	15.5	100	213	13.3		18.4	19.2
5/19/2016							9.58	10.4	19.2
	4.6		15	110			9.56		
7/5/2016	4.6	10	15	110	200	10		17	
7/6/2016		12			280	10	0.0	17	24
7/7/2016	4.0	10	16	0.0	160	10	9.6		31
9/7/2016	4.8	13	16	83	160	10	0.4	16	20
9/8/2016	4.7	12	16	110	120	10	9.4	16	30
10/18/2016	4.7	13	16	110	120	10	0.0	19	22
10/19/2016	4.7	10		200	210	44	9.9		32
12/6/2016	4.7	12	45	220	210	11		10	00
12/7/2016			15					13	26
12/8/2016	F 4		10				14		
1/31/2017 2/1/2017	5.1	10	13	100	000				
		13		190	200	44	40	4.4	
2/2/2017						11	13	14	07
2/3/2017	4.7		10	100					27
3/23/2017	4.7	10	12	160	140				
3/24/2017		12			140	00	40	10	00
3/27/2017	-		10	140	140	33	12	18	30
10/4/2017	5	12	12	140	140	16	10	16	22
10/5/2017	F 1	13	12.0			16	12	16	32
3/14/2018	5.1	10.0	13.9	110	167	22.0		14.0	
3/15/2018		12.2		119	167	33.9	11 7	14.8	27.5
3/16/2018						20.1	11.7		37.5
5/15/2018	F 2	15.6	17.4	117	200	29.1		15.0	41
10/4/2018	5.2	15.6	17.4	117	209	29.5	10.6	15.9	20.0
10/5/2018							10.6		38.9
12/11/2018 4/5/2019				101					41.8
	4.6	12.2	10.1	131	249				
4/8/2019	4.6	13.2	18.1		248	21.4	11.0	16.7	E0.2
4/9/2019						21.4	11.3	16.7	50.3
6/18/2019 6/27/2019									38.7
9/30/2019	4.0	11 5	17.5	110	117				46
	4.9	11.5	17.5	118	117	10.4	9.0	14.7	F2.2
10/1/2019						13.4	8.9	14.7	52.3
11/6/2019	-	10.0	15.0	05.0	100				47.3
3/26/2020	5	10.8	15.6	95.8	128	10.0			
3/27/2020 3/30/2020						10.8	9.7		
							9.7	17.0	F2.0
3/31/2020			10.0					17.8	53.6
9/21/2020 9/22/2020		0.8	18.2						
	6.6	9.8		05.6	100				E9.0
9/23/2020	6.6			95.6	123		0.5		58.9
9/24/2020						11.6	8.5		
9/25/2020						11.6		15.0	
9/28/2020	4.6	11 5		00.5	150			15.8	
3/8/2021	4.6	11.5	16.0	99.5	152	14.2	7.0		
3/9/2021			16.8			14.2	7.9		

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/10/2021								18.7	64.7
8/9/2021	4.7		23.2	93.3	106				
8/10/2021		11.2				14.9	10.3	17.8	66.4
2/4/2022	4	10.4	21.1	73.5	170 (M1)	14.4	8.9		
2/7/2022								16.9	66.3
8/8/2022	4.1	10.2	23.3	78.9	116				
8/9/2022						10.6	8.6	21.9	66.5
1/30/2023	3.8	9.5	19.8	78.4	156	11.5			
1/31/2023							8.4	22.8	69.8

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/23/2016		9.1183	6.2867	76.011	87.512	90.229	26.3455	61.8335
3/24/2016	24.8075							
5/17/2016				76.2	101			
5/18/2016	26.2	6.88				100		
5/19/2016			5.42				31.7	64.3
7/6/2016				74	110	130	36	69
7/7/2016	31	6.8	5.7					
9/7/2016				64	97	130		
9/8/2016	33	6.8	5.7				45	68
10/18/2016				65	120	140	49	
10/19/2016	31	7.5	5.8					69
12/7/2016	19	11	5.9					
12/8/2016				100	100	140	50	69
2/1/2017				150	110			
2/2/2017	52	9.9				71	51	76
2/3/2017			38					
3/23/2017				130	110			
3/24/2017						68	46	
3/27/2017	29	8.4	43					68
10/4/2017				71	130	120		
10/5/2017	33	7.4	8.3				48	74
12/14/2017					130			
1/18/2018					110			
3/14/2018							36.8	
3/15/2018	38	8.2	14			118		57.8
3/16/2018				77.4	93.6			
10/4/2018	19.3	6.4		90.3	137	167	45.4	
10/5/2018			9.3					81.9
12/11/2018					110			73.6
4/8/2019			6.2		131	97.1	39.9	73.5
4/9/2019	19.9	11		83.6				
6/19/2019					108			
10/1/2019	46.3	1.9	5.8	68.1	71.7	120	47.1	72.2
3/26/2020			14.5					
3/27/2020							31.5	54
3/30/2020						64.6		
3/31/2020	29.9	10.9		92.6	106			
9/23/2020		5	5.3					
9/24/2020	37.6					120	48.3	69.9
9/25/2020				80.7	110			
3/9/2021	41.6	6.4	10.2	86.9	105	87.4	33.1	65.1 (M1)
8/10/2021	23.8	6.2	8	76.1	95.9	101	31.6	76.3
2/4/2022				80.1	101	78.3	25.8	69.2
2/7/2022	25.9	8.2	13					
8/8/2022			5.6		77.1			
8/9/2022	18.3	6.3		74.6			33.3	77
8/10/2022						102		
1/31/2023	12.4	8.8	19.5	90.6	95.7	118	31.3	70

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.001		<0.001	<0.001	<0.001			<0.001	
3/7/2007		<0.001				<0.001	<0.001		<0.001
5/8/2007	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
5/9/2007							<0.001	<0.001	<0.001
7/7/2007	<0.001		<0.001						
7/17/2007		<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
8/28/2007	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
8/29/2007									<0.001
11/6/2007	<0.001		<0.001	<0.001	<0.001				
11/7/2007		<0.001				<0.001	<0.001	<0.001	<0.001
5/7/2008							<0.001	<0.001	<0.001
5/8/2008				<0.001	<0.001				
5/9/2008	<0.001	<0.001	<0.001			<0.001			
12/2/2008		<0.001				<0.001			
12/3/2008	<0.001		<0.001	<0.001	<0.001		<0.001		
12/4/2008								<0.001	
12/5/2008									<0.001
4/7/2009	<0.001		<0.001	<0.001	<0.001				
4/8/2009		<0.001				<0.001			
4/14/2009							<0.001	<0.001	<0.001
9/30/2009									<0.001
10/1/2009	<0.001	<0.001	<0.001			<0.001	<0.001		
10/2/2009				<0.001	<0.001			<0.001	
4/13/2010			<0.001				<0.001	<0.001	<0.001
4/14/2010	<0.001	<0.001		<0.001	<0.001	<0.001			
10/7/2010			<0.001						
10/12/2010							<0.001	<0.001	<0.001
10/13/2010	<0.001	<0.001				<0.001			
10/14/2010				<0.001	<0.001				
4/5/2011				<0.001	<0.001				
4/6/2011	<0.001	<0.001	<0.001			<0.001	<0.001	<0.001	
10/4/2011		<0.001				<0.001			
10/6/2011			<0.001						
10/10/2011	<0.001								
10/12/2011				<0.001	<0.001		<0.001	<0.001	<0.001
4/3/2012	<0.001		<0.001						
4/4/2012				<0.001	<0.001				
4/5/2012							<0.001	<0.001	
4/9/2012									<0.001
4/10/2012		<0.001				<0.001			
9/19/2012			<0.001				<0.001		
9/24/2012	<0.001				<0.001				
9/25/2012								<0.001	<0.001
9/26/2012		<0.001		<0.001		<0.001			
3/12/2013	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
3/13/2013							<0.001	<0.001	<0.001
3/4/2014	<0.001	<0.001	<0.001			<0.001			
3/10/2014							<0.001	<0.001	<0.001
3/11/2014				<0.001	<0.001				
9/3/2014	<0.001	<0.001	<0.001			<0.001	<0.001		
9/8/2014				<0.001	<0.001				
9/9/2014								<0.001	<0.001

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
4/21/2015	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
9/29/2015		<0.001		<0.001	<0.001				
9/30/2015	<0.001		<0.001			<0.001	<0.001	<0.001	<0.001
3/22/2016	<0.001	<0.001	<0.001	<0.001	<0.001				
3/23/2016						<0.001			<0.001
3/24/2016							<0.001	<0.001	
5/17/2016	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
5/18/2016							<0.001	<0.001	<0.001
7/5/2016	<0.001		<0.001	<0.001					
7/6/2016		<0.001			<0.001	<0.001		<0.001	
7/7/2016							<0.001		<0.001
9/7/2016	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
9/8/2016							<0.001	<0.001	<0.001
10/18/2016	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	
10/19/2016							<0.001		<0.001
12/6/2016	<0.001	<0.001		<0.001	<0.001	<0.001			
12/7/2016			<0.001					<0.001	<0.001
12/8/2016							<0.001		
1/31/2017	<0.001		<0.001						
2/1/2017		<0.001		<0.001	<0.001				
2/2/2017						<0.001	<0.001	<0.001	
2/3/2017									<0.001
3/23/2017	<0.001		<0.001	<0.001					
3/24/2017		<0.001			<0.001				
3/27/2017						<0.001	<0.001	<0.001	<0.001
10/4/2017	<0.001		<0.001	<0.001	<0.001				
10/5/2017		<0.001				<0.001	<0.001	<0.001	<0.001
3/14/2018	<0.001		<0.001						
3/15/2018		<0.001		<0.001	<0.001	<0.001		<0.001	
3/16/2018							<0.001		<0.001
10/4/2018	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	
10/5/2018							<0.001		<0.001
4/5/2019				<0.001					
4/8/2019	<0.001	<0.001	<0.001		<0.001	0.004	0.004	.0.004	.0.004
4/9/2019	0.004	.0.004		.0.004	.0.004	<0.001	<0.001	<0.001	<0.001
9/30/2019	<0.001	<0.001	<0.001	<0.001	<0.001				
10/1/2019	-0.004	-0.001	10.001	10.001	-0.004	<0.001	<0.001	<0.001	<0.001
3/26/2020	<0.001	<0.001	<0.001	<0.001	<0.001	-0.001			
3/27/2020						<0.001	<0.001		
3/30/2020							<0.001	10.001	-0.004
3/31/2020			<0.001					<0.001	<0.001
9/21/2020		<0.001	~0.001						
9/22/2020 9/23/2020	<0.001	\(\text{0.001}\)		<0.001	<0.001				<0.001
9/24/2020	<0.001			<0.001	~ 0.001		<0.001		<0.001
9/25/2020						<0.001	\0.001		
9/28/2020						-0.001		<0.001	
3/8/2021	<0.001	<0.001		<0.001	<0.001			-0.001	
3/9/2021	0.001	3.001	<0.001	0.001	5.007	<0.001	<0.001		
3/10/2021						3.00.	3.00.	<0.001	<0.001
8/9/2021	<0.001		<0.001	<0.001	<0.001				50.
8/10/2021		<0.001				<0.001	<0.001	<0.001	<0.001
						3.00.	3.00.	3.00.	0.001

GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20	
<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
!							<0.001	<0.001	
<0.001	<0.001	<0.001	<0.001	<0.001					
!					<0.001	<0.001	<0.001	<0.001	
0.00022 (J)	<0.001	<0.001	<0.001	<0.001	<0.001				
23						<0.001	<0.001	<0.001	
	2 <0.001 2 <0.001 2 <0.001	2 <0.001 <0.001 2 2 <0.001 <0.001 2 2 <0.001 <0.001 2 3 0.00022 (J) <0.001	2 <0.001 <0.001 <0.001 2 <0.001 <0.001 <0.001 2 <0.001 <0.001 2 <0.001 <0.001	2 <0.001 <0.001 <0.001 <0.001 2 <0.001 <0.001 <0.001 2 <0.001 <0.001 <0.001 2	2 <0.001 <0.001 <0.001 <0.001 <0.001 2 <0.001 <0.001 <0.001 <0.001 2 <0.001 <0.001 <0.001 <0.001 <0.001 2	2 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 2 <0.001 <0.001 <0.001 <0.001 2 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	2 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 2 <0.001 <0.001 <0.001 <0.001 <0.001 2 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	2 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 2 <0.001 <0.001 <0.001 <0.001 <0.001 2 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	2 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 2 <0.001 <0.001 <0.001 <0.001 <0.001 2 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

	GWC-2	21 GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9	
3/6/200	7 <0.001	<0.001	<0.001						
3/7/200	17			<0.001	<0.001			<0.001	
5/8/200	17			<0.001				<0.001	
5/9/200	7 <0.001	<0.001	<0.001		<0.001	<0.001	<0.001		
7/6/200	17			<0.001		<0.001	<0.001	<0.001	
7/17/20	<0.001	<0.001	<0.001		<0.001				
8/28/20	007			<0.001	<0.001	<0.001	<0.001	<0.001	
8/29/20	<0.001	<0.001	<0.001						
11/6/20	007			<0.001	<0.001	<0.001	<0.001	<0.001	
11/7/20	007 <0.001	<0.001	<0.001						
5/7/200	0.001	<0.001	<0.001						
5/8/200	18			<0.001	<0.001	<0.001	<0.001	<0.001	
12/2/20	800					<0.001	<0.001	<0.001	
12/3/20	800			<0.001	<0.001				
12/5/20	0.001	<0.001	<0.001						
4/7/200	9			<0.001	<0.001				
4/8/200	9					<0.001	<0.001	<0.001	
4/14/20	109	<0.001	<0.001						
4/27/20	<0.001								
9/30/20	<0.001	<0.001					<0.001	<0.001	
10/1/20	109		<0.001	<0.001	<0.001	<0.001			
4/13/20	10 <0.001	<0.001			<0.001	<0.001	<0.001	<0.001	
4/14/20	110		<0.001	<0.001					
10/6/20	110				<0.001				
10/7/20	110					<0.001			
10/12/2	2010 <0.001	<0.001							
10/13/2	2010		<0.001				<0.001	<0.001	
10/14/2	2010			<0.001					
4/5/201	1			<0.001	<0.001	<0.001	<0.001	<0.001	
4/6/201	1	<0.001	<0.001						
10/4/20)11				<0.001	<0.001	<0.001	<0.001	
10/5/20	0.001	<0.001							
10/12/2	2011		<0.001	<0.001					
4/3/201					<0.001	<0.001	<0.001		
4/4/201				<0.001				<0.001	
4/9/201		<0.001	<0.001						
4/10/20									
9/18/20					<0.001	<0.001			
9/19/20			<0.001				<0.001	<0.001	
9/24/20				<0.001	<0.001		<0.001		
9/25/20		<0.001							
9/26/20									
3/12/20				<0.001	<0.001	<0.001	<0.001	<0.001	
3/13/20		<0.001	<0.001						
3/5/201				<0.001	<0.001	<0.001	<0.001	<0.001	
3/11/20		<0.001	<0.001					.0.001	
9/3/201			<0.001		0.001	.0.001		<0.001	
9/8/201				-0.004	<0.001	<0.001	-0.004		
9/9/201			.0.004	<0.001	-0.004	10.001	<0.001	-0.004	
4/21/20		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
9/29/20		-0.004	-0.004	<0.001	<0.001	<0.001	<0.001	<0.001	
9/30/20	115 <0.001	<0.001	<0.001						

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/23/2016		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
3/24/2016	<0.001							
5/17/2016				<0.001	<0.001			
5/18/2016	<0.001	<0.001				<0.001	<0.001	<0.001
5/19/2016			<0.001					
7/6/2016				<0.001	<0.001	0.0001 (J)	<0.001	<0.001
7/7/2016	<0.001	<0.001	<0.001					
9/7/2016				<0.001	<0.001	<0.001		
9/8/2016	<0.001	<0.001	<0.001				<0.001	<0.001
10/18/2016				<0.001	<0.001	<0.001	<0.001	
10/19/2016	<0.001	<0.001	<0.001					<0.001
12/7/2016	<0.001	<0.001	<0.001					
12/8/2016				<0.001	<0.001	<0.001	<0.001	<0.001
2/1/2017				<0.001	<0.001			
2/2/2017	<0.001	<0.001				<0.001	<0.001	<0.001
2/3/2017			<0.001					
3/23/2017				<0.001	<0.001			
3/24/2017						<0.001	<0.001	
3/27/2017	<0.001	<0.001	<0.001					<0.001
10/4/2017				<0.001	<0.001	<0.001		
10/5/2017	<0.001	<0.001	<0.001				<0.001	<0.001
3/14/2018							<0.001	
3/15/2018	<0.001	<0.001	<0.001			<0.001		<0.001
3/16/2018				<0.001	<0.001			
10/4/2018	<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	
10/5/2018			<0.001					<0.001
4/8/2019			<0.001		<0.001	<0.001	<0.001	<0.001
4/9/2019	<0.001	<0.001		<0.001				
10/1/2019	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
3/26/2020			<0.001					
3/27/2020							<0.001	<0.001
3/30/2020						<0.001		
3/31/2020	<0.001	<0.001		<0.001	<0.001			
9/23/2020		<0.001	<0.001					
9/24/2020	<0.001					<0.001	<0.001	<0.001
9/25/2020				<0.001	<0.001			
3/9/2021	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
8/10/2021	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
2/4/2022				<0.001	<0.001	<0.001	<0.001	<0.001
2/7/2022	<0.001	<0.001	<0.001					
8/8/2022			<0.001		<0.001			
8/9/2022	<0.001	<0.001		<0.001			<0.001	<0.001
8/10/2022						<0.001		
1/31/2023	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/22/2016	78	112	233	451	686				
3/23/2016						182			208
3/24/2016							205	232	
5/17/2016	67	121	197	430	533	178			
5/18/2016								245	213
5/19/2016							204		
7/5/2016	87		218	418					
7/6/2016		98			646	135		231	
7/7/2016							181		212
9/7/2016	125	128	240	443	493	165			
9/8/2016							193	252	201
10/18/2016	133	115	221	415	455	113		288	
10/19/2016							231		276
12/6/2016	151	153		653	597	194			
12/7/2016			235					220	186
12/8/2016							166		
1/31/2017	135		253						
2/1/2017		183		615	638				
2/2/2017						160	191	220	
2/3/2017									219
3/23/2017	72		190	506					
3/24/2017		121			579				
3/27/2017						252	427 (o)	393 (o)	239
10/4/2017	91		192	492	440				
10/5/2017		113				177	207	242	216
3/14/2018	99		204						
3/15/2018		115		448	381	216		213	
3/16/2018							199		216
10/4/2018	112	135	233	472	490	222		231	
10/5/2018							235		256
4/5/2019				456					
4/8/2019	91	142	209		522				
4/9/2019						213	212	253	267
9/30/2019	126	134	242	475	455	100	100	222	074
10/1/2019	70	70	202	450	100	186	196	229	271
3/26/2020	73	76	222	450	466	110			
3/27/2020 3/30/2020						118	217		
3/31/2020							217	222	267
9/21/2020			204					233	267
		107	204						
9/22/2020 9/23/2020	117	107		473	421				277
	117			4/3	421		181		211
9/24/2020						150	101		
9/25/2020 9/28/2020						153		214	
	06	107		415	460			214	
3/8/2021 3/9/2021	96	107	227 (D6)	410	460	201	192		
3/9/2021			227 (00)			201	132	223 (D6)	241
8/9/2021	96		245	416	371			223 (D6)	241
8/10/2021		107	240	410	3/1	185	224	209	270
2/4/2022		125	245	325	496	214	225	209	210
2/4/2022	107	123	240	JZJ	730	Z 14	223	218	268
_, , , , , , , , , , , , , , , , , , ,								2.0	200

Page 2

Time Series

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
8/8/2022	99	119	249	348	360				
8/9/2022						170	183	236	285
1/30/2023	94	130	263	367	459	190			
1/31/2023							284	239	329

					' '			
	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/23/2016		206	168	379	310	253	239	204
3/24/2016	110							
5/17/2016				349	280			
5/18/2016	153	212				276		
5/19/2016			173				236	215
7/6/2016				346	280	239	218	204
7/7/2016	151	206	144					
9/7/2016				382	324	247		
9/8/2016	285	214	179				225	201
10/18/2016				461	307	233	200	
10/19/2016	314	269	209					272
12/7/2016	252	199	156					
12/8/2016				379	281	373	196	227
2/1/2017				511	354			
2/2/2017	138	211				236	231	209
2/3/2017			276					
3/23/2017				443	302			
3/24/2017						291	250	
3/27/2017	88	324	295					305
10/4/2017				359	365	264		
10/5/2017	111	219	192				309	204
12/14/2017					406		322	
1/18/2018					404		322	
3/14/2018							263	
3/15/2018	219	190	169			254		280
3/16/2018				390	317			
10/4/2018	152	215		385	371	287	292	
10/5/2018			210					236
4/8/2019			191		353	295	438	264
4/9/2019	167	222		371				
10/1/2019	336	220	203	380	348	277	305	237
11/6/2019	336							
11/26/2019	236							
3/26/2020			193					
3/27/2020							329	192
3/30/2020						216		
3/31/2020	111	195		408	349			
9/23/2020		231	186					
9/24/2020	286					254	307	179
9/25/2020				367	345			•••
3/9/2021	243	178	216	364	298	299	308	209
8/10/2021	121	206	178	363	318	210	425	208
2/4/2022	101	207	004	360	335	310	349	225
2/7/2022	161	207	224		227			
8/8/2022	110	208	176	262	327		210	220
8/9/2022	119	208		363		249	310	220
8/10/2022	76 (D6)	221	242	205	225	248	294	216
1/31/2023	70 (D0)	221	243	385	335	223	284	216

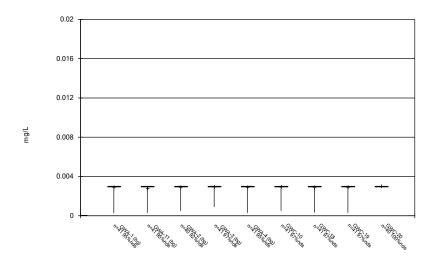
	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.01		<0.01	<0.01	<0.01			<0.01	
3/7/2007		<0.01				<0.01	<0.01		<0.01
5/8/2007	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
5/9/2007							<0.01	<0.01	<0.01
7/7/2007	<0.01		<0.01						
7/17/2007		<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
8/28/2007	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
8/29/2007									<0.01
11/6/2007	<0.01		<0.01	<0.01	<0.01				
11/7/2007		<0.01				<0.01	<0.01	<0.01	<0.01
5/7/2008							<0.01	<0.01	<0.01
5/8/2008				<0.01	<0.01				
5/9/2008	<0.01	<0.01	<0.01			<0.01			
12/2/2008		<0.01				<0.01			
12/3/2008	<0.01		<0.01	<0.01	<0.01		<0.01		
12/4/2008								<0.01	
12/5/2008									<0.01
4/7/2009	<0.01		<0.01	<0.01	<0.01				
4/8/2009		<0.01				<0.01			
4/14/2009							<0.01	<0.01	<0.01
9/30/2009									<0.01
10/1/2009	<0.01	<0.01	<0.01			<0.01	<0.01		
10/2/2009				<0.01	<0.01			<0.01	
4/13/2010			<0.01				<0.01	<0.01	<0.01
4/14/2010	<0.01	<0.01		<0.01	<0.01	<0.01			
10/7/2010			<0.01						
10/12/2010							<0.01	<0.01	<0.01
10/13/2010	<0.01	<0.01				<0.01			
10/14/2010				<0.01	<0.01				
4/5/2011				<0.01	<0.01				
4/6/2011	<0.01	<0.01	<0.01			<0.01	<0.01	<0.01	
10/4/2011		<0.01				<0.01			
10/6/2011			<0.01						
10/10/2011	<0.01								
10/12/2011				<0.01	<0.01		<0.01	<0.01	<0.01
4/3/2012	<0.01		<0.01						
4/4/2012				<0.01	<0.01				
4/5/2012							<0.01	<0.01	
4/9/2012									<0.01
4/10/2012		<0.01				<0.01			
9/19/2012			<0.01				<0.01		
9/24/2012	<0.01				<0.01				
9/25/2012								<0.01	<0.01
9/26/2012		<0.01		<0.01		<0.01			
3/12/2013	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
3/13/2013							<0.01	<0.01	<0.01
9/9/2013			<0.01						
9/10/2013		<0.01		<0.01	<0.01	<0.01	<0.01		
9/11/2013	<0.01							<0.01	<0.01
3/4/2014	<0.01	<0.01	<0.01			<0.01			
3/10/2014							<0.01	<0.01	<0.01
3/11/2014				<0.01	<0.01				

						. ,				
		GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/	3/2014	<0.01	<0.01	<0.01			<0.01	<0.01		
9/	8/2014				<0.01	<0.01				
9/	9/2014								<0.01	<0.01
4/	21/2015	<0.01	<0.01		<0.01	<0.01	<0.01			
4/	22/2015			<0.01				<0.01	<0.01	
4/	23/2015									<0.01
9/	29/2015		<0.01		<0.01	<0.01				
9/	30/2015	<0.01		<0.01			<0.01	<0.01	<0.01	<0.01
3/	22/2016	<0.01	<0.01	<0.01	<0.01	<0.01				
	23/2016						<0.01			<0.01
	24/2016							<0.01	<0.01	
	7/2016	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
	8/2016							<0.01	<0.01	<0.01
	23/2017	<0.01		<0.01	<0.01					
	24/2017		<0.01			<0.01				
	27/2017						<0.01	<0.01	<0.01	<0.01
	0/4/2017	<0.01		<0.01	<0.01	<0.01				
	0/5/2017		<0.01				<0.01	<0.01	<0.01	<0.01
	14/2018	<0.01		<0.01						
	15/2018		<0.01		<0.01	<0.01	<0.01		<0.01	
	16/2018							<0.01		<0.01
	0/4/2018	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	
	0/5/2018							<0.01		<0.01
	5/2019				<0.01					
	8/2019	<0.01	<0.01	<0.01		<0.01				
	9/2019						<0.01	<0.01	<0.01	<0.01
	30/2019	<0.01	<0.01	<0.01	<0.01	<0.01				
	0/1/2019						<0.01	<0.01	<0.01	<0.01
	26/2020	<0.01	<0.01	<0.01	<0.01	<0.01				
	27/2020						<0.01			
	30/2020							<0.01		
	31/2020								<0.01	<0.01
	21/2020			<0.01						
	22/2020		<0.01							
	23/2020	<0.01			<0.01	<0.01				<0.01
	24/2020							<0.01		
	25/2020						<0.01		0.04	
	28/2020	.0.04	.0.04			.0.04			<0.01	
	8/2021	<0.01	<0.01	10.01	<0.01	<0.01	10.01	-0.01		
	9/2021			<0.01			<0.01	<0.01	0.04	.0.04
	10/2021	0.0010 (1)		10.01	-0.01	-0.01			<0.01	<0.01
	9/2021	0.0019 (J)	10.01	<0.01	<0.01	<0.01	10.01	-0.01	-0.01	10.01
	10/2021	10.01	<0.01	10.01	-0.01	-0.01	<0.01	<0.01	<0.01	<0.01
	4/2022	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	~0.01
	7/2022	<0.01	<0.01	-0.01	<0.01	-0.01			<0.01	<0.01
	8/2022	<0.01	<0.01	<0.01	<0.01	<0.01	z0.01	-0.01	z0.01	-0.01
	9/2022	0.0022 / 15	-0.01	-0.01	-0.01	-0.01	<0.01	<0.01	<0.01	<0.01
	30/2023	0.0022 (J)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	~0.01
1/	31/2023							<0.01	<0.01	<0.01

			Fidilitiid	illilliona Cilent. 30	outrierri Company	Data. Hullakei Moac	a Landilli		
	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9	
3/6/2007	<0.01	<0.01	<0.01						
3/7/2007				<0.01	<0.01			<0.01	
5/8/2007				<0.01				<0.01	
5/9/2007	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01		
7/6/2007				<0.01		<0.01	<0.01	<0.01	
7/17/2007	<0.01	<0.01	<0.01		<0.01				
8/28/2007				<0.01	<0.01	<0.01	<0.01	<0.01	
8/29/2007	<0.01	<0.01	<0.01						
11/6/2007				<0.01	<0.01	<0.01	<0.01	<0.01	
11/7/2007	<0.01	<0.01	<0.01						
5/7/2008	<0.01	<0.01	<0.01						
5/8/2008				<0.01	<0.01	<0.01	<0.01	<0.01	
12/2/2008						<0.01	<0.01	<0.01	
12/3/2008				<0.01	<0.01				
12/5/2008	<0.01	<0.01	<0.01						
4/7/2009				<0.01	<0.01				
4/8/2009						<0.01	<0.01	0.0029	
4/14/2009		<0.01	<0.01						
4/27/2009	<0.01								
9/30/2009	<0.01	<0.01					<0.01	<0.01	
10/1/2009			<0.01	<0.01	<0.01	0.0039			
4/13/2010	<0.01	<0.01			<0.01	<0.01	<0.01	<0.01	
4/14/2010			<0.01	<0.01					
10/6/2010					<0.01				
10/7/2010						<0.01			
10/12/2010	<0.01	<0.01							
10/13/2010			<0.01				<0.01	<0.01	
10/14/2010				<0.01					
4/5/2011				<0.01	<0.01	0.0025	<0.01	<0.01	
4/6/2011		<0.01	<0.01						
10/4/2011					<0.01	0.0027	<0.01	<0.01	
10/5/2011	<0.01	<0.01							
10/12/2011			<0.01	<0.01					
4/3/2012					<0.01	<0.01	<0.01		
4/4/2012				<0.01				<0.01	
4/9/2012		<0.01	<0.01						
4/10/2012	<0.01								
9/18/2012					<0.01	<0.01			
9/19/2012			<0.01				<0.01	<0.01	
9/24/2012				<0.01					
9/25/2012		<0.01							
9/26/2012	<0.01								
3/12/2013				<0.01	<0.01	<0.01	<0.01	<0.01	
3/13/2013	<0.01	<0.01	<0.01						
9/9/2013					<0.01				
9/10/2013			<0.01	<0.01		<0.01	<0.01	<0.01	
9/11/2013	<0.01	<0.01							
3/5/2014				<0.01	<0.01	<0.01	<0.01	<0.01	
3/11/2014	<0.01	<0.01	<0.01						
9/3/2014			<0.01					<0.01	
9/8/2014					<0.01	0.0012 (J)			
9/9/2014	0.0029 (J)	<0.01		0.00093 (J)		(-)	<0.01		
	(-)			(-)					

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.01		0.0015 (J)		<0.01
4/22/2015					<0.01		<0.01	
4/23/2015		<0.01	<0.01					
9/29/2015				<0.01	<0.01	<0.01	<0.01	<0.01
9/30/2015	0.001 (J)	<0.01	<0.01					
3/23/2016		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
3/24/2016	<0.01							
9/7/2016				<0.01	<0.01	<0.01		
9/8/2016	<0.01	<0.01	<0.01				<0.01	<0.01
3/23/2017				<0.01	<0.01			
3/24/2017						<0.01	<0.01	
3/27/2017	<0.01	<0.01	<0.01					<0.01
10/4/2017				<0.01	<0.01	<0.01		
10/5/2017	<0.01	<0.01	<0.01				<0.01	<0.01
3/14/2018							<0.01	
3/15/2018	<0.01	<0.01	<0.01			<0.01		<0.01
3/16/2018				<0.01	<0.01			
10/4/2018	<0.01	<0.01		<0.01	<0.01	<0.01	<0.01	
10/5/2018			<0.01					<0.01
4/8/2019			0.00017 (J)		<0.01	<0.01	<0.01	<0.01
4/9/2019	<0.01	<0.01		<0.01				
10/1/2019	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
3/26/2020			<0.01					
3/27/2020							<0.01	<0.01
3/30/2020						<0.01		
3/31/2020	<0.01	<0.01		<0.01	<0.01			
9/23/2020		<0.01	<0.01					
9/24/2020	<0.01					<0.01	<0.01	<0.01
9/25/2020				<0.01	<0.01			
3/9/2021	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
8/10/2021	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
2/4/2022				<0.01	<0.01	<0.01	<0.01	<0.01
2/7/2022	<0.01	<0.01	<0.01					
8/8/2022			<0.01		<0.01			
8/9/2022	<0.01	<0.01		<0.01			<0.01	<0.01
8/10/2022						<0.01		
1/31/2023	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

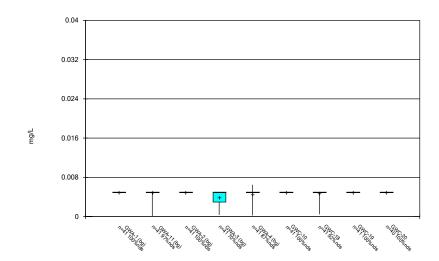
	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.01		<0.01	<0.01	<0.01			<0.01	
3/7/2007		<0.01				<0.01	<0.01		<0.01
5/8/2007	<0.01	0.0025	<0.01	<0.01	<0.01	<0.01			
5/9/2007							0.0026	0.0025	<0.01
7/7/2007	<0.01		<0.01						
7/17/2007		0.0047		0.0033	<0.01	0.0069	0.0043	0.0035	<0.01
8/28/2007	<0.01	0.0033	0.0026	<0.01	0.0026	<0.01	<0.01	<0.01	
8/29/2007									<0.01
11/6/2007	<0.01		<0.01	<0.01	<0.01				
11/7/2007		<0.01				<0.01	<0.01	<0.01	<0.01
5/7/2008							<0.01	<0.01	<0.01
5/8/2008				0.0033	0.0037				
5/9/2008	<0.01	<0.01	<0.01			<0.01			
12/2/2008		<0.01				<0.01			
12/3/2008	<0.01		<0.01	0.0054	0.003		<0.01		
12/4/2008								<0.01	
12/5/2008									<0.01
4/7/2009	0.0028		<0.01	<0.01	0.0045				
4/8/2009		<0.01				<0.01			
4/14/2009							<0.01	<0.01	<0.01
9/30/2009									<0.01
10/1/2009	<0.01	<0.01	<0.01			<0.01	<0.01		
10/2/2009				<0.01	0.0027			<0.01	
4/13/2010			<0.01				<0.01	0.0043	<0.01
4/14/2010	<0.01	<0.01		0.003	<0.01	<0.01			
10/7/2010			<0.01						
10/12/2010							<0.01	<0.01	<0.01
10/13/2010	<0.01	<0.01				<0.01			
10/14/2010				<0.01	0.0041				
4/5/2011	.0.04	.0.04	0.04	<0.01	<0.01	0.04	0.04	.0.04	
4/6/2011	<0.01	<0.01	<0.01			<0.01	<0.01	<0.01	
10/4/2011		<0.01	0.04			<0.01			
10/6/2011	.0.04		<0.01						
10/10/2011	<0.01			-0.01	0.0000		-0.01	-0.01	-0.01
10/12/2011	10.01		-0.04	<0.01	0.0033		<0.01	<0.01	<0.01
4/3/2012	<0.01		<0.01	-0.01	-0.04				
4/4/2012				<0.01	<0.01		-0.01	-0.01	
4/5/2012							<0.01	<0.01	<0.01
4/9/2012		z0.01				-0.01			<0.01
4/10/2012		<0.01	-0.04			<0.01	-0.01		
9/19/2012	-0.01		<0.01		0.0039		<0.01		
9/24/2012	<0.01				0.0039			-0.01	-0.01
9/25/2012		z0.01		-0.01		-0.01		<0.01	<0.01
9/26/2012	-0.01	<0.01	-0.01	<0.01	z0.01	<0.01			
3/12/2013	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
3/13/2013			<0.01				<0.01	<0.01	<0.01
9/9/2013		z0.01	<0.01	-0.01	0.0035	-0.01	-0.01		
9/10/2013	<0.01	<0.01		<0.01	0.0035	<0.01	<0.01	<0.01	<0.01
9/11/2013	<0.01	<0.01	0.0035			0.0026		<0.01	<0.01
3/4/2014	0.0026	<0.01	0.0035			0.0026	0.002271	0.0021	0.0024 (1)
3/10/2014 3/11/2014				0.0037	0.0045		0.0022 (J)	0.0031	0.0024 (J)
J/ 1 1/2U 14				0.0037	0.0043				


	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3/2014	0.001 (J)	0.00074 (J)	0.0015 (J)			0.00079 (J)	0.0013 (J)		
9/8/2014				0.00087 (J)	0.0026				
9/9/2014								0.00098 (J)	0.00078 (J)
4/21/2015	<0.01	<0.01		0.002 (J)	0.0028	<0.01			
4/22/2015			<0.01				0.0019 (J)	0.0015 (J)	
4/23/2015									<0.01
9/29/2015		0.0024 (J)		0.0021 (J)	0.008 (J)				
9/30/2015	<0.01		0.0026 (J)			0.0018 (J)	0.0037 (J)	0.002 (J)	0.0016 (J)
3/22/2016	<0.01	<0.01	<0.01	<0.01	<0.01				
3/23/2016						<0.01			<0.01
3/24/2016							<0.01	<0.01	
9/7/2016	0.0047 (J)	0.0023 (J)	0.0024 (J)	0.0034 (J)	0.0035 (J)	<0.01			
9/8/2016							0.0024 (J)	0.0029 (J)	<0.01
3/23/2017	<0.01		<0.01	0.0031 (J)					
3/24/2017		0.0068 (J)			0.0095 (J)				
3/27/2017						0.0014 (J)	<0.01	0.0019 (J)	0.0017 (J)
10/4/2017	<0.01		0.0017 (J)	<0.01	0.0031 (J)				
10/5/2017		<0.01				<0.01	<0.01	0.0024 (J)	0.0016 (J)
3/14/2018	0.0032 (J)		0.0023 (J)						
3/15/2018		0.0042 (J)		0.0028 (J)	0.0041 (J)	<0.01		<0.01	
3/16/2018							<0.01		<0.01
10/4/2018	0.003 (J)	0.0046 (J)	0.0041 (J)	0.0043 (J)	0.0058 (J)	0.0033 (J)		0.013	
10/5/2018							0.0029 (J)		<0.01
4/5/2019				0.0013 (J)					
4/8/2019	<0.01	0.0024 (J)	0.0014 (J)		0.0023 (J)				
4/9/2019						<0.01	0.0037 (J)	<0.01	<0.01
9/30/2019	0.0032 (J)	0.004 (J)	0.0043 (J)	0.0045 (J)	0.0059 (J)				
10/1/2019						0.0049 (J)	0.006 (J)	0.0049 (J)	0.0063 (J)
3/26/2020	<0.01	<0.01	<0.01	<0.01	<0.01				
3/27/2020						<0.01			
3/30/2020							<0.01		
3/31/2020								<0.01	<0.01
9/21/2020			<0.01						
9/22/2020		<0.01							
9/23/2020	0.0025 (J)			<0.01	0.0025 (J)				<0.01
9/24/2020							<0.01		
9/25/2020						<0.01			
9/28/2020								0.0033 (J)	
3/8/2021	<0.01	<0.01		<0.01	0.0034 (J)				
3/9/2021			<0.01			<0.01	<0.01		
3/10/2021								<0.01	<0.01
8/9/2021	<0.01		<0.01	<0.01	<0.01				
8/10/2021		<0.01				<0.01	<0.01	<0.01	<0.01
2/4/2022	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
2/7/2022								<0.01	<0.01
8/8/2022	<0.01	<0.01	<0.01	<0.01	<0.01				
8/9/2022						<0.01	<0.01	<0.01	<0.01
1/30/2023	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
1/31/2023							<0.01	<0.01	<0.01

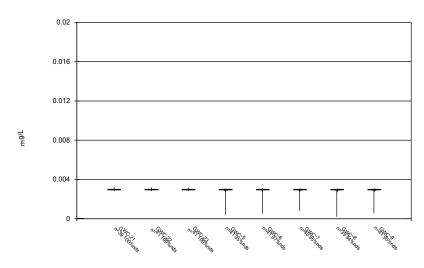
	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.01	<0.01	0.0054					
3/7/2007				0.0064	<0.01			<0.01
5/8/2007				<0.01				0.0027
5/9/2007	<0.01	0.0035	0.0041		<0.01	45 (o)	0.0038	
7/6/2007				<0.01		16 (o)	<0.01	0.0032
7/17/2007	0.0031	<0.01	0.005		<0.01			
8/28/2007				0.0025	<0.01	11 (o)	<0.01	0.0026
8/29/2007	0.0056	<0.01	0.0044					
11/6/2007				<0.01	<0.01	8.3	<0.01	<0.01
11/7/2007	0.0059	<0.01	<0.01					
5/7/2008	0.0059	<0.01	<0.01					
5/8/2008				<0.01	<0.01	5	<0.01	<0.01
12/2/2008						3.2	<0.01	<0.01
12/3/2008				<0.01	<0.01			
12/5/2008	<0.01	<0.01	<0.01					
4/7/2009				0.0025	<0.01			
4/8/2009						2.4	<0.01	<0.01
4/14/2009		<0.01	<0.01					
4/27/2009	0.0051							
9/30/2009	0.0066	<0.01					<0.01	<0.01
10/1/2009			<0.01	<0.01	<0.01	1.9		
4/13/2010	0.0041	<0.01			<0.01	1.9	<0.01	<0.01
4/14/2010			<0.01	<0.01				
10/6/2010					<0.01			
10/7/2010						1.6		
10/12/2010	0.004	<0.01						
10/13/2010			<0.01				<0.01	<0.01
10/14/2010				<0.01				
4/5/2011				0.0025	<0.01	1.1	<0.01	<0.01
4/6/2011		<0.01	<0.01					
10/4/2011					<0.01	1.1	<0.01	<0.01
10/5/2011	0.0043	<0.01						
10/12/2011			<0.01	0.0037				
4/3/2012					<0.01	0.75	<0.01	
4/4/2012				<0.01				<0.01
4/9/2012		<0.01	<0.01					
4/10/2012	0.0108							
9/18/2012					<0.01	0.88		
9/19/2012			<0.01				<0.01	<0.01
9/24/2012				<0.01				
9/25/2012		<0.01						
9/26/2012	0.0066							
3/12/2013				<0.01	<0.01	0.23	<0.01	<0.01
3/13/2013	0.0035	<0.01	<0.01					
9/9/2013					<0.01			
9/10/2013			<0.01	<0.01		0.36	<0.01	<0.01
9/11/2013	0.005	<0.01						
3/5/2014				0.0028	0.0026	0.33	0.0028	0.0029
3/11/2014	0.005	0.0037	0.0033					
9/3/2014			0.0014 (J)					0.0011 (J)
9/8/2014					0.00055 (J)	0.47		
9/9/2014	0.0041	0.0006 (J)		0.00058 (J)			0.0014 (J)	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				0.0043		0.27		<0.01
4/22/2015					<0.01		<0.01	
4/23/2015		<0.01	0.0024 (J)					
9/29/2015				0.0031 (J)	0.0026 (J)	0.359	0.0016 (J)	0.0034 (J)
9/30/2015	0.0031 (J)	0.0021 (J)	0.0041 (J)					
3/23/2016		<0.01	<0.01	0.00272 (J)	<0.01	0.102	<0.01	<0.01
3/24/2016	0.00393 (J)							
9/7/2016				<0.01	0.0024 (J)	0.24		
9/8/2016	0.0047 (J)	<0.01	<0.01				<0.01	<0.01
3/23/2017				0.0026 (J)	0.0035 (J)			
3/24/2017						0.0512	0.0031 (J)	
3/27/2017	0.0036 (J)	<0.01	0.0014 (J)					0.0014 (J)
10/4/2017				<0.01	<0.01	0.159		
10/5/2017	0.0065 (J)	<0.01	0.0014 (J)				<0.01	0.0013 (J)
3/14/2018							0.0053 (J)	
3/15/2018	0.0053 (J)	<0.01	0.0039 (J)			0.12		<0.01
3/16/2018				<0.01	0.0029 (J)			
10/4/2018	0.0077 (J)	0.003 (J)		0.0028 (J)	0.0039 (J)	0.22	0.0031 (J)	
10/5/2018			0.0048 (J)					0.0044 (J)
4/8/2019			0.0016 (J)		0.0013 (J)	0.051	0.0012 (J)	0.0016 (J)
4/9/2019	0.0041 (J)	<0.01		<0.01				
10/1/2019	0.0078 (J)	0.0054 (J)	0.0057 (J)	0.0053 (J)	0.0056 (J)	0.12	0.0055 (J)	0.0052 (J)
3/26/2020			<0.01					
3/27/2020							<0.01	<0.01
3/30/2020						0.051		
3/31/2020	<0.01	<0.01		<0.01	<0.01			
9/23/2020		<0.01	0.0022 (J)					
9/24/2020	0.0046 (J)					0.07	<0.01	<0.01
9/25/2020				<0.01	<0.01			
3/9/2021	0.0033 (J)	<0.01	<0.01	<0.01	<0.01	0.057	<0.01	<0.01
8/10/2021	<0.01	<0.01	<0.01	<0.01	<0.01	0.093	<0.01	<0.01
2/4/2022				<0.01	<0.01	0.07	<0.01	<0.01
2/7/2022	<0.01	<0.01	<0.01					
8/8/2022			<0.01		<0.01			
8/9/2022	<0.01	<0.01		<0.01			<0.01	<0.01
8/10/2022						0.082		
1/31/2023	<0.01	<0.01	<0.01	<0.01	<0.01	0.19	<0.01	<0.01

FIGURE B.

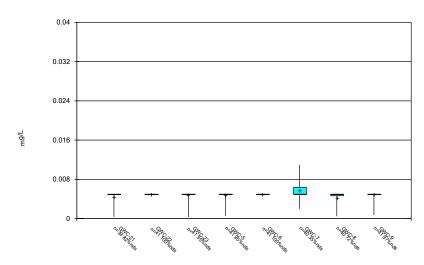

Box & Whiskers Plot

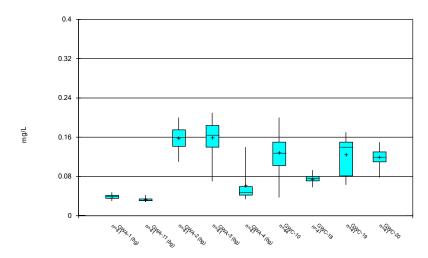
Constituent: Antimony Analysis Run 4/19/2023 4:33 PM View: Constituents View Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG

Box & Whiskers Plot

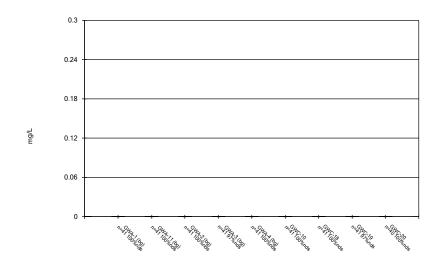
Constituent: Arsenic Analysis Run 4/19/2023 4:33 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Box & Whiskers Plot

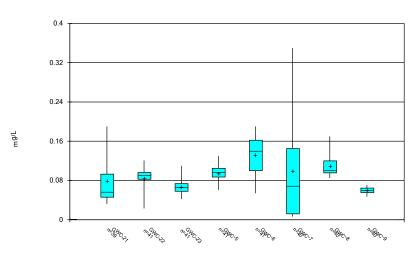

Constituent: Antimony Analysis Run 4/19/2023 4:33 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

Box & Whiskers Plot



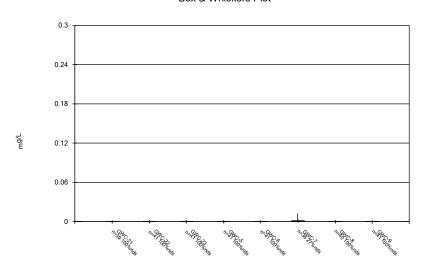
Constituent: Barium Analysis Run 4/19/2023 4:33 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG

Box & Whiskers Plot

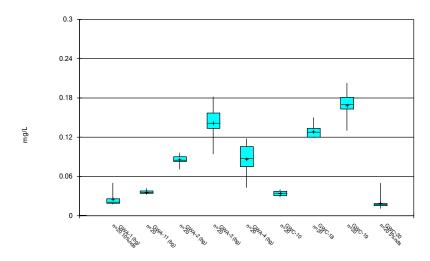
Constituent: Beryllium Analysis Run 4/19/2023 4:33 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Box & Whiskers Plot



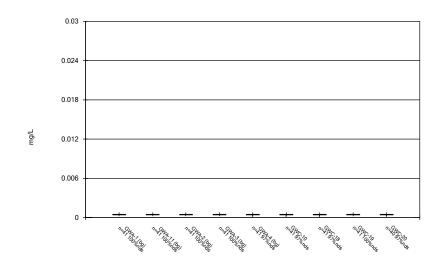
Constituent: Barium Analysis Run 4/19/2023 4:33 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

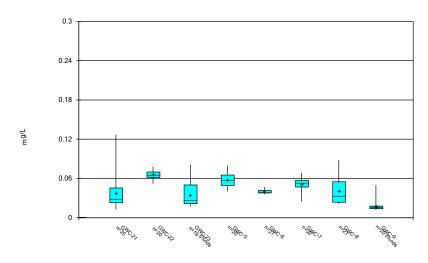

Sanitas™ v.9.6.37 . UG

Box & Whiskers Plot

Constituent: Beryllium Analysis Run 4/19/2023 4:33 PM View: Constituents View Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

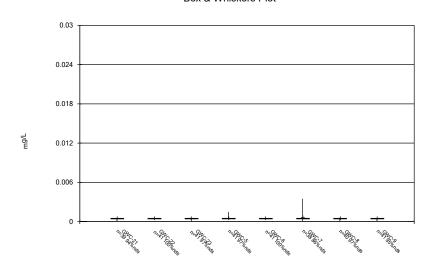

Box & Whiskers Plot

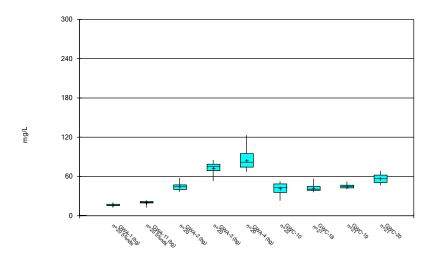
Constituent: Boron Analysis Run 4/19/2023 4:33 PM View: Constituents View Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG

Box & Whiskers Plot

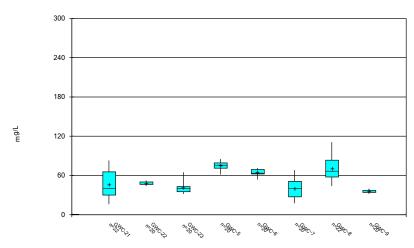
Constituent: Cadmium Analysis Run 4/19/2023 4:33 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Box & Whiskers Plot


Constituent: Boron Analysis Run 4/19/2023 4:33 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

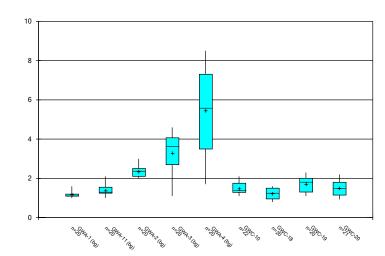
Sanitas™ v.9.6.37 . UG

Box & Whiskers Plot



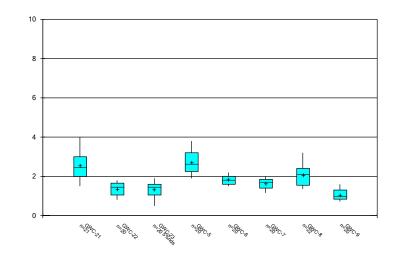
Box & Whiskers Plot

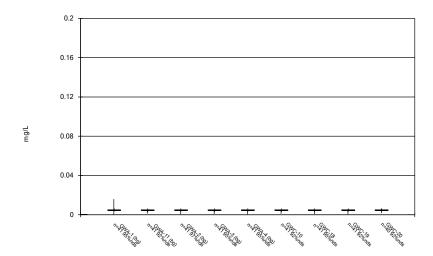
Constituent: Calcium Analysis Run 4/19/2023 4:33 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Box & Whiskers Plot

Constituent: Calcium Analysis Run 4/19/2023 4:33 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

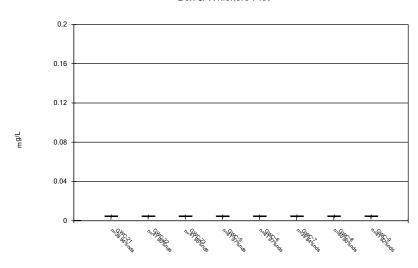

Box & Whiskers Plot


Constituent: Chloride Analysis Run 4/19/2023 4:33 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

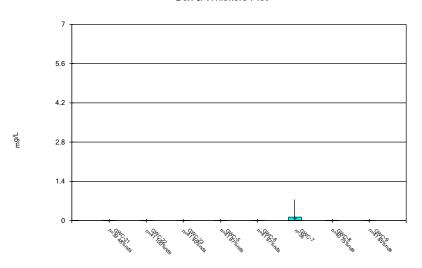
Box & Whiskers Plot

Constituent: Chromium Analysis Run 4/19/2023 4:33 PM View: Constituents View Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

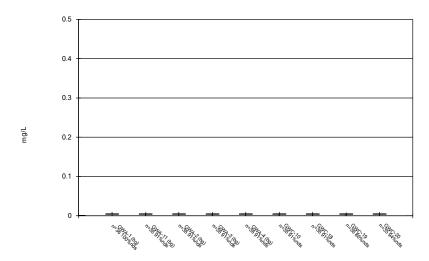

Sanitas™ v.9.6.37 . UG

Box & Whiskers Plot

Constituent: Cobalt Analysis Run 4/19/2023 4:33 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

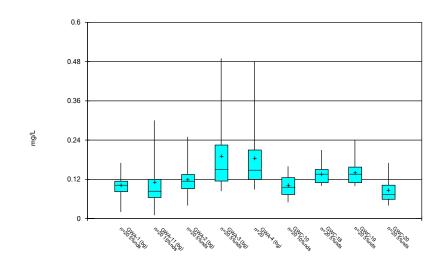

Box & Whiskers Plot

Constituent: Chromium Analysis Run 4/19/2023 4:33 PM View: Constituents View Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

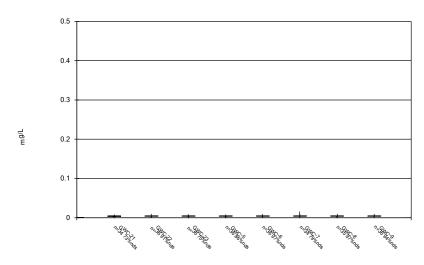

Sanitas™ v.9.6.37 . UG

Box & Whiskers Plot

Constituent: Cobalt Analysis Run 4/19/2023 4:33 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill



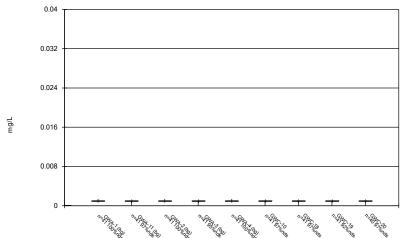
Constituent: Copper Analysis Run 4/19/2023 4:33 PM View: Constituents View Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Box & Whiskers Plot

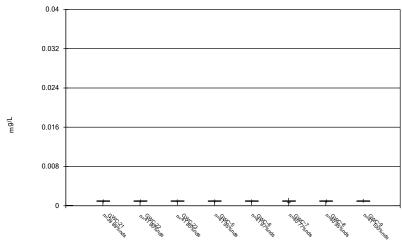
Sanitas™ v.9.6.37 . UG

Constituent: Fluoride Analysis Run 4/19/2023 4:33 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Box & Whiskers Plot


Constituent: Copper Analysis Run 4/19/2023 4:33 PM View: Constituents View Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG


Box & Whiskers Plot

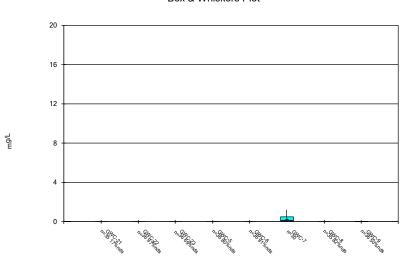
Constituent: Lead Analysis Run 4/19/2023 4:33 PM View: Constituents View Plant Hammond Client: Southern Company Data: Huffaker Road Landfill



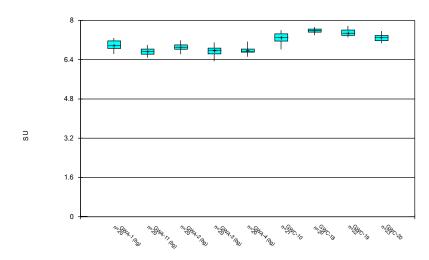
Box & Whiskers Plot

Constituent: Lead Analysis Run 4/19/2023 4:33 PM View: Constituents View Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

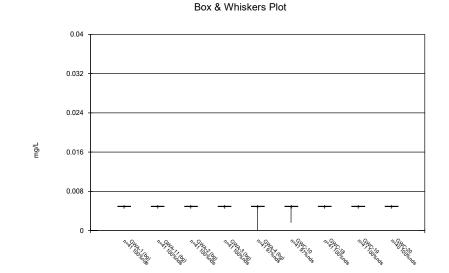
Sanitas™ v.9.6.37 . UG


Box & Whiskers Plot

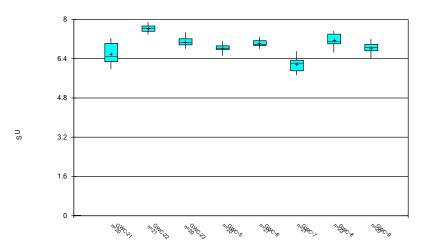
Constituent: Nickel Analysis Run 4/19/2023 4:33 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG

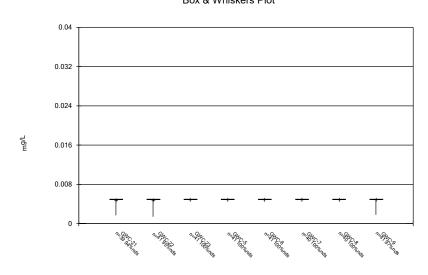
Box & Whiskers Plot


Sanitas™ v.9.6.37 . UG

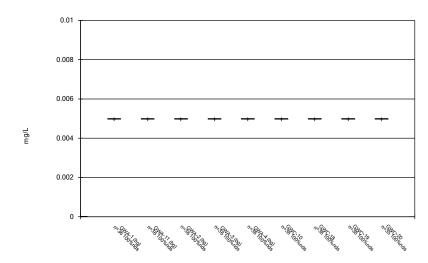
Box & Whiskers Plot


Constituent: pH Analysis Run 4/19/2023 4:33 PM View: Constituents View Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™v.9.6.37 . UG

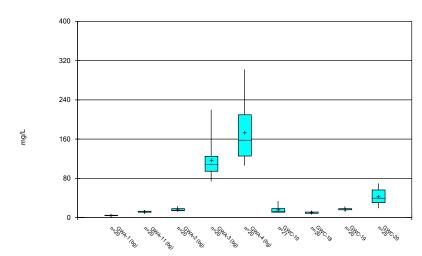

Constituent: Selenium Analysis Run 4/19/2023 4:33 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Box & Whiskers Plot

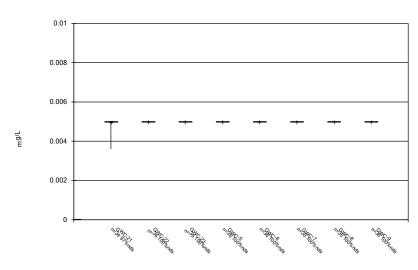


Constituent: pH Analysis Run 4/19/2023 4:33 PM View: Constituents View Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Box & Whiskers Plot



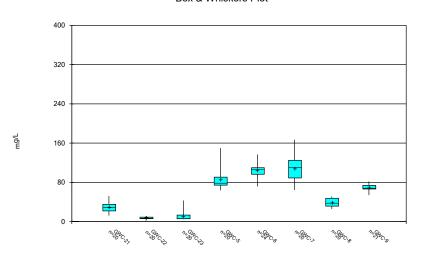
Constituent: Silver Analysis Run 4/19/2023 4:33 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG

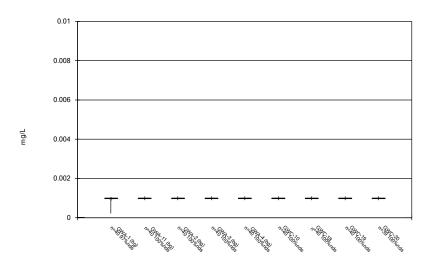
Box & Whiskers Plot

Constituent: Sulfate Analysis Run 4/19/2023 4:33 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Box & Whiskers Plot



Constituent: Silver Analysis Run 4/19/2023 4:33 PM View: Constituents View Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

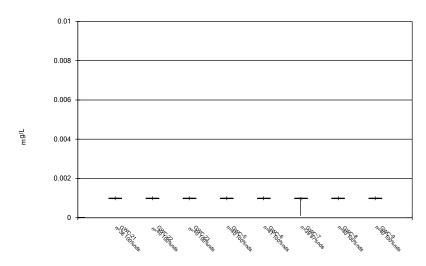

Sanitas™ v.9.6.37 . UG

Sanitas™ v.9.6.37 . UG

Box & Whiskers Plot

Box & Whiskers Plot

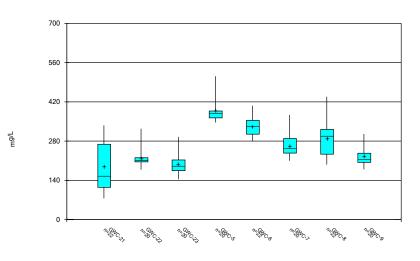
Constituent: Thallium Analysis Run 4/19/2023 4:33 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

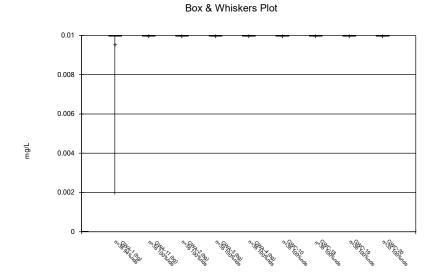

Box & Whiskers Plot

Sanitas™ v.9.6.37 . UG

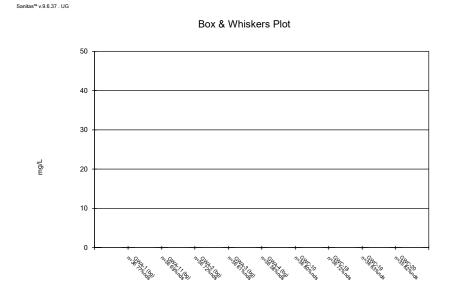
700 420 420 140

Constituent: Total Dissolved Solids Analysis Run 4/19/2023 4:33 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

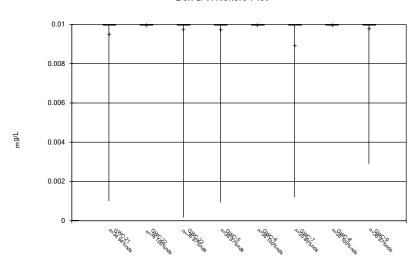

Box & Whiskers Plot



Constituent: Thallium Analysis Run 4/19/2023 4:33 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

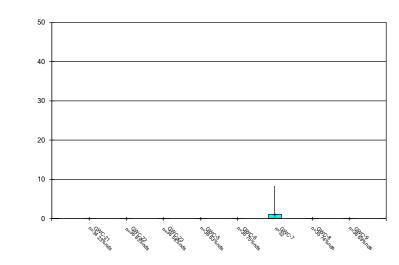

Sanitas™ v.9.6.37 . UG

Box & Whiskers Plot


Constituent: Vanadium Analysis Run 4/19/2023 4:33 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Zinc Analysis Run 4/19/2023 4:33 PM View: Constituents View

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Box & Whiskers Plot

Constituent: Vanadium Analysis Run 4/19/2023 4:33 PM View: Constituents View
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

Box & Whiskers Plot

Constituent: Zinc Analysis Run 4/19/2023 4:33 PM View: Constituents View Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

FIGURE C.

Outlier Summary

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 3/29/2023, 2:39 PM

7/6/2007	5/9/2007		_{ony} (mg/L) GWC-7 Arseni 0.038 (o)	c (mg/L) GWC-8 Barium		(mg/L) GWC-7 Berylliu 0.28 (o)	_{um} (mg/L) GWC-23 Boron		0.023 (o)		n (mg/L) GWC-20 Chloride (mg/L)
11/6/2007 0.0064 (o) 0.036 (o) 5/8/2008 4/5/2011 0.035 (o) 3/27/2017 0.125 (o) 10/5/2017 5.5 (o) 10/4/2018 264 (o) 3/30/2020 3/31/2020 0.091 (Jo)	7/6/2007					0.093 (o)			0.0081 (o)		
5/8/2008 4/5/2011 0.035 (o) 3/27/2017 0.125 (o) 10/5/2017 5.5 (o) 10/4/2018 264 (o) 3/30/2020 3/31/2020 0.091 (Jo)	8/28/2007					0.057 (o)					
4/5/2011 0.035 (o) 3/27/2017 0.125 (o) 10/5/2017 5.5 (o) 10/4/2018 264 (o) 3/30/2020 3/31/2020 0.091 (Jo)	11/6/2007	0.0064 (o)				0.036 (o)					
3/27/2017 0.125 (o) 10/5/2017 5.5 (o) 10/4/2018 264 (o) 3/30/2020 3/31/2020 0.091 (Jo)	5/8/2008										
10/5/2017 5.5 (o) 10/4/2018 264 (o) 3/30/2020 3/31/2020 0.091 (Jo)	4/5/2011				0.035 (o)						
10/4/2018 264 (o) 3/30/2020 3/31/2020 0.091 (Jo)	3/27/2017						0.125 (o)				
3/30/2020 3/31/2020 0.091 (Jo)	10/5/2017										5.5 (o)
3/31/2020 0.091 (Jo)	10/4/2018									264 (o)	
` ,	3/30/2020										
8/10/2021 0.23 (o)	3/31/2020							0.091 (Jo)			
	8/10/2021			0.23 (o)							

	GWC-7 Chloride	(mg/L) GWC-7 Chromiu	m (mg/L)	ng/L)	(mg/L) GWC-7 Nickel (n	ng/L)	issolved Solids (n	ng/L) _{bissol} ved Solids (mg/L) GWC-7 Zinc (mg/L)
	GNC-1 -	GMC ₂₁	GWC21 2	GMON	GMOST	GWCs15	GMO	GMO-1 -
5/9/2007		0.11 (o)	6.5 (o)	0.44 (o)	18 (o)			45 (o)
7/6/2007			2.1 (o)		5.9 (o)			16 (o)
8/28/2007			1.4 (o)		3.9 (o)			11 (o)
11/6/2007			1.1 (o)		3.1 (o)			
5/8/2008					2.1 (o)			
4/5/2011								
3/27/2017						427 (o)	393 (o)	
10/5/2017								
10/4/2018								
3/30/2020	9.2 (o)							
3/31/2020								
8/10/2021								

FIGURE D.

Appendix I - Intrawell Prediction Limits - Significant Results

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 4/5/2023, 5:31 PM

Constituent	<u>Well</u>	Upper Lin	n. Lower Lim	n. Date	Observ.	Sig.	Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Barium (mg/L)	GWA-2	0.1957	n/a	1/30/2023	0.2	Yes	29	0.1666	0.01321	0	None	No	0.0006269	Param Intra 1 of 2
Barium (mg/L)	GWC-23	0.08756	n/a	1/31/2023	0.11	Yes	38	0.06495	0.0106	0	None	No	0.0006269	Param Intra 1 of 2

Appendix I - Intrawell Prediction Limits - All Results

Data: Huffaker Road Landfill Printed 4/5/2023, 5:31 PM Client: Southern Company Constituent Well Bg N Bg Mean Std. Dev. %NDs ND Adj. Sig. **Transform** Alpha Method GWA-1 1/30/2023 0.003ND 0.001294 NP Intra (NDs) 1 of 2 Antimony (ma/L) 0.003 n/a No 38 n/a n/a 97.37 n/a n/a Antimony (mg/L) GWA-11 0.003 n/a 1/30/2023 0.003ND No 38 n/a n/a 94.74 n/a 0.001294 NP Intra (NDs) 1 of 2 Antimony (mg/L) GWA-2 0.003 n/a 1/30/2023 0.003ND No 37 n/a n/a 91.89 n/a n/a 0.001361 NP Intra (NDs) 1 of 2 GWA-3 97.37 0.001294 NP Intra (NDs) 1 of 2 Antimony (ma/L) 0.003 n/a 1/30/2023 0.003ND No 38 n/a n/a n/a n/a Antimony (mg/L) GWA-4 0.003 n/a 1/30/2023 0.003ND No 38 n/a n/a 94.74 n/a 0.001294 NP Intra (NDs) 1 of 2 NP Intra (NDs) 1 of 2 GWC-10 0.003 1/30/2023 0.003ND No 38 97 37 0.001294 Antimony (mg/L) n/a n/a n/a n/a n/a GWC-18 0.003ND No 97.37 0.001294 NP Intra (NDs) 1 of 2 Antimony (mg/L) 0.003 n/a 1/31/2023 38 n/a n/a n/a n/a Antimony (mg/L) GWC-19 0.003 n/a 1/31/2023 0.003ND No 38 n/a n/a 97.37 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 GWC-5 0.003ND No 94.74 0.001294 NP Intra (NDs) 1 of 2 Antimony (mg/L) 0.003 n/a 1/31/2023 38 n/a n/a n/a n/a Antimony (mg/L) GWC-6 0.003 n/a 1/31/2023 0.003ND No 38 n/a n/a 97.37 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 NP Intra (NDs) 1 of 2 GWC-7 0.003 n/a 1/31/2023 0.003ND Nο 37 n/a n/a 94.59 n/a n/a 0.001361 Antimony (mg/L) NP Intra (NDs) 1 of 2 GWC-8 0.003 1/31/2023 0.003ND Nο 36 94 44 0.001429 Antimony (mg/L) n/a n/a n/a n/a n/a GWC-9 Antimony (ma/L) 0.003 n/a 1/31/2023 0.003ND No 38 n/a n/a 94.74 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 GWA-1 0.005 n/a 1/30/2023 0.005ND No 38 100 n/a 0.001294 NP Intra (NDs) 1 of 2 Arsenic (mg/L) n/a n/a Arsenic (mg/L) GWA-11 0.005 n/a 1/30/2023 0.005ND No 38 n/a n/a 97 37 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 0.001294 NP Intra (NDs) 1 of 2 Arsenic (ma/L) GWA-2 0.005 n/a 1/30/2023 0.005ND No 38 n/a n/a 100 n/a n/a GWA-3 1/30/2023 0.005ND 38 68.42 NP Intra (NDs) 1 of 2 Arsenic (mg/L) 0.005 n/a No n/a n/a n/a 0.001294 n/a NP Intra (NDs) 1 of 2 GWA-4 0.0065 n/a 1/30/2023 0.005ND No 38 n/a n/a 86.84 n/a n/a 0.001294 Arsenic (ma/L) GWC-18 0.005 n/a 1/31/2023 0.005ND Nο 38 n/a n/a 92 11 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 Arsenic (mg/L) GWC-21 0.005 n/a 1/31/2023 0.005ND No 36 n/a n/a 80.56 n/a n/a 0.001429 NP Intra (NDs) 1 of 2 GWC-23 0.001294 Arsenic (mg/L) 0.005 n/a 1/31/2023 0.005ND No 38 n/a n/a 94.74 n/a n/a NP Intra (NDs) 1 of 2 Arsenic (mg/L) GWC-5 0.005 n/a 1/31/2023 0.005ND No 38 n/a n/a 94.74 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 GWC-7 37 37.84 0.011 n/a 1/31/2023 0.0028J No n/a n/a n/a n/a 0.001361 NP Intra (normality) 1 of 2 Arsenic (mg/L) GWC-8 0.005 n/a 1/31/2023 0.005ND No 37 n/a n/a 72.97 n/a n/a 0.001361 NP Intra (NDs) 1 of 2 Arsenic (ma/L) GWC-9 0.005 n/a 1/31/2023 0.005ND No 38 n/a n/a 97.37 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 GWA-1 0.04924 1/30/2023 0.037 38 0.03897 0.004812 0 0.0006269 Param Intra 1 of 2 Barium (mg/L) n/a No None No Barium (mg/L) GWA-11 0.0425 n/a 1/30/2023 0.03 No 38 n/a n/a 0 n/a n/a 0.001294 NP Intra (normality) 1 of 2 Barium (mg/L) GWA-2 0.1957 n/a 1/30/2023 0.2 Yes 29 0.1666 0.01321 0 None No 0.0006269 Param Intra 1 of 2 GWA-3 1/30/2023 38 0 0.0006269 Param Intra 1 of 2 0.2212 n/a 0.07 No 0.1656 0.02606 No Barium (mg/L) None Barium (mg/L) GWA-4 0.14 n/a 1/30/2023 0.037 No 38 0 n/a 0.001294 NP Intra (normality) 1 of 2 Barium (mg/L) GWC-10 0 1945 n/a 1/30/2023 0.17 Nο 41 0.1273 0.03174 Ω Nο 0.0006269 Param Intra 1 of 2 None Barium (mg/L) GWC-18 0.09031 n/a 1/31/2023 0.077 No 38 0.07443 0.007441 ٥ None No 0.0006269 Param Intra 1 of 2 Barium (mg/L) **GWC-19** 0.1691 1/31/2023 0.15 No 29 0.00041950.0001801 0 None x^4 0.0006269 Param Intra 1 of 2 Barium (mg/L) GWC-20 0.149 n/a 1/31/2023 0.14 Nο 38 0.1177 0.01465 0 None No 0.0006269 Param Intra 1 of 2 GWC-21 n/a 36 0.19 1/31/2023 0.033 No 0 0.001429 NP Intra (normality) 1 of 2 Barium (mg/L) n/a n/a n/a n/a Barium (mg/L) GWC-22 0.1105 n/a 1/31/2023 0.09 No 29 -2.374 0.07763 0 ln(x) 0.0006269 Param Intra 1 of 2 Barium (mg/L) **GWC-23** 0.08756 n/a 1/31/2023 0.11 Yes 38 0.06495 0.0106 0 No 0.0006269 Param Intra 1 of 2 Barium (mg/L) GWC-5 0.01511 0.0006269 Param Intra 1 of 2 1/31/2023 0.064 38 0.09723 0 0.1295 n/a No None No Barium (mg/L) GWC-6 0.2071 n/a 1/31/2023 0.15 No 29 0.1469 0.0273 None No 0.0006269 Param Intra 1 of 2 Barium (mg/L) GWC-7 0.3697 n/a 1/31/2023 0.047 Nο 19 0.3226 0.1206 Ω None sart(x) 0.0006269 Param Intra 1 of 2 GWC-8 1/31/2023 37 0 Barium (mg/L) 0.17 n/a 0.12 No n/a 0.001361 NP Intra (normality) 1 of 2 n/a n/a n/a Barium (mg/L) GWC-9 0.07234 n/a 1/31/2023 No 28 0.06145 0.004913 0 No 0.0006269 Param Intra 1 of 2 n/a Beryllium (mg/L) GWA-1 0.0005 n/a 1/30/2023 0.0005ND No. 38 n/a 100 0.001294 NP Intra (NDs) 1 of 2 n/a n/a Bervllium (ma/L) GWA-11 0.0005 n/a 1/30/2023 0.0005ND No 38 100 0.001294 NP Intra (NDs) 1 of 2 n/a n/a n/a n/a Bervllium (ma/L) GWA-2 0.0005 n/a 1/30/2023 0.0005ND No 38 n/a n/a 100 n/a 0.001294 NP Intra (NDs) 1 of 2 n/a n/a n/a Beryllium (mg/L) GWA-3 0.0005 1/30/2023 0.0005ND No 38 n/a 97.37 n/a 0.001294 NP Intra (NDs) 1 of 2 GWA-4 38 NP Intra (NDs) 1 of 2 Beryllium (mg/L) 0.0005 n/a 1/30/2023 0.0005ND No n/a n/a 100 n/a n/a 0.001294 Beryllium (mg/L) GWC-19 0.0005 n/a 1/31/2023 0.0005ND No 38 n/a 97.37 n/a 0.001294 NP Intra (NDs) 1 of 2 Beryllium (mg/L) GWC-7 0.01841 n/a 1/31/2023 0.00021J No 33 -7.926 1.812 27.27 Kaplan-Meier In(x) 0.0006269 Param Intra 1 of 2 GWA-1 0.0005ND No 0.001294 NP Intra (NDs) 1 of 2 Cadmium (mg/L) 0.0005 n/a 1/30/2023 38 n/a n/a 100 n/a n/a Cadmium (mg/L) GWA-11 0.0005 n/a 1/30/2023 0.0005ND No 38 100 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 n/a n/a Cadmium (mg/L) GWA-2 0.0005 1/30/2023 0.0005ND No 38 100 0.001294 NP Intra (NDs) 1 of 2 n/a n/a n/a n/a n/a GWA-3 0.001294 Cadmium (mg/L) 0.0005 n/a 1/30/2023 0.0005ND No 38 n/a n/a 100 n/a n/a NP Intra (NDs) 1 of 2 Cadmium (mg/L) GWA-4 0.0005 n/a 1/30/2023 0.0005ND No 38 n/a n/a 97.37 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 Cadmium (mg/L) n/a GWC-10 0.0005 n/a 1/30/2023 0.0005ND No 38 n/a 97.37 n/a 0.001294 NP Intra (NDs) 1 of 2 n/a GWC-18 0.0005 1/31/2023 0.0005ND No 38 97.37 0.001294 NP Intra (NDs) 1 of 2 Cadmium (mg/L) n/a n/a n/a n/a n/a Cadmium (mg/L) GWC-20 0.0005 n/a 1/31/2023 0.0005ND No 37 n/a n/a 97.3 n/a 0.001361 NP Intra (NDs) 1 of 2 Cadmium (mg/L) GWC-21 0.0005 n/a 1/31/2023 0.0005ND No 36 n/a n/a 94 44 n/a n/a 0.001429 NP Intra (NDs) 1 of 2 Cadmium (mg/L) GWC-23 0.0005 n/a 1/31/2023 0.0005ND No 38 n/a n/a 97.37 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 Cadmium (mg/L) GWC-5 0.0015 n/a 1/31/2023 0.0005ND No 38 n/a n/a 97.37 n/a 0.001294 NP Intra (NDs) 1 of 2 NP Intra (NDs) 1 of 2 Cadmium (mg/L) GWC-7 0.0035 n/a 1/31/2023 0.0005ND No 35 n/a n/a 85 71 n/a n/a 0.001497 Cadmium (mg/L) GWC-8 0.0005 n/a 1/31/2023 0.0005ND No 37 n/a n/a 97.3 n/a n/a 0.001361 NP Intra (NDs) 1 of 2 Cadmium (mg/L) GWC-9 0.0005 1/31/2023 0.0005ND No 38 94.74 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 n/a n/a n/a Chromium (mg/L) GWA-1 1/30/2023 0.005ND No 94.74 0.001294 0.016 n/a 38 n/a n/a n/a n/a NP Intra (NDs) 1 of 2 Chromium (ma/L) **GWA-11** 0.005 n/a 1/30/2023 0.005ND No 38 n/a n/a 92.11 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 Chromium (mg/L) GWA-2 0.005 n/a 1/30/2023 0.005ND No 38 n/a n/a 97.37 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 GWA-3 No Chromium (mg/L) 0.005 n/a 1/30/2023 0.005ND 38 n/a n/a 94.74 n/a n/a 0.001294 NP Intra (NDs) 1 of 2

0.005ND

No 38 n/a

n/a

94.74 n/a

1/30/2023

0.001294

n/a

NP Intra (NDs) 1 of 2

GWA-4

0.005

n/a

Chromium (ma/L)

0.0006269 Param Intra 1 of 2

Appendix I - Intrawell Prediction Limits - All Results

Client: Southern Company Data: Huffaker Road Landfill Printed 4/5/2023, 5:31 PM Constituent Well Bg N Bg Mean Std. Dev. %NDs ND Adj. Method Upper Lim. Lower Lim. Date Sig. **Transform** Alpha GWC-10 0.005ND 0.001294 NP Intra (NDs) 1 of 2 Chromium (ma/L) 0.005 n/a 1/30/2023 No 38 n/a n/a 92.11 n/a n/a Chromium (mg/L) GWC-18 0.005 n/a 1/31/2023 0.005ND No 38 n/a n/a 94.74 n/a 0.001294 NP Intra (NDs) 1 of 2 Chromium (mg/L) GWC-19 0.005 n/a 1/31/2023 0.005ND No 38 n/a n/a 92 11 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 GWC-20 37 91.89 0.001361 NP Intra (NDs) 1 of 2 Chromium (ma/L) 0.0064 n/a 1/31/2023 0.005ND No n/a n/a n/a n/a Chromium (mg/L) GWC-21 0.005 n/a 1/31/2023 0.005ND No 36 n/a n/a 94.44 n/a NP Intra (NDs) 1 of 2 GWC-22 Chromium (mg/L) 0.005 1/31/2023 0.005ND Nο 38 n/a 89 47 n/s 0.001294 NP Intra (NDs) 1 of 2 n/a n/a n/a GWC-23 0.005ND No 38 94.74 0.001294 NP Intra (NDs) 1 of 2 Chromium (mg/L) 0.0051 n/a 1/31/2023 n/a n/a n/a n/a Chromium (mg/L) GWC-5 0.005 n/a 1/31/2023 0.005ND No 38 n/a n/a 97.37 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 Chromium (mg/L) GWC-6 1/31/2023 0.005ND No 97.37 0.001294 NP Intra (NDs) 1 of 2 0.005 n/a 38 n/a n/a n/a n/a Chromium (ma/L) GWC-7 0.005 n/a 1/31/2023 0.005ND No 36 n/a n/a 83.33 n/a n/a 0.001429 NP Intra (NDs) 1 of 2 NP Intra (NDs) 1 of 2 Chromium (mg/L) GWC-8 0.005 n/a 1/31/2023 0.005ND Nο 37 n/a n/a 89.19 n/a n/a 0.001361 NP Intra (NDs) 1 of 2 Chromium (mg/L) GWC-9 0.005 1/31/2023 0.005ND Nο 38 n/a 92 11 0.001294 n/a n/a n/a n/a Cobalt (mg/L) GWA-1 0.005 n/a 1/30/2023 0.0005J No 38 n/a n/a 60.53 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 Cobalt (mg/L) GWA-11 0.01 n/a 1/30/2023 0.00043J No 38 52.63 n/a 0.001294 NP Intra (NDs) 1 of 2 n/a n/a Cobalt (mg/L) GWA-2 0.005 n/a 1/30/2023 0.005ND No 38 n/a n/a 97 37 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 0.001294 NP Intra (NDs) 1 of 2 Cobalt (mg/L) GWA-3 0.005 n/a 1/30/2023 0.005ND No 38 n/a n/a 89.47 n/a n/a GWA-4 1/30/2023 0.005ND 38 63.16 NP Intra (NDs) 1 of 2 Cobalt (mg/L) 0.005 n/a No n/a n/a n/a 0.001294 n/a GWC-10 No 38 97.37 NP Intra (NDs) 1 of 2 Cobalt (mg/L) 0.005 n/a 1/30/2023 0.005ND n/a n/a n/a n/a 0.001294 Cobalt (mg/L) GWC-21 0.01 n/a 1/31/2023 0.002.1 Nο 36 n/a n/a 52 78 n/a n/a 0.001429 NP Intra (NDs) 1 of 2 Cobalt (mg/L) GWC-23 0.005 n/a 1/31/2023 0.005ND No 38 n/a n/a 89.47 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 GWC-5 89.47 0.001294 Cobalt (mg/L) 0.005 n/a 1/31/2023 0.005ND No 38 n/a n/a n/a n/a NP Intra (NDs) 1 of 2 Cobalt (mg/L) GWC-6 0.005 n/a 1/31/2023 0.005ND No 38 n/a n/a 97.37 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 GWC-7 No 23 Cobalt (mg/L) 0.06885 n/a 1/31/2023 0.028 0.01788 0 No 0.0006269 Param Intra 1 of 2 0.031 None Cobalt (mg/L) GWC-8 0.01 1/31/2023 0.00055J No 37 81.08 n/a n/a 0.001361 NP Intra (NDs) 1 of 2 Cobalt (mg/L) GWC-9 0.005 n/a 1/31/2023 0.005ND No 38 n/a n/a 84.21 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 GWA-1 0.005 1/30/2023 0.005ND No 33 100 0.001701 NP Intra (NDs) 1 of 2 Copper (mg/L) n/a n/a n/a n/a n/a Copper (mg/L) GWA-11 0.005 n/a 1/30/2023 0.005ND No 33 n/a n/a 90.91 n/a n/a 0.001701 NP Intra (NDs) 1 of 2 Copper (mg/L) GWA-2 0.005 n/a 1/30/2023 0.005ND No 33 n/a n/a 90.91 n/a n/a 0.001701 NP Intra (NDs) 1 of 2 GWA-3 1/30/2023 0.005ND 33 90.91 NP Intra (NDs) 1 of 2 0.005 n/a No n/a n/a n/a 0.001701 Copper (mg/L) n/a Copper (mg/L) GWA-4 0.0066 n/a 1/30/2023 0.005ND No 33 n/a 90.91 n/a n/a 0.001701 NP Intra (NDs) 1 of 2 Copper (mg/L) GWC-10 0.005 n/a 1/30/2023 0.005ND Nο 33 n/a n/a 93 94 n/a n/a 0.001701 NP Intra (NDs) 1 of 2 Copper (ma/L) GWC-18 0.005 n/a 1/31/2023 0.005ND No 33 n/a 90.91 n/a n/a 0.001701 NP Intra (NDs) 1 of 2 n/a Copper (mg/L) GWC-19 0.005 n/a 1/31/2023 0.005ND No 33 n/a n/a 84.85 n/a 0.001701 NP Intra (NDs) 1 of 2 Copper (mg/L) GWC-20 0.005 n/a 1/31/2023 0.005ND No 32 n/a n/a 93.75 n/a n/a 0.001803 NP Intra (NDs) 1 of 2 GWC-21 0.0012J 1/31/2023 No 31 74.19 n/a n/a 0.001905 NP Intra (NDs) 1 of 2 Copper (mg/L) 0.005 n/a n/a n/a Copper (mg/L) GWC-22 0.005 1/31/2023 0.005ND No 33 n/a 90.91 n/a n/a 0.001701 NP Intra (NDs) 1 of 2 Copper (mg/L) GWC-23 0.0084 n/a 1/31/2023 0.005ND No 33 n/a n/a 75.76 n/a n/a 0.001701 NP Intra (NDs) 1 of 2 GWC-5 0.001701 NP Intra (NDs) 1 of 2 Copper (mg/L) 1/31/2023 0.005ND No 33 84.85 n/a 0.005 n/a n/a n/a n/a Copper (mg/L) GWC-6 0.005 n/a 1/31/2023 0.005ND No 33 n/a n/a 96.97 n/a 0.001701 NP Intra (NDs) 1 of 2 Copper (mg/L) GWC-7 0.016 n/a 1/31/2023 0.005ND Nο 31 n/a n/a 77 42 n/a n/a 0.001905 NP Intra (NDs) 1 of 2 GWC-8 1/31/2023 0.005ND 32 NP Intra (NDs) 1 of 2 Copper (mg/L) 0.005 n/a No n/a n/a 96.88 n/a n/a 0.001803 Copper (mg/L) GWC-9 0.005 n/a 1/31/2023 0.005ND No 33 93.94 n/a n/a 0.001701 NP Intra (NDs) 1 of 2 Lead (mg/L) GWA-1 0.001 n/a 1/30/2023 0.001ND Nο 38 n/a n/a 100 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 97.37 Lead (mg/L) GWA-11 0.001 1/30/2023 0.001ND No 38 n/a 0.001294 NP Intra (NDs) 1 of 2 n/a n/a n/a n/a Lead (mg/L) GWA-2 0.001 n/a 1/30/2023 0.001ND No 38 n/a n/a 100 n/a 0.001294 NP Intra (NDs) 1 of 2 Lead (mg/L) n/a n/a GWA-3 0.001 1/30/2023 0.001ND No 38 94 74 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 n/a GWA-4 38 0.001294 NP Intra (NDs) 1 of 2 Lead (mg/L) 0.001 n/a 1/30/2023 0.001ND No n/a n/a 100 n/a n/a Lead (mg/L) GWC-10 0.001 n/a 1/30/2023 0.001ND No 38 n/a 97.37 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 Lead (mg/L) GWC-18 0.001 n/a 1/31/2023 0.001ND No 38 n/a n/a 97.37 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 **GWC-19** 0.001294 0.001ND No 38 92.11 NP Intra (NDs) 1 of 2 Lead (mg/L) 0.001 n/a 1/31/2023 n/a n/a n/a n/a Lead (mg/L) GWC-20 0.001 n/a 1/31/2023 0.001ND No 37 97.3 n/a 0.001361 NP Intra (NDs) 1 of 2 n/a n/a GWC-21 0.001 1/31/2023 0.001ND No 36 88.89 n/a 0.001429 NP Intra (NDs) 1 of 2 Lead (mg/L) n/a n/a n/a n/a GWC-22 38 0.001294 Lead (mg/L) 0.001 n/a 1/31/2023 0.001ND No n/a n/a 89.47 n/a n/a NP Intra (NDs) 1 of 2 Lead (mg/L) GWC-23 0.001 n/a 1/31/2023 0.001ND No 38 n/a n/a 84.21 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 Lead (mg/L) n/a GWC-5 0.001 n/a 1/31/2023 0.001ND Nο 38 n/a 94 74 n/a n/a 0.001294 NP Intra (NDs) 1 of 2 GWC-6 0.001 1/31/2023 0.001ND No 38 97.37 0.001294 NP Intra (NDs) 1 of 2 Lead (mg/L) n/a n/a n/a n/a n/a Lead (mg/L) GWC-7 0.0016 n/a 1/31/2023 0.001ND No 37 n/a n/a 75.68 n/a 0.001361 NP Intra (NDs) 1 of 2 n/a Lead (mg/L) GWC-8 0.001 n/a 1/31/2023 0.001ND No 37 n/a n/a 94 59 n/a 0.001361 NP Intra (NDs) 1 of 2 Nickel (ma/L) GWA-1 0.005 n/a 1/30/2023 0.005ND No 33 n/a n/a 78.79 n/a n/a 0.001701 NP Intra (NDs) 1 of 2 Nickel (mg/L) GWA-11 0.01 n/a 1/30/2023 0.0017J No 33 n/a n/a 54.55 n/a 0.001701 NP Intra (NDs) 1 of 2 NP Intra (NDs) 1 of 2 Nickel (mg/L) GWA-2 0.005 n/a 1/30/2023 0.005ND Nο 33 n/a n/a 96 97 n/a n/a 0.001701 NP Intra (NDs) 1 of 2 Nickel (mg/L) GWA-3 0.005 n/a 1/30/2023 0.00082J No 33 n/a n/a 87.88 n/a n/a 0.001701 Nickel (mg/L) GWA-4 0.0055 n/a 1/30/2023 0.005ND No 33 51.52 n/a 0.001701 NP Intra (NDs) 1 of 2 n/a n/a GWC-10 1/30/2023 0.005ND No 33 96.97 0.001701 NP Intra (NDs) 1 of 2 Nickel (mg/L) 0.005 n/a n/a n/a n/a n/a Nickel (ma/L) GWC-18 0.005 n/a 1/31/2023 0.005ND No 33 n/a n/a 78.79 n/a n/a 0.001701 NP Intra (NDs) 1 of 2 Nickel (mg/L) GWC-19 0.0062 n/a 1/31/2023 0.005ND Nο 33 n/a n/a 90.91 n/a n/a 0.001701 NP Intra (NDs) 1 of 2 GWC-20 No Nickel (mg/L) 0.005 n/a 1/31/2023 0.005ND 32 n/a 93.75 n/a n/a 0.001803 NP Intra (NDs) 1 of 2

0.0164

18.75

Kaplan-Meier sqrt(x)

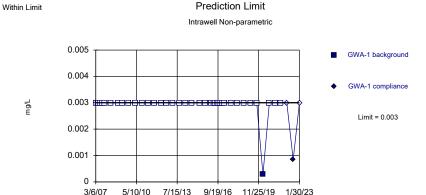
0.06271

GWC-21

Nickel (ma/L)

0.009689

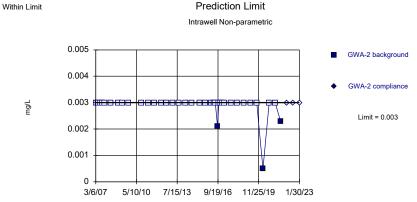
n/a


1/31/2023

0.005J

No 32

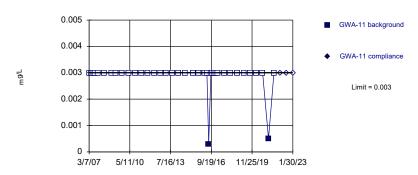
Appendix I - Intrawell Prediction Limits - All Results Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 4/5/2023, 5:31 PM


Constituent	Well	Upper Lim	n. Lower Lim	. Date	Observ.	Sig.	Bq N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	Alpha	Method
Nickel (mg/L)	GWC-22	0.005	n/a	1/31/2023	0.005ND	No	33	n/a	n/a	96.97	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-23	0.005	n/a	1/31/2023	0.005ND	No	33	n/a	n/a	69.7	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-5	0.005	n/a	1/31/2023	0.005ND	No	33	n/a	n/a	78.79	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-6	0.005	n/a	1/31/2023	0.005ND	No	33	n/a	n/a	90.91	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-7	0.2685	n/a	1/31/2023	0.11	No	18	0.1037	0.06873	0	None	No	0.0006269	Param Intra 1 of 2
Nickel (mg/L)	GWC-8	0.0073	n/a	1/31/2023	0.005ND	No	32	n/a	n/a	81.25	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-9	0.01	n/a	1/31/2023	0.002J	No	33	n/a	n/a	54.55	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWA-1	0.005	n/a	1/30/2023	0.005ND	No	38	n/a	n/a	100	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWA-11	0.005	n/a	1/30/2023	0.005ND	No	38	n/a	n/a	100	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWA-2	0.005	n/a	1/30/2023	0.005ND	No	38	n/a	n/a	100	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWA-3	0.005	n/a	1/30/2023	0.005ND	No	38	n/a	n/a	100	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWA-4	0.005	n/a	1/30/2023	0.005ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWC-10	0.005	n/a	1/30/2023	0.005ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWC-21	0.005	n/a	1/31/2023	0.005ND	No	36	n/a	n/a	94.44	n/a	n/a	0.001429	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWC-22	0.005	n/a	1/31/2023	0.005ND	No	38	n/a	n/a	94.74	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWC-9	0.005	n/a	1/31/2023	0.005ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Silver (mg/L)	GWA-1	0.005	n/a	1/30/2023	0.005ND	No	33	n/a	n/a	100	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Silver (mg/L)	GWA-11	0.005	n/a	1/30/2023	0.005ND	No	33	n/a	n/a	100	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Silver (mg/L)	GWA-2	0.005	n/a	1/30/2023	0.005ND	No	33	n/a	n/a	100	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Silver (mg/L)	GWA-3	0.005	n/a	1/30/2023	0.005ND	No	33	n/a	n/a	100	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Silver (mg/L)	GWA-4	0.005	n/a	1/30/2023	0.005ND	No	33	n/a	n/a	100	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Silver (mg/L)	GWC-21	0.005	n/a	1/31/2023	0.005ND	No	31	n/a	n/a	96.77	n/a	n/a	0.001905	NP Intra (NDs) 1 of 2
Thallium (mg/L)	GWA-1	0.001	n/a	1/30/2023	0.00022J	No	37	n/a	n/a	100	n/a	n/a	0.001361	NP Intra (NDs) 1 of 2
Thallium (mg/L)	GWA-11	0.001	n/a	1/30/2023	0.001ND	No	37	n/a	n/a	100	n/a	n/a	0.001361	NP Intra (NDs) 1 of 2
Thallium (mg/L)	GWA-2	0.001	n/a	1/30/2023	0.001ND	No	37	n/a	n/a	100	n/a	n/a	0.001361	NP Intra (NDs) 1 of 2
Thallium (mg/L)	GWA-3	0.001	n/a	1/30/2023	0.001ND	No	37	n/a	n/a	100	n/a	n/a	0.001361	NP Intra (NDs) 1 of 2
Thallium (mg/L)	GWA-4	0.001	n/a	1/30/2023	0.001ND	No	37	n/a	n/a	100	n/a	n/a	0.001361	NP Intra (NDs) 1 of 2
Thallium (mg/L)	GWC-7	0.001	n/a	1/31/2023	0.001ND	No	36	n/a	n/a	97.22	n/a	n/a	0.001429	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWA-1	0.01	n/a	1/30/2023	0.0022J	No	33	n/a	n/a	96.97	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWA-11	0.01	n/a	1/30/2023	0.01ND	No	33	n/a	n/a	100	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWA-2	0.01	n/a	1/30/2023	0.01ND	No	33	n/a	n/a	100	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWA-3	0.01	n/a	1/30/2023	0.01ND	No	33	n/a	n/a	100	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWA-4	0.01	n/a	1/30/2023	0.01ND	No	33	n/a	n/a	100	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-21	0.01	n/a	1/31/2023	0.01ND	No	31	n/a	n/a	93.55	n/a	n/a	0.001905	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-23	0.01	n/a	1/31/2023	0.01ND	No	33	n/a	n/a	96.97	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-5	0.01	n/a	1/31/2023	0.01ND	No	33	n/a	n/a	96.97	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-7	0.01	n/a	1/31/2023	0.01ND	No	32	n/a	n/a	84.38	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-9	0.01	n/a	1/31/2023	0.01ND	No	33	n/a	n/a	96.97	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-1	0.01	n/a	1/30/2023	0.01ND	No	33	n/a	n/a	75.76	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-11	0.01	n/a	1/30/2023	0.01ND	No	33	n/a	n/a	66.67	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-2	0.01	n/a	1/30/2023	0.01ND	No	33	n/a	n/a	69.7	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-3	0.01	n/a	1/30/2023	0.01ND	No	33	n/a	n/a	57.58	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-4	0.01	n/a	1/30/2023	0.01ND	No	33	n/a	n/a	33.33	n/a	n/a	0.001701	NP Intra (normality) 1 of 2
Zinc (mg/L)	GWC-10	0.01	n/a	1/30/2023	0.01ND	No	33	n/a	n/a	78.79	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-18	0.01	n/a	1/31/2023	0.01ND	No	33	n/a	n/a	69.7	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-19	0.013	n/a	1/31/2023	0.01ND	No	33	n/a	n/a	60.61	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-20	0.01	n/a	1/31/2023	0.01ND	No	32	n/a	n/a	81.25	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-21	0.008879	n/a	1/31/2023	0.01ND	No	31	0.1676	0.01806	16.13	Kaplan-Meier		0.0006269	
Zinc (mg/L)	GWC-22	0.01	n/a	1/31/2023	0.01ND	No	33	n/a	n/a	81.82	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-23	0.01	n/a	1/31/2023	0.01ND	No	33	n/a	n/a	54.55	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-5	0.01	n/a	1/31/2023	0.01ND	No	33	n/a	n/a	60.61	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-6	0.01	n/a	1/31/2023	0.01ND	No	33	n/a	n/a	72.73	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-7	0.4964	n/a	1/31/2023	0.19	No	18	0.1863	0.1294	0	None	No		Param Intra 1 of 2
Zinc (mg/L)	GWC-8	0.01	n/a	1/31/2023	0.01ND	No	32	n/a	n/a	71.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-9	0.01	n/a	1/31/2023	0.01ND	No	33	n/a	n/a	66.67	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Antimony Analysis Run 4/5/2023 3:51 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

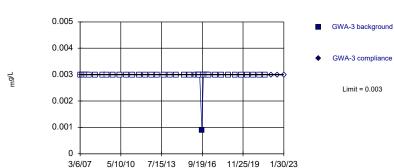


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 37 background values. 91.89% NDs. Well-constituent pair annual alpha = 0.002721. Individual comparison alpha = 0.001361 (1 of 2).

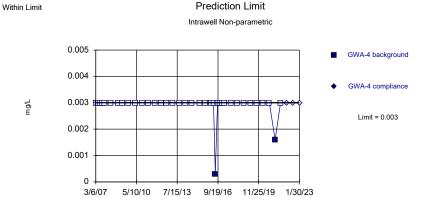
Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit
Intrawell Non-parametric

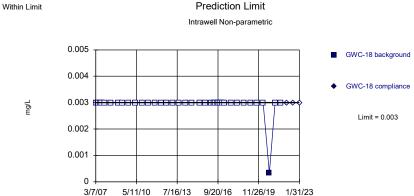


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 94.74% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).


Constituent: Antimony Analysis Run 4/5/2023 3:51 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

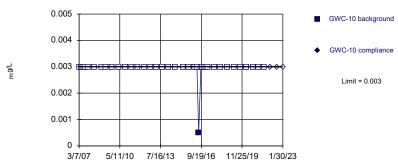
Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 94.74% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Antimony Analysis Run 4/5/2023 3:51 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

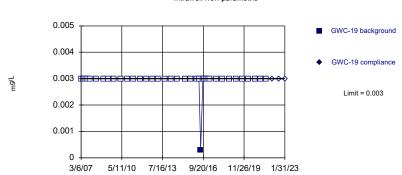
 $\label{eq:sanitastar} \mbox{Sanitastar} \mbox{ v.9.6.37 . UG} \\ \mbox{Hollow symbols indicate censored values.}$



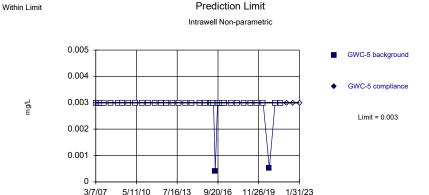
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

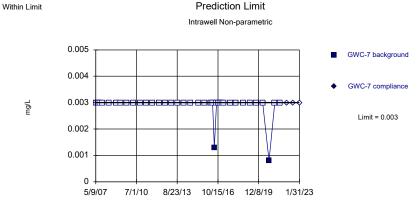
Within Limit



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).


Constituent: Antimony Analysis Run 4/5/2023 3:51 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

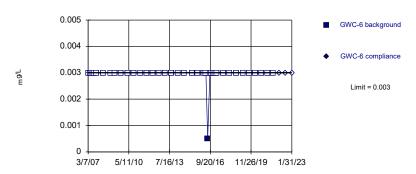
Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 94.74% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Antimony Analysis Run 4/5/2023 3:51 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

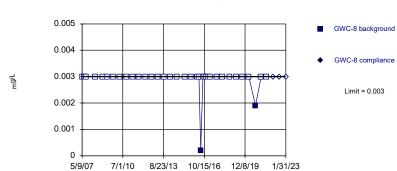


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 37 background values. 94.59% NDs. Well-constituent pair annual alpha = 0.002721. Individual comparison alpha = 0.001361 (1 of 2).

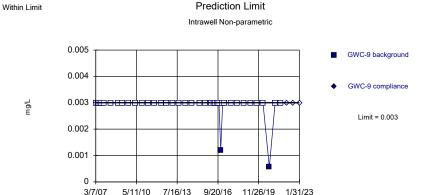
Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit
Intrawell Non-parametric

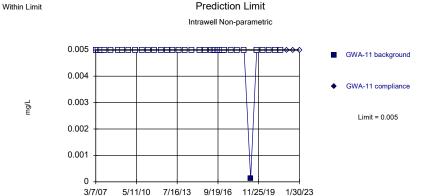


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).


Constituent: Antimony Analysis Run 4/5/2023 3:51 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

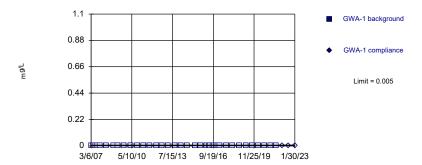
Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 36 background values. 94.44% NDs. Well-constituent pair annual alpha = 0.002856. Individual comparison alpha = 0.001429 (1 of 2).

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 94.74% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Antimony Analysis Run 4/5/2023 3:51 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

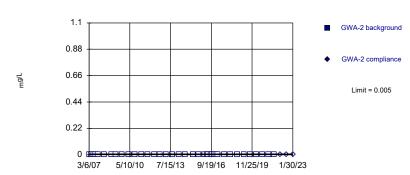

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Arsenic Analysis Run 4/5/2023 3:51 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

Within Limit

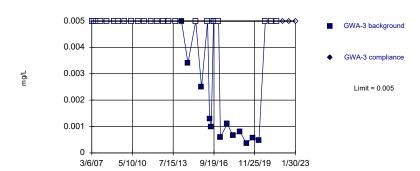
Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background velues (n = 38) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Arsenic Analysis Run 4/5/2023 3:51 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit


Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 38) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Arsenic Analysis Run 4/5/2023 3:51 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

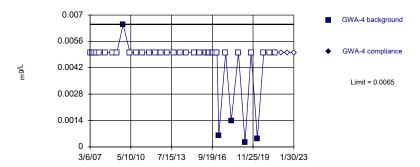
Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 68.42% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Arsenic Analysis Run 4/5/2023 3:51 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Prediction Limit

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

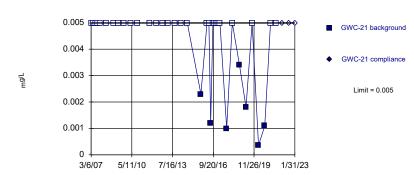

3/7/07 5/11/10 7/16/13 9/20/16 11/26/19 1/31/23

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 92.11% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Arsenic Analysis Run 4/5/2023 3:51 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

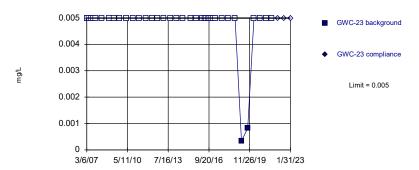
Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 86.84% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Arsenic Analysis Run 4/5/2023 3:51 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit


Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 36 background values. 80.56% NDs. Well-constituent pair annual alpha = 0.002856. Individual comparison alpha = 0.001429 (1 of 2).

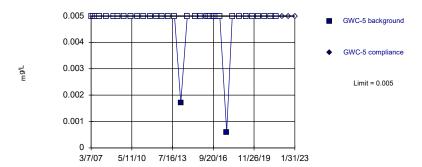
Constituent: Arsenic Analysis Run 4/5/2023 3:51 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 94.74% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Arsenic Analysis Run 4/5/2023 3:51 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas $^{\text{\tiny{TM}}}$ v.9.6.37 . UG Hollow symbols indicate censored values.

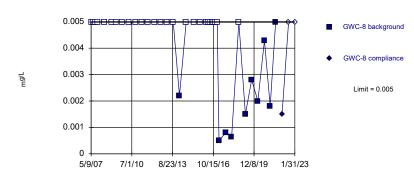


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 37 background values. 37.84% NDs. Well-constituent pair annual alpha = 0.002721. Individual comparison alpha = 0.001361 (1 of 2).

Constituent: Arsenic Analysis Run 4/5/2023 3:51 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

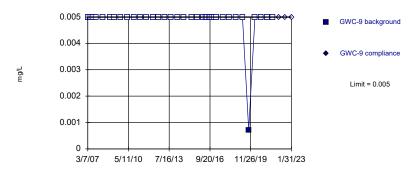


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 94.74% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Arsenic Analysis Run 4/5/2023 3:51 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

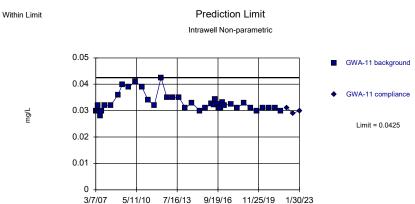
Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 37 background values. 72.97% NDs. Well-constituent pair annual alpha = 0.002721. Individual comparison alpha = 0.001361 (1 of 2).

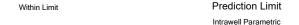
Constituent: Arsenic Analysis Run 4/5/2023 3:51 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

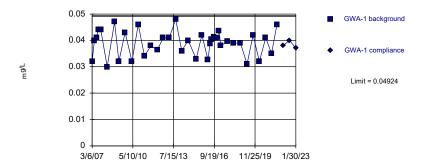
Hollow symbols indicate censored values.

Within Limit



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

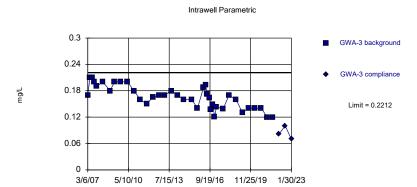

Constituent: Arsenic Analysis Run 4/5/2023 3:51 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 38 background values. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

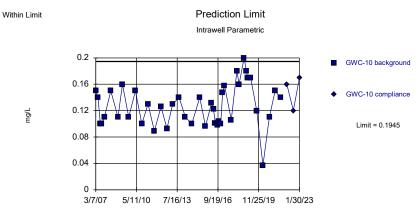
Sanitas™ v.9.6.37 . UG

Background Data Summary: Mean=0.03897, Std. Dev.=0.004812, n=38. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9475, critical = 0.916. Kappa = 2.134 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Constituent: Barium Analysis Run 4/5/2023 3:51 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

Background Data Summary: Mean=0.1666, Std. Dev.=0.01321, n=29. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9772, critical = 0.898. Kappa = 2.207 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Within Limit Prediction Limit

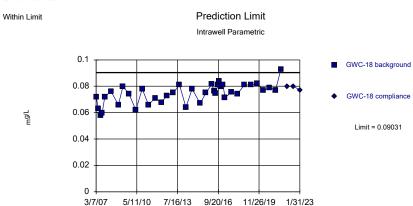
Background Data Summary: Mean=0.1656, Std. Dev.=0.02606, n=38. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9475, critical = 0.916. Kappa = 2.134 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.005132).

Constituent: Barium Analysis Run 4/5/2023 3:51 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

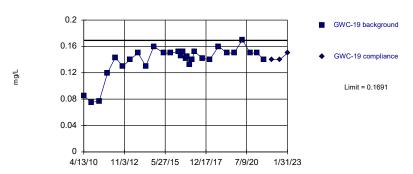
Sanitas™ v.9.6.37 . UG

Background Data Summary: Mean=0.1273, Std. Dev.=0.03174, n=41. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9632, critical = 0.92. Kappa = 0.118 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006269.

Sanitas™ v.9.6.37 . UG

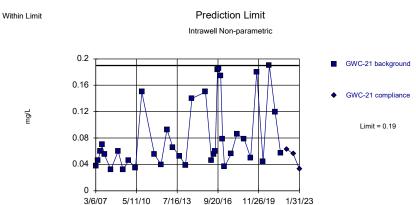


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 38 background values. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).


Constituent: Barium Analysis Run 4/5/2023 3:51 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

Background Data Summary: Mean=0.07443, Std. Dev.=0.007441, n=38. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9635, critical = 0.916. Kappa = 2.134 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Within Limit Prediction Limit Intrawell Parametric

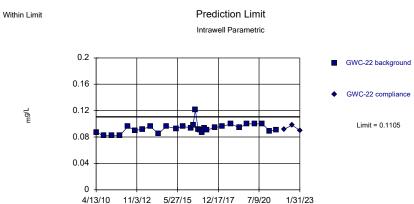
Background Data Summary (based on x^4 transformation): Mean=0.0004195, Std. Dev.=0.0001801, n=29. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9247, critical = 0.898. Kappa = 2.207 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006269.

Constituent: Barium Analysis Run 4/5/2023 3:51 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

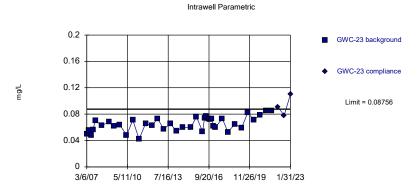
Sanitas™ v.9.6.37 . UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 36 background values. Well-constituent pair annual alpha = 0.002856. Individual comparison alpha = 0.001429 (1 of 2).

Sanitas™ v.9.6.37 . UG

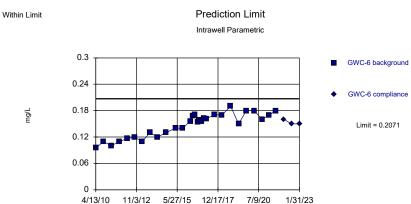


Background Data Summary: Mean=0.1177, Std. Dev.=0.01465, n=38. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9438, critical = 0.916. Kappa = 2.134 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269


Constituent: Barium Analysis Run 4/5/2023 3:51 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

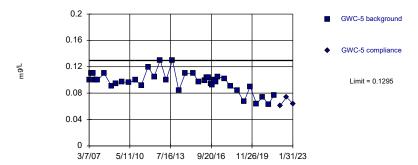
Sanitas™ v.9.6.37 . UG

Background Data Summary (based on natural log transformation): Mean=-2.374, Std. Dev.=0.07763, n=29. Normality test: Shapiro Wilk (Balpha = 0.01, calculated = 0.9051, critical = 0.898. Kappa = 2.207 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006269.


Exceeds Limit Prediction Limit

Background Data Summary: Mean=0.06495, Std. Dev.=0.0106, n=38. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9801, critical = 0.916. Kappa = 2.134 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.005132).

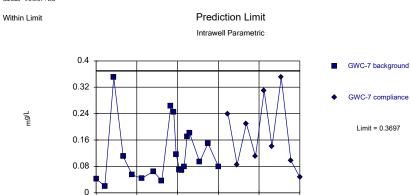
Constituent: Barium Analysis Run 4/5/2023 3:51 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG

Background Data Summary: Mean=0.1469, Std. Dev.=0.0273, n=29. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9315, critical = 0.898. Kappa = 2.207 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Sanitas™ v.9.6.37 . UG

Background Data Summary: Mean=0.09723, Std. Dev.=0.01511, n=38. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9434, critical = 0.916. Kappa = 2.134 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269 (0.0006269).


Constituent: Barium Analysis Run 4/5/2023 3:51 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

4/3/12

6/3/14

8/2/16

Background Data Summary (based on square root transformation): Mean=0.3226, Std. Dev.=0.1206, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9476, critical = 0.863. Kappa = 2.368 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

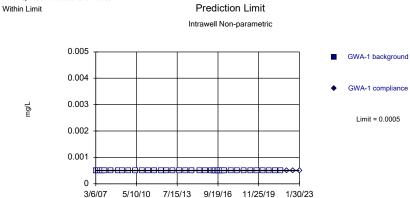
10/2/18

12/1/20

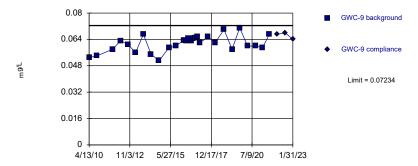
1/31/23

Sanitas™ v.9.6.37 . UG

Within Limit



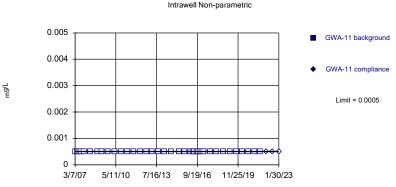
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 37 background values. Well-constituent pair annual alpha = 0.002721. Individual comparison alpha = 0.001361 (1 of 2).


Constituent: Barium Analysis Run 4/5/2023 3:52 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 38) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Within Limit Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=0.06145, Std. Dev.=0.004913, n=28. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9838, critical = 0.896. Kappa = 2.218 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Barium Analysis Run 4/5/2023 3:52 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

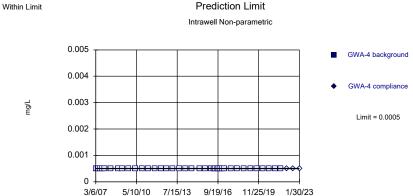
Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 38) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Within Limit

Intrawell Non-parametric 0.005 GWA-2 background 0.004 GWA-2 compliance 0.003 mg/L Limit = 0.00050.002 0.001

Prediction Limit

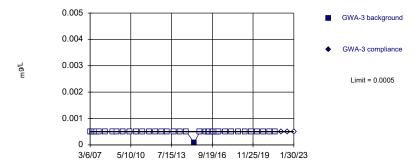

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 38) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

5/10/10 7/15/13 9/19/16 11/25/19 1/30/23

Constituent: Beryllium Analysis Run 4/5/2023 3:52 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values

3/6/07

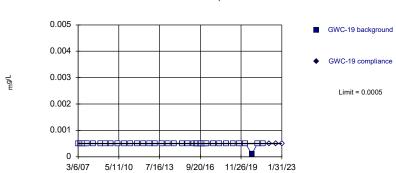

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 38) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

Within Limit

Intrawell Non-parametric

Prediction Limit



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

> Constituent: Beryllium Analysis Run 4/5/2023 3:52 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

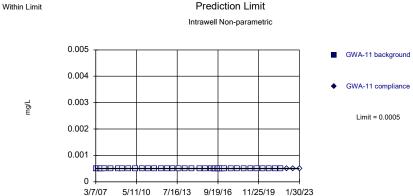
Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

5/8/08

Within Limit

0.02
0.016
0.012
0.008
0.004
0.004
0.004
0.004

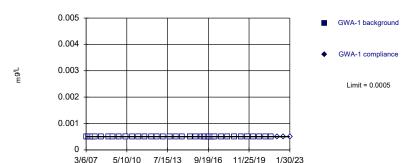

Prediction Limit

Background Data Summary (based on natural log transformation) (after Kaplan-Meier Adjustment): Mean=-7.926, Std. Dev=1.812, n=33, 27.27% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9262, critical = 0.906. Kappa = 2.17 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

4/19/11 3/30/14 3/10/17 2/19/20 1/31/23

Constituent: Beryllium Analysis Run 4/5/2023 3:52 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas $^{\text{\tiny{TM}}}$ v.9.6.37 . UG Hollow symbols indicate censored values.

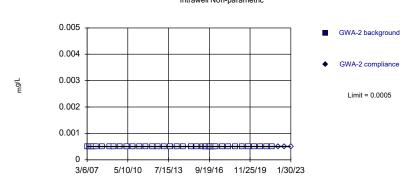


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 38) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Intrawell Non-parametric

Prediction Limit



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background velues (n = 38) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Cadmium Analysis Run 4/5/2023 3:52 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

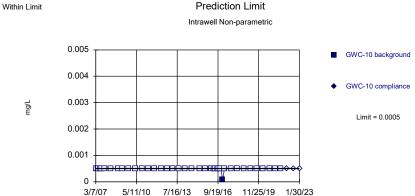
Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 38) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Within Limit

0.005
0.004
0.003
0.002
0.002
0.001
0.001
0.002
0.001

Prediction Limit

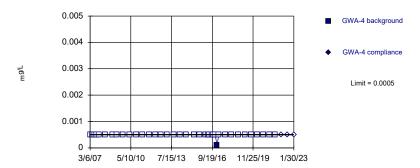

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 38) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

5/10/10 7/15/13 9/19/16 11/25/19 1/30/23

Constituent: Cadmium Analysis Run 4/5/2023 3:52 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

3/6/07

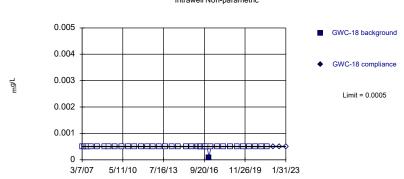


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Cadmium Analysis Run 4/5/2023 3:52 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

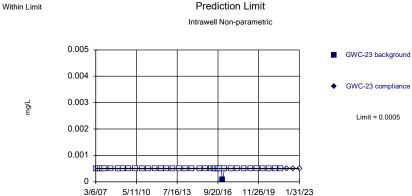
Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Within Limit

0.005
0.004
0.004
0.003
0.002
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001

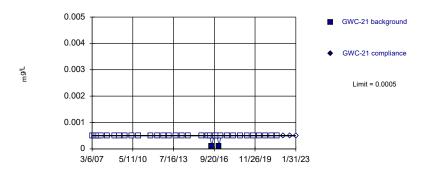
Prediction Limit


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 37 background values. 97.3% NDs. Well-constituent pair annual alpha = 0.002721. Individual comparison alpha = 0.001361 (1 of 2).

5/11/10 7/16/13 9/20/16 11/26/19 1/31/23

Constituent: Cadmium Analysis Run 4/5/2023 3:52 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

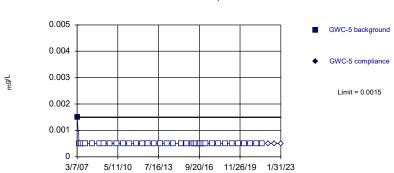
Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.


3/7/07

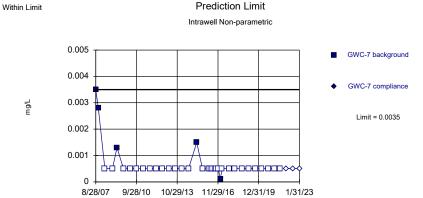
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

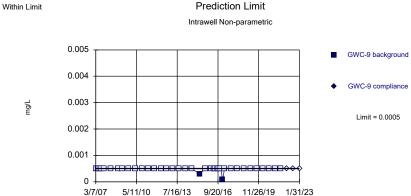


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 36 background values. 94.44% NDs. Well-constituent pair annual alpha = 0.002856. Individual comparison alpha = 0.001429 (1 of 2).


Constituent: Cadmium Analysis Run 4/5/2023 3:52 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

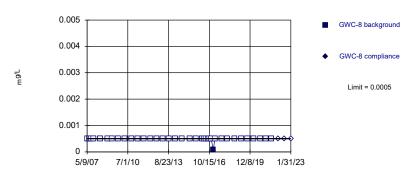
Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 35 background values. 85.71% NDs. Well-constituent pair annual alpha = 0.002991. Individual comparison alpha = 0.001497 (1 of 2).

Constituent: Cadmium Analysis Run 4/5/2023 3:52 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

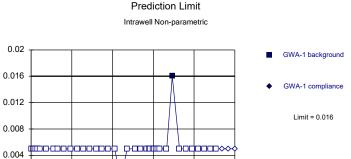
Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 94.74% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

Within Limit

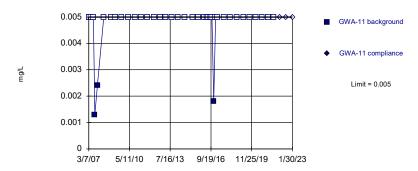


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 37 background values. 97.3% NDs. Well-constituent pair annual alpha = 0.002721. Individual comparison alpha = 0.001361 (1 of 2).

Constituent: Cadmium Analysis Run 4/5/2023 3:52 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

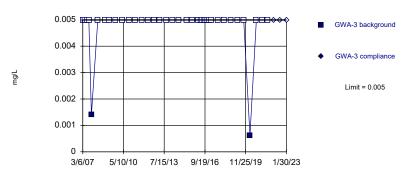
mg/L



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 94.74% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

5/10/10 7/15/13 9/19/16 11/25/19 1/30/23

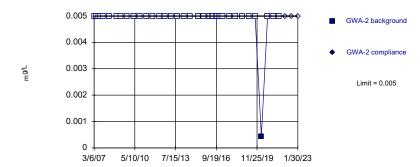
Within Limit


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 92.11% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Chromium Analysis Run 4/5/2023 3:52 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

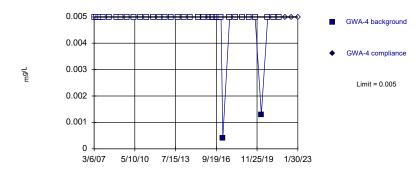
Within Limit Prediction Limit


Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 94.74% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

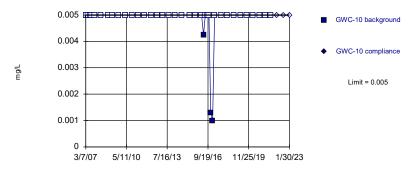
Intrawell Non-parametric


Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

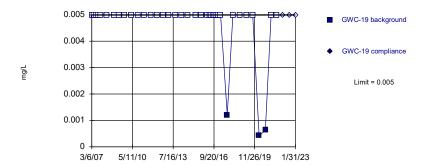
Constituent: Chromium Analysis Run 4/5/2023 3:52 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit


Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 94.74% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Prediction Limit Within Limit

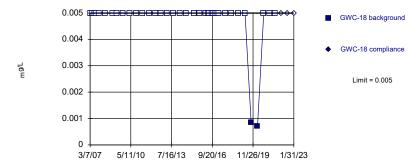


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 92.11% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha

> Constituent: Chromium Analysis Run 4/5/2023 3:52 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

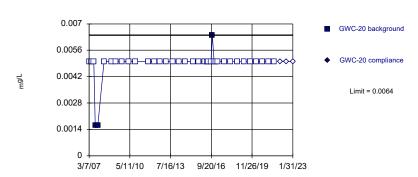
Prediction Limit Within Limit Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 92.11% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

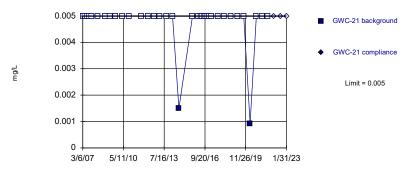
Prediction Limit Within Limit



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 94.74% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

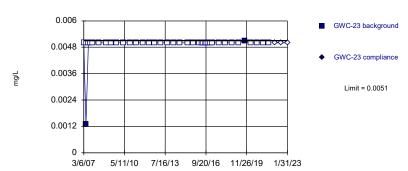
> Constituent: Chromium Analysis Run 4/5/2023 3:52 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit


Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 37 background values. 91.89% NDs. Well-constituent pair annual alpha = 0.002721. Individual comparison alpha = 0.001361 (1 of 2).

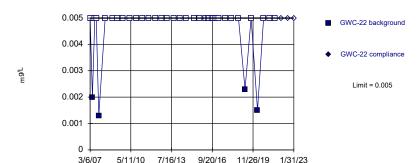
Within Limit Pro



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 36 background values. 94.44% NDs. Well-constituent pair annual alpha = 0.002856. Individual comparison alpha = 0.001429 (1 of 2).

Constituent: Chromium Analysis Run 4/5/2023 3:52 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

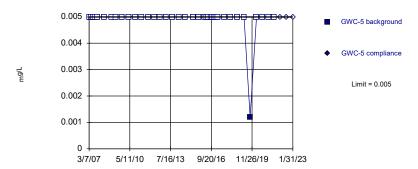
Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 94.74% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

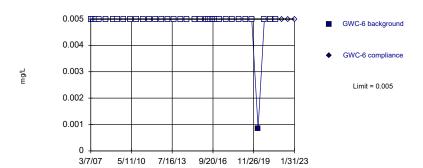
Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

Within Limit Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 89.47% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

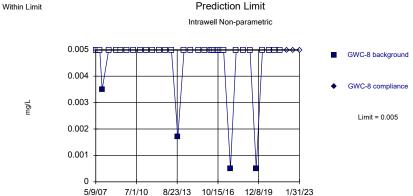
Constituent: Chromium Analysis Run 4/5/2023 3:52 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit


Prediction Limit

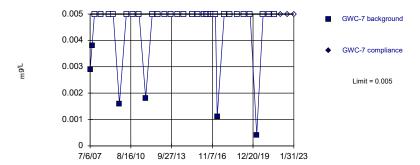
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

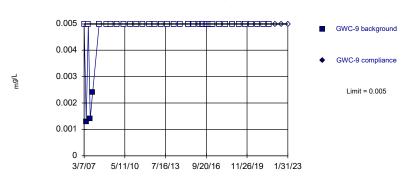
Constituent: Chromium Analysis Run 4/5/2023 3:52 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 37 background values. 89.19% NDs. Well-constituent pair annual alpha = 0.002721. Individual comparison alpha = 0.001361 (1 of 2).

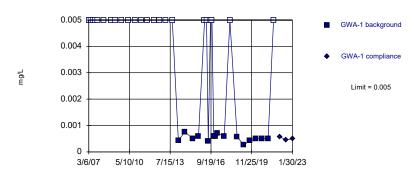
Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 36 background values. 83.33% NDs. Well-constituent pair annual alpha = 0.002856. Individual comparison alpha = 0.001429 (1 of 2).

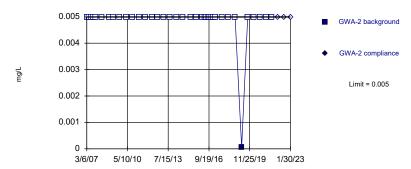
Constituent: Chromium Analysis Run 4/5/2023 3:52 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 92.11% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Within Limit Prediction Limit
Intrawell Non-parametric

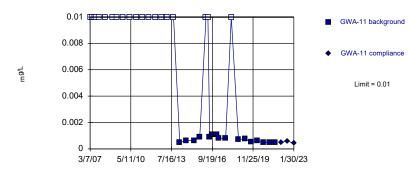


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 60.53% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Cobalt Analysis Run 4/5/2023 3:52 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

Within Limit Prediction Limit
Intrawell Non-parametric

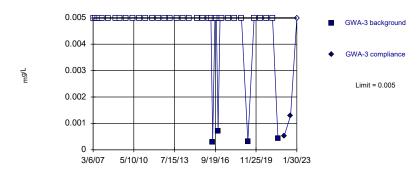


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Cobalt Analysis Run 4/5/2023 3:52 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

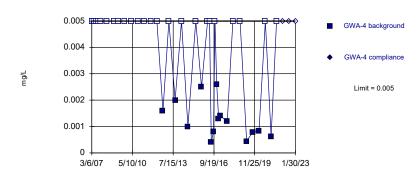
Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 52.63% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

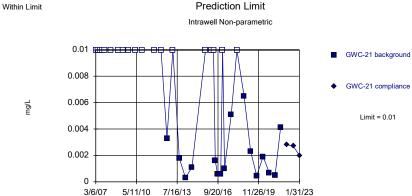
Constituent: Cobalt Analysis Run 4/5/2023 3:52 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit


Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 89.47% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

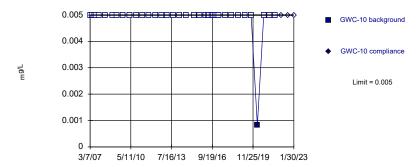
Constituent: Cobalt Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 63.16% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Cobalt Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

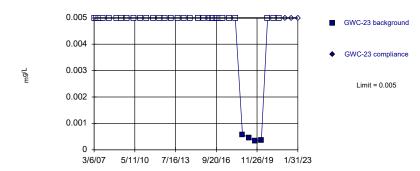


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 36 background values. 52.78% NDs. Well-constituent pair annual alpha = 0.002856. Individual comparison alpha = 0.001429 (1 of 2).

Constituent: Cobalt Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

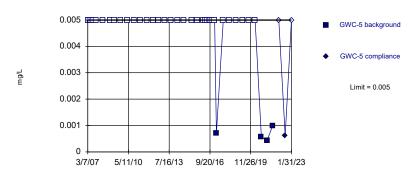
Limit Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

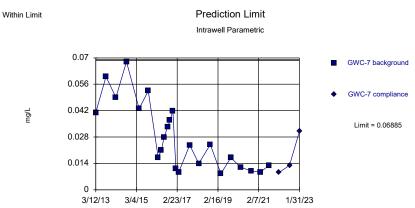
Constituent: Cobalt Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit


Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 89.47% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

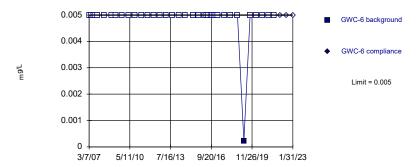
Constituent: Cobalt Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 89.47% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Cobalt Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

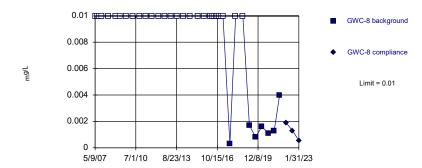


Background Data Summary: Mean=0.028, Std. Dev.=0.01788, n=23. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.899, critical = 0.881. Kappa = 2.285 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Cobalt Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

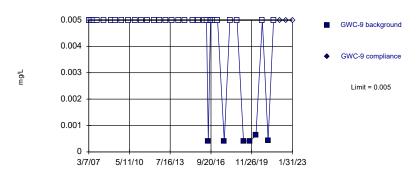
Within Limit Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

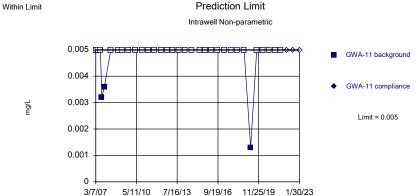
Constituent: Cobalt Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit


Prediction Limit
Intrawell Non-parametric

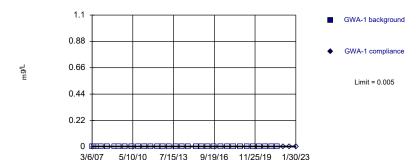
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 37 background values. 81.08% NDs. Well-constituent pair annual alpha = 0.002721. Individual comparison alpha = 0.001361 (1 of 2).

Constituent: Cobalt Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 84.21% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

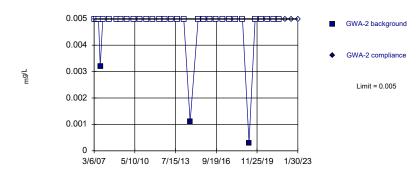
Constituent: Cobalt Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 90.91% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

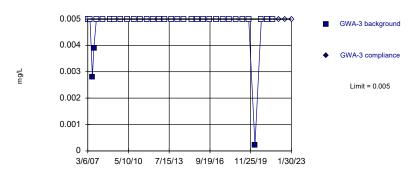
Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Intrawell Non-parametric


Prediction Limit

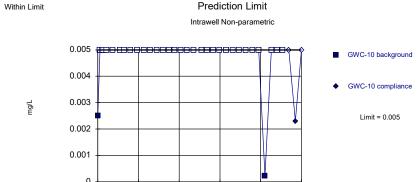
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background velues (n = 33) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Constituent: Copper Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

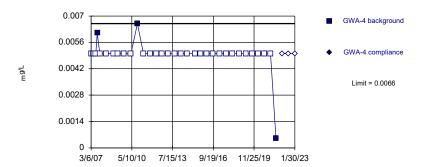
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 90.91% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 90.91% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Constituent: Copper Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

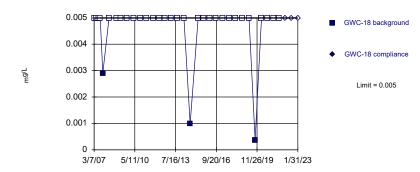


3/7/07 5/11/10 7/16/13 9/19/16 11/25/19 1/30/23

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 93.94% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

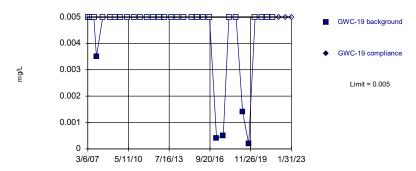
nit Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 90.91% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

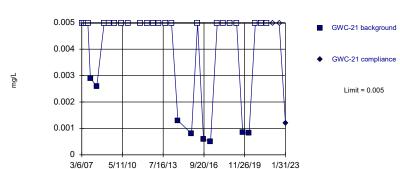
Constituent: Copper Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit


Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 90.91% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Prediction Limit Within Limit

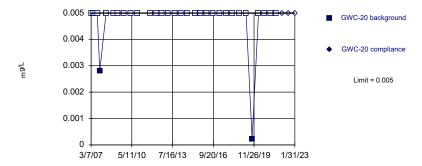


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 84.85% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha

> Constituent: Copper Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

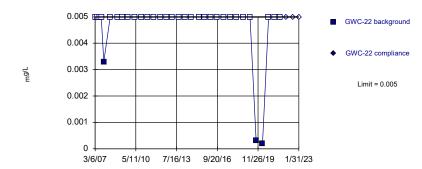
Prediction Limit Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 31 background values. 74.19% NDs. Well-constituent pair annual alpha = 0.003807. Individual comparison alpha = 0.001905 (1 of 2).

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

Within Limit


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 93.75% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha

> Constituent: Copper Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 90.91% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Within Limit

0.009
0.0072
0.0054
0.0036
0.0018
0.0018

Prediction Limit

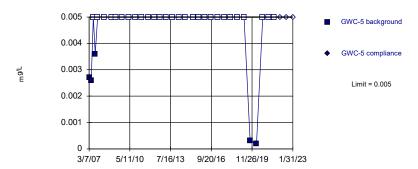
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 75.76% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

5/11/10 7/16/13 9/20/16 11/26/19 1/31/23

Constituent: Copper Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Prediction Limit

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

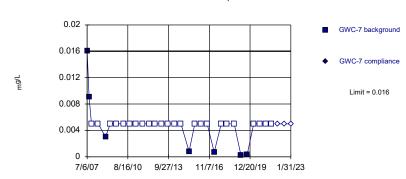

3/6/07

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 96.97% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

3/7/07 5/11/10 7/16/13 9/20/16 11/26/19 1/31/23

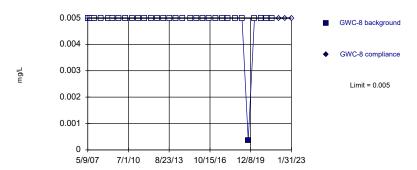
Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

Within Limit Prediction Limit
Intrawell Non-parametric



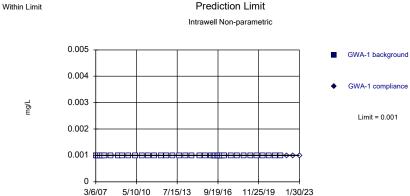
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 84.85% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Constituent: Copper Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

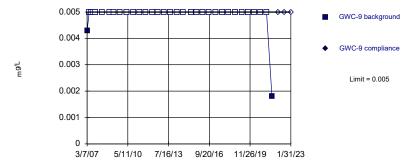
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 31 background values. 77.42% NDs. Well-constituent pair annual alpha = 0.003807. Individual comparison alpha = 0.001905 (1 of 2).


Prediction Limit Within Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha

> Constituent: Copper Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

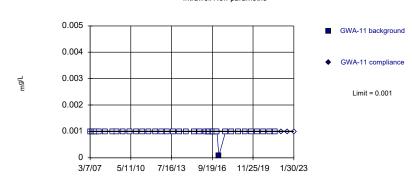
Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 38) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

> Constituent: Lead Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

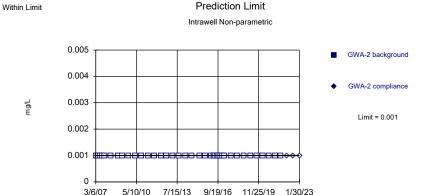
Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit

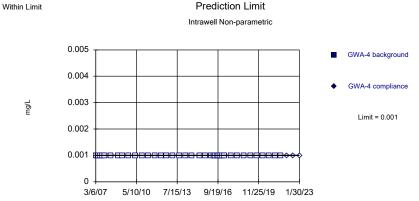


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 93.94% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha

> Constituent: Copper Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

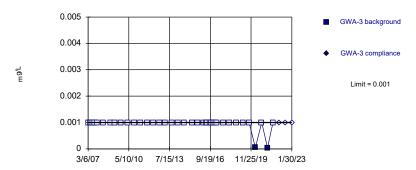
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).


> Constituent: Lead Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 38) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Lead Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

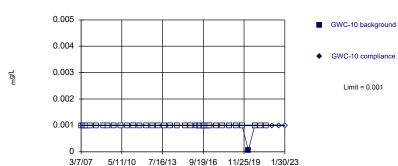

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 38) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Lead Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

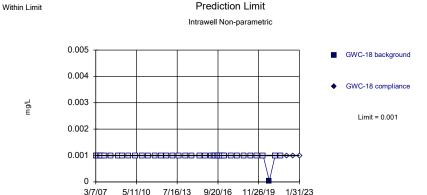
Within Limit

Prediction Limit
Intrawell Non-parametric



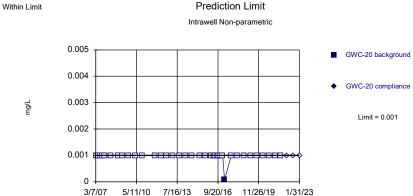
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 94.74% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Lead Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

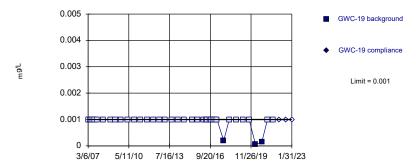
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).


Constituent: Lead Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha

> Constituent: Lead Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

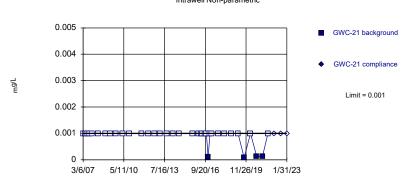
Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 37 background values. 97.3% NDs. Well-constituent pair annual alpha = 0.002721. Individual comparison alpha = 0.001361 (1 of 2).

> Constituent: Lead Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

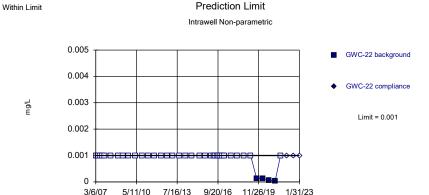
Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

Within Limit



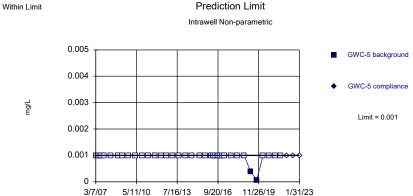
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 92.11% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

> Constituent: Lead Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit Intrawell Non-parametric

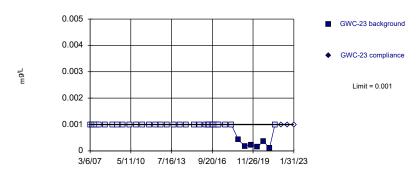
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 36 background values. 88.89% NDs. Well-constituent pair annual alpha = 0.002856. Individual comparison alpha = 0.001429 (1 of 2).


> Constituent: Lead Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 89.47% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Lead Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

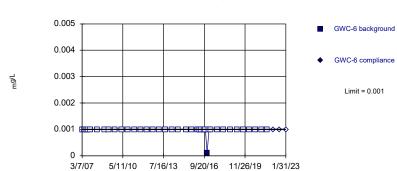


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 94.74% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Lead Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

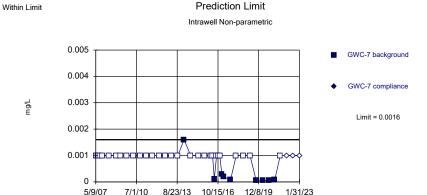
Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 84.21% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

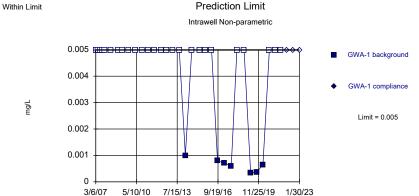
Constituent: Lead Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Lead Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

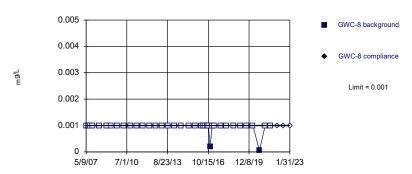


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 37 background values. 75.68% NDs. Well-constituent pair annual alpha = 0.002721. Individual comparison alpha

> Constituent: Lead Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

3/6/07

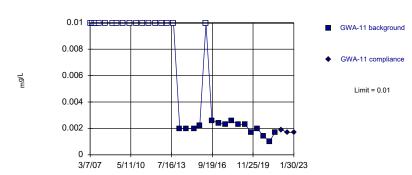

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 78.79% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

> Constituent: Nickel Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

Within Limit

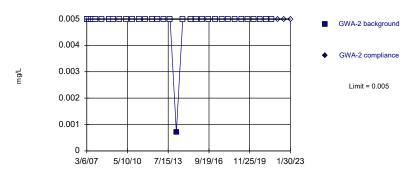
Prediction Limit Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 37 background values. 94.59% NDs. Well-constituent pair annual alpha = 0.002721. Individual comparison alpha = 0.001361 (1 of 2).

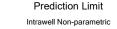
> Constituent: Lead Analysis Run 4/5/2023 3:53 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

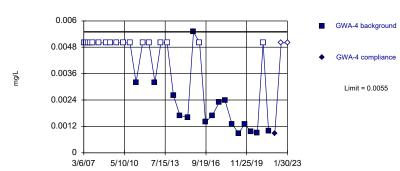
Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit


Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 54.55% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

> Constituent: Nickel Analysis Run 4/5/2023 3:54 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

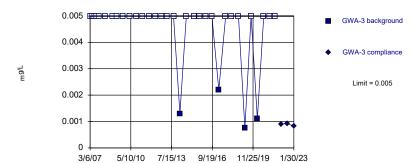

Within Limit Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 96.97% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Constituent: Nickel Analysis Run 4/5/2023 3:54 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 51.52% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Constituent: Nickel Analysis Run 4/5/2023 3:54 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

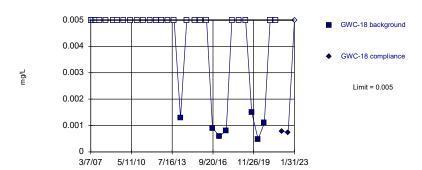
Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 87.88% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

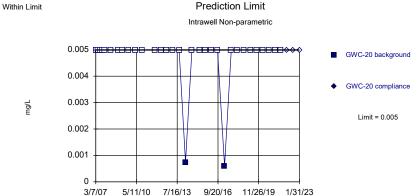
Constituent: Nickel Analysis Run 4/5/2023 3:54 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit


Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 96.97% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

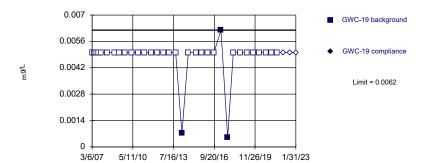
Constituent: Nickel Analysis Run 4/5/2023 3:54 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 78.79% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Constituent: Nickel Analysis Run 4/5/2023 3:54 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

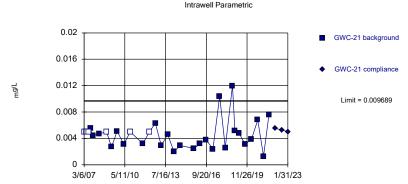


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 93.75% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Nickel Analysis Run 4/5/2023 3:54 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

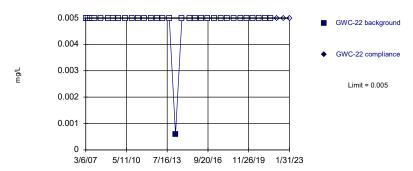
Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric



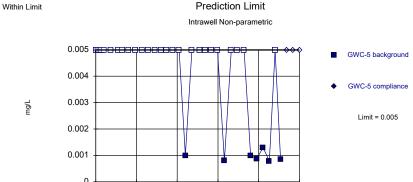
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 90.91% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Constituent: Nickel Analysis Run 4/5/2023 3:54 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit

Background Data Summary (based on square root transformation) (after Kaphan-Meier Adjustment): Mean=0.06271, Std. Dev.=0.0164, n=32, 18.75% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9385, critical = 0.904. Kappa = 2.178 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

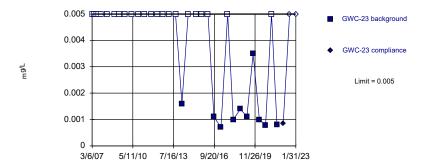

Prediction Limit Within Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 96.97% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha

> Constituent: Nickel Analysis Run 4/5/2023 3:54 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

3/7/07 5/11/10 7/16/13 9/20/16 11/26/19 1/31/23

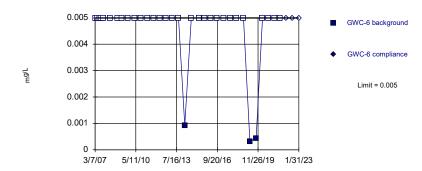

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 78.79% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

> Constituent: Nickel Analysis Run 4/5/2023 3:54 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

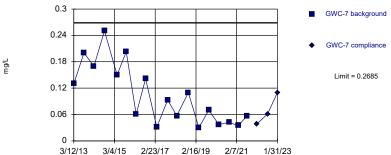
Prediction Limit

Intrawell Non-parametric



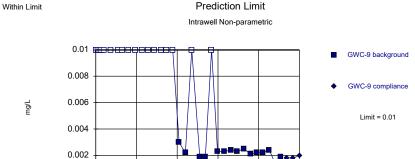
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 69.7% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

> Constituent: Nickel Analysis Run 4/5/2023 3:54 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 90.91% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

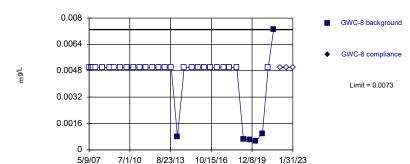

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=0.1037, Std. Dev.=0.06873, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.898, critical = 0.858. Kappa = 2.397 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006132.

Constituent: Nickel Analysis Run 4/5/2023 3:54 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas $^{\text{\tiny{TM}}}$ v.9.6.37 . UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 54.55% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

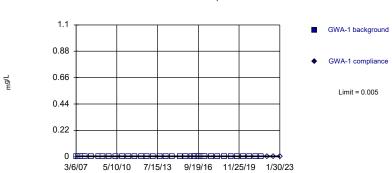

3/7/07 5/11/10 7/16/13 9/20/16 11/26/19 1/31/23

Constituent: Nickel Analysis Run 4/5/2023 3:54 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 81.25% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Nickel Analysis Run 4/5/2023 3:54 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 38) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Within Limit

Intrawell Non-parametric

1.1

0.88

0.66

0.44

0.22

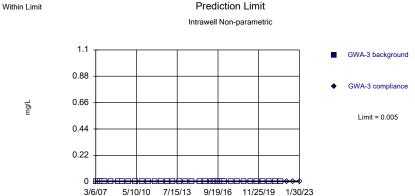
Intrawell Non-parametric

GWA-11 background

◆ GWA-11 compliance

Limit = 0.005

Prediction Limit

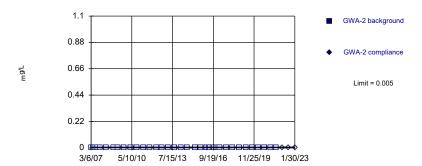

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background volumes (n = 38) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

5/11/10 7/16/13 9/19/16 11/25/19 1/30/23

Constituent: Selenium Analysis Run 4/5/2023 3:54 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas $^{\text{\tiny{TM}}}$ v.9.6.37 . UG Hollow symbols indicate censored values.

3/7/07

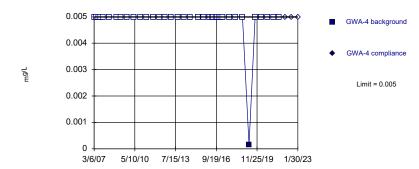


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 38) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

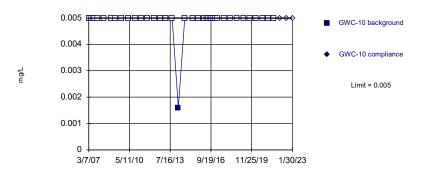
Within Limit

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background velues (n = 38) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

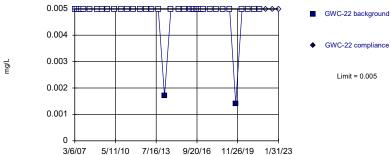
Constituent: Selenium Analysis Run 4/5/2023 3:54 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

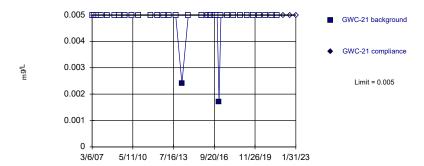
Within Limit Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Selenium Analysis Run 4/5/2023 3:54 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

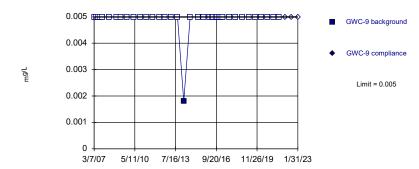
Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 94.74% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Limit Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 36 background values. 94.44% NDs. Well-constituent pair annual alpha = 0.002856. Individual comparison alpha = 0.001429 (1 of 2).

Constituent: Selenium Analysis Run 4/5/2023 3:54 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

0

3/6/07

Within Limit

Intrawell Non-parametric

1.1

0.88

0.66

0.44

0.22

Intrawell Non-parametric

GWA-1 background

GWA-1 compliance

Limit = 0.005

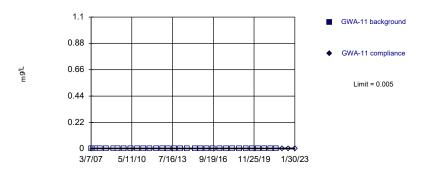
Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background volumes (n = 33) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

5/10/10 7/15/13 9/19/16 11/25/19 1/30/23

Constituent: Silver Analysis Run 4/5/2023 3:54 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

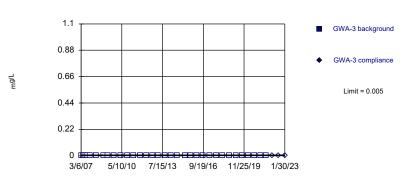


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 33) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Constituent: Silver Analysis Run 4/5/2023 3:54 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

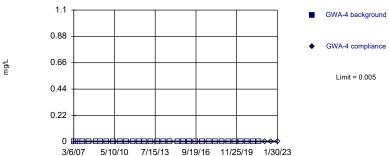
Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric



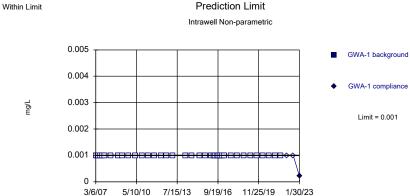
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background velues (n = 33) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Constituent: Silver Analysis Run 4/5/2023 3:54 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

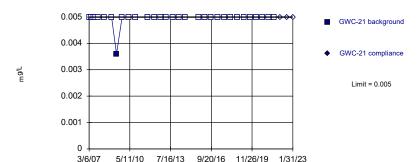
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 33) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 33) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Constituent: Silver Analysis Run 4/5/2023 3:54 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

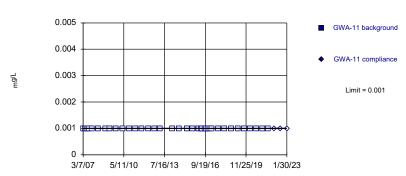


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 37) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.002721. Individual comparison alpha = 0.001361 (1 of 2).

Constituent: Thallium Analysis Run 4/5/2023 3:54 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 31 background values. 96.77% NDs. Well-constituent pair annual alpha = 0.003807. Individual comparison alpha = 0.001905 (1 of 2).

Constituent: Silver Analysis Run 4/5/2023 3:54 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

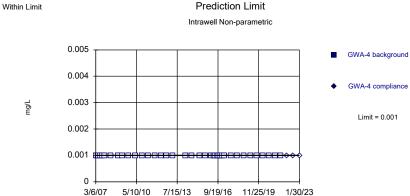
Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 37) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.002721. Individual comparison alpha = 0.001361 (1 of 2).

Within Limit

0.005
0.004
0.003
0.002
0.001
0.002
0.001
0.001
0.002
0.001
0.002
0.001
0.002
0.001
0.002
0.001
0.002

Prediction Limit

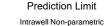

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background volumes (n = 37) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.002721. Individual comparison alpha = 0.001361 (1 of 2).

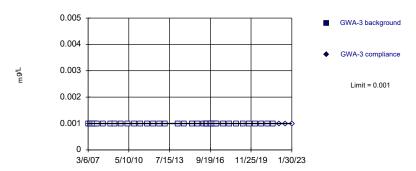
5/10/10 7/15/13 9/19/16 11/25/19 1/30/23

Constituent: Thallium Analysis Run 4/5/2023 3:54 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas $^{\text{\tiny{TM}}}$ v.9.6.37 . UG Hollow symbols indicate censored values.

3/6/07



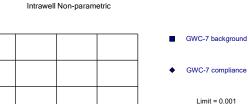

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 37) were censoried; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.002721. Individual comparison alpha = 0.001381 (1 of 2).

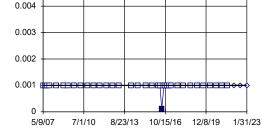
Constituent: Thallium Analysis Run 4/5/2023 3:54 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

Within Limit

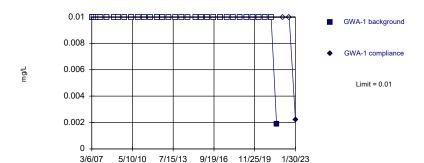
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 37) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.002721. Individual comparison alpha = 0.001361 (1 of 2).


Constituent: Thallium Analysis Run 4/5/2023 3:54 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

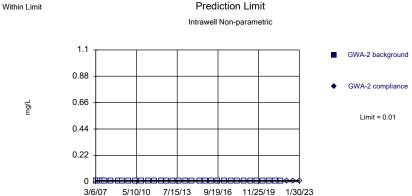

Prediction Limit

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

mg/L

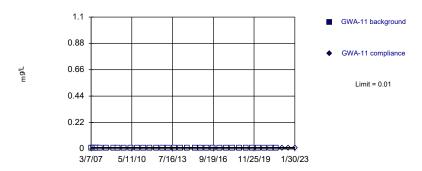

0.005

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 36 background values. 97.22% NDs. Well-constituent pair annual alpha = 0.002856. Individual comparison alpha = 0.001429 (1 of 2).


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 96.97% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

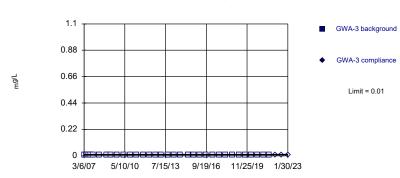
Constituent: Vanadium Analysis Run 4/5/2023 3:54 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 33) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

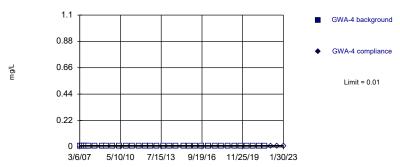
Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background velues (n = 33) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

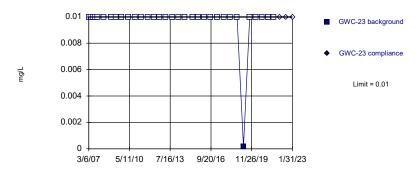
Constituent: Vanadium Analysis Run 4/5/2023 3:54 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 33) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

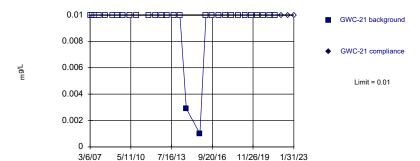
Within Limit Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 33) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Constituent: Vanadium Analysis Run 4/5/2023 3:54 PM View: Appendix I - ND
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

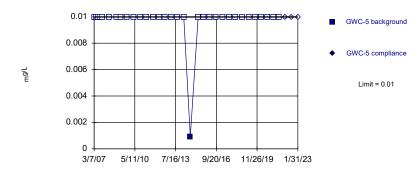
Sanitas $^{\text{\tiny{TM}}}$ v.9.6.37 . UG Hollow symbols indicate censored values.


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 96.97% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

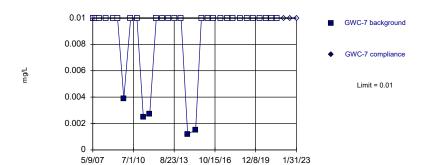
Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 31 background values. 93.55% NDs. Well-constituent pair annual alpha = 0.003807. Individual comparison alpha = 0.001905 (1 of 2).

Constituent: Vanadium Analysis Run 4/5/2023 3:54 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 96.97% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Within Limit Prediction Limit
Intrawell Non-parametric

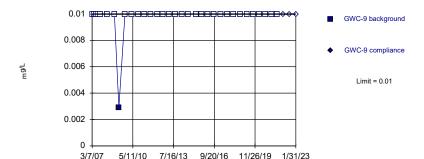
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 84.38% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Vanadium Analysis Run 4/5/2023 3:55 PM View: Appendix I - ND
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Prediction Limit

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

3/6/07

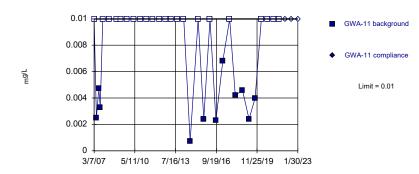

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 75.76% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

5/10/10 7/15/13 9/19/16 11/25/19 1/30/23

Constituent: Zinc Analysis Run 4/5/2023 3:55 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

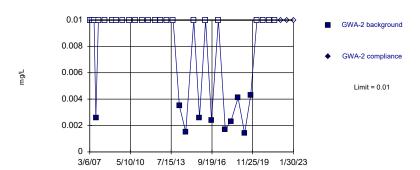
Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric



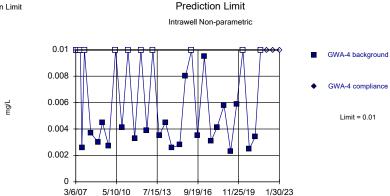
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 96.97% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Constituent: Vanadium Analysis Run 4/5/2023 3:55 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

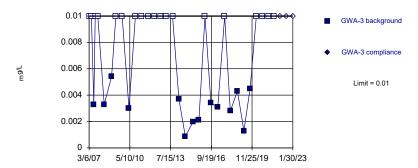
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 66.67% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 69.7% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Constituent: Zinc Analysis Run 4/5/2023 3:55 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

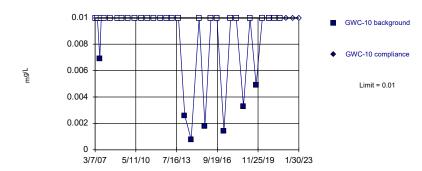


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 33 background values. 33.33% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Constituent: Zinc Analysis Run 4/5/2023 3:55 PM View: Appendix I - ND
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

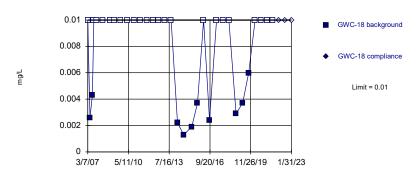
Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric



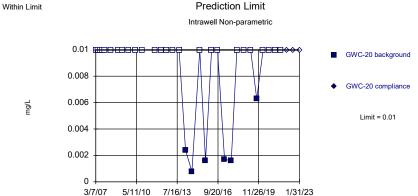
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 57.58% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Constituent: Zinc Analysis Run 4/5/2023 3:55 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

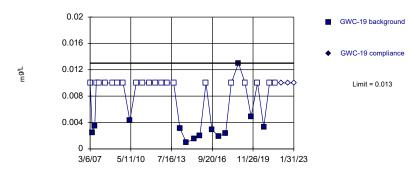
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 78.79% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 69.7% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

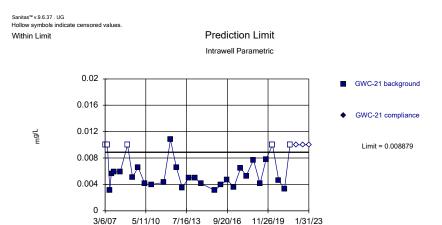
Constituent: Zinc Analysis Run 4/5/2023 3:55 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

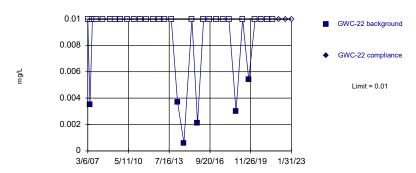

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 81.25% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Constituent: Zinc Analysis Run 4/5/2023 3:55 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

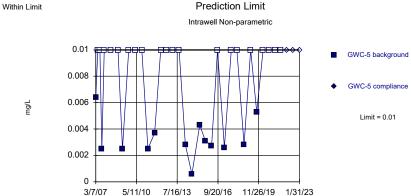

Intrawell Non-parametric

Prediction Limit


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 60.61% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Constituent: Zinc Analysis Run 4/5/2023 3:55 PM View: Appendix I - ND
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

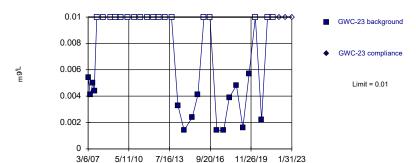
Background Data Summary (based on cube root transformation) (after Kaplan-Meier Adjustment): Mean=0.1676, Std. Dev.=0.01806, n=31, 16.13% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9081, critical = 0.902. Kappa = 2.187 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 81.82% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Constituent: Zinc Analysis Run 4/5/2023 3:55 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas $^{\text{\tiny{TM}}}$ v.9.6.37 . UG Hollow symbols indicate censored values.

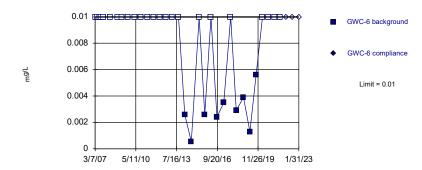


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 60.61% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Constituent: Zinc Analysis Run 4/5/2023 3:55 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

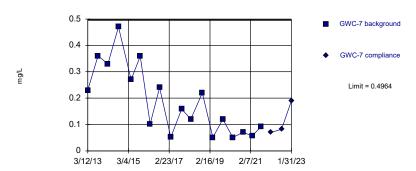


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 54.55% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Constituent: Zinc Analysis Run 4/5/2023 3:55 PM View: Appendix I - ND
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

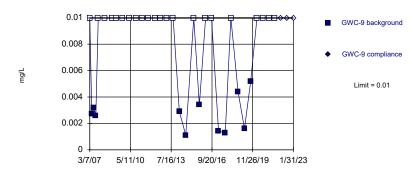


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 72.73% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Sanitas™ v.9.6.37 . UG

Within Limit

Prediction Limit
Intrawell Parametric

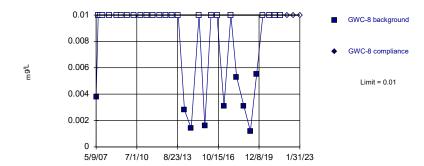


Background Data Summary: Mean=0.1863, Std. Dev.=0.1294, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8956, critical = 0.858. Kappa = 2.397 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.005132).

Constituent: Zinc Analysis Run 4/5/2023 3:55 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 66.67% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Constituent: Zinc Analysis Run 4/5/2023 3:55 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 71.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

	GWA-1	GWA-1
3/6/2007	<0.003	
5/8/2007	<0.003	
7/7/2007	<0.003	
8/28/2007	<0.003	
11/6/2007	<0.003	
5/9/2008	<0.003	
12/3/2008	<0.003	
4/7/2009	<0.003	
10/1/2009	<0.003	
4/14/2010	<0.003	
10/13/2010	<0.003	
4/6/2011	<0.003	
10/10/2011	<0.003	
4/3/2012	<0.003	
9/24/2012	<0.003	
3/12/2013	<0.003	
9/11/2013	<0.003	
3/4/2014	<0.003	
9/3/2014	<0.003	
4/21/2015	<0.003	
9/30/2015	<0.003	
3/22/2016	<0.003	
5/17/2016	<0.003	
7/5/2016	<0.003	
9/7/2016	<0.003	
10/18/2016	<0.003	
12/6/2016	<0.003	
1/31/2017	<0.003	
3/23/2017	<0.003	
10/4/2017	<0.003	
3/14/2018	<0.003	
10/4/2018	<0.003	
4/8/2019	<0.003	
9/30/2019	<0.003	
3/26/2020	0.00028 (J)	
9/23/2020	<0.003	
3/8/2021	<0.003	
8/9/2021	<0.003	
2/4/2022		<0.003
8/8/2022		0.00084 (J)
1/30/2023		<0.003

3/7/2007 <0.003	
5/8/2007 <0.003	
7/17/2007 <0.003	
8/28/2007 <0.003	
11/7/2007 <0.003	
5/9/2008 <0.003	
12/2/2008 <0.003	
4/8/2009 <0.003	
10/1/2009 <0.003	
4/14/2010 <0.003	
10/13/2010 <0.003	
4/6/2011 <0.003	
10/4/2011 <0.003	
4/10/2012 <0.003	
9/26/2012 <0.003	
3/12/2013 <0.003	
9/10/2013 <0.003	
3/4/2014 <0.003	
9/3/2014 <0.003	
4/21/2015 <0.003	
9/29/2015 <0.003	
3/22/2016 <0.003	
5/17/2016 <0.003	
7/6/2016 0.0003 (J)	
9/7/2016 <0.003	
10/18/2016 <0.003	
12/6/2016 <0.003	
2/1/2017 <0.003	
3/24/2017 <0.003	
10/5/2017 <0.003	
3/15/2018 <0.003	
10/4/2018 <0.003	
4/8/2019 <0.003	
9/30/2019 <0.003	
3/26/2020 <0.003	
9/22/2020 <0.003	
3/8/2021 0.0005 (J)	
8/10/2021 <0.003	
2/4/2022 <0.003	
8/8/2022 <0.003	
1/30/2023 <0.003	

	GWA-2	GWA-2
3/6/2007	<0.003	
5/8/2007	<0.003	
7/7/2007	<0.003	
8/28/2007	<0.003	
11/6/2007	<0.003	
5/9/2008	<0.003	
12/3/2008	<0.003	
4/7/2009	<0.003	
10/1/2009	<0.003	
10/7/2010	<0.003	
4/6/2011	<0.003	
10/6/2011	<0.003	
4/3/2012	<0.003	
9/19/2012	<0.003	
3/12/2013	<0.003	
9/9/2013	<0.003	
3/4/2014	<0.003	
9/3/2014	<0.003	
4/22/2015	<0.003	
9/30/2015	<0.003	
3/22/2016	<0.003	
5/17/2016	<0.003	
7/5/2016	<0.003	
9/7/2016	0.0021 (J)	
10/18/2016	<0.003	
12/7/2016	<0.003	
1/31/2017	<0.003	
3/23/2017	<0.003	
10/4/2017	<0.003	
3/14/2018	<0.003	
10/4/2018	<0.003	
4/8/2019	<0.003	
9/30/2019	<0.003	
3/26/2020	0.00049 (J)	
9/21/2020	<0.003	
3/9/2021	<0.003	
8/9/2021	0.0023 (J)	
2/4/2022		<0.003
8/8/2022		<0.003
1/30/2023		<0.003

Constituent: Antimony (mg/L) Analysis Run 4/5/2023 5:31 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-3	GWA-3
3/6/2007	<0.003	
5/8/2007	<0.003	
7/17/2007	<0.003	
8/28/2007	<0.003	
11/6/2007	<0.003	
5/8/2008	<0.003	
12/3/2008	<0.003	
4/7/2009	<0.003	
10/2/2009	<0.003	
4/14/2010	<0.003	
10/14/2010	<0.003	
4/5/2011	<0.003	
10/12/2011	<0.003	
4/4/2012	<0.003	
9/26/2012	<0.003	
3/12/2013	<0.003	
9/10/2013	<0.003	
3/11/2014	<0.003	
9/8/2014	<0.003	
4/21/2015	<0.003	
9/29/2015	<0.003	
3/22/2016	<0.003	
5/17/2016	<0.003	
7/5/2016	<0.003	
9/7/2016	0.0009 (J)	
10/18/2016	<0.003	
12/6/2016	<0.003	
2/1/2017	<0.003	
3/23/2017	<0.003	
10/4/2017	<0.003	
3/15/2018	<0.003	
10/4/2018	<0.003	
4/5/2019	<0.003	
9/30/2019	<0.003	
3/26/2020	<0.003	
9/23/2020	<0.003	
3/8/2021	<0.003	
8/9/2021	<0.003	
2/4/2022		<0.003
8/8/2022		<0.003

<0.003

1/30/2023

	GWA-4	GWA-4
3/6/2007	<0.003	
5/8/2007	<0.003	
7/17/2007	<0.003	
8/28/2007	<0.003	
11/6/2007	<0.003	
5/8/2008	<0.003	
12/3/2008	<0.003	
4/7/2009	<0.003	
10/2/2009	<0.003	
4/14/2010	<0.003	
10/14/2010	<0.003	
4/5/2011	<0.003	
10/12/2011	<0.003	
4/4/2012	<0.003	
9/24/2012	<0.003	
3/12/2013	<0.003	
9/10/2013	<0.003	
3/11/2014	<0.003	
9/8/2014	<0.003	
4/21/2015	<0.003	
9/29/2015	<0.003	
3/22/2016	<0.003	
5/17/2016	<0.003	
7/6/2016	0.0003 (J)	
9/7/2016	<0.003	
10/18/2016	<0.003	
12/6/2016	<0.003	
2/1/2017	<0.003	
3/24/2017	<0.003	
10/4/2017	<0.003	
3/15/2018	<0.003	
10/4/2018	<0.003	
4/8/2019	<0.003	
9/30/2019	<0.003	
3/26/2020	<0.003	
9/23/2020	<0.003	
3/8/2021	0.0016 (J)	
8/9/2021	<0.003	
2/4/2022		<0.003
8/8/2022		<0.003
1/30/2023		<0.003

Constituent: Antimony (mg/L) Analysis Run 4/5/2023 5:31 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-10	GWC-10
3/7/2007	<0.003	
5/8/2007	<0.003	
7/17/2007	<0.003	
8/28/2007	<0.003	
11/7/2007	<0.003	
5/9/2008	<0.003	
12/2/2008	<0.003	
4/8/2009	<0.003	
10/1/2009	<0.003	
4/14/2010	<0.003	
10/13/2010	<0.003	
4/6/2011	<0.003	
10/4/2011	<0.003	
4/10/2012	<0.003	
9/26/2012	<0.003	
3/12/2013	<0.003	
9/10/2013	<0.003	
3/4/2014	<0.003	
9/3/2014	<0.003	
4/21/2015	<0.003	
9/30/2015	<0.003	
3/23/2016	<0.003	
5/17/2016	<0.003	
7/6/2016	0.0005 (J)	
9/7/2016	<0.003	
10/18/2016	<0.003	
12/6/2016	<0.003	
2/2/2017	<0.003	
3/27/2017	<0.003	
10/5/2017	<0.003	
3/15/2018	<0.003	
10/4/2018	<0.003	
4/9/2019	<0.003	
10/1/2019	<0.003	
3/27/2020	<0.003	
9/25/2020	<0.003	
3/9/2021	<0.003	
8/10/2021	<0.003	
2/4/2022		<0.003
8/9/2022		<0.003

<0.003

1/30/2023

	GWC-18	GWC-18
3/7/2007	<0.003	
5/9/2007	<0.003	
7/17/2007	<0.003	
8/28/2007	<0.003	
11/7/2007	<0.003	
5/7/2008	<0.003	
12/3/2008	<0.003	
4/14/2009	<0.003	
10/1/2009	<0.003	
4/13/2010	<0.003	
10/12/2010	<0.003	
4/6/2011	<0.003	
10/12/2011	<0.003	
4/5/2012	<0.003	
9/19/2012	<0.003	
3/13/2013	<0.003	
9/10/2013	<0.003	
3/10/2014	<0.003	
9/3/2014	<0.003	
4/22/2015	<0.003	
9/30/2015	<0.003	
3/24/2016	<0.003	
5/18/2016	<0.003	
7/7/2016	<0.003	
9/8/2016	<0.003	
10/19/2016	<0.003	
12/8/2016	<0.003	
2/2/2017	<0.003	
3/27/2017	<0.003	
10/5/2017	<0.003	
3/16/2018	<0.003	
10/5/2018	<0.003	
4/9/2019	<0.003	
10/1/2019	<0.003	
3/30/2020	<0.003	
9/24/2020	0.00033 (J)	
3/9/2021	<0.003	
8/10/2021	<0.003	
2/4/2022		<0.003
8/9/2022		<0.003
1/31/2023		<0.003

	GWC-19	GWC-19
3/6/2007	<0.003	
5/9/2007	<0.003	
7/17/2007	<0.003	
8/28/2007	<0.003	
11/7/2007	<0.003	
5/7/2008	<0.003	
12/4/2008	<0.003	
4/14/2009	<0.003	
10/2/2009	<0.003	
4/13/2010	<0.003	
10/12/2010	<0.003	
4/6/2011	<0.003	
10/12/2011	<0.003	
4/5/2012	<0.003	
9/25/2012	<0.003	
3/13/2013	<0.003	
9/11/2013	<0.003	
3/10/2014	<0.003	
9/9/2014	<0.003	
4/22/2015	<0.003	
9/30/2015	<0.003	
3/24/2016	<0.003	
5/18/2016	<0.003	
7/6/2016	0.0003 (J)	
9/8/2016	<0.003	
10/18/2016	<0.003	
12/7/2016	<0.003	
2/2/2017	<0.003	
3/27/2017	<0.003	
10/5/2017	<0.003	
3/15/2018	<0.003	
10/4/2018	<0.003	
4/9/2019	<0.003	
10/1/2019	<0.003	
3/31/2020	<0.003	
9/28/2020	<0.003	
3/10/2021	<0.003	
8/10/2021	<0.003	
2/7/2022		<0.003
8/9/2022		<0.003
1/31/2023		<0.003

SWC-5						
58/20207 <0.003		GWC-5	GWC-5			
7/6/2007 <0.003	3/7/2007	<0.003				
8728/2007 <0.003	5/8/2007	< 0.003				
11/6/2007	7/6/2007	< 0.003				
5/8/2008 <0.003	8/28/2007	<0.003				
12/3/2008	11/6/2007	<0.003				
4/7/2009	5/8/2008	<0.003				
10/12/009	12/3/2008	< 0.003				
4/14/2010	4/7/2009	< 0.003				
10114/2010	10/1/2009	< 0.003				
44/5/2011	4/14/2010	<0.003				
10/12/2011	10/14/201	0 <0.003				
4/4/2012 < 0.003	4/5/2011	< 0.003				
9/24/2012	10/12/201	1 <0.003				
3/12/2013	4/4/2012	<0.003				
9/10/2013	9/24/2012	<0.003				
3/5/2014	3/12/2013	< 0.003				
9/9/2014	9/10/2013	< 0.003				
4/21/2015 <0.003	3/5/2014	<0.003				
9/29/2015	9/9/2014	<0.003				
3/23/2016 <0.003	4/21/2015	< 0.003				
5/17/2016 <0.003	9/29/2015	<0.003				
7/6/2016 0.0004 (J) 9/7/2016 < 0.003 10/18/2016 < 0.003 12/8/2016 < 0.003 2/1/2017 < 0.003 3/23/2017 < 0.003 10/4/2017 < 0.003 3/16/2018 < 0.003 10/4/2018 < 0.003 10/4/2019 < 0.003 10/1/2019 < 0.003 3/312020 < 0.003 9/25/2020 0.00052 (J) 3/9/2021 < 0.003 8/10/2021 < 0.003 8/9/2022 < 0.003 8/9/2022 < 0.003	3/23/2016	< 0.003				
9/7/2016	5/17/2016	<0.003				
10/18/2016 <0.003	7/6/2016	0.0004 (J)				
12/8/2016 <0.003	9/7/2016	<0.003				
2/1/2017 <0.003	10/18/201	6 <0.003				
3/23/2017	12/8/2016	< 0.003				
10/4/2017 <0.003	2/1/2017	<0.003				
3/16/2018	3/23/2017	<0.003				
10/4/2018 <0.003	10/4/2017	<0.003				
4/9/2019 <0.003	3/16/2018	< 0.003				
10/1/2019	10/4/2018	< 0.003				
3/31/2020 <0.003 9/25/2020 0.00052 (J) 3/9/2021 <0.003 8/10/2021 <0.003 2/4/2022 <0.003 8/9/2022 <0.003	4/9/2019	<0.003				
9/25/2020 0.00052 (J) 3/9/2021 <0.003 8/10/2021 <0.003 2/4/2022 <0.003 8/9/2022 <0.003	10/1/2019	<0.003				
3/9/2021 <0.003 8/10/2021 <0.003 2/4/2022 <0.003 8/9/2022 <0.003	3/31/2020	<0.003				
8/10/2021 <0.003	9/25/2020	0.00052 (J)				
2/4/2022 <0.003 8/9/2022 <0.003	3/9/2021	<0.003				
8/9/2022 <0.003	8/10/2021	<0.003				
	2/4/2022		<0.003			
1/31/2023 <0.003	8/9/2022		<0.003			
	1/31/2023	1	<0.003			

	GWC-6	GWC-6			
3/7/2007	<0.003				
5/9/2007	<0.003				
7/17/2007	<0.003				
8/28/2007	<0.003				
11/6/2007	<0.003				
5/8/2008	<0.003				
12/3/2008	<0.003				
4/7/2009	<0.003				
10/1/2009	< 0.003				
4/13/2010	< 0.003				
10/6/2010	< 0.003				
4/5/2011	<0.003				
10/4/2011	< 0.003				
4/3/2012	< 0.003				
9/18/2012	< 0.003				
3/12/2013	< 0.003				
9/9/2013	< 0.003				
3/5/2014	< 0.003				
9/8/2014	< 0.003				
4/22/2015	<0.003				
9/29/2015	<0.003				
3/23/2016	<0.003				
5/17/2016	<0.003				
7/6/2016	0.0005 (J)				
9/7/2016	<0.003				
10/18/2016	<0.003				
12/8/2016	<0.003				
2/1/2017	<0.003				
3/23/2017	<0.003				
10/4/2017	<0.003				
3/16/2018	<0.003				
10/4/2018	<0.003				
4/8/2019	<0.003				
10/1/2019	<0.003				
3/31/2020	<0.003				
9/25/2020	<0.003				
3/9/2021	<0.003				
8/10/2021	<0.003				
2/4/2022		<0.003			
8/8/2022		<0.003			
1/31/2023		<0.003			

	GWC-7	GWC-7
5/9/2007	<0.003	
7/6/2007	<0.003	
8/28/2007	<0.003	
11/6/2007	<0.003	
5/8/2008	<0.003	
12/2/2008	<0.003	
4/8/2009	<0.003	
10/1/2009	<0.003	
4/13/2010	<0.003	
10/7/2010	<0.003	
4/5/2011	<0.003	
10/4/2011	<0.003	
4/3/2012	<0.003	
9/18/2012	<0.003	
3/12/2013	<0.003	
9/10/2013	<0.003	
3/5/2014	<0.003	
9/8/2014	<0.003	
4/21/2015	<0.003	
9/29/2015	<0.003	
3/23/2016	<0.003	
5/18/2016	<0.003	
7/6/2016	0.0013 (J)	
9/7/2016	<0.003	
10/18/2016	<0.003	
12/8/2016	<0.003	
2/2/2017	<0.003	
3/24/2017	<0.003	
10/4/2017	<0.003	
3/15/2018	<0.003	
10/4/2018	<0.003	
4/8/2019	<0.003	
10/1/2019	<0.003	
3/30/2020	<0.003	
9/24/2020	0.0008 (J)	
3/9/2021	<0.003	
8/10/2021	<0.003	
2/4/2022		<0.003
8/10/2022		<0.003
1/31/2023		<0.003

	GWC-8	GWC-8
5/9/2007	<0.003	
7/6/2007	< 0.003	
8/28/2007	< 0.003	
11/6/2007	0.0064 (o)	
5/8/2008	< 0.003	
12/2/2008	<0.003	
4/8/2009	<0.003	
9/30/2009	<0.003	
4/13/2010	<0.003	
10/13/2010	<0.003	
4/5/2011	<0.003	
10/4/2011	<0.003	
4/3/2012	<0.003	
9/19/2012	<0.003	
3/12/2013	<0.003	
9/10/2013	<0.003	
3/5/2014	<0.003	
9/9/2014	<0.003	
4/22/2015	<0.003	
9/29/2015	<0.003	
3/23/2016	<0.003	
5/18/2016	<0.003	
7/6/2016	0.0002 (J)	
9/8/2016	<0.003	
10/18/2016	<0.003	
12/8/2016	<0.003	
2/2/2017	<0.003	
3/24/2017	<0.003	
10/5/2017	<0.003	
3/14/2018	<0.003	
10/4/2018	<0.003	
4/8/2019	<0.003	
10/1/2019	<0.003	
3/27/2020	<0.003	
9/24/2020	0.0019 (J)	
3/9/2021	<0.003	
8/10/2021	<0.003	
2/4/2022		<0.003
8/9/2022		<0.003
1/31/2023		<0.003

	GWC-9	GWC-9
3/7/2007	<0.003	
5/8/2007	<0.003	
7/6/2007	<0.003	
8/28/2007	<0.003	
11/6/2007	<0.003	
5/8/2008	<0.003	
12/2/2008	<0.003	
4/8/2009	<0.003	
9/30/2009	<0.003	
4/13/2010	<0.003	
10/13/2010	<0.003	
4/5/2011	<0.003	
10/4/2011	<0.003	
4/4/2012	<0.003	
9/19/2012	<0.003	
3/12/2013	<0.003	
9/10/2013	<0.003	
3/5/2014	<0.003	
9/3/2014	<0.003	
4/21/2015	<0.003	
9/29/2015	<0.003	
3/23/2016	<0.003	
5/18/2016	<0.003	
7/6/2016	<0.003	
9/8/2016	<0.003	
10/19/2016	<0.003	
12/8/2016	0.0012 (J)	
2/2/2017	<0.003	
3/27/2017	<0.003	
10/5/2017	<0.003	
3/15/2018	<0.003	
10/5/2018	<0.003	
4/8/2019	<0.003	
10/1/2019	<0.003	
3/27/2020	<0.003	
9/24/2020	0.00056 (J)	
3/9/2021	<0.003	
8/10/2021	<0.003	
2/4/2022		<0.003
8/9/2022		<0.003
1/31/2023		<0.003

	GWA-1	GWA-1
3/6/2007	<0.005	
5/8/2007	<0.005	
7/7/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/9/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/10/2011	<0.005	
4/3/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/11/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/30/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/5/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
1/31/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	<0.005	
9/30/2019	<0.005	
3/26/2020	<0.005	
9/23/2020	<0.005	
3/8/2021	<0.005	
8/9/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/30/2023		<0.005

Constituent: Arsenic (mg/L) Analysis Run 4/5/2023 5:31 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-11	GWA-11
3/7/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/9/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/4/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
2/1/2017	<0.005	
3/24/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	0.00012 (J)	
9/30/2019	<0.005	
3/26/2020	<0.005	
9/22/2020	<0.005	
3/8/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005

<0.005

1/30/2023

	GWA-2	GWA-2
3/6/2007	<0.005	
5/8/2007	<0.005	
7/7/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/9/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/7/2010	<0.005	
4/6/2011	<0.005	
10/6/2011	<0.005	
4/3/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/9/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/5/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/7/2016	<0.005	
1/31/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	<0.005	
9/30/2019	<0.005	
3/26/2020	<0.005	
9/21/2020	<0.005	
3/9/2021	<0.005	
8/9/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/30/2023		<0.005

Constituent: Arsenic (mg/L) Analysis Run 4/5/2023 5:31 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-3	GWA-3
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	0.005	
9/8/2014	0.0034 (J)	
4/21/2015	<0.005	
9/29/2015	0.0025 (J)	
3/22/2016	<0.005	
5/17/2016	0.00129 (J)	
7/5/2016	0.001 (J)	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
2/1/2017	<0.005	
3/23/2017	0.0006 (J)	
10/4/2017	0.0011 (J)	
3/15/2018	0.00066 (J)	
10/4/2018	0.0008 (J)	
4/5/2019	0.00035 (J)	
9/30/2019	0.00058 (J)	
3/26/2020	0.00048 (J)	
9/23/2020	<0.005	
3/8/2021	<0.005	
8/9/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005

<0.005

1/30/2023

Constituent: Arsenic (mg/L) Analysis Run 4/5/2023 5:31 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-4	GWA-4
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	0.0065	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
2/1/2017	<0.005	
3/24/2017	0.0006 (J)	
10/4/2017	<0.005	
3/15/2018	0.0014 (J)	
10/4/2018	<0.005	
4/8/2019	0.00023 (J)	
9/30/2019	<0.005	
3/26/2020	0.00044 (J)	
9/23/2020	<0.005	
3/8/2021	<0.005	
8/9/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005

<0.005

1/30/2023

	GWC-18	GWC-18
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/3/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/5/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/10/2014	<0.005	
9/3/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/24/2016	<0.005	
5/18/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/8/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	0.0005 (J)	
10/5/2017	<0.005	
3/16/2018	<0.005	
10/5/2018	<0.005	
4/9/2019	0.00063 (J)	
10/1/2019	<0.005	
3/30/2020	0.00073 (J)	
9/24/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005

	GWC-21	GWC-21
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/27/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
10/5/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/11/2014	<0.005	
9/9/2014	<0.005	
9/30/2015	0.0023 (J)	
3/24/2016	<0.005	
5/18/2016	<0.005	
7/7/2016	0.0012 (J)	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/7/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	0.001 (J)	
3/15/2018	<0.005	
10/4/2018	0.0034 (J)	
4/9/2019	0.0018 (J)	
10/1/2019	<0.005	
3/31/2020	0.00035 (J)	
9/24/2020	0.0011 (J)	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/7/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005

Constituent: Arsenic (mg/L) Analysis Run 4/5/2023 5:31 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-23	GWC-23
3/6/2007	<0.005	a
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/9/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/3/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
5/19/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/7/2016	<0.005	
2/3/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/5/2018	<0.005	
4/8/2019	0.00034 (J)	
10/1/2019	0.00082 (J)	
3/26/2020	<0.005	
9/23/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/7/2022		<0.005
8/8/2022		<0.005

<0.005

1/31/2023

Constituent: Arsenic (mg/L) Analysis Run 4/5/2023 5:31 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-5	GWC-5
3/7/2007	<0.005	
5/8/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	0.0017 (J)	
9/9/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/8/2016	<0.005	
2/1/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	0.0006 (J)	
3/16/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	<0.005	
3/31/2020	<0.005	
9/25/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/9/2022		<0.005

<0.005

1/31/2023

	GWC-7	GWC-7
5/9/2007	0.038 (o)	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/7/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/18/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	0.0053	
3/5/2014	0.0052	
9/8/2014	0.0058	
4/21/2015	0.0088	
9/29/2015	0.0086	
3/23/2016	0.00693	
5/18/2016	0.00451 (J)	
7/6/2016	0.0063	
9/7/2016	0.0065	
10/18/2016	0.0056	
12/8/2016	0.0065	
2/2/2017	0.002 (J)	
3/24/2017	0.0027 (J)	
10/4/2017	0.0056	
3/15/2018	0.0037 (J)	
10/4/2018	0.0049 (J)	
4/8/2019	0.0057	
10/1/2019	0.01	
11/6/2019	0.011	
3/30/2020	0.0052	
9/24/2020	0.0064	
3/9/2021	0.0052	
8/10/2021	0.0072	
2/4/2022		0.0042 (J)
8/10/2022		0.0093
1/31/2023		0.0028 (J)

	GWC-8	GWC-8
5/9/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/13/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	0.0022 (J)	
9/9/2014	<0.005	
4/22/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/6/2016	<0.005	
9/8/2016	<0.005	
10/18/2016	<0.005	
12/8/2016	<0.005	
2/2/2017	<0.005	
3/24/2017	0.0005 (J)	
10/5/2017	0.0008 (J)	
3/14/2018	0.00064 (J)	
10/4/2018	<0.005	
4/8/2019	0.0015 (J)	
10/1/2019	0.0028 (J)	
3/27/2020	0.002 (J)	
9/24/2020	0.0043 (J)	
3/9/2021	0.0018 (J)	
8/10/2021	0.005	
2/4/2022		0.0015 (J)
8/9/2022		<0.005
1/31/2023		<0.005

Constituent: Arsenic (mg/L) Analysis Run 4/5/2023 5:31 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-9	GWC-9
3/7/2007	<0.005	
5/8/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/13/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/4/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/6/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/8/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/5/2018	<0.005	
4/8/2019	<0.005	
10/1/2019	0.00071 (J)	
3/27/2020	<0.005	
9/24/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/9/2022		<0.005

<0.005

1/31/2023

	GWA-1	GWA-1
3/6/2007	0.032	
5/8/2007	0.04	
7/7/2007	0.041	
8/28/2007	0.044	
11/6/2007	0.044	
5/9/2008	0.03	
12/3/2008	0.047	
4/7/2009	0.032	
10/1/2009	0.043	
4/14/2010	0.032	
10/13/2010	0.046	
4/6/2011	0.034	
10/10/2011	0.038	
4/3/2012	0.0363	
9/24/2012	0.041	
3/12/2013	0.041	
9/11/2013	0.048	
3/4/2014	0.036	
9/3/2014	0.04	
4/21/2015	0.033	
9/30/2015	0.042	
3/22/2016	0.0326	
5/17/2016	0.0387	
7/5/2016	0.0403	
9/7/2016	0.0413	
10/18/2016	0.0409	
12/6/2016	0.0408	
1/31/2017	0.0435	
3/23/2017	0.038	
10/4/2017	0.0396	
3/14/2018	0.039	
10/4/2018	0.039	
4/8/2019	0.031	
9/30/2019	0.042	
3/26/2020	0.032	
9/23/2020	0.041	
3/8/2021	0.035	
8/9/2021	0.046	
2/4/2022		0.038
8/8/2022		0.04
1/30/2023		0.037

	GWA-11	GWA-11
3/7/2007	0.03	
5/8/2007	0.032	
7/17/2007	0.028	
8/28/2007	0.03	
11/7/2007	0.032	
5/9/2008	0.032	
12/2/2008	0.036	
4/8/2009	0.04	
10/1/2009	0.039	
4/14/2010	0.041	
10/13/2010	0.039	
4/6/2011	0.034	
10/4/2011	0.032	
4/10/2012	0.0425	
9/26/2012	0.035	
3/12/2013	0.035	
9/10/2013	0.035	
3/4/2014	0.031	
9/3/2014	0.033	
4/21/2015	0.03	
9/29/2015	0.031	
3/22/2016	0.0327	
5/17/2016	0.0323	
7/6/2016	0.0344	
9/7/2016	0.0324	
10/18/2016	0.0311	
12/6/2016	0.0311	
2/1/2017	0.0332	
3/24/2017	0.032	
10/5/2017	0.0325	
3/15/2018	0.031	
10/4/2018	0.033	
4/8/2019	0.031	
9/30/2019	0.03	
3/26/2020	0.031	
9/22/2020	0.031	
3/8/2021	0.031	
8/10/2021	0.03	
2/4/2022		0.031
8/8/2022		0.029
1/30/2023		0.03

	CWA 2	CMA
2/6/2007	GWA-2	GWA-2
3/6/2007	0.12 0.11	
5/8/2007		
7/7/2007	0.11	
8/28/2007	0.13	
11/6/2007	0.12	
5/9/2008	0.12	
12/3/2008	0.12	
4/7/2009	0.13	
10/1/2009	0.14	
4/13/2010	0.15	
10/7/2010	0.16	
4/6/2011	0.14	
10/6/2011	0.16	
4/3/2012	0.165	
9/19/2012	0.16	
3/12/2013	0.16	
9/9/2013	0.17	
3/4/2014	0.16	
9/3/2014	0.17	
4/22/2015	0.17	
9/30/2015	0.15	
3/22/2016	0.197	
5/17/2016	0.178	
7/5/2016	0.182	
9/7/2016	0.172	
10/18/2016	0.174	
12/7/2016	0.167	
1/31/2017	0.176	
3/23/2017	0.157	
10/4/2017	0.143	
3/14/2018	0.17	
10/4/2018	0.18	
4/8/2019	0.15	
9/30/2019	0.17	
3/26/2020	0.16	
9/21/2020	0.18	
3/9/2021	0.17	
8/9/2021	0.19	
2/4/2022		0.18
8/8/2022		0.18
1/30/2023		0.2

	GWA-3	GWA-3
3/6/2007	0.17	
5/8/2007	0.21	
7/17/2007	0.21	
8/28/2007	0.2	
11/6/2007	0.19	
5/8/2008	0.2	
12/3/2008	0.18	
4/7/2009	0.2	
10/2/2009	0.2	
4/14/2010	0.2	
10/14/2010	0.18	
4/5/2011	0.16	
10/12/2011	0.15	
4/4/2012	0.165	
9/26/2012	0.17	
3/12/2013	0.17	
9/10/2013	0.18	
3/11/2014	0.17	
9/8/2014	0.16	
4/21/2015	0.16	
9/29/2015	0.14	
3/22/2016	0.188	
5/17/2016	0.193	
7/5/2016	0.172	
9/7/2016	0.164	
10/18/2016	0.138	
12/6/2016	0.149	
2/1/2017	0.121	
3/23/2017	0.143	
10/4/2017	0.139	
3/15/2018	0.17	
10/4/2018	0.16	
4/5/2019	0.13	
9/30/2019	0.14	
3/26/2020	0.14	
9/23/2020	0.14	
3/8/2021	0.12	
8/9/2021	0.12	
2/4/2022		0.081
8/8/2022		0.1
1/30/2023		0.07

	GWA-4	GWA-4
3/6/2007	0.13	
5/8/2007	0.12	
7/17/2007	0.12	
8/28/2007	0.13	
11/6/2007	0.12	
5/8/2008	0.13	
12/3/2008	0.14	
4/7/2009	0.097	
10/2/2009	0.11	
4/14/2010	0.059	
10/14/2010	0.053	
4/5/2011	0.042	
10/12/2011	0.048	
4/4/2012	0.044	
9/24/2012	0.048	
3/12/2013	0.043	
9/10/2013	0.042	
3/11/2014	0.04	
9/8/2014	0.042	
4/21/2015	0.05	
9/29/2015	0.044	
3/22/2016	0.0397	
5/17/2016	0.0351	
7/6/2016	0.0475	
9/7/2016	0.0415	
10/18/2016	0.0424	
12/6/2016	0.0528	
2/1/2017	0.0482	
3/24/2017	0.0595	
10/4/2017	0.0486	
3/15/2018	0.04	
10/4/2018	0.05	
4/8/2019	0.047	
9/30/2019	0.051	
3/26/2020	0.049	
9/23/2020	0.043	
3/8/2021	0.052	
8/9/2021	0.034	
2/4/2022		0.037
8/8/2022		0.04
1/30/2023		0.037

	GWC-10	GWC-10
3/7/2007	0.15	
5/8/2007	0.14	
7/17/2007	0.1	
8/28/2007	0.1	
11/7/2007	0.11	
5/9/2008	0.15	
12/2/2008	0.11	
4/8/2009	0.16	
10/1/2009	0.11	
4/14/2010	0.15	
10/13/2010	0.1	
4/6/2011	0.13	
10/4/2011	0.089	
4/10/2012	0.126	
9/26/2012	0.093	
3/12/2013	0.13	
9/10/2013	0.14	
3/4/2014	0.11	
9/3/2014	0.1	
4/21/2015	0.14	
9/30/2015	0.096	
3/23/2016	0.132	
5/17/2016	0.122	
7/6/2016	0.101	
9/7/2016	0.0985	
10/18/2016	0.104	
12/6/2016	0.1	
2/2/2017	0.147	
3/27/2017	0.158	
10/5/2017	0.106	
3/15/2018	0.18	
5/15/2018	0.16	
10/4/2018	0.2	
12/11/2018	0.18	
1/11/2019	0.17	
4/9/2019	0.17	
10/1/2019	0.12	
3/27/2020	0.037	
9/25/2020	0.11	
3/9/2021	0.15	
8/10/2021	0.14	
2/4/2022		0.16
8/9/2022		0.12
1/30/2023		0.17

	GWC-18	GWC-18
3/7/2007	0.072	
5/9/2007	0.063	
7/17/2007	0.058	
8/28/2007	0.06	
11/7/2007	0.072	
5/7/2008	0.076	
12/3/2008	0.066	
4/14/2009	0.08	
10/1/2009	0.074	
4/13/2010	0.062	
10/12/2010	0.078	
4/6/2011	0.066	
10/12/2011	0.071	
4/5/2012	0.0675	
9/19/2012	0.073	
3/13/2013	0.075	
9/10/2013	0.081	
3/10/2014	0.064	
9/3/2014	0.078	
4/22/2015	0.067	
9/30/2015	0.075	
3/24/2016	0.0818	
5/18/2016	0.0763	
7/7/2016	0.0747	
9/8/2016	0.081	
10/19/2016	0.084	
12/8/2016	0.0799	
2/2/2017	0.0813	
3/27/2017	0.0714	
10/5/2017	0.0755	
3/16/2018	0.074	
10/5/2018	0.081	
4/9/2019	0.081	
10/1/2019	0.082	
3/30/2020	0.077	
9/24/2020	0.079	
3/9/2021	0.077	
8/10/2021	0.093	
2/4/2022		0.08
8/9/2022		0.08
1/31/2023		0.077

GWC-19	GWC-19
0.088	
0.07	
0.063	
0.066	
0.07	
0.071	
0.068	
0.076	
0.07	
0.085	
0.075	
0.077	
0.12	
0.143	
0.13	
0.14	
0.15	
0.13	
0.16	
0.15	
0.15	
0.152	
0.146	
0.152	
0.142	
0.145	
0.133	
0.14	
0.152	
0.142	
0.14	
0.16	
0.15	
0.15	
0.17	
0.15	
0.15	
0.14	
	0.14
	0.14
	0.15
	0.088 0.07 0.063 0.066 0.07 0.071 0.068 0.076 0.07 0.085 0.075 0.077 0.12 0.143 0.13 0.14 0.15 0.13 0.16 0.15 0.15 0.152 0.146 0.152 0.1442 0.145 0.133 0.14 0.152 0.142 0.145 0.133 0.14 0.152 0.145 0.133 0.14 0.155 0.155 0.17 0.15 0.15 0.15

	GWC-20	GWC-20
3/7/2007	0.11	
5/9/2007	0.082	
7/17/2007	0.078	
8/29/2007	0.096	
11/7/2007	0.1	
5/7/2008	0.11	
12/5/2008	0.11	
4/14/2009	0.11	
9/30/2009	0.12	
4/13/2010	0.11	
10/12/2010	0.12	
10/12/2011	0.11	
4/9/2012	0.13	
9/25/2012	0.13	
3/13/2013	0.12	
9/11/2013	0.12	
3/10/2014	0.11	
9/9/2014	0.11	
4/23/2015	0.11	
9/30/2015	0.11	
3/23/2016	0.115	
5/18/2016	0.128	
7/7/2016	0.124	
9/8/2016	0.121	
10/19/2016	0.117	
12/7/2016	0.11	
2/3/2017	0.123	
3/27/2017	0.112	
10/5/2017	0.128	
3/16/2018	0.12	
10/5/2018	0.12	
4/9/2019	0.13	
10/1/2019	0.14	
3/31/2020	0.15	
6/19/2020	0.14 (R)	
9/23/2020	0.13	
3/10/2021	0.13	
8/10/2021	0.14	
2/7/2022		0.14
8/9/2022		0.15
1/31/2023		0.14

	GWC-21	GWC-21
3/6/2007	0.038	
5/9/2007	0.046	
7/17/2007	0.06	
8/29/2007	0.07	
11/7/2007	0.055	
5/7/2008	0.032	
12/5/2008	0.06	
4/27/2009	0.032	
9/30/2009	0.046	
4/13/2010	0.035	
10/12/2010	0.15	
10/5/2011	0.055	
4/10/2012	0.0399	
9/26/2012	0.093	
3/13/2013	0.066	
9/11/2013	0.053	
3/11/2014	0.039	
9/9/2014	0.14	
9/30/2015	0.15	
3/24/2016	0.046	
5/18/2016	0.0557	
7/7/2016	0.0596	
9/8/2016	0.184	
10/19/2016	0.186	
12/7/2016	0.174	
2/2/2017	0.0783	
3/27/2017	0.0363	
10/5/2017	0.0562	
3/15/2018	0.086	
10/4/2018	0.079	
4/9/2019	0.05	
10/1/2019	0.18	
3/31/2020	0.044	
9/24/2020	0.19	
3/9/2021	0.12	
8/10/2021	0.057	
2/7/2022		0.063
8/9/2022		0.056
1/31/2023		0.033

GWC-22	GWC-22
0.023	
0.034	
0.034	
0.048	
0.042	
0.078	
0.067	
0.083	
0.086	
0.087	
0.082	
0.082	
0.082	
0.0959	
0.09	
0.092	
0.096	
0.085	
0.096	
0.093	
0.096	
0.0938	
0.0983	
0.121	
0.0917	
0.091	
0.0868	
0.0939	
0.0905	
0.0945	
0.096	
0.1	
0.094	
0.1	
0.1	
0.1	
0.089	
0.091	
	0.092
	0.098
	0.09
	0.023 0.034 0.034 0.048 0.042 0.078 0.067 0.083 0.086 0.087 0.082 0.082 0.095 0.09 0.092 0.096 0.093 0.096 0.093 0.096 0.0938 0.0983 0.121 0.0917 0.091 0.0868 0.0939 0.0905 0.0945 0.096 0.1 0.094 0.1 0.1 0.1 0.1

3/6/2007 0.05 5/9/2007 0.055 7/17/2007 0.048 8/29/2007 0.056 11/7/2007 0.07 5/7/2008 0.063 12/5/2008 0.068 4/14/2009 0.062 10/1/2009 0.064 4/14/2010 0.048 10/13/2010 0.071 4/6/2011 0.042 10/12/2011 0.066 4/9/2012 0.0628 9/19/2012 0.073 3/13/2013 0.057 9/10/2013 0.066 3/11/2014 0.054 9/3/2014 0.06 4/23/2015 0.06 9/30/2015 0.076 3/23/2016 0.0533 5/19/2016 0.0726 10/19/2016 0.072 12/7/2017 0.0619 3/27/2017 0.0602 10/5/2017 0.0734 3/15/2018 0.053 10/5/2018 0.065 4/8/2019 0.059 10/1/2019 0.082 3/		GWC-23	GWC-23
7/17/2007 0.048 8/29/2007 0.056 11/7/2007 0.07 5/7/2008 0.063 12/5/2008 0.068 4/14/2009 0.062 10/1/2009 0.064 4/14/2010 0.048 10/13/2010 0.071 4/6/2011 0.042 10/12/2011 0.066 4/9/2012 0.0628 9/19/2012 0.073 3/13/2013 0.057 9/10/2013 0.066 3/11/2014 0.054 9/3/2014 0.06 4/23/2015 0.06 9/30/2015 0.076 3/23/2016 0.0533 5/19/2016 0.0726 10/19/2016 0.072 12/7/2016 0.072 12/7/2016 0.072 12/7/2017 0.0602 10/5/2017 0.0602 10/5/2018 0.053 10/5/2018 0.065 4/8/2019 0.059 10/1/2019 0.082 3/9/2020 0.071 9	3/6/2007	0.05	
8/29/2007 0.056 11/7/2007 0.07 5/7/2008 0.063 12/5/2008 0.068 4/14/2009 0.062 10/1/2009 0.064 4/14/2010 0.048 10/13/2010 0.071 4/6/2011 0.066 4/9/2012 0.0628 9/19/2012 0.073 3/13/2013 0.057 9/10/2013 0.066 3/11/2014 0.054 9/3/2014 0.06 4/23/2015 0.076 3/23/2016 0.0533 5/19/2016 0.074 7/7/2016 0.0766 9/8/2016 0.0726 10/19/2016 0.072 12/7/2016 0.072 12/7/2017 0.0602 10/19/2018 0.053 10/5/2017 0.0619 3/27/2017 0.0602 10/5/2017 0.0734 3/15/2018 0.053 10/5/2018 0.053 10/5/2018 0.053 10/5/2018 0.059 10/1/2019 0.082 3/26/2020 0.071 9/23/2021 0.085 8/10/2021 0.085 8/10/2021 0.085 8/10/2021 0.085 8/10/2021 0.085 8/10/2022 0.078	5/9/2007	0.055	
11/7/2007 0.07 5/7/2008 0.063 12/5/2008 0.068 4/14/2009 0.062 10/1/2009 0.064 4/14/2010 0.048 10/13/2010 0.071 4/6/2011 0.042 10/12/2011 0.066 4/9/2012 0.0628 9/19/2012 0.073 3/13/2013 0.057 9/10/2013 0.066 3/11/2014 0.054 9/3/2014 0.06 4/23/2015 0.06 9/30/2015 0.076 3/23/2016 0.0533 5/19/2016 0.074 7/7/2016 0.0726 10/19/2016 0.072 12/7/2016 0.072 12/7/2016 0.072 10/5/2017 0.0602 10/5/2017 0.0602 10/5/2018 0.065 4/8/2019 0.059 10/1/2019 0.082 3/26/2020 0.071 9/23/2021 0.085 8/10/2021 0.085 8	7/17/2007	0.048	
5/7/2008	8/29/2007	0.056	
12/5/2008	11/7/2007	0.07	
4/14/2009 0.062 10/1/2009 0.064 4/14/2010 0.048 10/13/2010 0.071 4/6/2011 0.062 10/12/2011 0.066 4/9/2012 0.0628 9/19/2012 0.073 3/13/2013 0.057 9/10/2013 0.066 3/11/2014 0.054 9/3/2014 0.06 4/23/2015 0.06 9/30/2015 0.076 3/23/2016 0.0533 5/19/2016 0.074 7/7/2016 0.0726 10/19/2016 0.072 12/7/2016 0.072 2/3/2017 0.0602 10/5/2017 0.0602 10/5/2018 0.065 4/8/2019 0.059 10/1/2019 0.082 3/26/2020 0.071 9/23/2021 0.085 8/10/2021 0.085 8/10/2021 0.085 2/7/2022 0.091 8/8/2022 0.078	5/7/2008	0.063	
10/1/2009 0.064 4/14/2010 0.048 10/13/2010 0.071 4/6/2011 0.042 10/12/2011 0.066 4/9/2012 0.0628 9/19/2012 0.073 3/13/2013 0.057 9/10/2013 0.066 3/11/2014 0.054 9/3/2014 0.06 4/23/2015 0.06 9/30/2015 0.076 3/23/2016 0.0533 5/19/2016 0.074 7/7/2016 0.076 9/8/2016 0.0726 10/19/2016 0.072 12/7/2016 0.072 12/7/2016 0.072 12/7/2016 0.0732 2/3/2017 0.0602 10/5/2017 0.0602 10/5/2017 0.0734 3/15/2018 0.053 10/5/2018 0.053 10/5/2018 0.059 10/1/2019 0.082 3/26/2020 0.071 9/23/2020 0.079 3/9/2021 0.085 8/10/2021 0.085 8/10/2021 0.085 8/10/2022 0.091 8/8/2022 0.091	12/5/2008	0.068	
4/14/2010 0.048 10/13/2010 0.071 4/6/2011 0.042 10/12/2011 0.066 4/9/2012 0.0628 9/19/2012 0.073 3/13/2013 0.057 9/10/2013 0.066 3/11/2014 0.054 9/3/2015 0.06 9/30/2015 0.076 3/23/2016 0.0533 5/19/2016 0.074 7/7/2016 0.0726 10/19/2016 0.072 12/7/2016 0.072 12/7/2016 0.072 12/7/2016 0.0732 2/3/2017 0.0619 3/27/2017 0.0602 10/5/2018 0.053 10/5/2018 0.053 10/5/2018 0.065 4/8/2019 0.059 10/1/2019 0.082 3/26/2020 0.071 9/23/2020 0.079 3/9/2021 0.085 8/10/2021 0.085 8/10/2022 0.091 8/8/2022 0.078	4/14/2009	0.062	
10/13/2010 0.071 4/6/2011 0.042 10/12/2011 0.066 4/9/2012 0.0628 9/19/2012 0.073 3/13/2013 0.057 9/10/2013 0.066 3/11/2014 0.054 9/3/2014 0.06 4/23/2015 0.06 9/30/2015 0.076 3/23/2016 0.0533 5/19/2016 0.074 7/7/2016 0.0766 9/8/2016 0.0726 10/19/2016 0.072 12/7/2016 0.072 12/7/2016 0.0732 2/3/2017 0.0619 3/27/2017 0.0602 10/5/2017 0.0734 3/15/2018 0.053 10/5/2018 0.053 10/5/2018 0.059 10/1/2019 0.082 3/26/2020 0.071 9/23/2021 0.085 8/10/2021 0.085 8/10/2021 0.085 8/10/2022 0.091 8/8/2022 0.091	10/1/2009	0.064	
4/6/2011 0.042 10/12/2011 0.066 4/9/2012 0.0628 9/19/2012 0.073 3/13/2013 0.057 9/10/2013 0.066 3/11/2014 0.054 9/3/2014 0.06 4/23/2015 0.06 9/30/2016 0.076 3/23/2016 0.0533 5/19/2016 0.074 7/7/2016 0.0726 10/19/2016 0.072 12/7/2016 0.072 12/7/2016 0.0732 2/3/2017 0.0619 3/27/2017 0.0602 10/5/2017 0.0734 3/15/2018 0.053 10/5/2018 0.053 10/1/2019 0.082 3/26/2020 0.071 9/23/2020 0.071 9/23/2021 0.085 8/10/2021 0.085 8/10/2022 0.091 8/8/2022 0.078	4/14/2010	0.048	
10/12/2011 0.066 4/9/2012 0.0628 9/19/2012 0.073 3/13/2013 0.057 9/10/2013 0.066 3/11/2014 0.054 9/3/2015 0.06 9/30/2015 0.076 3/23/2016 0.0533 5/19/2016 0.074 7/7/2016 0.0726 10/19/2016 0.072 12/7/2016 0.072 12/7/2016 0.072 12/7/2016 0.0732 2/3/2017 0.0619 3/27/2017 0.0602 10/5/2017 0.0734 3/15/2018 0.053 10/5/2018 0.065 4/8/2019 0.059 10/1/2019 0.082 3/26/2020 0.071 9/23/2020 0.079 3/9/2021 0.085 8/10/2022 0.091 8/8/2022 0.078	10/13/2010	0.071	
4/9/2012 0.0628 9/19/2012 0.073 3/13/2013 0.057 9/10/2013 0.066 3/11/2014 0.054 9/3/2015 0.06 9/30/2015 0.076 3/23/2016 0.0533 5/19/2016 0.074 7/7/2016 0.0766 9/8/2016 0.0726 10/19/2016 0.072 12/7/2016 0.0732 2/3/2017 0.0619 3/27/2017 0.0602 10/5/2017 0.0734 3/15/2018 0.053 10/5/2018 0.065 4/8/2019 0.059 10/1/2019 0.082 3/26/2020 0.071 9/23/2020 0.079 3/9/2021 0.085 8/10/2021 0.085 8/10/2022 0.091 8/8/2022 0.078	4/6/2011	0.042	
9/19/2012 0.073 3/13/2013 0.057 9/10/2013 0.066 3/11/2014 0.054 9/3/2014 0.06 4/23/2015 0.06 9/30/2015 0.076 3/23/2016 0.0533 5/19/2016 0.074 7/7/2016 0.0766 9/8/2016 0.072 12/7/2016 0.072 12/7/2016 0.072 12/7/2016 0.0732 2/3/2017 0.0619 3/27/2017 0.0619 3/27/2017 0.0602 10/5/2017 0.0734 3/15/2018 0.053 10/5/2018 0.055 10/5/2018 0.065 4/8/2019 0.059 10/1/2019 0.082 3/26/2020 0.071 9/23/2020 0.079 3/9/2021 0.085 8/10/2021 0.085 8/10/2022 0.091 8/8/2022 0.078	10/12/2011	0.066	
3/13/2013	4/9/2012	0.0628	
9/10/2013	9/19/2012	0.073	
3/11/2014 0.054 9/3/2014 0.06 4/23/2015 0.06 9/30/2015 0.076 3/23/2016 0.0533 5/19/2016 0.074 7/7/2016 0.0766 9/8/2016 0.0726 10/19/2016 0.072 12/7/2016 0.072 12/7/2016 0.0732 2//3/2017 0.0619 3/27/2017 0.0602 10/5/2017 0.0734 3/15/2018 0.053 10/5/2018 0.053 10/5/2018 0.065 4/8/2019 0.059 10/1/2019 0.082 3/26/2020 0.071 9/23/2020 0.079 3/9/2021 0.085 8/10/2021 0.085 8/10/2021 0.085 8/10/2022 0.091 8/8/2022 0.078	3/13/2013	0.057	
9/3/2014 0.06 4/23/2015 0.06 9/30/2015 0.076 3/23/2016 0.0533 5/19/2016 0.074 7/7/2016 0.0766 9/8/2016 0.0726 10/19/2016 0.072 12/7/2016 0.072 12/7/2016 0.0732 2/3/2017 0.0619 3/27/2017 0.0602 10/5/2017 0.0734 3/15/2018 0.053 10/5/2018 0.053 10/5/2018 0.059 10/1/2019 0.082 3/26/2020 0.071 9/23/2020 0.079 3/9/2021 0.085 8/10/2021 0.085 8/10/2022 0.091 8/8/2022 0.098	9/10/2013	0.066	
4/23/2015 0.06 9/30/2015 0.076 3/23/2016 0.0533 5/19/2016 0.074 7/7/2016 0.0726 10/19/2016 0.072 12/7/2016 0.0732 2/3/2017 0.0619 3/27/2017 0.0602 10/5/2017 0.0734 3/15/2018 0.053 10/5/2018 0.065 4/8/2019 0.059 10/1/2019 0.082 3/26/2020 0.071 9/23/2020 0.079 3/9/2021 0.085 8/10/2021 0.085 2/7/2022 0.091 8/8/2022 0.078	3/11/2014	0.054	
9/30/2015 0.076 3/23/2016 0.0533 5/19/2016 0.074 7/7/2016 0.0766 9/8/2016 0.0726 10/19/2016 0.072 12/7/2016 0.0732 2/3/2017 0.0619 3/27/2017 0.0602 10/5/2017 0.0734 3/15/2018 0.053 10/5/2018 0.053 10/5/2018 0.065 4/8/2019 0.059 10/1/2019 0.082 3/26/2020 0.071 9/23/2020 0.071 9/23/2021 0.085 8/10/2021 0.085 8/10/2021 0.085 2/7/2022 0.078	9/3/2014	0.06	
3/23/2016 0.0533 5/19/2016 0.074 7/7/2016 0.0766 9/8/2016 0.0726 10/19/2016 0.072 12/7/2016 0.0732 2/3/2017 0.0619 3/27/2017 0.0602 10/5/2017 0.0734 3/15/2018 0.053 10/5/2018 0.065 4/8/2019 0.059 10/1/2019 0.082 3/26/2020 0.071 9/23/2020 0.079 3/9/2021 0.085 8/10/2021 0.085 8/10/2022 0.091 8/8/2022 0.078	4/23/2015	0.06	
5/19/2016 0.074 7/7/2016 0.0766 9/8/2016 0.0726 10/19/2016 0.072 12/7/2016 0.0732 2/3/2017 0.0619 3/27/2017 0.0602 10/5/2017 0.0734 3/15/2018 0.053 10/5/2018 0.065 4/8/2019 0.059 10/1/2019 0.082 3/26/2020 0.071 9/23/2020 0.079 3/9/2021 0.085 8/10/2021 0.085 2/7/2022 0.091 8/8/2022 0.078	9/30/2015	0.076	
7/7/2016 0.0766 9/8/2016 0.0726 10/19/2016 0.072 12/7/2016 0.0732 2/3/2017 0.0619 3/27/2017 0.0602 10/5/2017 0.0734 3/15/2018 0.053 10/5/2018 0.065 4/8/2019 0.059 10/1/2019 0.082 3/26/2020 0.071 9/23/2020 0.079 3/9/2021 0.085 8/10/2021 0.085 8/10/2022 0.078	3/23/2016	0.0533	
9/8/2016 0.0726 10/19/2016 0.072 12/7/2016 0.0732 2/3/2017 0.0619 3/27/2017 0.0602 10/5/2017 0.0734 3/15/2018 0.053 10/5/2018 0.065 4/8/2019 0.059 10/1/2019 0.082 3/26/2020 0.071 9/23/2020 0.079 3/9/2021 0.085 8/10/2021 0.085 8/10/2022 0.091 8/8/2022 0.078	5/19/2016	0.074	
10/19/2016 0.072 12/7/2016 0.0732 2/3/2017 0.0619 3/27/2017 0.0602 10/5/2017 0.0734 3/15/2018 0.053 10/5/2018 0.065 4/8/2019 0.059 10/1/2019 0.082 3/26/2020 0.071 9/23/2020 0.079 3/9/2021 0.085 8/10/2021 0.085 2/7/2022 0.091 8/8/2022 0.078	7/7/2016	0.0766	
12/7/2016 0.0732 2/3/2017 0.0619 3/27/2017 0.0602 10/5/2017 0.0734 3/15/2018 0.053 10/5/2018 0.065 4/8/2019 0.059 10/1/2019 0.082 3/26/2020 0.071 9/23/2020 0.079 3/9/2021 0.085 8/10/2021 0.085 2/7/2022 0.091 8/8/2022 0.078	9/8/2016	0.0726	
2/3/2017 0.0619 3/27/2017 0.0602 10/5/2017 0.0734 3/15/2018 0.053 10/5/2018 0.065 4/8/2019 0.059 10/1/2019 0.082 3/26/2020 0.071 9/23/2020 0.079 3/9/2021 0.085 8/10/2021 0.085 2/7/2022 0.091 8/8/2022 0.078	10/19/2016	0.072	
3/27/2017 0.0602 10/5/2017 0.0734 3/15/2018 0.053 10/5/2018 0.065 4/8/2019 0.059 10/1/2019 0.082 3/26/2020 0.071 9/23/2020 0.079 3/9/2021 0.085 8/10/2021 0.085 2/7/2022 0.078	12/7/2016	0.0732	
10/5/2017 0.0734 3/15/2018 0.053 10/5/2018 0.065 4/8/2019 0.059 10/1/2019 0.082 3/26/2020 0.071 9/23/2020 0.079 3/9/2021 0.085 8/10/2021 0.085 2/7/2022 0.091 8/8/2022 0.078	2/3/2017	0.0619	
3/15/2018	3/27/2017	0.0602	
10/5/2018 0.065 4/8/2019 0.059 10/1/2019 0.082 3/26/2020 0.071 9/23/2020 0.079 3/9/2021 0.085 8/10/2021 0.085 2/7/2022 0.091 8/8/2022 0.078	10/5/2017	0.0734	
4/8/2019 0.059 10/1/2019 0.082 3/26/2020 0.071 9/23/2020 0.079 3/9/2021 0.085 8/10/2021 0.085 2/7/2022 0.091 8/8/2022 0.078	3/15/2018	0.053	
10/1/2019 0.082 3/26/2020 0.071 9/23/2020 0.079 3/9/2021 0.085 8/10/2021 0.085 2/7/2022 0.091 8/8/2022 0.078	10/5/2018	0.065	
3/26/2020 0.071 9/23/2020 0.079 3/9/2021 0.085 8/10/2021 0.085 2/7/2022 0.091 8/8/2022 0.078	4/8/2019	0.059	
9/23/2020 0.079 3/9/2021 0.085 8/10/2021 0.085 2/7/2022 0.091 8/8/2022 0.078	10/1/2019	0.082	
3/9/2021 0.085 8/10/2021 0.085 2/7/2022 0.091 8/8/2022 0.078	3/26/2020	0.071	
8/10/2021 0.085 2/7/2022 0.091 8/8/2022 0.078	9/23/2020	0.079	
2/7/2022 0.091 8/8/2022 0.078	3/9/2021	0.085	
8/8/2022 0.078	8/10/2021	0.085	
	2/7/2022		0.091
1/31/2023 0.11	8/8/2022		0.078
	1/31/2023		0.11

	GWC-5	GWC-5
3/7/2007	0.1	
5/8/2007	0.11	
7/6/2007	0.11	
8/28/2007	0.1	
11/6/2007	0.1	
5/8/2008	0.11	
12/3/2008	0.091	
4/7/2009	0.094	
10/1/2009	0.097	
4/14/2010	0.096	
10/14/2010	0.1	
4/5/2011	0.092	
10/12/2011	0.12	
4/4/2012	0.105	
9/24/2012	0.13	
3/12/2013	0.1	
9/10/2013	0.13	
3/5/2014	0.084	
9/9/2014	0.11	
4/21/2015	0.11	
9/29/2015	0.097	
3/23/2016	0.0993	
5/17/2016	0.104	
7/6/2016	0.104	
9/7/2016	0.0945	
10/18/2016	0.0928	
12/8/2016	0.1	
2/1/2017	0.0972	
3/23/2017	0.105	
10/4/2017	0.102	
3/16/2018	0.091	
10/4/2018	0.084	
4/9/2019	0.067	
10/1/2019	0.09	
3/31/2020	0.064	
9/25/2020	0.074	
3/9/2021	0.063	
8/10/2021	0.077	
2/4/2022		0.061
8/9/2022		0.074
1/31/2023		0.064

	GWC-6	GWC-6
3/7/2007	0.057	
5/9/2007	0.054	
7/17/2007	0.059	
8/28/2007	0.061	
11/6/2007	0.074	
5/8/2008	0.079	
12/3/2008	0.1	
4/7/2009	0.091	
10/1/2009	0.092	
4/13/2010	0.095	
10/6/2010	0.11	
4/5/2011	0.1	
10/4/2011	0.11	
4/3/2012	0.116	
9/18/2012	0.12	
3/12/2013	0.11	
9/9/2013	0.13	
3/5/2014	0.12	
9/8/2014	0.13	
4/22/2015	0.14	
9/29/2015	0.14	
3/23/2016	0.156	
5/17/2016	0.168	
7/6/2016	0.171	
9/7/2016	0.154	
10/18/2016	0.159	
12/8/2016	0.156	
2/1/2017	0.163	
3/23/2017	0.161	
10/4/2017	0.171	
3/16/2018	0.17	
10/4/2018	0.19	
4/8/2019	0.15	
10/1/2019	0.18	
3/31/2020	0.18	
9/25/2020	0.16	
3/9/2021	0.17	
8/10/2021	0.18	
2/4/2022		0.16
8/8/2022		0.15
1/31/2023		0.15

	GWC-7	GWC-7
5/9/2007	0.011	
7/6/2007	0.0065	
8/28/2007	0.0095	
11/6/2007	0.013	
5/8/2008	0.011	
12/2/2008	0.011	
4/8/2009	0.0091	
10/1/2009	0.0098	
4/13/2010	0.0084	
10/7/2010	0.01	
4/5/2011	0.015	
10/4/2011	0.01	
4/3/2012	0.0426	
9/18/2012	0.02	
3/12/2013	0.35	
9/10/2013	0.11	
3/5/2014	0.054	
9/8/2014	0.044	
4/21/2015	0.065	
9/29/2015	0.036	
3/23/2016	0.263	
5/18/2016	0.245	
7/6/2016	0.117	
9/7/2016	0.0703	
10/18/2016	0.068	
12/8/2016	0.0791	
2/2/2017	0.17	
3/24/2017	0.181	
10/4/2017	0.0937	
3/15/2018	0.15	
10/4/2018	0.08	
4/8/2019		0.24
10/1/2019		0.085
3/30/2020		0.21
9/24/2020		0.11
3/9/2021		0.31
8/10/2021		0.14
2/4/2022		0.35
8/10/2022		0.098
1/31/2023		0.047

	GWC-8	GWC-8
5/9/2007	0.13	
7/6/2007	0.12	
8/28/2007	0.11	
11/6/2007	0.1	
5/8/2008	0.1	
12/2/2008	0.11	
4/8/2009	0.1	
9/30/2009	0.099	
4/13/2010	0.098	
10/13/2010	0.092	
4/5/2011	0.085	
10/4/2011	0.091	
4/3/2012	0.101	
9/19/2012	0.1	
3/12/2013	0.098	
9/10/2013	0.11	
3/5/2014	0.087	
9/9/2014	0.1	
4/22/2015	0.095	
9/29/2015	0.093	
3/23/2016	0.0918	
5/18/2016	0.0957	
7/6/2016	0.0935	
9/8/2016	0.0925	
10/18/2016	0.0939	
12/8/2016	0.0996	
2/2/2017	0.096	
3/24/2017	0.106	
10/5/2017	0.103	
3/14/2018	0.1	
10/4/2018	0.11	
4/8/2019	0.13	
6/18/2019	0.17	
10/1/2019	0.12	
3/27/2020	0.14	
9/24/2020	0.14	
3/9/2021	0.14	
8/10/2021	0.23 (o)	
2/4/2022		0.17
8/9/2022		0.16
1/31/2023		0.12

	GWC-9	GWC-9
3/7/2007	0.059	anos
5/8/2007	0.055	
7/6/2007	0.052	
8/28/2007	0.047	
11/6/2007	0.048	
5/8/2008	0.052	
12/2/2008	0.056	
4/8/2009	0.057	
9/30/2009	0.055	
4/13/2010	0.053	
10/13/2010	0.054	
4/5/2011	0.035 (o)	
10/4/2011	0.058	
4/4/2012	0.0632	
9/19/2012	0.061	
3/12/2013	0.056	
9/10/2013	0.067	
3/5/2014	0.055	
9/3/2014	0.051	
4/21/2015	0.059	
9/29/2015	0.06	
3/23/2016	0.0636	
5/18/2016	0.0629	
7/6/2016	0.0646	
9/8/2016	0.063	
10/19/2016	0.0644	
12/8/2016	0.0648	
2/2/2017	0.0656	
3/27/2017	0.0619	
10/5/2017	0.0655	
3/15/2018	0.062	
10/5/2018	0.07	
4/8/2019	0.058	
10/1/2019	0.071	
3/27/2020	0.06	
9/24/2020	0.06	
3/9/2021	0.059	
8/10/2021	0.067	
2/4/2022		0.067
8/9/2022		0.068
1/31/2023		0.064

	GWA-1	GWA-1
3/6/2007	<0.0005	
5/8/2007	<0.0005	
7/7/2007	<0.0005	
8/28/2007	<0.0005	
11/6/2007	<0.0005	
5/9/2008	<0.0005	
12/3/2008	<0.0005	
4/7/2009	<0.0005	
10/1/2009	<0.0005	
4/14/2010	<0.0005	
10/13/2010	<0.0005	
4/6/2011	<0.0005	
10/10/2011	<0.0005	
4/3/2012	<0.0005	
9/24/2012	<0.0005	
3/12/2013	<0.0005	
9/11/2013	<0.0005	
3/4/2014	<0.0005	
9/3/2014	<0.0005	
4/21/2015	<0.0005	
9/30/2015	<0.0005	
3/22/2016	<0.0005	
5/17/2016	<0.0005	
7/5/2016	<0.0005	
9/7/2016	<0.0005	
10/18/2016	<0.0005	
12/6/2016	<0.0005	
1/31/2017	<0.0005	
3/23/2017	<0.0005	
10/4/2017	<0.0005	
3/14/2018	<0.0005	
10/4/2018	<0.0005	
4/8/2019	<0.0005	
9/30/2019	<0.0005	
3/26/2020	<0.0005	
9/23/2020	<0.0005	
3/8/2021	<0.0005	
8/9/2021	<0.0005	
2/4/2022		<0.0005
8/8/2022		<0.0005
1/30/2023		<0.0005

	GWA-11	GWA-11
3/7/2007	<0.0005	
5/8/2007	<0.0005	
7/17/2007	<0.0005	
8/28/2007	<0.0005	
11/7/2007	<0.0005	
5/9/2008	<0.0005	
12/2/2008	<0.0005	
4/8/2009	<0.0005	
10/1/2009	<0.0005	
4/14/2010	<0.0005	
10/13/2010	<0.0005	
4/6/2011	<0.0005	
10/4/2011	<0.0005	
4/10/2012	<0.0005	
9/26/2012	<0.0005	
3/12/2013	<0.0005	
9/10/2013	<0.0005	
3/4/2014	<0.0005	
9/3/2014	<0.0005	
4/21/2015	<0.0005	
9/29/2015	<0.0005	
3/22/2016	<0.0005	
5/17/2016	<0.0005	
7/6/2016	<0.0005	
9/7/2016	<0.0005	
10/18/2016	<0.0005	
12/6/2016	<0.0005	
2/1/2017	<0.0005	
3/24/2017	<0.0005	
10/5/2017	<0.0005	
3/15/2018	<0.0005	
10/4/2018	<0.0005	
4/8/2019	<0.0005	
9/30/2019	<0.0005	
3/26/2020	<0.0005	
9/22/2020	<0.0005	
3/8/2021	<0.0005	
8/10/2021	<0.0005	
2/4/2022		<0.0005
8/8/2022		<0.0005
1/30/2023		<0.0005

	GWA-2	GWA-2
3/6/2007	<0.0005	
5/8/2007	<0.0005	
7/7/2007	<0.0005	
8/28/2007	<0.0005	
11/6/2007	<0.0005	
5/9/2008	<0.0005	
12/3/2008	<0.0005	
4/7/2009	<0.0005	
10/1/2009	<0.0005	
4/13/2010	<0.0005	
10/7/2010	<0.0005	
4/6/2011	<0.0005	
10/6/2011	<0.0005	
4/3/2012	<0.0005	
9/19/2012	<0.0005	
3/12/2013	<0.0005	
9/9/2013	<0.0005	
3/4/2014	<0.0005	
9/3/2014	<0.0005	
4/22/2015	<0.0005	
9/30/2015	<0.0005	
3/22/2016	<0.0005	
5/17/2016	<0.0005	
7/5/2016	<0.0005	
9/7/2016	<0.0005	
10/18/2016	<0.0005	
12/7/2016	<0.0005	
1/31/2017	<0.0005	
3/23/2017	<0.0005	
10/4/2017	<0.0005	
3/14/2018	<0.0005	
10/4/2018	<0.0005	
4/8/2019	<0.0005	
9/30/2019	<0.0005	
3/26/2020	<0.0005	
9/21/2020	<0.0005	
3/9/2021	<0.0005	
8/9/2021	<0.0005	
2/4/2022		<0.0005
8/8/2022		<0.0005
1/30/2023		<0.0005

	GWA-3	GWA-3
3/6/2007	<0.0005	
5/8/2007	<0.0005	
7/17/2007	<0.0005	
8/28/2007	<0.0005	
11/6/2007	<0.0005	
5/8/2008	<0.0005	
12/3/2008	<0.0005	
4/7/2009	<0.0005	
10/2/2009	<0.0005	
4/14/2010	<0.0005	
10/14/2010	<0.0005	
4/5/2011	<0.0005	
10/12/2011	<0.0005	
4/4/2012	<0.0005	
9/26/2012	<0.0005	
3/12/2013	<0.0005	
9/10/2013	<0.0005	
3/11/2014	<0.0005	
9/8/2014	<0.0005	
4/21/2015	8E-05 (J)	
9/29/2015	<0.0005	
3/22/2016	<0.0005	
5/17/2016	<0.0005	
7/5/2016	<0.0005	
9/7/2016	<0.0005	
10/18/2016	<0.0005	
12/6/2016	<0.0005	
2/1/2017	<0.0005	
3/23/2017	<0.0005	
10/4/2017	<0.0005	
3/15/2018	<0.0005	
10/4/2018	<0.0005	
4/5/2019	<0.0005	
9/30/2019	<0.0005	
3/26/2020	<0.0005	
9/23/2020	<0.0005	
3/8/2021	<0.0005	
8/9/2021	<0.0005	
2/4/2022		<0.0005
8/8/2022		<0.0005
1/30/2023		<0.0005

	GWA-4	GWA-4
3/6/2007	<0.0005	
5/8/2007	<0.0005	
7/17/2007	<0.0005	
8/28/2007	<0.0005	
11/6/2007	<0.0005	
5/8/2008	<0.0005	
12/3/2008	<0.0005	
4/7/2009	<0.0005	
10/2/2009	<0.0005	
4/14/2010	<0.0005	
10/14/2010	<0.0005	
4/5/2011	<0.0005	
10/12/2011	<0.0005	
4/4/2012	<0.0005	
9/24/2012	<0.0005	
3/12/2013	<0.0005	
9/10/2013	<0.0005	
3/11/2014	<0.0005	
9/8/2014	<0.0005	
4/21/2015	<0.0005	
9/29/2015	<0.0005	
3/22/2016	<0.0005	
5/17/2016	<0.0005	
7/6/2016	<0.0005	
9/7/2016	<0.0005	
10/18/2016	<0.0005	
12/6/2016	<0.0005	
2/1/2017	<0.0005	
3/24/2017	<0.0005	
10/4/2017	<0.0005	
3/15/2018	<0.0005	
10/4/2018	<0.0005	
4/8/2019	<0.0005	
9/30/2019	<0.0005	
3/26/2020	<0.0005	
9/23/2020	<0.0005	
3/8/2021	<0.0005	
8/9/2021	<0.0005	
2/4/2022		<0.0005
8/8/2022		<0.0005
1/30/2023		<0.0005

	GWC-19	GWC-19
3/6/2007	<0.0005	
5/9/2007	<0.0005	
7/17/2007	<0.0005	
8/28/2007	<0.0005	
11/7/2007	<0.0005	
5/7/2008	<0.0005	
12/4/2008	<0.0005	
4/14/2009	<0.0005	
10/2/2009	<0.0005	
4/13/2010	<0.0005	
10/12/2010	<0.0005	
4/6/2011	<0.0005	
10/12/2011	<0.0005	
4/5/2012	<0.0005	
9/25/2012	<0.0005	
3/13/2013	<0.0005	
9/11/2013	<0.0005	
3/10/2014	<0.0005	
9/9/2014	<0.0005	
4/22/2015	<0.0005	
9/30/2015	<0.0005	
3/24/2016	<0.0005	
5/18/2016	<0.0005	
7/6/2016	<0.0005	
9/8/2016	<0.0005	
10/18/2016	<0.0005	
12/7/2016	<0.0005	
2/2/2017	<0.0005	
3/27/2017	<0.0005	
10/5/2017	<0.0005	
3/15/2018	<0.0005	
10/4/2018	<0.0005	
4/9/2019	<0.0005	
10/1/2019	<0.0005	
3/31/2020	<0.0005	
9/28/2020	0.0001 (J)	
3/10/2021	<0.0005	
8/10/2021	<0.0005	
2/7/2022		<0.0005
8/9/2022		<0.0005
1/31/2023		<0.0005

	GWC-7	GWC-7
5/9/2007	0.28 (o)	
7/6/2007	0.093 (o)	
8/28/2007	0.057 (o)	
11/6/2007	0.036 (o)	
5/8/2008	0.013	
12/2/2008	0.01	
4/8/2009	0.0076	
10/1/2009	0.0057	
4/13/2010	0.0061	
10/7/2010	0.0039	
4/5/2011	0.0025	
10/4/2011	0.0024	
4/3/2012	0.0008	
9/18/2012	0.002	
3/12/2013	<0.0005	
9/10/2013	<0.0005	
3/5/2014	0.00037 (J)	
9/8/2014	0.00055 (J)	
4/21/2015	0.00033 (J)	
9/29/2015	0.00046 (J)	
3/23/2016	<0.0005	
5/18/2016	<0.0005	
7/6/2016	0.0002 (J)	
9/7/2016	0.0002 (J)	
10/18/2016	0.0002 (J)	
12/8/2016	0.0003 (J)	
2/2/2017	<0.0005	
3/24/2017	<0.0005	
10/4/2017	0.0001 (J)	
3/15/2018	<0.0005	
10/4/2018	0.0002 (J)	
4/8/2019	5.8E-05 (J)	
10/1/2019	0.0001 (J)	
3/30/2020	<0.0005	
9/24/2020	5E-05 (J)	
3/9/2021	<0.0005	
8/10/2021	6.1E-05 (J)	
2/4/2022		<0.0005
8/10/2022		7.6E-05 (J)
1/31/2023		0.00021 (J)

	GWA-1	GWA-1
3/6/2007	<0.0005	
5/8/2007	<0.0005	
7/7/2007	<0.0005	
8/28/2007	<0.0005	
11/6/2007	<0.0005	
5/9/2008	<0.0005	
12/3/2008	<0.0005	
4/7/2009	<0.0005	
10/1/2009	<0.0005	
4/14/2010	<0.0005	
10/13/2010	<0.0005	
4/6/2011	<0.0005	
10/10/2011	<0.0005	
4/3/2012	<0.0005	
9/24/2012	<0.0005	
3/12/2013	<0.0005	
9/11/2013	<0.0005	
3/4/2014	<0.0005	
9/3/2014	<0.0005	
4/21/2015	<0.0005	
9/30/2015	<0.0005	
3/22/2016	<0.0005	
5/17/2016	<0.0005	
7/5/2016	<0.0005	
9/7/2016	<0.0005	
10/18/2016	<0.0005	
12/6/2016	<0.0005	
1/31/2017	<0.0005	
3/23/2017	<0.0005	
10/4/2017	<0.0005	
3/14/2018	<0.0005	
10/4/2018	<0.0005	
4/8/2019	<0.0005	
9/30/2019	<0.0005	
3/26/2020	<0.0005	
9/23/2020	<0.0005	
3/8/2021	<0.0005	
8/9/2021	<0.0005	
2/4/2022		<0.0005
8/8/2022		<0.0005
1/30/2023		<0.0005

	GWA-11	GWA-11
3/7/2007	<0.0005	
5/8/2007	<0.0005	
7/17/2007	<0.0005	
8/28/2007	<0.0005	
11/7/2007	<0.0005	
5/9/2008	<0.0005	
12/2/2008	<0.0005	
4/8/2009	<0.0005	
10/1/2009	<0.0005	
4/14/2010	<0.0005	
10/13/2010	<0.0005	
4/6/2011	<0.0005	
10/4/2011	<0.0005	
4/10/2012	<0.0005	
9/26/2012	<0.0005	
3/12/2013	<0.0005	
9/10/2013	<0.0005	
3/4/2014	<0.0005	
9/3/2014	<0.0005	
4/21/2015	<0.0005	
9/29/2015	<0.0005	
3/22/2016	<0.0005	
5/17/2016	<0.0005	
7/6/2016	<0.0005	
9/7/2016	<0.0005	
10/18/2016	<0.0005	
12/6/2016	<0.0005	
2/1/2017	<0.0005	
3/24/2017	<0.0005	
10/5/2017	<0.0005	
3/15/2018	<0.0005	
10/4/2018	<0.0005	
4/8/2019	<0.0005	
9/30/2019	<0.0005	
3/26/2020	<0.0005	
9/22/2020	<0.0005	
3/8/2021	<0.0005	
8/10/2021	<0.0005	
2/4/2022		<0.0005
8/8/2022		<0.0005
1/30/2023		<0.0005

	GWA-2	GWA-2
3/6/2007	<0.0005	
5/8/2007	<0.0005	
7/7/2007	<0.0005	
8/28/2007	<0.0005	
11/6/2007	<0.0005	
5/9/2008	<0.0005	
12/3/2008	<0.0005	
4/7/2009	<0.0005	
10/1/2009	<0.0005	
4/13/2010	<0.0005	
10/7/2010	<0.0005	
4/6/2011	<0.0005	
10/6/2011	<0.0005	
4/3/2012	<0.0005	
9/19/2012	<0.0005	
3/12/2013	<0.0005	
9/9/2013	<0.0005	
3/4/2014	<0.0005	
9/3/2014	<0.0005	
4/22/2015	<0.0005	
9/30/2015	<0.0005	
3/22/2016	<0.0005	
5/17/2016	<0.0005	
7/5/2016	<0.0005	
9/7/2016	<0.0005	
10/18/2016	<0.0005	
12/7/2016	<0.0005	
1/31/2017	<0.0005	
3/23/2017	<0.0005	
10/4/2017	<0.0005	
3/14/2018	<0.0005	
10/4/2018	<0.0005	
4/8/2019	<0.0005	
9/30/2019	<0.0005	
3/26/2020	<0.0005	
9/21/2020	<0.0005	
3/9/2021	<0.0005	
8/9/2021	<0.0005	
2/4/2022		<0.0005
8/8/2022		<0.0005
1/30/2023		<0.0005

	GWA-3	GWA-3
3/6/2007	<0.0005	
5/8/2007	<0.0005	
7/17/2007	<0.0005	
8/28/2007	<0.0005	
11/6/2007	<0.0005	
5/8/2008	<0.0005	
12/3/2008	<0.0005	
4/7/2009	<0.0005	
10/2/2009	<0.0005	
4/14/2010	<0.0005	
10/14/2010	<0.0005	
4/5/2011	<0.0005	
10/12/2011	<0.0005	
4/4/2012	<0.0005	
9/26/2012	<0.0005	
3/12/2013	<0.0005	
9/10/2013	<0.0005	
3/11/2014	<0.0005	
9/8/2014	<0.0005	
4/21/2015	<0.0005	
9/29/2015	<0.0005	
3/22/2016	<0.0005	
5/17/2016	<0.0005	
7/5/2016	<0.0005	
9/7/2016	<0.0005	
10/18/2016	<0.0005	
12/6/2016	<0.0005	
2/1/2017	<0.0005	
3/23/2017	<0.0005	
10/4/2017	<0.0005	
3/15/2018	<0.0005	
10/4/2018	<0.0005	
4/5/2019	<0.0005	
9/30/2019	<0.0005	
3/26/2020	<0.0005	
9/23/2020	<0.0005	
3/8/2021	<0.0005	
8/9/2021	<0.0005	
2/4/2022		<0.0005
8/8/2022		<0.0005
1/30/2023		<0.0005

Constituent: Cadmium (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-4	GWA-4
3/6/2007	<0.0005	
5/8/2007	<0.0005	
7/17/2007	<0.0005	
8/28/2007	<0.0005	
11/6/2007	<0.0005	
5/8/2008	<0.0005	
12/3/2008	<0.0005	
4/7/2009	<0.0005	
10/2/2009	<0.0005	
4/14/2010	<0.0005	
10/14/2010	<0.0005	
4/5/2011	<0.0005	
10/12/2011	<0.0005	
4/4/2012	<0.0005	
9/24/2012	<0.0005	
3/12/2013	<0.0005	
9/10/2013	<0.0005	
3/11/2014	<0.0005	
9/8/2014	<0.0005	
4/21/2015	<0.0005	
9/29/2015	<0.0005	
3/22/2016	<0.0005	
5/17/2016	<0.0005	
7/6/2016	<0.0005	
9/7/2016	<0.0005	
10/18/2016	<0.0005	
12/6/2016	<0.0005	
2/1/2017	0.0001 (J)	
3/24/2017	<0.0005	
10/4/2017	<0.0005	
3/15/2018	<0.0005	
10/4/2018	<0.0005	
4/8/2019	<0.0005	
9/30/2019	<0.0005	
3/26/2020	<0.0005	
9/23/2020	<0.0005	
3/8/2021	<0.0005	
8/9/2021	<0.0005	
2/4/2022		<0.0005
8/8/2022		<0.0005

<0.0005

1/30/2023

	GWC-10	GWC-10	
3/7/2007	<0.0005		
5/8/2007	<0.0005		
7/17/2007	<0.0005		
8/28/2007	<0.0005		
11/7/2007	<0.0005		
5/9/2008	<0.0005		
12/2/2008	<0.0005		
4/8/2009	<0.0005		
10/1/2009	<0.0005		
4/14/2010	<0.0005		
10/13/2010	<0.0005		
4/6/2011	<0.0005		
10/4/2011	<0.0005		
4/10/2012	<0.0005		
9/26/2012	<0.0005		
3/12/2013	<0.0005		
9/10/2013	<0.0005		
3/4/2014	<0.0005		
9/3/2014	<0.0005		
4/21/2015	<0.0005		
9/30/2015	<0.0005		
3/23/2016	<0.0005		
5/17/2016	<0.0005		
7/6/2016	<0.0005		
9/7/2016	<0.0005		
10/18/2016	<0.0005		
12/6/2016	<0.0005		
2/2/2017	9E-05 (J)		
3/27/2017	<0.0005		
10/5/2017	<0.0005		
3/15/2018	<0.0005		
10/4/2018	<0.0005		
4/9/2019	<0.0005		
10/1/2019	<0.0005		
3/27/2020	<0.0005		
9/25/2020	<0.0005		
3/9/2021	<0.0005		
8/10/2021	<0.0005		
2/4/2022		<0.0005	
8/9/2022		<0.0005	
1/30/2023		<0.0005	

	GWC-18	GWC-18
3/7/2007	<0.0005	
5/9/2007	<0.0005	
7/17/2007	<0.0005	
8/28/2007	<0.0005	
11/7/2007	<0.0005	
5/7/2008	<0.0005	
12/3/2008	<0.0005	
4/14/2009	<0.0005	
10/1/2009	<0.0005	
4/13/2010	<0.0005	
10/12/2010	<0.0005	
4/6/2011	<0.0005	
10/12/2011	<0.0005	
4/5/2012	<0.0005	
9/19/2012	<0.0005	
3/13/2013	<0.0005	
9/10/2013	<0.0005	
3/10/2014	<0.0005	
9/3/2014	<0.0005	
4/22/2015	<0.0005	
9/30/2015	<0.0005	
3/24/2016	<0.0005	
5/18/2016	<0.0005	
7/7/2016	<0.0005	
9/8/2016	<0.0005	
10/19/2016	<0.0005	
12/8/2016	<0.0005	
2/2/2017	8E-05 (J)	
3/27/2017	<0.0005	
10/5/2017	<0.0005	
3/16/2018	<0.0005	
10/5/2018	<0.0005	
4/9/2019	<0.0005	
10/1/2019	<0.0005	
3/30/2020	<0.0005	
9/24/2020	<0.0005	
3/9/2021	<0.0005	
8/10/2021	<0.0005	
2/4/2022		<0.0005
8/9/2022		<0.0005
1/31/2023		<0.0005

	GWC-20	GWC-20
3/7/2007	<0.0005	
5/9/2007	<0.0005	
7/17/2007	<0.0005	
8/29/2007	<0.0005	
11/7/2007	<0.0005	
5/7/2008	<0.0005	
12/5/2008	<0.0005	
4/14/2009	<0.0005	
9/30/2009	<0.0005	
4/13/2010	<0.0005	
10/12/2010	<0.0005	
10/12/2011	<0.0005	
4/9/2012	<0.0005	
9/25/2012	<0.0005	
3/13/2013	<0.0005	
9/11/2013	<0.0005	
3/10/2014	<0.0005	
9/9/2014	<0.0005	
4/23/2015	<0.0005	
9/30/2015	<0.0005	
3/23/2016	<0.0005	
5/18/2016	<0.0005	
7/7/2016	<0.0005	
9/8/2016	<0.0005	
10/19/2016	<0.0005	
12/7/2016	<0.0005	
2/3/2017	<0.0005	
3/27/2017	<0.0005	
10/5/2017	<0.0005	
3/16/2018	<0.0005	
10/5/2018	0.00011 (J)	
4/9/2019	<0.0005	
10/1/2019	<0.0005	
3/31/2020	<0.0005	
9/23/2020	<0.0005	
3/10/2021	<0.0005	
8/10/2021	<0.0005	
2/7/2022		<0.0005
8/9/2022		<0.0005
1/31/2023		<0.0005

	GWC-21	GWC-21
3/6/2007	<0.0005	
5/9/2007	<0.0005	
7/17/2007	<0.0005	
8/29/2007	<0.0005	
11/7/2007	<0.0005	
5/7/2008	<0.0005	
12/5/2008	<0.0005	
4/27/2009	<0.0005	
9/30/2009	<0.0005	
4/13/2010	<0.0005	
10/12/2010	<0.0005	
10/5/2011	<0.0005	
4/10/2012	<0.0005	
9/26/2012	<0.0005	
3/13/2013	<0.0005	
9/11/2013	<0.0005	
3/11/2014	<0.0005	
9/9/2014	<0.0005	
9/30/2015	<0.0005	
3/24/2016	<0.0005	
5/18/2016	<0.0005	
7/7/2016	0.0001 (J)	
9/8/2016	<0.0005	
10/19/2016	<0.0005	
12/7/2016	<0.0005	
2/2/2017	0.0001 (J)	
3/27/2017	<0.0005	
10/5/2017	<0.0005	
3/15/2018	<0.0005	
10/4/2018	<0.0005	
4/9/2019	<0.0005	
10/1/2019	<0.0005	
3/31/2020	<0.0005	
9/24/2020	<0.0005	
3/9/2021	<0.0005	
8/10/2021	<0.0005	
2/7/2022		<0.0005
8/9/2022		<0.0005
1/31/2023		<0.0005

	GWC-23	GWC-23
3/6/2007	<0.0005	
5/9/2007	<0.0005	
7/17/2007	<0.0005	
8/29/2007	<0.0005	
11/7/2007	<0.0005	
5/7/2008	<0.0005	
12/5/2008	<0.0005	
4/14/2009	<0.0005	
10/1/2009	<0.0005	
4/14/2010	<0.0005	
10/13/2010	<0.0005	
4/6/2011	<0.0005	
10/12/2011	<0.0005	
4/9/2012	<0.0005	
9/19/2012	<0.0005	
3/13/2013	<0.0005	
9/10/2013	<0.0005	
3/11/2014	<0.0005	
9/3/2014	<0.0005	
4/23/2015	<0.0005	
9/30/2015	<0.0005	
3/23/2016	<0.0005	
5/19/2016	<0.0005	
7/7/2016	<0.0005	
9/8/2016	<0.0005	
10/19/2016	<0.0005	
12/7/2016	<0.0005	
2/3/2017	8E-05 (J)	
3/27/2017	<0.0005	
10/5/2017	<0.0005	
3/15/2018	<0.0005	
10/5/2018	<0.0005	
4/8/2019	<0.0005	
10/1/2019	<0.0005	
3/26/2020	<0.0005	
9/23/2020	<0.0005	
3/9/2021	<0.0005	
8/10/2021	<0.0005	
2/7/2022		<0.0005
8/8/2022		<0.0005
1/31/2023		<0.0005

	GWC-5	GWC-5
3/7/2007	0.0015	
5/8/2007	<0.0005	
7/6/2007	<0.0005	
8/28/2007	<0.0005	
11/6/2007	<0.0005	
5/8/2008	<0.0005	
12/3/2008	<0.0005	
4/7/2009	<0.0005	
10/1/2009	<0.0005	
4/14/2010	<0.0005	
10/14/2010	<0.0005	
4/5/2011	<0.0005	
10/12/2011	<0.0005	
4/4/2012	<0.0005	
9/24/2012	<0.0005	
3/12/2013	<0.0005	
9/10/2013	<0.0005	
3/5/2014	<0.0005	
9/9/2014	<0.0005	
4/21/2015	<0.0005	
9/29/2015	<0.0005	
3/23/2016	<0.0005	
5/17/2016	<0.0005	
7/6/2016	<0.0005	
9/7/2016	<0.0005	
10/18/2016	<0.0005	
12/8/2016	<0.0005	
2/1/2017	<0.0005	
3/23/2017	<0.0005	
10/4/2017	<0.0005	
3/16/2018	<0.0005	
10/4/2018	<0.0005	
4/9/2019	<0.0005	
10/1/2019	<0.0005	
3/31/2020	<0.0005	
9/25/2020	<0.0005	
3/9/2021	<0.0005	
8/10/2021	<0.0005	
2/4/2022		<0.0005
8/9/2022		<0.0005
1/31/2023		<0.0005

	GWC-7	GWC-7
5/9/2007	0.023 (o)	
7/6/2007	0.0081 (o)	
8/28/2007	0.0035	
11/6/2007	0.0028	
5/8/2008	<0.0005	
12/2/2008	<0.0005	
4/8/2009	0.0013	
10/1/2009	<0.0005	
4/13/2010	<0.0005	
10/7/2010	<0.0005	
4/5/2011	<0.0005	
10/4/2011	<0.0005	
4/3/2012	<0.0005	
9/18/2012	<0.0005	
3/12/2013	<0.0005	
9/10/2013	<0.0005	
3/5/2014	<0.0005	
9/8/2014	<0.0005	
4/21/2015	0.0015	
9/29/2015	<0.0005	
3/23/2016	<0.0005	
5/18/2016	<0.0005	
7/6/2016	<0.0005	
9/7/2016	<0.0005	
10/18/2016	<0.0005	
12/8/2016	<0.0005	
2/2/2017	0.0001 (J)	
3/24/2017	<0.0005	
10/4/2017	<0.0005	
3/15/2018	<0.0005	
10/4/2018	<0.0005	
4/8/2019	<0.0005	
10/1/2019	<0.0005	
3/30/2020	<0.0005	
9/24/2020	<0.0005	
3/9/2021	<0.0005	
8/10/2021	<0.0005	
2/4/2022		<0.0005
8/10/2022		<0.0005
1/31/2023		<0.0005

	GWC-8	GWC-8
5/9/2007	<0.0005	
7/6/2007	<0.0005	
8/28/2007	<0.0005	
11/6/2007	<0.0005	
5/8/2008	<0.0005	
12/2/2008	<0.0005	
4/8/2009	<0.0005	
9/30/2009	<0.0005	
4/13/2010	<0.0005	
10/13/2010	<0.0005	
4/5/2011	<0.0005	
10/4/2011	<0.0005	
4/3/2012	<0.0005	
9/19/2012	<0.0005	
3/12/2013	<0.0005	
9/10/2013	<0.0005	
3/5/2014	<0.0005	
9/9/2014	<0.0005	
4/22/2015	<0.0005	
9/29/2015	<0.0005	
3/23/2016	<0.0005	
5/18/2016	<0.0005	
7/6/2016	<0.0005	
9/8/2016	<0.0005	
10/18/2016	<0.0005	
12/8/2016	<0.0005	
2/2/2017	8E-05 (J)	
3/24/2017	<0.0005	
10/5/2017	<0.0005	
3/14/2018	<0.0005	
10/4/2018	<0.0005	
4/8/2019	<0.0005	
10/1/2019	<0.0005	
3/27/2020	<0.0005	
9/24/2020	<0.0005	
3/9/2021	<0.0005	
8/10/2021	<0.0005	
2/4/2022		<0.0005
8/9/2022		<0.0005
1/31/2023		<0.0005

Constituent: Cadmium (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-9	GWC-9
3/7/2007	<0.0005	
5/8/2007	<0.0005	
7/6/2007	<0.0005	
8/28/2007	<0.0005	
11/6/2007	<0.0005	
5/8/2008	<0.0005	
12/2/2008	<0.0005	
4/8/2009	<0.0005	
9/30/2009	<0.0005	
4/13/2010	<0.0005	
10/13/2010	<0.0005	
4/5/2011	<0.0005	
10/4/2011	<0.0005	
4/4/2012	<0.0005	
9/19/2012	<0.0005	
3/12/2013	<0.0005	
9/10/2013	<0.0005	
3/5/2014	<0.0005	
9/3/2014	<0.0005	
4/21/2015	0.00029 (J)	
9/29/2015	<0.0005	
3/23/2016	<0.0005	
5/18/2016	<0.0005	
7/6/2016	<0.0005	
9/8/2016	<0.0005	
10/19/2016	<0.0005	
12/8/2016	<0.0005	
2/2/2017	8E-05 (J)	
3/27/2017	<0.0005	
10/5/2017	<0.0005	
3/15/2018	<0.0005	
10/5/2018	<0.0005	
4/8/2019	<0.0005	
10/1/2019	<0.0005	
3/27/2020	<0.0005	
9/24/2020	<0.0005	
3/9/2021	<0.0005	
8/10/2021	<0.0005	
2/4/2022		<0.0005
8/9/2022		<0.0005

<0.0005

1/31/2023

3/6/2007 <0.005 5/8/2007 <0.005 7/7/2007 <0.005 8/28/2007 <0.005
7/7/2007 <0.005 8/28/2007 <0.005
8/28/2007 <0.005
11/6/2007 <0.005
5/9/2008 <0.005
12/3/2008 < 0.005
4/7/2009 <0.005
10/1/2009 <0.005
4/14/2010 <0.005
10/13/2010 <0.005
4/6/2011 <0.005
10/10/2011 <0.005
4/3/2012 <0.005
9/24/2012 <0.005
3/12/2013 <0.005
9/11/2013 <0.005
3/4/2014 0.00032 (J)
9/3/2014 <0.005
4/21/2015 <0.005
9/30/2015 <0.005
3/22/2016 <0.005
5/17/2016 <0.005
7/5/2016 <0.005
9/7/2016 <0.005
10/18/2016 <0.005
12/6/2016 <0.005
1/31/2017 <0.005
3/23/2017 <0.005
10/4/2017 <0.005
3/14/2018 0.016
10/4/2018 <0.005
4/8/2019 <0.005
9/30/2019 <0.005
3/26/2020 <0.005
9/23/2020 <0.005
3/8/2021 <0.005
8/9/2021 <0.005
2/4/2022 <0.005
8/8/2022 <0.005
1/30/2023 <0.005

Constituent: Chromium (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-11	GWA-11
3/7/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	0.0013	
11/7/2007	0.0024	
5/9/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/4/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	0.0018 (J)	
2/1/2017	<0.005	
3/24/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	<0.005	
9/30/2019	<0.005	
3/26/2020	<0.005	
9/22/2020	<0.005	
3/8/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005

<0.005

1/30/2023

	GWA-2	GWA-2
3/6/2007	<0.005	
5/8/2007	<0.005	
7/7/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/9/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/7/2010	<0.005	
4/6/2011	<0.005	
10/6/2011	<0.005	
4/3/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/9/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/5/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/7/2016	<0.005	
1/31/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	<0.005	
9/30/2019	<0.005	
3/26/2020	0.00043 (J)	
9/21/2020	<0.005	
3/9/2021	<0.005	
8/9/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/30/2023		<0.005

	GWA-3	GWA-3
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	0.0014	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/5/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
2/1/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/5/2019	<0.005	
9/30/2019	<0.005	
3/26/2020	0.00062 (J)	
9/23/2020	<0.005	
3/8/2021	<0.005	
8/9/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/30/2023		<0.005

	GWA-4	GWA-4
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
2/1/2017	<0.005	
3/24/2017	0.0004 (J)	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	<0.005	
9/30/2019	<0.005	
3/26/2020	0.0013 (J)	
9/23/2020	<0.005	
3/8/2021	<0.005	
8/9/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/30/2023		<0.005

	GWC-10	GWC-10
3/7/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/9/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/4/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
5/17/2016	0.00424 (J)	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	0.0013 (J)	
2/2/2017	0.001 (J)	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	<0.005	
3/27/2020	<0.005	
9/25/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/9/2022		<0.005
1/30/2023		<0.005

	GWC-18	GWC-18
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/3/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/5/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/10/2014	<0.005	
9/3/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/24/2016	<0.005	
5/18/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/8/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/16/2018	<0.005	
10/5/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	0.00086 (J)	
3/30/2020	0.00071 (J)	
9/24/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005

Constituent: Chromium (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-19	GWC-19
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/4/2008	<0.005	
4/14/2009	<0.005	
10/2/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/5/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/10/2014	<0.005	
9/9/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/24/2016	<0.005	
5/18/2016	<0.005	
7/6/2016	<0.005	
9/8/2016	<0.005	
10/18/2016	<0.005	
12/7/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	0.0012 (J)	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	<0.005	
3/31/2020	0.00042 (J)	
9/28/2020	0.00063 (J)	
3/10/2021	<0.005	
8/10/2021	<0.005	
2/7/2022		<0.005
8/9/2022		<0.005
410410000		

<0.005

1/31/2023

	GWC-20	GWC-20
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	0.0016	
11/7/2007	0.0016	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
10/12/2011	<0.005	
4/9/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/10/2014	<0.005	
9/9/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	0.0064 (J)	
12/7/2016	<0.005	
2/3/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/16/2018	<0.005	
10/5/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	<0.005	
3/31/2020	<0.005	
9/23/2020	<0.005	
3/10/2021	<0.005	
8/10/2021	<0.005	
2/7/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005

	GWC-21	GWC-21
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/27/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
10/5/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/11/2014	<0.005	
9/9/2014	0.0015	
9/30/2015	<0.005	
3/24/2016	<0.005	
5/18/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/7/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	<0.005	
3/31/2020	0.00093 (J)	
9/24/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/7/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005

	GWC-22	GWC-22
3/6/2007	<0.005	
5/9/2007	0.002	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	0.0013	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/5/2011	<0.005	
4/9/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/11/2014	<0.005	
9/9/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/7/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	0.0023 (J)	
10/1/2019	<0.005	
3/31/2020	0.0015 (J)	
9/23/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/7/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005

Constituent: Chromium (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-23	GWC-23
3/6/2007	<0.005	
5/9/2007	0.0013	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/9/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/3/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
5/19/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/7/2016	<0.005	
2/3/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/5/2018	<0.005	
4/8/2019	<0.005	
10/1/2019	0.0051 (J)	
3/26/2020	<0.005	
9/23/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/7/2022		<0.005
8/8/2022		<0.005

<0.005

1/31/2023

 $\label{lem:constituent:Chromium (mg/L)} Constituent: Chromium (mg/L) \quad Analysis Run 4/5/2023 \ 5:32 \ PM \quad View: Appendix \ I - ND \\ Plant Hammond \quad Client: Southern Company \quad Data: Huffaker Road Landfill \\$

	GWC-5	GWC-5	
3/7/2007	<0.005		
5/8/2007	<0.005		
7/6/2007	<0.005		
8/28/2007	<0.005		
11/6/2007	<0.005		
5/8/2008	<0.005		
12/3/2008	<0.005		
4/7/2009	<0.005		
10/1/2009	<0.005		
4/14/2010	<0.005		
10/14/2010	<0.005		
4/5/2011	<0.005		
10/12/2011	<0.005		
4/4/2012	<0.005		
9/24/2012	<0.005		
3/12/2013	<0.005		
9/10/2013	<0.005		
3/5/2014	<0.005		
9/9/2014	<0.005		
4/21/2015	<0.005		
9/29/2015	<0.005		
3/23/2016	<0.005		
5/17/2016	<0.005		
7/6/2016	<0.005		
9/7/2016	<0.005		
10/18/2016	<0.005		
12/8/2016	<0.005		
2/1/2017	<0.005		
3/23/2017	<0.005		
10/4/2017	<0.005		
3/16/2018	<0.005		
10/4/2018	<0.005		
4/9/2019	<0.005		
10/1/2019	0.0012 (J)		
3/31/2020	<0.005		
9/25/2020	<0.005		
3/9/2021	<0.005		
8/10/2021	<0.005		
2/4/2022		<0.005	
8/9/2022		<0.005	
1/31/2023		<0.005	

	GWC-6	GWC-6
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/6/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/18/2012	<0.005	
3/12/2013	<0.005	
9/9/2013	<0.005	
3/5/2014	<0.005	
9/8/2014	<0.005	
4/22/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/8/2016	<0.005	
2/1/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/16/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	<0.005	
10/1/2019	<0.005	
3/31/2020	0.00085 (J)	
9/25/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/31/2023		<0.005

Constituent: Chromium (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-7	GWC-7
5/9/2007	0.11 (o)	
7/6/2007	0.0029	
8/28/2007	0.0038	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	0.0016	
4/13/2010	<0.005	
10/7/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	0.0018	
4/3/2012	<0.005	
9/18/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/8/2016	<0.005	
2/2/2017	<0.005	
3/24/2017	0.0011 (J)	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	<0.005	
10/1/2019	<0.005	
3/30/2020	0.00041 (J)	
9/24/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/10/2022		<0.005

<0.005

1/31/2023

	GWC-8	GWC-8
5/9/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	0.0035	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/13/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	0.0017	
3/5/2014	<0.005	
9/9/2014	<0.005	
4/22/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/6/2016	<0.005	
9/8/2016	<0.005	
10/18/2016	<0.005	
12/8/2016	<0.005	
2/2/2017	<0.005	
3/24/2017	<0.005	
10/5/2017	0.0005 (J)	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	<0.005	
10/1/2019	0.0005 (J)	
3/27/2020	<0.005	
9/24/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005

	GWC-9	GWC-9		
3/7/2007	<0.005			
5/8/2007	0.0013			
7/6/2007	<0.005			
8/28/2007	0.0014			
11/6/2007	0.0024			
5/8/2008	<0.005			
12/2/2008	<0.005			
4/8/2009	<0.005			
9/30/2009	<0.005			
4/13/2010	<0.005			
10/13/2010	<0.005			
4/5/2011	<0.005			
10/4/2011	<0.005			
4/4/2012	<0.005			
9/19/2012	<0.005			
3/12/2013	<0.005			
9/10/2013	<0.005			
3/5/2014	<0.005			
9/3/2014	<0.005			
4/21/2015	<0.005			
9/29/2015	<0.005			
3/23/2016	<0.005			
5/18/2016	<0.005			
7/6/2016	<0.005			
9/8/2016	<0.005			
10/19/2016	<0.005			
12/8/2016	<0.005			
2/2/2017	<0.005			
3/27/2017	<0.005			
10/5/2017	<0.005			
3/15/2018	<0.005			
10/5/2018	<0.005			
4/8/2019	<0.005			
10/1/2019	<0.005			
3/27/2020	<0.005			
9/24/2020	<0.005			
3/9/2021	<0.005			
8/10/2021	<0.005			
2/4/2022		<0.005		
8/9/2022 1/31/2023		<0.005 <0.005		

	GWA-1	GWA-1
3/6/2007	<0.005	
5/8/2007	<0.005	
7/7/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/9/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/10/2011	<0.005	
4/3/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/11/2013	<0.005	
3/4/2014	0.00043 (J)	
9/3/2014	0.00076 (J)	
4/21/2015	0.00051 (J)	
9/30/2015	0.0006 (J)	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/5/2016	0.0004 (J)	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	0.0006 (J)	
1/31/2017	0.0006 (J)	
3/23/2017	0.0007 (J)	
10/4/2017	0.0006 (J)	
3/14/2018	<0.005	
10/4/2018	0.00058 (J)	
4/8/2019	0.00026 (J)	
9/30/2019	0.00042 (J)	
3/26/2020	0.00049 (J)	
9/23/2020	0.00051 (J)	
3/8/2021	0.0005 (J)	
8/9/2021	<0.005	
2/4/2022		0.00057 (J)
8/8/2022		0.00045 (J)
1/30/2023		0.0005 (J)

	GWA-11	GWA-11
3/7/2007	<0.01	
5/8/2007	<0.01	
7/17/2007	<0.01	
8/28/2007	<0.01	
11/7/2007	<0.01	
5/9/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	<0.01	
10/1/2009	<0.01	
4/14/2010	<0.01	
10/13/2010	<0.01	
4/6/2011	<0.01	
10/4/2011	<0.01	
4/10/2012	<0.01	
9/26/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/4/2014	0.00047 (J)	
9/3/2014	0.00065 (J)	
4/21/2015	0.00062 (J)	
9/29/2015	0.0009 (J)	
3/22/2016	<0.01	
5/17/2016	<0.01	
7/6/2016	0.0009 (J)	
9/7/2016	0.0011 (J)	
10/18/2016	0.0011 (J)	
12/6/2016	0.0011 (J)	
2/1/2017	0.0011 (J)	
3/24/2017	0.0008 (J)	
10/5/2017	0.0008 (J)	
3/15/2018	<0.01	
10/4/2018	0.00072 (J)	
4/8/2019	0.00076 (J)	
9/30/2019	0.00054 (J)	
3/26/2020	0.00063 (J)	
9/22/2020	0.00049 (J)	
3/8/2021	0.00049 (J)	
8/10/2021	0.00047 (J)	
2/4/2022		0.00051 (J)
8/8/2022		0.00058 (J)
1/30/2023		0.00043 (J)

Constituent: Cobalt (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-2	GWA-2
3/6/2007	<0.005	
5/8/2007	<0.005	
7/7/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/9/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/7/2010	<0.005	
4/6/2011	<0.005	
10/6/2011	<0.005	
4/3/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/9/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/5/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/7/2016	<0.005	
1/31/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	6.1E-05 (J)	
9/30/2019	<0.005	
3/26/2020	<0.005	
9/21/2020	<0.005	
3/9/2021	<0.005	
8/9/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005

<0.005

1/30/2023

	GWA-3	GWA-3
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/5/2016	0.0003 (J)	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	0.0007 (J)	
2/1/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/5/2019	0.00031 (J)	
9/30/2019	<0.005	
3/26/2020	<0.005	
9/23/2020	<0.005	
3/8/2021	<0.005	
8/9/2021	0.00042 (J)	
2/4/2022		0.00052 (J)
8/8/2022		0.0013 (J)
1/30/2023		<0.005

	GWA-4	GWA-4
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	0.0016	
3/12/2013	<0.005	
9/10/2013	0.002	
3/11/2014	<0.005	
9/8/2014	0.001 (J)	
4/21/2015	<0.005	
9/29/2015	0.0025 (J)	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	0.0004 (J)	
9/7/2016	0.0008 (J)	
10/18/2016	<0.005	
12/6/2016	0.0026 (J)	
2/1/2017	0.0013 (J)	
3/24/2017	0.0014 (J)	
10/4/2017	0.0012 (J)	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	0.00044 (J)	
9/30/2019	0.00079 (J)	
3/26/2020	0.00082 (J)	
9/23/2020	<0.005	
3/8/2021	0.00061 (J)	
8/9/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/30/2023		<0.005

Constituent: Cobalt (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-10	GWC-10
3/7/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/9/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/4/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	<0.005	
3/27/2020	0.00082 (J)	
9/25/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/9/2022		<0.005

<0.005

1/30/2023

	GWC-21	GWC-21
3/6/2007	<0.01	
5/9/2007	<0.01	
7/17/2007	<0.01	
8/29/2007	<0.01	
11/7/2007	<0.01	
5/7/2008	<0.01	
12/5/2008	<0.01	
4/27/2009	<0.01	
9/30/2009	<0.01	
4/13/2010	<0.01	
10/12/2010	<0.01	
10/5/2011	<0.01	
4/10/2012	<0.01	
9/26/2012	0.0033	
3/13/2013	<0.01	
9/11/2013	0.0018	
3/11/2014	0.00029 (J)	
9/9/2014	0.0011 (J)	
9/30/2015	<0.01	
3/24/2016	<0.01	
5/18/2016	<0.01	
7/7/2016	0.0016 (J)	
9/8/2016	0.0006 (J)	
10/19/2016	0.0006 (J)	
12/7/2016	0.0006 (J)	
2/2/2017	<0.01	
3/27/2017	0.001 (J)	
10/5/2017	0.0051 (J)	
3/15/2018	<0.01	
10/4/2018	0.0065 (J)	
4/9/2019	0.0023 (J)	
10/1/2019	0.00046 (J)	
3/31/2020	0.0019 (J)	
9/24/2020	0.00068 (J)	
3/9/2021	0.00049 (J)	
8/10/2021	0.0041 (J)	
2/7/2022		0.0028 (J)
8/9/2022		0.0027 (J)
1/31/2023		0.002 (J)

Constituent: Cobalt (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-23	GWC-23
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/9/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/3/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
5/19/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/7/2016	<0.005	
2/3/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/5/2018	0.00058 (J)	
4/8/2019	0.00046 (J)	
10/1/2019	0.00033 (J)	
3/26/2020	0.00035 (J)	
9/23/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/7/2022		<0.005
8/8/2022		<0.005

<0.005

1/31/2023

	GWC-5	GWC-5
3/7/2007	<0.005	
5/8/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	<0.005	
9/9/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/8/2016	<0.005	
2/1/2017	<0.005	
3/23/2017	0.0007 (J)	
10/4/2017	<0.005	
3/16/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	<0.005	
3/31/2020	<0.005	
9/25/2020	0.00057 (J)	
3/9/2021	0.00043 (J)	
8/10/2021	0.00098 (J)	
2/4/2022		<0.005
8/9/2022		0.00061 (J)
1/31/2023		<0.005

Constituent: Cobalt (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-6	GWC-6
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/6/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/18/2012	<0.005	
3/12/2013	<0.005	
9/9/2013	<0.005	
3/5/2014	<0.005	
9/8/2014	<0.005	
4/22/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/8/2016	<0.005	
2/1/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/16/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	0.00022 (J)	
10/1/2019	<0.005	
3/31/2020	<0.005	
9/25/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005

<0.005

1/31/2023

	GWC-7	GWC-7
5/9/2007	6.5 (o)	
7/6/2007	2.1 (o)	
8/28/2007	1.4 (o)	
11/6/2007	1.1 (o)	
5/8/2008	0.75	
12/2/2008	0.41	
4/8/2009	0.38	
10/1/2009	0.29	
4/13/2010	0.26	
10/7/2010	0.24	
4/5/2011	0.17	
10/4/2011	0.19	
4/3/2012	0.114	
9/18/2012	0.14	
3/12/2013	0.041	
9/10/2013	0.06	
3/5/2014	0.049	
9/8/2014	0.068	
4/21/2015	0.043	
9/29/2015	0.0525	
3/23/2016	0.0172	
5/18/2016	0.021	
7/6/2016	0.0278	
9/7/2016	0.0334	
10/18/2016	0.0368	
12/8/2016	0.0419	
2/2/2017	0.0113	
3/24/2017	0.0094 (J)	
10/4/2017	0.0237	
3/15/2018	0.014	
10/4/2018	0.024	
4/8/2019	0.0086 (J)	
10/1/2019	0.017	
3/30/2020	0.012	
9/24/2020	0.01	
3/9/2021	0.0093	
8/10/2021	0.013	
2/4/2022		0.0092
8/10/2022		0.013
1/31/2023		0.031

	GWC-8	GWC-8
5/9/2007	<0.01	
7/6/2007	<0.01	
8/28/2007	<0.01	
11/6/2007	<0.01	
5/8/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	<0.01	
9/30/2009	<0.01	
4/13/2010	<0.01	
10/13/2010	<0.01	
4/5/2011	<0.01	
10/4/2011	<0.01	
4/3/2012	<0.01	
9/19/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/5/2014	<0.01	
9/9/2014	<0.01	
4/22/2015	<0.01	
9/29/2015	<0.01	
3/23/2016	<0.01	
5/18/2016	<0.01	
7/6/2016	<0.01	
9/8/2016	<0.01	
10/18/2016	<0.01	
12/8/2016	<0.01	
2/2/2017	<0.01	
3/24/2017	<0.01	
10/5/2017	0.0003 (J)	
3/14/2018	<0.01	
10/4/2018	<0.01	
4/8/2019	0.0017 (J)	
10/1/2019	0.00081 (J)	
3/27/2020	0.0016 (J)	
9/24/2020	0.0011 (J)	
3/9/2021	0.0013 (J)	
8/10/2021	0.004 (J)	
2/4/2022		0.0019 (J)
8/9/2022		0.0013 (J)
1/31/2023		0.00055 (J)

Constituent: Cobalt (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-9	GWC-9
3/7/2007	<0.005	
5/8/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/13/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/4/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/6/2016	0.0004 (J)	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/8/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	0.0004 (J)	
3/15/2018	<0.005	
10/5/2018	<0.005	
4/8/2019	0.00041 (J)	
10/1/2019	0.00041 (J)	
3/27/2020	0.00063 (J)	
9/24/2020	<0.005	
3/9/2021	0.00042 (J)	
8/10/2021	<0.005	
2/4/2022		<0.005
8/9/2022		<0.005

<0.005

1/31/2023

	GWA-1	GWA-1
3/6/2007	<0.005	
5/8/2007	<0.005	
7/7/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/9/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/10/2011	<0.005	
4/3/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/11/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/30/2015	<0.005	
3/22/2016	<0.005	
9/7/2016	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	<0.005	
9/30/2019	<0.005	
3/26/2020	<0.005	
9/23/2020	<0.005	
3/8/2021	<0.005	
8/9/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/30/2023		<0.005

	GWA-11	GWA-11
3/7/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	0.0032	
11/7/2007	0.0036	
5/9/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/4/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
9/7/2016	<0.005	
3/24/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	0.0013 (J)	
9/30/2019	<0.005	
3/26/2020	<0.005	
9/22/2020	<0.005	
3/8/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/30/2023		<0.005

_			
		GWA-2	GWA-2
	3/6/2007	<0.005	
	5/8/2007	<0.005	
	7/7/2007	<0.005	
	8/28/2007	0.0032	
	11/6/2007	<0.005	
	5/9/2008	<0.005	
	12/3/2008	<0.005	
	4/7/2009	<0.005	
	10/1/2009	<0.005	
	4/13/2010	<0.005	
	10/7/2010	<0.005	
	4/6/2011	<0.005	
	10/6/2011	<0.005	
	4/3/2012	<0.005	
	9/19/2012	<0.005	
	3/12/2013	<0.005	
	9/9/2013	<0.005	
	3/4/2014	<0.005	
	9/3/2014	0.0011 (J)	
	4/22/2015	<0.005	
	9/30/2015	<0.005	
	3/22/2016	<0.005	
	9/7/2016	<0.005	
	3/23/2017	<0.005	
	10/4/2017	<0.005	
	3/14/2018	<0.005	
	10/4/2018	<0.005	
	4/8/2019	0.00029 (J)	
	9/30/2019	<0.005	
	3/26/2020	<0.005	
	9/21/2020	<0.005	
	3/9/2021	<0.005	
	8/9/2021	<0.005	
	2/4/2022		<0.005
	8/8/2022		<0.005
	1/30/2023		<0.005

	GWA-3	GWA-3
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	0.0028	
8/28/2007	0.0039	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
9/7/2016	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/5/2019	<0.005	
9/30/2019	<0.005	
3/26/2020	0.00022 (J)	
9/23/2020	<0.005	
3/8/2021	<0.005	
8/9/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/30/2023		<0.005

	GWA-4	GWA-4
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	0.0061	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	0.0066	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
9/7/2016	<0.005	
3/24/2017	<0.005	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	<0.005	
9/30/2019	<0.005	
3/26/2020	<0.005	
9/23/2020	<0.005	
3/8/2021	<0.005	
8/9/2021	0.00051 (J)	
2/4/2022		<0.005
8/8/2022		<0.005
1/30/2023		<0.005

	GWC-10	GWC-10
3/7/2007	0.0025	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/9/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
9/7/2016	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	<0.005	
3/27/2020	0.00022 (J)	
9/25/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/9/2022		0.0023 (J)
1/30/2023		<0.005

Constituent: Copper (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-18	GWC-18
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	0.0029	
5/7/2008	<0.005	
12/3/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/5/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/10/2014	<0.005	
9/3/2014	0.00099 (J)	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/24/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/16/2018	<0.005	
10/5/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	0.00037 (J)	
3/30/2020	<0.005	
9/24/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/9/2022		<0.005

<0.005

	GWC-19	GWC-19
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	0.0035	
5/7/2008	<0.005	
12/4/2008	<0.005	
4/14/2009	<0.005	
10/2/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/5/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/10/2014	<0.005	
9/9/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/24/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	0.0004 (J)	
10/5/2017	0.0005 (J)	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	0.0014 (J)	
10/1/2019	0.00019 (J)	
3/31/2020	<0.005	
9/28/2020	<0.005	
3/10/2021	<0.005	
8/10/2021	<0.005	
2/7/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005

	GWC-20	GWC-20
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	0.0028	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
10/12/2011	<0.005	
4/9/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/10/2014	<0.005	
9/9/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/16/2018	<0.005	
10/5/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	0.00023 (J)	
3/31/2020	<0.005	
9/23/2020	<0.005	
3/10/2021	<0.005	
8/10/2021	<0.005	
2/7/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005

	GWC-21	GWC-21
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	0.0029	
5/7/2008	0.0026	
12/5/2008	<0.005	
4/27/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
10/5/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/11/2014	<0.005	
9/9/2014	0.0013 (J)	
9/30/2015	0.0008 (J)	
3/24/2016	<0.005	
9/8/2016	0.0006 (J)	
3/27/2017	0.0005 (J)	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	0.00084 (J)	
3/31/2020	0.00082 (J)	
9/24/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/7/2022		<0.005
8/9/2022		<0.005
1/31/2023		0.0012 (J)

	GWC-22	GWC-22
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	0.0033	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/5/2011	<0.005	
4/9/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/11/2014	<0.005	
9/9/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	0.00031 (J)	
3/31/2020	0.0002 (J)	
9/23/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/7/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005

	GWC-23	GWC-23
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	0.0084	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/9/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/3/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	0.0012 (J)	
3/23/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	<0.005	
10/5/2017	0.0003 (J)	
3/15/2018	0.0016 (J)	
10/5/2018	<0.005	
4/8/2019	0.0005 (J)	
10/1/2019	0.00083 (J)	
3/26/2020	0.00067 (J)	
9/23/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	0.00078 (J)	
2/7/2022		0.00088 (J)
8/8/2022		<0.005
1/31/2023		<0.005

	GWC-5	GWC-5
3/7/2007	0.0027	
5/8/2007	0.0026	
7/6/2007	<0.005	
8/28/2007	0.0036	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	<0.005	
9/9/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
9/7/2016	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/16/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	0.00031 (J)	
3/31/2020	0.00019 (J)	
9/25/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005

	GWC-6	GWC-6
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/6/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/18/2012	<0.005	
3/12/2013	<0.005	
9/9/2013	<0.005	
3/5/2014	<0.005	
9/8/2014	<0.005	
4/22/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
9/7/2016	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/16/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	<0.005	
10/1/2019	0.00023 (J)	
3/31/2020	<0.005	
9/25/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/31/2023		<0.005

	GWC-7	GWC-7
5/9/2007	0.44 (o)	
7/6/2007	0.016	
8/28/2007	0.0091	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	0.003	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/7/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/18/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	0.00082 (J)	
9/29/2015	<0.005	
3/23/2016	<0.005	
9/7/2016	<0.005	
3/24/2017	0.0007 (J)	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	0.00025 (J)	
10/1/2019	0.00034 (J)	
3/30/2020	<0.005	
9/24/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/10/2022		<0.005
1/31/2023		<0.005

	GWC-8	GWC-8
5/9/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/13/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	<0.005	
9/9/2014	<0.005	
4/22/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
9/8/2016	<0.005	
3/24/2017	<0.005	
10/5/2017	<0.005	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	<0.005	
10/1/2019	0.00036 (J)	
3/27/2020	<0.005	
9/24/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005

·	GWC-9	GWC-9
3/7/2007	0.0043	
5/8/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/13/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/4/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/5/2018	<0.005	
4/8/2019	<0.005	
10/1/2019	<0.005	
3/27/2020	<0.005	
9/24/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	0.0018 (J)	
2/4/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005

Constituent: Lead (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-1	GWA-1
3/6/2007	<0.001	
5/8/2007	<0.001	
7/7/2007	<0.001	
8/28/2007	<0.001	
11/6/2007	<0.001	
5/9/2008	<0.001	
12/3/2008	<0.001	
4/7/2009	<0.001	
10/1/2009	<0.001	
4/14/2010	<0.001	
10/13/2010	<0.001	
4/6/2011	<0.001	
10/10/2011	<0.001	
4/3/2012	<0.001	
9/24/2012	<0.001	
3/12/2013	<0.001	
9/11/2013	<0.001	
3/4/2014	<0.001	
9/3/2014	<0.001	
4/21/2015	<0.001	
9/30/2015	<0.001	
3/22/2016	<0.001	
5/17/2016	<0.001	
7/5/2016	<0.001	
9/7/2016	<0.001	
10/18/2016	<0.001	
12/6/2016	<0.001	
1/31/2017	<0.001	
3/23/2017	<0.001	
10/4/2017	<0.001	
3/14/2018	<0.001	
10/4/2018	<0.001	
4/8/2019	<0.001	
9/30/2019	<0.001	
3/26/2020	<0.001	
9/23/2020	<0.001	
3/8/2021	<0.001	
8/9/2021	<0.001	
2/4/2022		<0.001
8/8/2022		<0.001

<0.001

1/30/2023

	GWA-11	GWA-11
3/7/2007	<0.001	
5/8/2007	<0.001	
7/17/2007	<0.001	
8/28/2007	<0.001	
11/7/2007	<0.001	
5/9/2008	<0.001	
12/2/2008	<0.001	
4/8/2009	<0.001	
10/1/2009	<0.001	
4/14/2010	<0.001	
10/13/2010	<0.001	
4/6/2011	<0.001	
10/4/2011	<0.001	
4/10/2012	<0.001	
9/26/2012	<0.001	
3/12/2013	<0.001	
9/10/2013	<0.001	
3/4/2014	<0.001	
9/3/2014	<0.001	
4/21/2015	<0.001	
9/29/2015	<0.001	
3/22/2016	<0.001	
5/17/2016	<0.001	
7/6/2016	<0.001	
9/7/2016	<0.001	
10/18/2016	<0.001	
12/6/2016	<0.001	
2/1/2017	<0.001	
3/24/2017	7E-05 (J)	
10/5/2017	<0.001	
3/15/2018	<0.001	
10/4/2018	<0.001	
4/8/2019	<0.001	
9/30/2019	<0.001	
3/26/2020	<0.001	
9/22/2020	<0.001	
3/8/2021	<0.001	
8/10/2021	<0.001	
2/4/2022		<0.001
8/8/2022		<0.001
1/30/2023		<0.001

Constituent: Lead (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-2	GWA-2
3/6/2007	<0.001	
5/8/2007	<0.001	
7/7/2007	<0.001	
8/28/2007	<0.001	
11/6/2007	<0.001	
5/9/2008	<0.001	
12/3/2008	<0.001	
4/7/2009	<0.001	
10/1/2009	<0.001	
4/13/2010	<0.001	
10/7/2010	<0.001	
4/6/2011	<0.001	
10/6/2011	<0.001	
4/3/2012	<0.001	
9/19/2012	<0.001	
3/12/2013	<0.001	
9/9/2013	<0.001	
3/4/2014	<0.001	
9/3/2014	<0.001	
4/22/2015	<0.001	
9/30/2015	<0.001	
3/22/2016	<0.001	
5/17/2016	<0.001	
7/5/2016	<0.001	
9/7/2016	<0.001	
10/18/2016	<0.001	
12/7/2016	<0.001	
1/31/2017	<0.001	
3/23/2017	<0.001	
10/4/2017	<0.001	
3/14/2018	<0.001	
10/4/2018	<0.001	
4/8/2019	<0.001	
9/30/2019	<0.001	
3/26/2020	<0.001	
9/21/2020	<0.001	
3/9/2021	<0.001	
8/9/2021	<0.001	
2/4/2022		<0.001
8/8/2022		<0.001

<0.001

1/30/2023

Constituent: Lead (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-3	GWA-3
3/6/2007	<0.001	
5/8/2007	<0.001	
7/17/2007	<0.001	
8/28/2007	<0.001	
11/6/2007	<0.001	
5/8/2008	<0.001	
12/3/2008	<0.001	
4/7/2009	<0.001	
10/2/2009	<0.001	
4/14/2010	<0.001	
10/14/2010	<0.001	
4/5/2011	<0.001	
10/12/2011	<0.001	
4/4/2012	<0.001	
9/26/2012	<0.001	
3/12/2013	<0.001	
9/10/2013	<0.001	
3/11/2014	<0.001	
9/8/2014	<0.001	
4/21/2015	<0.001	
9/29/2015	<0.001	
3/22/2016	<0.001	
5/17/2016	<0.001	
7/5/2016	<0.001	
9/7/2016	<0.001	
10/18/2016	<0.001	
12/6/2016	<0.001	
2/1/2017	<0.001	
3/23/2017	<0.001	
10/4/2017	<0.001	
3/15/2018	<0.001	
10/4/2018	<0.001	
4/5/2019	<0.001	
9/30/2019	<0.001	
3/26/2020	4.7E-05 (J)	
9/23/2020	<0.001	
3/8/2021	4E-05 (J)	
8/9/2021	<0.001	
2/4/2022		<0.001
8/8/2022		<0.001

<0.001

1/30/2023

	GWA-4	GWA-4
3/6/2007	<0.001	
5/8/2007	<0.001	
7/17/2007	<0.001	
8/28/2007	<0.001	
11/6/2007	<0.001	
5/8/2008	<0.001	
12/3/2008	<0.001	
4/7/2009	<0.001	
10/2/2009	<0.001	
4/14/2010	<0.001	
10/14/2010	<0.001	
4/5/2011	<0.001	
10/12/2011	<0.001	
4/4/2012	<0.001	
9/24/2012	<0.001	
3/12/2013	<0.001	
9/10/2013	<0.001	
3/11/2014	<0.001	
9/8/2014	<0.001	
4/21/2015	<0.001	
9/29/2015	<0.001	
3/22/2016	<0.001	
5/17/2016	<0.001	
7/6/2016	<0.001	
9/7/2016	<0.001	
10/18/2016	<0.001	
12/6/2016	<0.001	
2/1/2017	<0.001	
3/24/2017	<0.001	
10/4/2017	<0.001	
3/15/2018	<0.001	
10/4/2018	<0.001	
4/8/2019	<0.001	
9/30/2019	<0.001	
3/26/2020	<0.001	
9/23/2020	<0.001	
3/8/2021	<0.001	
8/9/2021	<0.001	
2/4/2022		<0.001
8/8/2022		<0.001
1/30/2023		<0.001

Constituent: Lead (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-10	GWC-10
3/7/2007	<0.001	
5/8/2007	<0.001	
7/17/2007	<0.001	
8/28/2007	<0.001	
11/7/2007	<0.001	
5/9/2008	<0.001	
12/2/2008	<0.001	
4/8/2009	<0.001	
10/1/2009	<0.001	
4/14/2010	<0.001	
10/13/2010	<0.001	
4/6/2011	<0.001	
10/4/2011	<0.001	
4/10/2012	<0.001	
9/26/2012	<0.001	
3/12/2013	<0.001	
9/10/2013	<0.001	
3/4/2014	<0.001	
9/3/2014	<0.001	
4/21/2015	<0.001	
9/30/2015	<0.001	
3/23/2016	<0.001	
5/17/2016	<0.001	
7/6/2016	<0.001	
9/7/2016	<0.001	
10/18/2016	<0.001	
12/6/2016	<0.001	
2/2/2017	<0.001	
3/27/2017	<0.001	
10/5/2017	<0.001	
3/15/2018	<0.001	
10/4/2018	<0.001	
4/9/2019	<0.001	
10/1/2019	<0.001	
3/27/2020	5.4E-05 (J)	
9/25/2020	<0.001	
3/9/2021	<0.001	
8/10/2021	<0.001	
2/4/2022		<0.001
8/9/2022		<0.001

<0.001

1/30/2023

Constituent: Lead (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-18	GWC-18
3/7/2007	<0.001	
5/9/2007	<0.001	
7/17/2007	<0.001	
8/28/2007	<0.001	
11/7/2007	<0.001	
5/7/2008	<0.001	
12/3/2008	<0.001	
4/14/2009	<0.001	
10/1/2009	<0.001	
4/13/2010	<0.001	
10/12/2010	<0.001	
4/6/2011	<0.001	
10/12/2011	<0.001	
4/5/2012	<0.001	
9/19/2012	<0.001	
3/13/2013	<0.001	
9/10/2013	<0.001	
3/10/2014	<0.001	
9/3/2014	<0.001	
4/22/2015	<0.001	
9/30/2015	<0.001	
3/24/2016	<0.001	
5/18/2016	<0.001	
7/7/2016	<0.001	
9/8/2016	<0.001	
10/19/2016	<0.001	
12/8/2016	<0.001	
2/2/2017	<0.001	
3/27/2017	<0.001	
10/5/2017	<0.001	
3/16/2018	<0.001	
10/5/2018	<0.001	
4/9/2019	<0.001	
10/1/2019	<0.001	
3/30/2020	<0.001	
9/24/2020	4E-05 (J)	
3/9/2021	<0.001	
8/10/2021	<0.001	
2/4/2022		<0.001
8/9/2022		<0.001
4 10 4 10 0 0 0		

<0.001

Constituent: Lead (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-19	GWC-19
3/6/2007	<0.001	
5/9/2007	<0.001	
7/17/2007	<0.001	
8/28/2007	<0.001	
11/7/2007	<0.001	
5/7/2008	<0.001	
12/4/2008	<0.001	
4/14/2009	<0.001	
10/2/2009	<0.001	
4/13/2010	<0.001	
10/12/2010	<0.001	
4/6/2011	<0.001	
10/12/2011	<0.001	
4/5/2012	<0.001	
9/25/2012	<0.001	
3/13/2013	<0.001	
9/11/2013	<0.001	
3/10/2014	<0.001	
9/9/2014	<0.001	
4/22/2015	<0.001	
9/30/2015	<0.001	
3/24/2016	<0.001	
5/18/2016	<0.001	
7/6/2016	<0.001	
9/8/2016	<0.001	
10/18/2016	<0.001	
12/7/2016	<0.001	
2/2/2017	<0.001	
3/27/2017	<0.001	
10/5/2017	0.0002 (J)	
3/15/2018	<0.001	
10/4/2018	<0.001	
4/9/2019	<0.001	
10/1/2019	<0.001	
3/31/2020	6.1E-05 (J)	
9/28/2020	0.00014 (J)	
3/10/2021	<0.001	
8/10/2021	<0.001	
2/7/2022		<0.001
8/9/2022		<0.001

<0.001

	GWC-20	GWC-20
3/7/2007	<0.001	
5/9/2007	<0.001	
7/17/2007	<0.001	
8/29/2007	<0.001	
11/7/2007	<0.001	
5/7/2008	<0.001	
12/5/2008	<0.001	
4/14/2009	<0.001	
9/30/2009	<0.001	
4/13/2010	<0.001	
10/12/2010	<0.001	
10/12/2011	<0.001	
4/9/2012	<0.001	
9/25/2012	<0.001	
3/13/2013	<0.001	
9/11/2013	<0.001	
3/10/2014	<0.001	
9/9/2014	<0.001	
4/23/2015	<0.001	
9/30/2015	<0.001	
3/23/2016	<0.001	
5/18/2016	<0.001	
7/7/2016	<0.001	
9/8/2016	<0.001	
10/19/2016	<0.001	
12/7/2016	<0.001	
2/3/2017	<0.001	
3/27/2017	7E-05 (J)	
10/5/2017	<0.001	
3/16/2018	<0.001	
10/5/2018	<0.001	
4/9/2019	<0.001	
10/1/2019	<0.001	
3/31/2020	<0.001	
9/23/2020	<0.001	
3/10/2021	<0.001	
8/10/2021	<0.001	
2/7/2022		<0.001
8/9/2022		<0.001
1/31/2023		<0.001

	GWC-21	GWC-21
3/6/2007	<0.001	
5/9/2007	<0.001	
7/17/2007	<0.001	
8/29/2007	<0.001	
11/7/2007	<0.001	
5/7/2008	<0.001	
12/5/2008	<0.001	
4/27/2009	<0.001	
9/30/2009	<0.001	
4/13/2010	<0.001	
10/12/2010	<0.001	
10/5/2011	<0.001	
4/10/2012	<0.001	
9/26/2012	<0.001	
3/13/2013	<0.001	
9/11/2013	<0.001	
3/11/2014	<0.001	
9/9/2014	<0.001	
9/30/2015	<0.001	
3/24/2016	<0.001	
5/18/2016	<0.001	
7/7/2016	<0.001	
9/8/2016	<0.001	
10/19/2016	<0.001	
12/7/2016	0.0001 (J)	
2/2/2017	<0.001	
3/27/2017	<0.001	
10/5/2017	<0.001	
3/15/2018	<0.001	
10/4/2018	<0.001	
4/9/2019	<0.001	
10/1/2019	7.5E-05 (J)	
3/31/2020	<0.001	
9/24/2020	0.00012 (J)	
3/9/2021	0.00013 (J)	
8/10/2021	<0.001	
2/7/2022		<0.001
8/9/2022		<0.001
1/31/2023		<0.001

Constituent: Lead (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-22	GWC-22
3/6/2007	<0.001	
5/9/2007	<0.001	
7/17/2007	<0.001	
8/29/2007	<0.001	
11/7/2007	<0.001	
5/7/2008	<0.001	
12/5/2008	<0.001	
4/14/2009	<0.001	
9/30/2009	<0.001	
4/13/2010	<0.001	
10/12/2010	<0.001	
4/6/2011	<0.001	
10/5/2011	<0.001	
4/9/2012	<0.001	
9/25/2012	<0.001	
3/13/2013	<0.001	
9/11/2013	<0.001	
3/11/2014	<0.001	
9/9/2014	<0.001	
4/23/2015	<0.001	
9/30/2015	<0.001	
3/23/2016	<0.001	
5/18/2016	<0.001	
7/7/2016	<0.001	
9/8/2016	<0.001	
10/19/2016	<0.001	
12/7/2016	<0.001	
2/2/2017	<0.001	
3/27/2017	<0.001	
10/5/2017	<0.001	
3/15/2018	<0.001	
10/4/2018	<0.001	
4/9/2019	<0.001	
10/1/2019	0.00012 (J)	
3/31/2020	0.00013 (J)	
9/23/2020	6.6E-05 (J)	
3/9/2021	3.8E-05 (J)	
8/10/2021	<0.001	
2/7/2022		<0.001
8/9/2022		<0.001

<0.001

Constituent: Lead (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-23	GWC-23
3/6/2007	<0.001	
5/9/2007	<0.001	
7/17/2007	<0.001	
8/29/2007	<0.001	
11/7/2007	<0.001	
5/7/2008	<0.001	
12/5/2008	<0.001	
4/14/2009	<0.001	
10/1/2009	<0.001	
4/14/2010	<0.001	
10/13/2010	<0.001	
4/6/2011	<0.001	
10/12/2011	<0.001	
4/9/2012	<0.001	
9/19/2012	<0.001	
3/13/2013	<0.001	
9/10/2013	<0.001	
3/11/2014	<0.001	
9/3/2014	<0.001	
4/23/2015	<0.001	
9/30/2015	<0.001	
3/23/2016	<0.001	
5/19/2016	<0.001	
7/7/2016	<0.001	
9/8/2016	<0.001	
10/19/2016	<0.001	
12/7/2016	<0.001	
2/3/2017	<0.001	
3/27/2017	<0.001	
10/5/2017	<0.001	
3/15/2018	<0.001	
10/5/2018	0.00042 (J)	
4/8/2019	0.00018 (J)	
10/1/2019	0.00022 (J)	
3/26/2020	0.00016 (J)	
9/23/2020	0.00036 (J)	
3/9/2021	0.00011 (J)	
8/10/2021	<0.001	
2/7/2022		<0.001
8/8/2022		<0.001

<0.001

Constituent: Lead (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-5	GWC-5
3/7/2007	<0.001	
5/8/2007	<0.001	
7/6/2007	<0.001	
8/28/2007	<0.001	
11/6/2007	<0.001	
5/8/2008	<0.001	
12/3/2008	<0.001	
4/7/2009	<0.001	
10/1/2009	<0.001	
4/14/2010	<0.001	
10/14/2010	<0.001	
4/5/2011	<0.001	
10/12/2011	<0.001	
4/4/2012	<0.001	
9/24/2012	<0.001	
3/12/2013	<0.001	
9/10/2013	<0.001	
3/5/2014	<0.001	
9/9/2014	<0.001	
4/21/2015	<0.001	
9/29/2015	<0.001	
3/23/2016	<0.001	
5/17/2016	<0.001	
7/6/2016	<0.001	
9/7/2016	<0.001	
10/18/2016	<0.001	
12/8/2016	<0.001	
2/1/2017	<0.001	
3/23/2017	<0.001	
10/4/2017	<0.001	
3/16/2018	<0.001	
10/4/2018	<0.001	
4/9/2019	0.00039 (J)	
10/1/2019	6.5E-05 (J)	
3/31/2020	<0.001	
9/25/2020	<0.001	
3/9/2021	<0.001	
8/10/2021	<0.001	
2/4/2022		<0.001
8/9/2022		<0.001

<0.001

Constituent: Lead (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

		GWC-6	GWC-6
3/	7/2007	<0.001	
5/	9/2007	<0.001	
7/	17/2007	<0.001	
8/	28/2007	<0.001	
1	1/6/2007	<0.001	
5/	8/2008	<0.001	
12	2/3/2008	<0.001	
4/	7/2009	<0.001	
10	0/1/2009	<0.001	
4/	13/2010	<0.001	
10	0/6/2010	<0.001	
4/	5/2011	<0.001	
10	0/4/2011	<0.001	
4/	3/2012	<0.001	
9/	18/2012	<0.001	
3/	12/2013	<0.001	
9/	9/2013	<0.001	
3/	5/2014	<0.001	
9/	8/2014	<0.001	
4/	22/2015	<0.001	
9/	29/2015	<0.001	
3/	23/2016	<0.001	
5/	17/2016	<0.001	
7/	6/2016	<0.001	
9/	7/2016	<0.001	
10	0/18/2016	<0.001	
12	2/8/2016	0.0001 (J)	
2/	1/2017	<0.001	
3/	23/2017	<0.001	
10	0/4/2017	<0.001	
3/	16/2018	<0.001	
10	0/4/2018	<0.001	
4/	8/2019	<0.001	
10	0/1/2019	<0.001	
3/	31/2020	<0.001	
9/	25/2020	<0.001	
3/	9/2021	<0.001	
8/	10/2021	<0.001	
2/	4/2022		<0.001
8/	8/2022		<0.001

<0.001

Constituent: Lead (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-7	GWC-7
5/9/2007	<0.001	
7/6/2007	<0.001	
8/28/2007	<0.001	
11/6/2007	<0.001	
5/8/2008	<0.001	
12/2/2008	<0.001	
4/8/2009	<0.001	
10/1/2009	<0.001	
4/13/2010	<0.001	
10/7/2010	<0.001	
4/5/2011	<0.001	
10/4/2011	<0.001	
4/3/2012	<0.001	
9/18/2012	<0.001	
3/12/2013	<0.001	
9/10/2013	<0.001	
3/5/2014	0.0016 (J)	
9/8/2014	<0.001	
4/21/2015	<0.001	
9/29/2015	<0.001	
3/23/2016	<0.001	
5/18/2016	<0.001	
7/6/2016	0.0001 (J)	
9/7/2016	<0.001	
10/18/2016	<0.001	
12/8/2016	<0.001	
2/2/2017	0.0003 (J)	
3/24/2017	0.0002 (J)	
10/4/2017	7E-05 (J)	
3/15/2018	<0.001	
10/4/2018	<0.001	
4/8/2019	<0.001	
10/1/2019	5E-05 (J)	
3/30/2020	4.8E-05 (J)	
9/24/2020	6E-05 (J)	
3/9/2021	8.5E-05 (J)	
8/10/2021	<0.001	
2/4/2022		<0.001
8/10/2022		<0.001

<0.001

	GWC-8	GWC-8
5/9/2007	<0.001	
7/6/2007	<0.001	
8/28/2007	<0.001	
11/6/2007	<0.001	
5/8/2008	<0.001	
12/2/2008	<0.001	
4/8/2009	<0.001	
9/30/2009	<0.001	
4/13/2010	<0.001	
10/13/2010	<0.001	
4/5/2011	<0.001	
10/4/2011	<0.001	
4/3/2012	<0.001	
9/19/2012	<0.001	
3/12/2013	<0.001	
9/10/2013	<0.001	
3/5/2014	<0.001	
9/9/2014	<0.001	
4/22/2015	<0.001	
9/29/2015	<0.001	
3/23/2016	<0.001	
5/18/2016	<0.001	
7/6/2016	<0.001	
9/8/2016	<0.001	
10/18/2016	<0.001	
12/8/2016	0.0002 (J)	
2/2/2017	<0.001	
3/24/2017	<0.001	
10/5/2017	<0.001	
3/14/2018	<0.001	
10/4/2018	<0.001	
4/8/2019	<0.001	
10/1/2019	<0.001	
3/27/2020	<0.001	
9/24/2020	4.9E-05 (J)	
3/9/2021	<0.001	
8/10/2021	<0.001	
2/4/2022		<0.001
8/9/2022		<0.001
1/31/2023		<0.001

	GWA-1	GWA-1
3/6/2007	<0.005	
5/8/2007	<0.005	
7/7/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/9/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/10/2011	<0.005	
4/3/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/11/2013	<0.005	
3/4/2014	0.001 (J)	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/30/2015	<0.005	
3/22/2016	<0.005	
9/7/2016	0.0008 (J)	
3/23/2017	0.0007 (J)	
10/4/2017	0.0006 (J)	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	0.00034 (J)	
9/30/2019	0.00037 (J)	
3/26/2020	0.00065 (J)	
9/23/2020	<0.005	
3/8/2021	<0.005	
8/9/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/30/2023		<0.005

	GWA-11	GWA-11
3/7/2007	<0.01	
5/8/2007	<0.01	
7/17/2007	<0.01	
8/28/2007	<0.01	
11/7/2007	<0.01	
5/9/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	<0.01	
10/1/2009	<0.01	
4/14/2010	<0.01	
10/13/2010	<0.01	
4/6/2011	<0.01	
10/4/2011	<0.01	
4/10/2012	<0.01	
9/26/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/4/2014	0.002 (J)	
9/3/2014	0.002 (J)	
4/21/2015	0.002 (J)	
9/29/2015	0.0022 (J)	
3/22/2016	<0.01	
9/7/2016	0.0026 (J)	
3/24/2017	0.0024 (J)	
10/5/2017	0.0023 (J)	
3/15/2018	0.0026 (J)	
10/4/2018	0.0023 (J)	
4/8/2019	0.0023 (J)	
9/30/2019	0.0017 (J)	
3/26/2020	0.002 (J)	
9/22/2020	0.0014 (J)	
3/8/2021	0.001 (J)	
8/10/2021	0.0017 (J)	
2/4/2022		0.0019 (J)
8/8/2022		0.0017 (J)
1/30/2023		0.0017 (J)

	GWA-2	GWA-2
3/6/2007	<0.005	
5/8/2007	<0.005	
7/7/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/9/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/7/2010	<0.005	
4/6/2011	<0.005	
10/6/2011	<0.005	
4/3/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/9/2013	<0.005	
3/4/2014	0.0007 (J)	
9/3/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/22/2016	<0.005	
9/7/2016	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	<0.005	
9/30/2019	<0.005	
3/26/2020	<0.005	
9/21/2020	<0.005	
3/9/2021	<0.005	
8/9/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/30/2023		<0.005

	GWA-3	GWA-3
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	0.0013 (J)	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
9/7/2016	<0.005	
3/23/2017	0.0022 (J)	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/5/2019	0.00075 (J)	
9/30/2019	<0.005	
3/26/2020	0.0011 (J)	
9/23/2020	<0.005	
3/8/2021	<0.005	
8/9/2021	<0.005	
2/4/2022		0.0009 (J)
8/8/2022		0.00092 (J)
1/30/2023		0.00082 (J)

	GWA-4	GWA-4
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	0.0032	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	0.0032	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	0.0026	
9/8/2014	0.0017 (J)	
4/21/2015	0.0016 (J)	
9/29/2015	0.0055	
3/22/2016	<0.005	
9/7/2016	0.0014 (J)	
3/24/2017	0.0017 (J)	
10/4/2017	0.0023 (J)	
3/15/2018	0.0024 (J)	
10/4/2018	0.0013 (J)	
4/8/2019	0.00089 (J)	
9/30/2019	0.0013 (J)	
3/26/2020	0.00096 (J)	
9/23/2020	0.00091 (J)	
3/8/2021	<0.005	
8/9/2021	0.001 (J)	
2/4/2022		0.00087 (J)
8/8/2022		<0.005
1/30/2023		<0.005

	GWC-10	GWC-10
3/7/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/9/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/4/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
9/7/2016	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	<0.005	
3/27/2020	0.0023 (J)	
9/25/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/9/2022		<0.005
1/30/2023		<0.005

	GWC-18	GWC-18
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/3/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/5/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/10/2014	0.0013 (J)	
9/3/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/24/2016	<0.005	
9/8/2016	0.0009 (J)	
3/27/2017	0.0006 (J)	
10/5/2017	0.0008 (J)	
3/16/2018	<0.005	
10/5/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	0.0015 (J)	
3/30/2020	0.00048 (J)	
9/24/2020	0.0011 (J)	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		0.00078 (J)
8/9/2022		0.00074 (J)
1/31/2023		<0.005

	GWC-19	GWC-19
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/4/2008	<0.005	
4/14/2009	<0.005	
10/2/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/5/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/10/2014	0.00072 (J)	
9/9/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/24/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	0.0062 (J)	
10/5/2017	0.0005 (J)	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	<0.005	
3/31/2020	<0.005	
9/28/2020	<0.005	
3/10/2021	<0.005	
8/10/2021	<0.005	
2/7/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005

	GWC-20	GWC-20
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
10/12/2011	<0.005	
4/9/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/10/2014	0.00074 (J)	
9/9/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	0.0006 (J)	
10/5/2017	<0.005	
3/16/2018	<0.005	
10/5/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	<0.005	
3/31/2020	<0.005	
9/23/2020	<0.005	
3/10/2021	<0.005	
8/10/2021	<0.005	
2/7/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005

_			
		GWC-21	GWC-21
	3/6/2007	<0.005	
	5/9/2007	<0.005	
	7/17/2007	<0.005	
	8/29/2007	0.0055	
	11/7/2007	0.0044	
	5/7/2008	0.0047	
	12/5/2008	<0.005	
	4/27/2009	0.0027	
	9/30/2009	0.0051	
	4/13/2010	0.0031	
	10/12/2010	<0.005	
	10/5/2011	0.0032	
	4/10/2012	<0.005	
	9/26/2012	0.0063	
	3/13/2013	0.0029	
	9/11/2013	0.0046	
	3/11/2014	0.002 (J)	
	9/9/2014	0.0029	
	9/30/2015	0.0025 (J)	
	3/24/2016	0.00317 (J)	
	9/8/2016	0.0038 (J)	
	3/27/2017	0.0024 (J)	
	10/5/2017	0.0104	
	3/15/2018	0.0026 (J)	
	10/4/2018	0.012	
	12/11/2018	0.0052 (J)	
	4/9/2019	0.0048 (J)	
	10/1/2019	0.0031 (J)	
	3/31/2020	0.0039 (J)	
	9/24/2020	0.0068	
	3/9/2021	0.0013 (J)	
	8/10/2021	0.0076	
	2/7/2022		0.0055
	8/9/2022		0.0053
	1/31/2023		0.005 (J)

	GWC-22	GWC-22
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/5/2011	<0.005	
4/9/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/11/2014	0.00059 (J)	
9/9/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	<0.005	
3/31/2020	<0.005	
9/23/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/7/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005

	GWC-23	GWC-23
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/9/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	0.0016 (J)	
9/3/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
9/8/2016	0.0011 (J)	
3/27/2017	0.0007 (J)	
10/5/2017	<0.005	
3/15/2018	0.001 (J)	
10/5/2018	0.0014 (J)	
4/8/2019	0.0011 (J)	
10/1/2019	0.0035 (J)	
3/26/2020	0.001 (J)	
9/23/2020	0.00079 (J)	
3/9/2021	<0.005	
8/10/2021	0.0008 (J)	
2/7/2022		0.00084 (J)
8/8/2022		<0.005
1/31/2023		<0.005

	GWC-5	GWC-5
3/7/2007	<0.005	
5/8/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	0.001 (J)	
9/9/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
9/7/2016	<0.005	
3/23/2017	0.0008 (J)	
10/4/2017	<0.005	
3/16/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	0.00098 (J)	
10/1/2019	0.00088 (J)	
3/31/2020	0.0013 (J)	
9/25/2020	0.00078 (J)	
3/9/2021	<0.005	
8/10/2021	0.00085 (J)	
2/4/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005

	GWC-6	GWC-6
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/6/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/18/2012	<0.005	
3/12/2013	<0.005	
9/9/2013	<0.005	
3/5/2014	0.00092 (J)	
9/8/2014	<0.005	
4/22/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
9/7/2016	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/16/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	0.00032 (J)	
10/1/2019	0.00042 (J)	
3/31/2020	<0.005	
9/25/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/31/2023		<0.005

	GWC-7	GWC-7
5/9/2007	18 (o)	
7/6/2007	5.9 (o)	
8/28/2007	3.9 (o)	
11/6/2007	3.1 (o)	
5/8/2008	2.1 (o)	
12/2/2008	1.2	
4/8/2009	1.1	
10/1/2009	0.88	
4/13/2010	0.82	
10/7/2010	0.72	
4/5/2011	0.52	
10/4/2011	0.56	
4/3/2012	0.365	
9/18/2012	0.45	
3/12/2013	0.13	
9/10/2013	0.2	
3/5/2014	0.17	
9/8/2014	0.25	
4/21/2015	0.15	
9/29/2015	0.203	
3/23/2016	0.0607	
9/7/2016	0.141	
3/24/2017	0.0313	
10/4/2017	0.093	
3/15/2018	0.057	
10/4/2018	0.11	
4/8/2019	0.03	
10/1/2019	0.07	
3/30/2020	0.037	
9/24/2020	0.042	
3/9/2021	0.035	
8/10/2021	0.057	
2/4/2022		0.039
8/10/2022		0.061
1/31/2023		0.11

	GWC-8	GWC-8
5/9/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/13/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	0.00079 (J)	
9/9/2014	<0.005	
4/22/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
9/8/2016	<0.005	
3/24/2017	<0.005	
10/5/2017	<0.005	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	0.00064 (J)	
10/1/2019	0.00063 (J)	
3/27/2020	0.00053 (J)	
9/24/2020	0.001 (J)	
3/9/2021	<0.005	
8/10/2021	0.0073	
2/4/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005

	GWC-9	GWC-9
3/7/2007	<0.01	
5/8/2007	<0.01	
7/6/2007	<0.01	
8/28/2007	<0.01	
11/6/2007	<0.01	
5/8/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	<0.01	
9/30/2009	<0.01	
4/13/2010	<0.01	
10/13/2010	<0.01	
4/5/2011	<0.01	
10/4/2011	<0.01	
4/4/2012	<0.01	
9/19/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	0.003	
3/5/2014	0.0022 (J)	
9/3/2014	<0.01	
4/21/2015	0.0019 (J)	
9/29/2015	0.0019 (J)	
3/23/2016	<0.01	
9/8/2016	0.0023 (J)	
3/27/2017	0.0023 (J)	
10/5/2017	0.0024 (J)	
3/15/2018	0.0023 (J)	
10/5/2018	0.0025 (J)	
4/8/2019	0.0021 (J)	
10/1/2019	0.0022 (J)	
3/27/2020	0.0022 (J)	
9/24/2020	0.0024 (J)	
3/9/2021	0.0014 (J)	
8/10/2021	0.0019 (J)	
2/4/2022		0.0018 (J)
8/9/2022		0.0018 (J)
1/31/2023		0.002 (J)

	GWA-1	GWA-1
3/6/2007	<0.005	
5/8/2007	<0.005	
7/7/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/9/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/10/2011	<0.005	
4/3/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/11/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/30/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/5/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
1/31/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	<0.005	
9/30/2019	<0.005	
3/26/2020	<0.005	
9/23/2020	<0.005	
3/8/2021	<0.005	
8/9/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/30/2023		<0.005

Constituent: Selenium (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-11	GWA-11
3/7/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/9/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/4/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
2/1/2017	<0.005	
3/24/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	<0.005	
9/30/2019	<0.005	
3/26/2020	<0.005	
9/22/2020	<0.005	
3/8/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005

<0.005

1/30/2023

	GWA-2	GWA-2
3/6/2007	<0.005	
5/8/2007	<0.005	
7/7/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/9/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/7/2010	<0.005	
4/6/2011	<0.005	
10/6/2011	<0.005	
4/3/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/9/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/5/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/7/2016	<0.005	
1/31/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	<0.005	
9/30/2019	<0.005	
3/26/2020	<0.005	
9/21/2020	<0.005	
3/9/2021	<0.005	
8/9/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/30/2023		<0.005

	GWA-3	GWA-3
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/5/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
2/1/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/5/2019	<0.005	
9/30/2019	<0.005	
3/26/2020	<0.005	
9/23/2020	<0.005	
3/8/2021	<0.005	
8/9/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/30/2023		<0.005

	GWA-4	GWA-4
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
2/1/2017	<0.005	
3/24/2017	<0.005	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	0.00014 (J)	
9/30/2019	<0.005	
3/26/2020	<0.005	
9/23/2020	<0.005	
3/8/2021	<0.005	
8/9/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/30/2023		<0.005

Constituent: Selenium (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-10	GWC-10
3/7/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/9/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/4/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/4/2014	0.0016 (J)	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	<0.005	
3/27/2020	<0.005	
9/25/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/9/2022		<0.005

<0.005

1/30/2023

	GWC-21	GWC-21
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/27/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
10/5/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/11/2014	0.0024 (J)	
9/9/2014	<0.005	
9/30/2015	<0.005	
3/24/2016	<0.005	
5/18/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/7/2016	<0.005	
2/2/2017	0.0017 (J)	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	<0.005	
3/31/2020	<0.005	
9/24/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/7/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005

Constituent: Selenium (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-22	GWC-22
3/6/2007	<0.005	GIIO ZZ
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/5/2011	<0.005	
4/9/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/11/2014	0.0017 (J)	
9/9/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/7/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	0.0014 (J)	
3/31/2020	<0.005	
9/23/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/7/2022		<0.005
8/9/2022		<0.005

<0.005

1/31/2023

	GWC-9	GWC-9
3/7/2007	<0.005	
5/8/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/13/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/4/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	0.0018 (J)	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/6/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/8/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/5/2018	<0.005	
4/8/2019	<0.005	
10/1/2019	<0.005	
3/27/2020	<0.005	
9/24/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005

	GWA-1	GWA-1
3/6/2007	<0.005	
5/8/2007	<0.005	
7/7/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/9/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/10/2011	<0.005	
4/3/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/11/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/30/2015	<0.005	
3/22/2016	<0.005	
9/7/2016	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	<0.005	
9/30/2019	<0.005	
3/26/2020	<0.005	
9/23/2020	<0.005	
3/8/2021	<0.005	
8/9/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/30/2023		<0.005

Constituent: Silver (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-11	GWA-11
3/7/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/9/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/4/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
9/7/2016	<0.005	
3/24/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	<0.005	
9/30/2019	<0.005	
3/26/2020	<0.005	
9/22/2020	<0.005	
3/8/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005

<0.005

1/30/2023

	GWA-2	GWA-2
3/6/2007	<0.005	
5/8/2007	<0.005	
7/7/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/9/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/7/2010	<0.005	
4/6/2011	<0.005	
10/6/2011	<0.005	
4/3/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/9/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/22/2016	<0.005	
9/7/2016	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	<0.005	
9/30/2019	<0.005	
3/26/2020	<0.005	
9/21/2020	<0.005	
3/9/2021	<0.005	
8/9/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/30/2023		<0.005

Constituent: Silver (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-3	GWA-3
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
9/7/2016	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/5/2019	<0.005	
9/30/2019	<0.005	
3/26/2020	<0.005	
9/23/2020	<0.005	
3/8/2021	<0.005	
8/9/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005

<0.005

1/30/2023

	GWA-4	GWA-4
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
9/7/2016	<0.005	
3/24/2017	<0.005	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	<0.005	
9/30/2019	<0.005	
3/26/2020	<0.005	
9/23/2020	<0.005	
3/8/2021	<0.005	
8/9/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/30/2023		<0.005

	GWC-21	GWC-21
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/27/2009	0.0036	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
10/5/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/11/2014	<0.005	
9/9/2014	<0.005	
9/30/2015	<0.005	
3/24/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	<0.005	
3/31/2020	<0.005	
9/24/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/7/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005

	GWA-1	GWA-1
3/6/2007	<0.001	
5/8/2007	<0.001	
7/7/2007	<0.001	
8/28/2007	<0.001	
11/6/2007	<0.001	
5/9/2008	<0.001	
12/3/2008	<0.001	
4/7/2009	<0.001	
10/1/2009	<0.001	
4/14/2010	<0.001	
10/13/2010	<0.001	
4/6/2011	<0.001	
10/10/2011	<0.001	
4/3/2012	<0.001	
9/24/2012	<0.001	
3/12/2013	<0.001	
3/4/2014	<0.001	
9/3/2014	<0.001	
4/21/2015	<0.001	
9/30/2015	<0.001	
3/22/2016	<0.001	
5/17/2016	<0.001	
7/5/2016	<0.001	
9/7/2016	<0.001	
10/18/2016	<0.001	
12/6/2016	<0.001	
1/31/2017	<0.001	
3/23/2017	<0.001	
10/4/2017	<0.001	
3/14/2018	<0.001	
10/4/2018	<0.001	
4/8/2019	<0.001	
9/30/2019	<0.001	
3/26/2020	<0.001	
9/23/2020	<0.001	
3/8/2021	<0.001	
8/9/2021	<0.001	
2/4/2022		<0.001
8/8/2022		<0.001
1/30/2023		0.00022 (J)

	GWA-11	GWA-11
3/7/2007	<0.001	
5/8/2007	<0.001	
7/17/2007	<0.001	
8/28/2007	<0.001	
11/7/2007	<0.001	
5/9/2008	<0.001	
12/2/2008	<0.001	
4/8/2009	<0.001	
10/1/2009	<0.001	
4/14/2010	<0.001	
10/13/2010	<0.001	
4/6/2011	<0.001	
10/4/2011	<0.001	
4/10/2012	<0.001	
9/26/2012	<0.001	
3/12/2013	<0.001	
3/4/2014	<0.001	
9/3/2014	<0.001	
4/21/2015	<0.001	
9/29/2015	<0.001	
3/22/2016	<0.001	
5/17/2016	<0.001	
7/6/2016	<0.001	
9/7/2016	<0.001	
10/18/2016	<0.001	
12/6/2016	<0.001	
	<0.001	
	<0.001	
	<0.001	
	<0.001	
		<0.001
		<0.001
1/30/2023		<0.001
	5/8/2007 7/17/2007 8/28/2007 11/7/2007 5/9/2008 12/2/2008 4/8/2009 10/1/2009 4/14/2010 10/13/2010 4/6/2011 10/4/2011 4/10/2012 9/26/2012 3/12/2013 3/4/2014 9/3/2014 4/21/2015 9/29/2015 3/22/2016 5/17/2016 7/6/2016 9/7/2016	3/7/2007 <0.001

	GWA-2	GWA-2
3/6/2007	<0.001	
5/8/2007	<0.001	
7/7/2007	<0.001	
8/28/2007	<0.001	
11/6/2007	<0.001	
5/9/2008	<0.001	
12/3/2008	<0.001	
4/7/2009	<0.001	
10/1/2009	<0.001	
4/13/2010	<0.001	
10/7/2010	<0.001	
4/6/2011	<0.001	
10/6/2011	<0.001	
4/3/2012	<0.001	
9/19/2012	<0.001	
3/12/2013	<0.001	
3/4/2014	<0.001	
9/3/2014	<0.001	
4/21/2015	<0.001	
9/30/2015	<0.001	
3/22/2016	<0.001	
5/17/2016	<0.001	
7/5/2016	<0.001	
9/7/2016	<0.001	
10/18/2016	<0.001	
12/7/2016	<0.001	
1/31/2017	<0.001	
3/23/2017	<0.001	
10/4/2017	<0.001	
3/14/2018	<0.001	
10/4/2018	<0.001	
4/8/2019	<0.001	
9/30/2019	<0.001	
3/26/2020	<0.001	
9/21/2020	<0.001	
3/9/2021	<0.001	
8/9/2021	<0.001	
2/4/2022		<0.001
8/8/2022		<0.001
1/30/2023		<0.001

	GWA-3	GWA-3
3/6/2007	<0.001	
5/8/2007	<0.001	
7/17/2007	<0.001	
8/28/2007	<0.001	
11/6/2007	<0.001	
5/8/2008	<0.001	
12/3/2008	<0.001	
4/7/2009	<0.001	
10/2/2009	<0.001	
4/14/2010	<0.001	
10/14/2010	<0.001	
4/5/2011	<0.001	
10/12/2011	<0.001	
4/4/2012	<0.001	
9/26/2012	<0.001	
3/12/2013	<0.001	
3/11/2014	<0.001	
9/8/2014	<0.001	
4/21/2015	<0.001	
9/29/2015	<0.001	
3/22/2016	<0.001	
5/17/2016	<0.001	
7/5/2016	<0.001	
9/7/2016	<0.001	
10/18/2016	<0.001	
12/6/2016	<0.001	
2/1/2017	<0.001	
3/23/2017	<0.001	
10/4/2017	<0.001	
3/15/2018	<0.001	
10/4/2018	<0.001	
4/5/2019	<0.001	
9/30/2019	<0.001	
3/26/2020	<0.001	
9/23/2020	<0.001	
3/8/2021	<0.001	
8/9/2021	<0.001	.0.004
2/4/2022		<0.001
8/8/2022		<0.001
1/30/2023		<0.001

	GWA-4	GWA-4
3/6/2007	<0.001	
5/8/2007	<0.001	
7/17/2007	<0.001	
8/28/2007	<0.001	
11/6/2007	<0.001	
5/8/2008	<0.001	
12/3/2008	<0.001	
4/7/2009	<0.001	
10/2/2009	<0.001	
4/14/2010	<0.001	
10/14/2010	<0.001	
4/5/2011	<0.001	
10/12/2011	<0.001	
4/4/2012	<0.001	
9/24/2012	<0.001	
3/12/2013	<0.001	
3/11/2014	<0.001	
9/8/2014	<0.001	
4/21/2015	<0.001	
9/29/2015	<0.001	
3/22/2016	<0.001	
5/17/2016	<0.001	
7/6/2016	<0.001	
9/7/2016	<0.001	
10/18/2016	<0.001	
12/6/2016	<0.001	
2/1/2017	<0.001	
3/24/2017	<0.001	
10/4/2017	<0.001	
3/15/2018	<0.001	
10/4/2018	<0.001	
4/8/2019	<0.001	
9/30/2019	<0.001	
3/26/2020	<0.001	
9/23/2020	<0.001	
3/8/2021	<0.001	
8/9/2021	<0.001	.0.554
2/4/2022		<0.001
8/8/2022		<0.001
1/30/2023		<0.001

	GWC-7	GWC-7
5/9/2007	<0.001	
7/6/2007	<0.001	
8/28/2007	<0.001	
11/6/2007	<0.001	
5/8/2008	<0.001	
12/2/2008	<0.001	
4/8/2009	<0.001	
10/1/2009	<0.001	
4/13/2010	<0.001	
10/7/2010	<0.001	
4/5/2011	<0.001	
10/4/2011	<0.001	
4/3/2012	<0.001	
9/18/2012	<0.001	
3/12/2013	<0.001	
3/5/2014	<0.001	
9/8/2014	<0.001	
4/21/2015	<0.001	
9/29/2015	<0.001	
3/23/2016	<0.001	
5/18/2016	<0.001	
7/6/2016	0.0001 (J)	
9/7/2016	<0.001	
10/18/2016	<0.001	
12/8/2016	<0.001	
2/2/2017	<0.001	
3/24/2017	<0.001	
10/4/2017	<0.001	
3/15/2018	<0.001	
10/4/2018	<0.001	
4/8/2019	<0.001	
10/1/2019	<0.001	
3/30/2020	<0.001	
9/24/2020	<0.001	
3/9/2021	<0.001	
8/10/2021	<0.001	
2/4/2022		<0.001
8/10/2022		<0.001
1/31/2023		<0.001

 $\label{lem:constituent: Vanadium (mg/L)} Constituent: Vanadium (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill$

	GWA-1	GWA-1
3/6/2007	<0.01	
5/8/2007	<0.01	
7/7/2007	<0.01	
8/28/2007	<0.01	
11/6/2007	<0.01	
5/9/2008	<0.01	
12/3/2008	<0.01	
4/7/2009	<0.01	
10/1/2009	<0.01	
4/14/2010	<0.01	
10/13/2010	<0.01	
4/6/2011	<0.01	
10/10/2011	<0.01	
4/3/2012	<0.01	
9/24/2012	<0.01	
3/12/2013	<0.01	
9/11/2013	<0.01	
3/4/2014	<0.01	
9/3/2014	<0.01	
4/21/2015	<0.01	
9/30/2015	<0.01	
3/22/2016	<0.01	
9/7/2016	<0.01	
3/23/2017	<0.01	
10/4/2017	<0.01	
3/14/2018	<0.01	
10/4/2018	<0.01	
4/8/2019	<0.01	
9/30/2019	<0.01	
3/26/2020	<0.01	
9/23/2020	<0.01	
3/8/2021	<0.01	
8/9/2021	0.0019 (J)	<0.01
2/4/2022 8/8/2022		<0.01 <0.01
1/30/2023		0.0022 (J)
1/30/2023		0.0022 (3)

	GWA-11	GWA-11
3/7/2007	<0.01	
5/8/2007	<0.01	
7/17/2007	<0.01	
8/28/2007	<0.01	
11/7/2007	<0.01	
5/9/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	<0.01	
10/1/2009	<0.01	
4/14/2010	<0.01	
10/13/2010	<0.01	
4/6/2011	<0.01	
10/4/2011	<0.01	
4/10/2012	<0.01	
9/26/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/4/2014	<0.01	
9/3/2014	<0.01	
4/21/2015	<0.01	
9/29/2015	<0.01	
3/22/2016	<0.01	
9/7/2016	<0.01	
3/24/2017	<0.01	
10/5/2017	<0.01	
3/15/2018	<0.01	
10/4/2018	<0.01	
4/8/2019	<0.01	
9/30/2019	<0.01	
3/26/2020	<0.01	
9/22/2020	<0.01	
3/8/2021	<0.01	
8/10/2021	<0.01	
2/4/2022		<0.01
8/8/2022		<0.01
1/30/2023		<0.01

	GWA-2	GWA-2
3/6/2007	<0.01	
5/8/2007	<0.01	
7/7/2007	<0.01	
8/28/2007	<0.01	
11/6/2007	<0.01	
5/9/2008	<0.01	
12/3/2008	<0.01	
4/7/2009	<0.01	
10/1/2009	<0.01	
4/13/2010	<0.01	
10/7/2010	<0.01	
4/6/2011	<0.01	
10/6/2011	<0.01	
4/3/2012	<0.01	
9/19/2012	<0.01	
3/12/2013	<0.01	
9/9/2013	<0.01	
3/4/2014	<0.01	
9/3/2014	<0.01	
4/22/2015	<0.01	
9/30/2015	<0.01	
3/22/2016	<0.01	
9/7/2016	<0.01	
3/23/2017	<0.01	
10/4/2017	<0.01	
3/14/2018	<0.01	
10/4/2018	<0.01	
4/8/2019	<0.01	
9/30/2019	<0.01	
3/26/2020	<0.01	
9/21/2020	<0.01	
3/9/2021	<0.01	
8/9/2021	<0.01	
2/4/2022		<0.01
8/8/2022		<0.01
1/30/2023		<0.01

	GWA-3	GWA-3
3/6/2007	<0.01	
5/8/2007	<0.01	
7/17/2007	<0.01	
8/28/2007	<0.01	
11/6/2007	<0.01	
5/8/2008	<0.01	
12/3/2008	<0.01	
4/7/2009	<0.01	
10/2/2009	<0.01	
4/14/2010	<0.01	
10/14/2010	<0.01	
4/5/2011	<0.01	
10/12/2011	<0.01	
4/4/2012	<0.01	
9/26/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/11/2014	<0.01	
9/8/2014	<0.01	
4/21/2015	<0.01	
9/29/2015	<0.01	
3/22/2016	<0.01	
9/7/2016	<0.01	
3/23/2017	<0.01	
10/4/2017	<0.01	
3/15/2018	<0.01	
10/4/2018	<0.01	
4/5/2019	<0.01	
9/30/2019	<0.01	
3/26/2020	<0.01	
9/23/2020	<0.01	
3/8/2021	<0.01	
8/9/2021	<0.01	
2/4/2022		<0.01
0/0/2022		< 0.01
8/8/2022 1/30/2023		<0.01

	GWA-4	GWA-4
3/6/2007	<0.01	
5/8/2007	<0.01	
7/17/2007	<0.01	
8/28/2007	<0.01	
11/6/2007	<0.01	
5/8/2008	<0.01	
12/3/2008	<0.01	
4/7/2009	<0.01	
10/2/2009	<0.01	
4/14/2010	<0.01	
10/14/2010	<0.01	
4/5/2011	<0.01	
10/12/2011	<0.01	
4/4/2012	<0.01	
9/24/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/11/2014	<0.01	
9/8/2014	<0.01	
4/21/2015	<0.01	
9/29/2015	<0.01	
3/22/2016	<0.01	
9/7/2016	<0.01	
3/24/2017	<0.01	
10/4/2017	<0.01	
3/15/2018	<0.01	
10/4/2018	<0.01	
4/8/2019	<0.01	
9/30/2019	<0.01	
3/26/2020	<0.01	
9/23/2020	<0.01	
3/8/2021	<0.01	
	<0.01	
8/9/2021	<0.01	<0.01
2/4/2022 8/8/2022		<0.01 <0.01
1/30/2023		<0.01

	GWC-21	GWC-21
3/6/2007	<0.01	
5/9/2007	<0.01	
7/17/2007	<0.01	
8/29/2007	<0.01	
11/7/2007	<0.01	
5/7/2008	<0.01	
12/5/2008	<0.01	
4/27/2009	<0.01	
9/30/2009	<0.01	
4/13/2010	<0.01	
10/12/2010	<0.01	
10/5/2011	<0.01	
4/10/2012	<0.01	
9/26/2012	<0.01	
3/13/2013	<0.01	
9/11/2013	<0.01	
3/11/2014	<0.01	
9/9/2014	0.0029 (J)	
9/30/2015	0.001 (J)	
3/24/2016	<0.01	
9/8/2016	<0.01	
3/27/2017	<0.01	
10/5/2017	<0.01	
3/15/2018	<0.01	
10/4/2018	<0.01	
4/9/2019	<0.01	
10/1/2019	<0.01	
3/31/2020	<0.01	
9/24/2020	<0.01	
3/9/2021	<0.01	
8/10/2021	<0.01	
2/7/2022		<0.01
8/9/2022		<0.01
1/31/2023		<0.01

	GWC-23	GWC-23
3/6/2007	<0.01	
5/9/2007	<0.01	
7/17/2007	<0.01	
8/29/2007	<0.01	
11/7/2007	<0.01	
5/7/2008	<0.01	
12/5/2008	<0.01	
4/14/2009	<0.01	
10/1/2009	<0.01	
4/14/2010	<0.01	
10/13/2010	<0.01	
4/6/2011	<0.01	
10/12/2011	<0.01	
4/9/2012	<0.01	
9/19/2012	<0.01	
3/13/2013	<0.01	
9/10/2013	<0.01	
3/11/2014	<0.01	
9/3/2014	<0.01	
4/23/2015	<0.01	
9/30/2015	<0.01	
3/23/2016	<0.01	
9/8/2016	<0.01	
3/27/2017	<0.01	
10/5/2017	<0.01	
3/15/2018	<0.01	
10/5/2018	<0.01	
4/8/2019	0.00017 (J)	
10/1/2019	<0.01	
3/26/2020	<0.01	
9/23/2020	<0.01	
3/9/2021	<0.01	
8/10/2021	<0.01	
2/7/2022		<0.01
8/8/2022		<0.01
1/31/2023		<0.01

 ·	GWC-5	GWC-5
3/7/2007	<0.01	
5/8/2007	<0.01	
7/6/2007	<0.01	
8/28/2007	<0.01	
11/6/2007	<0.01	
5/8/2008	<0.01	
12/3/2008	<0.01	
4/7/2009	<0.01	
10/1/2009	<0.01	
4/14/2010	<0.01	
10/14/2010	<0.01	
4/5/2011	<0.01	
10/12/2011	<0.01	
4/4/2012	<0.01	
9/24/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/5/2014	<0.01	
9/9/2014	0.00093 (J)	
4/21/2015	<0.01	
9/29/2015	<0.01	
3/23/2016	<0.01	
9/7/2016	<0.01	
3/23/2017	<0.01	
10/4/2017	<0.01	
3/16/2018	<0.01	
10/4/2018	<0.01	
4/9/2019	<0.01	
10/1/2019	<0.01	
3/31/2020	<0.01	
9/25/2020	<0.01	
3/9/2021	<0.01	
8/10/2021	<0.01	
2/4/2022		<0.01
8/9/2022		<0.01
1/31/2023		<0.01

	GWC-7	GWC-7			
5/9/2007	<0.01				
7/6/2007	<0.01				
8/28/2007	<0.01				
11/6/2007	<0.01				
5/8/2008	<0.01				
12/2/2008	<0.01				
4/8/2009	<0.01				
10/1/2009	0.0039				
4/13/2010	<0.01				
10/7/2010	<0.01				
4/5/2011	0.0025				
10/4/2011	0.0027				
4/3/2012	<0.01				
9/18/2012	<0.01				
3/12/2013	<0.01				
9/10/2013	<0.01				
3/5/2014	<0.01				
9/8/2014	0.0012 (J)				
4/21/2015	0.0015 (J)				
9/29/2015					
3/23/2016	<0.01				
9/7/2016	<0.01				
3/24/2017	<0.01				
10/4/2017					
3/15/2018	<0.01				
10/4/2018	<0.01				
4/8/2019	<0.01				
10/1/2019	<0.01				
3/30/2020	<0.01				
9/24/2020	<0.01				
3/9/2021	<0.01				
8/10/2021	<0.01				
2/4/2022		<0.01			
8/10/2022		<0.01			
0/10/2022					

	GWC-9	GWC-9
3/7/2007	<0.01	
5/8/2007	<0.01	
7/6/2007	<0.01	
8/28/2007	<0.01	
11/6/2007	<0.01	
5/8/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	0.0029	
9/30/2009	<0.01	
4/13/2010	<0.01	
10/13/2010	<0.01	
4/5/2011	<0.01	
10/4/2011	<0.01	
4/4/2012	<0.01	
9/19/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/5/2014	<0.01	
9/3/2014	<0.01	
4/21/2015	<0.01	
9/29/2015	<0.01	
3/23/2016	<0.01	
9/8/2016	<0.01	
3/27/2017	<0.01	
10/5/2017	<0.01	
3/15/2018	<0.01	
10/5/2018	<0.01	
4/8/2019	<0.01	
10/1/2019	<0.01	
3/27/2020	<0.01	
9/24/2020	<0.01	
3/9/2021	<0.01	
8/10/2021	<0.01	
2/4/2022		<0.01
8/9/2022		<0.01
1/31/2023		<0.01

	GWA-1	GWA-1
3/6/2007	<0.01	
5/8/2007	<0.01	
7/7/2007	<0.01	
8/28/2007	<0.01	
11/6/2007	<0.01	
5/9/2008	<0.01	
12/3/2008	<0.01	
4/7/2009	0.0028	
10/1/2009	<0.01	
4/14/2010	<0.01	
10/13/2010	<0.01	
4/6/2011	<0.01	
10/10/2011	<0.01	
4/3/2012	<0.01	
9/24/2012	<0.01	
3/12/2013	<0.01	
9/11/2013	<0.01	
3/4/2014	0.0026	
9/3/2014	0.001 (J)	
4/21/2015	<0.01	
9/30/2015	<0.01	
3/22/2016	<0.01	
9/7/2016	0.0047 (J)	
3/23/2017	<0.01	
10/4/2017	<0.01	
3/14/2018	0.0032 (J)	
10/4/2018	0.003 (J)	
4/8/2019	<0.01	
9/30/2019	0.0032 (J)	
3/26/2020	<0.01	
9/23/2020	0.0025 (J)	
3/8/2021	<0.01	
8/9/2021	<0.01	
2/4/2022		<0.01
8/8/2022		<0.01
1/30/2023		<0.01

Constituent: Zinc (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-11	GWA-11
3/7/2007	<0.01	
5/8/2007	0.0025	
7/17/2007	0.0047	
8/28/2007	0.0033	
11/7/2007	<0.01	
5/9/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	<0.01	
10/1/2009	<0.01	
4/14/2010	<0.01	
10/13/2010	<0.01	
4/6/2011	<0.01	
10/4/2011	<0.01	
4/10/2012	<0.01	
9/26/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/4/2014	<0.01	
9/3/2014	0.00074 (J)	
4/21/2015	<0.01	
9/29/2015	0.0024 (J)	
3/22/2016	<0.01	
9/7/2016	0.0023 (J)	
3/24/2017	0.0068 (J)	
10/5/2017	<0.01	
3/15/2018	0.0042 (J)	
10/4/2018	0.0046 (J)	
4/8/2019	0.0024 (J)	
9/30/2019	0.004 (J)	
3/26/2020	<0.01	
9/22/2020	<0.01	
3/8/2021	<0.01	
8/10/2021	<0.01	
2/4/2022		<0.01
8/8/2022		<0.01

<0.01

Constituent: Zinc (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-2	GWA-2
3/6/2007	<0.01	
5/8/2007	<0.01	
7/7/2007	<0.01	
8/28/2007	0.0026	
11/6/2007	<0.01	
5/9/2008	<0.01	
12/3/2008	<0.01	
4/7/2009	<0.01	
10/1/2009	<0.01	
4/13/2010	<0.01	
10/7/2010	<0.01	
4/6/2011	<0.01	
10/6/2011	<0.01	
4/3/2012	<0.01	
9/19/2012	<0.01	
3/12/2013	<0.01	
9/9/2013	<0.01	
3/4/2014	0.0035	
9/3/2014	0.0015 (J)	
4/22/2015	<0.01	
9/30/2015	0.0026 (J)	
3/22/2016	<0.01	
9/7/2016	0.0024 (J)	
3/23/2017	<0.01	
10/4/2017	0.0017 (J)	
3/14/2018	0.0023 (J)	
10/4/2018	0.0041 (J)	
4/8/2019	0.0014 (J)	
9/30/2019	0.0043 (J)	
3/26/2020	<0.01	
9/21/2020	<0.01	
3/9/2021	<0.01	
8/9/2021	<0.01	
2/4/2022		<0.01
8/8/2022		<0.01

<0.01

Constituent: Zinc (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

		GWA-3	GWA-3
3/6/2	007	<0.01	
5/8/2	007	<0.01	
7/17/	2007	0.0033	
8/28/	2007	<0.01	
11/6/	2007	<0.01	
5/8/2	800	0.0033	
12/3/	2008	0.0054	
4/7/2	009	<0.01	
10/2/	2009	<0.01	
4/14/	2010	0.003	
10/14	1/2010	<0.01	
4/5/2	011	<0.01	
10/12	2/2011	<0.01	
4/4/2	012	<0.01	
9/26/	2012	<0.01	
3/12/	2013	<0.01	
9/10/	2013	<0.01	
3/11/	2014	0.0037	
9/8/2	014	0.00087 (J)	
4/21/	2015	0.002 (J)	
9/29/	2015	0.0021 (J)	
3/22/	2016	<0.01	
9/7/2	016	0.0034 (J)	
3/23/	2017	0.0031 (J)	
10/4/	2017	<0.01	
3/15/	2018	0.0028 (J)	
10/4/	2018	0.0043 (J)	
4/5/2	019	0.0013 (J)	
9/30/	2019	0.0045 (J)	
3/26/	2020	<0.01	
9/23/	2020	<0.01	
3/8/2	021	<0.01	
8/9/2	021	<0.01	
2/4/2	022		<0.01
8/8/2	022		<0.01

<0.01

	GWA-4	GWA-4
3/6/2007	<0.01	
5/8/2007	<0.01	
7/17/2007	<0.01	
8/28/2007	0.0026	
11/6/2007	<0.01	
5/8/2008	0.0037	
12/3/2008	0.003	
4/7/2009	0.0045	
10/2/2009	0.0027	
4/14/2010	<0.01	
10/14/2010	0.0041	
4/5/2011	<0.01	
10/12/2011	0.0033	
4/4/2012	<0.01	
9/24/2012	0.0039	
3/12/2013	<0.01	
9/10/2013	0.0035	
3/11/2014	0.0045	
9/8/2014	0.0026	
4/21/2015	0.0028	
9/29/2015	0.008 (J)	
3/22/2016	<0.01	
9/7/2016	0.0035 (J)	
3/24/2017	0.0095 (J)	
10/4/2017	0.0031 (J)	
3/15/2018	0.0041 (J)	
10/4/2018	0.0058 (J)	
4/8/2019	0.0023 (J)	
9/30/2019	0.0059 (J)	
3/26/2020	<0.01	
9/23/2020	0.0025 (J)	
3/8/2021	0.0034 (J)	
8/9/2021	<0.01	
2/4/2022		<0.01
8/8/2022		<0.01
1/30/2023		<0.01

Constituent: Zinc (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-10	GWC-10
3/7/2007	<0.01	
5/8/2007	<0.01	
7/17/2007	0.0069	
8/28/2007	<0.01	
11/7/2007	<0.01	
5/9/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	<0.01	
10/1/2009	<0.01	
4/14/2010	<0.01	
10/13/2010	<0.01	
4/6/2011	<0.01	
10/4/2011	<0.01	
4/10/2012	<0.01	
9/26/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/4/2014	0.0026	
9/3/2014	0.00079 (J)	
4/21/2015	<0.01	
9/30/2015	0.0018 (J)	
3/23/2016	<0.01	
9/7/2016	<0.01	
3/27/2017	0.0014 (J)	
10/5/2017	<0.01	
3/15/2018	<0.01	
10/4/2018	0.0033 (J)	
4/9/2019	<0.01	
10/1/2019	0.0049 (J)	
3/27/2020	<0.01	
9/25/2020	<0.01	
3/9/2021	<0.01	
8/10/2021	<0.01	
2/4/2022		<0.01
8/9/2022		<0.01

<0.01

_			
		GWC-18	GWC-18
	3/7/2007	<0.01	
	5/9/2007	0.0026	
	7/17/2007	0.0043	
	8/28/2007	<0.01	
	11/7/2007	<0.01	
	5/7/2008	<0.01	
	12/3/2008	<0.01	
	4/14/2009	<0.01	
	10/1/2009	<0.01	
	4/13/2010	<0.01	
	10/12/2010	<0.01	
	4/6/2011	<0.01	
	10/12/2011	<0.01	
	4/5/2012	<0.01	
	9/19/2012	<0.01	
	3/13/2013	<0.01	
	9/10/2013	<0.01	
	3/10/2014	0.0022 (J)	
	9/3/2014	0.0013 (J)	
	4/22/2015	0.0019 (J)	
	9/30/2015	0.0037 (J)	
	3/24/2016	<0.01	
	9/8/2016	0.0024 (J)	
	3/27/2017	<0.01	
	10/5/2017	<0.01	
	3/16/2018	<0.01	
	10/5/2018	0.0029 (J)	
	4/9/2019	0.0037 (J)	
	10/1/2019	0.006 (J)	
	3/30/2020	<0.01	
	9/24/2020	<0.01	
	3/9/2021	<0.01	
	8/10/2021	<0.01	
	2/4/2022		<0.01
	8/9/2022		<0.01
	1/31/2023		<0.01

Constituent: Zinc (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-19	GWC-19
3/6/2007	<0.01	
5/9/2007	0.0025	
7/17/2007	0.0035	
8/28/2007	<0.01	
11/7/2007	<0.01	
5/7/2008	<0.01	
12/4/2008	<0.01	
4/14/2009	<0.01	
10/2/2009	<0.01	
4/13/2010	0.0043	
10/12/2010	<0.01	
4/6/2011	<0.01	
10/12/2011	<0.01	
4/5/2012	<0.01	
9/25/2012	<0.01	
3/13/2013	<0.01	
9/11/2013	<0.01	
3/10/2014	0.0031	
9/9/2014	0.00098 (J)	
4/22/2015	0.0015 (J)	
9/30/2015	0.002 (J)	
3/24/2016	<0.01	
9/8/2016	0.0029 (J)	
3/27/2017	0.0019 (J)	
10/5/2017	0.0024 (J)	
3/15/2018	<0.01	
10/4/2018	0.013	
4/9/2019	<0.01	
10/1/2019	0.0049 (J)	
3/31/2020	<0.01	
9/28/2020	0.0033 (J)	
3/10/2021	<0.01	
8/10/2021	<0.01	
2/7/2022		<0.01
8/9/2022		<0.01

<0.01

1/31/2023

	GWC-20	GWC-20
3/7/2007	<0.01	
5/9/2007	<0.01	
7/17/2007	<0.01	
8/29/2007	<0.01	
11/7/2007	<0.01	
5/7/2008	<0.01	
12/5/2008	<0.01	
4/14/2009	<0.01	
9/30/2009	<0.01	
4/13/2010	<0.01	
10/12/2010	<0.01	
10/12/2011	<0.01	
4/9/2012	<0.01	
9/25/2012	<0.01	
3/13/2013	<0.01	
9/11/2013	<0.01	
3/10/2014	0.0024 (J)	
9/9/2014	0.00078 (J)	
4/23/2015	<0.01	
9/30/2015	0.0016 (J)	
3/23/2016	<0.01	
9/8/2016	<0.01	
3/27/2017	0.0017 (J)	
10/5/2017	0.0016 (J)	
3/16/2018	<0.01	
10/5/2018	<0.01	
4/9/2019	<0.01	
10/1/2019	0.0063 (J)	
3/31/2020	<0.01	
9/23/2020	<0.01	
3/10/2021	<0.01	
8/10/2021	<0.01	
2/7/2022		<0.01
8/9/2022		<0.01
1/31/2023		<0.01

	GWC-21	GWC-21
3/6/2007	<0.01	
5/9/2007	<0.01	
7/17/2007	0.0031	
8/29/2007	0.0056	
11/7/2007	0.0059	
5/7/2008	0.0059	
12/5/2008	<0.01	
4/27/2009	0.0051	
9/30/2009	0.0066	
4/13/2010	0.0041	
10/12/2010	0.004	
10/5/2011	0.0043	
4/10/2012	0.0108	
9/26/2012	0.0066	
3/13/2013	0.0035	
9/11/2013	0.005	
3/11/2014	0.005	
9/9/2014	0.0041	
9/30/2015	0.0031 (J)	
3/24/2016	0.00393 (J)	
9/8/2016	0.0047 (J)	
3/27/2017	0.0036 (J)	
10/5/2017	0.0065 (J)	
3/15/2018	0.0053 (J)	
10/4/2018	0.0077 (J)	
4/9/2019	0.0041 (J)	
10/1/2019	0.0078 (J)	
3/31/2020	<0.01	
9/24/2020	0.0046 (J)	
3/9/2021	0.0033 (J)	
8/10/2021	<0.01	
2/7/2022		<0.01
8/9/2022		<0.01
1/31/2023		<0.01

_			
		GWC-22	GWC-22
	3/6/2007	<0.01	
	5/9/2007	0.0035	
	7/17/2007	<0.01	
	8/29/2007	<0.01	
	11/7/2007	<0.01	
	5/7/2008	<0.01	
	12/5/2008	<0.01	
	4/14/2009	<0.01	
	9/30/2009	<0.01	
	4/13/2010	<0.01	
	10/12/2010	<0.01	
	4/6/2011	<0.01	
	10/5/2011	<0.01	
	4/9/2012	<0.01	
	9/25/2012	<0.01	
	3/13/2013	<0.01	
	9/11/2013	<0.01	
	3/11/2014	0.0037	
	9/9/2014	0.0006 (J)	
	4/23/2015	<0.01	
	9/30/2015	0.0021 (J)	
	3/23/2016	<0.01	
	9/8/2016	<0.01	
	3/27/2017	<0.01	
	10/5/2017	<0.01	
	3/15/2018	<0.01	
	10/4/2018	0.003 (J)	
	4/9/2019	<0.01	
	10/1/2019	0.0054 (J)	
	3/31/2020	<0.01	
	9/23/2020	<0.01	
	3/9/2021	<0.01	
	8/10/2021	<0.01	
	2/7/2022		<0.01
	8/9/2022		<0.01
	1/31/2023		<0.01

Constituent: Zinc (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-23	GWC-23
3/6/2007	0.0054	
5/9/2007	0.0041	
7/17/2007	0.005	
8/29/2007	0.0044	
11/7/2007	<0.01	
5/7/2008	<0.01	
12/5/2008	<0.01	
4/14/2009	<0.01	
10/1/2009	<0.01	
4/14/2010	<0.01	
10/13/2010	<0.01	
4/6/2011	<0.01	
10/12/2011	<0.01	
4/9/2012	<0.01	
9/19/2012	<0.01	
3/13/2013	<0.01	
9/10/2013	<0.01	
3/11/2014	0.0033	
9/3/2014	0.0014 (J)	
4/23/2015	0.0024 (J)	
9/30/2015	0.0041 (J)	
3/23/2016	<0.01	
9/8/2016	<0.01	
3/27/2017	0.0014 (J)	
10/5/2017	0.0014 (J)	
3/15/2018	0.0039 (J)	
10/5/2018	0.0048 (J)	
4/8/2019	0.0016 (J)	
10/1/2019	0.0057 (J)	
3/26/2020	<0.01	
9/23/2020	0.0022 (J)	
3/9/2021	<0.01	
8/10/2021	<0.01	
2/7/2022		<0.01
8/8/2022		<0.01

<0.01

1/31/2023

	GWC-5	GWC-5
3/7/2007	0.0064	
5/8/2007	<0.01	
7/6/2007	<0.01	
8/28/2007	0.0025	
11/6/2007	<0.01	
5/8/2008	<0.01	
12/3/2008	<0.01	
4/7/2009	0.0025	
10/1/2009	<0.01	
4/14/2010	<0.01	
10/14/2010	<0.01	
4/5/2011	0.0025	
10/12/2011	0.0037	
4/4/2012	<0.01	
9/24/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/5/2014	0.0028	
9/9/2014	0.00058 (J)	
4/21/2015	0.0043	
9/29/2015	0.0031 (J)	
3/23/2016	0.00272 (J)	
9/7/2016	<0.01	
3/23/2017	0.0026 (J)	
10/4/2017	<0.01	
3/16/2018	<0.01	
10/4/2018	0.0028 (J)	
4/9/2019	<0.01	
10/1/2019	0.0053 (J)	
3/31/2020	<0.01	
9/25/2020	<0.01	
3/9/2021	<0.01	
8/10/2021	<0.01	
2/4/2022		<0.01
8/9/2022		<0.01
1/31/2023		<0.01

Constituent: Zinc (mg/L) Analysis Run 4/5/2023 5:32 PM View: Appendix I - ND Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-6	GWC-6
3/7/2007	<0.01	
5/9/2007	<0.01	
7/17/2007	<0.01	
8/28/2007	<0.01	
11/6/2007	<0.01	
5/8/2008	<0.01	
12/3/2008	<0.01	
4/7/2009	<0.01	
10/1/2009	<0.01	
4/13/2010	<0.01	
10/6/2010	<0.01	
4/5/2011	<0.01	
10/4/2011	<0.01	
4/3/2012	<0.01	
9/18/2012	<0.01	
3/12/2013	<0.01	
9/9/2013	<0.01	
3/5/2014	0.0026	
9/8/2014	0.00055 (J)	
4/22/2015	<0.01	
9/29/2015	0.0026 (J)	
3/23/2016	<0.01	
9/7/2016	0.0024 (J)	
3/23/2017	0.0035 (J)	
10/4/2017	<0.01	
3/16/2018	0.0029 (J)	
10/4/2018	0.0039 (J)	
4/8/2019	0.0013 (J)	
10/1/2019	0.0056 (J)	
3/31/2020	<0.01	
9/25/2020	<0.01	
3/9/2021	<0.01	
8/10/2021	<0.01	
2/4/2022		<0.01
8/8/2022		<0.01

<0.01

1/31/2023

	GWC-7	GWC-7
5/9/2007	45 (o)	
7/6/2007	16 (o)	
8/28/2007	11 (o)	
11/6/2007	8.3	
5/8/2008	5	
12/2/2008	3.2	
4/8/2009	2.4	
10/1/2009	1.9	
4/13/2010	1.9	
10/7/2010	1.6	
4/5/2011	1.1	
10/4/2011	1.1	
4/3/2012	0.75	
9/18/2012	0.88	
3/12/2013	0.23	
9/10/2013	0.36	
3/5/2014	0.33	
9/8/2014	0.47	
4/21/2015	0.27	
9/29/2015	0.359	
3/23/2016	0.102	
9/7/2016	0.24	
3/24/2017	0.0512	
10/4/2017	0.159	
3/15/2018	0.12	
10/4/2018	0.22	
4/8/2019	0.051	
10/1/2019	0.12	
3/30/2020	0.051	
9/24/2020	0.07	
3/9/2021	0.057	
8/10/2021	0.093	
2/4/2022		0.07
8/10/2022		0.082
1/31/2023		0.19

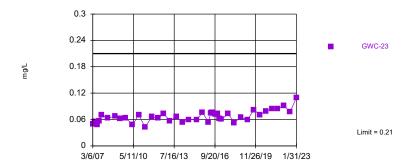
	GWC-8	GWC-8
5/9/2007	0.0038	
7/6/2007	<0.01	
8/28/2007	<0.01	
11/6/2007	<0.01	
5/8/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	<0.01	
9/30/2009	<0.01	
4/13/2010	<0.01	
10/13/2010	<0.01	
4/5/2011	<0.01	
10/4/2011	<0.01	
4/3/2012	<0.01	
9/19/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/5/2014	0.0028	
9/9/2014	0.0014 (J)	
4/22/2015	<0.01	
9/29/2015	0.0016 (J)	
3/23/2016	<0.01	
9/8/2016	<0.01	
3/24/2017	0.0031 (J)	
10/5/2017	<0.01	
3/14/2018	0.0053 (J)	
10/4/2018	0.0031 (J)	
4/8/2019	0.0012 (J)	
10/1/2019	0.0055 (J)	
3/27/2020	<0.01	
9/24/2020	<0.01	
3/9/2021	<0.01	
8/10/2021	<0.01	
2/4/2022		<0.01
8/9/2022		<0.01
1/31/2023		<0.01

	GWC-9	GWC-9
3/7/2007	<0.01	
5/8/2007	0.0027	
7/6/2007	0.0032	
8/28/2007	0.0026	
11/6/2007	<0.01	
5/8/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	<0.01	
9/30/2009	<0.01	
4/13/2010	<0.01	
10/13/2010	<0.01	
4/5/2011	<0.01	
10/4/2011	<0.01	
4/4/2012	<0.01	
9/19/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/5/2014	0.0029	
9/3/2014	0.0011 (J)	
4/21/2015	<0.01	
9/29/2015	0.0034 (J)	
3/23/2016	<0.01	
9/8/2016	<0.01	
3/27/2017	0.0014 (J)	
10/5/2017	0.0013 (J)	
3/15/2018	<0.01	
10/5/2018	0.0044 (J)	
4/8/2019	0.0016 (J)	
10/1/2019	0.0052 (J)	
3/27/2020	<0.01	
9/24/2020	<0.01	
3/9/2021	<0.01	
8/10/2021	<0.01	
2/4/2022		<0.01
8/9/2022		<0.01
1/31/2023		<0.01

FIGURE E.

Appendix I - Interwell Prediction Limits - All Result (No Significant)

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 4/3/2023, 2:03 AM


 Constituent
 Well
 Upper Lim. Lower Lim. Date
 Observ.
 Sig. Bg N Bg Mean
 Std. Dev.
 %NDs VD. Adj.
 Transform
 Alpha Method

 Barium (mg/L)
 GWC-23
 0.21 n/a
 1/31/2023
 0.11 No 205 n/a
 n/a
 n/a
 0 n/a
 n/a
 0.00004912 NP Inter (normality) 1 of 2

Sanitas™ v.9.6.37 . UG

Within Limit

Prediction Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 205 background values. Annual per-constituent alpha = 0.001178. Individual comparison alpha = 0.00004912 (1 of 2). Assumes 11 future values.

Constituent: Barium Analysis Run 4/2/2023 7:20 PM View: Appendix I - Exceedances
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

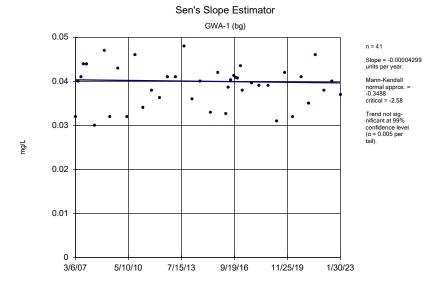
Constituent: Barium (mg/L) Analysis Run 4/2/2023 7:27 PM View: Appendix I - Exceedances

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-1 (bg)	GWA-4 (bg)	GWA-3 (bg)	GWA-2 (bg)	GWC-23	GWA-11 (bg)
3/6/2007	0.032	0.13	0.17	0.12	0.05	
3/7/2007						0.03
5/8/2007	0.04	0.12	0.21	0.11		0.032
5/9/2007					0.055	
7/7/2007	0.041			0.11		
7/17/2007		0.12	0.21		0.048	0.028
8/28/2007	0.044	0.13	0.2	0.13		0.03
8/29/2007					0.056	
11/6/2007	0.044	0.12	0.19	0.12		
11/7/2007					0.07	0.032
5/7/2008					0.063	
5/8/2008		0.13	0.2			
5/9/2008	0.03			0.12		0.032
12/2/2008						0.036
12/3/2008	0.047	0.14	0.18	0.12		
12/5/2008					0.068	
4/7/2009	0.032	0.097	0.2	0.13		
4/8/2009						0.04
4/14/2009					0.062	
10/1/2009	0.043			0.14	0.064	0.039
10/2/2009		0.11	0.2			
4/13/2010				0.15		
4/14/2010	0.032	0.059	0.2		0.048	0.041
10/7/2010				0.16		
10/13/2010	0.046				0.071	0.039
10/14/2010		0.053	0.18			
4/5/2011		0.042	0.16			
4/6/2011	0.034			0.14	0.042	0.034
10/4/2011						0.032
10/6/2011				0.16		
10/10/2011	0.038					
10/12/2011		0.048	0.15		0.066	
4/3/2012	0.0363			0.165		
4/4/2012		0.044	0.165			
4/9/2012					0.0628	
4/10/2012						0.0425
9/19/2012				0.16	0.073	
9/24/2012	0.041	0.048				
9/26/2012			0.17			0.035
3/12/2013	0.041	0.043	0.17	0.16		0.035
3/13/2013					0.057	
9/9/2013				0.17		
9/10/2013		0.042	0.18		0.066	0.035
9/11/2013	0.048					
3/4/2014	0.036			0.16		0.031
3/11/2014		0.04	0.17		0.054	
9/3/2014	0.04			0.17	0.06	0.033
9/8/2014		0.042	0.16			
4/21/2015	0.033	0.05	0.16			0.03
4/22/2015				0.17		
4/23/2015					0.06	
9/29/2015		0.044	0.14			0.031

	GWA-1 (bg)	GWA-4 (bg)	GWA-3 (bg)	GWA-2 (bg)	GWC-23	GWA-11 (bg)
9/30/2015	0.042			0.15	0.076	
3/22/2016	0.0326	0.0397	0.188	0.197		0.0327
3/23/2016					0.0533	
5/17/2016	0.0387	0.0351	0.193	0.178		0.0323
5/19/2016					0.074	
7/5/2016	0.0403		0.172	0.182		
7/6/2016		0.0475				0.0344
7/7/2016					0.0766	
9/7/2016	0.0413	0.0415	0.164	0.172		0.0324
9/8/2016					0.0726	
10/18/2016	0.0409	0.0424	0.138	0.174		0.0311
10/19/2016					0.072	
12/6/2016	0.0408	0.0528	0.149			0.0311
12/7/2016				0.167	0.0732	
1/31/2017	0.0435			0.176		
2/1/2017		0.0482	0.121			0.0332
2/3/2017					0.0619	
3/23/2017	0.038		0.143	0.157		
3/24/2017		0.0595				0.032
3/27/2017					0.0602	
10/4/2017	0.0396	0.0486	0.139	0.143		
10/5/2017					0.0734	0.0325
3/14/2018	0.039			0.17		
3/15/2018		0.04	0.17		0.053	0.031
10/4/2018	0.039	0.05	0.16	0.18		0.033
10/5/2018					0.065	
4/5/2019			0.13			
4/8/2019	0.031	0.047		0.15	0.059	0.031
9/30/2019	0.042	0.051	0.14	0.17		0.03
10/1/2019					0.082	
3/26/2020	0.032	0.049	0.14	0.16	0.071	0.031
9/21/2020				0.18		
9/22/2020						0.031
9/23/2020	0.041	0.043	0.14		0.079	
3/8/2021	0.035	0.052	0.12			0.031
3/9/2021				0.17	0.085	
8/9/2021	0.046	0.034	0.12	0.19		
8/10/2021					0.085	0.03
2/4/2022	0.038	0.037	0.081	0.18		0.031
2/7/2022					0.091	
8/8/2022	0.04	0.04	0.1	0.18	0.078	0.029
1/30/2023	0.037	0.037	0.07	0.2		0.03
1/31/2023					0.11	

FIGURE F.

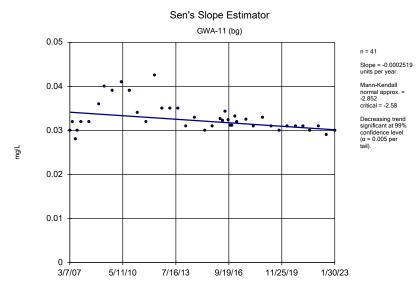

Appendix I - Trend Tests - Significant Results

	Plant Hammond	Client: Southern Company		Data: Huffaker Road Landfill		Printed 4/2/2023, 8:02 PM						
Constituent	Well	<u>Slope</u>	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method	
Barium (mg/L)	GWA-11 (bg)	-0.0002519	-2.852	-2.58	Yes	41	0	n/a	n/a	0.01	NP	
Barium (mg/L)	GWA-2 (bg)	0.003856	5.566	2.58	Yes	41	0	n/a	n/a	0.01	NP	
Barium (mg/L)	GWA-3 (bg)	-0.005786	-6.132	-2.58	Yes	41	0	n/a	n/a	0.01	NP	
Barium (mg/L)	GWA-4 (bg)	-0.002509	-4.026	-2.58	Yes	41	0	n/a	n/a	0.01	NP	
Barium (mg/L)	GWC-23	0.001661	4.09	2.58	Yes	41	0	n/a	n/a	0.01	NP	

Appendix I - Trend Tests - All Results

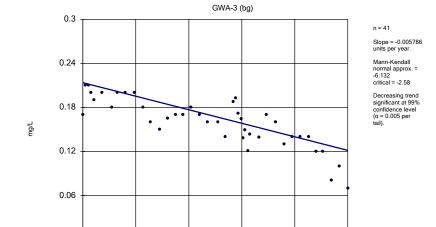
	Plant Hammond	Client: Southern Company		Data: Huffaker Road Landfill			Printed 4/2/202	3, 8:02 PM				
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method	
Barium (mg/L)	GWA-1 (bg)	-0.00004299	-0.3488	-2.58	No	41	0	n/a	n/a	0.01	NP	
Barium (mg/L)	GWA-11 (bg)	-0.0002519	-2.852	-2.58	Yes	41	0	n/a	n/a	0.01	NP	
Barium (mg/L)	GWA-2 (bg)	0.003856	5.566	2.58	Yes	41	0	n/a	n/a	0.01	NP	
Barium (mg/L)	GWA-3 (bg)	-0.005786	-6.132	-2.58	Yes	41	0	n/a	n/a	0.01	NP	
Barium (mg/L)	GWA-4 (bg)	-0.002509	-4.026	-2.58	Yes	41	0	n/a	n/a	0.01	NP	
Barium (mg/L)	GWC-23	0.001661	4.09	2.58	Yes	41	0	n/a	n/a	0.01	NP	

Sanitas™ v.9.6.37 . UG Sanitas™ v.9.6.37 . UG



Constituent: Barium Analysis Run 4/2/2023 8:02 PM View: Appendix I - Exceedances
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sen's Slope Estimator GWA-2 (bg) 0.2 n = 41 Slope = 0.003856 units per year. 0.16 Mann-Kendall normal approx. = 5.566 critical = 2.58 Increasing trend significant at 99% 0.12 confidence level (\alpha = 0.005 per mg/L 0.08 0.04 3/6/07 5/10/10 7/15/13 9/19/16 11/25/19 1/30/23


Sanitas™ v.9.6.37 . UG

Constituent: Barium Analysis Run 4/2/2023 8:02 PM View: Appendix I - Exceedances Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Barium Analysis Run 4/2/2023 8:02 PM View: Appendix I - Exceedances
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

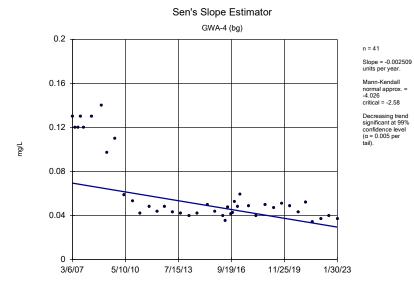
Sen's Slope Estimator

Sanitas™ v.9.6.37 . UG

3/6/07

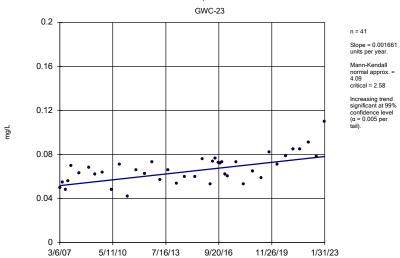
5/10/10

Constituent: Barium Analysis Run 4/2/2023 8:02 PM View: Appendix I - Exceedances
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


9/19/16

11/25/19

1/30/23


7/15/13

Sanitas** v.9.6.37 . UG

Constituent: Barium Analysis Run 4/2/2023 8:02 PM View: Appendix I - Exceedances
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sen's Slope Estimator

Constituent: Barium Analysis Run 4/2/2023 8:02 PM View: Appendix I - Exceedances
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

FIGURE G.

Appendix III - Intrawell Prediction Limits - Significant Results

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 4/19/2023, 4:43 PM Constituent Well Observ. Sig. Bg N Bg Mean Std. Dev. %NDs ND Adj. Upper Lim. Lower Lim. Date <u>Transform</u> <u>Alpha</u> Method GWC-23 53.47 n/a 1/31/2023 58.3 Yes 17 39.06 5.938 0 Calcium (mg/L) 0.0006269 Param Intra 1 of 2 None No Sulfate (mg/L) GWC-19 20.64 n/a 1/31/2023 22.8 Yes 17 16.5 1.709 0 0.0006269 Param Intra 1 of 2
 248.3
 n/a
 1/31/2023
 284
 Yes
 16
 202.1
 18.8
 0

 310.9
 n/a
 1/31/2023
 329
 Yes
 17
 237.4
 30.3
 0
 None GWC-18 No Total Dissolved Solids (mg/L) 0.0006269 Param Intra 1 of 2 Total Dissolved Solids (mg/L) GWC-20 No 0.0006269 Param Intra 1 of 2 None

Appendix III - Intrawell Prediction Limits - All Results

Client: Southern Company Data: Huffaker Road Landfill Printed 4/19/2023, 4:43 PM Constituent <u>Well</u> %NDs ND Adj Method Observ. Bg N Bg Mean Std. Dev. **Transform** Alpha GWA-1 1/30/2023 0.005914 NP Intra (normality) 1 of 2 Boron (ma/L) 0.05 n/a 0.026J No 17 n/a n/a 11.76 n/a n/a Boron (mg/L) GWA-11 0.04333 n/a 1/30/2023 0.038J No 17 0.03634 0.002879 0 None No 0.0006269 Param Intra 1 of 2 Boron (mg/L) GWA-2 0.1026 n/a 1/30/2023 0.086 No 17 0.08614 0.006798 0 None No 0.0006269 Param Intra 1 of 2 17 0 0.0006269 Boron (ma/L) GWA-3 0.1862 n/a 1/30/2023 0.094 No 0.1478 0.01583 None No Param Intra 1 of 2 Boron (mg/L) GWA-4 0.1386 n/a 1/30/2023 0.058 No 17 0 No Param Intra 1 of 2 n/a GWC-10 0.04341 1/30/2023 0.038 Nο 17 0.03398 0.003885 0 No 0.0006269 Param Intra 1 of 2 Boron (mg/L) None GWC-18 17 0.13 0.008789 0 No 0.0006269 Param Intra 1 of 2 Boron (mg/L) 0.1513 n/a 1/31/2023 0.12 No None Boron (mg/L) **GWC-19** 0.2063 n/a 1/31/2023 0.13 No 17 0.1738 0.01337 0 None No 0.0006269 Param Intra 1 of 2 NP Intra (normality) 1 of 2 GWC-20 1/31/2023 0.015 No 17 5.882 n/a 0.005914 Boron (mg/L) 0.05 n/a n/a n/a n/a 17 Boron (mg/L) GWC-21 0.1228 n/a 1/31/2023 0.013JNo 0.3332 0.06753 0 None x^(1/3) 0.0006269 Param Intra 1 of 2 1/31/2023 GWC-22 0.08087 n/a 0.052 No 17 0.06702 0.00571 0 None No 0.0006269 Param Intra 1 of 2 Boron (mg/L) GWC-23 0.06 0.1789 0.0809 n/a 1/31/2023 No 16 0.04295 6.25 0.0006269 Param Intra 1 of 2 Boron (mg/L) None sqrt(x) Boron (ma/L) GWC-5 0.08192 n/a 1/31/2023 0.043 No 17 0.05951 0.009236 0 None No 0.0006269 Param Intra 1 of 2 Boron (mg/L) GWC-6 0.04728 1/31/2023 0.037 No 18 0.03999 0.003041 None No 0.0006269 Param Intra 1 of 2 n/a Boron (mg/L) GWC-7 0.07297 n/a 1/31/2023 0.025J Nο 17 0.05303 0.008219 0 None No 0.0006269 Param Intra 1 of 2 1/31/2023 0.005373 Boron (mg/L) GWC-8 0.088 n/a 0.029J No 18 n/a n/a 0 n/a n/a NP Intra (normality) 1 of 2 GWC-9 0.05 1/31/2023 0.012J 17 5.882 0.005914 NP Intra (normality) 1 of 2 n/a No n/a n/a Boron (mg/L) n/a n/a 17 Calcium (mg/L) GWA-1 20.89 n/a 1/30/2023 15.8 No 16.2 1.932 5.882 No 0.0006269 Param Intra 1 of 2 Calcium (mg/L) GWA-11 26 42 n/a 1/30/2023 20.4 Nο 17 20 14 2 587 5.882 None Nο 0.0006269 Param Intra 1 of 2 Calcium (mg/L) GWA-2 52.85 n/a 1/30/2023 46.8 No 17 43.1 4.018 0 None No 0.0006269 Param Intra 1 of 2 GWA-3 1/30/2023 No 17 75.75 0.0006269 Param Intra 1 of 2 Calcium (mg/L) 90.64 n/a 53.1 6.137 0 None No Calcium (mg/L) GWA-4 122.6 n/a 1/30/2023 73.6 No 17 86.21 14.99 0 None No 0.0006269 Param Intra 1 of 2 19 0 No GWC-10 60.32 n/a 1/30/2023 43.7 No 40.93 8.193 None 0.0006269 Param Intra 1 of 2 Calcium (mg/L) Calcium (mg/L) GWC-18 49.06 n/a 1/31/2023 40.4 No 18 40.94 3.386 0 None No 0.0006269 Param Intra 1 of 2 Calcium (mg/L) GWC-19 51.43 n/a 1/31/2023 42.5 No 18 44.52 2.882 0 None No 0.0006269 Param Intra 1 of 2 GWC-20 68.63 1/31/2023 62 18 55.11 5.638 0 No 0.0006269 Param Intra 1 of 2 Calcium (mg/L) n/a No None 0.0006269 Calcium (mg/L) GWC-21 94.52 n/a 1/31/2023 16.2 No 19 48.75 19.33 0 None No Param Intra 1 of 2 Calcium (mg/L) GWC-22 52.63 n/a 1/31/2023 43.8 No 17 47.89 1.955 0 None No 0.0006269 Param Intra 1 of 2 GWC-23 1/31/2023 17 39.06 0 0.0006269 Calcium (mg/L) 53.47 58.3 Yes 5.938 No Param Intra 1 of 2 n/a None Calcium (mg/L) GWC-5 91.67 n/a 1/31/2023 75.5 No 17 75.27 6.759 0 No 0.0006269 Param Intra 1 of 2 Calcium (mg/L) GWC-6 75 59 n/a 1/31/2023 62.5 Nο 17 64 12 4 724 n None Nο 0.0006269 Param Intra 1 of 2 Calcium (mg/L) GWC-7 73.87 n/a 1/31/2023 19 No 17 39 29 14.25 0 None No 0.0006269 Param Intra 1 of 2 Calcium (mg/L) GWC-8 107.1 1/31/2023 69.2 No 19 68.9 16.13 0 No 0.0006269 Param Intra 1 of 2 Calcium (mg/L) GWC-9 39.64 n/a 1/31/2023 34.1 No 17 35.42 1.737 0 None No 0.0006269 Param Intra 1 of 2 17 0 GWA-1 1/30/2023 No 0.1658 0.1303 ln(x) 0.0006269 Param Intra 1 of 2 Chloride (mg/L) 1.619 n/a 1.1 None Chloride (mg/L) GWA-11 2.058 n/a 1/30/2023 1.2 No 17 1.43 0.2592 0 No 0.0006269 Param Intra 1 of 2 Chloride (mg/L) GWA-2 3.046 n/a 1/30/2023 2.2 No 17 2.365 0.2806 0 None No 0.0006269 Param Intra 1 of 2 GWA-3 1/30/2023 17 0.0006269 Chloride (mg/L) 5.301 1.2 3.626 0.6902 0 None No Param Intra 1 of 2 n/a No Chloride (mg/L) GWA-4 10.38 n/a 1/30/2023 3.4 No 17 5.864 1.863 0 None No 0.0006269 Param Intra 1 of 2 Chloride (ma/L) GWC-10 2 237 n/a 1/30/2023 13 Nο 19 1 512 0.3062 n None Nο 0.0006269 Param Intra 1 of 2 GWC-18 1/31/2023 0.8J No 17 0 x^2 Chloride (ma/L) 1.802 n/a 1.711 0.6329 None 0.0006269 Param Intra 1 of 2 Chloride (mg/L) GWC-19 n/a 1/31/2023 1.2 No 17 1.764 0.3539 0 No 0.0006269 Param Intra 1 of 2 Chloride (mg/L) GWC-20 2 379 n/a 1/31/2023 1 1 Nο 18 1 577 0.3346 0 Nο 0.0006269 Param Intra 1 of 2 None Chloride (ma/L) GWC-21 3.92 1/31/2023 1.5 No 18 2.504 0.5908 0 No 0.0006269 Param Intra 1 of 2 n/a None Chloride (ma/L) GWC-22 2.086 1/31/2023 No 17 1.436 0.2681 0 No 0.0006269 Param Intra 1 of 2 Chloride (mg/L) GWC-23 2 249 n/a 1/31/2023 0.5ND No 17 1.397 0.3512 0 No 0.0006269 Param Intra 1 of 2 None GWC-5 1/31/2023 2.1 17 2.822 0 None No 0.0006269 Chloride (mg/L) 4.201 n/a No 0.5683 Param Intra 1 of 2 Chloride (mg/L) GWC-6 2.452 n/a 1/31/2023 1.7 No 17 1.86 0.2439 0 No 0.0006269 Param Intra 1 of 2 Chloride (mg/L) GWC-7 2.289 n/a 1/31/2023 1.7 Nο 17 1.612 0.2791 0 None No 0.0006269 Param Intra 1 of 2 Chloride (mg/L) GWC-8 3.284 1/31/2023 1.6 19 2.034 0.5279 0 No 0.0006269 n/a No None Param Intra 1 of 2 Chloride (mg/L) GWC-9 1.765 n/a 1/31/2023 0.72J No 17 1.099 0.2742 0 None No 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) GWA-1 0.1904 n/a 1/30/2023 0.11 No 17 0.1011 0.03681 5.882 No 0.0006269 Param Intra 1 of 2 None 17 0.0006269 Fluoride (ma/L) GWA-11 0.1938 n/a 1/30/2023 0.09JNo 0.2673 0.07126 17.65 Kaplan-Meier sart(x) Param Intra 1 of 2 Fluoride (mg/L) GWA-2 0.2383 n/a 1/30/2023 0.11 No 17 0.1233 0.04738 5.882 None No 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) GWA-3 0 484 n/a 1/30/2023 0.12 No 17 0.2083 0.1136 5.882 No 0.0006269 Param Intra 1 of 2 None Fluoride (mg/L) GWA-4 0.4826 1/30/2023 0.12 17 0.4315 0.1085 0 0.0006269 Param Intra 1 of 2 n/a No None sart(x) Fluoride (mg/L) GWC-10 0.1902 n/a 1/30/2023 0.096 No 17 0.1044 0.03536 11.76 No 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) GWC-18 0.218 n/a 1/31/2023 0.15 No 17 0.1375 0.03319 5.882 None No 0.0006269 Param Intra 1 of 2 Fluoride (ma/L) GWC-19 0.2528 n/a 1/31/2023 0.14 No 17 0.1435 0.04503 5.882 None No 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) GWC-20 0.1931 n/a 1/31/2023 0.094 No 17 0.2872 0.06277 5.882 0.0006269 Param Intra 1 of 2 sqrt(x) 0.08559 Fluoride (mg/L) GWC-21 0.2126 n/a 1/31/2023 0.062 Nο 17 0.05234 23.53 Kaplan-Meier Nο 0.0006269 Param Intra 1 of 2 0.0006269 Fluoride (mg/L) GWC-22 0.151 n/a 1/31/2023 0.095J No 17 0.08591 0.02682 5.882 None No Param Intra 1 of 2 Fluoride (mg/L) GWC-23 0.1833 n/a 1/31/2023 0.11 No 17 0.1043 0.03254 5.882 None No 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) GWC-5 1/31/2023 0.074J No 17 n/a 0.005914 NP Intra (normality) 1 of 2 0.33 n/a n/a n/a 17.65 n/a 17 0.1013 Fluoride (ma/L) GWC-6 0.3078 n/a 1/31/2023 0.098 No 0.3089 11.76 None sqrt(x) 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) GWC-7 0.514 n/a 1/31/2023 0.26 No 17 0.6093 0.07904 0 None x^(1/3) 0.0006269 Param Intra 1 of 2 GWC-8 Fluoride (mg/L) 0.4 n/a 1/31/2023 0.18 No 18 n/a 0.005373 NP Intra (normality) 1 of 2

0.03293

0.0917

5.882

None

No

0.0006269

Param Intra 1 of 2

GWC-9

Fluoride (ma/L)

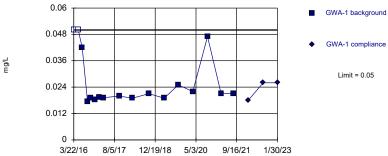
0.1716

n/a

1/31/2023

0.11

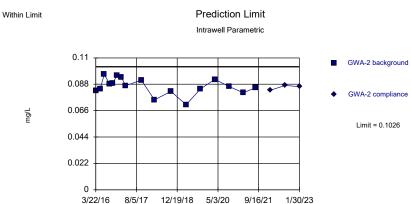
No 17


Appendix III - Intrawell Prediction Limits - All Results

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 4/19/2023, 4:43 PM Constituent <u>Well</u> Observ. Bg N Bg Mean Std. Dev. %NDs ND Adj Transform Alpha Method Sig. pH (SU) GWA-1 1/30/2023 0.0003135 Param Intra 1 of 2 7.381 6.536 7.22 No 17 6.958 0.1741 0 None No pH (SU) GWA-11 7.054 6.388 1/30/2023 No 17 6.721 0.1372 0 None No 0.0003135 Param Intra 1 of 2 pH (SU) GWA-2 7.234 6.539 1/30/2023 7.05 No 17 6.886 0.1432 0 None No 0.0003135 Param Intra 1 of 2 GWA-3 7.212 1/30/2023 17 6.771 0 0.0003135 pH (SU) 6.33 6.82 No 0.1818 None No Param Intra 1 of 2 pH (SU) GWA-4 1/30/2023 6.94 No 17 6.762 0.1637 0 No 0.0003135 pH (SU) GWC-10 7.72 6.825 1/30/2023 7.6 Nο 18 7.272 0.1867 0 None No 0.0003135 Param Intra 1 of 2 GWC-18 7.787 1/31/2023 17 7.585 0.08345 0 0.0003135 Param Intra 1 of 2 pH (SU) 7.382 7.56 No None No pH (SU) GWC-19 7.783 7.194 1/31/2023 7.65 No 19 7.488 0.1243 0 None No 0.0003135 Param Intra 1 of 2 pH (SU) GWC-20 7.608 6.972 1/31/2023 No 20 7.29 0.1358 0 No 0.0003135 Param Intra 1 of 2 7.44 None 17 6.652 pH (SU) GWC-21 7.693 5.612 1/31/2023 6.23 No 0.4288 0 None No 0.0003135 Param Intra 1 of 2 pH (SU) GWC-22 7.958 7.287 1/31/2023 7.67 No 18 7.623 0.1399 0 None No 0.0003135 Param Intra 1 of 2 pH (SU) GWC-23 7.52 6 662 1/31/2023 7.03 No 17 7 091 0.1769 0 No 0.0003135 Param Intra 1 of 2 None GWC-5 pH (SU) 7.21 6.445 1/31/2023 6.96 No 17 6.828 0.1576 0 None No 0.0003135 Param Intra 1 of 2 pH (SU) GWC-6 7.319 6.708 1/31/2023 7.24 18 7.014 0.1274 0 None No 0.0003135 Param Intra 1 of 2 No pH (SU) GWC-7 6.768 5 558 1/31/2023 5.84 No 18 6.163 0.2524 0 None Nο 0.0003135 Param Intra 1 of 2 GWC-8 1/31/2023 20 0.0003135 pH (SU) 7.787 6.575 7.09 No 7.181 0.259 0 None No Param Intra 1 of 2 GWC-9 7.324 1/31/2023 6.74 17 6.819 0.2084 0 No 0.0003135 Param Intra 1 of 2 pH (SU) 6.313 No GWA-1 1/30/2023 17 0.005914 Sulfate (mg/L) 6.6 3.8 No n/a 0 n/a NP Intra (normality) 1 of 2 Sulfate (mg/L) GWA-11 15 25 n/a 1/30/2023 9.5 Nο 17 12 17 1 271 n None Nο 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) GWA-2 22.46 n/a 1/30/2023 19.8 No 17 15.77 2.757 0 None No 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) GWA-3 1/30/2023 No 17 0.0006269 Param Intra 1 of 2 215.8 n/a 78.4 11 1.519 0 None sqrt(x) Sulfate (mg/L) GWA-4 321.2 n/a 1/30/2023 156 No 17 177.4 59.29 0 None No 0.0006269 Param Intra 1 of 2 GWC-10 1/30/2023 18 0 0.005373 NP Intra (normality) 1 of 2 Sulfate (mg/L) 33.9 n/a 11.5 No n/a n/a n/a n/a Sulfate (mg/L) GWC-18 14.45 n/a 1/31/2023 8.4 No 17 10.5 1.628 0 None No 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) **GWC-19** 20.64 n/a 1/31/2023 22.8 Yes 17 16.5 1.709 0 None No 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) GWC-20 80.7 1/31/2023 69.8 53.13 8.981 None No 0.0006269 Param Intra 1 of 2 n/a No 0 Sulfate (mg/L) GWC-21 54.24 n/a 1/31/2023 12.4 No 17 31.49 9.375 0 None No 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) GWC-22 13.34 n/a 1/31/2023 8.8 No 17 7.635 2.352 0 None No 0.0006269 Param Intra 1 of 2 GWC-23 43 1/31/2023 19.5 17 0 0.005914 NP Intra (normality) 1 of 2 Sulfate (mg/L) n/a No n/a n/a n/a GWC-5 1/31/2023 17 4.427 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) 145.9 n/a 90.6 No 0.2289 0 In(x) Sulfate (mg/L) GWC-6 144 4 n/a 1/31/2023 95.7 Nο 21 108.3 15.56 n None Nο 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) GWC-7 178.3 n/a 1/31/2023 118 No 17 109.7 28.29 0 None No 0.0006269 Param Intra 1 of 2 1/31/2023 Sulfate (mg/L) GWC-8 60.46 31.3 No 17 40.99 8.027 0 No 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) GWC-9 85.39 n/a 1/31/2023 70 Nο 18 69.08 6.805 0 None No 0.0006269 Param Intra 1 of 2 17 Total Dissolved Solids (mg/L) GWA-1 163.4 n/a 1/30/2023 94 No 102.9 24.95 0 None No 0.0006269 Param Intra 1 of 2 17 Total Dissolved Solids (mg/L) GWA-11 179.4 n/a 1/30/2023 130 No 121.6 23.82 0 No 0.0006269 Param Intra 1 of 2 Total Dissolved Solids (mg/L) GWA-2 268.6 n/a 1/30/2023 263 Nο 17 221.5 19.41 0 None No 0.0006269 Param Intra 1 of 2 Total Dissolved Solids (mg/L) GWA-3 17 0.005914 653 1/30/2023 367 No 0 n/a NP Intra (normality) 1 of 2 n/a n/a n/a n/a Total Dissolved Solids (mg/L) GWA-4 733.8 n/a 1/30/2023 459 No 17 507.8 93.12 0 0.0006269 Param Intra 1 of 2 Total Dissolved Solids (mg/L) GWC-10 268.9 n/a 1/30/2023 190 Nο 17 1794 36.87 n None Nο 0.0006269 Param Intra 1 of 2 Total Dissolved Solids (mg/L) **GWC-18** 248.3 1/31/2023 284 16 202.1 18.8 0 No 0.0006269 Param Intra 1 of 2 n/a Yes None GWC-19 1/31/2023 Total Dissolved Solids (mg/L) 281.8 n/a 239 No 16 233.4 19.68 0 No 0.0006269 Param Intra 1 of 2 Total Dissolved Solids (mg/L) GWC-20 310.9 n/a 1/31/2023 329 Yes 17 237.4 30.3 0 None Nο 0.0006269 Param Intra 1 of 2 Total Dissolved Solids (mg/L) GWC-21 398.1 1/31/2023 76 No 19 200.5 83.46 0 None No 0.0006269 Param Intra 1 of 2 n/a Total Dissolved Solids (mg/L) GWC-22 324 1/31/2023 221 No 17 n/a n/a 0 n/a 0.005914 NP Intra (normality) 1 of 2 Total Dissolved Solids (mg/L) GWC-23 290.6 n/a 1/31/2023 243 No 17 196.4 38.83 0 None No 0.0006269 Param Intra 1 of 2 GWC-5 17 Total Dissolved Solids (mg/L) 1/31/2023 0 0.005914 NP Intra (normality) 1 of 2 511 n/a 385 No n/a n/a n/a n/a Total Dissolved Solids (mg/L) GWC-6 423.2 n/a 1/31/2023 335 No 19 332.2 38.42 0 No 0.0006269 Param Intra 1 of 2 Total Dissolved Solids (mg/L) GWC-7 358.6 n/a 1/31/2023 223 Nο 17 264.9 38.59 0 None No 0.0006269 Param Intra 1 of 2 GWC-8 Total Dissolved Solids (mg/L) 444.9 1/31/2023 284 19 285 67.54 None No 0.0006269 Param Intra 1 of 2 n/a No 0 Total Dissolved Solids (mg/L) GWC-9 310.7 n/a 1/31/2023 216 No 17 226.2 34.82 None Param Intra 1 of 2

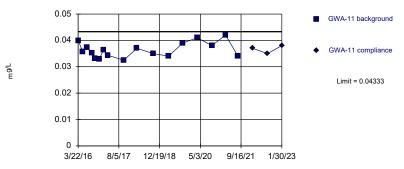
Within Limit

Sanitas™ v.9.6.37 . UG



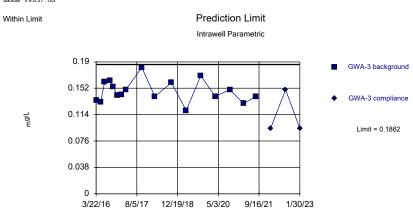
Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 17 background values. 11.76% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2).

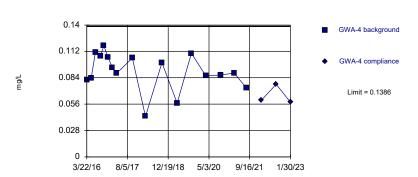

Constituent: Boron Analysis Run 4/19/2023 4:38 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

Background Data Summary: Mean=0.08614, Std. Dev.=0.006798, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9622, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Within Limit Prediction Limit
Intrawell Parametric

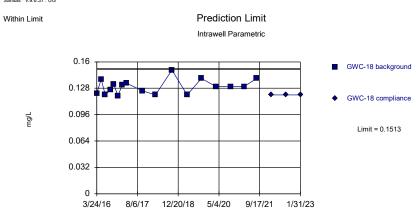
Background Data Summary: Mean=0.03634, Std. Dev.=0.002879, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9447, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Constituent: Boron Analysis Run 4/19/2023 4:38 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

Background Data Summary: Mean=0.1478, Std. Dev.=0.01583, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9764, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

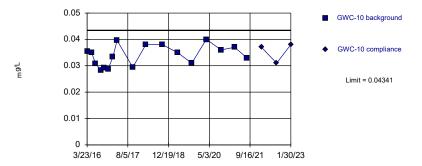
Within Limit Prediction Limit



Intrawell Parametric

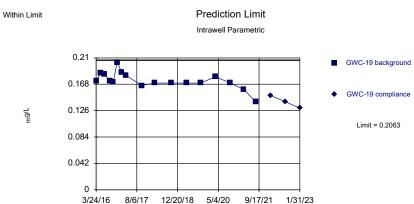
Background Data Summary: Mean=0.09064, Std. Dev.=0.01974, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9274, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006362.

Constituent: Boron Analysis Run 4/19/2023 4:38 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

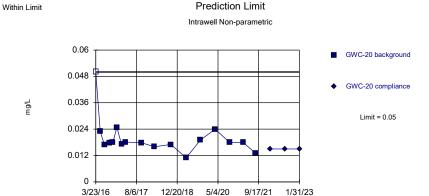

Sanitas™ v.9.6.37 . UG

Background Data Summary: Mean=0.13, Std. Dev.=0.008789, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9328, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Sanitas™ v.9.6.37 . UG

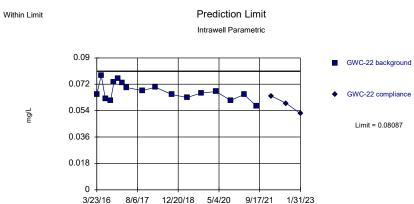


Background Data Summary: Mean=0.03398, Std. Dev.=0.003885, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9386, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

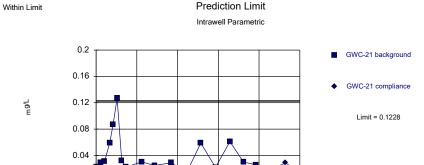

Constituent: Boron Analysis Run 4/19/2023 4:38 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

Background Data Summary: Mean=0.1738, Std. Dev.=0.01337, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9186, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Sanitas™ v.9.6.37 . UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 17 background values. 5.882% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2).


Constituent: Boron Analysis Run 4/19/2023 4:38 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

Background Data Summary: Mean=0.06702, Std. Dev.=0.00571, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.977, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

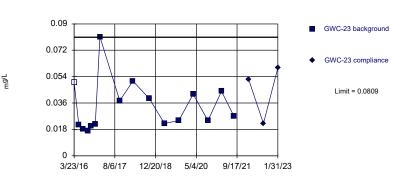
Constituent: Boron Analysis Run 4/19/2023 4:38 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Background Data Summary (based on cube root transformation): Mean=0.3332, Std. Dev.=0.06753, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8582, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0050269.

9/17/21

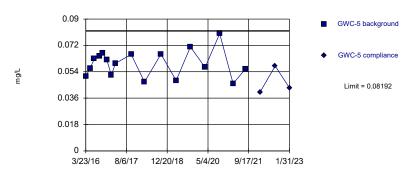
1/31/23

5/4/20


8/6/17 12/20/18

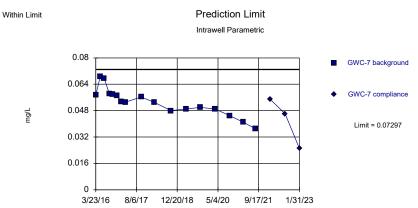
3/24/16

Constituent: Boron Analysis Run 4/19/2023 4:38 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Prediction Limit Intrawell Parametric

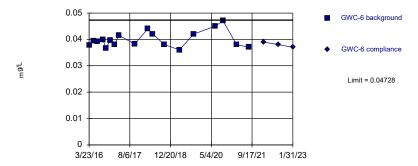
Background Data Summary (based on square root transformation): Mean=0.1789, Std. Dev.=0.04295, n=16, 6.25% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8873, critical = 0.844. Kappa = 2.456 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limit Prediction Limit


Intrawell Parametric

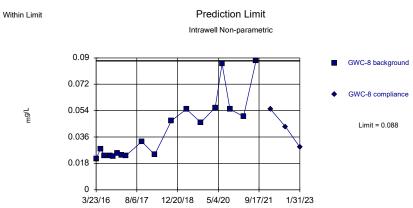
Background Data Summary: Mean=0.05951, Std. Dev.=0.009236, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9628, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Boron Analysis Run 4/19/2023 4:38 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG

Background Data Summary: Mean=0,05303, Std. Dev.=0.008219, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9661, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Sanitas™ v.9.6.37 . UG



Background Data Summary: Mean=0.03999, Std. Dev.=0.003041, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9202, critical = 0.858. Kappa = 2.397 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Boron Analysis Run 4/19/2023 4:38 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 18 background values. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values

Within Limit

Intrawell Non-parametric

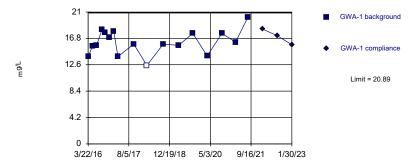
0.06
0.048
0.036
0.024
0.012
0.012
0.024
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012

Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 17 background values. 5.882% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2).

Constituent: Boron Analysis Run 4/19/2023 4:39 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

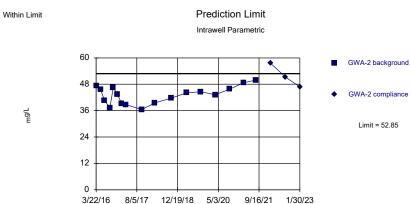
Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit



Background Data Summary: Mean=20.14, Std. Dev.=2.587, n=17, 5.882% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.865, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

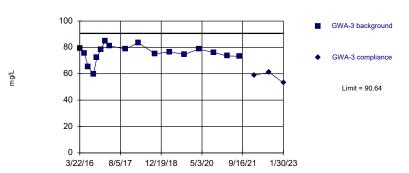
Constituent: Calcium Analysis Run 4/19/2023 4:39 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit


Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=16.2, Std. Dev.=1.932, n=17, 5.882% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9669, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006269.

Constituent: Calcium Analysis Run 4/19/2023 4:39 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG

Background Data Summary: Mean=43.1, Std. Dev.=4.018, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9699, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Calcium Analysis Run 4/19/2023 4:39 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=75.75, Std. Dev.=6.137, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9123, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.005132).

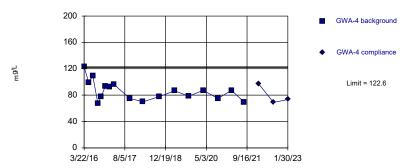
Constituent: Calcium Analysis Run 4/19/2023 4:39 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

Within Limit
Intrawell Parametric

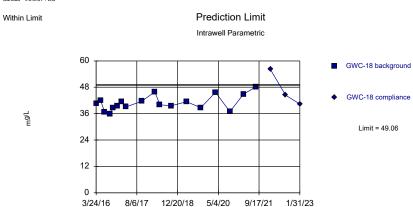
GWC-10 background

GWC-10 compliance

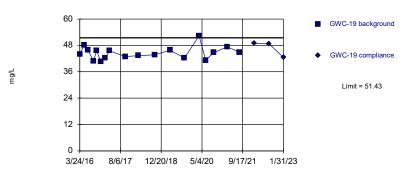

Limit = 60.32

Background Data Summary: Mean=40.93, Std. Dev.=8.193, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9517, critical = 0.863. Kappa = 2.368 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Calcium Analysis Run 4/19/2023 4:39 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG

Constituent: Calcium Analysis Run 4/19/2023 4:39 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG

Background Data Summary: Mean=40.94, Std. Dev.=3.386, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9429, critical = 0.858. Kappa = 2.397 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Calcium Analysis Run 4/19/2023 4:39 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=44.52, Std. Dev.=2.882, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9312, critical = 0.858. Kappa = 2.397 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.005132).

Constituent: Calcium Analysis Run 4/19/2023 4:39 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

Within Limit
Intrawell Parametric

GWC-21 background

GWC-21 compliance

Limit = 94.52

Background Data Summary: Mean=48.75, Std. Dev.=19.33, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9335, critical = 0.863. Kappa = 2.368 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

9/17/21

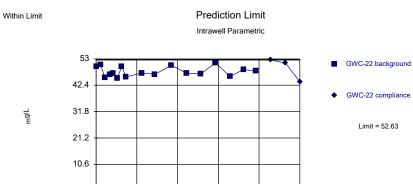
1/31/23


8/6/17 12/20/18 5/4/20

3/24/16

Constituent: Calcium Analysis Run 4/19/2023 4:39 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG



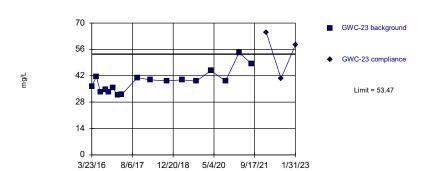
Background Data Summary: Mean=55.11, Std. Dev.=5.638, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9578, critical = 0.858. Kappa = 2.397 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Calcium Analysis Run 4/19/2023 4:39 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

3/23/16

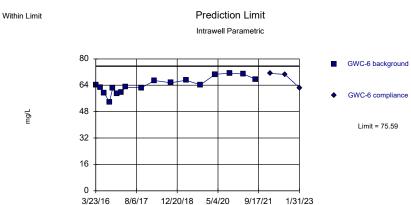
Background Data Summary: Mean=47.89, Std. Dev.=1.955, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9237, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


8/6/17 12/20/18 5/4/20

Constituent: Calcium Analysis Run 4/19/2023 4:39 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

9/17/21

1/31/23


Exceeds Limit Prediction Limit

Intrawell Parametric

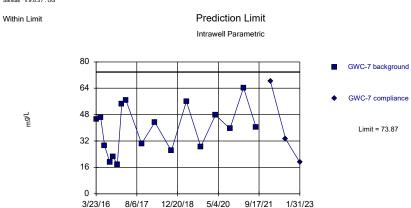
Constituent: Calcium Analysis Run 4/19/2023 4:39 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

Background Data Summary: Mean=64.12, Std. Dev.=4.724, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9646, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Calcium Analysis Run 4/19/2023 4:39 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG



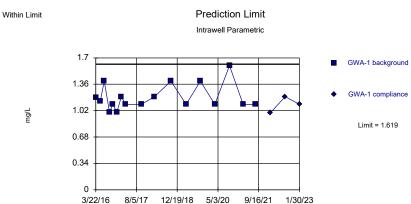
Background Data Summary: Mean=75.27, Std. Dev.=6.759, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9688, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269

Constituent: Calcium Analysis Run 4/19/2023 4:39 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

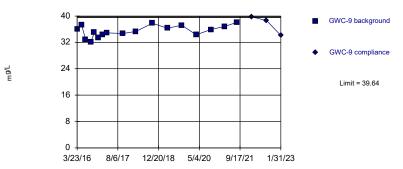
Background Data Summary: Mean=39.29, Std. Dev.=14.25, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9572, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Calcium Analysis Run 4/19/2023 4:39 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Within Limit Prediction Limit
Intrawell Parametric

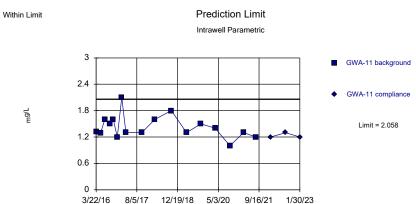
Background Data Summary: Mean=68.9, Std. Dev.=16.13, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9359, critical = 0.863. Kappa = 2.368 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.005132).

Constituent: Calcium Analysis Run 4/19/2023 4:39 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

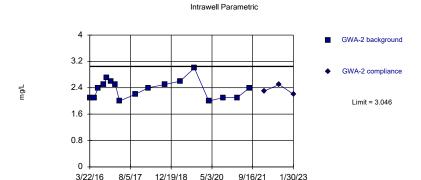

Sanitas™ v.9.6.37 . UG

Background Data Summary (based on natural log transformation): Mean=0.1658, Std. Dev.=0.1303, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8588, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Sanitas™ v.9.6.37 . UG

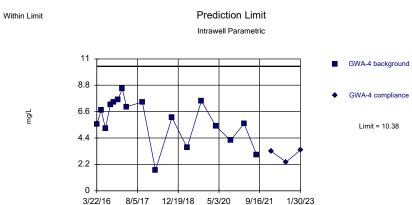

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=35.42, Std. Dev.=1.737, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9739, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Constituent: Calcium Analysis Run 4/19/2023 4:39 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

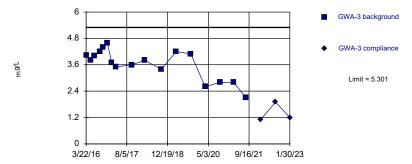
Background Data Summary: Mean=1.43, Std. Dev.=0,2592, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9159, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Prediction Limit Within Limit

Background Data Summary: Mean=2.365, Std. Dev.=0.2806, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9256, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha =

> Constituent: Chloride Analysis Run 4/19/2023 4:39 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

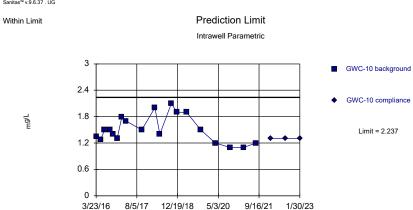
Sanitas™ v.9.6.37 . UG



Background Data Summary: Mean=5.864, Std. Dev.=1.863, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9316, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha =

> Constituent: Chloride Analysis Run 4/19/2023 4:39 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

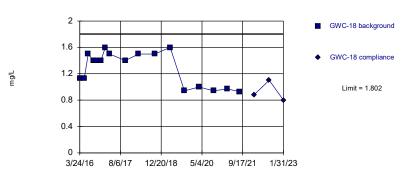


Background Data Summary: Mean=3.626, Std. Dev.=0.6902, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9312, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

> Constituent: Chloride Analysis Run 4/19/2023 4:39 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

3/23/16


Background Data Summary: Mean=1.512, Std. Dev.=0.3062, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9321, critical = 0.863. Kappa = 2.368 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

> Constituent: Chloride Analysis Run 4/19/2023 4:39 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

9/16/21

1/30/23

Within Limit Prediction Limit
Intrawell Parametric

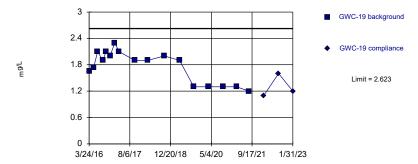
Background Data Summary (based on square transformation): Mean=1.711, Std. Dev.=0.6329, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8586, critical = 0.8513. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Chloride Analysis Run 4/19/2023 4:39 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

Within Limit Prediction Limit Intrawell Parametric

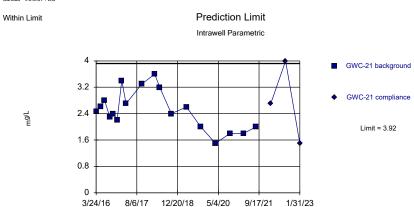
GWC-20 background


GWC-20 compliance

Limit = 2.379

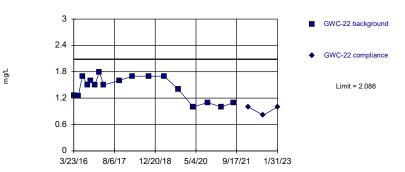
Background Data Summary: Mean=1.577, Std. Dev.=0.3346, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9345, critical = 0.858. Kappa = 2.397 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Sanitas™ v.9.6.37 . UG



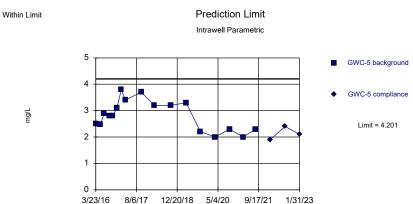
Background Data Summary: Mean=1.764, Std. Dev.=0.3539, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8795, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Chloride Analysis Run 4/19/2023 4:39 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG

Background Data Summary: Mean=2.504, Std. Dev.=0.5908, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9679, critical = 0.858. Kappa = 2.397 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limit


Prediction Limit Intrawell Parametric

Background Data Summary: Mean=1.436, Std. Dev.=0.2681, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9027, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha =

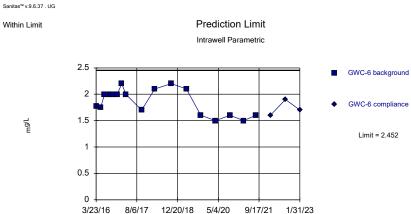
> Constituent: Chloride Analysis Run 4/19/2023 4:39 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

Background Data Summary: Mean=2.822, Std. Dev.=0.5683, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9529, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha =

> Constituent: Chloride Analysis Run 4/19/2023 4:39 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.


Within Limit

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=1.397, Std. Dev.=0.3512, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9117, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha =

> Constituent: Chloride Analysis Run 4/19/2023 4:39 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Background Data Summary: Mean=1.86, Std. Dev.=0.2439, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8965, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

> Constituent: Chloride Analysis Run 4/19/2023 4:39 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Within Limit Prediction Limit

3/23/16

GWC-7 background

2.4

GWC-7 compliance

Limit = 2.289

Intrawell Parametric

Background Data Summary: Mean=1.612, Std. Dev.=0.2791, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9378, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0063626

9/17/21

1/31/23

8/6/17 12/20/18 5/4/20

Constituent: Chloride Analysis Run 4/19/2023 4:39 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

Within Limit

Intrawell Parametric

GWC-9 background

GWC-9 compliance

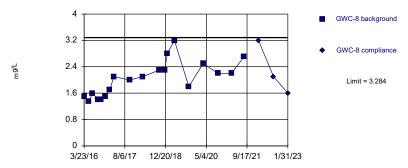
Limit = 1.765

Background Data Summary: Mean=1.099, Std. Dev.=0.2742, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9267, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

9/17/21

1/31/23

8/6/17 12/20/18 5/4/20

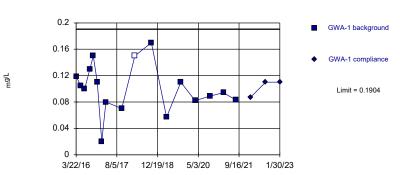

3/23/16

Constituent: Chloride Analysis Run 4/19/2023 4:39 PM View: Appendix III

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

Within Limit Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=2.034, Std. Dev.=0.5279, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9442, critical = 0.863. Kappa = 2.368 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006326.

Constituent: Chloride Analysis Run 4/19/2023 4:39 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=0.1011, Std. Dev.=0.03681, n=17, 5.882% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9799, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

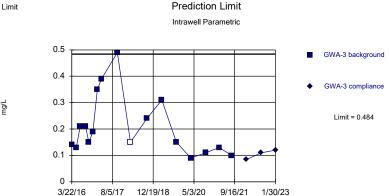
Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values

Within Limit

Prediction Limit

Background Data Summary (based on square root transformation) (after Kaplan-Meier Adjustment): Mean=0.2673, Std. Dev=0.07126, n=17, 11-65% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8989, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

9/16/21

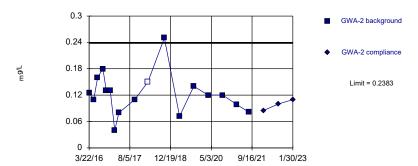

1/30/23

8/5/17 12/19/18 5/3/20

Constituent: Fluoride Analysis Run 4/19/2023 4:39 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

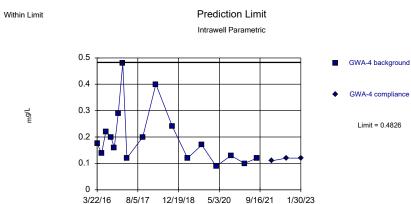
3/22/16



Background Data Summary: Mean=0.2083, Std. Dev.=0.1136, n=17, 5.882% NDs. Normality test: Shapiro Wilk Qalpha = 0.01, calculated = 0.8567, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Fluoride Analysis Run 4/19/2023 4:39 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit


Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=0.1233, Std. Dev.=0.04738, n=17, 5.882% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9415, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.005132). Report alpha = 0.0006269.

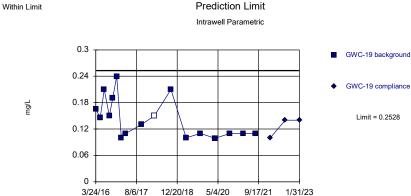
Constituent: Fluoride Analysis Run 4/19/2023 4:39 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

Background Data Summary (based on square root transformation): Mean=0.4315, Std. Dev.=0.1085, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8983, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Fluoride Analysis Run 4/19/2023 4:39 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values


Within Limit

Prediction Limit

Background Data Summary: Mean=0.1044, Std. Dev.=0.03536, n=17, 11.76% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9287, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.006269.

Constituent: Fluoride Analysis Run 4/19/2023 4:39 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

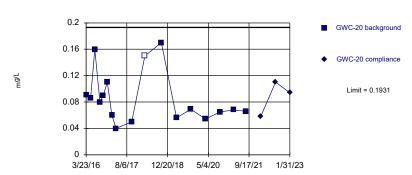
Sanitas $^{\text{\tiny{TM}}}$ v.9.6.37 . UG Hollow symbols indicate censored values.

Background Data Summary: Mean=0.1435, Std. Dev.=0.04503, n=17, 5.882% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8591, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.0006269.

Constituent: Fluoride Analysis Run 4/19/2023 4:40 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Parametric


Background Data Summary: Mean=0.1375, Std. Dev.=0.03319, n=17, 5.882% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8897, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.005132). Report alpha = 0.0006269.

Constituent: Fluoride Analysis Run 4/19/2023 4:40 PM View: Appendix III

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Parametric

Background Data Summary (based on square root transformation): Mean=0.2872, Std. Dev.=0.06277, n=17, 5.882% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9019, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Fluoride Analysis Run 4/19/2023 4:40 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values Within Limit

O.3

O.24

O.18

O.12

O.06

O.12

O.12

O.06

O.12

O.12

O.12

O.13

O.14

O.15

O.15

O.15

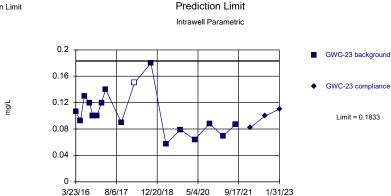
O.16

O.17

O.17

O.18

O.19

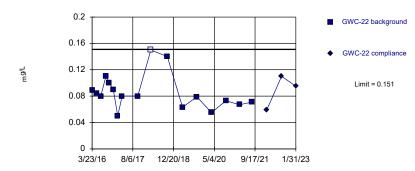

O

Prediction Limit

Background Data Summary (after Kaplan-Meier Adjustment): Mean=0.08559, Std. Dev.=0.05234, n=17, 23.53% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9123, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006269.

Constituent: Fluoride Analysis Run 4/19/2023 4:40 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

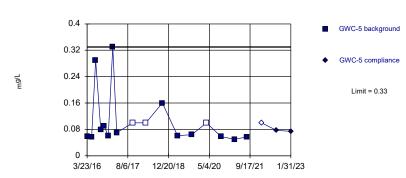


Background Data Summary: Mean=0.1043, Std. Dev.=0.03254, n=17, 5.882% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9591, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.006269.

Constituent: Fluoride Analysis Run 4/19/2023 4:40 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values.

Within Limit Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=0.08591, Std. Dev.=0.02682, n=17, 5.882% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.886, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.005132). Report alpha = 0.0006269.

Constituent: Fluoride Analysis Run 4/19/2023 4:40 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

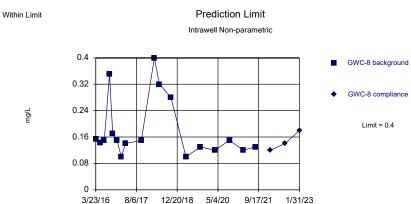
Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 17 background values. 17.65% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2).

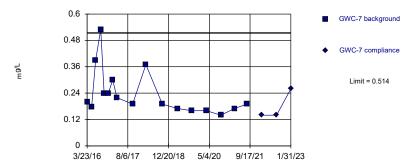
Constituent: Fluoride Analysis Run 4/19/2023 4:40 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Within Limit Prediction Limit


Intrawell Parametric

Background Data Summary (based on square root transformation): Mean=0.3089, Std. Dev.=0.1013, n=17, 11.76% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8988, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Fluoride Analysis Run 4/19/2023 4:40 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 18 background values. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).

Sanitas™ v.9.6.37 . UG



Background Data Summary (based on cube root transformation): Mean=0.6093, Std. Dev.=0.07904, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8552, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0056269.

Constituent: Fluoride Analysis Run 4/19/2023 4:40 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=0.0917, Std. Dev.=0.03293, n=17, 5.882% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8739, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.006269.

Within Limits Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=6.958, Std. Dev.=0.1741, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9626, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.000626

Constituent: pH Analysis Run 4/19/2023 4:40 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

Within Limits

Prediction Limit
Intrawell Parametric

GWA-2 background

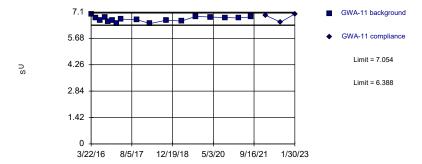
GWA-2 compliance

Limit = 7.234

Limit = 6.539

Background Data Summary: Mean=6.886, Std. Dev.=0.1432, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9848, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

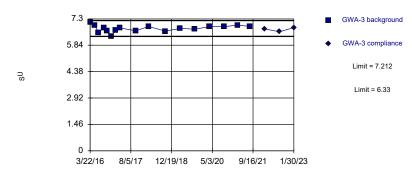

9/16/21


1/30/23

8/5/17 12/19/18 5/3/20

3/22/16

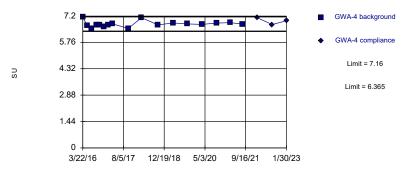
Sanitas™ v.9.6.37 . UG



Background Data Summary: Mean=6.721, Std. Dev.=0.1372, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.975, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: pH Analysis Run 4/19/2023 4:40 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG


Within Limits Prediction Limit
Intrawell Parametric

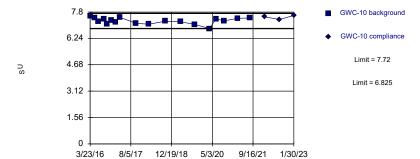
Background Data Summary: Mean=6.771, Std. Dev.=0.1818, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9702, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Prediction Limit Within Limits

Intrawell Parametric

Background Data Summary: Mean=6.762, Std. Dev.=0.1637, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8768, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha =

> Constituent: pH Analysis Run 4/19/2023 4:40 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

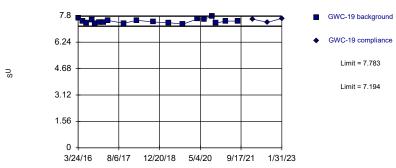

Sanitas™ v.9.6.37 . UG

Prediction Limit Within Limits Intrawell Parametric ■ GWC-18 background GWC-18 compliance 6.24 Limit = 7.787 4.68 SU Limit = 7.382 3.12 1.56 8/6/17 12/20/18 5/4/20 3/24/16 9/17/21 1/31/23

Background Data Summary: Mean=7.585, Std. Dev.=0.08345, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9407, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha =

Sanitas™ v.9.6.37 . UG

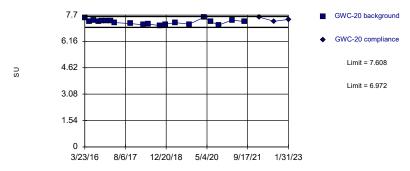
Prediction Limit Within Limits Intrawell Parametric



Background Data Summary: Mean=7.272, Std. Dev.=0.1867, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9572, critical = 0.858. Kappa = 2.397 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

> Constituent: pH Analysis Run 4/19/2023 4:40 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG


Within Limits Prediction Limit Intrawell Parametric

Background Data Summary: Mean=7.488, Std. Dev.=0.1243, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9518, critical = 0.863. Kappa = 2.368 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Prediction Limit Within Limits

Intrawell Parametric

Background Data Summary: Mean=7.29, Std. Dev.=0.1358, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9576, critical = 0.868. Kappa = 2.338 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha =

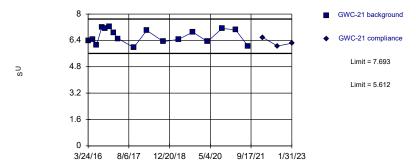
> Constituent: pH Analysis Run 4/19/2023 4:40 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

Prediction Limit Within Limits Intrawell Parametric ■ GWC-22 background GWC-22 compliance 6.4 Limit = 7.958 4.8 SU Limit = 7.287 3.2 1.6

Background Data Summary: Mean=7.623, Std. Dev.=0.1399, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9729, critical = 0.858. Kappa = 2.397 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha =

9/17/21

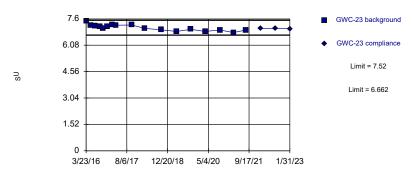

1/31/23

8/6/17 12/20/18 5/4/20

3/23/16

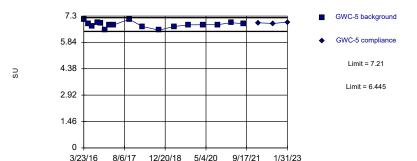
Sanitas™ v.9.6.37 . UG

Prediction Limit Within Limits Intrawell Parametric



Background Data Summary: Mean=6.652, Std. Dev.=0.4288, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9143, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

> Constituent: pH Analysis Run 4/19/2023 4:40 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG

Prediction Limit Within Limits Intrawell Parametric

Background Data Summary: Mean=7.091, Std. Dev.=0.1769, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9577, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limits Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=6.828, Std. Dev.=0.1576, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9511, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006326.

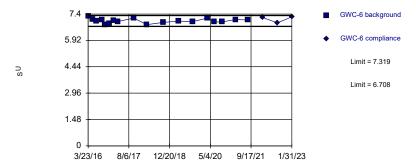
Constituent: pH Analysis Run 4/19/2023 4:40 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

Within Limits

Prediction Limit
Intrawell Parametric

GWC-7 background


GWC-7 compliance
Limit = 6.768

Limit = 5.558

Background Data Summary: Mean=6.163, Std. Dev.=0.2524, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9585, critical = 0.858. Kappa = 2.397 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Sanitas™ v.9.6.37 . UG

Within Limits Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=7.014, Std. Dev.=0.1274, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.972, critical = 0.858. Kappa = 2.397 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006320

Constituent: pH Analysis Run 4/19/2023 4:40 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

3/23/16

Within Limits

Prediction Limit
Intrawell Parametric

GWC-8 background

GWC-8 compliance
Limit = 7.787
Limit = 6.575

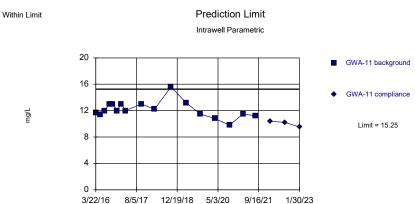
Background Data Summary: Mean=7.181, Std. Dev =0.259, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.944, critical = 0.868. Kappa = 2.338 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

8/6/17 12/20/18 5/4/20

9/17/21

1/31/23

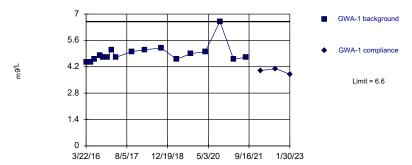
Within Limits Prediction Limit


Intrawell Parametric

Background Data Summary: Mean=6.819, Std. Dev.=0.2084, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9871, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006326.

Constituent: pH Analysis Run 4/19/2023 4:40 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

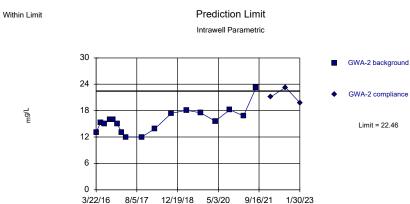
Sanitas™ v.9.6.37 . UG



Background Data Summary: Mean=12.17, Std. Dev.=1.271, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9199, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

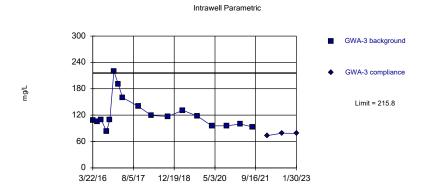
Constituent: Sulfate Analysis Run 4/19/2023 4:40 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG


Within Limit Prediction Limit
Intrawell Non-parametric

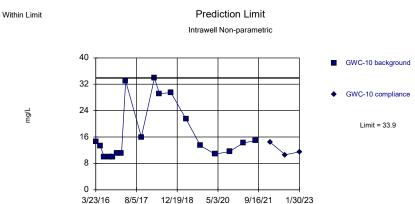
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 17 background values. Well-constituent pair annual alpha = 0.01179, Individual comparison alpha = 0.005914 (1 of 2).

Constituent: Sulfate Analysis Run 4/19/2023 4:40 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

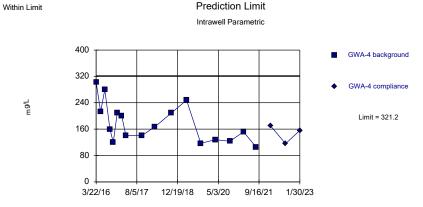

Sanitas™ v.9.6.37 . UG

Background Data Summary: Mean=15.77, Std. Dev.=2.757, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9235, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Sulfate Analysis Run 4/19/2023 4:40 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

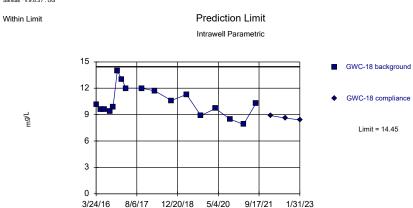

Within Limit Prediction Limit

Background Data Summary (based on square root transformation): Mean=11, Std. Dev.=1.519, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8704, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Constituent: Sulfate Analysis Run 4/19/2023 4:40 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

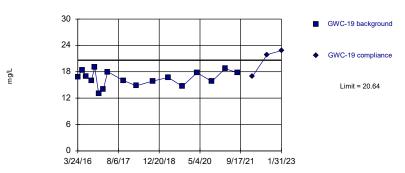
Sanitas™ v.9.6.37 . UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 18 background values. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).


Sanitas™ v.9.6.37 . UG

Background Data Summary: Mean=177.4, Std. Dev.=59.29, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9106, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006296

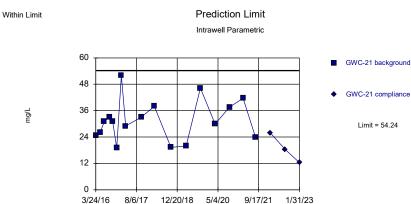
Constituent: Sulfate Analysis Run 4/19/2023 4:40 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG

Background Data Summary: Mean=10.5, Std. Dev.=1.628, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9653, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Prediction Limit Exceeds Limit

Intrawell Parametric

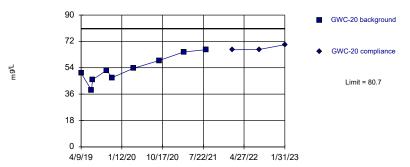


Background Data Summary: Mean=16.5, Std. Dev.=1.709, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9647, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha =

> Constituent: Sulfate Analysis Run 4/19/2023 4:40 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

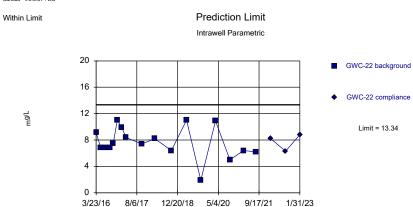
3/24/16


Background Data Summary: Mean=31.49, Std. Dev.=9.375, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9525, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha =

9/17/21

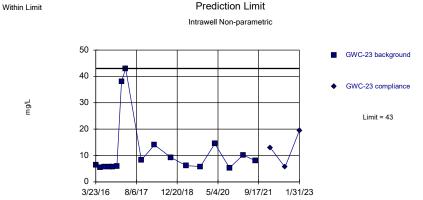
1/31/23

Constituent: Sulfate Analysis Run 4/19/2023 4:40 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Sanitas™ v.9.6.37 . UG

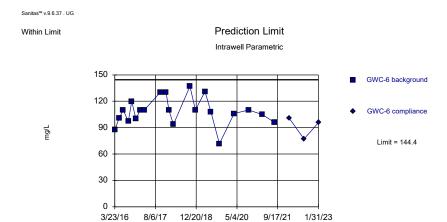


Background Data Summary: Mean=53.13, Std. Dev.=8.981, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9672, critical = 0.764. Kappa = 3.069 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha =

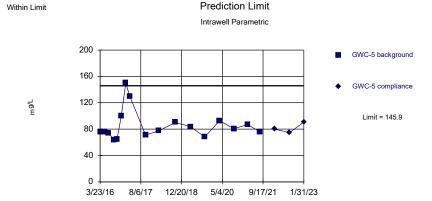
> Constituent: Sulfate Analysis Run 4/19/2023 4:40 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG

Background Data Summary: Mean=7.635, Std. Dev.=2.352, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9334, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

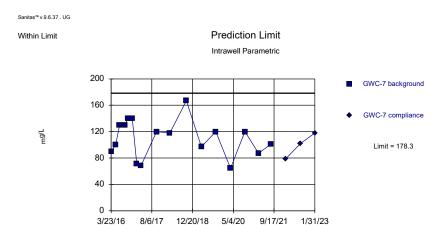

> Constituent: Sulfate Analysis Run 4/19/2023 4:40 PM View: Appendix III Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

.37 . UG


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 17 background values. Well-constituent pair annual alpha = 0.00179. Individual comparison alpha = 0.005914 (1 of 2).

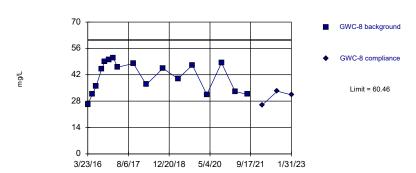
Constituent: Sulfate Analysis Run 4/19/2023 4:40 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Background Data Summary: Mean=108.3, Std. Dev.=15.56, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9498, critical = 0.873. Kappa = 2.32 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Constituent: Sulfate Analysis Run 4/19/2023 4:40 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

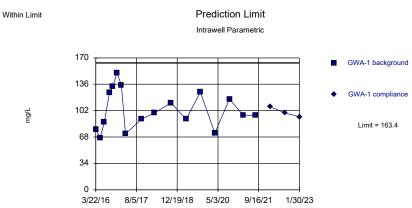
Background Data Summary (based on natural log transformation): Mean=4.427, Std. Dev.=0.2289, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8706, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Constituent: Sulfate Analysis Run 4/19/2023 4:40 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Background Data Summary: Mean=109.7, Std. Dev.=28.29, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.965, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Sulfate Analysis Run 4/19/2023 4:40 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

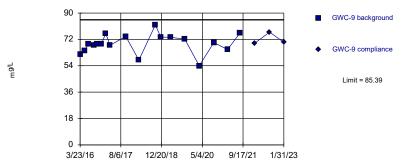
Within Limit Prediction Limit



Intrawell Parametric

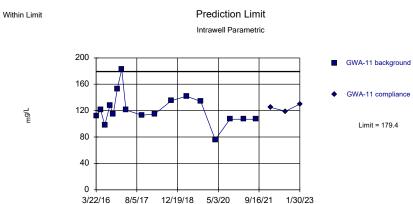
Background Data Summary: Mean=40.99, Std. Dev.=8.027, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8958, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.005132.

Constituent: Sulfate Analysis Run 4/19/2023 4:40 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG

Background Data Summary: Mean=102.9, Std. Dev.=24.95, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9534, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Sanitas™ v.9.6.37 . UG

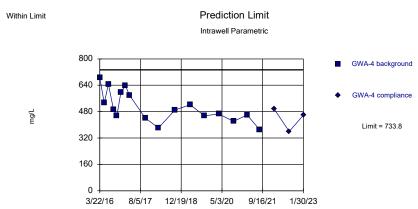

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=69.08, Std. Dev.=6.805, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9703, critical = 0.858. Kappa = 2.397 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Sulfate Analysis Run 4/19/2023 4:41 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

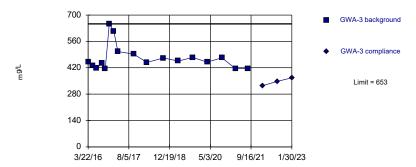
Sanitas™ v.9.6.37 . UG

Background Data Summary: Mean=121.6, Std. Dev.=23.82, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9387, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Within Limit Prediction Limit
Intrawell Parametric

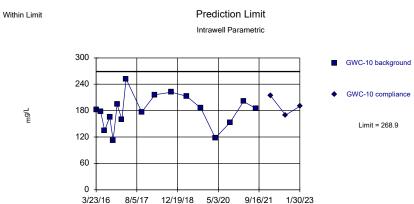
Background Data Summary: Mean=221.5, Std. Dev.=19.41, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9562, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.005132.

Constituent: Total Dissolved Solids Analysis Run 4/19/2023 4:41 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG

Background Data Summary: Mean=507.8, Std. Dev.=93.12, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9475, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Sanitas™ v.9.6.37 . UG



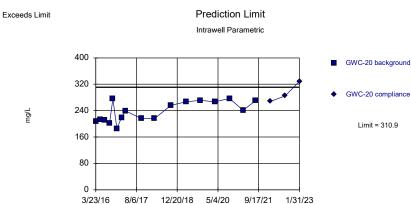
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 17 background values. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.05914 (1 of 2).

Constituent: Total Dissolved Solids Analysis Run 4/19/2023 4:41 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

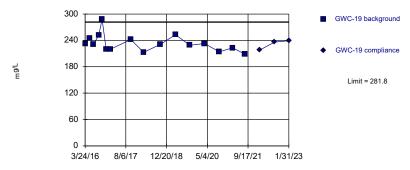
Sanitas™ v.9.6.37 . UG

Background Data Summary: Mean=179.4, Std. Dev.=36.87, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9794, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Sanitas™ v.9.6.37 . UG

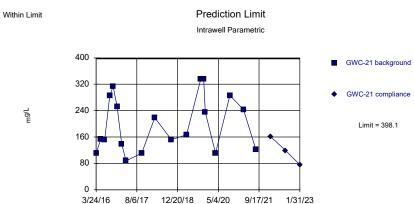


Background Data Summary: Mean=202.1, Std. Dev.=18.8, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9819, critical = 0.844. Kappa = 2.456 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.005132.


Constituent: Total Dissolved Solids Analysis Run 4/19/2023 4:41 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

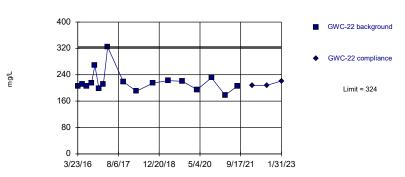
Background Data Summary: Mean=237.4, Std. Dev.=30.3, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8982, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=233.4, Std. Dev.=19.68, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.89, critical = 0.844. Kappa = 2.456 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006326

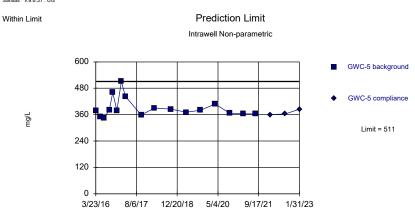
Constituent: Total Dissolved Solids Analysis Run 4/19/2023 4:41 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

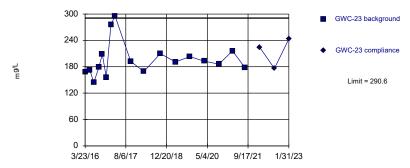


Background Data Summary: Mean=200.5, Std. Dev.=83.46, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.908, critical = 0.863. Kappa = 2.368 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Sanitas™ v.9.6.37 . UG

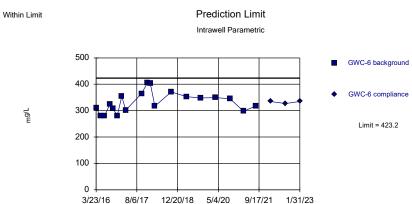


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 17 background values. Well-constituent pair annual alpha = 0.00179. Individual comparison alpha = 0.005914 (1 of 2).


Constituent: Total Dissolved Solids Analysis Run 4/19/2023 4:41 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 17 background values. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2).


Within Limit Prediction Limit Intrawell Parametric

Background Data Summary: Mean=196.4, Std. Dev.=38.83, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8611, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269

Constituent: Total Dissolved Solids Analysis Run 4/19/2023 4:41 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

Background Data Summary: Mean=332.2, Std. Dev.=38.42, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9424, critical = 0.863. Kappa = 2.368 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Sanitas™ v.9.6.37 . UG
Within Limit

Intrawell Parametric

400
320
GWC-7 background

GWC-7 compliance

Limit = 358.6

Prediction Limit

Background Data Summary: Mean=264.9, Std. Dev.=38.59, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9132, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.005132).

8/6/17 12/20/18 5/4/20 9/17/21 1/31/23

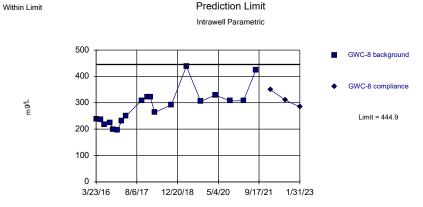
Constituent: Total Dissolved Solids Analysis Run 4/19/2023 4:41 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

3/23/16

Within Limit Prediction Limit Intrawell Parametric

GWC-9 background


GWC-9 compliance

Limit = 310.7

Background Data Summary: Mean=226.2, Std. Dev.=34.82, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8916, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Total Dissolved Solids Analysis Run 4/19/2023 4:41 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

Background Data Summary: Mean=285, Std. Dev.=67.54, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.907, critical = 0.863. Kappa = 2.368 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006769

Constituent: Total Dissolved Solids Analysis Run 4/19/2023 4:41 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Prediction Limit

Constituent: Boron (mg/L) Analysis Run 4/19/2023 4:43 PM View: Appendix III

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-1	GWA-1
3/22/2016	<0.1	
5/17/2016	<0.1	
7/5/2016	0.0419 (J)	
9/7/2016	0.0174 (J)	
10/18/2016	0.0192 (J)	
12/6/2016	0.0182 (J)	
1/31/2017	0.0193 (J)	
3/23/2017	0.0192 (J)	
10/4/2017	0.0199 (J)	
3/14/2018	0.019 (J)	
10/4/2018	0.021 (J)	
4/8/2019	0.019 (J)	
9/30/2019	0.025 (J)	
3/26/2020	0.022 (J)	
9/23/2020	0.047 (J)	
3/8/2021	0.021 (J)	
8/9/2021	0.021 (J)	
2/4/2022		0.018 (J)
8/8/2022		0.026 (J)
1/30/2023		0.026 (J)

Prediction Limit

Constituent: Boron (mg/L) Analysis Run 4/19/2023 4:43 PM View: Appendix III
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-11	GWA-11
3/22/2016	0.04 (J)	
5/17/2016	0.0358 (J)	
7/6/2016	0.0373 (J)	
9/7/2016	0.0352 (J)	
10/18/2016	0.0332 (J)	
12/6/2016	0.033 (J)	
2/1/2017	0.0365 (J)	
3/24/2017	0.0343 (J)	
10/5/2017	0.0325 (J)	
3/15/2018	0.037 (J)	
10/4/2018	0.035 (J)	
4/8/2019	0.034 (J)	
9/30/2019	0.039 (J)	
3/26/2020	0.041 (J)	
9/22/2020	0.038 (J)	
3/8/2021	0.042	
8/10/2021	0.034 (J)	
2/4/2022		0.037 (J)
8/8/2022		0.035 (J)
1/30/2023		0.038 (J)

	GWA-2	GWA-2
3/22/2016	0.0828 (J)	
5/17/2016	0.0844 (J)	
7/5/2016	0.0962 (J)	
9/7/2016	0.0884 (J)	
10/18/2016	0.0889 (J)	
12/7/2016	0.0954	
1/31/2017	0.0939	
3/23/2017	0.0869	
10/4/2017	0.0914	
3/14/2018	0.075	
10/4/2018	0.082	
4/8/2019	0.071 (J)	
9/30/2019	0.084	
3/26/2020	0.092 (J)	
9/21/2020	0.086 (J)	
3/9/2021	0.081	
8/9/2021	0.085	
2/4/2022		0.083
8/8/2022		0.087
1/30/2023		0.086

	GWA-3	GWA-3
3/22/2016	0.135	
5/17/2016	0.132	
7/5/2016	0.161	
9/7/2016	0.163	
10/18/2016	0.154	
12/6/2016	0.142	
2/1/2017	0.143	
3/23/2017	0.15	
10/4/2017	0.182	
3/15/2018	0.14	
10/4/2018	0.16	
4/5/2019	0.12	
9/30/2019	0.17	
3/26/2020	0.14	
9/23/2020	0.15	
3/8/2021	0.13	
8/9/2021	0.14	
2/4/2022		0.094
8/8/2022		0.15
1/30/2023		0.094

	GWA-4	GWA-4
3/22/2016	0.0815 (J)	
5/17/2016	0.0838 (J)	
7/6/2016	0.111	
9/7/2016	0.107	
10/18/2016	0.118	
12/6/2016	0.106	
2/1/2017	0.0949	
3/24/2017	0.0887	
10/4/2017	0.105	
3/15/2018	0.043	
10/4/2018	0.1	
4/8/2019	0.057 (J)	
9/30/2019	0.11	
3/26/2020	0.086 (J)	
9/23/2020	0.087 (J)	
3/8/2021	0.089	
8/9/2021	0.073	
2/4/2022		0.06
8/8/2022		0.077
1/30/2023		0.058

	GWC-10	GWC-10
3/23/2016	0.0354 (J)	
5/17/2016	0.0349 (J)	
7/6/2016	0.0308 (J)	
9/7/2016	0.0283 (J)	
10/18/2016	0.0292 (J)	
12/6/2016	0.0287 (J)	
2/2/2017	0.0334 (J)	
3/27/2017	0.0396 (J)	
10/5/2017	0.0294 (J)	
3/15/2018	0.038 (J)	
10/4/2018	0.038 (J)	
4/9/2019	0.035 (J)	
10/1/2019	0.031 (J)	
3/27/2020	0.04 (J)	
9/25/2020	0.036 (J)	
3/9/2021	0.037 (J)	
8/10/2021	0.033 (J)	
2/4/2022		0.037 (J)
8/9/2022		0.031 (J)
1/30/2023		0.038 (J)

	GWC-18	GWC-18
3/24/2016	0.122	
5/18/2016	0.139	
7/7/2016	0.12	
9/8/2016	0.126	
10/19/2016	0.133	
12/8/2016	0.119	
2/2/2017	0.132	
3/27/2017	0.134	
10/5/2017	0.125	
3/16/2018	0.12	
10/5/2018	0.15	
4/9/2019	0.12	
10/1/2019	0.14	
3/30/2020	0.13	
9/24/2020	0.13	
3/9/2021	0.13	
8/10/2021	0.14	
2/4/2022		0.12
8/9/2022		0.12
1/31/2023		0.12

	GWC-19	GWC-19
3/24/2016	0.173	
5/18/2016	0.186	
7/6/2016	0.184	
9/8/2016	0.173	
10/18/2016	0.171	
12/7/2016	0.203	
2/2/2017	0.187	
3/27/2017	0.182	
10/5/2017	0.166	
3/15/2018	0.17	
10/4/2018	0.17	
4/9/2019	0.17	
10/1/2019	0.17	
3/31/2020	0.18	
9/28/2020	0.17	
3/10/2021	0.16	
8/10/2021	0.14	
2/7/2022		0.15
8/9/2022		0.14
1/31/2023		0.13
	5/18/2016 7/6/2016 9/8/2016 10/18/2016 12/7/2016 2/2/2017 3/27/2017 10/5/2017 3/15/2018 10/4/2018 4/9/2019 10/1/2019 3/31/2020 9/28/2020 3/10/2021 8/10/2021 8/9/2022	3/24/2016 0.173 5/18/2016 0.186 7/6/2016 0.184 9/8/2016 0.173 10/18/2016 0.171 12/7/2016 0.203 2/2/2017 0.187 3/27/2017 0.182 10/5/2017 0.166 3/15/2018 0.17 10/4/2018 0.17 4/9/2019 0.17 10/1/2019 0.17 3/31/2020 0.18 9/28/2020 0.17 3/10/2021 0.16 8/10/2021 0.14 2/7/2022 8/9/2022

	GWC-20	GWC-20
3/23/2016	<0.1	
5/18/2016	0.0229 (J)	
7/7/2016	0.0169 (J)	
9/8/2016	0.0178 (J)	
10/19/2016	0.018 (J)	
12/7/2016	0.0248 (J)	
2/3/2017	0.0171 (J)	
3/27/2017	0.0181 (J)	
10/5/2017	0.0178 (J)	
3/16/2018	0.016 (J)	
10/5/2018	0.017 (J)	
4/9/2019	0.011 (J)	
10/1/2019	0.019 (J)	
3/31/2020	0.024 (J)	
9/23/2020	0.018 (J)	
3/10/2021	0.018 (J)	
8/10/2021	0.013 (J)	
2/7/2022		0.015 (J)
8/9/2022		0.015 (J)
1/31/2023		0.015 (J)

	GWC-21	GWC-21
3/24/2016	0.0232 (J)	
5/18/2016	0.0289 (J)	
7/7/2016	0.0313 (J)	
9/8/2016	0.0593 (J)	
10/19/2016	0.087 (J)	
12/7/2016	0.127	
2/2/2017	0.0318 (J)	
3/27/2017	0.0225 (J)	
10/5/2017	0.0304 (J)	
3/15/2018	0.025 (J)	
10/4/2018	0.029 (J)	
4/9/2019	0.014 (J)	
10/1/2019	0.059	
3/31/2020	0.022 (J)	
9/24/2020	0.061 (J)	
3/9/2021	0.03 (J)	
8/10/2021	0.026 (J)	
2/7/2022		0.018 (J)
8/9/2022		0.029 (J)
1/31/2023		0.013 (J)

	GWC-22	GWC-22
3/23/2016	0.0649 (J)	
5/18/2016	0.0781 (J)	
7/7/2016	0.0621 (J)	
9/8/2016	0.0607 (J)	
10/19/2016	0.0733 (J)	
12/7/2016	0.0758	
2/2/2017	0.0729	
3/27/2017	0.0698	
10/5/2017	0.0677	
3/15/2018	0.07	
10/4/2018	0.065	
4/9/2019	0.063	
10/1/2019	0.066	
3/31/2020	0.067 (J)	
9/23/2020	0.061 (J)	
3/9/2021	0.065	
8/10/2021	0.057	
2/7/2022		0.064
8/9/2022		0.059
1/31/2023		0.052

	GWC-23	GWC-23
3/23/2016	<0.1	
5/19/2016	0.0212 (J)	
7/7/2016	0.0183 (J)	
9/8/2016	0.017 (J)	
10/19/2016	0.0203 (J)	
12/7/2016	0.0215 (J)	
2/3/2017	0.0812	
3/27/2017	0.125 (o)	
10/5/2017	0.0375 (J)	
3/15/2018	0.051	
10/5/2018	0.039 (J)	
4/8/2019	0.022 (J)	
10/1/2019	0.024 (J)	
3/26/2020	0.042 (J)	
9/23/2020	0.024 (J)	
3/9/2021	0.044	
8/10/2021	0.027 (J)	
2/7/2022		0.052
8/8/2022		0.022 (J)
1/31/2023		0.06

	GWC-5	GWC-5
3/23/2016	0.0509 (J)	
5/17/2016	0.0565 (J)	
7/6/2016	0.0628 (J)	
9/7/2016	0.0648 (J)	
10/18/2016	0.0666 (J)	
12/8/2016	0.062	
2/1/2017	0.0516	
3/23/2017	0.0597	
10/4/2017	0.0658	
3/16/2018	0.047	
10/4/2018	0.066	
4/9/2019	0.048	
10/1/2019	0.071	
3/31/2020	0.057 (J)	
9/25/2020	0.08 (J)	
3/9/2021	0.046	
8/10/2021	0.056	
2/4/2022		0.04
8/9/2022		0.058
1/31/2023		0.043

	GWC-6	GWC-6
3/23/2016	0.0379 (J)	
5/17/2016	0.0395 (J)	
7/6/2016	0.0393 (J)	
9/7/2016	0.04 (J)	
10/18/2016	0.0366 (J)	
12/8/2016	0.0397 (J)	
2/1/2017	0.0381 (J)	
3/23/2017	0.0416	
10/4/2017	0.0382 (J)	
3/16/2018	0.044	
5/16/2018	0.042	
10/4/2018	0.038 (J)	
4/8/2019	0.036 (J)	
10/1/2019	0.042	
3/31/2020	0.091 (Jo)	
6/18/2020	0.045 (JR)	
9/25/2020	0.047 (J)	
3/9/2021	0.038 (J)	
8/10/2021	0.037 (J)	
2/4/2022		0.039 (J)
8/8/2022		0.038 (J)
1/31/2023		0.037 (J)

	GWC-7	GWC-7
3/23/2016	0.0574 (J)	
5/18/2016	0.0686 (J)	
7/6/2016	0.0675 (J)	
9/7/2016	0.0582 (J)	
10/18/2016	0.0577 (J)	
12/8/2016	0.0572	
2/2/2017	0.0534	
3/24/2017	0.0532	
10/4/2017	0.0563	
3/15/2018	0.053	
10/4/2018	0.048	
4/8/2019	0.049 (J)	
10/1/2019	0.05	
3/30/2020	0.049 (J)	
9/24/2020	0.045 (J)	
3/9/2021	0.041	
8/10/2021	0.037 (J)	
2/4/2022		0.055
8/10/2022		0.046
1/31/2023		0.025 (J)

	GWC-8	GWC-8
3/23/2016	0.0213 (J)	
5/18/2016	0.028 (J)	
7/6/2016	0.0231 (J)	
9/8/2016	0.0234 (J)	
10/18/2016	0.0228 (J)	
12/8/2016	0.0251 (J)	
2/2/2017	0.0238 (J)	
3/24/2017	0.0234 (J)	
10/5/2017	0.0329 (J)	
3/14/2018	0.024 (J)	
10/4/2018	0.047 (J)	
4/8/2019	0.055 (J)	
10/1/2019	0.046	
3/27/2020	0.056 (J)	
6/19/2020	0.086 (JR)	
9/24/2020	0.055 (J)	
3/9/2021	0.05	
8/10/2021	0.088	
2/4/2022		0.055
8/9/2022		0.043
1/31/2023		0.029 (J)

	GWC-9	GWC-9
3/23/2016	<0.1	
5/18/2016	0.0202 (J)	
7/6/2016	0.0171 (J)	
9/8/2016	0.0157 (J)	
10/19/2016	0.0152 (J)	
12/8/2016	0.0178 (J)	
2/2/2017	0.0151 (J)	
3/27/2017	0.0203 (J)	
10/5/2017	0.0157 (J)	
3/15/2018	0.013 (J)	
10/5/2018	0.017 (J)	
4/8/2019	0.015 (J)	
10/1/2019	0.018 (J)	
3/27/2020	0.018 (J)	
9/24/2020	0.016 (J)	
3/9/2021	0.014 (J)	
8/10/2021	0.012 (J)	
2/4/2022		0.013 (J)
8/9/2022		0.014 (J)
1/31/2023		0.012 (J)

	GWA-1	GWA-1
3/22/2016	13.9	
5/17/2016	15.6	
7/5/2016	15.7	
9/7/2016	18.2	
10/18/2016	17.7	
12/6/2016	16.9	
1/31/2017	17.9	
3/23/2017	13.9	
10/4/2017	15.9	
3/14/2018	<25	
10/4/2018	15.9 (J)	
4/8/2019	15.7	
9/30/2019	17.6	
3/26/2020	14	
9/23/2020	17.6	
3/8/2021	16.2 (M1)	
8/9/2021	20.2	
2/4/2022		18.3
8/8/2022		17.2
1/30/2023		15.8 (M1)

	GWA-11	GWA-11
3/22/2016	23.8	
5/17/2016	21.5	
7/6/2016	20.6	
9/7/2016	16.7	
10/18/2016	20.3	
12/6/2016	19.7	
2/1/2017	18.1	
3/24/2017	21.1	
10/5/2017	20.1	
3/15/2018	<25	
10/4/2018	21.3 (J)	
4/8/2019	22.4	
9/30/2019	19.6	
3/26/2020	22.4	
9/22/2020	19.5	
3/8/2021	22	
8/10/2021	20.8	
2/4/2022		23.7
8/8/2022		21.1
1/30/2023		20.4

	GWA-2	GWA-2
3/22/2016	47.4	
5/17/2016	45.5	
7/5/2016	40.5	
9/7/2016	37.3	
10/18/2016	46.6	
12/7/2016	43.5	
1/31/2017	39.2	
3/23/2017	38.7	
10/4/2017	36.5	
3/14/2018	39.5	
10/4/2018	41.7	
4/8/2019	44.1	
9/30/2019	44.6	
3/26/2020	43.2	
9/21/2020	45.8	
3/9/2021	48.7	
8/9/2021	49.9	
2/4/2022		57.6
8/8/2022		51.2
1/30/2023		46.8

	GWA-3	GWA-3
3/22/2016	79.3	
5/17/2016	75.8	
7/5/2016	65.3	
9/7/2016	59.8	
10/18/2016	72.4	
12/6/2016	78.6	
2/1/2017	85	
3/23/2017	81.2	
10/4/2017	78.8	
3/15/2018	83.5	
10/4/2018	75.2	
4/5/2019	76.5	
9/30/2019	74.7	
3/26/2020	78.7	
9/23/2020	76.2	
3/8/2021	73.5	
8/9/2021	73.2	
2/4/2022		59 (M1)
8/8/2022		61
1/30/2023		53.1

	GWA-4	GWA-4
3/22/2016	123	
5/17/2016	99.2	
7/6/2016	109	
9/7/2016	67.2	
10/18/2016	77.9	
12/6/2016	93.3	
2/1/2017	92.8	
3/24/2017	96.3	
10/4/2017	75.1	
3/15/2018	69.9	
10/4/2018	77.8	
4/8/2019	86.6	
9/30/2019	78.3	
3/26/2020	87.4	
9/23/2020	74.9	
3/8/2021	87.2	
8/9/2021	69.7	
2/4/2022		97.3
8/8/2022		68.9
1/30/2023		73.6

	GWC-10	GWC-10
3/23/2016	43.9	
5/17/2016	40.1	
7/6/2016	32.3	
9/7/2016	28.9	
10/18/2016	35.4	
12/6/2016	34.3	
2/2/2017	38.1	
3/27/2017	45.4	
10/5/2017	35.8	
3/15/2018	52.4	
5/15/2018	48.4	
10/4/2018	51.2	
12/11/2018	49.3	
4/9/2019	48.8	
10/1/2019	36.8	
3/27/2020	22.9	
9/25/2020	39.4	
3/9/2021	48.7	
8/10/2021	45.5	
2/4/2022		52.8
8/9/2022		43.9
1/30/2023		43.7

	GWC-18	GWC-18
3/24/2016	40.7	
5/18/2016	41.9	
7/7/2016	36.8	
9/8/2016	35.9	
10/19/2016	38.7	
12/8/2016	39.4	
2/2/2017	41.5	
3/27/2017	39.1	
10/5/2017	41.6	
3/16/2018	45.9	
5/16/2018	40	
10/5/2018	39.6	
4/9/2019	41.4	
10/1/2019	38.7	
3/30/2020	45.7	
9/24/2020	36.9	
3/9/2021	44.9	
8/10/2021	48.2	
2/4/2022		56.1
8/9/2022		44.4
1/31/2023		40.4

	GWC-19	GWC-19
3/24/2016	43.9	
5/18/2016	48.2	
7/6/2016	45.8	
9/8/2016	40.9	
10/18/2016	45.5	
12/7/2016	40.6	
2/2/2017	42.4	
3/27/2017	45.5	
10/5/2017	42.9	
3/15/2018	43.3	
10/4/2018	43.7	
4/9/2019	45.8	
10/1/2019	42.3	
3/31/2020	52.3	
6/19/2020	41.3 (R)	
9/28/2020	44.7	
3/10/2021	47.4	
8/10/2021	44.9	
2/7/2022		49
8/9/2022		48.7
1/31/2023		42.5

	GWC-	20	GWC-20
3/23/2016	56.3		
5/18/2016	59		
7/7/2016	50.9		
9/8/2016	48		
10/19/201	6 49.7		
12/7/2016	46.4		
2/3/2017	49		
3/27/2017	50.7		
10/5/2017	52		
3/16/2018	53.4		
10/5/2018	52.7		
4/9/2019	57.1		
10/1/2019	59.1		
3/31/2020	63.6		
6/19/2020	61.4 (I	₹)	
9/23/2020	55.8		
3/10/2021	64.9		
8/10/2021	62		
2/7/2022			68.7
8/9/2022			66.3
1/31/2023			62

	GWC-21	GWC-21
3/24/2016	31.4	
5/18/2016	39.2	
7/7/2016	36	
9/8/2016	70	
10/19/2016	63	
12/7/2016	54.7	
2/2/2017	37.4	
3/27/2017	20.9	
10/5/2017	26.8	
3/15/2018	62.8	
10/4/2018	48.6	
4/9/2019	35.4	
10/1/2019	82.8	
11/6/2019	74.9	
11/26/2019	45.8	
3/31/2020	25.6	
9/24/2020	73.4	
3/9/2021	67.8	
8/10/2021	29.7	
2/7/2022		39.7
8/9/2022		30.2
1/31/2023		16.2

	GWC-22	GWC-22
3/23/2016	49.9	
5/18/2016	50.7	
7/7/2016	45.5	
9/8/2016	46.8	
10/19/2016	47.3	
12/7/2016	45.3	
2/2/2017	49.9	
3/27/2017	45.8	
10/5/2017	47.3	
3/15/2018	46.8	
10/4/2018	50.4	
4/9/2019	47.3	
10/1/2019	46.9	
3/31/2020	51.5	
9/23/2020	45.9	
3/9/2021	48.7	
8/10/2021	48.1	
2/7/2022		52.6
8/9/2022		51.3
1/31/2023		43.8

GWC-23	GWC-23
	G.1.0 20
••	
39.8	
39.1	
44.7	
39.2	
54.3	
48.2	
	64.9
	40.6
	58.3
	44.7 39.2 54.3

	GWC-5	GWC-5
3/23/2016	79	
5/17/2016	74.6	
7/6/2016	66.9	
9/7/2016	61.6	
10/18/2016	71.6	
12/8/2016	67.6	
2/1/2017	82.5	
3/23/2017	84.4	
10/4/2017	70.8	
3/16/2018	78.1	
10/4/2018	73	
4/9/2019	73.9	
10/1/2019	70.6	
3/31/2020	84.2	
9/25/2020	77.1	
3/9/2021	85.4	
8/10/2021	78.3	
2/4/2022		79.5
8/9/2022		76.6
1/31/2023		75.5

	GWC-6	GWC-6
3/23/2016	64.1	
5/17/2016	62.8	
7/6/2016	59.5	
9/7/2016	53.7	
10/18/2016	62.3	
12/8/2016	58.8	
2/1/2017	59.6	
3/23/2017	62.9	
10/4/2017	62.4	
3/16/2018	66.9	
10/4/2018	65.5	
4/8/2019	67	
10/1/2019	64.2	
3/31/2020	70.6	
9/25/2020	71.3	
3/9/2021	70.8	
8/10/2021	67.7	
2/4/2022		71.2
8/8/2022		70.5
1/31/2023		62.5

	GWC-7	GWC-7
3/23/2016	45.2	
5/18/2016	46.5	
7/6/2016	29.1	
9/7/2016	19.2	
10/18/2016	22.6	
12/8/2016	17.5	
2/2/2017	54.4	
3/24/2017	56.8	
10/4/2017	30.5	
3/15/2018	43.4	
10/4/2018	26.1	
4/8/2019	56.1	
10/1/2019	28.5	
3/30/2020	47.8	
9/24/2020	39.5	
3/9/2021	64.3	
8/10/2021	40.5	
2/4/2022		68.3
8/10/2022		33.3
1/31/2023		19

	GWC-8	GWC-8
3/23/2016	69.1	
5/18/2016	63.7	
7/6/2016	56.8	
9/8/2016	51.3	
10/18/2016	52.6	
12/8/2016	43.7	
2/2/2017	56.5	
3/24/2017	64.4	
10/5/2017	59.9	
3/14/2018	58.8	
10/4/2018	264 (o)	
12/11/2018	64.3	
4/8/2019	81.5	
6/18/2019	83.7	
6/27/2019	75.9	
10/1/2019	64	
3/27/2020	87.3	
9/24/2020	81.4	
3/9/2021	83.2	
8/10/2021	111	
2/4/2022		92.6
8/9/2022		83.8
1/31/2023		69.2

	GWC-9	GWC-9
3/23/2016	36	
5/18/2016	37.3	
7/6/2016	32.8	
9/8/2016	32.1	
10/19/2016	35	
12/8/2016	33.4	
2/2/2017	34.3	
3/27/2017	34.9	
10/5/2017	34.7	
3/15/2018	35.3	
10/5/2018	37.8	
4/8/2019	36.3	
10/1/2019	37.2	
3/27/2020	34.3	
9/24/2020	35.9	
3/9/2021	36.8	
8/10/2021	38.1	
2/4/2022		39.8
8/9/2022		38.6
1/31/2023		34.1

	GWA-1	GWA-1
3/22/2016	1.1933	
5/17/2016	1.14	
7/5/2016	1.4	
9/7/2016	1	
10/18/2016	1.1	
12/6/2016	1	
1/31/2017	1.2	
3/23/2017	1.1	
10/4/2017	1.1	
3/14/2018	1.2	
10/4/2018	1.4	
4/8/2019	1.1	
9/30/2019	1.4	
3/26/2020	1.1	
9/23/2020	1.6	
3/8/2021	1.1	
8/9/2021	1.1	
2/4/2022		0.99 (J)
8/8/2022		1.2
1/30/2023		1.1

	GWA-11	GWA-11
3/22/2016	1.3137	
5/17/2016	1.29	
7/6/2016	1.6	
9/7/2016	1.5	
10/18/2016	1.6	
12/6/2016	1.2	
2/1/2017	2.1	
3/24/2017	1.3	
10/5/2017	1.3	
3/15/2018	1.6	
10/4/2018	1.8	
4/8/2019	1.3	
9/30/2019	1.5	
3/26/2020	1.4	
9/22/2020	1	
3/8/2021	1.3	
8/10/2021	1.2	
2/4/2022		1.2
8/8/2022		1.3
1/30/2023		1.2

	GWA-2	GWA-2
3/22/2016	2.0975	
5/17/2016	2.1	
7/5/2016	2.4	
9/7/2016	2.5	
10/18/2016	2.7	
12/7/2016	2.6	
1/31/2017	2.5	
3/23/2017	2	
10/4/2017	2.2	
3/14/2018	2.4	
10/4/2018	2.5	
4/8/2019	2.6	
9/30/2019	3	
3/26/2020	2	
9/21/2020	2.1	
3/9/2021	2.1	
8/9/2021	2.4	
2/4/2022		2.3
8/8/2022		2.5
1/30/2023		2.2

	GWA-3	GWA-3
3/22/2016	4.0352	
5/17/2016	3.81	
7/5/2016	4	
9/7/2016	4.2	
10/18/2016	4.4	
12/6/2016	4.6	
2/1/2017	3.7	
3/23/2017	3.5	
10/4/2017	3.6	
3/15/2018	3.8	
10/4/2018	3.4	
4/5/2019	4.2	
9/30/2019	4.1	
3/26/2020	2.6	
9/23/2020	2.8	
3/8/2021	2.8	
8/9/2021	2.1	
2/4/2022		1.1
8/8/2022		1.9
1/30/2023		1.2

	GWA-4	GWA-4
3/22/2016	5.549	
5/17/2016	6.74	
7/6/2016	5.2	
9/7/2016	7.2	
10/18/2016	7.4	
12/6/2016	7.6	
2/1/2017	8.5	
3/24/2017	7	
10/4/2017	7.4	
3/15/2018	1.7	
10/4/2018	6.1	
4/8/2019	3.6	
9/30/2019	7.5	
3/26/2020	5.4	
9/23/2020	4.2	
3/8/2021	5.6	
8/9/2021	3	
2/4/2022		3.3 (M1)
8/8/2022		2.4
1/30/2023		3.4

	GWC-10	GWC-10
3/23/2016	1.3507	
5/17/2016	1.28	
7/6/2016	1.5	
9/7/2016	1.5	
10/18/2016	1.4	
12/6/2016	1.3	
2/2/2017	1.8	
3/27/2017	1.7	
10/5/2017	1.5	
3/15/2018	2	
5/15/2018	1.4	
10/4/2018	2.1	
12/11/2018	1.9	
4/9/2019	1.9	
10/1/2019	1.5	
3/27/2020	1.2	
9/25/2020	1.1	
3/9/2021	1.1	
8/10/2021	1.2	
2/4/2022		1.3
8/9/2022		1.3
1/30/2023		1.3

	GWC-18	GWC-18
3/24/2016	1.1313	
5/19/2016	1.13	
7/7/2016	1.5	
9/8/2016	1.4	
10/19/2016	1.4	
12/8/2016	1.4	
2/2/2017	1.6	
3/27/2017	1.5	
10/5/2017	1.4	
3/16/2018	1.5	
10/5/2018	1.5	
4/9/2019	1.6	
10/1/2019	0.94 (J)	
3/30/2020	1	
9/24/2020	0.94 (J)	
3/9/2021	0.97 (J)	
8/10/2021	0.93 (J)	
2/4/2022		0.88 (J)
8/9/2022		1.1
1/31/2023		0.8 (J)

	GWC-19	GWC-19
3/24/2016	1.6497	
5/18/2016	1.74	
7/6/2016	2.1	
9/8/2016	1.9	
10/18/2016	2.1	
12/7/2016	2	
2/2/2017	2.3	
3/27/2017	2.1	
10/5/2017	1.9	
3/15/2018	1.9	
10/4/2018	2	
4/9/2019	1.9	
10/1/2019	1.3	
3/31/2020	1.3	
9/28/2020	1.3	
3/10/2021	1.3	
8/10/2021	1.2	
2/7/2022		1.1
8/9/2022		1.6
1/31/2023		1.2

	GWC-20	GWC-20
3/23/2016	1.4238	
5/18/2016	1.57	
7/7/2016	1.7	
9/8/2016	1.5	
10/19/2016	1.7	
12/7/2016	1.8	
2/3/2017	2	
3/27/2017	1.8	
10/5/2017	5.5 (o)	
12/14/2017	1.5	
3/16/2018	1.9	
10/5/2018	2.2	
12/11/2018	1.8	
4/9/2019	1.8	
10/1/2019	1.1	
3/31/2020	1.1	
9/23/2020	1.1	
3/10/2021	1.2	
8/10/2021	1.2	
2/7/2022		1.2
8/9/2022		0.93 (J)
1/31/2023		1.1

	GWC-21	GWC-21
3/24/2016	2.461	
5/18/2016	2.61	
7/7/2016	2.8	
9/8/2016	2.3	
10/19/2016	2.4	
12/7/2016	2.2	
2/2/2017	3.4	
3/27/2017	2.7	
10/5/2017	3.3	
3/15/2018	3.6	
5/15/2018	3.2	
10/4/2018	2.4	
4/9/2019	2.6	
10/1/2019	2	
3/31/2020	1.5	
9/24/2020	1.8	
3/9/2021	1.8	
8/10/2021	2	
2/7/2022		2.7
8/9/2022		4
1/31/2023		1.5

	GWC-22	GWC-22
3/23/2016	1.2595	
5/18/2016	1.25	
7/7/2016	1.7	
9/8/2016	1.5	
10/19/2016	1.6	
12/7/2016	1.5	
2/2/2017	1.8	
3/27/2017	1.5	
10/5/2017	1.6	
3/15/2018	1.7	
10/4/2018	1.7	
4/9/2019	1.7	
10/1/2019	1.4	
3/31/2020	1	
9/23/2020	1.1	
3/9/2021	1	
8/10/2021	1.1	
2/7/2022		1
8/9/2022		0.81 (J)
1/31/2023		1

	GWC-23	GWC-23
3/23/2016	1.5409	
5/19/2016	1.23	
7/7/2016	1.7	
9/8/2016	1.6	
10/19/2016	1.6	
12/7/2016	1.7	
2/3/2017	1.9	
3/27/2017	1.7	
10/5/2017	1.4	
3/15/2018	1.6	
10/5/2018	1.6	
4/8/2019	1.5	
10/1/2019	1.1	
3/26/2020	0.63 (J)	
9/23/2020	1.1	
3/9/2021	0.85 (J)	
8/10/2021	1	
2/7/2022		0.7 (J)
8/8/2022		1.3
1/31/2023		<1

	GWC-5	GWC-5
3/23/2016	2.5045	
5/17/2016	2.47	
7/6/2016	2.9	
9/7/2016	2.8	
10/18/2016	2.8	
12/8/2016	3.1	
2/1/2017	3.8	
3/23/2017	3.4	
10/4/2017	3.7	
3/16/2018	3.2	
10/4/2018	3.2	
4/9/2019	3.3	
10/1/2019	2.2	
3/31/2020	2	
9/25/2020	2.3	
3/9/2021	2	
8/10/2021	2.3	
2/4/2022		1.9
8/9/2022		2.4
1/31/2023		2.1

	GWC-6	GWC-6
3/23/2016	1.7709	
5/17/2016	1.75	
7/6/2016	2	
9/7/2016	2	
10/18/2016	2	
12/8/2016	2	
2/1/2017	2.2	
3/23/2017	2	
10/4/2017	1.7	
3/16/2018	2.1	
10/4/2018	2.2	
4/8/2019	2.1	
10/1/2019	1.6	
3/31/2020	1.5	
9/25/2020	1.6	
3/9/2021	1.5	
8/10/2021	1.6	
2/4/2022		1.6
8/8/2022		1.9
1/31/2023		1.7

	GWC-7	GWC-7
3/23/2016	1.1569	
5/18/2016	1.35	
7/6/2016	1.9	
9/7/2016	1.7	
10/18/2016	1.8	
12/8/2016	1.6	
2/2/2017	2	
3/24/2017	1.3	
10/4/2017	1.7	
3/15/2018	1.9	
10/4/2018	2	
4/8/2019	1.9	
10/1/2019	1.2	
3/30/2020	9.2 (o)	
6/19/2020	1.4 (R)	
9/24/2020	1.4	
3/9/2021	1.5	
8/10/2021	1.6	
2/4/2022		1.8
8/10/2022		1.7
1/31/2023		1.7

	GWC-8	GWC-8
3/23/2016	1.4936	
5/19/2016	1.35	
7/6/2016	1.6	
9/8/2016	1.4	
10/18/2016	1.4	
12/8/2016	1.5	
2/2/2017	1.7	
3/24/2017	2.1	
10/5/2017	2	
3/14/2018	2.1	
10/4/2018	2.3	
12/11/2018	2.3	
1/11/2019	2.8	
4/8/2019	3.2	
10/1/2019	1.8	
3/27/2020	2.5	
9/24/2020	2.2	
3/9/2021	2.2	
8/10/2021	2.7	
2/4/2022		3.2
8/9/2022		2.1
1/31/2023		1.6

	GWC-9	GWC-9
3/23/2016	0.9561	
5/19/2016	0.972	
7/6/2016	1.3	
9/8/2016	1	
10/19/2016	1.1	
12/8/2016	1.3	
2/2/2017	1.6	
3/27/2017	1.4	
10/5/2017	1.1	
3/15/2018	1.3	
10/5/2018	1.6	
4/8/2019	1	
10/1/2019	0.91 (J)	
3/27/2020	0.74 (J)	
9/24/2020	0.82 (J)	
3/9/2021	0.74 (J)	
8/10/2021	0.85 (J)	
2/4/2022		0.78 (J)
8/9/2022		1
1/31/2023		0.72 (J)

	GWA-1	GWA-1
3/22/2016	0.119 (J)	
5/17/2016	0.1049 (J)	
7/5/2016	0.1 (J)	
9/7/2016	0.13 (J)	
10/18/2016	0.15 (J)	
12/6/2016	0.11 (J)	
1/31/2017	0.02 (J)	
3/23/2017	0.08 (J)	
10/4/2017	0.07 (J)	
3/14/2018	<0.3	
10/4/2018	0.17 (J)	
4/8/2019	0.057 (J)	
9/30/2019	0.11 (J)	
3/26/2020	0.082 (J)	
9/23/2020	0.089 (J)	
3/8/2021	0.094 (J)	
8/9/2021	0.083 (J)	
2/4/2022		0.087 (J)
8/8/2022		0.11
1/30/2023		0.11

	GWA-11	GWA-11
3/22/2016	0.0811 (J)	
5/17/2016	0.0706 (J)	
7/6/2016	0.09 (J)	
9/7/2016	0.04 (J)	
10/18/2016	0.07 (J)	
12/6/2016	0.13 (J)	
2/1/2017	<0.3	
3/24/2017	0.01 (J)	
10/5/2017	<0.3	
3/15/2018	<0.3	
10/4/2018	0.15 (J)	
4/8/2019	0.035 (J)	
9/30/2019	0.099 (J)	
3/26/2020	0.057 (J)	
9/22/2020	0.061 (J)	
3/8/2021	0.11	
8/10/2021	0.068 (J)	
2/4/2022		0.068 (J)
8/8/2022		0.1
1/30/2023		0.09 (J)

	GWA-2	GWA-2
3/22/2016	0.1252 (J)	
5/17/2016	0.1091 (J)	
7/5/2016	0.16 (J)	
9/7/2016	0.18 (J)	
10/18/2016	0.13 (J)	
12/7/2016	0.13 (J)	
1/31/2017	0.04 (J)	
3/23/2017	0.08 (J)	
10/4/2017	0.11 (J)	
3/14/2018	<0.3	
10/4/2018	0.25 (J)	
4/8/2019	0.072 (J)	
9/30/2019	0.14 (J)	
3/26/2020	0.12 (J)	
9/21/2020	0.12	
3/9/2021	0.099 (J)	
8/9/2021	0.081 (J)	
2/4/2022		0.085 (J)
8/8/2022		0.1
1/30/2023		0.11

	GWA-3	GWA-3
3/22/2016	0.1415 (J)	
5/17/2016	0.1293 (J)	
7/5/2016	0.21 (J)	
9/7/2016	0.21 (J)	
10/18/2016	0.15 (J)	
12/6/2016	0.19 (J)	
2/1/2017	0.35	
3/23/2017	0.39	
10/4/2017	0.49	
3/15/2018	<0.3	
10/4/2018	0.24 (J)	
4/5/2019	0.31	
9/30/2019	0.15 (J)	
3/26/2020	0.09 (J)	
9/23/2020	0.11	
3/8/2021	0.13	
8/9/2021	0.1	
2/4/2022		0.084 (J)
8/8/2022		0.11
1/30/2023		0.12

	GWA-4	GWA-4
3/22/2016	0.1754 (J)	
5/17/2016	0.1385 (J)	
7/6/2016	0.22 (J)	
9/7/2016	0.2 (J)	
10/18/2016	0.16 (J)	
12/6/2016	0.29 (J)	
2/1/2017	0.48	
3/24/2017	0.12 (J)	
10/4/2017	0.2 (J)	
3/15/2018	0.4	
10/4/2018	0.24 (J)	
4/8/2019	0.12 (J)	
9/30/2019	0.17 (J)	
3/26/2020	0.089 (J)	
9/23/2020	0.13	
3/8/2021	0.1	
8/9/2021	0.12	
2/4/2022		0.11 (M1)
8/8/2022		0.12
1/30/2023		0.12

	GWC-10	GWC-10
3/23/2016	0.1069 (J)	
5/17/2016	0.0991 (J)	
7/6/2016	0.09 (J)	
9/7/2016	0.13 (J)	
10/18/2016	0.16 (J)	
12/6/2016	0.12 (J)	
2/2/2017	0.07 (J)	
3/27/2017	0.05 (J)	
10/5/2017	0.11 (J)	
3/15/2018	<0.3	
10/4/2018	0.16 (J)	
4/9/2019	0.067 (J)	
10/1/2019	0.07 (J)	
3/27/2020	<0.3	
9/25/2020	0.085 (J)	
3/9/2021	0.078 (J)	
8/10/2021	0.078 (J)	
2/4/2022		0.07 (J)
8/9/2022		0.096 (J)
1/30/2023		0.096 (J)

	GWC-18	GWC-18
3/24/2016	0.1459 (J)	
5/19/2016	0.1408 (J)	
7/7/2016	0.2 (J)	
9/8/2016	0.14 (J)	
10/19/2016	0.14 (J)	
12/8/2016	0.16 (J)	
2/2/2017	0.17 (J)	
3/27/2017	0.11 (J)	
10/5/2017	0.13 (J)	
3/16/2018	<0.3	
10/5/2018	0.21 (J)	
4/9/2019	0.1 (J)	
10/1/2019	0.11 (J)	
3/30/2020	0.1 (J)	
9/24/2020	0.11	
3/9/2021	0.11	
8/10/2021	0.11	
2/4/2022		0.12
8/9/2022		0.13
1/31/2023		0.15

	GWC-19	GWC-19
3/24/2016	0.1652 (J)	
5/18/2016	0.1459 (J)	
7/6/2016	0.21 (J)	
9/8/2016	0.15 (J)	
10/18/2016	0.19 (J)	
12/7/2016	0.24 (J)	
2/2/2017	0.1 (J)	
3/27/2017	0.11 (J)	
10/5/2017	0.13 (J)	
3/15/2018	<0.3	
10/4/2018	0.21 (J)	
4/9/2019	0.1 (J)	
10/1/2019	0.11 (J)	
3/31/2020	0.099 (J)	
9/28/2020	0.11	
3/10/2021	0.11	
8/10/2021	0.11	
2/7/2022		0.1
8/9/2022		0.14
1/31/2023		0.14

	GWC-20	GWC-20
3/23/2016	0.0905 (J)	
5/18/2016	0.0864 (J)	
7/7/2016	0.16 (J)	
9/8/2016	0.08 (J)	
10/19/2016	0.09 (J)	
12/7/2016	0.11 (J)	
2/3/2017	0.06 (J)	
3/27/2017	0.04 (J)	
10/5/2017	0.05 (J)	
3/16/2018	<0.3	
10/5/2018	0.17 (J)	
4/9/2019	0.056 (J)	
10/1/2019	0.069 (J)	
3/31/2020	0.054 (J)	
9/23/2020	0.065 (J)	
3/10/2021	0.068 (J)	
8/10/2021	0.066 (J)	
2/7/2022		0.058 (J)
8/9/2022		0.11
1/31/2023		0.094 (J)

	GWC-21	GWC-21
3/24/2016	0.0445 (J)	
5/18/2016	0.0476 (J)	
7/7/2016	0.12 (J)	
9/8/2016	0.11 (J)	
10/19/2016	0.13 (J)	
12/7/2016	0.23 (J)	
2/2/2017	0.11 (J)	
3/27/2017	0.01 (J)	
10/5/2017	<0.1	
3/15/2018	<0.1	
10/4/2018	0.15 (J)	
4/9/2019	0.063 (J)	
10/1/2019	0.094 (J)	
3/31/2020	<0.1	
9/24/2020	0.1	
3/9/2021	0.058 (J)	
8/10/2021	<0.1	
2/7/2022		<0.1
8/9/2022		0.079 (J)
1/31/2023		0.062 (J)

	GWC-22	GWC-22
3/23/2016	0.0886 (J)	
5/18/2016	0.0839 (J)	
7/7/2016	0.08 (J)	
9/8/2016	0.11 (J)	
10/19/2016	0.1 (J)	
12/7/2016	0.09 (J)	
2/2/2017	0.05 (J)	
3/27/2017	0.08 (J)	
10/5/2017	0.08 (J)	
3/15/2018	<0.3	
10/4/2018	0.14 (J)	
4/9/2019	0.063 (J)	
10/1/2019	0.079 (J)	
3/31/2020	0.055 (J)	
9/23/2020	0.073 (J)	
3/9/2021	0.067 (J)	
8/10/2021	0.071 (J)	
2/7/2022		0.059 (J)
8/9/2022		0.11
1/31/2023		0.095 (J)

	GWC-23	GWC-23
3/23/2016	0.1064 (J)	
5/19/2016	0.0928 (J)	
7/7/2016	0.13 (J)	
9/8/2016	0.12 (J)	
10/19/2016	0.1 (J)	
12/7/2016	0.1 (J)	
2/3/2017	0.12 (J)	
3/27/2017	0.14 (J)	
10/5/2017	0.09 (J)	
3/15/2018	<0.3	
10/5/2018	0.18 (J)	
4/8/2019	0.057 (J)	
10/1/2019	0.079 (J)	
3/26/2020	0.064 (J)	
9/23/2020	0.088 (J)	
3/9/2021	0.069 (J)	
8/10/2021	0.087 (J)	
2/7/2022		0.082 (J)
8/8/2022		0.1
1/31/2023		0.11

	GWC-5	GWC-5
3/23/2016	0.0582 (J)	
5/17/2016	0.0571 (J)	
7/6/2016	0.29 (J)	
9/7/2016	0.08 (J)	
10/18/2016	0.09 (J)	
12/8/2016	0.06 (J)	
2/1/2017	0.33	
3/23/2017	0.07 (J)	
10/4/2017	<0.1	
3/16/2018	<0.1	
10/4/2018	0.16 (J)	
4/9/2019	0.061 (J)	
10/1/2019	0.064 (J)	
3/31/2020	<0.1	
9/25/2020	0.058 (J)	
3/9/2021	0.05 (J)	
8/10/2021	0.057 (J)	
2/4/2022		<0.1
8/9/2022		0.077 (J)
1/31/2023		0.074 (J)

	GWC-6	GWC-6
3/23/2016	0.0791 (J)	
5/17/2016	0.0712 (J)	
7/6/2016	0.28 (J)	
9/7/2016	0.08 (J)	
10/18/2016	0.07 (J)	
12/8/2016	0.13 (J)	
2/1/2017	0.24 (J)	
3/23/2017	0.04 (J)	
10/4/2017	0.03 (J)	
3/16/2018	<0.3	
10/4/2018	0.17 (J)	
4/8/2019	<0.3	
10/1/2019	0.063 (J)	
3/31/2020	0.053 (J)	
9/25/2020	0.063 (J)	
3/9/2021	0.06 (J)	
8/10/2021	0.057 (J)	
2/4/2022		0.058 (J)
8/8/2022		0.083 (J)
1/31/2023		0.098 (J)

	GWC-7	GWC-7
3/23/2016	0.2004 (J)	
5/18/2016	0.1766 (J)	
7/6/2016	0.39	
9/7/2016	0.53	
10/18/2016	0.24 (J)	
12/8/2016	0.24 (J)	
2/2/2017	0.3 (J)	
3/24/2017	0.22 (J)	
10/4/2017	0.19 (J)	
3/15/2018	0.37	
10/4/2018	0.19 (J)	
4/8/2019	0.17 (J)	
10/1/2019	0.16 (J)	
3/30/2020	0.16 (J)	
9/24/2020	0.14	
3/9/2021	0.17	
8/10/2021	0.19	
2/4/2022		0.14
8/10/2022		0.14
1/31/2023		0.26

	GWC-8	GWC-8
3/23/2016	0.1537 (J)	
5/19/2016	0.1414 (J)	
7/6/2016	0.15 (J)	
9/8/2016	0.35	
10/18/2016	0.17 (J)	
12/8/2016	0.15 (J)	
2/2/2017	0.1 (J)	
3/24/2017	0.14 (J)	
10/5/2017	0.15 (J)	
3/14/2018	0.4	
5/16/2018	0.32	
10/4/2018	0.28 (J)	
4/8/2019	0.1 (J)	
10/1/2019	0.13 (J)	
3/27/2020	0.12 (J)	
9/24/2020	0.15	
3/9/2021	0.12	
8/10/2021	0.13	
2/4/2022		0.12
8/9/2022		0.14
1/31/2023		0.18

	GWC-9	GWC-9
3/23/2016	0.0993 (J)	
5/19/2016	0.0936 (J)	
7/6/2016	0.09 (J)	
9/8/2016	0.11 (J)	
10/19/2016	0.1 (J)	
12/8/2016	0.11 (J)	
2/2/2017	0.05 (J)	
3/27/2017	0.07 (J)	
10/5/2017	0.06 (J)	
3/15/2018	<0.3	
10/5/2018	0.18 (J)	
4/8/2019	0.058 (J)	
10/1/2019	0.078 (J)	
3/27/2020	0.078 (J)	
9/24/2020	0.076 (J)	
3/9/2021	0.08 (J)	
8/10/2021	0.076 (J)	
2/4/2022		0.076 (J)
8/9/2022		0.094 (J)
1/31/2023		0.11

	GWA-1	GWA-1
3/22/2016	7.07	
5/17/2016	7	
7/5/2016	6.88	
9/7/2016	7.24	
10/18/2016	6.86	
12/6/2016	6.98	
1/31/2017	6.63	
3/23/2017	7.12	
10/4/2017	6.83	
3/14/2018	6.66	
10/4/2018	6.92	
4/8/2019	6.86	
9/30/2019	7.15	
3/26/2020	7.02	
9/23/2020	6.98	
3/8/2021	6.86	
8/9/2021	7.23	
2/4/2022		7.18
8/8/2022		7.28
1/30/2023		7.22

	GWA-11	GWA-11
3/22/2016	7	
5/17/2016	6.77	
7/6/2016	6.64	
9/7/2016	6.83	
10/18/2016	6.58	
12/6/2016	6.66	
2/1/2017	6.5	
3/24/2017	6.72	
10/5/2017	6.69	
3/15/2018	6.48	
10/4/2018	6.66	
4/8/2019	6.61	
9/30/2019	6.86	
3/26/2020	6.83	
9/22/2020	6.8	
3/8/2021	6.78	
8/10/2021	6.84	
2/4/2022		6.92
8/8/2022		6.55
1/30/2023		7

GWA-2	GWA-2
7.19	
6.94	
6.98	
6.86	
6.71	
6.71	
6.95	
7.04	
6.86	
6.76	
6.62	
6.79	
6.86	
7.07	
6.9	
6.93	
6.9	
	6.98
	7.03
	7.05
	7.19 6.94 6.98 6.86 6.71 6.71 6.95 7.04 6.86 6.76 6.62 6.79 6.86 7.07 6.9

	GWA-3	GWA-3
3/22/2016	7.11	
5/17/2016	6.95	
7/5/2016	6.55	
9/7/2016	6.81	
10/18/2016	6.64	
12/6/2016	6.34	
2/1/2017	6.68	
3/23/2017	6.8	
10/4/2017	6.64	
3/15/2018	6.88	
10/4/2018	6.62	
4/5/2019	6.77	
9/30/2019	6.73	
3/26/2020	6.87	
9/23/2020	6.87	
3/8/2021	6.95	
8/9/2021	6.89	
2/4/2022		6.75
8/8/2022		6.59
1/30/2023		6.82

	GWA-4	GWA-4
3/22/2016	7.14	
5/17/2016	6.67	
7/6/2016	6.53	
9/7/2016	6.72	
10/18/2016	6.73	
12/6/2016	6.61	
2/1/2017	6.7	
3/24/2017	6.77	
10/4/2017	6.52	
3/15/2018	7.11	
10/4/2018	6.72	
4/8/2019	6.82	
9/30/2019	6.77	
3/26/2020	6.74	
9/23/2020	6.81	
3/8/2021	6.84	
8/9/2021	6.76	
2/4/2022		7.11
8/8/2022		6.73
1/30/2023		6.94

	GWC-10	GWC-10
3/23/2016	7.56	
5/17/2016	7.46	
7/6/2016	7.24	
9/7/2016	7.4	
10/18/2016	7.11	
12/6/2016	7.32	
2/2/2017	7.19	
3/27/2017	7.48	
10/5/2017	7.13	
3/15/2018	7.08	
10/4/2018	7.26	
4/9/2019	7.22	
10/1/2019	7.07	
3/27/2020	6.82	
6/19/2020	7.4 (R)	
9/25/2020	7.28	
3/9/2021	7.43	
8/10/2021	7.45	
2/4/2022		7.51
8/9/2022		7.36
1/30/2023		7.6

	GWC-18	GWC-18
3/24/2016	7.71	
5/18/2016	7.59	
7/7/2016	7.55	
9/8/2016	7.54	
10/19/2016	7.66	
12/8/2016	7.47	
2/2/2017	7.64	
3/27/2017	7.59	
10/5/2017	7.65	
3/16/2018	7.51	
10/5/2018	7.57	
4/9/2019	7.48	
10/1/2019	7.65	
3/30/2020	7.65	
9/24/2020	7.62	
3/9/2021	7.66	
8/10/2021	7.4	
2/4/2022		7.73
8/9/2022		7.47
1/31/2023		7.56

	GWC-19	GWC-19
3/24/2016	7.69	
5/18/2016	7.49	
7/6/2016	7.39	
9/8/2016	7.57	
10/18/2016	7.35	
12/7/2016	7.42	
2/2/2017	7.43	
3/27/2017	7.53	
10/5/2017	7.36	
3/15/2018	7.54	
10/4/2018	7.44	
4/9/2019	7.4	
10/1/2019	7.31	
3/31/2020	7.62	
6/19/2020	7.61 (R)	
9/28/2020	7.78	
11/10/2020	7.37 (R)	
3/10/2021	7.49	
8/10/2021	7.49	
2/7/2022		7.61
8/9/2022		7.42
1/31/2023		7.65

	GWC-20	GWC-20
3/23/2016	7.55	
5/18/2016	7.32	
7/7/2016	7.39	
9/8/2016	7.34	
10/19/2016	7.35	
12/7/2016	7.35	
2/3/2017	7.37	
3/27/2017	7.26	
10/5/2017	7.2	
3/16/2018	7.13	
5/15/2018	7.18	
10/5/2018	7.07	
12/11/2018	7.16	
4/9/2019	7.26	
10/1/2019	7.16	
3/31/2020	7.57	
6/19/2020	7.31 (R)	
9/23/2020	7.11	
3/10/2021	7.41	
8/10/2021	7.31	
2/7/2022		7.57
8/9/2022		7.33
1/31/2023		7.44

	GWC-21	GWC-21
3/24/2016	6.4	
5/18/2016	6.44	
7/7/2016	6.12	
9/8/2016	7.2	
10/19/2016	7.11	
12/7/2016	7.24	
2/2/2017	6.86	
3/27/2017	6.51	
10/5/2017	5.97	
3/15/2018	7.01	
10/4/2018	6.33	
4/9/2019	6.46	
10/1/2019	6.9	
3/31/2020	6.33	
9/24/2020	7.12	
3/9/2021	7.04	
8/10/2021	6.05	
2/7/2022		6.58
8/9/2022		6.05
1/31/2023		6.23

	GWC-22	GWC-22
3/23/2016	7.72	
5/18/2016	7.77	
7/7/2016	7.65	
9/8/2016	7.89	
10/19/2016	7.64	
12/7/2016	7.72	
2/2/2017	7.56	
3/27/2017	7.69	
10/5/2017	7.53	
3/15/2018	7.5	
10/4/2018	7.52	
4/9/2019	7.49	
10/1/2019	7.38	
11/6/2019	7.66	
3/31/2020	7.8	
9/23/2020	7.42	
3/9/2021	7.52	
8/10/2021	7.75	
2/7/2022		7.85
8/9/2022		7.62
1/31/2023		7.67

	GWC-23	GWC-23
3/23/2016	7.48	
5/19/2016	7.24	
7/7/2016	7.18	
9/8/2016	7.17	
10/19/2016	7.05	
12/7/2016	7.16	
2/3/2017	7.27	
3/27/2017	7.24	
10/5/2017	7.25	
3/15/2018	7.05	
10/5/2018	6.97	
4/8/2019	6.88	
10/1/2019	7	
3/26/2020	6.88	
9/23/2020	6.96	
3/9/2021	6.81	
8/10/2021	6.96	
2/7/2022		7.05
8/8/2022		7.04
1/31/2023		7.03

GWC-5	GWC-5
7.1	
6.88	
6.75	
6.95	
6.9	
6.55	
6.81	
6.8	
7.12	
6.72	
6.52	
6.72	
6.81	
6.82	
6.82	
6.93	
6.87	
	6.92
	6.89
	6.96
	7.1 6.88 6.75 6.95 6.9 6.55 6.81 6.8 7.12 6.72 6.52 6.72 6.81 6.82 6.82 6.93

	GWC-6	GWC-6
3/23/2016	7.29	
5/17/2016	7.1	
7/6/2016	7	
9/7/2016	7.07	
10/18/2016	6.81	
12/8/2016	6.85	
2/1/2017	7.05	
3/23/2017	6.97	
10/4/2017	7.17	
3/16/2018	6.8	
10/4/2018	6.93	
4/8/2019	7	
10/1/2019	6.97	
3/31/2020	7.17	
6/18/2020	6.96 (R)	
9/25/2020	6.96	
3/9/2021	7.09	
8/10/2021	7.06	
2/4/2022		7.21
8/8/2022		6.9
1/31/2023		7.24

	GWC-7	GWC-7
3/23/2016	6.36	
5/18/2016	6.21	
7/6/2016	5.88	
9/7/2016	5.77	
10/18/2016	5.9	
12/9/2016	5.73	
2/2/2017	6.29	
3/24/2017	6.32	
10/4/2017	6.03	
3/15/2018	6.05	
10/4/2018	5.92	
4/8/2019	6.26	
10/1/2019	6.09	
3/30/2020	6.48	
6/19/2020	6.45 (R)	
9/24/2020	6.32	
3/9/2021	6.59	
8/10/2021	6.29	
2/4/2022		6.7
8/10/2022		6.25
1/31/2023		5.84

	GWC-8	GWC-8
3/23/2016	7.46	
5/18/2016	7.4	
7/6/2016	7.36	
9/8/2016	7.45	
10/18/2016	7.5	
12/8/2016	7.28	
2/2/2017	7.45	
3/24/2017	7.28	
10/5/2017	7.53	
3/14/2018	7.28	
10/4/2018	7.22	
4/8/2019	6.91	
6/18/2019	6.85	
6/27/2019	7.05	
10/1/2019	7.11	
3/27/2020	7.01	
6/19/2020	6.81 (R)	
9/24/2020	6.96	
3/9/2021	7.06	
8/10/2021	6.65	
2/4/2022		7.07
8/9/2022		7.08
1/31/2023		7.09

	GWC-9	GWC-9
3/23/2016	7.2	
5/18/2016	6.96	
7/6/2016	6.89	
9/8/2016	6.93	
10/19/2016	6.84	
12/8/2016	6.54	
2/2/2017	6.72	
3/27/2017	6.56	
10/5/2017	7.03	
3/15/2018	6.66	
10/5/2018	6.41	
4/8/2019	6.72	
10/1/2019	6.77	
3/27/2020	7.11	
9/24/2020	6.75	
3/9/2021	6.92	
8/10/2021	6.91	
2/4/2022		7.1
8/9/2022		7
1/31/2023		6.74

	GWA-1	GWA-1
3/22/2016	4.4409	
5/17/2016	4.43	
7/5/2016	4.6	
9/7/2016	4.8	
10/18/2016	4.7	
12/6/2016	4.7	
1/31/2017	5.1	
3/23/2017	4.7	
10/4/2017	5	
3/14/2018	5.1	
10/4/2018	5.2	
4/8/2019	4.6	
9/30/2019	4.9	
3/26/2020	5	
9/23/2020	6.6	
3/8/2021	4.6	
8/9/2021	4.7	
2/4/2022		4
8/8/2022		4.1
1/30/2023		3.8

	GWA-11	GWA-11
3/22/2016	11.6823	
5/17/2016	11.4	
7/6/2016	12	
9/7/2016	13	
10/18/2016	13	
12/6/2016	12	
2/1/2017	13	
3/24/2017	12	
10/5/2017	13	
3/15/2018	12.2	
10/4/2018	15.6	
4/8/2019	13.2	
9/30/2019	11.5	
3/26/2020	10.8	
9/22/2020	9.8	
3/8/2021	11.5	
8/10/2021	11.2	
2/4/2022		10.4
8/8/2022		10.2
1/30/2023		9.5

GWA-2	GWA-2
13.0789	
15.3	
15	
16	
16	
15	
13	
12	
12	
13.9	
17.4	
18.1	
17.5	
15.6	
18.2	
16.8	
23.2	
	21.1
	23.3
	19.8
	13.0789 15.3 15 16 16 15 13 12 12 13.9 17.4 18.1 17.5 15.6 18.2 16.8

	GWA-3	GWA-3
3/22/2016	107.476	
5/17/2016	106	
7/5/2016	110	
9/7/2016	83	
10/18/2016	110	
12/6/2016	220	
2/1/2017	190	
3/23/2017	160	
10/4/2017	140	
3/15/2018	119	
10/4/2018	117	
4/5/2019	131	
9/30/2019	118	
3/26/2020	95.8	
9/23/2020	95.6	
3/8/2021	99.5	
8/9/2021	93.3	
2/4/2022		73.5
8/8/2022		78.9
1/30/2023		78.4

	GWA-4	GWA-4
3/22/2016	302.2975	
5/17/2016	213	
7/6/2016	280	
9/7/2016	160	
10/18/2016	120	
12/6/2016	210	
2/1/2017	200	
3/24/2017	140	
10/4/2017	140	
3/15/2018	167	
10/4/2018	209	
4/8/2019	248	
9/30/2019	117	
3/26/2020	128	
9/23/2020	123	
3/8/2021	152	
8/9/2021	106	
2/4/2022		170 (M1)
8/8/2022		116
1/30/2023		156

	GWC-10	GWC-10
3/23/2016	14.6529	
5/17/2016	13.3	
7/6/2016	10	
9/7/2016	10	
10/18/2016	10	
12/6/2016	11	
2/2/2017	11	
3/27/2017	33	
10/5/2017	16	
3/15/2018	33.9	
5/15/2018	29.1	
10/4/2018	29.5	
4/9/2019	21.4	
10/1/2019	13.4	
3/27/2020	10.8	
9/25/2020	11.6	
3/9/2021	14.2	
8/10/2021	14.9	
2/4/2022		14.4
8/9/2022		10.6
1/30/2023		11.5

	GWC-18	GWC-18
3/24/2016	10.1818	
5/19/2016	9.58	
7/7/2016	9.6	
9/8/2016	9.4	
10/19/2016	9.9	
12/8/2016	14	
2/2/2017	13	
3/27/2017	12	
10/5/2017	12	
3/16/2018	11.7	
10/5/2018	10.6	
4/9/2019	11.3	
10/1/2019	8.9	
3/30/2020	9.7	
9/24/2020	8.5	
3/9/2021	7.9	
8/10/2021	10.3	
2/4/2022		8.9
8/9/2022		8.6
1/31/2023		8.4

	GWC-19	GWC-19
3/24/2016	16.8473	
5/18/2016	18.4	
7/6/2016	17	
9/8/2016	16	
10/18/2016	19	
12/7/2016	13	
2/2/2017	14	
3/27/2017	18	
10/5/2017	16	
3/15/2018	14.8	
10/4/2018	15.9	
4/9/2019	16.7	
10/1/2019	14.7	
3/31/2020	17.8	
9/28/2020	15.8	
3/10/2021	18.7	
8/10/2021	17.8	
2/7/2022		16.9
8/9/2022		21.9
1/31/2023		22.8

	GWC-20	GWC-20
3/23/2016	22.9683	
5/18/2016	19.2	
7/7/2016	31	
9/8/2016	30	
10/19/2016	32	
12/7/2016	26	
2/3/2017	27	
3/27/2017	30	
10/5/2017	32	
3/16/2018	37.5	
5/15/2018	41	
10/5/2018	38.9	
12/11/2018	41.8	
4/9/2019	50.3	
6/18/2019	38.7	
6/27/2019	46	
10/1/2019	52.3	
11/6/2019	47.3	
3/31/2020	53.6	
9/23/2020	58.9	
3/10/2021	64.7	
8/10/2021	66.4	
2/7/2022		66.3
8/9/2022		66.5
1/31/2023		69.8

	GWC-21	GWC-21
3/24/2016	24.8075	
5/18/2016	26.2	
7/7/2016	31	
9/8/2016	33	
10/19/2016	31	
12/7/2016	19	
2/2/2017	52	
3/27/2017	29	
10/5/2017	33	
3/15/2018	38	
10/4/2018	19.3	
4/9/2019	19.9	
10/1/2019	46.3	
3/31/2020	29.9	
9/24/2020	37.6	
3/9/2021	41.6	
8/10/2021	23.8	
2/7/2022		25.9
8/9/2022		18.3
1/31/2023		12.4

	GWC-22	GWC-22
3/23/2016	9.1183	
5/18/2016	6.88	
7/7/2016	6.8	
9/8/2016	6.8	
10/19/2016	7.5	
12/7/2016	11	
2/2/2017	9.9	
3/27/2017	8.4	
10/5/2017	7.4	
3/15/2018	8.2	
10/4/2018	6.4	
4/9/2019	11	
10/1/2019	1.9	
3/31/2020	10.9	
9/23/2020	5	
3/9/2021	6.4	
8/10/2021	6.2	
2/7/2022		8.2
8/9/2022		6.3
1/31/2023		8.8
	5/18/2016 7/7/2016 9/8/2016 10/19/2016 12/7/2016 2/2/2017 3/27/2017 10/5/2017 3/15/2018 10/4/2018 4/9/2019 10/1/2019 3/31/2020 9/23/2020 3/9/2021 8/10/2021 8/9/2022	3/23/2016 9.1183 5/18/2016 6.88 7/7/2016 6.8 9/8/2016 6.8 10/19/2016 7.5 12/7/2016 11 2/2/2017 9.9 3/27/2017 8.4 10/5/2017 7.4 3/15/2018 8.2 10/4/2018 6.4 4/9/2019 11 10/1/2019 1.9 3/31/2020 10.9 9/23/2020 5 3/9/2021 6.4 8/10/2021 6.2 2/7/2022 8/9/2022

	GWC-23	GWC-23
3/23/2016	6.2867	
5/19/2016	5.42	
7/7/2016	5.7	
9/8/2016	5.7	
10/19/2016	5.8	
12/7/2016	5.9	
2/3/2017	38	
3/27/2017	43	
10/5/2017	8.3	
3/15/2018	14	
10/5/2018	9.3	
4/8/2019	6.2	
10/1/2019	5.8	
3/26/2020	14.5	
9/23/2020	5.3	
3/9/2021	10.2	
8/10/2021	8	
2/7/2022		13
8/8/2022		5.6
1/31/2023		19.5
	5/19/2016 7/7/2016 9/8/2016 10/19/2016 12/7/2016 2/3/2017 3/27/2017 3/27/2017 10/5/2018 10/5/2018 4/8/2019 10/1/2019 3/26/2020 9/23/2020 3/9/2021 8/10/2021 2/7/2022 8/8/2022	3/23/2016 6.2867 5/19/2016 5.42 7/7/2016 5.7 9/8/2016 5.7 10/19/2016 5.8 12/7/2016 5.9 2/3/2017 38 3/27/2017 43 10/5/2017 8.3 3/15/2018 14 10/5/2018 9.3 4/8/2019 6.2 10/1/2019 5.8 3/26/2020 14.5 9/23/2020 5.3 3/9/2021 10.2 8/10/2021 8 2/7/2022 8/8/2022

	GWC-5	GWC-5
3/23/2016	76.011	
5/17/2016	76.2	
7/6/2016	74	
9/7/2016	64	
10/18/2016	65	
12/8/2016	100	
2/1/2017	150	
3/23/2017	130	
10/4/2017	71	
3/16/2018	77.4	
10/4/2018	90.3	
4/9/2019	83.6	
10/1/2019	68.1	
3/31/2020	92.6	
9/25/2020	80.7	
3/9/2021	86.9	
8/10/2021	76.1	
2/4/2022		80.1
8/9/2022		74.6
1/31/2023		90.6

	GWC-6	GWC-6
3/23/2016	87.512	
5/17/2016	101	
7/6/2016	110	
9/7/2016	97	
10/18/2016	120	
12/8/2016	100	
2/1/2017	110	
3/23/2017	110	
10/4/2017	130	
12/14/2017	130	
1/18/2018	110	
3/16/2018	93.6	
10/4/2018	137	
12/11/2018	110	
4/8/2019	131	
6/19/2019	108	
10/1/2019	71.7	
3/31/2020	106	
9/25/2020	110	
3/9/2021	105	
8/10/2021	95.9	
2/4/2022		101
8/8/2022		77.1
1/31/2023		95.7

	GWC-7	GWC-7
3/23/2016	90.229	
5/18/2016	100	
7/6/2016	130	
9/7/2016	130	
10/18/2016	140	
12/8/2016	140	
2/2/2017	71	
3/24/2017	68	
10/4/2017	120	
3/15/2018	118	
10/4/2018	167	
4/8/2019	97.1	
10/1/2019	120	
3/30/2020	64.6	
9/24/2020	120	
3/9/2021	87.4	
8/10/2021	101	
2/4/2022		78.3
8/10/2022		102
1/31/2023		118

	GWC-8	GWC-8
3/23/2016	26.3455	
5/19/2016	31.7	
7/6/2016	36	
9/8/2016	45	
10/18/2016	49	
12/8/2016	50	
2/2/2017	51	
3/24/2017	46	
10/5/2017	48	
3/14/2018	36.8	
10/4/2018	45.4	
4/8/2019	39.9	
10/1/2019	47.1	
3/27/2020	31.5	
9/24/2020	48.3	
3/9/2021	33.1	
8/10/2021	31.6	
2/4/2022		25.8
8/9/2022		33.3
1/31/2023		31.3

	GWC-9	GWC-9
3/23/2016	61.8335	
5/19/2016	64.3	
7/6/2016	69	
9/8/2016	68	
10/19/2016	69	
12/8/2016	69	
2/2/2017	76	
3/27/2017	68	
10/5/2017	74	
3/15/2018	57.8	
10/5/2018	81.9	
12/11/2018	73.6	
4/8/2019	73.5	
10/1/2019	72.2	
3/27/2020	54	
9/24/2020	69.9	
3/9/2021	65.1 (M1)	
8/10/2021	76.3	
2/4/2022		69.2
8/9/2022		77
1/31/2023		70

	GWA-1	GWA-1
3/22/2016	78	
5/17/2016	67	
7/5/2016	87	
9/7/2016	125	
10/18/2016	133	
12/6/2016	151	
1/31/2017	135	
3/23/2017	72	
10/4/2017	91	
3/14/2018	99	
10/4/2018	112	
4/8/2019	91	
9/30/2019	126	
3/26/2020	73	
9/23/2020	117	
3/8/2021	96	
8/9/2021	96	
2/4/2022		107
8/8/2022		99
1/30/2023		94

	GWA-11	GWA-11
3/22/2016	112	
5/17/2016	121	
7/6/2016	98	
9/7/2016	128	
10/18/2016	115	
12/6/2016	153	
2/1/2017	183	
3/24/2017	121	
10/5/2017	113	
3/15/2018	115	
10/4/2018	135	
4/8/2019	142	
9/30/2019	134	
3/26/2020	76	
9/22/2020	107	
3/8/2021	107	
8/10/2021	107	
2/4/2022		125
8/8/2022		119
1/30/2023		130

	GWA-2	GWA-2
3/22/2016	233	
5/17/2016	197	
7/5/2016	218	
9/7/2016	240	
10/18/2016	221	
12/7/2016	235	
1/31/2017	253	
3/23/2017	190	
10/4/2017	192	
3/14/2018	204	
10/4/2018	233	
4/8/2019	209	
9/30/2019	242	
3/26/2020	222	
9/21/2020	204	
3/9/2021	227 (D6)	
8/9/2021	245	
2/4/2022		245
8/8/2022		249
1/30/2023		263

	GWA-3	GWA-3
3/22/2016	451	
5/17/2016	430	
7/5/2016	418	
9/7/2016	443	
10/18/2016	415	
12/6/2016	653	
2/1/2017	615	
3/23/2017	506	
10/4/2017	492	
3/15/2018	448	
10/4/2018	472	
4/5/2019	456	
9/30/2019	475	
3/26/2020	450	
9/23/2020	473	
3/8/2021	415	
8/9/2021	416	
2/4/2022		325
8/8/2022		348
1/30/2023		367

	GWA-4	GWA-4
3/22/2016	686	
5/17/2016	533	
7/6/2016	646	
9/7/2016	493	
10/18/2016	455	
12/6/2016	597	
2/1/2017	638	
3/24/2017	579	
10/4/2017	440	
3/15/2018	381	
10/4/2018	490	
4/8/2019	522	
9/30/2019	455	
3/26/2020	466	
9/23/2020	421	
3/8/2021	460	
8/9/2021	371	
2/4/2022		496
8/8/2022		360
1/30/2023		459

	GWC-10	GWC-10
3/23/2016	182	
5/17/2016	178	
7/6/2016	135	
9/7/2016	165	
10/18/2016	113	
12/6/2016	194	
2/2/2017	160	
3/27/2017	252	
10/5/2017	177	
3/15/2018	216	
10/4/2018	222	
4/9/2019	213	
10/1/2019	186	
3/27/2020	118	
9/25/2020	153	
3/9/2021	201	
8/10/2021	185	
2/4/2022		214
8/9/2022		170
1/30/2023		190
	5/17/2016 7/6/2016 9/7/2016 10/18/2016 12/6/2016 2/2/2017 3/27/2017 10/5/2017 3/15/2018 10/4/2018 4/9/2019 10/1/2019 3/27/2020 9/25/2020 3/9/2021 8/10/2021 2/4/2022 8/9/2022	3/23/2016 182 5/17/2016 178 7/6/2016 135 9/7/2016 165 10/18/2016 113 12/6/2016 194 2/2/2017 160 3/27/2017 252 10/5/2017 177 3/15/2018 216 10/4/2018 222 4/9/2019 213 10/1/2019 186 3/27/2020 118 9/25/2020 153 3/9/2021 201 8/10/2021 185 2/4/2022 8/9/2022

	GWC-18	GWC-18
3/24/2016	205	
5/19/2016	204	
7/7/2016	181	
9/8/2016	193	
10/19/2016	231	
12/8/2016	166	
2/2/2017	191	
3/27/2017	427 (o)	
10/5/2017	207	
3/16/2018	199	
10/5/2018	235	
4/9/2019	212	
10/1/2019	196	
3/30/2020	217	
9/24/2020	181	
3/9/2021	192	
8/10/2021	224	
2/4/2022		225
8/9/2022		183
1/31/2023		284

	GWC-19	GWC-19
3/24/2016	232	
5/18/2016	245	
7/6/2016	231	
9/8/2016	252	
10/18/2016	288	
12/7/2016	220	
2/2/2017	220	
3/27/2017	393 (o)	
10/5/2017	242	
3/15/2018	213	
10/4/2018	231	
4/9/2019	253	
10/1/2019	229	
3/31/2020	233	
9/28/2020	214	
3/10/2021	223 (D6)	
8/10/2021	209	
2/7/2022		218
8/9/2022		236
1/31/2023		239

	GWC-20	GWC-20
3/23/2016	208	
5/18/2016	213	
7/7/2016	212	
9/8/2016	201	
10/19/2016	276	
12/7/2016	186	
2/3/2017	219	
3/27/2017	239	
10/5/2017	216	
3/16/2018	216	
10/5/2018	256	
4/9/2019	267	
10/1/2019	271	
3/31/2020	267	
9/23/2020	277	
3/10/2021	241	
8/10/2021	270	
2/7/2022		268
8/9/2022		285
1/31/2023		329

	GWC-21	GWC-21
3/24/2016	110	
5/18/2016	153	
7/7/2016	151	
9/8/2016	285	
10/19/2016	314	
12/7/2016	252	
2/2/2017	138	
3/27/2017	88	
10/5/2017	111	
3/15/2018	219	
10/4/2018	152	
4/9/2019	167	
10/1/2019	336	
11/6/2019	336	
11/26/2019	236	
3/31/2020	111	
9/24/2020	286	
3/9/2021	243	
8/10/2021	121	
2/7/2022		161
8/9/2022		119
1/31/2023		76 (D6)

	GWC-22	GWC-22
3/23/2016	206	
5/18/2016	212	
7/7/2016	206	
9/8/2016	214	
10/19/2016	269	
12/7/2016	199	
2/2/2017	211	
3/27/2017	324	
10/5/2017	219	
3/15/2018	190	
10/4/2018	215	
4/9/2019	222	
10/1/2019	220	
3/31/2020	195	
9/23/2020	231	
3/9/2021	178	
8/10/2021	206	
2/7/2022		207
8/9/2022		208
1/31/2023		221

	GWC-23	GWC-23
3/23/2016	168	
5/19/2016	173	
7/7/2016	144	
9/8/2016	179	
10/19/2016	209	
12/7/2016	156	
2/3/2017	276	
3/27/2017	295	
10/5/2017	192	
3/15/2018	169	
10/5/2018	210	
4/8/2019	191	
10/1/2019	203	
3/26/2020	193	
9/23/2020	186	
3/9/2021	216	
8/10/2021	178	
2/7/2022		224
8/8/2022		176
1/31/2023		243

	GWC-5	GWC-5
3/23/2016	379	
5/17/2016	349	
7/6/2016	346	
9/7/2016	382	
10/18/2016	461	
12/8/2016	379	
2/1/2017	511	
3/23/2017	443	
10/4/2017	359	
3/16/2018	390	
10/4/2018	385	
4/9/2019	371	
10/1/2019	380	
3/31/2020	408	
9/25/2020	367	
3/9/2021	364	
8/10/2021	363	
2/4/2022		360
8/9/2022		363
1/31/2023		385

	GWC-6	GWC-6
3/23/2016	310	
5/17/2016	280	
7/6/2016	280	
9/7/2016	324	
10/18/2016	307	
12/8/2016	281	
2/1/2017	354	
3/23/2017	302	
10/4/2017	365	
12/14/2017	406	
1/18/2018	404	
3/16/2018	317	
10/4/2018	371	
4/8/2019	353	
10/1/2019	348	
3/31/2020	349	
9/25/2020	345	
3/9/2021	298	
8/10/2021	318	225
2/4/2022		335
8/8/2022		327
1/31/2023		335

	GWC-7	GWC-7
3/23/2016	253	
5/18/2016	276	
7/6/2016	239	
9/7/2016	247	
10/18/2016	233	
12/8/2016	373	
2/2/2017	236	
3/24/2017	291	
10/4/2017	264	
3/15/2018	254	
10/4/2018	287	
4/8/2019	295	
10/1/2019	277	
3/30/2020	216	
9/24/2020	254	
3/9/2021	299	
8/10/2021	210	
2/4/2022		310
8/10/2022		248
1/31/2023		223

	GWC-8	GWC-8
3/23/2016	239	
5/19/2016	236	
7/6/2016	218	
9/8/2016	225	
10/18/2016	200	
12/8/2016	196	
2/2/2017	231	
3/24/2017	250	
10/5/2017	309	
12/14/2017	322	
1/18/2018	322	
3/14/2018	263	
10/4/2018	292	
4/8/2019	438	
10/1/2019	305	
3/27/2020	329	
9/24/2020	307	
3/9/2021	308	
8/10/2021	425	
2/4/2022		349
8/9/2022		310
1/31/2023		284

	GWC-9	GWC-9
3/23/2016	204	
5/19/2016	215	
7/6/2016	204	
9/8/2016	201	
10/19/2016	272	
12/8/2016	227	
2/2/2017	209	
3/27/2017	305	
10/5/2017	204	
3/15/2018	280	
10/5/2018	236	
4/8/2019	264	
10/1/2019	237	
3/27/2020	192	
9/24/2020	179	
3/9/2021	209	
8/10/2021	208	
2/4/2022		225
8/9/2022		220
1/31/2023		216

FIGURE H.

Appendix III - Interwell Prediction Limits - All Results (No Significant)

	Plant	Hammond	Client: S	outhern Comp	pany Da	ta: Hu	ffaker l	Road Land	fill Printe	d 4/19/2	023, 4:50 PM			
Constituent	Well	Upper Lim	. Lower Lim	<u>Date</u>	Observ.	Sig.	Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Calcium (mg/L)	GWC-23	123	n/a	1/31/2023	58.3	No	100	n/a	n/a	2	n/a	n/a	0.0001921	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-19	302.3	n/a	1/31/2023	22.8	No	100	n/a	n/a	0	n/a	n/a	0.0001921	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-18	686	n/a	1/31/2023	284	No	100	n/a	n/a	0	n/a	n/a	0.0001921	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-20	686	n/a	1/31/2023	320	No	100	n/a	n/a	Λ	n/a	n/a	0.0001021	NP Inter (normality) 1 of 2

Sanitas™ v.9.6.37 . UG
Within Limit

0 ↓ 3/23/16

130 GWC-23

78

52

26

Limit = 123

Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 100 background values. 2% NDs. Annual per-constituent alpha = 0.0046. Individual comparison alpha = 0.001921 (1 of 2). Assumes 11 future values.

8/6/17 12/20/18 5/4/20 9/17/21 1/31/23

Constituent: Calcium Analysis Run 4/19/2023 4:47 PM View: Appendix III - Intrawell Exceedances

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

Within Limit Prediction Limit
Interwell Non-parametric

GWC-18

GWC-20

3/23/16 8/6/17 12/20/18 5/4/20 9/17/21 1/31/23

Non-parametric test used in lieu of parametric prediction limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 100 background values. Annual per-constituent alpha = 0.0046. Individual comparison alpha = 0.0001921 (1 of 2). Comparing 2 points to limit. Assumes 10 future values.

Constituent: Total Dissolved Solids Analysis Run 4/19/2023 4:47 PM View: Appendix III - Intrawell Exceed
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

Non-parametric test used in lieu of parametric prediction limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 100 background values. Annual per-constituent alpha = 0.0046. Individual comparison alpha = 0.0001921 (1 of 2). Assumes 11 future values.

Constituent: Sulfate Analysis Run 4/19/2023 4:47 PM View: Appendix III - Intrawell Exceedances
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Calcium (mg/L) Analysis Run 4/19/2023 4:50 PM View: Appendix III - Intrawell Exceedances
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-1 (bg)	GWA-3 (bg)	GWA-2 (bg)	GWA-11 (bg)	GWA-4 (bg)	GWC-23
3/22/2016	13.9	79.3	47.4	23.8	123	
3/23/2016						36.4
5/17/2016	15.6	75.8	45.5	21.5	99.2	
5/19/2016						41.5
7/5/2016	15.7	65.3	40.5			
7/6/2016				20.6	109	
7/7/2016						33.5
9/7/2016	18.2	59.8	37.3	16.7	67.2	
9/8/2016						34.7
10/18/2016	17.7	72.4	46.6	20.3	77.9	
10/19/2016						33.4
12/6/2016	16.9	78.6		19.7	93.3	
12/7/2016			43.5			35.5
1/31/2017	17.9		39.2			
2/1/2017		85		18.1	92.8	
2/3/2017						31.7
3/23/2017	13.9	81.2	38.7			
3/24/2017				21.1	96.3	
3/27/2017						32
10/4/2017	15.9	78.8	36.5		75.1	
10/5/2017				20.1		41
3/14/2018	<25		39.5			
3/15/2018		83.5		<25	69.9	39.8
10/4/2018	15.9 (J)	75.2	41.7	21.3 (J)	77.8	
10/5/2018						39.3
4/5/2019		76.5				
4/8/2019	15.7		44.1	22.4	86.6	39.8
9/30/2019	17.6	74.7	44.6	19.6	78.3	
10/1/2019						39.1
3/26/2020	14	78.7	43.2	22.4	87.4	44.7
9/21/2020			45.8			
9/22/2020				19.5		
9/23/2020	17.6	76.2			74.9	39.2
3/8/2021	16.2 (M1)	73.5		22	87.2	
3/9/2021			48.7			54.3
8/9/2021	20.2	73.2	49.9		69.7	
8/10/2021				20.8		48.2
2/4/2022	18.3	59 (M1)	57.6	23.7	97.3	
2/7/2022						64.9
8/8/2022	17.2	61	51.2	21.1	68.9	40.6
1/30/2023	15.8 (M1)	53.1	46.8	20.4	73.6	
1/31/2023						58.3

Constituent: Sulfate (mg/L) Analysis Run 4/19/2023 4:50 PM View: Appendix III - Intrawell Exceedances

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-1 (bg)	GWA-4 (bg)	GWA-3 (bg)	GWA-2 (bg)	GWA-11 (bg)	GWC-19
3/22/2016	4.4409	302.2975	107.476	13.0789	11.6823	
3/24/2016						16.8473
5/17/2016	4.43	213	106	15.3	11.4	
5/18/2016						18.4
7/5/2016	4.6		110	15		
7/6/2016		280			12	17
9/7/2016	4.8	160	83	16	13	
9/8/2016						16
10/18/2016	4.7	120	110	16	13	19
12/6/2016	4.7	210	220		12	
12/7/2016				15		13
1/31/2017	5.1			13		
2/1/2017		200	190		13	
2/2/2017						14
3/23/2017	4.7		160	12		
3/24/2017		140			12	
3/27/2017						18
10/4/2017	5	140	140	12		
10/5/2017					13	16
3/14/2018	5.1			13.9		
3/15/2018		167	119		12.2	14.8
10/4/2018	5.2	209	117	17.4	15.6	15.9
4/5/2019			131			
4/8/2019	4.6	248		18.1	13.2	
4/9/2019						16.7
9/30/2019	4.9	117	118	17.5	11.5	
10/1/2019						14.7
3/26/2020	5	128	95.8	15.6	10.8	
3/31/2020						17.8
9/21/2020				18.2		
9/22/2020					9.8	
9/23/2020	6.6	123	95.6			
9/28/2020						15.8
3/8/2021	4.6	152	99.5		11.5	
3/9/2021				16.8		
3/10/2021						18.7
8/9/2021	4.7	106	93.3	23.2		
8/10/2021					11.2	17.8
2/4/2022	4	170 (M1)	73.5	21.1	10.4	
2/7/2022						16.9
8/8/2022	4.1	116	78.9	23.3	10.2	
8/9/2022						21.9
1/30/2023	3.8	156	78.4	19.8	9.5	
1/31/2023						22.8

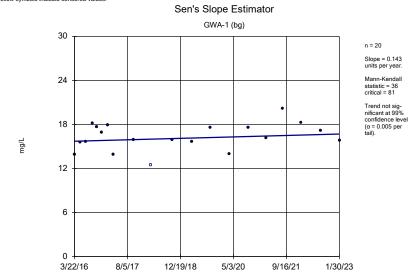
	GWA-1 (bg)	GWA-11 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWA-2 (bg)	GWC-20	GWC-18
3/22/2016	78	112	451	686	233		
3/23/2016						208	
3/24/2016							205
5/17/2016	67	121	430	533	197		
5/18/2016						213	
5/19/2016							204
7/5/2016	87		418		218		
7/6/2016		98		646			
7/7/2016						212	181
9/7/2016	125	128	443	493	240		
9/8/2016						201	193
10/18/2016	133	115	415	455	221		
10/19/2016						276	231
12/6/2016	151	153	653	597			
12/7/2016					235	186	
12/8/2016							166
1/31/2017	135				253		
2/1/2017		183	615	638	===		
2/1/2017		100	0.0	000			191
2/3/2017						219	101
3/23/2017	72		506		190	213	
	14	121	500	570	150		
3/24/2017		121		579		220	427 (0)
3/27/2017	01		402	440	102	239	427 (o)
10/4/2017	91	110	492	440	192	010	207
10/5/2017		113				216	207
3/14/2018	99				204		
3/15/2018		115	448	381			
3/16/2018						216	199
10/4/2018	112	135	472	490	233		
10/5/2018						256	235
4/5/2019			456				
4/8/2019	91	142		522	209		
4/9/2019						267	212
9/30/2019	126	134	475	455	242		
10/1/2019						271	196
3/26/2020	73	76	450	466	222		
3/30/2020							217
3/31/2020						267	
9/21/2020					204		
9/22/2020		107					
9/23/2020	117		473	421		277	
9/24/2020							181
3/8/2021	96	107	415	460			
3/9/2021					227 (D6)		192
3/10/2021					(30)	241	·
8/9/2021	96		416	371	245		
8/10/2021		107	710	o, .	2-10	270	224
	107		325	406	245	210	
2/4/2022	107	125	325	496	245	268	225
2/7/2022	00	110	249	260	240	268	
8/8/2022	99	119	348	360	249	00-	100
8/9/2022	0.4	100	007	150	000	285	183
1/30/2023	94	130	367	459	263		

Constituent: Total Dissolved Solids (mg/L) Analysis Run 4/19/2023 4:50 PM View: Appendix III - Intrawell Exceedances

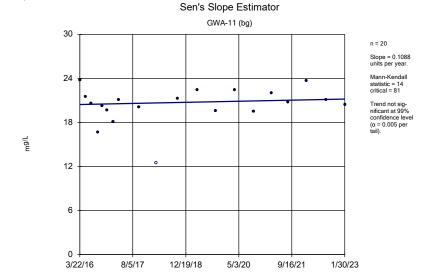
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

GWA-1 (bg) GWA-11 (bg) GWA-3 (bg) GWA-4 (bg) GWA-2 (bg) GWC-20 GWC-18
1/31/2023 329 284

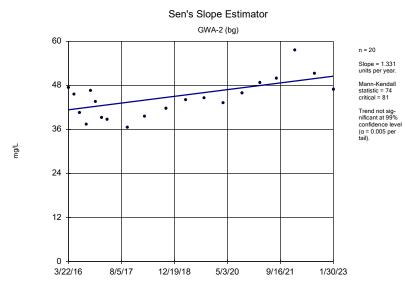
FIGURE I.


Appendix III - Trend Tests - Significant Results Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 4/19/2023, 4:54 PM

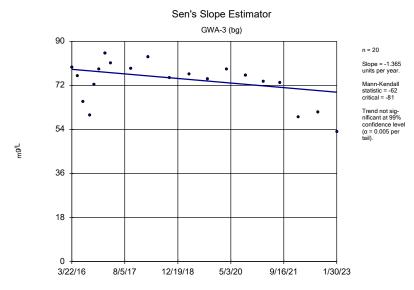
	Plant Hammond	Client: Southern Company Data: Huttaker Road Landfill Pi			rinted 4/19/20	23, 4:54 PM					
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Calcium (mg/L)	GWC-23	2.525	91	81	Yes	20	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-2 (bg)	0.9964	101	81	Yes	20	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GWA-4 (bg)	-30.51	-93	-81	Yes	20	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GWC-20	12.82	118	81	Yes	20	0	n/a	n/a	0.01	NP


Appendix III - Trend Tests - All Results

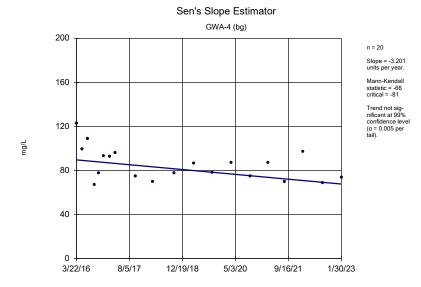
	Plant Hammond	Client: Southern Company		Data: Huffaker Road Landfill			Printed 4/19/202				
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Calcium (mg/L)	GWA-1 (bg)	0.143	36	81	No	20	5	n/a	n/a	0.01	NP
Calcium (mg/L)	GWA-11 (bg)	0.1088	14	81	No	20	5	n/a	n/a	0.01	NP
Calcium (mg/L)	GWA-2 (bg)	1.331	74	81	No	20	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWA-3 (bg)	-1.365	-62	-81	No	20	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWA-4 (bg)	-3.201	-66	-81	No	20	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-23	2.525	91	81	Yes	20	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-1 (bg)	0	-7	-81	No	20	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-11 (bg)	-0.3201	-72	-81	No	20	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-2 (bg)	0.9964	101	81	Yes	20	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-3 (bg)	-6.533	-77	-81	No	20	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-4 (bg)	-11.69	-77	-81	No	20	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWC-19	0.4657	38	81	No	20	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GWA-1 (bg)	0.9253	11	81	No	20	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GWA-11 (bg)	-0.1605	-5	-81	No	20	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GWA-2 (bg)	4.186	65	81	No	20	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GWA-3 (bg)	-16.09	-59	-81	No	20	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GWA-4 (bg)	-30.51	-93	-81	Yes	20	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GWC-18	3.363	32	74	No	19	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	GWC-20	12.82	118	81	Yes	20	0	n/a	n/a	0.01	NP



Constituent: Calcium Analysis Run 4/19/2023 4:51 PM View: Appendix III - Intrawell Exceedances
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

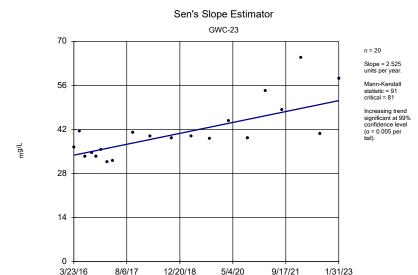


Constituent: Calcium Analysis Run 4/19/2023 4:51 PM View: Appendix III - Intrawell Exceedances
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

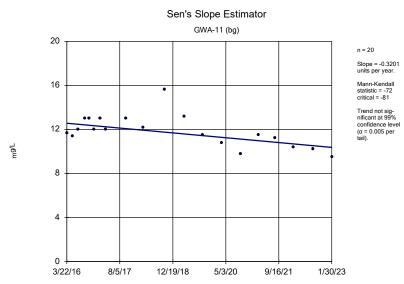


Constituent: Calcium Analysis Run 4/19/2023 4:51 PM View: Appendix III - Intrawell Exceedances
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

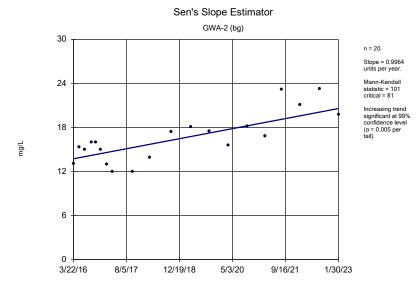
Sanitas™ v.9.6.37 . UG


Constituent: Calcium Analysis Run 4/19/2023 4:51 PM View: Appendix III - Intrawell Exceedances
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

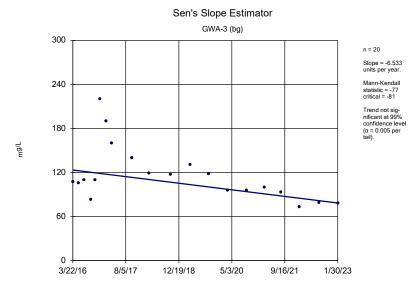
Constituent: Calcium Analysis Run 4/19/2023 4:51 PM View: Appendix III - Intrawell Exceedances
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG Sen's Slope Estimator GWA-1 (bg) n = 20 Slope = 0 units per year. 5.6 Mann-Kendall critical = -81 Trend not sig-nificant at 99% confidence level 4.2 (α = 0.005 per tail). mg/L 2.8 1.4 3/22/16 8/5/17 12/19/18 5/3/20 9/16/21 1/30/23

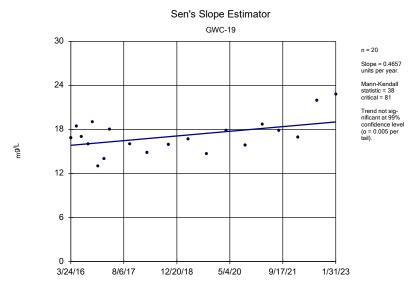
Constituent: Sulfate Analysis Run 4/19/2023 4:51 PM View: Appendix III - Intrawell Exceedances
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill



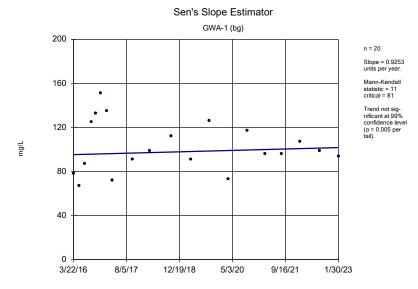
Constituent: Calcium Analysis Run 4/19/2023 4:51 PM View: Appendix III - Intrawell Exceedances
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Constituent: Sulfate Analysis Run 4/19/2023 4:51 PM View: Appendix III - Intrawell Exceedances
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

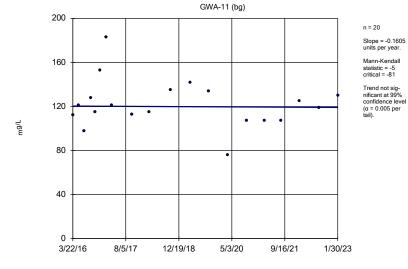
Constituent: Sulfate Analysis Run 4/19/2023 4:51 PM View: Appendix III - Intrawell Exceedances
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.9.6.37 . UG Sen's Slope Estimator GWA-4 (bg) 400 n = 20 Slope = -11.69 units per year. Mann-Kendall 320 critical = -81 Trend not sig-nificant at 99% confidence level 240 (α = 0.005 per tail). 160 80 3/22/16 8/5/17 12/19/18 5/3/20 9/16/21 1/30/23

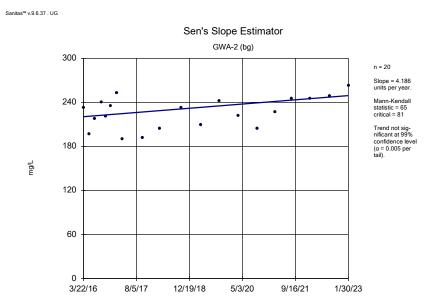
Constituent: Sulfate Analysis Run 4/19/2023 4:51 PM View: Appendix III - Intrawell Exceedances
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill



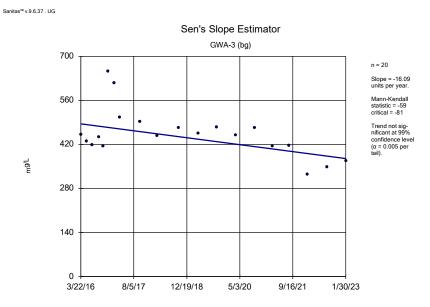
Constituent: Sulfate Analysis Run 4/19/2023 4:51 PM View: Appendix III - Intrawell Exceedances
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill



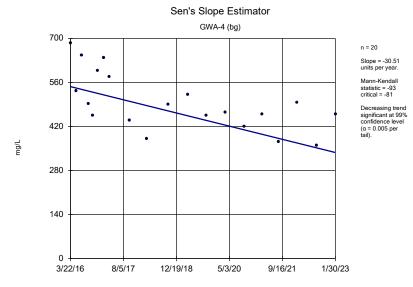
Constituent: Sulfate Analysis Run 4/19/2023 4:51 PM View: Appendix III - Intrawell Exceedances
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill



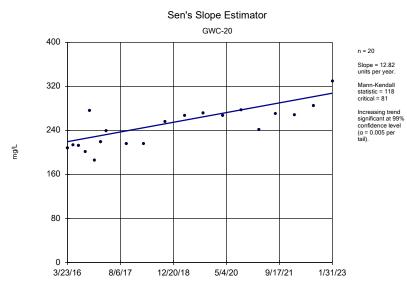
Constituent: Total Dissolved Solids Analysis Run 4/19/2023 4:51 PM View: Appendix III - Intrawell Exceed
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill



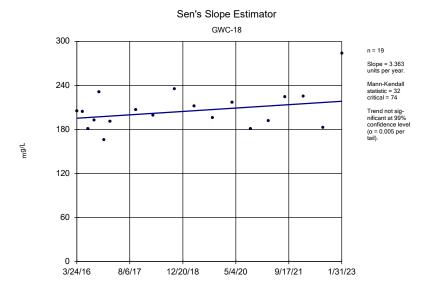
Sen's Slope Estimator


Constituent: Total Dissolved Solids Analysis Run 4/19/2023 4:51 PM View: Appendix III - Intrawell Exceed
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Total Dissolved Solids Analysis Run 4/19/2023 4:51 PM View: Appendix III - Intrawell Exceed
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill



Constituent: Total Dissolved Solids Analysis Run 4/19/2023 4:51 PM View: Appendix III - Intrawell Exceed
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill



Constituent: Total Dissolved Solids Analysis Run 4/19/2023 4:51 PM View: Appendix III - Intrawell Exceed
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.9.6.37 . UG

Constituent: Total Dissolved Solids Analysis Run 4/19/2023 4:51 PM View: Appendix III - Intrawell Exceed
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Total Dissolved Solids Analysis Run 4/19/2023 4:51 PM View: Appendix III - Intrawell Exceed Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

August 2023

GROUNDWATER STATS CONSULTING

January 31, 2024

Southern Company Services Attn: Ms. Kristen Jurinko 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

SWFPR

Re: Plant Hammond's Huffaker Road Landfill Statistical Analysis – August 2023

Dear Ms. Jurinko,

Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the August 2023 Semi-Annual Groundwater Detection Monitoring statistical analysis of groundwater data for Georgia Power Company's Plant Hammond's Huffaker Road Landfill. The analysis complies with the federal rule for the Disposal of Coal Combustion Residuals (CCR) from Electric Utilities (CCR Rule, 2015), the Georgia Environmental Protection Division (EPD) Rules for Solid Waste Management Chapter 391-3-4-.10 and follows the United States Environmental Protection Agency (USEPA) Unified Guidance (2009).

Sampling began for the Georgia EPD parameters in 2007 and for the CCR program in 2016. At least 8 background samples have been collected at each of the groundwater monitoring wells. Semi-annual sampling for select constituents has been performed for several years in accordance with the Georgia Department of Natural Resources, Environmental Protection Division groundwater monitoring regulations; and all available data are screened in this report.

The monitoring well network, as provided by Southern Company Services, consists of the following:

- Upgradient: GWA-1, GWA-11, GWA-2, GWA-3, and GWA-4
- Downgradient: GWC-10, GWC-18, GWC-19, GWC-20, GWC-21, GWC-22, GWC-23, GWC-5, GWC-6, GWC-7, GWC-8, and GWC-9

Data were sent electronically to Groundwater Stats Consulting, and the statistical analysis was prepared according to the recommended statistical methodology provided in the Fall 2017 by Dr. Kirk Cameron, PhD Statistician with MacStat Consulting, primary author of the USEPA Unified Guidance. The analysis was reviewed by Kristina Rayner, Senior Statistician and Founder of Groundwater Stats Consulting.

The following constituents were evaluated:

- Georgia EPD Appendix I antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, nickel, selenium, silver, thallium, vanadium, and zinc
- CCR Appendix III boron, calcium, chloride, fluoride, pH, sulfate, and TDS

Note that when there are no detections present in downgradient wells for a given constituent, statistical analyses are not required. A summary of well/constituent pairs with 100% non-detects follows this letter. Note that no Appendix III well/constituent pairs contained 100% non-detects.

A substitution of the most recent reporting limit is used for non-detect data. Reporting limits often decrease over time due to improved laboratory practices, which sometimes results in more conservative statistical limits compared to the previous statistical analysis. Such changes in reporting limits have occurred for beryllium, cadmium, chromium, cobalt, copper, fluoride, lead, nickel, selenium, silver, and zinc; therefore, prediction limits for these constituents have decreased over time at some of the wells. Note that the reporting limit for arsenic during this event increased to 0.01 mg/L; therefore, the historic reporting limit of 0.005 mg/L was substituted across all wells in order to maintain statistical limits that are conservative from a regulatory perspective.

The most recent reporting limit is substituted on a well-by-well basis for computing intrawell prediction limits. Therefore, individual wells can have different substitutions for a given parameter depending on what the laboratory has reported for each well.

Time series plots for all well/constituent pairs are provided and are particularly useful for screening parameters detected in downgradient wells which require statistical analyses (Figure A). Additionally, a separate section of box plots is included for all constituents at upgradient and downgradient wells (Figure B). The time series plots are used to initially screen for suspected outliers and trends, while the box plots provide visual representation of variation within individual wells and between all wells. Values in background which have been flagged as outliers may be seen in a lighter font and as a disconnected symbol on the graphs. A summary of flagged outliers follows this report (Figure C).

In earlier analyses, data at all wells for constituents detected in downgradient wells were evaluated for the following: 1) outliers; 2) trends; 3) most appropriate statistical method based on site characteristics of groundwater data upgradient of the facility; and 4) eligibility of downgradient wells when intrawell statistical methods are recommended. Power curves were provided in the previous background update to demonstrate that the selected statistical methods for the parameters listed above comply with the USEPA Unified Guidance and the Georgia Environmental Protection Division Rules for Solid Waste Management Chapter 391-3-4-.10. The EPA suggests the selected statistical method should provide at least 55% power at 3 standard deviations or at least 80% power at 4 standard deviations. During the initial background screening of the Appendix III parameters, the 1-of-2 resample plan did not provide sufficient power; therefore, a 1-of-3 resample plan was initially recommended due to the limited background sample sizes in each of the wells at that time.

During the March 2020 background update for the Appendix III parameters, however, the background sample sizes increased in each of the wells, and power curves were provided to demonstrate that the 1-of-2 resample plan provides sufficient power to meet the EPA recommendation mentioned above. Power Curves were based on the following:

Georgia EPD Appendix I Constituents:

- Semi-Annual Sampling
- Intrawell Prediction Limits with 1-of-2 resample plan
- # Constituents: 13 (silver and thallium are 100% non-detects or trace measurements)
- # Downgradient wells: 12

CCR Appendix III Constituents:

- Semi-Annual Sampling
- Intrawell Prediction Limits with 1-of-2 resample plan
- # Constituents: 7 (all Appendix III parameters)
- # Downgradient wells: 12

Parametric prediction limits are utilized when the screened historical data follow a normal or transformed-normal distribution. When data cannot be normalized or the majority of data are non-detects, a nonparametric test is utilized. While the false positive rate associated with the parametric limits is based on an annual 10% (5% per semi-annual event) as recommended by the EPA Unified Guidance (2009), the false positive rate associated with the nonparametric limits is dependent upon the available background sample size, number of future comparisons, and verification resample plan. The

913.829.1470

distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. After testing for normality and performing any adjustments as discussed below (US EPA, 2009), data are analyzed using either parametric or non-parametric prediction limits. Nondetects are handled as follows.

- No statistical analyses are required on wells and analytes containing 100% nondetects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% non-detects, simple substitution of one-half the reporting limit is utilized in the statistical analysis. The reporting limit utilized for non-detects is the most recent practical quantification limit (PQL) as reported by the laboratory.
- When data contain between 15-50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data for parametric limits. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric prediction limits are used on data containing greater than 50% non-detects.

Natural systems continuously evolve due to physical changes made to the environment. Examples include capping a landfill, paving areas near a well, or lining a drainage channel to prevent erosion. Periodic updating of background statistical limits is necessary to accommodate these types of changes. In the interwell case, prediction limits are updated with upgradient well data during each event after careful screening for any new outliers. In the intrawell case, data for all wells and constituents may re-evaluated when a minimum of 4 new data points are available to determine whether earlier concentrations are representative of present-day groundwater quality. In some cases, an earlier portion of data is deselected prior to construction of limits to provide sensitive limits that will rapidly detect changes in groundwater quality. Even though the data are excluded from the calculation, the values will continue to be reported and shown in tables and graphs.

Two-Step Statistical Analysis

Intrawell statistical methods, combined with a 1-of-2 resample plan, may be used as a conservative first step for identifying potential facility impacts in downgradient wells. Intrawell methods use background data for individual wells and may be overly sensitive to spatial variation. In particular for nonparametric limits with small background sample sizes, the probability of a false positive is much higher than the desired annual sitewide rate of 10%. Therefore, a large number of exceedances may occur as a result of spatial variation rather than facility impacts. A second step can be used to further evaluate those exceedances and reduce the overall number of SSIs that result from spatial variation. In

instances where intrawell statistical methods identify an apparent SSI, a second step of interwell statistical evaluation may be used to determine whether the measurement exceeds the sitewide background limit based on pooled upgradient well data. This is similar in concept to the procedure used in compliance monitoring programs where an interwell statistical limit is used to determine "background" (USEPA Unified Guidance (2009), Chapter 7, Section 7.5). For the detection monitoring program, if the result does not exceed sitewide (interwell) background, an SSI is not declared.

When the result exceeds the sitewide (interwell) background, the 1-of-2 resample plan allows for collection of an independent resample to confirm the apparent exceedance or declare the initial finding a false positive result. A statistically significant increase is not declared unless the resample also exceeds the intrawell prediction limit (United States Environmental Protection Agency (USEPA) Unified Guidance, March 2009, Chapter 19). When the resample confirms the initial exceedance, further research would be required to identify the cause of the exceedance (i.e., impact from the site, natural variation, or an off-site source). When any resample falls within the statistical limit, the initial exceedance is considered to be a false positive result, and no further action is necessary. In cases where intrawell and interwell exceedances are noted and no resamples are collected, the initial exceedance will be considered a confirmed statistically significant increase (SSI).

Trend tests, in addition to interwell prediction limits, are recommended for well/constituent pairs found to have an initial intrawell SSI. Trend analysis will provide for detection of long-term changes and potential facility impacts at a given well in cases where the concentrations at that well remain below the sitewide upgradient limits. Thus, the two-step approach, with trend testing for intrawell exceedances, has additional capability to detect long-term changes at downgradient wells compared to interwell methods alone. While a trend may be identified by visual inspection, a quantification of the trend and its significance is needed to identify whether concentrations are statistically significantly increasing, decreasing, or remaining stable over time. The absence of a statistically significant increasing trend indicates that an initial intrawell exceedance is short-term and may be the result of spatial variation rather than facility impact to groundwater. If a facility impact has occurred, it will likely result in additional exceedances in future sampling events. When a statistically significant increasing trend is noted, additional data may be needed to determine whether the initial intrawell statistical exceedance is a result of spatial variation or an impact to groundwater quality downgradient of the facility.

Georgia EPD Appendix I Background Screening Summary – Conducted in August 2019

Outlier Analysis

Time series plots were used to identify suspected outliers, or extreme values that would result in limits that are not representative of the current background data population. Suspected outliers for all wells and parameters are formally tested using Tukey's box plot method and, when identified, flagged in the computer database with "o" and deselected prior to construction of statistical limits.

Using the Tukey box plot method, several outliers were identified. When the most recent values were identified as outliers, values were not flagged in the database (except in cases where they would cause background limits to be elevated) as they may represent a possible trend. If future values do not remain at similar concentrations, these values will be flagged as outliers and deselected. Several low values exist in the data sets and appear on the graphs as possible low outliers relative to the laboratory's Practical Quantitation Limit. However, these values are observed trace values (i.e., measurements reported by the laboratory between the Method Detection Limit and the Practical Quantitation Limit) and, therefore, were not flagged as outliers. Due to changing reporting limits for many constituents, when the non-detects were replaced with the most recent reporting limit, previously flagged "J" values (or estimated values) required flagging as outliers because they were much higher than current reporting limits.

Of the outliers identified by Tukey's method, several values were flagged in the database, and the remaining values were similar to other measurements within a given well or neighboring wells or were reported non-detects. In some cases, values were flagged in addition to those identified by Tukey's because the values were higher than all remaining concentrations and would cause the statistical limits to be elevated. These values are plotted in a disconnected and lighter symbol on the time series graph. The accompanying data pages display the flagged values in a lighter font as well. A substitution of the most recent reporting limit was applied when varying detection limits existed in data. A summary of all flagged values is included in Figure C.

<u>Seasonality</u>

No obvious seasonal patterns were observed on the time series plots for any of the detected data; therefore, no deseasonalizing adjustments were made. When seasonal patterns are observed, data may be deseasonalized so that the resulting limits will

correctly account for the seasonality as a predictable pattern rather than random variation or a release.

Trend Testing

While trends may be identified by visual inspection, a quantification of the trend and its significance is needed. The Sen's Slope/Mann Kendall trend test, which tests for statistically significant increasing or decreasing trends, was used to evaluate data at all upgradient and downgradient wells with detections.

In the absence of suspected contamination, significant trending data are typically not included as part of the background data used for construction of prediction limits. This step serves to eliminate the trend and, thus, reduce variation in background. When statistically significant decreasing trends are present, all available data are evaluated to determine whether earlier concentration levels are significantly different from current reported concentrations, and earlier data will be deselected as necessary. Several statistically significant decreasing trends were noted, as well as a few statistically significant increasing trends for barium. The magnitudes of most of these trends were low relative to the average concentrations and, therefore, required no adjustments to the record.

However, background adjustments were made for barium in wells GWA-2, GWC-19, GWC-22, GWC-6, GWC-7, and GWC-9; and cobalt, nickel, and zinc in well GWC-7. Earlier data for each of these well/constituent pairs were deselected to reduce variation and utilize samples that were more representative of current groundwater concentrations. For those cases with increasing trends in barium, the assumption is that the increase is a result of spatial variation and not the result of the facility. Under that assumption, the more recent data would represent unimpacted conditions. Thorough evaluation of that assumption requires a separate geochemical investigation that is beyond the scope of services provided by Groundwater Stats Consulting. However, increasing barium concentrations were noted in both upgradient and downgradient wells, suggesting that the groundwater quality is changing due to spatial variation. The trends for cobalt, nickel and zinc are decreasing, and using only the more recent data results in more conservative prediction limits. Complete trend analysis results were presented with the August 2019 screening report. A date range summary table is provided with this report to show the adjusted date ranges used in construction of the statistical limits.

<u>Determination of Spatial Variation</u>

The Analysis of Variance (ANOVA) was used to statistically evaluate differences in average concentrations among upgradient wells for constituents detected in downgradient wells. The ANOVA assists in identifying the most appropriate statistical approach. Interwell tests, which compare downgradient well data to statistical limits constructed from pooled upgradient well data, are appropriate when average concentrations are similar across upgradient wells. Intrawell tests, which compare compliance data from a single well to screened historical data within the same well, are appropriate when upgradient wells exhibit spatial variation; when statistical limits constructed from upgradient wells are not representative of the current background data population; and when downgradient water quality is unimpacted compared to upgradient water quality for the same parameter.

The ANOVA identified statistically significant variation among upgradient well data for: arsenic, barium, cobalt, and nickel. The ANOVA did not identify variation for antimony, beryllium, cadmium, chromium, copper, lead, selenium, and zinc. The ANOVA could not test the following constituents because the data had no variation among the upgradient wells: silver, thallium, and vanadium.

Where significant spatial variation is not identified, this suggests that interwell analysis would be the most appropriate statistical method for these constituents. However, because this is a lined landfill with pre-waste data showing that metals occur naturally in low level detections, intrawell methods are recommended as the primary statistical method for all detected well/constituent pairs. Intrawell methods are generally based on an assumption of no existing impacts of the facility in background data. While the assumption is supported by pre-waste data, thorough evaluation of that assumption requires a separate geochemical investigation, especially for the cases of increasing trends in concentration following waste placement. That study is beyond the scope of services provided by Groundwater Stats Consulting.

CCR Appendix III Background Update Summary – Conducted in March 2020

Outlier Testing

Prior to updating background data, Tukey's outlier test and visual screening were used to evaluate Appendix III data from both upgradient and downgradient wells through November 2019. Tukey's test noted potential outliers in downgradient wells for all parameters, but not all of these values were flagged as some appeared to be representative of spatial variation. Any flagged data are displayed in a lighter font and as

913.829.1470

a disconnected symbol on the time series reports, as well as in a lighter font on the accompanying data pages. A summary of flagged outliers follows this letter (Figure C).

Mann Whitney Testing

For constituents requiring intrawell prediction limits (all constituents in this instance), the Mann-Whitney (Wilcoxon Rank Sum) test was used to compare the medians of historical data through March 2017 to the new compliance samples at each well through November 2019. If the medians of the two groups are not significantly different at the 99% confidence level, background data are typically updated to include the newer compliance data. Statistically significant differences were found between the two groups for the following well/constituent pairs: boron in downgradient wells GWC-19 and GWC-7; chloride in downgradient well GWC-8; pH in downgradient wells GWC-20 and GWC-22; sulfate in downgradient well GWC-20; and TDS in downgradient wells GWC-6 and GWC-8.

Although not statistically significant at the 99% confidence level, the increase in median concentrations between background and compliance data for boron at GWC-8 was significant at the 98% confidence level.

Typically, when the test concludes that the medians of the two groups are significantly different, particularly in the downgradient wells, the background data are not updated to include the newer data unless it can be reasonably justified that the change in concentrations reflects a shift unrelated to practices at the site. In studies in which at least one of the segments being compared is of short duration, the comparison is complicated by the fact that normal short-term variation may be mistaken for long-term change in medians. In this analysis, all but one of the cases with statistically significant Mann-Whitney results were updated. The individual cases are discussed below.

Boron in wells GWC-19 and GWC-7 trended over time toward more stable concentrations at slightly lower levels. Boron at GWC-8 had higher values recently, but the higher concentrations were similar to those in upgradient wells. The measured pH in downgradient wells GWC-20 and GWC-22 stabilized at slightly lower levels, closer to a neutral pH of 7. Chloride in GWC-8 and TDS in both GWC-6 and GWC-8 showed moderate increases in median concentrations due to a short-term spike with the most recent concentrations similar to those in one or more background wells.

In light of these considerations, the only case that was not updated at the time of the update was sulfate at well GWC-20, which has a marked and steadily increasing trend that was not present in the upgradient wells. However, it was later determined through an

alternate source demonstration that this trend is either short-term or not the result of the facility, and this record was appropriately updated. Since the update, the upward trend in sulfate has continued and will continue to be evaluated. Concentrations remain below those in upgradient wells GWA-3 and GWA-4. A list of well/constituent pairs that use a truncated portion of their record follows this report in the date range table mentioned above.

Appendix I and Appendix III Background Update Summary – Conducted in March 2022

Outlier Testing

Prior to updating background data, Tukey's outlier test and visual screening were used to evaluate Appendix III data from both upgradient and downgradient wells through February 2022. Tukey's test noted potential outliers in downgradient wells for all parameters, but not all of these values were flagged as some measurements appeared to be representative of spatial variation. Additionally, while Tukey's test did not identify the highest reported measurement of boron at 0.125 mg/L as an outlier in downgradient well GWC-23, this value was flagged as an outlier which results in slightly lower prediction limits. The highest measurements of beryllium and nickel were flagged in downgradient well GWC-7 as the values did not appear to represent the overall population at this well. The value of 0.23 mg/L for barium at well GWC-8 was flagged as an outlier and will be reevaluated during the next background update. This step results in conservative (i.e., lower) limits from a regulatory perspective. Any flagged data are displayed in a lighter font and as a disconnected symbol on the time series reports, as well as in a lighter font on the accompanying data pages. A summary of flagged outliers follows this letter (Figure C).

Mann-Whitney Testing

For constituents requiring intrawell prediction limits (all constituents in this instance), the Mann-Whitney (Wilcoxon Rank Sum) test was used to compare the medians of historical data through November 2018 for Appendix I constituents and through November 2019 for Appendix III constituents to the new compliance samples at each well through August 2021. Previously truncated data sets discussed above were also compared to the most recent set of measurements through August 2021. If the medians of the two groups are not significantly different at the 99% confidence level, background data are typically updated to include the newer compliance data.

Several statistically significant differences were found between the two groups for the Appendix I and II constituents. Typically, when the test concludes that the medians of the

two groups are significantly different, particularly in the downgradient wells, the background data are not updated to include the newer data unless it can be reasonably justified that the change in concentrations reflects a shift unrelated to practices at the site. In studies in which at least one of the segments being compared is of short duration, the comparison is complicated by the fact that normal short-term variation may be mistaken for long-term change in medians.

In most cases with significant differences, either the current reported measurements were similar to those reported historically, or the magnitudes of the differences in medians were low relative to average concentrations. Exceptions were the increasing medians for sulfate in downgradient well GWC-20 and boron at downgradient well GWC-8. While steady increasing trends were observed in these cases, reported measurements are lower than those recorded at upgradient wells GWA-3 and GWA-4. For sulfate at well GWC-20, however, only the more recent portion of the record was used in the construction of prediction limits in order to represent present-day groundwater quality. The increasing trend will be re-evaluated periodically so that limit does not become elevated over time compared with upgradient concentrations.

In the case of barium at wells GWC-20, GWC-23, and GWC-8, while the Mann Whitney test identified significantly higher medians in the more recent data, concentrations are similar throughout the entire records and lower than those reported in upgradient well GWA-2. Therefore, these records were updated and the assumption is that the observed changes are due to spatial variation in groundwater quality.

All other records were updated through August 2021. A summary of special cases with background data sets utilizing a truncated portion of their record follows this letter.

Evaluation of Georgia EPD Appendix I and CCR Appendix III Constituents – August 2023

Prediction Limits

Intrawell limits constructed from screened background data from within each well serve to provide statistical limits that are representative of the background data population, and that will rapidly identify a change in more recent compliance data from within a given well. The most recent sample from the same well is compared to its respective background. This statistical method removes the element of variation from across wells and eliminates the chance of mistaking spatial variation for a release from the facility.

In cases where downgradient average concentrations are higher than observed upgradient concentrations for a given constituent where intrawell analyses are recommended, the current assumption is that this is due to spatial variation rather than a result of practices at the landfill. Validation of this assumption requires a separate analysis or investigation that is beyond the scope of this data screening study.

For some well/constituent pairs containing <15% non-detects such as fluoride at upgradient well GWA-11, parametric prediction limits slightly changed compared to those established during the background update. An update was made to the Sanitas™ statistical software in October 2022 that determines the percentage of non-detects within a given background record rather than all records evaluated for a given constituent. Simple substitution of ½ the reporting limit is applied when the percentage of non-detects is <15% in accordance with the USEPA Unified Guidance (2009). No significant changes resulted from this implementation.

Evaluation of Georgia EPD Appendix I Parameters – August 2023

For all Georgia EPD Appendix I parameters, intrawell prediction limits, combined with a 1-of-2 resample plan, were constructed using all available data for each well through August 2021, except for the cases mentioned above (Figure D). The August 2023 compliance data were compared to these intrawell background limits. No statistical analyses were included for well/constituent pairs with 100% non-detects.

A summary of the Georgia EPD Appendix I intrawell prediction limits follows this report. An exceedance was noted for the following well/constituent pair:

Barium: GWC-20

Two-Step Approach

Following the Two-Step approach, interwell prediction limits are constructed for any apparent intrawell prediction limit exceedances using pooled upgradient well data to further evaluate the exceedance (Figure E). No intrawell prediction limit exceedances were noted; therefore, no further action was required for the Appendix I parameters.

Trend Analysis

When prediction limit exceedances occur in any of the downgradient wells, data are further evaluated using the Sen's Slope/Mann Kendall trend test to determine whether concentrations are statistically increasing, decreasing, or stable at the 99% confidence

level (Figure F). Upgradient wells are included in the trend analyses to identify whether increasing or decreasing patterns exist upgradient of the site which is an indication of variability in groundwater unrelated to practices at the site. The following statistically significant trends were identified:

Increasing:

• Barium: GWA-2 (upgradient) and GWC-20

Decreasing:

• Barium: GWA-3, GWA-4, and GWA-11 (all upgradient)

Evaluation of CCR Appendix III Parameters – August 2023

For all CCR Appendix III parameters, intrawell prediction limits, combined with a 1-of-2 resample plan, were constructed using all historical data through August 2021 (Figure G). The August 2023 sample from each downgradient well is compared to the background limit to determine whether there are exceedances over background. A summary of the Appendix III prediction limits follows this report. Exceedances were noted for the following well/constituent pairs:

• Calcium: GWA-2 (upgradient)

Chloride: GWC-21pH: GWC-6

• Sulfate: GWA-2 (upgradient)

When exceedances are identified in upgradient wells, such as calcium and sulfate, it may be an indication that groundwater quality is changing due to spatial variation or off-site influences unrelated to practices at the site.

Two-Step Approach

When interwell prediction limits were constructed for the apparent intrawell prediction limit exceedances in downgradient wells, an exceedance was identified (Figure H) for the following well constituent pair:

• pH: GWC-6

Trend Tests

Data from downgradient well/constituent pairs found to exceed their respective intrawell prediction limit were further evaluated using the Sen's Slope/Mann Kendall trend test using a 99% confidence level, along with upgradient wells for the same constituents. A

summary of the trend test results follows this letter (Figure I). The following statistically significant trends were identified:

Increasing:

None

Decreasing:

Chloride: GWA-3 (upgradient)

Resample Reports – November 2023

Additional data were collected in November 2023 based on the results of the two-step approach for pH at GWC-6. An intrawell prediction limit was constructed using background data through August 2021 to compare the November 2023 resample for pH at GWC-6 (Figure J). No exceedance was identified; therefore, no further action was required.

Summary

Georgia EPD Appendix I Constituents

Based on the result of the Appendix I intrawell prediction limit results followed by the two-step approach, no statistically significant exceedances were identified.

CCR Appendix III Constituents

Based on the results of the Appendix III intrawell prediction limit results followed by the two-step approach and the resample data, no statistically significant exceedances were identified.

Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for Plant Hammond's Huffaker Road Landfill. If you have any questions or comments, please feel free to contact us.

For Groundwater Stats Consulting,

Andrew T. Collins

Project Manager

Kristina L. Rayner Senior Statistician

Kristina Rayner

anitas™ v.10.0.13 Software licensed to . UC

100% Non-Detects: Appendix I

Analysis Run 10/25/2023 9:06 AM View: Appendix I
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Antimony (mg/L) GWC-20, GWC-21, GWC-22, GWC-23

Arsenic (mg/L)

GWA-1, GWA-2, GWC-10, GWC-19, GWC-20, GWC-22, GWC-6

Beryllium (mg/L)

GWA-1, GWA-1, GWA-2, GWA-4, GWC-10, GWC-18, GWC-20, GWC-21, GWC-22, GWC-23, GWC-5, GWC-6, GWC-8, GWC-9

Cadmium (mg/L)

GWA-1, GWA-11, GWA-2, GWA-3, GWC-19, GWC-22, GWC-6

Cobalt (mg/L)

GWC-18, GWC-19, GWC-20, GWC-22

Copper (mg/L)

GWA-1

Lead (mg/L)

GWA-1, GWA-2, GWA-4, GWC-9

Selenium (mg/L)

GWA-1, GWA-11, GWA-2, GWA-3, GWC-18, GWC-19, GWC-20, GWC-23, GWC-5, GWC-6, GWC-7, GWC-8

Silver (mg/L)

GWA-1, GWA-1, GWA-2, GWA-3, GWA-4, GWC-10, GWC-18, GWC-19, GWC-20, GWC-22, GWC-23, GWC-5, GWC-5, GWC-7, GWC-8, GWC-9

Thallium (mg/L)

GWA-11, GWA-2, GWA-3, GWA-4, GWC-10, GWC-18, GWC-19, GWC-20, GWC-21, GWC-22, GWC-23, GWC-5, GWC-6, GWC-8, GWC-9

Vanadium (mg/L)

GWA-11, GWA-2, GWA-3, GWA-4, GWC-10, GWC-18, GWC-19, GWC-20, GWC-22, GWC-6, GWC-8

Sanitas™ v.10.0.13 Software licensed to .

Page 1

Date Ranges

Date: 10/25/2023 8:59 AM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Barium (mg/L)

GWA-2 background:4/13/2010-8/9/2021

GWC-19 background:4/13/2010-8/10/2021

GWC-22 background:4/13/2010-8/10/2021

GWC-6 background:4/13/2010-8/10/2021

GWC-7 background:4/3/2012-10/4/2018

GWC-9 background:4/13/2010-8/10/2021

Cobalt (mg/L)

GWC-7 background:3/12/2013-8/10/2021

Nickel (mg/L)

GWC-7 background:3/12/2013-8/10/2021

Sulfate (mg/L)

GWC-20 background:4/9/2019-8/10/2021

Zinc (mg/L)

GWC-7 background:3/12/2013-8/10/2021

Appendix I Intrawell Prediction Limits - Significant Results

Plant Hammond Data: Huffaker Road Landfill Printed 10/25/2023, 12:02 PM

 Constituent
 Well
 Upper Lim. Lower Lim. Date
 Observ.
 Sig.
 Bg Me and lim.
 Std. Dev.
 MOS ND Adj.
 Transform Alpha
 Method

 Barium (mg/L)
 GWC-20
 0.1514
 n/a
 8/15/2023
 0.16
 Yes
 38
 0.1177
 0.01465
 0
 None
 No
 0.0003376
 Param Intra 1 of 2

Appendix I Intrawell Prediction Limits - All Results

Plant Hammond Data: Huffaker Road Landfill Printed 10/25/2023, 12:02 PM

			Fiantiiai	IIIIOIIG Da	ita. i iuliakei	Noau I	Lanunn	Fillited	10/23/2023,		- IVI			
Constituent	Well	Upper Lin	n. Lower Lim	ı. <u>Date</u>	Observ.	Sig.	<u>Bg N</u>	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	GWA-1	0.003	n/a	8/14/2023	0.0028J	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWA-11	0.003	n/a	8/14/2023	0.003ND	No	38	n/a	n/a	94.74	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWA-2	0.003	n/a	8/14/2023	0.003ND	No	37	n/a	n/a	91.89	n/a	n/a	0.001361	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWA-3	0.003	n/a	8/14/2023	0.003ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWA-4	0.003	n/a	8/14/2023	0.003ND	No	38	n/a	n/a	94.74	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWC-10	0.003	n/a	8/14/2023	0.003ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWC-18	0.003	n/a	8/15/2023	0.0028J	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWC-19	0.003	n/a	8/15/2023	0.003ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWC-5	0.003	n/a	8/15/2023	0.003ND	No	38	n/a	n/a	94.74	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWC-6	0.003	n/a	8/14/2023	0.003ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWC-7	0.003	n/a	8/15/2023	0.003ND	No	37	n/a	n/a	94.59	n/a	n/a	0.001361	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWC-8	0.003	n/a	8/15/2023	0.003ND	No	36	n/a	n/a	94.44	n/a	n/a	0.001429	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWC-9	0.003	n/a	8/15/2023	0.003ND	No	38	n/a	n/a	94.74	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Arsenic (mg/L)	GWA-11	0.005	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Arsenic (mg/L)	GWA-3	0.005	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	68.42	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Arsenic (mg/L)	GWA-4	0.0065	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	86.84	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Arsenic (mg/L)	GWC-18	0.005	n/a	8/15/2023	0.005ND	No	38	n/a	n/a	92.11	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Arsenic (mg/L)	GWC-21	0.005	n/a	8/15/2023	0.005ND	No	36	n/a	n/a	80.56		n/a	0.001429	NP Intra (NDs) 1 of 2
Arsenic (mg/L)	GWC-23	0.005	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	94.74		n/a	0.0014294	NP Intra (NDs) 1 of 2
	GWC-5			8/15/2023	0.005ND		38			94.74			0.001294	` ,
Arsenic (mg/L)		0.005	n/a			No		n/a	n/a			n/a		NP Intra (NDs) 1 of 2
Arsenic (mg/L)	GWC-7	0.011	n/a	8/15/2023	0.0077J	No	37	n/a	n/a	37.84		n/a	0.001361	NP Intra (normality) 1 of 2
Arsenic (mg/L)	GWC-8	0.005	n/a	8/15/2023	0.005ND	No	37	n/a	n/a	72.97		n/a	0.001361	NP Intra (NDs) 1 of 2
Arsenic (mg/L)	GWC-9	0.005	n/a	8/15/2023	0.005ND	No	38	n/a	n/a	97.37		n/a	0.001294	NP Intra (NDs) 1 of 2
Barium (mg/L)	GWA-1	0.05002	n/a	8/14/2023	0.039	No	38	0.03897	0.004812		None	No	0.0003376	Param Intra 1 of 2
Barium (mg/L)	GWA-11	0.0425	n/a	8/14/2023	0.028	No	38	n/a	n/a	0	n/a	n/a	0.001294	NP Intra (normality) 1 of 2
Barium (mg/L)	GWA-2	0.198	n/a	8/14/2023	0.19	No	29	0.1666	0.01321	0	None	No	0.0003376	Param Intra 1 of 2
Barium (mg/L)	GWA-3	0.2254	n/a	8/14/2023	0.087	No	38	0.1656	0.02606	0	None	No	0.0003376	Param Intra 1 of 2
Barium (mg/L)	GWA-4	0.14	n/a	8/14/2023	0.045	No	38	n/a	n/a	0	n/a	n/a	0.001294	NP Intra (normality) 1 of 2
Barium (mg/L)	GWC-10	0.1997	n/a	8/14/2023	0.12	No	41	0.1273	0.03174	0	None	No	0.0003376	Param Intra 1 of 2
Barium (mg/L)	GWC-18	0.09152	n/a	8/15/2023	0.077	No	38	0.07443	0.007441	0	None	No	0.0003376	Param Intra 1 of 2
Barium (mg/L)	GWC-19	0.1706	n/a	8/15/2023	0.15	No	29	0.0004195	5 0.0001801	0	None	x^4	0.0003376	Param Intra 1 of 2
Barium (mg/L)	GWC-20	0.1514	n/a	8/15/2023	0.16	Yes	38	0.1177	0.01465	0	None	No	0.0003376	Param Intra 1 of 2
Barium (mg/L)	GWC-21	0.19	n/a	8/15/2023	0.058	No	36	n/a	n/a	0	n/a	n/a	0.001429	NP Intra (normality) 1 of 2
Barium (mg/L)	GWC-22	0.112	n/a	8/15/2023	0.092	No	29	-2.374	0.07763	0	None	ln(x)	0.0003376	Param Intra 1 of 2
Barium (mg/L)	GWC-23	0.08928	n/a	8/14/2023	0.071	No	38	0.06495	0.0106	0	None	No	0.0003376	Param Intra 1 of 2
Barium (mg/L)	GWC-5	0.1319	n/a	8/15/2023	0.072	No	38	0.09723	0.01511	0	None	No	0.0003376	Param Intra 1 of 2
Barium (mg/L)	GWC-6	0.2118	n/a	8/14/2023	0.15	No	29	0.1469	0.0273	0	None	No	0.0003376	Param Intra 1 of 2
Barium (mg/L)	GWC-7	0.3996	n/a	8/15/2023	0.041	No	19	0.3226	0.1206	0	None	sqrt(x)	0.0003376	Param Intra 1 of 2
Barium (mg/L)	GWC-8	0.17	n/a	8/15/2023	0.12	No	37	n/a	n/a	0	n/a	n/a	0.001361	NP Intra (normality) 1 of 2
Barium (mg/L)	GWC-9	0.07319	n/a	8/15/2023	0.064	No	28	0.06145	0.004913	0	None	No	0.0003376	Param Intra 1 of 2
Beryllium (mg/L)	GWA-3	0.0005	n/a	8/14/2023	0.0005ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Beryllium (mg/L)	GWC-19	0.0005	n/a	8/15/2023	0.0005ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Beryllium (mg/L)	GWC-7	0.0248	n/a	8/15/2023	0.00027J	No	33	-7.926	1.812		Kaplan-Meier	ln(x)	0.0003376	Param Intra 1 of 2
Cadmium (mg/L)	GWA-4	0.0005	n/a	8/14/2023	0.0005ND	No	38	n/a	n/a	97.37	•	n/a	0.001294	NP Intra (NDs) 1 of 2
Cadmium (mg/L)	GWC-10	0.0005	n/a	8/14/2023	0.0005ND	No	38	n/a	n/a	97.37		n/a	0.001294	NP Intra (NDs) 1 of 2
Cadmium (mg/L)	GWC-18	0.0005	n/a	8/15/2023	0.0005ND	No	38	n/a	n/a	97.37		n/a	0.001294	NP Intra (NDs) 1 of 2
	GWC-20			8/15/2023	0.0005ND	No	37			97.3			0.001234	NP Intra (NDs) 1 of 2
Cadmium (mg/L)		0.0005	n/a				36	n/a	n/a		n/a	n/a		, ,
Cadmium (mg/L)	GWC-21	0.0005	n/a	8/15/2023	0.0005ND	No		n/a	n/a	94.44		n/a	0.001429	NP Intra (NDs) 1 of 2
Cadmium (mg/L)	GWC-23	0.0005	n/a	8/14/2023	0.0005ND	No	38	n/a	n/a	97.37		n/a	0.001294	NP Intra (NDs) 1 of 2
Cadmium (mg/L)	GWC-5	0.0015	n/a	8/15/2023	0.0005ND	No	38	n/a	n/a	97.37		n/a	0.001294	NP Intra (NDs) 1 of 2
Cadmium (mg/L)	GWC-7	0.0035	n/a	8/15/2023	0.0005ND	No	35	n/a	n/a	85.71		n/a	0.001497	NP Intra (NDs) 1 of 2
Cadmium (mg/L)	GWC-8	0.0005	n/a	8/15/2023	0.0005ND	No	37	n/a	n/a	97.3	n/a	n/a	0.001361	NP Intra (NDs) 1 of 2
Cadmium (mg/L)	GWC-9	0.0005	n/a	8/15/2023	0.0005ND	No	38	n/a	n/a	94.74		n/a	0.001294	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWA-1	0.016	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	94.74		n/a	0.001294	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWA-11	0.005	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	92.11	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2

Appendix I Intrawell Prediction Limits - All Results

Plant Hammond Data: Huffaker Road Landfill Printed 10/25/2023, 12:02 PM

Constituent	Well	Upper Lir	n. Lower Lin	n. Date	Observ.	Sig.	Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	<u>Method</u>
Chromium (mg/L)	GWA-2	0.005	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWA-3	0.005	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	94.74	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWA-4	0.005	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	94.74	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-10	0.005	n/a	8/14/2023	0.0015J	No	38	n/a	n/a	92.11	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-18	0.005	n/a	8/15/2023	0.005ND	No	38	n/a	n/a	94.74	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-19	0.005	n/a	8/15/2023	0.005ND	No	38	n/a	n/a	92.11	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-20	0.0064	n/a	8/15/2023	0.005ND	No	37	n/a	n/a	91.89	n/a	n/a	0.001361	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-21	0.005	n/a	8/15/2023	0.005ND	No	36	n/a	n/a	94.44	n/a	n/a	0.001429	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-22	0.005	n/a	8/15/2023	0.005ND	No	38	n/a	n/a	89.47	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-23	0.0051	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	94.74	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-5	0.005	n/a	8/15/2023	0.005ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-6	0.005	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-7	0.005	n/a	8/15/2023	0.005ND	No	36	n/a	n/a	83.33	n/a	n/a	0.001429	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-8	0.005	n/a	8/15/2023	0.005ND	No	37	n/a	n/a	89.19	n/a	n/a	0.001361	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-9	0.005	n/a	8/15/2023	0.005ND	No	38	n/a	n/a	92.11	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWA-1	0.005	n/a	8/14/2023	0.00043J	No	38	n/a	n/a	60.53	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWA-11	0.01	n/a	8/14/2023	0.00045J	No	38	n/a	n/a	52.63	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWA-2	0.005	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWA-3	0.005	n/a	8/14/2023	0.00095J	No	38	n/a	n/a	89.47	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWA-4	0.005	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	63.16	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWC-10	0.005	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	97.37		n/a	0.001294	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWC-21	0.01	n/a	8/15/2023	0.0032J	No	36	n/a	n/a	52.78	n/a	n/a	0.001429	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWC-23	0.005	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	89.47	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWC-5	0.005	n/a	8/15/2023	0.00046J	No	38	n/a	n/a	89.47	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWC-6	0.005	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWC-7	0.07218	n/a	8/15/2023	0.021	No	23	0.028	0.01788	0	None	No	0.0003376	Param Intra 1 of 2
Cobalt (mg/L)	GWC-8	0.01	n/a	8/15/2023	0.00077J	No	37	n/a	n/a	81.08	n/a	n/a	0.001361	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWC-9	0.005	n/a	8/15/2023	0.005ND	No	38	n/a	n/a	84.21	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWA-11	0.005	n/a	8/14/2023	0.005ND	No	33	n/a	n/a	90.91	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWA-2	0.005	n/a	8/14/2023	0.005ND	No	33	n/a	n/a	90.91	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWA-3	0.005	n/a	8/14/2023	0.005ND	No	33	n/a	n/a	90.91	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWA-4	0.0066	n/a	8/14/2023	0.005ND	No	33	n/a	n/a	90.91	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-10	0.005	n/a	8/14/2023	0.005ND	No	33	n/a	n/a	93.94	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-18	0.005	n/a	8/15/2023	0.005ND	No	33	n/a	n/a	90.91	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-19	0.005	n/a	8/15/2023	0.005ND	No	33	n/a	n/a	84.85	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-20	0.005	n/a	8/15/2023	0.005ND	No	32	n/a	n/a	93.75	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-21	0.005	n/a	8/15/2023	0.005ND	No	31	n/a	n/a	74.19	n/a	n/a	0.001905	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-22	0.005	n/a	8/15/2023	0.005ND	No	33	n/a	n/a	90.91	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-23	0.0084	n/a	8/14/2023	0.005ND	No	33	n/a	n/a	75.76	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-5	0.005	n/a	8/15/2023	0.005ND	No	33	n/a	n/a	84.85	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-6	0.005	n/a	8/14/2023	0.005ND	No	33	n/a	n/a	96.97	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-7	0.016	n/a	8/15/2023	0.005ND	No	31	n/a	n/a	77.42	n/a	n/a	0.001905	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-8	0.005	n/a	8/15/2023	0.005ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-9	0.005	n/a	8/15/2023	0.005ND	No	33	n/a	n/a	93.94	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWA-11	0.001	n/a	8/14/2023	0.001ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWA-3	0.001	n/a	8/14/2023	0.001ND	No	38	n/a	n/a	94.74	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-10	0.001	n/a	8/14/2023	0.001ND	No	38	n/a	n/a	97.37		n/a	0.001294	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-18	0.001	n/a	8/15/2023	0.001ND	No	38	n/a	n/a	97.37		n/a	0.001294	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-19	0.001	n/a	8/15/2023	0.001ND	No	38	n/a	n/a	92.11		n/a	0.001294	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-20	0.001	n/a	8/15/2023	0.001ND	No	37	n/a	n/a	97.3	n/a	n/a	0.001361	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-21	0.001	n/a	8/15/2023	0.001ND	No	36	n/a	n/a	88.89		n/a	0.001429	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-22	0.001	n/a	8/15/2023	0.001ND	No	38	n/a	n/a	89.47		n/a	0.001294	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-23	0.001	n/a	8/14/2023	0.001ND	No	38	n/a	n/a	84.21		n/a	0.001294	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-5	0.001	n/a	8/15/2023	0.001ND	No	38	n/a	n/a	94.74		n/a	0.001294	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-6	0.001	n/a	8/14/2023	0.001ND	No	38	n/a	n/a	97.37		n/a	0.001294	NP Intra (NDs) 1 of 2

Appendix I Intrawell Prediction Limits - All Results

Plant Hammond Data: Huffaker Road Landfill Printed 10/25/2023, 12:02 PM

Constituent	Well	Upper Lim	n. Lower Lim	Date	Observ.	Sig.	Ba N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	Alpha	Method
Lead (mg/L)	GWC-7	0.0016	n/a	8/15/2023	0.001ND	No.	37	n/a	n/a	75.68		n/a	0.001361	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-8	0.001	n/a	8/15/2023	0.001ND	No	37	n/a	n/a	94.59		n/a	0.001361	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWA-1	0.005	n/a	8/14/2023	0.005ND	No	33	n/a	n/a	78.79		n/a	0.001701	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWA-11	0.01	n/a	8/14/2023	0.0016J	No	33	n/a	n/a	54.55		n/a	0.001701	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWA-2	0.005	n/a	8/14/2023	0.005ND	No	33	n/a	n/a	96.97		n/a	0.001701	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWA-3	0.005	n/a	8/14/2023	0.0021J	No	33	n/a	n/a	87.88		n/a	0.001701	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWA-4	0.0055	n/a	8/14/2023	0.005ND	No	33	n/a	n/a	51.52		n/a	0.001701	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-10	0.005	n/a	8/14/2023	0.005ND	No	33	n/a	n/a	96.97		n/a	0.001701	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-18	0.005	n/a	8/15/2023	0.005ND	No	33	n/a	n/a	78.79		n/a	0.001701	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-19	0.0062	n/a	8/15/2023	0.005ND	No	33	n/a	n/a	90.91		n/a	0.001701	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-20	0.005	n/a	8/15/2023	0.005ND	No	32	n/a	n/a	93.75		n/a	0.001803	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-21	0.01023	n/a	8/15/2023	0.0054	No	32	0.06271	0.0164			sqrt(x)	0.0003376	Param Intra 1 of 2
Nickel (mg/L)	GWC-22	0.005	n/a	8/15/2023	0.005ND	No	33	n/a	n/a	96.97	•	n/a	0.001701	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-23	0.005	n/a	8/14/2023	0.005ND	No	33	n/a	n/a	69.7	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-5	0.005	n/a	8/15/2023	0.005ND	No	33	n/a	n/a		n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-6	0.005	n/a	8/14/2023	0.005ND	No	33	n/a	n/a		n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-7	0.2826	n/a	8/15/2023	0.005112	No	18	0.1037	0.06873	0	None	No	0.0003376	Param Intra 1 of 2
Nickel (mg/L)	GWC-8	0.0073	n/a	8/15/2023	0.005ND	No	32	n/a	n/a		n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-9	0.0070	n/a	8/15/2023	0.0001 1 D	No	33	n/a	n/a	54.55		n/a	0.001701	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWA-4	0.005	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	97.37		n/a	0.001701	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWC-10	0.005	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	97.37		n/a	0.001294	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWC-21	0.005	n/a	8/15/2023	0.005ND	No	36	n/a	n/a	94.44		n/a	0.001429	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWC-22	0.005	n/a	8/15/2023	0.005ND	No	38	n/a	n/a	94.74		n/a	0.001294	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWC-9	0.005	n/a	8/15/2023	0.005ND	No	38	n/a	n/a	97.37		n/a	0.001294	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWA-1	0.01	n/a	8/14/2023	0.01ND	No	33	n/a	n/a	96.97		n/a	0.001701	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-21	0.01	n/a	8/15/2023	0.01ND	No	31	n/a	n/a	93.55		n/a	0.001905	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-23	0.01	n/a	8/14/2023	0.01ND	No	33	n/a	n/a	96.97		n/a	0.001701	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-5	0.01	n/a	8/15/2023	0.01ND	No	33	n/a	n/a	96.97		n/a	0.001701	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-7	0.01	n/a	8/15/2023	0.01ND	No	32	n/a	n/a	84.38		n/a	0.001803	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-9	0.01	n/a	8/15/2023	0.01ND	No	33	n/a	n/a	96.97		n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-1	0.01	n/a	8/14/2023	0.01ND	No	33	n/a	n/a	75.76		n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-11	0.01	n/a	8/14/2023	0.01ND	No	33	n/a	n/a	66.67		n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-2	0.01	n/a	8/14/2023	0.01ND	No	33	n/a	n/a		n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-3	0.01	n/a	8/14/2023	0.01ND	No	33	n/a	n/a	57.58		n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-4	0.01	n/a	8/14/2023	0.01ND	No	33	n/a	n/a	33.33		n/a	0.001701	NP Intra (normality) 1 of 2
Zinc (mg/L)	GWC-10	0.01	n/a	8/14/2023	0.01ND	No	33	n/a	n/a	78.79		n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-18	0.01	n/a	8/15/2023		No	33	n/a	n/a		n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-19	0.013	n/a	8/15/2023	0.01ND	No	33	n/a	n/a	60.61		n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-20	0.01	n/a	8/15/2023	0.01ND	No	32	n/a	n/a	81.25		n/a	0.001803	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-21	0.009272		8/15/2023	0.01ND	No	31	0.1676	0.01806			x^(1/3)		Param Intra 1 of 2
Zinc (mg/L)	GWC-22	0.01	n/a	8/15/2023	0.01ND	No	33	n/a	n/a	81.82		n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-23	0.01	n/a	8/14/2023	0.01ND	No	33	n/a	n/a	54.55		n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-5	0.01	n/a	8/15/2023	0.01ND	No	33	n/a	n/a	60.61		n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-6	0.01	n/a	8/14/2023	0.01ND	No	33	n/a	n/a	72.73		n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-7	0.523	n/a	8/15/2023	0.2	No	18	0.1863	0.1294	0	None	No		Param Intra 1 of 2
Zinc (mg/L)	GWC-8	0.01	n/a	8/15/2023	0.01ND	No	32	n/a	n/a	71.88		n/a	0.001803	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-9	0.01	n/a	8/15/2023	0.01ND	No	33	n/a	n/a	66.67		n/a	0.001701	NP Intra (NDs) 1 of 2
·- (···o·-/					, 									(

Appendix I Interwell Prediction Limit - Two-Step - All Results (No Significant)

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 10/25/2023, 9:57 AM

 Constituent
 Well
 Upper Lim. Lower Lim. Date
 Observ.
 Sig.
 Bg Me and Index (mg/L)
 Std. Dev.
 WNDs (MD.s)
 ND Adj.
 Transform Alpha
 Method

 Barium (mg/L)
 GWC-20
 0.21
 n/a
 8/15/2023
 0.16
 No
 210
 n/a
 n/a
 n/a
 0.00004912
 NP Inter (normality) 1 of 2

Appendix I Trend Tests - Significant Results Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 10/25/2023, 10:14 AM

	Plant Hammond Client: S	outnern Company	Data: H	uπaker Roa	id Landfill	Printed	10/25/2023,	10:14 AM		
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Alpha</u>	Method
Barium (mg/L)	GWA-11 (bg)	-0.0002914	-3.187	-2.58	Yes	42	0	n/a	0.01	NP
Barium (mg/L)	GWA-2 (bg)	0.003819	5.761	2.58	Yes	42	0	n/a	0.01	NP
Barium (mg/L)	GWA-3 (bg)	-0.00594	-6.317	-2.58	Yes	42	0	n/a	0.01	NP
Barium (mg/L)	GWA-4 (bg)	-0.002178	-3.96	-2.58	Yes	42	0	n/a	0.01	NP
Barium (mg/L)	GWC-20	0.002647	5.933	2.58	Yes	42	0	n/a	0.01	NP

Appendix I Trend Tests - All Results

	Plant Hammond Client:	Southern Company	Data: H	uffaker Roa	ad Landfill	Printed	10/25/2023,	10:14 AM		
Constituent	<u>Well</u>	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Alpha</u>	Method
Barium (mg/L)	GWA-1 (bg)	-0.00004921	-0.3909	-2.58	No	42	0	n/a	0.01	NP
Barium (mg/L)	GWA-11 (bg)	-0.0002914	-3.187	-2.58	Yes	42	0	n/a	0.01	NP
Barium (mg/L)	GWA-2 (bg)	0.003819	5.761	2.58	Yes	42	0	n/a	0.01	NP
Barium (mg/L)	GWA-3 (bg)	-0.00594	-6.317	-2.58	Yes	42	0	n/a	0.01	NP
Barium (mg/L)	GWA-4 (bg)	-0.002178	-3.96	-2.58	Yes	42	0	n/a	0.01	NP
Barium (mg/L)	GWC-20	0.002647	5.933	2.58	Yes	42	0	n/a	0.01	NP

Appendix III Intrawell Prediction Limits - Significant Results

Plant Hammond Data: Huffaker Road Landfill Printed 10/25/2023, 12:07 PM

Constituent	Well	Upper Lim	Lower Lim.	<u>Date</u>	Observ.	Sig.	<u>Bg N</u>	Bg Mean	Std. Dev.	%NDs	ND Adj.	<u>Transform</u>	<u>Alpha</u>	Method
Calcium (mg/L)	GWA-2	52.85	n/a	8/14/2023	53.1	Yes	17	43.1	4.018	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-21	3.92	n/a	8/15/2023	5.3	Yes	18	2.504	0.5908	0	None	No	0.0006269	Param Intra 1 of 2
pH (SU)	GWC-6	7.319	6.708	8/14/2023	7.68	Yes	18	7.014	0.1274	0	None	No	0.0003135	Param Intra 1 of 2
Sulfate (mg/L)	GWA-2	22.46	n/a	8/14/2023	23.4	Yes	17	15.77	2.757	0	None	No	0.0006269	Param Intra 1 of 2

Appendix III Intrawell Prediction Limits - All Results

Plant Hammond Data: Huffaker Road Landfill Printed 10/25/2023, 12:07 PM

Constituent	Well	Upper Lin	n. Lower Lim	ı. <u>Date</u>	Observ.	Sig.	Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Boron (mg/L)	GWA-1	0.05	n/a	8/14/2023	0.049	No	17	n/a	n/a	11.76	n/a	n/a	0.005914	NP Intra (normality) 1 of 2
Boron (mg/L)	GWA-11	0.04333	n/a	8/14/2023	0.038J	No	17	0.03634	0.002879	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWA-2	0.1026	n/a	8/14/2023	0.097	No	17	0.08614	0.006798	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWA-3	0.1862	n/a	8/14/2023	0.15	No	17	0.1478	0.01583	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWA-4	0.1386	n/a	8/14/2023	0.082	No	17	0.09064	0.01974	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-10	0.04341	n/a	8/14/2023	0.032J	No	17	0.03398	0.003885	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-18	0.1513	n/a	8/15/2023	0.14	No	17	0.13	0.008789	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-19	0.2063	n/a	8/15/2023	0.16	No	17	0.1738	0.01337	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-20	0.05	n/a	8/15/2023	0.019J	No	17	n/a	n/a	5.882	n/a	n/a	0.005914	NP Intra (normality) 1 of 2
Boron (mg/L)	GWC-21	0.1228	n/a	8/15/2023	0.03J	No	17	0.3332	0.06753	0	None	x^(1/3)	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-22	0.08087	n/a	8/15/2023	0.068	No	17	0.06702	0.00571	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-23	0.0809	n/a	8/14/2023	0.019J	No	16	0.1789	0.04295	6.25	None	sqrt(x)	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-5	0.08192	n/a	8/15/2023	0.06	No	17	0.05951	0.009236		None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-6	0.04728	n/a	8/14/2023	0.039J	No	18	0.03999	0.003041		None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-7	0.07297	n/a	8/15/2023	0.03J	No	17	0.05303	0.008219		None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-8	0.088	n/a	8/15/2023	0.031J	No	18	n/a	n/a	0	n/a	n/a	0.005373	NP Intra (normality) 1 of 2
	GWC-9				0.0313 0.022J		17			5.882			0.005914	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Boron (mg/L)		0.05	n/a	8/15/2023		No		n/a	n/a			n/a		NP Intra (normality) 1 of 2
Calcium (mg/L)	GWA-1	20.89	n/a	8/14/2023	17.2	No	17	16.2	1.932	5.882		No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWA-11	26.42	n/a	8/14/2023	21.8	No	17	20.14	2.587	5.882		No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWA-2	52.85	n/a	8/14/2023	53.1	Yes	17	43.1	4.018	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWA-3	90.64	n/a	8/14/2023	57.2	No	17	75.75	6.137	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWA-4	122.6	n/a	8/14/2023	73.5	No	17	86.21	14.99	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-10	60.32	n/a	8/14/2023	39.8	No	19	40.93	8.193	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-18	49.06	n/a	8/15/2023	41	No	18	40.94	3.386	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-19	51.43	n/a	8/15/2023	44.6	No	18	44.52	2.882	0	None	No		Param Intra 1 of 2
Calcium (mg/L)	GWC-20	68.63	n/a	8/15/2023	63.5	No	18	55.11	5.638	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-21	94.52	n/a	8/15/2023	31.5	No	19	48.75	19.33	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-22	52.63	n/a	8/15/2023	47.3	No	17	47.89	1.955	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-23	53.47	n/a	8/14/2023	40.7	No	17	39.06	5.938	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-5	91.67	n/a	8/15/2023	75.8	No	17	75.27	6.759	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-6	75.59	n/a	8/14/2023	69.1	No	17	64.12	4.724	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-7	73.87	n/a	8/15/2023	18.4	No	17	39.29	14.25	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-8	107.1	n/a	8/15/2023	70.5	No	19	68.9	16.13	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-9	39.64	n/a	8/15/2023	37.6	No	17	35.42	1.737	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWA-1	1.619	n/a	8/14/2023	0.99J	No	17	0.1658	0.1303	0	None	ln(x)	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWA-11	2.058	n/a	8/14/2023	1	No	17	1.43	0.2592	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWA-2	3.046	n/a	8/14/2023	2.2	No	17	2.365	0.2806	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWA-3	5.301	n/a	8/14/2023	1.3	No	17	3.626	0.6902	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWA-4	10.38	n/a	8/14/2023	2.5	No	17	5.864	1.863	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-10	2.237	n/a	8/14/2023	1	No	19	1.512	0.3062	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-18	1.802	n/a	8/15/2023	0.85J	No	17	1.711	0.6329	0	None	x^2	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-19	2.623	n/a	8/15/2023	1.1	No	17	1.764	0.3539	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-20	2.379	n/a	8/15/2023	1.1	No	18	1.577	0.3346	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-21	3.92	n/a	8/15/2023	5.3	Yes	18	2.504	0.5908	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-22	2.086	n/a	8/15/2023	0.95J	No	17	1.436	0.2681	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-23	2.249	n/a	8/14/2023	1.1	No	17	1.397	0.3512	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-5	4.201	n/a	8/15/2023	2.1	No	17	2.822	0.5683	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-6	2.452	n/a	8/14/2023	1.6	No	17	1.86	0.2439	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-7	2.289	n/a	8/15/2023	1.7	No	17	1.612	0.2791	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-8	3.284	n/a	8/15/2023	1.6	No	19	2.034	0.5279	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-9	1.765	n/a	8/15/2023	0.65J	No	17	1.099	0.2742	0	None	No	0.0006269	Param Intra 1 of 2
Fluoride (mg/L)	GWA-1	0.1904	n/a	8/14/2023	0.076J	No	17	0.1011	0.03681	5.882	None	No	0.0006269	Param Intra 1 of 2
Fluoride (mg/L)	GWA-11	0.1644	n/a	8/14/2023	0.066J	No	17	0.07655	0.0362	17.65	Kaplan-Meier	No	0.0006269	Param Intra 1 of 2
Fluoride (mg/L)	GWA-2	0.2383	n/a	8/14/2023	0.08J	No	17	0.1233	0.04738	5.882	None	No	0.0006269	Param Intra 1 of 2
Fluoride (mg/L)	GWA-3	0.484	n/a	8/14/2023	0.089J	No	17	0.2083	0.1136	5.882	None	No	0.0006269	Param Intra 1 of 2

Appendix III Intrawell Prediction Limits - All Results

Data: Huffaker Road Landfill Printed 10/25/2023, 12:07 PM Std. Dev. Transform Alpha Constituent Well Upper Lim. Lower Lim. Date Bg N Bg Mean %NDs ND Adj. Method Sig. Fluoride (mg/L) GWA-4 0.4826 8/14/2023 0.11 0.4315 0.1085 0 None 0.0006269 Param Intra 1 of 2 n/a No sqrt(x) GWC-10 Fluoride (mg/L) 0.1902 n/a 8/14/2023 0.077J No 17 0.1044 0.03536 11.76 None No 0.0006269 Param Intra 1 of 2 GWC-18 0.218 0.1375 0.03319 0.0006269 Param Intra 1 of 2 Fluoride (ma/L) n/a 8/15/2023 0.1 No 17 5 882 None No Fluoride (mg/L) GWC-19 0.2528 n/a 8/15/2023 0.092J No 17 0.1435 0.04503 5.882 None No 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) GWC-20 0.1931 n/a 8/15/2023 0.055J 17 0.2872 0.06277 5.882 0.0006269 Param Intra 1 of 2 No None sqrt(x) Fluoride (mg/L) GWC-21 0.2126 n/a 8/15/2023 0.1ND No 17 0.08559 0.05234 23.53 Kaplan-Meier No 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) GWC-22 0.02682 0.0006269 0.151 n/a 8/15/2023 0.065J No 17 0.08591 5.882 None No Param Intra 1 of 2 5.882 0.0006269 Fluoride (mg/L) GWC-23 0.1833 n/a 8/14/2023 0.075J No 0.1043 0.03254 None No Param Intra 1 of 2 GWC-5 Fluoride (ma/L) 0.33 n/a 8/15/2023 0.052J Nο 17 n/a n/a 17.65 n/a n/a 0.005914 NP Intra (normality) 1 of 2 Fluoride (mg/L) GWC-6 0.3078 8/14/2023 No 0.3089 0.1013 11.76 sqrt(x) 0.0006269 Param Intra 1 of 2 Fluoride (ma/L) GWC-7 0.6093 0 Param Intra 1 of 2 0.514 n/a 8/15/2023 0.13 Nο 17 0.07904 None x^(1/3) 0.0006269 GWC-8 8/15/2023 0.005373 NP Intra (normality) 1 of 2 Fluoride (mg/L) 0.4 0.13 0 GWC-9 5.882 Fluoride (ma/L) 0.1716 8/15/2023 0.06J 0.0917 0.0006269 Param Intra 1 of 2 n/a No 17 0.03293 None No pH (SU) GWA-1 7.381 6.536 8/14/2023 6.958 0.1741 0 No 0.0003135 Param Intra 1 of 2 pH (SU) GWA-11 7 054 6 388 8/14/2023 6 99 Nο 17 6 721 0 1372 0 None Nο 0.0003135 Param Intra 1 of 2 pH (SU) GWA-2 6.539 8/14/2023 No 6.886 0.1432 0 0.0003135 Param Intra 1 of 2 None pH (SU) GWA-3 7 212 6.33 8/14/2023 6 54 Nο 17 6 771 0.1818 n None Nο 0.0003135 Param Intra 1 of 2 GWA-4 7.16 6.365 8/14/2023 6.74 6.762 0.1637 0 0.0003135 Param Intra 1 of 2 pH (SU) No None No pH (SU) GWC-10 7 72 6.825 8/14/2023 7 48 No 18 7 272 0.1867 n None Nο 0.0003135 Param Intra 1 of 2 pH (SU) GWC-18 7 787 7 382 8/15/2023 No 17 7 585 0.08345 0 No 0.0003135 Param Intra 1 of 2 None pH (SU) GWC-19 7.783 7.194 8/15/2023 7.61 Nο 19 7.488 0.1243 0 None Nο 0.0003135 Param Intra 1 of 2 GWC-20 6.972 7.29 0 0.0003135 Param Intra 1 of 2 pH (SU) 7.608 8/15/2023 7.54 20 0.1358 No No None GWC-21 7.693 5.612 8/15/2023 6.652 0.4288 0 0.0003135 Param Intra 1 of 2 pH (SU) 6.17 No 17 No GWC-22 7.623 0 0.0003135 Param Intra 1 of 2 pH (SU) 7.958 7.287 8/15/2023 7.68 No 18 0.1399 None No pH (SU) GWC-23 7.52 6.662 8/14/2023 7.21 No 7.091 0.1769 0 None No 0.0003135 Param Intra 1 of 2 GWC-5 7.21 6.445 8/15/2023 6.85 17 6.828 0.1576 0 0.0003135 Param Intra 1 of 2 pH (SU) Nο None No GWC-6 0.0003135 pH (SU) 7.319 6.708 8/14/2023 Yes 7.014 0.1274 0 Param Intra 1 of 2 pH (SU) GWC-7 6.768 5.558 8/15/2023 18 6.163 0.2524 0 0.0003135 Param Intra 1 of 2 5 94 No None No GWC-8 7.787 6.575 8/15/2023 20 7.181 0.259 0 No 0.0003135 Param Intra 1 of 2 pH (SU) 7.34 No GWC-9 7.09 0 0.0003135 Param Intra 1 of 2 pH (SU) 7.324 6.313 8/15/2023 No 17 6.819 0.2084 None No Sulfate (mg/L) GWA-1 6.6 8/14/2023 0 0.005914 NP Intra (normality) 1 of 2 Sulfate (mg/L) GWA-11 8/14/2023 12 17 n 0.0006269 Param Intra 1 of 2 15 25 n/a 8.9 Nο 17 1 271 None Nο Sulfate (mg/L) GWA-2 22.46 n/a 8/14/2023 Yes 2.757 None No Param Intra 1 of 2 GWA-3 215.8 8/14/2023 72.3 11 1.519 0 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) n/a Nο 17 None sart(x) Sulfate (mg/L) GWA-4 321.2 8/14/2023 No 177.4 59.29 0 None No 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) GWC-10 33.9 n/a 8/14/2023 9 No 18 n/a n/a 0 n/a n/a 0.005373 NP Intra (normality) 1 of 2 Sulfate (mg/L) GWC-18 14.45 n/a 8/15/2023 7.7 No 10.5 1.628 O None Nο 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) GWC-19 20.64 n/a 8/15/2023 19.1 Nο 17 16.5 1.709 0 None Nο 0.0006269 Param Intra 1 of 2 9 53.13 8.981 0 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) GWC-20 80.7 n/a 8/15/2023 67.1 No No None Sulfate (mg/L) GWC-21 54.24 n/a 8/15/2023 No 17 31.49 9.375 0 None No 0.0006269 Param Intra 1 of 2 18.9 Sulfate (mg/L) GWC-22 13.34 8/15/2023 5.6 7.635 2.352 0 0.0006269 Param Intra 1 of 2 n/a No None No Sulfate (mg/L) GWC-23 43 n/a 8/14/2023 46 No 17 n/a n/a n n/a n/a 0.005914 NP Intra (normality) 1 of 2 Sulfate (mg/L) GWC-5 145.9 n/a 8/15/2023 4.427 0.2289 0 0.0006269 Param Intra 1 of 2 No In(x) None Sulfate (mg/L) GWC-6 144 4 n/a 8/14/2023 99.5 No 21 108.3 15.56 n No 0.0006269 Param Intra 1 of 2 None GWC-7 Sulfate (mg/L) 178.3 8/15/2023 122 109.7 28.29 0 0.0006269 Param Intra 1 of 2 n/a 17 No No None GWC-8 8/15/2023 40.99 0 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) 60.46 28.1 No 8.027 No GWC-9 85.39 8/15/2023 63.9 18 69.08 6.805 0 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) n/a No None No Total Dissolved Solids (mg/L) GWA-1 163.4 8/14/2023 No 102.9 24.95 0 No 0.0006269 Param Intra 1 of 2 n/a 98 17 None Total Dissolved Solids (mg/L) GWA-11 179.4 8/14/2023 107 17 121.6 23.82 0 Nο 0.0006269 Param Intra 1 of 2 n/a No None 221.5 Param Intra 1 of 2 Total Dissolved Solids (mg/L) GWA-2 268.6 8/14/2023 266 No 17 19.41 0 No 0.0006269 Total Dissolved Solids (mg/L) 0.005914 NP Intra (normality) 1 of 2 GWA-3 653 n/a 8/14/2023 341 No 17 n/a n/a 0 n/a n/a Total Dissolved Solids (mg/L) GWA-4 733.8 n/a 8/14/2023 No 507.8 93.12 0 None No 0.0006269 Param Intra 1 of 2 Total Dissolved Solids (mg/L) GWC-10 268.9 n/a 8/14/2023 162 No 17 179.4 36.87 0 None No 0.0006269 Param Intra 1 of 2 Total Dissolved Solids (mg/L) 202.1 0 GWC-18 248.3 n/a 8/15/2023 18.8 No Param Intra 1 of 2

Total Dissolved Solids (mg/L)

GWC-19

281.8

n/a

8/15/2023

227

Nο

233 4

n

None

Nο

19 68

0.0006269 Param Intra 1 of 2

Page 3

Appendix III Intrawell Prediction Limits - All Results

Plant Hammond Data: Huffaker Road Landfill Printed 10/25/2023, 12:07 PM

Constituent	Well	Upper Lir	n. Lower Lin	n. Date	Observ.	Sig.	Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Total Dissolved Solids (mg/L)	GWC-20	310.9	n/a	8/15/2023	291	No	17	237.4	30.3	0	None	No	0.0006269	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWC-21	398.1	n/a	8/15/2023	152	No	19	200.5	83.46	0	None	No	0.0006269	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWC-22	324	n/a	8/15/2023	212	No	17	n/a	n/a	0	n/a	n/a	0.005914	NP Intra (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-23	290.6	n/a	8/14/2023	163	No	17	196.4	38.83	0	None	No	0.0006269	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWC-5	511	n/a	8/15/2023	428	No	17	n/a	n/a	0	n/a	n/a	0.005914	NP Intra (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-6	423.2	n/a	8/14/2023	368	No	19	332.2	38.42	0	None	No	0.0006269	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWC-7	358.6	n/a	8/15/2023	267	No	17	264.9	38.59	0	None	No	0.0006269	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWC-8	444.9	n/a	8/15/2023	280	No	19	285	67.54	0	None	No	0.0006269	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWC-9	310.7	n/a	8/15/2023	246	No	17	226.2	34.82	0	None	No	0.0006269	Param Intra 1 of 2

Appendix III Interwell Prediction Limits - Two-Step - Significant Results

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 10/25/2023, 10:04 AM

 Constituent
 Well
 Upper Lim. Lower Lim. Date
 Observ.
 Sig.
 Bg N Bg Mean
 Std. Dev.
 %ND ND Adj.
 Transform Alpha
 Method

 pH (SU)
 GWC-6
 7.229
 6.452
 8/14/2023
 7.68
 Yes
 105
 6.84
 0.1932
 0 None
 No
 0.0003135
 Param Inter 1 of 2

Appendix III Trend Tests - Significant Results

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 10/25/2023, 10:10 AM

 Constituent
 Well
 Slope
 Calc.
 Critical
 Sig.
 N
 %NDs
 Normality
 Alpha
 Method

 Chloride (mg/L)
 GWA-3 (bg)
 -0.3777
 -130
 -87
 Yes
 21
 0
 n/a
 0.01
 NP

Appendix III Trend Tests - All Results

	Plant Hammond Client: S	outhern Company	Data: Hu	uffaker Roa	d Landfill	Printed 1	0/25/2023,	10:10 AM		
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Alpha</u>	Method
Chloride (mg/L)	GWA-1 (bg)	0	-24	-87	No	21	0	n/a	0.01	NP
Chloride (mg/L)	GWA-11 (bg)	-0.04254	-75	-87	No	21	0	n/a	0.01	NP
Chloride (mg/L)	GWA-2 (bg)	0	-5	-87	No	21	0	n/a	0.01	NP
Chloride (mg/L)	GWA-3 (bg)	-0.3777	-130	-87	Yes	21	0	n/a	0.01	NP
Chloride (mg/L)	GWA-4 (bg)	-0.5841	-85	-87	No	21	0	n/a	0.01	NP
Chloride (mg/L)	GWC-21	-0.08314	-22	-92	No	22	0	n/a	0.01	NP
pH (SU)	GWA-1 (bg)	0.03054	57	87	No	21	0	n/a	0.01	NP
pH (SU)	GWA-11 (bg)	0.03016	49	87	No	21	0	n/a	0.01	NP
pH (SU)	GWA-2 (bg)	0.01018	28	87	No	21	0	n/a	0.01	NP
pH (SU)	GWA-3 (bg)	-0.004437	-7	-87	No	21	0	n/a	0.01	NP
pH (SU)	GWA-4 (bg)	0.01988	61	87	No	21	0	n/a	0.01	NP
pH (SU)	GWC-6	0.01922	29	92	No	22	0	n/a	0.01	NP

Appendix III Intrawell Prediction Limits - Resample Results (No Significant)

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 11/13/2023, 3:53 PM


 Constituent
 Well
 Upper Lim.
 Lower Lim. Date
 Observ.
 Sig.
 Bg N Bg Mean
 Std. Dev.
 %ND Adj.
 Transform Alpha
 Method

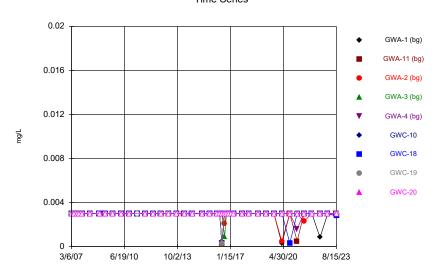

 pH (SU)
 GWC-6
 7.319
 6.708
 11/8/2023
 7.15
 No
 18
 7.014
 0.1274
 0
 None
 No
 0.0003135
 Param Intra 1 of 2

Table of Contents

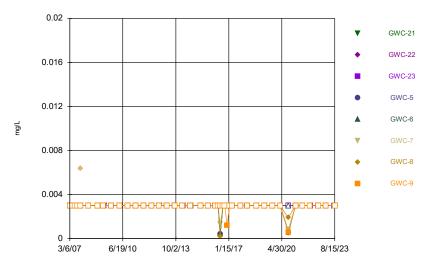
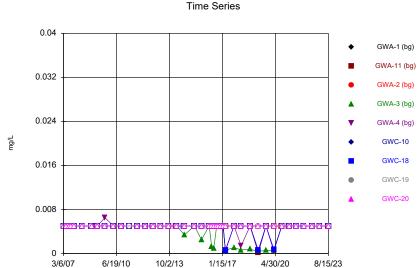
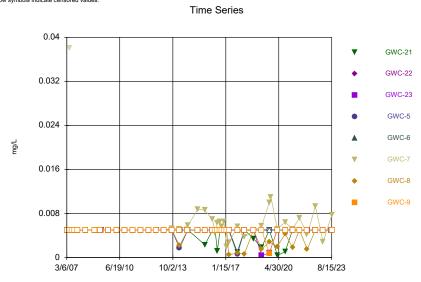

Figure A. Time Series	33
Figure A. Time Series	33
Figure B. Box Plots	137
Figure C. Outlier Summary	149
Figure D. Appendix I Intrawell Prediction Limits	151
Figure E. Appendix I Interwell Prediction Limit - Two-Step	353
Figure F. Appendix I Trend Tests	359
Figure G. Appendix III Intrawell Prediction Limits	364
Figure H. Appendix III Interwell Prediction Limits - Two-Step	518
Figure I. Appendix III Trend Tests	524
Figure J. Appendix III Intrawell Prediction Limits (November 2023 Resample)	530

FIGURE A.



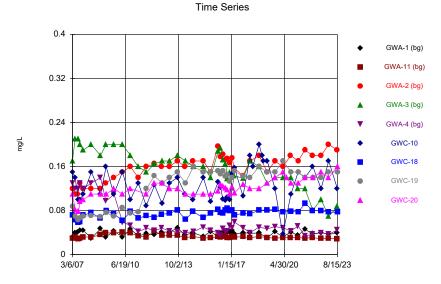
Constituent: Antimony Analysis Run 11/13/2023 3:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Antimony Analysis Run 11/13/2023 3:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.10.0.13b Software licensed to . UG Hollow symbols indicate censored values.

Constituent: Arsenic Analysis Run 11/13/2023 3:43 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.10.0.13b Software licensed to . UG Hollow symbols indicate censored values.

Constituent: Arsenic Analysis Run 11/13/2023 3:43 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas¹⁸ v.10.0.13b Software licensed to . UG

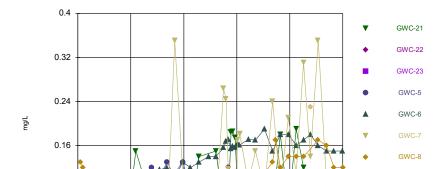
Constituent: Barium Analysis Run 11/13/2023 3:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Hollow symbols indicate censored values Time Series 0.3 GWA-1 (bg) GWA-11 (bg) 0.24 GWA-2 (bg) GWA-3 (bg) 0.18 GWA-4 (bg) GWC-10 GWC-18 0.12 GWC-19 GWC-20 0.06

Constituent: Beryllium Analysis Run 11/13/2023 3:43 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

1/15/17


4/30/20

8/15/23

10/2/13

3/6/07

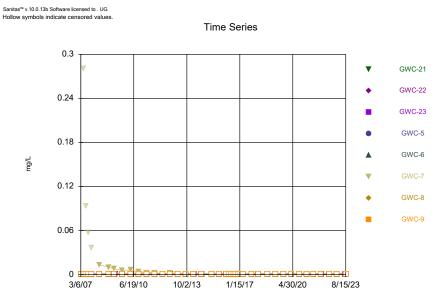
6/19/10

Time Series

Constituent: Barium Analysis Run 11/13/2023 3:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

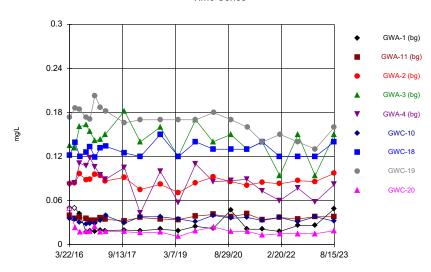
1/15/17

10/2/13

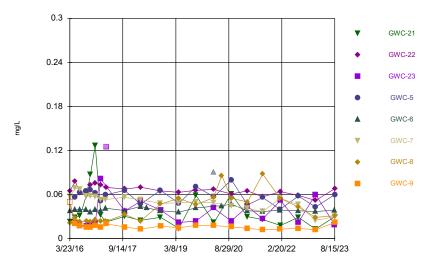

3/6/07

6/19/10

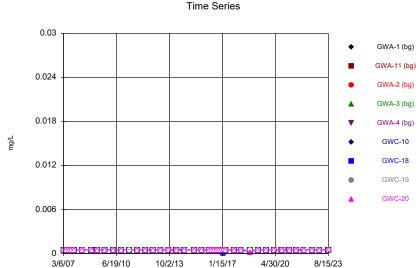
GWC-9


8/15/23

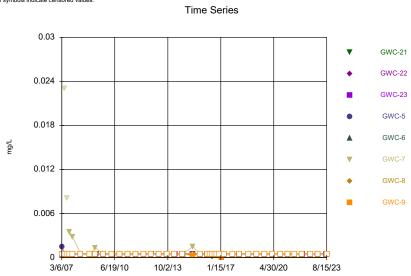
4/30/20



Constituent: Beryllium Analysis Run 11/13/2023 3:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

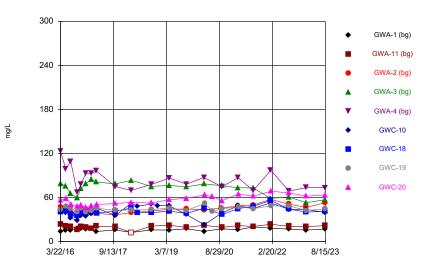

Constituent: Boron Analysis Run 11/13/2023 3:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

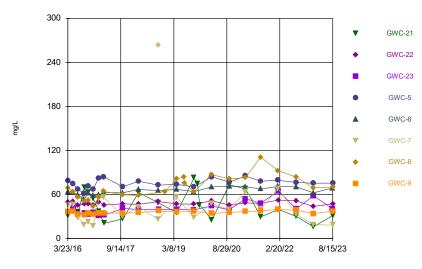
Constituent: Boron Analysis Run 11/13/2023 3:43 PM


Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

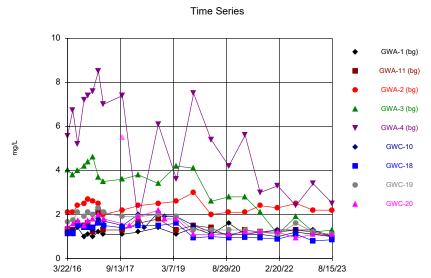
Sanitas™ v.10.0.13b Software licensed to . UG Hollow symbols indicate censored values.

Constituent: Cadmium Analysis Run 11/13/2023 3:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

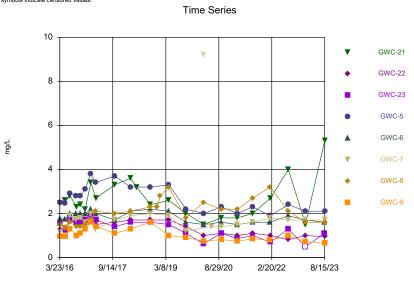

Sanitas™ v.10.0.13b Software licensed to . UG Hollow symbols indicate censored values.


Constituent: Cadmium Analysis Run 11/13/2023 3:43 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

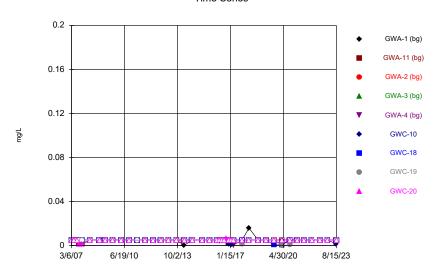


Constituent: Calcium Analysis Run 11/13/2023 3:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

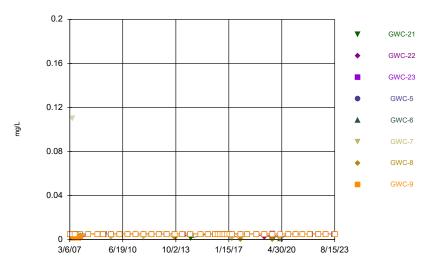

Constituent: Calcium Analysis Run 11/13/2023 3:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

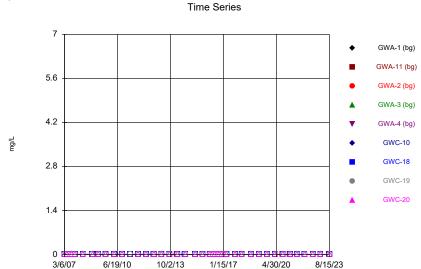
Sanitas™ v.10.0.13b Software licensed to . UG




Constituent: Chloride Analysis Run 11/13/2023 3:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

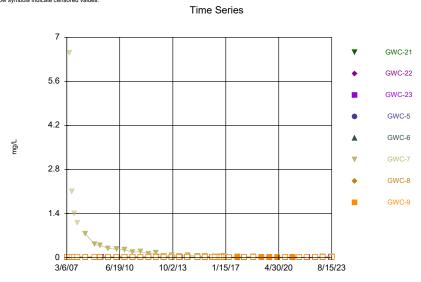
Sanitas™ v.10.0.13b Software licensed to . UG Hollow symbols indicate censored values.


Constituent: Chloride Analysis Run 11/13/2023 3:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

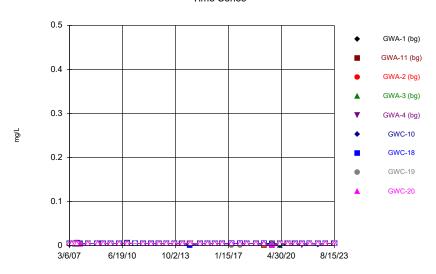

Constituent: Chromium Analysis Run 11/13/2023 3:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Time Series

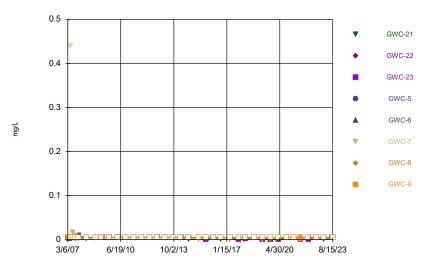
Constituent: Chromium Analysis Run 11/13/2023 3:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

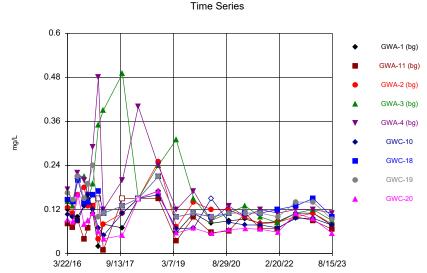

Sanitas™ v.10.0.13b Software licensed to . UG Hollow symbols indicate censored values.

Constituent: Cobalt Analysis Run 11/13/2023 3:43 PM

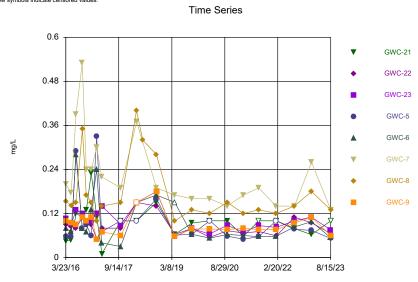

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.10.0.13b Software licensed to . UG Hollow symbols indicate censored values.


Constituent: Cobalt Analysis Run 11/13/2023 3:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

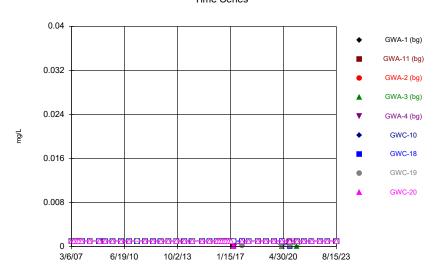

Constituent: Copper Analysis Run 11/13/2023 3:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Time Series


Constituent: Copper Analysis Run 11/13/2023 3:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

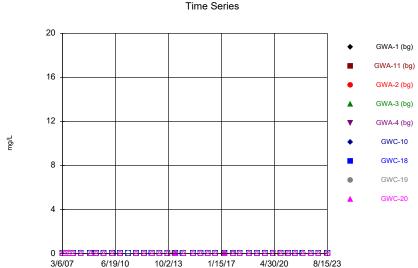
Sanitas™ v.10.0.13b Software licensed to . UG Hollow symbols indicate censored values.



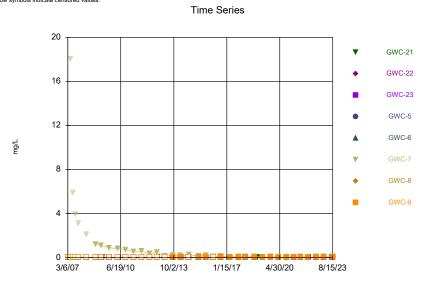

Constituent: Fluoride Analysis Run 11/13/2023 3:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.10.0.13b Software licensed to . UG Hollow symbols indicate censored values.

Constituent: Fluoride Analysis Run 11/13/2023 3:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

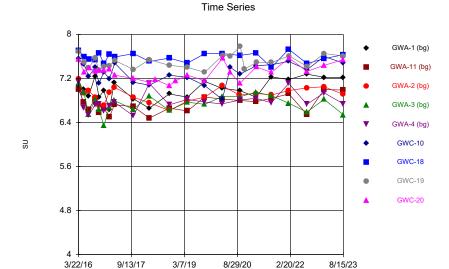


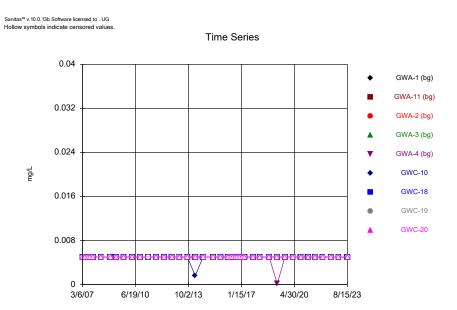
Constituent: Lead Analysis Run 11/13/2023 3:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Constituent: Lead Analysis Run 11/13/2023 3:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.10.0.13b Software licensed to . UG Hollow symbols indicate censored values.

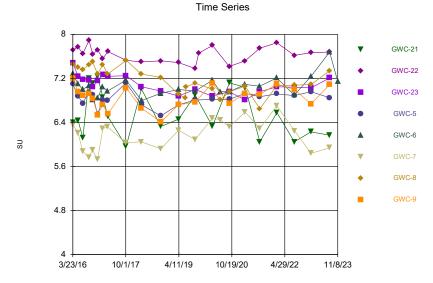
Constituent: Nickel Analysis Run 11/13/2023 3:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.10.0.13b Software licensed to . UG Hollow symbols indicate censored values.

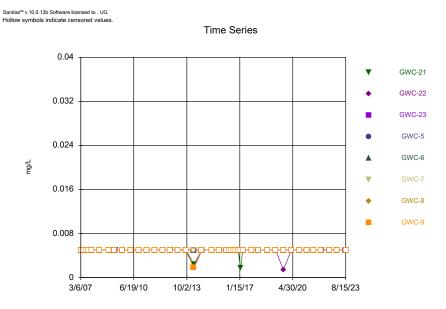

Constituent: Nickel Analysis Run 11/13/2023 3:43 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.10.0.13b Software licensed to . UG

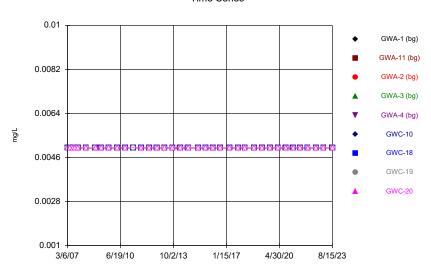


Constituent: pH Analysis Run 11/13/2023 3:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill



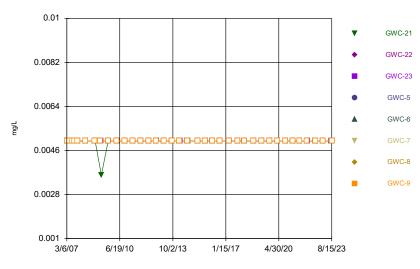
Constituent: Selenium Analysis Run 11/13/2023 3:43 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill



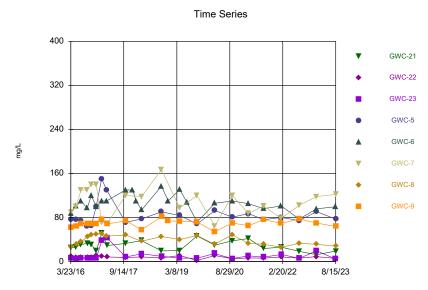
Constituent: pH Analysis Run 11/13/2023 3:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Selenium Analysis Run 11/13/2023 3:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

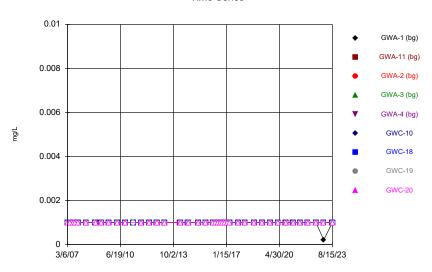

Constituent: Silver Analysis Run 11/13/2023 3:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.10.0.13b Software licensed to . UG

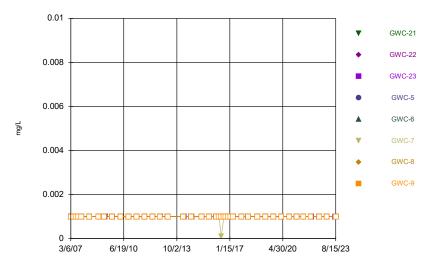
Time Series 400 GWA-1 (bg) GWA-11 (bg) 320 GWA-2 (bg) GWA-3 (bg) 240 GWA-4 (bg) GWC-10 GWC-18 160 GWC-19 GWC-20 80 3/22/16 9/13/17 3/7/19 8/29/20 2/20/22 8/15/23


Constituent: Sulfate Analysis Run 11/13/2023 3:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

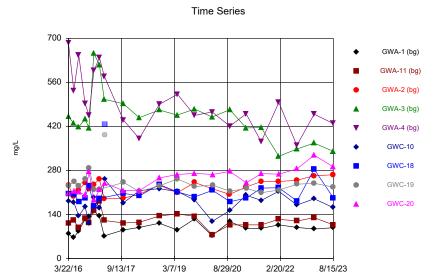
Time Series


Constituent: Silver Analysis Run 11/13/2023 3:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.10.0.13b Software licensed to . UG

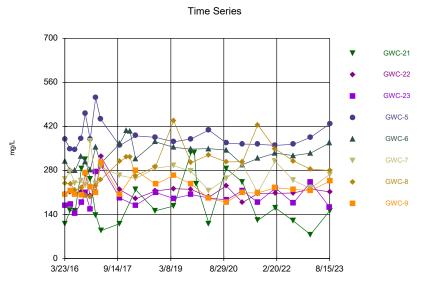


Constituent: Sulfate Analysis Run 11/13/2023 3:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

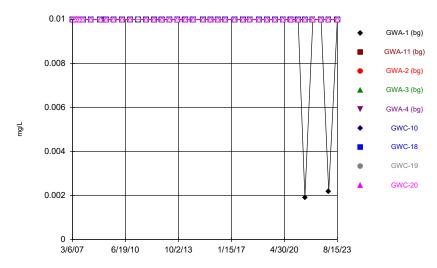


Constituent: Thallium Analysis Run 11/13/2023 3:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Thallium Analysis Run 11/13/2023 3:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

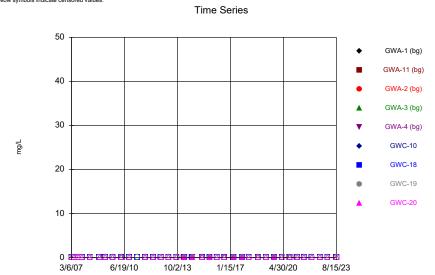

Sanitas™ v.10.0.13b Software licensed to . UG

Constituent: Total Dissolved Solids Analysis Run 11/13/2023 3:43 PM


Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

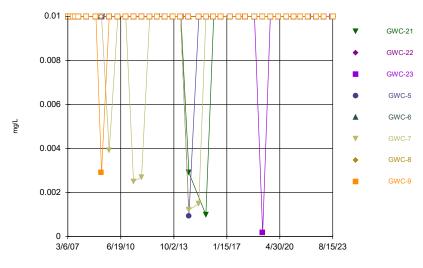
Sanitas™ v.10.0.13b Software licensed to . UG

Constituent: Total Dissolved Solids Analysis Run 11/13/2023 3:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill



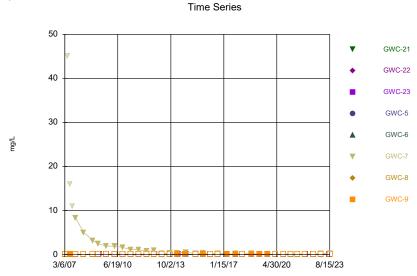
Constituent: Vanadium Analysis Run 11/13/2023 3:43 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.10.0.13b Software licensed to . UG Hollow symbols indicate censored values.

Constituent: Zinc Analysis Run 11/13/2023 3:43 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Time Series

Constituent: Vanadium Analysis Run 11/13/2023 3:43 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.10.0.13b Software licensed to . UG Hollow symbols indicate censored values.

Constituent: Zinc Analysis Run 11/13/2023 3:43 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Antimony (mg/L) Analysis Run 11/13/2023 3:44 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.003		<0.003	<0.003	<0.003			<0.003	
3/7/2007		<0.003				<0.003	<0.003		<0.003
5/8/2007	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003			
5/9/2007							<0.003	<0.003	<0.003
7/7/2007	<0.003		<0.003						
7/17/2007		<0.003		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
8/28/2007	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	
8/29/2007									<0.003
11/6/2007	<0.003		<0.003	<0.003	<0.003				
11/7/2007		<0.003				<0.003	<0.003	<0.003	<0.003
5/7/2008							<0.003	<0.003	<0.003
5/8/2008				<0.003	<0.003				
5/9/2008	<0.003	<0.003	<0.003			<0.003			
12/2/2008		<0.003				<0.003			
12/3/2008	<0.003		<0.003	<0.003	<0.003		<0.003		
12/4/2008								<0.003	
12/5/2008									<0.003
4/7/2009	<0.003		<0.003	<0.003	<0.003				
4/8/2009		<0.003				<0.003			
4/14/2009							<0.003	<0.003	<0.003
9/30/2009									<0.003
10/1/2009	<0.003	<0.003	<0.003			<0.003	<0.003		
10/2/2009				<0.003	<0.003			<0.003	
4/13/2010							<0.003	<0.003	<0.003
4/14/2010	<0.003	<0.003		<0.003	<0.003	<0.003			
10/7/2010			<0.003						
10/12/2010							<0.003	<0.003	<0.003
10/13/2010	<0.003	<0.003				<0.003			
10/14/2010				<0.003	<0.003				
4/5/2011				<0.003	<0.003				
4/6/2011	<0.003	<0.003	<0.003			<0.003	<0.003	<0.003	
10/4/2011		<0.003				<0.003			
10/6/2011			<0.003						
10/10/2011	<0.003								
10/12/2011				<0.003	<0.003		<0.003	<0.003	<0.003
4/3/2012	<0.003		<0.003						
4/4/2012				<0.003	<0.003				
4/5/2012							<0.003	<0.003	
4/9/2012									<0.003
4/10/2012		<0.003				<0.003			
9/19/2012			<0.003				<0.003		
9/24/2012	<0.003				<0.003				
9/25/2012								<0.003	<0.003
9/26/2012		<0.003		<0.003		<0.003			
3/12/2013	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003			
3/13/2013							<0.003	<0.003	<0.003
9/9/2013			<0.003						
9/10/2013		<0.003		<0.003	<0.003	<0.003	<0.003		
9/11/2013	<0.003							<0.003	<0.003
3/4/2014	<0.003	<0.003	<0.003			<0.003			
3/10/2014							<0.003	<0.003	<0.003
3/11/2014				<0.003	<0.003				

Constituent: Antimony (mg/L) Analysis Run 11/13/2023 3:44 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3/2014	<0.003	<0.003	<0.003			<0.003	<0.003		
9/8/2014				<0.003	<0.003				
9/9/2014								<0.003	<0.003
4/21/2015	<0.003	<0.003		<0.003	<0.003	<0.003			
4/22/2015			<0.003				<0.003	<0.003	
4/23/2015									<0.003
9/29/2015		<0.003		<0.003	<0.003				
9/30/2015	<0.003		<0.003			<0.003	<0.003	<0.003	<0.003
3/22/2016	<0.003	<0.003	<0.003	<0.003	<0.003				
3/23/2016						<0.003			<0.003
3/24/2016							<0.003	<0.003	
5/17/2016	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003			
5/18/2016							<0.003	<0.003	<0.003
7/5/2016	<0.003		<0.003	<0.003					
7/6/2016		0.0003 (J)			0.0003 (J)	0.0005 (J)		0.0003 (J)	
7/7/2016							<0.003		<0.003
9/7/2016	<0.003	<0.003	0.0021 (J)	0.0009 (J)	<0.003	<0.003			
9/8/2016							<0.003	<0.003	<0.003
10/18/2016	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003		<0.003	
10/19/2016							<0.003		<0.003
12/6/2016	<0.003	<0.003		<0.003	<0.003	<0.003			
12/7/2016			<0.003					<0.003	<0.003
12/8/2016							<0.003		
1/31/2017	<0.003		<0.003						
2/1/2017		<0.003		<0.003	<0.003				
2/2/2017						<0.003	<0.003	<0.003	
2/3/2017									<0.003
3/23/2017	<0.003		<0.003	<0.003					
3/24/2017		<0.003			<0.003				
3/27/2017						<0.003	<0.003	<0.003	<0.003
10/4/2017	<0.003		<0.003	<0.003	<0.003				
10/5/2017		<0.003				<0.003	<0.003	<0.003	<0.003
3/14/2018	<0.003		<0.003						
3/15/2018		<0.003		<0.003	<0.003	<0.003		<0.003	
3/16/2018							<0.003		<0.003
10/4/2018	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003		<0.003	
10/5/2018							<0.003		<0.003
4/5/2019				<0.003					
4/8/2019	<0.003	<0.003	<0.003		<0.003				
4/9/2019						<0.003	<0.003	<0.003	<0.003
9/30/2019	<0.003	<0.003	<0.003	<0.003	<0.003				
10/1/2019						<0.003	<0.003	<0.003	<0.003
3/26/2020	0.00028 (J)	<0.003	0.00049 (J)	<0.003	<0.003				
3/27/2020						<0.003			
3/30/2020							<0.003		
3/31/2020								<0.003	<0.003
9/21/2020			<0.003						
9/22/2020		<0.003							
9/23/2020	<0.003			<0.003	<0.003				<0.003
9/24/2020							0.00033 (J)		
9/25/2020						<0.003			
9/28/2020								<0.003	

Constituent: Antimony (mg/L) Analysis Run 11/13/2023 3:44 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/8/2021	<0.003	0.0005 (J)		<0.003	0.0016 (J)				
3/9/2021			<0.003			<0.003	<0.003		
3/10/2021								<0.003	<0.003
8/9/2021	<0.003		0.0023 (J)	<0.003	<0.003				
8/10/2021		<0.003				<0.003	<0.003	<0.003	<0.003
2/4/2022	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003		
2/7/2022								<0.003	<0.003
8/8/2022	0.00084 (J)	<0.003	<0.003	<0.003	<0.003				
8/9/2022						<0.003	<0.003	<0.003	<0.003
1/30/2023	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003			
1/31/2023							<0.003	<0.003	<0.003
8/14/2023	0.0028 (J)	<0.003	<0.003	<0.003	<0.003	<0.003			
8/15/2023							0.0028 (J)	<0.003	< 0.003

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.003	<0.003	<0.003					
3/7/2007				<0.003	<0.003			<0.003
5/8/2007				<0.003				<0.003
5/9/2007	<0.003	<0.003	<0.003		<0.003	<0.003	<0.003	
7/6/2007				<0.003		<0.003	<0.003	<0.003
7/17/2007	<0.003	<0.003	<0.003		<0.003			
8/28/2007				<0.003	<0.003	<0.003	<0.003	<0.003
8/29/2007	<0.003	<0.003	<0.003					
11/6/2007				<0.003	<0.003	<0.003	0.0064 (o)	<0.003
11/7/2007	<0.003	<0.003	<0.003					
5/7/2008	<0.003	<0.003	<0.003					
5/8/2008				<0.003	<0.003	<0.003	<0.003	<0.003
12/2/2008						<0.003	<0.003	<0.003
12/3/2008				<0.003	<0.003			
12/5/2008	<0.003	<0.003	<0.003					
4/7/2009				<0.003	<0.003			
4/8/2009						<0.003	<0.003	<0.003
4/14/2009		<0.003	<0.003					
4/27/2009	<0.003							
9/30/2009	<0.003	<0.003					<0.003	<0.003
10/1/2009			<0.003	<0.003	<0.003	<0.003		
4/13/2010	<0.003	<0.003			<0.003	<0.003	<0.003	<0.003
4/14/2010			<0.003	<0.003				
10/6/2010					<0.003			
10/7/2010						<0.003		
10/12/2010	<0.003	<0.003						
10/13/2010			<0.003				<0.003	<0.003
10/14/2010				<0.003				
4/5/2011				<0.003	<0.003	<0.003	<0.003	<0.003
4/6/2011		<0.003	<0.003					
10/4/2011					<0.003	<0.003	<0.003	<0.003
10/5/2011	<0.003	<0.003						
10/12/2011			<0.003	<0.003				
4/3/2012					<0.003	<0.003	<0.003	
4/4/2012				<0.003				<0.003
4/9/2012		<0.003	<0.003					
4/10/2012	<0.003							
9/18/2012					<0.003	<0.003		
9/19/2012			<0.003				<0.003	<0.003
9/24/2012				<0.003				
9/25/2012		<0.003						
9/26/2012	<0.003							
3/12/2013				<0.003	<0.003	<0.003	<0.003	<0.003
3/13/2013	<0.003	<0.003	<0.003					
9/9/2013					<0.003			
9/10/2013			<0.003	<0.003		<0.003	<0.003	<0.003
9/11/2013	<0.003	<0.003						
3/5/2014				<0.003	<0.003	<0.003	<0.003	<0.003
3/11/2014	<0.003	<0.003	<0.003					
9/3/2014			<0.003					<0.003
9/8/2014					<0.003	<0.003		
9/9/2014	<0.003	<0.003		<0.003			<0.003	

					,			
	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.003		<0.003		<0.003
4/22/2015					<0.003		<0.003	
4/23/2015		<0.003	< 0.003					
9/29/2015				<0.003	<0.003	< 0.003	<0.003	<0.003
9/30/2015	<0.003	<0.003	< 0.003					
3/23/2016		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
3/24/2016	<0.003							
5/17/2016				<0.003	<0.003			
5/18/2016	<0.003	<0.003				< 0.003	< 0.003	<0.003
5/19/2016			< 0.003					
7/6/2016				0.0004 (J)	0.0005 (J)	0.0013 (J)	0.0002 (J)	<0.003
7/7/2016	<0.003	<0.003	< 0.003					
9/7/2016				<0.003	<0.003	<0.003		
9/8/2016	<0.003	<0.003	<0.003				< 0.003	<0.003
10/18/2016				<0.003	<0.003	<0.003	<0.003	
10/19/2016	<0.003	<0.003	<0.003					<0.003
12/7/2016	<0.003	<0.003	<0.003					
12/8/2016				<0.003	<0.003	<0.003	<0.003	0.0012 (J)
2/1/2017				<0.003	<0.003			
2/2/2017	<0.003	<0.003				< 0.003	< 0.003	<0.003
2/3/2017			<0.003					
3/23/2017				<0.003	<0.003			
3/24/2017						<0.003	<0.003	
3/27/2017	<0.003	<0.003	< 0.003					<0.003
10/4/2017				<0.003	<0.003	<0.003		
10/5/2017	<0.003	<0.003	< 0.003				<0.003	<0.003
3/14/2018							<0.003	
3/15/2018	<0.003	<0.003	<0.003			<0.003		<0.003
3/16/2018				<0.003	<0.003			
10/4/2018	<0.003	<0.003		<0.003	<0.003	<0.003	<0.003	
10/5/2018			< 0.003					<0.003
4/8/2019			< 0.003		<0.003	< 0.003	<0.003	<0.003
4/9/2019	<0.003	< 0.003		<0.003				
10/1/2019	<0.003	< 0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
3/26/2020			<0.003					
3/27/2020							<0.003	<0.003
3/30/2020						<0.003		
3/31/2020	<0.003	<0.003		<0.003	<0.003			
9/23/2020		<0.003	<0.003					
9/24/2020	<0.003					0.0008 (J)	0.0019 (J)	0.00056 (J)
9/25/2020				0.00052 (J)	<0.003	(,,	(,,	(-,
3/9/2021	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
8/10/2021	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
2/4/2022				<0.003	<0.003	<0.003	<0.003	<0.003
2/7/2022	<0.003	<0.003	<0.003	0.000	0.000	0.000	0.000	0.000
8/8/2022	2.300	2.300	<0.003		<0.003			
8/9/2022	<0.003	<0.003	0.500	<0.003	3.550		<0.003	<0.003
8/10/2022	3.300	0.500		0.000		<0.003	0.000	0.000
1/31/2023	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
8/14/2023	-0.000	-0.000	<0.003	-0.000	<0.003	-0.000	-0.000	-0.000
8/15/2023	<0.003	<0.003	-0.500	<0.003	-0.000	<0.003	<0.003	<0.003
0/13/2023	~0.003	~U.UU3		~0.003		~U.UU3	~0.003	~0.003

Constituent: Arsenic (mg/L) Analysis Run 11/13/2023 3:44 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill GWA-1 (bg) GWA-11 (bg) GWA-2 (bg) GWA-3 (bg) GWA-4 (bg) GWC-10 GWC-18 GWC-19 GWC-20 3/6/2007 <0.005 <0.005 <0.005 <0.005 <0.005 3/7/2007 < 0.005 <0.005 < 0.005 < 0.005 5/8/2007 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 5/9/2007 <0.005 <0.005 <0.005 7/7/2007 <0.005 <0.005 7/17/2007 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 8/28/2007 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 < 0.005 8/29/2007 <0.005 11/6/2007 <0.005 <0.005 <0.005 <0.005 <0.005 11/7/2007 <0.005 <0.005 < 0.005 <0.005 5/7/2008 <0.005 <0.005 <0.005 5/8/2008 < 0.005 <0.005 5/9/2008 <0.005 < 0.005 < 0.005 < 0.005 12/2/2008 <0.005 <0.005 12/3/2008 <0.005 <0.005 <0.005 <0.005 <0.005 12/4/2008 <0.005 12/5/2008 <0.005 4/7/2009 <0.005 <0.005 <0.005 <0.005 4/8/2009 <0.005 <0.005 4/14/2009 <0.005 <0.005 <0.005 <0.005 9/30/2009 10/1/2009 <0.005 <0.005 <0.005 <0.005 <0.005 10/2/2009 < 0.005 0.0065 < 0.005 4/13/2010 <0.005 <0.005 < 0.005 < 0.005 4/14/2010 <0.005 <0.005 <0.005 <0.005 <0.005 10/7/2010 <0.005 <0.005 <0.005 <0.005 10/12/2010 <0.005 10/13/2010 <0.005 <0.005 <0.005 10/14/2010 < 0.005 4/5/2011 <0.005 <0.005 <0.005 4/6/2011 <0.005 <0.005 <0.005 <0.005 <0.005 10/4/2011 < 0.005 <0.005 10/6/2011 <0.005 10/10/2011 <0.005 10/12/2011 <0.005 <0.005 <0.005 < 0.005 < 0.005 4/3/2012 <0.005 <0.005 4/4/2012 <0.005 <0.005 4/5/2012 <0.005 <0.005 4/9/2012 <0.005 <0.005 <0.005 4/10/2012 9/19/2012 <0.005 <0.005 <0.005 9/24/2012 <0.005 9/25/2012 < 0.005 < 0.005 9/26/2012 <0.005 <0.005 <0.005 3/12/2013 <0.005 < 0.005 <0.005 <0.005 <0.005 <0.005 3/13/2013 < 0.005 < 0.005 < 0.005 9/9/2013 <0.005 9/10/2013 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 9/11/2013 <0.005 <0.005 3/4/2014 <0.005 <0.005 <0.005 <0.005

0.005

<0.005

<0.005

< 0.005

<0.005

3/10/2014

3/11/2014

		GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3/201	1	<0.005	<0.005	<0.005			<0.005	<0.005		
9/8/2014	1				0.0034 (J)	<0.005				
9/9/2014	1								<0.005	<0.005
4/21/20	15	<0.005	<0.005		<0.005	<0.005	<0.005			
4/22/20	15			<0.005				<0.005	<0.005	
4/23/20	15									<0.005
9/29/20	15		<0.005		0.0025 (J)	<0.005				
9/30/20	15	<0.005		<0.005			<0.005	<0.005	<0.005	<0.005
3/22/20	16	<0.005	<0.005	<0.005	<0.005	<0.005				
3/23/20	16						<0.005			<0.005
3/24/20	16							<0.005	<0.005	
5/17/20		<0.005	<0.005	<0.005	0.00129 (J)	<0.005	<0.005			
5/18/20					. ,			<0.005	<0.005	<0.005
7/5/2010		<0.005		<0.005	0.001 (J)					
7/6/2010			<0.005		(1)	<0.005	<0.005		<0.005	
7/7/2010								<0.005		<0.005
9/7/2010		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
9/8/201								<0.005	<0.005	<0.005
10/18/20		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.000	<0.005	0.000
10/19/20		10.000	10.000	-0.000	10.000	-0.000	-0.000	<0.005	-0.000	<0.005
12/6/20		<0.005	<0.005		<0.005	<0.005	<0.005	-0.000		-0.000
12/7/20		10.003	10.003	<0.005	10.003	10.003	10.003		<0.005	<0.005
12/8/20				40.003				<0.005	10.000	10.003
1/31/20		<0.005		<0.005				~ 0.003		
2/1/201		~0.003	<0.005	~ 0.003	<0.005	<0.005				
2/2/201			~0.003		~0.003	~0.003	<0.005	<0.005	<0.005	
2/3/201							\0.003	<0.005	<0.005	<0.005
3/23/201		<0.005		<0.005	0.0006 (1)					<0.005
		<0.005	<0.005	<0.005	0.0006 (J)	0.0006 (1)				
3/24/20			<0.005			0.0006 (J)	<0.00E	0.0005 (1)	<0.00E	<0.00E
3/27/20		-0.005		-0.005	0.0011 (1)	10.005	<0.005	0.0005 (J)	<0.005	<0.005
10/4/20		<0.005	-0.005	<0.005	0.0011 (J)	<0.005	-0.005	-0.005	10.005	-0.005
10/5/20		-0.005	<0.005	10.005			<0.005	<0.005	<0.005	<0.005
3/14/20		<0.005		<0.005						
3/15/20			<0.005		0.00066 (J)	0.0014 (J)	<0.005	0.005	<0.005	.0.005
3/16/20		.0.005	.0.005	.0.005	0.0000 (1)		0.005	<0.005	.0.005	<0.005
10/4/20		<0.005	<0.005	<0.005	0.0008 (J)	<0.005	<0.005		<0.005	
10/5/20					0.00005 (1)			<0.005		<0.005
4/5/2019		.0.005	0.00040 (1)	.0.005	0.00035 (J)	0.00000 (1)				
4/8/2019		<0.005	0.00012 (J)	<0.005		0.00023 (J)				
4/9/2019							<0.005	0.00063 (J)	<0.005	<0.005
9/30/20		<0.005	<0.005	<0.005	0.00058 (J)	<0.005				
10/1/20							<0.005	<0.005	<0.005	<0.005
3/26/20		<0.005	<0.005	<0.005	0.00048 (J)	0.00044 (J)				
3/27/20							<0.005			
3/30/20								0.00073 (J)		
3/31/20									<0.005	<0.005
9/21/20				<0.005						
9/22/20			<0.005							
9/23/20		<0.005			<0.005	<0.005				<0.005
9/24/20								<0.005		
9/25/20							<0.005			
9/28/20	20								<0.005	

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/8/2021	<0.005	<0.005		<0.005	<0.005				
3/9/2021			<0.005			<0.005	<0.005		
3/10/2021								<0.005	<0.005
8/9/2021	<0.005		<0.005	<0.005	<0.005				
8/10/2021		<0.005				<0.005	<0.005	<0.005	<0.005
2/4/2022	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		
2/7/2022								<0.005	<0.005
8/8/2022	<0.005	<0.005	<0.005	<0.005	<0.005				
8/9/2022						<0.005	<0.005	<0.005	<0.005
1/30/2023	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
1/31/2023							<0.005	<0.005	<0.005
8/14/2023	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
8/15/2023							<0.005	<0.005	<0.005

Constituent: Arsenic (mg/L) Analysis Run 11/13/2023 3:44 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9	
3/6/2007	<0.005	<0.005	<0.005						
3/7/2007				<0.005	<0.005			<0.005	
5/8/2007				<0.005				<0.005	
5/9/2007	<0.005	<0.005	<0.005		<0.005	0.038 (o)	<0.005		
7/6/2007	10.000	40.003	40.000	<0.005	10.000	<0.005	<0.005	<0.005	
7/17/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
	<0.005	<0.005	<0.005	-0.005		-0.005	-0.005	-0.005	
8/28/2007			2 225	<0.005	<0.005	<0.005	<0.005	<0.005	
8/29/2007	<0.005	<0.005	<0.005						
11/6/2007				<0.005	<0.005	<0.005	<0.005	<0.005	
11/7/2007	<0.005	<0.005	<0.005						
5/7/2008	<0.005	<0.005	<0.005						
5/8/2008				<0.005	<0.005	<0.005	<0.005	<0.005	
12/2/2008						<0.005	<0.005	<0.005	
12/3/2008				<0.005	<0.005				
12/5/2008	<0.005	<0.005	<0.005						
4/7/2009				<0.005	<0.005				
4/8/2009						<0.005	<0.005	<0.005	
4/14/2009		<0.005	<0.005						
4/27/2009	<0.005								
9/30/2009	<0.005	<0.005					<0.005	<0.005	
10/1/2009			<0.005	<0.005	<0.005	<0.005			
4/13/2010	<0.005	<0.005			<0.005	<0.005	<0.005	<0.005	
4/14/2010			<0.005	<0.005					
10/6/2010					<0.005				
10/7/2010						<0.005			
10/12/2010	<0.005	<0.005							
10/13/2010			<0.005				<0.005	<0.005	
10/14/2010				<0.005					
4/5/2011				<0.005	<0.005	<0.005	<0.005	<0.005	
4/6/2011		<0.005	<0.005						
10/4/2011		0.000	0.000		<0.005	<0.005	<0.005	<0.005	
10/5/2011	<0.005	<0.005			0.000	0.000	0.000	0.000	
10/12/2011	-0.000	-0.000	<0.005	<0.005					
4/3/2012			~0.003	~ 0.003	<0.00E	<0.00E	<0.00E		
				<0.00E	<0.005	<0.005	<0.005	<0.00E	
4/4/2012		-0.005	-0.005	<0.005				<0.005	
4/9/2012	.0.005	<0.005	<0.005						
4/10/2012	<0.005				0.005				
9/18/2012					<0.005	<0.005			
9/19/2012			<0.005				<0.005	<0.005	
9/24/2012				<0.005					
9/25/2012		<0.005							
9/26/2012	<0.005								
3/12/2013				<0.005	<0.005	<0.005	<0.005	<0.005	
3/13/2013	<0.005	<0.005	<0.005						
9/9/2013					<0.005				
9/10/2013			<0.005	<0.005		0.0053	<0.005	<0.005	
9/11/2013	<0.005	<0.005							
3/5/2014				0.0017 (J)	<0.005	0.0052	0.0022 (J)	<0.005	
3/11/2014	<0.005	<0.005	<0.005						
9/3/2014			<0.005					<0.005	
9/8/2014					<0.005	0.0058			
9/9/2014	<0.005	<0.005		<0.005			<0.005		

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.005		0.0088		<0.005
4/22/2015					<0.005		<0.005	
4/23/2015		<0.005	<0.005					
9/29/2015				<0.005	<0.005	0.0086	<0.005	<0.005
9/30/2015	0.0023 (J)	<0.005	<0.005					
3/23/2016		<0.005	<0.005	<0.005	<0.005	0.00693	<0.005	<0.005
3/24/2016	<0.005							
5/17/2016				<0.005	<0.005			
5/18/2016	<0.005	<0.005				0.00451 (J)	<0.005	<0.005
5/19/2016			<0.005			()		
7/6/2016				<0.005	<0.005	0.0063	<0.005	<0.005
7/7/2016	0.0012 (J)	<0.005	<0.005					
9/7/2016				<0.005	<0.005	0.0065		
9/8/2016	<0.005	<0.005	<0.005				<0.005	<0.005
10/18/2016				<0.005	<0.005	0.0056	<0.005	
10/19/2016		<0.005	<0.005	0.000	0.000	0.0000	0.000	<0.005
12/7/2016	<0.005	<0.005	<0.005					-0.000
12/8/2016	10.000	٠٥.٥٥٥	10.003	<0.005	<0.005	0.0065	<0.005	<0.005
2/1/2017				<0.005	<0.005	0.0003	-0.003	-0.000
2/1/2017	<0.005	<0.005		<0.003	<0.005	0.002 (J)	<0.005	<0.005
	<0.005	<0.005	<0.00E			0.002 (3)	<0.005	<0.005
2/3/2017 3/23/2017			<0.005	-0.005	-0.005			
				<0.005	<0.005	0.0007.(1)	0.0005 (1)	
3/24/2017	.0.005	.0.005	0.005			0.0027 (J)	0.0005 (J)	0.005
3/27/2017	<0.005	<0.005	<0.005					<0.005
10/4/2017				0.0006 (J)	<0.005	0.0056		
10/5/2017	0.001 (J)	<0.005	<0.005				0.0008 (J)	<0.005
3/14/2018							0.00064 (J)	
3/15/2018	<0.005	<0.005	<0.005			0.0037 (J)		<0.005
3/16/2018				<0.005	<0.005			
10/4/2018	0.0034 (J)	<0.005		<0.005	<0.005	0.0049 (J)	<0.005	
10/5/2018			<0.005					<0.005
4/8/2019			0.00034 (J)		<0.005	0.0057	0.0015 (J)	<0.005
4/9/2019	0.0018 (J)	<0.005		<0.005				
10/1/2019	<0.005	<0.005	0.00082 (J)	<0.005	<0.005	0.01	0.0028 (J)	0.00071 (J)
11/6/2019						0.011		
3/26/2020			<0.005					
3/27/2020							0.002 (J)	<0.005
3/30/2020						0.0052		
3/31/2020	0.00035 (J)	<0.005		<0.005	<0.005			
9/23/2020		<0.005	<0.005					
9/24/2020	0.0011 (J)					0.0064	0.0043 (J)	<0.005
9/25/2020				<0.005	<0.005			
3/9/2021	<0.005	<0.005	<0.005	<0.005	<0.005	0.0052	0.0018 (J)	<0.005
8/10/2021	<0.005	<0.005	<0.005	<0.005	<0.005	0.0072	0.005	<0.005
2/4/2022				<0.005	<0.005	0.0042 (J)	0.0015 (J)	<0.005
2/7/2022	<0.005	<0.005	<0.005					
8/8/2022			<0.005		<0.005			
8/9/2022	<0.005	<0.005		<0.005			<0.005	<0.005
8/10/2022						0.0093		
1/31/2023	<0.005	<0.005	<0.005	<0.005	<0.005	0.0028 (J)	<0.005	<0.005
8/14/2023			<0.005		<0.005			
8/15/2023	<0.005	<0.005		<0.005		0.0077 (J)	<0.005	<0.005

Constituent: Barium (mg/L) Analysis Run 11/13/2023 3:44 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

3/6/2007	GWA-1 (bg) 0.032	GWA-11 (bg)	GWA-2 (bg) 0.12	GWA-3 (bg) 0.17	GWA-4 (bg) 0.13	GWC-10	GWC-18	GWC-19 0.088	GWC-20
3/7/2007	0.032	0.03	0.12	0.17	0.13	0.15	0.072	0.000	0.11
5/8/2007	0.04	0.03	0.11	0.21	0.12	0.13	0.072		0.11
5/9/2007	0.04	0.032	0.11	0.21	0.12	0.14	0.063	0.07	0.082
	0.041		0.11				0.003	0.07	0.062
7/7/2007 7/17/2007	0.041	0.028	0.11	0.21	0.12	0.1	0.058	0.063	0.078
	0.044		0.12	0.21	0.12	0.1			0.076
8/28/2007	0.044	0.03	0.13	0.2	0.13	0.1	0.06	0.066	0.006
8/29/2007	0.044		0.12	0.10	0.10				0.096
11/6/2007 11/7/2007	0.044	0.032	0.12	0.19	0.12	0.11	0.072	0.07	0.1
5/7/2008		0.032				0.11	0.072	0.071	0.11
5/8/2008				0.2	0.13		0.070	0.071	0.11
5/9/2008	0.03	0.032	0.12	0.2	0.13	0.15			
12/2/2008	0.03	0.032	0.12			0.13			
12/3/2008	0.047	0.030	0.12	0.18	0.14	0.11	0.066		
12/4/2008	0.047		0.12	0.16	0.14		0.000	0.068	
12/4/2008								0.008	0.11
4/7/2009	0.032		0.13	0.2	0.097				0.11
4/8/2009	0.032	0.04	0.13	0.2	0.037	0.16			
4/14/2009		0.04				0.10	0.08	0.076	0.11
9/30/2009							0.00	0.070	0.12
10/1/2009	0.043	0.039	0.14			0.11	0.074		0.12
10/1/2009	0.043	0.033	0.14	0.2	0.11	0.11	0.074	0.07	
4/13/2010			0.15	0.2	0.11		0.062	0.085	0.11
4/14/2010	0.032	0.041	0.10	0.2	0.059	0.15	0.002	0.000	0.11
10/7/2010	0.002	0.041	0.16	0.2	0.000	0.10			
10/12/2010			0.10				0.078	0.075	0.12
10/13/2010	0.046	0.039				0.1			
10/14/2010				0.18	0.053				
4/5/2011				0.16	0.042				
4/6/2011	0.034	0.034	0.14			0.13	0.066	0.077	
10/4/2011		0.032				0.089			
10/6/2011			0.16						
10/10/2011	0.038								
10/12/2011				0.15	0.048		0.071	0.12	0.11
4/3/2012	0.0363		0.165						
4/4/2012				0.165	0.044				
4/5/2012							0.0675	0.143	
4/9/2012									0.13
4/10/2012		0.0425				0.126			
9/19/2012			0.16				0.073		
9/24/2012	0.041				0.048				
9/25/2012								0.13	0.13
9/26/2012		0.035		0.17		0.093			
3/12/2013	0.041	0.035	0.16	0.17	0.043	0.13			
3/13/2013							0.075	0.14	0.12
9/9/2013			0.17						
9/10/2013		0.035		0.18	0.042	0.14	0.081		
9/11/2013	0.048							0.15	0.12
3/4/2014	0.036	0.031	0.16			0.11			
3/10/2014							0.064	0.13	0.11
3/11/2014				0.17	0.04				

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3/2014	0.04	0.033	0.17			0.1	0.078		
9/8/2014				0.16	0.042				
9/9/2014								0.16	0.11
4/21/2015	0.033	0.03		0.16	0.05	0.14			
4/22/2015			0.17				0.067	0.15	
4/23/2015									0.11
9/29/2015		0.031		0.14	0.044				
9/30/2015	0.042		0.15			0.096	0.075	0.15	0.11
3/22/2016	0.0326	0.0327	0.197	0.188	0.0397				
3/23/2016						0.132			0.115
3/24/2016							0.0818	0.152	
5/17/2016	0.0387	0.0323	0.178	0.193	0.0351	0.122			
5/18/2016						****	0.0763	0.146	0.128
7/5/2016	0.0403		0.182	0.172					
7/6/2016	0.0.00	0.0344	0.102	02	0.0475	0.101		0.152	
7/7/2016		0.0011			0.0170	0.101	0.0747	0.102	0.124
9/7/2016	0.0413	0.0324	0.172	0.164	0.0415	0.0985	0.07.17		0.12.
9/8/2016	0.01.0	0.002	0.172	0.101	0.0110	0.0000	0.081	0.142	0.121
10/18/2016	0.0409	0.0311	0.174	0.138	0.0424	0.104	0.001	0.145	0.121
10/19/2016	0.0403	0.0311	0.174	0.150	0.0424	0.104	0.084	0.140	0.117
12/6/2016	0.0408	0.0311		0.149	0.0528	0.1	0.004		0.117
12/7/2016	0.0400	0.0311	0.167	0.143	0.0320	0.1		0.133	0.11
12/8/2016			0.107				0.0799	0.133	0.11
1/31/2017	0.0435		0.176				0.0799		
2/1/2017	0.0433	0.0332	0.170	0.121	0.0482				
		0.0332		0.121	0.0462	0.147	0.0012	0.14	
2/2/2017 2/3/2017						0.147	0.0813	0.14	0.123
3/23/2017	0.038		0.157	0.143					0.123
3/24/2017	0.036	0.032	0.137	0.143	0.0595				
		0.032			0.0393	0.159	0.0714	0.150	0.112
3/27/2017	0.0206		0.143	0.139	0.0496	0.158	0.0714	0.152	0.112
10/4/2017	0.0396	0.0325	0.143	0.139	0.0486	0.106	0.0755	0.142	0.100
10/5/2017	0.020	0.0325	0.17			0.106	0.0755	0.142	0.128
3/14/2018	0.039	0.001	0.17	0.17	0.04	0.10		0.14	
3/15/2018		0.031		0.17	0.04	0.18	0.074	0.14	0.10
3/16/2018						0.10	0.074		0.12
5/15/2018	0.000	0.000	0.10	0.10	0.05	0.16		0.10	
10/4/2018	0.039	0.033	0.18	0.16	0.05	0.2	0.001	0.16	0.10
10/5/2018						0.18	0.081		0.12
12/11/2018									
1/11/2019				0.10		0.17			
4/5/2019	0.001	0.001	0.15	0.13	0.047				
4/8/2019	0.031	0.031	0.15		0.047	0.17	0.004	0.45	0.40
4/9/2019	0.040	0.00	0.47	0.44	0.054	0.17	0.081	0.15	0.13
9/30/2019	0.042	0.03	0.17	0.14	0.051	0.10	0.000	0.45	0.44
10/1/2019	0.000	0.004	0.10	0.14	0.040	0.12	0.082	0.15	0.14
3/26/2020	0.032	0.031	0.16	0.14	0.049				
3/27/2020						0.037	0.077		
3/30/2020							0.077	0.47	0.45
3/31/2020								0.17	0.15
6/19/2020			0.40						0.14 (R)
9/21/2020		0.004	0.18						
9/22/2020		0.031							

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/23/2020	0.041			0.14	0.043				0.13
9/24/2020							0.079		
9/25/2020						0.11			
9/28/2020								0.15	
3/8/2021	0.035	0.031		0.12	0.052				
3/9/2021			0.17			0.15	0.077		
3/10/2021								0.15	0.13
8/9/2021	0.046		0.19	0.12	0.034				
8/10/2021		0.03				0.14	0.093	0.14	0.14
2/4/2022	0.038	0.031	0.18	0.081	0.037	0.16	0.08		
2/7/2022								0.14	0.14
8/8/2022	0.04	0.029	0.18	0.1	0.04				
8/9/2022						0.12	0.08	0.14	0.15
1/30/2023	0.037	0.03	0.2	0.07	0.037	0.17			
1/31/2023							0.077	0.15	0.14
8/14/2023	0.039	0.028	0.19	0.087	0.045	0.12			
8/15/2023							0.077	0.15	0.16

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
2007	0.038	0.023	0.05					
2007				0.1	0.057			0.059
2007				0.11				0.055
2007	0.046	0.034	0.055		0.054	0.011	0.13	
2007				0.11		0.0065	0.12	0.052
/2007	0.06	0.034	0.048		0.059			
/2007				0.1	0.061	0.0095	0.11	0.047
/2007	0.07	0.048	0.056					
/2007				0.1	0.074	0.013	0.1	0.048
2007	0.055	0.042	0.07					
8008	0.032	0.078	0.063					
8008				0.11	0.079	0.011	0.1	0.052
/2008						0.011	0.11	0.056
/2008				0.091	0.1			
/2008	0.06	0.067	0.068					
2009				0.094	0.091			
2009						0.0091	0.1	0.057
/2009		0.083	0.062					
/2009	0.032							
/2009	0.046	0.086					0.099	0.055
/2009			0.064	0.097	0.092	0.0098		
/2010	0.035	0.087			0.095	0.0084	0.098	0.053
/2010			0.048	0.096				
/2010					0.11			
/2010						0.01		
2/2010	0.15	0.082						
3/2010			0.071				0.092	0.054
4/2010				0.1				
2011				0.092	0.1	0.015	0.085	0.035 (o)
2011		0.082	0.042					
/2011					0.11	0.01	0.091	0.058
/2011	0.055	0.082						
2/2011			0.066	0.12				
2012					0.116	0.0426	0.101	
2012				0.105				0.0632
2012		0.0959	0.0628					
/2012	0.0399							
/2012					0.12	0.02		
/2012			0.073				0.1	0.061
/2012				0.13				
/2012		0.09						
/2012	0.093							
/2013				0.1	0.11	0.35	0.098	0.056
/2013	0.066	0.092	0.057					
2013					0.13			
/2013			0.066	0.13		0.11	0.11	0.067
/2013	0.053	0.096						
2014				0.084	0.12	0.054	0.087	0.055
/2014	0.039	0.085	0.054					
2014			0.06					0.051
2014					0.13	0.044		
2014	0.14	0.096		0.11			0.1	
	2007 2007 2007 2007 2007 2007 2007 2007	0007 0.038 0007 0007 0.046 0007 0007 0.046 0007 20007 0.06 20007 20007 0.07 20007 0.055 0008 0.032 0008 20008 20008 20008 20009 2009 0.032 2009 0.046 2009 2010 0.035 2010 2010 0.035 2010 2010 0.055 2010 0.055 2010 0.055 2010 0.055 2010 0.055 2010 0.055 2010 0.055 2010 0.055 2010 0.055 2010 0.055 2010 0.055 2010 0.055 2010 0.055 2010 0.055 2010 0.055 2010 0.055 2010 0.055 2011 0.055 2011 0.055 2012 0.0399 2012 0.0399 2012 0.0399 2013 0.066 2013 0.053 2013 0.053 2014 0.039 2014 0.039	0007 0.038 0.023 0007 0007 0007 0007 0.046 0.034 0007 0007 0007 0.06 0.034 0007 0007 0007 0007 0007 0008 0008 000	0007 0.038 0.023 0.05 0007 0.007 0.046 0.034 0.055 0007 0.06 0.034 0.048 2007 0.06 0.042 0.07 2007 0.055 0.042 0.07 2008 0.032 0.078 0.063 2008 0.06 0.067 0.068 2009 0.032 0.083 0.062 2009 0.046 0.086 0.064 2009 0.046 0.087 0.048 2010 0.035 0.087 0.048 2010 0.055 0.082 0.071 202010 0.15 0.082 0.071 202010 0.15 0.082 0.042 2011 0.055 0.082 0.066 2012 0.0959 0.0628 2012 0.099 0.073 2012 0.093 0.096 2012 0.093 0.096 2013 0.066 0.092 0.057 2013 0.066 <td< td=""><td>0007 0.038 0.023 0.05 0007 0.046 0.034 0.055 0007 0.046 0.034 0.055 0007 0.06 0.034 0.048 02007 0.07 0.048 0.056 22007 0.07 0.048 0.056 22007 0.055 0.042 0.07 0008 0.032 0.078 0.063 0008 0.052 0.078 0.063 0008 0.06 0.067 0.068 0009 0.06 0.067 0.068 0009 0.032 0.083 0.062 2009 0.032 0.086 0.094 2009 0.046 0.086 0.097 2010 0.035 0.087 0.064 0.097 2010 0.15 0.082 0.071 0.092 20201 0.055 0.082 0.071 0.092 2021 0.055 0.082 0.053 <</td><td>0007 0.038 0.023 0.05 0007 0.046 0.034 0.055 0.054 0007 0.046 0.034 0.055 0.059 0007 0.06 0.034 0.048 0.11 20007 0.06 0.034 0.056 0.1 20007 0.07 0.048 0.056 0.02 20007 0.055 0.042 0.07 0.063 2008 0.032 0.078 0.063 0.01 0.079 2008 0.052 0.067 0.068 0.091 0.1 0.079 2008 0.06 0.067 0.068 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.092</td></td<> <td>007 0.038 0.023 0.05 007 - - 0.11 007 0.046 0.034 0.055 - 0.054 0.011 007 0.066 0.034 0.055 - 0.054 0.001 007 0.06 0.034 0.068 - 0.1 0.061 0.0095 2007 0.07 0.048 0.056 - 0.074 0.013 2007 0.055 0.042 0.07 0.068 - - 0.074 0.013 2007 0.055 0.042 0.07 0.003 - - 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001</td> <td>0007 0.038 0.023 0.05 0007 </td>	0007 0.038 0.023 0.05 0007 0.046 0.034 0.055 0007 0.046 0.034 0.055 0007 0.06 0.034 0.048 02007 0.07 0.048 0.056 22007 0.07 0.048 0.056 22007 0.055 0.042 0.07 0008 0.032 0.078 0.063 0008 0.052 0.078 0.063 0008 0.06 0.067 0.068 0009 0.06 0.067 0.068 0009 0.032 0.083 0.062 2009 0.032 0.086 0.094 2009 0.046 0.086 0.097 2010 0.035 0.087 0.064 0.097 2010 0.15 0.082 0.071 0.092 20201 0.055 0.082 0.071 0.092 2021 0.055 0.082 0.053 <	0007 0.038 0.023 0.05 0007 0.046 0.034 0.055 0.054 0007 0.046 0.034 0.055 0.059 0007 0.06 0.034 0.048 0.11 20007 0.06 0.034 0.056 0.1 20007 0.07 0.048 0.056 0.02 20007 0.055 0.042 0.07 0.063 2008 0.032 0.078 0.063 0.01 0.079 2008 0.052 0.067 0.068 0.091 0.1 0.079 2008 0.06 0.067 0.068 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.092	007 0.038 0.023 0.05 007 - - 0.11 007 0.046 0.034 0.055 - 0.054 0.011 007 0.066 0.034 0.055 - 0.054 0.001 007 0.06 0.034 0.068 - 0.1 0.061 0.0095 2007 0.07 0.048 0.056 - 0.074 0.013 2007 0.055 0.042 0.07 0.068 - - 0.074 0.013 2007 0.055 0.042 0.07 0.003 - - 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0007 0.038 0.023 0.05 0007

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				0.11		0.065		0.059
4/22/2015					0.14		0.095	
4/23/2015		0.093	0.06					
9/29/2015				0.097	0.14	0.036	0.093	0.06
9/30/2015	0.15	0.096	0.076					
3/23/2016		0.0938	0.0533	0.0993	0.156	0.263	0.0918	0.0636
3/24/2016	0.046							
5/17/2016	0.010			0.104	0.168			
5/18/2016	0.0557	0.0983		0.101	0.100	0.245	0.0957	0.0629
5/19/2016	0.0007	0.0000	0.074			0.2.0	0.0007	0.0020
7/6/2016				0.104	0.171	0.117	0.0935	0.0646
7/7/2016	0.0596	0.121	0.0766			0	0.0000	0.00.0
9/7/2016	0.000	0.121	0.0700	0.0945	0.154	0.0703		
9/8/2016	0.184	0.0917	0.0726				0.0925	0.063
10/18/2016	0.101	0.0017	0.0720	0.0928	0.159	0.068	0.0939	
10/19/2016	0.186	0.091	0.072	0.0020	0.100	0.000	0.0000	0.0644
12/7/2016	0.174	0.0868	0.0732					0.0044
12/8/2016	0	0.0000	0.0702	0.1	0.156	0.0791	0.0996	0.0648
2/1/2017				0.0972	0.163	0.0751	0.0000	0.0040
2/2/2017	0.0783	0.0939		0.0372	0.103	0.17	0.096	0.0656
2/3/2017	0.0700	0.0000	0.0619			0.17	0.000	0.0000
3/23/2017			0.0010	0.105	0.161			
3/24/2017				0.103	0.101	0.181	0.106	
3/27/2017	0.0363	0.0905	0.0602			0.101	0.100	0.0619
10/4/2017	0.0303	0.0303	0.0002	0.102	0.171	0.0937		0.0013
10/5/2017	0.0562	0.0945	0.0734	0.102	0.171	0.0337	0.103	0.0655
3/14/2018	0.0302	0.0043	0.0754				0.103	0.0000
3/15/2018	0.086	0.096	0.053			0.15	0.1	0.062
3/16/2018	0.000	0.000	0.000	0.091	0.17	0.10		0.002
10/4/2018	0.079	0.1		0.084	0.19	0.08	0.11	
10/5/2018	0.070	0.1	0.065	0.004	0.10	0.00	0.11	0.07
4/8/2019			0.059		0.15	0.24	0.13	0.058
4/9/2019	0.05	0.094	0.000	0.067	0.10	0.24	0.10	0.000
6/18/2019	0.00	0.001		0.007			0.17	
10/1/2019	0.18	0.1	0.082	0.09	0.18	0.085	0.12	0.071
3/26/2020	0.10		0.071	0.00	0.10	0.000	02	0.07.
3/27/2020			0.07.				0.14	0.06
3/30/2020						0.21	0	
3/31/2020	0.044	0.1		0.064	0.18			
9/23/2020		0.1	0.079					
9/24/2020	0.19		0.070			0.11	0.14	0.06
9/25/2020	0.10			0.074	0.16	0.11	0.14	0.00
3/9/2021	0.12	0.089	0.085	0.063	0.17	0.31	0.14	0.059
8/10/2021	0.057	0.091	0.085	0.077	0.18	0.14	0.23 (o)	0.067
2/4/2022	0.007	0.031	0.000	0.061	0.16	0.35	0.17	0.067
2/7/2022	0.063	0.092	0.091	0.001	0.10	0.00	0.17	0.007
8/8/2022	5.500	3.302	0.078		0.15			
8/9/2022	0.056	0.098	0.070	0.074	0.10		0.16	0.068
8/10/2022	0.000	0.000		0.074		0.098	0.10	0.000
1/31/2023	0.033	0.09	0.11	0.064	0.15	0.098	0.12	0.064
8/14/2023	0.000	0.00	0.071	J.00-1	0.15	0.017	V.12	
8/15/2023	0.058	0.092	0.071	0.072	0.10	0.041	0.12	0.064
	555	-:302						

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.0005		<0.0005	<0.0005	<0.0005			<0.0005	
3/7/2007		<0.0005				<0.0005	<0.0005		<0.0005
5/8/2007	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
5/9/2007							<0.0005	<0.0005	<0.0005
7/7/2007	<0.0005		<0.0005						
7/17/2007		<0.0005		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
8/28/2007	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
8/29/2007									<0.0005
11/6/2007	<0.0005		<0.0005	<0.0005	<0.0005				
11/7/2007		<0.0005				<0.0005	<0.0005	<0.0005	<0.0005
5/7/2008							<0.0005	<0.0005	<0.0005
5/8/2008				<0.0005	<0.0005				
5/9/2008	<0.0005	<0.0005	<0.0005			<0.0005			
12/2/2008		<0.0005				<0.0005			
12/3/2008	<0.0005		<0.0005	<0.0005	<0.0005		<0.0005		
12/4/2008								<0.0005	
12/5/2008									<0.0005
4/7/2009	<0.0005		<0.0005	<0.0005	<0.0005				
4/8/2009		<0.0005				<0.0005			
4/14/2009							<0.0005	<0.0005	<0.0005
9/30/2009									<0.0005
10/1/2009	<0.0005	<0.0005	<0.0005			<0.0005	<0.0005		
10/2/2009				<0.0005	<0.0005			<0.0005	
4/13/2010			<0.0005				<0.0005	<0.0005	<0.0005
4/14/2010	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005			
10/7/2010			<0.0005						
10/12/2010							<0.0005	<0.0005	<0.0005
10/13/2010	<0.0005	<0.0005				<0.0005			
10/14/2010				<0.0005	<0.0005				
4/5/2011				<0.0005	<0.0005				
4/6/2011	<0.0005	<0.0005	<0.0005			<0.0005	<0.0005	<0.0005	
10/4/2011		<0.0005				<0.0005			
10/6/2011			<0.0005						
10/10/2011	<0.0005								
10/12/2011				<0.0005	<0.0005		<0.0005	<0.0005	<0.0005
4/3/2012	<0.0005		<0.0005						
4/4/2012				<0.0005	<0.0005				
4/5/2012							<0.0005	<0.0005	
4/9/2012									<0.0005
4/10/2012		<0.0005				<0.0005			
9/19/2012			<0.0005				<0.0005		
9/24/2012	<0.0005				<0.0005				
9/25/2012								<0.0005	<0.0005
9/26/2012		<0.0005		<0.0005		<0.0005			
3/12/2013	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
3/13/2013		-					<0.0005	<0.0005	<0.0005
9/9/2013			<0.0005					-	
9/10/2013		<0.0005		<0.0005	<0.0005	<0.0005	<0.0005		
9/11/2013	<0.0005	2.0000		3.000	2.0000	3.0000	3.0000	<0.0005	<0.0005
3/4/2014	<0.0005	<0.0005	<0.0005			<0.0005		3.0000	0.0000
3/10/2014	3.0000	2.0000	2.0000			3.0000	<0.0005	<0.0005	<0.0005
3/11/2014				<0.0005	<0.0005		3.000	3.0000	0.0000
52017				0.0000	0.0000				

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3/2014	<0.0005	<0.0005	<0.0005			<0.0005	<0.0005		
9/8/2014				<0.0005	<0.0005				
9/9/2014								<0.0005	<0.0005
4/21/2015	<0.0005	<0.0005		8E-05 (J)	<0.0005	<0.0005			
4/22/2015			<0.0005				<0.0005	<0.0005	
4/23/2015									<0.0005
9/29/2015		<0.0005		<0.0005	<0.0005				
9/30/2015	<0.0005		<0.0005			<0.0005	<0.0005	<0.0005	<0.0005
3/22/2016	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005				
3/23/2016						<0.0005			<0.0005
3/24/2016							<0.0005	<0.0005	
5/17/2016	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
5/18/2016							<0.0005	<0.0005	<0.0005
7/5/2016	<0.0005		<0.0005	<0.0005					
7/6/2016		<0.0005			<0.0005	<0.0005		<0.0005	
7/7/2016							<0.0005		<0.0005
9/7/2016	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
9/8/2016							<0.0005	<0.0005	<0.0005
10/18/2016	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		<0.0005	
10/19/2016							<0.0005		<0.0005
12/6/2016	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005			
12/7/2016			<0.0005					<0.0005	<0.0005
12/8/2016							<0.0005		
1/31/2017	<0.0005		<0.0005						
2/1/2017		<0.0005		<0.0005	<0.0005				
2/2/2017						<0.0005	<0.0005	<0.0005	
2/3/2017									<0.0005
3/23/2017	<0.0005		<0.0005	<0.0005					
3/24/2017		<0.0005			<0.0005				
3/27/2017						<0.0005	<0.0005	<0.0005	<0.0005
10/4/2017	<0.0005		<0.0005	<0.0005	<0.0005				
10/5/2017		<0.0005				<0.0005	<0.0005	<0.0005	<0.0005
3/14/2018	<0.0005		<0.0005						
3/15/2018		<0.0005		<0.0005	<0.0005	<0.0005		<0.0005	
3/16/2018							<0.0005		<0.0005
10/4/2018	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		<0.0005	
10/5/2018							<0.0005		<0.0005
4/5/2019				<0.0005					
4/8/2019	<0.0005	<0.0005	<0.0005		<0.0005				
4/9/2019						<0.0005	<0.0005	<0.0005	<0.0005
9/30/2019	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005				
10/1/2019						<0.0005	<0.0005	<0.0005	<0.0005
3/26/2020	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005				
3/27/2020						<0.0005			
3/30/2020							<0.0005		
3/31/2020								<0.0005	<0.0005
9/21/2020			<0.0005						
9/22/2020		<0.0005							
9/23/2020	<0.0005			<0.0005	<0.0005				<0.0005
9/24/2020							<0.0005		
9/25/2020						<0.0005			
9/28/2020								0.0001 (J)	

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/8/2021	<0.0005	<0.0005		<0.0005	<0.0005				
3/9/2021			<0.0005			<0.0005	<0.0005		
3/10/2021								<0.0005	<0.0005
8/9/2021	<0.0005		<0.0005	<0.0005	<0.0005				
8/10/2021		<0.0005				<0.0005	<0.0005	<0.0005	<0.0005
2/4/2022	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		
2/7/2022								<0.0005	<0.0005
8/8/2022	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005				
8/9/2022						<0.0005	<0.0005	<0.0005	<0.0005
1/30/2023	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
1/31/2023							<0.0005	<0.0005	<0.0005
8/14/2023	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
8/15/2023							<0.0005	<0.0005	<0.0005

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.0005	<0.0005	<0.0005					
3/7/2007				<0.0005	<0.0005			<0.0005
5/8/2007				<0.0005				<0.0005
5/9/2007	<0.0005	<0.0005	<0.0005		<0.0005	0.28 (o)	<0.0005	
7/6/2007				<0.0005		0.093 (o)	<0.0005	<0.0005
7/17/2007	<0.0005	<0.0005	<0.0005		<0.0005			
8/28/2007				<0.0005	<0.0005	0.057 (o)	<0.0005	<0.0005
8/29/2007	<0.0005	<0.0005	<0.0005					
11/6/2007				<0.0005	<0.0005	0.036 (o)	<0.0005	<0.0005
11/7/2007	<0.0005	<0.0005	<0.0005					
5/7/2008	<0.0005	<0.0005	<0.0005					
5/8/2008				<0.0005	<0.0005	0.013	<0.0005	<0.0005
12/2/2008						0.01	<0.0005	<0.0005
12/3/2008				<0.0005	<0.0005			
12/5/2008	<0.0005	<0.0005	<0.0005					
4/7/2009				<0.0005	<0.0005			
4/8/2009						0.0076	<0.0005	<0.0005
4/14/2009		<0.0005	<0.0005					
4/27/2009	<0.0005							
9/30/2009	<0.0005	<0.0005					<0.0005	<0.0005
10/1/2009			<0.0005	<0.0005	<0.0005	0.0057		
4/13/2010	<0.0005	<0.0005			<0.0005	0.0061	<0.0005	<0.0005
4/14/2010			<0.0005	<0.0005				
10/6/2010					<0.0005			
10/7/2010						0.0039		
10/12/2010	<0.0005	<0.0005						
10/13/2010			<0.0005				<0.0005	<0.0005
10/14/2010				<0.0005				
4/5/2011				<0.0005	<0.0005	0.0025	<0.0005	<0.0005
4/6/2011		<0.0005	<0.0005					
10/4/2011					<0.0005	0.0024	<0.0005	<0.0005
10/5/2011	<0.0005	<0.0005						
10/12/2011			<0.0005	<0.0005				
4/3/2012					<0.0005	0.0008	<0.0005	
4/4/2012				<0.0005				<0.0005
4/9/2012		<0.0005	<0.0005					
4/10/2012	<0.0005							
9/18/2012					<0.0005	0.002		
9/19/2012			<0.0005				<0.0005	<0.0005
9/24/2012				<0.0005				
9/25/2012		<0.0005						
9/26/2012	<0.0005							
3/12/2013				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
3/13/2013	<0.0005	<0.0005	<0.0005					
9/9/2013					<0.0005			
9/10/2013			<0.0005	<0.0005		<0.0005	<0.0005	<0.0005
9/11/2013	<0.0005	<0.0005						
3/5/2014				<0.0005	<0.0005	0.00037 (J)	<0.0005	<0.0005
3/11/2014	<0.0005	<0.0005	<0.0005					
9/3/2014			<0.0005					<0.0005
9/8/2014					<0.0005	0.00055 (J)		
9/9/2014	<0.0005	<0.0005		<0.0005			<0.0005	

					,			
	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.0005		0.00033 (J)		<0.0005
4/22/2015					<0.0005		<0.0005	
4/23/2015		<0.0005	<0.0005					
9/29/2015				<0.0005	<0.0005	0.00046 (J)	<0.0005	<0.0005
9/30/2015	<0.0005	<0.0005	<0.0005					
3/23/2016		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
3/24/2016	<0.0005							
5/17/2016				<0.0005	<0.0005			
5/18/2016	<0.0005	<0.0005				<0.0005	<0.0005	<0.0005
5/19/2016			<0.0005					
7/6/2016				<0.0005	<0.0005	0.0002 (J)	<0.0005	<0.0005
7/7/2016	<0.0005	<0.0005	<0.0005					
9/7/2016				<0.0005	<0.0005	0.0002 (J)		
9/8/2016	<0.0005	<0.0005	<0.0005				<0.0005	<0.0005
10/18/2016				<0.0005	<0.0005	0.0002 (J)	<0.0005	
10/19/2016	<0.0005	<0.0005	<0.0005					<0.0005
12/7/2016	<0.0005	<0.0005	<0.0005					
12/8/2016				<0.0005	<0.0005	0.0003 (J)	<0.0005	<0.0005
2/1/2017				<0.0005	<0.0005			
2/2/2017	<0.0005	<0.0005				<0.0005	<0.0005	<0.0005
2/3/2017			<0.0005					
3/23/2017				<0.0005	<0.0005			
3/24/2017						<0.0005	<0.0005	
3/27/2017	<0.0005	<0.0005	<0.0005					<0.0005
10/4/2017				<0.0005	<0.0005	0.0001 (J)		
10/5/2017	<0.0005	<0.0005	<0.0005				<0.0005	<0.0005
3/14/2018							<0.0005	
3/15/2018	<0.0005	<0.0005	<0.0005			<0.0005		<0.0005
3/16/2018				<0.0005	<0.0005			
10/4/2018	<0.0005	<0.0005		<0.0005	<0.0005	0.0002 (J)	<0.0005	
10/5/2018			<0.0005					<0.0005
4/8/2019			<0.0005		<0.0005	5.8E-05 (J)	<0.0005	<0.0005
4/9/2019	<0.0005	<0.0005		<0.0005				
10/1/2019	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.0001 (J)	<0.0005	<0.0005
3/26/2020			<0.0005					
3/27/2020							<0.0005	<0.0005
3/30/2020						<0.0005		
3/31/2020	<0.0005	<0.0005		<0.0005	<0.0005			
9/23/2020		<0.0005	<0.0005					
9/24/2020	<0.0005					5E-05 (J)	<0.0005	<0.0005
9/25/2020				<0.0005	<0.0005			
3/9/2021	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
8/10/2021	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	6.1E-05 (J)	<0.0005	<0.0005
2/4/2022				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
2/7/2022	<0.0005	<0.0005	<0.0005					
8/8/2022			<0.0005		<0.0005			
8/9/2022	<0.0005	<0.0005		<0.0005			<0.0005	<0.0005
8/10/2022						7.6E-05 (J)		
1/31/2023	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.00021 (J)	<0.0005	<0.0005
8/14/2023			<0.0005		<0.0005			
8/15/2023	<0.0005	<0.0005		<0.0005		0.00027 (J)	<0.0005	<0.0005
						` '		

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/22/2016	<0.1	0.04 (J)	0.0828 (J)	0.135	0.0815 (J)				
3/23/2016						0.0354 (J)			<0.1
3/24/2016							0.122	0.173	
5/17/2016	<0.1	0.0358 (J)	0.0844 (J)	0.132	0.0838 (J)	0.0349 (J)			
5/18/2016							0.139	0.186	0.0229 (J)
7/5/2016	0.0419 (J)		0.0962 (J)	0.161					
7/6/2016		0.0373 (J)			0.111	0.0308 (J)		0.184	
7/7/2016							0.12		0.0169 (J)
9/7/2016	0.0174 (J)	0.0352 (J)	0.0884 (J)	0.163	0.107	0.0283 (J)			
9/8/2016							0.126	0.173	0.0178 (J)
10/18/2016	0.0192 (J)	0.0332 (J)	0.0889 (J)	0.154	0.118	0.0292 (J)		0.171	
10/19/2016							0.133		0.018 (J)
12/6/2016	0.0182 (J)	0.033 (J)		0.142	0.106	0.0287 (J)			
12/7/2016			0.0954					0.203	0.0248 (J)
12/8/2016							0.119		
1/31/2017	0.0193 (J)		0.0939						
2/1/2017		0.0365 (J)		0.143	0.0949				
2/2/2017						0.0334 (J)	0.132	0.187	
2/3/2017									0.0171 (J)
3/23/2017	0.0192 (J)		0.0869	0.15					
3/24/2017		0.0343 (J)			0.0887				
3/27/2017						0.0396 (J)	0.134	0.182	0.0181 (J)
10/4/2017	0.0199 (J)		0.0914	0.182	0.105				
10/5/2017		0.0325 (J)				0.0294 (J)	0.125	0.166	0.0178 (J)
3/14/2018	0.019 (J)		0.075						
3/15/2018		0.037 (J)		0.14	0.043	0.038 (J)		0.17	
3/16/2018							0.12		0.016 (J)
10/4/2018	0.021 (J)	0.035 (J)	0.082	0.16	0.1	0.038 (J)		0.17	
10/5/2018							0.15		0.017 (J)
4/5/2019				0.12					
4/8/2019	0.019 (J)	0.034 (J)	0.071 (J)		0.057 (J)				
4/9/2019						0.035 (J)	0.12	0.17	0.011 (J)
9/30/2019	0.025 (J)	0.039 (J)	0.084	0.17	0.11				
10/1/2019						0.031 (J)	0.14	0.17	0.019 (J)
3/26/2020	0.022 (J)	0.041 (J)	0.092 (J)	0.14	0.086 (J)				
3/27/2020						0.04 (J)			
3/30/2020							0.13		
3/31/2020								0.18	0.024 (J)
9/21/2020			0.086 (J)						
9/22/2020		0.038 (J)							
9/23/2020	0.047 (J)			0.15	0.087 (J)				0.018 (J)
9/24/2020							0.13		
9/25/2020						0.036 (J)			
9/28/2020								0.17	
3/8/2021	0.021 (J)	0.042		0.13	0.089				
3/9/2021			0.081			0.037 (J)	0.13		
3/10/2021								0.16	0.018 (J)
8/9/2021	0.021 (J)	0.004 (1)	0.085	0.14	0.073	0.000 (1)	0.14	0.14	0.040 / "
8/10/2021	0.040 ())	0.034 (J)	0.000	0.004	0.00	0.033 (J)	0.14	0.14	0.013 (J)
2/4/2022	0.018 (J)	0.037 (J)	0.083	0.094	0.06	0.037 (J)	0.12	0.15	0.045 (")
2/7/2022	0.036 (!)	0.035 (1)	0.087	0.15	0.077			0.15	0.015 (J)
8/8/2022	0.026 (J)	0.035 (J)	0.087	0.15	0.077				

Page 2

Time Series

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
8/9/2022						0.031 (J)	0.12	0.14	0.015 (J)
1/30/2023	0.026 (J)	0.038 (J)	0.086	0.094	0.058	0.038 (J)			
1/31/2023							0.12	0.13	0.015 (J)
8/14/2023	0.049	0.038 (J)	0.097	0.15	0.082	0.032 (J)			
8/15/2023							0.14	0.16	0.019 (J)

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/23/2016		0.0649 (J)	<0.1	0.0509 (J)	0.0379 (J)	0.0574 (J)	0.0213 (J)	<0.1
3/24/2016	0.0232 (J)	(1)		(1)	(,,	(1)	(1)	
5/17/2016	()			0.0565 (J)	0.0395 (J)			
5/18/2016	0.0289 (J)	0.0781 (J)		, ,	. ,	0.0686 (J)	0.028 (J)	0.0202 (J)
5/19/2016	,	. ,	0.0212 (J)			,	. ,	.,
7/6/2016			()	0.0628 (J)	0.0393 (J)	0.0675 (J)	0.0231 (J)	0.0171 (J)
7/7/2016	0.0313 (J)	0.0621 (J)	0.0183 (J)					
9/7/2016				0.0648 (J)	0.04 (J)	0.0582 (J)		
9/8/2016	0.0593 (J)	0.0607 (J)	0.017 (J)				0.0234 (J)	0.0157 (J)
10/18/2016				0.0666 (J)	0.0366 (J)	0.0577 (J)	0.0228 (J)	
10/19/2016	0.087 (J)	0.0733 (J)	0.0203 (J)					0.0152 (J)
12/7/2016	0.127	0.0758	0.0215 (J)					
12/8/2016				0.062	0.0397 (J)	0.0572	0.0251 (J)	0.0178 (J)
2/1/2017				0.0516	0.0381 (J)			
2/2/2017	0.0318 (J)	0.0729				0.0534	0.0238 (J)	0.0151 (J)
2/3/2017			0.0812					
3/23/2017				0.0597	0.0416			
3/24/2017						0.0532	0.0234 (J)	
3/27/2017	0.0225 (J)	0.0698	0.125 (o)					0.0203 (J)
10/4/2017				0.0658	0.0382 (J)	0.0563		
10/5/2017	0.0304 (J)	0.0677	0.0375 (J)				0.0329 (J)	0.0157 (J)
3/14/2018							0.024 (J)	
3/15/2018	0.025 (J)	0.07	0.051			0.053		0.013 (J)
3/16/2018				0.047	0.044			
5/16/2018					0.042			
10/4/2018	0.029 (J)	0.065		0.066	0.038 (J)	0.048	0.047 (J)	
10/5/2018			0.039 (J)					0.017 (J)
4/8/2019			0.022 (J)		0.036 (J)	0.049 (J)	0.055 (J)	0.015 (J)
4/9/2019	0.014 (J)	0.063		0.048				
10/1/2019	0.059	0.066	0.024 (J)	0.071	0.042	0.05	0.046	0.018 (J)
3/26/2020			0.042 (J)					
3/27/2020							0.056 (J)	0.018 (J)
3/30/2020						0.049 (J)		
3/31/2020	0.022 (J)	0.067 (J)		0.057 (J)	0.091 (Jo)			
6/18/2020					0.045 (JR)			
6/19/2020							0.086 (JR)	
9/23/2020	0.004 (1)	0.061 (J)	0.024 (J)			0.045 (1)	0.055 (1)	0.040 (1)
9/24/2020	0.061 (J)			0.00 (1)	0.047 (1)	0.045 (J)	0.055 (J)	0.016 (J)
9/25/2020	0.02 (1)	0.005	0.044	0.08 (J)	0.047 (J)	0.044	0.05	0.014 (1)
3/9/2021	0.03 (J)	0.065	0.044	0.046	0.038 (J)	0.041	0.05	0.014 (J)
8/10/2021	0.026 (J)	0.057	0.027 (J)	0.056	0.037 (J)	0.037 (J)	0.088	0.012 (J)
2/4/2022	0.019 (1)	0.064	0.052	0.04	0.039 (J)	0.055	0.055	0.013 (J)
2/7/2022	0.018 (J)	0.064			0.038 (1)			
8/8/2022 8/9/2022	0.029 (J)	0.059	0.022 (J)	0.058	0.038 (J)		0.043	0.014 (J)
8/10/2022	0.029 (3)	0.039		0.036		0.046	0.043	0.014 (3)
1/31/2023	0.013 (J)	0.052	0.06	0.043	0.037 (J)	0.046 0.025 (J)	0.029 (J)	0.012 (J)
8/14/2023	0.013 (0)	0.032	0.00 0.019 (J)	0.043	0.037 (J)	0.020 (0)	0.029 (0)	0.012 (0)
8/15/2023	0.03 (J)	0.068	0.010(0)	0.06	0.000 (0)	0.03 (J)	0.031 (J)	0.022 (J)
5, 15,2025	0.00 (0)	0.000		0.00		0.00 (0)	0.001(0)	0.022 (0)

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.0005	G (2g)	<0.0005	<0.0005	<0.0005	a	a	<0.0005	ao 20
3/7/2007		<0.0005				<0.0005	<0.0005		<0.0005
5/8/2007	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
5/9/2007	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	<0.0005	<0.0005	<0.0005
7/7/2007	<0.0005		<0.0005				0.0000	0.0000	0.0000
7/17/2007	0.0000	<0.0005	0.0000	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
8/28/2007	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.0000
8/29/2007	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	<0.0005
11/6/2007	<0.0005		<0.0005	<0.0005	<0.0005				-0.0000
11/7/2007	10.0003	<0.0005	-0.0003	10.0003	10.0003	<0.0005	<0.0005	<0.0005	<0.0005
5/7/2008		-0.0000				10.0000	<0.0005	<0.0005	<0.0005
5/8/2008				<0.0005	<0.0005		10.0000	10.0000	10.0003
5/9/2008	<0.0005	<0.0005	<0.0005	~0.0003	10.0003	<0.0005			
12/2/2008	10.0003	<0.0005	-0.0003			<0.0005			
12/3/2008	<0.0005	~0.0003	<0.0005	<0.0005	<0.0005	<0.0003	<0.0005		
12/4/2008	~0.0003		~0.0003	~0.0003	~0.0003		~0.0003	<0.0005	
								<0.0005	<0.0005
12/5/2008	<0.000E		<0.000E	<0.000E	<0.000E				<0.0005
4/7/2009	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.000E			
4/8/2009		<0.0005				<0.0005	<0.0005	<0.0005	<0.0005
4/14/2009							<0.0005	<0.0005	
9/30/2009	<0.000E	<0.000E	<0.000E			<0.000E	<0.000E		<0.0005
10/1/2009 10/2/2009	<0.0005	<0.0005	<0.0005	<0.000E	<0.000E	<0.0005	<0.0005	<0.000E	
4/13/2010			<0.0005	<0.0005	<0.0005		<0.0005	<0.0005 <0.0005	<0.0005
	<0.000E	<0.0005	<0.0005	<0.0005	<0.000E	<0.000E	<0.0005	<0.0005	<0.0005
4/14/2010	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
10/7/2010 10/12/2010			<0.0005				<0.0005	<0.0005	<0.0005
	<0.000E	<0.000E				<0.000E	<0.0005	<0.0005	<0.0005
10/13/2010	<0.0005	<0.0005		<0.000E	<0.000E	<0.0005			
10/14/2010				<0.0005	<0.0005				
4/5/2011 4/6/2011	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
4/6/2011	<0.0003		<0.0005				<0.0005	<0.0005	
10/4/2011		<0.0005	<0.000E			<0.0005			
10/6/2011	<0.000E		<0.0005						
10/10/2011	<0.0005			<0.000E	<0.000E		<0.000E	<0.000E	<0.000E
10/12/2011	-0.0005		-0.0005	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005
4/3/2012	<0.0005		<0.0005	-0.0005	10.0005				
4/4/2012				<0.0005	<0.0005		<0.000E	<0.000E	
4/5/2012							<0.0005	<0.0005	-0.0005
4/9/2012		10.0005				-0.0005			<0.0005
4/10/2012		<0.0005	2 2225			<0.0005	0.0005		
9/19/2012	-0.0005		<0.0005		10.0005		<0.0005		
9/24/2012	<0.0005				<0.0005			-0.0005	-0.0005
9/25/2012		.0.005		.0.005		.0.005		<0.0005	<0.0005
9/26/2012	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
3/12/2013	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.000E	<0.000E	-0.0005
3/13/2013			<0.000E				<0.0005	<0.0005	<0.0005
9/9/2013		<0.0005	<0.0005	-0.0005	<0.000F	<0.000F	<0.000F		
9/10/2013	-0.0005	<0.0005		<0.0005	<0.0005	<0.0005	<0.0005	-0.0005	-0.0005
9/11/2013	<0.0005	10.0005	-0.0005			-0.0005		<0.0005	<0.0005
3/4/2014	<0.0005	<0.0005	<0.0005			<0.0005	.0.005	.0.005	
3/10/2014				-0.0005	10.0005		<0.0005	<0.0005	<0.0005
3/11/2014				<0.0005	<0.0005				

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3/2014	<0.0005	<0.0005	<0.0005			<0.0005	<0.0005		
9/8/2014				<0.0005	<0.0005				
9/9/2014								<0.0005	<0.0005
4/21/2015	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005			
4/22/2015			<0.0005				<0.0005	<0.0005	
4/23/2015									<0.0005
9/29/2015		<0.0005		<0.0005	<0.0005				
9/30/2015	<0.0005		<0.0005			<0.0005	<0.0005	<0.0005	<0.0005
3/22/2016	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005				
3/23/2016						<0.0005			<0.0005
3/24/2016							<0.0005	<0.0005	
5/17/2016	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
5/18/2016							<0.0005	<0.0005	<0.0005
7/5/2016	<0.0005		<0.0005	<0.0005					
7/6/2016		<0.0005			<0.0005	<0.0005		<0.0005	
7/7/2016							<0.0005		<0.0005
9/7/2016	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
9/8/2016							<0.0005	<0.0005	<0.0005
10/18/2016	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		<0.0005	
10/19/2016							<0.0005		<0.0005
12/6/2016	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005			
12/7/2016			<0.0005					<0.0005	<0.0005
12/8/2016							<0.0005		
1/31/2017	<0.0005		<0.0005						
2/1/2017		<0.0005		<0.0005	0.0001 (J)				
2/2/2017						9E-05 (J)	8E-05 (J)	<0.0005	
2/3/2017									<0.0005
3/23/2017	<0.0005		<0.0005	<0.0005					
3/24/2017		<0.0005			<0.0005				
3/27/2017						<0.0005	<0.0005	<0.0005	<0.0005
10/4/2017	<0.0005		<0.0005	<0.0005	<0.0005				
10/5/2017		<0.0005				<0.0005	<0.0005	<0.0005	<0.0005
3/14/2018	<0.0005		<0.0005						
3/15/2018		<0.0005		<0.0005	<0.0005	<0.0005		<0.0005	
3/16/2018							<0.0005		<0.0005
10/4/2018	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		<0.0005	
10/5/2018							<0.0005		0.00011 (J)
4/5/2019				<0.0005					
4/8/2019	<0.0005	<0.0005	<0.0005		<0.0005				
4/9/2019						<0.0005	<0.0005	<0.0005	<0.0005
9/30/2019	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005				
10/1/2019						<0.0005	<0.0005	<0.0005	<0.0005
3/26/2020	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005				
3/27/2020						<0.0005			
3/30/2020							<0.0005		
3/31/2020								<0.0005	<0.0005
9/21/2020			<0.0005						
9/22/2020		<0.0005							
9/23/2020	<0.0005			<0.0005	<0.0005				<0.0005
9/24/2020							<0.0005		
9/25/2020						<0.0005			
9/28/2020								<0.0005	

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/8/2021	<0.0005	<0.0005		<0.0005	<0.0005				
3/9/2021			<0.0005			<0.0005	<0.0005		
3/10/2021								<0.0005	<0.0005
8/9/2021	<0.0005		<0.0005	<0.0005	<0.0005				
8/10/2021		<0.0005				<0.0005	<0.0005	<0.0005	<0.0005
2/4/2022	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		
2/7/2022								<0.0005	<0.0005
8/8/2022	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005				
8/9/2022						<0.0005	<0.0005	<0.0005	<0.0005
1/30/2023	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
1/31/2023							<0.0005	<0.0005	<0.0005
8/14/2023	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
8/15/2023							<0.0005	<0.0005	<0.0005

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.0005	<0.0005	<0.0005					
3/7/2007				0.0015	<0.0005			<0.0005
5/8/2007				<0.0005				<0.0005
5/9/2007	<0.0005	<0.0005	<0.0005		<0.0005	0.023 (o)	<0.0005	
7/6/2007				<0.0005		0.0081 (o)	<0.0005	<0.0005
7/17/2007	<0.0005	<0.0005	<0.0005		<0.0005			
8/28/2007				<0.0005	<0.0005	0.0035	<0.0005	<0.0005
8/29/2007	<0.0005	<0.0005	<0.0005					
11/6/2007				<0.0005	<0.0005	0.0028	<0.0005	<0.0005
11/7/2007	<0.0005	<0.0005	<0.0005					
5/7/2008	<0.0005	<0.0005	<0.0005					
5/8/2008				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
12/2/2008						<0.0005	<0.0005	<0.0005
12/3/2008				<0.0005	<0.0005			
12/5/2008	<0.0005	<0.0005	<0.0005					
4/7/2009				<0.0005	<0.0005			
4/8/2009						0.0013	<0.0005	<0.0005
4/14/2009		<0.0005	<0.0005					
4/27/2009	<0.0005							
9/30/2009	<0.0005	<0.0005					<0.0005	<0.0005
10/1/2009			<0.0005	<0.0005	<0.0005	<0.0005		
4/13/2010	<0.0005	<0.0005			<0.0005	<0.0005	<0.0005	<0.0005
4/14/2010			<0.0005	<0.0005				
10/6/2010					<0.0005			
10/7/2010						<0.0005		
10/12/2010	<0.0005	<0.0005						
10/13/2010			<0.0005				<0.0005	<0.0005
10/14/2010				<0.0005				
4/5/2011				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
4/6/2011		<0.0005	<0.0005					
10/4/2011					<0.0005	<0.0005	<0.0005	<0.0005
10/5/2011	<0.0005	<0.0005						
10/12/2011			<0.0005	<0.0005				
4/3/2012					<0.0005	<0.0005	<0.0005	
4/4/2012				<0.0005				<0.0005
4/9/2012		<0.0005	<0.0005					
4/10/2012	<0.0005							
9/18/2012					<0.0005	<0.0005		
9/19/2012			<0.0005				<0.0005	<0.0005
9/24/2012				<0.0005				
9/25/2012		<0.0005						
9/26/2012	<0.0005							
3/12/2013				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
3/13/2013	<0.0005	<0.0005	<0.0005					
9/9/2013					<0.0005			
9/10/2013			<0.0005	<0.0005		<0.0005	<0.0005	<0.0005
9/11/2013	<0.0005	<0.0005						
3/5/2014				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
3/11/2014	<0.0005	<0.0005	<0.0005					
9/3/2014			<0.0005					<0.0005
9/8/2014					<0.0005	<0.0005		
9/9/2014	<0.0005	<0.0005		<0.0005			<0.0005	

					,			
	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.0005		0.0015		0.00029 (J)
4/22/2015					<0.0005		<0.0005	
4/23/2015		<0.0005	<0.0005					
9/29/2015				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
9/30/2015	<0.0005	<0.0005	<0.0005					
3/23/2016		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
3/24/2016	<0.0005							
5/17/2016				<0.0005	<0.0005			
5/18/2016	<0.0005	<0.0005				<0.0005	<0.0005	<0.0005
5/19/2016			<0.0005					
7/6/2016				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
7/7/2016	0.0001 (J)	<0.0005	<0.0005					
9/7/2016				<0.0005	<0.0005	<0.0005		
9/8/2016	<0.0005	<0.0005	<0.0005				<0.0005	<0.0005
10/18/2016				<0.0005	<0.0005	<0.0005	<0.0005	
10/19/2016	<0.0005	<0.0005	<0.0005					<0.0005
12/7/2016	<0.0005	<0.0005	<0.0005					
12/8/2016				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
2/1/2017				<0.0005	<0.0005			
2/2/2017	0.0001 (J)	<0.0005				0.0001 (J)	8E-05 (J)	8E-05 (J)
2/3/2017			8E-05 (J)					
3/23/2017				<0.0005	<0.0005			
3/24/2017						<0.0005	<0.0005	
3/27/2017	<0.0005	<0.0005	<0.0005					<0.0005
10/4/2017				<0.0005	<0.0005	<0.0005		
10/5/2017	<0.0005	<0.0005	<0.0005				<0.0005	<0.0005
3/14/2018							<0.0005	
3/15/2018	<0.0005	<0.0005	<0.0005			<0.0005		<0.0005
3/16/2018				<0.0005	<0.0005			
10/4/2018	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005	<0.0005	
10/5/2018			<0.0005					<0.0005
4/8/2019			<0.0005		<0.0005	<0.0005	<0.0005	<0.0005
4/9/2019	<0.0005	<0.0005		<0.0005				
10/1/2019	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
3/26/2020			<0.0005					
3/27/2020							<0.0005	<0.0005
3/30/2020						<0.0005		
3/31/2020	<0.0005	<0.0005		<0.0005	<0.0005			
9/23/2020		<0.0005	<0.0005					
9/24/2020	<0.0005					<0.0005	<0.0005	<0.0005
9/25/2020				<0.0005	<0.0005			
3/9/2021	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
8/10/2021	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
2/4/2022				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
2/7/2022	<0.0005	<0.0005	<0.0005					
8/8/2022			<0.0005		<0.0005			
8/9/2022	<0.0005	<0.0005		<0.0005			<0.0005	<0.0005
8/10/2022						<0.0005		
1/31/2023	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
8/14/2023			<0.0005		<0.0005			
8/15/2023	<0.0005	<0.0005		<0.0005		<0.0005	<0.0005	<0.0005

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/22/2016	13.9	23.8	47.4	79.3	123				
3/23/2016						43.9			56.3
3/24/2016							40.7	43.9	
5/17/2016	15.6	21.5	45.5	75.8	99.2	40.1			
5/18/2016							41.9	48.2	59
7/5/2016	15.7		40.5	65.3					
7/6/2016		20.6			109	32.3		45.8	
7/7/2016							36.8		50.9
9/7/2016	18.2	16.7	37.3	59.8	67.2	28.9			
9/8/2016							35.9	40.9	48
10/18/2016	17.7	20.3	46.6	72.4	77.9	35.4		45.5	
10/19/2016							38.7		49.7
12/6/2016	16.9	19.7		78.6	93.3	34.3			
12/7/2016			43.5					40.6	46.4
12/8/2016							39.4		
1/31/2017	17.9		39.2						
2/1/2017		18.1		85	92.8				
2/2/2017						38.1	41.5	42.4	
2/3/2017									49
3/23/2017	13.9		38.7	81.2					
3/24/2017		21.1			96.3				
3/27/2017						45.4	39.1	45.5	50.7
10/4/2017	15.9		36.5	78.8	75.1				
10/5/2017		20.1				35.8	41.6	42.9	52
3/14/2018	<25		39.5						
3/15/2018		<25		83.5	69.9	52.4		43.3	
3/16/2018							45.9		53.4
5/15/2018						48.4			
5/16/2018							40		
10/4/2018	15.9 (J)	21.3 (J)	41.7	75.2	77.8	51.2		43.7	
10/5/2018	()	,					39.6		52.7
12/11/2018						49.3			
4/5/2019				76.5					
4/8/2019	15.7	22.4	44.1		86.6				
4/9/2019						48.8	41.4	45.8	57.1
9/30/2019	17.6	19.6	44.6	74.7	78.3				
10/1/2019						36.8	38.7	42.3	59.1
3/26/2020	14	22.4	43.2	78.7	87.4				
3/27/2020						22.9			
3/30/2020							45.7		
3/31/2020								52.3	63.6
6/19/2020								41.3 (R)	61.4 (R)
9/21/2020			45.8					()	··· (··)
9/22/2020		19.5	40.0						
9/23/2020	17.6	13.3		76.2	74.9				55.8
9/24/2020							36.9		
9/25/2020						39.4	-0.0		
9/28/2020						55.7		44.7	
3/8/2021	16.2 (M1)	22		73.5	87.2			T-1.1	
3/9/2021	(1411)		48.7	. 5.0	V/.L	48.7	44.9		
3/10/2021			.0.7					47.4	64.9
8/9/2021	20.2		49.9	73.2	69.7			77.7	V-1.0
			.5.0						

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
8/10/2021		20.8				45.5	48.2	44.9	62
2/4/2022	18.3	23.7	57.6	59 (M1)	97.3	52.8	56.1		
2/7/2022								49	68.7
8/8/2022	17.2	21.1	51.2	61	68.9				
8/9/2022						43.9	44.4	48.7	66.3
1/30/2023	15.8 (M1)	20.4	46.8	53.1	73.6	43.7			
1/31/2023							40.4	42.5	62
8/14/2023	17.2	21.8	53.1	57.2	73.5	39.8			
8/15/2023							41	44.6	63.5

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/23/2016	a	49.9	36.4	79	64.1	45.2	69.1	36
3/24/2016	31.4	40.0	30.4	73	04.1	40.2	00.1	30
5/17/2016	31.4			74.6	62.8			
	20.2	E0.7		74.0	02.0	46 E	62.7	27.2
5/18/2016	39.2	50.7	44.5			46.5	63.7	37.3
5/19/2016			41.5					
7/6/2016				66.9	59.5	29.1	56.8	32.8
7/7/2016	36	45.5	33.5					
9/7/2016				61.6	53.7	19.2		
9/8/2016	70	46.8	34.7				51.3	32.1
10/18/2016				71.6	62.3	22.6	52.6	
10/19/2016	63	47.3	33.4					35
12/7/2016	54.7	45.3	35.5					
12/8/2016				67.6	58.8	17.5	43.7	33.4
2/1/2017				82.5	59.6			
2/2/2017	37.4	49.9				54.4	56.5	34.3
2/3/2017			31.7					
3/23/2017				84.4	62.9			
3/24/2017						56.8	64.4	
3/27/2017	20.9	45.8	32					34.9
10/4/2017				70.8	62.4	30.5		
10/5/2017	26.8	47.3	41				59.9	34.7
3/14/2018							58.8	
3/15/2018	62.8	46.8	39.8			43.4		35.3
3/16/2018				78.1	66.9			
10/4/2018	48.6	50.4		73	65.5	26.1	264 (o)	
10/5/2018			39.3					37.8
12/11/2018							64.3	
4/8/2019			39.8		67	56.1	81.5	36.3
4/9/2019	35.4	47.3		73.9				
6/18/2019		.,		70.0			83.7	
6/27/2019							75.9	
10/1/2019	82.8	46.9	39.1	70.6	64.2	28.5	64	37.2
11/6/2019	74.9	40.5	55.1	70.0	04.2	20.5	04	37.2
11/26/2019	45.8							
	45.0		44.7					
3/26/2020			44.7				07.0	24.2
3/27/2020						47.0	87.3	34.3
3/30/2020	05.0	54.5		0.4.0	70.0	47.8		
3/31/2020	25.6	51.5	20.0	84.2	70.6			
9/23/2020	70.4	45.9	39.2			00.5	0.1.4	05.0
9/24/2020	73.4					39.5	81.4	35.9
9/25/2020				77.1	71.3			
3/9/2021	67.8	48.7	54.3	85.4	70.8	64.3	83.2	36.8
8/10/2021	29.7	48.1	48.2	78.3	67.7	40.5	111	38.1
2/4/2022				79.5	71.2	68.3	92.6	39.8
2/7/2022	39.7	52.6	64.9					
8/8/2022			40.6		70.5			
8/9/2022	30.2	51.3		76.6			83.8	38.6
8/10/2022						33.3		
1/31/2023	16.2	43.8	58.3	75.5	62.5	19	69.2	34.1
8/14/2023			40.7		69.1			
8/15/2023	31.5	47.3		75.8		18.4	70.5	37.6

2/22/2016	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/22/2016 3/23/2016	1.1933	1.3137	2.0975	4.0352	5.549	1.3507			1.4238
3/24/2016						1.0007	1.1313	1.6497	1.4200
5/17/2016	1.14	1.29	2.1	3.81	6.74	1.28	1.1010	1.0407	
5/18/2016		1.20	2.1	0.01	0.74	1.20		1.74	1.57
5/19/2016							1.13		
7/5/2016	1.4		2.4	4			0		
7/6/2016		1.6			5.2	1.5		2.1	
7/7/2016					0.2		1.5		1.7
9/7/2016	1	1.5	2.5	4.2	7.2	1.5			
9/8/2016	•						1.4	1.9	1.5
10/18/2016	1.1	1.6	2.7	4.4	7.4	1.4		2.1	
10/19/2016							1.4		1.7
12/6/2016	1	1.2		4.6	7.6	1.3			
12/7/2016			2.6					2	1.8
12/8/2016							1.4		
1/31/2017	1.2		2.5						
2/1/2017		2.1		3.7	8.5				
2/2/2017						1.8	1.6	2.3	
2/3/2017									2
3/23/2017	1.1		2	3.5					
3/24/2017		1.3			7				
3/27/2017						1.7	1.5	2.1	1.8
10/4/2017	1.1		2.2	3.6	7.4				
10/5/2017		1.3				1.5	1.4	1.9	5.5 (o)
12/14/2017									1.5
3/14/2018	1.2		2.4						
3/15/2018		1.6		3.8	1.7	2		1.9	
3/16/2018							1.5		1.9
5/15/2018						1.4			
10/4/2018	1.4	1.8	2.5	3.4	6.1	2.1		2	
10/5/2018							1.5		2.2
12/11/2018						1.9			1.8
4/5/2019				4.2					
4/8/2019	1.1	1.3	2.6		3.6				
4/9/2019						1.9	1.6	1.9	1.8
9/30/2019	1.4	1.5	3	4.1	7.5				
10/1/2019						1.5	0.94 (J)	1.3	1.1
3/26/2020	1.1	1.4	2	2.6	5.4				
3/27/2020						1.2			
3/30/2020							1		
3/31/2020								1.3	1.1
9/21/2020			2.1						
9/22/2020		1							
9/23/2020	1.6			2.8	4.2				1.1
9/24/2020							0.94 (J)		
9/25/2020						1.1			
9/28/2020								1.3	
3/8/2021	1.1	1.3		2.8	5.6				
3/9/2021			2.1			1.1	0.97 (J)		
3/10/2021								1.3	1.2
8/9/2021	1.1		2.4	2.1	3				

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
8/10/2021		1.2				1.2	0.93 (J)	1.2	1.2
2/4/2022	0.99 (J)	1.2	2.3	1.1	3.3 (M1)	1.3	0.88 (J)		
2/7/2022								1.1	1.2
8/8/2022	1.2	1.3	2.5	1.9	2.4				
8/9/2022						1.3	1.1	1.6	0.93 (J)
1/30/2023	1.1	1.2	2.2	1.2	3.4	1.3			
1/31/2023							0.8 (J)	1.2	1.1
8/14/2023	0.99 (J)	1	2.2	1.3	2.5	1			
8/15/2023							0.85 (J)	1.1	1.1

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/23/2016		1.2595	1.5409	2.5045	1.7709	1.1569	1.4936	0.9561
3/24/2016	2.461							
5/17/2016				2.47	1.75			
5/18/2016	2.61	1.25				1.35		
5/19/2016			1.23				1.35	0.972
7/6/2016				2.9	2	1.9	1.6	1.3
7/7/2016	2.8	1.7	1.7					
9/7/2016				2.8	2	1.7		
9/8/2016	2.3	1.5	1.6				1.4	1
10/18/2016				2.8	2	1.8	1.4	
10/19/2016	2.4	1.6	1.6					1.1
12/7/2016	2.2	1.5	1.7					
12/8/2016				3.1	2	1.6	1.5	1.3
2/1/2017				3.8	2.2			
2/2/2017	3.4	1.8				2	1.7	1.6
2/3/2017			1.9					
3/23/2017				3.4	2			
3/24/2017						1.3	2.1	
3/27/2017	2.7	1.5	1.7					1.4
10/4/2017				3.7	1.7	1.7		
10/5/2017	3.3	1.6	1.4				2	1.1
3/14/2018							2.1	
3/15/2018	3.6	1.7	1.6			1.9		1.3
3/16/2018				3.2	2.1			
5/15/2018	3.2							
10/4/2018	2.4	1.7		3.2	2.2	2	2.3	
10/5/2018			1.6					1.6
12/11/2018							2.3	
1/11/2019							2.8	
4/8/2019			1.5		2.1	1.9	3.2	1
4/9/2019	2.6	1.7		3.3				
10/1/2019	2	1.4	1.1	2.2	1.6	1.2	1.8	0.91 (J)
3/26/2020			0.63 (J)					
3/27/2020							2.5	0.74 (J)
3/30/2020						9.2 (o)		
3/31/2020	1.5	1		2	1.5			
6/19/2020						1.4 (R)		
9/23/2020		1.1	1.1					
9/24/2020	1.8					1.4	2.2	0.82 (J)
9/25/2020				2.3	1.6			
3/9/2021	1.8	1	0.85 (J)	2	1.5	1.5	2.2	0.74 (J)
8/10/2021	2	1.1	1	2.3	1.6	1.6	2.7	0.85 (J)
2/4/2022				1.9	1.6	1.8	3.2	0.78 (J)
2/7/2022	2.7	1	0.7 (J)					
8/8/2022			1.3		1.9			
8/9/2022	4	0.81 (J)		2.4			2.1	1
8/10/2022						1.7		
1/31/2023	1.5	1	<1	2.1	1.7	1.7	1.6	0.72 (J)
8/14/2023			1.1		1.6			
8/15/2023	5.3	0.95 (J)		2.1		1.7	1.6	0.65 (J)

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.005		<0.005	<0.005	<0.005			<0.005	
3/7/2007		<0.005				<0.005	<0.005		<0.005
5/8/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
5/9/2007							<0.005	<0.005	<0.005
7/7/2007	<0.005		<0.005						
7/17/2007		<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/28/2007	<0.005	0.0013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
8/29/2007									0.0016
11/6/2007	<0.005		<0.005	0.0014	<0.005				
11/7/2007		0.0024				<0.005	<0.005	<0.005	0.0016
5/7/2008							<0.005	<0.005	<0.005
5/8/2008				<0.005	<0.005				
5/9/2008	<0.005	<0.005	<0.005			<0.005			
12/2/2008		<0.005				<0.005			
12/3/2008	<0.005		<0.005	<0.005	<0.005		<0.005		
12/4/2008								<0.005	
12/5/2008									<0.005
4/7/2009	<0.005		<0.005	<0.005	<0.005				
4/8/2009	0.000	<0.005	0.000	0.000	0.000	<0.005			
4/14/2009		0.000				0.000	<0.005	<0.005	<0.005
9/30/2009							0.000	0.000	<0.005
10/1/2009	<0.005	<0.005	<0.005			<0.005	<0.005		0.000
10/2/2009	-0.000	-0.000	-0.000	<0.005	<0.005	10.000	10.000	<0.005	
4/13/2010			<0.005	10.003	10.000		<0.005	<0.005	<0.005
4/14/2010	<0.005	<0.005	10.003	<0.005	<0.005	<0.005	10.000	10.003	10.000
10/7/2010	10.003	10.003	<0.005	10.003	10.000	10.003			
10/7/2010			~0.003				<0.005	<0.005	<0.005
10/13/2010	<0.005	<0.005				<0.005	-0.003	-0.003	10.000
10/13/2010	~0.003	~0.003		<0.005	<0.005	~0.003			
4/5/2011				<0.005	<0.005				
4/6/2011	<0.005	<0.005	<0.005	~0.003	~ 0.003	<0.005	<0.005	<0.005	
10/4/2011	~0.003	<0.005	~0.003			<0.005	~ 0.003	~ 0.003	
10/6/2011		~0.003	<0.005			~ 0.003			
	<0.005		<0.005						
10/10/2011 10/12/2011	<0.005			<0.005	<0.005		<0.005	<0.005	<0.005
4/3/2012	<0.005		<0.005	~0.003	~ 0.003		~ 0.003	~ 0.003	~0.003
4/4/2012	<0.005		<0.005	<0.005	<0.005				
4/5/2012				<0.005	<0.005		<0.005	<0.005	
							<0.005	\0.005	<0.00E
4/9/2012 4/10/2012		<0.005				<0.005			<0.005
9/19/2012		<0.005	<0.005			<0.005	<0.005		
	<0.00E		<0.005		<0.005		<0.005		
9/24/2012	<0.005				<0.005			<0.00E	<0.00E
9/25/2012 9/26/2012		<0.00E		<0.00E		<0.00E		<0.005	<0.005
	<0.00E	<0.005	<0.00E	<0.005	<0.00E	<0.005			
3/12/2013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.00E	<0.00E	<0.005
3/13/2013			<0.00E				<0.005	<0.005	<0.005
9/9/2013		<0.00E	<0.005	<0.00E	<0.00E	<0.00E	<0.00E		
9/10/2013	<0.00E	<0.005		<0.005	<0.005	<0.005	<0.005	<0.00E	<0.005
9/11/2013	<0.005	<0.00E	<0.00E			<0.00E		<0.005	<0.005
3/4/2014	0.00032 (J)	<0.005	<0.005			<0.005	<0.00E	<0.005	<0.00E
3/10/2014				<0.00E	<0.00E		<0.005	<0.005	<0.005
3/11/2014				<0.005	<0.005				

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3/2014	<0.005	<0.005	<0.005			<0.005	<0.005		
9/8/2014				<0.005	<0.005				
9/9/2014								<0.005	<0.005
4/21/2015	<0.005	<0.005		<0.005	<0.005	<0.005			
4/22/2015			<0.005				<0.005	<0.005	
4/23/2015									<0.005
9/29/2015		<0.005		<0.005	<0.005				
9/30/2015	<0.005		<0.005			<0.005	<0.005	<0.005	<0.005
3/22/2016	<0.005	<0.005	<0.005	<0.005	<0.005				
3/23/2016						<0.005			<0.005
3/24/2016							<0.005	<0.005	
5/17/2016	<0.005	<0.005	<0.005	<0.005	<0.005	0.00424 (J)			
5/18/2016							<0.005	<0.005	<0.005
7/5/2016	<0.005		<0.005	<0.005					
7/6/2016		<0.005			<0.005	<0.005		<0.005	
7/7/2016							<0.005		<0.005
9/7/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
9/8/2016							<0.005	<0.005	<0.005
10/18/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	
10/19/2016							<0.005		0.0064 (J)
12/6/2016	<0.005	0.0018 (J)		<0.005	<0.005	0.0013 (J)			
12/7/2016			<0.005					<0.005	<0.005
12/8/2016							<0.005		
1/31/2017	<0.005		<0.005						
2/1/2017		<0.005		<0.005	<0.005				
2/2/2017						0.001 (J)	<0.005	<0.005	
2/3/2017									<0.005
3/23/2017	<0.005		<0.005	<0.005					
3/24/2017		<0.005			0.0004 (J)				
3/27/2017						<0.005	<0.005	<0.005	<0.005
10/4/2017	<0.005		<0.005	<0.005	<0.005				
10/5/2017		<0.005				<0.005	<0.005	0.0012 (J)	<0.005
3/14/2018	0.016		<0.005						
3/15/2018		<0.005		<0.005	<0.005	<0.005		<0.005	
3/16/2018							<0.005		<0.005
10/4/2018	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	
10/5/2018							<0.005		<0.005
4/5/2019				<0.005					
4/8/2019	<0.005	<0.005	<0.005		<0.005				
4/9/2019						<0.005	<0.005	<0.005	<0.005
9/30/2019	<0.005	<0.005	<0.005	<0.005	<0.005				
10/1/2019						<0.005	0.00086 (J)	<0.005	<0.005
3/26/2020	<0.005	<0.005	0.00043 (J)	0.00062 (J)	0.0013 (J)				
3/27/2020						<0.005			
3/30/2020							0.00071 (J)		
3/31/2020								0.00042 (J)	<0.005
9/21/2020			<0.005						
9/22/2020		<0.005							
9/23/2020	<0.005			<0.005	<0.005				<0.005
9/24/2020							<0.005		
9/25/2020						<0.005			
9/28/2020								0.00063 (J)	
								• •	

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/8/2021	<0.005	<0.005	S 2 (59)	<0.005	<0.005			u	G.1.0 20
3/9/2021			<0.005			<0.005	<0.005		
3/10/2021								<0.005	<0.005
8/9/2021	<0.005		<0.005	<0.005	<0.005				
8/10/2021		<0.005				<0.005	<0.005	<0.005	<0.005
2/4/2022	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		
2/7/2022								<0.005	<0.005
8/8/2022	<0.005	<0.005	<0.005	<0.005	<0.005				
8/9/2022						<0.005	<0.005	<0.005	<0.005
1/30/2023	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
1/31/2023							<0.005	<0.005	<0.005
8/14/2023	<0.005	<0.005	<0.005	<0.005	<0.005	0.0015 (J)			
8/15/2023							<0.005	<0.005	< 0.005

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.005	<0.005	<0.005					
3/7/2007				<0.005	<0.005			<0.005
5/8/2007				<0.005				0.0013
5/9/2007	<0.005	0.002	0.0013		<0.005	0.11 (o)	<0.005	
7/6/2007				<0.005		0.0029	<0.005	<0.005
7/17/2007	<0.005	<0.005	<0.005		<0.005			
8/28/2007				<0.005	<0.005	0.0038	<0.005	0.0014
8/29/2007	<0.005	<0.005	<0.005					
11/6/2007				<0.005	<0.005	<0.005	0.0035	0.0024
11/7/2007	<0.005	0.0013	<0.005					
5/7/2008	<0.005	<0.005	<0.005					
5/8/2008				<0.005	<0.005	<0.005	<0.005	<0.005
12/2/2008						<0.005	<0.005	<0.005
12/3/2008				<0.005	<0.005			
12/5/2008	<0.005	<0.005	<0.005					
4/7/2009				<0.005	<0.005			
4/8/2009						<0.005	<0.005	<0.005
4/14/2009		<0.005	<0.005					
4/27/2009	<0.005							
9/30/2009	<0.005	<0.005					<0.005	<0.005
10/1/2009			<0.005	<0.005	<0.005	0.0016		
4/13/2010	<0.005	<0.005			<0.005	<0.005	<0.005	<0.005
4/14/2010			<0.005	<0.005				
10/6/2010					<0.005			
10/7/2010						<0.005		
10/12/2010	<0.005	<0.005						
10/13/2010			<0.005				<0.005	<0.005
10/14/2010				<0.005				
4/5/2011				<0.005	<0.005	<0.005	<0.005	<0.005
4/6/2011		<0.005	<0.005					
10/4/2011					<0.005	0.0018	<0.005	<0.005
10/5/2011	<0.005	<0.005						
10/12/2011			<0.005	<0.005				
4/3/2012					<0.005	<0.005	<0.005	
4/4/2012				<0.005				<0.005
4/9/2012		<0.005	<0.005					
4/10/2012	<0.005							
9/18/2012					<0.005	<0.005		
9/19/2012			<0.005				<0.005	<0.005
9/24/2012				<0.005				
9/25/2012		<0.005						
9/26/2012	<0.005							
3/12/2013				<0.005	<0.005	<0.005	<0.005	<0.005
3/13/2013	<0.005	<0.005	<0.005					
9/9/2013					<0.005			
9/10/2013			<0.005	<0.005		<0.005	0.0017	<0.005
9/11/2013	<0.005	<0.005						
3/5/2014				<0.005	<0.005	<0.005	<0.005	<0.005
3/11/2014	<0.005	<0.005	<0.005					
9/3/2014			<0.005					<0.005
9/8/2014					<0.005	<0.005		
9/9/2014	0.0015	<0.005		<0.005			<0.005	

					,			
	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.005		<0.005		<0.005
4/22/2015					<0.005		<0.005	
4/23/2015		<0.005	<0.005					
9/29/2015				<0.005	<0.005	<0.005	<0.005	<0.005
9/30/2015	<0.005	<0.005	<0.005					
3/23/2016		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
3/24/2016	<0.005							
5/17/2016				<0.005	<0.005			
5/18/2016	<0.005	<0.005				<0.005	<0.005	<0.005
5/19/2016			<0.005					
7/6/2016				<0.005	<0.005	<0.005	<0.005	<0.005
7/7/2016	<0.005	<0.005	<0.005					
9/7/2016				<0.005	<0.005	<0.005		
9/8/2016	<0.005	<0.005	<0.005				<0.005	<0.005
10/18/2016				<0.005	<0.005	<0.005	<0.005	
10/19/2016	<0.005	<0.005	<0.005					<0.005
12/7/2016	<0.005	<0.005	<0.005					
12/8/2016				<0.005	<0.005	<0.005	<0.005	<0.005
2/1/2017				<0.005	<0.005			
2/2/2017	<0.005	<0.005				<0.005	<0.005	<0.005
2/3/2017			<0.005					
3/23/2017				<0.005	<0.005			
3/24/2017						0.0011 (J)	<0.005	
3/27/2017	<0.005	<0.005	<0.005					<0.005
10/4/2017				<0.005	<0.005	<0.005		
10/5/2017	<0.005	<0.005	<0.005				0.0005 (J)	<0.005
3/14/2018							<0.005	
3/15/2018	<0.005	<0.005	<0.005			<0.005		<0.005
3/16/2018				<0.005	<0.005			
10/4/2018	<0.005	<0.005		<0.005	<0.005	<0.005	<0.005	
10/5/2018			<0.005					<0.005
4/8/2019			<0.005		<0.005	<0.005	<0.005	<0.005
4/9/2019	<0.005	0.0023 (J)		<0.005				
10/1/2019	<0.005	<0.005	0.0051 (J)	0.0012 (J)	<0.005	<0.005	0.0005 (J)	<0.005
3/26/2020			<0.005					
3/27/2020							<0.005	<0.005
3/30/2020						0.00041 (J)		
3/31/2020	0.00093 (J)	0.0015 (J)		<0.005	0.00085 (J)			
9/23/2020		<0.005	<0.005					
9/24/2020	<0.005					<0.005	<0.005	<0.005
9/25/2020				<0.005	<0.005			
3/9/2021	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/10/2021	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2/4/2022				<0.005	<0.005	<0.005	<0.005	<0.005
2/7/2022	<0.005	<0.005	<0.005					
8/8/2022			<0.005		<0.005			
8/9/2022	<0.005	<0.005		<0.005			<0.005	<0.005
8/10/2022						<0.005		
1/31/2023	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/14/2023			<0.005		<0.005			
8/15/2023	<0.005	<0.005		<0.005		<0.005	<0.005	<0.005

Constituent: Cobalt (mg/L) Analysis Run 11/13/2023 3:44 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.005		<0.005	<0.005	<0.005			<0.005	
3/7/2007		<0.01				<0.005	<0.005		<0.005
5/8/2007	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005			
5/9/2007							<0.005	<0.005	<0.005
7/7/2007	<0.005	0.04	<0.005	0.005	0.005	.0.005	.0.005	2.005	.0.005
7/17/2007		<0.01		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/28/2007		<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
8/29/2007									<0.005
11/6/2007		0.04	<0.005	<0.005	<0.005	.0.005	.0.005	2.005	.0.005
11/7/2007	/	<0.01				<0.005	<0.005	<0.005	<0.005
5/7/2008				0.005	0.005		<0.005	<0.005	<0.005
5/8/2008	<0.00E	z0.01	<0.00E	<0.005	<0.005	<0.00E			
5/9/2008	<0.005	<0.01	<0.005			<0.005			
12/2/2008		<0.01	-0.005	-0.005	-0.005	<0.005	-0.005		
12/3/2008			<0.005	<0.005	<0.005		<0.005	-0.005	
12/4/2008								<0.005	<0.00E
12/5/2008			<0.00E	<0.00E	<0.00E				<0.005
4/7/2009	<0.005	z0.01	<0.005	<0.005	<0.005	<0.005			
4/8/2009 4/14/2009	2	<0.01				<0.005	<0.005	<0.005	<0.005
9/30/2009							~ 0.003	~0.003	<0.005
10/1/2009		<0.01	<0.005			<0.005	<0.005		~0.003
10/1/2009		~0.01	~ 0.005	<0.005	<0.005	~ 0.003	~ 0.003	<0.005	
4/13/2010			<0.005	<0.005	<0.005		<0.005	<0.005	<0.005
4/14/2010		<0.01	~ 0.005	<0.005	<0.005	<0.005	~ 0.003	~0.003	~0.003
10/7/2010		\0.01	<0.005	~0.003	~0.003	~ 0.003			
10/1/2010			~ 0.005				<0.005	<0.005	<0.005
10/13/201		<0.01				<0.005	10.005	10.003	10.000
10/14/201		-0.01		<0.005	<0.005	-0.000			
4/5/2011	10			<0.005	<0.005				
4/6/2011	<0.005	<0.01	<0.005	-0.000	-0.000	<0.005	<0.005	<0.005	
10/4/2011		<0.01	0.000			<0.005	0.000	0.000	
10/6/2011		0.01	<0.005			0.000			
10/10/201			0.000						
10/12/201				<0.005	<0.005		<0.005	<0.005	<0.005
4/3/2012			<0.005						
4/4/2012				<0.005	<0.005				
4/5/2012							<0.005	<0.005	
4/9/2012									<0.005
4/10/2012		<0.01				<0.005			
9/19/2012			<0.005				<0.005		
9/24/2012					0.0016				
9/25/2012								<0.005	<0.005
9/26/2012		<0.01		<0.005		<0.005			
3/12/2013		<0.01	<0.005	<0.005	<0.005	<0.005			
3/13/2013	3						<0.005	<0.005	<0.005
9/9/2013			<0.005						
9/10/2013		<0.01		<0.005	0.002	<0.005	<0.005		
9/11/2013								<0.005	<0.005
3/4/2014	0.00043 (J)	0.00047 (J)	<0.005			<0.005			
3/10/2014		.,					<0.005	<0.005	<0.005
3/11/2014	4			<0.005	<0.005				

9/3/2014	GWA-1 (bg) 0.00076 (J)	GWA-11 (bg) 0.00065 (J)	GWA-2 (bg) <0.005	GWA-3 (bg)	GWA-4 (bg)	GWC-10 <0.005	GWC-18 <0.005	GWC-19	GWC-20
9/8/2014	. ,	()		<0.005	0.001 (J)				
9/9/2014								<0.005	<0.005
4/21/2015	0.00051 (J)	0.00062 (J)		<0.005	<0.005	<0.005			
4/22/2015	. ,	()	<0.005				<0.005	<0.005	
4/23/2015									<0.005
9/29/2015		0.0009 (J)		<0.005	0.0025 (J)				
9/30/2015	0.0006 (J)	. ,	<0.005		. ,	<0.005	<0.005	<0.005	<0.005
3/22/2016	<0.005	<0.01	<0.005	<0.005	<0.005				
3/23/2016						<0.005			<0.005
3/24/2016							<0.005	<0.005	
5/17/2016	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005			
5/18/2016							<0.005	<0.005	<0.005
7/5/2016	0.0004 (J)		<0.005	0.0003 (J)					
7/6/2016	(1)	0.0009 (J)		(-)	0.0004 (J)	<0.005		<0.005	
7/7/2016		(-)					<0.005		<0.005
9/7/2016	<0.005	0.0011 (J)	<0.005	<0.005	0.0008 (J)	<0.005			
9/8/2016					(,)		<0.005	<0.005	<0.005
10/18/2016	<0.005	0.0011 (J)	<0.005	<0.005	<0.005	<0.005	0.000	<0.005	0.000
10/19/2016	-0.000	0.0011 (0)	-0.000	-0.000	-0.000	-0.000	<0.005	-0.000	<0.005
12/6/2016	0.0006 (J)	0.0011 (J)		0.0007 (J)	0.0026 (J)	<0.005	0.000		0.000
12/7/2016	0.0000 (0)	0.0011 (0)	<0.005	0.0007 (0)	0.0020 (0)	0.000		<0.005	<0.005
12/8/2016			-0.000				<0.005	-0.000	-0.000
1/31/2017	0.0006 (J)		<0.005				-0.000		
2/1/2017	0.0000 (0)	0.0011 (J)	10.000	<0.005	0.0013 (J)				
2/2/2017		0.0011 (0)		10.000	0.0013 (3)	<0.005	<0.005	<0.005	
2/3/2017						10.003	10.000	10.000	<0.005
3/23/2017	0.0007 (J)		<0.005	<0.005					-0.000
3/24/2017	0.0007 (0)	0.0008 (J)	-0.000	-0.000	0.0014 (J)				
3/27/2017		0.0000 (0)			0.0014 (0)	<0.005	<0.005	<0.005	<0.005
10/4/2017	0.0006 (J)		<0.005	<0.005	0.0012 (J)	10.003	10.000	10.000	٠٥.003
10/5/2017	0.0000 (3)	0.0008 (J)	10.003	10.000	0.0012 (3)	<0.005	<0.005	<0.005	<0.005
3/14/2018	<0.005	0.0000 (0)	<0.005			-0.000	-0.000	-0.000	-0.000
3/15/2018	~0.003	<0.01	~0.003	<0.005	<0.005	<0.005		<0.005	
3/16/2018		10.01		10.003	10.000	10.000	<0.005	10.000	<0.005
10/4/2018	0.00058 (J)	0.00072 (J)	<0.005	<0.005	<0.005	<0.005	40.000	<0.005	-0.003
10/5/2018	0.00030 (3)	0.00072 (3)	10.003	10.003	10.000	10.000	<0.005	10.000	<0.005
4/5/2019				0.00031 (J)			~ 0.003		~ 0.003
4/8/2019	0.00026 (J)	0.00076 (J)	6.1E-05 (J)	0.00031 (0)	0.00044 (J)				
4/9/2019	0.00020 (3)	0.00070 (3)	0.12-03 (3)		0.00044 (3)	<0.005	<0.005	<0.005	<0.005
9/30/2019	0.00042 (J)	0.00054 (J)	<0.005	<0.005	0.00079 (J)	<0.005	<0.005	<0.005	<0.005
10/1/2019	0.00042 (3)	0.00034 (3)	<0.005	<0.005	0.00079 (3)	<0.005	<0.005	<0.005	<0.005
3/26/2020	0.00049 (J)	0.00063 (J)	<0.005	<0.005	0.00082 (J)	~0.003	~ 0.003	~0.003	~0.003
	0.00049 (3)	0.00003 (3)	<0.005	<0.005	0.00082 (3)	0.00083 (1)			
3/27/2020 3/30/2020						0.00082 (J)	<0.005		
							-0.000	<0.005	<0.005
3/31/2020 9/21/2020			<0.005					~U.UUO	·U.UU3
		0.00040.73	~0.003						
9/22/2020	0.0005171	0.00049 (J)		<0.005	<0.005				<0.005
9/23/2020	0.00051 (J)			~0.003	~0.003		<0.005		~U.UU3
9/24/2020 9/25/2020						<0.005	-0.000		
9/28/2020						-U.UUJ		<0.005	
5/20/2020								-0.000	

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/8/2021	0.0005 (J)	0.00049 (J)		<0.005	0.00061 (J)				
3/9/2021			<0.005			<0.005	<0.005		
3/10/2021								<0.005	<0.005
8/9/2021	<0.005		<0.005	0.00042 (J)	<0.005				
8/10/2021		0.00047 (J)				<0.005	<0.005	<0.005	<0.005
2/4/2022	0.00057 (J)	0.00051 (J)	<0.005	0.00052 (J)	<0.005	<0.005	<0.005		
2/7/2022								<0.005	<0.005
8/8/2022	0.00045 (J)	0.00058 (J)	<0.005	0.0013 (J)	<0.005				
8/9/2022						<0.005	<0.005	<0.005	<0.005
1/30/2023	0.0005 (J)	0.00043 (J)	<0.005	<0.005	<0.005	<0.005			
1/31/2023							<0.005	<0.005	<0.005
8/14/2023	0.00043 (J)	0.00045 (J)	<0.005	0.00095 (J)	<0.005	<0.005			
8/15/2023							<0.005	<0.005	<0.005

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.01	<0.005	<0.005					
3/7/2007				<0.005	<0.005			<0.005
5/8/2007				<0.005				<0.005
5/9/2007	<0.01	<0.005	<0.005		<0.005	6.5 (o)	<0.01	
7/6/2007				<0.005		2.1 (o)	<0.01	<0.005
7/17/2007	<0.01	<0.005	<0.005		<0.005			
8/28/2007				<0.005	<0.005	1.4 (o)	<0.01	<0.005
8/29/2007	<0.01	<0.005	<0.005					
11/6/2007				<0.005	<0.005	1.1 (o)	<0.01	<0.005
11/7/2007	<0.01	<0.005	<0.005					
5/7/2008	<0.01	<0.005	<0.005					
5/8/2008				<0.005	<0.005	0.75	<0.01	<0.005
12/2/2008						0.41	<0.01	<0.005
12/3/2008				<0.005	<0.005			
12/5/2008	<0.01	<0.005	<0.005					
4/7/2009				<0.005	<0.005			
4/8/2009						0.38	<0.01	<0.005
4/14/2009		<0.005	<0.005					
4/27/2009	<0.01							
9/30/2009	<0.01	<0.005					<0.01	<0.005
10/1/2009			<0.005	<0.005	<0.005	0.29		
4/13/2010	<0.01	<0.005			<0.005	0.26	<0.01	<0.005
4/14/2010			<0.005	<0.005				
10/6/2010					<0.005			
10/7/2010						0.24		
10/12/2010	<0.01	<0.005						
10/13/2010			<0.005				<0.01	<0.005
10/14/2010				<0.005				
4/5/2011				<0.005	<0.005	0.17	<0.01	<0.005
4/6/2011		<0.005	<0.005					
10/4/2011					<0.005	0.19	<0.01	<0.005
10/5/2011	<0.01	<0.005						
10/12/2011			<0.005	<0.005				
4/3/2012					<0.005	0.114	<0.01	
4/4/2012				<0.005				<0.005
4/9/2012		<0.005	<0.005					
4/10/2012	<0.01							
9/18/2012					<0.005	0.14		
9/19/2012			<0.005				<0.01	<0.005
9/24/2012				<0.005				
9/25/2012		<0.005						
9/26/2012	0.0033							
3/12/2013				<0.005	<0.005	0.041	<0.01	<0.005
3/13/2013	<0.01	<0.005	<0.005					
9/9/2013					<0.005			
9/10/2013			<0.005	<0.005		0.06	<0.01	<0.005
9/11/2013	0.0018	<0.005						
3/5/2014				<0.005	<0.005	0.049	<0.01	<0.005
3/11/2014	0.00029 (J)	<0.005	<0.005					
9/3/2014			<0.005					<0.005
9/8/2014					<0.005	0.068		
9/9/2014	0.0011 (J)	<0.005		<0.005			<0.01	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.005		0.043		<0.005
4/22/2015					<0.005		<0.01	
4/23/2015		<0.005	<0.005					
9/29/2015				<0.005	<0.005	0.0525	<0.01	<0.005
9/30/2015	<0.01	<0.005	<0.005					
3/23/2016		<0.005	<0.005	<0.005	<0.005	0.0172	<0.01	<0.005
3/24/2016	<0.01							
5/17/2016				<0.005	<0.005			
5/18/2016	<0.01	<0.005				0.021	<0.01	<0.005
5/19/2016			<0.005					
7/6/2016				<0.005	<0.005	0.0278	<0.01	0.0004 (J)
7/7/2016	0.0016 (J)	<0.005	<0.005					
9/7/2016				<0.005	<0.005	0.0334		
9/8/2016	0.0006 (J)	<0.005	<0.005				<0.01	<0.005
10/18/2016				<0.005	<0.005	0.0368	<0.01	
10/19/2016	0.0006 (J)	<0.005	<0.005					<0.005
12/7/2016	0.0006 (J)	<0.005	<0.005					
12/8/2016				<0.005	<0.005	0.0419	<0.01	<0.005
2/1/2017				<0.005	<0.005			
2/2/2017	<0.01	<0.005				0.0113	<0.01	<0.005
2/3/2017			<0.005					
3/23/2017				0.0007 (J)	<0.005			
3/24/2017						0.0094 (J)	<0.01	
3/27/2017	0.001 (J)	<0.005	<0.005					<0.005
10/4/2017				<0.005	<0.005	0.0237		
10/5/2017	0.0051 (J)	<0.005	<0.005				0.0003 (J)	0.0004 (J)
3/14/2018							<0.01	
3/15/2018	<0.01	<0.005	<0.005			0.014		<0.005
3/16/2018				<0.005	<0.005			
10/4/2018	0.0065 (J)	<0.005		<0.005	<0.005	0.024	<0.01	
10/5/2018			0.00058 (J)					<0.005
4/8/2019			0.00046 (J)		0.00022 (J)	0.0086 (J)	0.0017 (J)	0.00041 (J)
4/9/2019	0.0023 (J)	<0.005		<0.005				
10/1/2019	0.00046 (J)	<0.005	0.00033 (J)	<0.005	<0.005	0.017	0.00081 (J)	0.00041 (J)
3/26/2020	. ,		0.00035 (J)				. ,	, ,
3/27/2020							0.0016 (J)	0.00063 (J)
3/30/2020						0.012		
3/31/2020	0.0019 (J)	<0.005		<0.005	<0.005			
9/23/2020		<0.005	<0.005					
9/24/2020	0.00068 (J)					0.01	0.0011 (J)	<0.005
9/25/2020	(1)			0.00057 (J)	<0.005		(-,	
3/9/2021	0.00049 (J)	<0.005	<0.005	0.00043 (J)	<0.005	0.0093	0.0013 (J)	0.00042 (J)
8/10/2021	0.0041 (J)	<0.005	<0.005	0.00098 (J)	<0.005	0.013	0.004 (J)	<0.005
2/4/2022				<0.005	<0.005	0.0092	0.0019 (J)	<0.005
2/7/2022	0.0028 (J)	<0.005	<0.005				(4)	
8/8/2022	(1)		<0.005		<0.005			
8/9/2022	0.0027 (J)	<0.005	2.200	0.00061 (J)			0.0013 (J)	<0.005
8/10/2022	3.3327 (0)	0.000		3.33301 (0)		0.013	5.55 10 (0)	0.000
1/31/2023	0.002 (J)	<0.005	<0.005	<0.005	<0.005	0.013	0.00055 (J)	<0.005
8/14/2023	0.002 (0)	3.330	<0.005	0.000	<0.005	0.001	3.33300 (0)	5.550
8/15/2023	0.0032 (J)	<0.005	-0.000	0.00046 (J)	-0.000	0.021	0.00077 (J)	<0.005
0/13/2023	0.0032 (3)	~0.000		0.00040 (3)		0.021	0.00077 (3)	~0.000

Constituent: Copper (mg/L) Analysis Run 11/13/2023 3:44 PM Plant Hammond Client: Southern Company Data: Huffaker Road Landfill GWA-1 (bg) GWA-11 (bg) GWA-2 (bg) GWA-3 (bg) GWA-4 (bg) GWC-10 GWC-18 GWC-19 GWC-20 3/6/2007 <0.005 <0.005 <0.005 <0.005 <0.005 3/7/2007 < 0.005 0.0025 < 0.005 < 0.005 5/8/2007 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 5/9/2007 <0.005 <0.005 <0.005 7/7/2007 <0.005 <0.005 7/17/2007 <0.005 0.0028 <0.005 <0.005 <0.005 <0.005 <0.005 8/28/2007 <0.005 0.0032 0.0032 0.0039 0.0061 <0.005 <0.005 <0.005 8/29/2007 <0.005 11/6/2007 <0.005 <0.005 <0.005 <0.005 0.0029 0.0035 0.0028 11/7/2007 0.0036 <0.005 5/7/2008 <0.005 <0.005 <0.005 5/8/2008 < 0.005 <0.005 5/9/2008 <0.005 < 0.005 < 0.005 < 0.005 12/2/2008 <0.005 <0.005 12/3/2008 <0.005 <0.005 <0.005 <0.005 <0.005 12/4/2008 <0.005 12/5/2008 <0.005 4/7/2009 <0.005 <0.005 <0.005 <0.005 4/8/2009 <0.005 <0.005 4/14/2009 <0.005 <0.005 <0.005 <0.005 9/30/2009 10/1/2009 <0.005 <0.005 <0.005 <0.005 <0.005 10/2/2009 < 0.005 <0.005 < 0.005 4/13/2010 <0.005 <0.005 < 0.005 < 0.005 4/14/2010 <0.005 <0.005 <0.005 <0.005 <0.005 10/7/2010 <0.005 <0.005 <0.005 <0.005 10/12/2010 <0.005 10/13/2010 <0.005 <0.005 0.0066 10/14/2010 < 0.005 4/5/2011 <0.005 <0.005 <0.005 4/6/2011 <0.005 <0.005 <0.005 <0.005 <0.005 10/4/2011 < 0.005 10/6/2011 <0.005 10/10/2011 <0.005 10/12/2011 <0.005 <0.005 <0.005 <0.005 < 0.005 < 0.005 4/3/2012 <0.005 <0.005 4/4/2012 <0.005 <0.005 4/5/2012 <0.005 <0.005 4/9/2012 <0.005 <0.005 4/10/2012 <0.005 9/19/2012 <0.005 <0.005 <0.005 9/24/2012 <0.005 9/25/2012 < 0.005 < 0.005 9/26/2012 <0.005 <0.005 <0.005 3/12/2013 <0.005 < 0.005 <0.005 <0.005 <0.005 <0.005 3/13/2013 < 0.005 < 0.005 < 0.005 9/9/2013 <0.005

<0.005

< 0.005

<0.005

<0.005

<0.005

<0.005

<0.005

<0.005

<0.005

<0.005

<0.005

<0.005

< 0.005

<0.005

<0.005

<0.005

<0.005

9/10/2013

9/11/2013

3/4/2014

3/10/2014

3/11/2014

9/3/2014	GWA-1 (bg) <0.005	GWA-11 (bg) <0.005	GWA-2 (bg) 0.0011 (J)	GWA-3 (bg)	GWA-4 (bg)	GWC-10 <0.005	GWC-18 0.00099 (J)	GWC-19	GWC-20
9/8/2014	10.000	-0.003	0.0011(0)	<0.005	<0.005	10.003	0.00033 (0)		
9/9/2014				-0.000	10.000			<0.005	<0.005
4/21/2015	<0.005	<0.005		<0.005	<0.005	<0.005		-0.000	-0.000
4/22/2015	10.000	10.000	<0.005	10.003	10.003	40.003	<0.005	<0.005	
4/23/2015			40.000				-0.003	40.003	<0.005
9/29/2015		<0.005		<0.005	<0.005				·0.003
9/30/2015	<0.005	~ 0.003	<0.005	~0.003	~ 0.003	<0.005	<0.005	<0.005	<0.005
3/22/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
3/23/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			<0.005
3/24/2016						~0.003	<0.005	<0.005	~0.003
9/7/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	~ 0.003	~ 0.003	
9/8/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
3/23/2017	<0.005		<0.005	<0.005			~ 0.003	~0.003	~0.003
3/24/2017	<0.005	<0.005	~0.003	~0.003	<0.005				
3/27/2017		~ 0.003			~ 0.003	<0.005	<0.005	0.0004 (J)	<0.005
10/4/2017	<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	0.0004 (3)	<0.005
10/4/2017	~0.003	<0.005	~0.003	<0.003	~0.003	<0.005	<0.005	0.0005 (J)	<0.005
3/14/2018	<0.005	~ 0.003	<0.005			~0.003	~ 0.003	0.0003 (3)	~0.003
3/15/2018	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	
3/16/2018		~ 0.003		~0.003	~ 0.003	~0.003	<0.005	~0.003	<0.005
10/4/2018	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.00E	<0.005	<0.005
10/5/2018 4/5/2019				<0.005			<0.005		<0.005
4/8/2019	<0.005	0.0013 (J)	0.00029 (J)	<0.005	<0.005				
	<0.005	0.0013 (3)	0.00029 (3)		<0.005	<0.00E	<0.005	0.0014 (1)	<0.005
4/9/2019 9/30/2019	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.0014 (J)	<0.005
10/1/2019	<0.005	~ 0.003	~0.003	~0.003	~ 0.003	<0.005	0.00037 (J)	0.00019 (J)	0.00023 (J)
3/26/2020	<0.005	<0.005	<0.005	0.00022 (J)	<0.005	<0.005	0.00037 (3)	0.00019 (3)	0.00023 (3)
	<0.005	<0.005	<0.005	0.00022 (3)	<0.005	0.00033 (1)			
3/27/2020 3/30/2020						0.00022 (J)	<0.005		
3/31/2020							~ 0.003	<0.005	<0.005
9/21/2020			<0.005					~ 0.003	~0.003
9/22/2020		<0.005	~0.003						
9/23/2020	<0.005	<0.005		<0.005	<0.005				<0.005
9/24/2020	<0.005			~0.003	~ 0.003		<0.005		~0.003
9/25/2020						<0.005	~ 0.003		
9/28/2020						~0.003		<0.005	
3/8/2021	<0.005	<0.005		<0.005	<0.005			40.003	
3/9/2021	~0.003	~ 0.003	<0.005	<0.003	~0.003	<0.005	<0.005		
3/10/2021			~0.003			~0.003	~ 0.003	<0.005	<0.005
8/9/2021	<0.005		<0.005	<0.005	0.00051 (J)			~ 0.003	~0.003
8/10/2021	10.000	<0.005	40.000	10.003	0.00031 (3)	<0.005	<0.005	<0.005	<0.005
2/4/2022	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	~ 0.003	~0.003
2/7/2022	-0.003	-0.000	-0.000	-0.000	-0.000	-0.000	~0.000	<0.005	<0.005
8/8/2022	<0.005	<0.005	<0.005	<0.005	<0.005			-0.000	-0.000
8/9/2022	-0.000	-0.000	×0.000	-0.000	-0.00J	0.0023 (J)	<0.005	<0.005	<0.005
1/30/2023	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	~0.003	~U.UUJ	-0.003
1/31/2023	~0.000	~U.UU3	~0.003	~0.00 3	~0.000	~0.003	<0.005	<0.005	<0.005
8/14/2023	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	~0.000	-0.000	-0.000
8/15/2023	-0.003	-0.000	-0.000	-0.000	-0.000	-0.000	<0.005	<0.005	<0.005
0/10/2023							~0.000	~0.000	~ 0.000

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Copper (mg/L) Analysis Run 11/13/2023 3:44 PM

		GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3	3/6/2007	<0.005	<0.005	<0.005					
3	3/7/2007				0.0027	<0.005			0.0043
5	5/8/2007				0.0026				<0.005
5	5/9/2007	<0.005	<0.005	<0.005		<0.005	0.44 (o)	<0.005	
	7/6/2007				<0.005		0.016	<0.005	<0.005
	7/17/2007	<0.005	<0.005	<0.005		<0.005			
8	3/28/2007				0.0036	<0.005	0.0091	<0.005	<0.005
	3/29/2007	<0.005	<0.005	<0.005					
	11/6/2007				<0.005	<0.005	<0.005	<0.005	<0.005
	11/7/2007	0.0029	0.0033	0.0084					
	5/7/2008	0.0026	<0.005	<0.005					
	5/8/2008				<0.005	<0.005	<0.005	<0.005	<0.005
	12/2/2008						0.003	<0.005	<0.005
	12/3/2008				<0.005	<0.005			
	12/5/2008	<0.005	<0.005	<0.005					
	4/7/2009				<0.005	<0.005			
	4/8/2009				,		<0.005	<0.005	<0.005
	4/14/2009		<0.005	<0.005			-	-	
	4/27/2009	<0.005		2- 					
	9/30/2009	<0.005	<0.005					<0.005	<0.005
	10/1/2009			<0.005	<0.005	<0.005	<0.005		
	4/13/2010	<0.005	<0.005	0.000	0.000	<0.005	<0.005	<0.005	<0.005
	4/14/2010	0.000	0.000	<0.005	<0.005	0.000	0.000	0.000	0.000
	10/6/2010			-0.000	-0.000	<0.005			
	10/7/2010					0.000	<0.005		
	10/12/2010	<0.005	<0.005				-0.000		
	10/13/2010	-0.000	-0.000	<0.005				<0.005	<0.005
	10/14/2010			0.000	<0.005			0.000	0.000
	4/5/2011				<0.005	<0.005	<0.005	<0.005	<0.005
	4/6/2011		<0.005	<0.005	0.000	0.000	0.000	0.000	0.000
	10/4/2011		0.000	0.000		<0.005	<0.005	<0.005	<0.005
	10/5/2011	<0.005	<0.005						
	10/12/2011			<0.005	<0.005				
	4/3/2012			0.000	0.000	<0.005	<0.005	<0.005	
	4/4/2012				<0.005				<0.005
	4/9/2012		<0.005	<0.005	,				
	4/10/2012 4/10/2012	<0.005	2.000	3.000					
	9/18/2012	3.000				<0.005	<0.005		
	9/19/2012			<0.005			-:	<0.005	<0.005
	9/24/2012				<0.005				
	9/25/2012		<0.005		3.000				
	9/26/2012	<0.005	3.000						
	3/12/2013	3.000			<0.005	<0.005	<0.005	<0.005	<0.005
	3/12/2013	<0.005	<0.005	<0.005	5.000	3.000	0.000	5.000	5.555
	9/9/2013	-0.000	-0.000	-0.000		<0.005			
	9/10/2013			<0.005	<0.005	3.000	<0.005	<0.005	<0.005
	9/10/2013	<0.005	<0.005	-0.000	-0.000		-0.000	-0.000	-0.000
	3/5/2014	-0.003	-0.003		<0.005	<0.005	<0.005	<0.005	<0.005
	3/11/2014	<0.005	<0.005	<0.005	-0.003	-0.000	÷0.003	-0.005	-0.000
	9/3/2014	~U.UUJ	-V.003	<0.005					<0.005
				~U.UU3		<0.005	<0.005		~0.000
	9/8/2014 9/9/2014	0.0013 / 1)	<0.005		<0.005	<0.005	<0.005	<0.005	
٤	JI 20 14	0.0013 (J)	<0.005		<0.005			~U.UUU	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9	
4/21/201	5			<0.005		0.00082 (J)		<0.005	
4/22/201	5				<0.005		<0.005		
4/23/201	5	<0.005	<0.005						
9/29/201	5			<0.005	<0.005	<0.005	<0.005	<0.005	
9/30/201	5 0.0008 (J)	<0.005	0.0012 (J)						
3/23/201	6	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
3/24/2010	6 <0.005								
9/7/2016				<0.005	<0.005	<0.005			
9/8/2016	0.0006 (J)	<0.005	<0.005				<0.005	<0.005	
3/23/201	7			<0.005	<0.005				
3/24/201	7					0.0007 (J)	<0.005		
3/27/201	7 0.0005 (J)	<0.005	<0.005					<0.005	
10/4/201	7			<0.005	<0.005	<0.005			
10/5/201	7 <0.005	<0.005	0.0003 (J)				<0.005	<0.005	
3/14/2018	8						<0.005		
3/15/2018	8 <0.005	<0.005	0.0016 (J)			<0.005		<0.005	
3/16/2018	8			<0.005	<0.005				
10/4/2018	8 <0.005	<0.005		<0.005	<0.005	<0.005	<0.005		
10/5/2018	8		<0.005					<0.005	
4/8/2019			0.0005 (J)		<0.005	0.00025 (J)	<0.005	<0.005	
4/9/2019	<0.005	<0.005		<0.005					
10/1/2019	9 0.00084 (J)	0.00031 (J)	0.00083 (J)	0.00031 (J)	0.00023 (J)	0.00034 (J)	0.00036 (J)	<0.005	
3/26/2020	0		0.00067 (J)						
3/27/2020	0						<0.005	<0.005	
3/30/2020	0					<0.005			
3/31/2020	0.00082 (J)	0.0002 (J)		0.00019 (J)	<0.005				
9/23/2020	0	<0.005	<0.005						
9/24/2020	0 <0.005					<0.005	<0.005	<0.005	
9/25/2020	0			<0.005	<0.005				
3/9/2021	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
8/10/202	1 <0.005	<0.005	0.00078 (J)	<0.005	<0.005	<0.005	<0.005	0.0018 (J)	
2/4/2022				<0.005	<0.005	<0.005	<0.005	<0.005	
2/7/2022	<0.005	<0.005	0.00088 (J)						
8/8/2022			<0.005		<0.005				
8/9/2022	<0.005	<0.005		<0.005			<0.005	<0.005	
8/10/202						<0.005			
1/31/202	` '	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
8/14/202			<0.005		<0.005				
8/15/2023	3 <0.005	<0.005		<0.005		<0.005	<0.005	<0.005	

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/22/2016	0.119 (J)	0.0811 (J)	0.1252 (J)	0.1415 (J)	0.1754 (J)				
3/23/2016						0.1069 (J)			0.0905 (J)
3/24/2016							0.1459 (J)	0.1652 (J)	
5/17/2016	0.1049 (J)	0.0706 (J)	0.1091 (J)	0.1293 (J)	0.1385 (J)	0.0991 (J)			
5/18/2016								0.1459 (J)	0.0864 (J)
5/19/2016							0.1408 (J)		
7/5/2016	0.1 (J)		0.16 (J)	0.21 (J)					
7/6/2016		0.09 (J)			0.22 (J)	0.09 (J)		0.21 (J)	
7/7/2016							0.2 (J)		0.16 (J)
9/7/2016	0.13 (J)	0.04 (J)	0.18 (J)	0.21 (J)	0.2 (J)	0.13 (J)			
9/8/2016							0.14 (J)	0.15 (J)	0.08 (J)
10/18/2016	0.15 (J)	0.07 (J)	0.13 (J)	0.15 (J)	0.16 (J)	0.16 (J)		0.19 (J)	
10/19/2016							0.14 (J)		0.09 (J)
12/6/2016	0.11 (J)	0.13 (J)		0.19 (J)	0.29 (J)	0.12 (J)			
12/7/2016			0.13 (J)					0.24 (J)	0.11 (J)
12/8/2016							0.16 (J)		
1/31/2017	0.02 (J)		0.04 (J)						
2/1/2017		<0.3		0.35	0.48				
2/2/2017						0.07 (J)	0.17 (J)	0.1 (J)	
2/3/2017									0.06 (J)
3/23/2017	0.08 (J)		0.08 (J)	0.39					
3/24/2017		0.01 (J)			0.12 (J)				
3/27/2017						0.05 (J)	0.11 (J)	0.11 (J)	0.04 (J)
10/4/2017	0.07 (J)		0.11 (J)	0.49	0.2 (J)				
10/5/2017		<0.3				0.11 (J)	0.13 (J)	0.13 (J)	0.05 (J)
3/14/2018	<0.3		<0.3						
3/15/2018		<0.3		<0.3	0.4	<0.3		<0.3	
3/16/2018							<0.3		<0.3
10/4/2018	0.17 (J)	0.15 (J)	0.25 (J)	0.24 (J)	0.24 (J)	0.16 (J)		0.21 (J)	
10/5/2018							0.21 (J)		0.17 (J)
4/5/2019				0.31					
4/8/2019	0.057 (J)	0.035 (J)	0.072 (J)		0.12 (J)				
4/9/2019						0.067 (J)	0.1 (J)	0.1 (J)	0.056 (J)
9/30/2019	0.11 (J)	0.099 (J)	0.14 (J)	0.15 (J)	0.17 (J)				
10/1/2019						0.07 (J)	0.11 (J)	0.11 (J)	0.069 (J)
3/26/2020	0.082 (J)	0.057 (J)	0.12 (J)	0.09 (J)	0.089 (J)				
3/27/2020						<0.3			
3/30/2020							0.1 (J)		
3/31/2020								0.099 (J)	0.054 (J)
9/21/2020			0.12						
9/22/2020		0.061 (J)							
9/23/2020	0.089 (J)			0.11	0.13				0.065 (J)
9/24/2020							0.11		
9/25/2020						0.085 (J)			
9/28/2020								0.11	
3/8/2021	0.094 (J)	0.11		0.13	0.1				
3/9/2021			0.099 (J)			0.078 (J)	0.11		
3/10/2021								0.11	0.068 (J)
8/9/2021	0.083 (J)		0.081 (J)	0.1	0.12				
8/10/2021		0.068 (J)				0.078 (J)	0.11	0.11	0.066 (J)
2/4/2022	0.087 (J)	0.068 (J)	0.085 (J)	0.084 (J)	0.11 (M1)	0.07 (J)	0.12		
2/7/2022								0.1	0.058 (J)

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
8/8/2022	0.11	0.1	0.1	0.11	0.12				
8/9/2022						0.096 (J)	0.13	0.14	0.11
1/30/2023	0.11	0.09 (J)	0.11	0.12	0.12	0.096 (J)			
1/31/2023							0.15	0.14	0.094 (J)
8/14/2023	0.076 (J)	0.066 (J)	0.08 (J)	0.089 (J)	0.11	0.077 (J)			
8/15/2023							0.1	0.092 (J)	0.055 (J)

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/23/2016		0.0886 (J)	0.1064 (J)	0.0582 (J)	0.0791 (J)	0.2004 (J)	0.1537 (J)	0.0993 (J)
3/24/2016	0.0445 (J)	(-)		(,)		(0)		(,,
5/17/2016	(1)			0.0571 (J)	0.0712 (J)			
5/18/2016	0.0476 (J)	0.0839 (J)		. ,	.,	0.1766 (J)		
5/19/2016	(1)	(-)	0.0928 (J)			(-,	0.1414 (J)	0.0936 (J)
7/6/2016			(,,	0.29 (J)	0.28 (J)	0.39	0.15 (J)	0.09 (J)
7/7/2016	0.12 (J)	0.08 (J)	0.13 (J)	()	. ,		,	, ,
9/7/2016		.,	. ,	0.08 (J)	0.08 (J)	0.53		
9/8/2016	0.11 (J)	0.11 (J)	0.12 (J)	. ,	.,		0.35	0.11 (J)
10/18/2016		.,	. ,	0.09 (J)	0.07 (J)	0.24 (J)	0.17 (J)	, ,
10/19/2016	0.13 (J)	0.1 (J)	0.1 (J)					0.1 (J)
12/7/2016	0.23 (J)	0.09 (J)	0.1 (J)					
12/8/2016				0.06 (J)	0.13 (J)	0.24 (J)	0.15 (J)	0.11 (J)
2/1/2017				0.33	0.24 (J)			
2/2/2017	0.11 (J)	0.05 (J)				0.3 (J)	0.1 (J)	0.05 (J)
2/3/2017			0.12 (J)					
3/23/2017				0.07 (J)	0.04 (J)			
3/24/2017						0.22 (J)	0.14 (J)	
3/27/2017	0.01 (J)	0.08 (J)	0.14 (J)					0.07 (J)
10/4/2017				<0.1	0.03 (J)	0.19 (J)		
10/5/2017	<0.1	0.08 (J)	0.09 (J)				0.15 (J)	0.06 (J)
3/14/2018							0.4	
3/15/2018	<0.1	<0.3	<0.3			0.37		<0.3
3/16/2018				<0.1	<0.3			
5/16/2018							0.32	
10/4/2018	0.15 (J)	0.14 (J)		0.16 (J)	0.17 (J)	0.19 (J)	0.28 (J)	
10/5/2018			0.18 (J)					0.18 (J)
4/8/2019			0.057 (J)		<0.3	0.17 (J)	0.1 (J)	0.058 (J)
4/9/2019	0.063 (J)	0.063 (J)		0.061 (J)				
10/1/2019	0.094 (J)	0.079 (J)	0.079 (J)	0.064 (J)	0.063 (J)	0.16 (J)	0.13 (J)	0.078 (J)
3/26/2020			0.064 (J)					
3/27/2020							0.12 (J)	0.078 (J)
3/30/2020						0.16 (J)		
3/31/2020	<0.1	0.055 (J)		<0.1	0.053 (J)			
9/23/2020		0.073 (J)	0.088 (J)					
9/24/2020	0.1					0.14	0.15	0.076 (J)
9/25/2020				0.058 (J)	0.063 (J)			
3/9/2021	0.058 (J)	0.067 (J)	0.069 (J)	0.05 (J)	0.06 (J)	0.17	0.12	0.08 (J)
8/10/2021	<0.1	0.071 (J)	0.087 (J)	0.057 (J)	0.057 (J)	0.19	0.13	0.076 (J)
2/4/2022				<0.1	0.058 (J)	0.14	0.12	0.076 (J)
2/7/2022	<0.1	0.059 (J)	0.082 (J)					
8/8/2022			0.1		0.083 (J)			
8/9/2022	0.079 (J)	0.11		0.077 (J)			0.14	0.094 (J)
8/10/2022						0.14		
1/31/2023	0.062 (J)	0.095 (J)	0.11	0.074 (J)	0.098 (J)	0.26	0.18	0.11
8/14/2023		/ "	0.075 (J)		0.054 (J)			
8/15/2023	<0.1	0.065 (J)		0.052 (J)		0.13	0.13	0.06 (J)

Constituent: Lead (mg/L) Analysis Run 11/13/2023 3:44 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.001	, ,,	<0.001	<0.001	<0.001			<0.001	
3/7/2007		<0.001				<0.001	<0.001		<0.001
5/8/2007	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
5/9/2007							<0.001	<0.001	<0.001
7/7/2007	<0.001		<0.001						
7/17/2007		<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
8/28/2007	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
8/29/2007									<0.001
11/6/2007	<0.001		<0.001	<0.001	<0.001				
11/7/2007		<0.001				<0.001	<0.001	<0.001	<0.001
5/7/2008							<0.001	<0.001	<0.001
5/8/2008				<0.001	<0.001				
5/9/2008	<0.001	<0.001	<0.001			<0.001			
12/2/2008		<0.001				<0.001			
12/3/2008	<0.001		<0.001	<0.001	<0.001		<0.001		
12/4/2008								<0.001	
12/5/2008									<0.001
4/7/2009	<0.001		<0.001	<0.001	<0.001				
4/8/2009		<0.001				<0.001			
4/14/2009							<0.001	<0.001	<0.001
9/30/2009									<0.001
10/1/2009	<0.001	<0.001	<0.001			<0.001	<0.001		
10/2/2009				<0.001	<0.001			<0.001	
4/13/2010			<0.001				<0.001	<0.001	<0.001
4/14/2010	<0.001	<0.001		<0.001	<0.001	<0.001			
10/7/2010			<0.001						
10/12/2010							<0.001	<0.001	<0.001
10/13/2010	<0.001	<0.001				<0.001			
10/14/2010				<0.001	<0.001				
4/5/2011				<0.001	<0.001				
4/6/2011	<0.001	<0.001	<0.001			<0.001	<0.001	<0.001	
10/4/2011		<0.001				<0.001			
10/6/2011			<0.001						
10/10/2011	<0.001								
10/12/2011				<0.001	<0.001		<0.001	<0.001	<0.001
4/3/2012	<0.001		<0.001						
4/4/2012				<0.001	<0.001				
4/5/2012							<0.001	<0.001	
4/9/2012									<0.001
4/10/2012		<0.001				<0.001			
9/19/2012			<0.001				<0.001		
9/24/2012	<0.001				<0.001				
9/25/2012								<0.001	<0.001
9/26/2012		<0.001		<0.001		<0.001			
3/12/2013	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
3/13/2013							<0.001	<0.001	<0.001
9/9/2013			<0.001						
9/10/2013		<0.001		<0.001	<0.001	<0.001	<0.001		
9/11/2013	<0.001							<0.001	<0.001
3/4/2014	<0.001	<0.001	<0.001			<0.001			
3/10/2014							<0.001	<0.001	<0.001
3/11/2014				<0.001	<0.001				

0/2/2014	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3/2014	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		
9/8/2014				<0.001	<0.001			<0.001	<0.001
9/9/2014	-0.001	-0.001		10.001	10.001	-0.001		<0.001	<0.001
4/21/2015	<0.001	<0.001		<0.001	<0.001	<0.001	0.004	0.004	
4/22/2015			<0.001				<0.001	<0.001	0.004
4/23/2015									<0.001
9/29/2015		<0.001		<0.001	<0.001				
9/30/2015	<0.001		<0.001			<0.001	<0.001	<0.001	<0.001
3/22/2016	<0.001	<0.001	<0.001	<0.001	<0.001				
3/23/2016						<0.001			<0.001
3/24/2016							<0.001	<0.001	
5/17/2016	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
5/18/2016							<0.001	<0.001	<0.001
7/5/2016	<0.001		<0.001	<0.001					
7/6/2016		<0.001			<0.001	<0.001		<0.001	
7/7/2016							<0.001		<0.001
9/7/2016	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
9/8/2016							<0.001	<0.001	<0.001
10/18/2016	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	
10/19/2016							<0.001		<0.001
12/6/2016	<0.001	<0.001		<0.001	<0.001	<0.001			
12/7/2016			<0.001					<0.001	<0.001
12/8/2016							<0.001		
1/31/2017	<0.001		<0.001						
2/1/2017		<0.001		<0.001	<0.001				
2/2/2017						<0.001	<0.001	<0.001	
2/3/2017									<0.001
3/23/2017	<0.001		<0.001	<0.001					
3/24/2017		7E-05 (J)			<0.001				
3/27/2017						<0.001	<0.001	<0.001	7E-05 (J)
10/4/2017	<0.001		<0.001	<0.001	<0.001				
10/5/2017		<0.001				<0.001	<0.001	0.0002 (J)	<0.001
3/14/2018	<0.001		<0.001						
3/15/2018		<0.001		<0.001	<0.001	<0.001		<0.001	
3/16/2018							<0.001		<0.001
10/4/2018	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	
10/5/2018							<0.001		<0.001
4/5/2019				<0.001					
4/8/2019	<0.001	<0.001	<0.001		<0.001				
4/9/2019						<0.001	<0.001	<0.001	<0.001
9/30/2019	<0.001	<0.001	<0.001	<0.001	<0.001				
10/1/2019						<0.001	<0.001	<0.001	<0.001
3/26/2020	<0.001	<0.001	<0.001	4.7E-05 (J)	<0.001				
3/27/2020						5.4E-05 (J)			
3/30/2020							<0.001	0.4= 0= :::	.0.624
3/31/2020								6.1E-05 (J)	<0.001
9/21/2020			<0.001						
9/22/2020	.0.021	<0.001							.0.004
9/23/2020	<0.001			<0.001	<0.001		4E 05 ("		<0.001
9/24/2020						-0.004	4E-05 (J)		
9/25/2020						<0.001		0.0001177	
9/28/2020								0.00014 (J)	

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/8/2021	<0.001	<0.001		4E-05 (J)	<0.001				
3/9/2021			<0.001			<0.001	<0.001		
3/10/2021								<0.001	<0.001
8/9/2021	<0.001		<0.001	<0.001	<0.001				
8/10/2021		<0.001				<0.001	<0.001	<0.001	<0.001
2/4/2022	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		
2/7/2022								<0.001	<0.001
8/8/2022	<0.001	<0.001	<0.001	<0.001	<0.001				
8/9/2022						<0.001	<0.001	<0.001	<0.001
1/30/2023	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
1/31/2023							<0.001	<0.001	<0.001
8/14/2023	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
8/15/2023							<0.001	<0.001	<0.001

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.001	<0.001	<0.001					
3/7/2007				<0.001	<0.001			<0.001
5/8/2007				<0.001				<0.001
5/9/2007	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	
7/6/2007				<0.001		<0.001	<0.001	<0.001
7/17/2007	<0.001	<0.001	<0.001		<0.001			
8/28/2007				<0.001	<0.001	<0.001	<0.001	<0.001
8/29/2007	<0.001	<0.001	<0.001					
11/6/2007				<0.001	<0.001	<0.001	<0.001	<0.001
11/7/2007	<0.001	<0.001	<0.001					
5/7/2008	<0.001	<0.001	<0.001					
5/8/2008				<0.001	<0.001	<0.001	<0.001	<0.001
12/2/2008						<0.001	<0.001	<0.001
12/3/2008				<0.001	<0.001			
12/5/2008	<0.001	<0.001	<0.001					
4/7/2009				<0.001	<0.001			
4/8/2009						<0.001	<0.001	<0.001
4/14/2009		<0.001	<0.001					
4/27/2009	<0.001							
9/30/2009	<0.001	<0.001					<0.001	<0.001
10/1/2009			<0.001	<0.001	<0.001	<0.001		
4/13/2010	<0.001	<0.001			<0.001	<0.001	<0.001	<0.001
4/14/2010			<0.001	<0.001				
10/6/2010					<0.001			
10/7/2010						<0.001		
10/12/2010	<0.001	<0.001						
10/13/2010			<0.001				<0.001	<0.001
10/14/2010				<0.001				
4/5/2011				<0.001	<0.001	<0.001	<0.001	<0.001
4/6/2011		<0.001	<0.001					
10/4/2011					<0.001	<0.001	<0.001	<0.001
10/5/2011	<0.001	<0.001						
10/12/2011			<0.001	<0.001				
4/3/2012					<0.001	<0.001	<0.001	
4/4/2012				<0.001				<0.001
4/9/2012		<0.001	<0.001					
4/10/2012	<0.001							
9/18/2012					<0.001	<0.001		
9/19/2012			<0.001				<0.001	<0.001
9/24/2012				<0.001				
9/25/2012		<0.001						
9/26/2012	<0.001							
3/12/2013				<0.001	<0.001	<0.001	<0.001	<0.001
3/13/2013	<0.001	<0.001	<0.001					
9/9/2013					<0.001			
9/10/2013	.0.004	.0.004	<0.001	<0.001		<0.001	<0.001	<0.001
9/11/2013	<0.001	<0.001		.0.004	.0.004	0.0010./::	0.004	0.004
3/5/2014	-0.004	-0.004	-0.004	<0.001	<0.001	0.0016 (J)	<0.001	<0.001
3/11/2014	<0.001	<0.001	<0.001					10.001
9/3/2014			<0.001		10.001	10.001		<0.001
9/8/2014	<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	
9/9/2014	<0.001	<0.001		<0.001			<0.001	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.001		<0.001		<0.001
4/22/2015					<0.001		<0.001	
4/23/2015		<0.001	<0.001					
9/29/2015				<0.001	<0.001	<0.001	<0.001	<0.001
9/30/2015	<0.001	<0.001	<0.001					
3/23/2016		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
3/24/2016	<0.001							
5/17/2016				<0.001	<0.001			
5/18/2016	<0.001	<0.001				<0.001	<0.001	<0.001
5/19/2016			<0.001					
7/6/2016				<0.001	<0.001	0.0001 (J)	<0.001	<0.001
7/7/2016	<0.001	<0.001	<0.001					
9/7/2016				<0.001	<0.001	<0.001		
9/8/2016	<0.001	<0.001	<0.001				<0.001	<0.001
10/18/2016				<0.001	<0.001	<0.001	<0.001	
10/19/2016	<0.001	<0.001	<0.001					<0.001
12/7/2016	0.0001 (J)	<0.001	<0.001					
12/8/2016				<0.001	0.0001 (J)	<0.001	0.0002 (J)	<0.001
2/1/2017				<0.001	<0.001			
2/2/2017	<0.001	<0.001				0.0003 (J)	<0.001	<0.001
2/3/2017			<0.001					
3/23/2017				<0.001	<0.001			
3/24/2017						0.0002 (J)	<0.001	
3/27/2017	<0.001	<0.001	<0.001					<0.001
10/4/2017				<0.001	<0.001	7E-05 (J)		
10/5/2017	<0.001	<0.001	<0.001				<0.001	<0.001
3/14/2018							<0.001	
3/15/2018	<0.001	<0.001	<0.001			<0.001		<0.001
3/16/2018				<0.001	<0.001			
10/4/2018	<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	
10/5/2018			0.00042 (J)					<0.001
4/8/2019			0.00018 (J)		<0.001	<0.001	<0.001	<0.001
4/9/2019	<0.001	<0.001		0.00039 (J)				
10/1/2019	7.5E-05 (J)	0.00012 (J)	0.00022 (J)	6.5E-05 (J)	<0.001	5E-05 (J)	<0.001	<0.001
3/26/2020			0.00016 (J)					
3/27/2020							<0.001	<0.001
3/30/2020						4.8E-05 (J)		
3/31/2020	<0.001	0.00013 (J)		<0.001	<0.001			
9/23/2020		6.6E-05 (J)	0.00036 (J)					
9/24/2020	0.00012 (J)					6E-05 (J)	4.9E-05 (J)	<0.001
9/25/2020				<0.001	<0.001			
3/9/2021	0.00013 (J)	3.8E-05 (J)	0.00011 (J)	<0.001	<0.001	8.5E-05 (J)	<0.001	<0.001
8/10/2021	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
2/4/2022				<0.001	<0.001	<0.001	<0.001	<0.001
2/7/2022	<0.001	<0.001	<0.001					
8/8/2022			<0.001		<0.001			
8/9/2022	<0.001	<0.001		<0.001			<0.001	<0.001
8/10/2022						<0.001		
1/31/2023	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
8/14/2023			<0.001		<0.001			-
8/15/2023	<0.001	<0.001		<0.001		<0.001	<0.001	<0.001
								2.001

Constituent: Nickel (mg/L) Analysis Run 11/13/2023 3:44 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.005		<0.005	<0.005	<0.005			<0.005	
3/7/2007		<0.01				<0.005	<0.005		<0.005
5/8/2007	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005			
5/9/2007							<0.005	<0.005	<0.005
7/7/2007	<0.005		<0.005						
7/17/2007		<0.01		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/28/2007	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
8/29/2007									<0.005
11/6/2007	<0.005		<0.005	<0.005	<0.005				
11/7/2007		<0.01				<0.005	<0.005	<0.005	<0.005
5/7/2008							<0.005	<0.005	<0.005
5/8/2008				<0.005	<0.005				
5/9/2008	<0.005	<0.01	<0.005			<0.005			
12/2/2008		<0.01				<0.005			
12/3/2008	<0.005		<0.005	<0.005	<0.005		<0.005		
12/4/2008								<0.005	
12/5/2008									<0.005
4/7/2009	<0.005		<0.005	<0.005	<0.005				
4/8/2009		<0.01				<0.005			
4/14/2009							<0.005	<0.005	<0.005
9/30/2009									<0.005
10/1/2009	<0.005	<0.01	<0.005			<0.005	<0.005		
10/2/2009				<0.005	<0.005			<0.005	
4/13/2010			<0.005				<0.005	<0.005	<0.005
4/14/2010	<0.005	<0.01		<0.005	<0.005	<0.005			
10/7/2010			<0.005						
10/12/2010							<0.005	<0.005	<0.005
10/13/2010	<0.005	<0.01				<0.005			
10/14/2010				<0.005	<0.005				
4/5/2011				<0.005	0.0032				
4/6/2011	<0.005	<0.01	<0.005			<0.005	<0.005	<0.005	
10/4/2011		<0.01				<0.005			
10/6/2011			<0.005						
10/10/2011	<0.005								
10/12/2011				<0.005	<0.005		<0.005	<0.005	<0.005
4/3/2012	<0.005		<0.005						
4/4/2012				<0.005	<0.005				
4/5/2012							<0.005	<0.005	
4/9/2012									<0.005
4/10/2012		<0.01				<0.005			
9/19/2012			<0.005				<0.005		
9/24/2012	<0.005				0.0032				
9/25/2012								<0.005	<0.005
9/26/2012		<0.01		<0.005		<0.005			
3/12/2013	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005			
3/13/2013							<0.005	<0.005	<0.005
9/9/2013			<0.005						
9/10/2013		<0.01		<0.005	<0.005	<0.005	<0.005		
9/11/2013	<0.005							<0.005	<0.005
3/4/2014	0.001 (J)	0.002 (J)	0.0007 (J)			<0.005			
3/10/2014							0.0013 (J)	0.00072 (J)	0.00074 (J)
3/11/2014				0.0013 (J)	0.0026				

9/3	3/2014	GWA-1 (bg) <0.005	GWA-11 (bg) 0.002 (J)	GWA-2 (bg) <0.005	GWA-3 (bg)	GWA-4 (bg)	GWC-10 <0.005	GWC-18 <0.005	GWC-19	GWC-20
	8/2014	10.000	0.002 (0)	-0.000	<0.005	0.0017 (J)	-0.000	-0.000		
	9/2014				0.000	0.0017 (0)			<0.005	<0.005
	21/2015	<0.005	0.002 (J)		<0.005	0.0016 (J)	<0.005		-0.000	-0.000
	22/2015	10.000	0.002 (0)	<0.005	10.000	0.0010 (0)	-0.000	<0.005	<0.005	
	23/2015			10.003				-0.003	10.000	<0.005
	29/2015		0.0022 (J)		<0.005	0.0055				-0.000
	30/2015	<0.005	0.0022 (0)	<0.005	10.000	0.0000	<0.005	<0.005	<0.005	<0.005
	22/2016	<0.005	<0.01	<0.005	<0.005	<0.005	10.000	-0.003	10.003	-0.003
	23/2016	~0.003	~0.01	10.003	~0.003	~0.003	<0.005			<0.005
	24/2016						10.000	<0.005	<0.005	-0.003
	7/2016	0.0008 (J)	0.0026 (J)	<0.005	<0.005	0.0014 (J)	<0.005	-0.003	10.003	
	3/2016	0.0008 (3)	0.0020 (3)	10.003	~0.003	0.0014 (3)	10.003	0.0009 (J)	<0.005	<0.005
	23/2017	0.0007 (J)		<0.005	0.0022 (J)			0.0003 (0)	10.000	10.003
	24/2017	0.0007 (3)	0.0024 (J)	10.003	0.0022 (3)	0.0017 (J)				
	27/2017		0.0024 (3)			0.0017 (3)	<0.005	0.0006 (1)	0.0063 (1)	0.0006 (J)
	/4/2017	0.0006 (J)		<0.005	<0.005	0.0023 (J)	<0.003	0.0006 (J)	0.0062 (J)	0.0006 (3)
		0.0000 (3)	0.0023 (J)	<0.005	<0.005	0.0023 (3)	<0.005	0.0008 (1)	0.0005 (1)	<0.00E
	/5/2017	-0.005	0.0023 (3)	-0.005			<0.005	0.0008 (J)	0.0005 (J)	<0.005
	14/2018	<0.005	0.0026 (1)	<0.005	<0.00E	0.0024 (1)	<0.00E		<0.00E	
	15/2018		0.0026 (J)		<0.005	0.0024 (J)	<0.005	10.005	<0.005	-0.005
	16/2018	.0.005	0.0000 (1)	0.005	.0.005	0.0040 (1)	0.005	<0.005	.0.005	<0.005
	/4/2018	<0.005	0.0023 (J)	<0.005	<0.005	0.0013 (J)	<0.005		<0.005	
	/5/2018							<0.005		<0.005
	5/2019				0.00075 (J)					
	8/2019	0.00034 (J)	0.0023 (J)	<0.005		0.00089 (J)				
	9/2019						<0.005	<0.005	<0.005	<0.005
	30/2019	0.00037 (J)	0.0017 (J)	<0.005	<0.005	0.0013 (J)				
	/1/2019						<0.005	0.0015 (J)	<0.005	<0.005
	26/2020	0.00065 (J)	0.002 (J)	<0.005	0.0011 (J)	0.00096 (J)				
	27/2020						0.0023 (J)			
	30/2020							0.00048 (J)		
	31/2020								<0.005	<0.005
	21/2020			<0.005						
	22/2020		0.0014 (J)							
	23/2020	<0.005			<0.005	0.00091 (J)				<0.005
	24/2020							0.0011 (J)		
	25/2020						<0.005			
	28/2020								<0.005	
	8/2021	<0.005	0.001 (J)		<0.005	<0.005				
	9/2021			<0.005			<0.005	<0.005		
	10/2021								<0.005	<0.005
	9/2021	<0.005		<0.005	<0.005	0.001 (J)				
	10/2021		0.0017 (J)				<0.005	<0.005	<0.005	<0.005
	4/2022	<0.005	0.0019 (J)	<0.005	0.0009 (J)	0.00087 (J)	<0.005	0.00078 (J)		
	7/2022								<0.005	<0.005
	8/2022	<0.005	0.0017 (J)	<0.005	0.00092 (J)	<0.005				
	9/2022						<0.005	0.00074 (J)	<0.005	<0.005
	30/2023	<0.005	0.0017 (J)	<0.005	0.00082 (J)	<0.005	<0.005			
	31/2023							<0.005	<0.005	<0.005
	14/2023	<0.005	0.0016 (J)	<0.005	0.0021 (J)	<0.005	<0.005			
8/1	15/2023							<0.005	<0.005	<0.005

Constituent: Nickel (mg/L) Analysis Run 11/13/2023 3:44 PM

Plant Hammond C	Client: Southern Company	Data: Huffaker Road Landfill

		GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
;	3/6/2007	<0.005	<0.005	<0.005					
	3/7/2007				<0.005	<0.005			<0.01
	5/8/2007				<0.005				<0.01
	5/9/2007	<0.005	<0.005	<0.005		<0.005	18 (o)	<0.005	
	7/6/2007				<0.005		5.9 (o)	<0.005	<0.01
	7/17/2007	<0.005	<0.005	<0.005		<0.005			
	8/28/2007				<0.005	<0.005	3.9 (o)	<0.005	<0.01
	8/29/2007	0.0055	<0.005	<0.005					
	11/6/2007				<0.005	<0.005	3.1 (o)	<0.005	<0.01
	11/7/2007	0.0044	<0.005	<0.005					
	5/7/2008	0.0047	<0.005	<0.005					
	5/8/2008				<0.005	<0.005	2.1 (o)	<0.005	<0.01
	12/2/2008						1.2	<0.005	<0.01
	12/3/2008				<0.005	<0.005			
	12/5/2008	<0.005	<0.005	<0.005					
	4/7/2009				<0.005	<0.005			
	4/8/2009						1.1	<0.005	<0.01
	4/14/2009		<0.005	<0.005					
	4/27/2009	0.0027							
!	9/30/2009	0.0051	<0.005					<0.005	<0.01
	10/1/2009			<0.005	<0.005	<0.005	0.88		
	4/13/2010	0.0031	<0.005			<0.005	0.82	<0.005	<0.01
	4/14/2010			<0.005	<0.005				
	10/6/2010					<0.005			
	10/7/2010						0.72		
	10/12/2010	<0.005	<0.005						
	10/13/2010			<0.005				<0.005	<0.01
	10/14/2010				<0.005				
	4/5/2011				<0.005	<0.005	0.52	<0.005	<0.01
	4/6/2011		<0.005	<0.005					
	10/4/2011					<0.005	0.56	<0.005	<0.01
	10/5/2011	0.0032	<0.005						
	10/12/2011			<0.005	<0.005				
	4/3/2012					<0.005	0.365	<0.005	
	4/4/2012				<0.005				<0.01
	4/9/2012		<0.005	<0.005					
	4/10/2012	<0.005							
	9/18/2012					<0.005	0.45		
	9/19/2012			<0.005				<0.005	<0.01
	9/24/2012				<0.005				
	9/25/2012		<0.005						
	9/26/2012	0.0063							
	3/12/2013				<0.005	<0.005	0.13	<0.005	<0.01
	3/13/2013	0.0029	<0.005	<0.005					
	9/9/2013					<0.005			
	9/10/2013			<0.005	<0.005		0.2	<0.005	0.003
	9/11/2013	0.0046	<0.005						
	3/5/2014				0.001 (J)	0.00092 (J)	0.17	0.00079 (J)	0.0022 (J)
	3/11/2014	0.002 (J)	0.00059 (J)	0.0016 (J)					
	9/3/2014			<0.005					<0.01
	9/8/2014	0.000	.0.005		.0.005	<0.005	0.25	.0.005	
:	9/9/2014	0.0029	<0.005		<0.005			<0.005	

Constituent: Nickel (mg/L) Analysis Run 11/13/2023 3:44 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.005		0.15		0.0019 (J)
4/22/2015					<0.005		<0.005	
4/23/2015		<0.005	<0.005					
9/29/2015				<0.005	<0.005	0.203	<0.005	0.0019 (J)
9/30/2015	0.0025 (J)	<0.005	<0.005					
3/23/2016		<0.005	<0.005	<0.005	<0.005	0.0607	<0.005	<0.01
3/24/2016	0.00317 (J)							
9/7/2016				<0.005	<0.005	0.141		
9/8/2016	0.0038 (J)	<0.005	0.0011 (J)				<0.005	0.0023 (J)
3/23/2017				0.0008 (J)	<0.005			
3/24/2017						0.0313	<0.005	
3/27/2017	0.0024 (J)	<0.005	0.0007 (J)					0.0023 (J)
10/4/2017				<0.005	<0.005	0.093		
10/5/2017	0.0104	<0.005	<0.005				<0.005	0.0024 (J)
3/14/2018							<0.005	
3/15/2018	0.0026 (J)	<0.005	0.001 (J)			0.057		0.0023 (J)
3/16/2018				<0.005	<0.005			
10/4/2018	0.012	<0.005		<0.005	<0.005	0.11	<0.005	
10/5/2018			0.0014 (J)					0.0025 (J)
12/11/2018	0.0052 (J)							
4/8/2019			0.0011 (J)		0.00032 (J)	0.03	0.00064 (J)	0.0021 (J)
4/9/2019	0.0048 (J)	<0.005		0.00098 (J)				
10/1/2019	0.0031 (J)	<0.005	0.0035 (J)	0.00088 (J)	0.00042 (J)	0.07	0.00063 (J)	0.0022 (J)
3/26/2020			0.001 (J)					
3/27/2020							0.00053 (J)	0.0022 (J)
3/30/2020						0.037		
3/31/2020	0.0039 (J)	<0.005		0.0013 (J)	<0.005			
9/23/2020		<0.005	0.00079 (J)					
9/24/2020	0.0068					0.042	0.001 (J)	0.0024 (J)
9/25/2020				0.00078 (J)	<0.005			
3/9/2021	0.0013 (J)	<0.005	<0.005	<0.005	<0.005	0.035	<0.005	0.0014 (J)
8/10/2021	0.0076	<0.005	0.0008 (J)	0.00085 (J)	<0.005	0.057	0.0073	0.0019 (J)
2/4/2022				<0.005	<0.005	0.039	<0.005	0.0018 (J)
2/7/2022	0.0055	<0.005	0.00084 (J)					
8/8/2022			<0.005		<0.005			
8/9/2022	0.0053	<0.005		<0.005			<0.005	0.0018 (J)
8/10/2022						0.061		
1/31/2023	0.005 (J)	<0.005	<0.005	<0.005	<0.005	0.11	<0.005	0.002 (J)
8/14/2023			<0.005		<0.005			

<0.005

0.095

<0.005

0.0017 (J)

8/15/2023

0.0054

<0.005

1	
\$\frac{5}{5}\text{12}\text{10}{5}\text{15}\tex	
182216	
Property of the content of the con	
Page	
7,772916	
98/2016	
1018/2016	
10/18/2016 6.86 6.58 6.71 6.64 6.73 7.11 7.35 7.35 7.35 7.37 7.35 7	
10/19/2016	
12862016 6.98	
127/2016	
12/8/2016	
1/31/2017 6.63 6.95 6.68 6.72 7.19 7.64 7.43 7.37 7.38 7.	
2/1/2017	
2/22/2017	
2/3/2017	
3/24/2017	
3/27/2017	
1014/2017	
10/5/2017	
3/14/2018	
3/15/2018	
3/16/2018	
5/15/2018 6.92 6.66 6.62 6.62 6.72 7.26 7.44 7.07 10/5/2018 7.57 7.07 7.16 7.16 12/11/2018 7.20 7.57 7.07 4/5/2019 7.22 7.48 7.26 7.26 4/8/2019 6.86 6.61 6.79 6.82 7.22 7.48 7.4 7.26 9/30/2019 7.15 6.86 6.86 6.73 6.77 7.07 7.65 7.31 7.16 3/30/2019 7.02 6.83 7.07 6.87 6.74 7.65 7.31 7.16 3/30/2020 7.02 6.83 7.07 6.87 6.74 7.65 7.65 7.57 3/31/2020 7.02 6.83 7.07 6.87 6.74 7.4 (R) 7.61 (R) 7.57 6/19/2020 7.02 6.83 7.07 6.87 7.4 (R) 7.65 7.57 6/19/2020 7.02 6.83 7.07 7.02 7.4 (R) 7.61 (R) 7.31 (R) 9/21/2020 7.02 <td></td>	
10/4/2018	
10/5/2018	
12/11/2018 57.16 4/5/2019 6.86 6.61 6.79 6.82 4/9/2019 7.15 6.86 6.86 6.73 6.77 10/1/2019 7.15 6.86 6.86 6.73 6.77 10/1/2019 7.02 6.83 7.07 6.87 6.74 3/26/2020 7.02 6.83 7.07 6.87 6.74 3/30/2020 7.02 6.83 7.07 6.87 6.74 3/31/2020 7.65 7.65 7.62 7.57 6/19/2020 6.9 7.4 (R) 7.61 (R) 7.31 (R) 9/21/2020 6.88 6.87 6.81 7.62 7.11 9/24/2020 6.98 6.87 6.81 7.62 7.71	
4/5/2019	
4/8/2019	
4/9/2019 7.15 6.86 6.86 6.73 6.77 10/1/2019 7.02 7.65 7.31 7.16 3/26/2020 7.02 6.83 7.07 6.87 6.74 6.82 7.65 7.65 7.62 7.57 3/30/2020 7.02 6.83 7.07 6.87 6.74 7.65 7.65 7.62 7.57 6/19/2020 7.02 6.9 7.4 (R) 7.61 (R) 7.31 (R) 9/21/2020 6.98 6.87 6.81 7.62 7.11 9/24/2020 6.98 6.87 6.87 6.81 7.62 7.62	
9/30/2019 7.15 6.86 6.86 6.86 6.73 6.77 10/1/2019 7.07 7.65 7.31 7.16 3/26/2020 7.02 6.83 7.07 6.87 6.74 3/27/2020 6.83 7.07 6.87 6.74 3/30/2020 7.65 7.65 3/31/2020 7.65 7.65 3/31/2020 7.62 7.57 6/19/2020 6.8 6.8 6.9 9/22/2020 6.98 6.8 6.8 6.87 6.81 7.62 7.62 7.11	
10/1/2019 7.07 7.65 7.31 7.16 3/26/2020 7.02 6.83 7.07 6.87 6.74 3/27/2020 6.82 7.65 7.65 3/30/2020 7.65 7.57 6/19/2020 6.9 7.4 (R) 7.61 (R) 7.31 (R) 9/21/2020 6.8 6.87 6.81 7.62 7.11 9/24/2020 6.98 6.87 6.81 7.62 7.11	
3/26/2020 7.02 6.83 7.07 6.87 6.74 3/27/2020 6.82 3/30/2020 7.65 3/31/2020 7.65 3/31/2020 7.62 7.57 6/19/2020 6.9 6.8 9/22/2020 6.98 6.8 6.87 6.87 6.81 7.62 7.62 7.62 7.62 7.61 7.62 7.62 7.61 7.62 7.62	
3/27/2020 6.82 3/30/2020 7.65 3/31/2020 7.62 7.57 6/19/2020 6.9 9/22/2020 6.8 6.82 7.65 7.62 7.57 7.4 (R) 7.61 (R) 7.31 (R) 7.91/2020 6.8 7.21/2020 6.8 7.22/2020 7.57 7.4 (R) 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57	
3/30/2020 7.65 3/31/2020 7.62 7.57 6/19/2020 7.4 (R) 7.61 (R) 7.31 (R) 9/21/2020 6.9 9/22/2020 6.98 6.87 6.81 7.62 7.62	
3/31/2020 7.62 7.57 6/19/2020 7.4 (R) 7.61 (R) 7.31 (R) 9/21/2020 6.9 9/22/2020 6.98 6.87 6.81 7.11 9/24/2020 7.57	
6/19/2020 7.4 (R) 7.61 (R) 7.31 (R) 9/21/2020 6.9 9/22/2020 6.98 6.87 6.81 7.11 9/24/2020 7.62	
9/21/2020 6.9 9/22/2020 6.8 9/23/2020 6.98 6.87 6.81 9/24/2020 7.11 7.62	
9/22/2020 6.8 9/23/2020 6.98 6.87 6.81 9/24/2020 7.11 7.62	
9/23/2020 6.98 9/24/2020 6.87 6.81 7.11 7.62	
9/24/2020 7.62	
9/25/2020 7.28	
9/28/2020 7.78	
11/10/2020 7.37 (R)	
3/8/2021 6.86 6.78 6.95 6.84	
3/9/2021 6.93 7.43 7.66	
3/10/2021 7.49 7.41	
8/9/2021 7.23 6.9 6.89 6.76	

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
8/10/2021		6.84				7.45	7.4	7.49	7.31
2/4/2022	7.18	6.92	6.98	6.75	7.11	7.51	7.73		
2/7/2022								7.61	7.57
8/8/2022	7.28	6.55	7.03	6.59	6.73				
8/9/2022						7.36	7.47	7.42	7.33
1/30/2023	7.22	7	7.05	6.82	6.94	7.6			
1/31/2023							7.56	7.65	7.44
8/14/2023	7.22	6.99	6.91	6.54	6.74	7.48			
8/15/2023							7.63	7.61	7.54

		GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/23/2	2016		7.72	7.48	7.1	7.29	6.36	7.46	7.2
3/24/2		6.4							
5/17/2					6.88	7.1			
5/18/2		6.44	7.77				6.21	7.4	6.96
5/19/2		0		7.24			0.2.		
7/6/2				7.24	6.75	7	5.88	7.36	6.89
7/7/2		6.12	7.65	7.18	0.70	,	0.00	7.00	0.00
9/7/2		0.12	7.00	7.10	6.95	7.07	5.77		
9/8/2		7.2	7.89	7.17	0.55	7.07	5.77	7.45	6.93
	3/2016	7.2	7.09	7.17	6.9	6.81	5.9	7.43	0.55
	9/2016	7.11	7.64	7.05	0.9	0.01	5.9	7.5	6.84
12/7/2		7.11	7.72	7.16					0.04
12/7/		7.24	1.12	7.10	6.55	6.85		7.28	6.54
12/9/2					0.55	0.00	5.73	7.20	0.54
2/1/2					6.81	7.05	5.75		
		6.96	7.56		0.61	7.03	6.20	7.45	6.70
2/2/20		6.86	7.56	7 27			6.29	7.45	6.72
2/3/20 3/23/2				7.27	0.0	0.07			
					6.8	6.97	0.00	7.00	
3/24/2		0.51	7.00	7.04			6.32	7.28	0.50
3/27/2		6.51	7.69	7.24	7.10	7.47	0.00		6.56
10/4/2					7.12	7.17	6.03		
10/5/2		5.97	7.53	7.25				7.53	7.03
3/14/2								7.28	
3/15/2		7.01	7.5	7.05			6.05		6.66
3/16/2					6.72	6.8			
10/4/2		6.33	7.52		6.52	6.93	5.92	7.22	
10/5/2				6.97					6.41
4/8/20				6.88		7	6.26	6.91	6.72
4/9/20		6.46	7.49		6.72				
6/18/2								6.85	
6/27/2								7.05	
10/1/2		6.9	7.38	7	6.81	6.97	6.09	7.11	6.77
11/6/2			7.66						
3/26/2				6.88					
3/27/2								7.01	7.11
3/30/2							6.48		
3/31/2		6.33	7.8		6.82	7.17			
6/18/						6.96 (R)			
6/19/2							6.45 (R)	6.81 (R)	
9/23/2			7.42	6.96					
9/24/2		7.12					6.32	6.96	6.75
9/25/2					6.82	6.96			
3/9/20		7.04	7.52	6.81	6.93	7.09	6.59	7.06	6.92
8/10/2		6.05	7.75	6.96	6.87	7.06	6.29	6.65	6.91
2/4/20					6.92	7.21	6.7	7.07	7.1
2/7/20		6.58	7.85	7.05					
8/8/20				7.04		6.9			
8/9/20		6.05	7.62		6.89			7.08	7
8/10/2							6.25		
1/31/2		6.23	7.67	7.03	6.96	7.24	5.84	7.09	6.74
8/14/2				7.21		7.68			
8/15/2	2023	6.17	7.68		6.85		5.94	7.34	7.09

Page 2

Time Series

Constituent: pH (SU) Analysis Run 11/13/2023 3:44 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

GWC-21 GWC-22 GWC-23 GWC-5 GWC-6 GWC-7 GWC-8 GWC-9

11/8/2023 7.15

	C)A/A 1 (b-r)								
	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
/6/2007	<0.005		<0.005	<0.005	<0.005			<0.005	
/7/2007		<0.005				<0.005	<0.005		<0.005
/8/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
/9/2007							<0.005	<0.005	<0.005
/7/2007	<0.005		<0.005						
/17/2007		<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
/28/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
/29/2007									<0.005
1/6/2007	<0.005		<0.005	<0.005	<0.005				
1/7/2007		<0.005				<0.005	<0.005	<0.005	<0.005
/7/2008							<0.005	<0.005	<0.005
/8/2008				<0.005	<0.005				
/9/2008	<0.005	<0.005	<0.005			<0.005			
2/2/2008		<0.005				<0.005			
2/3/2008	<0.005		<0.005	<0.005	<0.005		<0.005		
2/4/2008								<0.005	
2/5/2008									<0.005
/7/2009	<0.005		<0.005	<0.005	<0.005				
/8/2009		<0.005				<0.005			
/14/2009							<0.005	<0.005	<0.005
/30/2009									<0.005
0/1/2009	<0.005	<0.005	<0.005			<0.005	<0.005		
0/2/2009				<0.005	<0.005			<0.005	
/13/2010			<0.005				<0.005	<0.005	<0.005
/14/2010	<0.005	<0.005		<0.005	<0.005	<0.005			
0/7/2010			<0.005						
0/12/2010							<0.005	<0.005	<0.005
0/13/2010	<0.005	<0.005				<0.005			
0/14/2010				<0.005	<0.005				
/5/2011				<0.005	<0.005				
/6/2011	<0.005	<0.005	<0.005			<0.005	<0.005	<0.005	
0/4/2011		<0.005				<0.005			
0/6/2011			<0.005						
0/10/2011	<0.005								
0/12/2011				<0.005	<0.005		<0.005	<0.005	<0.005
/3/2012	<0.005		<0.005						
/4/2012				<0.005	<0.005				
/5/2012							<0.005	<0.005	
/9/2012									<0.005
/10/2012		<0.005				<0.005			
/19/2012			<0.005				<0.005		
/24/2012	<0.005				<0.005				
/25/2012								<0.005	<0.005
/26/2012		<0.005		<0.005		<0.005			
/12/2013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
/13/2013							<0.005	<0.005	<0.005
/9/2013			<0.005						
/10/2013		<0.005		<0.005	<0.005	<0.005	<0.005		
/11/2013	<0.005							<0.005	<0.005
	< 0.005	< 0.005	<0.005			0.0016 (J)			
/4/2014	\0.003	0.000							
/4/2014 /10/2014 /11/2014	10.003	0.000		<0.005	<0.005		<0.005	<0.005	<0.005
	8/2007 9/2007 7/2007 7/2007 1/7/2007 1/28/2007 1/7/2007 1/7/2008 8/2008 9/2008 1/7/2008 8/2008 1/7/2008 8/2008 1/7/2008 8/2008 1/7/2009 1/7/2009 1/7/2009 1/7/2009 1/7/2009 1/7/2009 1/7/2010 1/7/2010 1/7/2010 1/7/2010 1/7/2010 1/7/2011 1/7/2012 1/7/2012 1/7/2012 1/7/2012 1/7/2012 1/7/2012 1/7/2012 1/7/2012 1/7/2012 1/7/2012 1/7/2012 1/7/2012 1/7/2012 1/7/2012 1/7/2012 1/7/2012 1/7/2012 1/7/2012 1/7/2013 1/7/2013 1/7/2013 1/7/2013 1/7/2013 1/7/2013 1/7/2013 1/7/2013	8/2007	8/2007	8/2007	8/2007	882007	Section		1000 10000 10000 10000 10000 10000 10000 10000 10000

0/2/2014	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3/2014	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		
9/8/2014				<0.005	<0.005			<0.00E	<0.00E
9/9/2014	-0.005	-0.005		10.005	-0.005	-0.005		<0.005	<0.005
4/21/2015	<0.005	<0.005	.0.005	<0.005	<0.005	<0.005	.0.005	.0.005	
4/22/2015			<0.005				<0.005	<0.005	-0.005
4/23/2015		0.005		.0.005	0.005				<0.005
9/29/2015	.0.005	<0.005		<0.005	<0.005	.0.005	.0.005	.0.005	.0.005
9/30/2015	<0.005		<0.005			<0.005	<0.005	<0.005	<0.005
3/22/2016	<0.005	<0.005	<0.005	<0.005	<0.005	.0.005			.0.005
3/23/2016						<0.005	.0.005	.0.005	<0.005
3/24/2016	.0.005	.0.005		.0.005	.0.005	.0.005	<0.005	<0.005	
5/17/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	.0.005	.0.005	.0.005
5/18/2016	.0.005			.0.005			<0.005	<0.005	<0.005
7/5/2016	<0.005		<0.005	<0.005					
7/6/2016		<0.005			<0.005	<0.005		<0.005	
7/7/2016	.0.005	.0.005		.0.005	.0.005	.0.005	<0.005		<0.005
9/7/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
9/8/2016							<0.005	<0.005	<0.005
10/18/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	
10/19/2016							<0.005		<0.005
12/6/2016	<0.005	<0.005		<0.005	<0.005	<0.005			
12/7/2016			<0.005					<0.005	<0.005
12/8/2016							<0.005		
1/31/2017	<0.005		<0.005						
2/1/2017		<0.005		<0.005	<0.005				
2/2/2017						<0.005	<0.005	<0.005	.0.005
2/3/2017									<0.005
3/23/2017	<0.005		<0.005	<0.005					
3/24/2017		<0.005			<0.005				
3/27/2017	.0.005			.0.005	.0.005	<0.005	<0.005	<0.005	<0.005
10/4/2017	<0.005		<0.005	<0.005	<0.005				
10/5/2017		<0.005				<0.005	<0.005	<0.005	<0.005
3/14/2018	<0.005		<0.005						
3/15/2018		<0.005		<0.005	<0.005	<0.005	.0.005	<0.005	.0.005
3/16/2018							<0.005		<0.005
10/4/2018	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	
10/5/2018				.0.005			<0.005		<0.005
4/5/2019				<0.005					
4/8/2019	<0.005	<0.005	<0.005		0.00014 (J)				
4/9/2019						<0.005	<0.005	<0.005	<0.005
9/30/2019	<0.005	<0.005	<0.005	<0.005	<0.005				
10/1/2019						<0.005	<0.005	<0.005	<0.005
3/26/2020	<0.005	<0.005	<0.005	<0.005	<0.005				
3/27/2020						<0.005	.0.005		
3/30/2020							<0.005	.0.005	.0.005
3/31/2020			-0.005					<0.005	<0.005
9/21/2020		-0.005	<0.005						
9/22/2020	-0.005	<0.005		-0.005	-0.005				10.005
9/23/2020	<0.005			<0.005	<0.005		-0.005		<0.005
9/24/2020						-0.005	<0.005		
9/25/2020						<0.005		-0.00F	
9/28/2020								<0.005	

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/8/2021	<0.005	<0.005		<0.005	<0.005				
3/9/2021			<0.005			<0.005	<0.005		
3/10/2021								<0.005	<0.005
8/9/2021	<0.005		<0.005	<0.005	<0.005				
8/10/2021		<0.005				<0.005	<0.005	<0.005	<0.005
2/4/2022	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		
2/7/2022								<0.005	<0.005
8/8/2022	<0.005	<0.005	<0.005	<0.005	<0.005				
8/9/2022						<0.005	<0.005	<0.005	<0.005
1/30/2023	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
1/31/2023							<0.005	<0.005	<0.005
8/14/2023	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
8/15/2023							<0.005	<0.005	<0.005

					, , , ,		-	
	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.005	<0.005	<0.005					
3/7/2007				<0.005	<0.005			<0.005
5/8/2007				<0.005				<0.005
5/9/2007	<0.005	<0.005	<0.005		<0.005	<0.005	<0.005	
7/6/2007				<0.005		<0.005	<0.005	<0.005
7/17/2007	<0.005	<0.005	<0.005		<0.005			
8/28/2007				<0.005	<0.005	<0.005	<0.005	<0.005
8/29/2007	<0.005	<0.005	<0.005					
11/6/2007				<0.005	<0.005	<0.005	<0.005	<0.005
11/7/2007	<0.005	<0.005	<0.005					
5/7/2008	<0.005	<0.005	<0.005					
5/8/2008				<0.005	<0.005	<0.005	<0.005	<0.005
12/2/2008						<0.005	<0.005	<0.005
12/3/2008				<0.005	<0.005			
12/5/2008	<0.005	<0.005	<0.005					
4/7/2009				<0.005	<0.005			
4/8/2009						<0.005	<0.005	<0.005
4/14/2009		<0.005	<0.005					
4/27/2009	<0.005							
9/30/2009	<0.005	<0.005					<0.005	<0.005
10/1/2009			<0.005	<0.005	<0.005	<0.005		
4/13/2010	<0.005	<0.005			<0.005	<0.005	<0.005	<0.005
4/14/2010			<0.005	<0.005				
10/6/2010					<0.005			
10/7/2010						<0.005		
10/12/2010	<0.005	<0.005						
10/13/2010			<0.005				<0.005	<0.005
10/14/2010				<0.005				
4/5/2011				<0.005	<0.005	<0.005	<0.005	<0.005
4/6/2011		<0.005	<0.005					
10/4/2011					<0.005	<0.005	<0.005	<0.005
10/5/2011	<0.005	<0.005						
10/12/2011			<0.005	<0.005				
4/3/2012					<0.005	<0.005	<0.005	
4/4/2012				<0.005				<0.005
4/9/2012		<0.005	<0.005					
4/10/2012	<0.005							
9/18/2012					<0.005	<0.005		
9/19/2012			<0.005				<0.005	<0.005
9/24/2012				<0.005				
9/25/2012		<0.005						
9/26/2012	<0.005							
3/12/2013				<0.005	<0.005	<0.005	<0.005	<0.005
3/13/2013	<0.005	<0.005	<0.005					
9/9/2013					<0.005			
9/10/2013			<0.005	<0.005		<0.005	<0.005	<0.005
9/11/2013	<0.005	<0.005						
3/5/2014				<0.005	<0.005	<0.005	<0.005	0.0018 (J)
3/11/2014	0.0024 (J)	0.0017 (J)	<0.005					• •
9/3/2014	. ,	. ,	<0.005					<0.005
9/8/2014					<0.005	<0.005		
9/9/2014	<0.005	<0.005		<0.005			<0.005	

			T lant ria	minoria Cheric Oc		Data. Hullakei Noai	u Landiii	
	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.005		<0.005		<0.005
4/22/2015					<0.005		<0.005	
4/23/2015		<0.005	<0.005					
9/29/2015				<0.005	<0.005	<0.005	<0.005	<0.005
9/30/2015	<0.005	<0.005	<0.005					
3/23/2016		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
3/24/2016	<0.005							
5/17/2016				<0.005	<0.005			
5/18/2016	<0.005	<0.005				<0.005	<0.005	<0.005
5/19/2016			<0.005					
7/6/2016				<0.005	<0.005	<0.005	<0.005	<0.005
7/7/2016	<0.005	<0.005	<0.005					
9/7/2016				<0.005	<0.005	<0.005		
9/8/2016	<0.005	<0.005	<0.005				<0.005	<0.005
10/18/2016				<0.005	<0.005	<0.005	<0.005	
10/19/2016	<0.005	<0.005	<0.005					<0.005
12/7/2016	<0.005	<0.005	<0.005					
12/8/2016				<0.005	<0.005	<0.005	<0.005	<0.005
2/1/2017				<0.005	<0.005			
2/2/2017	0.0017 (J)	<0.005				<0.005	<0.005	<0.005
2/3/2017			<0.005					
3/23/2017				<0.005	<0.005			
3/24/2017						<0.005	<0.005	
3/27/2017	<0.005	<0.005	<0.005					<0.005
10/4/2017				<0.005	<0.005	<0.005		
10/5/2017	<0.005	<0.005	<0.005				<0.005	<0.005
3/14/2018							<0.005	
3/15/2018	<0.005	<0.005	<0.005			<0.005		<0.005
3/16/2018				<0.005	<0.005			
10/4/2018	<0.005	<0.005		<0.005	<0.005	<0.005	<0.005	
10/5/2018			<0.005					<0.005
4/8/2019			<0.005		<0.005	<0.005	<0.005	<0.005
4/9/2019	<0.005	<0.005		<0.005				
10/1/2019	<0.005	0.0014 (J)	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
3/26/2020			<0.005					
3/27/2020							<0.005	<0.005
3/30/2020						<0.005		
3/31/2020	<0.005	<0.005		<0.005	<0.005			
9/23/2020		<0.005	<0.005					
9/24/2020	<0.005					<0.005	<0.005	<0.005
9/25/2020				<0.005	<0.005			
3/9/2021	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/10/2021	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2/4/2022				<0.005	<0.005	<0.005	<0.005	<0.005
2/7/2022	<0.005	<0.005	<0.005					
8/8/2022			<0.005		<0.005			
8/9/2022	<0.005	<0.005		<0.005			<0.005	<0.005
8/10/2022						<0.005		
1/31/2023	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/14/2023			<0.005		<0.005			
8/15/2023	<0.005	<0.005		<0.005		<0.005	<0.005	<0.005

Constituent: Silver (mg/L) Analysis Run 11/13/2023 3:44 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.005		<0.005	<0.005	<0.005			<0.005	
3/7/2007		<0.005				<0.005	<0.005		<0.005
5/8/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
5/9/2007							<0.005	<0.005	<0.005
7/7/2007	<0.005		<0.005						
7/17/2007		<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/28/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
8/29/2007									<0.005
11/6/2007	<0.005		<0.005	<0.005	<0.005				
11/7/2007		<0.005				<0.005	<0.005	<0.005	<0.005
5/7/2008							<0.005	<0.005	<0.005
5/8/2008				<0.005	<0.005				
5/9/2008	<0.005	<0.005	<0.005			<0.005			
12/2/2008		<0.005				<0.005			
12/3/2008	<0.005		<0.005	<0.005	<0.005		<0.005		
12/4/2008								<0.005	
12/5/2008									<0.005
4/7/2009	<0.005		<0.005	<0.005	<0.005				
4/8/2009		<0.005				<0.005			
4/14/2009							<0.005	<0.005	<0.005
9/30/2009									<0.005
10/1/2009	<0.005	<0.005	<0.005			<0.005	<0.005		
10/2/2009				<0.005	<0.005			<0.005	
4/13/2010			<0.005				<0.005	<0.005	<0.005
4/14/2010	<0.005	<0.005		<0.005	<0.005	<0.005			
10/7/2010			<0.005						
10/12/2010							<0.005	<0.005	<0.005
10/13/2010	<0.005	<0.005				<0.005			
10/14/2010				<0.005	<0.005				
4/5/2011				<0.005	<0.005				
4/6/2011	<0.005	<0.005	<0.005			<0.005	<0.005	<0.005	
10/4/2011		<0.005				<0.005			
10/6/2011			<0.005						
10/10/2011	<0.005								
10/12/2011				<0.005	<0.005		<0.005	<0.005	<0.005
4/3/2012	<0.005		<0.005						
4/4/2012				<0.005	<0.005				
4/5/2012							<0.005	<0.005	
4/9/2012									<0.005
4/10/2012		<0.005				<0.005			
9/19/2012			<0.005				<0.005		
9/24/2012	<0.005				<0.005				
9/25/2012								<0.005	<0.005
9/26/2012		<0.005		<0.005		<0.005			
3/12/2013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
3/13/2013							<0.005	<0.005	<0.005
9/9/2013			<0.005						
9/10/2013		<0.005		<0.005	<0.005	<0.005	<0.005		
9/11/2013	<0.005							<0.005	<0.005
3/4/2014	<0.005	<0.005	<0.005			<0.005			
3/10/2014							<0.005	<0.005	<0.005
3/11/2014				<0.005	<0.005				

9/3/2014	GWA-1 (bg) <0.005	GWA-11 (bg) <0.005	GWA-2 (bg) <0.005	GWA-3 (bg)	GWA-4 (bg)	GWC-10 <0.005	GWC-18 <0.005	GWC-19	GWC-20
9/8/2014	-0.000	-0.000	-0.000	<0.005	<0.005	-0.000	-0.000		
9/9/2014				0.000	0.000			<0.005	<0.005
4/21/2015	<0.005	<0.005		<0.005	<0.005	<0.005			
4/22/2015			<0.005				<0.005	<0.005	
4/23/2015									<0.005
9/29/2015		<0.005		<0.005	<0.005				
9/30/2015	<0.005		<0.005			<0.005	<0.005	<0.005	<0.005
3/22/2016	<0.005	<0.005	<0.005	<0.005	<0.005				
3/23/2016						<0.005			<0.005
3/24/2016							<0.005	<0.005	
9/7/2016	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
9/8/2016							<0.005	<0.005	<0.005
3/23/2017	<0.005		<0.005	<0.005					
3/24/2017		<0.005			<0.005				
3/27/2017						<0.005	<0.005	<0.005	<0.005
10/4/2017	<0.005		<0.005	<0.005	<0.005				
10/5/2017		<0.005				<0.005	<0.005	<0.005	<0.005
3/14/2018	<0.005		<0.005						
3/15/2018		<0.005		<0.005	<0.005	<0.005		<0.005	
3/16/2018							<0.005		<0.005
10/4/2018	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	
10/5/2018							<0.005		<0.005
4/5/2019				<0.005					
4/8/2019	<0.005	<0.005	<0.005		<0.005				
4/9/2019						<0.005	<0.005	<0.005	<0.005
9/30/2019	<0.005	<0.005	<0.005	<0.005	<0.005				
10/1/2019						<0.005	<0.005	<0.005	<0.005
3/26/2020	<0.005	<0.005	<0.005	<0.005	<0.005				
3/27/2020						<0.005			
3/30/2020							<0.005		
3/31/2020								<0.005	<0.005
9/21/2020			<0.005						
9/22/2020		<0.005							
9/23/2020	<0.005			<0.005	<0.005				<0.005
9/24/2020							<0.005		
9/25/2020						<0.005			
9/28/2020								<0.005	
3/8/2021	<0.005	<0.005		<0.005	<0.005				
3/9/2021			<0.005			<0.005	<0.005		
3/10/2021								<0.005	<0.005
8/9/2021	<0.005		<0.005	<0.005	<0.005				
8/10/2021		<0.005				<0.005	<0.005	<0.005	<0.005
2/4/2022	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		
2/7/2022								<0.005	<0.005
8/8/2022	<0.005	<0.005	<0.005	<0.005	<0.005				
8/9/2022						<0.005	<0.005	<0.005	<0.005
1/30/2023	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
1/31/2023							<0.005	<0.005	<0.005
8/14/2023	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
8/15/2023							<0.005	<0.005	<0.005

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.005	<0.005	<0.005					
3/7/2007				<0.005	<0.005			<0.005
5/8/2007				<0.005				<0.005
5/9/2007	<0.005	<0.005	<0.005		<0.005	<0.005	<0.005	
7/6/2007				<0.005		<0.005	<0.005	<0.005
7/17/2007	<0.005	<0.005	<0.005		<0.005			
8/28/2007				<0.005	<0.005	<0.005	<0.005	<0.005
8/29/2007	<0.005	<0.005	<0.005					
11/6/2007				<0.005	<0.005	<0.005	<0.005	<0.005
11/7/2007	<0.005	<0.005	<0.005					
5/7/2008	<0.005	<0.005	<0.005					
5/8/2008				<0.005	<0.005	<0.005	<0.005	<0.005
12/2/2008						<0.005	<0.005	<0.005
12/3/2008				<0.005	<0.005			
12/5/2008	<0.005	<0.005	<0.005					
4/7/2009				<0.005	<0.005			
4/8/2009						<0.005	<0.005	<0.005
4/14/2009		<0.005	<0.005					
4/27/2009	0.0036							
9/30/2009	<0.005	<0.005					<0.005	<0.005
10/1/2009			<0.005	<0.005	<0.005	<0.005		
4/13/2010	<0.005	<0.005			<0.005	<0.005	<0.005	<0.005
4/14/2010			<0.005	<0.005				
10/6/2010					<0.005			
10/7/2010						<0.005		
10/12/2010	<0.005	<0.005						
10/13/2010			<0.005				<0.005	<0.005
10/14/2010				<0.005				
4/5/2011				<0.005	<0.005	<0.005	<0.005	<0.005
4/6/2011		<0.005	<0.005		0.005	.0.005	0.005	0.005
10/4/2011	-0.005	10.005			<0.005	<0.005	<0.005	<0.005
10/5/2011	<0.005	<0.005		.0.005				
10/12/2011			<0.005	<0.005	0.005	.0.005	0.005	
4/3/2012				-0.005	<0.005	<0.005	<0.005	10.005
4/4/2012		10.005	-0.005	<0.005				<0.005
4/9/2012	<0.00E	<0.005	<0.005					
4/10/2012	<0.005				<0.00E	<0.00E		
9/18/2012			<0.005		<0.005	<0.005	<0.00E	<0.005
9/19/2012 9/24/2012			<0.005	<0.005			<0.005	<0.005
9/25/2012		<0.005		<0.005				
9/26/2012	<0.005	<0.005						
3/12/2013	~0.003			<0.005	<0.005	<0.005	<0.005	<0.005
3/13/2013	<0.005	<0.005	<0.005	~0.003	~0.003	~0.003	~0.003	-0.003
9/9/2013	~0.003	~0.003	~0.003		<0.005			
9/10/2013			<0.005	<0.005	10.003	<0.005	<0.005	<0.005
9/11/2013	<0.005	<0.005	-0.000	-0.000		10.000	-0.000	-0.000
3/5/2014	3.000	2.000		<0.005	<0.005	<0.005	<0.005	<0.005
3/11/2014	<0.005	<0.005	<0.005	,	,		y:===	
9/3/2014			<0.005					<0.005
9/8/2014					<0.005	<0.005		
9/9/2014	<0.005	<0.005		<0.005			<0.005	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.005		<0.005		<0.005
4/22/2015					<0.005		<0.005	
4/23/2015		<0.005	<0.005					
9/29/2015				<0.005	<0.005	<0.005	<0.005	<0.005
9/30/2015	<0.005	<0.005	<0.005					
3/23/2016		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
3/24/2016	<0.005							
9/7/2016				<0.005	<0.005	<0.005		
9/8/2016	<0.005	<0.005	<0.005				<0.005	<0.005
3/23/2017				<0.005	<0.005			
3/24/2017						<0.005	<0.005	
3/27/2017	<0.005	<0.005	<0.005					<0.005
10/4/2017				<0.005	<0.005	<0.005		
10/5/2017	<0.005	<0.005	<0.005				<0.005	<0.005
3/14/2018							<0.005	
3/15/2018	<0.005	<0.005	<0.005			<0.005		<0.005
3/16/2018				<0.005	<0.005			
10/4/2018	<0.005	<0.005		<0.005	<0.005	<0.005	<0.005	
10/5/2018			<0.005					<0.005
4/8/2019			<0.005		<0.005	<0.005	<0.005	<0.005
4/9/2019	<0.005	<0.005		<0.005				
10/1/2019	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
3/26/2020			<0.005					
3/27/2020							<0.005	<0.005
3/30/2020						<0.005		
3/31/2020	<0.005	<0.005		<0.005	<0.005			
9/23/2020		<0.005	<0.005					
9/24/2020	<0.005					<0.005	<0.005	<0.005
9/25/2020				<0.005	<0.005			
3/9/2021	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/10/2021	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2/4/2022				<0.005	<0.005	<0.005	<0.005	<0.005
2/7/2022	<0.005	<0.005	<0.005					
8/8/2022			<0.005		<0.005			
8/9/2022	<0.005	<0.005		<0.005			<0.005	<0.005
8/10/2022						<0.005		
1/31/2023	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/14/2023			<0.005		<0.005			
8/15/2023	<0.005	<0.005		<0.005		<0.005	<0.005	<0.005

Constituent: Sulfate (mg/L) Analysis Run 11/13/2023 3:44 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

3/22/2016	GWA-1 (bg) 4.4409	GWA-11 (bg) 11.6823	GWA-2 (bg) 13.0789	GWA-3 (bg) 107.476	GWA-4 (bg) 302.2975	GWC-10	GWC-18	GWC-19	GWC-20
3/23/2016	4.4409	11.0623	13.0769	107.470	302.2973	14.6529			22.9683
3/24/2016						14.0329	10 1010	16.8473	22.9063
	4.42	11.4	15.0	106	212	12.2	10.1818	10.6473	
5/17/2016	4.43	11.4	15.3	106	213	13.3		10.4	10.0
5/18/2016							0.50	18.4	19.2
5/19/2016	4.0		45	440			9.58		
7/5/2016	4.6		15	110		4.0			
7/6/2016		12			280	10		17	
7/7/2016							9.6		31
9/7/2016	4.8	13	16	83	160	10			
9/8/2016							9.4	16	30
10/18/2016	4.7	13	16	110	120	10		19	
10/19/2016							9.9		32
12/6/2016	4.7	12		220	210	11			
12/7/2016			15					13	26
12/8/2016							14		
1/31/2017	5.1		13						
2/1/2017		13		190	200				
2/2/2017						11	13	14	
2/3/2017									27
3/23/2017	4.7		12	160					
3/24/2017		12			140				
3/27/2017						33	12	18	30
10/4/2017	5		12	140	140				
10/5/2017		13				16	12	16	32
3/14/2018	5.1		13.9						
3/15/2018		12.2		119	167	33.9		14.8	
3/16/2018							11.7		37.5
5/15/2018						29.1			41
10/4/2018	5.2	15.6	17.4	117	209	29.5		15.9	
10/5/2018							10.6		38.9
12/11/2018									41.8
4/5/2019				131					
4/8/2019	4.6	13.2	18.1		248				
4/9/2019						21.4	11.3	16.7	50.3
6/18/2019									38.7
6/27/2019									46
9/30/2019	4.9	11.5	17.5	118	117				
10/1/2019						13.4	8.9	14.7	52.3
11/6/2019									47.3
3/26/2020	5	10.8	15.6	95.8	128				
3/27/2020						10.8			
3/30/2020							9.7		
3/31/2020								17.8	53.6
9/21/2020			18.2						
9/22/2020		9.8							
9/23/2020	6.6			95.6	123				58.9
9/24/2020							8.5		
9/25/2020						11.6			
9/28/2020								15.8	
3/8/2021	4.6	11.5		99.5	152				
3/9/2021			16.8			14.2	7.9		

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/10/2021								18.7	64.7
8/9/2021	4.7		23.2	93.3	106				
8/10/2021		11.2				14.9	10.3	17.8	66.4
2/4/2022	4	10.4	21.1	73.5	170 (M1)	14.4	8.9		
2/7/2022								16.9	66.3
8/8/2022	4.1	10.2	23.3	78.9	116				
8/9/2022						10.6	8.6	21.9	66.5
1/30/2023	3.8	9.5	19.8	78.4	156	11.5			
1/31/2023							8.4	22.8	69.8
8/14/2023	3.9	8.9	23.4	72.3	122	9			
8/15/2023							7.7	19.1	67.1

Constituent: Sulfate (mg/L) Analysis Run 11/13/2023 3:44 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/23/2016		9.1183	6.2867	76.011	87.512	90.229	26.3455	61.8335
3/24/2016	24.8075							
5/17/2016				76.2	101			
5/18/2016	26.2	6.88				100		
5/19/2016			5.42				31.7	64.3
7/6/2016				74	110	130	36	69
7/7/2016	31	6.8	5.7					
9/7/2016				64	97	130		
9/8/2016	33	6.8	5.7				45	68
10/18/2016				65	120	140	49	
10/19/2016	31	7.5	5.8					69
12/7/2016	19	11	5.9					
12/8/2016				100	100	140	50	69
2/1/2017				150	110			
2/2/2017	52	9.9				71	51	76
2/3/2017			38					
3/23/2017				130	110			
3/24/2017						68	46	
3/27/2017	29	8.4	43					68
10/4/2017				71	130	120		
10/5/2017	33	7.4	8.3				48	74
12/14/2017			0.0		130		.0	
1/18/2018					110			
3/14/2018					110		36.8	
3/15/2018	38	8.2	14			118	00.0	57.8
3/16/2018	30	0.2	14	77.4	93.6	110		37.0
10/4/2018	19.3	6.4		90.3	137	167	45.4	
10/5/2018	19.5	0.4	9.3	90.3	137	107	45.4	81.9
12/11/2018			9.5		110			73.6
4/8/2019			6.2			97.1	39.9	73.5
4/9/2019	19.9	11	0.2	83.6	131	97.1	39.9	73.3
	19.9	11		03.0	100			
6/19/2019	40.0	1.0	F.0	00.1	108	100	47.4	70.0
10/1/2019	46.3	1.9	5.8	68.1	71.7	120	47.1	72.2
3/26/2020			14.5				24.5	54
3/27/2020						64.6	31.5	54
3/30/2020	00.0	10.0		00.0	100	64.6		
3/31/2020	29.9	10.9	5.0	92.6	106			
9/23/2020	07.0	5	5.3			100	40.0	00.0
9/24/2020	37.6					120	48.3	69.9
9/25/2020				80.7	110			
3/9/2021	41.6	6.4	10.2	86.9	105	87.4	33.1	65.1 (M1)
8/10/2021	23.8	6.2	8	76.1	95.9	101	31.6	76.3
2/4/2022				80.1	101	78.3	25.8	69.2
2/7/2022	25.9	8.2	13					
8/8/2022			5.6		77.1			
8/9/2022	18.3	6.3		74.6			33.3	77
8/10/2022						102		
1/31/2023	12.4	8.8	19.5	90.6	95.7	118	31.3	70
8/14/2023			4.6		99.5			
8/15/2023	18.9	5.6		77.2		122	28.1	63.9

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.001		<0.001	<0.001	<0.001			<0.001	
3/7/2007		<0.001				<0.001	<0.001		<0.001
5/8/2007	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
5/9/2007							<0.001	<0.001	<0.001
7/7/2007	<0.001		<0.001						
7/17/2007		<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
8/28/2007	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
8/29/2007									<0.001
11/6/2007	<0.001		<0.001	<0.001	<0.001				
11/7/2007		<0.001				<0.001	<0.001	<0.001	<0.001
5/7/2008							<0.001	<0.001	<0.001
5/8/2008				<0.001	<0.001				
5/9/2008	<0.001	<0.001	<0.001			<0.001			
12/2/2008		<0.001				<0.001			
12/3/2008	<0.001		<0.001	<0.001	<0.001		<0.001		
12/4/2008								<0.001	
12/5/2008									<0.001
4/7/2009	<0.001		<0.001	<0.001	<0.001				
4/8/2009		<0.001				<0.001			
4/14/2009							<0.001	<0.001	<0.001
9/30/2009									<0.001
10/1/2009	<0.001	<0.001	<0.001			<0.001	<0.001		
10/2/2009				<0.001	<0.001			<0.001	
4/13/2010			<0.001				<0.001	<0.001	<0.001
4/14/2010	<0.001	<0.001		<0.001	<0.001	<0.001			
10/7/2010			<0.001						
10/12/2010							<0.001	<0.001	<0.001
10/13/2010	<0.001	<0.001				<0.001			
10/14/2010				<0.001	<0.001				
4/5/2011				<0.001	<0.001				
4/6/2011	<0.001	<0.001	<0.001			<0.001	<0.001	<0.001	
10/4/2011		<0.001				<0.001			
10/6/2011			<0.001						
10/10/2011	<0.001								
10/12/2011				<0.001	<0.001		<0.001	<0.001	<0.001
4/3/2012	<0.001		<0.001						
4/4/2012				<0.001	<0.001				
4/5/2012							<0.001	<0.001	
4/9/2012									<0.001
4/10/2012		<0.001				<0.001			
9/19/2012			<0.001				<0.001		
9/24/2012	<0.001				<0.001				
9/25/2012								<0.001	<0.001
9/26/2012		<0.001		<0.001		<0.001			
3/12/2013	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
3/13/2013							<0.001	<0.001	<0.001
3/4/2014	<0.001	<0.001	<0.001			<0.001			
3/10/2014							<0.001	<0.001	<0.001
3/11/2014				<0.001	<0.001				
9/3/2014	<0.001	<0.001	<0.001			<0.001	<0.001		
9/8/2014				<0.001	<0.001				
9/9/2014								<0.001	<0.001

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
4/21/2015	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
9/29/2015		<0.001		<0.001	<0.001				
9/30/2015	<0.001		<0.001			<0.001	<0.001	<0.001	<0.001
3/22/2016	<0.001	<0.001	<0.001	<0.001	<0.001				
3/23/2016						<0.001			<0.001
3/24/2016							<0.001	<0.001	
5/17/2016	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
5/18/2016							<0.001	<0.001	<0.001
7/5/2016	<0.001		<0.001	<0.001					
7/6/2016		<0.001			<0.001	<0.001		<0.001	
7/7/2016							<0.001		<0.001
9/7/2016	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
9/8/2016							<0.001	<0.001	<0.001
10/18/2016	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	
10/19/2016							<0.001		<0.001
12/6/2016	<0.001	<0.001		<0.001	<0.001	<0.001			
12/7/2016			<0.001					<0.001	<0.001
12/8/2016							<0.001		
1/31/2017	<0.001		<0.001						
2/1/2017		<0.001		<0.001	<0.001	0.004	0.004	.0.004	
2/2/2017						<0.001	<0.001	<0.001	.0.004
2/3/2017	0.004		0.004	.0.004					<0.001
3/23/2017	<0.001	<0.001	<0.001	<0.001	<0.001				
3/24/2017		<0.001			<0.001	-0.001	-0.001	<0.001	-0.001
3/27/2017	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
10/4/2017 10/5/2017	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
3/14/2018	<0.001	10.001	<0.001			\0.001	~0.001	10.001	\0.001
3/15/2018	\0.001	<0.001	\0.001	<0.001	<0.001	<0.001		<0.001	
3/16/2018		10.001		10.001	10.001	10.001	<0.001	10.001	<0.001
10/4/2018	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	-0.001	<0.001	-0.001
10/5/2018	0.001	0.001	0.001	0.001	0.001	0.001	<0.001	0.001	<0.001
4/5/2019				<0.001					
4/8/2019	<0.001	<0.001	<0.001		<0.001				
4/9/2019						<0.001	<0.001	<0.001	<0.001
9/30/2019	<0.001	<0.001	<0.001	<0.001	<0.001				
10/1/2019						<0.001	<0.001	<0.001	<0.001
3/26/2020	<0.001	<0.001	<0.001	<0.001	<0.001				
3/27/2020						<0.001			
3/30/2020							<0.001		
3/31/2020								<0.001	<0.001
9/21/2020			<0.001						
9/22/2020		<0.001							
9/23/2020	<0.001			<0.001	<0.001				<0.001
9/24/2020							<0.001		
9/25/2020						<0.001			
9/28/2020								<0.001	
3/8/2021	<0.001	<0.001		<0.001	<0.001				
3/9/2021			<0.001			<0.001	<0.001		
3/10/2021								<0.001	<0.001
8/9/2021	<0.001		<0.001	<0.001	<0.001				
8/10/2021		<0.001				<0.001	<0.001	<0.001	<0.001

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
	a (59)	G (59)	GTTT (Dg)	a o (bg)	GTTT (29)	u	a	u	ao 20
2/4/2022	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		
2/7/2022								<0.001	<0.001
8/8/2022	<0.001	<0.001	<0.001	<0.001	<0.001				
8/9/2022						<0.001	<0.001	<0.001	<0.001
1/30/2023	0.00022 (J)	<0.001	<0.001	<0.001	<0.001	<0.001			
1/31/2023							<0.001	<0.001	<0.001
8/14/2023	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
8/15/2023							<0.001	<0.001	<0.001

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.001	<0.001	<0.001					
3/7/2007				<0.001	<0.001			<0.001
5/8/2007				<0.001				<0.001
5/9/2007	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	
7/6/2007				<0.001		<0.001	<0.001	<0.001
7/17/2007	<0.001	<0.001	<0.001		<0.001			
8/28/2007				<0.001	<0.001	<0.001	<0.001	<0.001
8/29/2007	<0.001	<0.001	<0.001					
11/6/2007				<0.001	<0.001	<0.001	<0.001	<0.001
11/7/2007	<0.001	<0.001	<0.001					
5/7/2008	<0.001	<0.001	<0.001					
5/8/2008				<0.001	<0.001	<0.001	<0.001	<0.001
12/2/2008						<0.001	<0.001	<0.001
12/3/2008				<0.001	<0.001			
12/5/2008	<0.001	<0.001	<0.001					
4/7/2009				<0.001	<0.001			
4/8/2009						<0.001	<0.001	<0.001
4/14/2009		<0.001	<0.001					
4/27/2009	<0.001							
9/30/2009	<0.001	<0.001					<0.001	<0.001
10/1/2009			<0.001	<0.001	<0.001	<0.001		
4/13/2010	<0.001	<0.001			<0.001	<0.001	<0.001	<0.001
4/14/2010			<0.001	<0.001				
10/6/2010					<0.001			
10/7/2010						<0.001		
10/12/2010	<0.001	<0.001						
10/13/2010			<0.001				<0.001	<0.001
10/14/2010				<0.001				
4/5/2011				<0.001	<0.001	<0.001	<0.001	<0.001
4/6/2011		<0.001	<0.001					
10/4/2011					<0.001	<0.001	<0.001	<0.001
10/5/2011	<0.001	<0.001						
10/12/2011			<0.001	<0.001				
4/3/2012					<0.001	<0.001	<0.001	
4/4/2012				<0.001				<0.001
4/9/2012		<0.001	<0.001					
4/10/2012	<0.001							
9/18/2012					<0.001	<0.001		
9/19/2012			<0.001				<0.001	<0.001
9/24/2012				<0.001	<0.001		<0.001	
9/25/2012		<0.001						
9/26/2012	<0.001							
3/12/2013				<0.001	<0.001	<0.001	<0.001	<0.001
3/13/2013	<0.001	<0.001	<0.001					
3/5/2014				<0.001	<0.001	<0.001	<0.001	<0.001
3/11/2014	<0.001	<0.001	<0.001					
9/3/2014	-		<0.001					<0.001
9/8/2014					<0.001	<0.001		
9/9/2014	<0.001	<0.001		<0.001			<0.001	
4/21/2015	y	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
9/29/2015		5.00.	2.00.	<0.001	<0.001	<0.001	<0.001	<0.001
9/30/2015	<0.001	<0.001	<0.001	2.00.	5.00.	5.00.	5.00.	
	5.00.	3.00.						

					. ,			
	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/23/2016		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
3/24/2016	<0.001							
5/17/2016				<0.001	<0.001			
5/18/2016	<0.001	<0.001				<0.001	<0.001	<0.001
5/19/2016			<0.001					
7/6/2016				<0.001	<0.001	0.0001 (J)	<0.001	<0.001
7/7/2016	<0.001	<0.001	<0.001					
9/7/2016				<0.001	<0.001	<0.001		
9/8/2016	<0.001	<0.001	<0.001				<0.001	<0.001
10/18/2016				<0.001	<0.001	<0.001	<0.001	
10/19/2016	<0.001	<0.001	<0.001					<0.001
12/7/2016	<0.001	<0.001	<0.001					
12/8/2016				<0.001	<0.001	<0.001	<0.001	<0.001
2/1/2017				<0.001	<0.001			
2/2/2017	<0.001	<0.001				<0.001	<0.001	<0.001
2/3/2017			<0.001					
3/23/2017				<0.001	<0.001			
3/24/2017						<0.001	<0.001	
3/27/2017	<0.001	<0.001	<0.001					<0.001
10/4/2017				<0.001	<0.001	<0.001		
10/5/2017	<0.001	<0.001	<0.001				<0.001	<0.001
3/14/2018							<0.001	
3/15/2018	<0.001	<0.001	<0.001			<0.001		<0.001
3/16/2018				<0.001	<0.001			
10/4/2018	<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	
10/5/2018			<0.001					<0.001
4/8/2019			<0.001		<0.001	<0.001	<0.001	<0.001
4/9/2019	<0.001	<0.001		<0.001				
10/1/2019	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
3/26/2020			<0.001					
							<0.001	<0.001
						<0.001		
	<0.001			<0.001	<0.001			
		<0.001	<0.001					
	<0.001					<0.001	<0.001	<0.001
								<0.001
	<0.001	<0.001	<0.001					<0.001
				<0.001	<0.001	<0.001	<0.001	<0.001
	<0.001	<0.001						
	0.004	0.004	<0.001	.0.004	<0.001		0.004	
	<0.001	<0.001		<0.001			<0.001	<0.001
	0.004	0.004	0.004	.0.004	0.004		0.004	
	<0.001	<0.001		<0.001		<0.001	<0.001	<0.001
	-0.001	-0.001	<u.uu i<="" td=""><td>-0.004</td><td><u.uu1< td=""><td>-0.001</td><td>-0.001</td><td>-0.001</td></u.uu1<></td></u.uu>	-0.004	<u.uu1< td=""><td>-0.001</td><td>-0.001</td><td>-0.001</td></u.uu1<>	-0.001	-0.001	-0.001
0/15/2023	<u.uu i<="" td=""><td><u.uu i<="" td=""><td></td><td><u.uu i<="" td=""><td></td><td><u.uu i<="" td=""><td><u.uu i<="" td=""><td><0.001</td></u.uu></td></u.uu></td></u.uu></td></u.uu></td></u.uu>	<u.uu i<="" td=""><td></td><td><u.uu i<="" td=""><td></td><td><u.uu i<="" td=""><td><u.uu i<="" td=""><td><0.001</td></u.uu></td></u.uu></td></u.uu></td></u.uu>		<u.uu i<="" td=""><td></td><td><u.uu i<="" td=""><td><u.uu i<="" td=""><td><0.001</td></u.uu></td></u.uu></td></u.uu>		<u.uu i<="" td=""><td><u.uu i<="" td=""><td><0.001</td></u.uu></td></u.uu>	<u.uu i<="" td=""><td><0.001</td></u.uu>	<0.001
	3/24/2016 5/17/2016 5/17/2016 5/18/2016 5/19/2016 7/6/2016 7/7/2016 9/7/2016 9/7/2016 10/18/2016 10/19/2016 12/17/2016 12/17/2017 2/2/2017 2/3/2017 3/24/2017 3/24/2017 3/24/2017 3/14/2018 3/15/2018 3/16/2018 10/4/2018 10/5/2018 4/8/2019 4/9/2019 10/1/2019	3/23/2016 3/24/2016 3/24/2016 5/17/2016 5/18/2016 5/18/2016 7/6/2016 7/6/2016 7/7/2016 9/8/2016 9/8/2016 10/18/2016 10/19/2016 10/19/2016 10/19/2016 2/1/2017 2/2/2017 2/2/2017 3/23/2017 3/24/2017 3/24/2017 3/27/2017 3/24/2017 3/24/2017 3/14/2018 3/15/2018 3/15/2018 3/16/2018 10/4/2018 10/5/2018 4/8/2019 4/9/2019 4/9/2019 4/9/2019 3/26/2020 3/27/2020 3/31/2020 9/24/2020 9/24/2020 9/24/2020 9/24/2022 2/7/2022 2/7/2022 2/7/2022 3/8/9/2022 3/10/2023 3/10/2022 1/31/2023 3/10/2023 3/10/2022 1/31/2023 3/10/2022 1/31/2023 3/10/2022	3/23/2016	3/23/2016 <0.001	3/24/2016	323/2016 0.001	3232016 <0.001	3232016 4,001 <

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/22/2016	78	112	233	451	686				
3/23/2016						182			208
3/24/2016							205	232	
5/17/2016	67	121	197	430	533	178			
5/18/2016								245	213
5/19/2016							204		
7/5/2016	87		218	418					
7/6/2016		98			646	135		231	
7/7/2016							181		212
9/7/2016	125	128	240	443	493	165			
9/8/2016							193	252	201
10/18/2016	133	115	221	415	455	113		288	
10/19/2016							231		276
12/6/2016	151	153		653	597	194			
12/7/2016			235					220	186
12/8/2016							166		
1/31/2017	135		253						
2/1/2017		183		615	638				
2/2/2017						160	191	220	
2/3/2017									219
3/23/2017	72		190	506					
3/24/2017		121			579				
3/27/2017						252	427 (o)	393 (o)	239
10/4/2017	91		192	492	440				
10/5/2017		113				177	207	242	216
3/14/2018	99		204						
3/15/2018		115		448	381	216		213	
3/16/2018							199		216
10/4/2018	112	135	233	472	490	222		231	
10/5/2018							235		256
4/5/2019				456					
4/8/2019	91	142	209		522				
4/9/2019						213	212	253	267
9/30/2019	126	134	242	475	455				
10/1/2019						186	196	229	271
3/26/2020	73	76	222	450	466				
3/27/2020						118			
3/30/2020							217		
3/31/2020								233	267
9/21/2020			204						
9/22/2020		107							
9/23/2020	117			473	421				277
9/24/2020							181		
9/25/2020						153			
9/28/2020								214	
3/8/2021	96	107		415	460				
3/9/2021			227 (D6)			201	192		
3/10/2021								223 (D6)	241
8/9/2021	96		245	416	371				
8/10/2021		107				185	224	209	270
2/4/2022	107	125	245	325	496	214	225		
2/7/2022								218	268

	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
8/8/2022	99	119	249	348	360				
8/9/2022						170	183	236	285
1/30/2023	94	130	263	367	459	190			
1/31/2023							284	239	329
8/14/2023	98	107	266	341	429	162			
8/15/2023							193	227	291

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/23/2016	GW0-21	206	168	379	310	253	239	204
3/24/2016	110	200	100	379	310	255	239	204
5/17/2016	110			349	280			
5/18/2016	153	212		343	200	276		
5/19/2016	155	212	173			270	236	215
7/6/2016			173	346	280	239	218	204
7/7/2016	151	206	144	340	200	239	210	204
	131	200	144	202	224	247		
9/7/2016	205	214	170	382	324	247	225	201
9/8/2016 10/18/2016	285	214	179	461	207	222	225	201
	244	000	200	461	307	233	200	272
10/19/2016	314	269	209					2/2
12/7/2016	252	199	156	270	001	272	100	207
12/8/2016				379	281	373	196	227
2/1/2017	100	044		511	354	000	201	000
2/2/2017	138	211				236	231	209
2/3/2017			276	440	000			
3/23/2017				443	302			
3/24/2017						291	250	
3/27/2017	88	324	295					305
10/4/2017				359	365	264		
10/5/2017	111	219	192				309	204
12/14/2017					406		322	
1/18/2018					404		322	
3/14/2018							263	
3/15/2018	219	190	169			254		280
3/16/2018				390	317			
10/4/2018	152	215		385	371	287	292	
10/5/2018			210					236
4/8/2019			191		353	295	438	264
4/9/2019	167	222		371				
10/1/2019	336	220	203	380	348	277	305	237
11/6/2019	336							
11/26/2019	236							
3/26/2020			193					
3/27/2020							329	192
3/30/2020						216		
3/31/2020	111	195		408	349			
9/23/2020		231	186					
9/24/2020	286					254	307	179
9/25/2020				367	345			
3/9/2021	243	178	216	364	298	299	308	209
8/10/2021	121	206	178	363	318	210	425	208
2/4/2022				360	335	310	349	225
2/7/2022	161	207	224					
8/8/2022			176		327			
8/9/2022	119	208		363			310	220
8/10/2022						248		
1/31/2023	76 (D6)	221	243	385	335	223	284	216
8/14/2023			163		368			
8/15/2023	152	212		428		267	280	246

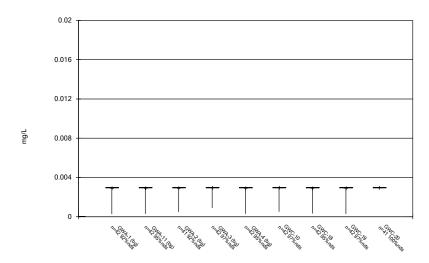
	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.01		<0.01	<0.01	<0.01			<0.01	
3/7/2007		<0.01				<0.01	<0.01		<0.01
5/8/2007	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
5/9/2007							<0.01	<0.01	<0.01
7/7/2007	<0.01		<0.01						
7/17/2007		<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
8/28/2007	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
8/29/2007									<0.01
11/6/2007	<0.01		<0.01	<0.01	<0.01				
11/7/2007		<0.01				<0.01	<0.01	<0.01	<0.01
5/7/2008							<0.01	<0.01	<0.01
5/8/2008				<0.01	<0.01				
5/9/2008	<0.01	<0.01	<0.01			<0.01			
12/2/2008		<0.01				<0.01			
12/3/2008	<0.01		<0.01	<0.01	<0.01		<0.01		
12/4/2008								<0.01	0.04
12/5/2008									<0.01
4/7/2009	<0.01		<0.01	<0.01	<0.01				
4/8/2009		<0.01				<0.01	0.04	0.04	0.04
4/14/2009							<0.01	<0.01	<0.01
9/30/2009									<0.01
10/1/2009	<0.01	<0.01	<0.01			<0.01	<0.01		
10/2/2009			0.04	<0.01	<0.01		0.04	<0.01	0.04
4/13/2010			<0.01				<0.01	<0.01	<0.01
4/14/2010	<0.01	<0.01		<0.01	<0.01	<0.01			
10/7/2010			<0.01				0.04	0.04	0.04
10/12/2010	0.04	0.04				0.04	<0.01	<0.01	<0.01
10/13/2010	<0.01	<0.01		0.04	0.04	<0.01			
10/14/2010				<0.01	<0.01				
4/5/2011	0.04	0.04	0.04	<0.01	<0.01	0.04	0.04	0.04	
4/6/2011	<0.01	<0.01	<0.01			<0.01	<0.01	<0.01	
10/4/2011		<0.01	0.04			<0.01			
10/6/2011	0.04		<0.01						
10/10/2011	<0.01			z0.01	-0.01		-0.01	<0.01	~0.01
10/12/2011	-0.01		-0.01	<0.01	<0.01		<0.01	<0.01	<0.01
4/3/2012	<0.01		<0.01	-0.04	-0.01				
4/4/2012 4/5/2012				<0.01	<0.01		-0.01	<0.01	
4/5/2012							<0.01	<0.01	<0.01
4/9/2012		<0.01				-0.01			<0.01
4/10/2012		<0.01	-0.04			<0.01	-0.01		
9/19/2012	<0.01		<0.01		-0.01		<0.01		
9/24/2012	<0.01				<0.01			<0.01	~0.01
9/25/2012		<0.01		z0.01		-0.01		<0.01	<0.01
9/26/2012	<0.01	<0.01	z0.01	<0.01	-0.01	<0.01			
3/12/2013	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
3/13/2013			<0.01				<0.01	<0.01	<0.01
9/9/2013		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
9/10/2013	<0.01	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
9/11/2013	<0.01	<0.01	<0.01			<0.01		<0.01	<0.01
3/4/2014	<0.01	<0.01	<0.01			<0.01	<0.01	<0.01	<0.01
3/10/2014				<0.01	<0.01		<0.01	<0.01	<0.01
3/11/2014				<0.01	<0.01				

9/3/2014	GWA-1 (bg) <0.01	GWA-11 (bg) <0.01	GWA-2 (bg) <0.01	GWA-3 (bg)	GWA-4 (bg)	GWC-10 <0.01	GWC-18 <0.01	GWC-19	GWC-20	
9/8/2014				<0.01	<0.01					
9/9/2014				-0.01	-0.01			<0.01	<0.01	
4/21/2015	<0.01	<0.01		<0.01	<0.01	<0.01		10.01	40.01	
	<0.01	<0.01	-0.01	<0.01	<0.01	<0.01	-0.01	-0.01		
4/22/2015			<0.01				<0.01	<0.01	<0.01	
4/23/2015		.0.04		.0.04	.0.04				<0.01	
9/29/2015		<0.01		<0.01	<0.01					
9/30/2015	<0.01		<0.01			<0.01	<0.01	<0.01	<0.01	
3/22/2016	<0.01	<0.01	<0.01	<0.01	<0.01					
3/23/2016						<0.01			<0.01	
3/24/2016							<0.01	<0.01		
9/7/2016	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				
9/8/2016							<0.01	<0.01	<0.01	
3/23/2017	<0.01		<0.01	<0.01						
3/24/2017		<0.01			<0.01					
3/27/2017						<0.01	<0.01	<0.01	<0.01	
10/4/2017	<0.01		<0.01	<0.01	<0.01					
10/5/2017		<0.01				<0.01	<0.01	<0.01	<0.01	
3/14/2018	<0.01		<0.01							
3/15/2018		<0.01		<0.01	<0.01	<0.01		<0.01		
3/16/2018							<0.01		<0.01	
10/4/2018	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01		
10/5/2018							<0.01		<0.01	
4/5/2019				<0.01						
4/8/2019	<0.01	<0.01	<0.01		<0.01					
4/9/2019						<0.01	<0.01	<0.01	<0.01	
9/30/2019	<0.01	<0.01	<0.01	<0.01	<0.01					
10/1/2019						<0.01	<0.01	<0.01	<0.01	
3/26/2020	<0.01	<0.01	<0.01	<0.01	<0.01					
3/27/2020						<0.01				
3/30/2020							<0.01			
3/31/2020								<0.01	<0.01	
9/21/2020			<0.01							
9/22/2020		<0.01								
9/23/2020	<0.01			<0.01	<0.01				<0.01	
9/24/2020							<0.01			
9/25/2020						<0.01	0.01			
9/28/2020						0.01		<0.01		
3/8/2021	<0.01	<0.01		<0.01	<0.01			0.01		
3/9/2021	-0.01	-0.01	<0.01	-0.01	-0.01	<0.01	<0.01			
3/10/2021			~0.01			~0.01	~0.01	<0.01	<0.01	
8/9/2021	0.0019 (J)		<0.01	<0.01	<0.01			<0.01	<0.01	
	0.0019 (3)	<0.01	~0.01	~0.01	~0.01	<0.01	~0.01	~0.01	<0.01	
8/10/2021	-0.01	<0.01	-0.01	-0.01	-0.01		<0.01	<0.01	<0.01	
2/4/2022	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
2/7/2022	-0.01	-0.01	-0.01	-0.01	-0.01			<u.u1< td=""><td><0.01</td><td></td></u.u1<>	<0.01	
8/8/2022	<0.01	<0.01	<0.01	<0.01	<0.01	10.01	-0.04	-0.04	-0.01	
8/9/2022	0.0002.411	0.04	.0.04	0.04		<0.01	<0.01	<0.01	<0.01	
1/30/2023	0.0022 (J)	<0.01	<0.01	<0.01	<0.01	<0.01	.0.01	.0.01	.0.04	
1/31/2023							<0.01	<0.01	<0.01	
8/14/2023	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				
8/15/2023							<0.01	<0.01	<0.01	

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.01	<0.01	<0.01					
3/7/2007				<0.01	<0.01			<0.01
5/8/2007				<0.01				<0.01
5/9/2007	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	
7/6/2007				<0.01		<0.01	<0.01	<0.01
7/17/2007	<0.01	<0.01	<0.01		<0.01			
8/28/2007				<0.01	<0.01	<0.01	<0.01	<0.01
8/29/2007	<0.01	<0.01	<0.01					
11/6/2007				<0.01	<0.01	<0.01	<0.01	<0.01
11/7/2007	<0.01	<0.01	<0.01					
5/7/2008	<0.01	<0.01	<0.01					
5/8/2008				<0.01	<0.01	<0.01	<0.01	<0.01
12/2/2008						<0.01	<0.01	<0.01
12/3/2008				<0.01	<0.01			
12/5/2008	<0.01	<0.01	<0.01					
4/7/2009				<0.01	<0.01			
4/8/2009						<0.01	<0.01	0.0029
4/14/2009		<0.01	<0.01					
4/27/2009	<0.01							
9/30/2009	<0.01	<0.01					<0.01	<0.01
10/1/2009			<0.01	<0.01	<0.01	0.0039		
4/13/2010	<0.01	<0.01			<0.01	<0.01	<0.01	<0.01
4/14/2010			<0.01	<0.01				
10/6/2010					<0.01			
10/7/2010						<0.01		
10/12/2010	<0.01	<0.01						
10/13/2010			<0.01				<0.01	<0.01
10/14/2010				<0.01				
4/5/2011				<0.01	<0.01	0.0025	<0.01	<0.01
4/6/2011		<0.01	<0.01					
10/4/2011					<0.01	0.0027	<0.01	<0.01
10/5/2011	<0.01	<0.01						
10/12/2011			<0.01	<0.01				
4/3/2012					<0.01	<0.01	<0.01	
4/4/2012				<0.01				<0.01
4/9/2012		<0.01	<0.01					
4/10/2012	<0.01							
9/18/2012					<0.01	<0.01		
9/19/2012			<0.01				<0.01	<0.01
9/24/2012				<0.01				
9/25/2012		<0.01						
9/26/2012	<0.01							
3/12/2013				<0.01	<0.01	<0.01	<0.01	<0.01
3/13/2013	<0.01	<0.01	<0.01					
9/9/2013					<0.01			
9/10/2013			<0.01	<0.01		<0.01	<0.01	<0.01
9/11/2013	<0.01	<0.01						
3/5/2014				<0.01	<0.01	<0.01	<0.01	<0.01
3/11/2014	<0.01	<0.01	<0.01					
9/3/2014			<0.01					<0.01
9/8/2014					<0.01	0.0012 (J)		
9/9/2014	0.0029 (J)	<0.01		0.00093 (J)			<0.01	
	•							

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				<0.01		0.0015 (J)		<0.01
4/22/2015					<0.01		<0.01	
4/23/2015		<0.01	<0.01					
9/29/2015				<0.01	<0.01	<0.01	<0.01	<0.01
9/30/2015	0.001 (J)	<0.01	<0.01					
3/23/2016		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
3/24/2016	<0.01							
9/7/2016				<0.01	<0.01	<0.01		
9/8/2016	<0.01	<0.01	<0.01				<0.01	<0.01
3/23/2017				<0.01	<0.01			
3/24/2017						<0.01	<0.01	
3/27/2017	<0.01	<0.01	<0.01					<0.01
10/4/2017				<0.01	<0.01	<0.01		
10/5/2017	<0.01	<0.01	<0.01				<0.01	<0.01
3/14/2018							<0.01	
3/15/2018	<0.01	<0.01	<0.01			<0.01		<0.01
3/16/2018				<0.01	<0.01			
10/4/2018	<0.01	<0.01		<0.01	<0.01	<0.01	<0.01	
10/5/2018			<0.01					<0.01
4/8/2019			0.00017 (J)		<0.01	<0.01	<0.01	<0.01
4/9/2019	<0.01	<0.01		<0.01				
10/1/2019	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
3/26/2020			<0.01					
3/27/2020							<0.01	<0.01
3/30/2020						<0.01		
3/31/2020	<0.01	<0.01		<0.01	<0.01			
9/23/2020		<0.01	<0.01					
9/24/2020	<0.01					<0.01	<0.01	<0.01
9/25/2020				<0.01	<0.01			
3/9/2021	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
8/10/2021	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
2/4/2022				<0.01	<0.01	<0.01	<0.01	<0.01
2/7/2022	<0.01	<0.01	<0.01					
8/8/2022			<0.01		<0.01			
8/9/2022	<0.01	<0.01		<0.01			<0.01	<0.01
8/10/2022						<0.01		
1/31/2023	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
8/14/2023			<0.01		<0.01			
8/15/2023	<0.01	<0.01		<0.01		<0.01	<0.01	<0.01

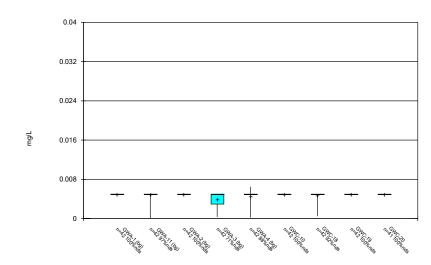
	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
3/6/2007	<0.01		<0.01	<0.01	<0.01			<0.01	
3/7/2007		<0.01				<0.01	<0.01		<0.01
5/8/2007	<0.01	0.0025	<0.01	<0.01	<0.01	<0.01			
5/9/2007							0.0026	0.0025	<0.01
7/7/2007	<0.01		<0.01						
7/17/2007		0.0047		0.0033	<0.01	0.0069	0.0043	0.0035	<0.01
8/28/2007	<0.01	0.0033	0.0026	<0.01	0.0026	<0.01	<0.01	<0.01	
8/29/2007									<0.01
11/6/2007	<0.01		<0.01	<0.01	<0.01				
11/7/2007		<0.01				<0.01	<0.01	<0.01	<0.01
5/7/2008							<0.01	<0.01	<0.01
5/8/2008				0.0033	0.0037				
5/9/2008	<0.01	<0.01	<0.01			<0.01			
12/2/2008		<0.01				<0.01			
12/3/2008	<0.01		<0.01	0.0054	0.003		<0.01		
12/4/2008								<0.01	
12/5/2008									<0.01
4/7/2009	0.0028		<0.01	<0.01	0.0045				
4/8/2009		<0.01				<0.01			
4/14/2009							<0.01	<0.01	<0.01
9/30/2009									<0.01
10/1/2009	<0.01	<0.01	<0.01			<0.01	<0.01		
10/2/2009				<0.01	0.0027			<0.01	
4/13/2010			<0.01	0.0.	0.0027		<0.01	0.0043	<0.01
4/14/2010	<0.01	<0.01		0.003	<0.01	<0.01			
10/7/2010	0.01	0.01	<0.01	0.000	0.01	0.01			
10/12/2010			0.01				<0.01	<0.01	<0.01
10/13/2010	<0.01	<0.01				<0.01			
10/14/2010				<0.01	0.0041				
4/5/2011				<0.01	<0.01				
4/6/2011	<0.01	<0.01	<0.01	0.0.	0.01	<0.01	<0.01	<0.01	
10/4/2011		<0.01				<0.01			
10/6/2011			<0.01						
10/10/2011	<0.01								
10/12/2011	0.01			<0.01	0.0033		<0.01	<0.01	<0.01
4/3/2012	<0.01		<0.01						
4/4/2012				<0.01	<0.01				
4/5/2012							<0.01	<0.01	
4/9/2012									<0.01
4/10/2012		<0.01				<0.01			
9/19/2012			<0.01				<0.01		
9/24/2012	<0.01				0.0039				
9/25/2012								<0.01	<0.01
9/26/2012		<0.01		<0.01		<0.01			
3/12/2013	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
3/13/2013	-	-	-	-	-		<0.01	<0.01	<0.01
9/9/2013			<0.01				-	-	
9/10/2013		<0.01	- -	<0.01	0.0035	<0.01	<0.01		
9/11/2013	<0.01					·	9- - -	<0.01	<0.01
3/4/2014	0.0026	<0.01	0.0035			0.0026			· · ·
3/10/2014							0.0022 (J)	0.0031	0.0024 (J)
3/11/2014				0.0037	0.0045		(3)		· · · · · · · · · · · · · · · · · · ·
· = · ·									


	GWA-1 (bg)	GWA-11 (bg)	GWA-2 (bg)	GWA-3 (bg)	GWA-4 (bg)	GWC-10	GWC-18	GWC-19	GWC-20
9/3/2014	0.001 (J)	0.00074 (J)	0.0015 (J)			0.00079 (J)	0.0013 (J)		
9/8/2014				0.00087 (J)	0.0026				
9/9/2014								0.00098 (J)	0.00078 (J)
4/21/2015	<0.01	<0.01		0.002 (J)	0.0028	<0.01			
4/22/2015			<0.01				0.0019 (J)	0.0015 (J)	
4/23/2015									<0.01
9/29/2015		0.0024 (J)		0.0021 (J)	0.008 (J)				
9/30/2015	<0.01		0.0026 (J)			0.0018 (J)	0.0037 (J)	0.002 (J)	0.0016 (J)
3/22/2016	<0.01	<0.01	<0.01	<0.01	<0.01				
3/23/2016						<0.01			<0.01
3/24/2016							<0.01	<0.01	
9/7/2016	0.0047 (J)	0.0023 (J)	0.0024 (J)	0.0034 (J)	0.0035 (J)	<0.01			
9/8/2016							0.0024 (J)	0.0029 (J)	<0.01
3/23/2017	<0.01		<0.01	0.0031 (J)					
3/24/2017		0.0068 (J)			0.0095 (J)				
3/27/2017						0.0014 (J)	<0.01	0.0019 (J)	0.0017 (J)
10/4/2017	<0.01		0.0017 (J)	<0.01	0.0031 (J)				
10/5/2017		<0.01				<0.01	<0.01	0.0024 (J)	0.0016 (J)
3/14/2018	0.0032 (J)		0.0023 (J)						
3/15/2018		0.0042 (J)		0.0028 (J)	0.0041 (J)	<0.01		<0.01	
3/16/2018							<0.01		<0.01
10/4/2018	0.003 (J)	0.0046 (J)	0.0041 (J)	0.0043 (J)	0.0058 (J)	0.0033 (J)		0.013	
10/5/2018							0.0029 (J)		<0.01
4/5/2019				0.0013 (J)					
4/8/2019	<0.01	0.0024 (J)	0.0014 (J)		0.0023 (J)				
4/9/2019						<0.01	0.0037 (J)	<0.01	<0.01
9/30/2019	0.0032 (J)	0.004 (J)	0.0043 (J)	0.0045 (J)	0.0059 (J)				
10/1/2019						0.0049 (J)	0.006 (J)	0.0049 (J)	0.0063 (J)
3/26/2020	<0.01	<0.01	<0.01	<0.01	<0.01				
3/27/2020						<0.01			
3/30/2020							<0.01		
3/31/2020								<0.01	<0.01
9/21/2020			<0.01						
9/22/2020		<0.01							
9/23/2020	0.0025 (J)			<0.01	0.0025 (J)				<0.01
9/24/2020							<0.01		
9/25/2020						<0.01			
9/28/2020								0.0033 (J)	
3/8/2021	<0.01	<0.01		<0.01	0.0034 (J)				
3/9/2021			<0.01			<0.01	<0.01		
3/10/2021								<0.01	<0.01
8/9/2021	<0.01		<0.01	<0.01	<0.01				
8/10/2021		<0.01				<0.01	<0.01	<0.01	<0.01
2/4/2022	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
2/7/2022								<0.01	<0.01
8/8/2022	<0.01	<0.01	<0.01	<0.01	<0.01				
8/9/2022						<0.01	<0.01	<0.01	<0.01
1/30/2023	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
1/31/2023							<0.01	<0.01	<0.01
8/14/2023	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
8/15/2023							<0.01	<0.01	<0.01

	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
3/6/2007	<0.01	<0.01	0.0054		- 			
3/7/2007				0.0064	<0.01			<0.01
5/8/2007				<0.01				0.0027
5/9/2007	<0.01	0.0035	0.0041		<0.01	45 (o)	0.0038	
7/6/2007				<0.01		16 (o)	<0.01	0.0032
7/17/2007	0.0031	<0.01	0.005		<0.01			
8/28/2007				0.0025	<0.01	11 (o)	<0.01	0.0026
8/29/2007	0.0056	<0.01	0.0044					
11/6/2007				<0.01	<0.01	8.3	<0.01	<0.01
11/7/2007	0.0059	<0.01	<0.01					
5/7/2008	0.0059	<0.01	<0.01					
5/8/2008				<0.01	<0.01	5	<0.01	<0.01
12/2/2008						3.2	<0.01	<0.01
12/3/2008				<0.01	<0.01			
12/5/2008	<0.01	<0.01	<0.01					
4/7/2009				0.0025	<0.01			
4/8/2009						2.4	<0.01	<0.01
4/14/2009		<0.01	<0.01					
4/27/2009	0.0051							
9/30/2009	0.0066	<0.01					<0.01	<0.01
10/1/2009			<0.01	<0.01	<0.01	1.9		
4/13/2010	0.0041	<0.01			<0.01	1.9	<0.01	<0.01
4/14/2010			<0.01	<0.01				
10/6/2010					<0.01			
10/7/2010						1.6		
10/12/2010	0.004	<0.01						
10/13/2010			<0.01				<0.01	<0.01
10/14/2010				<0.01				
4/5/2011				0.0025	<0.01	1.1	<0.01	<0.01
4/6/2011		<0.01	<0.01					
10/4/2011					<0.01	1.1	<0.01	<0.01
10/5/2011	0.0043	<0.01						
10/12/2011			<0.01	0.0037				
4/3/2012					<0.01	0.75	<0.01	
4/4/2012				<0.01				<0.01
4/9/2012		<0.01	<0.01					
4/10/2012	0.0108							
9/18/2012					<0.01	0.88		
9/19/2012			<0.01				<0.01	<0.01
9/24/2012				<0.01				
9/25/2012		<0.01						
9/26/2012	0.0066							
3/12/2013				<0.01	<0.01	0.23	<0.01	<0.01
3/13/2013	0.0035	<0.01	<0.01					
9/9/2013					<0.01			
9/10/2013			<0.01	<0.01		0.36	<0.01	<0.01
9/11/2013	0.005	<0.01						
3/5/2014				0.0028	0.0026	0.33	0.0028	0.0029
3/11/2014	0.005	0.0037	0.0033					
9/3/2014			0.0014 (J)					0.0011 (J)
9/8/2014					0.00055 (J)	0.47		
9/9/2014	0.0041	0.0006 (J)		0.00058 (J)			0.0014 (J)	

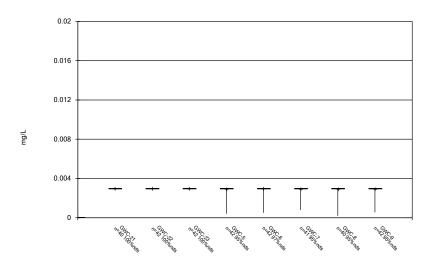
	GWC-21	GWC-22	GWC-23	GWC-5	GWC-6	GWC-7	GWC-8	GWC-9
4/21/2015				0.0043		0.27		<0.01
4/22/2015					<0.01		<0.01	
4/23/2015		<0.01	0.0024 (J)					
9/29/2015				0.0031 (J)	0.0026 (J)	0.359	0.0016 (J)	0.0034 (J)
9/30/2015	0.0031 (J)	0.0021 (J)	0.0041 (J)					
3/23/2016		<0.01	<0.01	0.00272 (J)	<0.01	0.102	<0.01	<0.01
3/24/2016	0.00393 (J)							
9/7/2016				<0.01	0.0024 (J)	0.24		
9/8/2016	0.0047 (J)	<0.01	<0.01				<0.01	<0.01
3/23/2017				0.0026 (J)	0.0035 (J)			
3/24/2017						0.0512	0.0031 (J)	
3/27/2017	0.0036 (J)	<0.01	0.0014 (J)					0.0014 (J)
10/4/2017				<0.01	<0.01	0.159		
10/5/2017	0.0065 (J)	<0.01	0.0014 (J)				<0.01	0.0013 (J)
3/14/2018							0.0053 (J)	
3/15/2018	0.0053 (J)	<0.01	0.0039 (J)			0.12		<0.01
3/16/2018				<0.01	0.0029 (J)			
10/4/2018	0.0077 (J)	0.003 (J)		0.0028 (J)	0.0039 (J)	0.22	0.0031 (J)	
10/5/2018			0.0048 (J)					0.0044 (J)
4/8/2019			0.0016 (J)		0.0013 (J)	0.051	0.0012 (J)	0.0016 (J)
4/9/2019	0.0041 (J)	<0.01		<0.01				
10/1/2019	0.0078 (J)	0.0054 (J)	0.0057 (J)	0.0053 (J)	0.0056 (J)	0.12	0.0055 (J)	0.0052 (J)
3/26/2020			<0.01					
3/27/2020							<0.01	<0.01
3/30/2020						0.051		
3/31/2020	<0.01	<0.01		<0.01	<0.01			
9/23/2020		<0.01	0.0022 (J)					
9/24/2020	0.0046 (J)					0.07	<0.01	<0.01
9/25/2020				<0.01	<0.01			
3/9/2021	0.0033 (J)	<0.01	<0.01	<0.01	<0.01	0.057	<0.01	<0.01
8/10/2021	<0.01	<0.01	<0.01	<0.01	<0.01	0.093	<0.01	<0.01
2/4/2022				<0.01	<0.01	0.07	<0.01	<0.01
2/7/2022	<0.01	<0.01	<0.01					
8/8/2022			<0.01		<0.01			
8/9/2022	<0.01	<0.01		<0.01			<0.01	<0.01
8/10/2022						0.082		
1/31/2023	<0.01	<0.01	<0.01	<0.01	<0.01	0.19	<0.01	<0.01
8/14/2023			<0.01		<0.01			
8/15/2023	<0.01	<0.01		<0.01		0.2	<0.01	<0.01

FIGURE B.



Constituent: Antimony Analysis Run 11/13/2023 3:45 PM

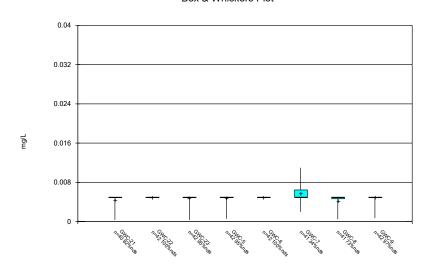
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.10.0.13b Software licensed to . UG

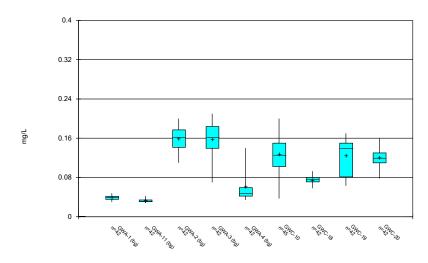
Box & Whiskers Plot

Constituent: Arsenic Analysis Run 11/13/2023 3:45 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Box & Whiskers Plot

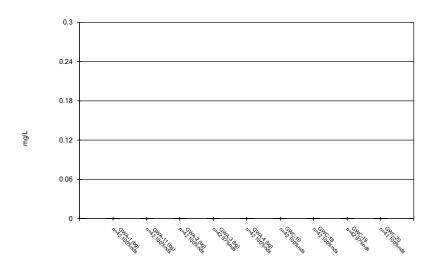


Constituent: Antimony Analysis Run 11/13/2023 3:45 PM

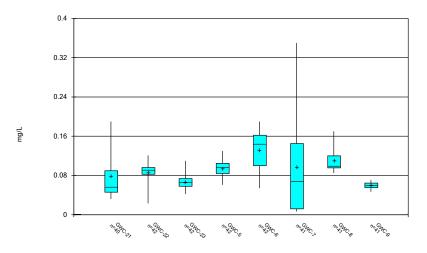

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.10.0.13b Software licensed to . UG

Box & Whiskers Plot

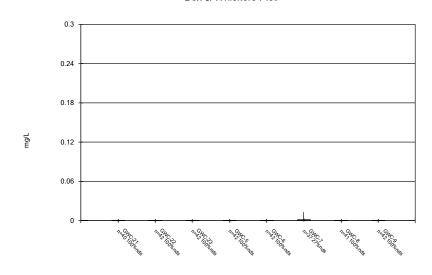

Box & Whiskers Plot

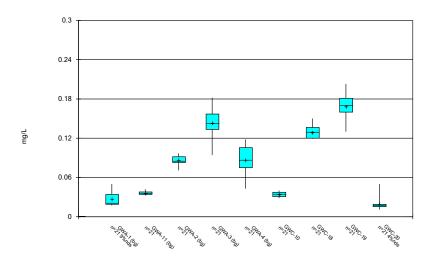
Constituent: Barium Analysis Run 11/13/2023 3:45 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.10.0.13b Software licensed to . UG

Box & Whiskers Plot

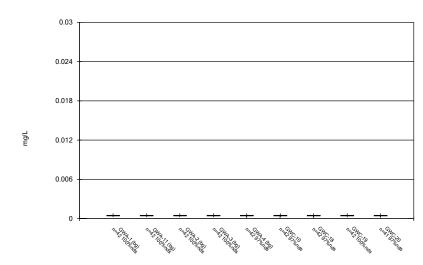
Constituent: Beryllium Analysis Run 11/13/2023 3:45 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Box & Whiskers Plot


Constituent: Barium Analysis Run 11/13/2023 3:45 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

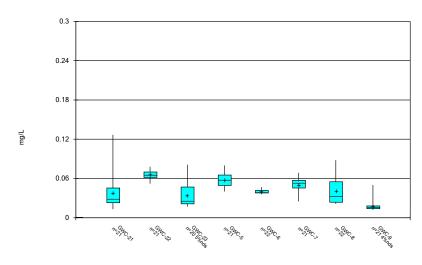
Sanitas™ v.10.0.13b Software licensed to . UG

Box & Whiskers Plot



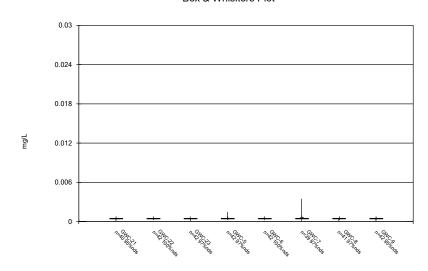
Constituent: Boron Analysis Run 11/13/2023 3:45 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

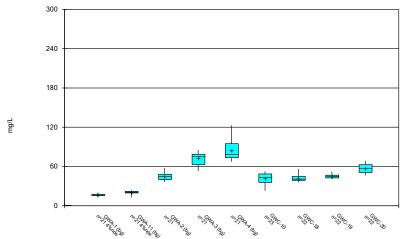
Sanitas™ v.10.0.13b Software licensed to . UG


Box & Whiskers Plot

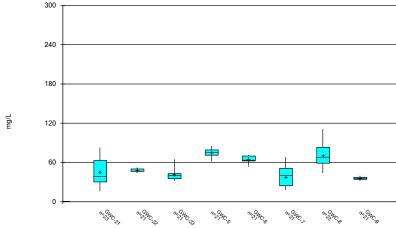
Constituent: Cadmium Analysis Run 11/13/2023 3:45 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Box & Whiskers Plot

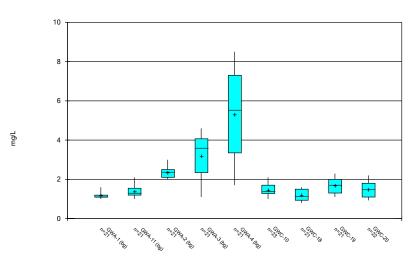

Constituent: Boron Analysis Run 11/13/2023 3:45 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.10.0.13b Software licensed to . UG


Box & Whiskers Plot

Box & Whiskers Plot

Constituent: Calcium Analysis Run 11/13/2023 3:45 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

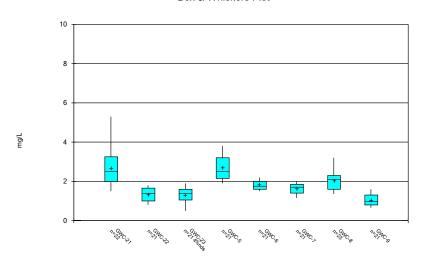

Box & Whiskers Plot

Constituent: Calcium Analysis Run 11/13/2023 3:45 PM

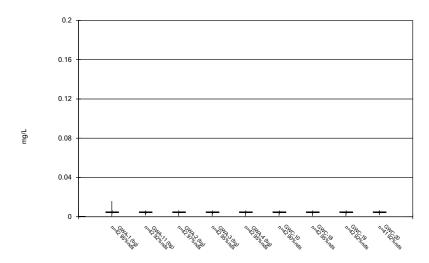
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.10.0.13b Software licensed to . UG

Box & Whiskers Plot

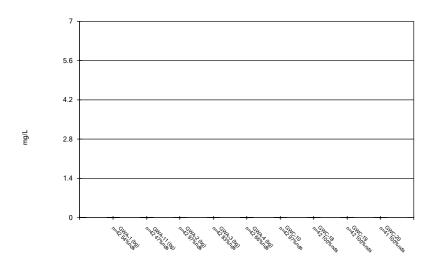


Constituent: Chloride Analysis Run 11/13/2023 3:45 PM


Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.10.0.13b Software licensed to . UG

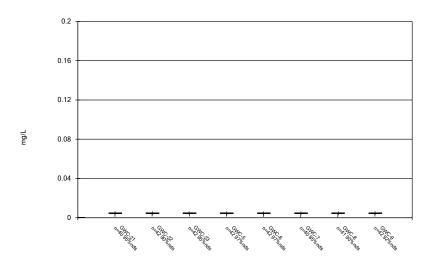
Box & Whiskers Plot



Constituent: Chromium Analysis Run 11/13/2023 3:45 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

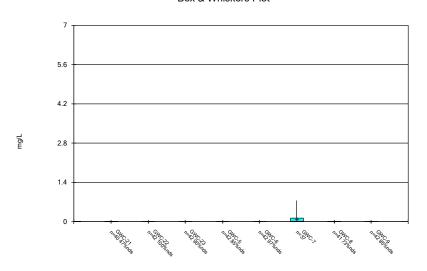
Sanitas™ v.10.0.13b Software licensed to . UG


Box & Whiskers Plot

Constituent: Cobalt Analysis Run 11/13/2023 3:45 PM

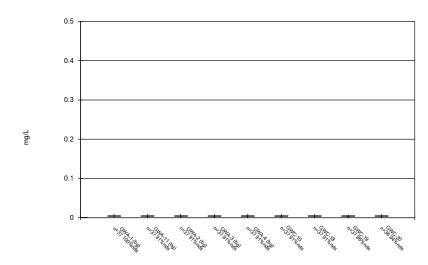
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Box & Whiskers Plot

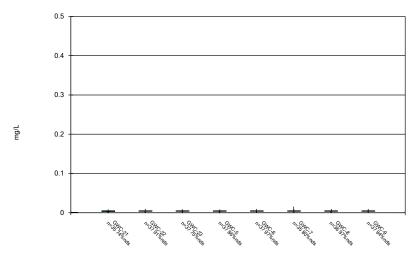


Constituent: Chromium Analysis Run 11/13/2023 3:45 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

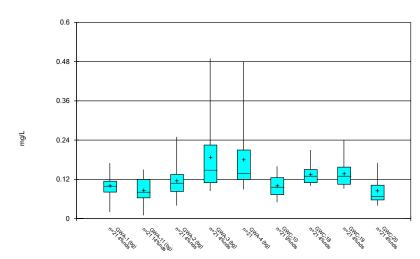

Sanitas™ v.10.0.13b Software licensed to . UG

Box & Whiskers Plot


Constituent: Cobalt Analysis Run 11/13/2023 3:45 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Box & Whiskers Plot

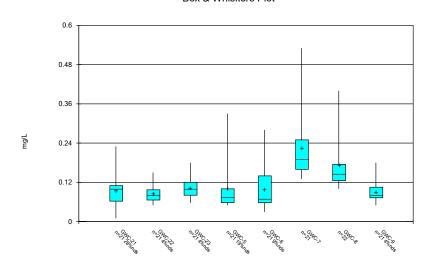
Constituent: Copper Analysis Run 11/13/2023 3:45 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Box & Whiskers Plot

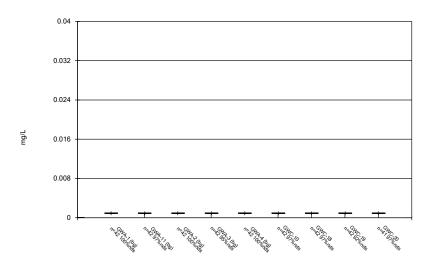
Constituent: Copper Analysis Run 11/13/2023 3:45 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.10.0.13b Software licensed to . UG

Box & Whiskers Plot

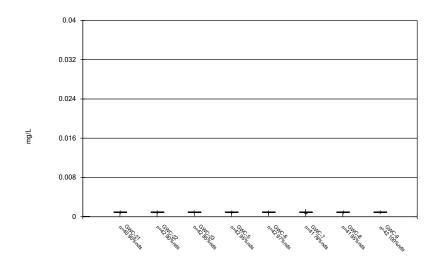


Constituent: Fluoride Analysis Run 11/13/2023 3:45 PM


Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

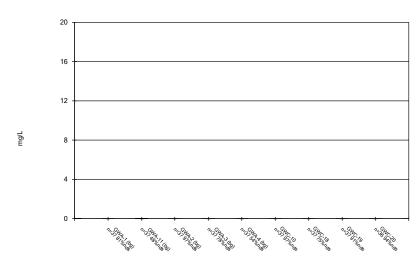
Sanitas™ v.10.0.13b Software licensed to . UG

Box & Whiskers Plot



Constituent: Lead Analysis Run 11/13/2023 3:45 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Box & Whiskers Plot

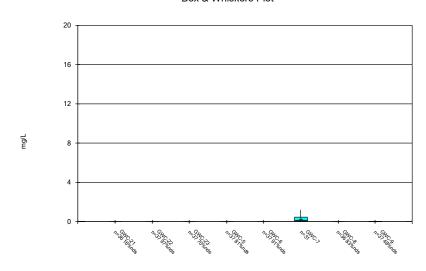


Constituent: Lead Analysis Run 11/13/2023 3:45 PM

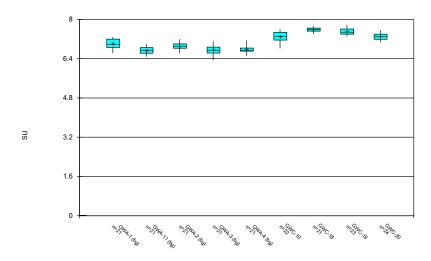
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.10.0.13b Software licensed to . UG

Box & Whiskers Plot

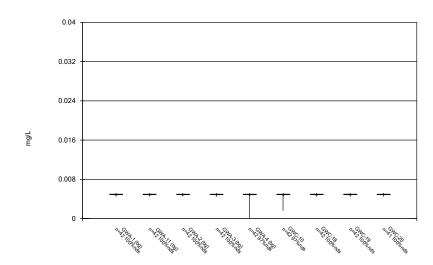


Constituent: Nickel Analysis Run 11/13/2023 3:45 PM

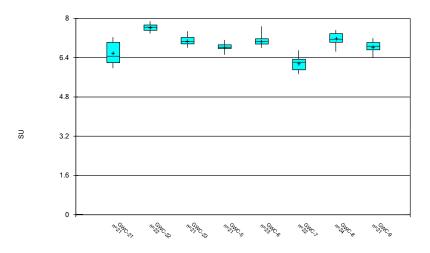

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.10.0.13b Software licensed to . UG

Box & Whiskers Plot


Box & Whiskers Plot

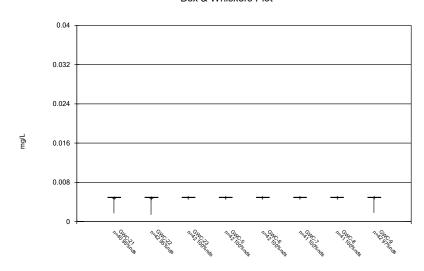
Constituent: pH Analysis Run 11/13/2023 3:45 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Sanitas™ v.10.0.13b Software licensed to . UG

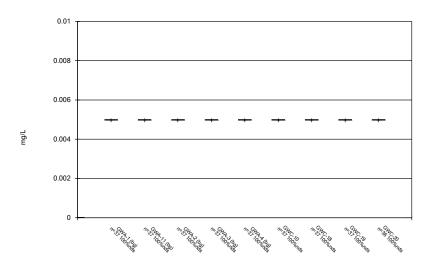
Box & Whiskers Plot

Constituent: Selenium Analysis Run 11/13/2023 3:45 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Box & Whiskers Plot

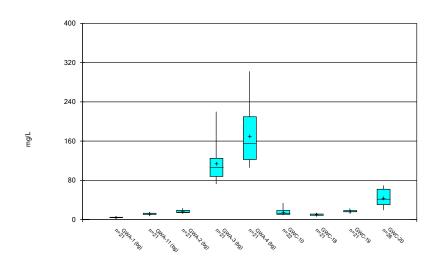


Constituent: pH Analysis Run 11/13/2023 3:45 PM


Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

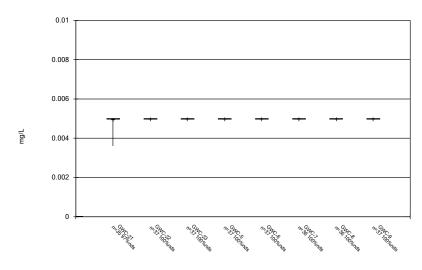
Sanitas™ v.10.0.13b Software licensed to . UG

Box & Whiskers Plot



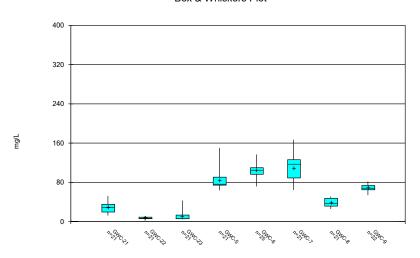
Constituent: Silver Analysis Run 11/13/2023 3:45 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

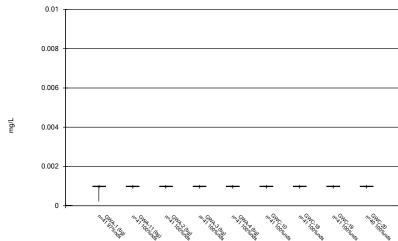
Sanitas™ v.10.0.13b Software licensed to . UG


Box & Whiskers Plot

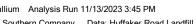
Constituent: Sulfate Analysis Run 11/13/2023 3:45 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

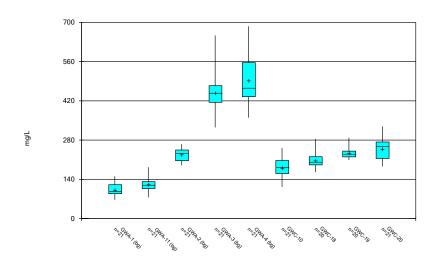

Box & Whiskers Plot


Constituent: Silver Analysis Run 11/13/2023 3:45 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

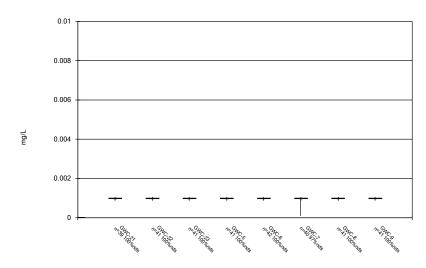
Sanitas™ v.10.0.13b Software licensed to . UC


Box & Whiskers Plot

Box & Whiskers Plot

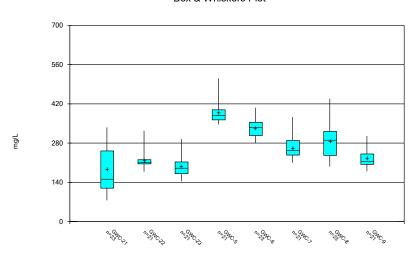


Constituent: Thallium Analysis Run 11/13/2023 3:45 PM Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

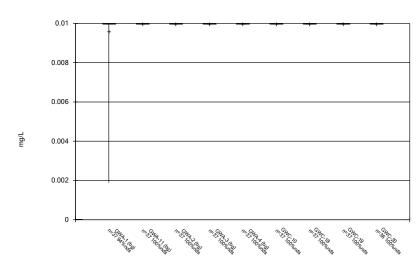

Sanitas™ v.10.0.13b Software licensed to . UG

Box & Whiskers Plot

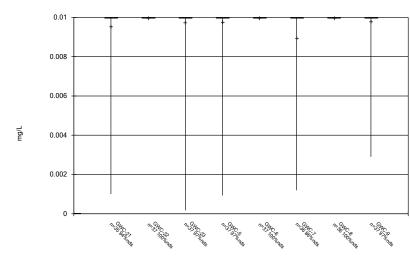
Constituent: Total Dissolved Solids Analysis Run 11/13/2023 3:45 PM Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Box & Whiskers Plot

Constituent: Thallium Analysis Run 11/13/2023 3:45 PM Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

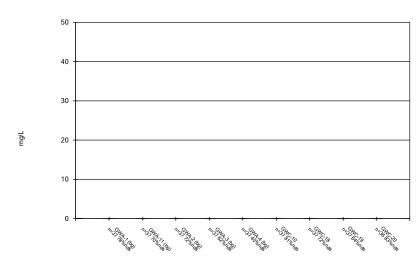

Sanitas™ v.10.0.13b Software licensed to . UG

Box & Whiskers Plot


Constituent: Total Dissolved Solids Analysis Run 11/13/2023 3:45 PM Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Vanadium Analysis Run 11/13/2023 3:45 PM
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Box & Whiskers Plot

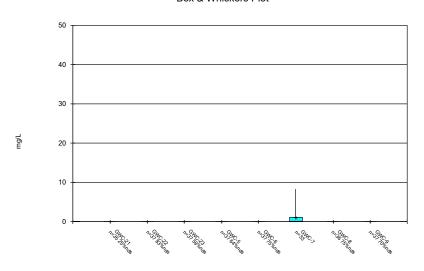


Constituent: Vanadium Analysis Run 11/13/2023 3:45 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.10.0.13b Software licensed to . UG

Box & Whiskers Plot



Constituent: Zinc Analysis Run 11/13/2023 3:45 PM

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.10.0.13b Software licensed to . UG

Box & Whiskers Plot

FIGURE C.

Outlier Summary

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 10/25/2023, 9:02 AM

	GWC-8 Antir	mony (mg/L) GWC-7 Arse	_{enic (mg/L)} GWC-8 Bari	_{um (mg/L)} GWC-9 Bari	_{um (mg/L)} GWC-7 Bery	_{Ilium} (mg/L) GWC-23 Bo	ron (mg/L) GWC-6 Boro	n (mg/L) GWC-7 Cadr	mium (mg/L) GWC-8 Calc	_{jium (mg/L)} GWC-20 Chloride (mg/L
5/9/2007	J	0.038 (o)		J	0.28 (o)		J	0.023 (o)	J	
7/6/2007					0.093 (o)			0.0081 (o)		
8/28/2007					0.057 (o)					
11/6/2007	0.0064 (o)				0.036 (o)					
5/8/2008										
4/5/2011				0.035 (o)						
3/27/2017						0.125 (o)				
10/5/2017										5.5 (o)
10/4/2018									264 (o)	
3/30/2020										
3/31/2020							0.091 (Jo)			
8/10/2021			0.23 (o)							

	GWC-7 Chlo	ride (mg/L) GWC-7 Chro	_{mium (mg/L)} GWC-7 Coba	ilt (mg/L) GWC-7 Copp	er (mg/L) GWC-7 Nicke	el (mg/L) GWC-18 Tota	al Dissolved Sol GWC-19 Tota	_{ids} (mg/L) _{Al} Dissolved Solids (mg/L) GWC-7 Zinc (mg/L)
5/9/2007		0.11 (o)	6.5 (o)	0.44 (o)	18 (o)			45 (o)
7/6/2007			2.1 (o)		5.9 (o)			16 (o)
8/28/2007			1.4 (o)		3.9 (o)			11 (o)
11/6/2007			1.1 (o)		3.1 (o)			
5/8/2008					2.1 (o)			
4/5/2011								
3/27/2017						427 (o)	393 (o)	
10/5/2017								
10/4/2018								
3/30/2020	9.2 (o)							
3/31/2020								
8/10/2021								

FIGURE D.

Appendix I Intrawell Prediction Limits - Significant Results

Plant Hammond Data: Huffaker Road Landfill Printed 10/25/2023, 12:02 PM

 Constituent
 Well
 Upper Lim. Lower Lim. Date
 Observ.
 Sig.
 Bg Me and lim.
 Std. Dev.
 Wolls ND Adj.
 Transform Alpha
 Method

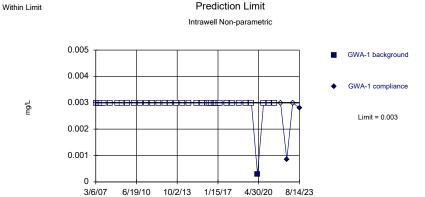
 Barium (mg/L)
 GWC-20
 0.1514
 n/a
 8/15/2023
 0.16
 Yes
 38
 0.1177
 0.01465
 0
 None
 No
 0.0003376
 Param Intra 1 of 2

Appendix I Intrawell Prediction Limits - All Results

Plant Hammond Data: Huffaker Road Landfill Printed 10/25/2023, 12:02 PM

												_		
Constituent	<u>Well</u>		n. Lower Lim		Observ.	Sig.		<u>Bg Mean</u>	Std. Dev.		ND Adj.	Transform		Method
Antimony (mg/L)	GWA-1	0.003	n/a	8/14/2023	0.0028J	No	38	n/a	n/a	97.37		n/a	0.001294	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWA-11	0.003	n/a	8/14/2023	0.003ND	No	38	n/a	n/a	94.74	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWA-2	0.003	n/a	8/14/2023	0.003ND	No	37	n/a	n/a	91.89	n/a	n/a	0.001361	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWA-3	0.003	n/a	8/14/2023	0.003ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWA-4	0.003	n/a	8/14/2023	0.003ND	No	38	n/a	n/a	94.74	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWC-10	0.003	n/a	8/14/2023	0.003ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWC-18	0.003	n/a	8/15/2023	0.0028J	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWC-19	0.003	n/a	8/15/2023	0.003ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWC-5	0.003	n/a	8/15/2023	0.003ND	No	38	n/a	n/a	94.74	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWC-6	0.003	n/a	8/14/2023	0.003ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWC-7	0.003	n/a	8/15/2023	0.003ND	No	37	n/a	n/a	94.59	n/a	n/a	0.001361	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWC-8	0.003	n/a	8/15/2023	0.003ND	No	36	n/a	n/a	94.44	n/a	n/a	0.001429	NP Intra (NDs) 1 of 2
Antimony (mg/L)	GWC-9	0.003	n/a	8/15/2023	0.003ND	No	38	n/a	n/a	94.74	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Arsenic (mg/L)	GWA-11	0.005	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Arsenic (mg/L)	GWA-3	0.005	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	68.42	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Arsenic (mg/L)	GWA-4	0.0065	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	86.84	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Arsenic (mg/L)	GWC-18	0.005	n/a	8/15/2023	0.005ND	No	38	n/a	n/a	92.11	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Arsenic (mg/L)	GWC-21	0.005	n/a	8/15/2023	0.005ND	No	36	n/a	n/a	80.56	n/a	n/a	0.001429	NP Intra (NDs) 1 of 2
Arsenic (mg/L)	GWC-23	0.005	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	94.74	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Arsenic (mg/L)	GWC-5	0.005	n/a	8/15/2023	0.005ND	No	38	n/a	n/a		n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Arsenic (mg/L)	GWC-7	0.011	n/a	8/15/2023	0.0077J	No	37	n/a	n/a		n/a	n/a	0.001361	NP Intra (normality) 1 of 2
Arsenic (mg/L)	GWC-8	0.005	n/a	8/15/2023	0.005ND	No	37	n/a	n/a		n/a	n/a	0.001361	NP Intra (NDs) 1 of 2
	GWC-9	0.005	n/a	8/15/2023	0.005ND	No	38	n/a	n/a		n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Arsenic (mg/L)							38	0.03897	0.004812					,
Barium (mg/L)	GWA-11	0.05002	n/a	8/14/2023	0.039	No					None	No		Param Intra 1 of 2
Barium (mg/L)	GWA-11	0.0425	n/a	8/14/2023	0.028	No	38	n/a	n/a	0	n/a	n/a	0.001294	NP Intra (normality) 1 of 2
Barium (mg/L)	GWA-2	0.198	n/a	8/14/2023	0.19	No	29	0.1666	0.01321	0	None	No		Param Intra 1 of 2
Barium (mg/L)	GWA-3	0.2254	n/a	8/14/2023	0.087	No	38	0.1656	0.02606	0	None	No		Param Intra 1 of 2
Barium (mg/L)	GWA-4	0.14	n/a	8/14/2023	0.045	No	38	n/a	n/a	0	n/a	n/a	0.001294	NP Intra (normality) 1 of 2
Barium (mg/L)	GWC-10	0.1997	n/a	8/14/2023	0.12	No	41	0.1273	0.03174	0	None	No		Param Intra 1 of 2
Barium (mg/L)	GWC-18	0.09152	n/a	8/15/2023	0.077	No	38	0.07443	0.007441	0	None	No	0.0003376	Param Intra 1 of 2
Barium (mg/L)	GWC-19	0.1706	n/a	8/15/2023	0.15	No	29	0.0004195	0.0001801	0	None	x^4	0.0003376	Param Intra 1 of 2
Barium (mg/L)	GWC-20	0.1514	n/a	8/15/2023	0.16	Yes	38	0.1177	0.01465	0	None	No	0.0003376	Param Intra 1 of 2
Barium (mg/L)	GWC-21	0.19	n/a	8/15/2023	0.058	No	36	n/a	n/a	0	n/a	n/a	0.001429	NP Intra (normality) 1 of 2
Barium (mg/L)	GWC-22	0.112	n/a	8/15/2023	0.092	No	29	-2.374	0.07763	0	None	In(x)	0.0003376	Param Intra 1 of 2
Barium (mg/L)	GWC-23	0.08928	n/a	8/14/2023	0.071	No	38	0.06495	0.0106	0	None	No	0.0003376	Param Intra 1 of 2
Barium (mg/L)	GWC-5	0.1319	n/a	8/15/2023	0.072	No	38	0.09723	0.01511	0	None	No	0.0003376	Param Intra 1 of 2
Barium (mg/L)	GWC-6	0.2118	n/a	8/14/2023	0.15	No	29	0.1469	0.0273	0	None	No	0.0003376	Param Intra 1 of 2
Barium (mg/L)	GWC-7	0.3996	n/a	8/15/2023	0.041	No	19	0.3226	0.1206	0	None	sqrt(x)	0.0003376	Param Intra 1 of 2
Barium (mg/L)	GWC-8	0.17	n/a	8/15/2023	0.12	No	37	n/a	n/a	0	n/a	n/a	0.001361	NP Intra (normality) 1 of 2
Barium (mg/L)	GWC-9	0.07319	n/a	8/15/2023	0.064	No	28	0.06145	0.004913	0	None	No	0.0003376	Param Intra 1 of 2
Beryllium (mg/L)	GWA-3	0.0005	n/a	8/14/2023	0.0005ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Beryllium (mg/L)	GWC-19	0.0005	n/a	8/15/2023	0.0005ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Beryllium (mg/L)	GWC-7	0.0248	n/a	8/15/2023	0.00027J	No	33	-7.926	1.812	27.27	Kaplan-Meier	ln(x)	0.0003376	Param Intra 1 of 2
Cadmium (mg/L)	GWA-4	0.0005	n/a	8/14/2023	0.0005ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Cadmium (mg/L)	GWC-10	0.0005	n/a	8/14/2023	0.0005ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Cadmium (mg/L)	GWC-18	0.0005	n/a	8/15/2023	0.0005ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Cadmium (mg/L)	GWC-20	0.0005	n/a	8/15/2023	0.0005ND	No	37	n/a	n/a	97.3	n/a	n/a	0.001361	NP Intra (NDs) 1 of 2
Cadmium (mg/L)	GWC-21	0.0005	n/a	8/15/2023	0.0005ND	No	36	n/a	n/a	94.44	n/a	n/a	0.001429	NP Intra (NDs) 1 of 2
Cadmium (mg/L)	GWC-23	0.0005	n/a	8/14/2023	0.0005ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Cadmium (mg/L)	GWC-5	0.0015	n/a	8/15/2023	0.0005ND	No	38	n/a	n/a	97.37		n/a	0.001294	NP Intra (NDs) 1 of 2
Cadmium (mg/L)	GWC-7	0.0035	n/a	8/15/2023	0.0005ND	No	35	n/a	n/a		n/a	n/a	0.001497	NP Intra (NDs) 1 of 2
Cadmium (mg/L)	GWC-8	0.0005	n/a	8/15/2023	0.0005ND	No	37	n/a	n/a	97.3	n/a	n/a	0.001361	NP Intra (NDs) 1 of 2
Cadmium (mg/L)	GWC-9	0.0005	n/a	8/15/2023	0.0005ND	No	38	n/a	n/a		n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWA-1	0.016	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	94.74		n/a	0.001294	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWA-11	0.005	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	92.11		n/a	0.001294	NP Intra (NDs) 1 of 2
	2	0.000		3, 1, 1, 2020	3.000110		-		. " •	J=.11			2.00.204	(1.20) 1012

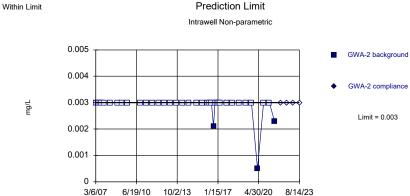
Appendix I Intrawell Prediction Limits - All Results


Plant Hammond Data: Huffaker Road Landfill Printed 10/25/2023, 12:02 PM

Constituent	Well	Upper Lir	n. Lower Lin	n. <u>Date</u>	Observ.	Sig.	Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	<u>Method</u>
Chromium (mg/L)	GWA-2	0.005	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWA-3	0.005	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	94.74	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWA-4	0.005	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	94.74	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-10	0.005	n/a	8/14/2023	0.0015J	No	38	n/a	n/a	92.11	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-18	0.005	n/a	8/15/2023	0.005ND	No	38	n/a	n/a	94.74	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-19	0.005	n/a	8/15/2023	0.005ND	No	38	n/a	n/a	92.11	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-20	0.0064	n/a	8/15/2023	0.005ND	No	37	n/a	n/a	91.89	n/a	n/a	0.001361	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-21	0.005	n/a	8/15/2023	0.005ND	No	36	n/a	n/a	94.44	n/a	n/a	0.001429	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-22	0.005	n/a	8/15/2023	0.005ND	No	38	n/a	n/a	89.47	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-23	0.0051	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	94.74	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-5	0.005	n/a	8/15/2023	0.005ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-6	0.005	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-7	0.005	n/a	8/15/2023	0.005ND	No	36	n/a	n/a	83.33	n/a	n/a	0.001429	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-8	0.005	n/a	8/15/2023	0.005ND	No	37	n/a	n/a	89.19	n/a	n/a	0.001361	NP Intra (NDs) 1 of 2
Chromium (mg/L)	GWC-9	0.005	n/a	8/15/2023	0.005ND	No	38	n/a	n/a	92.11	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWA-1	0.005	n/a	8/14/2023	0.00043J	No	38	n/a	n/a	60.53	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWA-11	0.01	n/a	8/14/2023	0.00045J	No	38	n/a	n/a	52.63	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWA-2	0.005	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWA-3	0.005	n/a	8/14/2023	0.00095J	No	38	n/a	n/a	89.47	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWA-4	0.005	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	63.16	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWC-10	0.005	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	97.37		n/a	0.001294	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWC-21	0.01	n/a	8/15/2023	0.0032J	No	36	n/a	n/a	52.78	n/a	n/a	0.001429	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWC-23	0.005	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	89.47	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWC-5	0.005	n/a	8/15/2023	0.00046J	No	38	n/a	n/a	89.47	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWC-6	0.005	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWC-7	0.07218	n/a	8/15/2023	0.021	No	23	0.028	0.01788	0	None	No	0.0003376	Param Intra 1 of 2
Cobalt (mg/L)	GWC-8	0.01	n/a	8/15/2023	0.00077J	No	37	n/a	n/a	81.08	n/a	n/a	0.001361	NP Intra (NDs) 1 of 2
Cobalt (mg/L)	GWC-9	0.005	n/a	8/15/2023	0.005ND	No	38	n/a	n/a	84.21	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWA-11	0.005	n/a	8/14/2023	0.005ND	No	33	n/a	n/a	90.91	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWA-2	0.005	n/a	8/14/2023	0.005ND	No	33	n/a	n/a	90.91	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWA-3	0.005	n/a	8/14/2023	0.005ND	No	33	n/a	n/a	90.91	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWA-4	0.0066	n/a	8/14/2023	0.005ND	No	33	n/a	n/a	90.91	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-10	0.005	n/a	8/14/2023	0.005ND	No	33	n/a	n/a	93.94	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-18	0.005	n/a	8/15/2023	0.005ND	No	33	n/a	n/a	90.91	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-19	0.005	n/a	8/15/2023	0.005ND	No	33	n/a	n/a	84.85	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-20	0.005	n/a	8/15/2023	0.005ND	No	32	n/a	n/a	93.75	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-21	0.005	n/a	8/15/2023	0.005ND	No	31	n/a	n/a	74.19	n/a	n/a	0.001905	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-22	0.005	n/a	8/15/2023	0.005ND	No	33	n/a	n/a	90.91	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-23	0.0084	n/a	8/14/2023	0.005ND	No	33	n/a	n/a	75.76	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-5	0.005	n/a	8/15/2023	0.005ND	No	33	n/a	n/a	84.85	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-6	0.005	n/a	8/14/2023	0.005ND	No	33	n/a	n/a	96.97	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-7	0.016	n/a	8/15/2023	0.005ND	No	31	n/a	n/a	77.42	n/a	n/a	0.001905	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-8	0.005	n/a	8/15/2023	0.005ND	No	32	n/a	n/a	96.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Copper (mg/L)	GWC-9	0.005	n/a	8/15/2023	0.005ND	No	33	n/a	n/a	93.94	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWA-11	0.001	n/a	8/14/2023	0.001ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWA-3	0.001	n/a	8/14/2023	0.001ND	No	38	n/a	n/a	94.74	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-10	0.001	n/a	8/14/2023	0.001ND	No	38	n/a	n/a	97.37		n/a	0.001294	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-18	0.001	n/a	8/15/2023	0.001ND	No	38	n/a	n/a	97.37		n/a	0.001294	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-19	0.001	n/a	8/15/2023	0.001ND	No	38	n/a	n/a	92.11		n/a	0.001294	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-20	0.001	n/a	8/15/2023	0.001ND	No	37	n/a	n/a	97.3	n/a	n/a	0.001361	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-21	0.001	n/a	8/15/2023	0.001ND	No	36	n/a	n/a	88.89		n/a	0.001429	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-22	0.001	n/a	8/15/2023	0.001ND	No	38	n/a	n/a	89.47		n/a	0.001294	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-23	0.001	n/a	8/14/2023	0.001ND	No	38	n/a	n/a	84.21		n/a	0.001294	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-5	0.001	n/a	8/15/2023	0.001ND	No	38	n/a	n/a	94.74		n/a	0.001294	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-6	0.001	n/a	8/14/2023	0.001ND	No	38	n/a	n/a	97.37		n/a	0.001294	NP Intra (NDs) 1 of 2

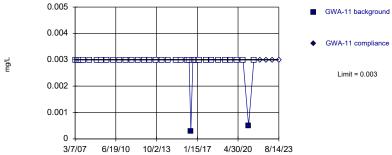
Appendix I Intrawell Prediction Limits - All Results

Plant Hammond Data: Huffaker Road Landfill Printed 10/25/2023, 12:02 PM


Constituent	<u>Well</u>		n. Lower Lim		Observ.	Sig.		Bg Mean	Std. Dev.		ND Adj.	Transform		Method
Lead (mg/L)	GWC-7	0.0016	n/a	8/15/2023	0.001ND	No	37	n/a	n/a	75.68		n/a	0.001361	NP Intra (NDs) 1 of 2
Lead (mg/L)	GWC-8	0.001	n/a	8/15/2023	0.001ND	No	37	n/a	n/a	94.59		n/a	0.001361	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWA-1	0.005	n/a	8/14/2023	0.005ND	No	33	n/a	n/a	78.79		n/a	0.001701	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWA-11	0.01	n/a	8/14/2023	0.0016J	No	33	n/a	n/a	54.55		n/a	0.001701	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWA-2	0.005	n/a	8/14/2023	0.005ND	No	33	n/a	n/a	96.97		n/a	0.001701	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWA-3	0.005	n/a	8/14/2023	0.0021J	No	33	n/a	n/a	87.88	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWA-4	0.0055	n/a	8/14/2023	0.005ND	No	33	n/a	n/a	51.52	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-10	0.005	n/a	8/14/2023	0.005ND	No	33	n/a	n/a	96.97	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-18	0.005	n/a	8/15/2023	0.005ND	No	33	n/a	n/a	78.79	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-19	0.0062	n/a	8/15/2023	0.005ND	No	33	n/a	n/a	90.91	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-20	0.005	n/a	8/15/2023	0.005ND	No	32	n/a	n/a	93.75	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-21	0.01023	n/a	8/15/2023	0.0054	No	32	0.06271	0.0164	18.75	Kaplan-Meier	sqrt(x)	0.0003376	Param Intra 1 of 2
Nickel (mg/L)	GWC-22	0.005	n/a	8/15/2023	0.005ND	No	33	n/a	n/a	96.97	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-23	0.005	n/a	8/14/2023	0.005ND	No	33	n/a	n/a	69.7	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-5	0.005	n/a	8/15/2023	0.005ND	No	33	n/a	n/a	78.79	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-6	0.005	n/a	8/14/2023	0.005ND	No	33	n/a	n/a	90.91	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-7	0.2826	n/a	8/15/2023	0.095	No	18	0.1037	0.06873	0	None	No	0.0003376	Param Intra 1 of 2
Nickel (mg/L)	GWC-8	0.0073	n/a	8/15/2023	0.005ND	No	32	n/a	n/a	81.25	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Nickel (mg/L)	GWC-9	0.01	n/a	8/15/2023	0.0017J	No	33	n/a	n/a	54.55	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWA-4	0.005	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWC-10	0.005	n/a	8/14/2023	0.005ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWC-21	0.005	n/a	8/15/2023	0.005ND	No	36	n/a	n/a	94.44	n/a	n/a	0.001429	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWC-22	0.005	n/a	8/15/2023	0.005ND	No	38	n/a	n/a	94.74	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Selenium (mg/L)	GWC-9	0.005	n/a	8/15/2023	0.005ND	No	38	n/a	n/a	97.37	n/a	n/a	0.001294	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWA-1	0.01	n/a	8/14/2023	0.01ND	No	33	n/a	n/a	96.97	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-21	0.01	n/a	8/15/2023	0.01ND	No	31	n/a	n/a	93.55	n/a	n/a	0.001905	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-23	0.01	n/a	8/14/2023	0.01ND	No	33	n/a	n/a	96.97	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-5	0.01	n/a	8/15/2023	0.01ND	No	33	n/a	n/a	96.97	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-7	0.01	n/a	8/15/2023	0.01ND	No	32	n/a	n/a	84.38	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Vanadium (mg/L)	GWC-9	0.01	n/a	8/15/2023	0.01ND	No	33	n/a	n/a	96.97	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-1	0.01	n/a	8/14/2023	0.01ND	No	33	n/a	n/a	75.76	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-11	0.01	n/a	8/14/2023	0.01ND	No	33	n/a	n/a	66.67	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-2	0.01	n/a	8/14/2023	0.01ND	No	33	n/a	n/a	69.7	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-3	0.01	n/a	8/14/2023	0.01ND	No	33	n/a	n/a	57.58	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWA-4	0.01	n/a	8/14/2023	0.01ND	No	33	n/a	n/a	33.33	n/a	n/a	0.001701	NP Intra (normality) 1 of 2
Zinc (mg/L)	GWC-10	0.01	n/a	8/14/2023	0.01ND	No	33	n/a	n/a	78.79	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-18	0.01	n/a	8/15/2023	0.01ND	No	33	n/a	n/a	69.7	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-19	0.013	n/a	8/15/2023	0.01ND	No	33	n/a	n/a	60.61	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-20	0.01	n/a	8/15/2023	0.01ND	No	32	n/a	n/a	81.25	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-21	0.009272	n/a	8/15/2023	0.01ND	No	31	0.1676	0.01806	16.13	Kaplan-Meier	x^(1/3)	0.0003376	Param Intra 1 of 2
Zinc (mg/L)	GWC-22	0.01	n/a	8/15/2023	0.01ND	No	33	n/a	n/a	81.82	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-23	0.01	n/a	8/14/2023	0.01ND	No	33	n/a	n/a	54.55	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-5	0.01	n/a	8/15/2023	0.01ND	No	33	n/a	n/a	60.61	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-6	0.01	n/a	8/14/2023	0.01ND	No	33	n/a	n/a	72.73	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-7	0.523	n/a	8/15/2023	0.2	No	18	0.1863	0.1294	0	None	No	0.0003376	Param Intra 1 of 2
Zinc (mg/L)	GWC-8	0.01	n/a	8/15/2023	0.01ND	No	32	n/a	n/a	71.88	n/a	n/a	0.001803	NP Intra (NDs) 1 of 2
Zinc (mg/L)	GWC-9	0.01	n/a	8/15/2023	0.01ND	No	33	n/a	n/a	66.67	n/a	n/a	0.001701	NP Intra (NDs) 1 of 2

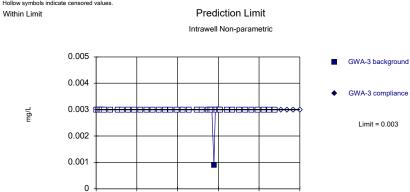
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Antimony Analysis Run 10/25/2023 11:57 AM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill


Sanitas $^{\text{\tiny{TM}}}$ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 37 background values. 91.89% NDs. Well-constituent pair annual alpha = 0.002721. Individual comparison alpha = 0.001361 (1 of 2).

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values

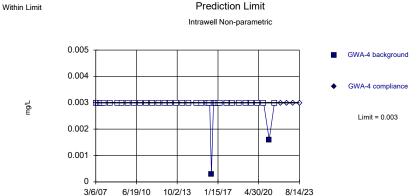

Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 94.74% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Antimony Analysis Run 10/25/2023 11:57 AM View: Appendix I

Plant Hammond Data: Huffaker Road Landfill

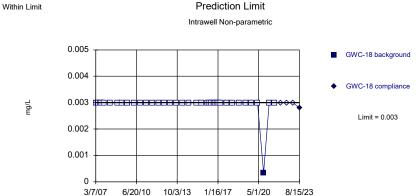
Sanitas $^{\text{\tiny{TM}}}$ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

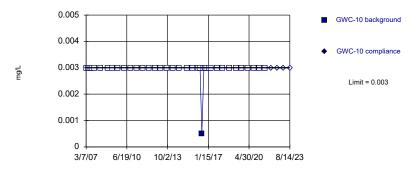
10/2/13 1/15/17 4/30/20 8/14/23

6/19/10


3/6/07

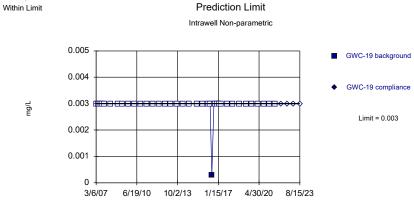
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 94.74% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Antimony Analysis Run 10/25/2023 11:57 AM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill

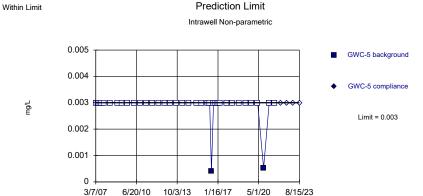

Sanitas $^{\text{\tiny{TM}}}$ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values



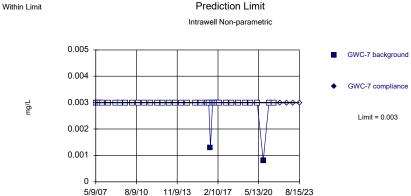
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).


Constituent: Antimony Analysis Run 10/25/2023 11:57 AM View: Appendix I

Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.

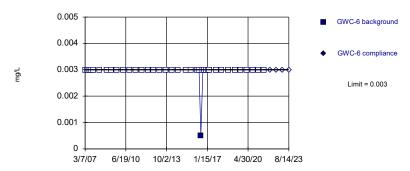
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 94.74% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

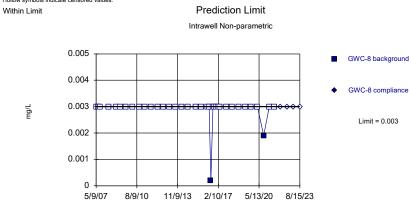
Constituent: Antimony Analysis Run 10/25/2023 11:57 AM View: Appendix I

Plant Hammond Data: Huffaker Road Landfill


Sanitas $^{\text{\tiny{TM}}}$ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 37 background values. 94.59% NDs. Well-constituent pair annual alpha = 0.002721. Individual comparison alpha = 0.001361 (1 of 2).

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Antimony Analysis Run 10/25/2023 11:57 AM View: Appendix I

Plant Hammond Data: Huffaker Road Landfill

Sanitas $^{\text{\tiny{IM}}}$ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 36 background values. 94.44% NDs. Well-constituent pair annual alpha = 0.002856. Individual comparison alpha = 0.001429 (1 of 2).

Within Limit

0.005
0.004
0.003
0.002
0.001
0.001
0.001

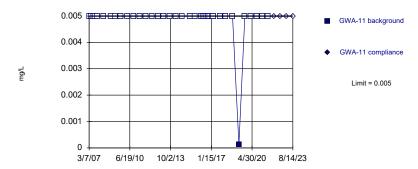
Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 94.74% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

8/15/23

6/20/10 10/3/13 1/16/17 5/1/20

Constituent: Antimony Analysis Run 10/25/2023 11:57 AM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill

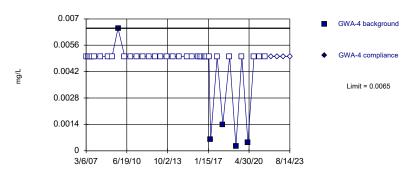

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values. Within Limit

3/7/07

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 68.42% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values

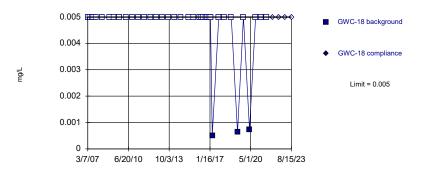
Limit Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Arsenic Analysis Run 10/25/2023 11:57 AM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill

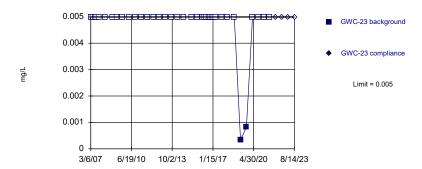
Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values. Within Limit


Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 86.84% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Within Limit

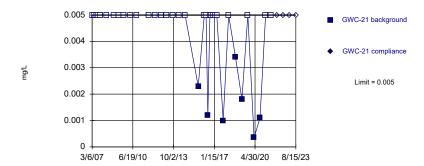
Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 92.11% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Arsenic Analysis Run 10/25/2023 11:58 AM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill

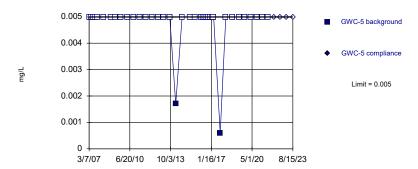
Sanitas $^{\text{\tiny{IM}}}$ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 94.74% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values

Limit Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 36 background values. 80.56% NDs. Well-constituent pair annual alpha = 0.002856. Individual comparison alpha = 0.001429 (1 of 2).

Constituent: Arsenic Analysis Run 10/25/2023 11:58 AM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.

Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 94.74% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

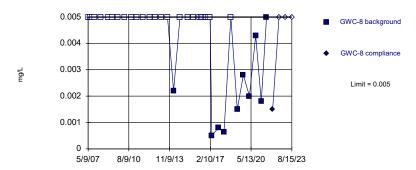
Within Limit

0.02
0.016
0.012
0.008
0.004
0.004
0.004
0.004
0.007
0.007
0.007
0.007
0.008
0.004
0.008
0.004
0.008
0.004
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0

Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 37 background values. 37.84% NDs. Well-constituent pair annual alpha = 0.002721. Individual comparison alpha = 0.001361 (1 of 2).

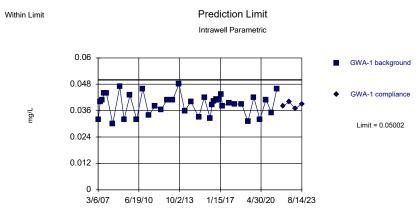
Constituent: Arsenic Analysis Run 10/25/2023 11:58 AM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill


Prediction Limit

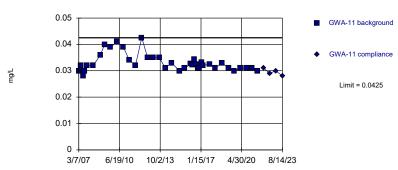
Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values. Within Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values Within Limit

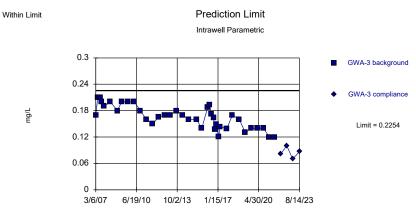

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 37 background values. 72.97% NDs. Well-constituent pair annual alpha = 0.002721. Individual comparison alpha = 0.001361 (1 of 2).


Constituent: Arsenic Analysis Run 10/25/2023 11:58 AM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=0.03897, Std. Dev.=0.004812, n=38. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9475, critical = 0.916. Kappa = 2.296 (c=13, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0003376.

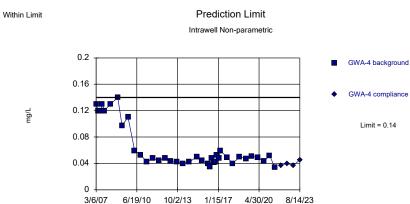

Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 38 background values. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

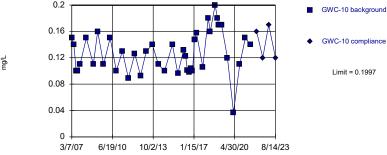
Constituent: Barium Analysis Run 10/25/2023 11:58 AM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=0.1656, Std. Dev.=0.02606, n=38. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9475, critical = 0.916. Kappa = 2.296 (c=13, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0003376.


Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=0.1666, Std. Dev.=0.01321, n=29. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9772, critical = 0.898. Kappa = 2.377 (c=13, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0003376.

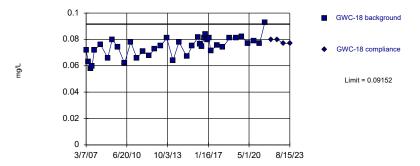

Constituent: Barium Analysis Run 10/25/2023 11:58 AM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 38 background values. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Within Limit Prediction Limit Intrawell Parametric

Background Data Summary: Mean=0.1273, Std. Dev.=0.03174, n=41. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9632, critical = 0.92. Kappa = 2.279 (c=13, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.003132

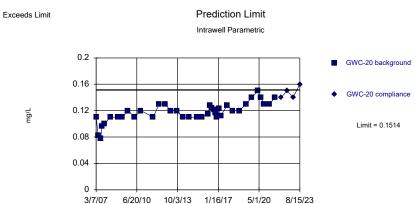

Constituent: Barium Analysis Run 10/25/2023 11:58 AM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Within Limit | Prediction Limit | Intrawell Parametric | GWC-19 background | GWC-19 compliance | Limit = 0.1706 | Limit = 0.1706 | CWC-19 compliance | Limit = 0.1706 | Limit = 0.1706 | CWC-19 compliance | Limit = 0.1706 | Limit

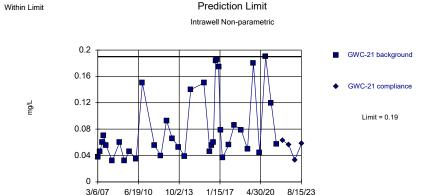
Background Data Summary (based on x^4 transformation): Mean=0.0004195, Std. Dev.=0.0001801, n=29. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9247, critical = 0.898. Kappa = 2.377 (c=13, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.003376.

Within Limit Prediction Limit
Intrawell Parametric



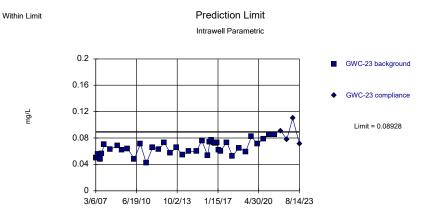
Background Data Summary: Mean=0.07443, Std. Dev.=0.007441, n=38. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9635, critical = 0.916. Kappa = 2.296 (c=13, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0003376.

Constituent: Barium Analysis Run 10/25/2023 11:58 AM View: Appendix I


Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=0.1177, Std. Dev.=0.01465, n=38. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9438, critical = 0.916. Kappa = 2.296 (c=13, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0003376.


Sanitas™ v.10.0.13 Software licensed to . UG

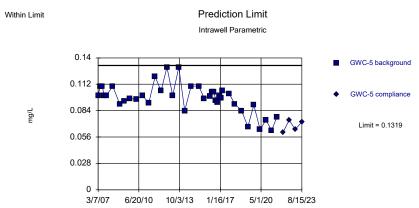
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 36 background values. Well-constituent pair annual alpha = 0.002856. Individual comparison alpha = 0.001429 (1 of 2).

Constituent: Barium Analysis Run 10/25/2023 11:58 AM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=0.06495, Std. Dev.=0.0106, n=38. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9801, critical = 0.916. Kappa = 2.296 (c=13, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0003376.

Within Limit Prediction Limit Intrawell Parametric


0.2
0.16
0.12
0.08
0.04
0.04
0.04

4/13/10 12/12/12 8/13/15 4/14/18 12/13/20 8/15/23

Background Data Summary (based on natural log transformation): Mean=-2.374, Std. Dev.=0.07763, n=29. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9051, critical = 0.898. Kappa = 2.377 (c=13, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0003376.

Constituent: Barium Analysis Run 10/25/2023 11:58 AM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=0.09723, Std. Dev.=0.01511, n=38. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9434, critical = 0.916. Kappa = 2.296 (c=13, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0003376.

Within Limit

Intrawell Parametric

0.3

0.24

0.18

0.12

0.10

0.10

0.11

0.11

0.12

0.12

0.12

0.13

0.13

0.14

0.15

0.16

0.17

0.17

0.18

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

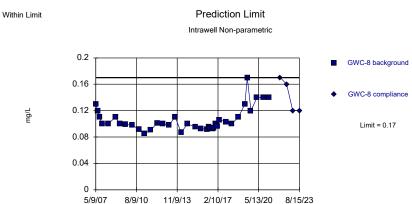
0.19

0.19

0.19

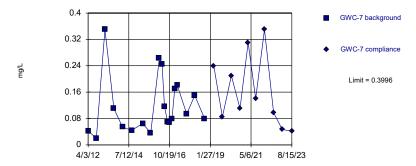
0.19

0.19


0.1

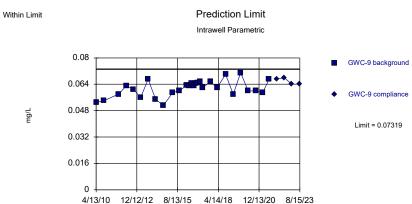
Prediction Limit

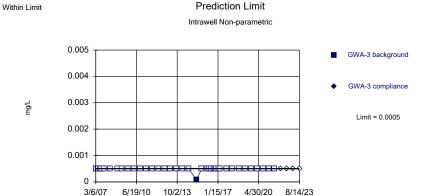
Background Data Summary: Mean=0.1469, Std. Dev.=0.0273, n=29. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9315, critical = 0.898. Kappa = 2.377 (c=13, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.002326


Constituent: Barium Analysis Run 10/25/2023 11:58 AM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

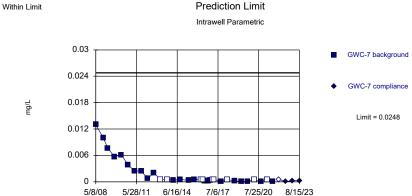
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 37 background values. Well-constituent pair annual alpha = 0.002721. Individual comparison alpha = 0.001361 (1 of 2).


Within Limit Prediction Limit
Intrawell Parametric


Background Data Summary (based on square root transformation): Mean=0.3226, Std. Dev.=0.1206, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9476, critical = 0.863. Kappa = 2.568 (c=13, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.003376.

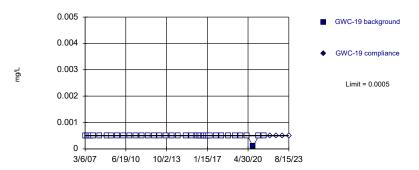
Constituent: Barium Analysis Run 10/25/2023 11:58 AM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG


Background Data Summary: Mean=0.06145, Std. Dev.=0.004913, n=28. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9838, critical = 0.896. Kappa = 2.39 (c=13, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0003376.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

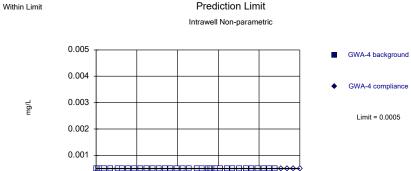
Constituent: Beryllium Analysis Run 10/25/2023 11:58 AM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill


Sanitas $^{\text{\tiny{TM}}}$ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.

Background Data Summary (based on natural log transformation) (after Kaplan-Meier Adjustment): Mean=-7,926, Std. Dev.=1.812, n=33, 27.27% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9262, critical = 0.906. Kappa = 2.334 (c=13, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0003376.

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored value

Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Beryllium Analysis Run 10/25/2023 11:58 AM View: Appendix I

Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

10/2/13 1/15/17 4/30/20 8/14/23

6/19/10

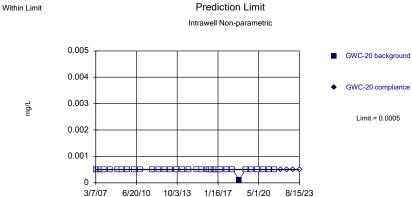
3/6/07

Within Limit

Intrawell Non-parametric 0.005 GWC-10 background 0.004 GWC-10 compliance 0.003 Limit = 0.00050.002 0.001

Prediction Limit

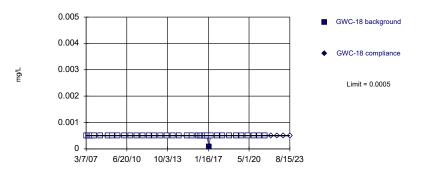
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha


1/15/17 4/30/20

6/19/10 10/2/13

3/7/07

Constituent: Cadmium Analysis Run 10/25/2023 11:58 AM View: Appendix I Plant Hammond Data: Huffaker Road Landfill


Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values

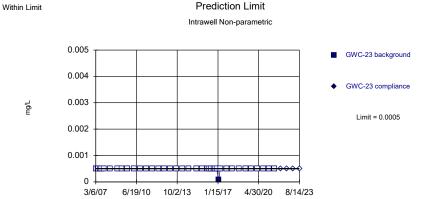
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 37 background values. 97.3% NDs. Well-constituent pair annual alpha = 0.002721. Individual comparison alpha = 0.001361 (1 of 2).

Sanitas™ v.10.0.13 Software licensed to . UG

Prediction Limit Intrawell Non-parametric

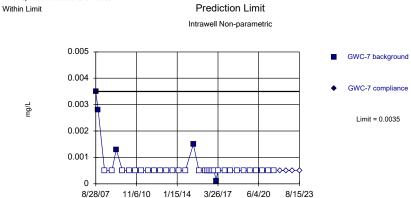


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).


> Constituent: Cadmium Analysis Run 10/25/2023 11:58 AM View: Appendix I Plant Hammond Data: Huffaker Road Landfill

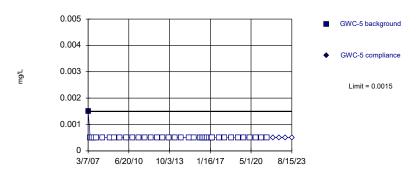
Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.

3/6/07


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 36 background values. 94.44% NDs. Well-constituent pair annual alpha = 0.002856. Individual comparison alpha = 0.001429 (1 of 2).

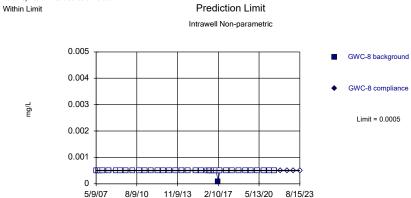
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha

> Constituent: Cadmium Analysis Run 10/25/2023 11:58 AM View: Appendix I Plant Hammond Data: Huffaker Road Landfill

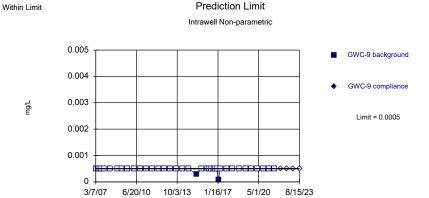

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 35 background values. 85.71% NDs. Well-constituent pair annual alpha = 0.002991. Individual comparison alpha = 0.001497 (1 of 2).

Sanitas™ v.10.0.13 Software licensed to . UG


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

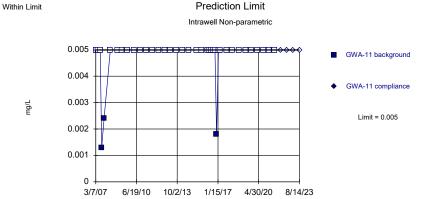
> Constituent: Cadmium Analysis Run 10/25/2023 11:58 AM View: Appendix I Plant Hammond Data: Huffaker Road Landfill


Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.

5/9/07

8/9/10

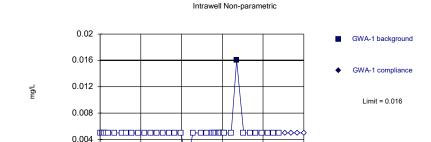
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 37 background values. 97.3% NDs. Well-constituent pair annual alpha = 0.002721. Individual comparison alpha = 0.001361 (1 of 2).



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 94.74% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Cadmium Analysis Run 10/25/2023 11:58 AM View: Appendix I

Plant Hammond Data: Huffaker Road Landfill

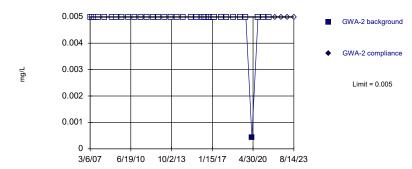

Sanitas $^{\text{\tiny{TM}}}$ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 92.11% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values

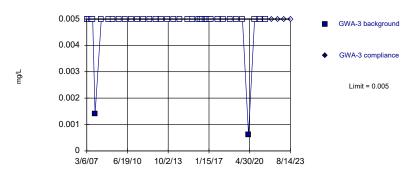
3/6/07

Prediction Limit


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 94.74% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

6/19/10 10/2/13 1/15/17 4/30/20 8/14/23

Constituent: Chromium Analysis Run 10/25/2023 11:58 AM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill


Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

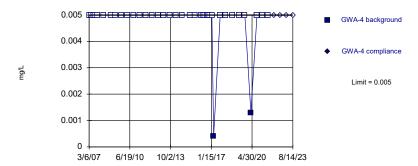
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 94.74% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Chromium Analysis Run 10/25/2023 11:58 AM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill

Prediction Limit

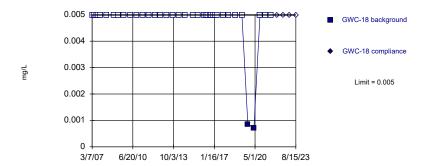

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values. Within Limit

3/7/07 6/19/10 10/2/13 1/15/17 4/30/20 8/14/23

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 92.11% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values

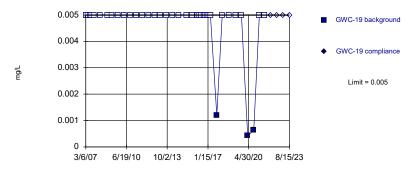
Limit Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 94.74% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

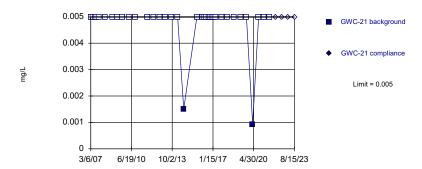
Constituent: Chromium Analysis Run 10/25/2023 11:58 AM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values. Within Limit


Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 94.74% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

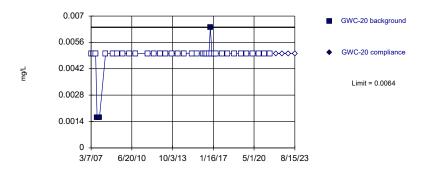
Within Limit



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 92.11% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Chromium Analysis Run 10/25/2023 11:58 AM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill

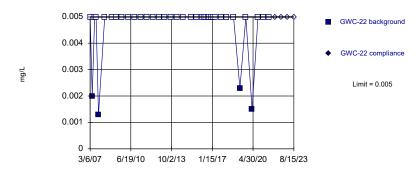
Sanitas $^{\text{\tiny{IM}}}$ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 36 background values. 94.44% NDs. Well-constituent pair annual alpha = 0.002856. Individual comparison alpha = 0.001429 (1 of 2).

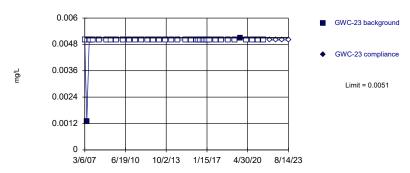
Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values

Limit Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 37 background values. 91.89% NDs. Well-constituent pair annual alpha = 0.002721. Individual comparison alpha = 0.001361 (1 of 2).

Constituent: Chromium Analysis Run 10/25/2023 11:58 AM View: Appendix I

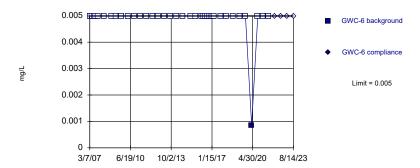
Plant Hammond Data: Huffaker Road Landfill


Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.

Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 89.47% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

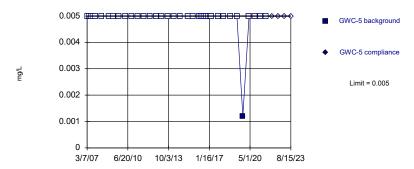
Within Limit Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 94.74% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1.0 f.2)

Constituent: Chromium Analysis Run 10/25/2023 11:58 AM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill

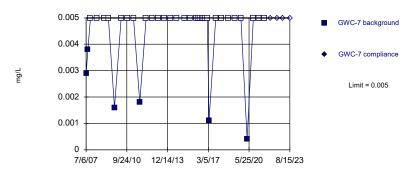
Sanitas $^{\text{\tiny{TM}}}$ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values

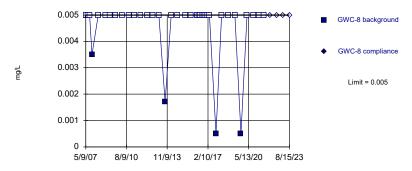
Limit Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

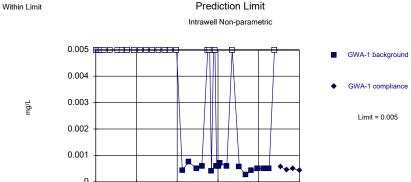
Constituent: Chromium Analysis Run 10/25/2023 11:58 AM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill

 $Sanitas^{\text{\tiny{TM}}} \text{ v.} 10.0.13 \text{ Software licensed to . UG} \\ \text{Hollow symbols indicate censored values.}$


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 36 background values. 83.33% NDs. Well-constituent pair annual alpha = 0.002856. Individual comparison alpha = 0.001429 (1 of 2).

Within Limit

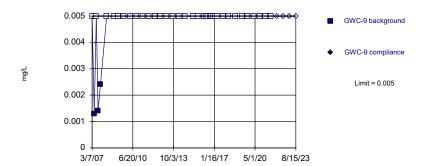


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 37 background values. 89.19% NDs. Well-constituent pair annual alpha = 0.002721. Individual comparison alpha = 0.001361 (1 of 2).

Constituent: Chromium Analysis Run 10/25/2023 11:58 AM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.

3/6/07

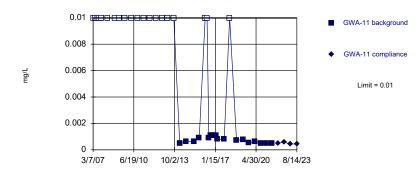


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 60.53% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

6/19/10 10/2/13 1/15/17 4/30/20 8/14/23

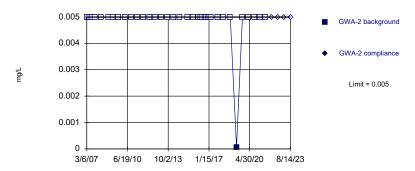
Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values

Within Limit Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 92.11% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Chromium Analysis Run 10/25/2023 11:58 AM View: Appendix I

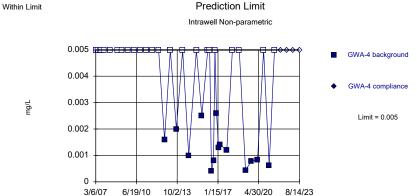
Plant Hammond Data: Huffaker Road Landfill


Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 52.63% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

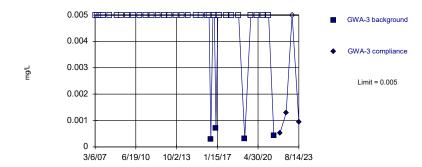
Within Limit Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1.0 f.2)

Constituent: Cobalt Analysis Run 10/25/2023 11:58 AM View: Appendix I

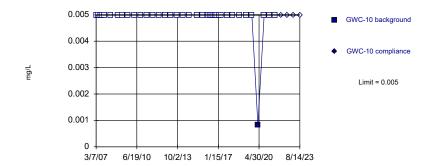
Plant Hammond Data: Huffaker Road Landfill


Sanitas $^{\text{\tiny{TM}}}$ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 63.16% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

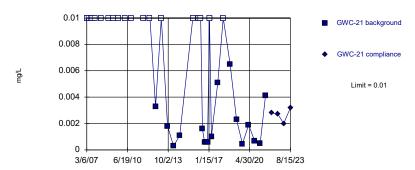
Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values

Within Limit Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 89.47% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Cobalt Analysis Run 10/25/2023 11:58 AM View: Appendix I

Plant Hammond Data: Huffaker Road Landfill


Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

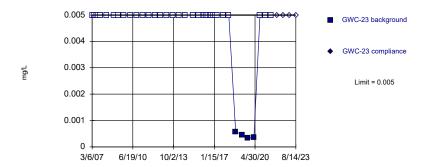
Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 36 background values. 52.78% NDs. Well-constituent pair annual alpha = 0.002856. Individual comparison alpha = 0.001429 (1 of 2).

Constituent: Cobalt Analysis Run 10/25/2023 11:59 AM View: Appendix I

Plant Hammond Data: Huffaker Road Landfill

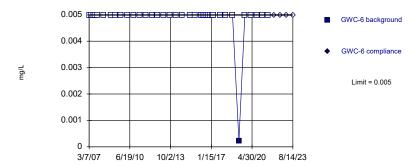
Sanitas $^{\text{\tiny{TM}}}$ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 89.47% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

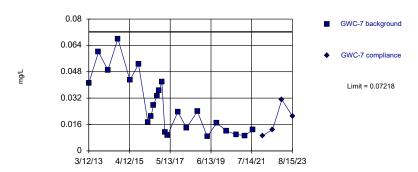
Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values

n Limit Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 89.47% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Cobalt Analysis Run 10/25/2023 11:59 AM View: Appendix I

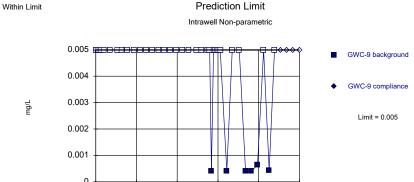
Plant Hammond Data: Huffaker Road Landfill


Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Within Limit Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=0.028, Std. Dev.=0.01788, n=23. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.899, critical = 0.881. Kappa = 2.471 (c=13, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0003376.

Constituent: Cobalt Analysis Run 10/25/2023 11:59 AM View: Appendix I

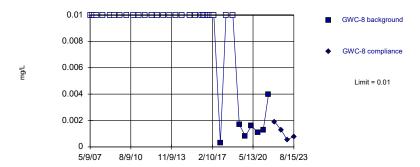
Plant Hammond Data: Huffaker Road Landfill

Sanitas $^{\text{\tiny{IM}}}$ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 84.21% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

1/16/17

5/1/20

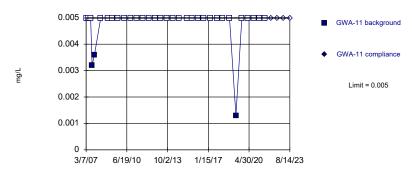

8/15/23

6/20/10 10/3/13

3/7/07

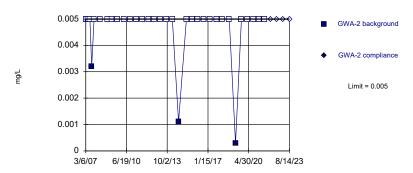
Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values Within Limit

mit Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 37 background values. 81.08% NDs. Well-constituent pair annual alpha = 0.002721. Individual comparison alpha = 0.001361 (1 of 2).

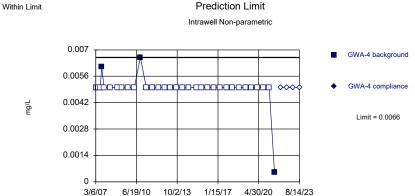
Constituent: Cobalt Analysis Run 10/25/2023 11:59 AM View: Appendix I

Plant Hammond Data: Huffaker Road Landfill


Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values. Within Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 90.91% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

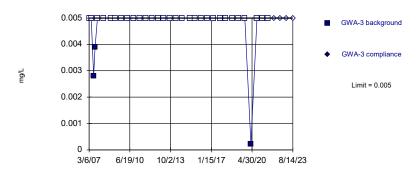
Within Limit Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 90.91% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Constituent: Copper Analysis Run 10/25/2023 11:59 AM View: Appendix I

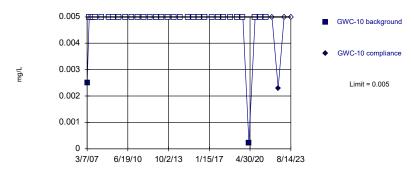
Plant Hammond Data: Huffaker Road Landfill


Sanitas $^{\text{\tiny{TM}}}$ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 90.91% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored value

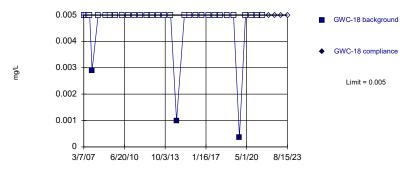
Within Limit Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 30 background values. 90.91% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Constituent: Copper Analysis Run 10/25/2023 11:59 AM View: Appendix I

Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values. Within Limit


Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 93.94% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Within Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 90.91% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Constituent: Copper Analysis Run 10/25/2023 11:59 AM View: Appendix I

Plant Hammond Data: Huffaker Road Landfill

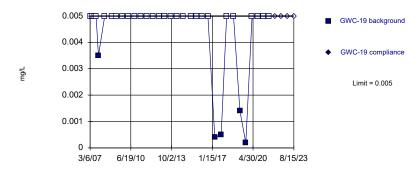
Prediction Limit

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values. Within Limit

3/7/07

0.005 GWC-20 background
0.004
0.003
0.002
0.001

6/20/10 10/3/13 1/16/17

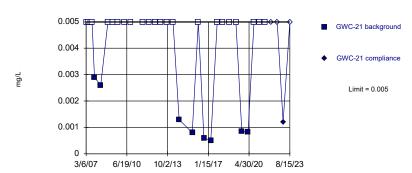

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 93.75% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

5/1/20

8/15/23

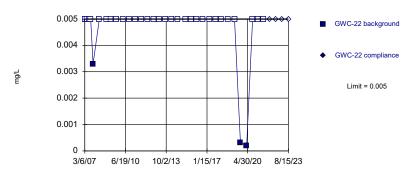
Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored value

Limit Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 84.85% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Constituent: Copper Analysis Run 10/25/2023 11:59 AM View: Appendix I

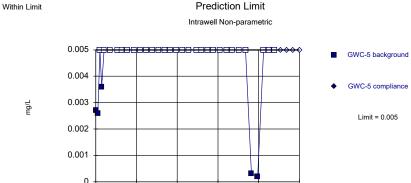
Plant Hammond Data: Huffaker Road Landfill


Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 31 background values. 74.19% NDs. Well-constituent pair annual alpha = 0.003807. Individual comparison alpha = 0.001905 (1 of 2).

Within Limit Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 90.91% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

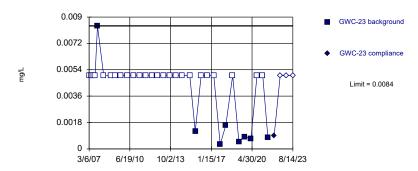
Constituent: Copper Analysis Run 10/25/2023 11:59 AM View: Appendix I

Plant Hammond Data: Huffaker Road Landfill

Sanitas $^{\text{\tiny{IM}}}$ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.

3/7/07

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 84.85% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

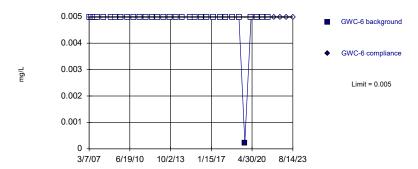

5/1/20

8/15/23

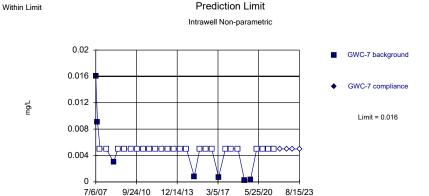
6/20/10 10/3/13 1/16/17

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values

Limit Prediction Limit
Intrawell Non-parametric



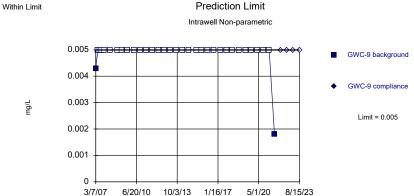
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 75.76% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).


Constituent: Copper Analysis Run 10/25/2023 11:59 AM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values. Within Limit

nit Prediction Limit
Intrawell Non-parametric

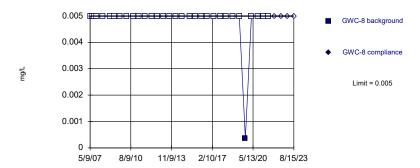
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 96.97% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 31 background values. 77.42% NDs. Well-constituent pair annual alpha = 0.003807. Individual comparison alpha = 0.001905 (1 of 2)

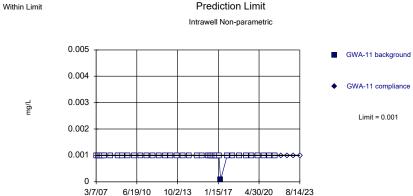
Constituent: Copper Analysis Run 10/25/2023 11:59 AM View: Appendix I

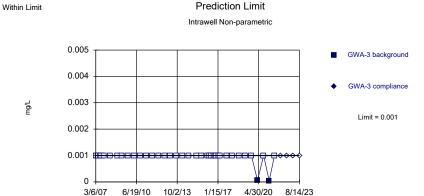
Plant Hammond Data: Huffaker Road Landfill


Sanitas $^{\text{\tiny{IM}}}$ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 93.94% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

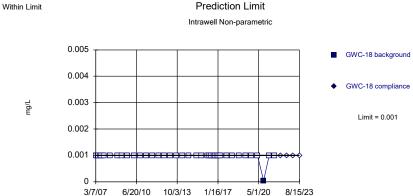
Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored value


Within Limit Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 96.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

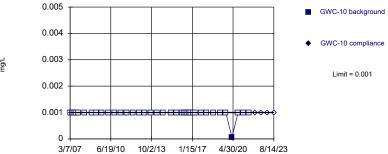
Constituent: Copper Analysis Run 10/25/2023 11:59 AM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill

Sanitas $^{\text{\tiny{M}}}$ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

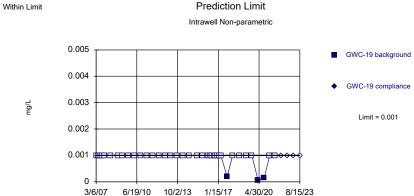
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 94.74% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Lead Analysis Run 10/25/2023 11:59 AM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill

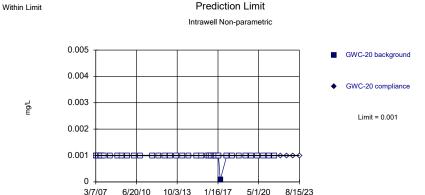

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored value

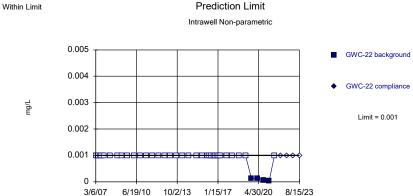


Prediction Limit

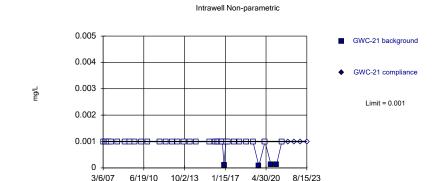

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Lead Analysis Run 10/25/2023 11:59 AM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill

Sanitas $^{\text{\tiny{IM}}}$ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 92.11% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

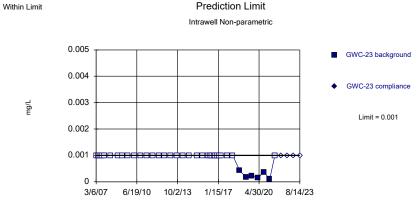
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 37 background values. 97.3% NDs. Well-constituent pair annual alpha = 0.002721. Individual comparison alpha = 0.001361 (1 of 2).


Constituent: Lead Analysis Run 10/25/2023 11:59 AM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill

Sanitas $^{\text{\tiny{IM}}}$ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 89.47% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored value:

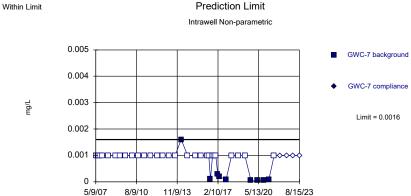

Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 36 background values. 88.89% NDs. Well-constituent pair annual alpha = 0.002856. Individual comparison alpha = 0.001429 (1 of 2).

Constituent: Lead Analysis Run 10/25/2023 11:59 AM View: Appendix I

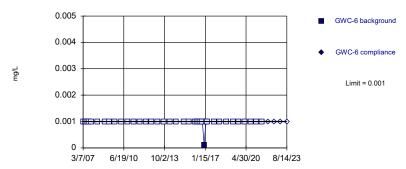
Plant Hammond Data: Huffaker Road Landfill

 $Sanitas^{\text{\tiny{TM}}} \text{ v.} 10.0.13 \text{ Software licensed to . UG} \\ Hollow symbols indicate censored values.}$


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 84.21% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

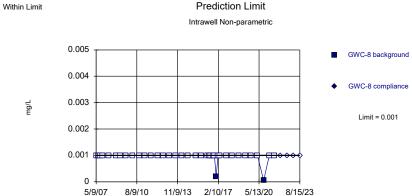
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 94.74% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1.0 f.2)

Constituent: Lead Analysis Run 10/25/2023 11:59 AM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill

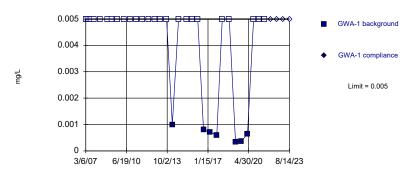

Sanitas $^{\text{\tiny{IM}}}$ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 37 background values. 75.68% NDs. Well-constituent pair annual alpha = 0.002721. Individual comparison alpha = 0.001361 (1 of 2).

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored value



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

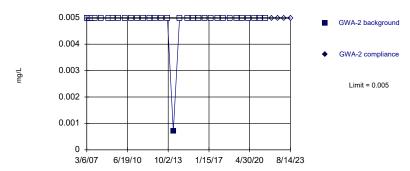

Constituent: Lead Analysis Run 10/25/2023 11:59 AM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill

Sanitas $^{\text{\tiny{IM}}}$ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 37 background values. 94.59% NDs. Well-constituent pair annual alpha = 0.002721. Individual comparison alpha = 0.001361 (1 of 2).

Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 78.79% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).


Constituent: Nickel Analysis Run 10/25/2023 11:59 AM View: Appendix I

Plant Hammond Data: Huffaker Road Landfill

Sanitas $^{\text{\tiny{TM}}}$ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.

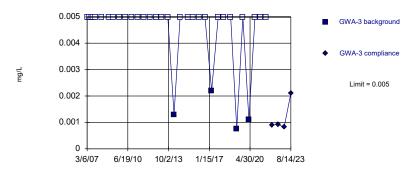
Within Limit Prediction Limit


Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 96.97% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

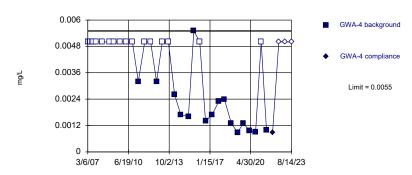
Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values

mit Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 54.55% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Constituent: Nickel Analysis Run 10/25/2023 11:59 AM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill


Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 87.88% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 51.52% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Constituent: Nickel Analysis Run 10/25/2023 11:59 AM View: Appendix I

Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.

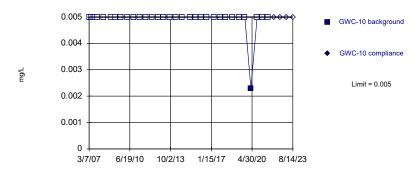
Within Limit Prediction Limit Intrawell Non-parametric

0.005 GWC-18 background
0.004 GWC-18 compliance
0.003
0.002
0.001

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 78.79% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

1/16/17

5/1/20

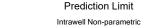

8/15/23

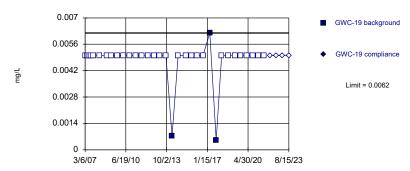
6/20/10 10/3/13

3/7/07

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values

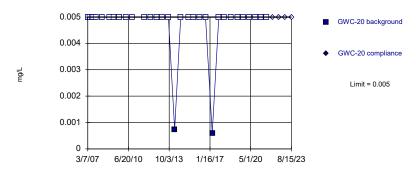
imit Prediction Limit
Intrawell Non-parametric




Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 96.97% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2)

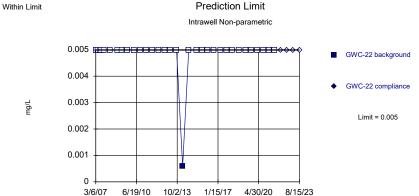
Constituent: Nickel Analysis Run 10/25/2023 11:59 AM View: Appendix I

Plant Hammond Data: Huffaker Road Landfill


Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values. Within Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 90.91% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

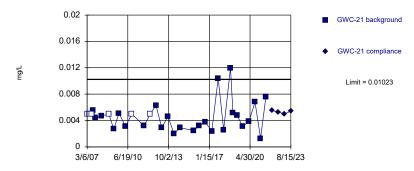
Within Limit Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 93.75% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

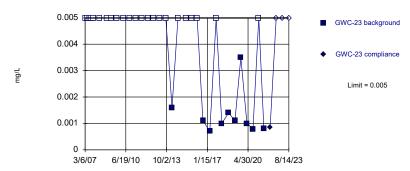
Constituent: Nickel Analysis Run 10/25/2023 11:59 AM View: Appendix I

Plant Hammond Data: Huffaker Road Landfill


Sanitas $^{\text{\tiny{TM}}}$ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.

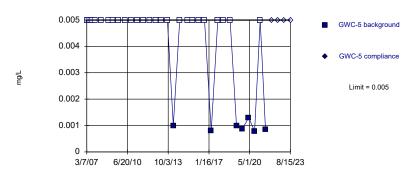
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 96.97% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values


Background Data Summary (based on square root transformation) (after Kaplan-Meier Adjustment): Mean=0.06271, Std. Dev.=0.0164, n=32, 18.75% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9385, critical = 0.904. Kappa = 2.344 (c=13, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0003376.

Constituent: Nickel Analysis Run 10/25/2023 11:59 AM View: Appendix I

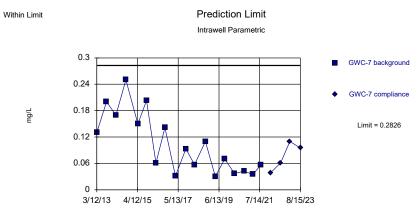
Plant Hammond Data: Huffaker Road Landfill


Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 69.7% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

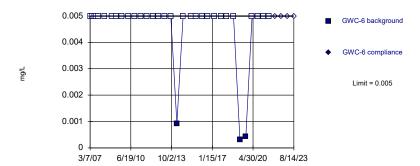
Within Limit Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 78.79% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Constituent: Nickel Analysis Run 10/25/2023 11:59 AM View: Appendix I

Plant Hammond Data: Huffaker Road Landfill


Sanitas™ v.10.0.13 Software licensed to . UG

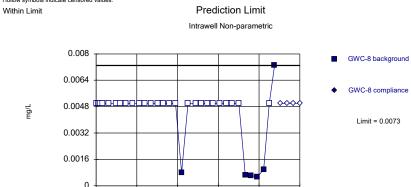
Background Data Summary: Mean=0.1037, Std. Dev.=0.06873, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.898, critical = 0.858. Kappa = 2.603 (c=13, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0003376.

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored value Within Limit

Intrawell Non-parametric

Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 90.91% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

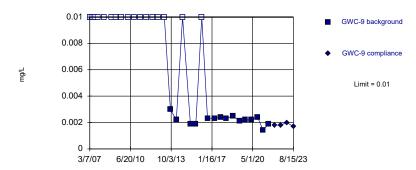

Constituent: Nickel Analysis Run 10/25/2023 11:59 AM View: Appendix I

Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.

5/9/07

8/9/10



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 81.25% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

11/9/13 2/10/17 5/13/20

8/15/23

Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 54.55% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Constituent: Nickel Analysis Run 10/25/2023 11:59 AM View: Appendix I

Plant Hammond Data: Huffaker Road Landfill

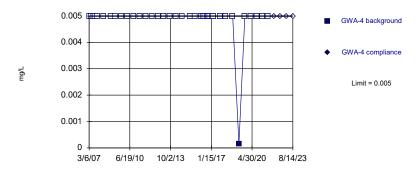
Prediction Limit

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values. Within Limit

0.005 GWC-10 background
0.004

0.003

0.002

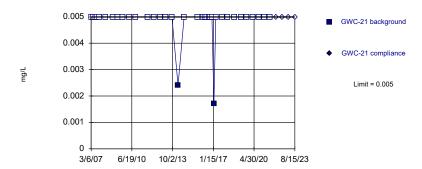

0.001

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

3/7/07 6/19/10 10/2/13 1/15/17 4/30/20 8/14/23

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values

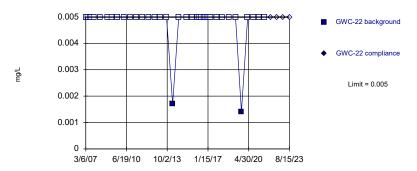
Within Limit Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Selenium Analysis Run 10/25/2023 11:59 AM View: Appendix I

Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values. Within Limit


Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 36 background values. 94.44% NDs. Well-constituent pair annual alpha = 0.002856. Individual comparison alpha = 0.001429 (1 of 2).

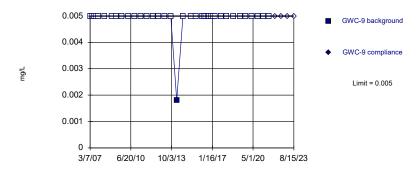
Within Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 94.74% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Selenium Analysis Run 10/25/2023 11:59 AM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill

Prediction Limit

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values. Within Limit

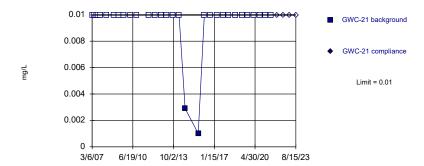

0.01 GWA-1 background
0.008
0.006
0.004
0.002

3/6/07 6/19/10 10/2/13 1/15/17 4/30/20 8/14/23

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 96.97% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

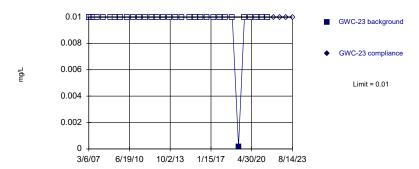
Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values

Within Limit Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 38 background values. 97.37% NDs. Well-constituent pair annual alpha = 0.002586. Individual comparison alpha = 0.001294 (1 of 2).

Constituent: Selenium Analysis Run 10/25/2023 11:59 AM View: Appendix I

Plant Hammond Data: Huffaker Road Landfill


Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 31 background values. 93.55% NDs. Well-constituent pair annual alpha = 0.003807. Individual comparison alpha = 0.001905 (1 of 2).

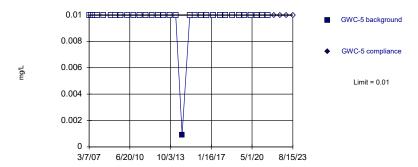
Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 96.97% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Constituent: Vanadium Analysis Run 10/25/2023 12:00 PM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill

Prediction Limit

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values. Within Limit

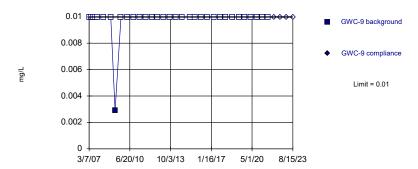

5/9/07

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 84.38% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

8/9/10 11/9/13 2/10/17 5/13/20 8/15/23

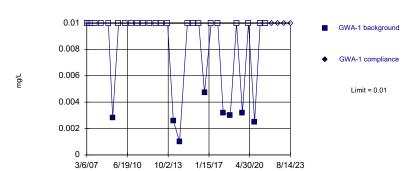
Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values

n Limit Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 96.97% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Constituent: Vanadium Analysis Run 10/25/2023 12:00 PM View: Appendix I

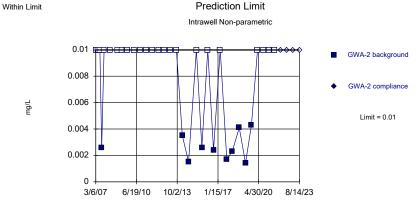
Plant Hammond Data: Huffaker Road Landfill


Sanitas $^{\text{\tiny{TM}}}$ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.

Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 96.97% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

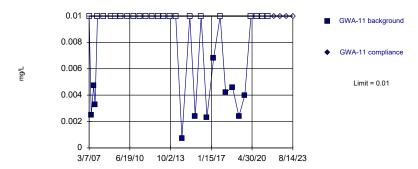
Within Limit Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 75.76% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Constituent: Zinc Analysis Run 10/25/2023 12:00 PM View: Appendix I

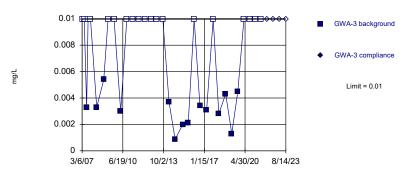
Plant Hammond Data: Huffaker Road Landfill


Sanitas $^{\text{\tiny{TM}}}$ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 69.7% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values


Within Limit Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 66.67% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Constituent: Zinc Analysis Run 10/25/2023 12:00 PM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values. Within Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 57.58% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values

Within Limit

Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 33 background values. 33.33% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

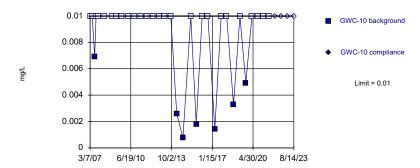
6/19/10 10/2/13 1/15/17 4/30/20 8/14/23

Constituent: Zinc Analysis Run 10/25/2023 12:00 PM View: Appendix I

Plant Hammond Data: Huffaker Road Landfill

Sanitas $^{\text{\tiny{IM}}}$ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.

3/6/07

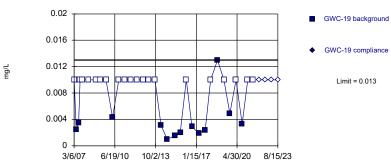

Within Limit Prediction Limit
Intrawell Non-parametric

0.01
0.008
GWC-18 background
0.0004
0.0004
0.0002
Limit = 0.01

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 69.7% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values

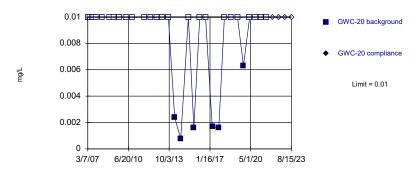
Within Limit Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 78.79% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Constituent: Zinc Analysis Run 10/25/2023 12:00 PM View: Appendix I

Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 60.61% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values

Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 81.25% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

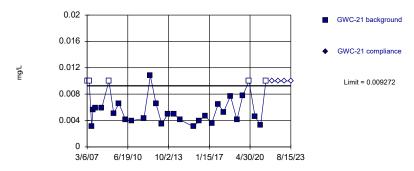
Constituent: Zinc Analysis Run 10/25/2023 12:00 PM View: Appendix I

Plant Hammond Data: Huffaker Road Landfill

Prediction Limit

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values. Within Limit

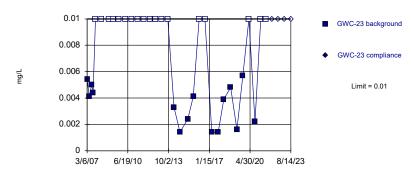
0.002


3/6/07

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 81.82% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

6/19/10 10/2/13 1/15/17 4/30/20 8/15/23

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values


Background Data Summary (based on cube root transformation) (after Kaplan-Meier Adjustment): Mean=0.1676, Std. Dev.=0.01806, n=31, 16.13% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9081, critical = 0.902. Kappa = 2.354 (c=13, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.005132).

Constituent: Zinc Analysis Run 10/25/2023 12:00 PM View: Appendix I

Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 54.55% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

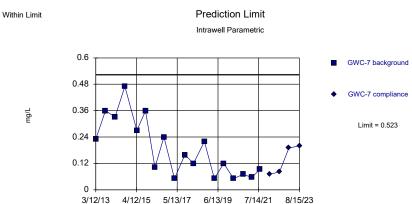
Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values

3/7/07

Within Limit

Prediction Limit

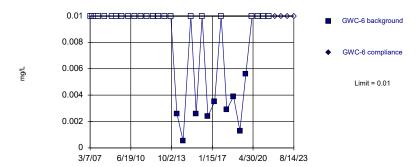
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 60.61% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).


8/15/23

6/20/10 10/3/13 1/16/17 5/1/20

Constituent: Zinc Analysis Run 10/25/2023 12:00 PM View: Appendix I

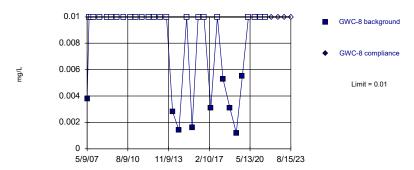
Plant Hammond Data: Huffaker Road Landfill


Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=0.1863, Std. Dev.=0.1294, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8956, critical = 0.858. Kappa = 2.603 (c=13, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0003376.

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored value Within Limit

Prediction Limit
Intrawell Non-parametric

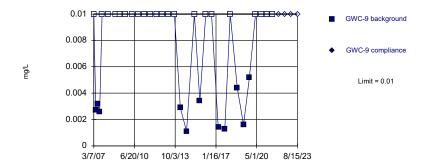

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 72.73% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

Constituent: Zinc Analysis Run 10/25/2023 12:00 PM View: Appendix I

Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values. Within Limit

imit Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 32 background values. 71.88% NDs. Well-constituent pair annual alpha = 0.003603. Individual comparison alpha = 0.001803 (1 of 2).

Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 33 background values. 66.67% NDs. Well-constituent pair annual alpha = 0.003399. Individual comparison alpha = 0.001701 (1 of 2).

	GWA-1	GWA-1
3/6/2007	<0.003	
5/8/2007	<0.003	
7/7/2007	<0.003	
8/28/2007	<0.003	
11/6/2007	<0.003	
5/9/2008	<0.003	
12/3/2008	<0.003	
4/7/2009	<0.003	
10/1/2009	<0.003	
4/14/2010	<0.003	
10/13/2010	<0.003	
4/6/2011	<0.003	
10/10/2011	<0.003	
4/3/2012	<0.003	
9/24/2012	<0.003	
3/12/2013	<0.003	
9/11/2013	<0.003	
3/4/2014	<0.003	
9/3/2014	<0.003	
4/21/2015	<0.003	
9/30/2015	<0.003	
3/22/2016	<0.003	
5/17/2016	<0.003	
7/5/2016	<0.003	
9/7/2016	<0.003	
10/18/2016	<0.003	
12/6/2016	<0.003	
1/31/2017	<0.003	
3/23/2017	<0.003	
10/4/2017	<0.003	
3/14/2018	<0.003	
10/4/2018	<0.003	
4/8/2019	<0.003	
9/30/2019	<0.003	
3/26/2020	0.00028 (J)	
9/23/2020	<0.003	
3/8/2021	<0.003	
8/9/2021	<0.003	
2/4/2022		<0.003
8/8/2022		0.00084 (J)
1/30/2023		<0.003
8/14/2023		0.0028 (J)

Constituent: Antimony (mg/L) Analysis Run 10/25/2023 12:02 PM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill

	0,444	01111
0.17.10007	GWA-11	GWA-11
3/7/2007	<0.003	
5/8/2007	<0.003	
7/17/2007	<0.003	
8/28/2007	<0.003	
11/7/2007	<0.003	
5/9/2008	<0.003	
12/2/2008	<0.003	
4/8/2009	<0.003	
10/1/2009	<0.003	
4/14/2010	<0.003	
10/13/2010	<0.003	
4/6/2011	<0.003	
10/4/2011	<0.003	
4/10/2012	<0.003	
9/26/2012	<0.003	
3/12/2013	<0.003	
9/10/2013	<0.003	
3/4/2014	<0.003	
9/3/2014	<0.003	
4/21/2015	<0.003	
9/29/2015	< 0.003	
3/22/2016	< 0.003	
5/17/2016	<0.003	
7/6/2016	0.0003 (J)	
9/7/2016	<0.003	
10/18/2016	<0.003	
12/6/2016	< 0.003	
2/1/2017	<0.003	
3/24/2017	<0.003	
10/5/2017	<0.003	
3/15/2018	<0.003	
10/4/2018	<0.003	
4/8/2019	< 0.003	
9/30/2019	< 0.003	
3/26/2020	< 0.003	
9/22/2020	< 0.003	
3/8/2021	0.0005 (J)	
8/10/2021	<0.003	
2/4/2022		<0.003
8/8/2022		<0.003
1/30/2023		<0.003
50/2020		-0.000

<0.003

8/14/2023

	GWA-2	GWA-2
3/6/2007	<0.003	
5/8/2007	<0.003	
7/7/2007	<0.003	
8/28/2007	<0.003	
11/6/2007	<0.003	
5/9/2008	<0.003	
12/3/2008	<0.003	
4/7/2009	<0.003	
10/1/2009	<0.003	
10/7/2010	<0.003	
4/6/2011	<0.003	
10/6/2011	<0.003	
4/3/2012	<0.003	
9/19/2012	<0.003	
3/12/2013	<0.003	
9/9/2013	<0.003	
3/4/2014	<0.003	
9/3/2014	<0.003	
4/22/2015	<0.003	
9/30/2015	<0.003	
3/22/2016	<0.003	
5/17/2016	<0.003	
7/5/2016	<0.003	
9/7/2016	0.0021 (J)	
10/18/2016	<0.003	
12/7/2016	<0.003	
1/31/2017	<0.003	
3/23/2017	<0.003	
10/4/2017	<0.003	
3/14/2018	<0.003	
10/4/2018	<0.003	
4/8/2019	<0.003	
9/30/2019	<0.003	
3/26/2020	0.00049 (J)	
9/21/2020	<0.003	
3/9/2021	<0.003	
8/9/2021	0.0023 (J)	
2/4/2022		<0.003
8/8/2022		<0.003
1/30/2023		<0.003
8/14/2023		<0.003

	GWA-3	GWA-3
3/6/2007	<0.003	
5/8/2007	<0.003	
7/17/2007	<0.003	
8/28/2007	<0.003	
11/6/2007	<0.003	
5/8/2008	<0.003	
12/3/2008	<0.003	
4/7/2009	<0.003	
10/2/2009	<0.003	
4/14/2010	<0.003	
10/14/2010	<0.003	
4/5/2011	<0.003	
10/12/2011	<0.003	
4/4/2012	<0.003	
9/26/2012	<0.003	
3/12/2013	<0.003	
9/10/2013	<0.003	
3/11/2014	<0.003	
9/8/2014	<0.003	
4/21/2015	<0.003	
9/29/2015	<0.003	
3/22/2016	<0.003	
5/17/2016	<0.003	
7/5/2016	<0.003	
9/7/2016	0.0009 (J)	
10/18/2016	<0.003	
12/6/2016	<0.003	
2/1/2017	<0.003	
3/23/2017	<0.003	
10/4/2017	<0.003	
3/15/2018	<0.003	
10/4/2018	<0.003	
4/5/2019	<0.003	
9/30/2019	<0.003	
3/26/2020	<0.003	
9/23/2020	<0.003	
3/8/2021	<0.003	
8/9/2021	<0.003	
2/4/2022		<0.003
8/8/2022		<0.003
1/30/2023		<0.003
8/14/2023		<0.003

3/6/2007 <0.003 5/8/2007 <0.003 7/17/2007 <0.003 8/28/2007 <0.003 11/6/2007 <0.003 5/8/2008 <0.003 12/3/2008 <0.003 4/7/2009 <0.003 4/14/2010 <0.003 4/5/2011 <0.003 10/12/2011 <0.003 4/5/2011 <0.003 4/4/2012 <0.003 9/24/2012 <0.003 3/12/2013 <0.003 9/10/2013 <0.003 3/11/2014 <0.003 9/8/2014 <0.003 4/21/2015 <0.003 9/29/2015 <0.003 3/17/2016 <0.003 3/17/2016 <0.003 10/18/2016 <0.003 10/18/2016 <0.003 10/18/2017 <0.003 3/15/2018 <0.003 10/4/2019 <0.003 3/26/2020 <0.003 9/23/2020 <0.003 3/8/2021 <0.003 3/8/2021 <0.003		GWA-4	GWA-4
7/17/2007 <0.003	3/6/2007	<0.003	
8/28/2007	5/8/2007	<0.003	
11/6/2007 <0.003	7/17/2007	<0.003	
5/8/2008 <0.003	8/28/2007	<0.003	
12/3/2008	11/6/2007	<0.003	
4/7/2009 <0.003	5/8/2008	<0.003	
10/2/2009 <0.003	12/3/2008	<0.003	
4/14/2010 <0.003	4/7/2009	<0.003	
10/14/2010	10/2/2009	<0.003	
4/5/2011 <0.003	4/14/2010	<0.003	
10/12/2011	10/14/2010	<0.003	
4/4/2012	4/5/2011	<0.003	
9/24/2012	10/12/2011	<0.003	
3/12/2013	4/4/2012	<0.003	
9/10/2013	9/24/2012	<0.003	
3/11/2014	3/12/2013	<0.003	
9/8/2014	9/10/2013	<0.003	
4/21/2015 <0.003	3/11/2014	<0.003	
9/29/2015	9/8/2014	<0.003	
3/22/2016	4/21/2015	<0.003	
5/17/2016	9/29/2015	<0.003	
7/6/2016	3/22/2016	<0.003	
9/7/2016	5/17/2016	<0.003	
10/18/2016	7/6/2016	0.0003 (J)	
12/6/2016	9/7/2016	<0.003	
2/1/2017 <0.003	10/18/2016	<0.003	
3/24/2017 <0.003 10/4/2017 <0.003 3/15/2018 <0.003 10/4/2018 <0.003 4/8/2019 <0.003 9/30/2019 <0.003 3/26/2020 <0.003 9/23/2020 <0.003 3/8/2021 0.0016 (J) 8/9/2021 <0.003 2/4/2022 <0.003 8/8/2022 <0.003 1/30/2023 <0.003	12/6/2016	<0.003	
10/4/2017	2/1/2017	<0.003	
3/15/2018	3/24/2017	<0.003	
10/4/2018 <0.003	10/4/2017	<0.003	
4/8/2019 <0.003	3/15/2018	<0.003	
9/30/2019 <0.003 3/26/2020 <0.003 9/23/2020 <0.003 3/8/2021 0.0016 (J) 8/9/2021 <0.003 2/4/2022 <0.003 8/8/2022 <0.003 1/30/2023 <0.003	10/4/2018	<0.003	
3/26/2020 <0.003 9/23/2020 <0.003 3/8/2021 0.0016 (J) 8/9/2021 <0.003 2/4/2022 <0.003 8/8/2022 <0.003 1/30/2023 <0.003	4/8/2019	<0.003	
9/23/2020 <0.003 3/8/2021 0.0016 (J) 8/9/2021 <0.003 2/4/2022 <0.003 8/8/2022 <0.003 1/30/2023 <0.003	9/30/2019	<0.003	
3/8/2021 0.0016 (J) 8/9/2021 <0.003 2/4/2022 <0.003 8/8/2022 <0.003 1/30/2023 <0.003	3/26/2020	<0.003	
8/9/2021 <0.003	9/23/2020	<0.003	
2/4/2022 <0.003	3/8/2021	0.0016 (J)	
8/8/2022 <0.003	8/9/2021	<0.003	
1/30/2023 <0.003	2/4/2022		<0.003
	8/8/2022		<0.003
8/14/2023 <0.003	1/30/2023		<0.003
	8/14/2023		<0.003

	GWC-10	GWC-10
3/7/2007	<0.003	GWC-10
5/8/2007	<0.003	
7/17/2007	<0.003	
8/28/2007	<0.003	
11/7/2007	<0.003	
5/9/2008	<0.003	
12/2/2008	<0.003	
4/8/2009	<0.003	
10/1/2009	<0.003	
4/14/2010	<0.003	
10/13/2010	<0.003	
4/6/2011	<0.003	
10/4/2011	<0.003	
4/10/2012	<0.003	
9/26/2012	<0.003	
3/12/2013	<0.003	
9/10/2013	<0.003	
3/4/2014	<0.003	
9/3/2014	<0.003	
4/21/2015	<0.003	
9/30/2015	<0.003	
3/23/2016	<0.003	
5/17/2016	<0.003	
7/6/2016	0.0005 (J)	
9/7/2016	<0.003	
10/18/2016	<0.003	
12/6/2016	<0.003	
2/2/2017	<0.003	
3/27/2017	<0.003	
10/5/2017	<0.003	
3/15/2018	<0.003	
10/4/2018	<0.003	
4/9/2019	<0.003	
10/1/2019	<0.003	
3/27/2020	<0.003	
9/25/2020	< 0.003	
3/9/2021	< 0.003	
8/10/2021	<0.003	
2/4/2022		<0.003
8/9/2022		<0.003
1/30/2023		<0.003
8/14/2023		<0.003

	GWC-18	GWC-18
3/7/2007	<0.003	
5/9/2007	<0.003	
7/17/2007	<0.003	
8/28/2007	<0.003	
11/7/2007	<0.003	
5/7/2008	<0.003	
12/3/2008	<0.003	
4/14/2009	<0.003	
10/1/2009	<0.003	
4/13/2010	<0.003	
10/12/2010	<0.003	
4/6/2011	<0.003	
10/12/2011	<0.003	
4/5/2012	<0.003	
9/19/2012	<0.003	
3/13/2013	<0.003	
9/10/2013	<0.003	
3/10/2014	<0.003	
9/3/2014	<0.003	
4/22/2015	<0.003	
9/30/2015	<0.003	
3/24/2016	<0.003	
5/18/2016	<0.003	
7/7/2016	<0.003	
9/8/2016	<0.003	
10/19/2016	<0.003	
12/8/2016	<0.003	
2/2/2017	<0.003	
3/27/2017	<0.003	
10/5/2017	<0.003	
3/16/2018	<0.003	
10/5/2018	<0.003	
4/9/2019	<0.003	
10/1/2019	<0.003	
3/30/2020	<0.003	
9/24/2020	0.00033 (J)	
3/9/2021	<0.003	
8/10/2021	<0.003	
2/4/2022		<0.003
8/9/2022		<0.003
1/31/2023		<0.003
8/15/2023		0.0028 (J)

	GWC-19	GWC-19
3/6/2007	<0.003	arro is
5/9/2007	<0.003	
7/17/2007	<0.003	
8/28/2007	<0.003	
11/7/2007	<0.003	
5/7/2008	<0.003	
12/4/2008	<0.003	
4/14/2009	<0.003	
10/2/2009	<0.003	
4/13/2010	<0.003	
10/12/2010	<0.003	
4/6/2011	<0.003	
10/12/2011	<0.003	
4/5/2012	<0.003	
9/25/2012	<0.003	
3/13/2013 9/11/2013	<0.003	
3/10/2014	<0.003	
	<0.003	
9/9/2014	<0.003	
4/22/2015	<0.003	
9/30/2015	<0.003	
3/24/2016	<0.003	
5/18/2016	<0.003	
7/6/2016	0.0003 (J)	
9/8/2016	<0.003	
10/18/2016	<0.003	
12/7/2016	<0.003	
2/2/2017	<0.003	
3/27/2017	<0.003	
10/5/2017	<0.003	
3/15/2018	<0.003	
10/4/2018	<0.003	
4/9/2019	<0.003	
10/1/2019	<0.003	
3/31/2020	<0.003	
9/28/2020	<0.003	
3/10/2021	<0.003	
8/10/2021	<0.003	
2/7/2022		<0.003
8/9/2022		<0.003
1/31/2023		<0.003
8/15/2023		<0.003

	GWC-5	GWC-5
3/7/2007	<0.003	
5/8/2007	<0.003	
7/6/2007	<0.003	
8/28/2007	<0.003	
11/6/2007	<0.003	
5/8/2008	<0.003	
12/3/2008	<0.003	
4/7/2009	<0.003	
10/1/2009	<0.003	
4/14/2010	<0.003	
10/14/2010	<0.003	
4/5/2011	<0.003	
10/12/2011	<0.003	
4/4/2012	<0.003	
9/24/2012	<0.003	
3/12/2013	<0.003	
9/10/2013	<0.003	
3/5/2014	<0.003	
9/9/2014	<0.003	
4/21/2015	<0.003	
9/29/2015	<0.003	
3/23/2016	<0.003	
5/17/2016	<0.003	
7/6/2016	0.0004 (J)	
9/7/2016	<0.003	
10/18/2016	<0.003	
12/8/2016	<0.003	
2/1/2017	<0.003	
3/23/2017	<0.003	
10/4/2017	<0.003	
3/16/2018	<0.003	
10/4/2018	<0.003	
4/9/2019	<0.003	
10/1/2019	<0.003	
3/31/2020	<0.003	
9/25/2020	0.00052 (J)	
3/9/2021	<0.003	
8/10/2021	<0.003	
2/4/2022		<0.003
8/9/2022		<0.003
1/31/2023		<0.003
8/15/2023		<0.003

	GWC-6	GWC-6
3/7/2007	<0.003	
5/9/2007	<0.003	
7/17/2007	<0.003	
8/28/2007	<0.003	
11/6/2007	<0.003	
5/8/2008	<0.003	
12/3/2008	<0.003	
4/7/2009	<0.003	
10/1/2009	<0.003	
4/13/2010	<0.003	
10/6/2010	<0.003	
4/5/2011	<0.003	
10/4/2011	<0.003	
4/3/2012	<0.003	
9/18/2012	<0.003	
3/12/2013	<0.003	
9/9/2013	<0.003	
3/5/2014	<0.003	
9/8/2014	<0.003	
4/22/2015	<0.003	
9/29/2015	<0.003	
3/23/2016	<0.003	
5/17/2016	<0.003	
7/6/2016	0.0005 (J)	
9/7/2016	<0.003	
10/18/2016	<0.003	
12/8/2016	<0.003	
2/1/2017	<0.003	
3/23/2017	<0.003	
10/4/2017	<0.003	
3/16/2018	<0.003	
10/4/2018	<0.003	
4/8/2019	<0.003	
10/1/2019	<0.003	
3/31/2020	<0.003	
9/25/2020	<0.003	
3/9/2021	<0.003	
8/10/2021	<0.003	
2/4/2022		<0.003
8/8/2022		<0.003
1/31/2023		<0.003
8/14/2023		<0.003

	GWC-7	GWC-7
5/9/2007	< 0.003	
7/6/2007	< 0.003	
8/28/2007	< 0.003	
11/6/2007	< 0.003	
5/8/2008	<0.003	
12/2/2008	< 0.003	
4/8/2009	< 0.003	
10/1/2009	<0.003	
4/13/2010	<0.003	
10/7/2010	<0.003	
4/5/2011	<0.003	
10/4/2011	<0.003	
4/3/2012	<0.003	
9/18/2012	<0.003	
3/12/2013	<0.003	
9/10/2013	<0.003	
3/5/2014	<0.003	
9/8/2014	<0.003	
4/21/2015	<0.003	
9/29/2015	<0.003	
3/23/2016	<0.003	
5/18/2016	<0.003	
7/6/2016	0.0013 (J)	
9/7/2016	<0.003	
10/18/2016	<0.003	
12/8/2016	<0.003	
2/2/2017	<0.003	
3/24/2017	<0.003	
10/4/2017	<0.003	
3/15/2018	<0.003	
10/4/2018	<0.003	
4/8/2019	<0.003	
10/1/2019	<0.003	
3/30/2020	<0.003	
9/24/2020	0.0008 (J)	
3/9/2021	<0.003	
8/10/2021	<0.003	
2/4/2022		<0.003
8/10/2022		<0.003
1/31/2023		<0.003
8/15/2023		<0.003

	GWC-8	GWC-8
5/9/2007	<0.003	
7/6/2007	<0.003	
8/28/2007	<0.003	
11/6/2007	0.0064 (o)	
5/8/2008	<0.003	
12/2/2008	<0.003	
4/8/2009	<0.003	
9/30/2009	<0.003	
4/13/2010	<0.003	
10/13/2010	<0.003	
4/5/2011	<0.003	
10/4/2011	<0.003	
4/3/2012	<0.003	
9/19/2012	<0.003	
3/12/2013	<0.003	
9/10/2013	<0.003	
3/5/2014	<0.003	
9/9/2014	<0.003	
4/22/2015	<0.003	
9/29/2015	<0.003	
3/23/2016	<0.003	
5/18/2016	<0.003	
7/6/2016	0.0002 (J)	
9/8/2016	<0.003	
10/18/2016	<0.003	
12/8/2016	<0.003	
2/2/2017	<0.003	
3/24/2017	<0.003	
10/5/2017	<0.003	
3/14/2018	<0.003	
10/4/2018	<0.003	
4/8/2019	<0.003	
10/1/2019	<0.003	
3/27/2020	<0.003	
9/24/2020	0.0019 (J)	
3/9/2021	<0.003	
8/10/2021	<0.003	
2/4/2022		<0.003
8/9/2022		<0.003
1/31/2023		<0.003
8/15/2023		<0.003

	GWC-9	GWC-9
3/7/2007	<0.003	GWC-9
5/8/2007	<0.003	
7/6/2007	<0.003	
8/28/2007	<0.003	
11/6/2007	<0.003	
5/8/2008	<0.003	
12/2/2008	<0.003	
4/8/2009	<0.003	
9/30/2009	<0.003	
4/13/2010	<0.003	
10/13/2010	<0.003	
4/5/2011	<0.003	
10/4/2011	<0.003	
4/4/2012	<0.003	
9/19/2012	<0.003	
3/12/2013	<0.003	
9/10/2013	<0.003	
3/5/2014	<0.003	
9/3/2014	<0.003	
4/21/2015	<0.003	
9/29/2015	<0.003	
3/23/2016	<0.003	
5/18/2016	<0.003	
7/6/2016	<0.003	
9/8/2016	<0.003	
10/19/2016	<0.003	
12/8/2016	0.0012 (J)	
2/2/2017	<0.003	
3/27/2017	<0.003	
10/5/2017	<0.003	
3/15/2018	<0.003	
10/5/2018	<0.003	
4/8/2019	<0.003	
10/1/2019	<0.003	
3/27/2020	<0.003	
9/24/2020	0.00056 (J)	
3/9/2021	<0.003	
8/10/2021	<0.003	
2/4/2022		<0.003
8/9/2022		<0.003
1/31/2023		<0.003
8/15/2023		<0.003

	GWA-11	GWA-11
3/7/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/9/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/4/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
2/1/2017	<0.005	
3/24/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	0.00012 (J)	
9/30/2019	<0.005	
3/26/2020	<0.005	
9/22/2020	<0.005	
3/8/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/30/2023		<0.005
8/14/2023		<0.005

Constituent: Arsenic (mg/L) Analysis Run 10/25/2023 12:02 PM View: Appendix I

Plant Hammond Data: Huffaker Road Landfill

	GWA-3	GWA-3
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	0.005	
9/8/2014	0.0034 (J)	
4/21/2015	<0.005	
9/29/2015	0.0025 (J)	
3/22/2016	<0.005	
5/17/2016	0.00129 (J)	
7/5/2016	0.001 (J)	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
2/1/2017	<0.005	
3/23/2017	0.0006 (J)	
10/4/2017	0.0011 (J)	
3/15/2018	0.00066 (J)	
10/4/2018	0.0008 (J)	
4/5/2019	0.00035 (J)	
9/30/2019	0.00058 (J)	
3/26/2020	0.00048 (J)	
9/23/2020	<0.005	
3/8/2021	<0.005	
8/9/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/30/2023		<0.005

<0.005

8/14/2023

	GWA-4	GWA-4
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	0.0065	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
2/1/2017	<0.005	
3/24/2017	0.0006 (J)	
10/4/2017	<0.005	
3/15/2018	0.0014 (J)	
10/4/2018	<0.005	
4/8/2019	0.00023 (J)	
9/30/2019	<0.005	
3/26/2020	0.00044 (J)	
9/23/2020	<0.005	
3/8/2021	<0.005	
8/9/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/30/2023		<0.005
8/14/2023		<0.005

	GWC-18	GWC-18
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/3/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/5/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/10/2014	<0.005	
9/3/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/24/2016	<0.005	
5/18/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/8/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	0.0005 (J)	
10/5/2017	<0.005	
3/16/2018	<0.005	
10/5/2018	<0.005	
4/9/2019	0.00063 (J)	
10/1/2019	<0.005	
3/30/2020	0.00073 (J)	
9/24/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005
8/15/2023		<0.005

	GWC-21	GWC-21
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/27/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
10/5/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/11/2014	<0.005	
9/9/2014	<0.005	
9/30/2015	0.0023 (J)	
3/24/2016	<0.005	
5/18/2016	<0.005	
7/7/2016	0.0012 (J)	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/7/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	0.001 (J)	
3/15/2018	<0.005	
10/4/2018	0.0034 (J)	
4/9/2019	0.0018 (J)	
10/1/2019	<0.005	
3/31/2020	0.00035 (J)	
9/24/2020	0.0011 (J)	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/7/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005
8/15/2023		<0.005

	GWC-23	GWC-23
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/9/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/3/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
5/19/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/7/2016	<0.005	
2/3/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/5/2018	<0.005	
4/8/2019	0.00034 (J)	
10/1/2019	0.00082 (J)	
3/26/2020	<0.005	
9/23/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/7/2022		<0.005
8/8/2022		<0.005
1/31/2023		<0.005
8/14/2023		<0.005

	GWC-5	GWC-5
3/7/2007	<0.005	
5/8/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	0.0017 (J)	
9/9/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/8/2016	<0.005	
2/1/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	0.0006 (J)	
3/16/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	<0.005	
3/31/2020	<0.005	
9/25/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005
8/15/2023		<0.005

	GWC-7	GWC-7
5/9/2007	0.038 (o)	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/7/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/18/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	0.0053	
3/5/2014	0.0052	
9/8/2014	0.0058	
4/21/2015	0.0088	
9/29/2015	0.0086	
3/23/2016	0.00693	
5/18/2016	0.00451 (J)	
7/6/2016	0.0063	
9/7/2016	0.0065	
10/18/2016	0.0056	
12/8/2016	0.0065	
2/2/2017	0.002 (J)	
3/24/2017	0.0027 (J)	
10/4/2017	0.0056	
3/15/2018	0.0037 (J)	
10/4/2018	0.0049 (J)	
4/8/2019	0.0057	
10/1/2019	0.01	
11/6/2019	0.011	
3/30/2020	0.0052	
9/24/2020	0.0064	
3/9/2021	0.0052	
8/10/2021	0.0072	
2/4/2022		0.0042 (J)
8/10/2022		0.0093
1/31/2023		0.0028 (J)
8/15/2023		0.0077 (J)

	GWC-8	GWC-8
5/9/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/13/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	0.0022 (J)	
9/9/2014	<0.005	
4/22/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/6/2016	<0.005	
9/8/2016	<0.005	
10/18/2016	<0.005	
12/8/2016	<0.005	
2/2/2017	<0.005	
3/24/2017	0.0005 (J)	
10/5/2017	0.0008 (J)	
3/14/2018	0.00064 (J)	
10/4/2018	<0.005	
4/8/2019	0.0015 (J)	
10/1/2019	0.0028 (J)	
3/27/2020	0.002 (J)	
9/24/2020	0.0043 (J)	
3/9/2021	0.0018 (J)	
8/10/2021	0.005	
2/4/2022		0.0015 (J)
8/9/2022		<0.005
1/31/2023		<0.005
8/15/2023		<0.005

	GWC-9	GWC-9
3/7/2007	<0.005	
5/8/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/13/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/4/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/6/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/8/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/5/2018	<0.005	
4/8/2019	<0.005	
10/1/2019	0.00071 (J)	
3/27/2020	<0.005	
9/24/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005
8/15/2023		<0.005

	GWA-1	GWA-1
3/6/2007	0.032	
5/8/2007	0.04	
7/7/2007	0.041	
8/28/2007	0.044	
11/6/2007	0.044	
5/9/2008	0.03	
12/3/2008	0.047	
4/7/2009	0.032	
10/1/2009	0.043	
4/14/2010	0.032	
10/13/2010	0.046	
4/6/2011	0.034	
10/10/2011	0.038	
4/3/2012	0.0363	
9/24/2012	0.041	
3/12/2013	0.041	
9/11/2013	0.048	
3/4/2014	0.036	
9/3/2014	0.04	
4/21/2015	0.033	
9/30/2015	0.042	
3/22/2016	0.0326	
5/17/2016	0.0387	
7/5/2016	0.0403	
9/7/2016	0.0413	
10/18/2016	0.0409	
12/6/2016	0.0408	
1/31/2017	0.0435	
3/23/2017	0.038	
10/4/2017	0.0396	
3/14/2018	0.039	
10/4/2018	0.039	
4/8/2019	0.031	
9/30/2019	0.042	
3/26/2020	0.032	
9/23/2020	0.041	
3/8/2021	0.035	
8/9/2021	0.046	
2/4/2022		0.038
8/8/2022		0.04
1/30/2023		0.037
8/14/2023		0.039

	GWA-11	GWA-11
3/7/2007	0.03	
5/8/2007	0.032	
7/17/2007	0.028	
8/28/2007	0.03	
11/7/2007	0.032	
5/9/2008	0.032	
12/2/2008	0.036	
4/8/2009	0.04	
10/1/2009	0.039	
4/14/2010	0.041	
10/13/2010	0.039	
4/6/2011	0.034	
10/4/2011	0.032	
4/10/2012	0.0425	
9/26/2012	0.035	
3/12/2013	0.035	
9/10/2013	0.035	
3/4/2014	0.031	
9/3/2014	0.033	
4/21/2015	0.03	
9/29/2015	0.031	
3/22/2016	0.0327	
5/17/2016	0.0323	
7/6/2016	0.0344	
9/7/2016	0.0324	
10/18/2016	0.0311	
12/6/2016	0.0311	
2/1/2017	0.0332	
3/24/2017	0.032	
10/5/2017	0.0325	
3/15/2018	0.031	
10/4/2018	0.033	
4/8/2019	0.031	
9/30/2019	0.03	
3/26/2020	0.031	
9/22/2020	0.031	
3/8/2021	0.031	
8/10/2021	0.03	
2/4/2022		0.031
8/8/2022		0.029
1/30/2023		0.03
8/14/2023		0.028

	GWA-2	GWA-2
3/6/2007	0.12	
5/8/2007	0.11	
7/7/2007	0.11	
8/28/2007	0.13	
11/6/2007	0.12	
5/9/2008	0.12	
12/3/2008	0.12	
4/7/2009	0.13	
10/1/2009	0.14	
4/13/2010	0.15	
10/7/2010	0.16	
4/6/2011	0.14	
10/6/2011	0.16	
4/3/2012	0.165	
9/19/2012	0.16	
3/12/2013	0.16	
9/9/2013	0.17	
3/4/2014	0.16	
9/3/2014	0.17	
4/22/2015	0.17	
9/30/2015	0.15	
3/22/2016	0.197	
5/17/2016	0.178	
7/5/2016	0.182	
9/7/2016	0.172	
10/18/2016	0.174	
12/7/2016	0.167	
1/31/2017	0.176	
3/23/2017	0.157	
10/4/2017	0.143	
3/14/2018	0.17	
10/4/2018	0.18	
4/8/2019	0.15	
9/30/2019	0.17	
3/26/2020	0.16	
9/21/2020	0.18	
3/9/2021	0.17	
8/9/2021	0.19	
2/4/2022		0.18
8/8/2022		0.18
1/30/2023		0.2
8/14/2023		0.19

	GWA-3	GWA-3
3/6/2007	0.17	
5/8/2007	0.21	
7/17/2007	0.21	
8/28/2007	0.2	
11/6/2007	0.19	
5/8/2008	0.2	
12/3/2008	0.18	
4/7/2009	0.2	
10/2/2009	0.2	
4/14/2010	0.2	
10/14/2010	0.18	
4/5/2011	0.16	
10/12/2011	0.15	
4/4/2012	0.165	
9/26/2012	0.17	
3/12/2013	0.17	
9/10/2013	0.18	
3/11/2014	0.17	
9/8/2014	0.16	
4/21/2015	0.16	
9/29/2015	0.14	
3/22/2016	0.188	
5/17/2016	0.193	
7/5/2016	0.172	
9/7/2016	0.164	
10/18/2016	0.138	
12/6/2016	0.149	
2/1/2017	0.121	
3/23/2017	0.143	
10/4/2017	0.139	
3/15/2018	0.17	
10/4/2018	0.16	
4/5/2019	0.13	
9/30/2019	0.14	
3/26/2020	0.14	
9/23/2020	0.14	
3/8/2021	0.12	
8/9/2021	0.12	
2/4/2022		0.081
8/8/2022		0.1
1/30/2023		0.07
8/14/2023		0.087

	GWA-4	GWA-4
3/6/2007	0.13	
5/8/2007	0.12	
7/17/2007	0.12	
8/28/2007	0.13	
11/6/2007	0.12	
5/8/2008	0.13	
12/3/2008	0.14	
4/7/2009	0.097	
10/2/2009	0.11	
4/14/2010	0.059	
10/14/2010	0.053	
4/5/2011	0.042	
10/12/2011	0.048	
4/4/2012	0.044	
9/24/2012	0.048	
3/12/2013	0.043	
9/10/2013	0.042	
3/11/2014	0.04	
9/8/2014	0.042	
4/21/2015	0.05	
9/29/2015	0.044	
3/22/2016	0.0397	
5/17/2016	0.0351	
7/6/2016	0.0475	
9/7/2016	0.0415	
10/18/2016	0.0424	
12/6/2016	0.0528	
2/1/2017	0.0482	
3/24/2017	0.0595	
10/4/2017	0.0486	
3/15/2018	0.04	
10/4/2018	0.05	
4/8/2019	0.047	
9/30/2019	0.051	
3/26/2020	0.049	
9/23/2020	0.043	
3/8/2021	0.052	
8/9/2021	0.034	
2/4/2022		0.037
8/8/2022		0.04
1/30/2023		0.037
8/14/2023		0.045

	GWC-10	GWC-10
3/7/2007	0.15	
5/8/2007	0.14	
7/17/2007	0.1	
8/28/2007	0.1	
11/7/2007	0.11	
5/9/2008	0.15	
12/2/2008	0.11	
4/8/2009	0.16	
10/1/2009	0.11	
4/14/2010	0.15	
10/13/2010	0.1	
4/6/2011	0.13	
10/4/2011	0.089	
4/10/2012	0.126	
9/26/2012	0.093	
3/12/2013	0.13	
9/10/2013	0.14	
3/4/2014	0.11	
9/3/2014	0.1	
4/21/2015	0.14	
9/30/2015	0.096	
3/23/2016	0.132	
5/17/2016	0.122	
7/6/2016	0.101	
9/7/2016	0.0985	
10/18/2016	0.104	
12/6/2016	0.1	
2/2/2017	0.147	
3/27/2017	0.158	
10/5/2017	0.106	
3/15/2018	0.18	
5/15/2018	0.16	
10/4/2018	0.2	
12/11/2018	0.18	
1/11/2019	0.17	
4/9/2019	0.17	
10/1/2019	0.12	
3/27/2020	0.037	
9/25/2020	0.11	
3/9/2021	0.15	
8/10/2021	0.14	
2/4/2022		0.16
8/9/2022		0.12
1/30/2023		0.17
8/14/2023		0.12

_			
		GWC-18	GWC-18
	3/7/2007	0.072	
	5/9/2007	0.063	
	7/17/2007	0.058	
	8/28/2007	0.06	
	11/7/2007	0.072	
	5/7/2008	0.076	
	12/3/2008	0.066	
	4/14/2009	0.08	
	10/1/2009	0.074	
	4/13/2010	0.062	
	10/12/2010	0.078	
	4/6/2011	0.066	
	10/12/2011	0.071	
	4/5/2012	0.0675	
	9/19/2012	0.073	
	3/13/2013	0.075	
	9/10/2013	0.081	
	3/10/2014	0.064	
	9/3/2014	0.078	
	4/22/2015	0.067	
	9/30/2015	0.075	
	3/24/2016	0.0818	
	5/18/2016	0.0763	
	7/7/2016	0.0747	
	9/8/2016	0.081	
	10/19/2016	0.084	
	12/8/2016	0.0799	
	2/2/2017	0.0813	
	3/27/2017	0.0714	
	10/5/2017	0.0755	
	3/16/2018	0.074	
	10/5/2018	0.081	
	4/9/2019	0.081	
	10/1/2019	0.082	
	3/30/2020	0.077	
	9/24/2020	0.079	
	3/9/2021	0.077	
	8/10/2021	0.093	
	2/4/2022		0.08
	8/9/2022		0.08
	1/31/2023		0.077
	8/15/2023		0.077

	GWC-19	GWC-19
3/6/2007	0.088	
5/9/2007	0.07	
7/17/2007	0.063	
8/28/2007	0.066	
11/7/2007	0.07	
5/7/2008	0.071	
12/4/2008	0.068	
4/14/2009	0.076	
10/2/2009	0.07	
4/13/2010	0.085	
10/12/2010	0.075	
4/6/2011	0.077	
10/12/2011	0.12	
4/5/2012	0.143	
9/25/2012	0.13	
3/13/2013	0.14	
9/11/2013	0.15	
3/10/2014	0.13	
9/9/2014	0.16	
4/22/2015	0.15	
9/30/2015	0.15	
3/24/2016	0.152	
5/18/2016	0.146	
7/6/2016	0.152	
9/8/2016	0.142	
10/18/2016	0.145	
12/7/2016	0.133	
2/2/2017	0.14	
3/27/2017	0.152	
10/5/2017	0.142	
3/15/2018	0.14	
10/4/2018	0.16	
4/9/2019	0.15	
10/1/2019	0.15	
3/31/2020	0.17	
9/28/2020	0.15	
3/10/2021	0.15	
8/10/2021	0.14	
2/7/2022		0.14
8/9/2022		0.14
1/31/2023		0.15
8/15/2023		0.15

_			
		GWC-20	GWC-20
	3/7/2007	0.11	
	5/9/2007	0.082	
	7/17/2007	0.078	
	8/29/2007	0.096	
	11/7/2007	0.1	
	5/7/2008	0.11	
	12/5/2008	0.11	
	4/14/2009	0.11	
	9/30/2009	0.12	
	4/13/2010	0.11	
	10/12/2010	0.12	
	10/12/2011	0.11	
	4/9/2012	0.13	
	9/25/2012	0.13	
	3/13/2013	0.12	
	9/11/2013	0.12	
	3/10/2014	0.11	
	9/9/2014	0.11	
	4/23/2015	0.11	
	9/30/2015	0.11	
	3/23/2016	0.115	
	5/18/2016	0.128	
	7/7/2016	0.124	
	9/8/2016	0.121	
	10/19/2016	0.117	
	12/7/2016	0.11	
	2/3/2017	0.123	
	3/27/2017	0.112	
	10/5/2017	0.128	
	3/16/2018	0.12	
	10/5/2018	0.12	
	4/9/2019	0.13	
	10/1/2019	0.14	
	3/31/2020	0.15	
	6/19/2020	0.14 (R)	
	9/23/2020	0.13	
	3/10/2021	0.13	
	8/10/2021	0.14	
	2/7/2022		0.14
	8/9/2022		0.15
	1/31/2023		0.14
	8/15/2023		0.16

	GWC-21	GWC-21
3/6/2007	0.038	
5/9/2007	0.046	
7/17/2007	0.06	
8/29/2007	0.07	
11/7/2007	0.055	
5/7/2008	0.032	
12/5/2008	0.06	
4/27/2009	0.032	
9/30/2009	0.046	
4/13/2010	0.035	
10/12/2010	0.15	
10/5/2011	0.055	
4/10/2012	0.0399	
9/26/2012	0.093	
3/13/2013	0.066	
9/11/2013	0.053	
3/11/2014	0.039	
9/9/2014	0.14	
9/30/2015	0.15	
3/24/2016	0.046	
5/18/2016	0.0557	
7/7/2016	0.0596	
9/8/2016	0.184	
10/19/2016	0.186	
12/7/2016	0.174	
2/2/2017	0.0783	
3/27/2017	0.0363	
10/5/2017	0.0562	
3/15/2018	0.086	
10/4/2018	0.079	
4/9/2019	0.05	
10/1/2019	0.18	
3/31/2020	0.044	
9/24/2020	0.19	
3/9/2021	0.12	
8/10/2021	0.057	
2/7/2022		0.063
8/9/2022		0.056
1/31/2023		0.033
8/15/2023		0.058

	GWC-22	GWC-22
3/6/2007	0.023	
5/9/2007	0.034	
7/17/2007	0.034	
8/29/2007	0.048	
11/7/2007	0.042	
5/7/2008	0.078	
12/5/2008	0.067	
4/14/2009	0.083	
9/30/2009	0.086	
4/13/2010	0.087	
10/12/2010	0.082	
4/6/2011	0.082	
10/5/2011	0.082	
4/9/2012	0.0959	
9/25/2012	0.09	
3/13/2013	0.092	
9/11/2013	0.096	
3/11/2014	0.085	
9/9/2014	0.096	
4/23/2015	0.093	
9/30/2015	0.096	
3/23/2016	0.0938	
5/18/2016	0.0983	
7/7/2016	0.121	
9/8/2016	0.0917	
10/19/2016	0.091	
12/7/2016	0.0868	
2/2/2017	0.0939	
3/27/2017	0.0905	
10/5/2017	0.0945	
3/15/2018	0.096	
10/4/2018	0.1	
4/9/2019	0.094	
10/1/2019	0.1	
3/31/2020	0.1	
9/23/2020	0.1	
3/9/2021	0.089	
8/10/2021	0.091	
2/7/2022		0.092
8/9/2022		0.098
1/31/2023		0.09
8/15/2023		0.092

	GWC-23	GWC-23
3/6/2007	0.05	
5/9/2007	0.055	
7/17/2007	0.048	
8/29/2007	0.056	
11/7/2007	0.07	
5/7/2008	0.063	
12/5/2008	0.068	
4/14/2009	0.062	
10/1/2009	0.064	
4/14/2010	0.048	
10/13/2010	0.071	
4/6/2011	0.042	
10/12/2011	0.066	
4/9/2012	0.0628	
9/19/2012	0.073	
3/13/2013	0.057	
9/10/2013	0.066	
3/11/2014	0.054	
9/3/2014	0.06	
4/23/2015	0.06	
9/30/2015	0.076	
3/23/2016	0.0533	
5/19/2016	0.074	
7/7/2016	0.0766	
9/8/2016	0.0726	
10/19/2016	0.072	
12/7/2016	0.0732	
2/3/2017	0.0619	
3/27/2017	0.0602	
10/5/2017	0.0734	
3/15/2018	0.053	
10/5/2018	0.065	
4/8/2019	0.059	
10/1/2019	0.082	
3/26/2020	0.071	
9/23/2020	0.079	
3/9/2021	0.085	
8/10/2021	0.085	
2/7/2022		0.091
8/8/2022		0.078
1/31/2023		0.11
8/14/2023		0.071

	GWC-5	GWC-5
3/7/2007	0.1	
5/8/2007	0.11	
7/6/2007	0.11	
8/28/2007	0.1	
11/6/2007	0.1	
5/8/2008	0.11	
12/3/2008	0.091	
4/7/2009	0.094	
10/1/2009	0.097	
4/14/2010	0.096	
10/14/2010	0.1	
4/5/2011	0.092	
10/12/2011	0.12	
4/4/2012	0.105	
9/24/2012	0.13	
3/12/2013	0.1	
9/10/2013	0.13	
3/5/2014	0.084	
9/9/2014	0.11	
4/21/2015	0.11	
9/29/2015	0.097	
3/23/2016	0.0993	
5/17/2016	0.104	
7/6/2016	0.104	
9/7/2016	0.0945	
10/18/2016	0.0928	
12/8/2016	0.1	
2/1/2017	0.0972	
3/23/2017	0.105	
10/4/2017	0.102	
3/16/2018	0.091	
10/4/2018	0.084	
4/9/2019	0.067	
10/1/2019	0.09	
3/31/2020	0.064	
9/25/2020	0.074	
3/9/2021	0.063	
8/10/2021	0.077	
2/4/2022		0.061
8/9/2022		0.074
1/31/2023		0.064
8/15/2023		0.072

	GWC-6	GWC-6
3/7/2007	0.057	
5/9/2007	0.054	
7/17/2007	0.059	
8/28/2007	0.061	
11/6/2007	0.074	
5/8/2008	0.079	
12/3/2008	0.1	
4/7/2009	0.091	
10/1/2009	0.092	
4/13/2010	0.095	
10/6/2010	0.11	
4/5/2011	0.1	
10/4/2011	0.11	
4/3/2012	0.116	
9/18/2012	0.12	
3/12/2013	0.11	
9/9/2013	0.13	
3/5/2014	0.12	
9/8/2014	0.13	
4/22/2015	0.14	
9/29/2015	0.14	
3/23/2016	0.156	
5/17/2016	0.168	
7/6/2016	0.171	
9/7/2016	0.154	
10/18/2016	0.159	
12/8/2016	0.156	
2/1/2017	0.163	
3/23/2017	0.161	
10/4/2017	0.171	
3/16/2018	0.17	
10/4/2018	0.19	
4/8/2019	0.15	
10/1/2019	0.18	
3/31/2020	0.18	
9/25/2020	0.16	
3/9/2021	0.17	
8/10/2021	0.18	
2/4/2022		0.16
8/8/2022		0.15
1/31/2023		0.15
8/14/2023		0.15

	GWC-7	GWC-7
5/9/2007	0.011	
7/6/2007	0.0065	
8/28/2007	0.0095	
11/6/2007	0.013	
5/8/2008	0.011	
12/2/2008	0.011	
4/8/2009	0.0091	
10/1/2009	0.0098	
4/13/2010	0.0084	
10/7/2010	0.01	
4/5/2011	0.015	
10/4/2011	0.01	
4/3/2012	0.0426	
9/18/2012	0.02	
3/12/2013	0.35	
9/10/2013	0.11	
3/5/2014	0.054	
9/8/2014	0.044	
4/21/2015	0.065	
9/29/2015	0.036	
3/23/2016	0.263	
5/18/2016	0.245	
7/6/2016	0.117	
9/7/2016	0.0703	
10/18/2016	0.068	
12/8/2016	0.0791	
2/2/2017	0.17	
3/24/2017	0.181	
10/4/2017	0.0937	
3/15/2018	0.15	
10/4/2018	0.08	
4/8/2019		0.24
10/1/2019		0.085
3/30/2020		0.21
9/24/2020		0.11
3/9/2021		0.31
8/10/2021		0.14
2/4/2022		0.35
8/10/2022		0.098
1/31/2023		0.047
8/15/2023		0.041

	GWC-8	GWC-8
5/9/2007	0.13	
7/6/2007	0.12	
8/28/2007	0.11	
11/6/2007	0.1	
5/8/2008	0.1	
12/2/2008	0.11	
4/8/2009	0.1	
9/30/2009	0.099	
4/13/2010	0.098	
10/13/2010	0.092	
4/5/2011	0.085	
10/4/2011	0.091	
4/3/2012	0.101	
9/19/2012	0.1	
3/12/2013	0.098	
9/10/2013	0.11	
3/5/2014	0.087	
9/9/2014	0.1	
4/22/2015	0.095	
9/29/2015	0.093	
3/23/2016	0.0918	
5/18/2016	0.0957	
7/6/2016	0.0935	
9/8/2016	0.0925	
10/18/2016	0.0939	
12/8/2016	0.0996	
2/2/2017	0.096	
3/24/2017	0.106	
10/5/2017	0.103	
3/14/2018	0.1	
10/4/2018	0.11	
4/8/2019	0.13	
6/18/2019	0.17	
10/1/2019	0.12	
3/27/2020	0.14	
9/24/2020	0.14	
3/9/2021	0.14	
8/10/2021	0.23 (o)	
2/4/2022		0.17
8/9/2022		0.16
1/31/2023		0.12
8/15/2023		0.12

GWC-9 GWC-9 3/7/2007 0.059 5/8/2007 0.055 7/6/2007 0.052 8/28/2007 0.047 11/6/2007 0.048 5/8/2008 0.052 12/2/2008 0.056 4/8/2009 0.057 9/30/2009 0.055 4/13/2010 0.053 10/13/2010 0.054 4/5/2011 0.058
5/8/2007 0.055 7/6/2007 0.052 8/28/2007 0.047 11/6/2007 0.048 5/8/2008 0.052 12/2/2008 0.056 4/8/2009 0.057 9/30/2009 0.055 4/13/2010 0.053 10/13/2010 0.054 4/5/2011 0.035 (o) 10/4/2011 0.058
7/6/2007 0.052 8/28/2007 0.047 11/6/2007 0.048 5/8/2008 0.052 12/2/2008 0.056 4/8/2009 0.057 9/30/2009 0.055 4/13/2010 0.053 10/13/2010 0.054 4/5/2011 0.035 (o) 10/4/2011 0.058
8/28/2007 0.047 11/6/2007 0.048 5/8/2008 0.052 12/2/2008 0.056 4/8/2009 0.057 9/30/2009 0.055 4/13/2010 0.053 10/13/2010 0.054 4/5/2011 0.035 (o) 10/4/2011 0.058
11/6/2007 0.048 5/8/2008 0.052 12/2/2008 0.056 4/8/2009 0.057 9/30/2009 0.055 4/13/2010 0.053 10/13/2010 0.054 4/5/2011 0.035 (o) 10/4/2011 0.058
5/8/2008 0.052 12/2/2008 0.056 4/8/2009 0.057 9/30/2009 0.055 4/13/2010 0.053 10/13/2010 0.054 4/5/2011 0.035 (o) 10/4/2011 0.058
12/2/2008 0.056 4/8/2009 0.057 9/30/2009 0.055 4/13/2010 0.053 10/13/2010 0.054 4/5/2011 0.035 (o) 10/4/2011 0.058
4/8/2009 0.057 9/30/2009 0.055 4/13/2010 0.053 10/13/2010 0.054 4/5/2011 0.035 (o) 10/4/2011 0.058
9/30/2009 0.055 4/13/2010 0.053 10/13/2010 0.054 4/5/2011 0.035 (o) 10/4/2011 0.058
4/13/2010 0.053 10/13/2010 0.054 4/5/2011 0.035 (o) 10/4/2011 0.058
10/13/2010 0.054 4/5/2011 0.035 (o) 10/4/2011 0.058
4/5/2011 0.035 (o) 10/4/2011 0.058
10/4/2011 0.058
4/4/2012 0.0622
4/4/2012 0.0632
9/19/2012 0.061
3/12/2013 0.056
9/10/2013 0.067
3/5/2014 0.055
9/3/2014 0.051
4/21/2015 0.059
9/29/2015 0.06
3/23/2016 0.0636
5/18/2016 0.0629
7/6/2016 0.0646
9/8/2016 0.063
10/19/2016 0.0644
12/8/2016 0.0648
2/2/2017 0.0656
3/27/2017 0.0619
10/5/2017 0.0655
3/15/2018 0.062
10/5/2018 0.07
4/8/2019 0.058
10/1/2019 0.071
3/27/2020 0.06
9/24/2020 0.06
3/9/2021 0.059
8/10/2021 0.067
2/4/2022 0.067
8/9/2022 0.068
1/31/2023 0.064
8/15/2023 0.064

	GWA-3	GWA-3
3/6/2007	<0.0005	
5/8/2007	<0.0005	
7/17/2007	<0.0005	
8/28/2007	<0.0005	
11/6/2007	<0.0005	
5/8/2008	<0.0005	
12/3/2008	<0.0005	
4/7/2009	<0.0005	
10/2/2009	<0.0005	
4/14/2010	<0.0005	
10/14/2010	<0.0005	
4/5/2011	<0.0005	
10/12/2011	<0.0005	
4/4/2012	<0.0005	
9/26/2012	<0.0005	
3/12/2013	<0.0005	
9/10/2013	<0.0005	
3/11/2014	<0.0005	
9/8/2014	<0.0005	
4/21/2015	8E-05 (J)	
9/29/2015	<0.0005	
3/22/2016	<0.0005	
5/17/2016	<0.0005	
7/5/2016	<0.0005	
9/7/2016	<0.0005	
10/18/2016	<0.0005	
12/6/2016	<0.0005	
2/1/2017	<0.0005	
3/23/2017	<0.0005	
10/4/2017	<0.0005	
3/15/2018	<0.0005	
10/4/2018	<0.0005	
4/5/2019	<0.0005	
9/30/2019	<0.0005	
3/26/2020	<0.0005	
9/23/2020	<0.0005	
3/8/2021	<0.0005	
8/9/2021	<0.0005	
2/4/2022		<0.0005
8/8/2022		<0.0005
1/30/2023		<0.0005
8/14/2023		<0.0005

	GWC-19	GWC-19
3/6/2007	<0.0005	
5/9/2007	<0.0005	
7/17/2007	<0.0005	
8/28/2007	<0.0005	
11/7/2007	<0.0005	
5/7/2008	<0.0005	
12/4/2008	<0.0005	
4/14/2009	<0.0005	
10/2/2009	<0.0005	
4/13/2010	<0.0005	
10/12/2010	<0.0005	
4/6/2011	<0.0005	
10/12/2011	<0.0005	
4/5/2012	<0.0005	
9/25/2012	<0.0005	
3/13/2013	<0.0005	
9/11/2013	<0.0005	
3/10/2014	<0.0005	
9/9/2014	<0.0005	
4/22/2015	<0.0005	
9/30/2015	<0.0005	
3/24/2016	<0.0005	
5/18/2016	<0.0005	
7/6/2016	<0.0005	
9/8/2016	<0.0005	
10/18/2016	<0.0005	
12/7/2016	<0.0005	
2/2/2017	<0.0005	
3/27/2017	<0.0005	
10/5/2017	<0.0005	
3/15/2018	<0.0005	
10/4/2018	<0.0005	
4/9/2019	<0.0005	
10/1/2019	<0.0005	
3/31/2020	<0.0005	
9/28/2020	0.0001 (J)	
3/10/2021	<0.0005	
8/10/2021	<0.0005	
2/7/2022		<0.0005
8/9/2022		<0.0005
1/31/2023		<0.0005
8/15/2023		<0.0005

	GWC-7	GWC-7
5/9/2007	0.28 (o)	
7/6/2007	0.093 (o)	
8/28/2007	0.057 (o)	
11/6/2007	0.036 (o)	
5/8/2008	0.013	
12/2/2008	0.01	
4/8/2009	0.0076	
10/1/2009	0.0057	
4/13/2010	0.0061	
10/7/2010	0.0039	
4/5/2011	0.0025	
10/4/2011	0.0024	
4/3/2012	0.0008	
9/18/2012	0.002	
3/12/2013	<0.0005	
9/10/2013	<0.0005	
3/5/2014	0.00037 (J)	
9/8/2014	0.00055 (J)	
4/21/2015	0.00033 (J)	
9/29/2015	0.00046 (J)	
3/23/2016	<0.0005	
5/18/2016	<0.0005	
7/6/2016	0.0002 (J)	
9/7/2016	0.0002 (J)	
10/18/2016	0.0002 (J)	
12/8/2016	0.0003 (J)	
2/2/2017	<0.0005	
3/24/2017	<0.0005	
10/4/2017	0.0001 (J)	
3/15/2018	<0.0005	
10/4/2018	0.0002 (J)	
4/8/2019	5.8E-05 (J)	
10/1/2019	0.0001 (J)	
3/30/2020	<0.0005	
9/24/2020	5E-05 (J)	
3/9/2021	<0.0005	
8/10/2021	6.1E-05 (J)	
2/4/2022		<0.0005
8/10/2022		7.6E-05 (J)
1/31/2023		0.00021 (J)
8/15/2023		0.00027 (J)

	GWA-4	GWA-4
3/6/2007	<0.0005	
5/8/2007	<0.0005	
7/17/2007	<0.0005	
8/28/2007	<0.0005	
11/6/2007	<0.0005	
5/8/2008	<0.0005	
12/3/2008	<0.0005	
4/7/2009	<0.0005	
10/2/2009	<0.0005	
4/14/2010	<0.0005	
10/14/2010	<0.0005	
4/5/2011	<0.0005	
10/12/2011	<0.0005	
4/4/2012	<0.0005	
9/24/2012	<0.0005	
3/12/2013	<0.0005	
9/10/2013	<0.0005	
3/11/2014	<0.0005	
9/8/2014	<0.0005	
4/21/2015	<0.0005	
9/29/2015	<0.0005	
3/22/2016	<0.0005	
5/17/2016	<0.0005	
7/6/2016	<0.0005	
9/7/2016	<0.0005	
10/18/2016	<0.0005	
12/6/2016	<0.0005	
2/1/2017	0.0001 (J)	
3/24/2017	<0.0005	
10/4/2017	<0.0005	
3/15/2018	<0.0005	
10/4/2018	<0.0005	
4/8/2019	<0.0005	
9/30/2019	<0.0005	
3/26/2020	<0.0005	
9/23/2020	<0.0005	
3/8/2021	<0.0005	
8/9/2021	<0.0005	
2/4/2022		<0.0005
8/8/2022		<0.0005
1/30/2023		<0.0005
8/14/2023		<0.0005

	GWC-10	GWC-10
3/7/2007	<0.0005	
5/8/2007	<0.0005	
7/17/2007	<0.0005	
8/28/2007	<0.0005	
11/7/2007	<0.0005	
5/9/2008	<0.0005	
12/2/2008	<0.0005	
4/8/2009	<0.0005	
10/1/2009	<0.0005	
4/14/2010	<0.0005	
10/13/2010	<0.0005	
4/6/2011	<0.0005	
10/4/2011	<0.0005	
4/10/2012	<0.0005	
9/26/2012	<0.0005	
3/12/2013	<0.0005	
9/10/2013	<0.0005	
3/4/2014	<0.0005	
9/3/2014	<0.0005	
4/21/2015	<0.0005	
9/30/2015	<0.0005	
3/23/2016	<0.0005	
5/17/2016	<0.0005	
7/6/2016	<0.0005	
9/7/2016	<0.0005	
10/18/2016	<0.0005	
12/6/2016	<0.0005	
2/2/2017	9E-05 (J)	
3/27/2017	<0.0005	
10/5/2017	<0.0005	
3/15/2018	<0.0005	
10/4/2018	<0.0005	
4/9/2019	<0.0005	
10/1/2019	<0.0005	
3/27/2020	<0.0005	
9/25/2020	<0.0005	
3/9/2021	<0.0005	
8/10/2021	<0.0005	
2/4/2022		<0.0005
8/9/2022		<0.0005
1/30/2023		<0.0005
8/14/2023		<0.0005

	GWC-18	GWC-18
3/7/2007	<0.0005	
5/9/2007	<0.0005	
7/17/2007	<0.0005	
8/28/2007	<0.0005	
11/7/2007	<0.0005	
5/7/2008	<0.0005	
12/3/2008	<0.0005	
4/14/2009	<0.0005	
10/1/2009	<0.0005	
4/13/2010	<0.0005	
10/12/2010	<0.0005	
4/6/2011	<0.0005	
10/12/2011	<0.0005	
4/5/2012	<0.0005	
9/19/2012	<0.0005	
3/13/2013	<0.0005	
9/10/2013	<0.0005	
3/10/2014	<0.0005	
9/3/2014	<0.0005	
4/22/2015	<0.0005	
9/30/2015	<0.0005	
3/24/2016	<0.0005	
5/18/2016	<0.0005	
7/7/2016	<0.0005	
9/8/2016	<0.0005	
10/19/2016	<0.0005	
12/8/2016	<0.0005	
2/2/2017	8E-05 (J)	
3/27/2017	<0.0005	
10/5/2017	<0.0005	
3/16/2018	<0.0005	
10/5/2018	<0.0005	
4/9/2019	<0.0005	
10/1/2019	<0.0005	
3/30/2020	<0.0005	
9/24/2020	<0.0005	
3/9/2021	<0.0005	
8/10/2021	<0.0005	
2/4/2022		<0.0005
8/9/2022		<0.0005
1/31/2023		<0.0005
8/15/2023		<0.0005

	GWC-20	GWC-20
3/7/2007	<0.0005	
5/9/2007	<0.0005	
7/17/2007	<0.0005	
8/29/2007	<0.0005	
11/7/2007	<0.0005	
5/7/2008	<0.0005	
12/5/2008	<0.0005	
4/14/2009	<0.0005	
9/30/2009	<0.0005	
4/13/2010	<0.0005	
10/12/2010	<0.0005	
10/12/2011	<0.0005	
4/9/2012	<0.0005	
9/25/2012	<0.0005	
3/13/2013	<0.0005	
9/11/2013	<0.0005	
3/10/2014	<0.0005	
9/9/2014	<0.0005	
4/23/2015	<0.0005	
9/30/2015	<0.0005	
3/23/2016	<0.0005	
5/18/2016	<0.0005	
7/7/2016	<0.0005	
9/8/2016	<0.0005	
10/19/2016	<0.0005	
12/7/2016	<0.0005	
2/3/2017	<0.0005	
3/27/2017	<0.0005	
10/5/2017	<0.0005	
3/16/2018	<0.0005	
10/5/2018	0.00011 (J)	
4/9/2019	<0.0005	
10/1/2019	<0.0005	
3/31/2020	<0.0005	
9/23/2020	<0.0005	
3/10/2021	<0.0005	
8/10/2021	<0.0005	
2/7/2022		<0.0005
8/9/2022		<0.0005
1/31/2023		<0.0005
8/15/2023		<0.0005

	GWC-21	GWC-21
3/6/2007	<0.0005	
5/9/2007	<0.0005	
7/17/2007	<0.0005	
8/29/2007	<0.0005	
11/7/2007	<0.0005	
5/7/2008	<0.0005	
12/5/2008	<0.0005	
4/27/2009	<0.0005	
9/30/2009	<0.0005	
4/13/2010	<0.0005	
10/12/2010	<0.0005	
10/5/2011	<0.0005	
4/10/2012	<0.0005	
9/26/2012	<0.0005	
3/13/2013	<0.0005	
9/11/2013	<0.0005	
3/11/2014	<0.0005	
9/9/2014	<0.0005	
9/30/2015	<0.0005	
3/24/2016	<0.0005	
5/18/2016	<0.0005	
7/7/2016	0.0001 (J)	
9/8/2016	<0.0005	
10/19/2016	<0.0005	
12/7/2016	<0.0005	
2/2/2017	0.0001 (J)	
3/27/2017	<0.0005	
10/5/2017	<0.0005	
3/15/2018	<0.0005	
10/4/2018	<0.0005	
4/9/2019	<0.0005	
10/1/2019	<0.0005	
3/31/2020	<0.0005	
9/24/2020	<0.0005	
3/9/2021	<0.0005	
8/10/2021	<0.0005	
2/7/2022		<0.0005
8/9/2022		<0.0005
1/31/2023		<0.0005
8/15/2023		<0.0005

-			
		GWC-23	GWC-23
	3/6/2007	<0.0005	
	5/9/2007	<0.0005	
	7/17/2007	<0.0005	
	8/29/2007	<0.0005	
	11/7/2007	<0.0005	
	5/7/2008	<0.0005	
	12/5/2008	<0.0005	
	4/14/2009	<0.0005	
	10/1/2009	<0.0005	
	4/14/2010	<0.0005	
	10/13/2010	<0.0005	
	4/6/2011	<0.0005	
	10/12/2011	<0.0005	
	4/9/2012	<0.0005	
	9/19/2012	<0.0005	
	3/13/2013	<0.0005	
	9/10/2013	<0.0005	
	3/11/2014	<0.0005	
	9/3/2014	<0.0005	
	4/23/2015	<0.0005	
	9/30/2015	<0.0005	
	3/23/2016	<0.0005	
	5/19/2016	<0.0005	
	7/7/2016	<0.0005	
	9/8/2016	<0.0005	
	10/19/2016	<0.0005	
	12/7/2016	<0.0005	
	2/3/2017	8E-05 (J)	
	3/27/2017	<0.0005	
	10/5/2017	<0.0005	
	3/15/2018	<0.0005	
	10/5/2018	<0.0005	
	4/8/2019	<0.0005	
	10/1/2019	<0.0005	
	3/26/2020	<0.0005	
	9/23/2020	<0.0005	
	3/9/2021	<0.0005	
	8/10/2021	<0.0005	
	2/7/2022		<0.0005
	8/8/2022		<0.0005
	1/31/2023		<0.0005
	8/14/2023		<0.0005

	GWC-5	GWC-5
3/7/2007	0.0015	
5/8/2007	<0.0005	
7/6/2007	<0.0005	
8/28/2007	<0.0005	
11/6/2007	<0.0005	
5/8/2008	<0.0005	
12/3/2008	<0.0005	
4/7/2009	<0.0005	
10/1/2009	<0.0005	
4/14/2010	<0.0005	
10/14/2010	<0.0005	
4/5/2011	<0.0005	
10/12/2011	<0.0005	
4/4/2012	<0.0005	
9/24/2012	<0.0005	
3/12/2013	<0.0005	
9/10/2013	<0.0005	
3/5/2014	<0.0005	
9/9/2014	<0.0005	
4/21/2015	<0.0005	
9/29/2015	<0.0005	
3/23/2016	<0.0005	
5/17/2016	<0.0005	
7/6/2016	<0.0005	
9/7/2016	<0.0005	
10/18/2016	<0.0005	
12/8/2016	<0.0005	
2/1/2017	<0.0005	
3/23/2017	<0.0005	
10/4/2017	<0.0005	
3/16/2018	<0.0005	
10/4/2018	<0.0005	
4/9/2019	<0.0005	
10/1/2019	<0.0005	
3/31/2020	<0.0005	
9/25/2020	<0.0005	
3/9/2021	<0.0005	
8/10/2021	<0.0005	
2/4/2022		<0.0005
8/9/2022		<0.0005
1/31/2023		<0.0005
8/15/2023		<0.0005

5/9/2007 0.023 (o) 7/6/2007 0.0081 (o) 8/28/2007 0.0035 11/6/2007 0.0028 5/8/2008 <0.0005 12/2/2008 <0.0005 4/8/2009 0.0013 10/1/2009 <0.0005 4/13/2010 <0.0005 4/5/2011 <0.0005 4/5/2011 <0.0005 4/3/2012 <0.0005 9/18/2012 <0.0005 3/12/2013 <0.0005 3/12/2013 <0.0005 3/5/2014 <0.0005 9/8/2014 <0.0005 4/21/2015 <0.0015 9/29/2015 <0.0005 3/23/2016 <0.0005 3/23/2016 <0.0005 5/18/2016 <0.0005 9/7/2016 <0.0005 10/18/2016 <0.0005 10/2/2017 <0.0005 10/4/2017 <0.0005 3/15/2018 <0.0005 10/4/2019 <0.0005 10/4/2019 <0.0005		GWC-7	GWC-7
8/28/2007 0.0035 11/6/2007 0.0028 5/8/2008 <0.0005	5/9/2007	0.023 (o)	
11/6/2007 0.0028 5/8/2008 <0.0005	7/6/2007	0.0081 (o)	
5/8/2008 <0.0005	8/28/2007	0.0035	
12/2/2008	11/6/2007	0.0028	
4/8/2009 0.0013 10/1/2009 <0.0005	5/8/2008	<0.0005	
10/1/2009 <0.0005	12/2/2008	<0.0005	
4/13/2010 <0.0005	4/8/2009	0.0013	
10/7/2010 <0.0005	10/1/2009	<0.0005	
4/5/2011 <0.0005	4/13/2010	<0.0005	
10/4/2011 <0.0005	10/7/2010	<0.0005	
4/3/2012 <0.0005	4/5/2011	<0.0005	
9/18/2012	10/4/2011	<0.0005	
3/12/2013	4/3/2012	<0.0005	
9/10/2013	9/18/2012	<0.0005	
3/5/2014	3/12/2013	<0.0005	
9/8/2014	9/10/2013	<0.0005	
4/21/2015 0.0015 9/29/2015 <0.0005	3/5/2014	<0.0005	
9/29/2015	9/8/2014	<0.0005	
3/23/2016	4/21/2015	0.0015	
5/18/2016 <0.0005	9/29/2015	<0.0005	
7/6/2016	3/23/2016	<0.0005	
9/7/2016 <0.0005 10/18/2016 <0.0005 12/8/2016 <0.0005 2/2/2017	5/18/2016	<0.0005	
10/18/2016 <0.0005	7/6/2016	<0.0005	
12/8/2016 <0.0005	9/7/2016	<0.0005	
2/2/2017 0.0001 (J) 3/24/2017 <0.0005	10/18/2016	<0.0005	
3/24/2017 <0.0005 10/4/2017 <0.0005 3/15/2018 <0.0005 10/4/2018 <0.0005 4/8/2019 <0.0005 10/1/2019 <0.0005 3/30/2020 <0.0005 9/24/2020 <0.0005 3/9/2021 <0.0005 8/10/2021 <0.0005 8/10/2022 <0.0005 8/10/2022 <0.0005 1/31/2023 <0.0005	12/8/2016	<0.0005	
10/4/2017	2/2/2017	0.0001 (J)	
3/15/2018	3/24/2017	<0.0005	
10/4/2018 <0.0005	10/4/2017	<0.0005	
4/8/2019 <0.0005	3/15/2018	<0.0005	
10/1/2019 <0.0005	10/4/2018	<0.0005	
3/30/2020 <0.0005 9/24/2020 <0.0005 3/9/2021 <0.0005 8/10/2021 <0.0005 2/4/2022 <0.0005 8/10/2022 <0.0005 1/31/2023 <0.0005	4/8/2019	<0.0005	
9/24/2020 <0.0005	10/1/2019	<0.0005	
3/9/2021 <0.0005 8/10/2021 <0.0005 2/4/2022 <0.0005 8/10/2022 <0.0005 1/31/2023 <0.0005	3/30/2020	<0.0005	
8/10/2021 <0.0005 2/4/2022 <0.0005 8/10/2022 <0.0005 1/31/2023 <0.0005	9/24/2020	<0.0005	
2/4/2022 <0.0005	3/9/2021	<0.0005	
8/10/2022 <0.0005	8/10/2021	<0.0005	
1/31/2023 <0.0005	2/4/2022		<0.0005
	8/10/2022		<0.0005
8/15/2023 <0.0005	1/31/2023		<0.0005
	8/15/2023		<0.0005

	GWC-8	GWC-8
5/9/2007	<0.0005	
7/6/2007	<0.0005	
8/28/2007	<0.0005	
11/6/2007	<0.0005	
5/8/2008	<0.0005	
12/2/2008	<0.0005	
4/8/2009	<0.0005	
9/30/2009	<0.0005	
4/13/2010	<0.0005	
10/13/2010	<0.0005	
4/5/2011	<0.0005	
10/4/2011	<0.0005	
4/3/2012	<0.0005	
9/19/2012	<0.0005	
3/12/2013	<0.0005	
9/10/2013	<0.0005	
3/5/2014	<0.0005	
9/9/2014	<0.0005	
4/22/2015	<0.0005	
9/29/2015	<0.0005	
3/23/2016	<0.0005	
5/18/2016	<0.0005	
7/6/2016	<0.0005	
9/8/2016	<0.0005	
10/18/2016	<0.0005	
12/8/2016	<0.0005	
2/2/2017	8E-05 (J)	
3/24/2017	<0.0005	
10/5/2017	<0.0005	
3/14/2018	<0.0005	
10/4/2018	<0.0005	
4/8/2019	<0.0005	
10/1/2019	<0.0005	
3/27/2020	<0.0005	
9/24/2020	<0.0005	
3/9/2021	<0.0005	
8/10/2021	<0.0005	
2/4/2022		<0.0005
8/9/2022		<0.0005
1/31/2023		<0.0005
8/15/2023		<0.0005

	GWC-9	GWC-9
3/7/2007	<0.0005	
5/8/2007	<0.0005	
7/6/2007	<0.0005	
8/28/2007	<0.0005	
11/6/2007	<0.0005	
5/8/2008	<0.0005	
12/2/2008	<0.0005	
4/8/2009	<0.0005	
9/30/2009	<0.0005	
4/13/2010	<0.0005	
10/13/2010	<0.0005	
4/5/2011	<0.0005	
10/4/2011	<0.0005	
4/4/2012	<0.0005	
9/19/2012	<0.0005	
3/12/2013	<0.0005	
9/10/2013	<0.0005	
3/5/2014	<0.0005	
9/3/2014	<0.0005	
4/21/2015	0.00029 (J)	
9/29/2015	<0.0005	
3/23/2016	<0.0005	
5/18/2016	<0.0005	
7/6/2016	<0.0005	
9/8/2016	<0.0005	
10/19/2016	<0.0005	
12/8/2016	<0.0005	
2/2/2017	8E-05 (J)	
3/27/2017	<0.0005	
10/5/2017	<0.0005	
3/15/2018	<0.0005	
10/5/2018	<0.0005	
4/8/2019	<0.0005	
10/1/2019	<0.0005	
3/27/2020	<0.0005	
9/24/2020	<0.0005	
3/9/2021	<0.0005	
8/10/2021	<0.0005	
2/4/2022		<0.0005
8/9/2022		<0.0005
1/31/2023		<0.0005
8/15/2023		<0.0005

Constituent: Chromium (mg/L) Analysis Run 10/25/2023 12:02 PM View: Appendix I
Plant Hammond Data: Huffaker Road Landfill

	GWA-1	GWA-1
3/6/2007	<0.005	
5/8/2007	<0.005	
7/7/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/9/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/10/2011	<0.005	
4/3/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/11/2013	<0.005	
3/4/2014	0.00032 (J)	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/30/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/5/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
1/31/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/14/2018	0.016	
10/4/2018	<0.005	
4/8/2019	<0.005	
9/30/2019	<0.005	
3/26/2020	<0.005	
9/23/2020	<0.005	
3/8/2021	<0.005	
8/9/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/30/2023		<0.005

<0.005

8/14/2023

	GWA-11	GWA-11
3/7/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	0.0013	
11/7/2007	0.0024	
5/9/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/4/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	0.0018 (J)	
2/1/2017	<0.005	
3/24/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	<0.005	
9/30/2019	<0.005	
3/26/2020	<0.005	
9/22/2020	<0.005	
3/8/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/30/2023		<0.005
8/14/2023		<0.005

	GWA-2	GWA-2
3/6/2007	<0.005	
5/8/2007	<0.005	
7/7/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/9/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/7/2010	<0.005	
4/6/2011	<0.005	
10/6/2011	<0.005	
4/3/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/9/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/5/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/7/2016	<0.005	
1/31/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	<0.005	
9/30/2019	<0.005	
3/26/2020	0.00043 (J)	
9/21/2020	<0.005	
3/9/2021	<0.005	
8/9/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/30/2023		<0.005
8/14/2023		<0.005

	GWA-3	GWA-3
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	0.0014	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/5/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
2/1/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/5/2019	<0.005	
9/30/2019	<0.005	
3/26/2020	0.00062 (J)	
9/23/2020	<0.005	
3/8/2021	<0.005	
8/9/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/30/2023		<0.005
8/14/2023		<0.005

	GWA-4	GWA-4
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
2/1/2017	<0.005	
3/24/2017	0.0004 (J)	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	<0.005	
9/30/2019	<0.005	
3/26/2020	0.0013 (J)	
9/23/2020	<0.005	
3/8/2021	<0.005	
8/9/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/30/2023		<0.005
8/14/2023		<0.005

	GWC-10	GWC-10
3/7/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/9/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/4/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
5/17/2016	0.00424 (J)	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	0.0013 (J)	
2/2/2017	0.001 (J)	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	<0.005	
3/27/2020	<0.005	
9/25/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/9/2022		<0.005
1/30/2023		<0.005
8/14/2023		0.0015 (J)

	GWC-18	GWC-18
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/3/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/5/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/10/2014	<0.005	
9/3/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/24/2016	<0.005	
5/18/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/8/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/16/2018	<0.005	
10/5/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	0.00086 (J)	
3/30/2020	0.00071 (J)	
9/24/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005
8/15/2023		<0.005

	GWC-19	GWC-19
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/4/2008	<0.005	
4/14/2009	<0.005	
10/2/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/5/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/10/2014	<0.005	
9/9/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/24/2016	<0.005	
5/18/2016	<0.005	
7/6/2016	<0.005	
9/8/2016	<0.005	
10/18/2016	<0.005	
12/7/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	0.0012 (J)	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	<0.005	
3/31/2020	0.00042 (J)	
9/28/2020	0.00063 (J)	
3/10/2021	<0.005	
8/10/2021	<0.005	
2/7/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005
8/15/2023		<0.005

	GWC-20	GWC-20
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	0.0016	
11/7/2007	0.0016	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
10/12/2011	<0.005	
4/9/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/10/2014	<0.005	
9/9/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	0.0064 (J)	
12/7/2016	<0.005	
2/3/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/16/2018	<0.005	
10/5/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	<0.005	
3/31/2020	<0.005	
9/23/2020	<0.005	
3/10/2021	<0.005	
8/10/2021	<0.005	
2/7/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005
8/15/2023		<0.005

	GWC-21	GWC-21
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/27/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
10/5/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/11/2014	<0.005	
9/9/2014	0.0015	
9/30/2015	<0.005	
3/24/2016	<0.005	
5/18/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/7/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	<0.005	
3/31/2020	0.00093 (J)	
9/24/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/7/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005
8/15/2023		<0.005

	GWC-22	GWC-22
3/6/2007	<0.005	
5/9/2007	0.002	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	0.0013	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/5/2011	<0.005	
4/9/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/11/2014	<0.005	
9/9/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/7/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	0.0023 (J)	
10/1/2019	<0.005	
3/31/2020	0.0015 (J)	
9/23/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/7/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005
8/15/2023		<0.005

	GWC-23	GWC-23
3/6/2007	<0.005	
5/9/2007	0.0013	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/9/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/3/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
5/19/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/7/2016	<0.005	
2/3/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/5/2018	<0.005	
4/8/2019	<0.005	
10/1/2019	0.0051 (J)	
3/26/2020	<0.005	
9/23/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/7/2022		<0.005
8/8/2022		<0.005
1/31/2023		<0.005
8/14/2023		<0.005

	GWC-5	GWC-5
3/7/2007	<0.005	
5/8/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	<0.005	
9/9/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/8/2016	<0.005	
2/1/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/16/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	0.0012 (J)	
3/31/2020	<0.005	
9/25/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005
8/15/2023		<0.005

	GWC-6	GWC-6
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/6/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/18/2012	<0.005	
3/12/2013	<0.005	
9/9/2013	<0.005	
3/5/2014	<0.005	
9/8/2014	<0.005	
4/22/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/8/2016	<0.005	
2/1/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/16/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	<0.005	
10/1/2019	<0.005	
3/31/2020	0.00085 (J)	
9/25/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/31/2023		<0.005
8/14/2023		<0.005

5/9/2007 0.11 (o) 7/6/2007 0.0029 8/28/2007 0.0038 11/6/2007 <0.005 5/8/2008 <0.005 12/2/2008 <0.005 4/8/2009 <0.005 10/1/2009 <0.0016 4/13/2010 <0.005 10/7/2010 <0.005 4/5/2011 <0.005 10/4/2011 <0.005 9/18/2012 <0.005 3/12/2013 <0.005 9/10/2013 <0.005 3/5/2014 <0.005 9/8/2014 <0.005 9/29/2015 <0.005 3/23/2016 <0.005 5/18/2016 <0.005 9/7/2016 <0.005 9/7/2016 <0.005 10/18/2016 <0.005 2/2/2017 <0.005 3/24/2017 <0.005 3/15/2018 <0.005 10/4/2018 <0.005 10/4/2019 <0.005 3/9/2021 <0.005		GWC-7	GWC-7
8/28/2007 0.0038 11/6/2007 <0.005 5/8/2008 <0.005 12/2/2008 <0.005 12/2/2008 <0.005 10/1/2009 0.0016 4/13/2010 <0.005 10/7/2010 <0.005 10/4/2011 0.0018 4/3/2012 <0.005 9/18/2013 <0.005 9/10/2013 <0.005 9/10/2013 <0.005 9/10/2013 <0.005 9/8/2014 <0.005 9/8/2014 <0.005 9/8/2016 <0.005 3/23/2016 <0.005 5/18/2016 <0.005 7/6/2016 <0.005 10/18/2016 <0.005 10/18/2016 <0.005 12/8/2017 0.0011 (J) 10/4/2017 0.0011 (J) 10/4/2018 <0.005 10/1/2019 <0.005 3/3/0/2020 0.00041 (J) 9/24/2020 <0.005 8/10/2022 <0.005 8/10/2022 <0.005 8/10/2022 <0.005 8/10/2022 <0.005 1/3/1/2022 <0.005 1/3/1/2022 <0.005 1/3/1/2022 <0.005 1/3/1/2022 <0.005 1/3/1/2022 <0.005 1/3/1/2022 <0.005 1/3/1/2022 <0.005 1/3/1/2022 <0.005 1/3/1/2022 <0.005	5/9/2007	0.11 (o)	
11/6/2007 <0.005	7/6/2007	0.0029	
5/8/2008 <0.005	8/28/2007	0.0038	
12/2/2008 <0.005	11/6/2007	<0.005	
4/8/2009 <0.005	5/8/2008	<0.005	
10/1/2009 0.0016 4/13/2010 <0.005	12/2/2008	<0.005	
4/13/2010 <0.005	4/8/2009	<0.005	
10/7/2010 <0.005	10/1/2009	0.0016	
4/5/2011 <0.005	4/13/2010	<0.005	
10/4/2011	10/7/2010	<0.005	
4/3/2012 <0.005	4/5/2011	<0.005	
9/18/2012	10/4/2011	0.0018	
3/12/2013	4/3/2012	<0.005	
9/10/2013	9/18/2012	<0.005	
3/5/2014	3/12/2013	<0.005	
9/8/2014	9/10/2013	<0.005	
4/21/2015 <0.005	3/5/2014	<0.005	
9/29/2015	9/8/2014	<0.005	
3/23/2016	4/21/2015	<0.005	
5/18/2016 <0.005	9/29/2015	<0.005	
7/6/2016	3/23/2016	<0.005	
9/7/2016	5/18/2016	<0.005	
10/18/2016 <0.005	7/6/2016	<0.005	
12/8/2016 <0.005	9/7/2016	<0.005	
2/2/2017 <0.005	10/18/2016	<0.005	
3/24/2017 0.0011 (J) 10/4/2017 <0.005 3/15/2018 <0.005 10/4/2018 <0.005 4/8/2019 <0.005 10/1/2019 <0.005 3/30/2020 0.00041 (J) 9/24/2020 <0.005 3/9/2021 <0.005 8/10/2021 <0.005 8/10/2022 <0.005 8/10/2022 <0.005 1/31/2023 <0.005	12/8/2016	<0.005	
10/4/2017	2/2/2017	<0.005	
3/15/2018	3/24/2017	0.0011 (J)	
10/4/2018	10/4/2017	<0.005	
4/8/2019 <0.005	3/15/2018	<0.005	
10/1/2019 <0.005 3/30/2020 0.00041 (J) 9/24/2020 <0.005 3/9/2021 <0.005 8/10/2021 <0.005 2/4/2022 <0.005 8/10/2022 <0.005 1/31/2023 <0.005	10/4/2018	<0.005	
3/30/2020 0.00041 (J) 9/24/2020 <0.005 3/9/2021 <0.005 8/10/2021 <0.005 2/4/2022 <0.005 8/10/2022 <0.005 1/31/2023 <0.005	4/8/2019	<0.005	
9/24/2020 <0.005 3/9/2021 <0.005 8/10/2021 <0.005 2/4/2022 <0.005 8/10/2022 <0.005 1/31/2023 <0.005	10/1/2019	<0.005	
3/9/2021 <0.005 8/10/2021 <0.005 2/4/2022 <0.005 8/10/2022 <0.005 1/31/2023 <0.005	3/30/2020	0.00041 (J)	
8/10/2021 <0.005 2/4/2022 <0.005 8/10/2022 <0.005 1/31/2023 <0.005	9/24/2020	<0.005	
2/4/2022 <0.005	3/9/2021	<0.005	
8/10/2022 <0.005	8/10/2021	<0.005	
1/31/2023 <0.005	2/4/2022		<0.005
	8/10/2022		<0.005
8/15/2023 <0.005	1/31/2023		<0.005
	8/15/2023		<0.005

5/9/2007 <0.005 7/6/2007 <0.005 8/28/2007 <0.005 11/6/2007 <0.005 5/8/2008 <0.005 12/2/2008 <0.005 4/8/2009 <0.005 9/30/2009 <0.005 4/13/2010 <0.005 10/13/2011 <0.005 4/5/2011 <0.005 10/4/2011 <0.005 4/3/2012 <0.005 9/19/2012 <0.005 3/12/2013 <0.005 9/10/2013 <0.0017 3/5/2014 <0.005 9/9/2014 <0.005 4/22/2015 <0.005 9/29/2015 <0.005 3/23/2016 <0.005 5/18/2016 <0.005 9/8/2016 <0.005 10/18/2016 <0.005 10/18/2016 <0.005 2/2/2017 <0.005 3/24/2017 <0.005 10/4/2018 <0.005 10/4/2018 <0.005 10/4/2019 <0.005 9/24/2020 <0.005		GWC-8	GWC-8
8/28/2007	5/9/2007	<0.005	
11/6/2007 0.0035 5/8/2008 <0.005	7/6/2007	<0.005	
5/8/2008 <0.005	8/28/2007	<0.005	
12/2/2008 <0.005	11/6/2007	0.0035	
4/8/2009 <0.005	5/8/2008	<0.005	
9/30/2009	12/2/2008	<0.005	
4/13/2010 <0.005	4/8/2009	<0.005	
10/13/2010	9/30/2009	<0.005	
4/5/2011 <0.005	4/13/2010	<0.005	
10/4/2011	10/13/2010	<0.005	
4/3/2012 <0.005	4/5/2011	<0.005	
9/19/2012	10/4/2011	<0.005	
3/12/2013	4/3/2012	<0.005	
9/10/2013	9/19/2012	<0.005	
3/5/2014	3/12/2013	<0.005	
9/9/2014	9/10/2013	0.0017	
4/22/2015 <0.005	3/5/2014	<0.005	
9/29/2015	9/9/2014	<0.005	
3/23/2016	4/22/2015	<0.005	
5/18/2016	9/29/2015	<0.005	
7/6/2016	3/23/2016	<0.005	
9/8/2016	5/18/2016	<0.005	
10/18/2016	7/6/2016	<0.005	
12/8/2016	9/8/2016	<0.005	
2/2/2017	10/18/2016	<0.005	
3/24/2017	12/8/2016	<0.005	
10/5/2017	2/2/2017	<0.005	
3/14/2018	3/24/2017	<0.005	
10/4/2018	10/5/2017	0.0005 (J)	
4/8/2019 <0.005	3/14/2018	<0.005	
10/1/2019 0.0005 (J) 3/27/2020 <0.005 9/24/2020 <0.005 3/9/2021 <0.005 8/10/2021 <0.005 2/4/2022 <0.005 8/9/2022 <0.005 1/31/2023 <0.005	10/4/2018	<0.005	
3/27/2020 <0.005 9/24/2020 <0.005 3/9/2021 <0.005 8/10/2021 <0.005 2/4/2022 <0.005 8/9/2022 <0.005 1/31/2023 <0.005	4/8/2019	<0.005	
9/24/2020 <0.005 3/9/2021 <0.005 8/10/2021 <0.005 2/4/2022 <0.005 8/9/2022 <0.005 1/31/2023 <0.005	10/1/2019	0.0005 (J)	
3/9/2021 <0.005 8/10/2021 <0.005 2/4/2022 <0.005 8/9/2022 <0.005 1/31/2023 <0.005	3/27/2020	<0.005	
8/10/2021 <0.005 2/4/2022 <0.005 8/9/2022 <0.005 1/31/2023 <0.005	9/24/2020	<0.005	
2/4/2022 <0.005	3/9/2021	<0.005	
8/9/2022 <0.005	8/10/2021	<0.005	
1/31/2023 <0.005	2/4/2022		<0.005
	8/9/2022		<0.005
8/15/2023 <0.005	1/31/2023		<0.005
	8/15/2023		<0.005

	GWC-9	GWC-9
3/7/2007	<0.005	
5/8/2007	0.0013	
7/6/2007	<0.005	
8/28/2007	0.0014	
11/6/2007	0.0024	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/13/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/4/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/6/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/8/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/5/2018	<0.005	
4/8/2019	<0.005	
10/1/2019	<0.005	
3/27/2020	<0.005	
9/24/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005
8/15/2023		<0.005

	GWA-1	GWA-1
3/6/2007	<0.005	
5/8/2007	<0.005	
7/7/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/9/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/10/2011	<0.005	
4/3/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/11/2013	<0.005	
3/4/2014	0.00043 (J)	
9/3/2014	0.00076 (J)	
4/21/2015	0.00051 (J)	
9/30/2015	0.0006 (J)	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/5/2016	0.0004 (J)	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	0.0006 (J)	
1/31/2017	0.0006 (J)	
3/23/2017	0.0007 (J)	
10/4/2017	0.0006 (J)	
3/14/2018	<0.005	
10/4/2018	0.00058 (J)	
4/8/2019	0.00026 (J)	
9/30/2019	0.00042 (J)	
3/26/2020	0.00049 (J)	
9/23/2020	0.00051 (J)	
3/8/2021	0.0005 (J)	
8/9/2021	<0.005	
2/4/2022		0.00057 (J)
8/8/2022		0.00045 (J)
1/30/2023		0.0005 (J)
8/14/2023		0.00043 (J)

	GWA-11	GWA-11
3/7/2007	<0.01	
5/8/2007	<0.01	
7/17/2007	<0.01	
8/28/2007	<0.01	
11/7/2007	<0.01	
5/9/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	<0.01	
10/1/2009	<0.01	
4/14/2010	<0.01	
10/13/2010	<0.01	
4/6/2011	<0.01	
10/4/2011	<0.01	
4/10/2012	<0.01	
9/26/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/4/2014	0.00047 (J)	
9/3/2014	0.00065 (J)	
4/21/2015	0.00062 (J)	
9/29/2015	0.0009 (J)	
3/22/2016	<0.01	
5/17/2016	<0.01	
7/6/2016	0.0009 (J)	
9/7/2016	0.0011 (J)	
10/18/2016	0.0011 (J)	
12/6/2016	0.0011 (J)	
2/1/2017	0.0011 (J)	
3/24/2017	0.0008 (J)	
10/5/2017	0.0008 (J)	
3/15/2018	<0.01	
10/4/2018	0.00072 (J)	
4/8/2019	0.00076 (J)	
9/30/2019	0.00054 (J)	
3/26/2020	0.00063 (J)	
9/22/2020	0.00049 (J)	
3/8/2021	0.00049 (J)	
8/10/2021	0.00047 (J)	
2/4/2022		0.00051 (J)
8/8/2022		0.00058 (J)
1/30/2023		0.00043 (J)
8/14/2023		0.00045 (J)

	GWA-2	GWA-2
3/6/2007	<0.005	
5/8/2007	<0.005	
7/7/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/9/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/7/2010	<0.005	
4/6/2011	<0.005	
10/6/2011	<0.005	
4/3/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/9/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/5/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/7/2016	<0.005	
1/31/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	6.1E-05 (J)	
9/30/2019	<0.005	
3/26/2020	<0.005	
9/21/2020	<0.005	
3/9/2021	<0.005	
8/9/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/30/2023		<0.005
8/14/2023		<0.005

	GWA-3	GWA-3
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/5/2016	0.0003 (J)	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	0.0007 (J)	
2/1/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/5/2019	0.00031 (J)	
9/30/2019	<0.005	
3/26/2020	<0.005	
9/23/2020	<0.005	
3/8/2021	<0.005	
8/9/2021	0.00042 (J)	
2/4/2022		0.00052 (J)
8/8/2022		0.0013 (J)
1/30/2023		<0.005
8/14/2023		0.00095 (J)

	GWA-4	GWA-4
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	0.0016	
3/12/2013	<0.005	
9/10/2013	0.002	
3/11/2014	<0.005	
9/8/2014	0.001 (J)	
4/21/2015	<0.005	
9/29/2015	0.0025 (J)	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	0.0004 (J)	
9/7/2016	0.0008 (J)	
10/18/2016	<0.005	
12/6/2016	0.0026 (J)	
2/1/2017	0.0013 (J)	
3/24/2017	0.0014 (J)	
10/4/2017	0.0012 (J)	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	0.00044 (J)	
9/30/2019	0.00079 (J)	
3/26/2020	0.00082 (J)	
9/23/2020	<0.005	
3/8/2021	0.00061 (J)	
8/9/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/30/2023		<0.005
8/14/2023		<0.005

	GWC-10	GWC-10
3/7/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/9/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/4/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	<0.005	
3/27/2020	0.00082 (J)	
9/25/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/9/2022		<0.005
1/30/2023		<0.005
8/14/2023		<0.005

	GWC-21	GWC-21
3/6/2007	<0.01	
5/9/2007	<0.01	
7/17/2007	<0.01	
8/29/2007	<0.01	
11/7/2007	<0.01	
5/7/2008	<0.01	
12/5/2008	<0.01	
4/27/2009	<0.01	
9/30/2009	<0.01	
4/13/2010	<0.01	
10/12/2010	<0.01	
10/5/2011	<0.01	
4/10/2012	<0.01	
9/26/2012	0.0033	
3/13/2013	<0.01	
9/11/2013	0.0018	
3/11/2014	0.00029 (J)	
9/9/2014	0.0011 (J)	
9/30/2015	<0.01	
3/24/2016	<0.01	
5/18/2016	<0.01	
7/7/2016	0.0016 (J)	
9/8/2016	0.0006 (J)	
10/19/2016	0.0006 (J)	
12/7/2016	0.0006 (J)	
2/2/2017	<0.01	
3/27/2017	0.001 (J)	
10/5/2017	0.0051 (J)	
3/15/2018	<0.01	
10/4/2018	0.0065 (J)	
4/9/2019	0.0023 (J)	
10/1/2019	0.00046 (J)	
3/31/2020	0.0019 (J)	
9/24/2020	0.00068 (J)	
3/9/2021	0.00049 (J)	
8/10/2021	0.0041 (J)	
2/7/2022		0.0028 (J)
8/9/2022		0.0027 (J)
1/31/2023		0.002 (J)
8/15/2023		0.0032 (J)

	GWC-23	GWC-23
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/9/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/3/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
5/19/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/7/2016	<0.005	
2/3/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/5/2018	0.00058 (J)	
4/8/2019	0.00046 (J)	
10/1/2019	0.00033 (J)	
3/26/2020	0.00035 (J)	
9/23/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/7/2022		<0.005
8/8/2022		<0.005
1/31/2023		<0.005
8/14/2023		<0.005

	GWC-5	GWC-5
3/7/2007	<0.005	
5/8/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	<0.005	
9/9/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/8/2016	<0.005	
2/1/2017	<0.005	
3/23/2017	0.0007 (J)	
10/4/2017	<0.005	
3/16/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	<0.005	
3/31/2020	<0.005	
9/25/2020	0.00057 (J)	
3/9/2021	0.00043 (J)	
8/10/2021	0.00098 (J)	
2/4/2022		<0.005
8/9/2022		0.00061 (J)
1/31/2023		<0.005
8/15/2023		0.00046 (J)

	GWC-6	GWC-6
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/6/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/18/2012	<0.005	
3/12/2013	<0.005	
9/9/2013	<0.005	
3/5/2014	<0.005	
9/8/2014	<0.005	
4/22/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/8/2016	<0.005	
2/1/2017	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/16/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	0.00022 (J)	
10/1/2019	<0.005	
3/31/2020	<0.005	
9/25/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/31/2023		<0.005
8/14/2023		<0.005

	GWC-7	GWC-7
5/9/2007	6.5 (o)	
7/6/2007	2.1 (o)	
8/28/2007	1.4 (o)	
11/6/2007	1.1 (o)	
5/8/2008	0.75	
12/2/2008	0.41	
4/8/2009	0.38	
10/1/2009	0.29	
4/13/2010	0.26	
10/7/2010	0.24	
4/5/2011	0.17	
10/4/2011	0.19	
4/3/2012	0.114	
9/18/2012	0.14	
3/12/2013	0.041	
9/10/2013	0.06	
3/5/2014	0.049	
9/8/2014	0.068	
4/21/2015	0.043	
9/29/2015	0.0525	
3/23/2016	0.0172	
5/18/2016	0.021	
7/6/2016	0.0278	
9/7/2016	0.0334	
10/18/2016	0.0368	
12/8/2016	0.0419	
2/2/2017	0.0113	
3/24/2017	0.0094 (J)	
10/4/2017	0.0237	
3/15/2018	0.014	
10/4/2018	0.024	
4/8/2019	0.0086 (J)	
10/1/2019	0.017	
3/30/2020	0.012	
9/24/2020	0.01	
3/9/2021	0.0093	
8/10/2021	0.013	
2/4/2022		0.0092
8/10/2022		0.013
1/31/2023		0.031
8/15/2023		0.021

	GWC-8	GWC-8
5/9/2007	<0.01	
7/6/2007	<0.01	
8/28/2007	<0.01	
11/6/2007	<0.01	
5/8/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	<0.01	
9/30/2009	<0.01	
4/13/2010	<0.01	
10/13/2010	<0.01	
4/5/2011	<0.01	
10/4/2011	<0.01	
4/3/2012	<0.01	
9/19/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/5/2014	<0.01	
9/9/2014	<0.01	
4/22/2015	<0.01	
9/29/2015	<0.01	
3/23/2016	<0.01	
5/18/2016	<0.01	
7/6/2016	<0.01	
9/8/2016	<0.01	
10/18/2016	<0.01	
12/8/2016	<0.01	
2/2/2017	<0.01	
3/24/2017	<0.01	
10/5/2017	0.0003 (J)	
3/14/2018	<0.01	
10/4/2018	<0.01	
4/8/2019	0.0017 (J)	
10/1/2019	0.00081 (J)	
3/27/2020	0.0016 (J)	
9/24/2020	0.0011 (J)	
3/9/2021	0.0013 (J)	
8/10/2021	0.004 (J)	
2/4/2022		0.0019 (J)
8/9/2022		0.0013 (J)
1/31/2023		0.00055 (J)
8/15/2023		0.00077 (J)

	GWC-9	GWC-9
3/7/2007	<0.005	
5/8/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/13/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/4/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/6/2016	0.0004 (J)	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/8/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	0.0004 (J)	
3/15/2018	<0.005	
10/5/2018	<0.005	
4/8/2019	0.00041 (J)	
10/1/2019	0.00041 (J)	
3/27/2020	0.00063 (J)	
9/24/2020	<0.005	
3/9/2021	0.00042 (J)	
8/10/2021	<0.005	
2/4/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005
8/15/2023		<0.005

	GWA-11	GWA-11
3/7/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	0.0032	
11/7/2007	0.0036	
5/9/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/4/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
9/7/2016	<0.005	
3/24/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	0.0013 (J)	
9/30/2019	<0.005	
3/26/2020	<0.005	
9/22/2020	<0.005	
3/8/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/30/2023		<0.005
8/14/2023		<0.005

	GWA-2	GWA-2
3/6/2007	<0.005	
5/8/2007	<0.005	
7/7/2007	<0.005	
8/28/2007	0.0032	
11/6/2007	<0.005	
5/9/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/7/2010	<0.005	
4/6/2011	<0.005	
10/6/2011	<0.005	
4/3/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/9/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	0.0011 (J)	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/22/2016	<0.005	
9/7/2016	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	0.00029 (J)	
9/30/2019	<0.005	
3/26/2020	<0.005	
9/21/2020	<0.005	
3/9/2021	<0.005	
8/9/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/30/2023		<0.005
8/14/2023		<0.005

	GWA-3	GWA-3
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	0.0028	
8/28/2007	0.0039	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
9/7/2016	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/5/2019	<0.005	
9/30/2019	<0.005	
3/26/2020	0.00022 (J)	
9/23/2020	<0.005	
3/8/2021	<0.005	
8/9/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/30/2023		<0.005
8/14/2023		<0.005

3/6/2007 <0.005 5/8/2007 <0.005 7/17/2007 <0.005 8/28/2007 <0.0061 11/6/2007 <0.005 5/8/2008 <0.005 12/3/2008 <0.005 4/7/2009 <0.005 4/14/2010 <0.005 10/14/2010 <0.006 4/5/2011 <0.005 10/12/2011 <0.005 4/4/2012 <0.005 9/24/2012 <0.005 3/12/2013 <0.005 9/10/2013 <0.005 3/11/2014 <0.005 9/8/2014 <0.005 4/21/2015 <0.005 9/29/2015 <0.005 3/22/2016 <0.005 9/7/2016 <0.005 3/24/2017 <0.005 3/15/2018 <0.005 10/4/2018 <0.005 4/8/2019 <0.005 9/30/2019 <0.005 3/8/2021 <0.005 8/9/2021 <0.005 3/8/2022 <0.005 1/30/2023 <0.005 <th></th> <th>GWA-4</th> <th>GWA-4</th>		GWA-4	GWA-4
7/17/2007	3/6/2007	<0.005	
8/28/2007 0.0061 11/6/2007 <0.005 5/8/2008 <0.005 12/3/2008 <0.005 4/7/2009 <0.005 10/2/2009 <0.005 4/14/2010 <0.005 10/14/2011 <0.005 10/12/2011 <0.005 4/4/2012 <0.005 3/12/2013 <0.005 3/12/2013 <0.005 3/11/2014 <0.005 3/11/2014 <0.005 9/8/2014 <0.005 9/29/2015 <0.005 3/22/2016 <0.005 3/22/2016 <0.005 3/24/2017 <0.005 3/24/2017 <0.005 3/24/2017 <0.005 3/24/2017 <0.005 3/24/2017 <0.005 3/24/2018 <0.005 3/24/2017 <0.005 3/24/2018 <0.005 10/4/2018 <0.005 4/8/2019 <0.005 9/30/2019 <0.005 3/8/2020 <0.005 3/8/2021 <0.005 8/8/2022 <0.005 8/8/2022 <0.005 8/8/2022 <0.005 8/8/2022 <0.005 8/8/2022 <0.005 8/8/2022 <0.005 8/8/2022 <0.005 8/8/2022 <0.005 8/8/2022 <0.005	5/8/2007	<0.005	
11/6/2007 <0.005	7/17/2007	<0.005	
5/8/2008	8/28/2007	0.0061	
12/3/2008	11/6/2007	<0.005	
4/7/2009 <0.005 10/2/2009 <0.005 4/14/2010 <0.005 10/14/2011 <0.006 4/5/2011 <0.005 10/12/2011 <0.005 4/4/2012 <0.005 3/12/2013 <0.005 3/12/2013 <0.005 3/11/2014 <0.005 4/21/2015 <0.005 3/22/2016 <0.005 3/22/2016 <0.005 3/22/2016 <0.005 3/24/2017 <0.005 3/24/2017 <0.005 3/24/2017 <0.005 3/24/2018 <0.005 3/15/2018 <0.005 4/8/2019 <0.005 4/8/2019 <0.005 3/8/2020 <0.005 3/8/2021 <0.005 3/8/2021 <0.005 3/8/2021 <0.005 8/8/2022 <0.005 8/8/2022 <0.005 1/30/2023 <0.005 1/30/2023 <0.005	5/8/2008	<0.005	
10/2/2009	12/3/2008	<0.005	
4/14/2010 <0.005	4/7/2009	<0.005	
10/14/2010	10/2/2009	<0.005	
4/5/2011	4/14/2010	<0.005	
10/12/2011	10/14/2010	0.0066	
4/4/2012 <0.005	4/5/2011	<0.005	
9/24/2012	10/12/2011	<0.005	
3/12/2013	4/4/2012	<0.005	
9/10/2013	9/24/2012	<0.005	
3/11/2014	3/12/2013	<0.005	
9/8/2014	9/10/2013	<0.005	
4/21/2015 <0.005	3/11/2014	<0.005	
9/29/2015	9/8/2014	<0.005	
3/22/2016 <0.005 9/7/2016 <0.005 3/24/2017 <0.005 10/4/2017 <0.005 3/15/2018 <0.005 10/4/2018 <0.005 4/8/2019 <0.005 4/8/2019 <0.005 3/26/2020 <0.005 9/23/2020 <0.005 3/8/2021 <0.005 8/9/2021 <0.005 8/9/2021 <0.005 8/8/2022 <0.005 8/8/2022 <0.005 8/8/2022 <0.005 1/30/2023 <0.005	4/21/2015	<0.005	
9/7/2016 <0.005 3/24/2017 <0.005 10/4/2017 <0.005 3/15/2018 <0.005 10/4/2018 <0.005 4/8/2019 <0.005 9/30/2019 <0.005 3/26/2020 <0.005 9/23/2020 <0.005 3/8/2021 <0.005 8/9/2021 0.00051 (J) 2/4/2022 <0.005 8/8/2022 <0.005 1/30/2023 <0.005	9/29/2015	<0.005	
3/24/2017 <0.005 10/4/2017 <0.005 3/15/2018 <0.005 10/4/2018 <0.005 4/8/2019 <0.005 9/30/2019 <0.005 3/26/2020 <0.005 9/23/2020 <0.005 3/8/2021 <0.005 8/9/2021 0.00051 (J) 2/4/2022 <0.005 8/8/2022 <0.005 1/30/2023 <0.005	3/22/2016	<0.005	
10/4/2017	9/7/2016	<0.005	
3/15/2018 <0.005 10/4/2018 <0.005 4/8/2019 <0.005 9/30/2019 <0.005 3/26/2020 <0.005 9/23/2020 <0.005 3/8/2021 <0.005 8/9/2021 0.00051 (J) 2/4/2022 <0.005 8/8/2022 <0.005 1/30/2023 <0.005	3/24/2017	<0.005	
10/4/2018	10/4/2017	<0.005	
4/8/2019 <0.005	3/15/2018	<0.005	
9/30/2019 <0.005 3/26/2020 <0.005 9/23/2020 <0.005 3/8/2021 <0.005 8/9/2021 0.00051 (J) 2/4/2022 <0.005 8/8/2022 <0.005 1/30/2023 <0.005	10/4/2018	<0.005	
3/26/2020 <0.005 9/23/2020 <0.005 3/8/2021 <0.005 8/9/2021 0.00051 (J) 2/4/2022 <0.005 8/8/2022 <0.005 1/30/2023 <0.005	4/8/2019	<0.005	
9/23/2020 <0.005 3/8/2021 <0.005 8/9/2021 0.00051 (J) 2/4/2022 <0.005 8/8/2022 <0.005 1/30/2023 <0.005	9/30/2019	<0.005	
3/8/2021 <0.005 8/9/2021 0.00051 (J) 2/4/2022 <0.005 8/8/2022 <0.005 1/30/2023 <0.005	3/26/2020	<0.005	
8/9/2021 0.00051 (J) 2/4/2022 <0.005 8/8/2022 <0.005 1/30/2023 <0.005	9/23/2020	<0.005	
2/4/2022 <0.005	3/8/2021	<0.005	
8/8/2022 <0.005	8/9/2021	0.00051 (J)	
1/30/2023 <0.005	2/4/2022		<0.005
	8/8/2022		<0.005
8/14/2023 <0.005	1/30/2023		<0.005
	8/14/2023		<0.005

	GWC-10	GWC-10
3/7/2007	0.0025	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/9/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
9/7/2016	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	<0.005	
3/27/2020	0.00022 (J)	
9/25/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/9/2022		0.0023 (J)
1/30/2023		<0.005
8/14/2023		<0.005

	GWC-18	GWC-18
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	0.0029	
5/7/2008	<0.005	
12/3/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/5/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/10/2014	<0.005	
9/3/2014	0.00099 (J)	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/24/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/16/2018	<0.005	
10/5/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	0.00037 (J)	
3/30/2020	<0.005	
9/24/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005
8/15/2023		<0.005

	GWC-19	GWC-19
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	0.0035	
5/7/2008	<0.005	
12/4/2008	<0.005	
4/14/2009	<0.005	
10/2/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/5/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/10/2014	<0.005	
9/9/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/24/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	0.0004 (J)	
10/5/2017	0.0005 (J)	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	0.0014 (J)	
10/1/2019	0.00019 (J)	
3/31/2020	<0.005	
9/28/2020	<0.005	
3/10/2021	<0.005	
8/10/2021	<0.005	
2/7/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005
8/15/2023		<0.005

	GWC-20	GWC-20
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	0.0028	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
10/12/2011	<0.005	
4/9/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/10/2014	<0.005	
9/9/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/16/2018	<0.005	
10/5/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	0.00023 (J)	
3/31/2020	<0.005	
9/23/2020	<0.005	
3/10/2021	<0.005	
8/10/2021	<0.005	
2/7/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005
8/15/2023		<0.005

	GWC-21	GWC-21
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	0.0029	
5/7/2008	0.0026	
12/5/2008	<0.005	
4/27/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
10/5/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/11/2014	<0.005	
9/9/2014	0.0013 (J)	
9/30/2015	0.0008 (J)	
3/24/2016	<0.005	
9/8/2016	0.0006 (J)	
3/27/2017	0.0005 (J)	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	0.00084 (J)	
3/31/2020	0.00082 (J)	
9/24/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/7/2022		<0.005
8/9/2022		<0.005
1/31/2023		0.0012 (J)
8/15/2023		<0.005

	GWC-22	GWC-22
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	0.0033	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/5/2011	<0.005	
4/9/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/11/2014	<0.005	
9/9/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	0.00031 (J)	
3/31/2020	0.0002 (J)	
9/23/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/7/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005
8/15/2023		<0.005

	GWC-23	GWC-23
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	0.0084	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/9/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/3/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	0.0012 (J)	
3/23/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	<0.005	
10/5/2017	0.0003 (J)	
3/15/2018	0.0016 (J)	
10/5/2018	<0.005	
4/8/2019	0.0005 (J)	
10/1/2019	0.00083 (J)	
3/26/2020	0.00067 (J)	
9/23/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	0.00078 (J)	
2/7/2022		0.00088 (J)
8/8/2022		<0.005
1/31/2023		<0.005
8/14/2023		<0.005

	GWC-5	GWC-5
3/7/2007	0.0027	
5/8/2007	0.0026	
7/6/2007	<0.005	
8/28/2007	0.0036	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	<0.005	
9/9/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
9/7/2016	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/16/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	0.00031 (J)	
3/31/2020	0.00019 (J)	
9/25/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005
8/15/2023		<0.005

	GWC-6	GWC-6
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/6/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/18/2012	<0.005	
3/12/2013	<0.005	
9/9/2013	<0.005	
3/5/2014	<0.005	
9/8/2014	<0.005	
4/22/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
9/7/2016	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/16/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	<0.005	
10/1/2019	0.00023 (J)	
3/31/2020	<0.005	
9/25/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/31/2023		<0.005
8/14/2023		<0.005

	GWC-7	GWC-7
5/9/2007	0.44 (o)	
7/6/2007	0.016	
8/28/2007	0.0091	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	0.003	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/7/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/18/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	0.00082 (J)	
9/29/2015	<0.005	
3/23/2016	<0.005	
9/7/2016	<0.005	
3/24/2017	0.0007 (J)	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	0.00025 (J)	
10/1/2019	0.00034 (J)	
3/30/2020	<0.005	
9/24/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/10/2022		<0.005
1/31/2023		<0.005
8/15/2023		<0.005

	GWC-8	GWC-8
5/9/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/13/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	<0.005	
9/9/2014	<0.005	
4/22/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
9/8/2016	<0.005	
3/24/2017	<0.005	
10/5/2017	<0.005	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	<0.005	
10/1/2019	0.00036 (J)	
3/27/2020	<0.005	
9/24/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005
8/15/2023		<0.005

	GWC-9	GWC-9
3/7/2007	0.0043	
5/8/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/13/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/4/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/5/2018	<0.005	
4/8/2019	<0.005	
10/1/2019	<0.005	
3/27/2020	<0.005	
9/24/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	0.0018 (J)	
2/4/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005
8/15/2023		<0.005

	GWA-11	GWA-11
3/7/2007	<0.001	
5/8/2007	<0.001	
7/17/2007	<0.001	
8/28/2007	<0.001	
11/7/2007	<0.001	
5/9/2008	<0.001	
12/2/2008	<0.001	
4/8/2009	<0.001	
10/1/2009	<0.001	
4/14/2010	<0.001	
10/13/2010	<0.001	
4/6/2011	<0.001	
10/4/2011	<0.001	
4/10/2012	<0.001	
9/26/2012	<0.001	
3/12/2013	<0.001	
9/10/2013	<0.001	
3/4/2014	<0.001	
9/3/2014	<0.001	
4/21/2015	<0.001	
9/29/2015	<0.001	
3/22/2016	<0.001	
5/17/2016	<0.001	
7/6/2016	<0.001	
9/7/2016	<0.001	
10/18/2016	<0.001	
12/6/2016	<0.001	
2/1/2017	<0.001	
3/24/2017	7E-05 (J)	
10/5/2017	<0.001	
3/15/2018	<0.001	
10/4/2018	<0.001	
4/8/2019	<0.001	
9/30/2019	<0.001	
3/26/2020	<0.001	
9/22/2020	<0.001	
3/8/2021	<0.001	
8/10/2021	<0.001	
2/4/2022		<0.001
8/8/2022		<0.001
1/30/2023		<0.001
8/14/2023		<0.001

Constituent: Lead (mg/L) Analysis Run 10/25/2023 12:02 PM View: Appendix I

Plant Hammond Data: Huffaker Road Landfill

	GWA-3	GWA-3
3/6/2007	<0.001	
5/8/2007	<0.001	
7/17/2007	<0.001	
8/28/2007	<0.001	
11/6/2007	<0.001	
5/8/2008	<0.001	
12/3/2008	<0.001	
4/7/2009	<0.001	
10/2/2009	<0.001	
4/14/2010	<0.001	
10/14/2010	<0.001	
4/5/2011	<0.001	
10/12/2011	<0.001	
4/4/2012	<0.001	
9/26/2012	<0.001	
3/12/2013	<0.001	
9/10/2013	<0.001	
3/11/2014	<0.001	
9/8/2014	<0.001	
4/21/2015	<0.001	
9/29/2015	<0.001	
3/22/2016	<0.001	
5/17/2016	<0.001	
7/5/2016	<0.001	
9/7/2016	<0.001	
10/18/2016	<0.001	
12/6/2016	<0.001	
2/1/2017	<0.001	
3/23/2017	<0.001	
10/4/2017	<0.001	
3/15/2018	<0.001	
10/4/2018	<0.001	
4/5/2019	<0.001	
9/30/2019	<0.001	
3/26/2020	4.7E-05 (J)	
9/23/2020	<0.001	
3/8/2021	4E-05 (J)	
8/9/2021	<0.001	
2/4/2022		<0.001
8/8/2022		<0.001
1/30/2023		<0.001

<0.001

8/14/2023

	GWC-10	GWC-10
3/7/2007	<0.001	
5/8/2007	<0.001	
7/17/2007	<0.001	
8/28/2007	<0.001	
11/7/2007	<0.001	
5/9/2008	<0.001	
12/2/2008	<0.001	
4/8/2009	<0.001	
10/1/2009	<0.001	
4/14/2010	<0.001	
10/13/2010	<0.001	
4/6/2011	<0.001	
10/4/2011	<0.001	
4/10/2012	<0.001	
9/26/2012	<0.001	
3/12/2013	<0.001	
9/10/2013	<0.001	
3/4/2014	<0.001	
9/3/2014	<0.001	
4/21/2015	<0.001	
9/30/2015	<0.001	
3/23/2016	<0.001	
5/17/2016	<0.001	
7/6/2016	<0.001	
9/7/2016	<0.001	
10/18/2016	<0.001	
12/6/2016	<0.001	
2/2/2017	<0.001	
3/27/2017	<0.001	
10/5/2017	<0.001	
3/15/2018	<0.001	
10/4/2018	<0.001	
4/9/2019	<0.001	
10/1/2019	<0.001	
3/27/2020	5.4E-05 (J)	
9/25/2020	<0.001	
3/9/2021	<0.001	
8/10/2021	<0.001	
2/4/2022		<0.001
8/9/2022		<0.001
1/30/2023		<0.001
8/14/2023		<0.001

	GWC-18	GWC-18
3/7/2007	<0.001	
5/9/2007	<0.001	
7/17/2007	<0.001	
8/28/2007	<0.001	
11/7/2007	<0.001	
5/7/2008	<0.001	
12/3/2008	<0.001	
4/14/2009	<0.001	
10/1/2009	<0.001	
4/13/2010	<0.001	
10/12/2010	<0.001	
4/6/2011	<0.001	
10/12/2011	<0.001	
4/5/2012	<0.001	
9/19/2012	<0.001	
3/13/2013	<0.001	
9/10/2013	<0.001	
3/10/2014	<0.001	
9/3/2014	<0.001	
4/22/2015	<0.001	
9/30/2015	<0.001	
3/24/2016	<0.001	
5/18/2016	<0.001	
7/7/2016	<0.001	
9/8/2016	<0.001	
10/19/2016	<0.001	
12/8/2016	<0.001	
2/2/2017	<0.001	
3/27/2017	<0.001	
10/5/2017	<0.001	
3/16/2018	<0.001	
10/5/2018	<0.001	
4/9/2019	<0.001	
10/1/2019	<0.001	
3/30/2020	<0.001	
9/24/2020	4E-05 (J)	
3/9/2021	<0.001	
8/10/2021	<0.001	
2/4/2022		<0.001
8/9/2022		<0.001
1/31/2023		<0.001
8/15/2023		<0.001

	GWC-19	GWC-19
3/6/2007	<0.001	
5/9/2007	<0.001	
7/17/2007	<0.001	
8/28/2007	<0.001	
11/7/2007	<0.001	
5/7/2008	<0.001	
12/4/2008	<0.001	
4/14/2009	<0.001	
10/2/2009	<0.001	
4/13/2010	<0.001	
10/12/2010	<0.001	
4/6/2011	<0.001	
10/12/2011	<0.001	
4/5/2012	<0.001	
9/25/2012	<0.001	
3/13/2013	<0.001	
9/11/2013	<0.001	
3/10/2014	<0.001	
9/9/2014	<0.001	
4/22/2015	<0.001	
9/30/2015	<0.001	
3/24/2016	<0.001	
5/18/2016	<0.001	
7/6/2016	<0.001	
9/8/2016	<0.001	
10/18/2016	<0.001	
12/7/2016	<0.001	
2/2/2017	<0.001	
3/27/2017	<0.001	
10/5/2017	0.0002 (J)	
3/15/2018	<0.001	
10/4/2018	<0.001	
4/9/2019	<0.001	
10/1/2019	<0.001	
3/31/2020	6.1E-05 (J)	
9/28/2020	0.00014 (J)	
3/10/2021	<0.001	
8/10/2021	<0.001	
2/7/2022		<0.001
8/9/2022		<0.001
1/31/2023		<0.001
8/15/2023		<0.001

	GWC-20	GWC-20
3/7/2007	<0.001	
5/9/2007	<0.001	
7/17/2007	<0.001	
8/29/2007	<0.001	
11/7/2007	<0.001	
5/7/2008	<0.001	
12/5/2008	<0.001	
4/14/2009	<0.001	
9/30/2009	<0.001	
4/13/2010	<0.001	
10/12/2010	<0.001	
10/12/2011	<0.001	
4/9/2012	<0.001	
9/25/2012	<0.001	
3/13/2013	<0.001	
9/11/2013	<0.001	
3/10/2014	<0.001	
9/9/2014	<0.001	
4/23/2015	<0.001	
9/30/2015	<0.001	
3/23/2016	<0.001	
5/18/2016	<0.001	
7/7/2016	<0.001	
9/8/2016	<0.001	
10/19/2016	<0.001	
12/7/2016	<0.001	
2/3/2017	<0.001	
3/27/2017	7E-05 (J)	
10/5/2017	<0.001	
3/16/2018	<0.001	
10/5/2018	<0.001	
4/9/2019	<0.001	
10/1/2019	<0.001	
3/31/2020	<0.001	
9/23/2020	<0.001	
3/10/2021	<0.001	
8/10/2021	<0.001	
2/7/2022		<0.001
8/9/2022		<0.001
1/31/2023		<0.001
8/15/2023		<0.001

	GWC-21	GWC-21
3/6/2007	<0.001	
5/9/2007	<0.001	
7/17/2007	<0.001	
8/29/2007	<0.001	
11/7/2007	<0.001	
5/7/2008	<0.001	
12/5/2008	<0.001	
4/27/2009	<0.001	
9/30/2009	<0.001	
4/13/2010	<0.001	
10/12/2010	<0.001	
10/5/2011	<0.001	
4/10/2012	<0.001	
9/26/2012	<0.001	
3/13/2013	<0.001	
9/11/2013	<0.001	
3/11/2014	<0.001	
9/9/2014	<0.001	
9/30/2015	<0.001	
3/24/2016	<0.001	
5/18/2016	<0.001	
7/7/2016	<0.001	
9/8/2016	<0.001	
10/19/2016	<0.001	
12/7/2016	0.0001 (J)	
2/2/2017	<0.001	
3/27/2017	<0.001	
10/5/2017	<0.001	
3/15/2018	<0.001	
10/4/2018	<0.001	
4/9/2019	<0.001	
10/1/2019	7.5E-05 (J)	
3/31/2020	<0.001	
9/24/2020	0.00012 (J)	
3/9/2021	0.00013 (J)	
8/10/2021	<0.001	
2/7/2022		<0.001
8/9/2022		<0.001
1/31/2023		<0.001
8/15/2023		<0.001

	GWC-22	GWC-22
3/6/2007	<0.001	
5/9/2007	<0.001	
7/17/2007	<0.001	
8/29/2007	<0.001	
11/7/2007	<0.001	
5/7/2008	<0.001	
12/5/2008	<0.001	
4/14/2009	<0.001	
9/30/2009	<0.001	
4/13/2010	<0.001	
10/12/2010	<0.001	
4/6/2011	<0.001	
10/5/2011	<0.001	
4/9/2012	<0.001	
9/25/2012	<0.001	
3/13/2013	<0.001	
9/11/2013	<0.001	
3/11/2014	<0.001	
9/9/2014	<0.001	
4/23/2015	<0.001	
9/30/2015	<0.001	
3/23/2016	<0.001	
5/18/2016	<0.001	
7/7/2016	<0.001	
9/8/2016	<0.001	
10/19/2016	<0.001	
12/7/2016	<0.001	
2/2/2017	<0.001	
3/27/2017	<0.001	
10/5/2017	<0.001	
3/15/2018	<0.001	
10/4/2018	<0.001	
4/9/2019	<0.001	
10/1/2019	0.00012 (J)	
3/31/2020	0.00013 (J)	
9/23/2020	6.6E-05 (J)	
3/9/2021	3.8E-05 (J)	
8/10/2021	<0.001	
2/7/2022		<0.001
8/9/2022		<0.001
1/31/2023		<0.001
8/15/2023		<0.001

	GWC-23	GWC-23
3/6/2007	<0.001	
5/9/2007	<0.001	
7/17/2007	<0.001	
8/29/2007	<0.001	
11/7/2007	<0.001	
5/7/2008	<0.001	
12/5/2008	<0.001	
4/14/2009	<0.001	
10/1/2009	<0.001	
4/14/2010	<0.001	
10/13/2010	<0.001	
4/6/2011	<0.001	
10/12/2011	<0.001	
4/9/2012	<0.001	
9/19/2012	<0.001	
3/13/2013	<0.001	
9/10/2013	<0.001	
3/11/2014	<0.001	
9/3/2014	<0.001	
4/23/2015	<0.001	
9/30/2015	<0.001	
3/23/2016	<0.001	
5/19/2016	<0.001	
7/7/2016	<0.001	
9/8/2016	<0.001	
10/19/2016	<0.001	
12/7/2016	<0.001	
2/3/2017	<0.001	
3/27/2017	<0.001	
10/5/2017	<0.001	
3/15/2018	<0.001	
10/5/2018	0.00042 (J)	
4/8/2019	0.00018 (J)	
10/1/2019	0.00022 (J)	
3/26/2020	0.00016 (J)	
9/23/2020	0.00036 (J)	
3/9/2021	0.00011 (J)	
8/10/2021	<0.001	
2/7/2022		<0.001
8/8/2022		<0.001
1/31/2023		<0.001
8/14/2023		<0.001

	GWC-5	GWC-5
3/7/2007	<0.001	
5/8/2007	<0.001	
7/6/2007	<0.001	
8/28/2007	<0.001	
11/6/2007	<0.001	
5/8/2008	<0.001	
12/3/2008	<0.001	
4/7/2009	<0.001	
10/1/2009	<0.001	
4/14/2010	<0.001	
10/14/2010	<0.001	
4/5/2011	<0.001	
10/12/2011	<0.001	
4/4/2012	<0.001	
9/24/2012	<0.001	
3/12/2013	<0.001	
9/10/2013	<0.001	
3/5/2014	<0.001	
9/9/2014	<0.001	
4/21/2015	<0.001	
9/29/2015	<0.001	
3/23/2016	<0.001	
5/17/2016	<0.001	
7/6/2016	<0.001	
9/7/2016	<0.001	
10/18/2016	<0.001	
12/8/2016	<0.001	
2/1/2017	<0.001	
3/23/2017	<0.001	
10/4/2017	<0.001	
3/16/2018	<0.001	
10/4/2018	<0.001	
4/9/2019	0.00039 (J)	
10/1/2019	6.5E-05 (J)	
3/31/2020	<0.001	
9/25/2020	<0.001	
3/9/2021	<0.001	
8/10/2021	<0.001	
2/4/2022		<0.001
8/9/2022		<0.001
1/31/2023		<0.001
8/15/2023		<0.001

Constituent: Lead (mg/L) Analysis Run 10/25/2023 12:02 PM View: Appendix I

Plant Hammond Data: Huffaker Road Landfill

	GWC-6	GWC-6
3/7/2007	<0.001	
5/9/2007	<0.001	
7/17/2007	<0.001	
8/28/2007	<0.001	
11/6/2007	<0.001	
5/8/2008	<0.001	
12/3/2008	<0.001	
4/7/2009	<0.001	
10/1/2009	<0.001	
4/13/2010	<0.001	
10/6/2010	<0.001	
4/5/2011	<0.001	
10/4/2011	<0.001	
4/3/2012	<0.001	
9/18/2012	<0.001	
3/12/2013	<0.001	
9/9/2013	<0.001	
3/5/2014	<0.001	
9/8/2014	<0.001	
4/22/2015	<0.001	
9/29/2015	<0.001	
3/23/2016	<0.001	
5/17/2016	<0.001	
7/6/2016	<0.001	
9/7/2016	<0.001	
10/18/2016	<0.001	
12/8/2016	0.0001 (J)	
2/1/2017	<0.001	
3/23/2017	<0.001	
10/4/2017	<0.001	
3/16/2018	<0.001	
10/4/2018	<0.001	
4/8/2019	<0.001	
10/1/2019	<0.001	
3/31/2020	<0.001	
9/25/2020	<0.001	
3/9/2021	<0.001	
8/10/2021	<0.001	
2/4/2022		<0.001
8/8/2022		<0.001
1/31/2023		<0.001

<0.001

8/14/2023

	GWC-7	GWC-7
5/9/2007	<0.001	
7/6/2007	<0.001	
8/28/2007	<0.001	
11/6/2007	<0.001	
5/8/2008	<0.001	
12/2/2008	<0.001	
4/8/2009	<0.001	
10/1/2009	<0.001	
4/13/2010	<0.001	
10/7/2010	<0.001	
4/5/2011	<0.001	
10/4/2011	<0.001	
4/3/2012	<0.001	
9/18/2012	<0.001	
3/12/2013	<0.001	
9/10/2013	<0.001	
3/5/2014	0.0016 (J)	
9/8/2014	<0.001	
4/21/2015	<0.001	
9/29/2015	<0.001	
3/23/2016	<0.001	
5/18/2016	<0.001	
7/6/2016	0.0001 (J)	
9/7/2016	<0.001	
10/18/2016	<0.001	
12/8/2016	<0.001	
2/2/2017	0.0003 (J)	
3/24/2017	0.0002 (J)	
10/4/2017	7E-05 (J)	
3/15/2018	<0.001	
10/4/2018	<0.001	
4/8/2019	<0.001	
10/1/2019	5E-05 (J)	
3/30/2020	4.8E-05 (J)	
9/24/2020	6E-05 (J)	
3/9/2021	8.5E-05 (J)	
8/10/2021	<0.001	
2/4/2022		<0.001
8/10/2022		<0.001
1/31/2023		<0.001
8/15/2023		<0.001
8/10/2021 2/4/2022	. ,	
1/31/2023		<0.001
8/15/2023		<0.001

Constituent: Lead (mg/L) Analysis Run 10/25/2023 12:02 PM View: Appendix I

Plant Hammond Data: Huffaker Road Landfill

	GWC-8	GWC-8
5/9/2007	<0.001	
7/6/2007	<0.001	
8/28/2007	<0.001	
11/6/2007	<0.001	
5/8/2008	<0.001	
12/2/2008	<0.001	
4/8/2009	<0.001	
9/30/2009	<0.001	
4/13/2010	<0.001	
10/13/2010	<0.001	
4/5/2011	<0.001	
10/4/2011	<0.001	
4/3/2012	<0.001	
9/19/2012	<0.001	
3/12/2013	<0.001	
9/10/2013	<0.001	
3/5/2014	<0.001	
9/9/2014	<0.001	
4/22/2015	<0.001	
9/29/2015	<0.001	
3/23/2016	<0.001	
5/18/2016	<0.001	
7/6/2016	<0.001	
9/8/2016	<0.001	
10/18/2016	<0.001	
12/8/2016	0.0002 (J)	
2/2/2017	<0.001	
3/24/2017	<0.001	
10/5/2017	<0.001	
3/14/2018	<0.001	
10/4/2018	<0.001	
4/8/2019	<0.001	
10/1/2019	<0.001	
3/27/2020	<0.001	
9/24/2020	4.9E-05 (J)	
3/9/2021	<0.001	
8/10/2021	<0.001	
2/4/2022		<0.001
8/9/2022		<0.001
1/31/2023		<0.001

8/15/2023

<0.001

	GWA-1	GWA-1
3/6/2007	<0.005	
5/8/2007	<0.005	
7/7/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/9/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/10/2011	<0.005	
4/3/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/11/2013	<0.005	
3/4/2014	0.001 (J)	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/30/2015	<0.005	
3/22/2016	<0.005	
9/7/2016	0.0008 (J)	
3/23/2017	0.0007 (J)	
10/4/2017	0.0006 (J)	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	0.00034 (J)	
9/30/2019	0.00037 (J)	
3/26/2020	0.00065 (J)	
9/23/2020	<0.005	
3/8/2021	<0.005	
8/9/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/30/2023		<0.005
8/14/2023		<0.005

	GWA-11	GWA-11
3/7/2007	<0.01	
5/8/2007	<0.01	
7/17/2007	<0.01	
8/28/2007	<0.01	
11/7/2007	<0.01	
5/9/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	<0.01	
10/1/2009	<0.01	
4/14/2010	<0.01	
10/13/2010	<0.01	
4/6/2011	<0.01	
10/4/2011	<0.01	
4/10/2012	<0.01	
9/26/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/4/2014	0.002 (J)	
9/3/2014	0.002 (J)	
4/21/2015	0.002 (J)	
9/29/2015	0.0022 (J)	
3/22/2016	<0.01	
9/7/2016	0.0026 (J)	
3/24/2017	0.0024 (J)	
10/5/2017	0.0023 (J)	
3/15/2018	0.0026 (J)	
10/4/2018	0.0023 (J)	
4/8/2019	0.0023 (J)	
9/30/2019	0.0017 (J)	
3/26/2020	0.002 (J)	
9/22/2020	0.0014 (J)	
3/8/2021	0.001 (J)	
8/10/2021	0.0017 (J)	
2/4/2022		0.0019 (J)
8/8/2022		0.0017 (J)
1/30/2023		0.0017 (J)
8/14/2023		0.0016 (J)

	GWA-2	GWA-2
3/6/2007	<0.005	
5/8/2007	<0.005	
7/7/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/9/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/7/2010	<0.005	
4/6/2011	<0.005	
10/6/2011	<0.005	
4/3/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/9/2013	<0.005	
3/4/2014	0.0007 (J)	
9/3/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/22/2016	<0.005	
9/7/2016	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	<0.005	
9/30/2019	<0.005	
3/26/2020	<0.005	
9/21/2020	<0.005	
3/9/2021	<0.005	
8/9/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/30/2023		<0.005
8/14/2023		<0.005

	GWA-3	GWA-3
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	0.0013 (J)	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
9/7/2016	<0.005	
3/23/2017	0.0022 (J)	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/5/2019	0.00075 (J)	
9/30/2019	<0.005	
3/26/2020	0.0011 (J)	
9/23/2020	<0.005	
3/8/2021	<0.005	
8/9/2021	<0.005	
2/4/2022		0.0009 (J)
8/8/2022		0.00092 (J)
1/30/2023		0.00082 (J)
8/14/2023		0.0021 (J)

	GWA-4	GWA-4
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	0.0032	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	0.0032	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	0.0026	
9/8/2014	0.0017 (J)	
4/21/2015	0.0016 (J)	
9/29/2015	0.0055	
3/22/2016	<0.005	
9/7/2016	0.0014 (J)	
3/24/2017	0.0017 (J)	
10/4/2017	0.0023 (J)	
3/15/2018	0.0024 (J)	
10/4/2018	0.0013 (J)	
4/8/2019	0.00089 (J)	
9/30/2019	0.0013 (J)	
3/26/2020	0.00096 (J)	
9/23/2020	0.00091 (J)	
3/8/2021	<0.005	
8/9/2021	0.001 (J)	
2/4/2022		0.00087 (J)
8/8/2022		<0.005
1/30/2023		<0.005
8/14/2023		<0.005

	GWC-10	GWC-10
3/7/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/9/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/4/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/4/2014	<0.005	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
9/7/2016	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	<0.005	
3/27/2020	0.0023 (J)	
9/25/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/9/2022		<0.005
1/30/2023		<0.005
8/14/2023		<0.005

	GWC-18	GWC-18
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/3/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/5/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/10/2014	0.0013 (J)	
9/3/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/24/2016	<0.005	
9/8/2016	0.0009 (J)	
3/27/2017	0.0006 (J)	
10/5/2017	0.0008 (J)	
3/16/2018	<0.005	
10/5/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	0.0015 (J)	
3/30/2020	0.00048 (J)	
9/24/2020	0.0011 (J)	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		0.00078 (J)
8/9/2022		0.00074 (J)
1/31/2023		<0.005
8/15/2023		<0.005

	GWC-19	GWC-19
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/4/2008	<0.005	
4/14/2009	<0.005	
10/2/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/5/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/10/2014	0.00072 (J)	
9/9/2014	<0.005	
4/22/2015	<0.005	
9/30/2015	<0.005	
3/24/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	0.0062 (J)	
10/5/2017	0.0005 (J)	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	<0.005	
3/31/2020	<0.005	
9/28/2020	<0.005	
3/10/2021	<0.005	
8/10/2021	<0.005	
2/7/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005
8/15/2023		<0.005

	GWC-20	GWC-20
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
10/12/2011	<0.005	
4/9/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/10/2014	0.00074 (J)	
9/9/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	0.0006 (J)	
10/5/2017	<0.005	
3/16/2018	<0.005	
10/5/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	<0.005	
3/31/2020	<0.005	
9/23/2020	<0.005	
3/10/2021	<0.005	
8/10/2021	<0.005	
2/7/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005
8/15/2023		<0.005

	GWC-21	GWC-21
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	0.0055	
11/7/2007	0.0044	
5/7/2008	0.0047	
12/5/2008	<0.005	
4/27/2009	0.0027	
9/30/2009	0.0051	
4/13/2010	0.0031	
10/12/2010	<0.005	
10/5/2011	0.0032	
4/10/2012	<0.005	
9/26/2012	0.0063	
3/13/2013	0.0029	
9/11/2013	0.0046	
3/11/2014	0.002 (J)	
9/9/2014	0.0029	
9/30/2015	0.0025 (J)	
3/24/2016	0.00317 (J)	
9/8/2016	0.0038 (J)	
3/27/2017	0.0024 (J)	
10/5/2017	0.0104	
3/15/2018	0.0026 (J)	
10/4/2018	0.012	
12/11/2018	0.0052 (J)	
4/9/2019	0.0048 (J)	
10/1/2019	0.0031 (J)	
3/31/2020	0.0039 (J)	
9/24/2020	0.0068	
3/9/2021	0.0013 (J)	
8/10/2021	0.0076	
2/7/2022		0.0055
8/9/2022		0.0053
1/31/2023		0.005 (J)
8/15/2023		0.0054

	GWC-22	GWC-22
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/5/2011	<0.005	
4/9/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/11/2014	0.00059 (J)	
9/9/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
9/8/2016	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	<0.005	
3/31/2020	<0.005	
9/23/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/7/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005
8/15/2023		<0.005

	GWC-23	GWC-23
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/12/2011	<0.005	
4/9/2012	<0.005	
9/19/2012	<0.005	
3/13/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	0.0016 (J)	
9/3/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
9/8/2016	0.0011 (J)	
3/27/2017	0.0007 (J)	
10/5/2017	<0.005	
3/15/2018	0.001 (J)	
10/5/2018	0.0014 (J)	
4/8/2019	0.0011 (J)	
10/1/2019	0.0035 (J)	
3/26/2020	0.001 (J)	
9/23/2020	0.00079 (J)	
3/9/2021	<0.005	
8/10/2021	0.0008 (J)	
2/7/2022		0.00084 (J)
8/8/2022		<0.005
1/31/2023		<0.005
8/14/2023		<0.005

	GWC-5	GWC-5
3/7/2007	<0.005	
5/8/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	0.001 (J)	
9/9/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
9/7/2016	<0.005	
3/23/2017	0.0008 (J)	
10/4/2017	<0.005	
3/16/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	0.00098 (J)	
10/1/2019	0.00088 (J)	
3/31/2020	0.0013 (J)	
9/25/2020	0.00078 (J)	
3/9/2021	<0.005	
8/10/2021	0.00085 (J)	
2/4/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005
8/15/2023		<0.005

	GWC-6	GWC-6
3/7/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/1/2009	<0.005	
4/13/2010	<0.005	
10/6/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/18/2012	<0.005	
3/12/2013	<0.005	
9/9/2013	<0.005	
3/5/2014	0.00092 (J)	
9/8/2014	<0.005	
4/22/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
9/7/2016	<0.005	
3/23/2017	<0.005	
10/4/2017	<0.005	
3/16/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	0.00032 (J)	
10/1/2019	0.00042 (J)	
3/31/2020	<0.005	
9/25/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/31/2023		<0.005
8/14/2023		<0.005

	GWC-7	GWC-7
5/9/2007	18 (o)	
7/6/2007	5.9 (o)	
8/28/2007	3.9 (o)	
11/6/2007	3.1 (o)	
5/8/2008	2.1 (o)	
12/2/2008	1.2	
4/8/2009	1.1	
10/1/2009	0.88	
4/13/2010	0.82	
10/7/2010	0.72	
4/5/2011	0.52	
10/4/2011	0.56	
4/3/2012	0.365	
9/18/2012	0.45	
3/12/2013	0.13	
9/10/2013	0.2	
3/5/2014	0.17	
9/8/2014	0.25	
4/21/2015	0.15	
9/29/2015	0.203	
3/23/2016	0.0607	
9/7/2016	0.141	
3/24/2017	0.0313	
10/4/2017	0.093	
3/15/2018	0.057	
10/4/2018	0.11	
4/8/2019	0.03	
10/1/2019	0.07	
3/30/2020	0.037	
9/24/2020	0.042	
3/9/2021	0.035	
8/10/2021	0.057	
2/4/2022		0.039
8/10/2022		0.061
1/31/2023		0.11
8/15/2023		0.095

	GWC-8	GWC-8
5/9/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/13/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/3/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	0.00079 (J)	
9/9/2014	<0.005	
4/22/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
9/8/2016	<0.005	
3/24/2017	<0.005	
10/5/2017	<0.005	
3/14/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	0.00064 (J)	
10/1/2019	0.00063 (J)	
3/27/2020	0.00053 (J)	
9/24/2020	0.001 (J)	
3/9/2021	<0.005	
8/10/2021	0.0073	
2/4/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005
8/15/2023		<0.005

	GWC-9	GWC-9
3/7/2007	<0.01	
5/8/2007	<0.01	
7/6/2007	<0.01	
8/28/2007	<0.01	
11/6/2007	<0.01	
5/8/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	<0.01	
9/30/2009	<0.01	
4/13/2010	<0.01	
10/13/2010	<0.01	
4/5/2011	<0.01	
10/4/2011	<0.01	
4/4/2012	<0.01	
9/19/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	0.003	
3/5/2014	0.0022 (J)	
9/3/2014	<0.01	
4/21/2015	0.0019 (J)	
9/29/2015	0.0019 (J)	
3/23/2016	<0.01	
9/8/2016	0.0023 (J)	
3/27/2017	0.0023 (J)	
10/5/2017	0.0024 (J)	
3/15/2018	0.0023 (J)	
10/5/2018	0.0025 (J)	
4/8/2019	0.0021 (J)	
10/1/2019	0.0022 (J)	
3/27/2020	0.0022 (J)	
9/24/2020	0.0024 (J)	
3/9/2021	0.0014 (J)	
8/10/2021	0.0019 (J)	
2/4/2022		0.0018 (J)
8/9/2022		0.0018 (J)
1/31/2023		0.002 (J)
8/15/2023		0.0017 (J)

	GWA-4	GWA-4
3/6/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/3/2008	<0.005	
4/7/2009	<0.005	
10/2/2009	<0.005	
4/14/2010	<0.005	
10/14/2010	<0.005	
4/5/2011	<0.005	
10/12/2011	<0.005	
4/4/2012	<0.005	
9/24/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/11/2014	<0.005	
9/8/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/22/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
2/1/2017	<0.005	
3/24/2017	<0.005	
10/4/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/8/2019	0.00014 (J)	
9/30/2019	<0.005	
3/26/2020	<0.005	
9/23/2020	<0.005	
3/8/2021	<0.005	
8/9/2021	<0.005	
2/4/2022		<0.005
8/8/2022		<0.005
1/30/2023		<0.005
8/14/2023		<0.005

	GWC-10	GWC-10
3/7/2007	<0.005	
5/8/2007	<0.005	
7/17/2007	<0.005	
8/28/2007	<0.005	
11/7/2007	<0.005	
5/9/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
10/1/2009	<0.005	
4/14/2010	<0.005	
10/13/2010	<0.005	
4/6/2011	<0.005	
10/4/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/4/2014	0.0016 (J)	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
5/17/2016	<0.005	
7/6/2016	<0.005	
9/7/2016	<0.005	
10/18/2016	<0.005	
12/6/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	<0.005	
3/27/2020	<0.005	
9/25/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/9/2022		<0.005
1/30/2023		<0.005
8/14/2023		<0.005

	GWC-21	GWC-21
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/27/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
10/5/2011	<0.005	
4/10/2012	<0.005	
9/26/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/11/2014	0.0024 (J)	
9/9/2014	<0.005	
9/30/2015	<0.005	
3/24/2016	<0.005	
5/18/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/7/2016	<0.005	
2/2/2017	0.0017 (J)	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	<0.005	
3/31/2020	<0.005	
9/24/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/7/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005
8/15/2023		<0.005

	GWC-22	GWC-22
3/6/2007	<0.005	
5/9/2007	<0.005	
7/17/2007	<0.005	
8/29/2007	<0.005	
11/7/2007	<0.005	
5/7/2008	<0.005	
12/5/2008	<0.005	
4/14/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/12/2010	<0.005	
4/6/2011	<0.005	
10/5/2011	<0.005	
4/9/2012	<0.005	
9/25/2012	<0.005	
3/13/2013	<0.005	
9/11/2013	<0.005	
3/11/2014	0.0017 (J)	
9/9/2014	<0.005	
4/23/2015	<0.005	
9/30/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/7/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/7/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/4/2018	<0.005	
4/9/2019	<0.005	
10/1/2019	0.0014 (J)	
3/31/2020	<0.005	
9/23/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	-0.005
2/7/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005
8/15/2023		<0.005

	GWC-9	GWC-9
3/7/2007	<0.005	
5/8/2007	<0.005	
7/6/2007	<0.005	
8/28/2007	<0.005	
11/6/2007	<0.005	
5/8/2008	<0.005	
12/2/2008	<0.005	
4/8/2009	<0.005	
9/30/2009	<0.005	
4/13/2010	<0.005	
10/13/2010	<0.005	
4/5/2011	<0.005	
10/4/2011	<0.005	
4/4/2012	<0.005	
9/19/2012	<0.005	
3/12/2013	<0.005	
9/10/2013	<0.005	
3/5/2014	0.0018 (J)	
9/3/2014	<0.005	
4/21/2015	<0.005	
9/29/2015	<0.005	
3/23/2016	<0.005	
5/18/2016	<0.005	
7/6/2016	<0.005	
9/8/2016	<0.005	
10/19/2016	<0.005	
12/8/2016	<0.005	
2/2/2017	<0.005	
3/27/2017	<0.005	
10/5/2017	<0.005	
3/15/2018	<0.005	
10/5/2018	<0.005	
4/8/2019	<0.005	
10/1/2019	<0.005	
3/27/2020	<0.005	
9/24/2020	<0.005	
3/9/2021	<0.005	
8/10/2021	<0.005	
2/4/2022		<0.005
8/9/2022		<0.005
1/31/2023		<0.005
8/15/2023		<0.005

Constituent: Vanadium (mg/L) Analysis Run 10/25/2023 12:02 PM View: Appendix I

Plant Hammond Data: Huffaker Road Landfill

·	GWA-1	GWA-1
3/6/2007	<0.01	
5/8/2007	<0.01	
7/7/2007	<0.01	
8/28/2007	<0.01	
11/6/2007	<0.01	
5/9/2008	<0.01	
12/3/2008	<0.01	
4/7/2009	<0.01	
10/1/2009	<0.01	
4/14/2010	<0.01	
10/13/2010	<0.01	
4/6/2011	<0.01	
10/10/2011	<0.01	
4/3/2012	<0.01	
9/24/2012	<0.01	
3/12/2013	<0.01	
9/11/2013	<0.01	
3/4/2014	<0.01	
9/3/2014	<0.01	
4/21/2015	<0.01	
9/30/2015	<0.01	
3/22/2016	<0.01	
9/7/2016	<0.01	
3/23/2017	<0.01	
10/4/2017	<0.01	
3/14/2018	<0.01	
10/4/2018	<0.01	
4/8/2019	<0.01	
9/30/2019	<0.01	
3/26/2020	<0.01	
9/23/2020	<0.01	
3/8/2021	<0.01	
8/9/2021	0.0019 (J)	
2/4/2022		<0.01
8/8/2022		<0.01
1/30/2023		0.0022 (J)
8/14/2023		<0.01

_			
		GWC-21	GWC-21
	3/6/2007	<0.01	
	5/9/2007	<0.01	
	7/17/2007	<0.01	
	8/29/2007	<0.01	
	11/7/2007	<0.01	
	5/7/2008	<0.01	
	12/5/2008	<0.01	
	4/27/2009	<0.01	
	9/30/2009	<0.01	
	4/13/2010	<0.01	
	10/12/2010	<0.01	
	10/5/2011	<0.01	
	4/10/2012	<0.01	
	9/26/2012	<0.01	
	3/13/2013	<0.01	
	9/11/2013	<0.01	
	3/11/2014	<0.01	
	9/9/2014	0.0029 (J)	
	9/30/2015	0.001 (J)	
	3/24/2016	<0.01	
	9/8/2016	<0.01	
	3/27/2017	<0.01	
	10/5/2017	<0.01	
	3/15/2018	<0.01	
	10/4/2018	<0.01	
	4/9/2019	<0.01	
	10/1/2019	<0.01	
	3/31/2020	<0.01	
	9/24/2020	<0.01	
	3/9/2021	<0.01	
	8/10/2021	<0.01	
	2/7/2022		<0.01
	8/9/2022		<0.01
	1/31/2023		<0.01
	8/15/2023		<0.01

_			
		GWC-23	GWC-23
	3/6/2007	<0.01	
	5/9/2007	<0.01	
	7/17/2007	<0.01	
	8/29/2007	<0.01	
	11/7/2007	<0.01	
	5/7/2008	<0.01	
	12/5/2008	<0.01	
	4/14/2009	<0.01	
	10/1/2009	<0.01	
	4/14/2010	<0.01	
	10/13/2010	<0.01	
	4/6/2011	<0.01	
	10/12/2011	<0.01	
	4/9/2012	<0.01	
	9/19/2012	<0.01	
	3/13/2013	<0.01	
	9/10/2013	<0.01	
	3/11/2014	<0.01	
	9/3/2014	<0.01	
	4/23/2015	<0.01	
	9/30/2015	<0.01	
	3/23/2016	<0.01	
	9/8/2016	<0.01	
	3/27/2017	<0.01	
	10/5/2017	<0.01	
	3/15/2018	<0.01	
	10/5/2018	<0.01	
	4/8/2019	0.00017 (J)	
	10/1/2019	<0.01	
	3/26/2020	<0.01	
	9/23/2020	<0.01	
	3/9/2021	<0.01	
	8/10/2021	<0.01	
	2/7/2022		<0.01
	8/8/2022		<0.01
	1/31/2023		<0.01
	8/14/2023		<0.01

	GWC-5	GWC-5
3/7/2007	<0.01	
5/8/2007	<0.01	
7/6/2007	<0.01	
8/28/2007	<0.01	
11/6/2007	<0.01	
5/8/2008	<0.01	
12/3/2008	<0.01	
4/7/2009	<0.01	
10/1/2009	<0.01	
4/14/2010	<0.01	
10/14/2010	<0.01	
4/5/2011	<0.01	
10/12/2011	<0.01	
4/4/2012	<0.01	
9/24/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/5/2014	<0.01	
9/9/2014	0.00093 (J)	
4/21/2015	<0.01	
9/29/2015	<0.01	
3/23/2016	<0.01	
9/7/2016	<0.01	
3/23/2017	<0.01	
10/4/2017	<0.01	
3/16/2018	<0.01	
10/4/2018	<0.01	
4/9/2019	<0.01	
10/1/2019	<0.01	
3/31/2020	<0.01	
9/25/2020	<0.01	
3/9/2021	<0.01	
8/10/2021	<0.01	
2/4/2022		<0.01
8/9/2022		<0.01
1/31/2023		<0.01
8/15/2023		<0.01

 $Constituent: Vanadium \, (mg/L) \quad Analysis \, Run \, 10/25/2023 \, 12:02 \, PM \quad View: \, Appendix \, I$

Plant Hammond Data: Huffaker Road Landfill

	GWC-7	GWC-7
5/9/2007	<0.01	
7/6/2007	<0.01	
8/28/2007		
11/6/2007		
5/8/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	<0.01	
10/1/2009	0.0039	
4/13/2010	<0.01	
10/7/2010		
4/5/2011	0.0025	
10/4/2011	0.0027	
4/3/2012	<0.01	
9/18/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/5/2014	<0.01	
9/8/2014	0.0012 (J)	
4/21/2015	0.0015 (J)	
9/29/2015	<0.01	
3/23/2016	<0.01	
9/7/2016	<0.01	
3/24/2017	<0.01	
10/4/2017	<0.01	
3/15/2018	<0.01	
10/4/2018	<0.01	
4/8/2019	<0.01	
10/1/2019	<0.01	
3/30/2020	<0.01	
9/24/2020	<0.01	
3/9/2021	<0.01	
8/10/2021	<0.01	
2/4/2022		<0.01
8/10/2022		<0.01
1/31/2023		<0.01
8/15/2023		<0.01

 $Constituent: Vanadium \, (mg/L) \quad Analysis \, Run \, 10/25/2023 \, 12:02 \, PM \quad View: \, Appendix \, I$

Plant Hammond Data: Huffaker Road Landfill

	GWC-9	GWC-9
3/7/2007	<0.01	
5/8/2007	<0.01	
7/6/2007	<0.01	
8/28/2007	<0.01	
11/6/2007	<0.01	
5/8/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	0.0029	
9/30/2009	<0.01	
4/13/2010	<0.01	
10/13/2010	<0.01	
4/5/2011	<0.01	
10/4/2011	<0.01	
4/4/2012	<0.01	
9/19/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/5/2014	<0.01	
9/3/2014	<0.01	
4/21/2015	<0.01	
9/29/2015	<0.01	
3/23/2016	<0.01	
9/8/2016	<0.01	
3/27/2017	<0.01	
10/5/2017	<0.01	
3/15/2018	<0.01	
10/5/2018	<0.01	
4/8/2019	<0.01	
10/1/2019	<0.01	
3/27/2020	<0.01	
9/24/2020	<0.01	
3/9/2021	<0.01	
8/10/2021	<0.01	
2/4/2022		<0.01
8/9/2022		<0.01
1/31/2023		<0.01
8/15/2023		<0.01

	GWA-1	GWA-1
3/6/2007	<0.01	
5/8/2007	<0.01	
7/7/2007	<0.01	
8/28/2007	<0.01	
11/6/2007	<0.01	
5/9/2008	<0.01	
12/3/2008	<0.01	
4/7/2009	0.0028	
10/1/2009	<0.01	
4/14/2010	<0.01	
10/13/2010	<0.01	
4/6/2011	<0.01	
10/10/2011	<0.01	
4/3/2012	<0.01	
9/24/2012	<0.01	
3/12/2013	<0.01	
9/11/2013	<0.01	
3/4/2014	0.0026	
9/3/2014	0.001 (J)	
4/21/2015	<0.01	
9/30/2015	<0.01	
3/22/2016	<0.01	
9/7/2016	0.0047 (J)	
3/23/2017	<0.01	
10/4/2017	<0.01	
3/14/2018	0.0032 (J)	
10/4/2018	0.003 (J)	
4/8/2019	<0.01	
9/30/2019	0.0032 (J)	
3/26/2020	<0.01	
9/23/2020	0.0025 (J)	
3/8/2021	<0.01	
8/9/2021	<0.01	
2/4/2022		<0.01
8/8/2022		<0.01
1/30/2023		<0.01
8/14/2023		<0.01

	GWA-11	GWA-11
3/7/2007	<0.01	
5/8/2007	0.0025	
7/17/2007	0.0047	
8/28/2007	0.0033	
11/7/2007	<0.01	
5/9/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	<0.01	
10/1/2009	<0.01	
4/14/2010	<0.01	
10/13/2010	<0.01	
4/6/2011	<0.01	
10/4/2011	<0.01	
4/10/2012	<0.01	
9/26/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/4/2014	<0.01	
9/3/2014	0.00074 (J)	
4/21/2015	<0.01	
9/29/2015	0.0024 (J)	
3/22/2016	<0.01	
9/7/2016	0.0023 (J)	
3/24/2017	0.0068 (J)	
10/5/2017	<0.01	
3/15/2018	0.0042 (J)	
10/4/2018	0.0046 (J)	
4/8/2019	0.0024 (J)	
9/30/2019	0.004 (J)	
3/26/2020	<0.01	
9/22/2020	<0.01	
3/8/2021	<0.01	
8/10/2021	<0.01	
2/4/2022		<0.01
8/8/2022		<0.01
1/30/2023		<0.01
8/14/2023		<0.01

	GWA-2	GWA-2
3/6/2007	<0.01	
5/8/2007	<0.01	
7/7/2007	<0.01	
8/28/2007	0.0026	
11/6/2007	<0.01	
5/9/2008	<0.01	
12/3/2008	<0.01	
4/7/2009	<0.01	
10/1/2009	<0.01	
4/13/2010	<0.01	
10/7/2010	<0.01	
4/6/2011	<0.01	
10/6/2011	<0.01	
4/3/2012	<0.01	
9/19/2012	<0.01	
3/12/2013	<0.01	
9/9/2013	<0.01	
3/4/2014	0.0035	
9/3/2014	0.0015 (J)	
4/22/2015	<0.01	
9/30/2015	0.0026 (J)	
3/22/2016	<0.01	
9/7/2016	0.0024 (J)	
3/23/2017	<0.01	
10/4/2017	0.0017 (J)	
3/14/2018	0.0023 (J)	
10/4/2018	0.0041 (J)	
4/8/2019	0.0014 (J)	
9/30/2019	0.0043 (J)	
3/26/2020	<0.01	
9/21/2020	<0.01	
3/9/2021	<0.01	
8/9/2021	<0.01	
2/4/2022		<0.01
8/8/2022		<0.01
1/30/2023		<0.01
8/14/2023		<0.01

	GWA-3	GWA-3
3/6/2007	<0.01	
5/8/2007	<0.01	
7/17/2007	0.0033	
8/28/2007	<0.01	
11/6/2007	<0.01	
5/8/2008	0.0033	
12/3/2008	0.0054	
4/7/2009	<0.01	
10/2/2009	<0.01	
4/14/2010	0.003	
10/14/2010	<0.01	
4/5/2011	<0.01	
10/12/2011	<0.01	
4/4/2012	<0.01	
9/26/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/11/2014	0.0037	
9/8/2014	0.00087 (J)	
4/21/2015	0.002 (J)	
9/29/2015	0.0021 (J)	
3/22/2016	<0.01	
9/7/2016	0.0034 (J)	
3/23/2017	0.0031 (J)	
10/4/2017	<0.01	
3/15/2018	0.0028 (J)	
10/4/2018	0.0043 (J)	
4/5/2019	0.0013 (J)	
9/30/2019	0.0045 (J)	
3/26/2020	<0.01	
9/23/2020	<0.01	
3/8/2021	<0.01	
8/9/2021	<0.01	
2/4/2022		<0.01
8/8/2022		<0.01
1/30/2023		<0.01
8/14/2023		<0.01

	GWA-4	GWA-4
3/6/2007	<0.01	
5/8/2007	<0.01	
7/17/2007	<0.01	
8/28/2007	0.0026	
11/6/2007	<0.01	
5/8/2008	0.0037	
12/3/2008	0.003	
4/7/2009	0.0045	
10/2/2009	0.0027	
4/14/2010	<0.01	
10/14/2010	0.0041	
4/5/2011	<0.01	
10/12/2011	0.0033	
4/4/2012	<0.01	
9/24/2012	0.0039	
3/12/2013	<0.01	
9/10/2013	0.0035	
3/11/2014	0.0045	
9/8/2014	0.0026	
4/21/2015	0.0028	
9/29/2015	0.008 (J)	
3/22/2016	<0.01	
9/7/2016	0.0035 (J)	
3/24/2017	0.0095 (J)	
10/4/2017	0.0031 (J)	
3/15/2018	0.0041 (J)	
10/4/2018	0.0058 (J)	
4/8/2019	0.0023 (J)	
9/30/2019	0.0059 (J)	
3/26/2020	<0.01	
9/23/2020	0.0025 (J)	
3/8/2021	0.0034 (J)	
8/9/2021	<0.01	
2/4/2022		<0.01
8/8/2022		<0.01
1/30/2023		<0.01
8/14/2023		<0.01

	GWC-10	GWC-10
3/7/2007	<0.01	
5/8/2007	<0.01	
7/17/2007	0.0069	
8/28/2007	<0.01	
11/7/2007	<0.01	
5/9/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	<0.01	
10/1/2009	<0.01	
4/14/2010	<0.01	
10/13/2010	<0.01	
4/6/2011	<0.01	
10/4/2011	<0.01	
4/10/2012	<0.01	
9/26/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/4/2014	0.0026	
9/3/2014	0.00079 (J)	
4/21/2015	<0.01	
9/30/2015	0.0018 (J)	
3/23/2016	<0.01	
9/7/2016	<0.01	
3/27/2017	0.0014 (J)	
10/5/2017	<0.01	
3/15/2018	<0.01	
10/4/2018	0.0033 (J)	
4/9/2019	<0.01	
10/1/2019	0.0049 (J)	
3/27/2020	<0.01	
9/25/2020	<0.01	
3/9/2021	<0.01	
8/10/2021	<0.01	
2/4/2022		<0.01
8/9/2022		<0.01
1/30/2023		<0.01
8/14/2023		<0.01

	GWC-18	GWC-18
3/7/2007	<0.01	
5/9/2007	0.0026	
7/17/2007	0.0043	
8/28/2007	<0.01	
11/7/2007	<0.01	
5/7/2008	<0.01	
12/3/2008	<0.01	
4/14/2009	<0.01	
10/1/2009	<0.01	
4/13/2010	<0.01	
10/12/2010	<0.01	
4/6/2011	<0.01	
10/12/2011	<0.01	
4/5/2012	<0.01	
9/19/2012	<0.01	
3/13/2013	<0.01	
9/10/2013	<0.01	
3/10/2014	0.0022 (J)	
9/3/2014	0.0013 (J)	
4/22/2015	0.0019 (J)	
9/30/2015	0.0037 (J)	
3/24/2016	<0.01	
9/8/2016	0.0024 (J)	
3/27/2017	<0.01	
10/5/2017	<0.01	
3/16/2018	<0.01	
10/5/2018	0.0029 (J)	
4/9/2019	0.0037 (J)	
10/1/2019	0.006 (J)	
3/30/2020	<0.01	
9/24/2020	<0.01	
3/9/2021	<0.01	
8/10/2021	<0.01	
2/4/2022		<0.01
8/9/2022		<0.01
1/31/2023		<0.01
8/15/2023		<0.01

	GWC-19	GWC-19
3/6/2007	<0.01	
5/9/2007	0.0025	
7/17/2007	0.0035	
8/28/2007	<0.01	
11/7/2007	<0.01	
5/7/2008	<0.01	
12/4/2008	<0.01	
4/14/2009	<0.01	
10/2/2009	<0.01	
4/13/2010	0.0043	
10/12/2010	<0.01	
4/6/2011	<0.01	
10/12/2011	<0.01	
4/5/2012	<0.01	
9/25/2012	<0.01	
3/13/2013	<0.01	
9/11/2013	<0.01	
3/10/2014	0.0031	
9/9/2014	0.00098 (J)	
4/22/2015	0.0015 (J)	
9/30/2015	0.002 (J)	
3/24/2016	<0.01	
9/8/2016	0.0029 (J)	
3/27/2017	0.0019 (J)	
10/5/2017	0.0024 (J)	
3/15/2018	<0.01	
10/4/2018	0.013	
4/9/2019	<0.01	
10/1/2019	0.0049 (J)	
3/31/2020	<0.01	
9/28/2020	0.0033 (J)	
3/10/2021	<0.01	
8/10/2021	<0.01	
2/7/2022		<0.01
8/9/2022		<0.01
1/31/2023		<0.01
8/15/2023		<0.01

	GWC-20	GWC-20
3/7/2007	<0.01	
5/9/2007	<0.01	
7/17/2007	<0.01	
8/29/2007	<0.01	
11/7/2007	<0.01	
5/7/2008	<0.01	
12/5/2008	<0.01	
4/14/2009	<0.01	
9/30/2009	<0.01	
4/13/2010	<0.01	
10/12/2010	<0.01	
10/12/2011	<0.01	
4/9/2012	<0.01	
9/25/2012	<0.01	
3/13/2013	<0.01	
9/11/2013	<0.01	
3/10/2014	0.0024 (J)	
9/9/2014	0.00078 (J)	
4/23/2015	<0.01	
9/30/2015	0.0016 (J)	
3/23/2016	<0.01	
9/8/2016	<0.01	
3/27/2017	0.0017 (J)	
10/5/2017	0.0016 (J)	
3/16/2018	<0.01	
10/5/2018	<0.01	
4/9/2019	<0.01	
10/1/2019	0.0063 (J)	
3/31/2020	<0.01	
9/23/2020	<0.01	
3/10/2021	<0.01	
8/10/2021	<0.01	
2/7/2022		<0.01
8/9/2022		<0.01
1/31/2023		<0.01
8/15/2023		<0.01

_			
		GWC-21	GWC-21
	3/6/2007	<0.01	
	5/9/2007	<0.01	
	7/17/2007	0.0031	
	8/29/2007	0.0056	
	11/7/2007	0.0059	
	5/7/2008	0.0059	
	12/5/2008	<0.01	
	4/27/2009	0.0051	
	9/30/2009	0.0066	
	4/13/2010	0.0041	
	10/12/2010	0.004	
	10/5/2011	0.0043	
	4/10/2012	0.0108	
	9/26/2012	0.0066	
	3/13/2013	0.0035	
	9/11/2013	0.005	
	3/11/2014	0.005	
	9/9/2014	0.0041	
	9/30/2015	0.0031 (J)	
	3/24/2016	0.00393 (J)	
	9/8/2016	0.0047 (J)	
	3/27/2017	0.0036 (J)	
	10/5/2017	0.0065 (J)	
	3/15/2018	0.0053 (J)	
	10/4/2018	0.0077 (J)	
	4/9/2019	0.0041 (J)	
	10/1/2019	0.0078 (J)	
	3/31/2020	<0.01	
	9/24/2020	0.0046 (J)	
	3/9/2021	0.0033 (J)	
	8/10/2021	<0.01	
	2/7/2022		<0.01
	8/9/2022		<0.01
	1/31/2023		<0.01
	8/15/2023		<0.01

	GWC-22	GWC-22
3/6/2007	<0.01	
5/9/2007	0.0035	
7/17/2007	<0.01	
8/29/2007	<0.01	
11/7/2007	<0.01	
5/7/2008	<0.01	
12/5/2008	<0.01	
4/14/2009	<0.01	
9/30/2009	<0.01	
4/13/2010	<0.01	
10/12/2010	<0.01	
4/6/2011	<0.01	
10/5/2011	<0.01	
4/9/2012	<0.01	
9/25/2012	<0.01	
3/13/2013	<0.01	
9/11/2013	<0.01	
3/11/2014	0.0037	
9/9/2014	0.0006 (J)	
4/23/2015	<0.01	
9/30/2015	0.0021 (J)	
3/23/2016	<0.01	
9/8/2016	<0.01	
3/27/2017	<0.01	
10/5/2017	<0.01	
3/15/2018	<0.01	
10/4/2018	0.003 (J)	
4/9/2019	<0.01	
10/1/2019	0.0054 (J)	
3/31/2020	<0.01	
9/23/2020	<0.01	
3/9/2021	<0.01	
8/10/2021	<0.01	
2/7/2022		<0.01
8/9/2022		<0.01
1/31/2023		<0.01
8/15/2023		<0.01

	GWC-23	GWC-23
3/6/2007	0.0054	
5/9/2007	0.0041	
7/17/2007	0.005	
8/29/2007	0.0044	
11/7/2007	<0.01	
5/7/2008	<0.01	
12/5/2008	<0.01	
4/14/2009	<0.01	
10/1/2009	<0.01	
4/14/2010	<0.01	
10/13/2010	<0.01	
4/6/2011	<0.01	
10/12/2011	<0.01	
4/9/2012	<0.01	
9/19/2012	<0.01	
3/13/2013	<0.01	
9/10/2013	<0.01	
3/11/2014	0.0033	
9/3/2014	0.0014 (J)	
4/23/2015	0.0024 (J)	
9/30/2015	0.0041 (J)	
3/23/2016	<0.01	
9/8/2016	<0.01	
3/27/2017	0.0014 (J)	
10/5/2017	0.0014 (J)	
3/15/2018	0.0039 (J)	
10/5/2018	0.0048 (J)	
4/8/2019	0.0016 (J)	
10/1/2019	0.0057 (J)	
3/26/2020	<0.01	
9/23/2020	0.0022 (J)	
3/9/2021	<0.01	
8/10/2021	<0.01	
2/7/2022		<0.01
8/8/2022		<0.01
1/31/2023		<0.01
8/14/2023		<0.01

	GWC-5	GWC-5
3/7/2007	0.0064	
5/8/2007	<0.01	
7/6/2007	<0.01	
8/28/2007	0.0025	
11/6/2007	<0.01	
5/8/2008	<0.01	
12/3/2008	<0.01	
4/7/2009	0.0025	
10/1/2009	<0.01	
4/14/2010	<0.01	
10/14/2010	<0.01	
4/5/2011	0.0025	
10/12/2011	0.0037	
4/4/2012	<0.01	
9/24/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/5/2014	0.0028	
9/9/2014	0.00058 (J)	
4/21/2015	0.0043	
9/29/2015	0.0031 (J)	
3/23/2016	0.00272 (J)	
9/7/2016	<0.01	
3/23/2017	0.0026 (J)	
10/4/2017	<0.01	
3/16/2018	<0.01	
10/4/2018	0.0028 (J)	
4/9/2019	<0.01	
10/1/2019	0.0053 (J)	
3/31/2020	<0.01	
9/25/2020	<0.01	
3/9/2021	<0.01	
8/10/2021	<0.01	
2/4/2022		<0.01
8/9/2022		<0.01
1/31/2023		<0.01
8/15/2023		<0.01

	GWC-6	GWC-6
3/7/2007	<0.01	
5/9/2007	<0.01	
7/17/2007	<0.01	
8/28/2007	<0.01	
11/6/2007	<0.01	
5/8/2008	<0.01	
12/3/2008	<0.01	
4/7/2009	<0.01	
10/1/2009	<0.01	
4/13/2010	<0.01	
10/6/2010	<0.01	
4/5/2011	<0.01	
10/4/2011	<0.01	
4/3/2012	<0.01	
9/18/2012	<0.01	
3/12/2013	<0.01	
9/9/2013	<0.01	
3/5/2014	0.0026	
9/8/2014	0.00055 (J)	
4/22/2015	<0.01	
9/29/2015	0.0026 (J)	
3/23/2016	<0.01	
9/7/2016	0.0024 (J)	
3/23/2017	0.0035 (J)	
10/4/2017	<0.01	
3/16/2018	0.0029 (J)	
10/4/2018	0.0039 (J)	
4/8/2019	0.0013 (J)	
10/1/2019	0.0056 (J)	
3/31/2020	<0.01	
9/25/2020	<0.01	
3/9/2021	<0.01	
8/10/2021	<0.01	
2/4/2022		<0.01
8/8/2022		<0.01
1/31/2023		<0.01
8/14/2023		<0.01

	GWC-7	GWC-7
5/9/2007	45 (o)	
7/6/2007	16 (o)	
8/28/2007	11 (o)	
11/6/2007	8.3	
5/8/2008	5	
12/2/2008	3.2	
4/8/2009	2.4	
10/1/2009	1.9	
4/13/2010	1.9	
10/7/2010	1.6	
4/5/2011	1.1	
10/4/2011	1.1	
4/3/2012	0.75	
9/18/2012	0.88	
3/12/2013	0.23	
9/10/2013	0.36	
3/5/2014	0.33	
9/8/2014	0.47	
4/21/2015	0.27	
9/29/2015	0.359	
3/23/2016	0.102	
9/7/2016	0.24	
3/24/2017	0.0512	
10/4/2017	0.159	
3/15/2018	0.12	
10/4/2018	0.22	
4/8/2019	0.051	
10/1/2019	0.12	
3/30/2020	0.051	
9/24/2020	0.07	
3/9/2021	0.057	
8/10/2021	0.093	
2/4/2022		0.07
8/10/2022		0.082
1/31/2023		0.19
8/15/2023		0.2

_			
		GWC-8	GWC-8
	5/9/2007	0.0038	
	7/6/2007	<0.01	
	8/28/2007	<0.01	
	11/6/2007	<0.01	
	5/8/2008	<0.01	
	12/2/2008	<0.01	
	4/8/2009	<0.01	
	9/30/2009	<0.01	
	4/13/2010	<0.01	
	10/13/2010	<0.01	
	4/5/2011	<0.01	
	10/4/2011	<0.01	
	4/3/2012	<0.01	
	9/19/2012	<0.01	
	3/12/2013	<0.01	
	9/10/2013	<0.01	
	3/5/2014	0.0028	
	9/9/2014	0.0014 (J)	
	4/22/2015	<0.01	
	9/29/2015	0.0016 (J)	
	3/23/2016	<0.01	
	9/8/2016	<0.01	
	3/24/2017	0.0031 (J)	
	10/5/2017	<0.01	
	3/14/2018	0.0053 (J)	
	10/4/2018	0.0031 (J)	
	4/8/2019	0.0012 (J)	
	10/1/2019	0.0055 (J)	
	3/27/2020	<0.01	
	9/24/2020	<0.01	
	3/9/2021	<0.01	
	8/10/2021	<0.01	
	2/4/2022		<0.01
	8/9/2022		<0.01
	1/31/2023		<0.01
	8/15/2023		<0.01

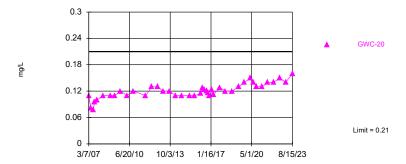
	GWC-9	GWC-9
3/7/2007	<0.01	
5/8/2007	0.0027	
7/6/2007	0.0032	
8/28/2007	0.0026	
11/6/2007	<0.01	
5/8/2008	<0.01	
12/2/2008	<0.01	
4/8/2009	<0.01	
9/30/2009	<0.01	
4/13/2010	<0.01	
10/13/2010	<0.01	
4/5/2011	<0.01	
10/4/2011	<0.01	
4/4/2012	<0.01	
9/19/2012	<0.01	
3/12/2013	<0.01	
9/10/2013	<0.01	
3/5/2014	0.0029	
9/3/2014	0.0011 (J)	
4/21/2015	<0.01	
9/29/2015	0.0034 (J)	
3/23/2016	<0.01	
9/8/2016	<0.01	
3/27/2017	0.0014 (J)	
10/5/2017	0.0013 (J)	
3/15/2018	<0.01	
10/5/2018	0.0044 (J)	
4/8/2019	0.0016 (J)	
10/1/2019	0.0052 (J)	
3/27/2020	<0.01	
9/24/2020	<0.01	
3/9/2021	<0.01	
8/10/2021	<0.01	
2/4/2022		<0.01
8/9/2022		<0.01
1/31/2023		<0.01
8/15/2023		<0.01

FIGURE E.

Appendix I Interwell Prediction Limit - Two-Step - All Results (No Significant)

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 10/25/2023, 9:57 AM

 Constituent
 Well
 Upper Lim. Lower Lim. Date
 Observ.
 Sig.
 Bg Me and Index (mg/L)
 Std. Dev.
 WNDs (MD.s)
 ND Adj.
 Transform Alpha
 Method


 Barium (mg/L)
 GWC-20
 0.21
 n/a
 8/15/2023
 0.16
 No
 210
 n/a
 n/a
 n/a
 0.00004912
 NP Inter (normality) 1 of 2

Sanitas™ v.10.0.13 Software licensed to . UG

Within Limit

Prediction Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 210 background values. Annual per-constituent alpha = 0.001178. Individual comparison alpha = 0.00004912 (1 of 2). Assumes 11 future values.

Constituent: Barium Analysis Run 10/25/2023 9:56 AM View: Appendix I - Two-Step
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Barium (mg/L) Analysis Run 10/25/2023 9:57 AM View: Appendix I - Two-Step Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

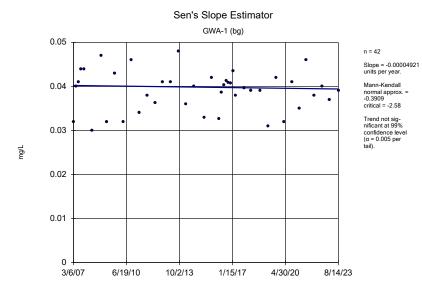
	GWA-1 (bg)	GWA-4 (bg)	GWA-3 (bg)	GWA-2 (bg)	GWC-20	GWA-11 (bg)
3/6/2007	0.032	0.13	0.17	0.12		
3/7/2007					0.11	0.03
5/8/2007	0.04	0.12	0.21	0.11		0.032
5/9/2007					0.082	
7/7/2007	0.041			0.11		
7/17/2007		0.12	0.21		0.078	0.028
8/28/2007	0.044	0.13	0.2	0.13		0.03
8/29/2007					0.096	
11/6/2007	0.044	0.12	0.19	0.12		
11/7/2007					0.1	0.032
5/7/2008					0.11	
5/8/2008		0.13	0.2			
5/9/2008	0.03			0.12		0.032
12/2/2008						0.036
12/3/2008	0.047	0.14	0.18	0.12		
12/5/2008					0.11	
4/7/2009	0.032	0.097	0.2	0.13		
4/8/2009						0.04
4/14/2009					0.11	
9/30/2009					0.12	
10/1/2009	0.043			0.14		0.039
10/2/2009		0.11	0.2			
4/13/2010				0.15	0.11	
4/14/2010	0.032	0.059	0.2			0.041
10/7/2010				0.16		
10/12/2010					0.12	
10/13/2010	0.046					0.039
10/14/2010		0.053	0.18			
4/5/2011		0.042	0.16			
4/6/2011	0.034			0.14		0.034
10/4/2011						0.032
10/6/2011				0.16		
10/10/2011	0.038					
10/12/2011		0.048	0.15		0.11	
4/3/2012	0.0363			0.165		
4/4/2012		0.044	0.165			
4/9/2012					0.13	
4/10/2012						0.0425
9/19/2012				0.16		
9/24/2012	0.041	0.048				
9/25/2012					0.13	
9/26/2012			0.17			0.035
3/12/2013	0.041	0.043	0.17	0.16		0.035
3/13/2013					0.12	
9/9/2013				0.17		
9/10/2013		0.042	0.18			0.035
9/11/2013	0.048				0.12	
3/4/2014	0.036			0.16		0.031
3/10/2014					0.11	
3/11/2014		0.04	0.17			
9/3/2014	0.04			0.17		0.033
9/8/2014		0.042	0.16			

Constituent: Barium (mg/L) Analysis Run 10/25/2023 9:57 AM View: Appendix I - Two-Step Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-1 (bg)	GWA-4 (bg)	GWA-3 (bg)	GWA-2 (bg)	GWC-20	GWA-11 (bg)
9/9/2014					0.11	
4/21/2015	0.033	0.05	0.16			0.03
4/22/2015				0.17		
4/23/2015					0.11	
9/29/2015		0.044	0.14			0.031
9/30/2015	0.042			0.15	0.11	
3/22/2016	0.0326	0.0397	0.188	0.197		0.0327
3/23/2016					0.115	
5/17/2016	0.0387	0.0351	0.193	0.178		0.0323
5/18/2016					0.128	
7/5/2016	0.0403		0.172	0.182		
7/6/2016		0.0475				0.0344
7/7/2016					0.124	
9/7/2016	0.0413	0.0415	0.164	0.172		0.0324
9/8/2016					0.121	
10/18/2016	0.0409	0.0424	0.138	0.174		0.0311
10/19/2016					0.117	
12/6/2016	0.0408	0.0528	0.149			0.0311
12/7/2016				0.167	0.11	
1/31/2017	0.0435			0.176		
2/1/2017		0.0482	0.121			0.0332
2/3/2017					0.123	
3/23/2017	0.038		0.143	0.157		
3/24/2017		0.0595				0.032
3/27/2017					0.112	
10/4/2017	0.0396	0.0486	0.139	0.143		
10/5/2017					0.128	0.0325
3/14/2018	0.039			0.17		
3/15/2018		0.04	0.17			0.031
3/16/2018					0.12	
10/4/2018	0.039	0.05	0.16	0.18		0.033
10/5/2018					0.12	
4/5/2019			0.13			
4/8/2019	0.031	0.047		0.15		0.031
4/9/2019					0.13	
9/30/2019	0.042	0.051	0.14	0.17		0.03
10/1/2019					0.14	
3/26/2020	0.032	0.049	0.14	0.16		0.031
3/31/2020					0.15	
6/19/2020					0.14 (R)	
9/21/2020				0.18		
9/22/2020						0.031
9/23/2020	0.041	0.043	0.14		0.13	
3/8/2021	0.035	0.052	0.12			0.031
3/9/2021				0.17		
3/10/2021					0.13	
8/9/2021	0.046	0.034	0.12	0.19		
8/10/2021					0.14	0.03
2/4/2022	0.038	0.037	0.081	0.18		0.031
2/7/2022					0.14	
8/8/2022	0.04	0.04	0.1	0.18		0.029
8/9/2022					0.15	

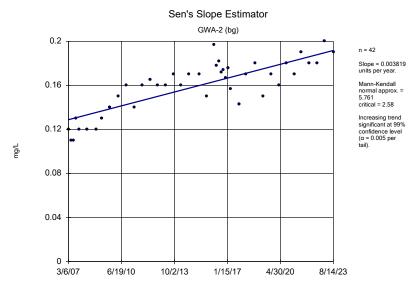
Constituent: Barium (mg/L) Analysis Run 10/25/2023 9:57 AM View: Appendix I - Two-Step Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-1 (bg)	GWA-4 (bg)	GWA-3 (bg)	GWA-2 (bg)	GWC-20	GWA-11 (bg)
1/30/2023	0.037	0.037	0.07	0.2		0.03
1/31/2023					0.14	
8/14/2023	0.039	0.045	0.087	0.19		0.028
8/15/2023					0.16	

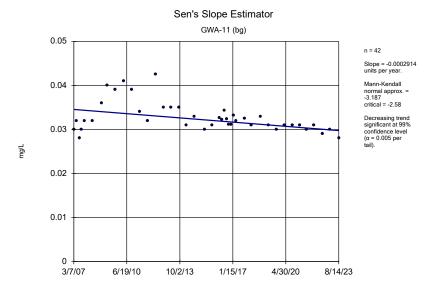

FIGURE F.

Appendix I Trend Tests - Significant Results Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 10/25/2023, 10:14 AM

	Plant Hammond Client: S	outnern Company	Data: H	uπaker Roa	id Landfill	Printed	10/25/2023,			
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Alpha</u>	Method
Barium (mg/L)	GWA-11 (bg)	-0.0002914	-3.187	-2.58	Yes	42	0	n/a	0.01	NP
Barium (mg/L)	GWA-2 (bg)	0.003819	5.761	2.58	Yes	42	0	n/a	0.01	NP
Barium (mg/L)	GWA-3 (bg)	-0.00594	-6.317	-2.58	Yes	42	0	n/a	0.01	NP
Barium (mg/L)	GWA-4 (bg)	-0.002178	-3.96	-2.58	Yes	42	0	n/a	0.01	NP
Barium (mg/L)	GWC-20	0.002647	5.933	2.58	Yes	42	0	n/a	0.01	NP

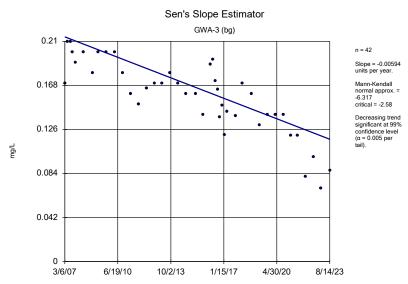

Appendix I Trend Tests - All Results

	Plant Hammond Client:	ent: Southern Company Data: Huffaker Road Landfill Prin			Printed	Printed 10/25/2023, 10:14 AM					
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Alpha</u>	Method	
Barium (mg/L)	GWA-1 (bg)	-0.00004921	-0.3909	-2.58	No	42	0	n/a	0.01	NP	
Barium (mg/L)	GWA-11 (bg)	-0.0002914	-3.187	-2.58	Yes	42	0	n/a	0.01	NP	
Barium (mg/L)	GWA-2 (bg)	0.003819	5.761	2.58	Yes	42	0	n/a	0.01	NP	
Barium (mg/L)	GWA-3 (bg)	-0.00594	-6.317	-2.58	Yes	42	0	n/a	0.01	NP	
Barium (mg/L)	GWA-4 (bg)	-0.002178	-3.96	-2.58	Yes	42	0	n/a	0.01	NP	
Barium (mg/L)	GWC-20	0.002647	5.933	2.58	Yes	42	0	n/a	0.01	NP	

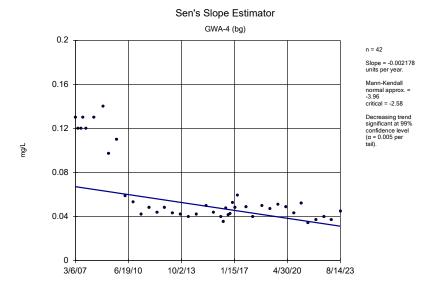


Constituent: Barium Analysis Run 10/25/2023 10:13 AM View: Appendix I - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

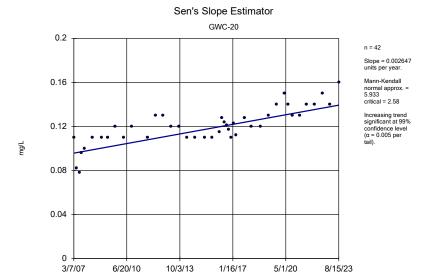
Sanitas™ v.10.0.13 Software licensed to . UG



Constituent: Barium Analysis Run 10/25/2023 10:13 AM View: Appendix I - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Constituent: Barium Analysis Run 10/25/2023 10:13 AM View: Appendix I - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG


Constituent: Barium Analysis Run 10/25/2023 10:13 AM View: Appendix I - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Constituent: Barium Analysis Run 10/25/2023 10:13 AM View: Appendix I - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Constituent: Barium Analysis Run 10/25/2023 10:13 AM View: Appendix I - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

FIGURE G.

Appendix III Intrawell Prediction Limits - Significant Results

Plant Hammond Data: Huffaker Road Landfill Printed 10/25/2023, 12:07 PM

Constituent	Well	Upper Lim	Lower Lim.	<u>Date</u>	Observ.	Sig.	<u>Bg N</u>	Bg Mean	Std. Dev.	%NDs	ND Adj.	<u>Transform</u>	<u>Alpha</u>	Method
Calcium (mg/L)	GWA-2	52.85	n/a	8/14/2023	53.1	Yes	17	43.1	4.018	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-21	3.92	n/a	8/15/2023	5.3	Yes	18	2.504	0.5908	0	None	No	0.0006269	Param Intra 1 of 2
pH (SU)	GWC-6	7.319	6.708	8/14/2023	7.68	Yes	18	7.014	0.1274	0	None	No	0.0003135	Param Intra 1 of 2
Sulfate (mg/L)	GWA-2	22.46	n/a	8/14/2023	23.4	Yes	17	15.77	2.757	0	None	No	0.0006269	Param Intra 1 of 2

Appendix III Intrawell Prediction Limits - All Results

Plant Hammond Data: Huffaker Road Landfill Printed 10/25/2023, 12:07 PM

Constituent	Well	Upper Lin	n. Lower Lim	ı. <u>Date</u>	Observ.	Sig.	Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Boron (mg/L)	GWA-1	0.05	n/a	8/14/2023	0.049	No	17	n/a	n/a	11.76	n/a	n/a	0.005914	NP Intra (normality) 1 of 2
Boron (mg/L)	GWA-11	0.04333	n/a	8/14/2023	0.038J	No	17	0.03634	0.002879	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWA-2	0.1026	n/a	8/14/2023	0.097	No	17	0.08614	0.006798	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWA-3	0.1862	n/a	8/14/2023	0.15	No	17	0.1478	0.01583	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWA-4	0.1386	n/a	8/14/2023	0.082	No	17	0.09064	0.01974	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-10	0.04341	n/a	8/14/2023	0.032J	No	17	0.03398	0.003885	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-18	0.1513	n/a	8/15/2023	0.14	No	17	0.13	0.008789	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-19	0.2063	n/a	8/15/2023	0.16	No	17	0.1738	0.01337	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-20	0.05	n/a	8/15/2023	0.019J	No	17	n/a	n/a	5.882	n/a	n/a	0.005914	NP Intra (normality) 1 of 2
Boron (mg/L)	GWC-21	0.1228	n/a	8/15/2023	0.03J	No	17	0.3332	0.06753	0	None	x^(1/3)	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-22	0.08087	n/a	8/15/2023	0.068	No	17	0.06702	0.00571	0	None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-23	0.0809	n/a	8/14/2023	0.019J	No	16	0.1789	0.04295	6.25	None	sqrt(x)	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-5	0.08192	n/a	8/15/2023	0.06	No	17	0.05951	0.009236		None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-6	0.04728	n/a	8/14/2023	0.039J	No	18	0.03999	0.003041		None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-7	0.07297	n/a	8/15/2023	0.03J	No	17	0.05303	0.008219		None	No	0.0006269	Param Intra 1 of 2
Boron (mg/L)	GWC-8	0.088	n/a	8/15/2023	0.031J	No	18	n/a	n/a	0	n/a	n/a	0.005373	NP Intra (normality) 1 of 2
Boron (mg/L)	GWC-9				0.0313 0.022J		17			5.882			0.005914	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		0.05	n/a	8/15/2023		No		n/a	n/a			n/a		NP Intra (normality) 1 of 2
Calcium (mg/L)	GWA-1	20.89	n/a	8/14/2023	17.2	No	17	16.2	1.932	5.882		No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWA-11	26.42	n/a	8/14/2023	21.8	No	17	20.14	2.587	5.882		No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWA-2	52.85	n/a	8/14/2023	53.1	Yes	17	43.1	4.018	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWA-3	90.64	n/a	8/14/2023	57.2	No	17	75.75	6.137	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWA-4	122.6	n/a	8/14/2023	73.5	No	17	86.21	14.99	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-10	60.32	n/a	8/14/2023	39.8	No	19	40.93	8.193	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-18	49.06	n/a	8/15/2023	41	No	18	40.94	3.386	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-19	51.43	n/a	8/15/2023	44.6	No	18	44.52	2.882	0	None	No		Param Intra 1 of 2
Calcium (mg/L)	GWC-20	68.63	n/a	8/15/2023	63.5	No	18	55.11	5.638	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-21	94.52	n/a	8/15/2023	31.5	No	19	48.75	19.33	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-22	52.63	n/a	8/15/2023	47.3	No	17	47.89	1.955	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-23	53.47	n/a	8/14/2023	40.7	No	17	39.06	5.938	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-5	91.67	n/a	8/15/2023	75.8	No	17	75.27	6.759	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-6	75.59	n/a	8/14/2023	69.1	No	17	64.12	4.724	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-7	73.87	n/a	8/15/2023	18.4	No	17	39.29	14.25	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-8	107.1	n/a	8/15/2023	70.5	No	19	68.9	16.13	0	None	No	0.0006269	Param Intra 1 of 2
Calcium (mg/L)	GWC-9	39.64	n/a	8/15/2023	37.6	No	17	35.42	1.737	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWA-1	1.619	n/a	8/14/2023	0.99J	No	17	0.1658	0.1303	0	None	ln(x)	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWA-11	2.058	n/a	8/14/2023	1	No	17	1.43	0.2592	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWA-2	3.046	n/a	8/14/2023	2.2	No	17	2.365	0.2806	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWA-3	5.301	n/a	8/14/2023	1.3	No	17	3.626	0.6902	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWA-4	10.38	n/a	8/14/2023	2.5	No	17	5.864	1.863	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-10	2.237	n/a	8/14/2023	1	No	19	1.512	0.3062	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-18	1.802	n/a	8/15/2023	0.85J	No	17	1.711	0.6329	0	None	x^2	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-19	2.623	n/a	8/15/2023	1.1	No	17	1.764	0.3539	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-20	2.379	n/a	8/15/2023	1.1	No	18	1.577	0.3346	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-21	3.92	n/a	8/15/2023	5.3	Yes	18	2.504	0.5908	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-22	2.086	n/a	8/15/2023	0.95J	No	17	1.436	0.2681	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-23	2.249	n/a	8/14/2023	1.1	No	17	1.397	0.3512	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-5	4.201	n/a	8/15/2023	2.1	No	17	2.822	0.5683	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-6	2.452	n/a	8/14/2023	1.6	No	17	1.86	0.2439	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-7	2.289	n/a	8/15/2023	1.7	No	17	1.612	0.2791	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-8	3.284	n/a	8/15/2023	1.6	No	19	2.034	0.5279	0	None	No	0.0006269	Param Intra 1 of 2
Chloride (mg/L)	GWC-9	1.765	n/a	8/15/2023	0.65J	No	17	1.099	0.2742	0	None	No	0.0006269	Param Intra 1 of 2
Fluoride (mg/L)	GWA-1	0.1904	n/a	8/14/2023	0.076J	No	17	0.1011	0.03681	5.882	None	No	0.0006269	Param Intra 1 of 2
Fluoride (mg/L)	GWA-11	0.1644	n/a	8/14/2023	0.066J	No	17	0.07655	0.0362	17.65	Kaplan-Meier	No	0.0006269	Param Intra 1 of 2
Fluoride (mg/L)	GWA-2	0.2383	n/a	8/14/2023	0.08J	No	17	0.1233	0.04738	5.882	None	No	0.0006269	Param Intra 1 of 2
Fluoride (mg/L)	GWA-3	0.484	n/a	8/14/2023	0.089J	No	17	0.2083	0.1136	5.882	None	No	0.0006269	Param Intra 1 of 2

Appendix III Intrawell Prediction Limits - All Results

Data: Huffaker Road Landfill Printed 10/25/2023, 12:07 PM Std. Dev. Transform Alpha Constituent Well Upper Lim. Lower Lim. Date Bg N Bg Mean %NDs ND Adj. Method Sig. Fluoride (mg/L) GWA-4 0.4826 8/14/2023 0.11 0.4315 0.1085 0 None 0.0006269 Param Intra 1 of 2 n/a No sqrt(x) GWC-10 Fluoride (mg/L) 0.1902 n/a 8/14/2023 0.077J No 17 0.1044 0.03536 11.76 None No 0.0006269 Param Intra 1 of 2 GWC-18 0.218 0.1375 0.03319 0.0006269 Param Intra 1 of 2 Fluoride (ma/L) n/a 8/15/2023 0.1 No 17 5 882 None No Fluoride (mg/L) GWC-19 0.2528 n/a 8/15/2023 0.092J No 17 0.1435 0.04503 5.882 None No 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) GWC-20 0.1931 n/a 8/15/2023 0.055J 17 0.2872 0.06277 5.882 0.0006269 Param Intra 1 of 2 No None sqrt(x) Fluoride (mg/L) GWC-21 0.2126 n/a 8/15/2023 0.1ND No 17 0.08559 0.05234 23.53 Kaplan-Meier No 0.0006269 Param Intra 1 of 2 Fluoride (mg/L) GWC-22 0.02682 0.0006269 0.151 n/a 8/15/2023 0.065J No 17 0.08591 5.882 None No Param Intra 1 of 2 5.882 0.0006269 Fluoride (mg/L) GWC-23 0.1833 n/a 8/14/2023 0.075J No 0.1043 0.03254 None No Param Intra 1 of 2 GWC-5 Fluoride (ma/L) 0.33 n/a 8/15/2023 0.052J Nο 17 n/a n/a 17.65 n/a n/a 0.005914 NP Intra (normality) 1 of 2 Fluoride (mg/L) GWC-6 0.3078 8/14/2023 No 0.3089 0.1013 11.76 sqrt(x) 0.0006269 Param Intra 1 of 2 Fluoride (ma/L) GWC-7 0.6093 0 Param Intra 1 of 2 0.514 n/a 8/15/2023 0.13 Nο 17 0.07904 None x^(1/3) 0.0006269 GWC-8 8/15/2023 0.005373 NP Intra (normality) 1 of 2 Fluoride (mg/L) 0.4 0.13 0 GWC-9 5.882 Fluoride (ma/L) 0.1716 8/15/2023 0.06J 0.0917 0.0006269 Param Intra 1 of 2 n/a No 17 0.03293 None No pH (SU) GWA-1 7.381 6.536 8/14/2023 6.958 0.1741 0 No 0.0003135 Param Intra 1 of 2 pH (SU) GWA-11 7 054 6 388 8/14/2023 6 99 Nο 17 6 721 0 1372 0 None Nο 0.0003135 Param Intra 1 of 2 pH (SU) GWA-2 6.539 8/14/2023 No 6.886 0.1432 0 0.0003135 Param Intra 1 of 2 None pH (SU) GWA-3 7 212 6.33 8/14/2023 6 54 Nο 17 6 771 0.1818 n None Nο 0.0003135 Param Intra 1 of 2 GWA-4 7.16 6.365 8/14/2023 6.74 6.762 0.1637 0 0.0003135 Param Intra 1 of 2 pH (SU) No None No pH (SU) GWC-10 7 72 6.825 8/14/2023 7 48 No 18 7 272 0.1867 n None Nο 0.0003135 Param Intra 1 of 2 pH (SU) GWC-18 7 787 7 382 8/15/2023 No 17 7 585 0.08345 0 No 0.0003135 Param Intra 1 of 2 None pH (SU) GWC-19 7.783 7.194 8/15/2023 7.61 Nο 19 7.488 0.1243 0 None Nο 0.0003135 Param Intra 1 of 2 GWC-20 6.972 7.29 0 0.0003135 Param Intra 1 of 2 pH (SU) 7.608 8/15/2023 7.54 20 0.1358 No No None GWC-21 7.693 5.612 8/15/2023 6.652 0.4288 0 0.0003135 Param Intra 1 of 2 pH (SU) 6.17 No 17 No GWC-22 7.623 0 0.0003135 Param Intra 1 of 2 pH (SU) 7.958 7.287 8/15/2023 7.68 No 18 0.1399 None No pH (SU) GWC-23 7.52 6.662 8/14/2023 7.21 No 7.091 0.1769 0 None No 0.0003135 Param Intra 1 of 2 GWC-5 7.21 6.445 8/15/2023 6.85 17 6.828 0.1576 0 0.0003135 Param Intra 1 of 2 pH (SU) Nο None No GWC-6 0.0003135 pH (SU) 7.319 6.708 8/14/2023 Yes 7.014 0.1274 0 Param Intra 1 of 2 pH (SU) GWC-7 6.768 5.558 8/15/2023 18 6.163 0.2524 0 0.0003135 Param Intra 1 of 2 5 94 No None No GWC-8 7.787 6.575 8/15/2023 20 7.181 0.259 0 No 0.0003135 Param Intra 1 of 2 pH (SU) 7.34 No GWC-9 7.09 0 0.0003135 Param Intra 1 of 2 pH (SU) 7.324 6.313 8/15/2023 No 17 6.819 0.2084 None No Sulfate (mg/L) GWA-1 6.6 8/14/2023 0 0.005914 NP Intra (normality) 1 of 2 Sulfate (mg/L) GWA-11 8/14/2023 12 17 n 0.0006269 Param Intra 1 of 2 15 25 n/a 8.9 Nο 17 1 271 None Nο Sulfate (mg/L) GWA-2 22.46 n/a 8/14/2023 Yes 2.757 None No Param Intra 1 of 2 GWA-3 215.8 8/14/2023 72.3 11 1.519 0 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) n/a Nο 17 None sart(x) Sulfate (mg/L) GWA-4 321.2 8/14/2023 No 177.4 59.29 0 None No 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) GWC-10 33.9 n/a 8/14/2023 9 No 18 n/a n/a 0 n/a n/a 0.005373 NP Intra (normality) 1 of 2 Sulfate (mg/L) GWC-18 14.45 n/a 8/15/2023 7.7 No 10.5 1.628 O None Nο 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) GWC-19 20.64 n/a 8/15/2023 19.1 Nο 17 16.5 1.709 0 None No 0.0006269 Param Intra 1 of 2 9 53.13 8.981 0 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) GWC-20 80.7 n/a 8/15/2023 67.1 No No None Sulfate (mg/L) GWC-21 54.24 n/a 8/15/2023 No 17 31.49 9.375 0 None No 0.0006269 Param Intra 1 of 2 18.9 Sulfate (mg/L) GWC-22 13.34 8/15/2023 5.6 7.635 2.352 0 0.0006269 Param Intra 1 of 2 n/a No None No Sulfate (mg/L) GWC-23 43 n/a 8/14/2023 46 No 17 n/a n/a n n/a n/a 0.005914 NP Intra (normality) 1 of 2 Sulfate (mg/L) GWC-5 145.9 n/a 8/15/2023 4.427 0.2289 0 0.0006269 Param Intra 1 of 2 No In(x) None Sulfate (mg/L) GWC-6 144 4 n/a 8/14/2023 99.5 No 21 108.3 15.56 n No 0.0006269 Param Intra 1 of 2 None GWC-7 Sulfate (mg/L) 178.3 8/15/2023 122 109.7 28.29 0 0.0006269 Param Intra 1 of 2 n/a 17 No No None GWC-8 8/15/2023 40.99 0 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) 60.46 28.1 No 8.027 No GWC-9 85.39 8/15/2023 63.9 18 69.08 6.805 0 0.0006269 Param Intra 1 of 2 Sulfate (mg/L) n/a No None No Total Dissolved Solids (mg/L) GWA-1 163.4 8/14/2023 No 102.9 24.95 0 No 0.0006269 Param Intra 1 of 2 n/a 98 17 None Total Dissolved Solids (mg/L) GWA-11 179.4 8/14/2023 107 17 121.6 23.82 0 No 0.0006269 Param Intra 1 of 2 n/a No None 221.5 Param Intra 1 of 2 Total Dissolved Solids (mg/L) GWA-2 268.6 8/14/2023 266 No 17 19.41 0 No 0.0006269 Total Dissolved Solids (mg/L) 0.005914 NP Intra (normality) 1 of 2 GWA-3 653 n/a 8/14/2023 341 No 17 n/a n/a 0 n/a n/a Total Dissolved Solids (mg/L) GWA-4 733.8 n/a 8/14/2023 No 507.8 93.12 0 None No 0.0006269 Param Intra 1 of 2 Total Dissolved Solids (mg/L) GWC-10 268.9 n/a 8/14/2023 162 No 17 179.4 36.87 0 None No 0.0006269 Param Intra 1 of 2 Total Dissolved Solids (mg/L) 202.1 0 GWC-18 248.3 n/a 8/15/2023 18.8 No Param Intra 1 of 2

Total Dissolved Solids (mg/L)

GWC-19

281.8

n/a

8/15/2023

227

Nο

233 4

n

None

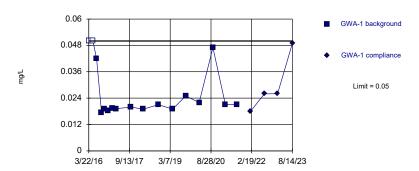
Nο

19 68


0.0006269 Param Intra 1 of 2

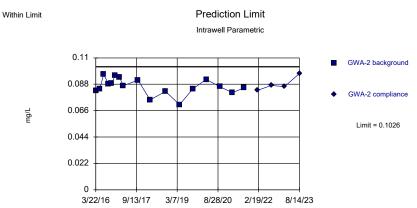
Page 3

Appendix III Intrawell Prediction Limits - All Results

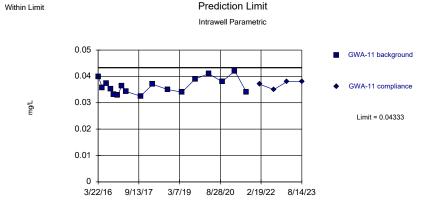

Plant Hammond Data: Huffaker Road Landfill Printed 10/25/2023, 12:07 PM

Constituent	Well	Upper Lir	n. Lower Lin	n. Date	Observ.	Sig.	Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Total Dissolved Solids (mg/L)	GWC-20	310.9	n/a	8/15/2023	291	No	17	237.4	30.3	0	None	No	0.0006269	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWC-21	398.1	n/a	8/15/2023	152	No	19	200.5	83.46	0	None	No	0.0006269	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWC-22	324	n/a	8/15/2023	212	No	17	n/a	n/a	0	n/a	n/a	0.005914	NP Intra (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-23	290.6	n/a	8/14/2023	163	No	17	196.4	38.83	0	None	No	0.0006269	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWC-5	511	n/a	8/15/2023	428	No	17	n/a	n/a	0	n/a	n/a	0.005914	NP Intra (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-6	423.2	n/a	8/14/2023	368	No	19	332.2	38.42	0	None	No	0.0006269	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWC-7	358.6	n/a	8/15/2023	267	No	17	264.9	38.59	0	None	No	0.0006269	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWC-8	444.9	n/a	8/15/2023	280	No	19	285	67.54	0	None	No	0.0006269	Param Intra 1 of 2
Total Dissolved Solids (mg/L)	GWC-9	310.7	n/a	8/15/2023	246	No	17	226.2	34.82	0	None	No	0.0006269	Param Intra 1 of 2

Hollow symbols indicate censored value: Within Limit

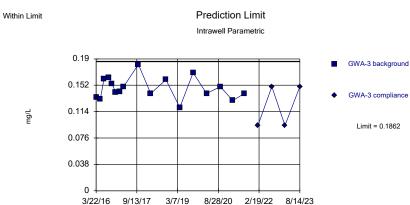


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 17 background values. 11.76% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2).


Constituent: Boron Analysis Run 10/25/2023 12:04 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=0.08614, Std. Dev.=0.006798, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9622, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=0.03634, Std. Dev.=0.002879, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9447, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Boron Analysis Run 10/25/2023 12:04 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=0.1478, Std. Dev.=0.01583, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9764, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

0

3/22/16 9/13/17 3/7/19

Sanitas™ v.10.0.13 Software licensed to . UG

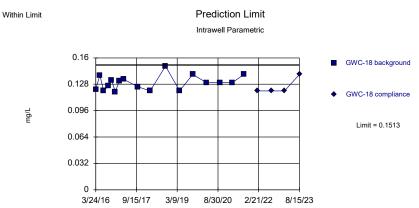
Within Limit Prediction Limit Intrawell Parametric

O.14

O.112

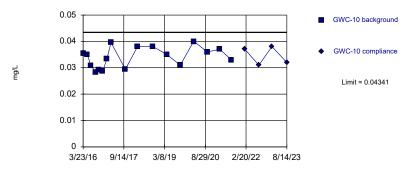
O.084

O.056


O.028

Background Data Summary: Mean=0.09064, Std. Dev.=0.01974, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9274, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006326.

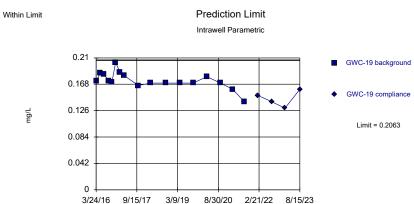
8/28/20 2/19/22 8/14/23


Constituent: Boron Analysis Run 10/25/2023 12:04 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

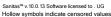
Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=0.13, Std. Dev.=0.008789, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9328, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limit Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=0.03398, Std. Dev.=0.003885, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9386, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Constituent: Boron Analysis Run 10/25/2023 12:04 PM View: Appendix III

Plant Hammond Data: Huffaker Road Landfill

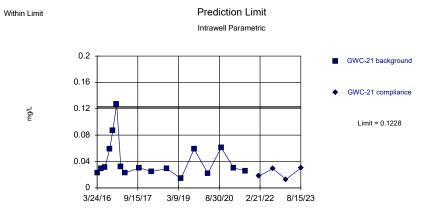
Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=0.1738, Std. Dev.=0.01337, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9186, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 17 background values. 5.882% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2).

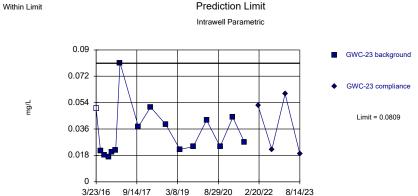
Constituent: Boron Analysis Run 10/25/2023 12:04 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill


Sanitas™ v.10.0.13 Software licensed to . UG

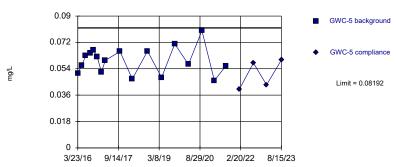
Within Limit Prediction Limit Intrawell Parametric

0.09
0.072
0.054
0.036
0.018
0.036
0.018
0.018
0.036
0.018
0.036
0.018
0.018
0.036
0.018
0.036
0.018
0.036
0.018
0.036
0.018
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.036
0.0

Background Data Summary: Mean=0.06702, Std. Dev.=0.00571, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.977, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

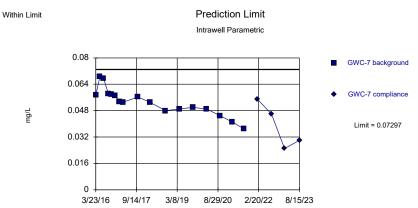

Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary (based on cube root transformation): Mean=0.3332, Std. Dev.=0.06753, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8582, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0050269.

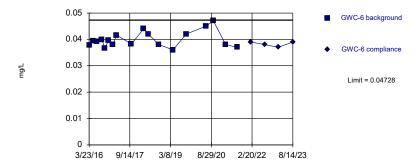

Constituent: Boron Analysis Run 10/25/2023 12:04 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

Sanitas $^{\text{TM}}$ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.

Background Data Summary (based on square root transformation): Mean=0.1789, Std. Dev.=0.04295, n=16, 6.25% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8873, critical = 0.844. Kappa = 2.456 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

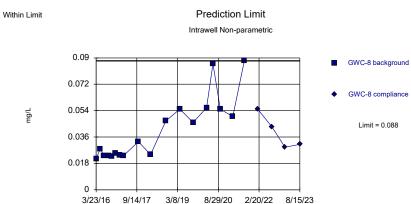

Within Limit Prediction Limit Intrawell Parametric

Background Data Summary: Mean=0.05951, Std. Dev.=0.009236, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9628, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Constituent: Boron Analysis Run 10/25/2023 12:04 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=0,05303, Std. Dev.=0,008219, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9661, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=0.03999, Std. Dev.=0.003041, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9202, critical = 0.858. Kappa = 2.397 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Boron Analysis Run 10/25/2023 12:04 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

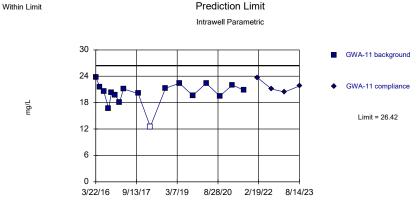
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 18 background values. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).

3/23/16 9/14/17

Within Limit

Prediction Limit

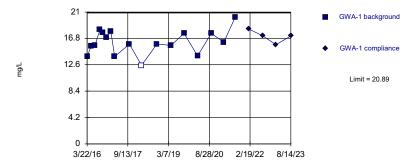
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 17 background values. 5.882% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2).


2/20/22 8/15/23

8/29/20

3/8/19

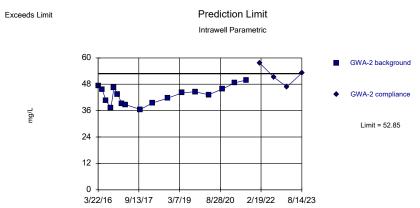
Constituent: Boron Analysis Run 10/25/2023 12:04 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill


Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.

Background Data Summary: Mean=20.14, Std. Dev.=2.587, n=17, 5.882% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.865, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

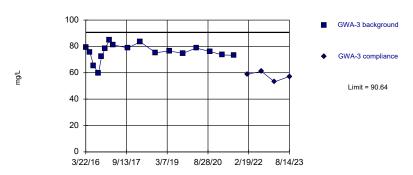
Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values Within Limit

Prediction Limit
Intrawell Parametric

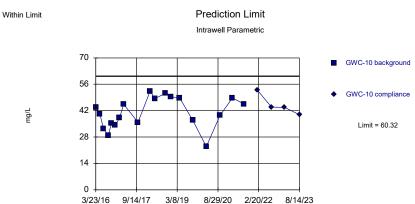


Background Data Summary: Mean=16.2, Std. Dev.=1.932, n=17, 5.882% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9669, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

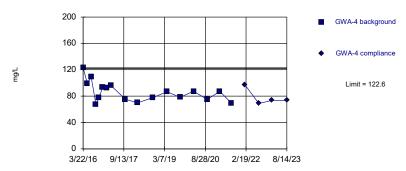
Constituent: Calcium Analysis Run 10/25/2023 12:04 PM View: Appendix III


Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

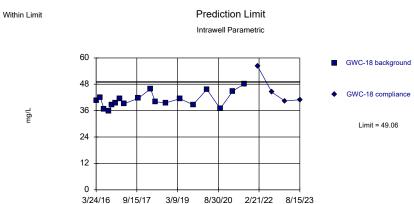

Background Data Summary: Mean=43.1, Std. Dev.=4.018, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9699, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Prediction Limit
Intrawell Parametric

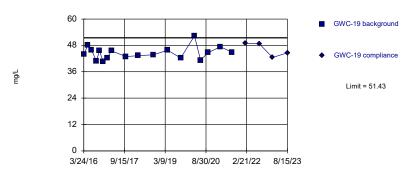

Constituent: Calcium Analysis Run 10/25/2023 12:04 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=40.93, Std. Dev.=8.193, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9517, critical = 0.863. Kappa = 2.368 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=86.21, Std. Dev.=14.99, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9274, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006269


Constituent: Calcium Analysis Run 10/25/2023 12:04 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

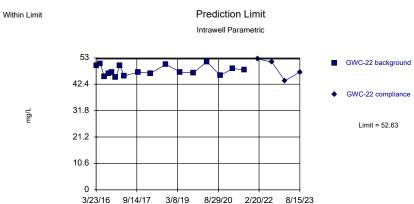
Background Data Summary: Mean=40.94, Std. Dev.=3.386, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9429, critical = 0.858. Kappa = 2.397 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Calcium Analysis Run 10/25/2023 12:04 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

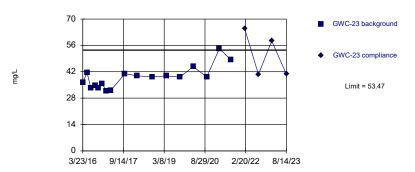
Sanitas™ v.10.0.13 Software licensed to . UG

Within Limit | Prediction Limit | Intrawell Parametric | GWC-21 background | GWC-21 compliance | Limit = 94.52 | Limit = 94.52 | GWC-21 compliance | Limit = 94.52 | GWC-21 co

Background Data Summary: Mean=48.75, Std. Dev.=19.33, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9335, critical = 0.863. Kappa = 2.368 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

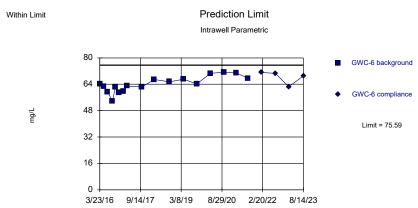

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=55.11, Std. Dev.=5.638, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9578, critical = 0.858. Kappa = 2.397 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Constituent: Calcium Analysis Run 10/25/2023 12:04 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=47.89, Std. Dev.=1.955, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9237, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

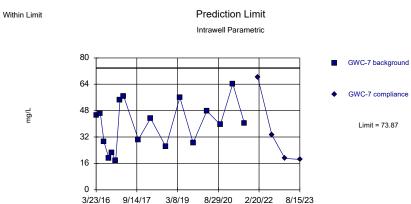

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=39.06, Std. Dev.=5.938, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9118, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.005132).

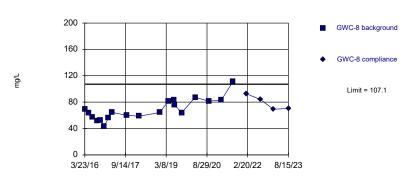
Constituent: Calcium Analysis Run 10/25/2023 12:05 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=64.12, Std. Dev.=4.724, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9646, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

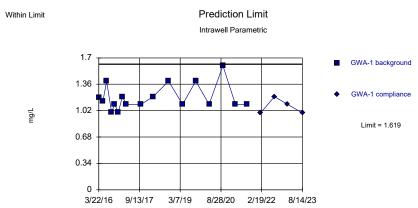

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=75.27, Std. Dev.=6.759, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9688, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

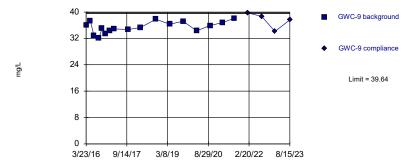

Constituent: Calcium Analysis Run 10/25/2023 12:05 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=39.29, Std. Dev.=14.25, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9572, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

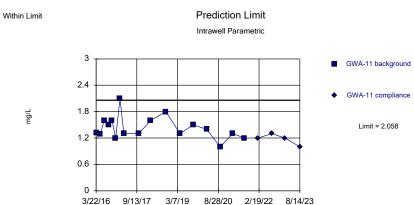


Background Data Summary: Mean=68.9, Std. Dev.=16.13, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9359, critical = 0.863. Kappa = 2.368 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.005132).

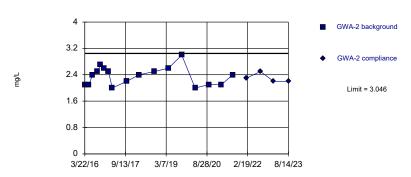

Constituent: Calcium Analysis Run 10/25/2023 12:05 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary (based on natural log transformation): Mean=0.1658, Std. Dev.=0.1303, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8588, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

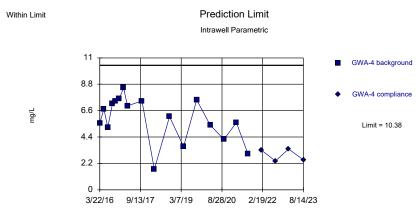

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=35.42, Std. Dev.=1.737, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9739, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

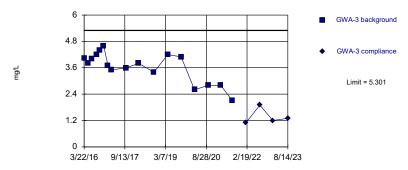

Constituent: Calcium Analysis Run 10/25/2023 12:05 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=1.43, Std. Dev.=0.2592, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9159, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

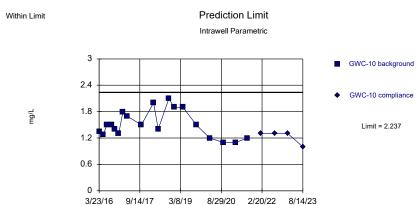

Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=2.365, Std. Dev.=0.2806, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9256, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006132.

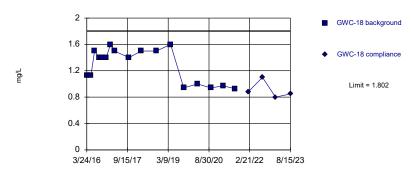

Constituent: Chloride Analysis Run 10/25/2023 12:05 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=5.864, Std. Dev.=1.863, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9316, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

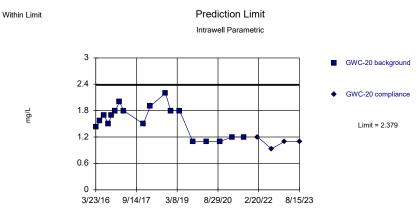

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=3.626, Std. Dev.=0.6902, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9312, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

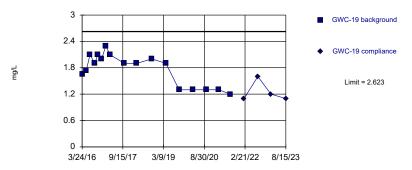

Constituent: Chloride Analysis Run 10/25/2023 12:05 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=1.512, Std. Dev.=0.3062, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9321, critical = 0.863. Kappa = 2.368 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

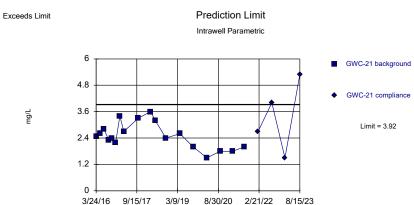


Background Data Summary (based on square transformation): Mean=1.711, Std. Dev.=0.6329, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8586, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

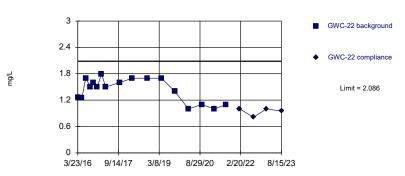

Constituent: Chloride Analysis Run 10/25/2023 12:05 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=1.577, Std. Dev.=0.3346, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9345, critical = 0.858. Kappa = 2.397 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=1.764, Std. Dev.=0.3539, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8795, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Constituent: Chloride Analysis Run 10/25/2023 12:05 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=2.504, Std. Dev.=0.5908, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9679, critical = 0.858. Kappa = 2.397 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269

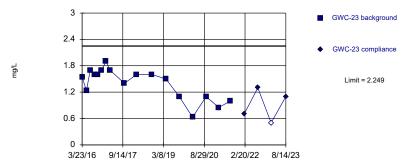
Prediction Limit Intrawell Parametric

Background Data Summary: Mean=1.436, Std. Dev.=0.2681, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9027, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha =

> Constituent: Chloride Analysis Run 10/25/2023 12:05 PM View: Appendix III Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

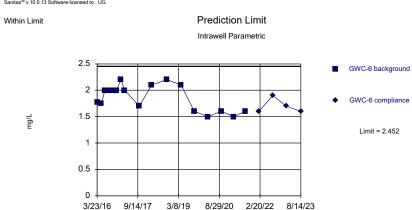
Prediction Limit Within Limit Intrawell Parametric 5 GWC-5 background GWC-5 compliance Limit = 4.201 3/23/16 9/14/17 3/8/19 8/29/20 2/20/22 8/15/23


Background Data Summary: Mean=2.822, Std. Dev.=0.5683, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9529, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

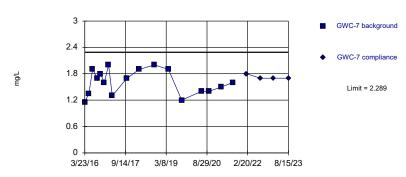
Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values

Within Limit

Prediction Limit


Intrawell Parametric

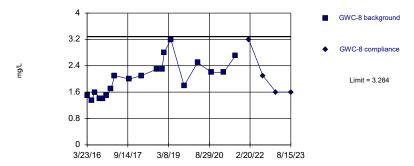
Background Data Summary: Mean=1.397, Std. Dev.=0.3512, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9117, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha =


> Constituent: Chloride Analysis Run 10/25/2023 12:05 PM View: Appendix III Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=1.86, Std. Dev.=0.2439, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8965, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Background Data Summary: Mean=1.612, Std. Dev.=0.2791, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9378, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006326.

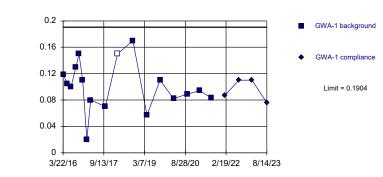

Constituent: Chloride Analysis Run 10/25/2023 12:05 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Within Limit | Prediction Limit | Intrawell Parametric | GWC-9 background | GWC-9 compliance | Limit = 1.765 | Limit = 1.765 | GWC-9 compliance | Limit = 1.765 | CWC-9 compliance | Limit = 1.

Background Data Summary: Mean=1.099, Std. Dev.=0.2742, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9267, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limit Prediction Limit
Intrawell Parametric

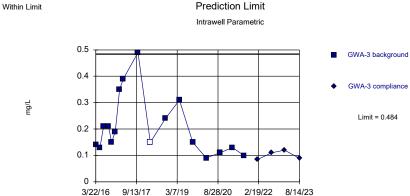


Background Data Summary: Mean=2.034, Std. Dev.=0.5279, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9442, critical = 0.863. Kappa = 2.368 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Chloride Analysis Run 10/25/2023 12:05 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

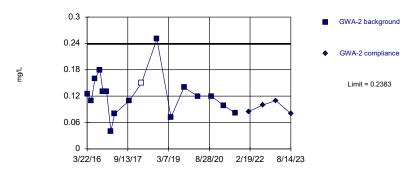
Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values. Within Limit

Background Data Summary: Mean=0.1011, Std. Dev.=0.03681, n=17, 5.882% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9799, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.006269.


Within Limit Prediction Limit
Intrawell Parametric

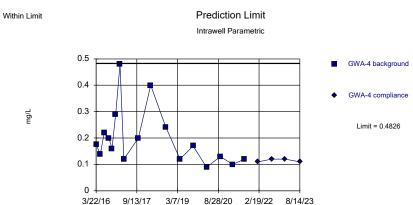
Background Data Summary (after Kaplan-Meier Adjustment): Mean=0.07655, Std. Dev.=0.0362, n=17, 17.65% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9297, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0050269.

Constituent: Fluoride Analysis Run 10/25/2023 12:05 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

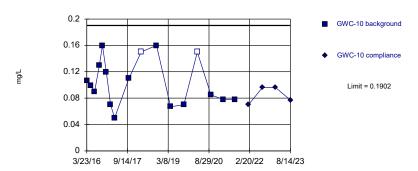

Sanitas $^{\text{\tiny{TM}}}$ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.

Background Data Summary: Mean=0.2083, Std. Dev.=0.1136, n=17, 5.882% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8567, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values Within Limit

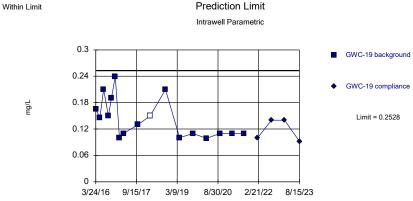

Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=0.1233, Std. Dev.=0.04738, n=17, 5.882% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9415, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.005132). Report alpha = 0.0006269.


Constituent: Fluoride Analysis Run 10/25/2023 12:05 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

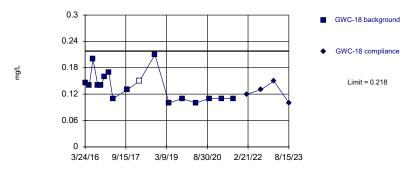
Background Data Summary (based on square root transformation): Mean=0.4315, Std. Dev.=0.1085, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8983, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=0.1044, Std. Dev.=0.03536, n=17, 11.76% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9287, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.006269.

Constituent: Fluoride Analysis Run 10/25/2023 12:05 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill


Sanitas $^{\text{\tiny{TM}}}$ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.



Background Data Summary: Mean=0.1435, Std. Dev.=0.04503, n=17, 5.882% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8591, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.005132). Report alpha = 0.0006269.

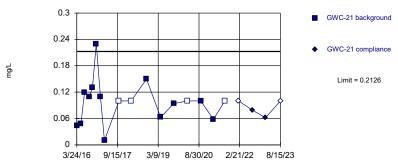
Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values

Within Limit

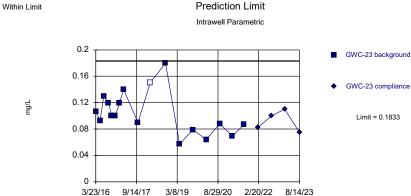


Background Data Summary: Mean=0.1375, Std. Dev.=0.03319, n=17, 5.882% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8897, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.005132). Report alpha = 0.0006269.

Constituent: Fluoride Analysis Run 10/25/2023 12:05 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

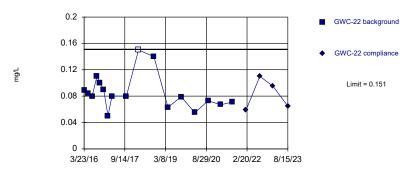

Sanitas $^{\text{\tiny{TM}}}$ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.

Background Data Summary (based on square root transformation): Mean=0,2872, Std. Dev.=0.06277, n=17, 5.882% NDs. Normaility test: Shapiro Wilk @alpha = 0.01, calculated = 0.9019, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Within Limit Prediction Limit
Intrawell Parametric

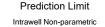
Background Data Summary (after Kaplan-Meier Adjustment): Mean=0.08559, Std. Dev.=0.05234, n=17, 23.53% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9123, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.005132). Report alpha = 0.006269.

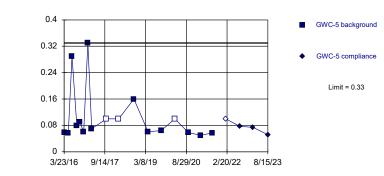
Constituent: Fluoride Analysis Run 10/25/2023 12:05 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill


Sanitas $^{\text{\tiny{TM}}}$ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.

Background Data Summary: Mean=0.1043, Std. Dev.=0.03254, n=17, 5.882% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9591, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.006269.

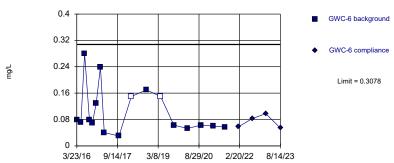
Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values



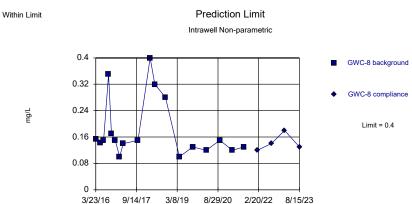


Background Data Summary: Mean=0.08591, Std. Dev.=0.02682, n=17, 5.882% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.886, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.005132). Report alpha = 0.0006269.

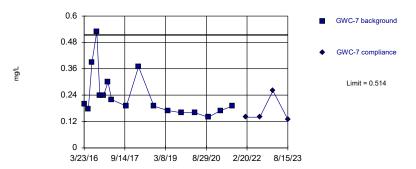
Constituent: Fluoride Analysis Run 10/25/2023 12:05 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill


Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values. Within Limit

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 17 background values. 17.65% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2).



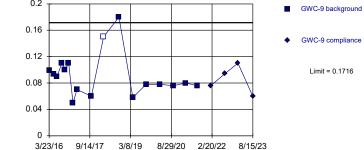
Background Data Summary (based on square root transformation): Mean=0.3089, Std. Dev.=0.1013, n=17, 11.76% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8988, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Constituent: Fluoride Analysis Run 10/25/2023 12:05 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 18 background values. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).

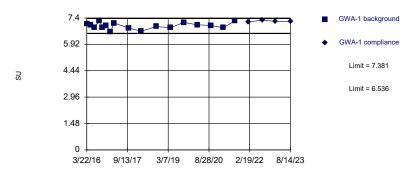
Within Limit Prediction Limit
Intrawell Parametric



Background Data Summary (based on cube root transformation): Mean=0.6093, Std. Dev.=0.07904, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8552, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Fluoride Analysis Run 10/25/2023 12:05 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG Hollow symbols indicate censored values.

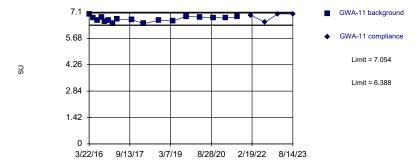


Background Data Summary: Mean=0.0917, Std. Dev.=0.03293, n=17, 5.882% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8739, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.006269.

Within Limits

Prediction Limit Intrawell Parametric

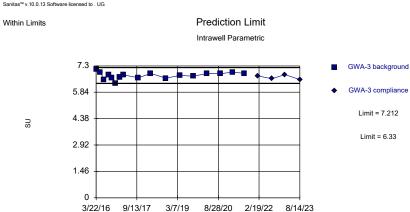
Background Data Summary: Mean=6.958, Std. Dev.=0.1741, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9626, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha =


> Constituent: pH Analysis Run 10/25/2023 12:05 PM View: Appendix III Plant Hammond Data: Huffaker Road Landfill

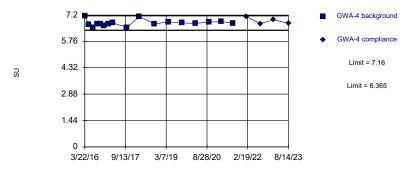
Sanitas™ v.10.0.13 Software licensed to . UG

Prediction Limit Within Limits Intrawell Parametric GWA-2 background GWA-2 compliance 5.84 Limit = 7.234 4.38 Limit = 6.539 2.92 1.46 3/22/16 9/13/17 3/7/19 8/28/20 2/19/22 8/14/23

Background Data Summary: Mean=6.886, Std. Dev.=0.1432, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9848, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

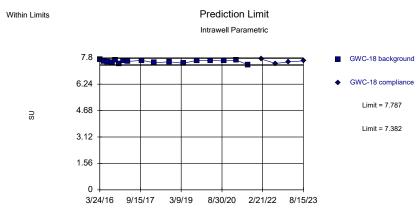

Prediction Limit Within Limits Intrawell Parametric

Background Data Summary: Mean=6.721, Std. Dev.=0.1372, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.975, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

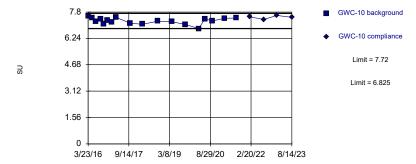

> Constituent: pH Analysis Run 10/25/2023 12:05 PM View: Appendix III Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=6.771, Std. Dev.=0.1818, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9702, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.



Background Data Summary: Mean=6.762, Std. Dev.=0.1637, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8768, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha =


> Constituent: pH Analysis Run 10/25/2023 12:05 PM View: Appendix III Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=7.585, Std. Dev.=0.08345, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9407, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Prediction Limit Within Limits Intrawell Parametric

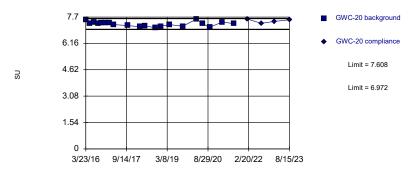
Background Data Summary: Mean=7.272, Std. Dev.=0.1867, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9572, critical = 0.858. Kappa = 2.397 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

> Constituent: pH Analysis Run 10/25/2023 12:05 PM View: Appendix III Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Within Limits **Prediction Limit** Intrawell Parametric ■ GWC-19 background GWC-19 compliance 6.24 Limit = 7.783 4.68 SU Limit = 7.194 3.12 1.56

Background Data Summary: Mean=7.488, Std. Dev.=0.1243, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9518, critical = 0.863. Kappa = 2.368 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


8/30/20 2/21/22 8/15/23

3/9/19

3/24/16 9/15/17

Within Limits

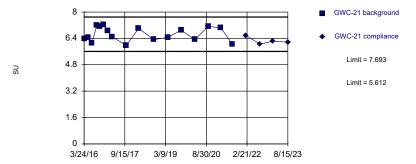
Prediction Limit Intrawell Parametric

Background Data Summary: Mean=7.29, Std. Dev.=0.1358, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9576, critical = 0.868. Kappa = 2.338 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha =

> Constituent: pH Analysis Run 10/25/2023 12:05 PM View: Appendix III Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

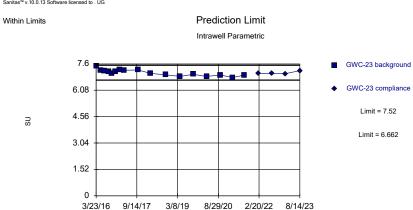
Prediction Limit Within Limits Intrawell Parametric ■ GWC-22 background GWC-22 compliance 6.4 Limit = 7.958 4.8 Limit = 7.287 3.2 1.6


Background Data Summary: Mean=7.623, Std. Dev.=0.1399, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9729, critical = 0.858. Kappa = 2.397 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

8/29/20

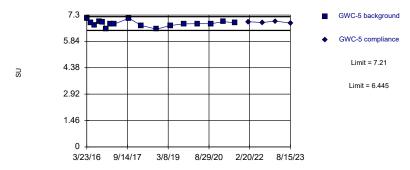
2/20/22 8/15/23

3/23/16 9/14/17 3/8/19


Prediction Limit Within Limits Intrawell Parametric

Background Data Summary: Mean=6.652, Std. Dev.=0.4288, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9143, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

> Constituent: pH Analysis Run 10/25/2023 12:05 PM View: Appendix III Plant Hammond Data: Huffaker Road Landfill


Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=7.091, Std. Dev.=0.1769, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9577, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limits

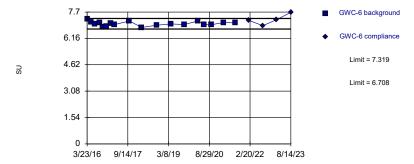
Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=6.828, Std. Dev.=0.1576, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9511, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006326.

Constituent: pH Analysis Run 10/25/2023 12:05 PM View: Appendix III

Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG


Within Limits

Prediction Limit
Intrawell Parametric

GWC-7 background
GWC-7 compliance
Limit = 6.768
Limit = 5.558

Background Data Summary: Mean=6.163, Std. Dev.=0.2524, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9585, critical = 0.858. Kappa = 2.397 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Exceeds Limits Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=7.014, Std. Dev.=0.1274, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.972, critical = 0.858. Kappa = 2.397 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006629

Constituent: pH Analysis Run 10/25/2023 12:05 PM View: Appendix III

Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

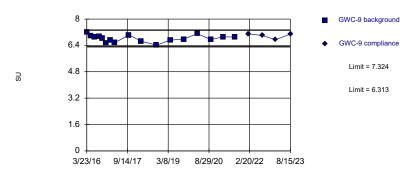
Within Limits

Prediction Limit
Intrawell Parametric

GWC-8 background

GWC-8 compliance
Limit = 7.787
Limit = 6.575

Background Data Summary: Mean=7.181, Std. Dev.=0.259, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.944, critical = 0.868. Kappa = 2.338 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006269.

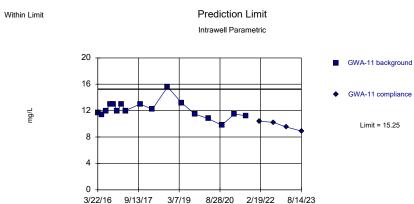

3/8/19

3/23/16 9/14/17

8/29/20 2/20/22 8/15/23

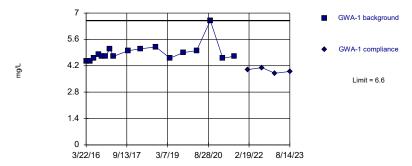
Within Limits

Prediction Limit
Intrawell Parametric



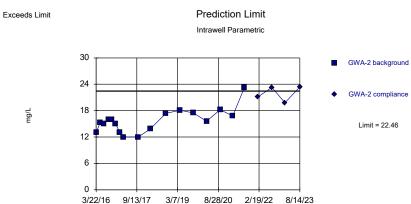
Background Data Summary: Mean=6.819, Std. Dev.=0.2084, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9871, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006326.

Constituent: pH Analysis Run 10/25/2023 12:05 PM View: Appendix III


Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=12.17, Std. Dev.=1.271, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9199, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 17 background values. Well-constituent pair annual alpha = 0.01179, Individual comparison alpha = 0.005914 (1 of 2).

Constituent: Sulfate Analysis Run 10/25/2023 12:05 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=15.77, Std. Dev.=2.757, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9235, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

80

3/22/16 9/13/17

Within Limit Prediction Limit
Intrawell Parametric

GWA-3 background

GWA-3 compliance

Limit = 215.8

Background Data Summary (based on square root transformation): Mean=11, Std. Dev.=1.519, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8704, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

8/28/20 2/19/22 8/14/23

3/22/16 9/13/17 3/7/19

Constituent: Sulfate Analysis Run 10/25/2023 12:06 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Within Limit Prediction Limit Intrawell Non-parametric

GWC-10 background

GWC-10 compliance

Limit = 33.9

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 18 background values. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2).

Within Limit Prediction Limit Intrawell Parametric

GWA-4 background

GWA-4 compliance

Limit = 321.2

Background Data Summary: Mean=177.4, Std. Dev.=59.29, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9106, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006269

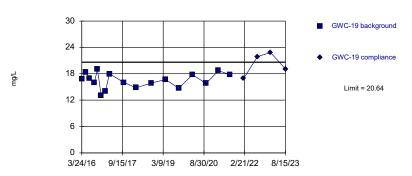
8/28/20 2/19/22 8/14/23

3/7/19

Constituent: Sulfate Analysis Run 10/25/2023 12:06 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

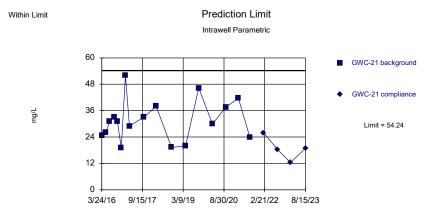
Within Limit Prediction Limit Intrawell Parametric


GWC-18 background

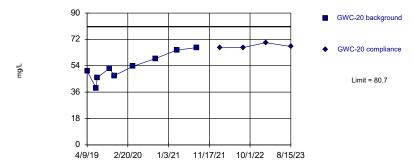
GWC-18 compliance

Limit = 14.45

Background Data Summary: Mean=10.5, Std. Dev.=1.628, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9653, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0008269.



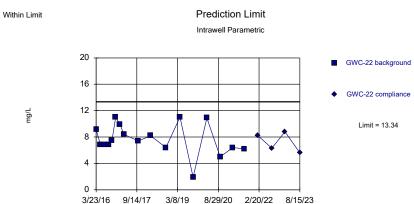
Background Data Summary: Mean=16.5, Std. Dev.=1.709, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9647, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.005132).


Constituent: Sulfate Analysis Run 10/25/2023 12:06 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

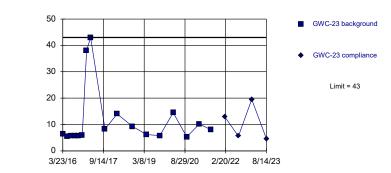
Background Data Summary: Mean=31.49, Std. Dev.=9.375, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9525, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limit Prediction Limit
Intrawell Parametric



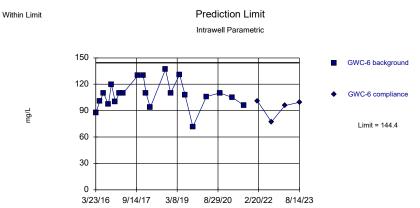
Background Data Summary: Mean=53.13, Std. Dev.=8.981, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9672, critical = 0.764. Kappa = 3.069 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269

Constituent: Sulfate Analysis Run 10/25/2023 12:06 PM View: Appendix III


Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=7.635, Std. Dev.=2.352, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9334, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

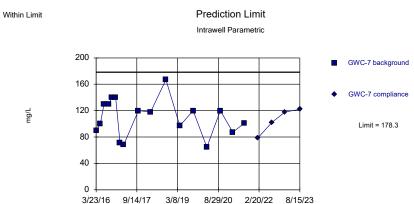

Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 17 background values. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2).

Constituent: Sulfate Analysis Run 10/25/2023 12:06 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

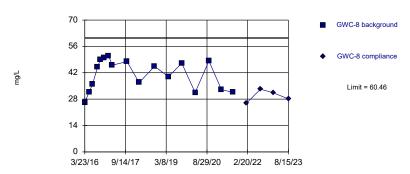
Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=108.3, Std. Dev.=15.56, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9498, critical = 0.873. Kappa = 2.32 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary (based on natural log transformation): Mean=4.427, Std. Dev.=0.2289, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8706, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

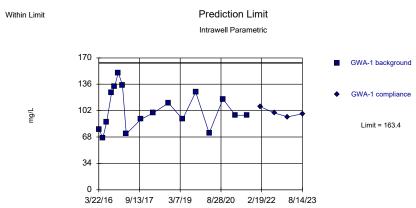
Constituent: Sulfate Analysis Run 10/25/2023 12:06 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill


Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=109.7, Std. Dev.=28.29, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.965, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

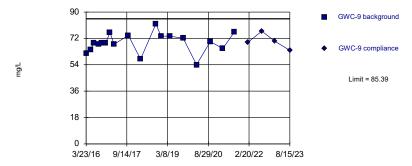
Within Limit

Prediction Limit
Intrawell Parametric



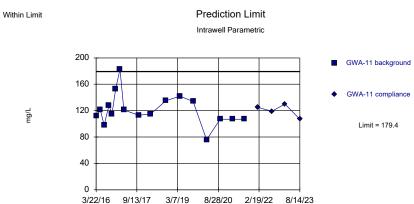
Background Data Summary: Mean=40.99, Std. Dev.=8.027, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8958, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Sulfate Analysis Run 10/25/2023 12:06 PM View: Appendix III


Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=102.9, Std. Dev.=24.95, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9534, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Within Limit Prediction Limit
Intrawell Parametric

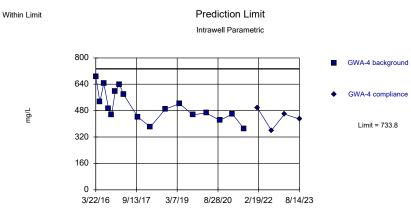
Background Data Summary: Mean=69.08, Std. Dev=6.805, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9703, critical = 0.858. Kappa = 2.397 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006269

Constituent: Sulfate Analysis Run 10/25/2023 12:06 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

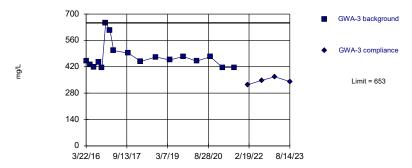
Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=121.6, Std. Dev.=23.82, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9387, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limit Prediction Limit


Intrawell Parametric

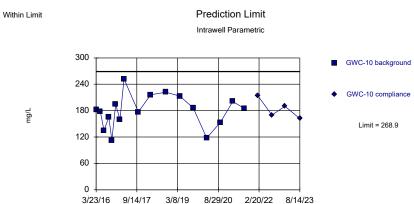
Background Data Summary: Mean=221.5, Std. Dev.=19.41, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9562, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.005132).


Constituent: Total Dissolved Solids Analysis Run 10/25/2023 12:06 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=507.8, Std. Dev.=93.12, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9475, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limit Prediction Limit
Intrawell Non-parametric



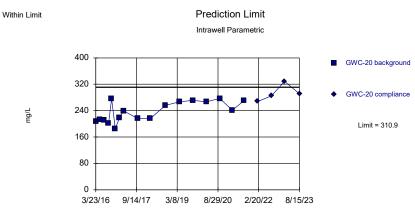
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 17 background values. Well-constituent pair annual alpha = 0.01179, Individual comparison alpha = 0.005914 (1 of 2).

Constituent: Total Dissolved Solids Analysis Run 10/25/2023 12:06 PM View: Appendix III

Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=179.4, Std. Dev.=36.87, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9794, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.


Within Limit Prediction Limit Intrawell Parametric

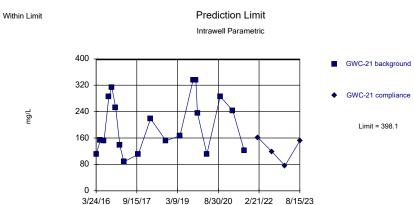
Background Data Summary: Mean=202.1, Std. Dev.=18.8, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9819, critical = 0.844. Kappa = 2.456 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.005132).

Constituent: Total Dissolved Solids Analysis Run 10/25/2023 12:06 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=237.4, Std. Dev.=30.3, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8982, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006269.

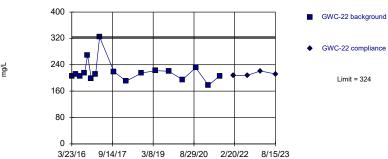
Within Limit Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=233.4, Std. Dev.=19.68, n=16. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.89, critical = 0.844. Kappa = 2.456 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

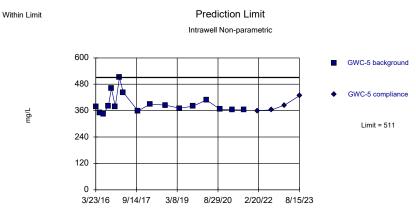
Constituent: Total Dissolved Solids Analysis Run 10/25/2023 12:06 PM View: Appendix III

Plant Hammond Data: Huffaker Road Landfill

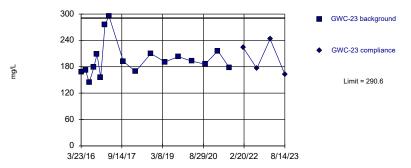

Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=200.5, Std. Dev.=83.46, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.908, critical = 0.863. Kappa = 2.368 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limit Prediction Limit

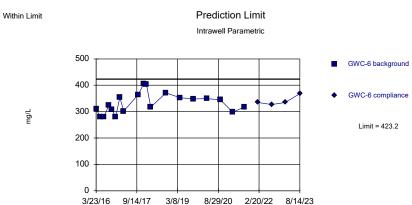


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 17 background values. Well-constituent pair annual alpha = 0.005914 (1 of 2).


Constituent: Total Dissolved Solids Analysis Run 10/25/2023 12:06 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 17 background values. Well-constituent pair annual alpha = 0.005914 (1 of 2).


Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=196.4, Std. Dev.=38.83, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8611, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.006269

Constituent: Total Dissolved Solids Analysis Run 10/25/2023 12:06 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=332.2, Std. Dev.=38.42, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9424, critical = 0.863. Kappa = 2.368 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Within Limit

Intrawell Parametric

GWC-7 background

GWC-7 compliance

Limit = 358.6

Prediction Limit

Background Data Summary: Mean=264.9, Std. Dev.=38.59, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9132, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0061329.

3/23/16 9/14/17 3/8/19 8/29/20 2/20/22 8/15/23

Constituent: Total Dissolved Solids Analysis Run 10/25/2023 12:06 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Within Limit

Intrawell Parametric

GWC-9 background


GWC-9 compliance

Limit = 310.7

Background Data Summary: Mean=226.2, Std. Dev.=34.82, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8916, critical = 0.851. Kappa = 2.427 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Total Dissolved Solids Analysis Run 10/25/2023 12:06 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Background Data Summary: Mean=285, Std. Dev.=67.54, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.907, critical = 0.863. Kappa = 2.368 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: Total Dissolved Solids Analysis Run 10/25/2023 12:06 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

	GWA-1	GWA-1
3/22/2016	<0.1	
5/17/2016	<0.1	
7/5/2016	0.0419 (J)	
9/7/2016	0.0174 (J)	
10/18/2016	0.0192 (J)	
12/6/2016	0.0182 (J)	
1/31/2017	0.0193 (J)	
3/23/2017	0.0192 (J)	
10/4/2017	0.0199 (J)	
3/14/2018	0.019 (J)	
10/4/2018	0.021 (J)	
4/8/2019	0.019 (J)	
9/30/2019	0.025 (J)	
3/26/2020	0.022 (J)	
9/23/2020	0.047 (J)	
3/8/2021	0.021 (J)	
8/9/2021	0.021 (J)	
2/4/2022		0.018 (J)
8/8/2022		0.026 (J)
1/30/2023		0.026 (J)
8/14/2023		0.049

	GWA-11	GWA-11
3/22/2016	0.04 (J)	
5/17/2016	0.0358 (J)	
7/6/2016	0.0373 (J)	
9/7/2016	0.0352 (J)	
10/18/2016	0.0332 (J)	
12/6/2016	0.033 (J)	
2/1/2017	0.0365 (J)	
3/24/2017	0.0343 (J)	
10/5/2017	0.0325 (J)	
3/15/2018	0.037 (J)	
10/4/2018	0.035 (J)	
4/8/2019	0.034 (J)	
9/30/2019	0.039 (J)	
3/26/2020	0.041 (J)	
9/22/2020	0.038 (J)	
3/8/2021	0.042	
8/10/2021	0.034 (J)	
2/4/2022		0.037 (J)
8/8/2022		0.035 (J)
1/30/2023		0.038 (J)
8/14/2023		0.038 (J)

	GWA-2	GWA-2
3/22/2016	0.0828 (J)	
5/17/2016	0.0844 (J)	
7/5/2016	0.0962 (J)	
9/7/2016	0.0884 (J)	
10/18/2016	0.0889 (J)	
12/7/2016	0.0954	
1/31/2017	0.0939	
3/23/2017	0.0869	
10/4/2017	0.0914	
3/14/2018	0.075	
10/4/2018	0.082	
4/8/2019	0.071 (J)	
9/30/2019	0.084	
3/26/2020	0.092 (J)	
9/21/2020	0.086 (J)	
3/9/2021	0.081	
8/9/2021	0.085	
2/4/2022		0.083
8/8/2022		0.087
1/30/2023		0.086
8/14/2023		0.097

GWA-3	GWA-3
0.135	
0.132	
0.161	
0.163	
0.154	
0.142	
0.143	
0.15	
0.182	
0.14	
0.16	
0.12	
0.17	
0.14	
0.15	
0.13	
0.14	
	0.094
	0.15
	0.094
	0.15
	0.135 0.132 0.161 0.163 0.154 0.142 0.143 0.15 0.182 0.14 0.16 0.12 0.17 0.14 0.15 0.13

	GWA-4	GWA-4
3/22/2016	0.0815 (J)	
5/17/2016	0.0838 (J)	
7/6/2016	0.111	
9/7/2016	0.107	
10/18/2016	0.118	
12/6/2016	0.106	
2/1/2017	0.0949	
3/24/2017	0.0887	
10/4/2017	0.105	
3/15/2018	0.043	
10/4/2018	0.1	
4/8/2019	0.057 (J)	
9/30/2019	0.11	
3/26/2020	0.086 (J)	
9/23/2020	0.087 (J)	
3/8/2021	0.089	
8/9/2021	0.073	
2/4/2022		0.06
8/8/2022		0.077
1/30/2023		0.058
8/14/2023		0.082

	GWC-10	GWC-10
3/23/2016	0.0354 (J)	
5/17/2016	0.0349 (J)	
7/6/2016	0.0308 (J)	
9/7/2016	0.0283 (J)	
10/18/2016	0.0292 (J)	
12/6/2016	0.0287 (J)	
2/2/2017	0.0334 (J)	
3/27/2017	0.0396 (J)	
10/5/2017	0.0294 (J)	
3/15/2018	0.038 (J)	
10/4/2018	0.038 (J)	
4/9/2019	0.035 (J)	
10/1/2019	0.031 (J)	
3/27/2020	0.04 (J)	
9/25/2020	0.036 (J)	
3/9/2021	0.037 (J)	
8/10/2021	0.033 (J)	
2/4/2022		0.037 (J)
8/9/2022		0.031 (J)
1/30/2023		0.038 (J)
8/14/2023		0.032 (J)

	GWC-18	GWC-18
3/24/2016	0.122	
5/18/2016	0.139	
7/7/2016	0.12	
9/8/2016	0.126	
10/19/2016	0.133	
12/8/2016	0.119	
2/2/2017	0.132	
3/27/2017	0.134	
10/5/2017	0.125	
3/16/2018	0.12	
10/5/2018	0.15	
4/9/2019	0.12	
10/1/2019	0.14	
3/30/2020	0.13	
9/24/2020	0.13	
3/9/2021	0.13	
8/10/2021	0.14	
2/4/2022		0.12
8/9/2022		0.12
1/31/2023		0.12
8/15/2023		0.14

	GWC-19	GWC-19
3/24/2016	0.173	
5/18/2016	0.186	
7/6/2016	0.184	
9/8/2016	0.173	
10/18/2016	0.171	
12/7/2016	0.203	
2/2/2017	0.187	
3/27/2017	0.182	
10/5/2017	0.166	
3/15/2018	0.17	
10/4/2018	0.17	
4/9/2019	0.17	
10/1/2019	0.17	
3/31/2020	0.18	
9/28/2020	0.17	
3/10/2021	0.16	
8/10/2021	0.14	
2/7/2022		0.15
8/9/2022		0.14
1/31/2023		0.13
8/15/2023		0.16

	GWC-20	GWC-20
3/23/2016	<0.1	
5/18/2016	0.0229 (J)	
7/7/2016	0.0169 (J)	
9/8/2016	0.0178 (J)	
10/19/2016	0.018 (J)	
12/7/2016	0.0248 (J)	
2/3/2017	0.0171 (J)	
3/27/2017	0.0181 (J)	
10/5/2017	0.0178 (J)	
3/16/2018	0.016 (J)	
10/5/2018	0.017 (J)	
4/9/2019	0.011 (J)	
10/1/2019	0.019 (J)	
3/31/2020	0.024 (J)	
9/23/2020	0.018 (J)	
3/10/2021	0.018 (J)	
8/10/2021	0.013 (J)	
2/7/2022		0.015 (J)
8/9/2022		0.015 (J)
1/31/2023		0.015 (J)
8/15/2023		0.019 (J)

	GWC-21	GWC-21
3/24/2016	0.0232 (J)	
5/18/2016	0.0289 (J)	
7/7/2016	0.0313 (J)	
9/8/2016	0.0593 (J)	
10/19/2016	0.087 (J)	
12/7/2016	0.127	
2/2/2017	0.0318 (J)	
3/27/2017	0.0225 (J)	
10/5/2017	0.0304 (J)	
3/15/2018	0.025 (J)	
10/4/2018	0.029 (J)	
4/9/2019	0.014 (J)	
10/1/2019	0.059	
3/31/2020	0.022 (J)	
9/24/2020	0.061 (J)	
3/9/2021	0.03 (J)	
8/10/2021	0.026 (J)	
2/7/2022		0.018 (J)
8/9/2022		0.029 (J)
1/31/2023		0.013 (J)
8/15/2023		0.03 (J)

	GWC-22	GWC-22
3/23/2016	0.0649 (J)	
5/18/2016	0.0781 (J)	
7/7/2016	0.0621 (J)	
9/8/2016	0.0607 (J)	
10/19/2016	0.0733 (J)	
12/7/2016	0.0758	
2/2/2017	0.0729	
3/27/2017	0.0698	
10/5/2017	0.0677	
3/15/2018	0.07	
10/4/2018	0.065	
4/9/2019	0.063	
10/1/2019	0.066	
3/31/2020	0.067 (J)	
9/23/2020	0.061 (J)	
3/9/2021	0.065	
8/10/2021	0.057	
2/7/2022		0.064
8/9/2022		0.059
1/31/2023		0.052
8/15/2023		0.068

	GWC-23	GWC-23
3/23/2016	<0.1	
5/19/2016	0.0212 (J)	
7/7/2016	0.0183 (J)	
9/8/2016	0.017 (J)	
10/19/2016	0.0203 (J)	
12/7/2016	0.0215 (J)	
2/3/2017	0.0812	
3/27/2017	0.125 (o)	
10/5/2017	0.0375 (J)	
3/15/2018	0.051	
10/5/2018	0.039 (J)	
4/8/2019	0.022 (J)	
10/1/2019	0.024 (J)	
3/26/2020	0.042 (J)	
9/23/2020	0.024 (J)	
3/9/2021	0.044	
8/10/2021	0.027 (J)	
2/7/2022		0.052
8/8/2022		0.022 (J)
1/31/2023		0.06
8/14/2023		0.019 (J)

	GWC-5	GWC-5
3/23/2016	0.0509 (J)	
5/17/2016	0.0565 (J)	
7/6/2016	0.0628 (J)	
9/7/2016	0.0648 (J)	
10/18/2016	0.0666 (J)	
12/8/2016	0.062	
2/1/2017	0.0516	
3/23/2017	0.0597	
10/4/2017	0.0658	
3/16/2018	0.047	
10/4/2018	0.066	
4/9/2019	0.048	
10/1/2019	0.071	
3/31/2020	0.057 (J)	
9/25/2020	0.08 (J)	
3/9/2021	0.046	
8/10/2021	0.056	
2/4/2022		0.04
8/9/2022		0.058
1/31/2023		0.043
8/15/2023		0.06

	GWC-6	GWC-6
3/23/2016	0.0379 (J)	
5/17/2016	0.0395 (J)	
7/6/2016	0.0393 (J)	
9/7/2016	0.04 (J)	
10/18/2016	0.0366 (J)	
12/8/2016	0.0397 (J)	
2/1/2017	0.0381 (J)	
3/23/2017	0.0416	
10/4/2017	0.0382 (J)	
3/16/2018	0.044	
5/16/2018	0.042	
10/4/2018	0.038 (J)	
4/8/2019	0.036 (J)	
10/1/2019	0.042	
3/31/2020	0.091 (Jo)	
6/18/2020	0.045 (JR)	
9/25/2020	0.047 (J)	
3/9/2021	0.038 (J)	
8/10/2021	0.037 (J)	
2/4/2022		0.039 (J)
8/8/2022		0.038 (J)
1/31/2023		0.037 (J)
8/14/2023		0.039 (J)

	GWC-7	GWC-7
3/23/2016	0.0574 (J)	
5/18/2016	0.0686 (J)	
7/6/2016	0.0675 (J)	
9/7/2016	0.0582 (J)	
10/18/2016	0.0577 (J)	
12/8/2016	0.0572	
2/2/2017	0.0534	
3/24/2017	0.0532	
10/4/2017	0.0563	
3/15/2018	0.053	
10/4/2018	0.048	
4/8/2019	0.049 (J)	
10/1/2019	0.05	
3/30/2020	0.049 (J)	
9/24/2020	0.045 (J)	
3/9/2021	0.041	
8/10/2021	0.037 (J)	
2/4/2022		0.055
8/10/2022		0.046
1/31/2023		0.025 (J)
8/15/2023		0.03 (J)

	GWC-8	GWC-8
3/23/2016	0.0213 (J)	
5/18/2016	0.028 (J)	
7/6/2016	0.0231 (J)	
9/8/2016	0.0234 (J)	
10/18/2016	0.0228 (J)	
12/8/2016	0.0251 (J)	
2/2/2017	0.0238 (J)	
3/24/2017	0.0234 (J)	
10/5/2017	0.0329 (J)	
3/14/2018	0.024 (J)	
10/4/2018	0.047 (J)	
4/8/2019	0.055 (J)	
10/1/2019	0.046	
3/27/2020	0.056 (J)	
6/19/2020	0.086 (JR)	
9/24/2020	0.055 (J)	
3/9/2021	0.05	
8/10/2021	0.088	
2/4/2022		0.055
8/9/2022		0.043
1/31/2023		0.029 (J)
8/15/2023		0.031 (J)

	GWC-9	GWC-9
3/23/2016	<0.1	
5/18/2016	0.0202 (J)	
7/6/2016	0.0171 (J)	
9/8/2016	0.0157 (J)	
10/19/2016	0.0152 (J)	
12/8/2016	0.0178 (J)	
2/2/2017	0.0151 (J)	
3/27/2017	0.0203 (J)	
10/5/2017	0.0157 (J)	
3/15/2018	0.013 (J)	
10/5/2018	0.017 (J)	
4/8/2019	0.015 (J)	
10/1/2019	0.018 (J)	
3/27/2020	0.018 (J)	
9/24/2020	0.016 (J)	
3/9/2021	0.014 (J)	
8/10/2021	0.012 (J)	
2/4/2022		0.013 (J)
8/9/2022		0.014 (J)
1/31/2023		0.012 (J)
8/15/2023		0.022 (J)

	GWA-1	GWA-1
3/22/2016	13.9	
5/17/2016	15.6	
7/5/2016	15.7	
9/7/2016	18.2	
10/18/2016	17.7	
12/6/2016	16.9	
1/31/2017	17.9	
3/23/2017	13.9	
10/4/2017	15.9	
3/14/2018	<25	
10/4/2018	15.9 (J)	
4/8/2019	15.7	
9/30/2019	17.6	
3/26/2020	14	
9/23/2020	17.6	
3/8/2021	16.2 (M1)	
8/9/2021	20.2	
2/4/2022		18.3
8/8/2022		17.2
1/30/2023		15.8 (M1)
8/14/2023		17.2

	GWA-11	GWA-11
3/22/2016	23.8	
5/17/2016	21.5	
7/6/2016	20.6	
9/7/2016	16.7	
10/18/2016	20.3	
12/6/2016	19.7	
2/1/2017	18.1	
3/24/2017	21.1	
10/5/2017	20.1	
3/15/2018	<25	
10/4/2018	21.3 (J)	
4/8/2019	22.4	
9/30/2019	19.6	
3/26/2020	22.4	
9/22/2020	19.5	
3/8/2021	22	
8/10/2021	20.8	
2/4/2022		23.7
8/8/2022		21.1
1/30/2023		20.4
8/14/2023		21.8

	GWA-2	GWA-2
3/22/2016	47.4	
5/17/2016	45.5	
7/5/2016	40.5	
9/7/2016	37.3	
10/18/2016	46.6	
12/7/2016	43.5	
1/31/2017	39.2	
3/23/2017	38.7	
10/4/2017	36.5	
3/14/2018	39.5	
10/4/2018	41.7	
4/8/2019	44.1	
9/30/2019	44.6	
3/26/2020	43.2	
9/21/2020	45.8	
3/9/2021	48.7	
8/9/2021	49.9	
2/4/2022		57.6
8/8/2022		51.2
1/30/2023		46.8
8/14/2023		53.1

	GWA-3	GWA-3
3/22/2016	79.3	
5/17/2016	75.8	
7/5/2016	65.3	
9/7/2016	59.8	
10/18/2016	72.4	
12/6/2016	78.6	
2/1/2017	85	
3/23/2017	81.2	
10/4/2017	78.8	
3/15/2018	83.5	
10/4/2018	75.2	
4/5/2019	76.5	
9/30/2019	74.7	
3/26/2020	78.7	
9/23/2020	76.2	
3/8/2021	73.5	
8/9/2021	73.2	
2/4/2022		59 (M1)
8/8/2022		61
1/30/2023		53.1
8/14/2023		57.2

	GWA-4	GWA-4
3/22/2016	123	
5/17/2016	99.2	
7/6/2016	109	
9/7/2016	67.2	
10/18/2016	77.9	
12/6/2016	93.3	
2/1/2017	92.8	
3/24/2017	96.3	
10/4/2017	75.1	
3/15/2018	69.9	
10/4/2018	77.8	
4/8/2019	86.6	
9/30/2019	78.3	
3/26/2020	87.4	
9/23/2020	74.9	
3/8/2021	87.2	
8/9/2021	69.7	
2/4/2022		97.3
8/8/2022		68.9
1/30/2023		73.6
8/14/2023		73.5

	GWC-10	GWC-10
3/23/2016	43.9	
5/17/2016	40.1	
7/6/2016	32.3	
9/7/2016	28.9	
10/18/2016	35.4	
12/6/2016	34.3	
2/2/2017	38.1	
3/27/2017	45.4	
10/5/2017	35.8	
3/15/2018	52.4	
5/15/2018	48.4	
10/4/2018	51.2	
12/11/2018	49.3	
4/9/2019	48.8	
10/1/2019	36.8	
3/27/2020	22.9	
9/25/2020	39.4	
3/9/2021	48.7	
8/10/2021	45.5	
2/4/2022		52.8
8/9/2022		43.9
1/30/2023		43.7
8/14/2023		39.8

	GWC-18	GWC-18
3/24/2016	40.7	
5/18/2016	41.9	
7/7/2016	36.8	
9/8/2016	35.9	
10/19/2016	38.7	
12/8/2016	39.4	
2/2/2017	41.5	
3/27/2017	39.1	
10/5/2017	41.6	
3/16/2018	45.9	
5/16/2018	40	
10/5/2018	39.6	
4/9/2019	41.4	
10/1/2019	38.7	
3/30/2020	45.7	
9/24/2020	36.9	
3/9/2021	44.9	
8/10/2021	48.2	
2/4/2022		56.1
8/9/2022		44.4
1/31/2023		40.4
8/15/2023		41

	GWC-19	GWC-19
3/24/2016	43.9	
5/18/2016	48.2	
7/6/2016	45.8	
9/8/2016	40.9	
10/18/2016	45.5	
12/7/2016	40.6	
2/2/2017	42.4	
3/27/2017	45.5	
10/5/2017	42.9	
3/15/2018	43.3	
10/4/2018	43.7	
4/9/2019	45.8	
10/1/2019	42.3	
3/31/2020	52.3	
6/19/2020	41.3 (R)	
9/28/2020	44.7	
3/10/2021	47.4	
8/10/2021	44.9	
2/7/2022		49
8/9/2022		48.7
1/31/2023		42.5
8/15/2023		44.6

	GWC-20	GWC-20
3/23/2016	56.3	
5/18/2016	59	
7/7/2016	50.9	
9/8/2016	48	
10/19/2016	49.7	
12/7/2016	46.4	
2/3/2017	49	
3/27/2017	50.7	
10/5/2017	52	
3/16/2018	53.4	
10/5/2018	52.7	
4/9/2019	57.1	
10/1/2019	59.1	
3/31/2020	63.6	
6/19/2020	61.4 (R)	
9/23/2020	55.8	
3/10/2021	64.9	
8/10/2021	62	
2/7/2022		68.7
8/9/2022		66.3
1/31/2023		62
8/15/2023		63.5

GWC-21	GWC-21
31.4	
39.2	
36	
70	
63	
54.7	
37.4	
20.9	
26.8	
62.8	
48.6	
35.4	
82.8	
74.9	
45.8	
25.6	
73.4	
67.8	
29.7	
	39.7
	30.2
	16.2
	31.5
	31.4 39.2 36 70 63 54.7 37.4 20.9 26.8 62.8 48.6 35.4 82.8 74.9 45.8 25.6 73.4 67.8

	GWC-22	GWC-22
3/23/2016	49.9	
5/18/2016	50.7	
7/7/2016	45.5	
9/8/2016	46.8	
10/19/2016	47.3	
12/7/2016	45.3	
2/2/2017	49.9	
3/27/2017	45.8	
10/5/2017	47.3	
3/15/2018	46.8	
10/4/2018	50.4	
4/9/2019	47.3	
10/1/2019	46.9	
3/31/2020	51.5	
9/23/2020	45.9	
3/9/2021	48.7	
8/10/2021	48.1	
2/7/2022		52.6
8/9/2022		51.3
1/31/2023		43.8
8/15/2023		47.3

	GWC-23	GWC-23
3/23/2016	36.4	
5/19/2016	41.5	
7/7/2016	33.5	
9/8/2016	34.7	
10/19/2016	33.4	
12/7/2016	35.5	
2/3/2017	31.7	
3/27/2017	32	
10/5/2017	41	
3/15/2018	39.8	
10/5/2018	39.3	
4/8/2019	39.8	
10/1/2019	39.1	
3/26/2020	44.7	
9/23/2020	39.2	
3/9/2021	54.3	
8/10/2021	48.2	
2/7/2022		64.9
8/8/2022		40.6
1/31/2023		58.3
8/14/2023		40.7

	GWC-5	GWC-5
3/23/2016	79	
5/17/2016	74.6	
7/6/2016	66.9	
9/7/2016	61.6	
10/18/2016	71.6	
12/8/2016	67.6	
2/1/2017	82.5	
3/23/2017	84.4	
10/4/2017	70.8	
3/16/2018	78.1	
10/4/2018	73	
4/9/2019	73.9	
10/1/2019	70.6	
3/31/2020	84.2	
9/25/2020	77.1	
3/9/2021	85.4	
8/10/2021	78.3	
2/4/2022		79.5
8/9/2022		76.6
1/31/2023		75.5
8/15/2023		75.8

	GWC-6	GWC-6
3/23/2016	64.1	
5/17/2016	62.8	
7/6/2016	59.5	
9/7/2016	53.7	
10/18/2016	62.3	
12/8/2016	58.8	
2/1/2017	59.6	
3/23/2017	62.9	
10/4/2017	62.4	
3/16/2018	66.9	
10/4/2018	65.5	
4/8/2019	67	
10/1/2019	64.2	
3/31/2020	70.6	
9/25/2020	71.3	
3/9/2021	70.8	
8/10/2021	67.7	
2/4/2022		71.2
8/8/2022		70.5
1/31/2023		62.5
8/14/2023		69.1

	GWC-7	GWC-7
3/23/2016	45.2	
5/18/2016	46.5	
7/6/2016	29.1	
9/7/2016	19.2	
10/18/2016	22.6	
12/8/2016	17.5	
2/2/2017	54.4	
3/24/2017	56.8	
10/4/2017	30.5	
3/15/2018	43.4	
10/4/2018	26.1	
4/8/2019	56.1	
10/1/2019	28.5	
3/30/2020	47.8	
9/24/2020	39.5	
3/9/2021	64.3	
8/10/2021	40.5	
2/4/2022		68.3
8/10/2022		33.3
1/31/2023		19
8/15/2023		18.4

	GWC-8	GWC-8
3/23/2016	69.1	
5/18/2016	63.7	
7/6/2016	56.8	
9/8/2016	51.3	
10/18/2016	52.6	
12/8/2016	43.7	
2/2/2017	56.5	
3/24/2017	64.4	
10/5/2017	59.9	
3/14/2018	58.8	
10/4/2018	264 (o)	
12/11/2018	64.3	
4/8/2019	81.5	
6/18/2019	83.7	
6/27/2019	75.9	
10/1/2019	64	
3/27/2020	87.3	
9/24/2020	81.4	
3/9/2021	83.2	
8/10/2021	111	
2/4/2022		92.6
8/9/2022		83.8
1/31/2023		69.2
8/15/2023		70.5

	GWC-9	GWC-9
3/23/2016	36	
5/18/2016	37.3	
7/6/2016	32.8	
9/8/2016	32.1	
10/19/2016	35	
12/8/2016	33.4	
2/2/2017	34.3	
3/27/2017	34.9	
10/5/2017	34.7	
3/15/2018	35.3	
10/5/2018	37.8	
4/8/2019	36.3	
10/1/2019	37.2	
3/27/2020	34.3	
9/24/2020	35.9	
3/9/2021	36.8	
8/10/2021	38.1	
2/4/2022		39.8
8/9/2022		38.6
1/31/2023		34.1
8/15/2023		37.6

	GWA-1	GWA-1
3/22/2016	1.1933	
5/17/2016	1.14	
7/5/2016	1.4	
9/7/2016	1	
10/18/2016	1.1	
12/6/2016	1	
1/31/2017	1.2	
3/23/2017	1.1	
10/4/2017	1.1	
3/14/2018	1.2	
10/4/2018	1.4	
4/8/2019	1.1	
9/30/2019	1.4	
3/26/2020	1.1	
9/23/2020	1.6	
3/8/2021	1.1	
8/9/2021	1.1	
2/4/2022		0.99 (J)
8/8/2022		1.2
1/30/2023		1.1
8/14/2023		0.99 (J)

	GWA-11	GWA-11
3/22/2016	1.3137	
5/17/2016	1.29	
7/6/2016	1.6	
9/7/2016	1.5	
10/18/2016	1.6	
12/6/2016	1.2	
2/1/2017	2.1	
3/24/2017	1.3	
10/5/2017	1.3	
3/15/2018	1.6	
10/4/2018	1.8	
4/8/2019	1.3	
9/30/2019	1.5	
3/26/2020	1.4	
9/22/2020	1	
3/8/2021	1.3	
8/10/2021	1.2	
2/4/2022		1.2
8/8/2022		1.3
1/30/2023		1.2
8/14/2023		1

	GWA-2	GWA-2
3/22/2016	2.0975	
5/17/2016	2.1	
7/5/2016	2.4	
9/7/2016	2.5	
10/18/2016	2.7	
12/7/2016	2.6	
1/31/2017	2.5	
3/23/2017	2	
10/4/2017	2.2	
3/14/2018	2.4	
10/4/2018	2.5	
4/8/2019	2.6	
9/30/2019	3	
3/26/2020	2	
9/21/2020	2.1	
3/9/2021	2.1	
8/9/2021	2.4	
2/4/2022		2.3
8/8/2022		2.5
1/30/2023		2.2
8/14/2023		2.2

	GWA-3	GWA-3
3/22/2016	4.0352	
5/17/2016	3.81	
7/5/2016	4	
9/7/2016	4.2	
10/18/2016	4.4	
12/6/2016	4.6	
2/1/2017	3.7	
3/23/2017	3.5	
10/4/2017	3.6	
3/15/2018	3.8	
10/4/2018	3.4	
4/5/2019	4.2	
9/30/2019	4.1	
3/26/2020	2.6	
9/23/2020	2.8	
3/8/2021	2.8	
8/9/2021	2.1	
2/4/2022		1.1
8/8/2022		1.9
1/30/2023		1.2
8/14/2023		1.3

	GWA-4	GWA-4
3/22/2016	5.549	
5/17/2016	6.74	
7/6/2016	5.2	
9/7/2016	7.2	
10/18/2016	7.4	
12/6/2016	7.6	
2/1/2017	8.5	
3/24/2017	7	
10/4/2017	7.4	
3/15/2018	1.7	
10/4/2018	6.1	
4/8/2019	3.6	
9/30/2019	7.5	
3/26/2020	5.4	
9/23/2020	4.2	
3/8/2021	5.6	
8/9/2021	3	
2/4/2022		3.3 (M1)
8/8/2022		2.4
1/30/2023		3.4
8/14/2023		2.5

	GWC-10	GWC-10
3/23/2016	1.3507	
5/17/2016	1.28	
7/6/2016	1.5	
9/7/2016	1.5	
10/18/2016	1.4	
12/6/2016	1.3	
2/2/2017	1.8	
3/27/2017	1.7	
10/5/2017	1.5	
3/15/2018	2	
5/15/2018	1.4	
10/4/2018	2.1	
12/11/2018	1.9	
4/9/2019	1.9	
10/1/2019	1.5	
3/27/2020	1.2	
9/25/2020	1.1	
3/9/2021	1.1	
8/10/2021	1.2	
2/4/2022		1.3
8/9/2022		1.3
1/30/2023		1.3
8/14/2023		1

	GWC-18	GWC-18
3/24/2016	1.1313	
5/19/2016	1.13	
7/7/2016	1.5	
9/8/2016	1.4	
10/19/2016	1.4	
12/8/2016	1.4	
2/2/2017	1.6	
3/27/2017	1.5	
10/5/2017	1.4	
3/16/2018	1.5	
10/5/2018	1.5	
4/9/2019	1.6	
10/1/2019	0.94 (J)	
3/30/2020	1	
9/24/2020	0.94 (J)	
3/9/2021	0.97 (J)	
8/10/2021	0.93 (J)	
2/4/2022		0.88 (J)
8/9/2022		1.1
1/31/2023		0.8 (J)
8/15/2023		0.85 (J)

	GWC-19	GWC-19
3/24/2016	1.6497	
5/18/2016	1.74	
7/6/2016	2.1	
9/8/2016	1.9	
10/18/2016	2.1	
12/7/2016	2	
2/2/2017	2.3	
3/27/2017	2.1	
10/5/2017	1.9	
3/15/2018	1.9	
10/4/2018	2	
4/9/2019	1.9	
10/1/2019	1.3	
3/31/2020	1.3	
9/28/2020	1.3	
3/10/2021	1.3	
8/10/2021	1.2	
2/7/2022		1.1
8/9/2022		1.6
1/31/2023		1.2
8/15/2023		1.1

	GWC-20	GWC-20
3/23/2016	1.4238	
5/18/2016	1.57	
7/7/2016	1.7	
9/8/2016	1.5	
10/19/2016	1.7	
12/7/2016	1.8	
2/3/2017	2	
3/27/2017	1.8	
10/5/2017	5.5 (o)	
12/14/2017	1.5	
3/16/2018	1.9	
10/5/2018	2.2	
12/11/2018	1.8	
4/9/2019	1.8	
10/1/2019	1.1	
3/31/2020	1.1	
9/23/2020	1.1	
3/10/2021	1.2	
8/10/2021	1.2	
2/7/2022		1.2
8/9/2022		0.93 (J)
1/31/2023		1.1
8/15/2023		1.1

	GWC-21	GWC-21
3/24/2016	2.461	
5/18/2016	2.61	
7/7/2016	2.8	
9/8/2016	2.3	
10/19/2016	2.4	
12/7/2016	2.2	
2/2/2017	3.4	
3/27/2017	2.7	
10/5/2017	3.3	
3/15/2018	3.6	
5/15/2018	3.2	
10/4/2018	2.4	
4/9/2019	2.6	
10/1/2019	2	
3/31/2020	1.5	
9/24/2020	1.8	
3/9/2021	1.8	
8/10/2021	2	
2/7/2022		2.7
8/9/2022		4
1/31/2023		1.5
8/15/2023		5.3

	GWC-22	GWC-22
3/23/2016	1.2595	
5/18/2016	1.25	
7/7/2016	1.7	
9/8/2016	1.5	
10/19/2016	1.6	
12/7/2016	1.5	
2/2/2017	1.8	
3/27/2017	1.5	
10/5/2017	1.6	
3/15/2018	1.7	
10/4/2018	1.7	
4/9/2019	1.7	
10/1/2019	1.4	
3/31/2020	1	
9/23/2020	1.1	
3/9/2021	1	
8/10/2021	1.1	
2/7/2022		1
8/9/2022		0.81 (J)
1/31/2023		1
8/15/2023		0.95 (J)

	GWC-23	GWC-23
3/23/2016	1.5409	
5/19/2016	1.23	
7/7/2016	1.7	
9/8/2016	1.6	
10/19/2016	1.6	
12/7/2016	1.7	
2/3/2017	1.9	
3/27/2017	1.7	
10/5/2017	1.4	
3/15/2018	1.6	
10/5/2018	1.6	
4/8/2019	1.5	
10/1/2019	1.1	
3/26/2020	0.63 (J)	
9/23/2020	1.1	
3/9/2021	0.85 (J)	
8/10/2021	1	
2/7/2022		0.7 (J)
8/8/2022		1.3
1/31/2023		<1
8/14/2023		1.1

	GWC-5	GWC-5
3/23/2016	2.5045	anoo
5/17/2016	2.47	

7/6/2016	2.9	
9/7/2016	2.8	
10/18/2016	2.8	
12/8/2016	3.1	
2/1/2017	3.8	
3/23/2017	3.4	
10/4/2017	3.7	
3/16/2018	3.2	
10/4/2018	3.2	
4/9/2019	3.3	
10/1/2019	2.2	
3/31/2020	2	
9/25/2020	2.3	
3/9/2021	2	
8/10/2021	2.3	
2/4/2022		1.9
8/9/2022		2.4
1/31/2023		2.1
8/15/2023		2.1

	GWC-6	GWC-6
3/23/2016	1.7709	
5/17/2016	1.75	
7/6/2016	2	
9/7/2016	2	
10/18/2016	2	
12/8/2016	2	
2/1/2017	2.2	
3/23/2017	2	
10/4/2017	1.7	
3/16/2018	2.1	
10/4/2018	2.2	
4/8/2019	2.1	
10/1/2019	1.6	
3/31/2020	1.5	
9/25/2020	1.6	
3/9/2021	1.5	
8/10/2021	1.6	
2/4/2022		1.6
8/8/2022		1.9
1/31/2023		1.7
8/14/2023		1.6

	GWC-7	GWC-7
3/23/2016	1.1569	
5/18/2016	1.35	
7/6/2016	1.9	
9/7/2016	1.7	
10/18/2016	1.8	
12/8/2016	1.6	
2/2/2017	2	
3/24/2017	1.3	
10/4/2017	1.7	
3/15/2018	1.9	
10/4/2018	2	
4/8/2019	1.9	
10/1/2019	1.2	
3/30/2020	9.2 (o)	
6/19/2020	1.4 (R)	
9/24/2020	1.4	
3/9/2021	1.5	
8/10/2021	1.6	
2/4/2022		1.8
8/10/2022		1.7
1/31/2023		1.7
8/15/2023		1.7

GWC-8	GWC-8
1.4936	
1.35	
1.6	
1.4	
1.4	
1.5	
1.7	
2.1	
2	
2.1	
2.3	
2.3	
2.8	
3.2	
1.8	
2.5	
2.2	
2.2	
2.7	
	3.2
	2.1
	1.6
	1.6
	1.4936 1.35 1.6 1.4 1.4 1.5 1.7 2.1 2 2.1 2.3 2.3 2.8 3.2 1.8 2.5 2.2 2.2

	GWC-9	GWC-9
3/23/2016	0.9561	
5/19/2016	0.972	
7/6/2016	1.3	
9/8/2016	1	
10/19/2016	1.1	
12/8/2016	1.3	
2/2/2017	1.6	
3/27/2017	1.4	
10/5/2017	1.1	
3/15/2018	1.3	
10/5/2018	1.6	
4/8/2019	1	
10/1/2019	0.91 (J)	
3/27/2020	0.74 (J)	
9/24/2020	0.82 (J)	
3/9/2021	0.74 (J)	
8/10/2021	0.85 (J)	
2/4/2022		0.78 (J)
8/9/2022		1
1/31/2023		0.72 (J)
8/15/2023		0.65 (J)

	GWA-1	GWA-1
3/22/2016	0.119 (J)	
5/17/2016	0.1049 (J)	
7/5/2016	0.1 (J)	
9/7/2016	0.13 (J)	
10/18/2016	0.15 (J)	
12/6/2016	0.11 (J)	
1/31/2017	0.02 (J)	
3/23/2017	0.08 (J)	
10/4/2017	0.07 (J)	
3/14/2018	<0.3	
10/4/2018	0.17 (J)	
4/8/2019	0.057 (J)	
9/30/2019	0.11 (J)	
3/26/2020	0.082 (J)	
9/23/2020	0.089 (J)	
3/8/2021	0.094 (J)	
8/9/2021	0.083 (J)	
2/4/2022		0.087 (J)
8/8/2022		0.11
1/30/2023		0.11
8/14/2023		0.076 (J)

	GWA-11	GWA-11
3/22/2016	0.0811 (J)	
5/17/2016	0.0706 (J)	
7/6/2016	0.09 (J)	
9/7/2016	0.04 (J)	
10/18/2016	0.07 (J)	
12/6/2016	0.13 (J)	
2/1/2017	<0.3	
3/24/2017	0.01 (J)	
10/5/2017	<0.3	
3/15/2018	<0.3	
10/4/2018	0.15 (J)	
4/8/2019	0.035 (J)	
9/30/2019	0.099 (J)	
3/26/2020	0.057 (J)	
9/22/2020	0.061 (J)	
3/8/2021	0.11	
8/10/2021	0.068 (J)	
2/4/2022		0.068 (J)
8/8/2022		0.1
1/30/2023		0.09 (J)
8/14/2023		0.066 (J)

	GWA-2	GWA-2
3/22/2016		G117,1-Z
	0.1252 (J)	
5/17/2016	0.1091 (J)	
7/5/2016	0.16 (J)	
9/7/2016	0.18 (J)	
10/18/2016	0.13 (J)	
12/7/2016	0.13 (J)	
1/31/2017	0.04 (J)	
3/23/2017	0.08 (J)	
10/4/2017	0.11 (J)	
3/14/2018	<0.3	
10/4/2018	0.25 (J)	
4/8/2019	0.072 (J)	
9/30/2019	0.14 (J)	
3/26/2020	0.12 (J)	
9/21/2020	0.12	
3/9/2021	0.099 (J)	
8/9/2021	0.081 (J)	
2/4/2022		0.085 (J)
8/8/2022		0.1
1/30/2023		0.11
8/14/2023		0.08 (J)

	GWA-3	GWA-3
3/22/2016	0.1415 (J)	
5/17/2016	0.1293 (J)	
7/5/2016	0.21 (J)	
9/7/2016	0.21 (J)	
10/18/2016	0.15 (J)	
12/6/2016	0.19 (J)	
2/1/2017	0.35	
3/23/2017	0.39	
10/4/2017	0.49	
3/15/2018	<0.3	
10/4/2018	0.24 (J)	
4/5/2019	0.31	
9/30/2019	0.15 (J)	
3/26/2020	0.09 (J)	
9/23/2020	0.11	
3/8/2021	0.13	
8/9/2021	0.1	
2/4/2022		0.084 (J)
8/8/2022		0.11
1/30/2023		0.12
8/14/2023		0.089 (J)

	GWA-4	GWA-4
3/22/2016	0.1754 (J)	
5/17/2016	0.1385 (J)	
7/6/2016	0.22 (J)	
9/7/2016	0.2 (J)	
10/18/2016	0.16 (J)	
12/6/2016	0.29 (J)	
2/1/2017	0.48	
3/24/2017	0.12 (J)	
10/4/2017	0.2 (J)	
3/15/2018	0.4	
10/4/2018	0.24 (J)	
4/8/2019	0.12 (J)	
9/30/2019	0.17 (J)	
3/26/2020	0.089 (J)	
9/23/2020	0.13	
3/8/2021	0.1	
8/9/2021	0.12	
2/4/2022		0.11 (M1)
8/8/2022		0.12
1/30/2023		0.12
8/14/2023		0.11

	GWC-10	GWC-10
3/23/2016	0.1069 (J)	
5/17/2016	0.0991 (J)	
7/6/2016	0.09 (J)	
9/7/2016	0.13 (J)	
10/18/2016	0.16 (J)	
12/6/2016	0.12 (J)	
2/2/2017	0.07 (J)	
3/27/2017	0.05 (J)	
10/5/2017	0.11 (J)	
3/15/2018	<0.3	
10/4/2018	0.16 (J)	
4/9/2019	0.067 (J)	
10/1/2019	0.07 (J)	
3/27/2020	<0.3	
9/25/2020	0.085 (J)	
3/9/2021	0.078 (J)	
8/10/2021	0.078 (J)	
2/4/2022		0.07 (J)
8/9/2022		0.096 (J)
1/30/2023		0.096 (J)
8/14/2023		0.077 (J)

	GWC-18	GWC-18
3/24/2016	0.1459 (J)	
5/19/2016	0.1408 (J)	
7/7/2016	0.2 (J)	
9/8/2016	0.14 (J)	
10/19/2016	0.14 (J)	
12/8/2016	0.16 (J)	
2/2/2017	0.17 (J)	
3/27/2017	0.11 (J)	
10/5/2017	0.13 (J)	
3/16/2018	<0.3	
10/5/2018	0.21 (J)	
4/9/2019	0.1 (J)	
10/1/2019	0.11 (J)	
3/30/2020	0.1 (J)	
9/24/2020	0.11	
3/9/2021	0.11	
8/10/2021	0.11	
2/4/2022		0.12
8/9/2022		0.13
1/31/2023		0.15
8/15/2023		0.1

	GWC-19	GWC-19
3/24/2016	0.1652 (J)	
5/18/2016	0.1459 (J)	
7/6/2016	0.21 (J)	
9/8/2016	0.15 (J)	
10/18/2016	0.19 (J)	
12/7/2016	0.24 (J)	
2/2/2017	0.1 (J)	
3/27/2017	0.11 (J)	
10/5/2017	0.13 (J)	
3/15/2018	<0.3	
10/4/2018	0.21 (J)	
4/9/2019	0.1 (J)	
10/1/2019	0.11 (J)	
3/31/2020	0.099 (J)	
9/28/2020	0.11	
3/10/2021	0.11	
8/10/2021	0.11	
2/7/2022		0.1
8/9/2022		0.14
1/31/2023		0.14
8/15/2023		0.092 (J)

	GWC-20	GWC-20
3/23/2016	0.0905 (J)	
5/18/2016	0.0864 (J)	
7/7/2016	0.16 (J)	
9/8/2016	0.08 (J)	
10/19/2016	0.09 (J)	
12/7/2016	0.11 (J)	
2/3/2017	0.06 (J)	
3/27/2017	0.04 (J)	
10/5/2017	0.05 (J)	
3/16/2018	<0.3	
10/5/2018	0.17 (J)	
4/9/2019	0.056 (J)	
10/1/2019	0.069 (J)	
3/31/2020	0.054 (J)	
9/23/2020	0.065 (J)	
3/10/2021	0.068 (J)	
8/10/2021	0.066 (J)	
2/7/2022		0.058 (J)
8/9/2022		0.11
1/31/2023		0.094 (J)
8/15/2023		0.055 (J)

	GWC-21	GWC-21
3/24/2016	0.0445 (J)	
5/18/2016	0.0476 (J)	
7/7/2016	0.12 (J)	
9/8/2016	0.11 (J)	
10/19/2016	0.13 (J)	
12/7/2016	0.23 (J)	
2/2/2017	0.11 (J)	
3/27/2017	0.01 (J)	
10/5/2017	<0.1	
3/15/2018	<0.1	
10/4/2018	0.15 (J)	
4/9/2019	0.063 (J)	
10/1/2019	0.094 (J)	
3/31/2020	<0.1	
9/24/2020	0.1	
3/9/2021	0.058 (J)	
8/10/2021	<0.1	
2/7/2022		<0.1
8/9/2022		0.079 (J)
1/31/2023		0.062 (J)
8/15/2023		<0.1

	GWC-22	GWC-22
3/23/2016	0.0886 (J)	
5/18/2016	0.0839 (J)	
7/7/2016	0.08 (J)	
9/8/2016	0.11 (J)	
10/19/2016	0.1 (J)	
12/7/2016	0.09 (J)	
2/2/2017	0.05 (J)	
3/27/2017	0.08 (J)	
10/5/2017	0.08 (J)	
3/15/2018	<0.3	
10/4/2018	0.14 (J)	
4/9/2019	0.063 (J)	
10/1/2019	0.079 (J)	
3/31/2020	0.055 (J)	
9/23/2020	0.073 (J)	
3/9/2021	0.067 (J)	
8/10/2021	0.071 (J)	
2/7/2022		0.059 (J)
8/9/2022		0.11
1/31/2023		0.095 (J)
8/15/2023		0.065 (J)

	GWC-23	GWC-23
3/23/2016	0.1064 (J)	
5/19/2016	0.0928 (J)	
7/7/2016	0.13 (J)	
9/8/2016	0.12 (J)	
10/19/2016	0.1 (J)	
12/7/2016	0.1 (J)	
2/3/2017	0.12 (J)	
3/27/2017	0.14 (J)	
10/5/2017	0.09 (J)	
3/15/2018	<0.3	
10/5/2018	0.18 (J)	
4/8/2019	0.057 (J)	
10/1/2019	0.079 (J)	
3/26/2020	0.064 (J)	
9/23/2020	0.088 (J)	
3/9/2021	0.069 (J)	
8/10/2021	0.087 (J)	
2/7/2022		0.082 (J)
8/8/2022		0.1
1/31/2023		0.11
8/14/2023		0.075 (J)

	GWC-5	GWC-5
3/23/2016	0.0582 (J)	
5/17/2016	0.0571 (J)	
7/6/2016	0.29 (J)	
9/7/2016	0.08 (J)	
10/18/2016	0.09 (J)	
12/8/2016	0.06 (J)	
2/1/2017	0.33	
3/23/2017	0.07 (J)	
10/4/2017	<0.1	
3/16/2018	<0.1	
10/4/2018	0.16 (J)	
4/9/2019	0.061 (J)	
10/1/2019	0.064 (J)	
3/31/2020	<0.1	
9/25/2020	0.058 (J)	
3/9/2021	0.05 (J)	
8/10/2021	0.057 (J)	
2/4/2022		<0.1
8/9/2022		0.077 (J)
1/31/2023		0.074 (J)
8/15/2023		0.052 (J)

	GWC-6	GWC-6
3/23/2016	0.0791 (J)	
5/17/2016	0.0712 (J)	
7/6/2016	0.28 (J)	
9/7/2016	0.08 (J)	
10/18/2016	0.07 (J)	
12/8/2016	0.13 (J)	
2/1/2017	0.24 (J)	
3/23/2017	0.04 (J)	
10/4/2017	0.03 (J)	
3/16/2018	<0.3	
10/4/2018	0.17 (J)	
4/8/2019	<0.3	
10/1/2019	0.063 (J)	
3/31/2020	0.053 (J)	
9/25/2020	0.063 (J)	
3/9/2021	0.06 (J)	
8/10/2021	0.057 (J)	
2/4/2022		0.058 (J)
8/8/2022		0.083 (J)
1/31/2023		0.098 (J)
8/14/2023		0.054 (J)

	GWC-7	GWC-7
2/22/2016		awc-/
3/23/2016	0.2004 (J)	
5/18/2016	0.1766 (J)	
7/6/2016	0.39	
9/7/2016	0.53	
10/18/2016	0.24 (J)	
12/8/2016	0.24 (J)	
2/2/2017	0.3 (J)	
3/24/2017	0.22 (J)	
10/4/2017	0.19 (J)	
3/15/2018	0.37	
10/4/2018	0.19 (J)	
4/8/2019	0.17 (J)	
10/1/2019	0.16 (J)	
3/30/2020	0.16 (J)	
9/24/2020	0.14	
3/9/2021	0.17	
8/10/2021	0.19	
2/4/2022		0.14
8/10/2022		0.14
1/31/2023		0.26
8/15/2023		0.13

	GWC-8	GWC-8
3/23/2016	0.1537 (J)	
5/19/2016	0.1414 (J)	
7/6/2016	0.15 (J)	
9/8/2016	0.35	
10/18/2016	0.17 (J)	
12/8/2016	0.15 (J)	
2/2/2017	0.1 (J)	
3/24/2017	0.14 (J)	
10/5/2017	0.15 (J)	
3/14/2018	0.4	
5/16/2018	0.32	
10/4/2018	0.28 (J)	
4/8/2019	0.1 (J)	
10/1/2019	0.13 (J)	
3/27/2020	0.12 (J)	
9/24/2020	0.15	
3/9/2021	0.12	
8/10/2021	0.13	
2/4/2022		0.12
8/9/2022		0.14
1/31/2023		0.18
8/15/2023		0.13

	GWC-9	GWC-9
3/23/2016	0.0993 (J)	
5/19/2016	0.0936 (J)	
7/6/2016	0.09 (J)	
9/8/2016	0.11 (J)	
10/19/2016	0.1 (J)	
12/8/2016	0.11 (J)	
2/2/2017	0.05 (J)	
3/27/2017	0.07 (J)	
10/5/2017	0.06 (J)	
3/15/2018	<0.3	
10/5/2018	0.18 (J)	
4/8/2019	0.058 (J)	
10/1/2019	0.078 (J)	
3/27/2020	0.078 (J)	
9/24/2020	0.076 (J)	
3/9/2021	0.08 (J)	
8/10/2021	0.076 (J)	
2/4/2022		0.076 (J)
8/9/2022		0.094 (J)
1/31/2023		0.11
8/15/2023		0.06 (J)

	GWA-1	GWA-1
3/22/2016	7.07	
5/17/2016	7	
7/5/2016	6.88	
9/7/2016	7.24	
10/18/2016	6.86	
12/6/2016	6.98	
1/31/2017	6.63	
3/23/2017	7.12	
10/4/2017	6.83	
3/14/2018	6.66	
10/4/2018	6.92	
4/8/2019	6.86	
9/30/2019	7.15	
3/26/2020	7.02	
9/23/2020	6.98	
3/8/2021	6.86	
8/9/2021	7.23	
2/4/2022		7.18
8/8/2022		7.28
1/30/2023		7.22
8/14/2023		7.22

	GWA-11	GWA-11
3/22/2016	7	
5/17/2016	6.77	
7/6/2016	6.64	
9/7/2016	6.83	
10/18/2016	6.58	
12/6/2016	6.66	
2/1/2017	6.5	
3/24/2017	6.72	
10/5/2017	6.69	
3/15/2018	6.48	
10/4/2018	6.66	
4/8/2019	6.61	
9/30/2019	6.86	
3/26/2020	6.83	
9/22/2020	6.8	
3/8/2021	6.78	
8/10/2021	6.84	
2/4/2022		6.92
8/8/2022		6.55
1/30/2023		7
8/14/2023		6.99
	5/17/2016 7/6/2016 9/7/2016 10/18/2016 12/6/2016 2/1/2017 3/24/2017 10/5/2017 3/15/2018 10/4/2018 4/8/2019 9/30/2019 3/26/2020 9/22/2020 3/8/2021 8/10/2021 2/4/2022 8/8/2022 1/30/2023 8/14/2023	7/6/2016 6.64 9/7/2016 6.83 10/18/2016 6.58 12/6/2016 6.66 2/1/2017 6.5 3/24/2017 6.72 10/5/2017 6.69 3/15/2018 6.48 10/4/2018 6.66 4/8/2019 6.61 9/30/2019 6.86 3/26/2020 6.83 9/22/2020 6.8 3/8/2021 6.78 8/10/2021 6.84 2/4/2022 8/8/2022 1/30/2023

	GWA-2	GWA-2
3/22/2016	7.19	
5/17/2016	6.94	
7/5/2016	6.98	
9/7/2016	6.86	
10/18/2016	6.71	
12/7/2016	6.71	
1/31/2017	6.95	
3/23/2017	7.04	
10/4/2017	6.86	
3/14/2018	6.76	
10/4/2018	6.62	
4/8/2019	6.79	
9/30/2019	6.86	
3/26/2020	7.07	
9/21/2020	6.9	
3/9/2021	6.93	
8/9/2021	6.9	
2/4/2022		6.98
8/8/2022		7.03
1/30/2023		7.05
8/14/2023		6.91

	GWA-3	GWA-3
3/22/2016	7.11	
5/17/2016	6.95	
7/5/2016	6.55	
9/7/2016	6.81	
10/18/2016	6.64	
12/6/2016	6.34	
2/1/2017	6.68	
3/23/2017	6.8	
10/4/2017	6.64	
3/15/2018	6.88	
10/4/2018	6.62	
4/5/2019	6.77	
9/30/2019	6.73	
3/26/2020	6.87	
9/23/2020	6.87	
3/8/2021	6.95	
8/9/2021	6.89	
2/4/2022		6.75
8/8/2022		6.59
1/30/2023		6.82
8/14/2023		6.54

	GWA-4	GWA-4
3/22/2016	7.14	
5/17/2016	6.67	
7/6/2016	6.53	
9/7/2016	6.72	
10/18/2016	6.73	
12/6/2016	6.61	
2/1/2017	6.7	
3/24/2017	6.77	
10/4/2017	6.52	
3/15/2018	7.11	
10/4/2018	6.72	
4/8/2019	6.82	
9/30/2019	6.77	
3/26/2020	6.74	
9/23/2020	6.81	
3/8/2021	6.84	
8/9/2021	6.76	
2/4/2022		7.11
8/8/2022		6.73
1/30/2023		6.94
8/14/2023		6.74

	GWC-10	GWC-10
3/23/2016	7.56	
5/17/2016	7.46	
7/6/2016	7.24	
9/7/2016	7.4	
10/18/2016	7.11	
12/6/2016	7.32	
2/2/2017	7.19	
3/27/2017	7.48	
10/5/2017	7.13	
3/15/2018	7.08	
10/4/2018	7.26	
4/9/2019	7.22	
10/1/2019	7.07	
3/27/2020	6.82	
6/19/2020	7.4 (R)	
9/25/2020	7.28	
3/9/2021	7.43	
8/10/2021	7.45	
2/4/2022		7.51
8/9/2022		7.36
1/30/2023		7.6
8/14/2023		7.48

	GWC-18	GWC-18
3/24/2016	7.71	
5/18/2016	7.59	
7/7/2016	7.55	
9/8/2016	7.54	
10/19/2016	7.66	
12/8/2016	7.47	
2/2/2017	7.64	
3/27/2017	7.59	
10/5/2017	7.65	
3/16/2018	7.51	
10/5/2018	7.57	
4/9/2019	7.48	
10/1/2019	7.65	
3/30/2020	7.65	
9/24/2020	7.62	
3/9/2021	7.66	
8/10/2021	7.4	
2/4/2022		7.73
8/9/2022		7.47
1/31/2023		7.56
8/15/2023		7.63

	GWC-19	GWC-19
3/24/2016	7.69	
5/18/2016	7.49	
7/6/2016	7.39	
9/8/2016	7.57	
10/18/2016	7.35	
12/7/2016	7.42	
2/2/2017	7.43	
3/27/2017	7.53	
10/5/2017	7.36	
3/15/2018	7.54	
10/4/2018	7.44	
4/9/2019	7.4	
10/1/2019	7.31	
3/31/2020	7.62	
6/19/2020	7.61 (R)	
9/28/2020	7.78	
11/10/2020	7.37 (R)	
3/10/2021	7.49	
8/10/2021	7.49	
2/7/2022		7.61
8/9/2022		7.42
1/31/2023		7.65
8/15/2023		7.61

	GWC-20	GWC-20
3/23/2016	7.55	G110 20
5/18/2016	7.32	
7/7/2016	7.39	
9/8/2016	7.34	
10/19/2016	7.35	
12/7/2016	7.35	
2/3/2017	7.37	
3/27/2017	7.26	
10/5/2017	7.2	
3/16/2018	7.13	
5/15/2018	7.18	
10/5/2018	7.07	
12/11/2018	7.16	
4/9/2019	7.26	
10/1/2019	7.16	
3/31/2020	7.57	
6/19/2020	7.31 (R)	
9/23/2020	7.11	
3/10/2021	7.41	
8/10/2021	7.31	
2/7/2022		7.57
8/9/2022		7.33
1/31/2023		7.44
8/15/2023		7.54

	GWC-21	GWC-21
3/24/2016	6.4	
5/18/2016	6.44	
7/7/2016	6.12	
9/8/2016	7.2	
10/19/2016	7.11	
12/7/2016	7.24	
2/2/2017	6.86	
3/27/2017	6.51	
10/5/2017	5.97	
3/15/2018	7.01	
10/4/2018	6.33	
4/9/2019	6.46	
10/1/2019	6.9	
3/31/2020	6.33	
9/24/2020	7.12	
3/9/2021	7.04	
8/10/2021	6.05	
2/7/2022		6.58
8/9/2022		6.05
1/31/2023		6.23
8/15/2023		6.17

	GWC-22	GWC-22
3/23/2016	7.72	
5/18/2016	7.77	
7/7/2016	7.65	
9/8/2016	7.89	
10/19/2016	7.64	
12/7/2016	7.72	
2/2/2017	7.56	
3/27/2017	7.69	
10/5/2017	7.53	
3/15/2018	7.5	
10/4/2018	7.52	
4/9/2019	7.49	
10/1/2019	7.38	
11/6/2019	7.66	
3/31/2020	7.8	
9/23/2020	7.42	
3/9/2021	7.52	
8/10/2021	7.75	
2/7/2022		7.85
8/9/2022		7.62
1/31/2023		7.67
8/15/2023		7.68

	GWC-23	GWC-23
3/23/2016	7.48	
5/19/2016	7.24	
7/7/2016	7.18	
9/8/2016	7.17	
10/19/2016	7.05	
12/7/2016	7.16	
2/3/2017	7.27	
3/27/2017	7.24	
10/5/2017	7.25	
3/15/2018	7.05	
10/5/2018	6.97	
4/8/2019	6.88	
10/1/2019	7	
3/26/2020	6.88	
9/23/2020	6.96	
3/9/2021	6.81	
8/10/2021	6.96	
2/7/2022		7.05
8/8/2022		7.04
1/31/2023		7.03
8/14/2023		7.21

	GWC-5	GWC-5
3/23/2016	7.1	
5/17/2016	6.88	
7/6/2016	6.75	
9/7/2016	6.95	
10/18/2016	6.9	
12/8/2016	6.55	
2/1/2017	6.81	
3/23/2017	6.8	
10/4/2017	7.12	
3/16/2018	6.72	
10/4/2018	6.52	
4/9/2019	6.72	
10/1/2019	6.81	
3/31/2020	6.82	
9/25/2020	6.82	
3/9/2021	6.93	
8/10/2021	6.87	
2/4/2022		6.92
8/9/2022		6.89
1/31/2023		6.96
8/15/2023		6.85

	GWC-6	GWC-6
3/23/2016	7.29	
5/17/2016	7.1	
7/6/2016	7	
9/7/2016	7.07	
10/18/2016	6.81	
12/8/2016	6.85	
2/1/2017	7.05	
3/23/2017	6.97	
10/4/2017	7.17	
3/16/2018	6.8	
10/4/2018	6.93	
4/8/2019	7	
10/1/2019	6.97	
3/31/2020	7.17	
6/18/2020	6.96 (R)	
9/25/2020	6.96	
3/9/2021	7.09	
8/10/2021	7.06	
2/4/2022		7.21
8/8/2022		6.9
1/31/2023		7.24
8/14/2023		7.68

	GWC-7	GWC-7
3/23/2016	6.36	
5/18/2016	6.21	
7/6/2016	5.88	
9/7/2016	5.77	
10/18/2016	5.9	
12/9/2016	5.73	
2/2/2017	6.29	
3/24/2017	6.32	
10/4/2017	6.03	
3/15/2018	6.05	
10/4/2018	5.92	
4/8/2019	6.26	
10/1/2019	6.09	
3/30/2020	6.48	
6/19/2020	6.45 (R)	
9/24/2020	6.32	
3/9/2021	6.59	
8/10/2021	6.29	
2/4/2022		6.7
8/10/2022		6.25
1/31/2023		5.84
8/15/2023		5.94

	GWC-8	GWC-8
3/23/2016	7.46	
5/18/2016	7.4	
7/6/2016	7.36	
9/8/2016	7.45	
10/18/2016	7.5	
12/8/2016	7.28	
2/2/2017	7.45	
3/24/2017	7.28	
10/5/2017	7.53	
3/14/2018	7.28	
10/4/2018	7.22	
4/8/2019	6.91	
6/18/2019	6.85	
6/27/2019	7.05	
10/1/2019	7.11	
3/27/2020	7.01	
6/19/2020	6.81 (R)	
9/24/2020	6.96	
3/9/2021	7.06	
8/10/2021	6.65	
2/4/2022		7.07
8/9/2022		7.08
1/31/2023		7.09
8/15/2023		7.34

	GWC-9	GWC-9
3/23/2016	7.2	
5/18/2016	6.96	
7/6/2016	6.89	
9/8/2016	6.93	
10/19/2016	6.84	
12/8/2016	6.54	
2/2/2017	6.72	
3/27/2017	6.56	
10/5/2017	7.03	
3/15/2018	6.66	
10/5/2018	6.41	
4/8/2019	6.72	
10/1/2019	6.77	
3/27/2020	7.11	
9/24/2020	6.75	
3/9/2021	6.92	
8/10/2021	6.91	
2/4/2022		7.1
8/9/2022		7
1/31/2023		6.74
8/15/2023		7.09

	GWA-1	GWA-1
3/22/2016	4.4409	
5/17/2016	4.43	
7/5/2016	4.6	
9/7/2016	4.8	
10/18/2016	4.7	
12/6/2016	4.7	
1/31/2017	5.1	
3/23/2017	4.7	
10/4/2017	5	
3/14/2018	5.1	
10/4/2018	5.2	
4/8/2019	4.6	
9/30/2019	4.9	
3/26/2020	5	
9/23/2020	6.6	
3/8/2021	4.6	
8/9/2021	4.7	
2/4/2022		4
8/8/2022		4.1
1/30/2023		3.8
8/14/2023		3.9

	GWA-11	GWA-11
3/22/2016	11.6823	
5/17/2016	11.4	
7/6/2016	12	
9/7/2016	13	
10/18/2016	13	
12/6/2016	12	
2/1/2017	13	
3/24/2017	12	
10/5/2017	13	
3/15/2018	12.2	
10/4/2018	15.6	
4/8/2019	13.2	
9/30/2019	11.5	
3/26/2020	10.8	
9/22/2020	9.8	
3/8/2021	11.5	
8/10/2021	11.2	
2/4/2022		10.4
8/8/2022		10.2
1/30/2023		9.5
8/14/2023		8.9

	GWA-2	GWA-2
3/22/2016	13.0789	
5/17/2016	15.3	
7/5/2016	15	
9/7/2016	16	
10/18/2016	16	
12/7/2016	15	
1/31/2017	13	
3/23/2017	12	
10/4/2017	12	
3/14/2018	13.9	
10/4/2018	17.4	
4/8/2019	18.1	
9/30/2019	17.5	
3/26/2020	15.6	
9/21/2020	18.2	
3/9/2021	16.8	
8/9/2021	23.2	
2/4/2022		21.1
8/8/2022		23.3
1/30/2023		19.8
8/14/2023		23.4

	GWA-3	GWA-3
3/22/2016	107.476	
5/17/2016	106	
7/5/2016	110	
9/7/2016	83	
10/18/2016	110	
12/6/2016	220	
2/1/2017	190	
3/23/2017	160	
10/4/2017	140	
3/15/2018	119	
10/4/2018	117	
4/5/2019	131	
9/30/2019	118	
3/26/2020	95.8	
9/23/2020	95.6	
3/8/2021	99.5	
8/9/2021	93.3	
2/4/2022		73.5
8/8/2022		78.9
1/30/2023		78.4
8/14/2023		72.3

	GWA-4	GWA-4
3/22/2016	302.2975	
5/17/2016	213	
7/6/2016	280	
9/7/2016	160	
10/18/2016	120	
12/6/2016	210	
2/1/2017	200	
3/24/2017	140	
10/4/2017	140	
3/15/2018	167	
10/4/2018	209	
4/8/2019	248	
9/30/2019	117	
3/26/2020	128	
9/23/2020	123	
3/8/2021	152	
8/9/2021	106	
2/4/2022		170 (M1)
8/8/2022		116
1/30/2023		156
8/14/2023		122

	GWC-10	GWC-10
3/23/2016	14.6529	
5/17/2016	13.3	
7/6/2016	10	
9/7/2016	10	
10/18/2016	10	
12/6/2016	11	
2/2/2017	11	
3/27/2017	33	
10/5/2017	16	
3/15/2018	33.9	
5/15/2018	29.1	
10/4/2018	29.5	
4/9/2019	21.4	
10/1/2019	13.4	
3/27/2020	10.8	
9/25/2020	11.6	
3/9/2021	14.2	
8/10/2021	14.9	
2/4/2022		14.4
8/9/2022		10.6
1/30/2023		11.5
8/14/2023		9

	GWC-18	GWC-18
3/24/2016	10.1818	
5/19/2016	9.58	
7/7/2016	9.6	
9/8/2016	9.4	
10/19/2016	9.9	
12/8/2016	14	
2/2/2017	13	
3/27/2017	12	
10/5/2017	12	
3/16/2018	11.7	
10/5/2018	10.6	
4/9/2019	11.3	
10/1/2019	8.9	
3/30/2020	9.7	
9/24/2020	8.5	
3/9/2021	7.9	
8/10/2021	10.3	
2/4/2022		8.9
8/9/2022		8.6
1/31/2023		8.4
8/15/2023		7.7

	GWC-19	GWC-19
3/24/2016	16.8473	
5/18/2016	18.4	
7/6/2016	17	
9/8/2016	16	
10/18/2016	19	
12/7/2016	13	
2/2/2017	14	
3/27/2017	18	
10/5/2017	16	
3/15/2018	14.8	
10/4/2018	15.9	
4/9/2019	16.7	
10/1/2019	14.7	
3/31/2020	17.8	
9/28/2020	15.8	
3/10/2021	18.7	
8/10/2021	17.8	
2/7/2022		16.9
8/9/2022		21.9
1/31/2023		22.8
8/15/2023		19.1

	GWC-20	GWC-20
3/23/2016	22.9683	
5/18/2016	19.2	
7/7/2016	31	
9/8/2016	30	
10/19/2016	32	
12/7/2016	26	
2/3/2017	27	
3/27/2017	30	
10/5/2017	32	
3/16/2018	37.5	
5/15/2018	41	
10/5/2018	38.9	
12/11/2018	41.8	
4/9/2019	50.3	
6/18/2019	38.7	
6/27/2019	46	
10/1/2019	52.3	
11/6/2019	47.3	
3/31/2020	53.6	
9/23/2020	58.9	
3/10/2021	64.7	
8/10/2021	66.4	
2/7/2022		66.3
8/9/2022		66.5
1/31/2023		69.8
8/15/2023		67.1

	GWC-21	GWC-21
3/24/2016	24.8075	
5/18/2016	26.2	
7/7/2016	31	
9/8/2016	33	
10/19/2016	31	
12/7/2016	19	
2/2/2017	52	
3/27/2017	29	
10/5/2017	33	
3/15/2018	38	
10/4/2018	19.3	
4/9/2019	19.9	
10/1/2019	46.3	
3/31/2020	29.9	
9/24/2020	37.6	
3/9/2021	41.6	
8/10/2021	23.8	
2/7/2022		25.9
8/9/2022		18.3
1/31/2023		12.4
8/15/2023		18.9

	GWC-22	GWC-22
3/23/2016	9.1183	
5/18/2016	6.88	
7/7/2016	6.8	
9/8/2016	6.8	
10/19/2016	7.5	
12/7/2016	11	
2/2/2017	9.9	
3/27/2017	8.4	
10/5/2017	7.4	
3/15/2018	8.2	
10/4/2018	6.4	
4/9/2019	11	
10/1/2019	1.9	
3/31/2020	10.9	
9/23/2020	5	
3/9/2021	6.4	
8/10/2021	6.2	
2/7/2022		8.2
8/9/2022		6.3
1/31/2023		8.8
8/15/2023		5.6

	GWC-23	GWC-23
3/23/2016	6.2867	
5/19/2016	5.42	
7/7/2016	5.7	
9/8/2016	5.7	
10/19/2016	5.8	
12/7/2016	5.9	
2/3/2017	38	
3/27/2017	43	
10/5/2017	8.3	
3/15/2018	14	
10/5/2018	9.3	
4/8/2019	6.2	
10/1/2019	5.8	
3/26/2020	14.5	
9/23/2020	5.3	
3/9/2021	10.2	
8/10/2021	8	
2/7/2022		13
8/8/2022		5.6
1/31/2023		19.5
8/14/2023		4.6

	GWC-5	GWC-5
3/23/2016	76.011	
5/17/2016	76.2	
7/6/2016	74	
9/7/2016	64	
10/18/2016	65	
12/8/2016	100	
2/1/2017	150	
3/23/2017	130	
10/4/2017	71	
3/16/2018	77.4	
10/4/2018	90.3	
4/9/2019	83.6	
10/1/2019	68.1	
3/31/2020	92.6	
9/25/2020	80.7	
3/9/2021	86.9	
8/10/2021	76.1	
2/4/2022		80.1
8/9/2022		74.6
1/31/2023		90.6
8/15/2023		77.2

	GWC-6	GWC-6
3/23/2016	87.512	
5/17/2016	101	
7/6/2016	110	
9/7/2016	97	
10/18/2016	120	
12/8/2016	100	
2/1/2017	110	
3/23/2017	110	
10/4/2017	130	
12/14/2017	130	
1/18/2018	110	
3/16/2018	93.6	
10/4/2018	137	
12/11/2018	110	
4/8/2019	131	
6/19/2019	108	
10/1/2019	71.7	
3/31/2020	106	
9/25/2020	110	
3/9/2021	105	
8/10/2021	95.9	
2/4/2022		101
8/8/2022		77.1
1/31/2023		95.7
8/14/2023		99.5

	GWC-7	GWC-7
3/23/2016	90.229	
5/18/2016	100	
7/6/2016	130	
9/7/2016	130	
10/18/2016	140	
12/8/2016	140	
2/2/2017	71	
3/24/2017	68	
10/4/2017	120	
3/15/2018	118	
10/4/2018	167	
4/8/2019	97.1	
10/1/2019	120	
3/30/2020	64.6	
9/24/2020	120	
3/9/2021	87.4	
8/10/2021	101	
2/4/2022		78.3
8/10/2022		102
1/31/2023		118
8/15/2023		122

	GWC-8	GWC-8
3/23/2016	26.3455	
5/19/2016	31.7	
7/6/2016	36	
9/8/2016	45	
10/18/2016	49	
12/8/2016	50	
2/2/2017	51	
3/24/2017	46	
10/5/2017	48	
3/14/2018	36.8	
10/4/2018	45.4	
4/8/2019	39.9	
10/1/2019	47.1	
3/27/2020	31.5	
9/24/2020	48.3	
3/9/2021	33.1	
8/10/2021	31.6	
2/4/2022		25.8
8/9/2022		33.3
1/31/2023		31.3
8/15/2023		28.1

	GWC-9	GWC-9
3/23/2016	61.8335	
5/19/2016	64.3	
7/6/2016	69	
9/8/2016	68	
10/19/2016	69	
12/8/2016	69	
2/2/2017	76	
3/27/2017	68	
10/5/2017	74	
3/15/2018	57.8	
10/5/2018	81.9	
12/11/2018	73.6	
4/8/2019	73.5	
10/1/2019	72.2	
3/27/2020	54	
9/24/2020	69.9	
3/9/2021	65.1 (M1)	
8/10/2021	76.3	
2/4/2022		69.2
8/9/2022		77
1/31/2023		70
8/15/2023		63.9

	GWA-1	GWA-1
3/22/2016	78	
5/17/2016	67	
7/5/2016	87	
9/7/2016	125	
10/18/2016	133	
12/6/2016	151	
1/31/2017	135	
3/23/2017	72	
10/4/2017	91	
3/14/2018	99	
10/4/2018	112	
4/8/2019	91	
9/30/2019	126	
3/26/2020	73	
9/23/2020	117	
3/8/2021	96	
8/9/2021	96	
2/4/2022		107
8/8/2022		99
1/30/2023		94
8/14/2023		98

	GWA-11	GWA-11
3/22/2016	112	
5/17/2016	121	
7/6/2016	98	
9/7/2016	128	
10/18/2016	115	
12/6/2016	153	
2/1/2017	183	
3/24/2017	121	
10/5/2017	113	
3/15/2018	115	
10/4/2018	135	
4/8/2019	142	
9/30/2019	134	
3/26/2020	76	
9/22/2020	107	
3/8/2021	107	
8/10/2021	107	
2/4/2022		125
8/8/2022		119
1/30/2023		130
8/14/2023		107

	GWA-2	GWA-2
3/22/2016	233	
5/17/2016	197	
7/5/2016	218	
9/7/2016	240	
10/18/2016	221	
12/7/2016	235	
1/31/2017	253	
3/23/2017	190	
10/4/2017	192	
3/14/2018	204	
10/4/2018	233	
4/8/2019	209	
9/30/2019	242	
3/26/2020	222	
9/21/2020	204	
3/9/2021	227 (D6)	
8/9/2021	245	
2/4/2022		245
8/8/2022		249
1/30/2023		263
8/14/2023		266

	GWA-3	GWA-3
3/22/2016	451	
5/17/2016	430	
7/5/2016	418	
9/7/2016	443	
10/18/2016	415	
12/6/2016	653	
2/1/2017	615	
3/23/2017	506	
10/4/2017	492	
3/15/2018	448	
10/4/2018	472	
4/5/2019	456	
9/30/2019	475	
3/26/2020	450	
9/23/2020	473	
3/8/2021	415	
8/9/2021	416	
2/4/2022		325
8/8/2022		348
1/30/2023		367
8/14/2023		341

	GWA-4	GWA-4
3/22/2016	686	
5/17/2016	533	
7/6/2016	646	
9/7/2016	493	
10/18/2016	455	
12/6/2016	597	
2/1/2017	638	
3/24/2017	579	
10/4/2017	440	
3/15/2018	381	
10/4/2018	490	
4/8/2019	522	
9/30/2019	455	
3/26/2020	466	
9/23/2020	421	
3/8/2021	460	
8/9/2021	371	
2/4/2022		496
8/8/2022		360
1/30/2023		459
8/14/2023		429

	GWC-10	GWC-10
3/23/2016	182	
5/17/2016	178	
7/6/2016	135	
9/7/2016	165	
10/18/2016	113	
12/6/2016	194	
2/2/2017	160	
3/27/2017	252	
10/5/2017	177	
3/15/2018	216	
10/4/2018	222	
4/9/2019	213	
10/1/2019	186	
3/27/2020	118	
9/25/2020	153	
3/9/2021	201	
8/10/2021	185	
2/4/2022		214
8/9/2022		170
1/30/2023		190
8/14/2023		162

	GWC-18	GWC-18
3/24/2016	205	
5/19/2016	204	
7/7/2016	181	
9/8/2016	193	
10/19/2016	231	
12/8/2016	166	
2/2/2017	191	
3/27/2017	427 (o)	
10/5/2017	207	
3/16/2018	199	
10/5/2018	235	
4/9/2019	212	
10/1/2019	196	
3/30/2020	217	
9/24/2020	181	
3/9/2021	192	
8/10/2021	224	
2/4/2022		225
8/9/2022		183
1/31/2023		284
8/15/2023		193

	GWC-19	GWC-19
3/24/2016	232	
5/18/2016	245	
7/6/2016	231	
9/8/2016	252	
10/18/2016	288	
12/7/2016	220	
2/2/2017	220	
3/27/2017	393 (o)	
10/5/2017	242	
3/15/2018	213	
10/4/2018	231	
4/9/2019	253	
10/1/2019	229	
3/31/2020	233	
9/28/2020	214	
3/10/2021	223 (D6)	
8/10/2021	209	
2/7/2022		218
8/9/2022		236
1/31/2023		239
8/15/2023		227

	GWC-20	GWC-20
3/23/2016	208	
5/18/2016	213	
7/7/2016	212	
9/8/2016	201	
10/19/2016	276	
12/7/2016	186	
2/3/2017	219	
3/27/2017	239	
10/5/2017	216	
3/16/2018	216	
10/5/2018	256	
4/9/2019	267	
10/1/2019	271	
3/31/2020	267	
9/23/2020	277	
3/10/2021	241	
8/10/2021	270	
2/7/2022		268
8/9/2022		285
1/31/2023		329
8/15/2023		291

	GWC-21	GWC-21
3/24/2016	110	
5/18/2016	153	
7/7/2016	151	
9/8/2016	285	
10/19/2016	314	
12/7/2016	252	
2/2/2017	138	
3/27/2017	88	
10/5/2017	111	
3/15/2018	219	
10/4/2018	152	
4/9/2019	167	
10/1/2019	336	
11/6/2019	336	
11/26/2019	236	
3/31/2020	111	
9/24/2020	286	
3/9/2021	243	
8/10/2021	121	
2/7/2022		161
8/9/2022		119
1/31/2023		76 (D6)
8/15/2023		152

	GWC-22	GWC-22
3/23/2016	206	
5/18/2016	212	
7/7/2016	206	
9/8/2016	214	
10/19/2016	269	
12/7/2016	199	
2/2/2017	211	
3/27/2017	324	
10/5/2017	219	
3/15/2018	190	
10/4/2018	215	
4/9/2019	222	
10/1/2019	220	
3/31/2020	195	
9/23/2020	231	
3/9/2021	178	
8/10/2021	206	
2/7/2022		207
8/9/2022		208
1/31/2023		221
8/15/2023		212

	GWC-23	GWC-23
3/23/2016	168	
5/19/2016	173	
7/7/2016	144	
9/8/2016	179	
10/19/2016	209	
12/7/2016	156	
2/3/2017	276	
3/27/2017	295	
10/5/2017	192	
3/15/2018	169	
10/5/2018	210	
4/8/2019	191	
10/1/2019	203	
3/26/2020	193	
9/23/2020	186	
3/9/2021	216	
8/10/2021	178	
2/7/2022		224
8/8/2022		176
1/31/2023		243
8/14/2023		163

	GWC-5	GWC-5
3/23/2016	379	
5/17/2016	349	
7/6/2016	346	
9/7/2016	382	
10/18/2016	461	
12/8/2016	379	
2/1/2017	511	
3/23/2017	443	
10/4/2017	359	
3/16/2018	390	
10/4/2018	385	
4/9/2019	371	
10/1/2019	380	
3/31/2020	408	
9/25/2020	367	
3/9/2021	364	
8/10/2021	363	
2/4/2022		360
8/9/2022		363
1/31/2023		385
8/15/2023		428

	GWC-6	GWC-6
3/23/2016	310	
5/17/2016	280	
7/6/2016	280	
9/7/2016	324	
10/18/2016	307	
12/8/2016	281	
2/1/2017	354	
3/23/2017	302	
10/4/2017	365	
12/14/2017	406	
1/18/2018	404	
3/16/2018	317	
10/4/2018	371	
4/8/2019	353	
10/1/2019	348	
3/31/2020	349	
9/25/2020	345	
3/9/2021	298	
8/10/2021	318	
2/4/2022		335
8/8/2022		327
1/31/2023		335
8/14/2023		368

	GWC-7	GWC-7
3/23/2016	253	
5/18/2016	276	
7/6/2016	239	
9/7/2016	247	
10/18/2016	233	
12/8/2016	373	
2/2/2017	236	
3/24/2017	291	
10/4/2017	264	
3/15/2018	254	
10/4/2018	287	
4/8/2019	295	
10/1/2019	277	
3/30/2020	216	
9/24/2020	254	
3/9/2021	299	
8/10/2021	210	
2/4/2022		310
8/10/2022		248
1/31/2023		223
8/15/2023		267

Constituent: Total Dissolved Solids (mg/L) Analysis Run 10/25/2023 12:08 PM View: Appendix III
Plant Hammond Data: Huffaker Road Landfill

	GWC-8	GWC-8
3/23/2016	239	
5/19/2016	236	
7/6/2016	218	
9/8/2016	225	
10/18/2016	200	
12/8/2016	196	
2/2/2017	231	
3/24/2017	250	
10/5/2017	309	
12/14/2017	322	
1/18/2018	322	
3/14/2018	263	
10/4/2018	292	
4/8/2019	438	
10/1/2019	305	
3/27/2020	329	
9/24/2020	307	
3/9/2021	308	
8/10/2021	425	
2/4/2022		349
8/9/2022		310
1/31/2023		284
8/15/2023		280

Constituent: Total Dissolved Solids (mg/L) Analysis Run 10/25/2023 12:08 PM View: Appendix III

Plant Hammond Data: Huffaker Road Landfill

	GWC-9	GWC-9
3/23/2016	204	
5/19/2016	215	
7/6/2016	204	
9/8/2016	201	
10/19/2016	272	
12/8/2016	227	
2/2/2017	209	
3/27/2017	305	
10/5/2017	204	
3/15/2018	280	
10/5/2018	236	
4/8/2019	264	
10/1/2019	237	
3/27/2020	192	
9/24/2020	179	
3/9/2021	209	
8/10/2021	208	
2/4/2022		225
8/9/2022		220
1/31/2023		216
8/15/2023		246

FIGURE H.

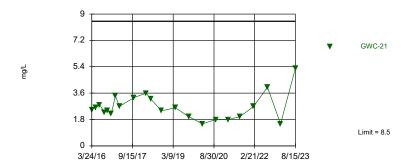
Appendix III Interwell Prediction Limits - Two-Step - Significant Results

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 10/25/2023, 10:04 AM

 Constituent
 Well
 Upper Lim. Lower Lim. Date
 Observ.
 Sig.
 Bg Nr
 Bg Mean
 Std. Dev.
 %NDs ND Adj.
 Transform Alpha
 Method

 pH (SU)
 GWC-6
 7.229
 6.452
 8/14/2023
 7.68
 Yes
 105
 6.84
 0.1932
 0 None
 No
 0.0003135
 Param Inter 1 of 2

Appendix III Interwell Prediction Limits - Two-Step - All Results

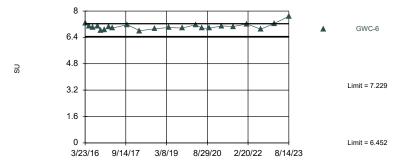

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 10/25/2023, 10:04 AM

Constituent	Well	Upper Li	m. Lower Lir	n. <u>Date</u>	Observ.	Sig.	Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Chloride (mg/L)	GWC-21	8.5	n/a	8/15/2023	5.3	No	105	n/a	n/a	0	n/a	n/a	0.0001777	NP Inter (normality) 1 of 2
pH (SU)	GWC-6	7.229	6.452	8/14/2023	7.68	Yes	105	6.84	0.1932	0	None	No	0.0003135	Param Inter 1 of 2

Sanitas™ v.10.0.13 Software licensed to . UG

Within Limit

Prediction Limit
Interwell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 105 background values. Annual per-constituent alpha = 0.004255. Individual comparison alpha = 0.0001777 (1 of 2). Assumes 11 future values.

Constituent: Chloride Analysis Run 10/25/2023 10:03 AM View: Appendix III - Two-Step
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG

Exceeds Limits: GWC-6 Prediction Limit
Interwell Parametric

Background Data Summary: Mean=6.84, Std. Dev.=0.1932, n=105. Normality test: Chi Squared @alpha = 0.01, calculated = 3.095, critical = 14.07. Kappa = 2.011 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.0003135. Assumes 11 future values.

Constituent: pH Analysis Run 10/25/2023 10:03 AM View: Appendix III - Two-Step
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: Chloride (mg/L) Analysis Run 10/25/2023 10:04 AM View: Appendix III - Two-Step
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

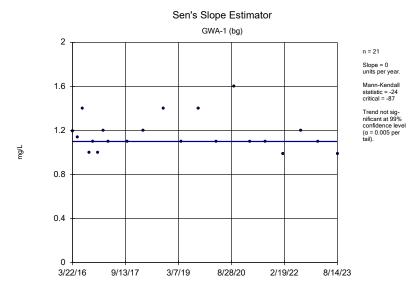
	GWA-1 (bg)	GWA-4 (bg)	GWA-2 (bg)	GWA-11 (bg)	GWA-3 (bg)	GWC-21
3/22/2016	1.1933	5.549	2.0975	1.3137	4.0352	
3/24/2016						2.461
5/17/2016	1.14	6.74	2.1	1.29	3.81	
5/18/2016						2.61
7/5/2016	1.4		2.4		4	
7/6/2016		5.2		1.6		
7/7/2016						2.8
9/7/2016	1	7.2	2.5	1.5	4.2	
9/8/2016						2.3
10/18/2016	1.1	7.4	2.7	1.6	4.4	
10/19/2016						2.4
12/6/2016	1	7.6		1.2	4.6	
12/7/2016			2.6			2.2
1/31/2017	1.2		2.5			
2/1/2017		8.5		2.1	3.7	
2/2/2017						3.4
3/23/2017	1.1		2		3.5	
3/24/2017		7		1.3		
3/27/2017						2.7
10/4/2017	1.1	7.4	2.2		3.6	
10/5/2017				1.3		3.3
3/14/2018	1.2		2.4			
3/15/2018		1.7		1.6	3.8	3.6
5/15/2018						3.2
10/4/2018	1.4	6.1	2.5	1.8	3.4	2.4
4/5/2019					4.2	
4/8/2019	1.1	3.6	2.6	1.3		
4/9/2019						2.6
9/30/2019	1.4	7.5	3	1.5	4.1	
10/1/2019						2
3/26/2020	1.1	5.4	2	1.4	2.6	
3/31/2020						1.5
9/21/2020			2.1			
9/22/2020				1		
9/23/2020	1.6	4.2			2.8	
9/24/2020						1.8
3/8/2021	1.1	5.6		1.3	2.8	
3/9/2021			2.1			1.8
8/9/2021	1.1	3	2.4		2.1	
8/10/2021				1.2		2
2/4/2022	0.99 (J)	3.3 (M1)	2.3	1.2	1.1	
2/7/2022						2.7
8/8/2022	1.2	2.4	2.5	1.3	1.9	
8/9/2022						4
1/30/2023	1.1	3.4	2.2	1.2	1.2	
1/31/2023						1.5
8/14/2023	0.99 (J)	2.5	2.2	1	1.3	
8/15/2023						5.3

Constituent: pH (SU) Analysis Run 10/25/2023 10:04 AM View: Appendix III - Two-Step
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWA-1 (bg)	GWA-4 (bg)	GWA-2 (bg)	GWA-11 (bg)	GWA-3 (bg)	GWC-6
3/22/2016	7.07	7.14	7.19	7	7.11	
3/23/2016						7.29
5/17/2016	7	6.67	6.94	6.77	6.95	7.1
7/5/2016	6.88		6.98		6.55	
7/6/2016		6.53		6.64		7
9/7/2016	7.24	6.72	6.86	6.83	6.81	7.07
10/18/2016	6.86	6.73	6.71	6.58	6.64	6.81
12/6/2016	6.98	6.61		6.66	6.34	
12/7/2016			6.71			
12/8/2016						6.85
1/31/2017	6.63		6.95			
2/1/2017		6.7		6.5	6.68	7.05
3/23/2017	7.12		7.04		6.8	6.97
3/24/2017		6.77		6.72		
10/4/2017	6.83	6.52	6.86		6.64	7.17
10/5/2017				6.69		
3/14/2018	6.66		6.76			
3/15/2018		7.11		6.48	6.88	
3/16/2018						6.8
10/4/2018	6.92	6.72	6.62	6.66	6.62	6.93
4/5/2019					6.77	
4/8/2019	6.86	6.82	6.79	6.61		7
9/30/2019	7.15	6.77	6.86	6.86	6.73	
10/1/2019						6.97
3/26/2020	7.02	6.74	7.07	6.83	6.87	
3/31/2020						7.17
6/18/2020						6.96 (R)
9/21/2020			6.9			
9/22/2020				6.8		
9/23/2020	6.98	6.81			6.87	
9/25/2020						6.96
3/8/2021	6.86	6.84		6.78	6.95	
3/9/2021			6.93			7.09
8/9/2021	7.23	6.76	6.9		6.89	
8/10/2021				6.84		7.06
2/4/2022	7.18	7.11	6.98	6.92	6.75	7.21
8/8/2022	7.28	6.73	7.03	6.55	6.59	6.9
1/30/2023	7.22	6.94	7.05	7	6.82	
1/31/2023						7.24
8/14/2023	7.22	6.74	6.91	6.99	6.54	7.68

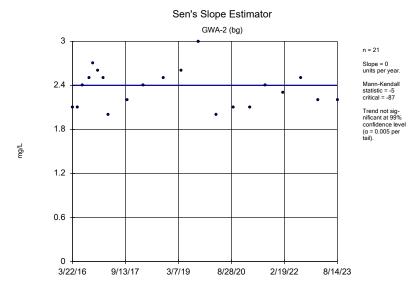
FIGURE I.

Appendix III Trend Tests - Significant Results

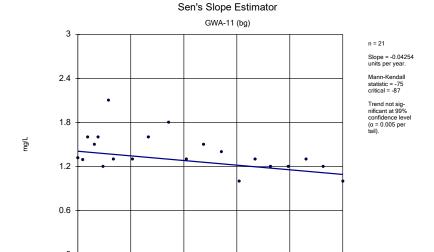

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 10/25/2023, 10:10 AM

 Constituent
 Well
 Slope
 Calc.
 Critical
 Sig.
 N
 %NDs
 Normality
 Alpha
 Method

 Chloride (mg/L)
 GWA-3 (bg)
 -0.3777
 -130
 -87
 Yes
 21
 0
 n/a
 0.01
 NP


Appendix III Trend Tests - All Results

	Plant Hammond Client: S	outhern Company	Data: H	uffaker Roa	d Landfill	Printed 1	0/25/2023,	10:10 AM		
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Alpha</u>	Method
Chloride (mg/L)	GWA-1 (bg)	0	-24	-87	No	21	0	n/a	0.01	NP
Chloride (mg/L)	GWA-11 (bg)	-0.04254	-75	-87	No	21	0	n/a	0.01	NP
Chloride (mg/L)	GWA-2 (bg)	0	-5	-87	No	21	0	n/a	0.01	NP
Chloride (mg/L)	GWA-3 (bg)	-0.3777	-130	-87	Yes	21	0	n/a	0.01	NP
Chloride (mg/L)	GWA-4 (bg)	-0.5841	-85	-87	No	21	0	n/a	0.01	NP
Chloride (mg/L)	GWC-21	-0.08314	-22	-92	No	22	0	n/a	0.01	NP
pH (SU)	GWA-1 (bg)	0.03054	57	87	No	21	0	n/a	0.01	NP
pH (SU)	GWA-11 (bg)	0.03016	49	87	No	21	0	n/a	0.01	NP
pH (SU)	GWA-2 (bg)	0.01018	28	87	No	21	0	n/a	0.01	NP
pH (SU)	GWA-3 (bg)	-0.004437	-7	-87	No	21	0	n/a	0.01	NP
pH (SU)	GWA-4 (bg)	0.01988	61	87	No	21	0	n/a	0.01	NP
pH (SU)	GWC-6	0.01922	29	92	No	22	0	n/a	0.01	NP


Constituent: Chloride Analysis Run 10/25/2023 10:09 AM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

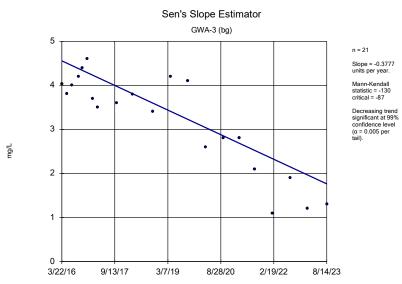
Constituent: Chloride Analysis Run 10/25/2023 10:09 AM View: Appendix III - Trend Tests

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

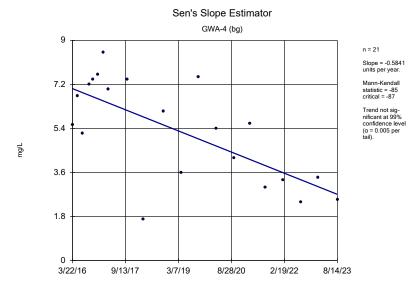
Constituent: Chloride Analysis Run 10/25/2023 10:09 AM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

8/28/20

2/19/22

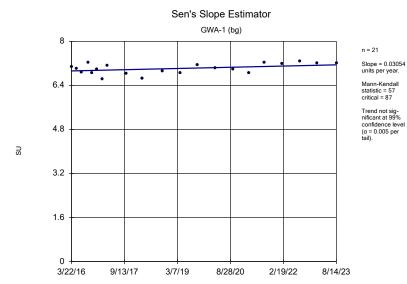

8/14/23

3/7/19

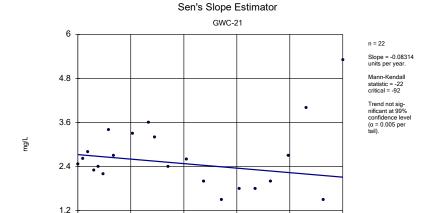

9/13/17

3/22/16

Sanitas™ v.10.0.13 Software licensed to . UG



Constituent: Chloride Analysis Run 10/25/2023 10:09 AM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill



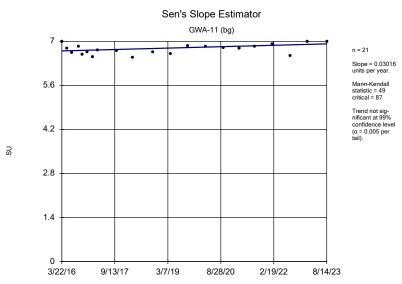
Constituent: Chloride Analysis Run 10/25/2023 10:09 AM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: pH Analysis Run 10/25/2023 10:09 AM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

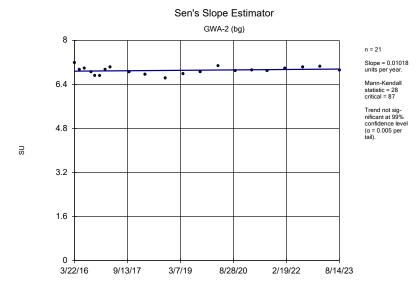
Constituent: Chloride Analysis Run 10/25/2023 10:09 AM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

8/30/20

8/15/23

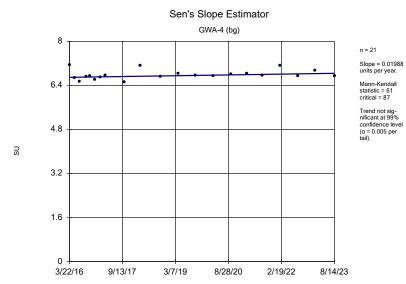

2/21/22

3/9/19

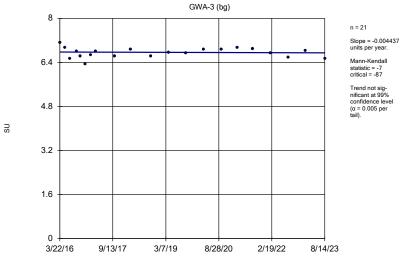

Sanitas™ v.10.0.13 Software licensed to . UG

3/24/16

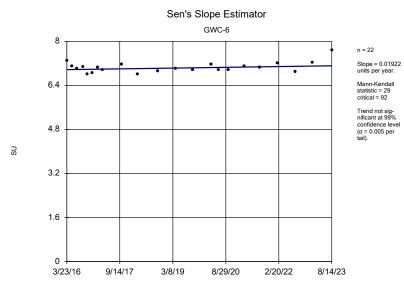
9/15/17



Constituent: pH Analysis Run 10/25/2023 10:09 AM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill


Constituent: pH Analysis Run 10/25/2023 10:09 AM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sanitas™ v.10.0.13 Software licensed to . UG


Constituent: pH Analysis Run 10/25/2023 10:09 AM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Sen's Slope Estimator

Constituent: pH Analysis Run 10/25/2023 10:09 AM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

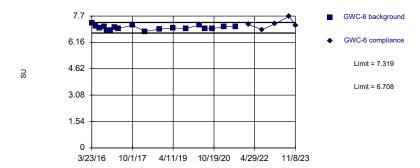
Sanitas™ v.10.0.13 Software licensed to . UG

Constituent: pH Analysis Run 10/25/2023 10:09 AM View: Appendix III - Trend Tests
Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

FIGURE J.

Appendix III Intrawell Prediction Limits - Resample Results (No Significant)

Plant Hammond Client: Southern Company Data: Huffaker Road Landfill Printed 11/13/2023, 3:53 PM


 Constituent
 Well
 Upper Lim.
 Lower Lim. Date
 Observ.
 Sig.
 Bg N Bg Mean
 Std. Dev.
 %ND Adj.
 Transform Alpha
 Method

 pH (SU)
 GWC-6
 7.319
 6.708
 11/8/2023
 7.15
 No
 18
 7.014
 0.1274
 0
 None
 No
 0.0003135
 Param Intra 1 of 2

Sanitas™ v.10.0.13b Software licensed to . UG

Within Limits

Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=7.014, Std. Dev.=0.1274, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.972, critical = 0.858. Kappa = 2.397 (c=7, w=12, 1 of 2, event alpha = 0.05132). Report alpha = 0.0006269.

Constituent: pH Analysis Run 11/13/2023 3:51 PM View: Appendix III - Resample Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

Constituent: pH (SU) Analysis Run 11/13/2023 3:53 PM View: Appendix III - Resample Plant Hammond Client: Southern Company Data: Huffaker Road Landfill

	GWC-6	GWC-6
3/23/2016	7.29	
5/17/2016	7.1	
7/6/2016	7	
9/7/2016	7.07	
10/18/2016	6.81	
12/8/2016	6.85	
2/1/2017	7.05	
3/23/2017	6.97	
10/4/2017	7.17	
3/16/2018	6.8	
10/4/2018	6.93	
4/8/2019	7	
10/1/2019	6.97	
3/31/2020	7.17	
6/18/2020	6.96 (R)	
9/25/2020	6.96	
3/9/2021	7.09	
8/10/2021	7.06	
2/4/2022		7.21
8/8/2022		6.9
1/31/2023		7.24
8/14/2023		7.68
11/8/2023		7.15