

Grumman Road Private Industrial Landfill

Port Wentworth, Georgia PERMIT #: 025-061D(LI) Chatham County

2022 SEMIANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

PROFESSIONAL CERTIFICATION

This 2022 Semiannual Groundwater Monitoring and Corrective Action Report, Georgia Power Company – Grumman Road Private Industrial Landfill has been prepared in compliance with the Georgia Environmental Protection Division Rules for Solid Waste Management 391-3-4-.10 and 391-3-4-.14 by a qualified groundwater scientist or engineer with Atlantic Coast Consulting, Inc. I hereby certify that I am a qualified groundwater scientist, in accordance with the Georgia Rules of Solid Waste Management and 40 Code of Federal Regulations (CFR) Part 258.50(g).

ATLANTIC COAST CONSULTING, INC.

Harry M. Jones, P.G. Project Manager

Date: February 28, 2023

CHA PROCHES HA

Chad Hall, PhD, P.E. Senior Professional Engineer Date: February 28, 2023

040688

SUMMARY

This summary of the 2022 Semiannual Groundwater Monitoring and Corrective Action Report provides the groundwater monitoring and corrective action program status from July through December 2022 for Georgia Power Company (Georgia Power) Grumman Road Private Industrial Landfill (GRL). This summary was prepared by Atlantic Coast Consulting, Inc. (ACC) on behalf of Georgia Power.

GRL (the Site) is located on Gulfstream Road, in Chatham County, Georgia, approximately 0.8 miles east of Savannah/Hilton Head International Airport and 1.3 miles west of the city of Port Wentworth. GRL received coal combustion residuals (CCR) from Georgia Power - Plant Kraft and operated under Georgia **Environmental Protection Division** (GA EPD) solid waste handling permit number 025-061D(LI). GRL is comprised of four cells or Parcel A parcels: [originally operated under permit number 025-034D(LI)], B1, B2, and B3.

Groundwater at the Site is monitored using a comprehensive monitoring system of wells installed to meet state monitoring

Grumman Road Private Industrial Landfill

requirements. Routine sampling and reporting began after background groundwater conditions were established in accordance with the Solid Waste Permit requirements specified in the Design and Operation (D&O) Plan. The monitoring program has been modified to include Appendix III and IV parameters to meet the requirements of the GA EPD Rules for Solid Waste Management 391-3-4-.10(6)(a) and 40 Code of Federal Regulations (CFR) § 257.95. Background groundwater conditions for Appendix III and IV parameters were established between September 2016 and July 2018.

Based on Site groundwater conditions, Georgia Power submitted a notification for the implementation of assessment monitoring under GA EPD Rule 391-3-4-.10(6)(a) on November 13, 2019. An Assessment of Corrective Measures (ACM) was initiated on July 9, 2020 based on the requirements of GA EPD Rule 391-3-4-.10(6)(a) which incorporates United States Environmental Protection Agency (USEPA) CCR Rule (40 CFR Part 257, Subpart D) by reference. Georgia Power submitted an ACM report on December 4, 2020 pursuant to GA EPD Rule 391-3-4-.10(6)(a) (Anchor 2020). The 2020 ACM supersedes previous documents submitted for the Site under the existing GA EPD Permit No. 025-061D(LI) (SCS 2013; ACC 2017, 2019).

During the 2022 semiannual reporting period, ACC completed a groundwater sampling event in August 2022. Groundwater samples were submitted to GEL Laboratories, LLC (GEL) for analysis. Per the CCR Rule, groundwater results for August 2022 were evaluated in

accordance with the certified statistical methods. That evaluation identified statistically significant values of Appendix III $^{\scriptscriptstyle 1}$ constituents above background and statistically significant levels (SSLs) of Appendix IV $^{\scriptscriptstyle 2}$ parameters above groundwater protection standards (GWPS), as summarized below.

Appendix III Parameter	August 2022
	GWB-4R, GWB-5R, GWB-6R,
Calcium	GWC-1, GWC-11, GWC-12,
Calcium	GWC-14, GWC-15, GWC-16,
	GWC-17, GWC-20, GWC-21
Chloride	GWC-17
Fluoride	GWC-17
pH	GWC-12, GWC-15
	GWB-4R, GWB-5R, GWB-6R,
Sulfate	GWC-11, GWC-12, GWC-14,
Sunate	GWC-16, GWC-17, GWC-20,
	GWC-21
Appendix IV Parameter ³	August 2022
Arsenic	GWC-15, GWC-16, GWC-20
Molybdenum	GWC-16, GWC-20

Based on review of the statistical results completed for the groundwater monitoring and corrective action program from July through December 2022, the Site will continue assessment monitoring and groundwater remedy selection. Georgia Power will continue routine groundwater monitoring and reporting at the Site, and reports will be posted to the website and provided to the GA EPD.

_

¹ Appendix III: Boron, calcium, chloride, fluoride, pH, sulfate, and total dissolved solids (TDS).

² Appendix IV: Antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, fluoride, lead, lithium, mercury, molybdenum, radium 226+228, selenium, and thallium.

³ An SSL parameter is determined by comparing the confidence intervals developed to either the constituent's maximum contaminant level (MCL), if available, the USEPA Rule Specified Level, if no MCL is available, or the calculated background interwell prediction limit.

TABLE OF CONTENTS

<u>Sectio</u>	on Page i	No
1.0	INTRODUCTION	
1.0	INTRODUCTION	
1.1	5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	
1.2	Regional Geology and Hydrogeologic Setting1	
1.3	Site Geology and Hydrogeologic Setting2	<u>'</u>
1.4	Groundwater Monitoring System2	
2.0	GROUNDWATER MONITORING ACTIVITIES3	;
2.1	Monitoring Well Installation/Maintenance3	;
2.2	Assessment Monitoring Program3	,
2.3	Assessment of Corrective Measures3	;
2.4	Additional Sampling4	
3.0	SAMPLE METHODOLOGY AND ANALYSIS4	
3.1	Groundwater Flow Direction, Gradient, and Velocity4	
3.2	Groundwater Sampling4	
3.3	Laboratory Analyses5	,
3.4	Quality Assurance and Quality Control5	,
4.0	STATISTICAL ANALYSIS6	;
4.1	Appendix I and III Statistical Methods6	;
4.2	Appendix II and IV Statistical Methods6	;
4.3	Statistical Analyses Results7	
5.0	NATURE AND EXTENT7	,
6.0	MONITORING PROGRAM STATUS8	•
6.1	Assessment of Corrective Measures8	;
7.0	CONCLUSIONS AND FUTURE ACTIONS8	;
8.0	REFERENCES 9)

Tables

- Table 1A Detection Monitoring Well Summary
- Table 1B Assessment Well and Piezometer Summary
- Table 2 Groundwater Sampling Event Summary
- Table 3 Summary of Groundwater Monitoring Parameters
- Table 4 Summary of Groundwater Elevations August 2022
- Table 5 Groundwater Flow Velocity Calculations August 2022
- Table 6 Summary of Groundwater Analytical Data August 2022
- Table 7 Statistical Method Summary
- Table 8 Summary of Background Levels and Groundwater Protection Standards

Figures

- Figure 1 Site Location Map
- Figure 2 Well Location Map
- Figure 3 Potentiometric Surface Map August 2022

Appendices

Appendix A - Laboratory Analytical and Field Sampling Reports

Laboratory Analytical Reports - August 2022 Monitoring Event

Laboratory Data Validations - August 2022 Monitoring Event

Field Sampling Reports - August 2022 Monitoring Event

Daily Instrument Calibration Logs - August 2022 Monitoring Event

Well Inspection Forms - August 2022 Monitoring Event

Appendix B – Semiannual Remedy Selection and Design Progress Report

Appendix C - Statistical Analyses

Statistical Analysis Report - August 2022 Monitoring Event

1.0 INTRODUCTION

In accordance with the Georgia Environmental Protection Division (GA EPD) Rules of Solid Waste Management 391-3-4-.10(6)(a)-(c) and 391-3-4-.14, Atlantic Coast Consulting, Inc. (ACC) has prepared this 2022 Semiannual Groundwater Monitoring and Corrective Action Report to document groundwater monitoring activities conducted during the second half of 2022 at Georgia Power Company's Grumman Road Private Industrial Landfill (GRL). To specify groundwater monitoring requirements, GA EPD Rule 391-3-4-.10(6)(a) incorporates by reference the United States Environmental Protection Agency (USEPA) Coal Combustion Residuals (CCR) Rule 40 Code of Federal Regulations (CFR) § 257 Subpart D.

To comply with GA EPD's Rule 391-3-4-.10, a permit application package for GRL was submitted to GA EPD in November 2018 and is currently under review. To meet the requirements of 391-3-4-.10(6), Appendix III and IV parameters listed in 40 CFR § 257 were incorporated into the routine groundwater monitoring program through a minor modification in August 2017. Semiannual reporting is completed pursuant to GA EPD Rule 391-3-4-.10(6)(c). This report documents groundwater activities conducted from July 2022 through December 2022.

Georgia Power submitted an Assessment of Corrective Measures (ACM) report in December 2020 pursuant to GA EPD Rule 391-3-4-.10(6)(a) (Anchor 2020). The 2020 ACM supersedes previous documents submitted for the Site under the existing GA EPD Permit No. 025-061D(LI) [Southern Company Services (SCS) 2013; ACC 2017, 2019]. The ACM was prepared to evaluate potential groundwater corrective measures for the occurrence of arsenic and molybdenum in groundwater at statistically significant levels (SSLs) at GRL.

1.1 Site Description and Background

GRL is located on Gulfstream Road, in Chatham County, Georgia, approximately 0.8 miles east of Savannah/Hilton Head International Airport and 1.3 miles west of the city of Port Wentworth. GRL occupies approximately 36 acres. The Site ceased accepting CCR prior to October 19, 2015 and is therefore not subject to Federal monitoring requirements. GRL received CCR from Georgia Power – Plant Kraft and operated under GA EPD solid waste handling permit number 025-061D(LI). GRL is comprised of four cells or parcels: Parcel A [originally operated under permit number 025-034D(LI)], B1, B2, and B3. Closure of parcels B1, B2, and B3 was completed after CCR disposal ceased. Capping of the last remaining uncapped portion of Parcel A has been completed and was documented to GA EPD in a submittal dated November 27, 2019.

GRL is adjacent to two other permitted solid-waste disposal facilities. The closed Clifton Rental Company, Inc., Landfill (Clifton Landfill; Permit No. 025-030D(L)) is located east of the Site, hydraulically upgradient and cross gradient of the Site. The active Savannah Regional Industrial Landfill (SRIL; Permit No. 025-072D(L)), operated by Republic Services, Inc., is located south of the Site and hydraulically downgradient of both Clifton Landfill and GRL. Figure 1, Site Location Map, depicts the location of GRL relative to the surrounding area. Figure 2, Well Location Map, depicts the general configuration of GRL and the location of the monitoring wells.

1.2 Regional Geology and Hydrogeologic Setting

GRL is underlain by Atlantic Coastal Plain Physiographic Province strata consisting of unconsolidated to consolidated layers of sand, silt, and clay and semi-consolidated to dense layers of limestone and dolomite (Clarke et al, 2010). These sediments constitute three major aquifer systems, which are, from shallow to deep, the surficial aquifer system, the Brunswick

aquifer system, and the Floridan aquifer system. In the Atlantic Coastal Plain, the surficial aquifer system consists of Miocene and younger interlayered sand, silt, clay, and thin limestone beds (Clarke et al, 2010). The surficial aquifer system is unconfined and generally at a depth less than 80 feet below ground surface.

The surficial aquifer is underlain by a confining unit that separates it from the Brunswick aquifer. The confining unit consists of silty clay and dense thin, phosphatic Miocene limestone. The Oligocene to Miocene Brunswick aquifer consists of two water-bearing zones. The upper Brunswick and lower Brunswick aquifers are separated by a low permeability, sandy phosphatic clay confining unit. The Brunswick aquifer is separated from the Upper Floridan aquifer with the Upper Confining unit and a non-water bearing limestone (NWBL) layer. The Floridan aquifer is confined by the overlying clay and NWBL layers.

1.3 Site Geology and Hydrogeologic Setting

The sediments immediately underlying the Site are part of the regional surficial aquifer system described previously and consist of variable interbedded sands, silts, and clay comprising a near-surface aquifer system (SCS, 1998). Though complex with subtle distinctions, approximately 50 feet of the near-surface aquifer system (soil) can be divided into four units as described below:

- Upper Sands and Topsoil
- Unit 1 Uppermost Aquifer: Silty Fine Sand
- Unit 2 Low Permeability Zone: Interbedded Sand, Silt, and Clay
- Unit 3 Lower Sand Aquifer: Silty and/or Clayey Fine to Medium Sand

Unit 1 comprises the water-bearing soil unit monitored at the Site and has a thickness ranging from approximately 22 to 28 feet across GRL. Although Units 1 through 3 are classified as the surficial aquifer system, layers of lower permeability may be present in the surficial aquifer system (Clarke, Hacke, and Peck 1990; SCS 1998). Generally, groundwater in the near-surface aquifer system flows from north to south at GRL but is influenced by topography. Groundwater elevations observed across the Site and adjacent landfills suggest that hydraulic communication exists between Units 1, 2, and 3. Unit 2 has a lower permeability than Units 1 and 3 and locally may act as an impediment to downward migration, creating perched water within Unit 1 or impeding migration within the near-surface aquifer system. Unit 2 does not appear to be continuous across the Site such that it creates distinct groundwater flow systems. The geologic and hydrogeologic conditions at GRL were described in detail in the ACM report (Anchor 2020).

1.4 Groundwater Monitoring System

A groundwater monitoring plan was submitted in November 1999 and approved by GA EPD in January 2000. Pursuant to GA EPD Rule 391-3-4-.10(6)(a) and 40 CFR § 257.91, a comprehensive monitoring system was designed to monitor groundwater passing the waste boundary of GRL within the uppermost aquifer. Wells were located to serve as upgradient, sidegradient, and downgradient monitoring points based on groundwater flow direction (Table 1A, Detection Monitoring Well Summary). Additional existing locations are presented in Table 1B, Assessment Well and Piezometer Summary.

As part of the assessment monitoring program, assessment wells (formerly known as "delineation monitoring wells") were installed in December 2020 and January 2021. Pursuant to GA EPD Rule 391-3-4-.10(6)(a) and 40 CFR § 257.95(g)(1)(iv), the wells, classified as "assessment wells", will be sampled in addition to the compliance monitoring wells as part of the ongoing assessment groundwater monitoring program.

2.0 GROUNDWATER MONITORING ACTIVITIES

The following describes monitoring-related activities performed at the Site from July through December 2022 (the reporting period) and discusses any change in status of the monitoring program.

2.1 Monitoring Well Installation/Maintenance

There were no changes to the groundwater monitoring system during the current semiannual reporting period; the detection monitoring system remained the same as in the previous reporting year and is shown in Figure 2.

Monitoring wells are inspected semiannually to determine if any repairs or corrective actions are necessary to meet the requirements of the Georgia Water Well Standards Act (O.C.G.A. § 12-5-134(5)(d)(vii)). Well inspection checklists completed during the August 2022 semiannual sampling event are included in Appendix A, Laboratory Analytical and Field Sampling Reports. The August 2022 documentation was performed under the direction of a professional geologist registered in the State of Georgia.

2.2 Assessment Monitoring Program

Georgia Power has initiated an assessment monitoring program for CCR Appendix IV constituents. A notification for the implementation of assessment monitoring under GA EPD Rule 391-3-4-.10(6) was submitted on November 13, 2019. The facility had previously implemented an assessment monitoring program for an Appendix II metal (arsenic) included in its state permit. Currently identified SSLs of Appendix IV constituents exceeding their respective groundwater protection standards (GWPS) at AP-1 are arsenic at GWC-15, GWC-16, and GWC-20 and molybdenum in GWC-16 and GWC-20.

Table 2, Groundwater Sampling Event Summary, presents a summary of the groundwater sampling event completed at the Site during the reporting period. A semiannual assessment monitoring event was completed in August 2022. Groundwater samples were collected for the state-specific list of Appendix I/II metals specified in the permit and all Appendix III and Appendix IV constituents. A summary of the analytes required by Appendix III, Appendix IV, and the existing permit is provided in Table 3, Summary of Groundwater Monitoring Parameters. Samples were collected from each well in the detection monitoring system, as well as three of the five delineation wells, shown on Figure 2.

Details of this event and analytical results are discussed in Section 3, while the statistical results are discussed in Section 4. Results of sampling activities conducted during the reporting period are presented in Appendix A.

2.3 Assessment of Corrective Measures

Based on statistical analysis of assessment monitoring results presented in the 2020 Annual Groundwater Monitoring and Corrective Action Report, a Notice of Assessment of Corrective Measures was placed in the operating record on July 9, 2020 for the State CCR Rule. An ACM for arsenic was previously established under GA EPD Rule 391-3-4-.14. An ACM completed by Anchor QEA, LLC in December 2020 (Anchor, 2020) under GA EPD Rule 391-3-4-.10(6)(a) and 40 CFR § 257.96 supersedes the previous ACM and incorporates arsenic and an additional Appendix IV constituent, molybdenum. A Semiannual Remedy Selection and Design Progress

Report (Semiannual Progress Report) has been updated to include recent activities and is provided as Appendix B.

2.4 Additional Sampling

As summarized in the Semiannual Progress Report, an active above-ground leachate seep has been observed on aerial imagery on the north side of the Clifton Landfill since approximately 2009. The seepage flows onto the Site near GWA-7. An attempt was made to sample the leachate seepage on the Site near GWA-7 during the August 2022 sampling event, but no flow was observed.

3.0 SAMPLE METHODOLOGY AND ANALYSIS

The following sections describe the methods used to conduct groundwater monitoring at the Site.

3.1 Groundwater Flow Direction, Gradient, and Velocity

Prior to each sampling event, groundwater elevations are recorded from the certified detection well system, assessment wells, and piezometers at GRL. Groundwater elevations recorded during the monitoring events are summarized in Table 4, Summary of Groundwater Elevations – August 2022. Groundwater elevation data were used to develop Figure 3, Potentiometric Surface Map – August 2022. A potentiometric high exists near well GWA-7 in the northern portion of the Site and groundwater flows semi-radially from this high. In the southern portion of the Site, groundwater flows to the south and southeast. The groundwater flow pattern observed during the monitoring event is consistent with historical patterns.

The groundwater flow velocity at GRL was calculated using a derivation of Darcy's Law. Specifically:

Equation

 $v = \underbrace{ \ \ \, K \, (\, dh/dI \,) \ }_{P_e} \quad \text{where:} \quad v = \text{groundwater velocity} \\ K = \text{hydraulic conductivity} \\ dh/dI = \text{hydraulic gradient} \\ P_e = \text{effective porosity}$

The groundwater flow velocity was calculated for the Site based on hydraulic gradients, average hydraulic conductivity based on previous slug test data, and an estimated effective porosity of 0.20 (based on a review of several sources, including Driscoll, 1986; USEPA, 1989; Freeze and Cherry, 1979). The groundwater flow velocity has been calculated and is tabulated on Table 5, Groundwater Flow Velocity Calculations – August 2022. The calculated maximum flow velocity was 0.31 feet per day for August 2022.

3.2 Groundwater Sampling

Groundwater samples were collected using low-flow sampling procedures in accordance with 40 CFR § 257.93(a). Purging and sampling was performed using a peristaltic pump. Tubing was lowered into the well so that the intake was at the midpoint of the well screen (or as appropriate determined by the water level). Peristaltic pump samples were collected using new disposable polyethylene tubing. All non-disposable equipment was decontaminated before use and between well locations.

Monitoring wells were purged and sampled using low-flow sampling procedures. A SmarTroll or Aqua Troll (In-Situ field instruments) was used to monitor and record field water quality parameters (pH, specific conductance, oxidation-reduction potential [ORP], dissolved oxygen [DO], and temperature) during well purging prior to sampling. Turbidity was measured using a Hach 2100Q portable turbidimeter. Groundwater samples were collected when the following stabilization criteria were met:

- ± 0.1 standard units for pH.
- ± 10% for specific conductance.
- ± 10% for dissolved oxygen or 0.2 milligrams per liter (mg/L), whichever is greater where DO > 0.5 mg/L. No criterion applies if DO < 0.5 mg/L.
- Turbidity measurements less than 5 nephelometric turbidity units (NTU), or measured between 5 and 10 NTU following three additional hours of purging.

Once stabilization was achieved, samples were collected directly into appropriately preserved laboratory-supplied sample containers. Sample bottles were placed in ice-packed coolers and submitted to GEL Laboratories, LLC (GEL) of Charleston, South Carolina following chain-of-custody protocol. Stabilization logs and equipment calibration forms for each well during the reporting period are included in Appendix A.

3.3 Laboratory Analyses

Analytical methods used for groundwater monitoring parameters are provided in laboratory reports in Appendix A. Analytical data collected in the monitoring event during the reporting period are summarized in Table 6, Summary of Groundwater Analytical Data – August 2022, respectively.

Laboratory analyses were performed by GEL. GEL is accredited by the National Environmental Laboratory Accreditation Program (NELAP) and maintains a NELAP certification for all parameters analyzed for this project. In addition, GEL is certified to perform analysis by the State of Georgia. Laboratory reports and chain-of-custody records for the monitoring event are presented in Appendix A.

3.4 Quality Assurance and Quality Control

During each sampling event, quality assurance/quality control (QA/QC) samples are collected at a rate of one QA/QC sample per every 10 groundwater monitoring samples. Equipment blanks (where non-dedicated sampling equipment is used) and duplicate samples were collected during each sampling event. QA/QC sample data were evaluated during data validation and are included in Appendix A.

Groundwater quality data in this report were validated in accordance with USEPA guidance (USEPA, 2011) and the analytical methods. Data validation generally consisted of reviewing sample integrity, holding times, laboratory method blanks, laboratory control samples, matrix spike/matrix spike duplicate recoveries and relative percent differences (RPDs), post digestion spikes, laboratory and field duplicate RPDs, field and equipment blanks, and reporting limits. Where appropriate, validation qualifiers and flags are applied to the data using USEPA procedures as guidance (USEPA, 2017). The data are considered usable for meeting project objectives and the results are considered valid.

4.0 STATISTICAL ANALYSIS

The statistical method used at GRL was developed by Groundwater Stats Consulting, LLC (GSC), using methodology presented in *Statistical Analysis of Groundwater Data at RCRA Facilities, Unified Guidance*, March 2009, USEPA 530/ R-09-007 (USEPA, 2009).

Statistical analysis of the reporting period groundwater monitoring data was performed by GSC following the appropriate certified statistical methodology for GRL. Sanitas groundwater statistical software was used to screen the data and perform the statistical analyses. Sanitas is a decision support software package that incorporates the statistical tests required of Subtitle C and D facilities by USEPA regulations.

Appendix I and Appendix III statistical analysis was performed to determine if groundwater has returned to background levels. Appendix II and Appendix IV constituents were evaluated to determine if concentrations statistically exceeded the established GWPS.

A summary of the statistical methodology used at GRL for routine groundwater monitoring is provided in Table 7, Statistical Method Summary. Statistical analysis methods and results are provided in Appendix C, Statistical Analyses, and summarized in the following sections.

4.1 Appendix I and III Statistical Methods

Based on guidance from GA EPD, statistical tests used to evaluate the groundwater monitoring data consist of interwell prediction limits (PLs) combined with a 1-of-2 verification resample plan for each of the Appendix I and III parameters. Interwell PLs are constructed using pooled data from upgradient wells GWA-7 and GWA-8 to establish a background limit for an individual constituent. The most recent sample from each downgradient well is compared to the background limit to determine whether there are statistically significant increases (SSIs). An "initial exceedance" occurs when an Appendix I or III constituent reported in a downgradient groundwater compliance monitoring well exceeds the constituent's associated PL. The 1-of-2 resample plan allows for collection of an independent resample. A confirmed exceedance is noted only when the resample verifies the initial exceedance. If the resample result is less than its relevant PL, the initial exceedance is not verified.

4.2 Appendix II and IV Statistical Methods

Appendix II constituents and Appendix IV constituents were sampled during the semiannual assessment sampling event. To statistically compare groundwater data to GWPS, confidence intervals are constructed for each of the detected Appendix II and IV parameters in each downgradient well. Those confidence intervals are compared to the respective GWPS. Only when the entire confidence interval is above a GWPS is the well/constituent pair considered to exceed its GWPS. If there is an exceedance of the established standard, an SSL exceedance is identified. In accordance with Section 21.1.1 of the Unified Guidance (USEPA, 2009), four independent data are the minimum population size recommended to construct confidence intervals required to assess SSLs for Appendix IV constituents. Due to non-routine (or ACM investigation) sampling, some Appendix IV constituents at a well location have differing numbers of analytical data points.

USEPA revised the federal CCR Rule on July 30, 2018, updating the GWPS for cobalt, lead, lithium, and molybdenum. USEPA's updated GWPS were incorporated by reference into GA EPD's CCR Rule 391-3-4-.10(6)(a) on February 22, 2022. As described in 40 CFR § 257.95(h)(1-3), GWPS are established as follows:

(1) The maximum contaminant level (MCL) established under 40 CFR § 141.62 and 141.66.

- (2) Where an MCL has not been established:
 - (i) Cobalt 0.006 mg/L;
 - (ii) Lead 0.015 mg/L;
 - (iii) Lithium 0.040 mg/L; and
 - (iv) Molybdenum 0.100 mg/L.
- (3) Background levels for constituents where the background level is higher than the MCL or rule-specified GWPS.

Following the above requirements, GWPS have been established for statistical comparison of Appendix II and Appendix IV constituents and are presented in Table 8, Summary of Background Levels and Groundwater Protection Standards.

4.3 Statistical Analyses Results

Based on review of the Appendix I and III statistical analyses presented in Appendix C, constituents have not returned to background levels and assessment monitoring should continue pursuant to GA EPD Rule 391-3-4-.10(6)(a).

Based on a review of the statistical analysis presented in Appendix C, the following parameters were found to statistically exceed the GWPS for the semiannual reporting period:

- Arsenic: GWC-15, GWC-16, and GWC-20
- Molybdenum: GWC-16 and GWC-20

These results are consistent with those presented in the 2022 Annual Groundwater Monitoring and Corrective Action Report (ACC, 2022). An ACM report was submitted in December 2020 for arsenic and molybdenum, per GA EPD Rule 391-3-4-.10(6)(a) and 40 CFR § 257.96, and potential corrective measures are under evaluation.

5.0 NATURE AND EXTENT

Wells MW-23D, MW-24D, and MW-25D were installed for vertical delineation of arsenic and molybdenum at wells GWC-20, GWC-16, and GWC-15, respectively, and wells MW-26D and MW-27D were installed for vertical delineation of molybdenum at GWB-4R and GWC-1, respectively, in December 2020 and January 2021. The locations of these delineation wells are shown on Figure 2.

Data from the August 2022 semiannual monitoring event at SRIL show that arsenic concentrations in groundwater samples collected from monitoring wells GWA-6 and GWA-12B located along the northern boundary of SRIL, due south of the Site, are less than the analytical method reporting limit (0.01 mg/L; CEC, 2022). This data supports the findings from the Transport Modeling Report submitted to GA EPD in November 2021 and suggests the arsenic impacts have not migrated far off-site (Anchor QEA, 2021). Molybdenum, however, is not a routine parameter analyzed at SRIL.

Horizontal delineation of molybdenum to the south is dependent on securing access from adjacent property owners. Per GA EPD guidance, where "denial of access prevents the installation of off-site assessment wells, a USEPA approved fate and transport model analysis may be used to delineate the limit of the contaminant plume" (GA EPD, 2018). Because off-site access has not been secured, a transport model was developed to complete horizontal delineation (Anchor QEA, 2021). Based on the Transport Modeling Report, molybdenum concentrations in groundwater above the GWPS that originate from the Site have likely migrated a short distance beneath SRIL but have not

reached the southern boundary of SRIL. SRIL representatives were notified of the arsenic and molybdenum detections in neighbor notification correspondence dated September 25, 2020.

6.0 MONITORING PROGRAM STATUS

Pursuant to 40 CFR § 257.96(b), Georgia Power will continue to monitor the groundwater at the Site in accordance with the assessment monitoring program regulations of 40 CFR § 257.95 while ACM efforts are implemented to evaluate SSL concentrations of arsenic and molybdenum. Pursuant to 40 CFR § 257.94(e)(1), Georgia Power will continue assessment monitoring in accordance with 40 CFR § 257.95. Pursuant to 40 CFR § 257.95(g)(1)(iv), the assessment wells will continue to be sampled as part of the ongoing semiannual assessment groundwater monitoring program.

6.1 Assessment of Corrective Measures

An ACM report was implemented on July 9, 2020 and submitted to GA EPD on December 4, 2020. The ACM efforts completed during the reporting period covered by this groundwater monitoring and corrective action report are presented in Appendix B. The Semiannual Progress Report summarizes:

- (i) the current conceptual site model applicable to evaluating groundwater corrective measures proposed in the ACM Report (Anchor, 2020).
- (ii) the analytical data obtained during supplemental ACM-specific field investigations.
- (iii) the status of applicable corrective measures evaluation; and
- (iv) the planned activities and anticipated schedule for the following semiannual reporting period.

Georgia Power will include a Semiannual Progress Report with each future groundwater monitoring and corrective action report.

7.0 CONCLUSIONS AND FUTURE ACTIONS

This 2022 Semiannual Groundwater Monitoring and Corrective Action Report was prepared to fulfill the requirements of GA EPD Rule 391-3-4-.10(6)(c). Statistical evaluations of the groundwater monitoring data identified the presence of SSLs of arsenic in three wells (GWC-15, GWC-16, and GWC-20) and molybdenum in two wells (GWC-16 and GWC-20) for the August 2022 event. The arsenic and molybdenum SSLs are vertically delineated below the GWPS by MW-23D through MW-25D. Arsenic is horizontally delineated below the GWPS by upgradient SRIL wells GWA-6 and GWA-12B, just south of the Site. Based on the Transport Modeling Report, molybdenum is horizontally delineated to below the GWPS a short distance beneath SRIL but has not reached the southern boundary of SRIL. Georgia Power will continue to monitor groundwater under the assessment monitoring program and evaluate potential corrective measures presented in the Semiannual Progress Report provided in Appendix B.

The next semiannual assessment sampling event is planned to begin January 2023. The semiannual assessment monitoring event will include sampling and analysis of all Appendix III and IV constituents along with the state-specific list of Appendix I/II metals specified in the permit.

8.0 REFERENCES

ACC, 2017. Assessment of Corrective Measures – Addendum. Grumman Road Private Industrial Landfill.

ACC, 2019. Assessment of Corrective Measures – 2019 Addendum. Grumman Road Private Industrial Landfill.

ACC, 2020. 2020 Annual Groundwater Monitoring and Corrective Action Report. Grumman Road Private Industrial Landfill.

ACC, 2021. 2021 Annual Groundwater Monitoring and Corrective Action Report. Grumman Road Private Industrial Landfill.

ACC, 2022. 2021 Semiannual Groundwater Monitoring and Corrective Action Report. Grumman Road Private Industrial Landfill.

ACC, 2022. 2022 Annual Groundwater Monitoring and Corrective Action Report. Grumman Road Private Industrial Landfill.

Anchor QEA, 2020. Assessment of Corrective Measures. Grumman Road Private Industrial Landfill.

Anchor QEA, 2021. Transport Modeling Report. Grumman Road Private Industrial Landfill.

Anchor QEA, 2023. February 2023 Semiannual Remedy Selection and Design Progress Report. Grumman Road Private Industrial Landfill.

Civil & Environmental Consultants, Inc. (CEC), 2022. 2nd 2022 Semiannual Groundwater Statistical Analysis Report, Savannah Regional Industrial Landfill, Chatham County, Georgia, Permit No. 025-072D(L)(I).

Clarke, J.S., Hacke, C.M., and Peck, M.F. 1990. Geology and Ground-Water Resources of the Coastal Area of Georgia, GGS Bulletin 113.

Clarke, J.S., Williams, L.J., and Cherry, G.C., 2010, Hydrogeology and water quality of the Floridan aquifer system and effect of Lower Floridan aquifer pumping on the Upper Floridan aquifer at Hunter Army Airfield, Chatham County, Georgia: U.S. Geological Survey Scientific Investigations Report 2010–5080, 56 p.

Driscoll, Fletcher G., 1986, *Groundwater and Wells*, Johnson Screens, Saint Paul, Minnesota, 1089 pp.

EPRI, 2015 Technical Report, Groundwater Monitoring Guidance for the Coal Combustion Residuals Rule.

Freeze, R.A. and Cherry, J.A. 1979, *Groundwater*, Prentice-Hall, Englewood Cliffs, New Jersey, 604 pp.

GA EPD, 2018. Guidance Document for Groundwater Release Notification Requirements Under Rule 391-3-4-.17(6).

Groundwater Stats Consulting, LLC, 2019. Statistical Analysis Plan – Grumman Road Landfill.

Southern Company Services, 1998, Grumman Road Monofill Groundwater Monitoring Plan.

SCS, 2013. Assessment of Corrective Measures: Landfill Parcel A. Grumman Road Ash Landfill. Prepared for Georgia Power Company. February 2013.

State Waste Management Board. 2016. State Solid Waste Management Regulations – (9VAC20 81 et seq.). January.

USEPA, 1989 Risk Assessment Guidance for Superfund (RAGS), Vol. I: Human Health Evaluation Manual (Part A) (540-1-89-002).

USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. Office of Resource Conservation and Recovery – Program Implementation and Information Division. March.

USEPA. 2011. *Data Validation Standard Operating Procedures*. Science and Ecosystem Support Division. Region IV. Athens, GA. September.

USEPA. 2017. National Functional Guidelines for Inorganic Superfund Methods Data Review. Office of Superfund Remediation and Technology Innovation. OLEM 9355.0-135 [EPA-540-R-2017-001]. Washington, DC. January.

TABLES

Grumman Road Private Industrial Landfill
Chatham County, Georgia
2022 Semiannual Groundwater Monitoring and Corrective Action Report

Table 1A **Detection Monitoring Well Summary** Grumman Road Landfill Chatham County, Georgia

Well ID	Installation Date (mm/dd/yyyy)	Northing (SD)	Easting (SD)	Top of Casing Elevation (SD)	Bottom Depth (ft BTOC)	Bottom Elevation (SD)	Depth to Top of Screen (ft BTOC)	Top of Screen Elevation (SD)	Hydraulic Location
GWA-7	07/29/1998	780887.99	960553.30	47.10	21.20	25.90	16.20	30.90	Upgradient
GWA-8	07/29/1998	781167.66	960453.78	46.84	20.80	26.04	15.80	31.04	Upgradient
GWB-4R	10/09/2018	779975.87	960770.83	49.58	27.00	22.58	16.76	32.82	Sidegradient
GWB-5R	10/09/2018	780294.37	960686.46	47.82	26.50	21.32	16.51	31.31	Sidegradient
GWB-6R	10/08/2018	780573.41	960610.31	47.40	22.70	24.70	12.69	34.71	Sidegradient
GWC-1	03/10/1997	779574.06	960864.07	50.30	28.20	22.10	21.93	28.37	Downgradient
GWC-2	03/11/1997	779433.81	960353.99	51.84	32.73	19.11	26.73	25.11	Downgradient
GWC-9	07/24/1998	781007.52	959954.35	47.11	27.40	19.71	22.40	24.71	Downgradient
GWC-11	07/23/1998	780352.70	960115.63	49.38	22.60	26.78	17.60	31.78	Downgradient
GWC-12	07/22/1998	780099.06	960175.37	47.48	26.70	20.78	21.70	25.78	Downgradient
GWC-13	07/22/1998	779738.03	960269.62	48.21	23.80	24.41	18.80	29.41	Downgradient
GWC-14	07/22/1998	779112.64	960423.84	50.70	27.00	23.70	22.00	28.70	Downgradient
GWC-15	07/22/1998	778948.31	960660.49	48.12	26.80	21.32	21.80	26.32	Downgradient
GWC-16	07/21/1998	779034.61	960956.85	47.79	28.20	19.59	23.20	24.59	Downgradient
GWC-17	1998	781420.05	960041.65	44.09	23.50	20.59	18.20	25.89	Downgradient
GWC-20	05/07/2010	779294.68	960950.04	50.03	25.59	24.44	20.29	29.74	Downgradient
GWC-21	05/07/2010	779031.11	960941.58	47.94	24.54	23.40	19.24	28.70	Downgradient
GWC-22	05/07/2010	780712.60	960057.05	46.72	19.21	27.51	13.91	32.81	Downgradient

- SD indicates feet relative to Site Datum.
 ft BTOC indicates feet below top of casing.

Table 1B Assessment Well and Piezometer Summary Grumman Road Landfill Chatham County, Georgia

Well ID	Installation Date (mm/dd/yyyy)	Northing (SD)	Easting (SD)	Top of Casing Elevation (SD)	Bottom Depth (ft BTOC)	Bottom Elevation (SD)	Depth to Top of Screen (ft BTOC)	Top of Screen Elevation (SD)	Purpose
GWC-10	07/24/1998	780703.64	960030.15	47.43	20.60	26.79	15.60	31.79	Piezometer
MW-23D	12/17/2020	779280.61	960949.37	50.20	63.30	-13.10	58.00	-7.80	Assessment
MW-24D	01/04/2021	779043.12	960964.95	48.54	66.30	-17.76	61.00	-12.46	Assessment
MW-25D	01/06/2021	778944.95	960648.33	48.33	70.20	-21.87	64.90	-16.57	Assessment
MW-26D	01/10/2021	779994.12	960768.25	49.39	69.90	-20.51	64.60	-15.21	Piezometer
MW-27D	01/08/2021	779559.74	960868.15	50.53	72.43	-21.90	67.13	-16.60	Piezometer

Notes:

- 1. SD indicates feet relative to Site Datum.
- ft BTOC indicates feet below top of casing.

Table 2 **Groundwater Sampling Event Summary** Grumman Road Landfill Chatham County, Georgia

Well	Hydraulic Location	Aug 30-Sep. 1, 2022
Purpose o	Assessment	
GWA-7	Upgradient	X
GWA-8	Upgradient	X
GWB-4R	Sidegradient	X
GWB-5R	Sidegradient	X
GWB-6R	Sidegradient	X
GWC-1	Downgradient	X
GWC-2	Downgradient	X
GWC-9	Downgradient	X
GWC-11	Downgradient	X
GWC-12	Downgradient	X
GWC-13	Downgradient	X
GWC-14	Downgradient	Х
GWC-15	Downgradient	X
GWC-16	Downgradient	Х
GWC-17	Downgradient	Х
GWC-20	Downgradient	Х
GWC-21	Downgradient	Х
GWC-22	Downgradient	X
MW-23D	Assessment	Х
MW-24D	Assessment	X
MW-25D	Assessment	X

Notes:

- X indicates sample was collected.
 Assessment Events included Appendix III and Appendix IV analytes.

Table 3 Summary of Groundwater Monitoring Parameters Grumman Road Landfill Chatham County, Georgia

Appendix III (40 CFR 257)	Appendix IV (40 CFR 257)	State Permit Appendix I and II Metals
Boron	Antimony	Antimony
Calcium	Arsenic	Arsenic
Chloride	Barium	Barium
Fluoride	Beryllium	Chromium
рН	Cadmium	Lead
Sulfate	Chromium	Selenium
TDS	Cobalt	Vanadium
	Fluoride	Zinc
	Lead	
	Lithium	
	Mercury	
	Molybdenum	
	Radium 226 and 228 combined	
	Selenium	
	Thallium	

Table 4 Summary of Groundwater Elevations August 2022 Grumman Road Landfill Chatham County, Georgia

Woll ID	Well ID TOC Elevation		Groundwater Elevation
Well ID	(SD)	Water (ft BTOC)	(ft MSL)
GWA-7	47.10	5.94	41.16
GWA-8	46.84	6.91	39.93
GWB-4R	49.58	14.58	35.00
GWB-5R	47.82	9.52	38.30
GWB-6R	47.40	7.10	40.30
GWC-1	50.30	18.86	31.44
GWC-2	51.84	19.44	32.40
GWC-9	47.11	8.93	38.18
GWC-11	49.38	13.14	36.24
GWC-12	47.48	12.67	34.81
GWC-13	47.82	14.43	33.78
GWC-14	50.70	19.52	31.18
GWC-15	48.12	19.28	28.84
GWC-16	47.79	20.51	27.28
GWC-17	44.09	5.26	38.83
GWC-20	50.03	20.95	29.08
GWC-21	47.94	20.27	27.67
GWC-22	46.72	9.13	37.59
MW-23D	50.20	22.84	27.36
MW-24D	48.54	22.65	25.89
MW-25D	48.33	20.90	27.43
MW-26D	49.39	19.87	29.52
MW-27D	50.53	21.55	28.98

Notes:

- 1. ft BTOC indicates feet below top of casing.
- 2. ft MSL indicates feet mean sea level.
- 3. SD indicates feet relative to Site Datum.
- 4. Depths to water measured on August 29, 2022.

Table 5 Groundwater Flow Velocity Calculations August 2022 Grumman Road Landfill Chatham County, Georgia

Equation

 $v = \frac{K (dh/dl)}{P_e} \qquad \text{where:} \quad v = \text{groundwater velocity} \\ K = \text{hydraulic conductivity} \\ dh/dl = \text{hydraulic gradient}$

on/ or = nyaraulic gradien
P_e = effective porosity

Values Used in Calculation

	Value		Source
K =	2.7E-03	cm/sec	See note 1.
	7.60	ft/day	See note 1.
dh/dl _{max} =	13.02/1576 0.008	ft/ft unitless	hydraulic gradient from GWB-6R to GWC-16
dh/dl _{min} =	2.33/737 0.003	ft/ft unitless	hydraulic gradient from GWA-7 to GWC-17
P _e =	0.20		See note 2.

$$v_{max} = (7.60) (0.008)$$
 $v_{max} = 0.31 \text{ ft/day}$
 0.20
 $v_{min} = (7.60) (0.003)$ $v_{min} = 0.12 \text{ ft/day}$
 0.20

Notes

- (1) Grumman Road Monofill Groundwater Monitoring Plan (SCS, 1999)
- (2) Default value for silty sands from Interim Final RCRA Investigation (EPA, 1989)

Table 6 Summary of Groundwater Analytical Data - August 2022 Grumman Road Landfill Chatham County, Georgia

		Well ID							
		GWA-7	GWA-8	GWB-4R	GWB-5R	GWB-6R	GWC-1	GWC-2	GWC-9
	Substance	8/30/2022	8/30/2022	8/30/2022	8/30/2022	8/30/2022	9/1/2022	9/1/2022	9/1/2022
	Boron	5.72	0.152	4.95	4.66	7.13	0.728	0.0204	0.0187
	Calcium	3.56	15.0	79.3	70.3	81.8	46.9	0.236	5.00
APPENDIX III	Chloride	74.4	9.93	65.0	76.8	52.0	9.17	6.59	17.6
END	Fluoride	0.0391 J	0.0759 J	<0.0330	0.0428 J	<0.0330	<0.0330	<0.0330	0.0783 J
APP	рН	5.98	4.58	5.67	5.22	5.55	5.80	4.73	4.60
	Sulfate	10.6	77.4	379	403	978	44.0	10.3	28.7
	TDS	1340	154	882	886	1810	228	9.00 J	85.0
	Antimony	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
	Arsenic	0.00321 J	<0.00200	0.00490 J	0.00253 J	0.00716	0.00568	<0.00200	<0.00200
	Barium	0.133	0.0512	0.134	0.0510	0.0266	0.0583	0.0508	0.151
	Beryllium	0.000219 J	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200
	Cadmium	<0.000300	<0.000300	<0.000300	<0.000300	<0.000300	<0.000300	<0.000300	<0.000300
≥	Chromium	0.0129	<0.00300	<0.00300	<0.00300	0.00356 J	<0.00300	<0.00300	<0.00300
APPENDIX IV	Cobalt	0.00134	0.000420 J	0.00198	0.00401	0.0476	<0.000300	<0.000300	0.000930 J
PEN	Lead	0.00220	<0.000500	<0.000500	<0.000500	<0.000500	<0.000500	<0.000500	<0.000500
¥	Lithium	<0.00300	<0.00300	0.0175	<0.00300	<0.00300	<0.00300	<0.00300	<0.00300
	Mercury	<0.0000670	<0.0000670	<0.0000670	0.0000870 J	<0.0000670	<0.0000670	<0.0000670	<0.0000670
[Molybdenum	0.000453 J	<0.000200	0.154	<0.000200	0.000649 J	0.0343	<0.000200	<0.000200
[Radium	2.75	1.97	5.57	3.36	3.20	0.911 U	2.09	2.35
[Selenium	0.00630	<0.00150	0.00265 J	<0.00150	0.00277 J	0.00252 J	<0.00150	<0.00150
	Thallium	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600
See Note	Vanadium	0.110	0.00372 J	0.00943 J	0.0138 J	0.0192 J	0.00748 J	0.00450 J	0.00514 J
8	Zinc	0.0110 J	<0.00330	<0.00330	<0.00330	0.0132 J	0.00578 J	0.0125 J	0.0163 J

Notes:

- 1. Results for substances are reported in milligrams per liter (mg/L). Results for pH are reported in standard units (S.U.). Radium results are reported in picocuries per liter (pCi/L).
- 2. Radium data are for Radium 226 & Radium 228 (combined).
- 3. < indicates the substance was not detected above the relevant laboratory method detection limit (MDL).
- 4. J indicates the substance was detected at such low levels that the precision of the laboratory instruments could not produce a reliable value. Therefore, the value displayed (value J) is qualified by the laboratory as an estimated number.
- 5. TDS indicates total dissolved solids.
- 6. U indicates the substance was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not produce a reliable value. Therefore, the value followed by U is qualified by the laboratory as estimated.
- 7. Appendix III = indicator parameters evaluated during Detection and Assessment Monitoring; Appendix IV = parameters included and evaluated during Assessment Monitoring.
- 8. Parameters required by Permit are Appendix I/II parameters included to meet EPD Rule 391-3-4-.14 requirements.

Grumman Road Private Industrial Landfill oundwater Monitoring and Corrective Action Report

Table 6 Summary of Groundwater Analytical Data - August 2022 Grumman Road Landfill Chatham County, Georgia

		Well ID							
		GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16	GWC-17	GWC-20
	Substance	8/31/2022	8/30/2022	8/31/2022	8/30/2022	8/31/2022	9/1/2022	8/31/2022	8/30/2022
	Boron	1.65	8.21	0.231	0.0460	0.719	15.9	2.51	8.14
	Calcium	115	70.8	2.54	144	135	255	102	193
l ≣ L	Chloride	110	58.4	6.69	26.7	4.83	57.2	694	24.4
APPENDIX III	Fluoride	<0.0330	0.273	0.0510 J	<0.0330	<0.0330	0.0374 J	0.442	<0.0330
APP	рН	4.85	3.92	4.76	5.86	6.57	5.37	4.33	6.01
	Sulfate	653	415	29.0	410	88.5	1140	721	606
	TDS	1240	713	55.0	720	530	1720	2050	1210
	Antimony	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
	Arsenic	<0.00200	<0.00200	<0.00200	<0.00200	0.259	0.0987	<0.00200	0.465
	Barium	0.115	0.0275	0.0379	0.0773	0.0550	0.165	0.0375	0.210
	Beryllium	<0.000200	0.000663	<0.000200	<0.000200	<0.000200	<0.000200	0.00258	<0.000200
	Cadmium	0.000431 J	<0.000300	<0.000300	<0.000300	<0.000300	<0.000300	<0.000300	<0.000300
≥	Chromium	<0.00300	<0.00300	<0.00300	<0.00300	<0.00300	<0.00300	<0.00300	<0.00300
APPENDIX IV	Cobalt	0.000646 J	0.000786 J	<0.000300	<0.000300	<0.000300	<0.000300	0.00358	<0.000300
PEN	Lead	<0.000500	<0.000500	<0.000500	<0.000500	<0.000500	<0.000500	<0.000500	<0.000500
¥	Lithium	<0.00300	<0.00300	<0.00300	<0.00300	<0.00300	<0.00300	0.00688 J	<0.00300
	Mercury	<0.0000670	<0.0000670	<0.0000670	<0.0000670	<0.0000670	<0.0000670	<0.0000670	<0.0000670
[Molybdenum	0.000512 J	0.000205 J	<0.000200	0.0133	0.0786	0.154	0.00252	0.309
[Radium	6.34	3.37	1.90	2.62	2.88	1.64 U	2.72	4.95
[Selenium	0.00344 J	<0.00150	<0.00150	0.00544	0.00192 J	0.00334 J	<0.00150	0.00192 J
	Thallium	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600
See Note	Vanadium	0.00481 J	0.00949 J	<0.00330	0.00933 J	0.00476 J	0.00650 J	0.00599 J	0.00647 J
8	Zinc	<0.00330	0.0262	0.0266	<0.00330	0.00395 J	0.0119 J	0.00680 J	0.0171 J

Notes:

- 1. Results for substances are reported in milligrams per liter (mg/L). Results for pH are reported in standard units (S.U.). Radium results are reported in picocuries per liter (pCi/L).
- 2. Radium data are for Radium 226 & Radium 228 (combined).
- 3. < indicates the substance was not detected above the relevant laboratory method detection limit (MDL).
- 4. J indicates the substance was detected at such low levels that the precision of the laboratory instruments could not produce a reliable value. Therefore, the value displayed (value J) is qualified by the laboratory as an estimated number.
- 5. TDS indicates total dissolved solids.
- 6. U indicates the substance was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not produce a reliable value. Therefore, the value followed by U is qualified by the laboratory as estimated.
- 7. Appendix III = indicator parameters evaluated during Detection and Assessment Monitoring; Appendix IV = parameters included and evaluated during Assessment Monitoring.
- 8. Parameters required by Permit are Appendix I/II parameters included to meet EPD Rule 391-3-4-.14 requirements.

Grumman Road Private Industrial Landfill emiannual Groundwater Monitoring and Corrective Action Report

Table 6 Summary of Groundwater Analytical Data - August 2022 Grumman Road Landfill Chatham County, Georgia

				Well ID		
		GWC-21	GWC-22	MW-23D	MW-24D	MW-25D
	Substance	8/30/2022	8/31/2022	8/31/2022	9/1/2022	8/31/2022
	Boron	5.08	0.271	0.0283	0.0303	0.0166
	Calcium	131	23.2	10.3	2.75	3.38
APPENDIX III	Chloride	29.4	51.2	7.84	6.30	6.60
END	Fluoride	<0.0330	<0.0330	0.0791 J	<0.0330	0.187
АРР	рН	5.76	4.68	6.06	6.08	6.29
	Sulfate	451	45.3	54.6	0.682	1.12
	TDS	807	163	143	20.0	44.0
	Antimony	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
	Arsenic	0.0271	<0.00200	<0.00200	<0.00200	<0.00200
	Barium	0.191	0.0741	0.0765	0.0267	0.0216
	Beryllium	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200
	Cadmium	<0.000300	<0.000300	<0.000300	<0.000300	<0.000300
≥	Chromium	<0.00300	<0.00300	<0.00300	<0.00300	<0.00300
XIQI	Cobalt	<0.000300	<0.000300	<0.000300	<0.000300	<0.000300
APPENDIX IV	Lead	<0.000500	<0.000500	<0.000500	<0.000500	<0.000500
¥	Lithium	<0.00300	<0.00300	<0.00300	<0.00300	<0.00300
	Mercury	<0.0000670	<0.0000670	<0.0000670	<0.0000670	<0.000670
	Molybdenum	0.0490	<0.000200	<0.000200	0.00174	0.000863 J
	Radium	2.56	3.07	1.79	3.54	0.645 U
	Selenium	0.00648	<0.00150	<0.00150	<0.00150	<0.00150
	Thallium	<0.000600	<0.000600	<0.000600	<0.000600	<0.000600
See Note	Vanadium	0.00715 J	0.00396 J	<0.00330	0.00414 J	<0.00330
8	Zinc	0.00814 J	<0.00330	0.0106 J	0.0102 J	0.0161 J

Notes:

- 1. Results for substances are reported in milligrams per liter (mg/L). Results for pH are reported in standard units (S.U.). Radium results are reported in picocuries per liter (pCi/L).
- 2. Radium data are for Radium 226 & Radium 228 (combined).
- 3. < indicates the substance was not detected above the relevant laboratory method detection limit (MDL).
- 4. J indicates the substance was detected at such low levels that the precision of the laboratory instruments could not produce a reliable value. Therefore, the value displayed (value J) is qualified by the laboratory as an estimated number.
- 5. TDS indicates total dissolved solids.
- 6. U indicates the substance was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not produce a reliable value. Therefore, the value followed by U is qualified by the laboratory as estimated.
- 7. Appendix III = indicator parameters evaluated during Detection and Assessment Monitoring; Appendix IV = parameters included and evaluated during Assessment Monitoring.
- 8. Parameters required by Permit are Appendix I/II parameters included to meet EPD Rule 391-3-4-.14 requirements.

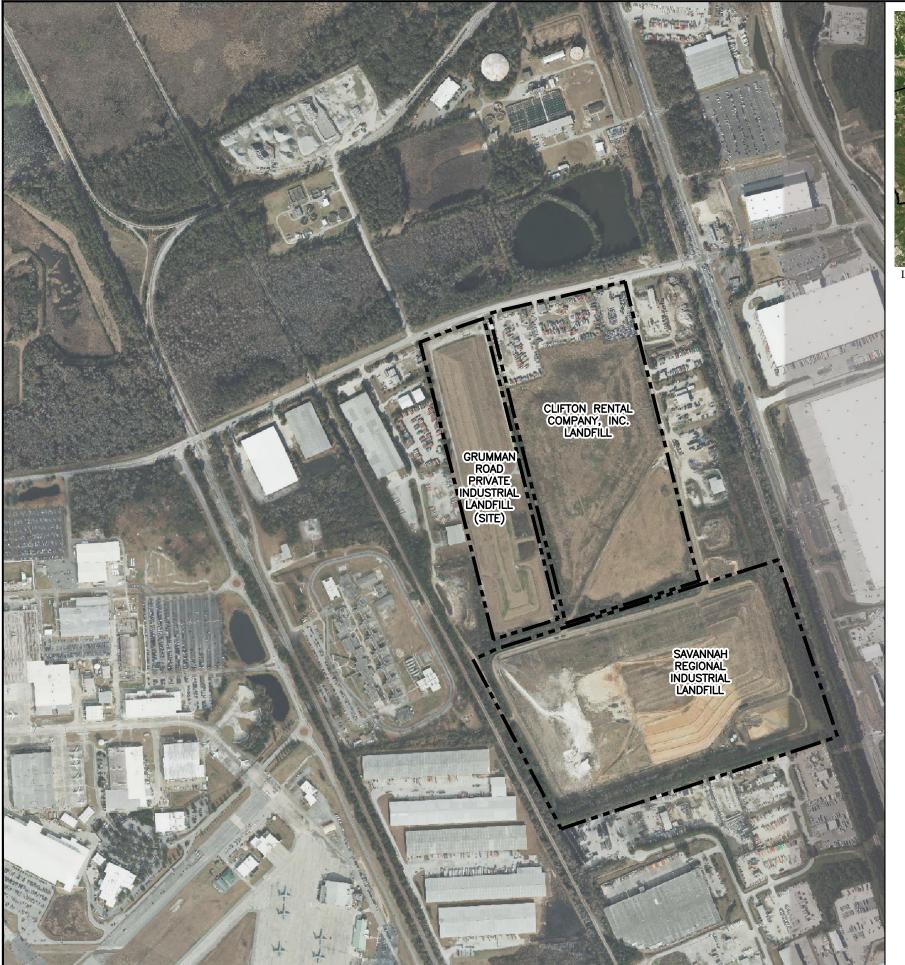
Grumman Road Private Industrial Landfill 2022 Semiannual Groundwater Monitoring and Corrective Action Report

Table 7 Statistical Method Summary Grumman Road Landfill Chatham County, Georgia

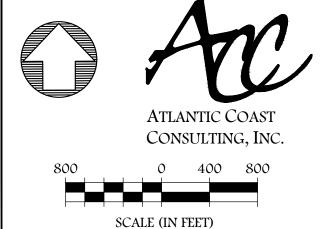
Statistical Method Summary						
	Upgradient Wells	GWA-7 and GWA-8				
	Sidegradient Wells	GWB-4R, GWB-5R, and GWB-6R				
Monitoring Well System	Downgradient Wells	GWC-1, GWC-2, GWC-9, GWC-11, GWC-12, GWC-13, GWC-14, GWC-15, GWC-16, GWC-17, GWC-20, GWC-21, and GWC-22				
CCR Monitoring Parameters	Appendix III (Detection Monitoring)	Boron, Calcium, Chloride, Fluoride, pH, Sulfate, and TDS				
	Appendix IV (Assessment Monitoring)	Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, combined Radium 226 + 228, Fluoride, Lead, Lithium, Mercury, Molybdenum, Selenium, and Thallium				
GA EPD Permit Metals	Appendix I (Detection Monitoring)	Antimony, Arsenic, Barium, Chromium, Lead, Selenium, Vanadium, and Zinc				
GA EPD Permit Metals	Appendix II (Assessment Monitoring)	Antimony, Arsenic, Barium, Chromium, Lead, Selenium, Vanadium, and Zinc				
Statistical Methodology	Data Screening Proposed Background	Evaluate outliers, trends, and seasonality when sufficient data are available				
	Statistical Limits	Interwell statistical limits.				

Table 8 Summary of Background Levels and Groundwater Protection Standards Grumman Road Landfill Chatham County, Georgia

Constituent	Site Background	MCL	CCR-Rule Specified	GWPS
Antimony	0.003	0.006	N/A	0.006
Arsenic	0.029	0.01	N/A	0.029
Barium	0.22	2	N/A	2
Beryllium	0.0025	0.004	N/A	0.004
Cadmium	0.0007	0.005	N/A	0.005
Chromium	0.068	0.1	N/A	0.1
Cobalt	0.0102	N/A	0.006	0.0102
Fluoride	0.42	4	N/A	4
Lead	0.013	N/A	0.015	0.015
Lithium	0.03	N/A	0.04	0.04
Mercury	0.0002	0.002	N/A	0.002
Molybdenum	0.01	N/A	0.1	0.1
Radium	12.22	5	N/A	12.22
Selenium	0.044	0.05	N/A	0.05
Thallium	0.001	0.002	N/A	0.002
Vanadium	0.43	N/A	N/A	0.43
Zinc	0.16	N/A	N/A	0.16


Notes:

- 1. Site Background = Tolerance limits calculated from pooled upgradient well data through present.
- 2. MCL = Maximum Contaminant Level, per GA EPD Rule 391-3-5-.18(1)(a).
- 3. GWPS = Groundwater protection standard, per GA EPD Rule 391-3-4-.10(6)(a).
- 4. Units are milligrams per liter (mg/L), except for radium, which are picocuries per liter (pCi/L).
- 5. CCR-Rule specified GWPS as stipulated in 40 CFR § 257.95(h)(1-3) and incorporated into GA EPD's CCR Rule 391-3-4-.10(6)(a) on February 22, 2022.
- 6. N/A = There is no established MCL, per GA EPD Rule 391-3-5-.18(1)(a).


FIGURES

Grumman Road Private Industrial Landfill
Chatham County, Georgia
2022 Semiannual Groundwater Monitoring and Corrective Action Report

LOCATION IN THE STATE OF GEORGIA (NOT TO SCALE)

- PROPERTY BOUNDARY SURVEYED BY GUNNIN LAND SURVEYING ON AUGUST 30, 2018.
 AERIAL PHOTOGRAPHY DATED 2022 FROM
- MICROSOFT CORPORATION, MAXAR, CNES, DISTRIBUTION AIRBUS DS.

PROJECT

Georgia Power

GEORGIA POWER COMPANY
GRUMMAN ROAD PRIVATE INDUSTRIAL LANDFILL

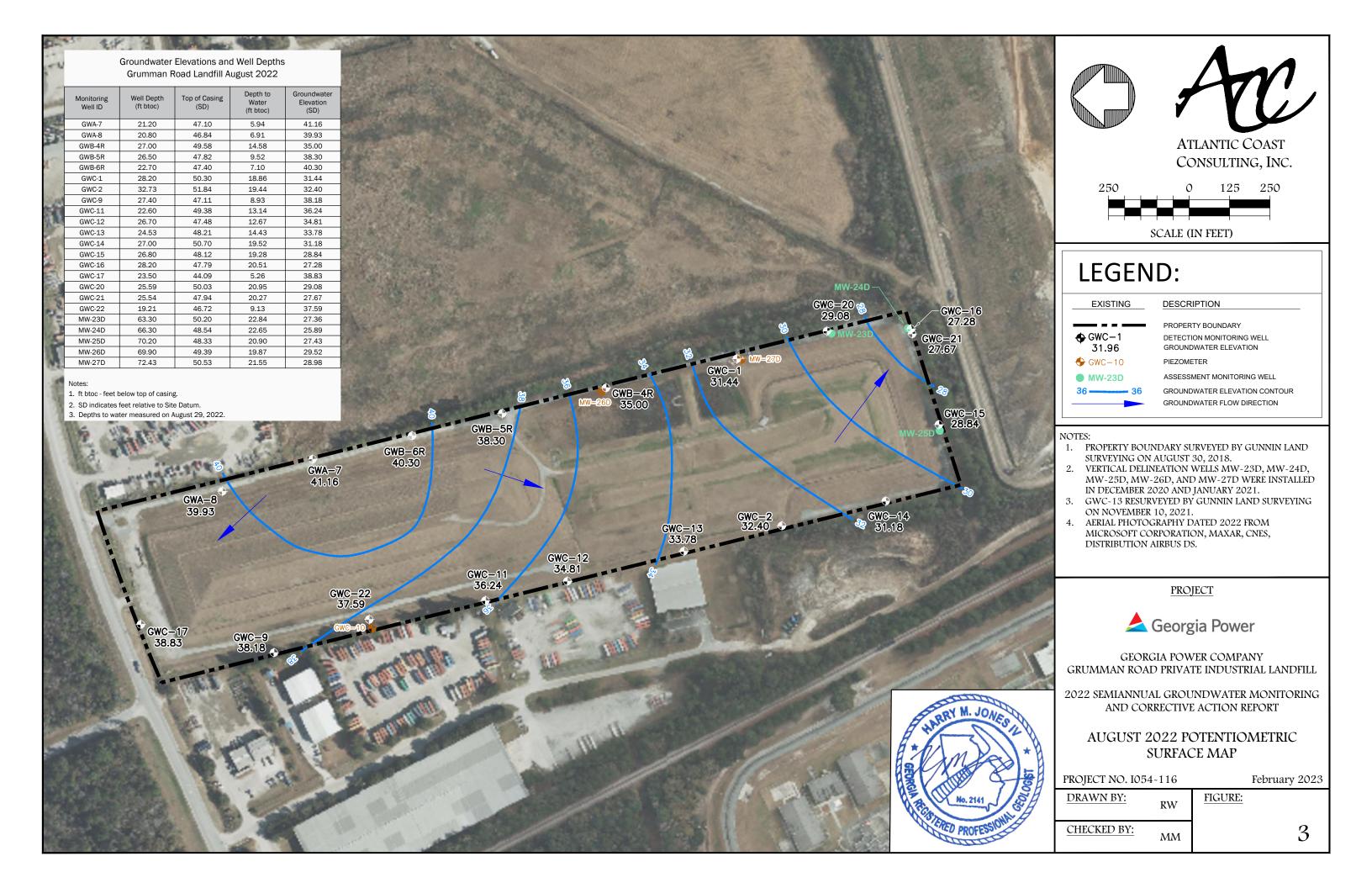
2022 SEMIANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

SITE LOCATION MAP

PROJECT NO. 1054~116

February 2023

DRAWN BY:


FIGURE:

CHECKED BY:

RW

MM

APPENDICES

Grumman Road Private Industrial Landfill
Chatham County, Georgia
2022 Semiannual Groundwater Monitoring and Corrective Action Report

APPENDIX A

Laboratory Analytical and Field Sampling Reports

Grumman Road Private Industrial Landfill
Chatham County, Georgia
2022 Semiannual Groundwater Monitoring and Corrective Action Report

APPENDIX A

Laboratory Analytical Reports August 2022 Monitoring Event

PO Box 30712 Charleston, SC 29417 2040 Savage Road Charleston, SC 29407

P 843.556.8171 F 843.766.1178

gel.com

September 19, 2022

Kristen Jurinko Georgia Power Company 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

a member of The GEL Group INC

Re: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Work Orders: 591891 and 591783

Dear Kristen Jurinko:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on September 01, 2022 and September 02, 2022. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4504.

Sincerely,

Adrian Melendrez for Erin Trent

Project Manager

Purchase Order: GPC82177-0001

Enclosures

Page 1 of 112 SDG: 591891

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

GPCC001 Georgia Power Company Client SDG: 591891 GEL Work Order: 591891

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- J See case narrative for an explanation
- J Value is estimated
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Erin Trent.

	A. M.	
Reviewed by		

Page 2 of 112 SDG: 591891

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

GPCC001 Georgia Power Company Client SDG: 591783 GEL Work Order: 591783

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- J See case narrative for an explanation
- J Value is estimated
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Erin Trent.

	A. M.	
Reviewed by		

Page 3 of 112 SDG: 591891

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

GPCC00102

GPCC001

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-1 Project:
Sample ID: 591891001 Client ID:

Matrix: WG

Collect Date: 01-SEP-22 13:19
Receive Date: 02-SEP-22
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time	Batch	Method
Field Data												
Client collected Field	pH "As Receiv	ved"										
Field pH		5.80			SU			EOS1	09/01/22	1319	2312056	1
Ion Chromatography												
EPA 300.0 Anions Lic	mid "As Recei	ved"										
Chloride	1010 115 110001	9.17	0.0670	0.200	mg/L		1	JLD1	09/03/22	2310	2312366	2
Fluoride	U	ND	0.0330	0.100	mg/L		1					
Sulfate		44.0	1.33	4.00	mg/L		10	JLD1	09/06/22	1437	2312366	3
Mercury Analysis-CV	AA				C							
7470 Cold Vapor Mer		As Received"										
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/07/22	1123	2312733	4
Metals Analysis-ICP-N	MS				Ü							
SW846 3005A/6020B		"										
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/14/22	0046	2312380	5
Arsenic	-	0.00568	0.00200	0.00500	mg/L	1.00	1					
Barium		0.0583	0.000670	0.00400	mg/L	1.00	1					
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1					
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1					
Calcium		46.9	0.0800	0.200	mg/L	1.00	1					
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1					
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1					
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Selenium	J	0.00252	0.00150	0.00500	mg/L	1.00	1					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1					
Vanadium	J	0.00748	0.00330	0.0200	mg/L	1.00	1					
Zinc	J	0.00578	0.00330	0.0200	mg/L	1.00	1					
Boron		0.728	0.0520	0.150	mg/L	1.00	10	PRB	09/14/22		2312380	6
Molybdenum		0.0343	0.000200	0.00100	mg/L	1.00	1	PRB	09/13/22	2240	2312380	7
Solids Analysis												
SM2540C Dissolved S	Solids "As Rec	eived"										
Total Dissolved Solids		228	2.38	10.0	mg/L			CH6	09/08/22	1457	2313724	8
The following Prep M	ethods were pe	erformed:										
Method	Description	n		Analyst	Date		Γim	e Pı	rep Batch		<u> </u>	
SW846 3005A	ICP-MS 3005	5A PREP		PC1	09/06/22	()910	23	12379			

Page 4 of 112 SDG: 591891

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-1 Project: GPCC00102 Sample ID: 591891001 Client ID: GPCC001

Parameter	Qualifier Result	DL	RL	Units	PF	DF	Analyst Date	Time Batch	Method
SW846 7470A Prep	EPA 7470A Mercury Prep Liquid		RM4	09/06/22		1255	2312730		
The following Analyti	cal Methods were performed:								
Method	Description			A	nalys	t Con	nments		
1	SM 4500-H B/SW846 9040C, SM 2550B				-				

1	SM 4500-H B/SW846 9040C,
2	EPA 300.0
3	EPA 300.0
4	SW846 7470A
5	SW846 3005A/6020B
6	SW846 3005A/6020B
7	SW846 3005A/6020B
8	SM 2540C

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 112 SDG: 591891

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 19, 2022

GPCC00102

GPCC001

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-2 Sample ID: 591891002

Matrix: WG

Collect Date: 01-SEP-22 14:25
Receive Date: 02-SEP-22
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Field Data												
Client collected Field p	oH "As Receiv	ved"										
Field pH		4.73			SU			EOS1	09/01/22	1425	2312056	1
Ion Chromatography												
EPA 300.0 Anions Liq	uid "As Recei	ved"										
Chloride	ula Tib Iteeel	6.59	0.0670	0.200	mg/L		1	JLD1	09/03/22	2340	2312366	2
Fluoride	U	ND	0.0330	0.100	mg/L		1	1221	037 057 22	20.0	2012000	_
Sulfate	_	10.3	0.133	0.400	mg/L		1					
Mercury Analysis-CV	AA				Ü							
7470 Cold Vapor Merc		As Received"										
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/07/22	1125	2312733	3
Metals Analysis-ICP-N					8							
SW846 3005A/6020B		"										
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/14/22	0050	2312380	4
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00		TILD	07/11/22	0050	2312300	
Barium	C	0.0508	0.000670	0.00400	mg/L	1.00						
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00						
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1					
Calcium		0.236	0.0800	0.200	mg/L	1.00	1					
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1					
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1					
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1					
Vanadium	J	0.00450	0.00330	0.0200	mg/L	1.00	1					
Zinc	J	0.0125	0.00330	0.0200	mg/L	1.00	1					
Boron		0.0204	0.00520	0.0150	mg/L	1.00	1	PRB	09/14/22		2312380	5
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1	PRB	09/13/22	2243	2312380	6
Solids Analysis												
SM2540C Dissolved S	olids "As Rec	eived"										
Total Dissolved Solids	J	9.00	2.38	10.0	mg/L			CH6	09/08/22	1457	2313724	7
The following Prep Me	ethods were pe	erformed:										
Method	Description			Analyst	Date	-	Гimе	e Pr	ep Batch			
SW846 3005A	ICP-MS 3005			PC1	09/06/22	(0910	23	12379			

Page 6 of 112 SDG: 591891

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-2 Project: GPCC00102 Sample ID: 591891002 Client ID: GPCC001

Parameter	Qualifier Result	DL	RL	Units	PF	DF	Analyst Date	Time Batch	Method
SW846 7470A Prep	EPA 7470A Mercury Prep Liquid		RM4	09/06/22		1255	2312730		
The following Analytic	cal Methods were performed:								
Method	Description			A	naly	st Cor	nments		
1	SM 4500-H B/SW846 9040C, SM 2550B								

20B
20B
20B

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 7 of 112 SDG: 591891

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-9 Project: GPCC00102 Sample ID: 591891003 Client ID: GPCC001

Matrix: WG

Collect Date: 01-SEP-22 09:24
Receive Date: 02-SEP-22
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Field Data												
Client collected Field pl	H "As Receiv	ved"										
Field pH		4.60			SU			EOS1	09/01/22	0924	2312056	1
Ion Chromatography												
EPA 300.0 Anions Liqu	id "As Recei	ived"										
Fluoride	J	0.0783	0.0330	0.100	mg/L		1	JLD1	09/04/22	0010	2312366	2
Chloride	-	17.6	0.335	1.00	mg/L		5	JLD1	09/06/22		2312366	3
Sulfate		28.7	0.665	2.00	mg/L		5					
Mercury Analysis-CVA	A				Ü							
7470 Cold Vapor Mercu		As Received"										
Mercury	, <u></u>	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/07/22	1126	2312733	4
Metals Analysis-ICP-M					8							
SW846 3005A/6020B ".		"										
Antimony	U U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/14/22	0053	2312380	5
Arsenic	U	ND	0.00200	0.00500	mg/L mg/L			TRD	07/14/22	0033	2312300	3
Barium	O	0.151	0.000670	0.00400	mg/L							
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00						
Cadmium	Ü	ND	0.000300	0.00100	mg/L	1.00	1					
Calcium		5.00	0.0800	0.200	mg/L	1.00	1					
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Cobalt	J	0.000930	0.000300	0.00100	mg/L	1.00	1					
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1					
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1					
Vanadium	J	0.00514	0.00330	0.0200	mg/L	1.00	1					
Zinc	J	0.0163	0.00330	0.0200	mg/L	1.00						
Boron		0.0187	0.00520	0.0150	mg/L	1.00	1	PRB	09/14/22		2312380	6
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1	PRB	09/13/22	2247	2312380	7
Solids Analysis												
SM2540C Dissolved So	lids "As Rec	eived"										
Total Dissolved Solids		85.0	2.38	10.0	mg/L			CH6	09/08/22	1457	2313724	8
The following Prep Met	hods were pe	erformed:										
Method	Description			Analyst	Date	7	Гim	e Pr	ep Batch			
SW846 3005A	ICP-MS 3005			PC1	09/06/22		0910		12379			

Page 8 of 112 SDG: 591891

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-9 Project: GPCC00102 Sample ID: 591891003 Client ID: GPCC001

Parameter	Qualifier Result	DL	RL	Units	PF .	DF Analyst Date	Time Batch	Method
SW846 7470A Prep	EPA 7470A Mercury Prep Liquid		RM4	09/06/22	12	255 2312730		
The following Analy	ytical Methods were performed:							
Method	Description			A	nalyst	Comments		
1	SM 4500-H B/SW846 9040C, SM 2550B							

1	SM 4500-H B/SW846 9040
2	EPA 300.0
3	EPA 300.0
4	SW846 7470A
5	SW846 3005A/6020B
6	SW846 3005A/6020B
7	SW846 3005A/6020B
8	SM 2540C

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 9 of 112 SDG: 591891

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

GPCC00102

GPCC001

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-16 Project:
Sample ID: 591891004 Client ID:

Matrix: WG

Collect Date: 01-SEP-22 10:46
Receive Date: 02-SEP-22
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Field Data												
Client collected Field p	H "As Receiv	ved"										
Field pH		5.37			SU			EOS1	09/01/22	1046	2312056	1
Ion Chromatography												
EPA 300.0 Anions Liq	uid "As Recei	ved"										
Fluoride	J	0.0374	0.0330	0.100	mg/L		1	JLD1	09/04/22	0040	2312366	2
Chloride	3	57.2	6.70	20.0	mg/L		-	JLD1	09/06/22		2312366	3
Sulfate		1140	13.3	40.0	mg/L		100		*******			
Mercury Analysis-CVA	AΑ				Ü							
7470 Cold Vapor Merc		As Received"										
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/07/22	1131	2312733	4
Metals Analysis-ICP-M		1,12	0.0000070	0.000200	g/2	1.00	-	V1 2	03/01/22	1101	2012700	·
SW846 3005A/6020B		"										
Antimony	U U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/14/22	0057	2312380	5
Arsenic	O	0.0987	0.00100	0.00500	mg/L	1.00	1	TKD	07/14/22	0037	2312360	3
Barium		0.165	0.00200	0.00400	mg/L mg/L	1.00	1					
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1					
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1					
Chromium	Ü	ND	0.00300	0.0100	mg/L	1.00	1					
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1					
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1					
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Selenium	J	0.00334	0.00150	0.00500	mg/L	1.00	1					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1					
Vanadium	J	0.00650	0.00330	0.0200	mg/L	1.00	1					
Zinc	J	0.0119	0.00330	0.0200	mg/L	1.00	1					
Calcium		255	0.800	2.00	mg/L	1.00		PRB	09/14/22		2312380	6
Boron		15.9	0.520	1.50	mg/L		100	PRB	09/14/22		2312380	7
Molybdenum		0.154	0.000200	0.00100	mg/L	1.00	1	PRB	09/13/22	2250	2312380	8
Solids Analysis												
SM2540C Dissolved S	olids "As Rec	eived"										
Total Dissolved Solids		1720	2.38	10.0	mg/L			CH6	09/08/22	1457	2313724	9
The following Prep Me	ethods were pe	erformed:										
Method	Description			Analyst	Date	7	Гітє	Pr	ep Batch			
SW846 3005A	ICP-MS 3005			PC1	09/06/22	(910	23	12379			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-16 Project: GPCC00102 Sample ID: 591891004 Client ID: GPCC001

Parameter	Qualifier Result	DL	RL	Units	PF I	F Analyst Date	Time Batch	Method
SW846 7470A Prep	EPA 7470A Mercury Prep Liquid	I	RM4	09/06/22	12	55 2312730		
The following Analy	tical Methods were performed:							
Method	Description			A	nalyst C	Comments		
1	SM 4500-H B/SW846 9040C, SM 2550B							

1	SM 4500-H B/SW846 9040
2	EPA 300.0
3	EPA 300.0
4	SW846 7470A
5	SW846 3005A/6020B
6	SW846 3005A/6020B
7	SW846 3005A/6020B
8	SW846 3005A/6020B
9	SM 2540C

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 19, 2022

GPCC00102

GPCC001

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: MW-24D Sample ID: 591891005

Matrix: WG

Collect Date: 01-SEP-22 11:59
Receive Date: 02-SEP-22
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Field Data												
Client collected Field pl	H "As Receiv	ed"										
Field pH		6.08			SU			EOS1	09/01/22	1159	2312056	1
Ion Chromatography												
EPA 300.0 Anions Liqu	id "As Recei	ved"										
Chloride		6.30	0.0670	0.200	mg/L		1	JLD1	09/04/22	0109	2312366	2
Fluoride	U	ND	0.0330	0.100	mg/L		1					
Sulfate		0.682	0.133	0.400	mg/L		1					
Mercury Analysis-CVA	Α											
7470 Cold Vapor Mercu	ıry, Liquid "A	As Received"										
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/07/22	1133	2312733	3
Metals Analysis-ICP-M					C							
SW846 3005A/6020B "		"										
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/14/22	0100	2312380	4
Arsenic	U	ND	0.00200	0.00500	mg/L							
Barium		0.0267	0.000670	0.00400	mg/L	1.00	1					
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1					
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1					
Calcium		2.75	0.0800	0.200	mg/L	1.00	1					
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1					
Lead	U	ND	0.000500	0.00200	mg/L	1.00						
Lithium	U	ND	0.00300	0.0100	mg/L	1.00						
Selenium	U	ND	0.00150	0.00500	mg/L	1.00						
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1					
Vanadium	J	0.00414	0.00330	0.0200	mg/L	1.00	1					
Zinc	J	0.0102	0.00330	0.0200	mg/L	1.00						_
Boron		0.0303	0.00520	0.0150	mg/L	1.00	1	PRB	09/14/22		2312380	5
Molybdenum		0.00174	0.000200	0.00100	mg/L	1.00	1	PRB	09/13/22	2254	2312380	6
Solids Analysis												
SM2540C Dissolved So	olids "As Rec											
Total Dissolved Solids		20.0	2.38	10.0	mg/L			CH6	09/08/22	1457	2313724	7
The following Prep Met	thods were pe	erformed:										
Method	Description	1		Analyst	Date	-	Гim	e Pr	ep Batch			
SW846 3005A	ICP-MS 3005	A PREP		PC1	09/06/22	(0910	23	12379			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: MW-24D Project: GPCC00102 Sample ID: 591891005 Client ID: GPCC001

Parameter	Qualifier Result	DL	RL	Units	PF	DF	Analyst Date	Time Batch	Method
SW846 7470A Prep	EPA 7470A Mercury Prep Liquid		RM4	09/06/22		1255	2312730		
The following Analyti	cal Methods were performed:								
Method	Description			A	nalys	t Con	nments		
1	SM 4500-H B/SW846 9040C, SM 2550B				-				

1	SM 4500-H B/SW846 90
2	EPA 300.0
3	SW846 7470A
4	SW846 3005A/6020B
5	SW846 3005A/6020B
6	SW846 3005A/6020B
7	SM 2540C

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 13 of 112 SDG: 591891

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

GPCC00102

GPCC001

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: FD-03 Project: Sample ID: 591891006 Client ID:

Matrix: WG

Collect Date: 01-SEP-22 12:00
Receive Date: 02-SEP-22
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time	Batch	Method
Ion Chromatography												
EPA 300.0 Anions Liq	uid "As Rece	ived"										
Chloride	•	6.46	0.0670	0.200	mg/L		1	JLD1	09/04/22	0139	2312366	1
Fluoride	U	ND	0.0330	0.100	mg/L		1					
Sulfate	J	0.309	0.133	0.400	mg/L		1					
Mercury Analysis-CV	AA											
7470 Cold Vapor Merc	cury, Liquid ".	As Received"										
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/07/22	1135	2312733	2
Metals Analysis-ICP-N	ИS											
SW846 3005A/6020B	"As Received	1"										
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/14/22	0104	2312380	3
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1					
Barium		0.0256	0.000670	0.00400	mg/L	1.00						
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1					
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1					
Calcium		2.75	0.0800	0.200	mg/L	1.00	1					
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1					
Lead	U	ND	0.000500	0.00200	mg/L	1.00						
Lithium	U	ND	0.00300	0.0100	mg/L	1.00						
Selenium	U	ND	0.00150	0.00500	mg/L	1.00						
Thallium	U	ND	0.000600	0.00200	mg/L	1.00						
Vanadium	J	0.00412	0.00330	0.0200	mg/L	1.00						
Zinc		0.0318	0.00330	0.0200	mg/L	1.00						
Boron		0.0210	0.00520	0.0150	mg/L	1.00		PRB	09/14/22		2312380	4
Molybdenum		0.00132	0.000200	0.00100	mg/L	1.00	1	PRB	09/13/22	2258	2312380	5
Solids Analysis												
SM2540C Dissolved S	Solids "As Rec	ceived"										
Total Dissolved Solids		28.0	2.38	10.0	mg/L			CH6	09/08/22	1457	2313724	6
The following Prep Me	ethods were p	erformed:										
Method	Descriptio	n		Analyst	Date	-	Time	e Pı	rep Batch			
SW846 3005A	ICP-MS 300:	5A PREP		PC1	09/06/22	(0910	23	12379			
SW846 7470A Prep	EPA 7470A	Mercury Prep Liquid		RM4	09/06/22		1255	23	12730			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: FD-03 Project: GPCC00102 Sample ID: 591891006 Client ID: GPCC001

Parameter	Qualifier Result	DL	RL	Units PI	DF Analyst Date	Time Batch Method
The following Analy	rtical Methods were performed:					
Method	Description			Anal	yst Comments	
1	EPA 300.0					
2	SW846 7470A					
3	SW846 3005A/6020B					
4	SW846 3005A/6020B					
5	SW846 3005A/6020B					
6	SM 2540C					

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 15 of 112 SDG: 591891

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

4

6

GPCC00102

GPCC001

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

ND

ND

ND

ND

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: EB-03 Sample ID: 591891007

Matrix: WQ

Fluoride

Sulfate

Lead

Lithium

Collect Date: 01-SEP-22 14:00 Receive Date: 02-SEP-22

U

U

U

Collector: Client RL Parameter **Oualifier** Result DL Units PF DF Analyst Date Time Batch Method Ion Chromatography EPA 300.0 Anions Liquid "As Received" Chloride 0.423 0.0670 0.200 mg/L JLD1 09/04/22 0209 2312366

0.100

0.400

0.00200

0.0100

mg/L

mg/L

mg/L

mg/L

1.00 1

1.00 1

1

0.0330

0.133

Project:

Client ID:

Mercury Analysis-CVAA 7470 Cold Vapor Mercury, Liquid "As Received" 0.0000670 0.000200 Mercury mg/L 1.00 1 JP2 09/07/22 1137 2312733 2 Metals Analysis-ICP-MS SW846 3005A/6020B "As Received" Antimony ND 0.00100 0.00300 mg/L 1.00 PRB 09/14/22 0108 2312380 3 1 0.00200 0.00500 H ND mg/L 1.00 Arsenic 1 Barium U ND 0.000670 0.00400 mg/L 1.00 1 ND 0.000200 0.000500 Beryllium U mg/L 1.00 1 Cadmium U ND 0.000300 0.00100 mg/L 1.00 Calcium J 0.150 0.08000.200 mg/L 1.00 1 U ND 0.003000.0100 1.00 Chromium mg/L 1 Cobalt H ND 0.000300 0.00100 mg/L 1.00 1

Selenium U ND 0.00150 0.00500 1.00 1 mg/L Thallium U ND 0.0006000.00200 mg/L 1.00 1 0.00408 Vanadium 0.00330 0.0200 1.00 J mg/L 1 Zinc H ND 0.00330 0.0200 1.00 mg/L 1 Boron U ND 0.00520 0.0150 1.00 1 PRB 09/14/22 1805 2312380 mg/L 0.000200 0.00100 PRB 09/13/22 2301 2312380 Molybdenum ND mg/L 1.00

0.000500

0.00300

Solids Analysis
SM2540C Dissolved Solids "As Received"
Total Dissolved Solids U ND 2.38 10.0 mg/L CH6 09/08/22 1457 2313724

The following Prep Methods were performed:

Method Description Analyst Date Time Prep Batch

 SW846 3005A
 ICP-MS 3005A PREP
 PC1
 09/06/22
 0910
 2312379

 SW846 7470A Prep
 EPA 7470A Mercury Prep Liquid
 RM4
 09/06/22
 1255
 2312730

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: EB-03 Project: GPCC00102 Sample ID: 591891007 Client ID: GPCC001

Parameter	Qualifier Result	DL	RL	Units	PF DF Analyst Date Time E	Batch Method
The following Analyt	ical Methods were performed:					
Method	Description			An	alyst Comments	
1	EPA 300.0					
2	SW846 7470A					
3	SW846 3005A/6020B					
4	SW846 3005A/6020B					
5	SW846 3005A/6020B					
6	SM 2540C					

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 19, 2022

GPCC00102

GPCC001

Company: Georgia Power Company

241 Ralph McGill Blvd NE, Bin 10160 Address:

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Kraft - Grumman Road Landfill CCR Groundwater Compliance Project:

Client Sample ID: FB-06 Sample ID: 591891008

Matrix: WQ

Collect Date: 01-SEP-22 10:30 Receive Date: 02-SEP-22

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Anal	yst Date	Time	e Batch	Method
Ion Chromatograp	hy											
EPA 300.0 Anions	Liquid "As Recei	ved"										
Chloride	J	0.148	0.0670	0.200	mg/L		1	JLD1	09/04/22	0239	2312366	1
Fluoride	U	ND	0.0330	0.100	mg/L		1					
Sulfate	U	ND	0.133	0.400	mg/L		1					
Mercury Analysis-	-CVAA											
7470 Cold Vapor I	Mercury, Liquid "A	As Received"										
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/07/22	1138	2312733	2
Metals Analysis-IO	CP-MS				Ü							
SW846 3005A/602		"										
Antimony	U U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/14/22	0111	2312380	3
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00		TILD	02/11/22	0111	2312300	5
Barium	U	ND	0.000670	0.00400	mg/L	1.00						
Beryllium	Ü	ND	0.000200	0.000500	mg/L	1.00	1					
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1					
Calcium	U	ND	0.0800	0.200	mg/L	1.00	1					
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1					
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1					
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1					
Vanadium	J	0.00418	0.00330	0.0200	mg/L	1.00	1					
Zinc	U	ND	0.00330	0.0200	mg/L	1.00	1					
Boron	U	ND	0.00520	0.0150	mg/L	1.00	1	PRB	09/14/22		2312380	4
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1	PRB	09/13/22	2305	2312380	5
Solids Analysis												
SM2540C Dissolv	ed Solids "As Rec	eived"										
Total Dissolved Solids	U	ND	2.38	10.0	mg/L			CH6	09/08/22	1457	2313724	6
The following Prep	p Methods were pe	erformed:										
Method	Description	n		Analyst	Date	-	Гimе	P	rep Batch			
SW846 3005A	ICP-MS 3005			PC1	09/06/22	(0910		312379			
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		RM4	09/06/22		1255	23	312730			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: FB-06 Project: GPCC00102 Sample ID: 591891008 Client ID: GPCC001

Parameter	Qualifier Result	DL	RL	Units	PF	DF Analyst Date	Time Batch	Method
The following Analyt	ical Methods were performed:							
Method	Description			A	Analys	st Comments		
1	EPA 300.0							
2	SW846 7470A							
3	SW846 3005A/6020B							
4	SW846 3005A/6020B							
5	SW846 3005A/6020B							
6	SM 2540C							

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 19 of 112 SDG: 591891

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 19, 2022

GPCC00102

GPCC001

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-12 Sample ID: 591783001

Matrix: WG

Collect Date: 30-AUG-22 15:03

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Field Data												
Client collected Field pl	H "As Receiv	ved"										
Field pH		3.92			SU			EOS1	08/30/22	1503	2311613	1
Ion Chromatography												
EPA 300.0 Anions Liqu	iid "As Recei	ived"										
Fluoride	115 11000	0.273	0.0330	0.100	mg/L		1	JLD1	09/02/22	2142	2311815	2
Chloride		58.4	2.68	8.00	mg/L		40	JLD1	09/03/22		2311815	3
Sulfate		415	5.32	16.0	mg/L		40					
Mercury Analysis-CVA	A				C							
7470 Cold Vapor Mercu		As Received"										
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/07/22	0952	2312729	4
Metals Analysis-ICP-M					8							
SW846 3005A/6020B "		"										
Antimony	U U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/12/22	2335	2311609	5
Arsenic	U	ND	0.00200	0.00500	mg/L			TILD	07/12/22	2000	2311007	J
Barium	C	0.0275	0.000670	0.00400	mg/L							
Beryllium		0.000663	0.000200	0.000500	mg/L	1.00	1					
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1					
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Cobalt	J	0.000786	0.000300	0.00100	mg/L	1.00	1					
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1					
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Molybdenum	J	0.000205	0.000200	0.00100	mg/L	1.00	1					
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1					
Vanadium	J	0.00949	0.00330	0.0200	mg/L	1.00	1					
Zinc		0.0262	0.00330	0.0200	mg/L	1.00	1					
Boron		8.21	0.260	0.750	mg/L	1.00	50	PRB	09/13/22	1308	2311609	6
Calcium		70.8	4.00	10.0	mg/L	1.00	50					
Solids Analysis												
SM2540C Dissolved So	olids "As Rec	eived"										
Total Dissolved Solids		713	2.38	10.0	mg/L			CH6	09/02/22	1143	2311939	7
The following Prep Met	thods were pe	erformed:										
Method	Description			Analyst	Date		Γim	e Pr	ep Batch			
SW846 3005A	ICP-MS 3005			LG2	09/02/22)905		11608			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-12 Project: GPCC00102 Sample ID: 591783001 Client ID: GPCC001

Parameter	Qualifier Result	DL	RL	Units	PF	DF	Analyst Date	Time Batch	Method
SW846 7470A Prep	EPA 7470A Mercury Prep Liquid	RM	14	09/06/22	1	1254	2312726		
The following Analy	ytical Methods were performed:								
Method	Description			A	nalyst	Con	nments		
1	SM 4500-H B/SW846 9040C, SM 2550B				-				

1	SM 4500-H B/SW846 9040C, S
2	EPA 300.0
3	EPA 300.0
4	SW846 7470A
5	SW846 3005A/6020B
6	SW846 3005A/6020B
7	SM 2540C

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 19, 2022

GPCC00102

GPCC001

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-13 Sample ID: 591783002

Matrix: WG

Collect Date: 31-AUG-22 10:11

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Field Data												
Client collected Field p	H "As Receiv	/ed"										
Field pH		4.76			SU			EOS1	08/31/22	1011	2311613	1
Ion Chromatography												
EPA 300.0 Anions Liqu	uid "As Recei	ved"										
Chloride	ulu As Recel	6.69	0.0670	0.200	mg/L		1	JLD1	09/02/22	2314	2311815	2
Fluoride	J	0.0510	0.0330	0.100	mg/L mg/L		1	JLD1	07/02/22	2317	2311013	2
Sulfate	3	29.0	0.266	0.800	mg/L		2	JLD1	09/03/22	1546	2311815	3
Mercury Analysis-CVA	AΑ		V.=		8		_		*******			
7470 Cold Vapor Merc		As Received"										
Mercury	U U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/07/22	1001	2312729	4
Metals Analysis-ICP-M		T.D	0.0000070	0.000200	mg/ E	1.00	•	31 2	03/01/22	1001	2312727	•
SW846 3005A/6020B		"										
Antimony	U U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/13/22	0000	2311609	5
Arsenic	U	ND ND	0.00200	0.00500	mg/L mg/L			TKD	07/13/22	0000	2311007	3
Barium	O	0.0379	0.00200	0.00400	mg/L mg/L							
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00						
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1					
Calcium	_	2.54	0.0800	0.200	mg/L	1.00						
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1					
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1					
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1					
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1					
Vanadium	U	ND	0.00330	0.0200	mg/L	1.00	1					
Zinc		0.0266	0.00330	0.0200	mg/L	1.00	1					
Boron		0.231	0.0260	0.0750	mg/L	1.00	5	PRB	09/13/22	1316	2311609	6
Solids Analysis												
SM2540C Dissolved So	olids "As Rec	eived"										
Total Dissolved Solids		55.0	2.38	10.0	mg/L			CH6	09/02/22	1143	2311939	7
The following Prep Me	thods were pe	erformed:										
					ъ.		<u> </u>					
Method	Description	n		Analyst	Date	1	Γim	e Pr	ep Batch			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-13 Project: GPCC00102 Sample ID: 591783002 Client ID: GPCC001

Parameter	Qualifier Result	DL	RL	Units	PF D	F Analyst Date	Time Batch	Method
SW846 7470A Prep	EPA 7470A Mercury Prep Liquid		RM4	09/06/22	12:	2312726		
The following Analyst	tical Methods were performed:							
Method	Description			A	nalyst C	omments		
1	SM 4500-H B/SW846 9040C, SM 2550B				-			

1	SM 4500-H B/SW846 9040C, SN
2	EPA 300.0
3	EPA 300.0
4	SW846 7470A
5	SW846 3005A/6020B
6	SW846 3005A/6020B
7	SM 2540C

/ SIM 2

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 23 of 112 SDG: 591891

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 19, 2022

GPCC00102

GPCC001

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-14 Sample ID: 591783003

Matrix: WG

Collect Date: 30-AUG-22 11:57

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Field Data												
Client collected Field pl	H "As Receiv	red"										
Field pH		5.86			SU			EOS1	08/30/22	1157	2311613	1
Ion Chromatography												
EPA 300.0 Anions Liqu	iid "As Recei	ved"										
Fluoride	U	ND	0.0330	0.100	mg/L		1	JLD1	09/02/22	2345	2311815	2
Chloride		26.7	2.68	8.00	mg/L		40	JLD1	09/03/22		2311815	3
Sulfate		410	5.32	16.0	mg/L		40					
Mercury Analysis-CVA	A				C							
7470 Cold Vapor Merci		As Received"										
Mercury	U U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/07/22	1002	2312729	4
Metals Analysis-ICP-M		1.2	0.0000070	0.000200		1.00	•	V1 <u>-</u>	027,017,22	1002	2012,2	·
SW846 3005A/6020B "												
Antimony	U U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/13/22	0004	2311609	5
Arsenic	U	ND ND	0.00100	0.00500	mg/L			TKD	07/13/22	0004	2311007	3
Barium	O	0.0773	0.00200	0.00400	mg/L							
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1					
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1					
Chromium	Ü	ND	0.00300	0.0100	mg/L		1					
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1					
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1					
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Molybdenum		0.0133	0.000200	0.00100	mg/L	1.00	1					
Selenium		0.00544	0.00150	0.00500	mg/L	1.00	1					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1					
Vanadium	J	0.00933	0.00330	0.0200	mg/L	1.00	1					
Zinc	U	ND	0.00330	0.0200	mg/L	1.00	1					
Calcium		144	0.800	2.00	mg/L	1.00	10	PRB	09/13/22		2311609	6
Boron		0.0460	0.00520	0.0150	mg/L	1.00	1	PRB	09/13/22	1318	2311609	7
Solids Analysis												
SM2540C Dissolved So	olids "As Reco	eived"										
Total Dissolved Solids		720	2.38	10.0	mg/L			CH6	09/02/22	1143	2311939	8
The following Prep Met	thods were pe	erformed:										
Method	Description			Analyst	Date]	Γime	e Pr	ep Batch			
SW846 3005A	ICP-MS 3005			LG2	09/02/22)905		11608			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-14 Project: GPCC00102 Sample ID: 591783003 Client ID: GPCC001

Parameter	Qualifier Result	DL	RL	Units	PF D	F Analyst Date	Time Batch	Method
SW846 7470A Prep	EPA 7470A Mercury Prep Liquid	R	M4	09/06/22	125	4 2312726		
The following Analy	tical Methods were performed:							
Method	Description			A	nalyst C	omments		
1	SM 4500-H B/SW846 9040C, SM 2550B							

1	SM 4500-H B/SW846 9040C, SM
2	EPA 300.0
3	EPA 300.0
4	SW846 7470A
5	SW846 3005A/6020B
6	SW846 3005A/6020B
7	SW846 3005A/6020B
8	SM 2540C

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 25 of 112 SDG: 591891

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 19, 2022

GPCC00102

GPCC001

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-20 Sample ID: 591783004

Matrix: WG

Collect Date: 30-AUG-22 13:23

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time	Batch	Method
Field Data												
Client collected Field	l pH "As Receiv	ved"										
Field pH	1	6.01			SU			EOS1	08/30/22	1323	2311613	1
Ion Chromatography												
EPA 300.0 Anions Li	iauid "As Recei	ved"										
Fluoride	U	ND	0.0330	0.100	mg/L		1	JLD1	09/03/22	0016	2311815	2
Chloride		24.4	3.35	10.0	mg/L		50	JLD1	09/03/22	1648	2311815	3
Sulfate		606	6.65	20.0	mg/L		50					
Mercury Analysis-CV	VAA											
7470 Cold Vapor Me	rcury, Liquid "A	As Received"										
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/07/22	1004	2312729	4
Metals Analysis-ICP-	-MS				C							
SW846 3005A/6020H		"										
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/13/22	0007	2311609	5
Arsenic	_	0.465	0.00200	0.00500	mg/L	1.00	1					
Barium		0.210	0.000670	0.00400	mg/L	1.00						
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1					
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1					
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1					
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1					
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Molybdenum		0.309	0.000200	0.00100	mg/L	1.00	1					
Selenium	J	0.00192	0.00150	0.00500	mg/L		1					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1					
Vanadium	J	0.00647	0.00330	0.0200	mg/L	1.00	1					
Zinc	J	0.0171	0.00330	0.0200	mg/L	1.00	1					
Boron		8.14	0.260	0.750	mg/L	1.00	50	PRB	09/13/22	1326	2311609	6
Calcium		193	4.00	10.0	mg/L	1.00	50					
Solids Analysis												
SM2540C Dissolved	Solids "As Rec	eived"										
Total Dissolved Solids		1210	2.38	10.0	mg/L			CH6	09/02/22	1422	2311940	7
The following Prep M	Methods were pe	erformed:										
Method	Description	n		Analyst	Date	7	Гim	e Pı	rep Batch			
SW846 3005A	ICP-MS 3005	SA PREP		LG2	09/02/22	()905	23	11608			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-20 Project: GPCC00102 Sample ID: 591783004 Client ID: GPCC001

Parameter	Qualifier Result	DL	RL	Units	PF	DF	Analyst Date	Time Batch	Method
SW846 7470A Prep	EPA 7470A Mercury Prep Liquid	RM	14	09/06/22	1	1254	2312726		
The following Analy	ytical Methods were performed:								
Method	Description			A	nalyst	Con	nments		
1	SM 4500-H B/SW846 9040C, SM 2550B				-				

1	SM 4500-H B/SW846 9040C, SM
2	EPA 300.0
3	EPA 300.0
4	SW846 7470A
5	SW846 3005A/6020B
6	SW846 3005A/6020B
7	SM 2540C

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 27 of 112 SDG: 591891

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 19, 2022

GPCC00102

GPCC001

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-21 Sample ID: 591783005

Matrix: WG

Collect Date: 30-AUG-22 17:25

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Field Data												
Client collected Fie	eld pH "As Receiv	ved"										
Field pH	· · ·	5.76			SU			EOS1	08/30/22	1725	2311613	1
Ion Chromatograpl	nv											
EPA 300.0 Anions	•	ved"										
Fluoride	U U	ND	0.0330	0.100	mg/L		1	JLD1	09/03/22	0047	2311815	2
Chloride	O	29.4	2.68	8.00	mg/L mg/L		40	JLD1	09/03/22		2311815	3
Sulfate		451	5.32	16.0	mg/L		40	JEDI	07/03/22	1710	2311013	5
Mercury Analysis-	CVAA				8							
7470 Cold Vapor N		As Received"										
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/07/22	1010	2312729	4
Metals Analysis-IC		ND	0.0000070	0.000200	mg/L	1.00	1	31 2	07/01/22	1010	231212)	7
•		"										
SW846 3005A/602			0.00100	0.00200	/T	1.00	1	DDD	00/12/22	0011	2211600	_
Antimony Arsenic	U	ND	0.00100	0.00300 0.00500	mg/L	1.00 1.00	1 1	PRB	09/13/22	0011	2311609	5
Barium		0.0271 0.191	0.00200 0.000670	0.00500	mg/L mg/L		1					
Beryllium	U	0.191 ND	0.000370	0.00400	mg/L		1					
Cadmium	U	ND ND	0.000200	0.00100	mg/L	1.00	1					
Chromium	U	ND ND	0.00300	0.0100	mg/L		1					
Cobalt	U	ND ND	0.00300	0.00100	mg/L		1					
Lead	U	ND ND	0.000500	0.00100	mg/L	1.00	1					
Lithium	U	ND ND	0.00300	0.0100	mg/L	1.00	1					
Molybdenum	O	0.0490	0.000200	0.00100	mg/L		1					
Selenium		0.00648	0.00150	0.00500	mg/L mg/L	1.00	1					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1					
Vanadium	J	0.00715	0.00330	0.0200	mg/L		1					
Zinc	J	0.00814	0.00330	0.0200	mg/L	1.00	1					
Boron		5.08	0.260	0.750	mg/L	1.00	50	PRB	09/13/22	1328	2311609	6
Calcium		131	4.00	10.0	mg/L	1.00						
Solids Analysis					C							
SM2540C Dissolve	ed Solids "As Rec	eived"										
Total Dissolved Solids		807	2.38	10.0	mg/L			CH6	09/02/22	1422	2311940	7
The following Prep	n Methods were no				8 -							
Method				A malreat	Date	7	Ciano.	, D.	on Ratch			
	Description			Analyst			Γime		rep Batch			
SW846 3005A	ICP-MS 3005	A PKEP		LG2	09/02/22	C	905	23	11608			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-21 Project: GPCC00102 Sample ID: 591783005 Client ID: GPCC001

Parameter	Qualifier Result	DL	RL	Units	PF	DF	Analyst Date	Time Batch	Method
SW846 7470A Prep	EPA 7470A Mercury Prep Liquid		RM4	09/06/22		1254	2312726		
The following Analytic	al Methods were performed:								
Method	Description	Analyst Comments							
1	SM 4500-H B/SW846 9040C, SM 2550B				-				

1	SM 4500-H B/SW846 9040C, SN
2	EPA 300.0
3	EPA 300.0
4	SW846 7470A
5	SW846 3005A/6020B
6	SW846 3005A/6020B
7	SM 2540C

•

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 29 of 112 SDG: 591891

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 19, 2022

GPCC00102

GPCC001

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: MW-25D Sample ID: 591783006

Matrix: WG

Collect Date: 31-AUG-22 11:58

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Field Data											
Client collected Field pl	H "As Receiv	ed"									
Field pH		6.29			SU			EOS1	08/31/22	1158 231161	3 1
Ion Chromatography											
EPA 300.0 Anions Liqu	id "As Recei	ved"									
Chloride	110 110 110001	6.60	0.0670	0.200	mg/L		1	JLD1	09/03/22	0118 231181	5 2
Fluoride		0.187	0.0330	0.100	mg/L		1				
Sulfate		1.12	0.133	0.400	mg/L		1				
Mercury Analysis-CVA	A				•						
7470 Cold Vapor Mercu		As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/07/22	1012 231272	9 3
Metals Analysis-ICP-M					8						
SW846 3005A/6020B ".		"									
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/13/22	0015 231160	9 4
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00		TILD	07/13/22	0013 231100	, ,
Barium	C	0.0216	0.000670	0.00400	mg/L						
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00					
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Calcium		3.38	0.0800	0.200	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Molybdenum	J	0.000863	0.000200	0.00100	mg/L	1.00	1				
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Vanadium	U	ND	0.00330	0.0200	mg/L	1.00					
Zinc	J	0.0161	0.00330	0.0200	mg/L	1.00	1				
Boron		0.0166	0.00520	0.0150	mg/L	1.00	1	PRB	09/13/22	1330 231160	9 5
Solids Analysis											
SM2540C Dissolved So	lids "As Rec	eived"									
Total Dissolved Solids		44.0	2.38	10.0	mg/L			CH6	09/02/22	1422 231194	0 6
The following Prep Met	hods were pe	erformed:									
Method	Description			Analyst	Date	-	Гim	e Pr	ep Batch		
SW846 3005A	ICP-MS 3005			LG2	09/02/22		0905		11608		

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: MW-25D Project: GPCC00102 Sample ID: 591783006 Client ID: GPCC001

Parameter	Qualifier Result	DL RL	Units PF	DF Analyst Date	Time Batch Method
SW846 7470A Prep	EPA 7470A Mercury Prep Liquid	RM4	09/06/22	1254 2312726	
The following Analy	tical Methods were performed:				
Method Description			Analy	st Comments	
1	SM 4500-H B/SW846 9040C, SM 2550B		•		

1	SM 4500-H B/SW846 9040C
2	EPA 300.0
3	SW846 7470A
4	SW846 3005A/6020B
5	SW846 3005A/6020B
6	SM 2540C

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 19, 2022

GPCC00102

GPCC001

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: FD-02 Sample ID: 591783007

Matrix: WG

Collect Date: 31-AUG-22 12:00

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time	Batch	Method
Ion Chromatography												
EPA 300.0 Anions Liq	uid "As Recei	ved"										
Chloride		6.69	0.0670	0.200	mg/L		1	JLD1	09/03/22	0250	2311815	1
Fluoride	J	0.0406	0.0330	0.100	mg/L		1					
Sulfate		29.3	0.266	0.800	mg/L		2	JLD1	09/03/22	1749	2311815	2
Mercury Analysis-CVA	AA											
7470 Cold Vapor Merc	urv. Liquid "A	As Received"										
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/07/22	1013	2312729	3
Metals Analysis-ICP-M	1S				Č							
SW846 3005A/6020B		"										
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/13/22	0018	2311609	4
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1	1112	07/15/22	0010	2011007	•
Barium	C	0.0380	0.000670	0.00400	mg/L	1.00	1					
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1					
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1					
Calcium		2.61	0.0800	0.200	mg/L	1.00	1					
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1					
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1					
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1					
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1					
Γhallium	U	ND	0.000600	0.00200	mg/L		1					
Vanadium	U	ND	0.00330	0.0200	mg/L	1.00	1					
Zinc		0.0284	0.00330	0.0200	mg/L	1.00	1					
Boron		0.153	0.0260	0.0750	mg/L	1.00	5	PRB	09/13/22	1331	2311609	5
Solids Analysis												
SM2540C Dissolved Se	olids "As Rec	eived"										
Γotal Dissolved Solids		53.0	2.38	10.0	mg/L			CH6	09/02/22	1422	2311940	6
The following Prep Me	ethods were pe	erformed:										
Method	Description	1		Analyst	Date]	Γim	e Pı	rep Batch			
SW846 3005A	ICP-MS 3005			LG2	09/02/22	()905		11608			
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		RM4	09/06/22	1	1254	23	12726			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: FD-02 Project: GPCC00102 Sample ID: 591783007 Client ID: GPCC001

Parameter	Qualifier Result	DL	RL	Units	PF	DF Analyst Date	Time Batch	Method
The following A	nalytical Methods were performed:							
Method	Description			Ar	alys	t Comments		
1	EPA 300.0							
2	EPA 300.0							
3	SW846 7470A							
4	SW846 3005A/6020B							
5	SW846 3005A/6020B							
6	SM 2540C							

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

GPCC00102

GPCC001

Project:

Client ID:

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: EB-01 Sample ID: 591783008

Matrix: WQ

Collect Date: 30-AUG-22 16:30

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time Batch	Method
Ion Chromatography											
EPA 300.0 Anions Li	quid "As Recei	ived"									
Chloride	1	0.299	0.0670	0.200	mg/L		1	JLD1	09/03/22	0321 2311815	5 1
Fluoride	U	ND	0.0330	0.100	mg/L		1				
Sulfate	U	ND	0.133	0.400	mg/L		1				
Mercury Analysis-CV	/AA										
7470 Cold Vapor Mer	rcury, Liquid ".	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/07/22	1015 2312729	2
Metals Analysis-ICP-	MS										
SW846 3005A/6020E	3 "As Received	"									
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/13/22	0022 2311609	3
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1				
Barium	U	ND	0.000670	0.00400	mg/L	1.00	1				
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Calcium	U	ND	0.0800	0.200	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1				
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Vanadium	U	ND	0.00330	0.0200	mg/L	1.00					
Zinc	U	ND	0.00330	0.0200	mg/L	1.00					
Boron	U	ND	0.00520	0.0150	mg/L	1.00	1	PRB	09/13/22	1333 2311609	4
Solids Analysis											
SM2540C Dissolved	Solids "As Rec	eived"									
Total Dissolved Solids	U	ND	2.38	10.0	mg/L			CH6	09/02/22	1422 2311940	5
The following Prep M	lethods were po	erformed:									
Method	Description	n		Analyst	Date	,	Tim	e Pı	rep Batch		
SW846 3005A	ICP-MS 3005	5A PREP		LG2	09/02/22		0905	23	311608		
SW846 7470A Prep	EPA 7470A I	Mercury Prep Liquid		RM4	09/06/22		1254	23	312726		

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: EB-01 Project: GPCC00102 Sample ID: 591783008 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date	Time Batch	Method
The following Analyti	cal Methods v	were performed:							
Method Description					1	Analys	st Comments		
1	EPA 300.0					-			
2	SW846 7470A	A							
3	SW846 3005A	A/6020B							
4	SW846 3005A	A/6020B							
5	SM 2540C								

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

GPCC00102

GPCC001

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-11 Project: Sample ID: 591783009 Client ID:

Matrix: WG

Collect Date: 31-AUG-22 15:45

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Field Data												
Client collected Field pl	H "As Receiv	ved"										
Field pH		4.85			SU			EOS1	08/31/22	1545	2311613	1
Ion Chromatography												
EPA 300.0 Anions Liqu	id "As Recei	ved"										
Fluoride	U	ND	0.0330	0.100	mg/L		1	JLD1	09/03/22	0352	2311815	2
Chloride	C	110	3.35	10.0	mg/L		50	JLD1	09/03/22		2311815	3
Sulfate		653	6.65	20.0	mg/L		50					
Mercury Analysis-CVA	A				C							
7470 Cold Vapor Mercu		As Received"										
Mercury	U U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/07/22	1017	2312729	4
Metals Analysis-ICP-M		1,2	0.0000070	0.000200		1.00	•	012	02/01/22	1017	2012/2/	·
SW846 3005A/6020B ".		"										
Antimony	As Received U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/13/22	0025	2311609	5
Arsenic	U	ND ND	0.00100	0.00500	mg/L			TKD	07/13/22	0023	2311007	3
Barium	O	0.115	0.00200	0.00400	mg/L							
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1					
Cadmium	J	0.000431	0.000300	0.00100	mg/L	1.00	1					
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Cobalt	J	0.000646	0.000300	0.00100	mg/L	1.00	1					
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1					
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Molybdenum	J	0.000512	0.000200	0.00100	mg/L	1.00	1					
Selenium	J	0.00344	0.00150	0.00500	mg/L	1.00	1					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1					
Vanadium	J	0.00481	0.00330	0.0200	mg/L	1.00	1					
Zinc	U	ND	0.00330	0.0200	mg/L	1.00	1					
Boron		1.65	0.104	0.300	mg/L	1.00	20	PRB	09/13/22	1335	2311609	6
Calcium		115	1.60	4.00	mg/L	1.00	20					
Solids Analysis												
SM2540C Dissolved So	lids "As Rec	eived"										
Total Dissolved Solids		1240	2.38	10.0	mg/L			CH6	09/02/22	1422	2311940	7
The following Prep Met	hods were pe	erformed:										
Method	Description			Analyst	Date		Γim	e Pr	ep Batch			
SW846 3005A	ICP-MS 3005			LG2	09/02/22)905		11608			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

Georgia Power Company Company:

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-11 GPCC00102 Project: Sample ID: 591783009 Client ID: GPCC001

Parameter	Qualifier Result	DL	RL	Units	PF D	F Analyst Date	Time Batch	Method
SW846 7470A Prep	EPA 7470A Mercury Prep Liquid		RM4	09/06/22	12:	2312726		
The following Analyst	tical Methods were performed:							
Method Description				A	nalyst C	omments		
1	SM 4500-H B/SW846 9040C, SM 2550B				-			

1	SM 4500-H B/SW846 9040C,
2	EPA 300.0
3	EPA 300.0
4	SW846 7470A
5	SW846 3005A/6020B
6	SW846 3005A/6020B
7	SM 2540C

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 37 of 112 SDG: 591891

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 19, 2022

GPCC00102

GPCC001

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: MW-23D Sample ID: 591783010

Matrix: WG

Collect Date: 31-AUG-22 16:18

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time Batch	Method
Field Data											
Client collected Field	d pH "As Receiv	ved"									
Field pH	1	6.06			SU			EOS1	08/31/22	1618 2311613	3 1
Ion Chromatography											
EPA 300.0 Anions L		ved"									
Chloride	14010 110 110001	7.84	0.0670	0.200	mg/L		1	JLD1	09/03/22	0423 231181:	5 2
Fluoride	J	0.0791	0.0330	0.100	mg/L		1				_
Sulfate		54.6	0.665	2.00	mg/L		5	JLD1	09/03/22	1851 231181:	5 3
Mercury Analysis-C	VAA				Ü						
7470 Cold Vapor Me		As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/07/22	1018 2312729	9 4
Metals Analysis-ICP					8						
SW846 3005A/60201		"									
Antimony	U U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/13/22	0029 2311609	9 5
Arsenic	U	ND	0.00200	0.00500	mg/L			1112	02/10/22	002) 201100	
Barium	C	0.0765	0.000670	0.00400	mg/L						
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Calcium		10.3	0.0800	0.200	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium	U	ND	0.00300	0.0100	mg/L	1.00					
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00					
Selenium	U	ND	0.00150	0.00500	mg/L	1.00					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00					
Vanadium	U	ND	0.00330	0.0200	mg/L	1.00					
Zinc	J	0.0106	0.00330	0.0200	mg/L	1.00	1				
Boron		0.0283	0.00520	0.0150	mg/L	1.00	1	PRB	09/13/22	1337 2311609	9 6
Solids Analysis											
SM2540C Dissolved	Solids "As Rec	eived"									
Total Dissolved Solids		143	2.38	10.0	mg/L			CH6	09/02/22	1422 2311940	7
The following Prep N	Methods were pe	erformed:									
Method	Description			Analyst	Date	-	Гim	e Pı	rep Batch		
SW846 3005A	ICP-MS 3005	SA PREP		LG2	09/02/22	(0905	23	11608		

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: MW-23D Project: GPCC00102 Sample ID: 591783010 Client ID: GPCC001

Parameter	Qualifier Result	DL	RL	Units	PF D	F Analyst Date	Time Batch	Method
SW846 7470A Prep	EPA 7470A Mercury Prep Liquid		RM4	09/06/22	12:	2312726		
The following Analyst	tical Methods were performed:							
Method	Description			A	nalyst C	omments		
1	SM 4500-H B/SW846 9040C, SM 2550B				-			

1	SM 4500-H B/SW846 9040C, SN
2	EPA 300.0
3	EPA 300.0
4	SW846 7470A
5	SW846 3005A/6020B
6	SW846 3005A/6020B
7	SM 2540C

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 39 of 112 SDG: 591891

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 19, 2022

GPCC00102

GPCC001

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWA-8 Sample ID: 591783011

Matrix: WG

Collect Date: 30-AUG-22 11:56

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Field Data											
Client collected Field pl	H "As Receiv	ved"									
Field pH		4.58			SU			EOS1	08/30/22	1156 2311613	1
Ion Chromatography											
EPA 300.0 Anions Liqu	ıid "As Recei	ved"									
Fluoride	J	0.0759	0.0330	0.100	mg/L		1	JLD1	09/03/22	0454 2311815	2
Chloride	_	9.93	0.335	1.00	mg/L		5	JLD1	09/03/22	2024 2311815	3
Sulfate		77.4	0.665	2.00	mg/L		5				
Mercury Analysis-CVA	ιA				Ü						
7470 Cold Vapor Merci		As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/07/22	1020 2312729	4
Metals Analysis-ICP-M					8						
SW846 3005A/6020B "		"									
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/13/22	0033 2311609	5
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1	TILD	07/13/22	0033 2311007	J
Barium	C	0.0512	0.000670	0.00400	mg/L	1.00	1				
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Calcium		15.0	0.0800	0.200	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt	J	0.000420	0.000300	0.00100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1				
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Vanadium	J	0.00372	0.00330	0.0200	mg/L	1.00	1				
Zinc	U	ND	0.00330	0.0200	mg/L	1.00	1				
Boron		0.152	0.00520	0.0150	mg/L	1.00	1	PRB	09/13/22	1339 2311609	6
Solids Analysis											
SM2540C Dissolved So	olids "As Rec	eived"									
Total Dissolved Solids		154	2.38	10.0	mg/L			CH6	09/02/22	1422 2311940	7
The following Prep Mer	thods were pe	erformed:									
Method	Description	n		Analyst	Date]	Гimе	e Pr	ep Batch		
SW846 3005A	ICP-MS 3005			LG2	09/02/22	(0905		11608		

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWA-8 Project: GPCC00102 Sample ID: 591783011 Client ID: GPCC001

Parameter	Qualifier Result	DL	RL	Units	PF D	F Analyst Date	Time Batch	Method
SW846 7470A Prep	EPA 7470A Mercury Prep Liquid		RM4	09/06/22	12:	2312726		
The following Analyst	tical Methods were performed:							
Method	Description			A	nalyst C	omments		
1	SM 4500-H B/SW846 9040C, SM 2550B				-			

1	SM 4500-H B/SW846 9040C, SM
2	EPA 300.0
3	EPA 300.0
4	SW846 7470A
5	SW846 3005A/6020B
6	SW846 3005A/6020B
7	SM 2540C

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID:GWA-7Project:GPCC00102Sample ID:591783012Client ID:GPCC001

Matrix: WG

Collect Date: 30-AUG-22 09:35

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Field Data												
Client collected Field	pH "As Receiv	ved"										
Field pH		5.98			SU			EOS1	08/30/22	0935	2311613	1
Ion Chromatography												
EPA 300.0 Anions Liq	mid "As Recei	ved"										
Fluoride	J	0.0391	0.0330	0.100	mg/L		1	JLD1	09/03/22	0525	2311815	2
Sulfate	_	10.6	0.133	0.400	mg/L		1					_
Chloride		74.4	1.34	4.00	mg/L		20	JLD1	09/03/22	2055	2311815	3
Mercury Analysis-CV	AA				C							
7470 Cold Vapor Merc		As Received"										
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/07/22	1022	2312729	4
Metals Analysis-ICP-N					8							
SW846 3005A/6020B		"										
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/13/22	0044	2311609	5
Arsenic	J	0.00321	0.00200	0.00500	mg/L			110	02/12/22		2011007	
Barium	v	0.133	0.000670	0.00400	mg/L							
Beryllium	J	0.000219	0.000200	0.000500	mg/L	1.00	1					
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1					
Calcium		3.56	0.0800	0.200	mg/L	1.00	1					
Chromium		0.0129	0.00300	0.0100	mg/L	1.00	1					
Cobalt		0.00134	0.000300	0.00100	mg/L	1.00	1					
Lead		0.00220	0.000500	0.00200	mg/L	1.00	1					
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Molybdenum	J	0.000453	0.000200	0.00100	mg/L	1.00	1					
Selenium		0.00630	0.00150	0.00500	mg/L	1.00	1					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1					
Vanadium		0.110	0.00330	0.0200	mg/L	1.00	1					
Zinc	J	0.0110	0.00330	0.0200	mg/L	1.00	1					
Boron		5.72	0.260	0.750	mg/L	1.00	50	PRB	09/13/22	1341	2311609	6
Solids Analysis												
SM2540C Dissolved S	Solids "As Rec	eived"										
Total Dissolved Solids		1340	2.38	10.0	mg/L			CH6	09/02/22	1422	2311940	7
The following Prep Me	ethods were pe	erformed:										
Method	Description			Analyst	Date	-	Γim	e Pr	ep Batch			
SW846 3005A	ICP-MS 3005			LG2	09/02/22)905		11608			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

Company : Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWA-7 Project: GPCC00102 Sample ID: 591783012 Client ID: GPCC001

Parameter	Qualifier Result	DL	RL	Units	PF	DF	Analyst Date	Time Batch	Method
SW846 7470A Prep	EPA 7470A Mercury Prep Liquid	RM	14	09/06/22	1	1254	2312726		
The following Analy	ytical Methods were performed:								
Method	Description			A	nalyst	Con	nments		
1	SM 4500-H B/SW846 9040C, SM 2550B				-				

1	SM 4500-H B/SW846 9040C, S
2	EPA 300.0
3	EPA 300.0
4	SW846 7470A
5	SW846 3005A/6020B
6	SW846 3005A/6020B
7	SM 2540C

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 19, 2022

GPCC00102

GPCC001

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWB-6R Sample ID: 591783013

Matrix: WG

Collect Date: 30-AUG-22 10:51

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Field Data											
Client collected Field p	H "As Receiv	ved"									
Field pH		5.55			SU			EOS1	08/30/22	1051 2311613	1
Ion Chromatography											
EPA 300.0 Anions Liq	uid "As Recei	ived"									
Fluoride	U	ND	0.0330	0.100	mg/L		1	JLD1	09/03/22	0556 2311815	2
Chloride		52.0	6.70	20.0	mg/L		100	JLD1	09/03/22	2125 2311815	
Sulfate		978	13.3	40.0	mg/L		100				
Mercury Analysis-CVA	AA										
7470 Cold Vapor Merc	ury, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/07/22	1024 2312729	4
Metals Analysis-ICP-M					e						
SW846 3005A/6020B		"									
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/13/22	0047 2311609	5
Arsenic	_	0.00716	0.00200	0.00500	mg/L	1.00	1				
Barium		0.0266	0.000670	0.00400	mg/L	1.00	1				
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Chromium	J	0.00356	0.00300	0.0100	mg/L	1.00	1				
Cobalt		0.0476	0.000300	0.00100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Molybdenum	J	0.000649	0.000200	0.00100	mg/L	1.00	1				
Selenium	J	0.00277	0.00150	0.00500	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Vanadium	J	0.0192	0.00330	0.0200	mg/L	1.00	1				
Zinc	J	0.0132	0.00330	0.0200	mg/L	1.00	1				
Boron		7.13	0.260	0.750	mg/L	1.00	50	PRB	09/13/22	1347 2311609	6
Calcium		81.8	4.00	10.0	mg/L	1.00	50				
Solids Analysis											
SM2540C Dissolved S	olids "As Rec	eived"									
Total Dissolved Solids		1810	2.38	10.0	mg/L			CH6	09/02/22	1422 2311940	7
The following Prep Me	ethods were pe	erformed:									
Method	Description	n		Analyst	Date	7	Гіте	Pr	ep Batch		
SW846 3005A	ICP-MS 3005	5A PREP		LG2	09/02/22	()905	23	11608		

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

Georgia Power Company Company:

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWB-6R GPCC00102 Project: Sample ID: 591783013 Client ID: GPCC001

Parameter	Qualifier Result	DL	RL	Units	PF	DF	Analyst Date	Time Batch	Method
SW846 7470A Prep	EPA 7470A Mercury Prep Liquid]	RM4	09/06/22		1254	2312726		
The following Analyt	ical Methods were performed:								
Method	Description			A	nalys	t Cor	nments		
1	SM 4500-H B/SW846 9040C, SM 2550B				<u>-</u>				

1	SM 4500-H B/SW846 9040C,
2	EPA 300.0
3	EPA 300.0
4	SW846 7470A
5	SW846 3005A/6020B
6	SW846 3005A/6020B
7	SM 2540C

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity **RL**: Reporting Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 19, 2022

GPCC00102

GPCC001

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: FD-01 Sample ID: 591783014

Matrix: WG

Collect Date: 30-AUG-22 12:00

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time	Batch	Method
Ion Chromatography												
EPA 300.0 Anions Liqu	uid "As Recei	ived"										
Fluoride	J	0.0806	0.0330	0.100	mg/L		1	JLD1	09/03/22	0728	2311815	1
Chloride		10.0	0.335	1.00	mg/L		5	JLD1	09/03/22	2258	2311815	2
Sulfate		78.4	0.665	2.00	mg/L		5					
Mercury Analysis-CVA	AΑ											
7470 Cold Vapor Merc	ury, Liquid "	As Received"										
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/07/22	1025	2312729	3
Metals Analysis-ICP-M	1S				Ü							
SW846 3005A/6020B		"										
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/13/22	0051	2311609	4
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1					
Barium		0.0512	0.000670	0.00400	mg/L	1.00	1					
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1					
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1					
Calcium		15.4	0.0800	0.200	mg/L	1.00	1					
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Cobalt	J	0.000445	0.000300	0.00100	mg/L	1.00	1					
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1					
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1					
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1					
Vanadium	J	0.00381	0.00330	0.0200	mg/L	1.00	1					
Zinc	U	ND	0.00330	0.0200	mg/L	1.00	1					
Boron		0.169	0.0260	0.0750	mg/L	1.00	5	PRB	09/13/22	1349	2311609	5
Solids Analysis												
SM2540C Dissolved So	olids "As Rec	eived"										
Total Dissolved Solids		171	2.38	10.0	mg/L			CH6	09/02/22	1422	2311940	6
The following Prep Me	thods were pe	erformed:										
Method	Description	n		Analyst	Date	-	Гim	e Pı	rep Batch	-		
SW846 3005A	ICP-MS 3005			LG2	09/02/22	(0905	23	11608			
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		RM4	09/06/22	1	1254	23	12726			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: FD-01 Project: GPCC00102 Sample ID: 591783014 Client ID: GPCC001

Parameter	Qualifier Result	DL	RL	Units	PF	DF Analyst Date	Time Batch	Method
The following Analy	tical Methods were performed:							
Method	Description			Aı	nalyst	Comments		
1	EPA 300.0							
2	EPA 300.0							
3	SW846 7470A							
4	SW846 3005A/6020B							
5	SW846 3005A/6020B							
6	SM 2540C							

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 19, 2022

GPCC00102

GPCC001

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWB-5R Sample ID: 591783015

Matrix: WG

Collect Date: 30-AUG-22 14:20

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Field Data												
Client collected Fi	eld pH "As Receiv	ved"										
Field pH	1	5.22			SU			EOS1	08/30/22	1420	2311613	1
Ion Chromatograp	hv											
EPA 300.0 Anions	-	ived"										
Fluoride	J	0.0428	0.0330	0.100	mg/L		1	JLD1	09/02/22	1050	2311967	2
Chloride	· ·	76.8	6.70	20.0	mg/L		•	JLD1	09/02/22		2311967	3
Sulfate		403	13.3	40.0	mg/L		100		******			
Mercury Analysis	-CVAA				8							
7470 Cold Vapor		As Received"										
Mercury	• • •	0.0000870	0.0000670	0.000200	mg/L	1.00	1	JP2	09/07/22	1030	2312729	4
Metals Analysis-IO					8							
SW846 3005A/60		"										
Antimony	U U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/13/22	0054	2311609	5
Arsenic	J	0.00253	0.00200	0.00500	mg/L		1	110	03/15/22		2011007	
Barium	·	0.0510	0.000670	0.00400	mg/L		1					
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1					
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1					
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Cobalt		0.00401	0.000300	0.00100	mg/L	1.00	1					
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1					
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Molybdenum	U	ND	0.000200	0.00100	mg/L		1					
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1					
Vanadium	J	0.0138	0.00330	0.0200	mg/L	1.00	1					
Zinc	U	ND	0.00330	0.0200	mg/L	1.00	1					
Boron		4.66	0.260	0.750	mg/L	1.00	50	PRB	09/13/22	1351	2311609	6
Calcium		70.3	4.00	10.0	mg/L	1.00	50					
Solids Analysis												
SM2540C Dissolv	ed Solids "As Rec	eived"										
Total Dissolved Solids		886	2.38	10.0	mg/L			CH6	09/02/22	1422	2311940	7
The following Pre	p Methods were p	erformed:										
Method	Description			Analyst	Date	Т	ime	e Pr	ep Batch			
SW846 3005A	ICP-MS 3005			LG2	09/02/22		905		11608			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWB-5R Project: GPCC00102 Sample ID: 591783015 Client ID: GPCC001

Parameter	Qualifier Result	DL	RL	Units	PF D	F Analyst Date	Time Batch	Method
SW846 7470A Prep	EPA 7470A Mercury Prep Liquid		RM4	09/06/22	12:	2312726		
The following Analytical Methods were performed:								
Method	Description	Analyst Comments						
1	SM 4500-H B/SW846 9040C, SM 2550B				-			

1	SM 4500-H B/SW846 9040C, SI
2	EPA 300.0
3	EPA 300.0
4	SW846 7470A
5	SW846 3005A/6020B
6	SW846 3005A/6020B
7	SM 2540C

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

GPCC00102

GPCC001

Project:

Client ID:

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: FB-04 Sample ID: 591783016

Matrix: WQ

Collect Date: 30-AUG-22 14:00

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Anal	yst Date	Time Batch	Method
Ion Chromatograp	hy										
EPA 300.0 Anions	s Liquid "As Recei	ived"									
Chloride	U	ND	0.0670	0.200	mg/L		1	JLD1	09/02/22	1220 231196	7 1
Fluoride	U	ND	0.0330	0.100	mg/L		1				
Sulfate	J	0.213	0.133	0.400	mg/L		1				
Mercury Analysis-	-CVAA										
7470 Cold Vapor	Mercury, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/07/22	1032 231272	9 2
Metals Analysis-IO	CP-MS										
SW846 3005A/60		"									
Antimony	U U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/13/22	0058 231160	9 3
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00					
Barium	U	ND	0.000670	0.00400	mg/L	1.00	1				
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Calcium	U	ND	0.0800	0.200	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1				
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Vanadium	U	ND	0.00330	0.0200	mg/L	1.00	1				
Zinc	U	ND	0.00330	0.0200	mg/L	1.00	1				
Boron	U	ND	0.00520	0.0150	mg/L	1.00	1	PRB	09/13/22	1353 231160	9 4
Solids Analysis											
SM2540C Dissolv	red Solids "As Rec	eived"									
Total Dissolved Solids	U	ND	2.38	10.0	mg/L			CH6	09/02/22	1422 231194	5
The following Pre	p Methods were pe	erformed:									
Method	Description	n		Analyst	Date	-	Гimе	P	rep Batch		
SW846 3005A	ICP-MS 3005	5A PREP		LG2	09/02/22	(0905	23	311608		
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		RM4	09/06/22		1254	23	312726		

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: FB-04 Project: GPCC00102 Sample ID: 591783016 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date	Time Batch	Method
The following Analytic	cal Methods v	were performed:							
Method	Description	1				Analys	st Comments		
1	EPA 300.0								
2	SW846 7470A	A							
3	SW846 3005A	A/6020B							
4	SW846 3005A	A/6020B							
5	SM 2540C								

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 19, 2022

GPCC00102

GPCC001

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWB-4R Sample ID: 591783017

Matrix: WG

Collect Date: 30-AUG-22 15:30

Parameter	Qualifier	Result	DL	RL	Units	PF 1	DF	Analy	st Date	Time	Batch	Method
Field Data												
Client collected Field p	H "As Receiv	ved"										
Field pH		5.67			SU			EOS1	08/30/22	1530	2311613	1
Ion Chromatography												
EPA 300.0 Anions Liqu	uid "As Recei	ved"										
Fluoride	ulu As Recel U	ND	0.0330	0.100	mg/L		1	JLD1	09/02/22	1249	2311967	2
Chloride	O	65.0	6.70	20.0	mg/L		-	JLD1	09/03/22		2311967	3
Sulfate		379	13.3	40.0	mg/L		100	JEDI	07/03/22	0017	2311707	5
Mercury Analysis-CVA	λA				8							
7470 Cold Vapor Merc		As Received"										
Mercury	U U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/07/22	1034	2312729	4
Metals Analysis-ICP-M		T\D	0.0000070	0.000200	mg/L	1.00	•	J1 2	02/01/22	1051	2312727	•
SW846 3005A/6020B		"										
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/13/22	0102	2311609	5
Arsenic	J	0.00490	0.00200	0.00500	mg/L mg/L		1	TRD	07/13/22	0102	2311007	3
Barium	•	0.134	0.000670	0.00400	mg/L		1					
Beryllium	U	ND	0.000200	0.000500	mg/L		1					
Cadmium	U	ND	0.000300	0.00100	mg/L		1					
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Cobalt		0.00198	0.000300	0.00100	mg/L	1.00	1					
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1					
Lithium		0.0175	0.00300	0.0100	mg/L	1.00	1					
Molybdenum		0.154	0.000200	0.00100	mg/L	1.00	1					
Selenium	J	0.00265	0.00150	0.00500	mg/L	1.00	1					
Thallium	U	ND	0.000600	0.00200	mg/L		1					
Vanadium	J	0.00943	0.00330	0.0200	mg/L		1					
Zinc	U	ND	0.00330	0.0200	mg/L		1					
Boron		4.95	0.260	0.750	mg/L		50	PRB	09/13/22	1355	2311609	6
Calcium		79.3	4.00	10.0	mg/L	1.00	50					
Solids Analysis												
SM2540C Dissolved So	olids "As Rec	eived"										
Total Dissolved Solids		882	2.38	10.0	mg/L			CH6	09/02/22	1422	2311940	7
The following Prep Me	thods were pe	erformed:										
Method	Description			Analyst	Date	T	ime	Pr	ep Batch			
SW846 3005A	ICP-MS 3005			LG2	09/02/22		905		11608			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWB-4R Project: GPCC00102 Sample ID: 591783017 Client ID: GPCC001

Parameter	Qualifier Result	DL	RL	Units	PF	DF	Analyst Date	Time Batch	Method
SW846 7470A Prep	EPA 7470A Mercury Prep Liquid RM4 09/06/22 1254 2312726								
The following Analytical Methods were performed:									
Method	Description			A	nalys	t Cor	nments		
1	SM 4500-H B/SW846 9040C, SM 2550B				<u>-</u>				

1	SM 4500-H B/SW846 9040C, SM
2	EPA 300.0
3	EPA 300.0
4	SW846 7470A
5	SW846 3005A/6020B
6	SW846 3005A/6020B
7	SM 2540C

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 19, 2022

GPCC00102

GPCC001

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-17 Sample ID: 591783018

Matrix: WG

Collect Date: 31-AUG-22 11:35

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time	Batch	Method
Field Data												
Client collected Field	l pH "As Receiv	ved"										
Field pH	F	4.33			SU			EOS1	08/31/22	1135	2311613	1
Ion Chromatography												
EPA 300.0 Anions Li	ianid "As Recei	ved"										
Fluoride	iquid As Recei	0.442	0.0330	0.100	mg/L		1	JLD1	09/02/22	1310	2311967	2
Chloride		694	13.4	40.0	mg/L		_	JLD1	09/03/22		2311967	3
Sulfate		721	26.6	80.0	mg/L		200	JEDI	02/03/22	0017	2311707	3
Mercury Analysis-CV	VAA				8							
7470 Cold Vapor Me		As Dossiyad"										
•	U	ND	0.0000670	0.000200	ma/I	1.00	1	JP2	09/07/22	1025	2312729	4
Mercury Motels Applysis ICD		ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/07/22	1033	2312129	4
Metals Analysis-ICP-												
SW846 3005A/6020I												
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/13/22	0105	2311609	5
Arsenic	U	ND	0.00200	0.00500	mg/L							
Barium		0.0375	0.000670	0.00400	mg/L		1					
Beryllium		0.00258	0.000200	0.000500	mg/L	1.00	1					
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1					
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Cobalt	**	0.00358	0.000300	0.00100	mg/L							
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1					
Lithium	J	0.00688	0.00300	0.0100	mg/L	1.00	1					
Molybdenum	T.T.	0.00252 ND	0.000200	0.00100	mg/L		1					
Selenium Thallium	U	ND ND	0.00150	0.00500	mg/L	1.00 1.00	1					
Vanadium	U J	0.00599	0.000600 0.00330	0.00200 0.0200	mg/L	1.00	1 1					
Zinc	J	0.00599	0.00330	0.0200	mg/L mg/L	1.00	1					
Boron	J	2.51	0.260	0.0200	mg/L	1.00		PRB	09/13/22	1356	2311609	6
Calcium		102	4.00	10.0	mg/L	1.00		IKD	09/13/22	1330	2311009	U
Solids Analysis		102	4.00	10.0	mg/L	1.00	50					
~	C 1: 1	. 10										
SM2540C Dissolved	Solids "As Rec			40.0				arr.	00/00/05	4 40 -	22110:0	_
Total Dissolved Solids		2050	2.38	10.0	mg/L			CH6	09/02/22	1422	2311940	7
The following Prep N	Methods were pe	erformed:										
Method	Description	n	·	Analyst	Date	7	Γime	Pr	ep Batch		<u> </u>	
SW846 3005A	ICP-MS 3005			LG2	09/02/22)905		11608			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-17 Project: GPCC00102 Sample ID: 591783018 Client ID: GPCC001

Parameter	Qualifier Result	DL	RL	Units	PF D	F Analyst Date	Time Batch	Method
SW846 7470A Prep	EPA 7470A Mercury Prep Liquid		RM4	09/06/22	12:	2312726		
The following Analytical Methods were performed:								
Method	Description	Analyst Comments						
1	SM 4500-H B/SW846 9040C, SM 2550B				-			

1	SM 4500-H B/SW846 9040C, S
2	EPA 300.0
3	EPA 300.0
4	SW846 7470A
5	SW846 3005A/6020B
6	SW846 3005A/6020B
7	SM 2540C

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 19, 2022

GPCC00102

GPCC001

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-22 Sample ID: 591783019

Matrix: WG

Collect Date: 31-AUG-22 13:50

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	st Date	Time Batch	Method
Field Data											
Client collected Field	pH "As Receiv	ved"									
Field pH	•	4.68			SU			EOS1	08/30/22	1350 2311613	1
Ion Chromatography											
EPA 300.0 Anions Lic	mid "As Recei	ved"									
Fluoride	U	ND	0.0330	0.100	mg/L		1	JLD1	09/02/22	1349 2311967	2
Chloride		51.2	0.670	2.00	mg/L		10	JLD1	09/03/22	0117 2311967	
Sulfate		45.3	1.33	4.00	mg/L		10				
Mercury Analysis-CV	AA										
7470 Cold Vapor Mer		As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/07/22	1037 2312729	4
Metals Analysis-ICP-I					8						
SW846 3005A/6020B		"									
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/13/22	0109 2311609	5
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1	TILD	07/13/22	010) 231100)	J
Barium	C	0.0741	0.000670	0.00400	mg/L	1.00	1				
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Calcium		23.2	0.0800	0.200	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1				
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Vanadium	J	0.00396	0.00330	0.0200	mg/L	1.00	1				
Zinc Boron	U	ND 0.271	0.00330 0.0260	0.0200 0.0750	mg/L	1.00 1.00	1 5	PRB	09/13/22	1358 2311609	6
Solids Analysis		0.271	0.0200	0.0730	mg/L	1.00	3	PKD	09/13/22	1556 2511009	0
•	7 1' 1 " A T	. 111									
SM2540C Dissolved S	Solids "As Rec		2.20	10.0				CITA	00/02/22	1400 0014040	_
Total Dissolved Solids		163	2.38	10.0	mg/L			CH6	09/02/22	1422 2311940	7
The following Prep M	ethods were pe	erformed:									
Method	Description	n		Analyst	Date		Γim	e Pr	ep Batch		
SW846 3005A	ICP-MS 3005	SA PREP		LG2	09/02/22	(0905	23	11608		

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-22 Project: GPCC00102 Sample ID: 591783019 Client ID: GPCC001

Parameter	Qualifier Result	DL	RL	Units	PF D	F Analyst Date	Time Batch	Method
SW846 7470A Prep	EPA 7470A Mercury Prep Liquid		RM4	09/06/22	12:	2312726		
The following Analyst	tical Methods were performed:							
Method	Description			A	nalyst C	omments		
1	SM 4500-H B/SW846 9040C, SM 2550B				-			

1	SM 4500-H B/SW846 9040C, S
2	EPA 300.0
3	EPA 300.0
4	SW846 7470A
5	SW846 3005A/6020B
6	SW846 3005A/6020B
7	SM 2540C

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 57 of 112 SDG: 591891

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

GPCC00102

GPCC001

Project:

Client ID:

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: EB-02 Sample ID: 591783020

Matrix: WQ

Collect Date: 31-AUG-22 14:05

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Anal	yst Date	Time	e Batch	Method
Ion Chromatograpl	hy											
EPA 300.0 Anions	Liquid "As Recei	ved"										
Chloride	U	ND	0.0670	0.200	mg/L		1	JLD1	09/02/22	1419	2311967	1
Fluoride	U	ND	0.0330	0.100	mg/L		1					
Sulfate	U	ND	0.133	0.400	mg/L		1					
Mercury Analysis-	CVAA											
7470 Cold Vapor N	Mercury, Liquid "	As Received"										
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/07/22	1039	2312729	2
Metals Analysis-IC	CP-MS				C							
SW846 3005A/602		"										
Antimony	U L	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/13/22	0112	2311600	3
Arsenic	U	ND	0.00200	0.00500	mg/L mg/L	1.00	1	IKD	07/13/22	0112	2311007	3
Barium	U	ND	0.000670	0.00400	mg/L	1.00	1					
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1					
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1					
Calcium	U	ND	0.0800	0.200	mg/L	1.00	1					
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1					
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1					
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1					
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1					
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1					
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1					
Vanadium	U	ND	0.00330	0.0200	mg/L	1.00	1					
Zinc	U	ND	0.00330	0.0200	mg/L	1.00	1					
Boron	U	ND	0.00520	0.0150	mg/L	1.00	1	PRB	09/13/22	1400	2311609	4
Solids Analysis												
SM2540C Dissolve	ed Solids "As Rec	eived"										
Total Dissolved Solids	U	ND	2.38	10.0	mg/L			CH6	09/02/22	1422	2311940	5
The following Prep	p Methods were pe	erformed:										
Method	Description	n		Analyst	Date	7	Гітє	P	rep Batch			
SW846 3005A	ICP-MS 3005			LG2	09/02/22)905		311608			
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		RM4	09/06/22	1	1254	23	312726			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: EB-02 Project: GPCC00102 Sample ID: 591783020 Client ID: GPCC001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date	Time Batch	Method
The following Analytic	cal Methods v	were performed:							
Method	Description	ı				Analys	st Comments		
1	EPA 300.0					-			
2	SW846 7470A	A							
3	SW846 3005A	A/6020B							
4	SW846 3005A	A/6020B							
5	SM 2540C								

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

GPCC00102

GPCC001

Project:

Client ID:

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: FB-05 Sample ID: 591783021

Matrix: WQ

Collect Date: 31-AUG-22 15:30

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Anal	yst Date	Time Batch	Method
Ion Chromatograp	ohy										
EPA 300.0 Anions	s Liquid "As Recei	ived"									
Chloride	J	0.172	0.0670	0.200	mg/L		1	JLD1	09/02/22	1549 2311967	1
Fluoride	U	ND	0.0330	0.100	mg/L		1				
Sulfate	U	ND	0.133	0.400	mg/L		1				
Mercury Analysis	-CVAA										
7470 Cold Vapor	Mercury, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/07/22	1103 2312733	2
Metals Analysis-Io	CP-MS				Ç						
•	20B "As Received	"									
Arsenic	U	ND	0.00200	0.00500	mg/L	1.00	1	BAJ	09/06/22	1840 2311611	3
Barium	U	ND	0.000670	0.00400	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1				
Selenium	U	ND	0.00150	0.00500	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Zinc	U	ND	0.00330	0.0200	mg/L	1.00	1				
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/07/22	1531 2311611	4
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1	BAJ	09/07/22	1349 2311611	5
Boron	U	ND	0.00520	0.0150	mg/L	1.00	1				
Calcium	U	ND	0.0800	0.200	mg/L	1.00	1				
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1				
Lithium	U	ND	0.00300	0.0100	mg/L	1.00					
Vanadium	U	ND	0.00330	0.0200	mg/L	1.00	1				
Solids Analysis											
SM2540C Dissolv	ed Solids "As Rec	eived"									
Total Dissolved Solids	U	ND	2.38	10.0	mg/L			CH6	09/02/22	1422 2311940	6
The following Pre	p Methods were pe	erformed:									
Method	Description	n		Analyst	Date	-	Time	e P	rep Batch		
SW846 3005A	ICP-MS 3005			LG2	09/02/22	(0905	23	311610		
SW846 7470A Prep	EPA 7470A N	Mercury Prep Liquid		RM4	09/06/22		1255	23	312730		

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: FB-05 Project: GPCC00102 Sample ID: 591783021 Client ID: GPCC001

Parameter	Qualifier Result	DL	RL	Units P	F DF Analyst Date	Time Batch Method
The following Analyti	cal Methods were performed:					
Method	Description			Ana	lyst Comments	
1	EPA 300.0					
2	SW846 7470A					
3	SW846 3005A/6020B					
4	SW846 3005A/6020B					
5	SW846 3005A/6020B					
6	SM 2540C					

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: September 19, 2022

GPCC00102

GPCC001

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-15 Sample ID: 591783022

Matrix: WG

Collect Date: 31-AUG-22 13:54

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analy	yst Date	Time Bat	ch Method
Field Data											
Client collected Field pl	H "As Receiv	ved"									
Field pH		6.57			SU			EOS1	08/31/22	1354 2311	513 1
Ion Chromatography											
EPA 300.0 Anions Liqu	iid "As Recei	ved"									
Chloride		4.83	0.0670	0.200	mg/L		1	JLD1	09/02/22	1619 2311	967 2
Fluoride	U	ND	0.0330	0.100	mg/L		1				
Sulfate		88.5	1.33	4.00	mg/L		10	JLD1	09/03/22	0146 2311	967 3
Mercury Analysis-CVA	A										
7470 Cold Vapor Mercu	ary, Liquid "A	As Received"									
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/07/22	1104 2312	733 4
Metals Analysis-ICP-M					e						
SW846 3005A/6020B "		"									
Arsenic	110 110 001, 00	0.259	0.00200	0.00500	mg/L	1.00	1	BAJ	09/06/22	1844 2311	511 5
Barium		0.0550	0.000670	0.00400	mg/L		1				
Cadmium	U	ND	0.000300	0.00100	mg/L						
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Molybdenum		0.0786	0.000200	0.00100	mg/L	1.00	1				
Selenium	J	0.00192	0.00150	0.00500	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Zinc	J	0.00395	0.00330	0.0200	mg/L	1.00	1				
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/07/22	1533 2311	
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1	BAJ	09/07/22	1409 2311	511 7
Chromium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Cobalt	U	ND	0.000300	0.00100	mg/L	1.00	1				
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Vanadium	J	0.00476	0.00330	0.0200	mg/L	1.00	1		00/05/00	1050 0011	
Boron		0.719	0.0520	0.150	mg/L	1.00	10	BAJ	09/07/22	1352 2311	511 8
Calcium		135	0.800	2.00	mg/L	1.00	10				
Solids Analysis											
SM2540C Dissolved So	olids "As Rec	eived"									
Total Dissolved Solids		530	2.38	10.0	mg/L			CH6	09/02/22	1422 2311	940 9
The following Prep Met	thods were pe	erformed:									
Method	Description			Analyst	Date	-	Γim	e Pı	rep Batch		
SW846 3005A	ICP-MS 3005			LG2	09/02/22)905		11610		

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-15 Project: GPCC00102 Sample ID: 591783022 Client ID: GPCC001

Parameter	Qualifier Result	DL RL	Units	PF DF	Analyst Date	Time Batch Method
SW846 7470A Prep	EPA 7470A Mercury Prep Liquid	RM4	09/06/22	1255	2312730	
The following Analy	rtical Methods were performed:					
Method	Description		An	alyst Cor	nments	
1	SM 4500-H B/SW846 9040C, SM 2550B			-		

1	SM 4500-H B/SW846 904
2	EPA 300.0
3	EPA 300.0
4	SW846 7470A
5	SW846 3005A/6020B
6	SW846 3005A/6020B
7	SW846 3005A/6020B
8	SW846 3005A/6020B
9	SM 2540C

Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 63 of 112 SDG: 591891

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

GPCC00102

GPCC001

Project:

Client ID:

Analyst Comments

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWA-7 Sample ID: 591783023

Matrix: WG

Collect Date: 30-AUG-22 09:35

Receive Date: 01-SEP-22 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Anal	yst Date	Time Batch	Method
Mercury Analysis-CV	'AA										
7470 Cold Vapor Diss	solved Mercury	, Liquid "As Receiv	ed"								
Mercury	U	ND	0.0000670	0.000200	mg/L	1.00	1	JP2	09/07/22	1106 2312733	1
Metals Analysis-ICP-	MS										
SW846 3005A/6020B	B Dissolved Me	tals "As Received"									
Arsenic	J	0.00319	0.00200	0.00500	mg/L	1.00	1	BAJ	09/06/22	1902 2311611	2
Barium		0.118	0.000670	0.00400	mg/L	1.00	1				
Cadmium	U	ND	0.000300	0.00100	mg/L	1.00	1				
Lead	U	ND	0.000500	0.00200	mg/L	1.00	1				
Molybdenum	U	ND	0.000200	0.00100	mg/L	1.00	1				
Selenium		0.00552	0.00150	0.00500	mg/L	1.00	1				
Thallium	U	ND	0.000600	0.00200	mg/L	1.00	1				
Zinc		0.0217	0.00330	0.0200	mg/L	1.00	1				
Antimony	U	ND	0.00100	0.00300	mg/L	1.00	1	PRB	09/07/22	1543 2311611	3
Beryllium	U	ND	0.000200	0.000500	mg/L	1.00	1	BAJ	09/07/22	1420 2311611	4
Calcium		3.75	0.0800	0.200	mg/L	1.00	1				
Chromium	J	0.00991	0.00300	0.0100	mg/L	1.00	1				
Cobalt		0.00117	0.000300	0.00100	mg/L	1.00	1				
Lithium	U	ND	0.00300	0.0100	mg/L	1.00	1				
Vanadium		0.107	0.00330	0.0200	mg/L	1.00	1				
Boron		5.54	0.520	1.50	mg/L	1.00	100	BAJ	09/07/22	1403 2311611	5
The following Prep M	lethods were pe	erformed:									
Method	Description	n		Analyst	Date	,	Гim	e P	rep Batch		
SW846 3005A	ICP-MS 3005	5A PREP		LG2	09/02/22		0905	2:	311610		
SW846 7470A Prep	EPA 7470A I	Mercury Prep Liquid		RM4	09/06/22		1255	2:	312730		
The following Analys	tical Mathada	wara narfarmadi									

The following Analytical Methods were performed:

Method	Description
1	SW846 7470A
2	SW846 3005A/6020B
3	SW846 3005A/6020B
4	SW846 3005A/6020B
5	SW846 3005A/6020B

Notes:

Page 64 of 112 SDG: 591891

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: September 19, 2022

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWA-7 Project: GPCC00102 Sample ID: 591783023 Client ID: GPCC001

Parameter Qualifier Result DL RL Units PF DF Analyst Date Time Batch Method

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: September 19, 2022

Page 1 of 9

Georgia Power Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia Kristen Jurinko

Workorder: 591891

Contact:

Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Ion Chromatography								
Patch 2312366 ———————————————————————————————————		19.9	19.9	mg/L	0.191		(0%-20%) JLD1	09/06/22 12:07
Fluoride		0.367	0.242	mg/L	41.2*^		(+/-0.100)	09/03/22 19:41
Sulfate	U	ND U	ND	mg/L	N/A			
QC1205182662 LCS Chloride	5.00		4.95	mg/L		99	(90%-110%)	09/03/22 16:42
Fluoride	2.50		2.40	mg/L		95.9	(90%-110%)	
Sulfate	10.0		10.2	mg/L		102	(90%-110%)	
QC1205182661 MB Chloride		U	ND	mg/L				09/03/22 16:12
Fluoride		U	ND	mg/L				
Sulfate		U	ND	mg/L				
QC1205182664 591867001 PS Chloride	5.00	3.99	10.4	mg/L		129*	(90%-110%)	09/06/22 12:37
Fluoride	2.50	0.367	3.83	mg/L		139*	(90%-110%)	09/03/22 20:11
Sulfate	10.0 U	ND	15.5	mg/L		155*	(90%-110%)	

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

591891 Page 2 of 9 NOM Sample Qual QC Units RPD% REC% Anlst Date Time Parmname Range Metals Analysis - ICPMS

Metals Analysis - ICPMS Batch 2312380						
QC1205182699 LCS Antimony	0.0500	0.0483	mg/L	96.6	(80%-120%)	PRB 09/14/22 00:14
Arsenic	0.0500	0.0477	mg/L	95.3	(80%-120%)	
Barium	0.0500	0.0501	mg/L	100	(80%-120%)	
Beryllium	0.0500	0.0506	mg/L	101	(80%-120%)	
Boron	0.100	0.112	mg/L	112	(80%-120%)	09/14/22 17:27
Cadmium	0.0500	0.0490	mg/L	98	(80%-120%)	09/14/22 00:14
Calcium	2.00	1.95	mg/L	97.7	(80%-120%)	
Chromium	0.0500	0.0489	mg/L	97.8	(80%-120%)	
Cobalt	0.0500	0.0480	mg/L	96	(80%-120%)	
Lead	0.0500	0.0494	mg/L	98.7	(80%-120%)	
Lithium	0.0500	0.0471	mg/L	94.1	(80%-120%)	
Molybdenum	0.0500	0.0489	mg/L	97.7	(80%-120%)	09/13/22 22:07
Selenium	0.0500	0.0487	mg/L	97.3	(80%-120%)	09/14/22 00:14
Thallium	0.0500	0.0467	mg/L	93.5	(80%-120%)	
Vanadium	0.0500	0.0529	mg/L	106	(80%-120%)	

Workorder:

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 591891 Page 3 of 9 NOM QC Units RPD% REC% Date Time **Parmname** Sample Qual Range Anlst Metals Analysis - ICPMS Batch 2312380 Zinc 0.0500 0.0472 mg/L 94.5 (80%-120%) PRB 09/14/22 00:14 QC1205182698 MB U Antimony ND 09/14/22 00:10 mg/L U Arsenic ND mg/L U ND Barium mg/L Beryllium U ND mg/L U ND 09/14/22 17:25 Boron mg/L U Cadmium ND mg/L 09/14/22 00:10 Calcium U ND mg/L U ND Chromium mg/L U Cobalt ND mg/L U ND Lead mg/L U Lithium ND mg/L J 0.000271 09/13/22 22:04 Molybdenum mg/LU Selenium ND 09/14/22 00:10 mg/L Thallium U ND mg/L

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 591891 Page 4 of 9 RPD% QC **Parmname** NOM Sample Qual Units REC% Range Anlst Date Time Metals Analysis - ICPMS Batch 2312380 Vanadium 0.00388 mg/L PRB 09/14/22 00:10 U ND Zinc mg/L QC1205182700 591881001 MS 0.0500 U ND 0.0509 101 09/14/22 00:21 Antimony (75%-125%) mg/L Arsenic 0.0500 U ND 0.0496 mg/L 96.2 (75%-125%) Barium 0.0500 0.0444 0.0934 97.9 mg/L(75%-125%) U Beryllium 0.0500 ND 0.0516 mg/L 103 (75% - 125%)Boron 0.100 1.20 1.24 mg/L N/A (75%-125%) 09/14/22 17:31 0.0500 U ND 0.0496 99.2 09/14/22 00:21 Cadmium mg/L (75%-125%) Calcium 2.00 42.6 43.0 N/A (75% - 125%)mg/L 0.0500 U ND 0.0498 97.6 Chromium mg/L (75%-125%) Cobalt 0.0500 0.00560 0.0534 95.6 mg/L (75%-125%) U ND 0.0492 0.0500 98 (75%-125%) Lead mg/L Lithium 0.0500 J 0.00615 0.0535 mg/L 94.6 (75% - 125%)0.0500 0.00142 0.0528 103 09/13/22 22:14 Molybdenum mg/L(75%-125%) Selenium 0.0500 0.00625 0.0546 mg/L 96.8 (75% - 125%)09/14/22 00:21

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 591891 Page 5 of 9 **Parmname** NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS Batch 2312380 Thallium 0.0500 ND 0.0475 mg/L 94.8 (75% - 125%)PRB 09/14/22 00:21 Vanadium 0.0500 J 0.00495 0.0554 101 mg/L (75%-125%) Zinc 0.0500 J 0.00671 0.0534 mg/L 93.4 (75% - 125%)QC1205182701 591881001 MSD Antimony 0.0500 U ND 0.0507 mg/L 0.395 101 (0%-20%)09/14/22 00:24 0.0500 U ND 0.0499 0.49 96.7 Arsenic mg/L(0%-20%)Barium 0.0500 0.0444 0.0937 mg/L 0.405 98.6 (0%-20%)U 0.0501 Beryllium 0.0500 ND mg/L 3.13 99.9 (0%-20%)0.100 1.20 Boron 1.27 mg/L 2.04 N/A (0%-20%)09/14/22 17:33 ND mg/L(0%-20%)Cadmium 0.0500 0.0490 1.29 97.9 09/14/22 00:24 2.00 42.6 42.9 0.254 Calcium mg/L N/A (0%-20%)Chromium 0.0500 U ND 0.0494 96.8 mg/L 0.805 (0%-20%)Cobalt 0.0500 0.00560 0.0545 mg/L 2.08 97.8 (0%-20%)Lead 0.0500 U ND 0.0495 mg/L 0.699 98.7 (0% - 20%)0.00615 0.0534 Lithium 0.0500J 94.4 mg/L0.187 (0%-20%)Molybdenum 0.0500 0.00142 0.0541 mg/L 2.51 105 (0%-20%)09/13/22 22:18

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 591891 Page 6 of 9 Sample Qual QC **Parmname** NOM Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS Batch 2312380 Selenium 0.0500 0.00625 0.0553 mg/L 1.29 98.2 (0%-20%)PRB 09/14/22 00:24 0.0500 U ND Thallium 0.0475 mg/L 0.137 94.7 (0%-20%)Vanadium 0.0500 0.00495 0.0544 mg/L 1.83 98.9 (0%-20%)J 0.00671 0.0534 Zinc 0.0500 mg/L 0.0337 93.5 (0%-20%)QC1205182702 591881001 SDILT Antimony U ND U ND ug/L N/A 09/14/22 00:32 (0%-20%)U U Arsenic ND ND ug/L N/A (0%-20%)Barium 44.4 8.34 ug/L 6.1 (0%-20%) U U Beryllium ND ND ug/L N/A (0%-20%)Boron 120 26.6 ug/L 11.2 (0%-20%)09/14/22 17:37 U ND U ND ug/L 09/14/22 00:32 Cadmium N/A (0%-20%)Calcium 42600 8140 ug/L 4.58 (0%-20%)U U ND ND Chromium ug/L N/A (0%-20%)Cobalt 5.60 1.10 ug/L 1.7 (0%-20%)U ND U ND Lead N/A(0%-20%) ug/L Lithium J 6.15 U ND ug/L N/A (0%-20%)

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

					<u> </u>	umma	<u>. y</u>					
Workorder: 591891												Page 7 of 9
Parmname		NO	И	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Metals Analysis - ICPMS Batch 2312380												
Molybdenum				1.42	J	0.372	ug/L	31.3		(0%-20%)	PRB	09/13/22 22:25
Selenium				6.25	U	ND	ug/L	N/A		(0%-20%)		09/14/22 00:32
Thallium			U	ND	U	ND	ug/L	N/A		(0%-20%)		
Vanadium			J	4.95	U	ND	ug/L	N/A		(0%-20%)		
Zinc			J	6.71	U	ND	ug/L	N/A		(0%-20%)		
Metals Analysis-Mercury Batch 2312733												
QC1205183555 591729001 Mercury	DUP		U	ND	U	ND	mg/L	N/A			JP2	09/07/22 10:51
QC1205183554 LCS Mercury		0.00200				0.00203	mg/L		102	(80%-120%)		09/07/22 10:42
QC1205183553 MB Mercury					U	ND	mg/L					09/07/22 10:40
QC1205183556 591729001 Mercury	MS	0.00200	U	ND		0.00203	mg/L		102	(75%-125%)		09/07/22 10:52
QC1205183557 591729001 Mercury	SDILT		U	ND	U	ND	ug/L	N/A		(0%-10%)		09/07/22 10:54
Solids Analysis Batch 2313724												
QC1205185481 591879005 Total Dissolved Solids	DUP			388		432	mg/L	10.7*		(0%-5%)	СН6	09/08/22 14:57

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 591891									Page 8 of 9
Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Solids Analysis									
Batch 2313724									
QC1205185480 LCS									
Total Dissolved Solids	300		301	mg/L		100	(95%-105%)	СН6	09/08/22 14:57
QC1205185479 MB									
Total Dissolved Solids		U	ND	mg/L					09/08/22 14:57

Notes:

The Qualifiers in this report are defined as follows:

- < Result is less than value reported
- > Result is greater than value reported
- B The target analyte was detected in the associated blank.
- E %difference of sample and SD is >10%. Sample concentration must meet flagging criteria
- E General Chemistry--Concentration of the target analyte exceeds the instrument calibration range
- FB Mercury was found present at quantifiable concentrations in field blanks received with these samples. Data associated with the blank are deemed invalid for reporting to regulatory agencies
- H Analytical holding time was exceeded
- J See case narrative for an explanation
- J Value is estimated
- N Metals--The Matrix spike sample recovery is not within specified control limits
- N/A RPD or %Recovery limits do not apply.
- N1 See case narrative
- ND Analyte concentration is not detected above the detection limit
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- R Per section 9.3.4.1 of Method 1664 Revision B, due to matrix spike recovery issues, this result may not be reported or used for regulatory compliance purposes.
- R Sample results are rejected
- $U \qquad \text{Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.} \\$
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- Z Paint Filter Test--Particulates passed through the filter, however no free liquids were observed.
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- d 5-day BOD--The 2:1 depletion requirement was not met for this sample
- e 5-day BOD--Test replicates show more than 30% difference between high and low values. The data is qualified per the method and can be used for reporting purposes
- h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 9 of 9 -Parmname NOM Sample Qual \mathbf{QC} Units RPD% REC% Range Anlst Date Time

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

Workorder:

591891

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 74 of 112 SDG: 591891

[^] The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where the duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

^{*} Indicates that a Quality Control parameter was not within specifications.

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: September 19, 2022

Page 1 of 17

Georgia Power Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia Kristen Jurinko

Contact:

Workorder: 591783

Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Ion Chromatography Batch 2311815								
QC1205181700 591783001 DUP Chloride		58.4	58.2	mg/L	0.309		(0%-20%) JLD	1 09/03/22 14:44
Fluoride		0.273	0.292	mg/L	6.68 ^		(+/-0.100)	09/02/22 22:13
Sulfate		415	418	mg/L	0.774		(0%-20%)	09/03/22 14:44
QC1205181702 591783013 DUP Chloride		52.0	52.7	mg/L	1.2 ^		(+/-20.0)	09/03/22 21:56
Fluoride	U	ND U	ND	mg/L	N/A			09/03/22 06:27
Sulfate		978	990	mg/L	1.21		(0%-20%)	09/03/22 21:56
QC1205181699 LCS Chloride	5.00		4.74	mg/L		94.8	(90%-110%)	09/03/22 09:32
Fluoride	2.50		2.57	mg/L		103	(90%-110%)	
Sulfate	10.0		9.81	mg/L		98.1	(90%-110%)	
QC1205181698 MB Chloride		U	ND	mg/L				09/03/22 09:01
Fluoride		U	ND	mg/L				
Sulfate		U	ND	mg/L				
QC1205181701 591783001 PS Chloride	5.00	1.46	6.44	mg/L		99.6	(90%-110%)	09/03/22 15:15

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

Workorder: 591783						_					Page 2 of 17
Parmname	NON	М	Sample	Qual	QC	Units	RPD%	REC%	Range A	Anlst	Date Time
Ion Chromatography Batch 2311815											
Fluoride	2.50		0.273		2.87	mg/L		104	(90%-110%)	JLD1	09/02/22 22:43
Sulfate	10.0		10.4		20.0	mg/L		96.6	(90%-110%)		09/03/22 15:15
QC1205181703 591783013 PS Chloride	5.00		0.520		5.32	mg/L		95.9	(90%-110%)		09/03/22 22:27
Fluoride	2.50	U	ND		2.59	mg/L		103	(90%-110%)		09/03/22 06:57
Sulfate	10.0		9.78		20.5	mg/L		107	(90%-110%)		09/03/22 22:27
Batch 2311967 ———											
QC1205181988 591783015 DUP Chloride			76.8		77.1	mg/L	0.39 ^		(+/-20.0)	JLD1	09/02/22 23:17
Fluoride		J	0.0428	U	ND	mg/L	200				09/02/22 11:20
Sulfate			403		407	mg/L	1.1		(0%-20%)		09/02/22 23:17
QC1205181990 591798017 DUP Chloride			5.59		5.46	mg/L	2.29		(0%-20%)		09/02/22 20:18
Fluoride			0.127		0.122	mg/L	3.38 ^		(+/-0.100)		
Sulfate			53.0		53.1	mg/L	0.0471		(0%-20%)		09/03/22 05:16
QC1205181987 LCS Chloride	5.00				4.81	mg/L		96.3	(90%-110%)		09/02/22 10:20
Fluoride	2.50				2.34	mg/L		93.6	(90%-110%)		
Sulfate	10.0				9.96	mg/L		99.6	(90%-110%)		

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 3 of 17 NOM Sample Qual QC **Parmname** Units RPD% REC% Range Anlst Date Time Ion Chromatography Batch 2311967 QC1205181986 MB U ND JLD1 09/02/22 09:51 Chloride mg/L U Fluoride ND mg/L Sulfate U ND mg/LQC1205181989 591783015 PS 5.00 Chloride 0.768 5.68 98.2 (90%-110%) 09/02/22 23:47 mg/L0.0428 Fluoride 2.50 J 2.43 mg/L 95.6 (90%-110%) 09/02/22 11:50 Sulfate 10.0 4.03 14.3 103 09/02/22 23:47 (90%-110%) mg/L QC1205181991 591798017 PS Chloride 5.00 5.59 11.1 109 09/02/22 21:47 mg/L(90%-110%) Fluoride 2.50 0.127 2.42 91.6 mg/L (90%-110%) Sulfate 10.0 10.6 21.6 mg/L 110 (90%-110%) 09/03/22 05:46 Metals Analysis - ICPMS 2311609 Batch QC1205181382 LCS 0.0500 0.0482 Antimony 96.4 PRB 09/12/22 23:31 mg/L (80%-120%) Arsenic 0.0500 0.0476 mg/L 95.2 (80%-120%) 0.0500 0.0506 101 Barium mg/L (80%-120%) Beryllium 0.0500 0.0543 mg/L 109 (80% - 120%)

Workorder:

591783

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

		<u>QC bi</u>	amma	<u>.y</u>				
Workorder: 591783								Page 4 of 17
Parmname Metals Analysis - ICPMS	NOM	Sample Qual	QC	Units	RPD% REC	% Range	Anlst	Date Time
Batch 2311609								
Boron	0.100		0.101	mg/L	101	(80%-120%)	PRB	09/13/22 13:07
Cadmium	0.0500		0.0510	mg/L	102	(80%-120%)		09/12/22 23:31
Cadmium	0.0300		0.0310	mg/L	102	(80%-120%)	,	09/12/22 25:51
Calcium	2.00		2.09	mg/L	104	(80%-120%))	
Chromium	0.0500		0.0499	mg/L	99.8	(80%-120%))	
Cobalt	0.0500		0.0493	mg/L	98.6	(80%-120%)	1	
Coomi	0.0300		0.0475	mg/L	70.0	(00/0-120/0)	,	
Lead	0.0500		0.0503	mg/L	101	(80%-120%))	
Lithium	0.0500		0.0504	mg/L	101	(80%-120%))	
Molybdenum	0.0500		0.0497	mg/L	99.4	(80%-120%))	
. ,				Ü		(
Selenium	0.0500		0.0472	mg/L	94.4	(80%-120%))	
Thallium	0.0500		0.0490	mg/L	98	(80%-120%))	
Vanadium	0.0500		0.0508	mg/L	102	(80%-120%))	
Zinc	0.0500		0.0475	mg/L	95.1	(80%-120%))	
QC1205181381 MB Antimony		U	ND	mg/L				09/12/22 23:28
Arsenic		U	ND	mg/L				
Barium		U	ND	mg/L				
Dallulli		O	ND	mg/L				

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

		<u>QC Bt</u>	mma	<u>.y</u>					
Workorder: 591783									Page 5 of 17
Parmname XGP153	NOM	Sample Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Metals Analysis - ICPMS Batch 2311609									
Beryllium		U	ND	mg/L				PRB	09/12/22 23:28
•				C					
Boron		U	ND	mg/L					09/13/22 13:05
Dolon		C	ND	mg/L					0)/13/22 13.03
C- Indiana		U	ND	/T					00/12/22 22:20
Cadmium		O	ND	mg/L					09/12/22 23:28
Calcium		U	ND	mg/L					
Chromium		U	ND	mg/L					
Cobalt		U	ND	mg/L					
Lead		U	ND	mg/L					
Lithium		U	ND	mg/L					
				_					
Molybdenum		U	ND	mg/L					
Moryodenam			11,0	mg/L					
Selenium		U	ND	m a/I					
Selemum		O	ND	mg/L					
				_					
Thallium		U	ND	mg/L					
Vanadium		U	ND	mg/L					
Zinc		U	ND	mg/L					
QC1205181383 591783001 MS	0.0700 11	ND	0.0515	·-		100	(750) 125:	`	00/10/20 22 22
Antimony	0.0500 U	ND	0.0515	mg/L		103	(75%-125%)	09/12/22 23:38
Arsenic	0.0500 U	ND	0.0506	mg/L		99.5	(75%-125%)	

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 591783 Page 6 of 17 Sample Qual QC **Parmname** NOM Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2311609 Batch Barium 0.0500 0.0275 0.0775 mg/L 99.9 (75% - 125%)PRB 09/12/22 23:38 0.0535 Beryllium 0.0500 0.000663 mg/L 106 (75%-125%) Boron 0.100 8.21 8.07 mg/L N/A (75%-125%) 09/13/22 13:10 U ND Cadmium 0.0500 0.0509 mg/L 102 (75%-125%) 09/12/22 23:38 Calcium 2.00 70.8 67.6 mg/L N/A (75%-125%) 09/13/22 13:10 Chromium 0.0500 U ND 0.0502 98.6 09/12/22 23:38 (75%-125%) mg/L 0.000786 Cobalt 0.0500 J 0.0494 mg/L 97.3 (75%-125%) U ND 0.0482 0.0500 96.3 Lead mg/L (75%-125%) Lithium 0.0500 U ND 0.0505 98.7 mg/L (75%-125%) 0.0500 0.000205 0.0541 Molybdenum 108 (75% - 125%)mg/L U ND 0.0445 Selenium 0.0500 88.4 mg/L (75%-125%) Thallium 0.0500 U ND 0.0477 94.9 (75%-125%) mg/L Vanadium 0.0500 J 0.00949 0.0597 mg/L 100 (75%-125%) Zinc 0.0500 0.0262 0.0710 mg/L 89.5 (75% - 125%)QC1205181384 591783001 MSD Antimony 0.0500 U ND 0.0505 mg/L 2.03 101 (0%-20%)09/12/22 23:42

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

591783 Page 7 of 17 **Parmname** NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS Batch 2311609 Arsenic 0.0500 ND 0.0501 mg/L 1.14 98.3 (0%-20%)PRB 09/12/22 23:42 0.0783 0.0500 0.0275 mg/L 102 (0%-20%)Barium 1.1 Beryllium 0.0500 0.000663 0.0545 mg/L 1.78 108 (0%-20%)Boron 0.100 8.21 8.57 mg/L 6.04 N/A (0%-20%)09/13/22 13:12 Cadmium 0.0500 U ND 0.0516 mg/L 1.37 103 (0%-20%)09/12/22 23:42 Calcium 2.00 70.8 70.6 N/A 09/13/22 13:12 4.33 (0%-20%)mg/L U Chromium 0.0500 ND 0.0500 mg/L 0.479 98.1 (0%-20%)09/12/22 23:42 0.000786 Cobalt 0.0500 J 0.0491 96.6 mg/L 0.666 (0%-20%)0.0500 U ND 0.0488 Lead mg/L 1.19 97.4 (0%-20%)0.0500 U ND 0.0523 102 Lithium mg/L 3.51 (0%-20%)0.000205 0.0528 0.0500J mg/L 2.31 105 Molybdenum (0%-20%)Selenium 0.0500 U ND 0.0462 3.75 91.8 mg/L (0%-20%)0.0500 U Thallium ND 0.0480 mg/L 0.692 95.6 (0%-20%)Vanadium 0.0500 J 0.00949 0.0586 mg/L 2 98.1 (0%-20%)Zinc 0.0500 0.0262 0.0706 88.7 mg/L 0.592 (0%-20%)

Workorder:

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 8 of 17 Sample Qual QC RPD% **Parmname** NOM Units REC% Range Anlst Date Time Metals Analysis - ICPMS Batch 2311609 QC1205181385 591783001 SDILT U U ND ND PRB 09/12/22 23:49 Antimony ug/L N/A (0%-20%)U Arsenic ND U ND ug/L N/A (0%-20%)27.5 5.07 Barium ug/L 7.82 (0%-20%)U Beryllium 0.663 ND ug/L N/A (0%-20%)Boron 164 36.1 ug/L 9.9 (0%-20%)09/13/22 13:14 U ND U ND Cadmium ug/L N/A (0%-20%)09/12/22 23:49 1420 Calcium 265 ug/L 6.35 (0%-20%)09/13/22 13:14 U U ND ND 09/12/22 23:49 Chromium ug/L N/A (0%-20%)J 0.786 U ND Cobalt ug/L N/A (0%-20%)U U ND ND Lead ug/L N/A (0%-20%)Lithium U ND U ND N/A (0%-20%)ug/L J 0.205 0.238 J Molybdenum ug/L 480 (0%-20%)Selenium U ND U ND ug/L N/A (0%-20%)Thallium U ND U ND N/A(0%-20%)ug/L Vanadium J 9.49 U ND ug/L N/A (0%-20%)

Workorder:

591783

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 591783 Page 9 of 17 NOM Sample Qual QC RPD% **Parmname** Units REC% Range Anlst Date Time Metals Analysis - ICPMS 2311609 Batch Zinc 26.2 5.78 ug/L 10.1 (0%-20%)PRB 09/12/22 23:49 Batch 2311611 QC1205181387 LCS 0.0506 101 Antimony 0.0500 mg/L (80% - 120%)PRB 09/07/22 15:29 0.0504 Arsenic 0.0500 mg/L 101 (80%-120%) BAJ 09/06/22 18:37 0.0511 Barium 0.0500 mg/L 102 (80% - 120%)0.0500 0.0539 108 09/07/22 13:42 Beryllium mg/L (80%-120%) 0.103 0.100 103 Boron mg/L (80%-120%)Cadmium 0.0500 0.0513 103 09/06/22 18:37 mg/L (80%-120%) 107 Calcium 2.00 2.15 09/07/22 13:42 mg/L (80%-120%) Chromium 0.0500 0.0513 103 (80%-120%) mg/L 0.0519 mg/L Cobalt 0.0500 104 (80%-120%) Lead 0.0500 0.0503 mg/L 101 (80%-120%) 09/06/22 18:37 Lithium 0.0500 0.0509 102 09/07/22 13:42 (80%-120%) mg/L 0.0525 Molybdenum 0.0500 mg/L 105 (80% - 120%)09/06/22 18:37 Selenium 0.0500 0.0494 mg/L 98.8 (80%-120%)

GEL LABORATORIES LLC 2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

Workorder: 591783									Page 10 of 17
Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range A	Anlst	Date Time
Metals Analysis - ICPMS Batch 2311611									
Thallium	0.0500		0.0461	mg/L		92.3	(80%-120%)	BAJ	09/06/22 18:37
Vanadium	0.0500		0.0524	mg/L		105	(80%-120%)		09/07/22 13:42
Zinc	0.0500		0.0516	mg/L		103	(80%-120%)		09/06/22 18:37
QC1205181386 MB Antimony		U	ND	mg/L				PRB	09/07/22 15:27
Arsenic		U	ND	mg/L				BAJ	09/06/22 18:33
Barium		U	ND	mg/L					
Beryllium		U	ND	mg/L					09/07/22 13:39
Boron		U	ND	mg/L					
Cadmium		U	ND	mg/L					09/06/22 18:33
Calcium		U	ND	mg/L					09/07/22 13:39
Chromium		U	ND	mg/L					
Cobalt		U	ND	mg/L					
Lead		U	ND	mg/L					09/06/22 18:33
Lithium		U	ND	mg/L					09/07/22 13:39
Molybdenum		U	ND	mg/L					09/06/22 18:33

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

				<u>1 y</u>			
Workorder: 591783							Page 11 of 17
Parmname	NOM	Sample	Qual QC	Units	RPD% REC%	6 Range Anlst	t Date Time
Metals Analysis - ICPMS Batch 2311611							
Selenium			U ND	mg/L		В	AJ 09/06/22 18:33
Thallium			U ND	mg/L			
Vanadium			U ND	mg/L			09/07/22 13:39
Zinc			U ND	mg/L			09/06/22 18:33
QC1205181388 591783022 MS Antimony	0.0500	U ND	0.0508	mg/L	101	(75%-125%) PF	RB 09/07/22 15:35
Arsenic	0.0500	0.259	0.321	mg/L	N/A	(75%-125%) BA	AJ 09/06/22 18:48
Barium	0.0500	0.0550	0.106	mg/L	101	(75%-125%)	
Beryllium	0.0500	U ND	0.0554	mg/L	111	(75%-125%)	09/07/22 14:12
Boron	0.100	0.719	0.820	mg/L	N/A	(75%-125%)	09/07/22 13:54
Cadmium	0.0500	U ND	0.0504	mg/L	101	(75%-125%)	09/06/22 18:48
Calcium	2.00	135	144	mg/L	N/A	(75%-125%)	09/07/22 13:54
Chromium	0.0500	U ND	0.0519	mg/L	101	(75%-125%)	09/07/22 14:12
Cobalt	0.0500	U ND	0.0509	mg/L	102	(75%-125%)	
Lead	0.0500	U ND	0.0479	mg/L	95.5	(75%-125%)	09/06/22 18:48
Lithium	0.0500	U ND	0.0497	mg/L	99.4	(75%-125%)	09/07/22 14:12

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 591783 Page 12 of 17 **Parmname** NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time Metals Analysis - ICPMS 2311611 Batch Molybdenum 0.0500 0.0786 0.138 mg/L 118 (75% - 125%)BAJ 09/06/22 18:48 Selenium 0.0500 J 0.00192 0.0521 100 mg/L (75%-125%) Thallium 0.0500 U ND 0.0459 mg/L 91.7 (75% - 125%)J Vanadium 0.0500 0.00476 0.0574 105 (75%-125%) 09/07/22 14:12 mg/L Zinc 0.0500 J 0.00395 0.0535 mg/L 99.2 (75%-125%) 09/06/22 18:48 QC1205181389 591783022 MSD mg/L Antimony 0.0500 U ND 0.0517 1.69 103 (0%-20%)PRB 09/07/22 15:37 0.0500 0.259 0.311 mg/L 3.32 N/A (0%-20%)BAJ 09/06/22 18:51 Arsenic 0.0550 0.105 Barium 0.0500 mg/L 1.01 99.3 (0%-20%)mg/L Beryllium 0.0500 ND 0.0547 1.22 109 09/07/22 14:14 (0%-20%)0.100 0.719 0.832 09/07/22 13:56 Boron mg/L 1.38 N/A (0%-20%)Cadmium 0.0500 ND 0.0503 0.264 101 09/06/22 18:51 mg/L (0%-20%)135 Calcium 2.00 148 mg/L 2.36 N/A 09/07/22 13:56 (0%-20%)Chromium 0.0500 U ND 0.0521 mg/L 0.421 101 (0%-20%)09/07/22 14:14 U ND 0.0510 102 Cobalt 0.0500 mg/L 0.186 (0%-20%)Lead 0.0500 U ND 0.0480 mg/L 0.231 95.8 (0%-20%)09/06/22 18:51

GEL LABORATORIES LLC 2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

Workorder: 591783						_					Page 13 of 17
Parmname	NO	М	Sample	Qual	QC	Units	RPD%	REC%	Range A	nlst	Date Time
Metals Analysis - ICPMS Batch 2311611											
Lithium	0.0500	U	ND		0.0501	mg/L	0.653	100	(0%-20%)	BAJ	09/07/22 14:14
Molybdenum	0.0500		0.0786		0.137	mg/L	0.517	117	(0%-20%)		09/06/22 18:51
Selenium	0.0500	J	0.00192		0.0517	mg/L	0.735	99.7	(0%-20%)		
Thallium	0.0500	U	ND		0.0461	mg/L	0.48	92.2	(0%-20%)		
Vanadium	0.0500	J	0.00476		0.0579	mg/L	0.918	106	(0%-20%)		09/07/22 14:14
Zinc	0.0500	J	0.00395		0.0525	mg/L	1.93	97.1	(0%-20%)		09/06/22 18:51
QC1205181390 591783022 SDILT Antimony		U	ND	U	ND	ug/L	N/A		(0%-20%)	PRB	09/07/22 15:41
Arsenic			259		50.2	ug/L	3.21		(0%-20%)	BAJ	09/06/22 18:58
Barium			55.0		10.5	ug/L	4.8		(0%-20%)		
Beryllium		U	ND	U	ND	ug/L	N/A		(0%-20%)		09/07/22 14:18
Boron			71.9		17.9	ug/L	24.3		(0%-20%)		09/07/22 14:01
Cadmium		U	ND	U	ND	ug/L	N/A		(0%-20%)		09/06/22 18:58
Calcium			13500		2810	ug/L	4.29		(0%-20%)		09/07/22 14:01
Chromium		U	ND	U	ND	ug/L	N/A		(0%-20%)		09/07/22 14:18
Cobalt		U	ND	U	ND	ug/L	N/A		(0%-20%)		

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

		$\frac{\mathbf{QCB}}{\mathbf{D}}$	ummai	<u>.y</u>				
Workorder: 591783								Page 14 of 17
Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Metals Analysis - ICPMS Batch 2311611								
Lead	U	ND U	ND	ug/L	N/A		(0%-20%) BAJ	09/06/22 18:58
Lithium	U	ND U	ND	ug/L	N/A		(0%-20%)	09/07/22 14:18
Molybdenum		78.6	14.9	ug/L	5.3		(0%-20%)	09/06/22 18:58
Selenium	J	1.92 U	ND	ug/L	N/A		(0%-20%)	
Thallium	U	ND U	ND	ug/L	N/A		(0%-20%)	
Vanadium	J	4.76 U	ND	ug/L	N/A		(0%-20%)	09/07/22 14:18
Zinc	J	3.95 U	ND	ug/L	N/A		(0%-20%)	09/06/22 18:58
Metals Analysis-Mercury Batch 2312729 ——								
QC1205183534 591783001 DUP Mercury	U	ND U	ND	mg/L	N/A		JP2	09/07/22 09:54
QC1205183533 LCS Mercury	0.00200		0.00203	mg/L		101	(80%-120%)	09/07/22 09:51
QC1205183532 MB Mercury		U	ND	mg/L				09/07/22 09:49
QC1205183535 591783001 MS Mercury	0.00200 U	ND	0.00158	mg/L		79.2	(75%-125%)	09/07/22 09:56
QC1205183536 591783001 SDILT Mercury	U	ND U	ND	ug/L	N/A		(0%-10%)	09/07/22 09:57

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 15 of 17 Sample Qual **Parmname NOM** QC Units RPD% REC% Range Anlst Date Time Metals Analysis-Mercury 2312733 Batch QC1205183555 591729001 DUP U ND U ND JP2 09/07/22 10:51 mg/L N/A Mercury QC1205183554 LCS 0.00200 0.00203 102 (80%-120%) 09/07/22 10:42 Mercury mg/L QC1205183553 MB U ND 09/07/22 10:40 Mercury mg/L QC1205183556 591729001 MS ND 0.00203 0.00200 U mg/L 102 (75%-125%) 09/07/22 10:52 Mercury QC1205183557 591729001 SDILT U ND U Mercury ND ug/L N/A (0%-10%)09/07/22 10:54 Solids Analysis 2311939 Batch QC1205181929 591692001 DUP 2700 Total Dissolved Solids 2660 mg/L 1.42 (0%-5%)CH6 09/02/22 11:43 QC1205181926 LCS 301 **Total Dissolved Solids** 300 mg/L 100 (95%-105%) 09/02/22 11:43 QC1205181925 MB U Total Dissolved Solids ND 09/02/22 11:43 mg/L Batch 2311940 OC1205181932 591783004 DUP 1210 1210 Total Dissolved Solids mg/L 0.744 (0%-5%)CH6 09/02/22 14:22 QC1205181933 591783018 DUP Total Dissolved Solids 2050 2090 mg/L (0%-5%)09/02/22 14:22 2.18

Workorder:

591783

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder. 591/85									Page 16 of 17
Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Solids Analysis Batch 2311940									
QC1205181931 LCS Total Dissolved Solids	300		303	mg/L		101	(95%-105%)	СН6	09/02/22 14:22
QC1205181930 MB Total Dissolved Solids		U	ND	mg/L					09/02/22 14:22

Notes:

Workorder

The Qualifiers in this report are defined as follows:

< Result is less than value reported

501783

- > Result is greater than value reported
- B The target analyte was detected in the associated blank.
- E %difference of sample and SD is >10%. Sample concentration must meet flagging criteria
- E General Chemistry--Concentration of the target analyte exceeds the instrument calibration range
- FB Mercury was found present at quantifiable concentrations in field blanks received with these samples. Data associated with the blank are deemed invalid for reporting to regulatory agencies
- H Analytical holding time was exceeded
- J See case narrative for an explanation
- J Value is estimated
- N Metals--The Matrix spike sample recovery is not within specified control limits
- N/A RPD or %Recovery limits do not apply.
- N1 See case narrative
- ND Analyte concentration is not detected above the detection limit
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- R Per section 9.3.4.1 of Method 1664 Revision B, due to matrix spike recovery issues, this result may not be reported or used for regulatory compliance purposes.
- R Sample results are rejected
- $U \qquad \text{Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.} \\$
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- Z Paint Filter Test--Particulates passed through the filter, however no free liquids were observed.
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- d 5-day BOD--The 2:1 depletion requirement was not met for this sample
- e 5-day BOD--Test replicates show more than 30% difference between high and low values. The data is qualified per the method and can be used for reporting purposes
- h Preparation or preservation holding time was exceeded

Page 90 of 112 SDG: 591891

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 17 of 17

-Parmname NOM Sample Qual \mathbf{QC} Units RPD% REC% Range Anlst Date Time

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

Workorder:

591783

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

[^] The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where the duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

^{*} Indicates that a Quality Control parameter was not within specifications.

Technical Case Narrative Georgia Power Company SDG #: 591891

Metals

<u>Product:</u> Determination of Metals by ICP-MS <u>Analytical Method:</u> SW846 3005A/6020B <u>Analytical Procedure:</u> GL-MA-E-014 REV# 35

Analytical Batch: 2312380

Preparation Method: SW846 3005A

Preparation Procedure: GL-MA-E-006 REV# 14

Preparation Batch: 2312379

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
591891001	GWC-1
591891002	GWC-2
591891003	GWC-9
591891004	GWC-16
591891005	MW-24D
591891006	FD-03
591891007	EB-03
591891008	FB-06
1205182698	Method Blank (MB)ICP-MS
1205182699	Laboratory Control Sample (LCS)
1205182702	591881001(NonSDGL) Serial Dilution (SD)
1205182700	591881001(NonSDGS) Matrix Spike (MS)
1205182701	591881001(NonSDGSD) Matrix Spike Duplicate (MSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Calibration Information

ICSA/ICSAB Statement

For the ICP-MS analysis, the ICSA solution contains analyte concentrations which are verified trace impurities indigenous to the purchased standard.

Technical Information

Sample Dilutions

Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range. Samples 591891001 (GWC-1) and 591891004

(GWC-16) were diluted to ensure that the analyte concentrations were within the linear calibration range of the instrument.

Amalauta	591891							
Analyte	001	004						
Boron	10X	100X						
Calcium	1X	10X						

Product: Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer

Analytical Method: SW846 7470A

Analytical Procedure: GL-MA-E-010 REV# 38

Analytical Batch: 2312733

Preparation Method: SW846 7470A Prep

Preparation Procedure: GL-MA-E-010 REV# 38

Preparation Batch: 2312730

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
591891001	GWC-1
591891002	GWC-2
591891003	GWC-9
591891004	GWC-16
591891005	MW-24D
591891006	FD-03
591891007	EB-03
591891008	FB-06
1205183553	Method Blank (MB)CVAA
1205183554	Laboratory Control Sample (LCS)
1205183557	591729001(NonSDGL) Serial Dilution (SD)
1205183555	591729001(NonSDGD) Sample Duplicate (DUP)
1205183556	591729001(NonSDGS) Matrix Spike (MS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

General Chemistry

Product: Ion Chromatography Analytical Method: EPA 300.0

Analytical Procedure: GL-GC-E-086 REV# 30

Analytical Batch: 2312366

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
591891001	GWC-1
591891002	GWC-2
591891003	GWC-9
591891004	GWC-16
591891005	MW-24D
591891006	FD-03
591891007	EB-03
591891008	FB-06
1205182661	Method Blank (MB)
1205182662	Laboratory Control Sample (LCS)
1205182663	591867001(NonSDG) Sample Duplicate (DUP)
1205182664	591867001(NonSDG) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Matrix Spike (MS)/Post Spike (PS) Recovery Statement

The percent recoveries (%R) obtained from the spike analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. The matrix spike recovered outside of the established acceptance limits due to matrix interference and/or non-homogeneity.

Analyte	Sample	Value
Chloride	1205182664 (Non SDG 591867001PS)	129* (90%-110%)
Fluoride	1205182664 (Non SDG 591867001PS)	139* (90%-110%)
Sulfate	1205182664 (Non SDG 591867001PS)	155* (90%-110%)

Duplicate Relative Percent Difference (RPD) Statement

The Relative Percent Difference (RPD) between the sample and duplicate falls outside of the established acceptance limits because of the heterogeneous matrix of the sample:

Analyte	Sample	Value		
Fluoride	1205182663 (Non SDG 591867001DUP)	abs(.242367)* (+/1 mg/L)		

Technical Information

Sample Dilutions

The following samples 1205182663 (Non SDG 591867001DUP), 1205182664 (Non SDG 591867001PS), 591891001 (GWC-1), 591891003 (GWC-9) and 591891004 (GWC-16) were diluted because target analyte concentrations exceeded the calibration range. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

A 14 -	591891				
Analyte	001	003	004		
Chloride	1X	5X	100X		
Sulfate	10X	5X	100X		

Product: Solids, Total Dissolved Analytical Method: SM 2540C

Analytical Procedure: GL-GC-E-001 REV# 19

Analytical Batch: 2313724

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
591891001	GWC-1
591891002	GWC-2
591891003	GWC-9
591891004	GWC-16
591891005	MW-24D
591891006	FD-03
591891007	EB-03
591891008	FB-06
1205185479	Method Blank (MB)
1205185480	Laboratory Control Sample (LCS)
1205185481	591879005(NonSDG) Sample Duplicate (DUP)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Duplicate Relative Percent Difference (RPD) Statement

The Relative Percent Difference (RPD) between the sample and duplicate falls outside of the established acceptance limits because of the heterogeneous matrix of the sample:

Analyte	Sample	Value
Total Dissolved Solids	1205185481 (Non SDG 591879005DUP)	10.7* (0%-5%)

Miscellaneous Information

Additional Comments

Sample filtration took > 10 minutes; therefore as prescribed in the method, a reduced aliquot was used. 1205185481 (Non SDG 591879005DUP).

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the

requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Technical Case Narrative Georgia Power Company SDG #: 591783

Metals

<u>Product:</u> Determination of Metals by ICP-MS <u>Analytical Method:</u> SW846 3005A/6020B <u>Analytical Procedure:</u> GL-MA-E-014 REV# 35

Analytical Batch: 2311609

Preparation Method: SW846 3005A

Preparation Procedure: GL-MA-E-006 REV# 14

Preparation Batch: 2311608

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
591783001	GWC-12
591783002	GWC-13
591783003	GWC-14
591783004	GWC-20
591783005	GWC-21
591783006	MW-25D
591783007	FD-02
591783008	EB-01
591783009	GWC-11
591783010	MW-23D
591783011	GWA-8
591783012	GWA-7
591783013	GWB-6R
591783014	FD-01
591783015	GWB-5R
591783016	FB-04
591783017	GWB-4R
591783018	GWC-17
591783019	GWC-22
591783020	EB-02
1205181381	Method Blank (MB)ICP-MS
1205181382	Laboratory Control Sample (LCS)
1205181385	591783001(GWC-12L) Serial Dilution (SD)
1205181383	591783001(GWC-12S) Matrix Spike (MS)
1205181384	591783001(GWC-12SD) Matrix Spike Duplicate (MSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Calibration Information

ICSA/ICSAB Statement

For the ICP-MS analysis, the ICSA solution contains analyte concentrations which are verified trace impurities indigenous to the purchased standard.

Technical Information

Sample Dilutions

Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range. Samples 591783001 (GWC-12), 591783002 (GWC-13), 591783003 (GWC-14), 591783004 (GWC-20), 591783005 (GWC-21), 591783007 (FD-02), 591783009 (GWC-11), 591783012 (GWA-7), 591783013 (GWB-6R), 591783014 (FD-01), 591783015 (GWB-5R), 591783017 (GWB-4R), 591783018 (GWC-17) and 591783019 (GWC-22) were diluted to ensure that the analyte concentrations were within the linear calibration range of the instrument.

Amalysta					591	783				
Analyte	001	002	003	004	005	007	009	012	013	014
Boron	50X	5X	1X	50X	50X	5X	20X	50X	50X	5X
Calcium	50X	1X	10X	50X	50X	1X	20X	1X	50X	1X

A 14 -	591783				
Analyte	015	017	018	019	
Boron	50X	50X	50X	5X	
Calcium	50X	50X	50X	1X	

Product: Determination of Metals by ICP-MS Analytical Method: SW846 3005A/6020B **Analytical Procedure:** GL-MA-E-014 REV# 35

Analytical Batch: 2311611

Preparation Method: SW846 3005A

Preparation Procedure: GL-MA-E-006 REV# 14

Preparation Batch: 2311610

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
591783021	FB-05
591783022	GWC-15
591783023	GWA-7
1205181386	Method Blank (MB) ICP-MS
1205181387	Laboratory Control Sample (LCS)
1205181390	591783022(GWC-15L) Serial Dilution (SD)
1205181388	591783022(GWC-15S) Matrix Spike (MS)
1205181389	591783022(GWC-15SD) Matrix Spike Duplicate (MSD)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Calibration Information

ICSA/ICSAB Statement

For the ICP-MS analysis, the ICSA solution contains analyte concentrations which are verified trace impurities indigenous to the purchased standard.

Technical Information

Sample Dilutions

Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range. Samples were diluted to ensure that the analyte concentrations were within the linear calibration range of the instrument.

Amalasta	591783			
Analyte	022	023		
Boron	10X	100X		
Calcium	10X	1X		

Product: Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer

Analytical Method: SW846 7470A

Analytical Procedure: GL-MA-E-010 REV# 38

Analytical Batch: 2312729

Preparation Method: SW846 7470A Prep

Preparation Procedure: GL-MA-E-010 REV# 38

Preparation Batch: 2312726

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
591783001	GWC-12
591783002	GWC-13
591783003	GWC-14
591783004	GWC-20
591783005	GWC-21
591783006	MW-25D
591783007	FD-02
591783008	EB-01
591783009	GWC-11
591783010	MW-23D
591783011	GWA-8
591783012	GWA-7
591783013	GWB-6R
591783014	FD-01
591783015	GWB-5R

591783016	FB-04
591783017	GWB-4R
591783018	GWC-17
591783019	GWC-22
591783020	EB-02
1205183532	Method Blank (MB)CVAA
1205183533	Laboratory Control Sample (LCS)
1205183536	591783001(GWC-12L) Serial Dilution (SD)
1205183534	591783001(GWC-12D) Sample Duplicate (DUP)
1205183535	591783001(GWC-12S) Matrix Spike (MS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer

Analytical Method: SW846 7470A

Analytical Procedure: GL-MA-E-010 REV# 38

Analytical Batch: 2312733

Preparation Method: SW846 7470A Prep

Preparation Procedure: GL-MA-E-010 REV# 38

Preparation Batch: 2312730

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
591783021	FB-05
591783022	GWC-15
591783023	GWA-7
1205183553	Method Blank (MB)CVAA
1205183554	Laboratory Control Sample (LCS)
1205183557	591729001(NonSDGL) Serial Dilution (SD)
1205183555	591729001(NonSDGD) Sample Duplicate (DUP)
1205183556	591729001(NonSDGS) Matrix Spike (MS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

General Chemistry

Product: Ion Chromatography

Page 100 of 112 SDG: 591891

Analytical Method: EPA 300.0

Analytical Procedure: GL-GC-E-086 REV# 30

Analytical Batch: 2311815

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
591783001	GWC-12
591783002	GWC-13
591783003	GWC-14
591783004	GWC-20
591783005	GWC-21
591783006	MW-25D
591783007	FD-02
591783008	EB-01
591783009	GWC-11
591783010	MW-23D
591783011	GWA-8
591783012	GWA-7
591783013	GWB-6R
591783014	FD-01
1205181698	Method Blank (MB)
1205181699	Laboratory Control Sample (LCS)
1205181700	591783001(GWC-12) Sample Duplicate (DUP)
1205181701	591783001(GWC-12) Post Spike (PS)
1205181702	591783013(GWB-6R) Sample Duplicate (DUP)
1205181703	591783013(GWB-6R) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Sample Dilutions

The following samples 1205181700 (GWC-12DUP), 1205181701 (GWC-12PS), 1205181702 (GWB-6RDUP), 1205181703 (GWB-6RPS), 591783001 (GWC-12), 591783002 (GWC-13), 591783003 (GWC-14), 591783004 (GWC-20), 591783005 (GWC-21), 591783007 (FD-02), 591783009 (GWC-11), 591783010 (MW-23D), 591783011 (GWA-8), 591783012 (GWA-7), 591783013 (GWB-6R) and 591783014 (FD-01) were diluted because target analyte concentrations exceeded the calibration range. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

A 1					591	783				
Analyte	001	002	003	004	005	007	009	010	011	012
Chloride	40X	1X	40X	50X	40X	1X	50X	1X	5X	20X
Sulfate	40X	2X	40X	50X	40X	2X	50X	5X	5X	1X

Analyte	5917	783
Analyte	013	014
Chloride	100X	5X

Product: Ion Chromatography Analytical Method: EPA 300.0

Analytical Procedure: GL-GC-E-086 REV# 30

Analytical Batch: 2311967

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
591783015	GWB-5R
591783016	FB-04
591783017	GWB-4R
591783018	GWC-17
591783019	GWC-22
591783020	EB-02
591783021	FB-05
591783022	GWC-15
1205181986	Method Blank (MB)
1205181987	Laboratory Control Sample (LCS)
1205181988	591783015(GWB-5R) Sample Duplicate (DUP)
1205181989	591783015(GWB-5R) Post Spike (PS)
1205181990	591798017(NonSDG) Sample Duplicate (DUP)
1205181991	591798017(NonSDG) Post Spike (PS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Sample Dilutions

The following samples 1205181988 (GWB-5RDUP), 1205181989 (GWB-5RPS), 1205181990 (Non SDG 591798017DUP), 1205181991 (Non SDG 591798017PS), 591783015 (GWB-5R), 591783017 (GWB-4R), 591783018 (GWC-17), 591783019 (GWC-22) and 591783022 (GWC-15) were diluted because target analyte concentrations exceeded the calibration range. Dilutions may be required for many reasons, including to minimize matrix interferences or to bring over range target analyte concentrations into the linear calibration range.

A 1t -		5	91783		
Analyte	015	017	018	019	022
Chloride	100X	100X	200X	10X	1X
Sulfate	100X	100X	200X	10X	10X

Product: Solids, Total Dissolved

Analytical Method: SM 2540C

Analytical Procedure: GL-GC-E-001 REV# 19

Analytical Batch: 2311939

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
591783001	GWC-12
591783002	GWC-13
591783003	GWC-14
1205181925	Method Blank (MB)
1205181926	Laboratory Control Sample (LCS)
1205181929	591692001(NonSDG) Sample Duplicate (DUP)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: Solids, Total Dissolved Analytical Method: SM 2540C

Analytical Procedure: GL-GC-E-001 REV# 19

Analytical Batch: 2311940

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
591783004	GWC-20
591783005	GWC-21
591783006	MW-25D
591783007	FD-02
591783008	EB-01
591783009	GWC-11
591783010	MW-23D
591783011	GWA-8
591783012	GWA-7
591783013	GWB-6R
591783014	FD-01
591783015	GWB-5R
591783016	FB-04
591783017	GWB-4R
591783018	GWC-17
591783019	GWC-22
591783020	EB-02
591783021	FB-05
591783022	GWC-15
1205181930	Method Blank (MB)
1205181931	Laboratory Control Sample (LCS)
1205181932	591783004(GWC-20) Sample Duplicate (DUP)
1205181933	591783018(GWC-17) Sample Duplicate (DUP)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 104 of 112 SDG: 591891

Project #	168165	1 L		ADOFATORIES LLC	Chemistry Badiochemistry Badiophassay Speciatry Analytics	LLC	Special	v Analytic	S		2040 Savage Road Charleston, SC 29407	ge Road SC 29407	
COC Number (1).	591893	Chai	n of Cu	stody an	Chain of Custody and Analytical Request	al Red	uest		2		Phone: (84	Phone: (843) 556-8171	
O Number:	GEL Work Order Number:			GEL Proje	GEL Project Manager: Erin Trent	:: Erin T	rent				Fax: (843) 766-1178	766-1178	
Client Name: GA Power		Phone # 40	404-506-7116	9		Sa	mple A	nalysi	Requ	Sample Analysis Requested ⁽⁵⁾ (Fill i	n the number	(Fill in the number of containers for each test)	each test)
roject/Site Name: Plant Kraft - Grumman Road Landfill		Fax#			Shoul	1200	S.	IN	IN	IN		J	< Preservative Type (6)
Address: 241 Ralph McGill Blvd SE, Atlanta GA 30308	A 30308				samı	sample be considered:	SECTION .	J0	*				
Collected By: Jaylor Con ble	Send Results To: SCS & ACC Conta	CC Contacts	80				Editor I	3M 254	Metals			ž	Comments Note: extra sample is
$ $ Sample ID * For composites - indicate start and stop date/time	*Date Collected te/time (mm-dd-yy)	*Time Collected (Military) (hhmm)	QC Code ⁽³⁾ Fil	Field Sample Filtered (3) Matrix (4)	Radioactive yes, please su isotopic info.)	o nwonX (7) ssrible Hazi	Total numbe	EPA 300,	EPA 6020 Dissolved	2 muibsЯ SW-846 9		P1	required for sample specific QC
GWC-1	09-01-22	1319	N D	WG			9	7		/		= Hd blei	H= 5.50
G-WC-2	09-01-12	1425	5	J WG	,h		e	1		/		Hd field pH	H= -4,73
GMC-9	09-01-22	0924	S	N WG	, h		9)	_	7		= Hd bleid	H= 4,60
GWC-16	09-01-22	1046	3	N NG	, 5		9	1		>		= Hd bleid	H= 5,37
CHZ-MM	09-01-22	1159	5	IN ING	b		9)	,	7		Hd field pH	80.9 =H
FD-03	09-01-77	-	9	N MG	7		9	1		`		field pH	H = H
10000	09-01-22	1400	9	DM N			100	/		\		Hq bləfi	H =
FB-06	22-10-60	1030	5	N WO	Ø		9	1		7		field pH	H =
												field pH	H =
												field pH	H =
	Chain of Custody Signatures					TA	TAT Requested:	ested:	Normal:	l: x Rush:	Specify:		(Subject to Surcharge)
Relinquished By (Signed) Date Tir	Time Received by (signed)		Date	Time		Fax Results: [] Yes	ults: [[x] No				
Tarker Holl, 9:2.22 O	0822 1 KOND	Jak 0	2.6	3 22.	228	Select Deliverable: [] C of A	eliverab	le: [] ([] QC Summary	y [] level 1	[x] Level 2	[] Level 3 [] Level 4
11 wold on 2.22	1015 277		9/2/	10/ 11	15	Additional Remarks:	al Rema	ırks:	* Me	als: B,Ca,Sb,As,	Ba,Be,Cd,Cr,C	* Metals: B,Ca,Sb,As,Ba,Be,Cd,Cr,Co,Pb,Li,Mo,Se,Tl,V,Zn,Hg	Zn,Hg
) E				,	For Lab	Receiv	ing Use	Only:	For Lab Receiving Use Only: Custody Seal Intact? [] Yes	tact? [] Yes	[] No Cooler Temp:	Temp: °C
For sample shipping and delivery details, see Sample Receipt & Review form (SRR.)	Sample Receipt & Review form	(SRR.)			Sample	Collection	Time .	Zone:	x] East	Sample Collection Time Zone: [x] Eastern [] Pacific [] Central	c [] Central	[] Mountain	[] Other:
Cream or Custody National – Cutent Determined OC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicate, EB = Equipment Blank, MS = Matrix Spike Sample, MSD = Matrix Spike Duplicate Sample, G = Grab, C = Composite	Field Duplicate, $\mathbf{E}\mathbf{B} = \mathbf{E}\mathbf{q}$ uipment Blank,	MS = Matrix Sp	iike Sample,	MSD = Matrix	. Spike Duplicat	e Sample, G	= Grab,	C = Comp	osite				
.) Field Filtered: For liquid matrices, indicate with a - Y - for yes the sample was field filtered or - N - for sample was not field filtered.	r yes the sample was field filtered or - N -	for sample was	not field filte	red.	=Cludae WO=	Water Ouel	ity Contro	I Matrix					
.) Matrix Codes, W.BDrinking water, W.GOroundwater, W.SDurlace water, W.P. Washe water, W.B. Leadnard, S.B. Sunge, W.G. Brands. M. S. Sunge, W.G. Water, W.B. Sample Analysis Requested: Analytical method requested (i.e. 8260B, 6010B/7470A) and number of containers provided for each (i.e. 8260B - 3, 6010B/7470A - 1).	(i.e. 8260B, 6010B/7470A) and number of	of containers pro	vided for each	th (i.e. 8260B	-3, 6010B/747t	74 - 1).	í						
) Preservative Type: HA = Hydrochloric Acid, NI = Nitric Acid, SH = Sodium Hydroxide, SA = Sulfuric Acid, AA = Ascorbic Acid, HX = Hexane, ST = Sodium Thiosulfate, If no preservative is added = leave field blank	Acid, SH = Sodium Hydroxide, SA = Sulfi	uric Acid, AA =	Ascorbic Ac	id, HX = Hex	me, ST = Sodiu	m Thiosulfa	te, If no p	reservativ	e is added	= leave field blank			
KNOWN OR POSSIBLE HAZARDS	Characteristic Hazards FL = Flammable/Ignitable	Listed Waste LW= Listed V	Listed Waste LW= Listed Waste			Other OT= Other / Unknown	ner / Un	known	7			Please provide any additional det below regarding handling and/or	Please provide any additional details below regarding handling and/or
CCRA Metals s = Arsenic Hg= Mercury a = Barium Se= Selenium	CO = Corrosive RE = Reactive	(F,K,P and U-l Waste code(s):	nd U-liste ode(s):	(F,K,P and U-listed wastes.) Waste code(s):		(i.e.: High/low pH, asbest misc. health hazards, etc.) Description:	th/low p alth haz ion:	H, asbe ards, et	stos, be	(i.e.: High/low pH, asbestos, beryllium, irritants, other misc. health hazards, etc.) Description:	s, other	disposal concerns. (i.e.: Origin of sample(s), type of site collected fromatrices, etc.)	disposal concerns. (i.e.: Origin of sample(s), type of site collected from, odd matrices, etc.)
'd = Cadmium Ag= Silver 'cr = Chromium MR= Misc. RCRA metals	TSCA Regulated PCB = Polychlorinated) j	***							
P = 1 200	Linkamila												

GEL	Laboratories LLC
-----	------------------

SAMPLE RECEIPT & REVIEW FORM Client: (🧠 SDG/AR/COC/Work Order: Date Received: 9/2/2 Z Received By: Circle Applicable: RedEx Express FedEx Ground UPS Field Services Courier Other Carrier and Tracking Number Suspected Hazard Information ž *If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation. Hazard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes No A)Shipped as a DOT Hazardous? B) Did the client designate the samples are to be COC notation or radioactive stickers on containers equal client designation. received as radioactive? Maximum Net Counts Observed* (Observed Counts - Area Background Counts): ____ C) Did the RSO classify the samples as Classified as: Rad 1 Rad 2 Rad 3 radioactive? COC notation or hazard labels on containers equal client designation. D) Did the client designate samples are hazardous? If D or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium E) Did the RSO identify possible hazards? K K Sample Receipt Criteria Comments/Qualifiers (Required for Non-Conforming Items) Circle Applicable: Seals broken Damaged container Leaking container Other (describe) Shipping containers received intact and Circle Applicable: Client contacted and provided COC Chain of custody documents included 2 with shipment? Preservation Method Wet Ico Ice Packs Dry ice None Other: Samples requiring cold preservation *all temperatures are recorded in Celsius TEMP: within $(0 \le 6 \text{ deg. C})$?* Temperature Device Serial #: 1/2 3 - 2/ Daily check performed and passed on IR Secondary Temperature Device Serial # (If Applicable): temperature gun? Circle Applicable: Seals broken Damaged container Leaking container Other (describe) Sample containers intact and sealed? Sample ID's and Containers Affected: Samples requiring chemical preservation at proper pH? If Preservation added, Lot#: If Yes, are Encores or Soil Kits present for solids? Yes__No_ NA_ (If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? Yes___ No__ NA__ (If unknown, select No) Do any samples require Volatile Are liquid VOA vials free of headspace? Yes No NA Analysis? Sample ID's and containers affected: ID's and tests affected: 8 Samples received within holding time? ID's and containers affected: Sample ID's on COC match ID's on bottles? Circle Applicable: No dates on containers No times on containers COC missing info Other (describe) Date & time on COC match date & time on bottles? Circle Applicable: No container count on COC Other (describe) Number of containers received match number indicated on COC? Are sample containers identifiable as GEL provided by use of GEL labels? COC form is properly signed in Circle Applicable: Not relinquished Other (describe) relinquished/received sections? Comments (Use Continuation Form if needed):

PM (or PMA) review: Initials

7 01	- Control										GEL Laboratories, 1.1 C	ories, LLC		
#1		in T		bora	Laboratoriesuc	CHC					2040 Savage Road	Road		
GEL Quote #:	707707	gel.com		stry I Radio	themistry I Re	lictioassay	I Specially	Anelytics			Charleston, SC 29407	C 29407		
COC Number (1).	571185		of Cus	fody ar	Chain of Custody and Analytical Request	22 Pe	luest				Phone: (843) 556-8171	556-8171		
PO Number:	GEL Work Order Number:	Ŀ		EL Pro	GEL Project Manager: Erin Trent	r: Erin	Trent				Fax: (843) 766-1178	6-1178		
Client Name; GA Power		Phone # 404-506-7116	506-711			Ö	Sample Analysis Requested	alysis R	quested	(Fill in t	in the number of containers for each test)	containers	for each test)	
Project/Site Name: Plant Kraft - Grumman Road Landfill	d Landfill	Fax#	i		Shot	Should this	8.4	IN	IN IN				Preservative Type (6)	(ype (6)
Address: 241 Ralph McGill Blvd SE, Atlanta GA 30308	A 30308				COUS	sumple be considered:		Œ	81				,	
Collected By: Taylor Golyle / Shuffle Send Results		To: SCS & ACC Contacts			TI) (IL	r Page	sar, Fo	^ sin 0105 ,EI	39 97 30 97 31				Comments Note: extra sample is	ts nple is
Sample ID * For composites - indicate stert and stop date time	*Date Collected	Time Collected (Muliary)	QC Field Code ® Fillered	Feld Sur	Sample Sa	o nwan'il (Y) isylf oldierod	Color minube Cl. P. Sc	EPA 6020	687lessi(1 0500 A98 5 miniba9 6 088.972			, , , , , , , , , , , , , , , , , , , ,	required for sample specific QC	ample C
GWC-12	8		_z	WG			, <u>o</u>	7)			fie	field pH = 3.9%	
GMC-13	08-31-22	ion (()	N WE	6		7	7	<u> </u>			fie	field pH ード.TC	
GNC-14	04-30-22	1157	6	N MG	Ģ		6	7	/				field pH = 5.もい	Α.
GMC-20	08-30-22	1323 (N WG	<u>ر</u> لي		<u>e</u> ,	7	\			FE	field pH = し、O	F-m-
GWC-21	08-30-22	17.25 ((h	N WG	رلى		5	Ź	-			33	field p.H = 5.7 C	q
MW-250	105-31-22	1158	_ _	Al MG	رۍ دل		6	$\frac{1}{2}$				fiel	field pH = Co. 2	0-
FD-02	08-31-22			N ING	رام		6	7	7			[Fe]	field pH =	
10-83	08-30-22	1630		P/ P/C	13		6	7	7			fiel	field pH =	
J-7M-5)	03-31-22	15七	<u> </u>	MN	MG		6. 1	7	7			frei	广	IJ
MW-230	22-25	Ž,	 ك	3	ي کي	*: : : 0 -	6 7	<u>\</u>	7			E	Sed pH = (5.0%	e).
y	Chain of Custody Signatures				!	¥	TAT Requested:		Normal: x	Rush:	Specify:		(Subject to Surcharge)	ಚಿಗ್ದಾರ)
Refinquished By (Signed) Date Tri	Time Received by (signed)	nec) Date		Time		Fax Results:	ults: [] Yes	res [x] No	Ν̈́o					
1 Touthon That 9-1-22 C	2x40 1/2/2	Link	δ	. ا. ئ	840	Select [eliverable	:[]Cof	A [] (X	Select Deliverable: [Cof A QC Summary level 1		[x] Level 2 [] Level 3		[]Level4
2 11.9 1 1 25.1.22	105Sb/04	<u> </u>	91	27	1055	Addition	Additional Remarks:		Metale: B.	a,Sb,As.Ba,	* Merile: B.Ca,Sb,As,Ba,Bc,Cd,Cr,Co,Pb,Li,Mo,Sc,Tl,V,Zn,He	b.Li,Ma,Sc,T.	V,Zn.He	
3	[3		•		`	For Lai	Receivin	g Use On	y: Castoc	y Seal Intac	For Lab Receiving Use Only: Custody Seal Intact? [] Yes [] No		Cooler Temp:	ر
> For sample shipping and delivery details, see Sample Receipt	Sample Receipt & Review form (SRR)	(SRR)			Sample	Collectio	Sample Collection Time Zone: [x] Eastern	ne: [x] !		[] Pacific	[] Central	[] Mountain	[] Other:	
1.) Clain of Custody Number # Client Determined														-
(2.) QC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicate, EB =	Fied Dapicate, EB = Equipmen Blank, MS=Matrix Spike Sample, MSD=Matrix Spike Dapicate Sample, G = Grab, C = Composite	MS = Marrix Spik	e Sample, P	(SD = Marr	x Spike Duplica	te Sampie, (7 = Grab, C	= Composit						
3.) Field Filtered: For liquid marrices, indicate with a Y - for yes the sample was field filtered or - N - for sample was not field liltered.	r yes the sample was field filtered or – N –	for sample was no	t field filter	'ni										
1) Marix Codex, WD=Drinking Waret, WG=Groundwalet, WS=Surface Water, WW=Water, WL=Leachard, SO=Soff, SE=Soffment, SL=Skuige, WQ=Water Quality Coarrol Marrix	WS=Surface Water, WW=Waste Water,	WL=Leachate, SC	⊫Soit, St©	Sediment, S	L=Sludge, WQ	-Water Qua	fity Coarrol i	Kafris						
5.) Sample Analysis Requested: Analytical method requested (i.e. \$240B, 6810BFA7DA) and number of countineers provided for each (i.e. \$240B - 3, 4910BFA7DA - 1).	(i.e. \$260B, 6810B/7470A) and number	oľ contrinces prová	ded for each	1 (i.e. 8260B	-3, 6010B/747	11 - KO								
6.) Presentative Type: IIA = Fivefrochicaic Acid, NI = Nitaic Acid, SKI = Sociam Protrovide, SA = Sulfaric Acid, AA = Ascorbic Acid, IKN = Hexare, ST = Sociam Thinsulface, If no presentative is added = teare field blank	Acid. SH = Sodium Hydroxide. SA = Sulf	iońc Acid. AA = A	scortic Aci	d, IEX = Her	ane, ST = Sodi	m Tainsalf	ic, if no pre	ervative is a	ided = leave	ield blank				
7.) KNOWN OR POSSIBLE HAZARDS	Characteristic Hazards	Listed Waste	iste d'Marto			Other	Other OT= Other (The Impage	, sign			H. J.	ease provide	Please provide any additional details	rails
RCRA Metals	CO = Corresive	(F,K,P and U-listed wastes.)	J. U. Lister	(wartes,)		(Le.: H)	Hq wolley	, asbestos	beryllin	(i.e.: Highlow pH, asbestos, beryllium, irritants, other		posal conce	disposal concerns. (i.e.: Origin of	
As = Arsenic Hg= Mercury Ba = Bariam Se= Selenium	RE = Reactive	Waste code(s):	; (S):			misc. health Description:	misc, health hazards, etc.) Description:	ds, etc.)			es am	sample(s), ripe matrices, etc.)	sample(s), 17pe of site collected from, odd matrices, etc.)	om, odd
	TSCA Regulated				1	•								
Cr = Chromium MR=: MISC. RCRA metals [Ph = Lend	PCB = Polychiornated binhenvis												-	

Page: 2 of 5			I	1 2	17.0							GELL	GEL Laboratories, ULC	חכ		
Project #							Count	the first	Š			4 0 10 10 10 10 10 10 10 10 10 10 10 10 1	ZU40 Savage Kond Charleston SC 29407	707		
GEL Quote #:		Chal	of S	nsny i naso Istody ai	Secon Current Pageochemins 1 recommend 1 recommend Chain of Custody and Analytical Request	ical Re	quest	ing count	3			Phone:	Phone: (843) 556-8171	171		
PO Number:	rder Number			GEL Pro	GEL Project Manager: Erin Trent	er: Erin	Trent	1				Fax: (8	Fax: (843) 766-1178	Ş		
Client Name: GA Power		Phone # 404-506-7116	4-506-71	16		ά	ample	Analy	sīs Re	Sample Analysis Requested 191		n the nun	ber of cont	(Fill in the number of containers for each test)	ch test)	
Project/Site Name. Plant Kraft - Grumman Road Landfill		Fax#			Sho	Should this	1.2		IN	IN IN				4	< Preservative Type (6)	_
Address: 241 Ralph McGill Blvd SE, Atlanta GA 30308					Tes H	sample be considered:	əninti			87 CIO					į	
Collected By: Jodlo- Prost-v M. (12) & Send Results	estults To: SCS & ACC Contacts	CC Contac	n			,	r of con	PSZ [VS		50 % 5: 11' 6010				Note	Comments Note: extra sample is	.20
Sample ID	- 2	"Time Collected (Wilitery)	8	Field S2	ndtonetive e, please su	(ofni algota ta nyantel (anit ofdizzo	odazun lata	EbV 300'	Dissolved	6 918-448 1 Jenipey 1 Jenipey				par par	required for sample specific QC	6)
* For composites - indicate start and stap date time $\int_{-\infty}^{\infty} \frac{dx}{dx} = -\frac{1}{2}$	(mm-dd-yv) 08/20/27	(Jahanan)	3 8 5 6 7	Code 1 Filtered 1 Marm	M M	()	1. ~0	>	>	1>				field pH =	= 4,58	
ナーサベジ	22/30/22	0835		\	2/2		4	>	7	7				Field pii	= 5.48	
6-13-62	22/08/89	1651	0	5	9 %		3	>	2	7				field pH=	755,5	
FD-61	22/04/40		19	3	Ø 3		6	7	7	7				field pH=	= N/A -	
6×3-52	20/08/39	02.H	છ	A A	w 6		9	~	>	>				field pH=	- 5.2 <u>7</u>	
T20-62	08/30/22	Oaki	S	m A	Ø a.		8	7	7	7				field pH	- 1/4 =	,
12 B-22	45/30/22	1530	2)	3	WG.		9	1	>	<u> </u>				Reld pH =	1 24 S.	0
クシント	72/16/99	135	S	3	w G		9	>		<u> </u>				field pH	= 4.33	<u>~</u> 29
22-7/15	22/13/25	(382)	v	3	26		9	7	7	7				field pH ==	= 4.60	
£8-02	08(31/22	1:05	Ü	3	ξŌ		2	7	7	7				field pH =	- W/H -	
	Chain of Custody Signatures	:				Ť	TAT Requested:	nested		Normal: X	Rush:		Specify:	(Sub)	(Subject to Surcharge)	
Refinquished By (Signed) Date Time	Received by (signed)		Date	Тяпе	1	Fax Re	Fax Results: 1 Yes	1 Yes	[x] No	ζū						
1 Tay of 12 9-1-23 0640	1 1/2007	ナイ	9.	22.	840	Select	Deliver	able:	Cof.	A [10	C Summe	بر [] ا ه	el [x] L	Select Deliverable: [] C of A [] QC Summary [] level [[x] Level 2 [] Level 3	evel 3 [] Level 4	늄
9.1.22 10	SS 2 And	11	AL L	刘九二小	10 65	Additie	Additional Remarks.	norks:	*	Metals:	Ca.Sh.As	Ba, Be.Cd.	r,Co.Pb.Li	* Metals: B.Ca.Sb.4s.Ba.Be.Cd.Cr.Co.Pb.Li.Mo.Se.ThV.Za.Hg	Æ	
3	3	,				For La	th Rece	iving U	se On!	r. Cruste	dy Seal II	For Lab Receiving Use Only: Custody Seal Intact? [] Yes		Cooler Temp:	mp: °C	
> For sample shipping and delivery details, see Sample Receipt	eceipt & Review form (SRR.)	(SRR)			Sampl	Sample Collection Time Zone. [X] Eastern	on Tim	Zone	NE	astem	[]Pacif	[] Pacific [] Central		[] Mountain []Other.] Other.	
1.) Chain of Custody Number = Cheat Determined																
 QC Codes: N = Normal Sample, TB = Trip Black, FD = Field Daplicare, EB = 	r., EB = Equipment Blank, MS = Marth Spike Sargie, MSD = Matrix Spike Duplicate Sumple, G = Grab, C = Composite	MS = Macrix 2	pike Sampi	e, MSD = Ma	rix Spike Dupli	ante Sumple,	e G≡	Ŭ U V	mposite							
3.) Field Filtered: For liquid matrices, indicate with a – Y – for yes the sample was field filtered	he was field filtered or - N -	for straple wa	nor field fi	kered.												
4) Marin Codes. WD=Dhinking Water, WG=Groundwater, WS-Sorface Water, WYF=Water Water, WL-Leaduito, SO=Soil, ST=Soifment, SL=Sludge, WQ=Water Quality Control Matrix	Water, WW=Waste Water,	Wertestiate	SO=Soll	SE=Sediment,	SL=Sludge, W	Q=Vater Q	zafay Con	troi Mats	. <u>×</u>							
[5] Sample Analysis Requested: Attalytical method requested (i.e. \$2008, 60108/74/0A) and number of containers provided for each (i.e. 82/0H) - 3, 6010H 74/0A - 1).	5010B/7470A) and number	of containers p	ovided for	ench (i.e. 1726)	B - 3, 6010R 7.	1704 - 13.										
Nitric Aci	odium Hydroxide, SA = Sull	ŝnic Acid, Ast	= Ascorbic	Acid, BX = H	extine, ST = So	from Thiosa	fate, If n	ineservi	ifive is an	Hed = len	e field blank				,	
DR POSSIBLE HAZARDS	Characteristic Hazards FL = Flammable/Ignitable	Listed Waste LW=Listed W	Listed Waste LW=Listed Waste	ste	_ [OT=0	Other OT= Other / Unknown	Juknow		hamilia	Other OT= Other / Unknown A - Hishilm all achaetes handlinn instants other	r orbot	Please below	provide any regarding ha of comprus.	Please provide any additional details below regarding handling and/or discoved converse. (1822 Ortoin of	
	CU = Concesse RE = Reactive	Waste.	(r.A.,r ana U-u Waste code(s):	(r.s., r am U-usiea wasies.) Wasie code(s):		misc.	misc. health hazards. etc.)	ands.	etc.)		<u> </u>		sample	(s). type of st	sample(s), type of site collected from, odd	pag.
Se= Selenium	Darmforted				1	Description:	ption:						matrici	matrices, etc.)		
Cr = Chromium Ag= Silver Cr = Chromium MR= Misc. RCRA metals PCB = 1	PCB = Polychlorinated															
Pb = Lead	biphenyis															
													-			

							l						
Page: 3 of 3		***********							E E	GEL Laboratories, LLC	ies, LLC		
Project #									2040	2048 Savage Road	oad		
GEL Quote#:	zorjaŭ	m Chemistry I Radiochemistry i Radiobioossay i Specially Analytics	chemistry Pac	Nobioassny (S	pecialty	Amatytic			Charl	Charleston, SC 29407	29407		
T (4).		Chain of Custody and Analytical Request	nd Analyti	cal Kedue	Si				Phone	Phone; (843) 556-8171	56-8171		
PO Number: GEL Work	Order Number	GET Pro	GEL Project Manager: Erin Irent	r: Erin Ire	nt				Fav: (Fax: (\$43) 766-1178	-1178		
Client Name; GA Power	Phone # 40	Phone # 404-506-7116		Sam	ple At	alvsis	Reque	Sample Analysis Requested ⁽⁵⁾ (Fil	in the nu	mber of c	containers	(Fill in the number of containers for each test)	
Project/Site Name: Plant Kraft - Grumman Road Landfill	Fax#		Shor		5	IN	IN	או				<- Preservative Type (6)	6
Address: 241 Ralph McGill Blvd SE, Atlanta GA 30308			E SUM	sample be considered:	<u> </u>		*						
Collected By: July (500) & Send Re	Send Results To: SCS & ACC Contacts	S	JI)	spin	SQL 'ro	ų š į	भीशक्ष					Comments Note: extra sample is	.22
; Sample ID • For composites indicate start and stop descrime	*Time **Date Collected Collected (Aliffenty) (mm-dd-vv) (Aliffenty)	QC Field St Code (9) Historica (9) Ma	Merit & Sangie Redlessering (1984) (1	to navan'al (f) Exaft eldezog	C)' k' 20 Letel numbe	FPA 300, 2 PAM 0200 ATEI	bsvlossici 0500 A411	C (BUTE-Y/S		H-II		required for sample specific QC	ည
F8-05	7	N E	W.S. HGrc.		\\ \'\'\'\'\'\'\'\'\'\'\'\'\'\'\'\'\'\'	7		`\			33	field pH =	
GWC-15	08-31-22 1354	ュ フ ら	N.G)		7		}			fie	field pH = し.5つ	
											<u> </u>	field pH =	
				:							9	field pH =	
			****									field pH =	
				-							<u>ਗੁ</u>	field pH =	
											fie	field pH =	
			Vanak la Mi								l fie	field pH =	
			*******								E.	field pH =	
			*************************************								19	field pil =	
Chain of Ct	Chain of Custody Signatures			TAT	TAT Requested:		Normal: x	X Rush:		Specify:		(Subject to Surcharge)	ତ
Relinquished By (Signed) Date Time	Received by (signed) D	Date Time		Fax Results: [1 Yes	- 16	t I	S N N						
1 Tasker Starl 9-1-22 0840		22.1.6	847	Select Deli	verabl	: []C	of A	Select Deliverable: [1C of A J QC Summary	ary [] level]		[x] Level 2	[]Level 3 []Level 4	51*
SSO 12: P TINGEY I	2 14-0	July 1	(45,67)	Additional Remarks:	Кета	:5	* Met	* Metals: B,Ca,Sb,As,Ba,Be,Cd,Cr,Co,Pb,Li,Mo,Se,Tl,V,Zn,Hg	s,Ba,Be,Cd,	Cr,Co,Pb,	Li Mo Se.T	l.V.Zn.Hg	
)) ;		Camazia	Committee Control of the Control of	eceivit	S Use	Onth: (For Lab Receiving Use Only: Custody Seal Intact? [] Yes Allerian Time Zone: [c] Entering [] Parties [] Control	macr? []	11	[] No Cooler Temp:	No Cooler Temp: °C	
> For sample suppling and derivery definits, see Sample Keccept & Kerkery Jorns (SAL). (1) Clain of Cuscoly Number = Client Determined. 2) OC Codes: N = Normal Sample, TB = Tip Bank, FD = Field Dunicate, EB = Equipment Blank, MS = Na.	CORP. OS. KRIPER JOTH. (SAML) JOHN GER CONTRACTOR OF SEMBLE SEMBLE INSD = Matrix Spike Diplimite Sample, G = Grib, C = Composite A.ES = Equipment Blank, MS = Matrix Spike Semble, IMSD = Matrix Spike Diplimite Sample, G = Grib, C = Composite	pike Sample, MSD = Mar	rik Spike Duplic	ate Sample, G =	Grap, C	Comps	osite site			1			
1.) Febl Filered: For fiquid marires, indicare with a - Y - Kar yes the sample was field Blened or - N - for sample was not field Blaved.	e was field filtered or - N - for sample was	no! field filtered.											
4.1 Marin Codes WD=Dinking Water, WG=Grommwater, WS=Surface Water, WW=Waste Water, WI=Leachard, SO=Soil, SD=Sedenen, SL=Shalge, WQ=Water Quality Control Matrix	Nater, WW=Waste Water, WL=Leachate,	SO~Soil, SE=Sediment,	SL=Shedge, WQ	=Water Quality	Control	Marrix							
 Sample Analysis Requested: Analytical method fraguested (i.e. \$25018, \$401007-470A) and number of continues provided for each (i.e. \$2001 - 3, \$4100 - 4704 - 7). Presentative Type, II A = Hydrochloric Acid, III = Nüric Acid, SN = Sodium Hydroxide, \$2 = Sodium Thio 	OTOBY ATRA) and rember of containers provided for each (i.e. 8.2046 = 2. millos 14.144 = 1). dien Hydroxide, SA = Sulfurie Acid, AA = Accordic Acid, HX = Hexane, ST = Sodium Thiopullate. If no preservative is addod = Earve field blank	ovided for each (i.e. 5200) - Ascorbic Acid, HX = H	ts - 5, outus 74.	un Thosphlite.	If no pre	servative	is added	eave field blan					
Characteristic HAZARDS Characteristic HAZARDS	ignitable ignitable insted	Listed Waste LW= Listed Waste F. K. P and U-listed wastes.) Waste code(s):		Other OT=Other / Unknown (1.e.: Highlow pH, asbest misc. health hazards, etc.) Description:	/ Unk Iov pł h haza	l, arbei ds. etc	ios, ser	Other OT= Other / Unknown (i.e.: Highlow pH, exbestos, beryllium, irritants, other misc, health hazards, etc.) Description:	ats, other	Plet belo disp sam man	Please provide below regardi disposul conce sample(s), cype marrices, etc.)	Please provide any additional details below regarding knadling andror disposal concerns. (i.e., Origin of sample(s), type of site collected from, odd matrices, etc.)	oelā
										L_			

Laboratories LLC SAMPLE RECEIPT & REVIEW FORM Client: SDG/AR/COC/Work Order: Received By: Date Received: Circle Applicable: FedEx Express FedEx Ground UPS Field Services Carrier and Tracking Number Suspected Hazard Information å *If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation. Hazard Class Shioned: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes___ No_ A)Shipped as a DOT Hazardous? B) Did the client designate the samples are to be COC notation of radioactive stickers on containers equal client designation. received as radioactive? Maximum Net Counts Observed* (Observed Counts - Area Background Counts): ______ CPM / mR/Hr C) Did the RSO classify the samples as Classified as: Rad 1 Rad 2 Rad 3 radioactive? COC notation or hazard labels on containers equal client designation. D) Did the client designate samples are hazardous? If D or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Bervllium E) Did the RSO identify possible hazards? Sample Receipt Criteria 8 8 Comments/Qualifiers (Required for Non-Conforming Items) Circle Applicable: Seals broken Damaged container Leaking container Other (describe) Shipping containers received intact and Chain of custody documents included Circle Applicable: Client contacted and provided COC COC created upon receipt with shipment? Preservation Method: Wet Ice Ice Packs Dry ice None Other: TEMP: 3 3 Samples requiring cold preservation *all temperatures are recorded in Celsius within $(0 \le 6 \text{ deg. C})$?* Temperature Device Serial #: 12 3 - 2 Daily check performed and passed on IR Secondary Temperature Device Serial # (If Applicable): temperature gun? Circle Applicable: Seals broken Damaged container Leaking container Other (describe) 5 Sample containers intact and sealed? Sample ID's and Containers Affected; Samples requiring chemical preservation at proper pH? If Preservation added, Lot#: If Yes, are Encores or Soil Kits present for solids? Yes___No___NA__(If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? Yes____ No_ NA_ (If unknown, select No) Do any samples require Volatile 7 Are liquid VOA vials free of headspace? Yes____ No___ Analysis? Sample ID's and containers affected: ID's and tests affected: 8 Samples received within holding time? ID's and containers affected: Sample ID's on COC match ID's on bottles? Circle Applicable: No dates on containers No times on containers COC missing info Other (describe) Date & time on COC match date & time on bottles? Circle Applicable: No container count on COC Other (describe) Number of containers received match number indicated on COC? Are sample containers identifiable as GEL provided by use of GEL labels? COC form is properly signed in Circle Applicable: Not relinquished Other (describe) relinquished/received sections? Comments (Use Continuation Form if needed):

PM (or PMA) review: Initials Date 09/06/22 Page 1 of /

List of current GEL Certifications as of 19 September 2022

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2019020
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122023-3
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2022–137
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-22-20
Utah NELAP	SC000122021–36
Vermont	VT87156
Virginia NELAP	460202
Washington	C780
,, asimiston	2700

List of current GEL Certifications as of 19 September 2022

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012 SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2019020
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122023-3
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC0021
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2022–137
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-22-20
Utah NELAP	SC000122021–36
Vermont	VT87156
Virginia NELAP	460202
Washington	C780
TT USIMII STOIL	2700

PO Box 30712 Charleston, SC 29417 2040 Savage Road Charleston, SC 29407 P 843.556.8171 F 843.766.1178

gel.com

December 08, 2022

Kristen Jurinko Georgia Power Company 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

a member of The GEL Group INC

Re: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Work Orders: 591785 and 591893

Dear Kristen Jurinko:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on September 01, 2022 and September 02, 2022. This revised data report has been prepared and reviewed in accordance with GEL's standard operating procedures. The data package has been revised to report new MDC values for the Ra-226+228 Sum results.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4504.

Sincerely,

Edith Kent for Erin Trent Project Manager

Purchase Order: GPC82177-0001

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

GPCC001 Georgia Power Company Client SDG: 591785 GEL Work Order: 591785

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Erin Trent.

	Edish M.	Test	
Reviewed by	,		

Page 2 of 53 SDG: 591785 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

GPCC001 Georgia Power Company Client SDG: 591893 GEL Work Order: 591893

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Erin Trent.

	Edish M.	Test	
Reviewed by			

Page 3 of 53 SDG: 591785 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Client

Atlanta, Georgia 30308 Report Date: December 7, 2022

Kristen Jurinko Contact:

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-12 Project: GPCC00102 Sample ID: 591785001 Client ID: GPCC001 Matrix:

WG Collect Date: 30-AUG-22 Receive Date: 01-SEP-22 Collector:

Oualifier Parameter **Result Uncertainty MDC TPU** RL Units DF Analyst Date Time Batch Mtd. **Rad Gas Flow Proportional Counting** GFPC Ra228, Liquid "As Received" Radium-228 2.42 +/-1.47 2.29 +/-1.59 3.00 pCi/L 09/27/22 1220 2312611 1 Radium-226+Radium-228 Calculation "See Parent Products" Radium-226+228 Sum 3.37 +/-1.512.29 +/-1.63 pCi/L 1 TON1 09/30/22 1529 2312607 2 Rad Radium-226 Lucas Cell, Ra226, Liquid "As Received" Radium-226 0.952 +/-0.358 0.251 +/-0.387 1.00 pCi/L LXP1 09/28/22 0732 2312590 3

The following Analytical Methods were performed **Description**

1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2312611	84.5	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 4 of 53 SDG: 591785 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: December 7, 2022

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-13 Project: GPCC00102 Sample ID: 591785002 Client ID: GPCC001

Matrix: WG

Collect Date: 31-AUG-22 Receive Date: 01-SEP-22 Collector: Client

Parameter	Qualifier	Result Un	ncertainty	MDC	TPU	RL	Units	PF	DF	Analys	t Date T	ime	Batch I	Mtd.
Rad Gas Flow Proportional Counting														
GFPC Ra228, Liquid	l "As Received	"												
Radium-228	U	1.01	+/-1.11	1.86	+/-1.14	3.00	pCi/L			JE1	09/27/22 12	220	2312611	1
Radium-226+Radium	n-228 Calculat	ion "See Pa	rent Product	ts"										
Radium-226+228 Sum		1.90	+/-1.16	1.86	+/-1.20		pCi/L		1	TON1	09/30/22 1:	529	2312607	2
Rad Radium-226														
Lucas Cell, Ra226, L	iquid "As Rece	eived"												
Radium-226		0.896	+/-0.320	0.214	+/-0.369	1.00	pCi/L			LXP1	09/28/22 0	732	2312590	3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2312611	87.1	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution FactorMtd.: MethodDL: Detection LimitPF: Prep FactorLc/LC: Critical LevelRL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 5 of 53 SDG: 591785 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: December 7, 2022

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-14 Project: GPCC00102 Sample ID: 591785003 Client ID: GPCC001

Matrix: WG

Collect Date: 30-AUG-22 Receive Date: 01-SEP-22 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analys	t Date	Time	Batch	Mtd.
Rad Gas Flow Proporti		0												
GFPC Ra228, Liquid	'As Receivea			4.05		2.00	G: 7				00/25/00		2212511	
Radium-228	U	1.68	+/-1.17	1.85	+/-1.24	3.00	pCi/L			JE1	09/27/22	1220	2312611	1
Radium-226+Radium	-228 Calculat	ion "See Pa	rent Product	ts"										
Radium-226+228 Sum		2.62	+/-1.22	1.85	+/-1.31		pCi/L		1	TON1	09/30/22	1529	2312607	2
Rad Radium-226														
Lucas Cell, Ra226, Li	quid "As Rece	rived"												
Radium-226		0.932	+/-0.362	0.308	+/-0.425	1.00	pCi/L			LXP1	09/28/22	0732	2312590	3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2312611	90.4	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution FactorMtd.: MethodDL: Detection LimitPF: Prep FactorLc/LC: Critical LevelRL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 6 of 53 SDG: 591785 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: December 7, 2022

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-20 Project: GPCC00102 Sample ID: 591785004 Client ID: GPCC001

Matrix: WG

Collect Date: 30-AUG-22 Receive Date: 01-SEP-22 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analys	t Date Ti	me	Batch 1	Mtd.
Rad Gas Flow Proport GFPC Ra228, Liquid		0												
Radium-228		2.60	+/-1.04	1.36	+/-1.23	3.00	pCi/L			JE1	09/27/22 12	21	2312611	1
Radium-226+Radium	-228 Calculat	ion "See Pa	rent Product	ts"										
Radium-226+228 Sum		4.95	+/-1.16	1.36	+/-1.39		pCi/L		1	TON1	09/30/22 15	29	2312607	2
Rad Radium-226 Lucas Cell, Ra226, Li	iquid "As Rece	eived"												
Radium-226		2.35	+/-0.516	0.220	+/-0.652	1.00	pCi/L			LXP1	09/28/22 07	32	2312590	3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GEPC Ra228, Liquid "As Received"	2312611	93.1	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution FactorMtd.: MethodDL: Detection LimitPF: Prep FactorLc/LC: Critical LevelRL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 7 of 53 SDG: 591785 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: December 7, 2022

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-21 Project: GPCC00102 Sample ID: 591785005 Client ID: GPCC001

Matrix: WG

Collect Date: 30-AUG-22 Receive Date: 01-SEP-22 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analys	t Date Ti	me	Batch 1	Mtd.
Rad Gas Flow Proport	tional Countin	ng												
GFPC Ra228, Liquid	l "As Received	"												
Radium-228	U	1.03	+/-1.08	1.80	+/-1.11	3.00	pCi/L			JE1	09/29/22 10	50	2312611	1
Radium-226+Radium	n-228 Calculat	ion "See Pa	rent Produci	ts"										
Radium-226+228 Sum		2.56	+/-1.16	1.80	+/-1.23		pCi/L		1	TON1	09/30/22 15	29	2312607	2
Rad Radium-226														
Lucas Cell, Ra226, L	iquid "As Rece	eived"												
Radium-226		1.53	+/-0.425	0.331	+/-0.539	1.00	pCi/L			LXP1	09/28/22 07	32	2312590	3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2312611	90.4	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution FactorMtd.: MethodDL: Detection LimitPF: Prep FactorLc/LC: Critical LevelRL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 8 of 53 SDG: 591785 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: December 7, 2022

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: MW-25D Project: GPCC00102 Sample ID: 591785006 Project: GPCC001

Matrix: WG

Collect Date: 31-AUG-22 Receive Date: 01-SEP-22 Collector: Client

Parameter	Qualifier	Result Un	certainty	MDC	TPU	RL	Units	PF	DF	Analys	t Date	Time	Batch 1	Mtd.
Rad Gas Flow Proport	tional Countir	ng												
GFPC Ra228, Liquid	l "As Received	"												
Radium-228	U	0.395	+/-0.956	1.70	+/-0.961	3.00	pCi/L			JE1	09/27/22	1221	2312611	1
Radium-226+Radium	n-228 Calculat	tion "See Par	rent Produc	ts"										
Radium-226+228 Sum	U	0.645	+/-0.987	1.70	+/-0.993		pCi/L		1	TON1	09/30/22	1529	2312607	2
Rad Radium-226														
Lucas Cell, Ra226, L	iquid "As Rece	eived"												
Radium-226	U	0.250	+/-0.245	0.384	+/-0.250	1.00	pCi/L			LXP1	09/28/22	0732	2312590	3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2312611	91.1	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution FactorMtd.: MethodDL: Detection LimitPF: Prep FactorLc/LC: Critical LevelRL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 9 of 53 SDG: 591785 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: December 7, 2022

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: FD-02 Project: GPCC00102 Sample ID: 591785007 Client ID: GPCC001

Matrix: WG

Collect Date: 31-AUG-22 Receive Date: 01-SEP-22 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analys	t Date Ti	me l	Batch 1	Mtd.
Rad Gas Flow Proport	ional Countir	ıg												
GFPC Ra228, Liquid	l "As Received	"												
Radium-228	U	1.22	+/-0.869	1.34	+/-0.922	3.00	pCi/L			JE1	09/27/22 12	21 2	2312611	1
Radium-226+Radium	ı-228 Calculat	ion "See Pa	rent Produci	ts"										
Radium-226+228 Sum		1.85	+/-0.925	1.34	+/-0.987		pCi/L		1	TON1	09/30/22 15	29 2	2312607	2
Rad Radium-226														
Lucas Cell, Ra226, L	iquid "As Rece	eived"												
Radium-226		0.631	+/-0.318	0.395	+/-0.353	1.00	pCi/L			LXP1	09/28/22 07	32 2	2312590	3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2312611	89.1	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution FactorMtd.: MethodDL: Detection LimitPF: Prep FactorLc/LC: Critical LevelRL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 10 of 53 SDG: 591785 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: December 7, 2022

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: EB-01 Project: GPCC00102 Sample ID: 591785008 Client ID: GPCC001

Matrix: WQ

Collect Date: 30-AUG-22 Receive Date: 01-SEP-22 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analys	t Date Ti	ne Batc	h Mtd.
Rad Gas Flow Proport		U											
GFPC Ra228, Liquia	l "As Received	"											
Radium-228	U	-0.0335	+/-1.10	2.04	+/-1.10	3.00	pCi/L			JE1	09/27/22 122	1 23126	11 1
Radium-226+Radium	n-228 Calculat	tion "See Pa	rent Product	s"									
Radium-226+228 Sum	U	0.377	+/-1.13	2.04	+/-1.13		pCi/L		1	TON1	09/30/22 152	9 23126	07 2
Rad Radium-226													
Lucas Cell, Ra226, L	iquid "As Rece	eived"											
Radium-226		0.377	+/-0.242	0.262	+/-0.252	1.00	pCi/L			LXP1	09/28/22 080	7 23125	90 3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2312611	86.6	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution FactorMtd.: MethodDL: Detection LimitPF: Prep FactorLc/LC: Critical LevelRL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 11 of 53 SDG: 591785 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: December 7, 2022

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-11 Project: GPCC00102 Sample ID: 591785009 Client ID: GPCC001

Matrix: WG

Collect Date: 31-AUG-22 Receive Date: 01-SEP-22 Collector: Client

Parameter	Qualifier	Result U1	ncertainty	MDC	TPU	RL	Units	PF	DF	Analys	t Date T	ime	Batch 1	Mtd.
Rad Gas Flow Propor	rtional Countir	ıg												
GFPC Ra228, Liqui	d "As Received	"												
Radium-228		3.08	+/-1.25	1.73	+/-1.48	3.00	pCi/L			JE1	09/27/22 1	221	2312611	1
Radium-226+Radiu	m-228 Calculat	ion "See Pa	rent Product	ts"										
Radium-226+228 Sum		6.34	+/-1.40	1.73	+/-1.77		pCi/L		1	TON1	09/30/22 1	529	2312607	2
Rad Radium-226														
Lucas Cell, Ra226, I	Liquid "As Rece	eived"												
Radium-226		3.26	+/-0.628	0.291	+/-0.969	1.00	pCi/L			LXP1	09/28/22 0	807	2312590	3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2312611	89.3	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution FactorMtd.: MethodDL: Detection LimitPF: Prep FactorLc/LC: Critical LevelRL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 12 of 53 SDG: 591785 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

> Atlanta, Georgia 30308 Report Date: December 7, 2022

Kristen Jurinko Contact:

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: MW-23D Project: GPCC00102 Sample ID: Client ID: GPCC001 591785010

Matrix: WG

Collect Date: 31-AUG-22 Receive Date: 01-SEP-22 Collector: Client

Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analys	t Date	Time	Batch	Mtd.
	0												
As Keceivea		1/0.022	1.51	1/0.067	2.00	ъCi/I			TE1	00/27/22	1221	2212611	1
-228 Calculat				+/-0.907	3.00	pCI/L			JEI	09/21/22	1221	2312011	1
	1.79	+/-0.987	1.51	+/-1.03		pCi/L		1	TON1	09/30/22	1529	2312607	2
quid "As Rece	eived"												
	0.761	+/-0.324	0.253	+/-0.345	1.00	pCi/L			LXP1	09/28/22	0807	2312590	3
	onal Countin "As Received U -228 Calculat	onal Counting "As Received" U 1.03 -228 Calculation "See Pa 1.79 quid "As Received"	onal Counting "As Received" U 1.03 +/-0.932 -228 Calculation "See Parent Product 1.79 +/-0.987 quid "As Received"	onal Counting "As Received" U 1.03 +/-0.932 1.51 -228 Calculation "See Parent Products" 1.79 +/-0.987 1.51 quid "As Received"	onal Counting "As Received" U 1.03 +/-0.932 1.51 +/-0.967 -228 Calculation "See Parent Products" 1.79 +/-0.987 1.51 +/-1.03 quid "As Received"	onal Counting "As Received" U 1.03 +/-0.932 1.51 +/-0.967 3.00 -228 Calculation "See Parent Products" 1.79 +/-0.987 1.51 +/-1.03 quid "As Received"	onal Counting "As Received" U 1.03 +/-0.932 1.51 +/-0.967 3.00 pCi/L -228 Calculation "See Parent Products" 1.79 +/-0.987 1.51 +/-1.03 pCi/L quid "As Received"	onal Counting "As Received" U 1.03 +/-0.932 1.51 +/-0.967 3.00 pCi/L -228 Calculation "See Parent Products" 1.79 +/-0.987 1.51 +/-1.03 pCi/L quid "As Received"	onal Counting "As Received" U 1.03 +/-0.932 1.51 +/-0.967 3.00 pCi/L -228 Calculation "See Parent Products" 1.79 +/-0.987 1.51 +/-1.03 pCi/L 1 quid "As Received"	onal Counting "As Received" U 1.03 +/-0.932 1.51 +/-0.967 3.00 pCi/L JE1 -228 Calculation "See Parent Products" 1.79 +/-0.987 1.51 +/-1.03 pCi/L 1 TON1 quid "As Received"	onal Counting "As Received" U 1.03 +/-0.932 1.51 +/-0.967 3.00 pCi/L JE1 09/27/22 -228 Calculation "See Parent Products" 1.79 +/-0.987 1.51 +/-1.03 pCi/L 1 TON1 09/30/22 quid "As Received"	onal Counting "As Received" U 1.03 +/-0.932 1.51 +/-0.967 3.00 pCi/L JE1 09/27/22 1221 -228 Calculation "See Parent Products" 1.79 +/-0.987 1.51 +/-1.03 pCi/L 1 TON1 09/30/22 1529 quid "As Received"	onal Counting "As Received" U 1.03 +/-0.932 1.51 +/-0.967 3.00 pCi/L JE1 09/27/22 1221 2312611 -228 Calculation "See Parent Products" 1.79 +/-0.987 1.51 +/-1.03 pCi/L 1 TON1 09/30/22 1529 2312607 quid "As Received"

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2.	Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2312611	87.2	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level RL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 13 of 53 SDG: 591785 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

> Atlanta, Georgia 30308 Report Date: December 7, 2022

Kristen Jurinko Contact:

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: Sample ID: Matrix: GWA-8 Project: GPCC00102 GPCC001 591785011 Client ID:

WG Collect Date: 30-AUG-22 Receive Date:

01-SEP-22 Collector: Client

Parameter	Qualifier	Result Ur	certainty	MDC	TPU	RL	Units	PF	DF	Analys	t Date Time	Batch 1	Mtd.
Rad Gas Flow Proportion GFPC Ra228, Liquid "		0											
Radium-228	U	1.07	+/-1.14	1.90	+/-1.17	3.00	pCi/L			JE1	09/27/22 1221	2312611	1
Radium-226+Radium-2	228 Calculat	ion "See Pa	rent Product	s"									
Radium-226+228 Sum		1.97	+/-1.19	1.90	+/-1.23		pCi/L		1	TON1	09/30/22 1529	2312607	2
Rad Radium-226													
Lucas Cell, Ra226, Liq	uid "As Rece	rived"											
Radium-226		0.894	+/-0.356	0.390	+/-0.398	1.00	pCi/L			LXP1	09/28/22 0807	2312590	3

The following Analytical Methods were performed **Description**

1	EPA 904.0/SW846 9320 Modified
2	Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2312611	86.8	(15%-125%)

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 14 of 53 SDG: 591785 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: December 7, 2022

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWA-7 Project: GPCC00102 Sample ID: 591785012 Client ID: GPCC001

Matrix: WG

Collect Date: 30-AUG-22 Receive Date: 01-SEP-22 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analys	t Date Ti	ne B	atch I	Mtd.
Rad Gas Flow Proporti		0												
GFPC Ra228, Liquid	As Receivea		/ 1 10	1.00	/106	2.00	C' /T			TE:1	00/07/00 10/		10611	
Radium-228	U	1.66	+/-1.19	1.89	+/-1.26	3.00	pCi/L			JE1	09/27/22 12:	23	312611	1
Radium-226+Radium-	-228 Calculat	ion "See Pa	rent Produci	ts"										
Radium-226+228 Sum		2.75	+/-1.25	1.89	+/-1.34		pCi/L		1	TON1	09/30/22 15:	29 23	312607	2
Rad Radium-226														
Lucas Cell, Ra226, Lie	quid "As Rece	rived"												
Radium-226		1.09	+/-0.371	0.283	+/-0.451	1.00	pCi/L			LXP1	09/28/22 080)7 23	312590	3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation

3 EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2312611	96.9	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution FactorMtd.: MethodDL: Detection LimitPF: Prep FactorLc/LC: Critical LevelRL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 15 of 53 SDG: 591785 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: December 7, 2022

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWB-6R Project: GPCC00102 Sample ID: 591785013 Client ID: GPCC001

Matrix: WG

Collect Date: 30-AUG-22 Receive Date: 01-SEP-22 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analys	t Date Tim	e Batch	Mtd.
Rad Gas Flow Proports GFPC Ra228, Liquid		0											
Radium-228	U	1.44	+/-1.76	2.97	+/-1.79	3.00	pCi/L			JE1	09/27/22 122	231261	1
Radium-226+Radium	-228 Calculat	tion "See Pa	rent Produc	ts"									
Radium-226+228 Sum		3.20	+/-1.82	2.97	+/-1.88		pCi/L		1	TON1	09/30/22 1529	2312607	7 2
Rad Radium-226													
Lucas Cell, Ra226, Li	iquid "As Rece	eived"											
Radium-226		1.76	+/-0.487	0.313	+/-0.555	1.00	pCi/L			LXP1	09/28/22 0807	2312590) 3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2312611	43.4	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution FactorMtd.: MethodDL: Detection LimitPF: Prep FactorLc/LC: Critical LevelRL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 16 of 53 SDG: 591785 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: December 7, 2022

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: FD-01 Project: GPCC00102 Sample ID: 591785014 Client ID: GPCC001

Matrix: WG

Collect Date: 30-AUG-22 Receive Date: 01-SEP-22 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analys	t Date Tir	ne Batch	Mtd.
Rad Gas Flow Proport		0											
GFPC Ra228, Liquia	l "As Received	,,											
Radium-228	U	0.833	+/-1.17	2.01	+/-1.19	3.00	pCi/L			JE1	09/27/22 122	1 231261	1 1
Radium-226+Radium	n-228 Calculat	ion "See Pa	rent Produci	ts"									
Radium-226+228 Sum	U	1.77	+/-1.23	2.01	+/-1.26		pCi/L		1	TON1	09/30/22 152	9 231260	7 2
Rad Radium-226													
Lucas Cell, Ra226, L	iquid "As Rece	eived"											
Radium-226		0.938	+/-0.380	0.405	+/-0.413	1.00	pCi/L			LXP1	09/28/22 080	7 231259	0 3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2312611	94	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution FactorMtd.: MethodDL: Detection LimitPF: Prep FactorLc/LC: Critical LevelRL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 17 of 53 SDG: 591785 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: December 7, 2022

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWB-5R Project: GPCC00102 Sample ID: 591785015 Client ID: GPCC001

Matrix: WG

Collect Date: 30-AUG-22 Receive Date: 01-SEP-22 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analys	t Date T	ime	Batch 1	Mtd.
Rad Gas Flow Propor	rtional Countin	ng												
GFPC Ra228, Liqui	d "As Received	"												
Radium-228		1.35	+/-0.820	1.21	+/-0.886	3.00	pCi/L			JE1	09/27/22 12	221	2312611	1
Radium-226+Radiu	m-228 Calculat	ion "See Pa	rent Product	ts"										
Radium-226+228 Sum		3.36	+/-0.983	1.21	+/-1.13		pCi/L		1	TON1	09/30/22 15	529	2312607	2
Rad Radium-226														
Lucas Cell, Ra226, I	Liquid "As Rece	eived"												
Radium-226		2.02	+/-0.542	0.494	+/-0.707	1.00	pCi/L			LXP1	09/28/22 08	339	2312590	3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation

3 EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2312611	97	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution FactorMtd.: MethodDL: Detection LimitPF: Prep FactorLc/LC: Critical LevelRL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 18 of 53 SDG: 591785 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

> Atlanta, Georgia 30308 Report Date: December 7, 2022

Kristen Jurinko Contact:

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: FB-04 Project: GPCC00102 Sample ID: Client ID: GPCC001 591785016

Matrix: WQ

Collect Date: 30-AUG-22 Receive Date: 01-SEP-22 Collector: Client

Parameter	Qualifier	Result Un	certainty	MDC	TPU	RL	Units	PF	DF	Analys	t Date	Time	Batch	Mtd.
Rad Gas Flow Proport	tional Countir	ıg												
GFPC Ra228, Liquid	l "As Received	"												
Radium-228	U	0.219	+/-0.943	1.72	+/-0.945	3.00	pCi/L			JE1	09/27/22	1221	2312611	1
Radium-226+Radium	n-228 Calculat	tion "See Par	ent Produc	ts"										
Radium-226+228 Sum	U	0.472	+/-0.977	1.72	+/-0.979		pCi/L		1	TON1	09/30/22	1529	2312607	2
Rad Radium-226														
Lucas Cell, Ra226, L	iquid "As Rece	eived"												
Radium-226	U	0.254	+/-0.253	0.406	+/-0.257	1.00	pCi/L			LXP1	09/28/22	0839	2312590	3

The following Analytical Methods were performed **Description**

1	EPA 904.0/SW846 9320 Modified
2	0.1.1.2

Calculation EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2312611	88.7	(15%-125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level RL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 19 of 53 SDG: 591785 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: December 7, 2022

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWB-4R Project: GPCC00102 Sample ID: 591785017 Client ID: GPCC001

Matrix: WG

Collect Date: 30-AUG-22 Receive Date: 01-SEP-22 Collector: Client

Parameter	Qualifier	Result Un	ncertainty	MDC	TPU	RL	Units	PF	DF	Analys	t Date Tim	e Batch	Mtd.
Rad Gas Flow Proport GFPC Ra228, Liquid		U											
Radium-228	As Received	3.67	+/-1.45	2.10	+/-1.72	3.00	pCi/L			JE1	09/27/22 1221	2312611	. 1
Radium-226+Radiun	ı-228 Calculat	tion "See Pa	rent Produc	ts"									
Radium-226+228 Sum		5.57	+/-1.55	2.10	+/-1.83		pCi/L		1	TON1	09/30/22 1529	2312607	2
Rad Radium-226 Lucas Cell, Ra226, L	iquid "As Rece	eived"											
Radium-226		1.90	+/-0.558	0.481	+/-0.628	1.00	pCi/L			LXP1	09/28/22 0839	2312590	3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2312611	95.4	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution FactorMtd.: MethodDL: Detection LimitPF: Prep FactorLc/LC: Critical LevelRL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 20 of 53 SDG: 591785 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: December 7, 2022

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-17 Project: GPCC00102 Sample ID: 591785018 Project: GPCC00102 Client ID: GPCC001

Matrix: WG

Collect Date: 31-AUG-22 Receive Date: 01-SEP-22 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analys	t Date Ti	ne Bat	ch M	Itd.
Rad Gas Flow Propor		0												
GFPC Ra228, Liquio	a As Keceivea													_
Radium-228	U	1.70	+/-1.32	2.13	+/-1.39	3.00	pCi/L			JE1	09/27/22 12:	21 2312	2611	1
Radium-226+Radiur	n-228 Calculat	ion "See Pa	rent Produc	ts"										
Radium-226+228 Sum		2.72	+/-1.37	2.13	+/-1.44		pCi/L		1	TON1	09/30/22 15	29 2312	2607	2
Rad Radium-226														
Lucas Cell, Ra226, I	Liquid "As Rece	rived"												
Radium-226		1.02	+/-0.349	0.348	+/-0.391	1.00	pCi/L			LXP1	09/28/22 083	39 2312	2590	3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2312611	91.3	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution FactorMtd.: MethodDL: Detection LimitPF: Prep FactorLc/LC: Critical LevelRL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 21 of 53 SDG: 591785 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: December 7, 2022

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-22 Project: GPCC00102 Sample ID: 591785019 Client ID: GPCC001

Matrix: WG

Collect Date: 31-AUG-22 Receive Date: 01-SEP-22 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analys	t Date Tim	e Batch	Mtd.
Rad Gas Flow Proport		0											
GFPC Ra228, Liquid	"As Received	,,											
Radium-228	U	1.11	+/-0.937	1.51	+/-0.977	3.00	pCi/L			JE1	09/27/22 1221	2312611	1
Radium-226+Radium	-228 Calculat	ion "See Pa	rent Produci	ts"									
Radium-226+228 Sum		3.07	+/-1.05	1.51	+/-1.15		pCi/L		1	TON1	09/30/22 1529	2312607	1 2
Rad Radium-226	Rad Radium-226												
Lucas Cell, Ra226, Li	iquid "As Rece	eived"											
Radium-226		1.96	+/-0.472	0.220	+/-0.601	1.00	pCi/L			LXP1	09/28/22 0839	2312590) 3

The following Analytical Methods were performed

Metnoa	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2312611	90.6	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution FactorMtd.: MethodDL: Detection LimitPF: Prep FactorLc/LC: Critical LevelRL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 22 of 53 SDG: 591785 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: December 7, 2022

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: EB-02 Project: GPCC00102 Sample ID: 591785020 Client ID: GPCC001

Matrix: WQ

Collect Date: 31-AUG-22 Receive Date: 01-SEP-22 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analys	t Date T	ime	Batch 1	Mtd.
Rad Gas Flow Proporti	onal Countin	ng												
GFPC Ra228, Liquid	"As Received	"												
Radium-228	U	0.239	+/-0.801	1.47	+/-0.803	3.00	pCi/L			JE1	09/27/22 12	222	2312611	1
Radium-226+Radium	-228 Calculat	ion "See Pa	rent Product	's"										
Radium-226+228 Sum	U	0.506	+/-0.824	1.47	+/-0.828		pCi/L		1	TON1	09/30/22 1:	529	2312607	2
Rad Radium-226														
Lucas Cell, Ra226, Li	quid "As Rece	eived"												
Radium-226		0.267	+/-0.193	0.227	+/-0.199	1.00	pCi/L			LXP1	09/28/22 0	839	2312590	3
Radium-226+228 Sum Rad Radium-226 Lucas Cell, Ra226, Lic	U	0.506 vived"	+/-0.824	1.47		1.00	1		1					_

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2312611	83.2	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution FactorMtd.: MethodDL: Detection LimitPF: Prep FactorLc/LC: Critical LevelRL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 23 of 53 SDG: 591785 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

> Atlanta, Georgia 30308 Report Date: December 7, 2022

Kristen Jurinko Contact:

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: Sample ID: Matrix: FB-05 Project: GPCC00102 Client ID: GPCC001 591785021

WQ Collect Date: 31-AUG-22

Receive Date: 01-SEP-22 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analys	t Date Time	Batch 1	Mtd.
Rad Gas Flow Proport GFPC Ra228, Liquid		0											
Radium-228	U	-0.0242	+/-1.34	2.46	+/-1.34	3.00	pCi/L			JE1	09/28/22 0844	2312612	1
Radium-226+Radium	-228 Calcular	tion "See Pa	rent Produci	ts"									
Radium-226+228 Sum	U	0.686	+/-1.39	2.46	+/-1.39		pCi/L		1	TON1	09/30/22 1529	2312608	2
Rad Radium-226													
Lucas Cell, Ra226, Li	iquid "As Rece	eived"											
Radium-226		0.686	+/-0.345	0.309	+/-0.372	1.00	pCi/L			LXP1	09/29/22 0848	2312593	3

The following Analytical Methods were performed **Description**

1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery **Acceptable Limits** Batch ID Recovery% Barium-133 Tracer GFPC Ra228, Liquid "As Received" 2312612 78.5 (15% - 125%)

Notes:

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 24 of 53 SDG: 591785 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: December 7, 2022

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-15 Project: GPCC00102 Sample ID: 591785022 Client ID: GPCC001

Matrix: WG

Collect Date: 31-AUG-22 Receive Date: 01-SEP-22 Collector: Client

Parameter	Qualifier	Result Ur	ncertainty	MDC	TPU	RL	Units	PF	DF	Analys	t Date Time	Batch	Mtd.
Rad Gas Flow Proportion	onal Countin	ng											
GFPC Ra228, Liquid	"As Received	"											
Radium-228	U	1.60	+/-1.13	1.76	+/-1.20	3.00	pCi/L			JE1	09/28/22 0844	2312612	. 1
Radium-226+Radium-	228 Calculat	ion "See Pa	rent Product	ts"									
Radium-226+228 Sum		2.88	+/-1.23	1.76	+/-1.31		pCi/L		1	TON1	09/30/22 1529	2312608	2
Rad Radium-226													
Lucas Cell, Ra226, Li	quid "As Rece	eived"											
Radium-226		1.28	+/-0.492	0.351	+/-0.535	1.00	pCi/L			LXP1	09/29/22 0920	2312593	3

The following Analytical Methods were performed

Metnoa	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2312612	80.8	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution FactorMtd.: MethodDL: Detection LimitPF: Prep FactorLc/LC: Critical LevelRL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 25 of 53 SDG: 591785 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

> Atlanta, Georgia 30308 Report Date: December 7, 2022

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: Sample ID: Matrix: GWC-1 Project: GPCC00102 GPCC001 591893001 Client ID:

WG Collect Date: 01-SEP-22 Receive Date: 02-SEP-22 Collector: Client

Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analys	Date Time	Batch	Mtd.
	0											
'As Received	"											
U	0.243	+/-0.767	1.40	+/-0.769	3.00	pCi/L			JE1	09/27/22 0923	2312614	- 1
228 Calculat	ion "See Pa	rent Produci	ts"									
U	0.911	+/-0.825	1.40	+/-0.838		pCi/L		1	NXL1	09/29/22 1056	2312610) 2
quid "As Rece	rived"											
	0.668	+/-0.303	0.365	+/-0.332	1.00	pCi/L			LXP1	09/28/22 0911	2312595	; 3
	onal Countin "As Received U 228 Calculat U	onal Counting "As Received" U 0.243 228 Calculation "See Pa U 0.911 quid "As Received"	onal Counting "As Received" U 0.243 +/-0.767 228 Calculation "See Parent Product U 0.911 +/-0.825	onal Counting "As Received" U 0.243 +/-0.767 1.40 228 Calculation "See Parent Products" U 0.911 +/-0.825 1.40 quid "As Received"	onal Counting "As Received" U 0.243 +/-0.767 1.40 +/-0.769 228 Calculation "See Parent Products" U 0.911 +/-0.825 1.40 +/-0.838 quid "As Received"	### Onal Counting "As Received" U 0.243 +/-0.767 1.40 +/-0.769 3.00 ### 228 Calculation "See Parent Products" U 0.911 +/-0.825 1.40 +/-0.838 #### As Received"	Onal Counting "As Received" U 0.243 +/-0.767 1.40 +/-0.769 3.00 pCi/L 228 Calculation "See Parent Products" U 0.911 +/-0.825 1.40 +/-0.838 pCi/L quid "As Received"	Onal Counting "As Received" U 0.243 +/-0.767 1.40 +/-0.769 3.00 pCi/L 228 Calculation "See Parent Products" U 0.911 +/-0.825 1.40 +/-0.838 pCi/L quid "As Received"	Onal Counting "As Received" U 0.243 +/-0.767 1.40 +/-0.769 3.00 pCi/L 228 Calculation "See Parent Products" U 0.911 +/-0.825 1.40 +/-0.838 pCi/L 1 quid "As Received"	Onal Counting "As Received" U 0.243 +/-0.767 1.40 +/-0.769 3.00 pCi/L JE1 228 Calculation "See Parent Products" U 0.911 +/-0.825 1.40 +/-0.838 pCi/L 1 NXL1 quid "As Received"	onal Counting "As Received" U 0.243 +/-0.767 1.40 +/-0.769 3.00 pCi/L JE1 09/27/22 0923 228 Calculation "See Parent Products" U 0.911 +/-0.825 1.40 +/-0.838 pCi/L 1 NXL1 09/29/22 1056	onal Counting "As Received" U 0.243 +/-0.767 1.40 +/-0.769 3.00 pCi/L JE1 09/27/22 0923 2312614 228 Calculation "See Parent Products" U 0.911 +/-0.825 1.40 +/-0.838 pCi/L 1 NXL1 09/29/22 1056 2312610

The following Analytical Methods were performed **Description**

1	EPA 904.0/SW846 9320 Modified
2	Calculation
3	EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2312614	91.9	(15%-125%)

Method

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level **RL**: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 26 of 53 SDG: 591785 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: December 7, 2022

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-2 Project: GPCC00102 Sample ID: 591893002 Client ID: GPCC001

Matrix: WG
Collect Date: 01-SEP-22
Receive Date: 02-SEP-22
Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF A	Analyst	Date Ti	ne Batcl	1 Mtd.
Rad Gas Flow Proporti GFPC Ra228, Liquid		U											
Radium-228		1.80	+/-1.17	1.79	+/-1.25	3.00	pCi/L			JE1	09/27/22 092	3 23126	14 1
Radium-226+Radium-	-228 Calculat	tion "See Pa	rent Product	ts"									
Radium-226+228 Sum		2.09	+/-1.19	1.79	+/-1.28		pCi/L		1]	NXL1	09/29/22 105	6 23126	10 2
Rad Radium-226													
Lucas Cell, Ra226, Li	quid "As Rece	eived"											
Radium-226	U	0.295	+/-0.231	0.326	+/-0.238	1.00	pCi/L			LXP1	09/28/22 094	2 23125	95 3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation

3 EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2312614	80.2	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution FactorMtd.: MethodDL: Detection LimitPF: Prep FactorLc/LC: Critical LevelRL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 27 of 53 SDG: 591785 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

> Atlanta, Georgia 30308 Report Date: December 7, 2022

Kristen Jurinko Contact:

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-9 Project: GPCC00102 Sample ID: Client ID: GPCC001 591893003

Matrix: WG Collect Date: 01-SEP-22 Receive Date: 02-SEP-22 Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analys	t Date Ti	ne Batc	h Mtd.
Rad Gas Flow Propor	tional Countir	ıg											
GFPC Ra228, Liquio	d "As Received	"											
Radium-228	U	1.21	+/-0.899	1.40	+/-0.949	3.00	pCi/L			JE1	09/27/22 092	3 23126	14 1
Radium-226+Radiur	n-228 Calculat	ion "See Pa	rent Produci	ts"									
Radium-226+228 Sum		2.35	+/-0.965	1.40	+/-1.03		pCi/L		1	NXL1	09/29/22 105	6 23126	10 2
Rad Radium-226													
Lucas Cell, Ra226, 1	Liquid "As Rece	eived"											
Radium-226		1.14	+/-0.351	0.275	+/-0.393	1.00	pCi/L			LXP1	09/28/22 094	2 23125	95 3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2312614	88.1	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level RL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 28 of 53 SDG: 591785 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: December 7, 2022

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: GWC-16 Project: GPCC00102 Sample ID: 591893004 Client ID: GPCC001

Matrix: WG
Collect Date: 01-SEP-22
Receive Date: 02-SEP-22
Collector: Client

Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analys	t Date Tin	e Batch	Mtd.
onal Countir	ıg											
'As Received	"											
U	-0.0911	+/-1.07	1.99	+/-1.07	3.00	pCi/L			JE1	09/27/22 092	3 23126	4 1
228 Calculat	tion "See Pa	rent Product	's"									
U	1.64	+/-1.16	1.99	+/-1.19		pCi/L		1	NXL1	09/29/22 105	5 23126	0 2
juid "As Rece	eived"											
	1.64	+/-0.452	0.324	+/-0.511	1.00	pCi/L			LXP1	09/28/22 094	2 231259	5 3
	onal Countin 'As Received U 228 Calcular U	onal Counting "As Received" U -0.0911 228 Calculation "See Pa U 1.64 uuid "As Received"	onal Counting "As Received" U -0.0911 +/-1.07 228 Calculation "See Parent Product U 1.64 +/-1.16 uuid "As Received"	onal Counting "As Received" U -0.0911 +/-1.07 1.99 228 Calculation "See Parent Products" U 1.64 +/-1.16 1.99 muid "As Received"	onal Counting "As Received" U -0.0911 +/-1.07 1.99 +/-1.07 228 Calculation "See Parent Products" U 1.64 +/-1.16 1.99 +/-1.19 muid "As Received"	onal Counting "As Received" U -0.0911 +/-1.07 1.99 +/-1.07 3.00 228 Calculation "See Parent Products" U 1.64 +/-1.16 1.99 +/-1.19 muid "As Received"	onal Counting "As Received" U -0.0911 +/-1.07 1.99 +/-1.07 3.00 pCi/L 228 Calculation "See Parent Products" U 1.64 +/-1.16 1.99 +/-1.19 pCi/L nuid "As Received"	onal Counting "As Received" U -0.0911 +/-1.07 1.99 +/-1.07 3.00 pCi/L 228 Calculation "See Parent Products" U 1.64 +/-1.16 1.99 +/-1.19 pCi/L	onal Counting "As Received" U -0.0911 +/-1.07 1.99 +/-1.07 3.00 pCi/L 228 Calculation "See Parent Products" U 1.64 +/-1.16 1.99 +/-1.19 pCi/L 1 muid "As Received"	onal Counting "As Received" U -0.0911 +/-1.07 1.99 +/-1.07 3.00 pCi/L JE1 228 Calculation "See Parent Products" U 1.64 +/-1.16 1.99 +/-1.19 pCi/L 1 NXL1 muid "As Received"	onal Counting "As Received" U -0.0911 +/-1.07 1.99 +/-1.07 3.00 pCi/L JE1 09/27/22 0923 228 Calculation "See Parent Products" U 1.64 +/-1.16 1.99 +/-1.19 pCi/L 1 NXL1 09/29/22 1056	onal Counting "As Received" U -0.0911 +/-1.07 1.99 +/-1.07 3.00 pCi/L JE1 09/27/22 0923 231261 228 Calculation "See Parent Products" U 1.64 +/-1.16 1.99 +/-1.19 pCi/L 1 NXL1 09/29/22 1056 231261 muid "As Received"

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation

3 EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2312614	90.3	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution FactorMtd.: MethodDL: Detection LimitPF: Prep FactorLc/LC: Critical LevelRL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 29 of 53 SDG: 591785 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: December 7, 2022

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: MW-24D Project: GPCC00102 Sample ID: 591893005 Client ID: GPCC001

Matrix: WG
Collect Date: 01-SEP-22
Receive Date: 02-SEP-22
Collector: Client

MDC TPU RL Units PF DF Analyst Date Time Batch Mtd.	TPU	tainty MDC	Result Uncertain	Parameter Qualifier
			ıg	Rad Gas Flow Proportional Countin
			"	GFPC Ra228, Liquid "As Received"
1.76 +/-1.42 3.00 pCi/L JE1 09/27/22 0923 2312614 1	+/-1.42	+/-1.24 1.76	2.71 +/-1	Radium-228
ts"		Products"	ion "See Parent Pro	Radium-226+Radium-228 Calculat
1.76 +/-1.45 pCi/L 1 NXL1 09/29/22 1056 2312610 2	+/-1.45	+/-1.27 1.76	3.54 +/-1	Radium-226+228 Sum
				Rad Radium-226
			rived"	Lucas Cell, Ra226, Liquid "As Rece
0.197 +/-0.318 1.00 pCi/L LXP1 09/28/22 0942 2312595 3	+/-0.318	/-0.295 0.197	0.825 +/-0.2	Radium-226
ts" 1.76 +/-1.45 pCi/L 1 NXL1 09/29/22 1056 2312610	+/-1.45	**Products" +/-1.27 1.76	2.71 +/-1 ion "See Parent Pro 3.54 +/-1 ived"	Radium-228 Radium-226+Radium-228 Calculate Radium-226+228 Sum Rad Radium-226 Lucas Cell, Ra226, Liquid "As Rece

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation

3 EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2312614	90.7	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution FactorMtd.: MethodDL: Detection LimitPF: Prep FactorLc/LC: Critical LevelRL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 30 of 53 SDG: 591785 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: December 7, 2022

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: FD-03 Project: GPCC00102 Sample ID: 591893006 Client ID: GPCC001

Matrix: WG
Collect Date: 01-SEP-22
Receive Date: 02-SEP-22
Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analyst	Date Ti	ne Ba	tch I	Mtd.
Rad Gas Flow Proport		U												
GFPC Ra228, Liquid	! "As Received	"												
Radium-228	U	0.631	+/-0.849	1.45	+/-0.864	3.00	pCi/L			JE1	09/27/22 09:	23 231	2614	1
Radium-226+Radium	ı-228 Calculaı	tion "See Pa	rent Product	ts"										
Radium-226+228 Sum	U	0.963	+/-0.889	1.45	+/-0.906		pCi/L		1	NXL1	09/29/22 10:	6 231	2610	2
Rad Radium-226														
Lucas Cell, Ra226, L	iquid "As Rece	eived"												
Radium-226	U	0.332	+/-0.265	0.398	+/-0.273	1.00	pCi/L			LXP1	09/28/22 094	2 231	2595	3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2312614	93.8	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution FactorMtd.: MethodDL: Detection LimitPF: Prep FactorLc/LC: Critical LevelRL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 31 of 53 SDG: 591785 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia 30308 Report Date: December 7, 2022

Contact: Kristen Jurinko

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: EB-03 Project: GPCC00102 Sample ID: 591893007 Client ID: GPCC001

Matrix: WQ
Collect Date: 01-SEP-22
Receive Date: 02-SEP-22
Collector: Client

Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF	Analys	t Date Tin	e Batch	Mtd.
Rad Gas Flow Proportional Counting													
GFPC Ra228, Liquid	"As Received	"											
Radium-228	U	0.344	+/-1.19	2.14	+/-1.20	3.00	pCi/L			JE1	09/27/22 092	231261	4 1
Radium-226+Radium-228 Calculation "See Parent Products"													
Radium-226+228 Sum	U	0.507	+/-1.22	2.14	+/-1.22		pCi/L		1	NXL1	09/29/22 105	231261	0 2
Rad Radium-226													
Lucas Cell, Ra226, Li	quid "As Rece	eived"											
Radium-226	U	0.163	+/-0.250	0.440	+/-0.252	1.00	pCi/L			LXP1	09/28/22 094	231259	5 3

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2312614	79.6	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution FactorMtd.: MethodDL: Detection LimitPF: Prep FactorLc/LC: Critical LevelRL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 32 of 53 SDG: 591785 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Georgia Power Company

Address: 241 Ralph McGill Blvd NE, Bin 10160

> Atlanta, Georgia 30308 Report Date: December 7, 2022

Kristen Jurinko Contact:

Project: Kraft - Grumman Road Landfill CCR Groundwater Compliance

Client Sample ID: Project: GPCC00102 FB-06 Sample ID: Client ID: GPCC001 591893008

Matrix: WQ Collect Date: 01-SEP-22 Receive Date: 02-SEP-22 Collector: Client

Qualifier	Result Ur	certainty	MDC	TPU	RL	Units	PF	DF	Analyst	Date Ti	ne Ba	tch I	Mtd.
nal Countin	g												
s Received'	'												
U	0.825	+/-1.31	2.26	+/-1.33	3.00	pCi/L			JE1	09/27/22 09	23 231	2614	1
28 Calculati	ion "See Pa	rent Product.	s"										
U	1.15	+/-1.32	2.26	+/-1.34		pCi/L		1	NXL1	09/29/22 10	56 231	2610	2
id "As Rece	ived"												
	0.324	+/-0.181	0.177	+/-0.193	1.00	pCi/L			LXP1	09/28/22 09	12 231	2595	3
	aal Countin as Received' U 28 Calculati U	tal Counting s. Received" U 0.825 28 Calculation "See Pa. U 1.15 id "As Received"	tal Counting s. Received" U 0.825 +/-1.31 28 Calculation "See Parent Product. U 1.15 +/-1.32 id "As Received"	tal Counting s. Received" U 0.825 +/-1.31 2.26 28 Calculation "See Parent Products" U 1.15 +/-1.32 2.26 id "As Received"	tal Counting s. Received" U 0.825 +/-1.31 2.26 +/-1.33 28 Calculation "See Parent Products" U 1.15 +/-1.32 2.26 +/-1.34 id "As Received"	tall Counting s.s Received" U 0.825 +/-1.31 2.26 +/-1.33 3.00 28 Calculation "See Parent Products" U 1.15 +/-1.32 2.26 +/-1.34 id "As Received"	tal Counting s. Received" U 0.825 +/-1.31 2.26 +/-1.33 3.00 pCi/L 28 Calculation "See Parent Products" U 1.15 +/-1.32 2.26 +/-1.34 pCi/L id "As Received"	tal Counting s. Received" U 0.825 +/-1.31 2.26 +/-1.33 3.00 pCi/L 28 Calculation "See Parent Products" U 1.15 +/-1.32 2.26 +/-1.34 pCi/L id "As Received"	tal Counting s. Received" U 0.825 +/-1.31 2.26 +/-1.33 3.00 pCi/L 28 Calculation "See Parent Products" U 1.15 +/-1.32 2.26 +/-1.34 pCi/L 1 id "As Received"	tal Counting s Received" U 0.825 +/-1.31 2.26 +/-1.33 3.00 pCi/L JE1 28 Calculation "See Parent Products" U 1.15 +/-1.32 2.26 +/-1.34 pCi/L 1 NXL1 id "As Received"	tal Counting s. Received" U 0.825 +/-1.31 2.26 +/-1.33 3.00 pCi/L JE1 09/27/22 09/2 28 Calculation "See Parent Products" U 1.15 +/-1.32 2.26 +/-1.34 pCi/L 1 NXL1 09/29/22 10/2 id "As Received"	tal Counting s. Received" U 0.825 +/-1.31 2.26 +/-1.33 3.00 pCi/L JE1 09/27/22 0923 231 28 Calculation "See Parent Products" U 1.15 +/-1.32 2.26 +/-1.34 pCi/L 1 NXL1 09/29/22 1056 231 id "As Received"	tal Counting s. Received" U 0.825 +/-1.31 2.26 +/-1.33 3.00 pCi/L JE1 09/27/22 0923 2312614 28 Calculation "See Parent Products" U 1.15 +/-1.32 2.26 +/-1.34 pCi/L 1 NXL1 09/29/22 1056 2312610 id "As Received"

The following Analytical Methods were performed

Method	Description
1	EPA 904.0/SW846 9320 Modified
2	Calculation

EPA 903.1 Modified

Surrogate/Tracer Recovery	Test	Batch ID	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC Ra228, Liquid "As Received"	2312614	83.4	(15%-125%)

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Mtd.: Method DL: Detection Limit PF: Prep Factor Lc/LC: Critical Level RL: Reporting Limit

MDA: Minimum Detectable Activity TPU: Total Propagated Uncertainty

MDC: Minimum Detectable Concentration

Page 33 of 53 SDG: 591785 Rev1

Report Date: December 7, 2022 Page 1 of 3

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Client: Georgia Power Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia

Contact: Kristen Jurinko

Workorder: 591785

Parmname	NOM	Sample (Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Rad Gas Flow									_
Batch 2312611 —									
QC1205183293 591785001 DUP									
Radium-228		2.42		2.40	pCi/L	.713		(0% - 100%) JE1	09/27/2212:20
	Uncert:	+/-1.47		+/-0.993					
	TPU:	+/-1.59		+/-1.16					
QC1205183294 LCS									
Radium-228	43.9			43.5	pCi/L		99.2	(75%-125%) JE1	09/27/2212:20
	Uncert:			+/-3.47					
	TPU:			+/-11.5					
QC1205183292 MB									
Radium-228			U	-0.571	pCi/L			JE1	09/27/2212:20
	Uncert:			+/-0.915					
Batch 2312612 —	TPU:			+/-0.915					
QC1205183296 591785022 DUP									
Radium-228	U	1.60	U	0.401	pCi/L	0		N/A JE1	09/28/2208:44
	Uncert:	+/-1.13		+/-0.867					
	TPU:	+/-1.20		+/-0.872					
QC1205183297 LCS	44.0			100	G: /r		105	(550) 1050() HII	00/00/0000
Radium-228	44.2			46.6	pCi/L		105	(75%-125%) JE1	09/28/2208:44
	Uncert:			+/-3.47					
OC1205192205 MD	TPU:			+/-12.2					
QC1205183295 MB Radium-228			U	0.547	nCi/I			JE1	09/28/2209:30
Radiuiii-228	Uncert:		U	+/-1.42	pCi/L			JEI	09/28/2209:30
	TPU:			+/-1.42					
Rad Ra-226	IFU.			T/-1.42					
Batch 2312590 —									
QC1205183259 591785001 DUP		0.053		0.000	C: /I	7.06		(00/ 1000/) I VD1	00/20/2200 11
Radium-226	I I	0.952		0.880 +/-0.352	pCi/L	7.96		(0% - 100%) LXP1	09/28/2209:11
	Uncert:	+/-0.358 +/-0.387		+/-0.332					
QC1205183261 LCS	TPU:	+/-0.387		+/-0.360					
Radium-226	26.5			28.2	pCi/L		106	(75%-125%) LXP1	09/28/2209:11
Radium-220	Uncert:			+/-1.87	pCI/L		100	(75%-125%) LAFI	09/26/2209.11
	TPU:			+/-5.78					
QC1205183258 MB	11 0.			17 3.70					
Radium-226			U	0.197	pCi/L			LXP1	09/28/2208:39
rtadram 220	Uncert:		Ü	+/-0.167	PCI/L			2211	07/20/2200.37
	TPU:			+/-0.172					
QC1205183260 591785001 MS	11 0.								
Radium-226	130	0.952		104	pCi/L		79.2	(75%-125%) LXP1	09/28/2209:11

Page 34 of 53 SDG: 591785 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

			<u> </u>		_					
Workorder:	591785							Page 2	of 3	
Parmname		NOM	Sample Qual	l QC	Units	RPD%	REC%	Range	Anlst	Date Time
Rad Ra-226										
Batch	2312590									
		Uncert:	+/-0.358	+/-7.60						
		TPU:	+/-0.387	+/-20.2						
Batch	2312593		.,	.,						
QC1205183263	591785022 DUP									
Radium-226			1.28	0.966	pCi/L	28.2		(0% - 100%) LXP1	09/29/2210:25
		Uncert:	+/-0.492	+/-0.394						
		TPU:	+/-0.535	+/-0.440						
QC1205183265	LCS									
Radium-226		26.6		20.7	pCi/L		77.9	(75%-125%) LXP1	09/29/2210:57
		Uncert:		+/-1.84						
		TPU:		+/-3.78						
QC1205183262	MB									
Radium-226			U	0.306	pCi/L				LXP1	09/29/2210:25
		Uncert:		+/-0.353						
		TPU:		+/-0.356						
QC1205183264	591785022 MS									
Radium-226		133	1.28	119	pCi/L		88.3	(75%-125%) LXP1	09/29/2210:57
		Uncert:	+/-0.492	+/-10.4						
		TPU:	+/-0.535	+/-20.6						

Notes:

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

** Analyte is a Tracer compound

- Result is less than value reported
- Result is greater than value reported
- Results are either below the MDC or tracer recovery is low BD
- Failed analysis. FA
- Analytical holding time was exceeded Η
- See case narrative for an explanation J
- Value is estimated
- Analyte present. Reported value may be biased high. Actual value is expected to be lower. K
- Analyte present. Reported value may be biased low. Actual value is expected to be higher. L
- M if above MDC and less than LLD M
- REMP Result > MDC/CL and < RDL M
- RPD or %Recovery limits do not apply. N/A
- N1See case narrative
- ND Analyte concentration is not detected above the detection limit
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- One or more quality control criteria have not been met. Refer to the applicable narrative or DER. Q
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- UI Gamma Spectroscopy--Uncertain identification

Page 35 of 53 SDG: 591785 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 591785

Page 3 of 3

Parmname NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time

- UJ Gamma Spectroscopy--Uncertain identification
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- A RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- h Preparation or preservation holding time was exceeded

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable. ** Indicates analyte is a surrogate/tracer compound.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 36 of 53 SDG: 591785 Rev1

Report Date: December 7, 2022

Page 1 of 2

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Client: Georgia Power Company

241 Ralph McGill Blvd NE, Bin 10160

Atlanta, Georgia

Contact: Kristen Jurinko

Workorder: 591893

Parmname		NOM	Sample (Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Rad Gas Flow										
Batch	2312614 —									
QC1205183302	591883001 DUP									
Radium-228		U	0.802	U	0.487	pCi/L	0		N/A JE1	09/27/2209:23
		Uncert:	+/-1.15		+/-1.24					
		TPU:	+/-1.16		+/-1.25					
QC1205183303	LCS									
Radium-228		43.9			41.8	pCi/L		95.3	(75%-125%) JE1	09/27/2209:23
		Uncert:			+/-3.24					
		TPU:			+/-10.9					
QC1205183301	MB									
Radium-228				U	0.716	pCi/L			JE1	09/27/2209:23
		Uncert:			+/-1.07					
		TPU:			+/-1.09					
Rad Ra-226										
Batch	2312595									
QC1205183271	591613003 DUP									
Radium-226			1.03		1.10	pCi/L	6.62		(0% - 100%) LXP1	09/28/2210:14
		Uncert:	+/-0.384		+/-0.385					
		TPU:	+/-0.425		+/-0.450					
QC1205183273	LCS									
Radium-226		26.6			21.3	pCi/L		80	(75%-125%) LXP1	09/28/2210:14
		Uncert:			+/-1.47					
		TPU:			+/-3.62					
QC1205183270	MB									
Radium-226				U	0.258	pCi/L			LXP1	09/28/2210:14
		Uncert:			+/-0.245					
		TPU:			+/-0.248					
•	591613003 MS									
Radium-226		135	1.03		106	pCi/L		77.4	(75%-125%) LXP1	09/28/2210:14
		Uncert:	+/-0.384		+/-7.23					
		TPU:	+/-0.425		+/-18.3					

Notes:

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

** Analyte is a Tracer compound

< Result is less than value reported

> Result is greater than value reported

BD Results are either below the MDC or tracer recovery is low

FA Failed analysis.

H Analytical holding time was exceeded

Page 37 of 53 SDG: 591785 Rev1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 591893

Page 2 of 2

Parmname NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time

- J See case narrative for an explanation
- J Value is estimated
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- M if above MDC and less than LLD
- M REMP Result > MDC/CL and < RDL
- N/A RPD or %Recovery limits do not apply.
- N1 See case narrative
- ND Analyte concentration is not detected above the detection limit
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- UJ Gamma Spectroscopy--Uncertain identification
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- h Preparation or preservation holding time was exceeded

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ** Indicates analyte is a surrogate/tracer compound.
- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 38 of 53 SDG: 591785 Rev1

Radiochemistry Technical Case Narrative Georgia Power Company SDG #: 591785

Product: Radium-226+Radium-228 Calculation

Analytical Method: Calculation

Analytical Procedure: GL-RAD-D-003 REV# 45

Analytical Batch: 2312607

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
591785001	GWC-12
591785002	GWC-13
591785003	GWC-14
591785004	GWC-20
591785005	GWC-21
591785006	MW-25D
591785007	FD-02
591785008	EB-01
591785009	GWC-11
591785010	MW-23D
591785011	GWA-8
591785012	GWA-7
591785013	GWB-6R
591785014	FD-01
591785015	GWB-5R
591785016	FB-04
591785017	GWB-4R
591785018	GWC-17
591785019	GWC-22
591785020	EB-02

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: Radium-226+Radium-228 Calculation

Analytical Method: Calculation

Analytical Procedure: GL-RAD-D-003 REV# 45

Analytical Batch: 2312608

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID# Client Sample Identification

Page 39 of 53 SDG: 591785 Rev1

591785021	FB-05
591785022	GWC-15

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: GFPC Ra228, Liquid

Analytical Method: EPA 904.0/SW846 9320 Modified **Analytical Procedure:** GL-RAD-A-063 REV# 5

Analytical Batch: 2312611

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
591785001	GWC-12
591785002	GWC-13
591785003	GWC-14
591785004	GWC-20
591785005	GWC-21
591785006	MW-25D
591785007	FD-02
591785008	EB-01
591785009	GWC-11
591785010	MW-23D
591785011	GWA-8
591785012	GWA-7
591785013	GWB-6R
591785014	FD-01
591785015	GWB-5R
591785016	FB-04
591785017	GWB-4R
591785018	GWC-17
591785019	GWC-22
591785020	EB-02
1205183292	Method Blank (MB)
1205183293	591785001(GWC-12) Sample Duplicate (DUP)
1205183294	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Preparation Information

Page 40 of 53 SDG: 591785 Rev1

Homogenous Matrix

Samples 591785004 (GWC-20), 591785012 (GWA-7), 591785013 (GWB-6R), 591785015 (GWB-5R) and 591785017 (GWB-4R) were non-homogenous matrix. Samples were yellow and cloudy 591785004 (GWC-20), 591785012 (GWA-7), 591785013 (GWB-6R), 591785015 (GWB-5R) and 591785017 (GWB-4R).

Technical Information

Recounts

Sample 591785005 (GWC-21) was re-eluted and recounted to verify sample result. The recount is reported.

Product: GFPC Ra228, Liquid

Analytical Method: EPA 904.0/SW846 9320 Modified **Analytical Procedure:** GL-RAD-A-063 REV# 5

Analytical Batch: 2312612

The following samples were analyzed using the above methods and analytical procedure(s).

Client Sample Identification
FB-05
GWC-15
Method Blank (MB)
591785022(GWC-15) Sample Duplicate (DUP)
Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2312590

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
591785001	GWC-12
591785002	GWC-13
591785003	GWC-14
591785004	GWC-20
591785005	GWC-21
591785006	MW-25D
591785007	FD-02
591785008	EB-01

Page 41 of 53 SDG: 591785 Rev1

591785009	GWC-11
591785010	MW-23D
591785011	GWA-8
591785012	GWA-7
591785013	GWB-6R
591785014	FD-01
591785015	GWB-5R
591785016	FB-04
591785017	GWB-4R
591785018	GWC-17
591785019	GWC-22
591785020	EB-02
1205183258	Method Blank (MB)
1205183259	591785001(GWC-12) Sample Duplicate (DUP)
1205183260	591785001(GWC-12) Matrix Spike (MS)
1205183261	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Preparation Information

Homogenous Matrix

Samples 591785004 (GWC-20), 591785012 (GWA-7), 591785014 (FD-01) and 591785017 (GWB-4R) were non-homogenous matrix.

Miscellaneous Information

Additional Comments

The matrix spike, 1205183260 (GWC-12MS), aliquot was reduced to conserve sample volume.

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2312593

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
591785021	FB-05
591785022	GWC-15
1205183262	Method Blank (MB)
1205183263	591785022(GWC-15) Sample Duplicate (DUP)
1205183264	591785022(GWC-15) Matrix Spike (MS)
1205183265	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Miscellaneous Information

Additional Comments

The matrix spike, 1205183264 (GWC-15MS), aliquot was reduced to conserve sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 43 of 53 SDG: 591785 Rev1

Radiochemistry Technical Case Narrative Georgia Power Company SDG #: 591893

Product: Radium-226+Radium-228 Calculation

Analytical Method: Calculation

Analytical Procedure: GL-RAD-D-003 REV# 45

Analytical Batch: 2312610

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
591893001	GWC-1
591893002	GWC-2
591893003	GWC-9
591893004	GWC-16
591893005	MW-24D
591893006	FD-03
591893007	EB-03
591893008	FB-06

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: GFPC Ra228, Liquid

Analytical Method: EPA 904.0/SW846 9320 Modified **Analytical Procedure:** GL-RAD-A-063 REV# 5

Analytical Batch: 2312614

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
591893001	GWC-1
591893002	GWC-2
591893003	GWC-9
591893004	GWC-16
591893005	MW-24D
591893006	FD-03
591893007	EB-03
591893008	FB-06
1205183301	Method Blank (MB)
1205183302	591883001(NonSDG) Sample Duplicate (DUP)
1205183303	Laboratory Control Sample (LCS)

Page 44 of 53 SDG: 591785 Rev1

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: Lucas Cell, Ra226, Liquid Analytical Method: EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2312595

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
591893001	GWC-1
591893002	GWC-2
591893003	GWC-9
591893004	GWC-16
591893005	MW-24D
591893006	FD-03
591893007	EB-03
591893008	FB-06
1205183270	Method Blank (MB)
1205183271	591613003(NonSDG) Sample Duplicate (DUP)
1205183272	591613003(NonSDG) Matrix Spike (MS)
1205183273	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

CSU

The blank (See Below) result is greater than 1.65 times the CSU but less than the MDC.

Sample	Analyte	Value
1205183270 (MB)	Radium-226	Blank result > 1.65 CSU

Miscellaneous Information

Additional Comments

The matrix spike, 1205183272 (Non SDG 591613003MS), aliquot was reduced to conserve sample volume.

Page 45 of 53 SDG: 591785 Rev1

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 46 of 53 SDG: 591785 Rev1

Page: 1 of 3			_								GEI 1al	GEI Laboratoriae III		
##	59178S G	<u> </u>	Ĭ	aboratories	torie	SLLC					2040 Sa	2040 Savage Road		
GEL Quote #:	69/783		_ 7	Chemistry Radiochemistry Radiobioassay Specialty Analytics	chemistry P	adiobioassa	ly I Specia	ifty Analy	tics		Charlest	Charleston, SC 29407		
COC Number 77:	01110	Chain	20 0	or Custody and Analytical Request	Analy	tical Ke	duest				Phone: (Phone: (843) 556-8171		
	GEL WORK Order Number:			GEL Pro	GEL Project Manager: Erin Trent	ger: Erin	Irent				Fax: (84	Fax: (843) 766-1178		
Client Name: GA Power		Phone # 40	404-506-7116	16		S	ample	Analys	is Req	Sample Analysis Requested (5) (Fi	Il in the numb	er of containe	(Fill in the number of containers for each test)	が表現
Project/Site Name: Plant Kraft - Grumman Road Landfill	ad Landfill	Fax#			Sh	Should this	S		IN	IN			< Preservative Type (6)	(9)
Address: 241 Ralph McGill Blvd SE, Atlanta GA 30308	GA 30308				as 53	sample be considered:	19nis)		¥	8				
Collected By: Tay for (20) & A. Shuffle Send Results To: SCS	ALE Send Results To: SCS & A	& ACC Contacts			JI)	ı.qz	uoo jo .	2M 2540	B, 60101 Metals	77 8 57			Comments Note: extra sample is	SI S
ℓ Sample ID $*$ For composites - indicate start and stop date time	*Date Collected	*Time Collected (Military) (hhmm)	QC Code (3)	Field Sa Filtered ⁽³⁾ Mat	Sample Matrix & Madioactive	isotopic info.) (7) Known or possible Haza	Total number	CI, F, SO EPA 300, S	EPA 60201	ZM-846 93			required for sample specific QC	ole
GWC-12	80		5	N WG			و.	7		/			field pH = 3.92	
GWC-13	08-31-22	1011	5	N WG	9		9	1	1	\			field pH = リ、イト	
GWC-14	08-30-22	1157	5	N WG	G		6	7		/			II JO	
GMC-20	08-30-22	1323	5	N WG	5		9	7	1	/			field pH = (2 ° O i	
GWC-21	08-30-22	1725	9	N WG	5		9	7		7			field pH = 5.7 L	
14W-25D	05-31.22	1158	5	N WG	5		9	7		/			6,7	
FD-02	08-31-22	-	5	N MG	(h		9	1	\	7			Н	
EB-01	04-30-22	1630	5	N	a		9	7	1	7			field nH =	
(5WC-11	08-31-22	15-45	3	3	MG		3	7		1			field pH = 4.85	
MW-230	22-31-22	1614	5	3	NG		9	7	1	7			(6.	
	Chain of Custody Signatures					T/	TAT Requested:	iested:	Normal:	al: x Rush:		Specify:	17	(a)
Relinquished By (Signed) Date Ti	Time Received by (signed)	ned) Date	e e	Time		Fax Results:	sults: [] Yes	[x] No					
1 Taylly Last 9-1-22	0840 1 Kuts	Lux	5	1.1.	048	Select 1	Select Deliverable: [] C of A	ble: []	CofA	[] QC Summary	nary [] level 1	11 [x] Level 2	[] Level 3 [] Level 4	14
2 11 050 1 10 9 11.22	2 1055 2.14	0	9	122	1055	Additio	Additional Remarks:	arks:	* W	etals: B,Ca,Sb,A	s,Ba,Be,Cd,Cr,	1 3		
3	3		-		,	For La	b Recei	ing Us	e Only:	For Lab Receiving Use Only: Custody Seal Intact? [] Yes	Intact? [] Ye.	[] No	Cooler Temp: °C	
> For sample shipping and delivery details, see Sample Receipt & Review form (SRR.) 1.3 Chain of Canada Manhae = Clina Dataminad	e Sample Receipt & Review form	(SRR.)			Sampl	Sample Collection Time Zone: [x] Eastern	n Time	Zone:	[x] Eas	tern [] Pacific	fic [] Central	17004	[] Mountain [] Other:	
2.) QC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicate, EB = Equipment Blank, MS = Matrix Spike Sample, MSD = Matrix Spike Duplicate Sample, G = Grap, C = Commostie	= Field Duplicate, EB = Equipment Blank, 1	MS = Matrix Spi	ke Sample	MSD = Matr	x Spike Dupli	cate Sample.	G = Grab	C = Con	nosite					
3.) Field Filtered: For liquid matrices, indicate with a - Y - for yes the sample was field filtered or - N - for sample was not field filtered	for yes the sample was field filtered or - N -	for sample was n	ot field filt	ered.	•									
4.) Matrix Codes: WD=Drinking Water, WG=Groundwater, WS=Surface Water, WW=Waste Water, WL=Leachate, SO=Soil, SE=Sediment, SL=Sludge, WQ=Water Quality Control Matrix	r, WS=Surface Water, WW=Waste Water,	WL=Leachate, S	O=Soil, S	E=Sediment, S	L=Sludge, W	Q=Water Qua	ality Contr	ol Matrix						
5.) Sample Analysis Requested: Analytical method requested (i.e. 8260B, 6010B/7470A) and number of containers	ed (i.e. 8260B, 6010B/7470A) and number o	f containers prov	ided for e	provided for each (i.e. 8260B - 3, 6010B/74704 - 1).	-3, 6010B/7.	1704 - 1).								
6.) Preservative Type: HA = Hydrochloric Acid, NI = Nitric Acid, SH = Sodium Hydroxide, SA = Sulfuric Acid, AA = Ascorbic Acid, HX = Hexane, ST = Sodium Thiosulfate, If no preservative is added = leave field blank	: Acid, SH = Sodium Hydroxide, SA = Sulfi	ıric Acid, AA =	Ascorbic A	.cid, HX = He	ane, ST = So	fium Thiosulf	fate, If no	preservati	re is adde	d = leave field blar				
7.) KNOWN OR POSSIBLE HAZARDS	Characteristic Hazards FL = Flammable/Ignitable	Listed Waste LW= Listed Waste	aste ted Was	9		Other OT=0	Other OT= Other / Unknown	nknown				Please provi	Please provide any additional details	
RCRA Metals As = Arsenic Hg= Mercury Ra = Barium Se= Selenium	CO = Corrosive RE = Reactive	(F,K,P and U-l Waste code(s):	ıd U-list de(s):	(F,K,P and U-listed wastes.) Waste code(s):		(i.e.: High/lo misc. health	(i.e.: High/low pH, asbesti misc. health hazards, etc.)	oH, asb cards, e	estos, b	(i.e.: High/low pH, asbestos, beryllium, irritants, other misc. health hazards, etc.)	nts, other	disposal con sample(s), ty	disposal concerns. (i.e.: Origin of sample(s), type of site collected from, odd	ppo
E E	TSCA Regulated PCB = Polychlorinated				11	dipera						marres, etc.)		
	biphenyls													

Col. Hond, Order Numbers Catal Hond, Order Numbers C	age:		U	GEL Solleg		bora istry Radio		S LLC diobioasse	ıy I Spec	ialty An	alytics			GEL Laboratories, LL 2040 Savage Road Charleston, SC 29407	GEL Laboratories, LLC 2040 Savage Road Charleston, SC 29407	
Part Nove Part	COC Number (1).	The Walt	N. L	Chai	n of Cu	stody ar	d Analyt	ical Re	senb					Phone: (843) 556-8171	
Sumple Inc. Sumple Inc. See ACC Contacts Sumple Michigan M	1.2	GEL WORK Order	.vumber:		4-506-711	GEL Proj	ect Manag	er: Erın	Irent	Anal	veic R	Source	3	Fax: (843) 7	766-1178 of containers fo	or each teet)
Sample ID Packet	Project/Site Name: Plant Kraft - Grumman Road L	Landfill		ax #			Sho	A Nassa			IN	IN	3			Cach test) C- Preservative Type (6)
Sample ID Send Results To, SCS & ACC Contacts Send Sample Send Results To, SCS & ACC Contacts Colored Colore	Address: 241 Ralph McGill Blvd SE, Atlanta GA	30308					San	nple be	tainers			, a				o) od () on minor () be
Sample ID Part Colored Colored	Bosher	Send Results To:	SCS & AC	C Contact	s			spa	иоэ до .		10109 'E	3, 6010				Comments Note: extra sample i
6 \(\times A - \frac{7}{2} \) 09 20 22 11 56 6 8 8 86 6 7 7 7 7 7 7 7 7	Sample ID * For composites - indicate start and stop date/		Collected -dd-yy)	*Time Collected (Military)	QC Code (2) Fil	Field San tered (3) Mats	Radioactive yes, please sup	(7) Кпочп ог	Total number		EbV 60201	EPA 60201				required for sample specific QC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+	5/80		1156		M			0	>	>	ŕ			field	
FD - 61	A-A	63/3		0935	0	Y.	-0		4	>	1	1	\		field	
FD-61	0	68/3	27/22	1051		¥	9		و.	>	7		\		field	10
ξωνβ - 5 ξ ξρβ μο τ ξρβ μο τ ξρβ μο τ ξρβ μο τ ξργ μο	1	03/30	22/			3	87		9	7	7		\		field	
FB - 6 4	١.	68/30		0211		>	2		9	>	>		\		field	
	FB-64	08/32	hr	0041			CX		~	7	1				field	
	GWB-4R	08/30	22	530	9		7		9	>	>	,	_		field	
E V C C C C C C C V W W W W W W W W W	EWC-17	68/34/		1135			0		ه	>	>	7			field	
Chain of Custody Signatures Received by (signed) Date Time Received by (signed) Mark Signatures Chain of Custody Signatures Received by (signed) Date Time Received by (signed) Adj 7 2	22-2159	115/12		3.20			10		9)	7	_			field	
Chain of Custody Signatures Time Received by (signed) Date	FB-02	08/3	- 87	50/1			.Ω		0	1	7				field	1
Pax Results: [] Yes Signed Date Time Received by (signed) Date Time Fax Results: [] Yes Signed Date Time Pax Results: [] Yes Signed Date Time Select Deliverable: [] C of A [] OC Summary [] level A	Ch	ain of Custody Sig	natures					T	AT Rec	queste		rmal:		Specify		(Subject to Surcharge)
Select Deliverable: [] C of A [] OC Summary [] Ievel]	Date		ved by (sign			Time		Fax Re	sults:	[] Ye	1	No No				
Additional Remarks: * Metals: B.Ca.Sb.As.Ba.Be.Cd.Cr.Cc For Lab Receiving Use Only: Custody Seal Intact? 1 Fest	15 Hell 9-1-12		TAN	YC	1.6	2	240	Select	Deliver	able: []C of		QC Summary	[] level 1		
Sample Receiving Use Only: Custody Seal Intact? [] Fest	1	1055	1	0	01/12	01 7	35	Additic	onal Re	marks:		Metals	B,Ca,Sb,As,Ba	Be,Cd,Cr,Co,	Pb,Li,Mo,Se,TI,	V,Zn,Hg
wD-Drinking water WG-Groundwater, WS-Surface Water, WW-Waste Water, WD-Drinking water, WG-Groundwater, WS-Surface Water, WW-Waste Water, WD-Drinking water, WG-Groundwater, WS-Surface Water, WW-Drinking water, WG-Groundwater, WS-Surface Water, WW-Waste Water, WD-Drinking water, WG-Groundwater, WS-Surface Water, WW-Waste Water, WD-Drinking water, WG-Groundwater, WS-Surface Water, WW-Drinking water, WG-Groundwater, WS-Surface Water, WW-Waste Water, WD-Drinking water, WG-Groundwater, WS-Surface Water, WW-Waste Water, WD-Drinking water, WG-Groundwater, WS-Surface Water, WM-Drinking water, WG-Groundwater, WS-Surface Water, WM-Maste Water, WD-Drinking water, WG-Groundwater, WS-Surface Water, WD-Drinking water, WG-Groundwater, WG-Surface Water, WG-Surface Wg	9	8						For La	ib Rece	iving	Jse On	ly: Cu	tody Seal Intac	t? [] Yes		- 1
Evormal Sample, TB = Trip Blank, FD = Field Duplicate, EB = Equipment Blank, MS = Matrix Spike Sample, MSD = Matrix Spike Duplicate Sample, G = Grab, C = Composite For liquid matrices, indicate with a - Y - for yes the sample was field filtered or - N - for sample was not field filtered. WD=Drinking Water, WG=Groundwater, WS=Surface Water, WW=Water Water, WL=Leachate, SO=Soil, SE=Sediment, SL=Sludge, WQ=Water Quality Control Matrix WD=Drinking Water, WG=Groundwater, WS=Surface Water, WW=Water Water, WL=Leachate, SO=Soil, SE=Sediment, SL=Sludge, WQ=Water Quality Control Matrix SR = Requested: Analytical method requested (i.e. 8260B 6010B/7470A - 1). Instead Waste Containers provided for each (i.e. 8260B - 3, 6010B/7470A - 1). Instead Waste Containers provided for each (i.e. 8260B - 3, 6010B/7470A - 1). Instead Waste Containers Description: CO = Corrosive Ha=Reactive Haste code(s): RE = Reactive Haste Code(s): RE = Reactive Haste Code(s): Ag=Silver Description: Ag=Silver PCB = Polychlorinated biphenyls	 For sample shipping and delivery defails, see Si. Chain of Custody Number = Client Determined 	ample Receipt & Rev	iew form (SRR.)			Sample	Collecti	mi I no	e Zone	<u>×</u>	astern	[] Pacific	[] Central		[] Other:
WD=Drinking Water, WG=Groundwater, WS=Surface Water, WW=Waste Water, WL=Leachate, SO=Soil, SE=Sediment, SL=Sludge, WQ=Water Quality Control Matrix s Requested: Analytical method requested (i.e. 8260B, 6010B7470A) and number of containers provided for each (i.e. 8260B - 3, 6010B7470A - 1) per HA = Hydrochloric Acid, NI = Nitric Acid, SH = Sodium Hydroxide, SA = Sulfuric Acid, AA = Ascorbic Acid, HX = Hexane, ST = Sodium Thiosulfate, If no preservative is added = leave field blank Resultance Listed Waste Listed Waste Other Other Other Resultance LW= Listed Waste OT= Other Unknown Resultance Hash Reservative Reservative	 QC Codes: N = Normal Sample, TB = Trip Blank, FD = Fie Field Filtered: For liquid matrices, indicate with a - Y - for ye 	eld Duplicate, EB = Equipnes the sample was field filter	nent Blank, M red or - N - fo	IS = Matrix Sports Spor	nike Sample, not field filter	MSD = Matri red.	κ Spike Duplic	ate Sample,	G = Gra	b, C = C	omposit					
Pre: HA = Hydrochloric Acid, NI = Nitric Acid, SH = Sodium Hydroxide, SA = Sulfuric Acid, AA = Ascorbic Acid, HX = Hexane, ST = Sodium Thiosulflate, If no preservative is added = leave field blank. Characteristic Hazards Listed Waste Characteristic Hazards Listed Waste CO = Corrosive FL = Flammable/Ignitable LW= Listed Waste OT= Other / Unknown CO = Corrosive RE = Reactive Waste code(s): RE = Reactive Waste code(s): Description: Ag= Silver Ag= Silver PCB = Polychlorinated Description: Description: Ag= Silver PCB = Polychlorinated Description: Description: Ag= Silver PCB = Polychlorinated Description: Descriptio	.) Matrix Codes: WD=Drinking Water, WG=Groundwater, W) Sample Analysis Requested: Analytical method requested (i.e.	S=Surface Water, WW=W e. 8260B, 6010B/7470A) a	aste Water, W	/L=Leachate, containers pro	SO=Soil, SE vided for eac	=Sediment, S th (i.e. 8260B	L=Sludge, WC - 3, 6010B/74	=Water Qu 70A - 1).	ality Con	itrol Mat	·Ř					
Characteristic Hazards Listed Waste Other	.) Preservative Type: $\mathbf{H}\mathbf{A} = \mathbf{H}\mathbf{y}$ drochloric Acid, $\mathbf{N}\mathbf{I} = \mathbf{N}\mathbf{i}$ tric Acid	id, SH = Sodium Hydroxid	e, SA = Sulfur	ic Acid, AA =	Ascorbic Ac	id, HX = Hex	ane, ST = Sod	um Thiosul	fate, If no	preserv	ative is	= pappi	ave field blank			
FLE = Flammable/Ignitable LW= Listed Waste OT= Other / Unknown Hg= Mercury RE = Reactive F.K.P and U-listed wastes.) (i.e.: High/low pH, asbestos, beryllium, irritants, other TSCA Regulated Description: TSCA Regulated		Characteristic Haz	ards	Listed V	Vaste		П	Other						7	Please provide	my additional details
Ag= Silver TSCA Regulated MR= Misc. RCRA metals PCB = Polychlorinated biphenyls	Hg= Mercury Se= Selenium	FL = Flammable/lgr CO = Corrosive RE = Reactive	nitable	LW= Li (F,K,P a Waste co	sted Wast nd U-liste ode(s):	e d wastes.)		OT= C (i.e.: H misc. h Descriț	ther / U igh/low ealth h	Jnknov ' pH, a azards	vn sbesto.	s, beryl	ium, irritants,		below regarding lisposal concer cample(s), type o natrices, etc.)	t handling and/or ns. (i.e.: Origin of of site collected from, o
- דיכמה	Ag= Silver MR= Misc. RCRA metals	TSCA Regulated PCB = Polychlorina	ted													
	road a	orphenyrs												1		

oroject #		Chain		Chain of Custody and Analytical Regulact	OFIES emistry I Radi	LLC obioassay i	Specialty	Analytics		2040 Savage Road Charleston, SC 29407	2040 Savage Road Charleston, SC 29407 Dhone: (843) \$56, 9171	
PO Number:	GEL Work Order Number:			GEL Project Manager: Erin Trent	t Manage	r: Erin T	rent			Fax: (8.	Fax: (843) 766-1178	
Client Name: GA Power		Phone # 40	404-506-7116			Saı	Sample Analysis Requested (5)	nalysis	Reque	(Fill in the	ber of container	rs for each test)
Project/Site Name: Plant Kraft - Grumman Road Landfill	Landfill	Fax#			Shoul	Should this	S	IN	IN			< Preservative Type (6)
Address: 241 Ralph McGill Blvd SE, Atlanta GA 30308	30308				sample be	sample be considered:			О			
Collected By: Jay or Good	Send Results To: SCS & ACC Conta	.CC Contacts	S		II) Vlqo	rds	Milks	_* S	3, 6010			Comments Note: extra sample is
$egin{align*} & ext{Sample ID} \ & ext{For composites - indicate start and stop date time} \end{bmatrix}$	*Date Collected (inne (mm-dd-yy)	*Time Collected (Military) (hhmm)	QC 1	Field Sample Filtered (3) Matrix (4)	E & Badioactive yes, please sup isotopic info.)	(7) Known or possible Haza	Total number	EPA 300, S	Dissolved EPA 60201	27W-846 93		required for sample specific QC
FB-05	08-31-22	1530	N G	W GTC	J		20)	7)		field pH =
GWC-13	08-31-22	1354	Z ち	J MG			9))		field pH = 6.57
												field pH =
												field pH =
												field pH =
												field pH =
												field pH =
												field pH =
												field pH =
												field pH =
CE	Chain of Custody Signatures					TAT	TAT Requested:		Normal:	x Rush:	Specify:	(Subject to Surcharge)
Relinquished By (Signed) Date Time	e Received by (signed)		Date 7	Time		Fax Results: [] Yes	lts: []		oN [x]			
22 0	0840 1 1000	The state of the s	5	.22 8	250	Select De	liverabl	s: [] C	of A	Select Deliverable: [] C of A [] QC Summary [] level 1	el 1 [x] Level 2	2 [] Level 3 [] Level 4
1022 gri22	10SS 2 / J	9	41/2	01 72	658	Additional Remarks:	ıl Rema	.ks:	* Meta	* Metals: B,Ca,Sb,As,Ba,Be,Cd,Cr,Co,Pb,Li,Mo,Se,Tl,V,Zn,Hg	r,Co,Pb,Li,Mo,Se	,Tl,V,Zn,Hg
	3	FIRST STATE		Section of the sectio		For Lab	Receivin	g Use (only: C	For Lab Receiving Use Only: Custody Seal Intact? [] Yes	es []No C	Cooler Temp: °C
Construction of Custody Number = Client Determined OC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicate, EB = Equipment Blank, MS = Matrix Spike Sample, MSD = Matrix Spike Duplicate Sample, G = Grab, C = Composite	intiple Receipt & Review form eld Duplicate, $EB = Equipment$ Blank,	(SKK.) MS = Matrix S	oike Sample, I	ASD = Matrix	Spike Duplicat	e Sample, G	= Grab, C	= Compo	Laster	Sumpte Contention Time Zone : [A] Lasten [] Lasten [] Contain [] J Woundain [] J Outer, like Duplicate Sample, G = Grab, C = Composite	indi 1 Jaroni	italii [] Olifet.
) Field Filtered: For liquid matrices, indicate with a - Y - for yes the sample was field filtered or - N - for sample was not field filtered. Matrix Codes: WD=Drinking Water, WG=Groundwater, WS=Surface Water, WW=Waste Water, WL=Leachate, SO=Soil, SE=Sediment, SL=Sludge, WQ=Water Quality Control Matrix	res the sample was field filtered or - N - /S=Surface Water, WW=Waste Water,	for sample was WL=Leachate,	not field filter SO=Soil, SE	ed. =Sediment, SL=	-Sludge, WQ=	Water Quali	y Control	Matrix				
) Sample Analysis Requested: Analytical method requested (i.e. 8260B, 6010B/7470A) and number of containers provided for each (i.e. 8260B - 3, 6010B/7470A - 1). Preservative Type: HA = Hydrochloric Acid, NI = Nitric Acid, SH = Sodium Hydroxide, SA = Sulfuric Acid, AA = Ascorbic Acid, HX = Hexane, ST = Sodium Thiosulfate, If no preservative is added = leave field blank	.e. 8260B , 6010B /7470A) and number sid, SH = Sodium Hydroxide, SA = Sul	of containers pri	ovided for eac	i.e. 8260B -	3, 6010B/7470	1). m Thiosulfat	e, If no pre	servative	s added =	leave field blank		
KNOWN OR POSSIBLE HAZARDS	Characteristic Hazards	Listed Waste	Vaste			Other					Please provi	Please provide any additional details
	FL = Flammable/Ignitable CO = Corrosive RE = Reactive	LW=L) (F,K,P c Waste c	LW= Listed Waste (F,K,P and U-listed wastes.) Waste code(s):	t wastes.)		OT= Other / Unknown (i.e.: High/low pH, asbest, misc. health hazards, etc.) Description:	er / Unk h/Iow pl Ith haza on:	nown I, asbes, rds, etc.	os, bery	OT= Other / Unknown (i.e.: High/low pH, asbestos, beryllium, irritants, other misc. health hazards, etc.) Description:	below regardi disposal conc sample(s), typ matrices, etc.)	below regarding handling and/or disposal concerns. (i.e.: Origin of sample(s), type of site collected from, odd matrices, etc.)
d = Cadmium Ag= Silver r = Chromium MR= Misc. RCRA metals b = Lead	TSCA Regulated PCB = Polychlorinated biphenyls				1							
						The Second second	Total Agricultura					

Laboratories LLC SAMPLE RECEIPT & REVIEW FORM Client: /3 PC SDG/AR/COC/Work Order: Received By: Date Received: Circle Applicable: FedEx Express FedEx Ground UPS Field Services Carrier and Tracking Number Suspected Hazard Information Yes å *If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation. Hazard Class Shipped: TIN# If UN2910, Is the Radioactive Shipment Survey Compliant? Yes____No_ A)Shipped as a DOT Hazardous? B) Did the client designate the samples are to be COC notation or radioactive stickers on containers equal client designation. received as radioactive? (CPM/)mR/Hr C) Did the RSO classify the samples as radioactive? COC notation or hazard labels on containers equal client designation D) Did the client designate samples are hazardous? If D or B is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium E) Did the RSO identify possible hazards? No No Sample Receipt Criteria Comments/Qualifiers (Required for Non-Conforming Items) Circle Applicable: Seals broken Damaged container Leaking container Other (describe) Shipping containers received intact and Chain of custody documents included Circle Applicable: Client contacted and provided COC COC created upon receipt 2 with shipment? Preservation Method: Wet Ice Ice Packs Dry ice None Other: TEMP: 3 Samples requiring cold preservation *all temperatures are recorded in Celsius within $(0 \le 6 \text{ deg. C})$?* Temperature Device Serial #: 1 3 - 2 Daily check performed and passed on IR Secondary Temperature Device Serial # (If Applicable): temperature gun? Circle Applicable: Scals broken Damaged container Leaking container Other (describe) 5 Sample containers intact and sealed? Sample ID's and Containers Affected: Samples requiring chemical preservation at proper pH? If Preservation added, Lot#: If Yes, are Encores or Soil Kits present for solids? Yes___No___NA___(If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? Yes No NA Are liquid VOA vials free of headspace? Yes No NA (If unknown, select No) Do any samples require Volatile 7 Analysis? Sample ID's and containers affected: ID's and tests affected: 8 Samples received within holding time? ID's and containers affected: Sample ID's on COC match ID's on bottles? Circle Applicable: No dates on containers No times on containers COC missing info Other (describe) Date & time on COC match date & time on bottles? Circle Applicable: No container count on COC Other (describe) Number of containers received match number indicated on COC? Are sample containers identifiable as GEL provided by use of GEL labels? COC form is properly signed in Circle Applicable: Not relinquished Other (describe) relinquished/received sections? Comments (Use Continuation Form if needed):

PM (or PMA) review: Initials ON Date 09/06/22 Page of

													18		
Page: of l	ī			_		-						GEL L	GEL Laboratories, LLC	o,	
Project #	168165	כ			Dora	_aboratories LL						2040 S	2040 Savage Road		
GEL Quote #:	()	. 1	gel.com	Chemi	stry Radioch	Chemistry Radiochemistry Radiobioassay Specialty Analytics	obioassay l	Specialty	Analytics			Charles	Charleston, SC 29407		
COC Number (1):	28185	n	Chai	of Cus	stody an	Chain of Custody and Analytical Request	al Requ	lest				Phone:	Phone: (843) 556-8171	1	
PO Number:	GEL Work Order Number:	· Number:			GEL Proje	GEL Project Manager: Erin Trem	:: Erin Tı	ent.				Fax: (8	Fax: (843) 766-1178		
Client Name: GA Power		P	Phone # 40	404-506-7116	9		Sar	nple A	Sample Analysis Requested	Reques	(3)	ill in the num	iber of contai	(Fill in the number of containers for each test))
Project/Site Name: Plant Kraft - Grumman Road Landfill	1 Landfill	Fe	Fax#			Should this	d this	S.	IN	IN	IN			< Preserva	< Preservative Type (6)
Address: 241 Ralph McGill Blvd SE, Atlanta GA 30308	A 30308					samp	sample be considered:	south.		D					
Collected By: Roll of Collected By:	Send Results To: SCS & ACC Contacts	SCS & AC	C Contact)I) Viđđ	n.qs		# S	B, 6010				Com Note: extr	Comments Note: extra sample is
Sample ID * For composites - indicate start and stop date time		*Date Collected	*Time Collected (Military)	QC Code (2) Fil	Field Sample Filtered (3) Matrix (4)	Radioactive yes, please sup sotopic info.)	(7) Known or possible Haza	Total number Cl, F, SC	EPA 5020 Meta EPA 300, 5	Dissolved	Radium 2:			required	required for sample specific QC
0.5×0	0	22-10		Z U	MG			.2	7		/			field pH = 5	40
GWC-2	750	-01-12	1425	5	N WG	.h		6	1		7			H = Hd plei	5
G-080	10-60	-22	0924	5	JU WG	ماء		9)		7			field pH = 4	09,
GWC -16	0-60	-22	1046	3	N WC	. 5		9	1		7			field pH = 5	.37
CAY-WY	20	-22	1159	5	NG MG	la		3)		7			() = Hd pla	,04
FD-03	-10-60	N	1	5	NG MG	h		9	1		>			field pH =	1
77) Q 0	00	1 27-10-	400	5	03			1	1	- 133				field pH =	
FB-06	00	22-10	1030	5	N M	9		9	1		7			field pH =	1
														field pH =	
														field pH =	
3	Chain of Custody Signatures	gnatures					TAI	TAT Requested:	1	Normal:	×	Rush: Sp	Specify:	(Subject to Surcharge)	Surcharge)
Relinquished By (Signed) Date Time		Received by (signed)		Date	Time		Fax Results: [1 Yes	lts. []		[x] No					
1 Tolly 911 9-2-12 0	0322 1	SAN	7.4	2.2.6	2	228	Select De	liverab	e: [] C	of A	Select Deliverable: [] C of A [] QC Summary	ımary [] level 1	el 1 [x] Level 2	el 2 [] Level 3	[] Level 4
1 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	505	The state of the s		12/6	2/12 101	15	Additional Remarks:	ıl Rema	rks:	* Meta	s: B,Ca,Sl	,As,Ba,Be,Cd,C	Cr,Co,Pb,Li,Mo	* Metals: B,Ca,Sb,As,Ba,Be,Cd,Cr,Co,Pb,Li,Mo,Se,Tl,V,Zn,Hg	
3	3					,	For Lab	Receivi	ng Use	Only: C	stody Sea	For Lab Receiving Use Only: Custody Seal Intact? [] Yes	res [] No	Cooler Temp:	<i>2</i> °
> For sample shipping and delivery details, see Sample Receipt & Review form (SRR.)	Sample Receipt & Re	view form (SRR.)			Sample	Sample Collection Time Zone: [x] Eastern	Time Z	one: [x] Easter	η [] Pacific	cific [] Central	ntral [] Mountain	untain [] Other	
1.) Chain of Custody Number = Client Determined							10	69	10						
2.) QC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicate, EB = Equipment Blank, MS = Matrix Spike Sample, MSD = Matrix Spike Duplicate Sample, G = Grab, C = Composite	Field Duplicate, EB = Equip	ment Blank, M	S = Matrix S	ike Sample,	MSD = Matrix	s Spike Duplicat	e Sample, G	= Grab, (= Compo	site					
 Field Filtered: For liquid matrices, indicate with a - Y - for yes the sample was field filtered or - N - for sample was not field filtered. 	rr yes the sample was field fill	ered or - N - to	r sample was	not field filte	red.										
4.) Matrix Codes: WD=Drinking Water, WG=Groundwater, WS=Surface Water, WW=Waste Water, WL=Leachate, SO=Soil, SE=Sediment, SL=Sludge, WQ=Water Quality Control Matrix	WS=Surface Water, WW=\	Vaste Water, W	L=Leachate,	SO=Soil, SE	:=Sediment, SI	.=Sludge, WQ=	-Water Quali	ty Contro	Matrix						
5.) Sample Analysis Requested: Analytical method requested (i.e. 8260B, 6010B/1470A) and number of containers provided for each (i.e. 8260B - 3, 6010B/1470A - 1).	(i.e. 8260B, 6010B/7470A)	and number of	containers pro	wided for each	ch (i.e. <i>8260B</i> cid HX = Hex	provided for each (i.e. 8260B - 3, 6010B/74704 - 1). A = Accorbic Acid HX = Hexane ST = Sodium Thios	7.4 - 1). m Thiosulfat	e. If no pr	eservative	= sadded =	leave field b	ank			
6.) Preservative Type: HA = Hydrochloric Acid, IN = INITIC.	Acid, Sn – Sodium riyuloxi	nine – ve 'ar	C Acid, AA – Ascolo	ASCOLORO A	and, my men	and a comp	746.0	,	200				D/	District Land Addition of Asserts	al dotaile
RCRA Metals As = Arsenic Hg= Mercury Ba = Barium Se= Selenium Cd = Cadmium Ag= Silver Cr = Chromium MR= Misc. RCRA metals Pb = Lead	Characteristic razards FL = Flammable/Ignitable CO = Corrosive RE = Reactive TSCA Regulated PCB = Polychlorinated biphenyls	initable ated	Listed waste LW= Listed W (F,K,P and U-1) Waste code(s):	Listed waste LW= Listed Waste (F,K,P and U-liste Waste code(s):	Listed waste LW= Listed Waste (F.K.P and U-listed wastes.) Waste code(s):	7 11	OT= Other / Unknown (i.e.: High/low pH, asbest misc. health hazards, etc.) Description:	er / Unl h/low p thh hazo	th, asbess	Los, bery	dlium, irr	OT= Other / Unknown fi.e.: High/low pH, asbestos, beryllium, irritants, other misc. health hazards, etc.) Description:	below regard disposal conc sample(s), typ matrices, etc.	reuse provue any maniona acturs below regarding handling and/or disposal concerns. (i.e.: Origin of sample(s), type of site collected from, odd matrices, etc.)	ra ucans igin of rted from, odd

GEL	Laboratories LLC
-----	------------------

SAMPLE RECEIPT & REVIEW FORM SDG/AR/COC/Work Order: Date Received: 9/2/7 7 Received By: Circle Applicable: FedEx Express FedEx Ground UPS Field Services Courier Other Carrier and Tracking Number Suspected Hazard Information Yes ŝ *If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation. Hazard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes____No_ A)Shipped as a DOT Hazardous? B) Did the client designate the samples are to be COC notation or radioactive stickers on containers equal client designation. received as radioactive? C) Did the RSO classify the samples as radioactive? COC notation or hazard labels on containers equal client designation. D) Did the client designate samples are hazardous? If D or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium E) Did the RSO identify possible hazards? Sample Receipt Criteria N N N Comments/Qualifiers (Required for Non-Conforming Items) Circle Applicable: Seals broken Damaged container Leaking container Other (describe) Shipping containers received intact and 乂 Chain of custody documents included Circle Applicable: Client contacted and provided COC with shipment? Preservation Method: Wet Ico Ice Packs Dry ice None Other: Samples requiring cold preservation *all temperatures are recorded in Celsius TEMP: within $(0 \le 6 \text{ deg. C})$?* Temperature Device Serial #: 1/2 3 - 21 Daily check performed and passed on IR Secondary Temperature Device Serial # (If Applicable): temperature gun? Circle Applicable: Scals broken Damaged container Leaking container Other (describe) Sample containers intact and sealed? Sample ID's and Containers Affected: Samples requiring chemical preservation at proper pH? If Preservation added, Lot#: If Yes, are Encores or Soil Kits present for solids? Yes No NA (If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No) Do any samples require Volatile Are liquid VOA vials free of headspace? Yes___ No__ NA_ Analysis? Sample ID's and containers affected: ID's and tests affected: 8 Samples received within holding time? ID's and containers affected: Sample ID's on COC match ID's on bottles? Date & time on COC match date & time Circle Applicable: No dates on containers No times on containers COC missing info Other (describe) on bottles? Circle Applicable: No container count on COC Other (describe) Number of containers received match number indicated on COC? Are sample containers identifiable as GEL provided by use of GEL labels? COC form is properly signed in Circle Applicable: Not relinquished Other (describe) relinquished/received sections? Comments (Use Continuation Form if needed):

GL-CHL-SR-001 Rev 7

PM (or PMA) review: Initials

List of current GEL Certifications as of 07 December 2022

State	Certification				
Alabama	42200				
Alaska	17-018				
Alaska Drinking Water	SC00012				
Arkansas	88-0651				
CLIA	42D0904046				
California	2940				
Colorado	SC00012				
Connecticut	PH-0169				
DoD ELAP/ ISO17025 A2LA	2567.01				
Florida NELAP	E87156				
Foreign Soils Permit	P330-15-00283, P330-15-00253				
Georgia	SC00012				
Georgia SDWA	967				
Hawaii	SC00012				
Idaho	SC00012				
Illinois NELAP	200029				
Indiana	C-SC-01				
Kansas NELAP	E-10332				
Kentucky SDWA	90129				
Kentucky Wastewater	90129				
Louisiana Drinking Water	LA024				
Louisiana NELAP	03046 (AI33904)				
Maine	2019020				
Maryland	270				
Massachusetts	M-SC012				
Massachusetts PFAS Approv	Letter				
Michigan	9976				
Mississippi	SC00012				
Nebraska	NE-OS-26-13				
Nevada	SC000122023-3				
New Hampshire NELAP	2054				
New Jersey NELAP	SC002				
New Mexico	SC00012				
New York NELAP	11501				
North Carolina	233				
North Carolina SDWA	45709				
North Dakota	R-158				
Oklahoma	2022–160				
Pennsylvania NELAP	68-00485				
Puerto Rico	SC00012				
S. Carolina Radiochem	10120002				
Sanitation Districts of L	9255651				
South Carolina Chemistry	10120001				
Tennessee	TN 02934				
Texas NELAP	T104704235-22-20				
Utah NELAP	SC000122022-37				
Vermont	VT87156				
Virginia NELAP	460202				
Washington	C780				
	2.00				

APPENDIX A

Laboratory Data Validations August 2022 Monitoring Event

LEVEL 2A LABORATORY DATA VALIDATIONS

Grumman Road
Semiannual Event
August 2022

Georgia Power Company – Grumman Road Quality Control Review of Analytical Data – August 2022

This narrative presents results of the Quality Control (QC) review performed on analytical data submitted by GEL Laboratories LLC, Charleston for groundwater samples collected at Grumman Road between August 30, 2022 and September 1, 2022. The chemical data were reviewed to identify quality issues which could affect the use of the data for decision-making purposes.

Information regarding the primary sample locations, analytical parameters, QC samples, sampling dates, and laboratory sample delivery group (SDG) designations is summarized in Table 1 of this Appendix.

In accordance with groundwater monitoring and corrective action procedures discussed in Title 40 Code of Federal Regulations (CFR), Subpart D – Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments, the samples were analyzed for detection monitoring constituents listed in 40 CFR, Part 257, Appendix III and assessment monitoring constituents listed in 40 CFR, Part 257, Appendix IV. Test methods included Inductively Coupled Plasma – Mass Spectrometry (USEPA Method 6020B), Mercury in Liquid Wastes (USEPA Method 7470A), Determination of Inorganic Anions (USEPA Method 300.0), Solids in Water (Standard Methods 2540C), Radium-226 (USEPA Method 903.1), and Radium-228 (USEPA Method 904.0).

Data were reviewed in accordance with the USEPA Region IV Data Validation Standard Operating Procedures for Contract Laboratory Program Inorganic Data by Inductively Coupled Plasma – Atomic Emission Spectroscopy and Inductively Coupled Plasma – Mass Spectroscopy (September 2011, Rev. 2.0)¹ and the National Functional Guidelines for Inorganic Superfund Methods Data Review (January 2017)². The review included an assessment of the results for completeness, precision (laboratory duplicate recoveries and matrix spike/matrix spike duplicate recoveries), accuracy (laboratory control samples and matrix spike samples), and blank contamination (field, equipment, and laboratory blanks). Sample receipt conditions, holding times, and chains of custody were reviewed. Where there was a discrepancy between the QC criteria in the guidelines and the QC criterion established in the analytical methodology, method-specific criteria or professional judgment were used.

DATA QUALITY OBJECTIVES

Laboratory Precision: Laboratory goals for precision were met, except for boron and

radium-226 on GWC-15 (591783022) as described in the

qualifications section below.

Field Precision: Field goals for precision were met, except for boron and radium-

226 on GWC-13 (591783002) and boron, molybdenum, and total dissolved solids (TDS) on MW-24D (591891005) as described in

the qualifications section below.

Accuracy: Laboratory goals for accuracy were met.

Detection Limits: Project goals for detection limits were met. Certain samples were

diluted due to the concentration of target or non-target analyte interferences. Dilutions do not require qualifications based on USEPA guidelines. Reporting limits (RLs) of non-detect compounds are elevated proportional to the dilution when undiluted sample results were not provided by the laboratory. The data usability of diluted results was evaluated by the data user in the context of

site-wide characterization.

Completeness: There were no rejected analytical results for this event, resulting

in a completion of 100%.

Holding Times: Holding time requirements were met.

QUALIFICATIONS

In general, chemical results for the samples collected at the site were qualified on the basis of low precision or low accuracy or on the basis of professional judgment. The following definitions provide brief explanations of the qualifiers which may have been assigned to data by the laboratory during the validation process:

J: The analyte was positively identified above the method detection

limit; however, the associated numerical value is the approximate

concentration of the analyte in the sample

U: The analyte was not detected above the method detection limit

The data generated as part of this sampling event met the QC criteria established in the respective analytical methods and data validation guidelines except as specified below. The applied qualifications may not have been required for all samples collected at the site. A summary of sample qualifications can be found in Table 2 of this Appendix.

- Sample GWC-15 (591783022) was qualified as estimated (J) for boron and radium-226 as the laboratory relative percent differences (RPDs) exceeded QC criteria (24.3% and 28.2%, respectively, above limit of 20).
- Samples GWC-13 (591783002) and FD-02 (591783007) as well as samples MW-24D (591891005) and FD-03 (591891006) were qualified as estimated (J) for boron as the field RPDs exceeded QC criteria (40.6% and 36.3%, respectively, above limit of 20).
- Samples GWC-13 (591783002) and FD-02 (591783007) were qualified as estimated (J) for radium-226 as the field RPD exceeded QC criteria (34.7% above limit of 20).
- Samples MW-24D (591891005) and FD-03 (591891006) were qualified as estimated (J) for molybdenum and TDS as the field RPDs exceeded QC criteria (27.4% and 33.3%, respectively, above limit of 20).
- Certain molybdenum and vanadium results were qualified as non-detect (U) due to the analyte(s) being detected at a similar concentration in an associated blank sample. As shown in Table 2, when the original sample result was below the RL, the method detection limit (MDL) was raised to the blank detection as part of the qualification process.
- Certain radium-226 results were qualified as non-detect (U) due to the analyte being detected at a similar concentration in an associated blank sample. As shown in Table 2, when the original sample result was below the RL, the minimum detectable concentration (MDC) was raised to the blank detection as part of the qualification process.

Atlantic Coast Consulting, Inc. reviewed the laboratory data from Grumman Road sampled between August 30, 2022 and September 1, 2022 in accordance with the analytical methods, the laboratory-specified QC criteria, and the guidelines. As described above, the results were acceptable for project use.

REFERENCES

¹USEPA, September 2011, Region 4, Science and Ecosystem Support Division, Quality Assurance Section, MTSB, Data Validation Standard Operating Procedures for Contract Laboratory Program Inorganic Data by Inductively Coupled Plasma – Atomic Emission Spectroscopy and Inductively Coupled Plasma – Mass Spectroscopy, Revision 2.0

²USEPA, January 2017, National Office of Superfund Remediation and Technology Innovation, National Functional Guidelines for Inorganic Superfund Methods Data Review, Revision 0.0

TABLE 1

Georgia Power Company – Grumman Road

Sample Summary Table – August 2022

							Anal	yses	
SDG	Field Identification	Collection Date	Lab Identification	Matrix	QC Samples	Metals (6020B, 7470A)	Anions (300.0)	TDS (SM 2540C)	Radium-226/-228 (903.1, 904.0)
591891	GWC-1	9/1/2022	591891001	WG		Х	Χ	Χ	
591893	GWC-1	9/1/2022	591893001	WG					Х
591891	GWC-2	9/1/2022	591891002	WG		Х	Χ	Χ	
591893	GWC-2	9/1/2022	591893002	WG					Х
591891	GWC-9	9/1/2022	591891003	WG		Χ	Χ	Χ	
591893	GWC-9	9/1/2022	591893003	WG					Х
591891	GWC-16	9/1/2022	591891004	WG		Х	Χ	Χ	
591893	GWC-16	9/1/2022	591893004	WG					Х
591891	MW-24D	9/1/2022	591891005	WG		Х	Χ	Χ	
591893	MW-24D	9/1/2022	591893005	WG					Х
591891	FD-03	9/1/2022	591891006	WG	FD (MW-24D)	Х	Χ	Χ	
591893	FD-03	9/1/2022	591893006	WG	FD (MW-24D)				Х
591891	EB-03	9/1/2022	591891007	WQ	EB	Х	Χ	Χ	
591893	EB-03	9/1/2022	591893007	WQ	EB				Χ
591891	FB-06	9/1/2022	591891008	WQ	FB	Χ	Χ	Χ	
591893	FB-06	9/1/2022	591893008	WQ	FB				Χ
591783	GWC-12	8/30/2022	591783001	WG		Χ	Χ	Χ	
591785	GWC-12	8/30/2022	591857001	WG					Χ
591783	GWC-13	8/31/2022	591783002	WG		Х	Χ	Х	
591785	GWC-13	8/31/2022	591785002	WG					Х
591783	GWC-14	8/30/2022	591783003	WG		Х	Χ	Х	
591785	GWC-14	8/30/2022	591785003	WG					Х
591783	GWC-20	8/30/2022	591783004	WG		Х	Χ	Χ	
591785	GWC-20	8/30/2022	591785004	WG					Χ

Abbreviations:

EB – Equipment Blank

FB - Field Blank

FD – Field Duplicate

WG – Groundwater

QC – Quality Control

SDG – Sample Delivery Group

TDS – Total Dissolved Solids

WQ – Water Quality Control

TABLE 1 (continued)

Georgia Power Company – Grumman Road

Sample Summary Table – August 2022

							Anal	yses	
SDG	Field Identification	Collection Date	Lab Identification	Matrix	QC Samples	Metals (6010D, 6020B, 7470A)	Anions (300.0)	TDS (SM 2540C)	Radium-226/-228 (903.1, 904.0)
591783	GWC-21	8/30/2022	591783005	WG		Х	Χ	Χ	
591785	GWC-21	8/30/2022	591785005	WG					Х
591783	MW-25D	8/31/2022	591783006	WG		Х	Χ	Χ	
591785	MW-25D	8/31/2022	591785006	WG					Х
591783	FD-02	8/31/2022	591783007	WG	FD (GWC-13)	Х	Χ	Χ	
591785	FD-02	8/31/2022	591785007	WG	FD (GWC-13)				Х
591783	EB-01	8/30/2022	591783008	WQ	EB	Х	Χ	Χ	
591785	EB-01	8/30/2022	591785008	WQ	EB				Х
591783	GWC-11	8/31/2022	591783009	WG		Х	Χ	Χ	
591785	GWC-11	8/31/2022	591785009	WG					Х
591783	MW-23D	8/31/2022	591783010	WG		Х	Χ	Χ	
591785	MW-23D	8/31/2022	591785010	WG					Х
591783	GWA-8	8/30/2022	591783011	WG		Х	Χ	Χ	
591785	GWA-8	8/30/2022	591785011	WG					Х
591783	GWA-7	8/30/2022	591783012	WG		Х	Χ	Χ	
591785	GWA-7	8/30/2022	591785012	WG					Х
591783	GWB-6R	8/30/2022	591783013	WG		Х	Χ	Χ	
591785	GWB-6R	8/30/2022	591785013	WG					Χ
591783	FD-01	8/30/2022	591783014	WG	FD (GWA-8)	Х	Χ	Χ	
591785	FD-01	8/30/2022	591785014	WG	FD (GWA-8)				Х
591783	GWB-5R	8/30/2022	591783015	WG		Х	Χ	Χ	
591785	GWB-5R	8/30/2022	591785015	WG					Х
591783	FB-04	8/30/2022	591783016	WQ	FB	Х	Χ	Χ	
591785	FB-04	8/30/2022	591785016	WQ	FB				Х
591783	GWB-4R	8/30/2022	591783017	WG		Х	Χ	Χ	
591785	GWB-4R	8/30/2022	591785017	WG					Х

Abbreviations:

 $\mathsf{EB}-\mathsf{Equipment}\;\mathsf{Blank}$

FB – Field Blank

FD – Field Duplicate

WG – Groundwater

QC – Quality Control

SDG – Sample Delivery Group

TDS – Total Dissolved Solids

WQ – Water Quality Control

TABLE 1 (continued)

Georgia Power Company – Grumman Road

Sample Summary Table – August 2022

							Anal	yses	
SDG	Field Identification	Collection Date	Lab Identification	Matrix	QC Samples	Metals (6010D, 6020B, 7470A)	Anions (300.0)	TDS (SM 2540C)	Radium-226/-228 (903.1, 904.0)
591783	GWC-17	8/31/2022	591783018	WG		Х	Χ	Χ	
591785	GWC-17	8/31/2022	591785018	WG					Χ
591783	GWC-22	8/31/2022	591783019	WG		Х	Х	Χ	
591785	GWC-22	8/31/2022	591785019	WG					Χ
591783	EB-02	8/31/2022	591783020	WQ	EB	Х	Χ	Χ	
591785	EB-02	8/31/2022	591785020	WQ	EB				Χ
591783	FB-05	8/31/2022	591783021	WQ	FB	Χ	Χ	Χ	
591785	FB-05	8/31/2022	591785021	WQ	FB				Χ
591783	GWC-15	8/31/2022	591783022	WG		Χ	Χ	Χ	
591785	GWC-15	8/31/2022	591785022	WG					Χ
591783	GWA-7	8/30/2022	591783023	WG	_	Χ			

Abbreviations:

EB – Equipment Blank

FB – Field Blank

FD – Field Duplicate

WG – Groundwater

QC – Quality Control

SDG – Sample Delivery Group

TDS – Total Dissolved Solids

WQ – Water Quality Control

TABLE 2

Georgia Power Company – Grumman Road

Qualifier Summary Table – August 2022

SDG	Field	Constituent	New RL	New MDL	Qualifier	Reason
	Identification			or MDC		
591891	GWC-1	Molybdenum		0.000271	U	Blank detection
591891	GWC-16	Molybdenum		0.000271	U	Blank detection
591891	MW-24D	Molybdenum		0.000271	U	Blank detection
591891	FD-03	Molybdenum		0.000271	U	Blank detection
591891	GWC-1	Vanadium		0.00388	U	Blank detection
591891	GWC-2	Vanadium		0.00388	U	Blank detection
591891	GWC-9	Vanadium		0.00388	U	Blank detection
591891	GWC-16	Vanadium		0.00388	U	Blank detection
591891	MW-24D	Vanadium		0.00388	U	Blank detection
591891	FD-03	Vanadium		0.00388	U	Blank detection
591891	EB-03	Vanadium		0.00388	U	Blank detection
591891	FB-06	Vanadium		0.00388	U	Blank detection
591893	MW-24D	Radium-226		0.258	U	Blank detection
591893	FB-06	Radium-226		0.258	U	Blank detection
591783	GWC-15	Boron			J	RPD exceeds lab goal
591785	GWC-15	Radium-226			J	RPD exceeds lab goal
591783	GWC-13	Boron			J	RPD exceeds field goal
591783	FD-02	Boron			J	RPD exceeds field goal
591891	MW-24D	Boron			J	RPD exceeds field goal
591891	FD-03	Boron			J	RPD exceeds field goal
591891	MW-24D	Molybdenum			J	RPD exceeds field goal
591891	FD-03	Molybdenum			J	RPD exceeds field goal
591891	MW-24D	TDS			J	RPD exceeds field goal
591891	FD-03	TDS			J	RPD exceeds field goal
591785	GWC-13	Radium-226			J	RPD exceeds field goal
591785	FD-02	Radium-226			J	RPD exceeds field goal

Abbreviations:

MDC – Minimum Detectable Concentration
MS/MSD – Matrix Spike / Matrix Spike Duplicate

MDL – Method Detection Limit

RL – Reporting Limit

RPD – Relative Percent Difference

SDG – Sample Delivery Group

TDS – Total Dissolved Solids

Qualifiers:

J – Estimated Result

U – Non-Detect Result

APPENDIX A

Field Sampling Reports August 2022 Monitoring Event

Test Date / Time: 8/30/2022 9:05:16 AM

Project: Grumman Road Landfill **Operator Name:** J. Berisford

Location Name: GWA-7
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 5 ft
Top of Screen: 16.2 ft
Total Depth: 21.2 ft

Initial Depth to Water: 5.8 ft

Pump Type: Peri. Pump Tubing Type: Poly

Pump Intake From TOC: 18 ft Estimated Total Volume Pumped:

6.7 liter

Flow Cell Volume: 90 ml Final Flow Rate: 225 ml/min Final Draw Down: 4.8 in Instrument Used: Aqua TROLL 400

Serial Number: 850751

Test Notes:

Cloudy, sample time-0935

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 10	+/- 5 %	+/- 10 %	+/- 10	+/- 10	+/- 0.3	
8/30/2022 9:05 AM	00:00	7.11 pH	26.00 °C	15.84 µS/cm	8.16 mg/L	49.00 NTU	246.4 mV	5.80 ft	225.00 ml/min
8/30/2022 9:10 AM	05:00	5.97 pH	24.56 °C	1,077.0 μS/cm	0.28 mg/L	55.00 NTU	47.9 mV	6.10 ft	225.00 ml/min
8/30/2022 9:15 AM	10:00	5.97 pH	24.42 °C	1,081.2 μS/cm	0.09 mg/L	89.00 NTU	30.4 mV	6.10 ft	225.00 ml/min
8/30/2022 9:20 AM	15:00	5.98 pH	24.38 °C	1,086.9 μS/cm	0.05 mg/L	133.00 NTU	20.4 mV	6.20 ft	225.00 ml/min
8/30/2022 9:25 AM	20:00	5.98 pH	24.27 °C	1,083.2 μS/cm	0.03 mg/L	136.00 NTU	14.4 mV	6.20 ft	225.00 ml/min
8/30/2022 9:30 AM	25:00	5.97 pH	24.29 °C	1,082.8 μS/cm	0.03 mg/L	133.00 NTU	9.2 mV	6.20 ft	225.00 ml/min
8/30/2022 9:35 AM	30:00	5.98 pH	24.24 °C	1,083.6 μS/cm	0.01 mg/L	128.00 NTU	0.1 mV	6.20 ft	225.00 ml/min

Samples

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/30/2022 11:21:27 AM

Project: Grumman Road Landfill **Operator Name:** J. Berisford

Location Name: GWA-8
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 5 ft
Top of Screen: 15.8 ft
Total Depth: 20.8 ft

Initial Depth to Water: 6.16 ft

Pump Type: Peri. Pump Tubing Type: Poly

Pump Intake From TOC: 18 ft Estimated Total Volume Pumped:

8 liter

Flow Cell Volume: 90 ml Final Flow Rate: 230 ml/min Final Draw Down: 22 in Instrument Used: Aqua TROLL 400

Serial Number: 850751

Test Notes:

Sunny, sample time-1156, Taylor started well at 0901, switched operators. FD-01 here.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 10	+/- 5 %	+/- 10 %	+/- 10	+/- 10	+/- 0.3	
8/30/2022 11:21 AM	00:00	6.34 pH	33.24 °C	2.05 μS/cm	7.19 mg/L	2.02 NTU	58.9 mV	6.16 ft	230.00 ml/min
8/30/2022 11:26 AM	05:00	4.61 pH	27.41 °C	173.94 μS/cm	0.13 mg/L	1.96 NTU	15.3 mV	6.50 ft	230.00 ml/min
8/30/2022 11:31 AM	10:00	4.61 pH	26.80 °C	173.76 μS/cm	0.07 mg/L	1.36 NTU	20.2 mV	6.90 ft	230.00 ml/min
8/30/2022 11:36 AM	15:00	4.63 pH	26.49 °C	169.84 μS/cm	0.06 mg/L	1.53 NTU	22.7 mV	7.30 ft	230.00 ml/min
8/30/2022 11:41 AM	20:00	4.61 pH	26.48 °C	171.05 μS/cm	0.06 mg/L	0.58 NTU	24.8 mV	7.70 ft	230.00 ml/min
8/30/2022 11:46 AM	25:00	4.60 pH	26.68 °C	174.21 μS/cm	0.04 mg/L	0.97 NTU	26.0 mV	7.90 ft	230.00 ml/min
8/30/2022 11:51 AM	30:00	4.58 pH	26.20 °C	178.25 μS/cm	0.03 mg/L	1.02 NTU	26.8 mV	8.00 ft	230.00 ml/min
8/30/2022 11:56 AM	35:00	4.58 pH	26.38 °C	179.29 μS/cm	0.03 mg/L	1.07 NTU	27.2 mV	8.00 ft	230.00 ml/min

Samples

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/30/2022 2:55:04 PM

Project: Grumman Road Landfill **Operator Name:** J. Berisford

Location Name: GWB-4R

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 17 ft

Total Depth: 27 ft

Initial Depth to Water: 14.47 ft

Pump Type: Peri. Pump Tubing Type: Poly

Pump Intake From TOC: 25 ft Estimated Total Volume Pumped:

6.1 liter

Flow Cell Volume: 90 ml Final Flow Rate: 175 ml/min

Final Draw Down: 4 in

Instrument Used: Aqua TROLL 400

Serial Number: 850751

Test Notes:

Sunny, sample time-1530

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 10	+/- 5 %	+/- 10 %	+/- 10	+/- 10	+/- 0.3	
8/30/2022 2:55 PM	00:00	5.68 pH	39.13 °C	0.82 μS/cm	5.93 mg/L	4.12 NTU	53.1 mV	14.47 ft	175.00 ml/min
8/30/2022 3:00 PM	05:00	5.67 pH	30.11 °C	1,030.3 μS/cm	0.97 mg/L	3.28 NTU	33.8 mV	14.70 ft	175.00 ml/min
8/30/2022 3:05 PM	10:00	5.65 pH	27.82 °C	1,029.7 μS/cm	0.17 mg/L	4.01 NTU	22.3 mV	14.70 ft	175.00 ml/min
8/30/2022 3:10 PM	15:00	5.66 pH	27.53 °C	989.75 μS/cm	0.78 mg/L	3.44 NTU	18.9 mV	14.80 ft	175.00 ml/min
8/30/2022 3:15 PM	20:00	5.67 pH	27.62 °C	956.20 μS/cm	1.05 mg/L	2.89 NTU	22.5 mV	14.80 ft	175.00 ml/min
8/30/2022 3:20 PM	25:00	5.68 pH	28.02 °C	914.93 μS/cm	1.29 mg/L	3.21 NTU	24.8 mV	14.80 ft	175.00 ml/min
8/30/2022 3:25 PM	30:00	5.67 pH	29.39 °C	924.66 μS/cm	1.23 mg/L	3.39 NTU	22.4 mV	14.80 ft	175.00 ml/min
8/30/2022 3:30 PM	35:00	5.67 pH	27.80 °C	883.91 μS/cm	0.09 mg/L	3.06 NTU	21.4 mV	14.80 ft	175.00 ml/min

Samples

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/30/2022 1:40:13 PM

Project: Grumman Road Landfill **Operator Name:** J. Berisford

Location Name: GWB-5R
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 16.5 ft

Total Depth: 26.5 ft

Initial Depth to Water: 9.39 ft

Pump Type: Peri. Pump Tubing Type: Poly

Pump Intake From TOC: 23 ft Estimated Total Volume Pumped:

8 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 3.6 in Instrument Used: Aqua TROLL 400

Serial Number: 850751

Test Notes:

Cloudy, sample time-1420, FB-04 here at 1400

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 10	+/- 5 %	+/- 10 %	+/- 10	+/- 10	+/- 0.3	
8/30/2022 1:40 PM	00:00	4.80 pH	38.60 °C	0.11 μS/cm	6.40 mg/L	2.63 NTU	67.4 mV	9.39 ft	200.00 ml/min
8/30/2022 1:45 PM	05:00	5.28 pH	27.57 °C	783.75 μS/cm	0.24 mg/L	2.22 NTU	43.5 mV	9.60 ft	200.00 ml/min
8/30/2022 1:50 PM	10:00	5.27 pH	26.13 °C	795.39 μS/cm	0.13 mg/L	1.90 NTU	27.1 mV	9.70 ft	200.00 ml/min
8/30/2022 1:55 PM	15:00	5.27 pH	25.88 °C	795.82 μS/cm	0.09 mg/L	2.31 NTU	17.8 mV	9.70 ft	200.00 ml/min
8/30/2022 2:00 PM	20:00	5.26 pH	25.74 °C	786.76 μS/cm	0.08 mg/L	2.03 NTU	9.8 mV	9.70 ft	200.00 ml/min
8/30/2022 2:05 PM	25:00	5.24 pH	25.80 °C	772.45 μS/cm	0.06 mg/L	1.27 NTU	4.3 mV	9.70 ft	200.00 ml/min
8/30/2022 2:10 PM	30:00	5.22 pH	25.60 °C	802.90 μS/cm	0.05 mg/L	1.31 NTU	1.5 mV	9.70 ft	200.00 ml/min
8/30/2022 2:15 PM	35:00	5.22 pH	25.78 °C	822.47 μS/cm	0.05 mg/L	1.23 NTU	-0.7 mV	9.70 ft	200.00 ml/min
8/30/2022 2:20 PM	40:00	5.22 pH	25.66 °C	834.16 μS/cm	0.04 mg/L	1.46 NTU	-2.1 mV	9.70 ft	200.00 ml/min

Samples

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/30/2022 10:21:01 AM

Project: Grumman Road Landfill **Operator Name:** J. Berisford

Location Name: GWB-6R
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 12.7 ft

Total Depth: 22.7 ft

Initial Depth to Water: 6.96 ft

Pump Type: Peri. Pump Tubing Type: Poly

Pump Intake From TOC: 19 ft Estimated Total Volume Pumped:

6 liter

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 1.6 in Instrument Used: Aqua TROLL 400

Serial Number: 850751

Test Notes:

Sunny, sample time-1051

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 10	+/- 5 %	+/- 10 %	+/- 10	+/- 10	+/- 0.3	
8/30/2022 10:21 AM	00:00	6.95 pH	28.79 °C	0.61 μS/cm	7.74 mg/L	5.00 NTU	29.3 mV	6.96 ft	200.00 ml/min
8/30/2022 10:26 AM	05:00	5.57 pH	26.73 °C	1,742.4 μS/cm	0.38 mg/L	4.11 NTU	50.2 mV	7.00 ft	200.00 ml/min
8/30/2022 10:31 AM	10:00	5.57 pH	26.29 °C	1,728.4 μS/cm	0.21 mg/L	3.85 NTU	43.1 mV	7.10 ft	200.00 ml/min
8/30/2022 10:36 AM	15:00	5.56 pH	26.20 °C	1,724.9 μS/cm	0.14 mg/L	2.18 NTU	38.4 mV	7.10 ft	200.00 ml/min
8/30/2022 10:41 AM	20:00	5.55 pH	26.24 °C	1,756.6 μS/cm	0.09 mg/L	2.03 NTU	35.3 mV	7.10 ft	200.00 ml/min
8/30/2022 10:46 AM	25:00	5.55 pH	26.14 °C	1,746.3 μS/cm	0.06 mg/L	1.88 NTU	32.1 mV	7.10 ft	200.00 ml/min
8/30/2022 10:51 AM	30:00	5.55 pH	26.15 °C	1,750.0 μS/cm	0.05 mg/L	1.25 NTU	30.3 mV	7.10 ft	200.00 ml/min

Samples

Sample ID:	Description:
------------	--------------

Test Date / Time: 9/1/2022 12:49:44 PM

Project: Grumman Road Landfill **Operator Name:** Taylor Goble

Location Name: GWC-1
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 5 ft
Top of Screen: 23.2 ft

Total Depth: 28.2 ft

Initial Depth to Water: 18.77 ft

Pump Type: Peristaltic Pump

Tubing Type: Poly

Pump Intake From TOC: 25 ft Estimated Total Volume Pumped:

7500 ml

Flow Cell Volume: 90 ml Final Flow Rate: 250 ml/min Final Draw Down: 0.16 ft Instrument Used: Aqua TROLL 400

Serial Number: 850751

Test Notes:

Sampled at 1319. Cloudy 82 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 2	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
9/1/2022 12:49 PM	00:00	5.50 pH	27.56 °C	260.15 μS/cm	2.87 mg/L	1.90 NTU	103.7 mV	18.85 ft	250.00 ml/min
9/1/2022 12:54 PM	05:00	5.79 pH	24.29 °C	337.76 μS/cm	0.19 mg/L	1.71 NTU	108.1 mV	18.91 ft	250.00 ml/min
9/1/2022 12:59 PM	10:00	5.81 pH	24.21 °C	342.19 μS/cm	0.15 mg/L	1.33 NTU	110.0 mV	18.93 ft	250.00 ml/min
9/1/2022 1:04 PM	15:00	5.81 pH	24.35 °C	340.80 μS/cm	0.12 mg/L	0.99 NTU	111.6 mV	18.93 ft	250.00 ml/min
9/1/2022 1:09 PM	20:00	5.81 pH	24.45 °C	339.97 μS/cm	0.09 mg/L	0.86 NTU	112.8 mV	18.93 ft	250.00 ml/min
9/1/2022 1:14 PM	25:00	5.81 pH	24.48 °C	339.29 μS/cm	0.08 mg/L	0.72 NTU	114.2 mV	18.93 ft	250.00 ml/min
9/1/2022 1:19 PM	30:00	5.80 pH	24.52 °C	338.13 μS/cm	0.07 mg/L	0.69 NTU	115.6 mV	18.93 ft	250.00 ml/min

Samples

Sample II	ID:	Description:	
-----------	-----	--------------	--

Test Date / Time: 9/1/2022 1:55:39 PM Project: Grumman Road Landfill Operator Name: Taylor Goble

Location Name: GWC-2
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 5 ft
Top of Screen: 27.73 ft
Total Depth: 32.73 ft

Initial Depth to Water: 19.27 ft

Pump Type: Peristaltic Pump

Tubing Type: Poly

Pump Intake From TOC: 30 ft Estimated Total Volume Pumped:

7500 ml

Flow Cell Volume: 90 ml Final Flow Rate: 250 ml/min Final Draw Down: 0.23 ft Instrument Used: Aqua TROLL 400

Serial Number: 850751

Test Notes:

Sampled at 1425. Cloudy 84 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 2	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
9/1/2022 1:55 PM	00:00	5.10 pH	29.67 °C	58.72 μS/cm	3.51 mg/L	4.43 NTU	87.9 mV	19.45 ft	250.00 ml/min
9/1/2022 2:00 PM	05:00	4.56 pH	24.71 °C	56.55 μS/cm	0.15 mg/L	2.18 NTU	82.7 mV	19.50 ft	250.00 ml/min
9/1/2022 2:05 PM	10:00	4.64 pH	24.15 °C	55.93 µS/cm	0.10 mg/L	2.11 NTU	81.5 mV	19.50 ft	250.00 ml/min
9/1/2022 2:10 PM	15:00	4.66 pH	23.75 °C	55.89 µS/cm	0.08 mg/L	1.75 NTU	80.5 mV	19.50 ft	250.00 ml/min
9/1/2022 2:15 PM	20:00	4.67 pH	23.87 °C	55.07 μS/cm	0.07 mg/L	1.65 NTU	80.0 mV	19.50 ft	250.00 ml/min
9/1/2022 2:20 PM	25:00	4.70 pH	24.02 °C	54.87 μS/cm	0.06 mg/L	1.30 NTU	78.5 mV	19.50 ft	250.00 ml/min
9/1/2022 2:25 PM	30:00	4.73 pH	23.96 °C	54.72 μS/cm	0.06 mg/L	1.36 NTU	77.8 mV	19.50 ft	250.00 ml/min

Samples

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/31/2022 2:36:12 PM

Project: Grumman Road Landfill **Operator Name:** J. Berisford

Location Name: GWC-9
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 5 ft
Top of Screen: 22.4 ft

Total Depth: 27.4 ft

Initial Depth to Water: 8.62 ft

Pump Type: Peri. Pump Tubing Type: Poly

Pump Intake From TOC: 24 ft Estimated Total Volume Pumped:

11.2 liter

Flow Cell Volume: 90 ml Final Flow Rate: 150 ml/min Final Draw Down: 224 in Instrument Used: Aqua TROLL 400

Serial Number: 850751

Test Notes:

Sunny, no sample, well purged dry, allow for overnight recharge.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 10	+/- 5 %	+/- 10 %	+/- 10	+/- 10	+/- 0.3	
8/31/2022 2:36 PM	00:00	4.97 pH	41.55 °C	0.45 μS/cm	6.02 mg/L	2.52 NTU	94.0 mV	8.62 ft	150.00 ml/min
8/31/2022 2:41 PM	05:00	4.76 pH	26.88 °C	107.42 μS/cm	0.20 mg/L	1.02 NTU	53.9 mV	9.80 ft	150.00 ml/min
8/31/2022 2:46 PM	10:00	4.71 pH	25.15 °C	111.32 μS/cm	0.17 mg/L	1.57 NTU	46.0 mV	10.60 ft	150.00 ml/min
8/31/2022 2:51 PM	15:00	4.72 pH	24.61 °C	112.01 μS/cm	0.15 mg/L	2.99 NTU	40.1 mV	12.10 ft	150.00 ml/min
8/31/2022 2:56 PM	20:00	4.72 pH	24.75 °C	112.32 μS/cm	0.12 mg/L	3.21 NTU	36.2 mV	13.80 ft	150.00 ml/min
8/31/2022 3:01 PM	25:00	4.72 pH	24.54 °C	113.79 μS/cm	0.12 mg/L	4.35 NTU	34.3 mV	15.70 ft	150.00 ml/min
8/31/2022 3:06 PM	30:00	4.75 pH	24.30 °C	114.04 μS/cm	0.11 mg/L	4.26 NTU	32.6 mV	16.50 ft	150.00 ml/min
8/31/2022 3:11 PM	35:00	4.77 pH	24.16 °C	114.87 μS/cm	0.12 mg/L	4.99 NTU	31.0 mV	17.40 ft	150.00 ml/min
8/31/2022 3:16 PM	40:00	4.81 pH	24.51 °C	115.30 μS/cm	0.11 mg/L	4.72 NTU	28.1 mV	18.90 ft	150.00 ml/min
8/31/2022 3:21 PM	45:00	4.84 pH	24.60 °C	115.72 μS/cm	0.11 mg/L	5.11 NTU	26.5 mV	20.00 ft	150.00 ml/min
8/31/2022 3:26 PM	50:00	4.84 pH	24.56 °C	115.54 μS/cm	0.11 mg/L	5.62 NTU	26.6 mV	21.70 ft	150.00 ml/min
8/31/2022 3:31 PM	55:00	4.84 pH	24.50 °C	115.10 μS/cm	0.13 mg/L	5.90 NTU	25.8 mV	23.40 ft	150.00 ml/min
8/31/2022 3:36 PM	01:00:00	4.84 pH	24.49 °C	114.50 μS/cm	0.21 mg/L	6.74 NTU	24.7 mV	25.10 ft	150.00 ml/min
8/31/2022 3:41 PM	01:05:00	4.82 pH	24.42 °C	113.75 μS/cm	0.37 mg/L	6.21 NTU	25.6 mV	25.60 ft	150.00 ml/min
8/31/2022 3:46 PM	01:10:00	4.87 pH	24.38 °C	112.41 µS/cm	1.52 mg/L	6.57 NTU	25.3 mV	26.40 ft	150.00 ml/min

8/31/2022	04:45:00	4.05 -11	04.47.90	440.44	2.22/1	C 40 NTU	07.0\/	07.00.6	450.00 1/
3:51 PM	01:15:00	4.95 pH	24.47 °C	110.14 µS/cm	3.22 mg/L	6.19 NTU	27.9 mV	27.30 ft	150.00 ml/min

Samples

Sample ID: Description:	
-------------------------	--

Test Date / Time: 9/1/2022 9:09:46 AM Project: Grumman Road Landfill Operator Name: Taylor Goble

Location Name: GWC-9
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 5 ft
Top of Screen: 22.4 ft

Total Depth: 27.4 ft

Initial Depth to Water: 9.08 ft

Pump Type: Peristaltic Pump

Tubing Type: Poly

Pump Intake From TOC: 24 ft Estimated Total Volume Pumped:

1500 ml

Flow Cell Volume: 90 ml Final Flow Rate: 100 ml/min Final Draw Down: 1.29 ft Instrument Used: Aqua TROLL 400

Serial Number: 850751

Test Notes:

Sampled at 0924. Cloudy 77 degrees. Purged dry on 8-31.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 2	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
9/1/2022 9:09 AM	00:00	4.71 pH	24.19 °C	158.71 μS/cm	0.37 mg/L	3.66 NTU	74.0 mV	9.72 ft	100.00 ml/min
9/1/2022 9:14 AM	05:00	4.63 pH	23.57 °C	148.24 μS/cm	0.19 mg/L	3.38 NTU	58.3 mV	10.14 ft	100.00 ml/min
9/1/2022 9:19 AM	10:00	4.61 pH	23.60 °C	147.43 μS/cm	0.17 mg/L	2.67 NTU	56.5 mV	10.37 ft	100.00 ml/min
9/1/2022 9:24 AM	15:00	4.60 pH	23.57 °C	147.67 μS/cm	0.15 mg/L	2.40 NTU	53.3 mV	10.37 ft	100.00 ml/min

Samples

Sample ID:	Description:
Sample ID:	Description:

Test Date / Time: 8/31/2022 2:30:07 PM

Project: Grumman Road Landfill **Operator Name:** A. Schnittker

Location Name: GWC-11 Well Diameter: 2 in Casing Type: PVC Screen Length: 5 ft Top of Screen: 17.6 ft

Total Depth: 22.6 ft

Initial Depth to Water: 12.95 ft

Pump Type: Peristaltic Pump

Tubing Type: Poly

Pump Intake From TOC: 20 ft Estimated Total Volume Pumped:

9.1 liter

Flow Cell Volume: 90 ml Final Flow Rate: 130 ml/min Final Draw Down: 31 in Instrument Used: Aqua TROLL 400

Serial Number: 728566

Test Notes:

Sample time 1545. Sunny 90s.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 100	+/- 5 %	+/- 10 %	+/- 10	+/- 100	+/- 5	
8/31/2022 2:30 PM	00:00	4.89 pH	26.62 °C	556.90 μS/cm	0.67 mg/L	9.58 NTU	125.8 mV	12.95 ft	130.00 ml/min
8/31/2022 2:35 PM	05:00	4.90 pH	26.79 °C	572.13 μS/cm	0.52 mg/L	7.47 NTU	115.5 mV	13.70 ft	130.00 ml/min
8/31/2022 2:40 PM	10:00	4.91 pH	26.33 °C	607.17 μS/cm	0.50 mg/L	6.74 NTU	131.4 mV	14.50 ft	130.00 ml/min
8/31/2022 2:45 PM	15:00	4.90 pH	26.42 °C	665.57 μS/cm	0.51 mg/L	5.56 NTU	111.7 mV	15.10 ft	130.00 ml/min
8/31/2022 2:50 PM	20:00	4.89 pH	26.27 °C	738.14 µS/cm	0.55 mg/L	4.50 NTU	129.8 mV	15.50 ft	130.00 ml/min
8/31/2022 2:55 PM	25:00	4.88 pH	25.99 °C	794.65 μS/cm	0.23 mg/L	3.16 NTU	142.6 mV	15.50 ft	130.00 ml/min
8/31/2022 3:00 PM	30:00	4.87 pH	26.36 °C	847.59 μS/cm	0.21 mg/L	2.69 NTU	129.8 mV	15.50 ft	130.00 ml/min
8/31/2022 3:05 PM	35:00	4.86 pH	26.47 °C	886.21 μS/cm	0.22 mg/L	2.64 NTU	133.2 mV	15.50 ft	130.00 ml/min
8/31/2022 3:10 PM	40:00	4.86 pH	25.92 °C	906.05 μS/cm	0.22 mg/L	2.45 NTU	138.3 mV	15.50 ft	130.00 ml/min
8/31/2022 3:15 PM	45:00	4.85 pH	26.05 °C	955.75 μS/cm	0.20 mg/L	3.04 NTU	141.8 mV	15.50 ft	130.00 ml/min
8/31/2022 3:20 PM	50:00	4.85 pH	26.11 °C	975.08 μS/cm	0.19 mg/L	2.76 NTU	145.6 mV	15.50 ft	130.00 ml/min
8/31/2022 3:25 PM	55:00	4.85 pH	26.11 °C	1,011.7 μS/cm	0.19 mg/L	2.64 NTU	182.3 mV	15.50 ft	130.00 ml/min
8/31/2022 3:30 PM	01:00:00	4.85 pH	25.97 °C	1,040.3 μS/cm	0.19 mg/L	2.46 NTU	188.7 mV	15.50 ft	130.00 ml/min
8/31/2022 3:35 PM	01:05:00	4.84 pH	26.06 °C	1,071.7 μS/cm	0.18 mg/L	2.54 NTU	156.3 mV	15.50 ft	130.00 ml/min
8/31/2022 3:40 PM	01:10:00	4.85 pH	26.10 °C	1,093.6 μS/cm	0.17 mg/L	2.43 NTU	192.9 mV	15.50 ft	130.00 ml/min

Test Date / Time: 8/30/2022 2:23:20 PM

Project: Grumman Road Landfill **Operator Name:** Taylor Goble

Location Name: GWC-12
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 5 ft
Top of Screen: 21.7 ft
Total Depth: 26.7 ft

Initial Depth to Water: 12.5 ft

Pump Type: Peristaltic Pump

Tubing Type: Poly

Pump Intake From TOC: 23 ft Estimated Total Volume Pumped:

8800 ml

Flow Cell Volume: 90 ml Final Flow Rate: 220 ml/min Final Draw Down: 0.52 ft Instrument Used: Aqua TROLL 400

Serial Number: 883536

Test Notes:

Sampled at 1503. Cloudy 85 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 2	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/30/2022 2:23 PM	00:00	4.30 pH	30.69 °C	737.90 μS/cm	3.64 mg/L	1.54 NTU	134.5 mV	12.91 ft	220.00 ml/min
8/30/2022 2:28 PM	05:00	4.10 pH	26.06 °C	750.50 μS/cm	0.10 mg/L	1.30 NTU	133.7 mV	12.97 ft	220.00 ml/min
8/30/2022 2:33 PM	10:00	4.09 pH	25.76 °C	784.07 μS/cm	0.05 mg/L	0.98 NTU	133.1 mV	13.01 ft	220.00 ml/min
8/30/2022 2:38 PM	15:00	4.06 pH	25.55 °C	789.91 μS/cm	0.02 mg/L	0.61 NTU	131.9 mV	13.02 ft	220.00 ml/min
8/30/2022 2:43 PM	20:00	3.98 pH	25.61 °C	837.29 μS/cm	0.02 mg/L	0.55 NTU	131.9 mV	13.02 ft	220.00 ml/min
8/30/2022 2:48 PM	25:00	3.95 pH	25.46 °C	894.09 μS/cm	0.01 mg/L	0.50 NTU	130.2 mV	13.02 ft	220.00 ml/min
8/30/2022 2:53 PM	30:00	3.94 pH	25.57 °C	913.71 μS/cm	0.01 mg/L	0.42 NTU	129.3 mV	13.02 ft	220.00 ml/min
8/30/2022 2:58 PM	35:00	3.92 pH	25.68 °C	928.36 μS/cm	0.00 mg/L	0.41 NTU	127.9 mV	13.02 ft	220.00 ml/min
8/30/2022 3:03 PM	40:00	3.92 pH	25.78 °C	924.84 μS/cm	0.01 mg/L	0.33 NTU	128.1 mV	13.02 ft	220.00 ml/min

Samples

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/31/2022 9:36:30 AM

Project: Grumman Road Landfill **Operator Name:** Taylor Goble

Location Name: GWC-13
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 5 ft
Top of Screen: 19.5 ft

Total Depth: 24.53 ft

Initial Depth to Water: 14.27 ft

Pump Type: Peristaltic Pump

Tubing Type: Poly

Pump Intake From TOC: 22 ft Estimated Total Volume Pumped:

9100 ml

Flow Cell Volume: 90 ml Final Flow Rate: 260 ml/min Final Draw Down: 0.33 ft Instrument Used: Aqua TROLL 400

Serial Number: 883536

Test Notes:

Sampled at 1011. Sunny 83 degrees. FD-02 taken here.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 2	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/31/2022 9:36 AM	00:00	7.00 pH	32.15 °C	41.48 µS/cm	6.35 mg/L	4.13 NTU	128.6 mV	14.45 ft	260.00 ml/min
8/31/2022 9:41 AM	05:00	6.61 pH	25.96 °C	43.03 µS/cm	5.25 mg/L	3.47 NTU	129.9 mV	14.60 ft	260.00 ml/min
8/31/2022 9:46 AM	10:00	4.88 pH	25.10 °C	111.40 μS/cm	2.12 mg/L	3.31 NTU	124.0 mV	14.60 ft	260.00 ml/min
8/31/2022 9:51 AM	15:00	4.83 pH	24.59 °C	120.24 μS/cm	0.99 mg/L	1.99 NTU	119.7 mV	14.60 ft	260.00 ml/min
8/31/2022 9:56 AM	20:00	4.81 pH	24.79 °C	117.73 μS/cm	0.51 mg/L	1.70 NTU	112.9 mV	14.60 ft	260.00 ml/min
8/31/2022 10:01 AM	25:00	4.79 pH	24.74 °C	113.55 μS/cm	0.34 mg/L	1.52 NTU	109.0 mV	14.60 ft	260.00 ml/min
8/31/2022 10:06 AM	30:00	4.77 pH	24.87 °C	110.89 μS/cm	0.25 mg/L	1.26 NTU	106.0 mV	14.60 ft	260.00 ml/min
8/31/2022 10:11 AM	35:00	4.76 pH	24.95 °C	110.25 μS/cm	0.19 mg/L	1.18 NTU	104.0 mV	14.60 ft	260.00 ml/min

Samples

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/30/2022 11:15:54 AM

Project: Grumman Road Landfill **Operator Name:** Taylor Goble

Location Name: GWC-14

Well Diameter: 2 in Casing Type: PVC Screen Length: 5 ft Top of Screen: 22 ft Total Depth: 27 ft

Initial Depth to Water: 19.45 ft

Pump Type: Peristaltic Pump

Tubing Type: Poly

Pump Intake From TOC: 24 ft Estimated Total Volume Pumped:

8620.5 ml

Flow Cell Volume: 90 ml Final Flow Rate: 210 ml/min Final Draw Down: 0.4 ft Instrument Used: Aqua TROLL 400

Serial Number: 883536

Test Notes:

Sampled at 1157. Mostly cloudy 81 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 2	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/30/2022 11:15 AM	00:00	5.01 pH	26.48 °C	78.54 µS/cm	4.80 mg/L	0.89 NTU	117.7 mV	19.72 ft	210.00 ml/min
8/30/2022 11:16 AM	01:03	4.99 pH	25.59 °C	78.80 µS/cm	4.53 mg/L	0.76 NTU	119.0 mV	19.85 ft	210.00 ml/min
8/30/2022 11:21 AM	06:03	5.31 pH	24.28 °C	198.29 μS/cm	4.02 mg/L	0.71 NTU	116.8 mV	19.85 ft	210.00 ml/min
8/30/2022 11:26 AM	11:03	5.71 pH	24.11 °C	553.70 μS/cm	2.43 mg/L	0.65 NTU	112.3 mV	19.85 ft	210.00 ml/min
8/30/2022 11:31 AM	16:03	5.79 pH	24.05 °C	704.63 μS/cm	1.61 mg/L	0.69 NTU	109.7 mV	19.85 ft	210.00 ml/min
8/30/2022 11:36 AM	21:03	5.82 pH	23.87 °C	765.16 μS/cm	1.36 mg/L	0.55 NTU	108.0 mV	19.85 ft	210.00 ml/min
8/30/2022 11:41 AM	26:03	5.83 pH	23.99 °C	803.27 μS/cm	1.22 mg/L	0.51 NTU	107.4 mV	19.85 ft	210.00 ml/min
8/30/2022 11:46 AM	31:03	5.85 pH	24.17 °C	843.56 μS/cm	1.06 mg/L	0.58 NTU	107.4 mV	19.85 ft	210.00 ml/min
8/30/2022 11:51 AM	36:03	5.86 pH	23.87 °C	867.16 μS/cm	1.00 mg/L	0.72 NTU	106.6 mV	19.85 ft	210.00 ml/min
8/30/2022 11:56 AM	41:03	5.86 pH	23.60 °C	880.86 μS/cm	0.99 mg/L	0.80 NTU	105.9 mV	19.85 ft	210.00 ml/min

Samples

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/31/2022 1:24:08 PM

Project: Grumman Road Landfill **Operator Name:** Taylor Goble

Location Name: GWC-15 Well Diameter: 2 in Casing Type: PVC

Screen Length: 5 ft Top of Screen: 21.8 ft Total Depth: 26.8 ft

Initial Depth to Water: 19.2 ft

Pump Type: Peristaltic Pump

Tubing Type: Poly

Pump Intake From TOC: 24 ft
Estimated Total Volume Pumped:

5400 ml

Flow Cell Volume: 90 ml Final Flow Rate: 180 ml/min Final Draw Down: 0.61 ft Instrument Used: Aqua TROLL 400

Serial Number: 883536

Test Notes:

Sampled at 1354. Mostly cloudy 90 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 2	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/31/2022 1:24 PM	00:00	6.52 pH	32.90 °C	566.76 μS/cm	2.72 mg/L	4.02 NTU	127.7 mV	19.51 ft	180.00 ml/min
8/31/2022 1:29 PM	05:00	6.58 pH	25.55 °C	702.65 μS/cm	0.10 mg/L	3.66 NTU	121.2 mV	19.67 ft	180.00 ml/min
8/31/2022 1:34 PM	10:00	6.58 pH	25.04 °C	719.66 µS/cm	0.06 mg/L	3.15 NTU	120.3 mV	19.77 ft	180.00 ml/min
8/31/2022 1:39 PM	15:00	6.58 pH	24.81 °C	715.13 µS/cm	0.03 mg/L	3.37 NTU	117.5 mV	19.81 ft	180.00 ml/min
8/31/2022 1:44 PM	20:00	6.58 pH	24.73 °C	719.96 µS/cm	0.01 mg/L	3.55 NTU	116.3 mV	19.81 ft	180.00 ml/min
8/31/2022 1:49 PM	25:00	6.57 pH	24.65 °C	710.01 µS/cm	0.01 mg/L	3.31 NTU	113.3 mV	19.81 ft	180.00 ml/min
8/31/2022 1:54 PM	30:00	6.57 pH	24.62 °C	709.92 μS/cm	0.01 mg/L	3.45 NTU	110.6 mV	19.81 ft	180.00 ml/min

Samples

Sample ID:	Description:
------------	--------------

Test Date / Time: 9/1/2022 10:16:48 AM

Project: Grumman Road Landfill **Operator Name:** Taylor Goble

Location Name: GWC-16
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 5 ft

Top of Screen: 23.2 ft Total Depth: 28.2 ft

Initial Depth to Water: 20.44 ft

Pump Type: Peristaltic Pump

Tubing Type: Poly

Pump Intake From TOC: 25 ft Estimated Total Volume Pumped:

5400 ml

Flow Cell Volume: 90 ml Final Flow Rate: 180 ml/min Final Draw Down: 0.37 ft Instrument Used: Aqua TROLL 400

Serial Number: 850751

Test Notes:

Sampled at 1046. Cloudy 79 degrees. FB-06 taken here.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 2	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
9/1/2022 10:16 AM	00:00	4.92 pH	24.80 °C	728.25 μS/cm	1.53 mg/L	2.12 NTU	101.2 mV	20.60 ft	180.00 ml/min
9/1/2022 10:21 AM	05:00	5.13 pH	24.11 °C	1,580.6 μS/cm	0.31 mg/L	1.70 NTU	116.2 mV	20.77 ft	180.00 ml/min
9/1/2022 10:26 AM	10:00	5.18 pH	24.06 °C	1,639.6 μS/cm	0.31 mg/L	1.33 NTU	115.2 mV	20.81 ft	180.00 ml/min
9/1/2022 10:31 AM	15:00	5.27 pH	24.06 °C	1,778.5 μS/cm	0.29 mg/L	1.25 NTU	115.5 mV	20.81 ft	180.00 ml/min
9/1/2022 10:36 AM	20:00	5.32 pH	24.15 °C	1,837.0 μS/cm	0.28 mg/L	1.71 NTU	115.5 mV	20.81 ft	180.00 ml/min
9/1/2022 10:41 AM	25:00	5.35 pH	24.15 °C	1,883.7 μS/cm	0.29 mg/L	1.49 NTU	114.7 mV	20.81 ft	180.00 ml/min
9/1/2022 10:46 AM	30:00	5.37 pH	24.06 °C	1,907.9 μS/cm	0.31 mg/L	1.40 NTU	114.5 mV	20.81 ft	180.00 ml/min

Samples

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/31/2022 9:10:18 AM

Project: Grumman Road Landfill **Operator Name:** J. Berisford

Location Name: GWC-17
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 5 ft
Top of Screen: 18.5 ft

Total Depth: 23.5 ft

Initial Depth to Water: 4.87 ft

Pump Type: Peri. Pump Tubing Type: Poly

Pump Intake From TOC: 22 ft Estimated Total Volume Pumped:

25.3 liter

Flow Cell Volume: 90 ml Final Flow Rate: 175 ml/min Final Draw Down: 14.7 in Instrument Used: Aqua TROLL 400

Serial Number: 850751

Test Notes:

Sunny, sample time-1135

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 10	+/- 5 %	+/- 10 %	+/- 10	+/- 10	+/- 0.3	
8/31/2022 9:10 AM	00:00	7.55 pH	29.06 °C	3.69 µS/cm	7.80 mg/L	33.00 NTU	221.5 mV	4.87 ft	175.00 ml/min
8/31/2022 9:15 AM	05:00	6.17 pH	28.55 °C	269.48 μS/cm	0.63 mg/L	25.00 NTU	81.8 mV	5.20 ft	175.00 ml/min
8/31/2022 9:20 AM	10:00	6.16 pH	28.12 °C	272.90 μS/cm	0.38 mg/L	29.00 NTU	82.0 mV	5.60 ft	175.00 ml/min
8/31/2022 9:25 AM	15:00	5.23 pH	27.85 °C	1,278.9 μS/cm	0.25 mg/L	19.00 NTU	91.3 mV	5.80 ft	175.00 ml/min
8/31/2022 9:30 AM	20:00	4.93 pH	27.63 °C	1,479.2 μS/cm	0.19 mg/L	20.00 NTU	85.6 mV	6.00 ft	175.00 ml/min
8/31/2022 9:35 AM	25:00	4.99 pH	27.36 °C	1,225.4 μS/cm	0.16 mg/L	17.00 NTU	75.9 mV	6.10 ft	175.00 ml/min
8/31/2022 9:40 AM	30:00	6.44 pH	30.57 °C	0.77 μS/cm	7.30 mg/L	14.00 NTU	64.1 mV	6.10 ft	175.00 ml/min
8/31/2022 9:45 AM	35:00	6.41 pH	33.46 °C	0.52 μS/cm	7.05 mg/L	11.00 NTU	64.3 mV	6.10 ft	175.00 ml/min
8/31/2022 9:50 AM	40:00	4.96 pH	29.58 °C	1,417.4 μS/cm	0.32 mg/L	7.92 NTU	82.3 mV	6.10 ft	175.00 ml/min
8/31/2022 9:55 AM	45:00	4.96 pH	28.31 °C	1,441.5 μS/cm	0.13 mg/L	8.22 NTU	77.0 mV	6.10 ft	175.00 ml/min
8/31/2022 10:00 AM	50:00	4.96 pH	28.37 °C	1,441.0 μS/cm	0.11 mg/L	9.91 NTU	73.8 mV	6.10 ft	175.00 ml/min
8/31/2022 10:05 AM	55:00	4.92 pH	28.38 °C	1,479.1 μS/cm	0.10 mg/L	7.34 NTU	72.0 mV	6.10 ft	175.00 ml/min
8/31/2022 10:10 AM	01:00:00	6.16 pH	28.71 °C	260.86 μS/cm	0.16 mg/L	5.11 NTU	36.8 mV	6.10 ft	175.00 ml/min
8/31/2022 10:15 AM	01:05:00	6.19 pH	29.19 °C	261.83 μS/cm	0.16 mg/L	5.80 NTU	44.9 mV	6.10 ft	175.00 ml/min
8/31/2022 10:20 AM	01:10:00	6.18 pH	29.48 °C	263.56 μS/cm	0.16 mg/L	6.21 NTU	48.9 mV	6.10 ft	175.00 ml/min

8/31/2022				1,465.6					
10:25 AM	01:15:00	4.93 pH	29.11 °C	μS/cm	0.08 mg/L	5.32 NTU	74.2 mV	6.10 ft	175.00 ml/min
8/31/2022	01:20:00	4.95 pH	29.16 °C	1,309.0	0.07 mg/L	9.31 NTU	67.5 mV	6.10 ft	175.00 ml/min
10:30 AM	01.20.00	4.93 pm	29.10 C	μS/cm	0.07 Hig/L	9.511110	07.51110	0.1011	175.00 111/111111
8/31/2022	01:25:00	6.17 pH	29.77 °C	250.84 µS/cm	0.15 mg/L	13.00 NTU	39.5 mV	6.10 ft	175.00 ml/min
10:35 AM		'		·					
8/31/2022 10:40 AM	01:30:00	4.97 pH	29.57 °C	1,496.6 μS/cm	0.12 mg/L	15.00 NTU	77.1 mV	6.10 ft	175.00 ml/min
8/31/2022	01:35:00	6.15 pH	30.42 °C	271.89 μS/cm	0.13 mg/L	15.00 NTU	32.7 mV	6.10 ft	175.00 ml/min
10:45 AM	01.33.00	0.13 pri	30.42 C	271.09 μ3/cm	0.13 Hig/L	15.00 NTO	32.7 1110	0.1011	175.00 1111/111111
8/31/2022	01:40:00	6.18 pH	30.24 °C	250.14 µS/cm	0.15 mg/L	17.00 NTU	41.0 mV	6.10 ft	175.00 ml/min
10:50 AM	01110100	отто ртт	00.2.	·				0.1011	
8/31/2022	01:45:00	4.87 pH	29.21 °C	1,535.8	0.08 mg/L	16.00 NTU	71.9 mV	6.10 ft	175.00 ml/min
10:55 AM				µS/cm					
8/31/2022	01:50:00	4.86 pH	29.12 °C	1,540.3	0.06 mg/L	17.00 NTU	68.6 mV	6.10 ft	175.00 ml/min
11:00 AM 8/31/2022				μS/cm 1,539.7					
11:05 AM	01:55:00	4.86 pH	28.86 °C	μS/cm	0.05 mg/L	16.00 NTU	66.3 mV	6.10 ft	175.00 ml/min
8/31/2022	00.00.00	4.00 -11	00.00.00	1,557.9	0.05	45.00 NTU	00.7 1/	0.40 (475.00
11:10 AM	02:00:00	4.83 pH	29.63 °C	μS/cm	0.05 mg/L	15.00 NTU	63.7 mV	6.10 ft	175.00 ml/min
8/31/2022	02:05:00	4.81 pH	30.00 °C	1,579.2	0.04 mg/L	6.37 NTU	61.3 mV	6.10 ft	175.00 ml/min
11:15 AM	02.03.00	4.01 pi i	30.00 C	μS/cm	0.04 mg/L	0.57 1410	01.51117	0.1011	173.00 111/111111
8/31/2022	02:10:00	4.45 pH	26.37 °C	2,154.7	0.03 mg/L	5.68 NTU	69.6 mV	6.10 ft	175.00 ml/min
11:20 AM	02.10.00	1.10 pr	20.07	μS/cm		0.001110		0.10 1.	170.00 1111/111111
8/31/2022	02:15:00	4.37 pH	27.64 °C	2,266.3	0.03 mg/L	4.32 NTU	69.1 mV	6.10 ft	175.00 ml/min
11:25 AM		- '		μS/cm					
8/31/2022	02:20:00	4.36 pH	27.59 °C	2,222.5	0.03 mg/L	4.79 NTU	68.5 mV	6.10 ft	175.00 ml/min
11:30 AM				μS/cm	-				
8/31/2022 11:35 AM	02:25:00	4.33 pH	27.53 °C	2,251.2 μS/cm	0.03 mg/L	4.72 NTU	68.7 mV	6.10 ft	175.00 ml/min

Samples

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/30/2022 12:41:33 PM

Project: Grumman Road Landfill **Operator Name:** Taylor Goble

Location Name: GWC-20
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 5 ft
Top of Screen: 20.59 ft

Total Depth: 25.59 ft

Initial Depth to Water: 20.87 ft

Pump Type: Peristaltic Pump

Tubing Type: Poly

Pump Intake From TOC: 23 ft Estimated Total Volume Pumped:

8090 ml

Flow Cell Volume: 90 ml Final Flow Rate: 200 ml/min Final Draw Down: 0.32 ft Instrument Used: Aqua TROLL 400

Serial Number: 883536

Test Notes:

Sampled at 1323. Mostly cloudy 85 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 2	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/30/2022 12:41 PM	00:00	6.12 pH	28.36 °C	861.05 μS/cm	2.54 mg/L	8.11 NTU	135.8 mV	20.87 ft	200.00 ml/min
8/30/2022 12:46 PM	05:00	6.06 pH	25.10 °C	1,053.4 μS/cm	0.09 mg/L	7.57 NTU	134.9 mV	21.11 ft	200.00 ml/min
8/30/2022 12:51 PM	10:00	6.01 pH	24.67 °C	1,313.7 μS/cm	0.06 mg/L	4.46 NTU	134.1 mV	21.17 ft	200.00 ml/min
8/30/2022 12:56 PM	15:00	5.97 pH	24.74 °C	1,443.7 μS/cm	0.02 mg/L	3.70 NTU	133.0 mV	21.19 ft	200.00 ml/min
8/30/2022 1:01 PM	20:00	5.98 pH	24.61 °C	1,422.4 μS/cm	0.01 mg/L	3.22 NTU	130.3 mV	21.19 ft	200.00 ml/min
8/30/2022 1:06 PM	25:00	5.99 pH	24.51 °C	1,413.9 μS/cm	0.01 mg/L	2.73 NTU	127.9 mV	21.19 ft	200.00 ml/min
8/30/2022 1:07 PM	25:27	5.99 pH	24.51 °C	1,422.3 μS/cm	0.01 mg/L	2.70 NTU	127.5 mV	21.19 ft	200.00 ml/min
8/30/2022 1:12 PM	30:27	6.01 pH	24.51 °C	1,354.0 μS/cm	0.01 mg/L	2.61 NTU	123.6 mV	21.19 ft	200.00 ml/min
8/30/2022 1:17 PM	35:27	6.01 pH	24.58 °C	1,337.5 μS/cm	0.01 mg/L	2.40 NTU	120.8 mV	21.19 ft	200.00 ml/min
8/30/2022 1:22 PM	40:27	6.01 pH	24.64 °C	1,360.7 μS/cm	0.01 mg/L	2.24 NTU	118.7 mV	21.19 ft	200.00 ml/min

Samples

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/30/2022 5:00:43 PM

Project: Grumman Road Landfill **Operator Name:** Taylor Goble

Location Name: GWC-21
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 5 ft
Top of Screen: 20.54 ft
Total Depth: 25.54 ft

Initial Depth to Water: 20.21 ft

Pump Type: Peristaltic Pump

Tubing Type: Poly

Pump Intake From TOC: 23 ft Estimated Total Volume Pumped:

5500 ml

Flow Cell Volume: 90 ml Final Flow Rate: 220 ml/min Final Draw Down: 0.3 ft Instrument Used: Aqua TROLL 400

Serial Number: 883536

Test Notes: Sampled at 1725. Mostly cloudy 87 degrees. Total purge time 70 minutes.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 2	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/30/2022	00:00	5.76 pH	24.51 °C	804.88 µS/cm	2.32 mg/L	0.99 NTU	135.1 mV	20.51 ft	220.00 ml/min
5:00 PM	00.00	0.70 pri	24.01	σστ.σσ μο/σιτι	2.02 mg/L	0.001410	100.1 1111	20.01 10	220.00 111/111111
8/30/2022	05:00	5.76 pH	24.58 °C	921.12 µS/cm	2.32 mg/L	0.91 NTU	134.1 mV	20.51 ft	220.00 ml/min
5:05 PM	03.00	3.70 pm	24.30 C	921.12 μ3/0111	2.52 mg/L	0.511410	104.11111	20.0111	220.00 111/111111
8/30/2022	10:00	5.75 pH	24.78 °C	947.61 µS/cm	2.24 mg/L	0.88 NTU	133.9 mV	20.51 ft	220.00 ml/min
5:10 PM	10.00	3.73 pri	24.70 0	ο τη το τ μογοιτί	2.24 mg/L	0.001110	133.9 111	20.5111	220.00 1111/111111
8/30/2022	15:00	5.76 pH	24.80 °C	957.16 µS/cm	2.17 mg/L	0.83 NTU	133.4 mV	20.51 ft	220.00 ml/min
5:15 PM	13.00	3.70 pm	24.00 0	957.10 μ5/611	2.17 mg/L	0.03 1410	133.4 1117	20.51 11	220.00 111/111111
8/30/2022	20:00	5.75 pH	24.85 °C	973.61 µS/cm	2.05 mg/L	0.76 NTU	133.0 mV	20.51 ft	220.00 ml/min
5:20 PM	20.00	3.73 pm	24.05 C	973.01 µ3/cm	2.03 Hig/L	0.761410	133.0 1110	20.51 11	220.00 111/111111
8/30/2022	25:00	5.76 pH	24.82 °C	977.36 µS/cm	1.97 mg/L	0.71 NTU	131.9 mV	20.51 ft	220.00 ml/min
5:25 PM	25.00	3.70 p⊓	24.02 0	977.30 μ3/6111	1.97 Hig/L	0.711010	131.91110	20.3111	220.00 111/111111

Samples

	Sample ID:	Description:
--	------------	--------------

Test Date / Time: 8/31/2022 1:15:11 PM

Project: Grumman Road Landfill **Operator Name:** J. Berisford

Location Name: GWC-22
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 5 ft
Top of Screen: 14.21 ft
Total Depth: 19.21 ft

Initial Depth to Water: 8.88 ft

Pump Type: Peri. Pump Tubing Type: Poly

Pump Intake From TOC: 17 ft Estimated Total Volume Pumped:

6.2 liter

Flow Cell Volume: 90 ml Final Flow Rate: 175 ml/min Final Draw Down: 2.6 in Instrument Used: Aqua TROLL 400

Serial Number: 850751

Test Notes:

Sunny, sample time-1350

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 10	+/- 5 %	+/- 10 %	+/- 10	+/- 10	+/- 0.3	
8/31/2022 1:15 PM	00:00	4.26 pH	41.75 °C	5.00 μS/cm	6.37 mg/L	3.28 NTU	217.0 mV	8.88 ft	175.00 ml/min
8/31/2022 1:20 PM	05:00	4.74 pH	30.43 °C	157.95 μS/cm	0.45 mg/L	3.11 NTU	68.1 mV	9.10 ft	175.00 ml/min
8/31/2022 1:25 PM	10:00	4.70 pH	28.69 °C	186.35 μS/cm	0.19 mg/L	2.69 NTU	72.8 mV	9.10 ft	175.00 ml/min
8/31/2022 1:30 PM	15:00	4.69 pH	28.20 °C	192.53 μS/cm	0.14 mg/L	2.44 NTU	74.9 mV	9.10 ft	175.00 ml/min
8/31/2022 1:35 PM	20:00	4.69 pH	27.88 °C	197.30 μS/cm	0.12 mg/L	2.30 NTU	76.4 mV	9.10 ft	175.00 ml/min
8/31/2022 1:40 PM	25:00	4.68 pH	27.91 °C	203.20 μS/cm	0.10 mg/L	2.54 NTU	77.2 mV	9.10 ft	175.00 ml/min
8/31/2022 1:45 PM	30:00	4.68 pH	28.01 °C	207.30 μS/cm	0.09 mg/L	2.80 NTU	78.7 mV	9.10 ft	175.00 ml/min
8/31/2022 1:50 PM	35:00	4.68 pH	27.61 °C	208.06 μS/cm	0.08 mg/L	2.75 NTU	79.4 mV	9.10 ft	175.00 ml/min

Samples

Sample ID:	Description:
------------	--------------

Test Date / Time: 8/31/2022 3:23:27 PM

Project: Grumman Road Landfill **Operator Name:** Taylor Goble

Location Name: MW-23D Well Diameter: 2 in

Casing Type: PVC Screen Length: 10 ft Top of Screen: 53.3 ft Total Depth: 63.3 ft

Initial Depth to Water: 22.73 ft

Pump Type: Peristaltic Pump

Tubing Type: Poly

Pump Intake From TOC: 58 ft Estimated Total Volume Pumped:

13750 ml

Flow Cell Volume: 90 ml Final Flow Rate: 250 ml/min Final Draw Down: 0.14 ft Instrument Used: Aqua TROLL 400

Serial Number: 883536

Test Notes:

Sampled at 1618. Mostly cloudy 90 degrees. FB-05 poured here.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 2	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/31/2022 3:23 PM	00:00	6.70 pH	29.28 °C	196.56 μS/cm	5.53 mg/L	3.11 NTU	78.1 mV	22.83 ft	250.00 ml/min
8/31/2022 3:28 PM	05:00	6.25 pH	24.31 °C	226.06 μS/cm	0.21 mg/L	2.43 NTU	26.2 mV	22.87 ft	250.00 ml/min
8/31/2022 3:33 PM	10:00	6.26 pH	24.11 °C	225.97 μS/cm	0.11 mg/L	2.50 NTU	8.4 mV	22.87 ft	250.00 ml/min
8/31/2022 3:38 PM	15:00	6.26 pH	24.19 °C	225.83 μS/cm	0.08 mg/L	3.43 NTU	-1.2 mV	22.87 ft	250.00 ml/min
8/31/2022 3:43 PM	20:00	6.26 pH	24.55 °C	225.76 μS/cm	0.06 mg/L	3.75 NTU	-8.9 mV	22.87 ft	250.00 ml/min
8/31/2022 3:48 PM	25:00	6.25 pH	24.42 °C	232.65 μS/cm	0.04 mg/L	3.99 NTU	-13.1 mV	22.87 ft	250.00 ml/min
8/31/2022 3:53 PM	30:00	6.10 pH	24.30 °C	274.21 μS/cm	0.03 mg/L	2.94 NTU	-0.2 mV	22.87 ft	250.00 ml/min
8/31/2022 3:58 PM	35:00	6.09 pH	24.07 °C	261.04 μS/cm	0.02 mg/L	2.70 NTU	6.9 mV	22.87 ft	250.00 ml/min
8/31/2022 4:03 PM	40:00	6.08 pH	23.88 °C	258.68 μS/cm	0.02 mg/L	2.55 NTU	11.5 mV	22.87 ft	250.00 ml/min
8/31/2022 4:08 PM	45:00	6.08 pH	23.70 °C	239.92 μS/cm	0.01 mg/L	2.42 NTU	13.6 mV	22.87 ft	250.00 ml/min
8/31/2022 4:13 PM	50:00	6.08 pH	23.63 °C	230.35 μS/cm	0.01 mg/L	3.13 NTU	15.7 mV	22.87 ft	250.00 ml/min
8/31/2022 4:18 PM	55:00	6.06 pH	23.52 °C	231.42 μS/cm	0.01 mg/L	3.89 NTU	18.7 mV	22.87 ft	250.00 ml/min

Samples

Sample ID:	Description:
------------	--------------

Test Date / Time: 9/1/2022 11:29:06 AM

Project: Grumman Road Landfill **Operator Name:** Taylor Goble

Location Name: MW-24D

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 56.3 ft Total Depth: 66.3 ft

Initial Depth to Water: 22.57 ft

Pump Type: Peristaltic Pump

Tubing Type: Poly

Pump Intake From TOC: 63 ft Estimated Total Volume Pumped:

9000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 300 ml/min Final Draw Down: 0.08 ft Instrument Used: Aqua TROLL 400

Serial Number: 850751

Test Notes:

Sampled at 1159. Cloudy 80 degrees. FD-03 taken here.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 2	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
9/1/2022 11:29 AM	00:00	6.29 pH	28.18 °C	63.13 µS/cm	3.44 mg/L	5.50 NTU	60.3 mV	22.65 ft	300.00 ml/min
9/1/2022 11:34 AM	05:00	6.10 pH	24.26 °C	54.99 μS/cm	0.69 mg/L	4.77 NTU	58.5 mV	22.65 ft	300.00 ml/min
9/1/2022 11:39 AM	10:00	6.09 pH	23.91 °C	55.08 μS/cm	0.63 mg/L	4.25 NTU	59.3 mV	22.65 ft	300.00 ml/min
9/1/2022 11:44 AM	15:00	6.08 pH	23.90 °C	54.85 µS/cm	0.57 mg/L	4.26 NTU	60.2 mV	22.65 ft	300.00 ml/min
9/1/2022 11:49 AM	20:00	6.08 pH	23.72 °C	55.02 μS/cm	0.53 mg/L	4.27 NTU	60.7 mV	22.65 ft	300.00 ml/min
9/1/2022 11:54 AM	25:00	6.08 pH	23.79 °C	54.86 μS/cm	0.54 mg/L	4.27 NTU	60.9 mV	22.65 ft	300.00 ml/min
9/1/2022 11:59 AM	30:00	6.08 pH	23.86 °C	54.81 µS/cm	0.45 mg/L	4.17 NTU	61.2 mV	22.65 ft	300.00 ml/min

Samples

	Sample ID:	Description:	
--	------------	--------------	--

Test Date / Time: 8/31/2022 11:28:34 AM

Project: Grumman Road Landfill **Operator Name:** Taylor Goble

Location Name: MW-25D

Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 60.2 ft Total Depth: 70.2 ft

Initial Depth to Water: 20.79 ft

Pump Type: Peristaltic Pump

Tubing Type: Poly

Pump Intake From TOC: 65 ft Estimated Total Volume Pumped:

4500 ml

Flow Cell Volume: 90 ml Final Flow Rate: 150 ml/min Final Draw Down: 2.83 ft Instrument Used: Aqua TROLL 400

Serial Number: 883536

Test Notes:

Sampled at 1158. Mostly cloudy 89 degrees.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 2	+/- 5 %	+/- 10 %	+/- 10	+/- 25	+/- 0.3	
8/31/2022 11:28 AM	00:00	6.23 pH	29.97 °C	53.09 µS/cm	4.18 mg/L	1.30 NTU	94.9 mV	21.78 ft	150.00 ml/min
8/31/2022 11:33 AM	05:00	6.30 pH	25.23 °C	56.97 μS/cm	4.20 mg/L	1.21 NTU	91.6 mV	22.45 ft	150.00 ml/min
8/31/2022 11:38 AM	10:00	6.32 pH	24.96 °C	57.19 μS/cm	4.19 mg/L	1.17 NTU	90.8 mV	23.12 ft	150.00 ml/min
8/31/2022 11:43 AM	15:00	6.32 pH	25.32 °C	56.93 µS/cm	4.12 mg/L	0.92 NTU	90.5 mV	23.56 ft	150.00 ml/min
8/31/2022 11:48 AM	20:00	6.32 pH	25.53 °C	57.28 μS/cm	4.08 mg/L	0.77 NTU	89.9 mV	23.62 ft	150.00 ml/min
8/31/2022 11:53 AM	25:00	6.31 pH	25.52 °C	56.81 µS/cm	3.83 mg/L	0.73 NTU	91.0 mV	23.62 ft	150.00 ml/min
8/31/2022 11:58 AM	30:00	6.29 pH	25.84 °C	57.27 μS/cm	3.73 mg/L	0.55 NTU	90.2 mV	23.62 ft	150.00 ml/min

Samples

Sample ID:	Description:
------------	--------------

APPENDIX A

Daily Instrument Calibration Logs August 2022 Monitoring Event

SITE:

TECHNICIAN:

Grinnan Rd A Schiffker

INSTRUMENT S/N:
INSTRUMENT TYPE:
CAL. SOLUTION:

O NTU - LOT # NA

11090 C12353

O NTU - LOT # NA EXP. DATE: NA Fresh DI

10 NTU - LOT # A 21 22 EXP. DATE: 8 23

20 NTU - LOT # A 21 24 EXP. DATE: 8 23

NTU - LOT # EXP. DATE: 8 23

EXP. DATE: 8 23

NTU - LOT #

EXP. DATE:

Calibration Date:

8/31

Calibation Solution	Instrument Reading	_
0.0	0.17	NTU
10.0	9,87	NTU
20.0	21.2	 NTU
		— NTU
		— NTU

Calibration Date:

Calibation Solution	Instrument Reading	
0.0		 NTU
10.0		NTU
20.0		NTU
		 NTU
		NTU

Calibration Date:

Calibation Solution	Instrument Reading	
0.0		NTU
10.0	,	NTU
20.0		NTU
		NTU
		NTU

Calibration Date:

Calibation Solution	Instrument Reading	
0.0		NTU
10.0		NTU
20.0		NTU
		NTU
		NTU

Calibration Date:

Calibation Solution	Instrument Reading	
0.0		NTU
10.0		NTU
20.0		NTU
		NTU
		NTU

SITE: TECHNICIAN:	Grun	nnan Roa nittker	d Landf	Fill	-	
WATER LEVEL: WATER LEVEL S/N:	Solin	st 377060			-	
INSTRUMENT S/N: INSTRUMENT TYPE:	72850	e 6			-	
CAL. SOLUTION/S:	ID: PH 4 7 ID: PH 3 7 ID: PH 10	LOT#:16K617 LOT#:26C169 LOT#:166429 LOT#:26F806	EXP. DATE: 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23 4 3	- - -	
	ID: ORR	LOT#: 21140143 LOT#:	EXP. DATE: 4/2 EXP. DATE: EXP. DATE:	3	- - -	
RDO:	8/31/22 100% sat. = 100 4.00 = 4.01		03	- 10.00 = 9,99		
CONDUCTIVITY:	4	1392.2		-	ph V	7.00
PH:	100% sat. = 4.00 =	7.00 =		10.00 =	-	
CONDUCTIVITY: ORP (mV) Calibration Date:				_		
RDO: PH:	100% sat. = 4.00 =	7.00 =		10.00 =	-	
Calibration Date:				_		
PH: CONDUCTIVITY:	100% sat. = 4.00 =	7.00 =			-	
Calibration Date:	100% sat. =			-		
CONDUCTIVITY:	4.00 =			10.00 =		

SITE:	Grumman R	oad		
TECHNICIAN:	T- (20	ble		
WATER LEVEL:	Salinst			
WATER LEVEL S/N:	230	298 L		
INSTRUMENT S/N:	883536			
	AguaTroll			
CAL. SOLUTION/S:	ID: 014 4 LOT#: 2/4/70032	EXP. DATE: 4/23		
	ID: pH 7 LOT#: 2GG042			
	ID: OH 10 LOT#: 266019			
	ID: Conal LOT#: 21470032			
	ID: ORP LOT#: 21140143	EXP. DATE: 4/23	Midday pH	<u>check</u>
	ID: LOT#:	EXP. DATE:	 Must be less ti	hat .10
	ID: LOT#:	EXP. DATE:	 (6.90-7.10	.
Calibration Date: ⁵	1-20-22		Recalibrate if not	within range
	100% sat. = 94.50		Midday pH ch	eck
		10.00 =	7.0 = 7.0	
PH Recal (if needed)		10.00 =		post recal check
CONDUCTIVITY	11.15	10.00 -	 1.0-14W	
ORP (mV)				
ORI (IIIV)	226 - 227.7			
Calibration Date:	8-31-22			
	100% sat. = 99.46		Midday pH ch	eck
	4.00 = 4.06 7.00 = 6.	10.00 =	7.0 = 7.0	
PH Recal (if needed)		10.00 =		post recal check
CONDUCTIVITY		10.00	 	
	224 = 220.6			
Ora (iiiv)	22014			
Calibration Date:	7-1-22			
	100% sat. = 103.%1		Midday pH ch	eck
	4.00 = 3,99 7.00 = 6,	97 10.00 =	7.0 = "7.0	
PH Recal (if needed)		10.00 =		post recal check 🗸
CONDUCTIVITY			 	
ORP (mV	1000	9		
(
Calibration Date:				
RDO	100% sat. =		Midday pH ch	<u>eck</u>
	4.00 = 7.00 =	10.00 =	7.0 =	
PH Recal (if needed)	4.00 = 7.00 =	10.00 =	7.0=	post recal check
CONDUCTIVITY				
ORP (mV	=			
Calibration Date:				
	100% sat. =		Midday pH ch	<u>eck</u>
	4.00 = 7.00 =	10.00 =	 7.0 =	
PH Recal (if needed) CONDUCTIVITY		10.00 =	 7.0=	post recal check
ORP (mV				
,				

SITE:		Plant Wansley		
TECHNICIAN:		, .		
TECHNICIAN.		T. Croble		
INSTRUMENT S/N:	15040C04	10490		
INSTRUMENT TYPE:	Hach 2100Q			
CAL. SOLUTION:	O NTU - LOT#	EXP. DATE:	New DI	
	10 NTU - LOT # 29619	EXP. DATE:	4/23	
	20 NTU - LOT # 26 94	TO L EXP. DATE:	4123	
Calibration Date:	4-30-22			
	Calibation Solution	Instrument Reading		100 = 97.7
	0.0	0,19	 NTU	
	10.0	10.8	NTU	700 = 793
	20.0	17.7	NTU	
Calibration Date:	8-31-22	ı		
	Calibation Solution	Instrument Reading		94 6
	0.0	0.23	NTU	100= 98.0
	10.0	10.9	NTU	400 = 796
	20.0	20.5	NTU	(00)
Calibration Date:	9-1-22			
	Calibation Solution	Instrument Reading		100 - 102
	0.0	0.28	NTU	100 = 103
	10.0	16.8	NTU	800 = 801
	20.0	20.3	NTU	0 - 1
Calibration Date:				
	Calibation Solution	Instrument Reading		
	0.0		MTU	
	10.0		MTU	
	20.0		MTU	
Calibration Date:		1		
	Calibation Solution	Instrument Reading		
	0.0		NTU	
	10.0		NTU	
	20.0		NTU	
Calibration Date:		1		
	Calibation Solution	Instrument Reading		
	0.0		NTU	
	10.0		NTU	

20.0

SITE:		Grunnay 12	ol			
TECHNICIAN:). Renful				
WATER LEVEL:		306451				
WATER LEVEL S/N:		16730	,-(
		2TA 2-1				
INSTRUMENT S/N:		850751				
	AquaTroll	10711 71 4710	EXP. DATE: 3/	2 VI		
CAL. SOLUTION/S:	ID: 94 4 ID: pir 7	LOT#: 76 C743	EXP. DATE: 3/			
	ID: P # 16	LOT#: 1610654	EXP. DATE: 147			
	ID: COAG	LOT#: 1616865	EXP. DATE: [1/3			
	ID: BRP	LOT#: 768160	EXP. DATE: 1/2		—— <u>Midday p</u>	H check
	ID:	LOT#:	EXP. DATE:		Must be les	s that .10
	ID:	LOT#:	EXP. DATE:		(6.90-7.2	10 range)
	2/30177				Recalibrate if	not within range
Calibration Date:		5 4				
RDO:	100% sat. = 10 (/	`-3	- 10.00 = 10.48	Midday pH	
	4.00 = 3.77	7.00 =	5. g T	10.00	7.0 = 9	•
PH Recal (if needed):		7.00 =		10.00 =	7.0=	post recal check
CONDUCTIVITY:		= 1413		_		
ORP (mv)	228	= 278		_		
Calibration Date: 8	10.102					
		L)			M4:-1-1	-11-
	$\frac{100\% \text{ sat.} = 100}{4.00 = 4.00}$	7.00 = 7	47		$\frac{\textit{Midday pH}}{7.0} = \mathcal{F}_{2}$	
PH Recal (if needed):		7.00 =		10.00 = 17.70	7.0= 7.0=	post recal check
CONDUCTIVITY:	1.5.5	= 1437	-	10.00 =	7.0=	poor roour orrook
	777	= 726		_		
Ora (iiiv)		100		_		
Calibration Date:						
	100% sat. =				Midday pH	check
	4.00 =	7.00 =		10.00 =	7.0 =	<u> </u>
PH Recal (if needed):		7.00 =		10.00 =	7.0=	post recal check
CONDUCTIVITY:		=				
ORP (mV)		=				
,				_		
Calibration Date:						
RDO:	100% sat. =				Midday pH	check
	4.00 =	7.00 =		10.00 =	7.0 =	
PH Recal (if needed):	4.00 =	7.00 =		10.00 =	7.0=	post recal check
CONDUCTIVITY:	-	=				
ORP (mV)		=		_		
Calibration Date:						
	100% sat. =				Midday pH	<u>check</u>
	4.00 =	7.00 =		10.00 =	7.0 =	
PH Recal (if needed): CONDUCTIVITY:		7.00 =		10.00 =	7.0=	post recal check
ORP (mV)		=		 		

SITE:		Plant Wansley							
TECHNICIAN:		5 Gentles							
	1717	200063767							
INSTRUMENT S/N:	Hach 2100Q								
INSTRUMENT TYPE: CAL. SOLUTION:	O NTU - LOT # MA	EXP. DATE: DI	11						
CAL. SOLUTION.	10 NTU - LOT # /4 / 7		72						
	20 NTU - LOT # /4/2	27 EXP. DATE: (1)	1122						
		7	1 6						
	-/								
Calibration Date:		1							
	Calibation Solution	Instrument Reading							
	0.0	0.32	NTU						
	10.0	16.2	NTU						
	20.0	2011	NTU						
0-17	2/31/7.7								
Calibration Date: 🖔	Calibation Solution	Instrument Reading							
	0.0	to 72	= NTII						
	10.0	9.77	— NTU NTU						
	20.0	7.0-3	- NTU						
Calibration Date:									
	Calibation Solution	Instrument Reading							
	0.0		== NTU						
	10.0		NTU						
	20.0		NTU						
Calibration Date:		I							
	Calibation Solution	Instrument Reading	_						
	0.0		NTU						
	10.0		NTU						
	20.0		NTU						
Calibration Date:									
	Calibation Solution	Instrument Reading							
	0.0		NTU						
	10.0		NTU						
	20.0		NTU						
Calibration Date:									
Samulation Date:	Calibation Solution	Instrument Reading							
	0.0	I Instrument Reduing	— NTU						
	10.0		- NTU						
	20.0		— NTU						

APPENDIX A

Well Inspection Forms August 2022 Monitoring Event

Permit No.: 025-061D(LI)

1 - 1	_ocation	<u>/Identification</u>	GWA-7	GWA-8	GWB-4R	GWB-5R	GWC-6R	GWC-1	GWC-2	GWC-9	GWC-10	GWC-11	GWC-12	GWC-13
	а	Is the well visible and accessible?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
		Is the well properly identified with the correct well ID?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	\sim	Does the well require protection from traffic?	No	No	No	No	No	No	No	No	No	No	No	No
	d	Is the drainage around the well acceptable? (No standing water, nor is well located in obvious drainage flow path)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Permit No.: 025-061D(LI)

2 - Protecti	ve Outer Casing	GWA-7	GWA-8	GWB-4R	GWB-5R	GWC-6R	GWC-1	GWC-2	GWC-9	GWC-10	GWC-11	GWC-12	GWC-13
а	Is the protective casing free from apparent damage?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
b	Is the casing free of degradation or deterioration?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
С	Does the casing have a functioning weep hole?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
d	Is the annular space between casings filled with pea gravel or sand?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
e	Is the well locked, and is the lock in good working condition?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Permit No.: 025-061D(LI)

3 - Surface	<u>Pad</u>	GWA-7	GWA-8	GWB-4R	GWB-5R	GWC-6R	GWC-1	GWC-2	GWC-9	GWC-10	GWC-11	GWC-12	GWC-13
а	Is the well pad in good condition? (Not cracked or broken)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
b	Does the well pad provide adequate surface seal and stability to the well?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
С	Is the well pad in complete contact with the protective casing?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
d	Is the well pad in complete contact with the ground surface? (Not undermined by erosion, animal burrows, and does not move when stepped on)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
е	Is the pad surface clean? (Not covered by soil or debris)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes

August 2022 Well Inspection Form

4 - Internal	Well Casing	GWA-7	GWA-8	GWB-4R	GWB-5R	GWC-6R	GWC-1	GWC-2	GWC-9	GWC-10	GWC-11	GWC-12	GWC-13
а	Does the well cap prevent entry of foreign material into the well?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
b	Is the casing free of kinks or bends, or any obstruction from foreign objects (such as bailers)?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
С	Does the well have a venting hole near the top of casing?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
d	Is the survey point clearly marked on the inner casing?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
е	Is the depth of the well consistent with the original well log?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
f	Does the PVC casing move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction?	No	No	No	No	No	No	No	No	No	No	No	No

5 - Sampling (Groundwater Monitoring Wells Only):

Permit No.: 025-061D(LI)

		GWA-7	GWA-8	GWB-4R	GWB-5R	GWC-6R	GWC-1	GWC-2	GWC-9	GWC-10	GWC-11	GWC-12	GWC-13
а	Does the well recharge adequately when purged?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Yes	Yes	Yes
b	If dedicated sampling equipment is installed, is it in good condition?	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
С	Does the well require redevelopment due to slow recharge or turbidity > 10 NTUs?	No	No	No	No	No	No	No	No	N/A	No	No	No

NOTE: N/A - Not Applicable

Permit No.: 025-061D(LI)

6 - Based on your professional judgment, is the well construction / location appropriate to:

, ,												
	GWA-7	GWA-8	GWB-4R	GWB-5R	GWC-6R	GWC-1	GWC-2	GWC-9	GWC-10	GWC-11	GWC-12	GWC-13
1) achieve the objectives of the facility Groundwater Monitoring Program, and 2) comply with the applicable regulatory requirements?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Staff:

Date:

T. Goble

8/29/2022

Form Derived from "Georgia EPD's Groundwater Monitoring Well Integrity Form".

7 - Corrective actions completed and Notes:

GWC-10 - Cable line hanging onto well pad.

Permit No.: 025-061D(LI)

1 - <u>L</u>	.ocation	/Identification	GWC-14	GWC-15	GWC-16	GWC-17	GWC-20	GWC-21	GWC-22	MW-23D	MW-24D	MW-25D	MW-26D	MW-27D
	а	Is the well visible and accessible?	Yes											
	b	Is the well properly identified with the correct well ID?	Yes											
	С	Does the well require protection from traffic?	No											
	d	Is the drainage around the well acceptable? (No standing water, nor is well located in obvious drainage flow path)	Yes											

Permit No.: 025-061D(LI)

2 - Protecti	ve Outer Casing	GWC-14	GWC-15	GWC-16	GWC-17	GWC-20	GWC-21	GWC-22	MW-23D	MW-24D	MW-25D	MW-26D	MW-27D
а	Is the protective casing free from apparent damage?	Yes											
b	Is the casing free of degradation or deterioration?	Yes											
С	Does the casing have a functioning weep hole?	Yes											
d	Is the annular space between casings filled with pea gravel or sand?	Yes											
e	Is the well locked, and is the lock in good working condition?	Yes											

Permit No.: 025-061D(LI)

3 -	Surface	<u>Pad</u>	GWC-14	GWC-15	GWC-16	GWC-17	GWC-20	GWC-21	GWC-22	MW-23D	MW-24D	MW-25D	MW-26D	MW-27D
	а	Is the well pad in good condition? (Not cracked or broken)	Yes											
	b	Does the well pad provide adequate surface seal and stability to the well?	Yes											
	С	Is the well pad in complete contact with the protective casing?	Yes											
	d	Is the well pad in complete contact with the ground surface? (Not undermined by erosion, animal burrows, and does not move when stepped on)	Yes											
	е	Is the pad surface clean? (Not covered by soil or debris)	Yes											

August 2022 Well Inspection Form

4 - Internal	Well Casing	GWC-14	GWC-15	GWC-16	GWC-17	GWC-20	GWC-21	GWC-22	MW-23D	MW-24D	MW-25D	MW-26D	MW-27D
а	Does the well cap prevent entry of foreign material into the well?	Yes											
b	Is the casing free of kinks or bends, or any obstruction from foreign objects (such as bailers)?	Yes											
С	Does the well have a venting hole near the top of casing?	Yes											
d	Is the survey point clearly marked on the inner casing?	Yes											
е	Is the depth of the well consistent with the original well log?	Yes											
f	Does the PVC casing move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction?	No											

5 - Sampling (Groundwater Monitoring Wells Only):

Permit No.: 025-061D(LI)

		GWC-14	GWC-15	GWC-16	GWC-17	GWC-20	GWC-21	GWC-22	MW-23D	MW-24D	MW-25D	MW-26D	MW-27D
а	Does the well recharge adequately when purged?	Yes	N/A	N/A									
b	If dedicated sampling equipment is installed, is it in good condition?	N/A											
С	Does the well require redevelopment due to slow recharge or turbidity > 10 NTUs?	No	No	No	Yes	No	No	No	No	No	No	N/A	N/A

NOTE: N/A - Not Applicable

Grumman Road Landfill August 2022 Well Inspection Form

Permit No.: 025-061D(LI)

6 - Based on your professional judgment, is the well construction / location appropriate to:

	GWC-14	GWC-15	GWC-16	GWC-17	GWC-20	GWC-21	GWC-22	MW-23D	MW-24D	MW-25D	MW-26D	MW-27D
1) achieve the objectives of the facility Groundwater Monitoring Program, and 2) comply with the applicable regulatory requirements?	Yes											

Form Derived from "Georgia EPD's Groundwater Monitoring Well Integrity Form".

7 - Corrective actions completed and Notes:

Staff: T. Goble

Date: 8/29/2022

APPENDIX B

Semiannual Remedy Selection and Design Progress Report

Grumman Road Private Industrial Landfill
Chatham County, Georgia
2022 Semiannual Groundwater Monitoring and Corrective Action Report

February 2023 Grumman Road Private Industrial Landfill

Semiannual Remedy Selection and Design Progress Report

Prepared for Georgia Power Company

February 2023 Grumman Road Private Industrial Landfill

Semiannual Remedy Selection and Design Progress Report

Prepared for

Georgia Power Company 214 Ralph McGill Boulevard NE Atlanta, Georgia 30308 **Prepared by**

Anchor QEA, LLC 9797 Timber Circle, Suite B Daphne, Alabama 36527

Engineer's Certification

This Semiannual Remedy Selection and Design Progress Report has been prepared for Georgia Power Company's Grumman Road Private Industrial Landfill in accordance with the U.S. Environmental Protection Agency coal combustion residuals rule, specifically 40 Code of Federal Regulations 257.97(a) and the Georgia Environmental Protection Division Rules for Solid Waste Management 391-3-4-.10(6)(a). This report describes the progress made during the second semiannual period of 2022 in selecting and designing a remedy previously documented in the Assessment of Corrective Measures (Anchor QEA 2020).

This report was prepared under the supervision and direction of the undersigned, whose seal as a registered professional engineer is affixed below. The undersigned is practicing through Anchor QEA, LLC, which is an authorized engineering business in the State of Georgia (Certificate of Authorization license number PEF006751; a copy of this license is provided in Appendix A). I hereby certify that I am a qualified groundwater scientist in accordance with the Georgia Rules of Solid Waste Management and 40 Code of Federal Regulations Part 258.50(g).

i

Kristi Ann Mitchell, Managing Engineer

Georgia Professional Engineer No. PE049188

TABLE OF CONTENTS

En	ginee	r's Certification	i
1	_	oduction	
	1.1	Site Background	
	1.2	Nature and Extent	
		1.2.1 Current SSL Status	
		1.2.2 Geochemistry and Influence of Adjacent Clifton Landfill	3
		1.2.3 Current Delineation Status	
		1.2.4 Transport Model	5
	1.3	Well Survey Update	5
2	Sun	nmary of Work Completed	6
3	Sun	nmary of Results	7
4	Upc	lated Conceptual Site Model	8
5	Upc	lated Evaluation of Corrective Measures	10
	5.1	Corrective Measures Retained	10
	5.2	Corrective Measures Not Retained	11
6	Plar	nned Activities and Anticipated Schedule	12
7	Refe	erences	13

TABLE

Table 1 Evaluation of Remedial Technologies

FIGURES

Figure 1	Site Location Map
Figure 2	Site Parcel Boundaries Map
Figure 3	Monitoring Well Network Map
Figure 4	Isoconcentration Map: Arsenic – August 2022
Figure 5	Isoconcentration Map: Molybdenum – August 2022
Figure 6	Simulated Molybdenum Concentrations at the Site GWPS in 202

Figure 7 A to A' Geologic Cross Section
Figure 8 B to B' Geologic Cross Section

APPENDICES

Appendix A Certificate of Authorization

Appendix B Trend Test Graphs

Appendix C Well Survey

i

ABBREVIATIONS

ACM assessment of corrective measures
ACM Report Assessment of Corrective Measures

CCR coal combustion residuals
CFR Code of Federal Regulations

Clifton Landfill Clifton Rental Company, Inc., Landfill

CSM conceptual site model

GA EPD Georgia Environmental Protection Division

Georgia Power Company

GWPS groundwater protection standard ISS in situ stabilization/solidification

mg/L milligram per liter

MNA monitored natural attenuation PRB permeable reactive barrier

Site Grumman Road Private Industrial Landfill
SRIL Savannah Regional Industrial Landfill

SSL statistically significant level

transport model groundwater flow and reactive transport model

1 Introduction

In accordance with the Georgia Environmental Protection Division (GA EPD) Rules for Solid Waste Management 391-3-4.10(6)(a), this *Semiannual Remedy Selection and Design Progress Report* has been prepared for the Grumman Road Private Industrial Landfill (Site). Assessment of corrective measures (ACM) requirements of GA EPD Rule 391-3-4.10(6)(a) are incorporated by reference from the U.S. Environmental Protection Agency coal combustion residuals (CCR) rule (40 Code of Federal Regulations [CFR] Part 257, Subpart D).

This progress report supports the *Assessment of Corrective Measures* (ACM Report; Anchor QEA 2020), which Georgia Power Company (Georgia Power) submitted on December 4, 2020. Georgia Power has placed the ACM Report in the Site's operating record and posted it to the Site's CCR rule compliance website. The purpose of the ACM Report (and subsequent semiannual progress reports) is to evaluate potential corrective measures to address the occurrence of arsenic and molybdenum in groundwater at statistically significant levels (SSLs). This process is typically iterative and may be composed of multiple steps to analyze the effectiveness of corrective measures to improve groundwater quality.

Pursuant to 40 CFR 257.97, Georgia Power is evaluating the potential corrective measures presented in the ACM Report to identify an appropriate remedy or combination of remedies as soon as is feasible (Anchor QEA 2020). In the ACM Report, the following remedies were considered feasible for corrective measures for groundwater at the Site:

- Geochemical approaches (in situ injection)
- Hydraulic containment (pump-and-treat)
- In situ stabilization/solidification (ISS)
- Monitored natural attenuation (MNA)
- Permeable reactive barrier (PRB) wall
- Phytoremediation
- Subsurface vertical barrier wall

A comparative screening of these corrective measures is presented in Table 1 and summarized in Section 5.

This Semiannual Remedy Selection and Design Progress Report is included as an appendix to the 2022 Semiannual Groundwater Monitoring and Corrective Action Report (ACC 2023). Georgia Power will include future semiannual remedy selection progress reports as an appendix to the routine semiannual groundwater monitoring and corrective action reports.

Georgia Power has proactively initiated adaptive site management as outlined in the ACM Report (Anchor QEA 2020) to support the groundwater remedy selection process and address potential

changes in Site conditions as appropriate. The adaptive site management approach takes existing Site conditions, including natural attenuation mechanisms, into account.

1.1 Site Background

The Site, located in Port Wentworth, Georgia, is a permitted industrial landfill owned and operated by Georgia Power previously used for disposal of coal ash from Georgia Power's Plant Kraft. The Site has not received ash since Plant Kraft was retired in late 2015, exempting it from the requirements of the federal CCR rule. The Site location is shown in Figure 1.

The Site is adjacent to two other permitted solid-waste disposal facilities: one to the east and the other to the south (Figure 1). The closed Clifton Rental Company, Inc., Landfill (Clifton Landfill; Permit No. 025-030D(L)) is east, hydraulically upgradient of and cross gradient to the Site. Based on available information, Clifton Landfill was not constructed with a synthetic liner or leachate collection system (which was consistent with GA EPD requirements at the time of construction), and waste extends below the water table. As described in previous reports (ACC 2019a; Anchor QEA 2019), strong physical and geochemical evidence supports the mobilization of arsenic and molybdenum by landfill leachate coming onto the Site from the adjacent Clifton Landfill. The active Savannah Regional Industrial Landfill (SRIL) operated by Republic Services, Inc. (Permit No. 025-072D(L)) is south of the Site and hydraulically downgradient of both Clifton Landfill and the Site. SRIL is constructed with a synthetic liner and leachate collection system meeting the requirements specified in GA EPD Rule 391-3-4-.14.

The Site consists of four parcels—A, B1, B2, and B3—comprising approximately 33 acres (Figure 2). Closure of the Site has been completed in accordance with the landfill permit and performance standards listed in 40 CFR 257.102(d)(3) and adopted by GA EPD Rule 391 3 4.10(7). Parcels A and B1 were initially closed in 2004, and Parcels B2 and B3 were closed in 2017 (SCG 2007; Brantley Engineering 2017). A new final cover system over Parcel A', the portion of Parcel A outside the original closure area, was installed in 2019 to meet the requirements of GA EPD Rule 391 3 4.10(7) (Brantley Engineering 2019). The final closure certification report was submitted to GA EPD on November 25, 2019 (Brantley Engineering 2019). The Site is permitted under Solid Waste Handling Permit No. 025-061D(LI).

1.2 Nature and Extent

1.2.1 Current SSL Status

Groundwater monitoring has been performed at the Site since 2000, in accordance with a state permit. Assessment monitoring was initiated in 2005 under the state program. Since that time, additional investigations and landfill closures have been performed, the conceptual site model (CSM) has been updated based on additional investigations, and ACMs have been prepared and updated

2

(for example, Assessment of Corrective Measures – 2019 Addendum [ACC 2019a]). A summary of groundwater monitoring and site investigations can be found in the most recent ACM Report for the Site (Anchor QEA 2020).

Under GA EPD regulations applicable to the Site (GA EPD Rule 391-3-4.10(6)(a)), background sampling occurred between 2016 and 2018. Groundwater detection monitoring began following completion of background sampling, with the first sampling event occurring in March 2019. Statistically significant increases of 40 CFR 257 Appendix III constituents were noted as described in the *Supplemental 2019 First Semiannual Groundwater Monitoring Report* (ACC 2019b). The Appendix III statistically significant increases triggered assessment sampling for 40 CFR 257 Appendix IV constituents. Subsequent monitoring verified Appendix IV constituents arsenic and molybdenum at SSLs that exceeded groundwater protection standards (GWPSs).

Recurring SSLs that exceeded the GWPS for arsenic (0.0287 milligram per liter [mg/L]) and molybdenum (0.1 mg/L) during the most recent (August 2022) assessment monitoring event are summarized as follows (ACC 2023):

- Arsenic GWPS exceedances were identified at monitoring wells GWC-15, GWC-16, and GWC-20.
- Molybdenum GWPS exceedances were identified at monitoring wells GWC-16 and GWC-20.

Based on GA EPD guidance, wells with SSLs were further evaluated by Groundwater Stats Consulting, LLC, using the Sen's Slope/Mann-Kendall trend test (Appendix B). The full report generated from the analyses is provided in Appendix C of the *2022 Semiannual Groundwater Monitoring and Corrective Action Report* (ACC 2023). A statistically significant increasing trend was identified for arsenic at GWC-15. No statistically significant increasing trends were identified for the other well/constituent pairs.

Pursuant to 40 CFR 257.96, groundwater at the Site continues to be monitored in accordance with the established assessment monitoring program while potential corrective measures are evaluated (ACC 2023). Monitoring well locations are shown in Figure 3.

1.2.2 Geochemistry and Influence of Adjacent Clifton Landfill

Arsenic and molybdenum have been detected at elevated concentrations in monitoring wells at the boundary between the Site and the adjacent closed Clifton Landfill. Based on previous studies, leachate-impacted groundwater from the adjacent Clifton Landfill migrates onto the Site, impacting monitoring wells at the Site. Potentiometric surface contours from the August 29, 2022, gauging event are shown in Figures 4 and 5. The leachate-impacted groundwater contains elevated dissolved organic carbon, which induces reducing groundwater conditions that drive the reductive dissolution of iron oxides present in the subsurface solid matrix and subsequent release of associated species

(e.g., arsenic and molybdenum). Iron oxides are naturally present in soils as grain coatings and are also a significant component of ash. Iron oxides are a host phase for many trace elements, including arsenic and molybdenum. Based on soil samples previously collected at the Site, the iron oxide content of ash is higher than that of the background soils.

SSLs of arsenic and molybdenum appear to be due to mobilization by the landfill leachate-impacted groundwater migrating onto the Site. As leachate-impacted groundwater travels beneath the Site, reductive dissolution of iron oxides releases arsenic and molybdenum that are adsorbed on and coprecipitated in the iron oxides naturally present in soils and ash. Arsenic and molybdenum concentrations increase along the groundwater flow path and are highest near the hydraulically downgradient southeast corner of the Site (Figures 4 and 5).

The study summarized in the previously submitted *Arsenic Mobilization Laboratory Evaluation* (Anchor QEA 2019) and the Site conditions suggest control of leachate impacts to groundwater from Clifton Landfill would be expected to greatly reduce groundwater arsenic (and, by geochemical inference, molybdenum) concentrations at the Site. Similarly, groundwater corrective actions for arsenic and molybdenum will likely not be effective until leachate from Clifton Landfill is controlled.

1.2.3 Current Delineation Status

Isoconcentration maps that show the interpreted extent of arsenic and molybdenum, as well as the posted data from the August 2022 semiannual sampling, are shown in Figures 4 and 5. The applicable laboratory analytical report for this data is provided in the *2022 Semiannual Groundwater Monitoring and Corrective Action Report* (ACC 2023). Appendix B shows concentration versus time graphs for wells with SSLs of arsenic or molybdenum and arsenic and molybdenum concentrations versus time in background wells.

Vertical delineation of arsenic and molybdenum in groundwater beneath the Site has been achieved (ACC 2023). Data from the August 2022 semiannual monitoring event at SRIL indicate arsenic is horizontally delineated below the GWPS by upgradient SRIL wells GWA-6 and GWA-12B, just south of the Site (CEC 2022). Horizontal delineation of molybdenum was completed using a groundwater flow and reactive transport model (transport model; Anchor QEA 2021a; Figure 6), which was submitted to GA EPD on November 19, 2021. Based on the transport model, molybdenum is horizontally delineated to below the GWPS a short distance south of the northern boundary of SRIL. The transport model has been submitted to GA EPD in its entirety (Anchor QEA 2021a) and is only summarized herein. A neighbor notification was submitted to Republic Services, Inc., on September 25, 2020, notifying it of these arsenic and molybdenum detections.

Details regarding current statistical analysis, nature, and extent are provided in Sections 4 and 5, respectively, of the *2022 Semiannual Groundwater Monitoring and Corrective Action Report* (ACC 2023).

1.2.4 Transport Model

In support of the previously submitted ACM Report (Anchor QEA 2020), a transport model was developed and submitted to GA EPD for the purposes of off-site delineation of molybdenum concentrations in groundwater south of the Site (Anchor QEA 2021a).

The findings from the transport modeling showed molybdenum concentrations in groundwater above the Site GWPS that originate from the Site have likely migrated a short distance beneath but not reached the southern boundary of SRIL (Anchor QEA 2021a). An isoconcentration contour map depicting simulated molybdenum concentrations exceeding the GWPS (0.1 mg/L) after 41 years of migration (i.e., 1980 to 2021) is presented in Figure 6. This figure depicts the overall extent of simulated concentrations exceeding the GWPS based on the four scenarios included in the sensitivity analysis, which provides a conservative estimate of the overall extent of current impacts based on the data available for this transport model. The simulated concentrations shown in Figure 6 overestimate the extent of molybdenum to the southeast, as it is delineated by SRIL upgradient well GWA-12B.

Additional details on the groundwater model are presented in the *Transport Modeling Report* (Anchor QEA 2021a).

1.3 Well Survey Update

As requested by GA EPD, the potable well survey within a 2-mile radius of the Site consisting of reviewing federal, state, and county records, and online sources was updated. No new wells were identified in the 2023 survey. The potable well survey is attached in Appendix C.

2 Summary of Work Completed

A draft geochemical CSM report has been prepared to support the remedy selection efforts being completed at the Site. The purpose of the geochemical CSM report is to document Site geochemical conditions for arsenic and molybdenum. This report integrates data previously submitted to GA EPD as part of routine semiannual remedy selection and design progress reports. The geochemical CSM is currently under review and will be submitted with the draft remedy selection report.

6

3 Summary of Results

There are no new field or analytical laboratory results to discuss during this progress reporting period.

4 Updated Conceptual Site Model

The updated CSM discussed in the February 2022 Semiannual Remedy Selection and Design Progress Report (Anchor QEA 2022a) noted that the identified hydrogeological units at the Site consist of four units comprising the near-surface aquifer system. They have been identified as follows:

- Upper Sands and Topsoil Unit—Variably Saturated Zone: silty, fine sand
- Unit 1—Uppermost Aquifer: silty, fine sand
- Unit 2—Low Permeability Zone: interbedded sand, silt, and clay
- Unit 3—Lower Sand Aquifer: silty and/or clayey fine to medium sand

Unit 2 is absent in some areas of the Site, such as along its southern and southeastern parts. The unit, where present, acts as a semi-confining unit, impeding downward migration to Unit 3 and creating perched water within Unit 1. Where Unit 2 is absent, however, hydraulic communication does exist between Units 1 and 3. Two cross sections presented in the *Transport Modeling Report* and *Semiannual Remedy Selection and Design Progress Report* (Anchor QEA 2021a, 2021b) are included in Figures 7 and 8. Detailed descriptions of these units are provided in the ACM Report and *Transport Modeling Report* (Anchor QEA 2020, 2021a).

The following bullets summarize the current understanding of the CSM within the context of selecting an appropriate groundwater corrective measure for the Site:

- As discussed in Sections 1.2.3 and 1.2.4, horizontal and vertical delineation at the Site is complete.
 - Arsenic and molybdenum are vertically delineated by on-site monitoring wells.
 - Arsenic is horizontally delineated by upgradient SRIL wells GWA-6 and GWA-12B, just south of the Site (CEC 2022).
 - Molybdenum is horizontally delineated to below the GWPS north of the southern boundary of SRIL by the transport model.
- The soil characterization data indicate iron oxides are most relevant for arsenic and molybdenum fate and transport (Anchor QEA 2022b).
 - Iron oxides are more abundant than aluminum oxides in site soils, and arsenic and molybdenum are adsorbed more strongly by iron oxides than by aluminum oxides.
 - Clay minerals are not abundant in Site soils (as indicated by low cation exchange capacity) and, therefore, do not play a significant role in attenuating arsenic and molybdenum fate and transport at the Site.
 - The lower iron oxide content of Unit 1 soil samples is consistent with leaching by groundwater impacted by Clifton Landfill leachate, which likely released arsenic and molybdenum to Site groundwater. The higher iron oxide content and absence of GWPS exceedances in Unit 3 indicate these impacts are limited to Unit 1 groundwater.

_	The higher aluminum oxide content in Unit 1 soil samples is also consistent with enhanced weathering of primary aluminosilicate minerals by organic acids that would be present in landfill leachate.

5 Updated Evaluation of Corrective Measures

Closure of the Site and installation of a cover system in 2019 provide source control that reduces the potential for migration of CCR constituents to groundwater. The corrective measures proposed in the ACM Report (Anchor QEA 2020) were further evaluated based on site-specific conditions to address SSLs in groundwater at the Site. Each individual corrective measure was evaluated relative to criteria specified in 40 CFR 257.96(c) and 257.97(b).

A comparative evaluation and feasibility assessment of the corrective measures is provided in Table 1, which includes a brief overview of each corrective measure as follows:

- Geochemical approaches
- Hydraulic containment (pump-and-treat)
- ISS
- MNA
- PRB walls
- Phytoremediation
- Subsurface vertical barrier walls

Detailed descriptions of these corrective measures are provided in the July 2021 *Semiannual Remedy Selection and Design Progress Report* (Anchor QEA 2021b).

5.1 Corrective Measures Retained

The following corrective measures are considered feasible and retained for further analyses¹:

- Geochemical approaches (in situ injection)
 - Geochemical approaches involve modifying the subsurface geochemistry of the Site by injection of reagents to create a treatment zone and immobilize arsenic and molybdenum in situ.
 - Based on the results of the bench-scale treatability results presented in the
 February 2022 progress report (Anchor QEA 2022a), the following specific geochemical approaches are retained for consideration as a corrective remedy:
 - Aeration with iron addition: effective in the removal of both arsenic and molybdenum
 - Chemical oxidation with permanganate: effective in the removal of both arsenic and molybdenum
- MNA

¹ Groundwater corrective actions for arsenic and molybdenum will likely not be effective until leachate from Clifton Landfill is controlled.

- Based on the MNA evaluation results presented in the February 2022 progress report (Anchor QEA 2022a), MNA continues to be retained as a potential corrective measure.
 - X-ray fluorescence results showed a correlation between arsenic and iron, and molybdenum and iron concentrations.
 - Geochemical stability results show Site groundwater Eh-pH conditions are likely controlled by an amorphous hydrous iron oxide [Fe(OH)₃(a)]. Iron oxides are, therefore, expected to be present and stable in Site soils in absence of impacts from Clifton Landfill leachate.
 - Soil extractions confirmed the ubiquitous presence of amorphous iron and aluminum oxides, which are strong sorbents for many metals and metalloids, including arsenic and molybdenum, in Site soils.
 - Column testing showed that, overall, Site soils attenuate arsenic and, in some cases, molybdenum.
- Phytoremediation
 - Phytoremediation could provide some hydraulic containment through targeted placement of TreeWells, which function like small pumping wells via transpiration.

5.2 Corrective Measures Not Retained

The following corrective measures are not recommended for further evaluation or implementation due to site-specific conditions:

- ISS, also known as deep soil mixing, is a method for solidifying soil or waste material, immobilizing constituents of interest in the solid matrix, and reducing leaching of the constituents to groundwater. ISS was not retained because this technology is less effective or not applicable to dilute concentrations of arsenic and molybdenum in groundwater beyond the facility boundary as compared to the other options evaluated.
- Hydraulic containment (pump-and-treat)
- PRB walls
- Subsurface vertical barrier walls, either stand-alone or in conjunction with PRB walls in a funnel-and-gate configuration

Detailed explanation of why the latter three of these corrective measures are no longer retained for consideration is provided in the July 2021 *Semiannual Remedy Selection and Design Progress Report* (Anchor QEA 2021b).

6 Planned Activities and Anticipated Schedule

Georgia Power proactively initiated adaptive site management as outlined in the ACM Report (Anchor QEA 2020) to support the remedial strategy and address potential changes in Site conditions as appropriate. The adaptive site management approach may be adjusted over the Site's life cycle as new Site information and technologies become available. Georgia Power will continue its data collection efforts as necessary to refine the CSM and further evaluate the feasibility of each corrective measure proposed in the ACM Report. The corrective measures that continue to be evaluated are presented in Section 5 and explained in Table 1. Once sufficient data are available to make technically sound decisions regarding the ability to implement one or more specific corrective measures, appropriate steps will be taken to design and implement a remedy for the Site.

Specific activities to be performed during the next semiannual reporting period include the following:

- Analyze and evaluate trends for effectiveness of source control and plume stability.
- Collect additional geochemical data to refine the CSM.
- Evaluate concentration versus time graphs to determine if natural attenuation is already occurring through time. If data are sufficient, estimate time to achieve GWPSs from the graphs.

Georgia Power will continue to prepare semiannual remedy selection progress reports to document groundwater conditions, results associated with additional data gathering, and the progress in selecting and designing the remedy in accordance with 40 CFR 257.97(a). Georgia Power will include future semiannual remedy selection progress reports in routine groundwater monitoring and corrective action reports. Georgia Power will submit a draft remedy selection report, under separate cover, with the next routine groundwater monitoring and corrective action report. Recordkeeping, notifications, and publicly accessible website requirements for the semiannual remedy selection progress reports will be provided in accordance with 40 CFR 257.105(h)(12), 257.106(h)(9), and 257.107(h)(9), respectively.

7 References

- ACC (Atlantic Coast Consulting, Inc.), 2019a. Assessment of Corrective Measures 2019 Addendum.

 Grumman Road Private Industrial Landfill. Prepared for Georgia Power Company.

 October 2019.
- ACC, 2019b. Supplemental 2019 First Semiannual Groundwater Monitoring Report. Grumman Road Private Industrial Landfill. Prepared for Georgia Power Company. August 2019.
- ACC, 2023. 2022 Semiannual Groundwater Monitoring and Corrective Action Report. Grumman Road Private Industrial Landfill. Prepared for Georgia Power Company. February 2023.
- Anchor QEA (Anchor QEA, LLC), 2019. *Arsenic Mobilization Laboratory Evaluation*. Grumman Road Private Industrial Landfill. Prepared for Georgia Power Company. September 2019.
- Anchor QEA, 2020. Assessment of Corrective Measures. Grumman Road Private Industrial Landfill.

 Prepared for Georgia Power Company. December 2020.
- Anchor QEA, 2021a. *Transport Modeling Report*. Grumman Road Private Industrial Landfill. Prepared for Georgia Power Company. November 2021.
- Anchor QEA, 2021b. Semiannual Remedy Selection and Design Progress Report. Grumman Road Private Industrial Landfill. Prepared for Georgia Power Company. July 2021.
- Anchor QEA, 2022a. Semiannual Remedy Selection and Design Progress Report. Grumman Road Private Industrial Landfill. Prepared for Georgia Power Company. February 2022.
- Anchor QEA, 2022b. Semiannual Remedy Selection and Design Progress Report. Grumman Road Private Industrial Landfill. Prepared for Georgia Power Company. July 2022.
- Brantley Engineering (Brantley Engineering, LLC), 2017. Closure Certification Report, Grumman Road

 Ash Landfill Parcels B2 & B3, Closure Final Cover Construction. Georgia Power Grumman Road

 Landfill. Prepared for Southern Company Services Engineering and Construction Services.

 November 2017.
- Brantley Engineering, 2019. Closure Construction Certification Report. Grumman Road Ash Landfill Parcel A' (Prime), Closure Final Cover Construction. Georgia Power Company Grumman Road Landfill. Prepared for Southern Company Services Engineering and Construction Services. November 2019.
- CEC (Civil & Environmental Consultants, Inc.), 2022. Letter to: Nicholas Webber, Republic Services.

 Regarding: 2nd 2022 Semiannual Groundwater Statistical Analysis Report. Savannah Regional Industrial Landfill. November 17, 2022.

SCG (Southern Company Generation, Earth Science and Environmental Engineering Technical Services), 2007. *Cells A & B1 Certification for Closure*. Plant Kraft Grumman Road Ash Monofill Industrial Solid Waste Landfill Permit No. 025-061D (L) (I). Prepared for Georgia Power Company. January 2007.

Table

Table 1
Evaluation of Remedial Technologies

	Regulatory Citation for Criteria	40 CFR 257.96(C)(1)					
Corrective Measure	Description	Performance	Reliability	Ease or Difficulty of Implementation	Potential Impacts of Remedy		
Geochemical approaches (oxidation by physical or chemical means; adsorption to or coprecipitation with iron compounds via injection of treatment chemicals)	Geochemical approaches involve modifying the geochemistry of the Site to immobilize arsenic and molybdenum on solids created by injection. Depending upon the objective and Site geochemical conditions, immobilization may be achieved by oxygenation or injection of the appropriate treatment solutions. Oxygenation may be achieved chemically by injecting oxidants, placing slow-release oxidizing chemical candles in wells, or by physical methods such as air sparging or installation of Waterloo Emitters in wells. Other forms of geochemical approaches (also known as enhanced attenuation) include the injection of treatment solutions to immobilize constituents by precipitation/coprecipitation and/or sorption. The treatment solutions would likely contain iron compounds to create ferrihydrite to sorb arsenic and molybdenum, or to precipitate sulfide minerals, which incorporate arsenic and molybdenum into their mineral structures.	The performance of this remedy is considered medium. Leachate from the Clifton Landfill would need to be controlled for both oxidation and adsorption/coprecipitation to be effective. If not controlled, the reducing characteristics of Clifton Landfill leachate would produce reductive dissolution of iron or other natural or introduced metal oxides, which would release arsenic and molybdenum bound to those oxides.	The reliability of this remedy is considered medium. Multiple injections will likely be required for chemical-based approaches. For physical approaches (such as sparging wells and emitters), mechanical components would need to be maintained.	Implementation of this remedy would be easy to moderate. For chemical approaches, laboratory treatability studies would need to be scaled up to field conditions, injection wells installed, or a system using direct push technology designed. For physical approaches, mechanical components would need to be designed, installed, and maintained.	The unintended release of constituents currently bound to soil is possible if inappropriate treatment chemicals or oxidizing agents are used. Also, treatment chemicals need to be tested for Appendix IV impurities before injection to avoid accidental introduction.		
Hydraulic containment (pumpand-treat)	Hydraulic containment uses pumping wells (and sometimes injection wells, trenches, and/or galleries) to contain and prevent the expansion of impacted groundwater by creating a horizontal and vertical capture zone or a hydraulic barrier. If pumped, the water may be reused in beneficial applications or treated, discharged, or reinjected after treatment. Reinjection contributes to hydraulic containment by creating a hydraulic barrier of clean water. Hydraulic containment in various applications (including pump-and-treat) is applicable to arsenic and molybdenum because conventional and proven water treatment technologies are available for arsenic and molybdenum.	Hydraulic containment via pump-and-treat has been used for groundwater corrective action for decades. When the pump-and-treat system is online, the performance is considered high. Arsenic and molybdenum are readily treated, and if the system subsurface hydraulics are designed properly, the area of impact will stabilize or shrink.	Because the pump-and-treat system requires substantial operation and maintenance, reliability is considered medium. Pumps, piping, and the water treatment system must be maintained and will be offline occasionally for various reasons.	Hydraulic containment via pump-and-treat is difficult to implement due to design; installation of wells, pumps, and piping; and space constraints. An on-site water treatment plant would be required to accommodate the quantity and constituents in the pumped groundwater. Because the quantity of water requiring treatment cannot be determined without further study, the design parameters of the treatment system would also need to be verified through additional investigations.	Hydraulic containment via pumpand-treat will alter groundwater-flow hydraulics beneath and adjacent to the Site.		
In situ solidification/stabilization	ISS, also known as deep soil mixing, is a method for solidifying soil or waste material, immobilizing constituents of interest in the solid matrix, and reducing leaching of the constituents to groundwater. ISS both reduces permeability and chemically binds constituents of interest such as arsenic and molybdenum. Materials specific to the constituents of interest (e.g., ferrous sulfate or zero-valent iron for arsenic and molybdenum) may be added in small quantities to further reduce leaching of the constituents. In ISS, Portland cement and, sometimes, select chemical additives are mixed with soil or waste material using a bucket, large augers, or rotary methods. At the Site, ISS would be used as a source control measure to solidify/stabilize ash beneath the water table, thereby reducing leaching to groundwater. Due to the ISS application depths required at the Site, mixing by auger is likely the only viable application method.	Performance is considered high, as leaching of constituents can be greatly reduced in both laboratory treatability studies, and subsequent field applications. Site-specific performance would need to be assessed with laboratory treatability and, possibly, a field pilot test.	Reliability is considered high because the stabilized block does not require maintenance and is essentially permanent.	Ease of implementation is considered moderate at the Site because mixing would need to be implemented at depth from the top or slopes of the ash landfill. Depending upon the method of application, a cement batch plant (and associated pumps) may need to be constructed at the Site.	ISS may cause a temporary spike of arsenic and, possibly, molybdenum in groundwater at the time of implementation. This spike is expected to dissipate, and groundwater arsenic and molybdenum concentrations are expected to fall below pre-implementation values with time.		

Table 1 Evaluation of Remedial Technologies

	Regulatory Citation for Criteria	40 CFR 257.96(C)(1)					
Corrective Measure	Description	Performance	Reliability	Ease or Difficulty of Implementation	Potential Impacts of Remedy		
MNA	MNA relies on natural attenuation processes (within the context of a carefully controlled and monitored site cleanup approach) to achieve site-specific remediation objectives within a time frame that is reasonable compared to that offered by other, more active, methods. For arsenic and molybdenum, the primary mechanisms of natural attenuation include sorption to iron compounds such as ferrihydrite or iron sulfide minerals, precipitation and coprecipitation with sparingly soluble sulfide minerals and other compounds, and physical processes such as dispersion (USEPA 2007a, 2007b; EPRI 2015). Under favorable conditions, these processes act without human intervention to reduce the mass, toxicity, mobility, volume, or concentration of contaminants in soil or groundwater.	The performance of MNA requires further investigation, especially related to the identification of attenuating mechanisms, aquifer capacity for attenuation, and time to achieve GWPS. The aquifer material at the Site contains significant silt and/or clay, which favors natural attenuation mechanisms such as sorption. However, leachate from the Clifton Landfill is likely mobilizing arsenic and, possibly, molybdenum from ash and natural soil, resulting in a continued source of those constituents to groundwater if not controlled. Therefore, MNA performance is considered medium to high if landfill leachate from Clifton Landfill is controlled.	Reliability of MNA will be relatively high because MNA requires almost no operation and maintenance.	Implementation of MNA at the Site will be relatively easy. Most of the wells for MNA are already in place, though a few additional wells may need to be installed to monitor progress in critical areas.	Potential impacts of the remedy will be negligible because MNA is non- intrusive and produces no effluents or emissions.		
PRB wall (containing sorptive media, oxygenation chemicals, or organic matter)	A PRB wall is the emplacement of chemically reactive materials in the subsurface to intercept impacted groundwater, provide a flow path through the reactive media, and capture or transform the constituents in groundwater to achieve GWPS downgradient of the PRB wall. PRB walls are an in situ technology that allows impacted water to flow through the media and provides a barrier to constituents, rather than to groundwater flow, thereby reducing constituents downgradient of the reactive barrier to compliance levels (Powell et al. 1998, 2002). PRB walls may be constructed as funnel-and-gate systems. In a PRB wall implementation, reactive media may be emplaced in a trench or mixed directly with the soil or aquifer media using augers or other mixing techniques. If emplaced in a trench, coarse sand is usually included to maintain permeability through the wall. Effective reactive media are commercially available for arsenic and molybdenum. Depending on the site conditions and the objective of the PRB wall, three types of media could be used: oxygenating chemicals, adsorptive media, or organic matter and chemicals to create sulfide minerals (i.e., a biowall).	When working effectively in suitable conditions, PRB walls can reduce constituents to GWPS downgradient of the walls. However, because of site-specific uncertainties associated with the reactive media and subsurface hydraulics, performance is considered medium to high.	Because the reactive media are expended, may clog through time, and will need to be replaced, reliability is considered medium.	Because it involves trenching or mixing with augers, and due to space constraints, ease of implementation is considered moderate to difficult.	Alteration of subsurface hydraulics (flow) may be a potential impact of this remedy.		
Phytoremediation	Phytoremediation uses trees or other plants to take up or immobilize constituents or achieve some level of hydraulic containment. Hyperaccumulating plants are available for arsenic and molybdenum, but the roots of those plants are too shallow to access impacted groundwater at the Site. Some level of hydraulic containment could be achieved at the Site using trees, including the engineered TreeWell system. Transpiration of groundwater causes the TreeWell to act like a pumping well. Trees can affect hydraulic gradients and groundwater flow by removal of water and thus can be used to create a partial barrier to groundwater flow. This process may be enhanced by planting the tree in a column of more permeable material (e.g., the TreeWell system), such that water preferentially flows toward the TreeWell. In addition, some arsenic and molybdenum may be immobilized within the root zone or incidentally taken up into the tree biomass.	The performance of TreeWells is considered medium because the trees may not transpire (pump) enough water to maintain hydraulic containment based on site-specific conditions.	The reliability of TreeWells is considered medium because the trees may not transpire (pump) as much during winter.	Implementation of hydraulic containment using trees will be relatively easy, primarily consisting of constructing the TreeWells and planting the trees.	None have been identified.		

Table 1 Evaluation of Remedial Technologies

	Regulatory Citation for Criteria	40 CFR 257.96(C)(1)					
Corrective Measure	Description	Performance	Reliability	Ease or Difficulty of Implementation	Potential Impacts of Remedy		
Subsurface vertical barrier walls (if/as needed as a component of PRB walls or, possibly, hydraulic containment)	Subsurface vertical barrier walls can be used to stop the flow of groundwater and any constituents that groundwater contains, including arsenic and molybdenum. Though effective, vertical barrier walls may serve as groundwater dams such that groundwater rises to the surface or flows around the ends of the wall. Subsurface barrier walls are not envisioned as standalone corrective measures at the Site. If they offer advantages, subsurface barrier walls could be a component of PRB walls in a funnel-and-gate configuration or as part of a hydraulic containment system to direct groundwater toward pumping wells.	Subsurface vertical barrier walls are a widely used and accepted technology with relatively high performance.	Subsurface vertical barrier walls are a widely used and accepted technology with relatively high reliability due to minimal need for maintenance or replacement.	Implementation at the Site is considered easy to moderate due to trenching or other emplacement methods.	Potential impacts of the remedy include alteration of subsurface hydraulics (flow) beneath and adjacent to the Site.		

	Regulatory Citation for Criteria	40 CFR 257.96(C)(2)	40 CFF	R 257.96(C)(3)		
Corrective Measure	Description	Time to Begin/Complete Remedy	Institutional Requirements	Other Environmental or Public Health Requirements	Relative Cost	Feasibility
Geochemical approaches (oxidation by physical or chemical means, and adsorption to or coprecipitation with iron compounds via injection of treatment chemicals)	Geochemical approaches involve modifying the geochemistry of the Site to immobilize arsenic and molybdenum on solids created by injection. Depending upon the objective and Site geochemical conditions, immobilization may be achieved by oxygenation or injection of the appropriate treatment solutions. Oxygenation may be achieved chemically by injecting oxidants, placing slow-release oxidizing chemical candles in wells, or by physical methods such as air sparging or installation of Waterloo Emitters in wells. Other forms of geochemical approaches (also known as enhanced attenuation) include the injection of treatment solutions to immobilize constituents by precipitation/coprecipitation and/or sorption. The treatment solutions would likely contain iron compounds to create ferrihydrite to sorb arsenic and molybdenum or to precipitate sulfide minerals, which incorporate arsenic and molybdenum into their mineral structures.	This remedy could be designed and implemented in 1 to 2 years. Once installed, the time required to achieve GWPS within the treatment area may be relatively quick but depends on the attenuation processes of each targeted constituent. The time for complete distribution of the injected materials throughout the treatment area is also variable.	An underground injection control permit may be required for injection of oxidizing agents or treatment chemicals.	Treatability studies, groundwater modeling, and monitoring may be required to demonstrate that unintended impacts (e.g., release of constituents) are not occurring and do not extend off site.	Low to medium due to injection infrastructure, oxidizing agents or treatment chemicals, and mechanical equipment for the physical oxidation techniques	The following are based on treatability studies: • Aeration with iron addition was effective for both arsenic and molybdenum (feasible). • Chemical oxidation using permanganate was effective for both arsenic and molybdenum (feasible), but persulfate or hydrogen peroxide were effective for arsenic only (not recommended). • Biogenic sulfide generation was effective for arsenic only, not molybdenum (not recommended).

Table 1
Evaluation of Remedial Technologies

	Regulatory Citation for Criteria	40 CFR 257.96(C)(2)	40 CFR	257.96(C)(3)		
Corrective Measure	Description	Time to Begin/Complete Remedy	Institutional Requirements	Other Environmental or Public Health Requirements	Relative Cost	Feasibility
Hydraulic containment (pumpand-treat)	Hydraulic containment uses pumping wells (and sometimes injection wells, trenches, and/or galleries) to contain and prevent the expansion of impacted groundwater by creating a horizontal and vertical capture zone or hydraulic barrier. If pumped, the water may be reused in beneficial applications or treated, discharged, or reinjected after treatment. Reinjection contributes to hydraulic containment by creating a hydraulic barrier of clean water. Hydraulic containment in various applications (including pump-and-treat) is applicable to arsenic and molybdenum because conventional and proven water treatment technologies are available for arsenic and molybdenum.	Pump-and-treat could probably be designed and installed within 1 to 2 years. Based on case histories, time to achieve GWPS is dependent on the desorption kinetics of arsenic and molybdenum from the aquifer solids and could take an extended period of time. If leachate coming from the Clifton Landfill is not controlled, time to achieve GWPS cannot be determined.	Regulatory requirements and institutional controls may be greater for pumpand-treat than some of the other technologies. For example, permits may be required for the withdrawal and reinjection (if used) of water. Discharge of treated water would likely require a National Pollutant Discharge Elimination System permit.	Aboveground treatment components may need to be present for an extended period of time, generating residuals requiring management and disposal.	High	Hydraulic containment is not recommended for the following reasons: geometry of the Site may not be amenable to effective hydraulic containment due to possible spatial constraints for system installation and the conditions created by adjacent landfills; without control of Clifton Landfill leachate, the Site hydraulic control system may essentially be a treatment system for Clifton Landfill leachate and would operate indefinitely until the landfill leachate is controlled; required installation of a water treatment system and identification of a discharge point for treated water; high operation and maintenance requirements; long time required to achieve GWPS, likely beyond the post-closure period of 30 years; and excessive use of resources (such as electricity and water treatment chemicals), making it one of the least sustainable corrective action options (EPRI 2015).
In situ solidification/stabilization	ISS is achieved by creating reactive zones in the subsurface through chemical injection to intercept constituents and permanently immobilize or degrade them into harmless end products. ISS is the process by which constituent mobility in a solid matrix is decreased through physical and/or chemical means. Grout or other chemical additives are mixed with aquifer materials to reduce permeability. The resulting lower aquifer permeability limits the flow of impacted groundwater.	ISS could be designed and implemented in 1 to 2 years. Laboratory treatability and, possibly, a field pilot test would need to be performed. Time to achieve GWPS is uncertain and may be dependent on natural attenuation processes.	No institutional requirements are expected.	There would be a small disruption of industrial area during construction. Following installation, the remedy is passive.	Medium, due to mobilization and use of large equipment and, possibly, a cement batch plant and associated equipment such as pumps	Not recommended ISS is not recommended because this technology is less effective for or not applicable to dilute concentrations of arsenic and molybdenum in groundwater beyond the facility boundary as compared to the other options evaluated.

Table 1 Evaluation of Remedial Technologies

	Regulatory Citation for Criteria	40 CFR 257.96(C)(2)	40 (40 CFR 257.96(C)(3)			
Corrective Measure	Description	Time to Begin/Complete Remedy	Institutional Requirements	Other Environmental or Public Health Requirements	Relative Cost	Feasibility	
MNA	MNA relies on natural attenuation processes (within the context of a carefully controlled and monitored site cleanup approach) to achieve site-specific remediation objectives within a time frame that is reasonable compared to that offered by other, more active methods. For arsenic and molybdenum, the primary mechanisms of natural attenuation include sorption to iron compounds such as ferrihydrite or iron sulfide minerals, precipitation and coprecipitation with sparingly soluble sulfide minerals and other compounds, and physical processes such as dispersion (USEPA 1999, 2007a, 2007b; EPRI 2015). Under favorable conditions, these processes act without human intervention to reduce the mass, toxicity, mobility, volume, or concentration of contaminants in soil or groundwater.	Implementation of MNA would require some geochemical studies and, possibly, the installation of some new wells. Because MNA does not require design and construction of infrastructure other than new monitoring wells, it can be initiated within 6 months to a year and fully implemented in 18 to 24 months. The longer time period is because initial geochemical studies would need to be performed to support USEPA's phases, and at least 1 year of groundwater monitoring data is recommended before implementation of MNA is considered complete. The additional data would be needed for statistical analysis and to determine if additional monitoring wells need to be installed. MNA is expected to be successful within a reasonable time frame if Clifton Landfill leachate is controlled.	None identified	Little to no physical disruption to remediation areas and no adverse construction-related impacts are expected on the surrounding industrial area. Following installation, the remedy is passive and does not require external energy.	Low	Based on MNA Evaluation to date: Feasible	
PRB wall (containing sorptive media, oxygenation chemicals, or organic matter)	A PRB wall is the emplacement of chemically reactive materials in the subsurface to intercept impacted groundwater, provide a flow path through the reactive media, and capture or transform the constituents in groundwater to achieve GWPS downgradient of the PRB wall. PRB walls are an in situ technology that allows impacted water to flow through the media and provides a barrier to constituents, rather than to groundwater flow, thereby reducing constituents downgradient of the reactive barrier to compliance levels (Powell et al. 1998, 2002). PRB walls may be constructed as funnel-and-gate systems. In a PRB wall implementation, reactive media may be emplaced in a trench or mixed directly with the soil or aquifer media using augers or other mixing techniques. If emplaced in a trench, coarse sand is usually included to maintain permeability through the wall. Effective reactive media are commercially available for arsenic and molybdenum. Depending on the site conditions and the objective of the PRB wall, three types of media could be used: oxygenating chemicals, adsorptive media, or organic matter and chemicals to create sulfide minerals (i.e., a biowall).	Considering the need for laboratory treatability studies on the reactive media, analysis of the subsurface hydraulics, and the relatively small area of emplacement, time to implement the remedy is estimated to be 1 to 2 years. Once installed, the time to achieve GWPS immediately downgradient of the PRB wall is anticipated to be relatively quick. Time to achieve GWPS more distant from the PRB wall would be dependent on natural attenuation processes.	None identified	There would be a small disruption of industrial area during construction. Following installation, the remedy is passive. If reactive media are not selected carefully through laboratory treatability studies, groundwater geochemistry could be altered (possibly resulting in unintended releases of constituents downgradient of the wall).	Medium	Not recommended This is not recommended due to a lack of a continuous, low-permeability confining layer to tie the PRB wall into at depths above the maximum depth investigated (approximately 70 feet bgs), periodic replacement of the reactive media as the media becomes spent or clogged, and inability to address previously impacted groundwater downgradient of wall installation.	

Table 1
Evaluation of Remedial Technologies

	Regulatory Citation for Criteria	40 CFR 257.96(C)(2)	40 CFR 257.96(C)(3)			
Corrective Measure	Description	Time to Begin/Complete Remedy	Institutional Requirements	Other Environmental or Public Health Requirements	Relative Cost	Feasibility
Phytoremediation	Phytoremediation uses trees or other plants to take up or immobilize constituents or achieve some level of hydraulic containment. Hyperaccumulating plants are available for arsenic and molybdenum, but the roots of those plants are too shallow to access impacted groundwater at the Site. Some level of hydraulic containment could be achieved at the Site using trees, including the engineered TreeWell system. Trees can affect hydraulic gradients and groundwater flow by removal of water and thus can be used to create a partial barrier to groundwater flow. This process may be enhanced by planting the tree in a column of more permeable material (e.g., the TreeWell system), such that water preferentially flows toward the TreeWell. Transpiration of groundwater causes the TreeWell to act like a pumping well. In addition, some arsenic and molybdenum may be immobilized within the root zone or incidentally taken up into the tree biomass.	Phytoremediation could be designed and implemented in 6 to 12 months. Hydraulic containment is expected to occur in a reasonable time frame but needs to be calculated based on the number and transpiration rate of the TreeWells.	None identified	Little to no physical disruption to remediation areas and no adverse construction-related impacts are expected on the surrounding industrial area. Following installation, the remedy is passive and does not require external energy.	Low	Feasible
Subsurface vertical barrier walls (if/as needed as a component of PRB walls or, possibly, hydraulic containment)	Subsurface vertical barrier walls can be used to stop the flow of groundwater and any constituents that groundwater contains, including arsenic and molybdenum. Though effective, vertical barrier walls may serve as groundwater dams such that groundwater rises to the surface or flows around the ends of the wall. Subsurface barrier walls are not envisioned as standalone corrective measures at the Site. If they offer advantages, subsurface barrier walls could be a component of PRB walls in a funnel-and-gate configuration or as part of a hydraulic containment system to direct groundwater toward pumping wells.	Time to implement the remedy (design and construct the wall) could be 1 to 2 years. As a component of PRB walls in a funnel-and-gate configuration or as part of a hydraulic containment system, time to achieve GWPS would be dependent on the other corrective measures.	None identified	There would be some disruption of industrial area during construction. Following installation, the remedy is passive.	Medium	Not Recommended This is not recommended due to being contingent on companion technology; see PRB wall implementation discussion above. Also, as with a PRB wall, there is no continuous, low-permeability confining layer to tie into at depths above the maximum depth investigated (approximately 70 feet bgs).

Notes

EPRI (Electric Power Research Institute), 2015. Monitored Natural Attenuation for Inorganic Constituents in Coal Combustion Residuals. 3002006285. December 2015.

Powell, R.M., R.W. Puls, D. Blowes, J. Vogan, R.W. Gillham, P.D. Powell, D. Schultz, R. Landis, and T. Sivavec, 1998. Permeable Reactive Barrier Technologies for Contaminant Remediation. EPA/600/R-98-125.

Powell, R.M., P.D. Powell, and R.W. Puls, 2002. Economic Analysis of the Implementation of Permeable Reactive Barriers for Remediation of Contaminated Ground. EPA/600/R-02/034. June 2002.

USEPA, 1999. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites. EPA/OSWER No. 9200.4-17P. Washington, DC: Office of Solid Waste and Emergency Response.

USEPA, 2007a. Monitored Natural Attenuation of Inorganic Contaminants in Ground Water Volume 1 – Technical Basis for Assessment. EPA/600/R-07/139. October 2007.

USEPA, 2007b. Monitored Natural Attenuation of Inorganic Contaminants in Ground Water Volume 1 – Technical Basis for Assessment. EPA/600/R-07/139. October 2007.

USEPA, 2007b. Monitored Natural Attenuation of Inorganic Contaminants in Ground Water Volume 2 – Assessment for Non-Radionuclides Including Arsenic, Cadmium, Copper, Lead, Nickel, Nitrate, Perchlorate, and Selenium. EPA/600/R-07/140. October 2007.

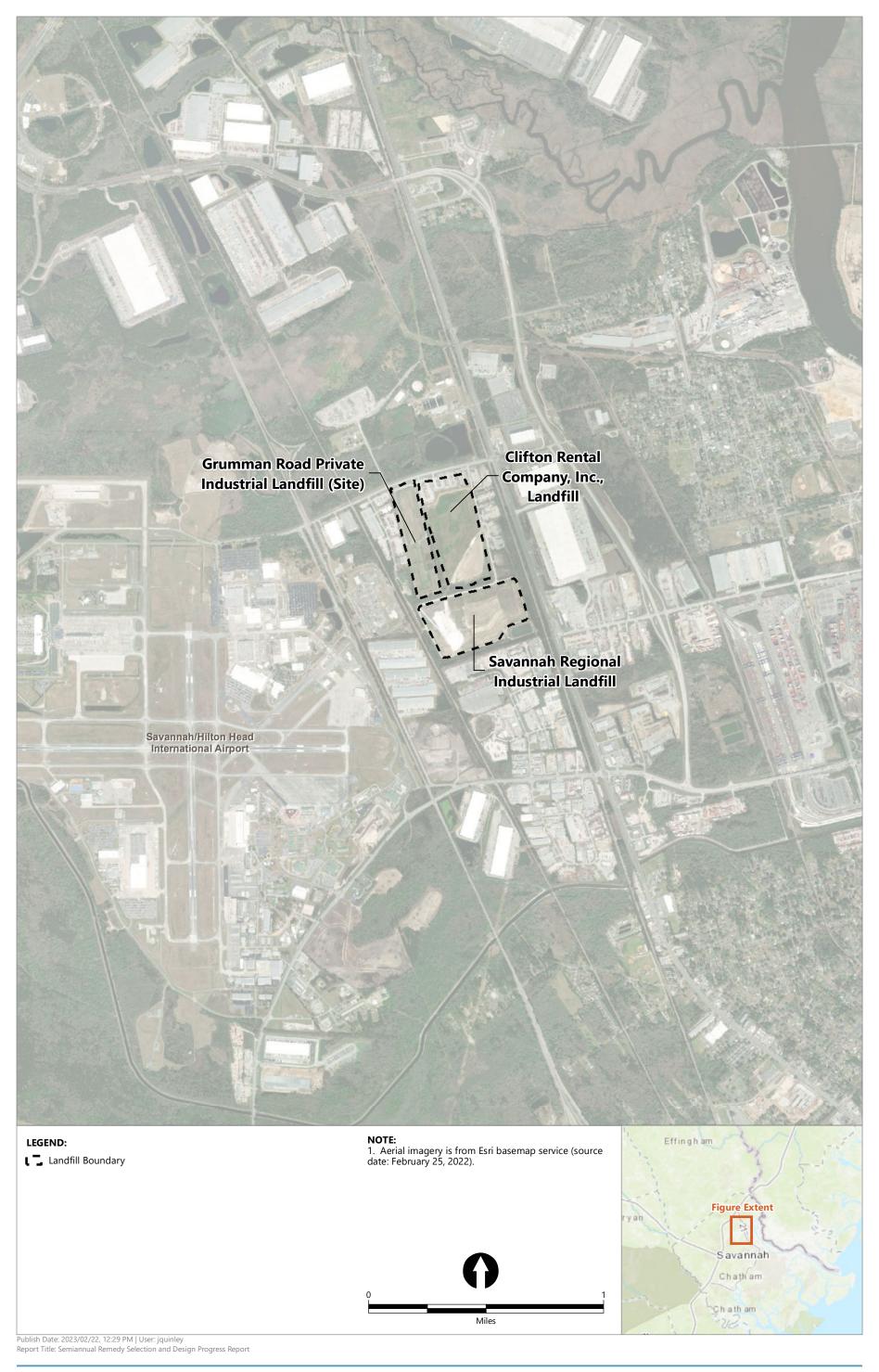
bgs: below ground surface

CFR: Code of Federal Regulations

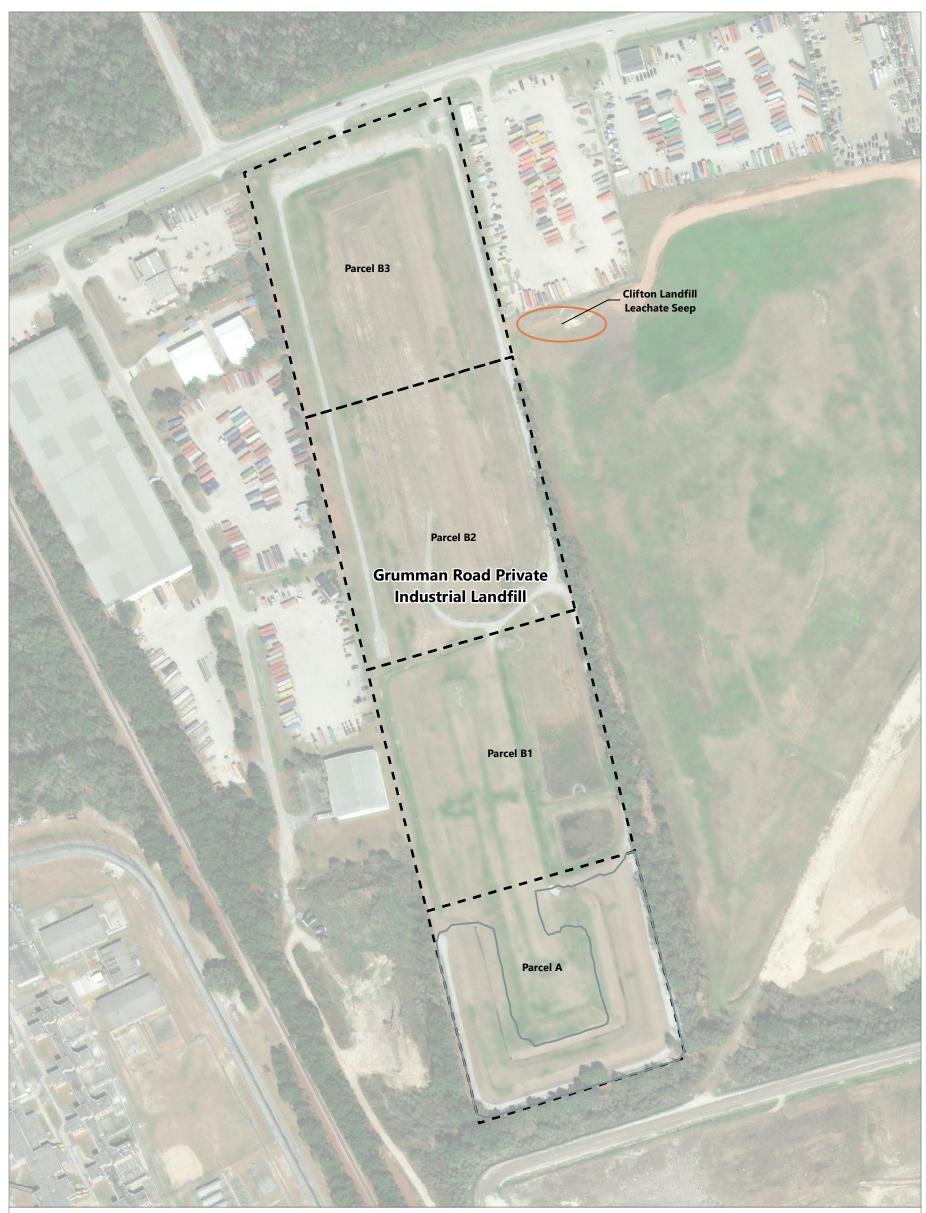
Clifton Landfill: Clifton Rental Company, Inc., Landfill (closed)

GWPS: groundwater protection standard

ISS: in situ stabilization/solidification


MNA: monitored natural attenuation

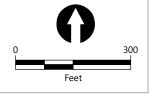
PRB: permeable reactive barrier


Site: Grumman Road Private Industrial Landfill

USEPA: U.S. Environmental Protection Agency

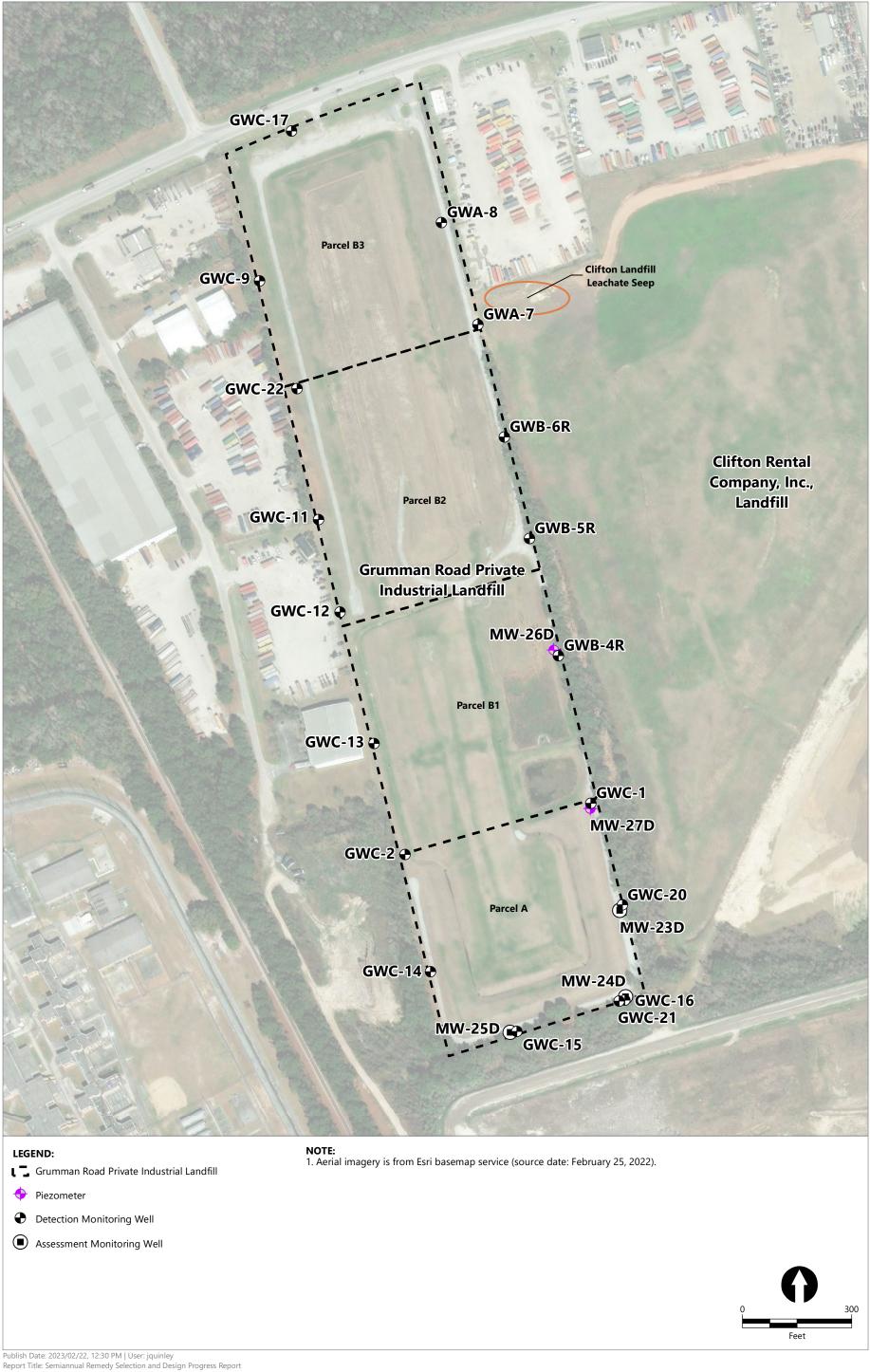
Figures

LEGEND:

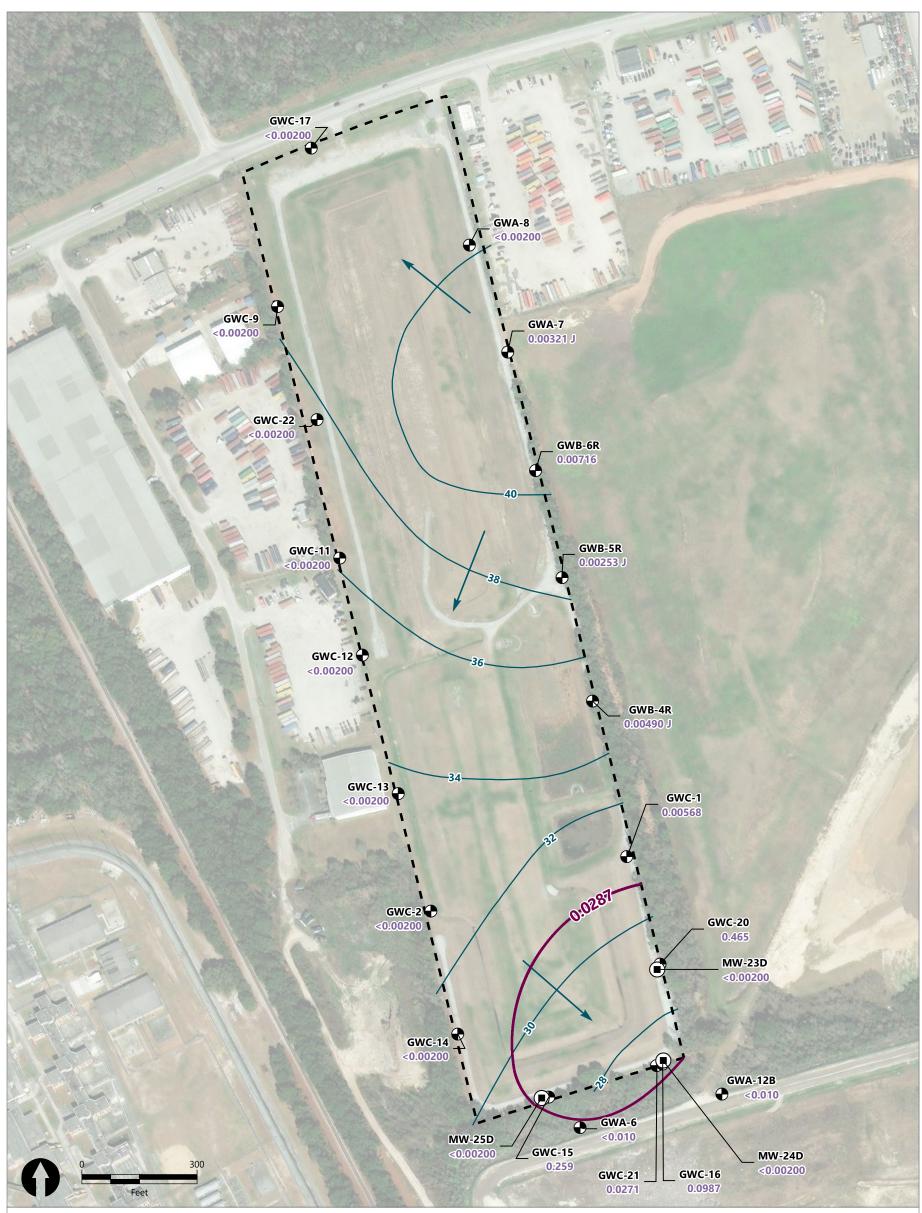

■ Site Parcel Boundary

Parcel A' Final Cover Limits

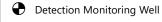
NOTES:1. Aerial imagery is from Esri basemap service (source date: February 25, 2022).
2. Parcel A' boundary is taken from the Plant Kraft Grumman Road Landfill Final Cover Asbuilt (Brantley Engineering 2019).

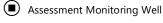

REFERENCE:

Brantley Engineering, 2019. Closure Construction Certification Report. Grumman Road Ash Landfill Parcel A' (Prime), Closure Final Cover Construction. Georgia Power Company Grumman Road Landfill. Prepared for Southern Company Services Engineering and Construction Services. November 2019.



Publish Date: 2023/02/22, 12:30 PM | User: jquinley Report Title: Semiannual Remedy Selection and Design Progress Report





LEGEND:

■ Site Boundary

- Groundwater Flow Direction
- Groundwater Contour (feet MSL)

Well ID

Arsenic Concentration

NOTES:

1. Arsenic and groundwater elevation data are from the August 2022 routine semiannual sampling event. Groundwater contours were provided by Atlantic Coast Consulting, Inc. 2022 Semiannual Groundwater Monitoring and Corrective Action Report.

Grumman Road Private Industrial Landfill. Prepared for Georgia Power Company. February 2023.

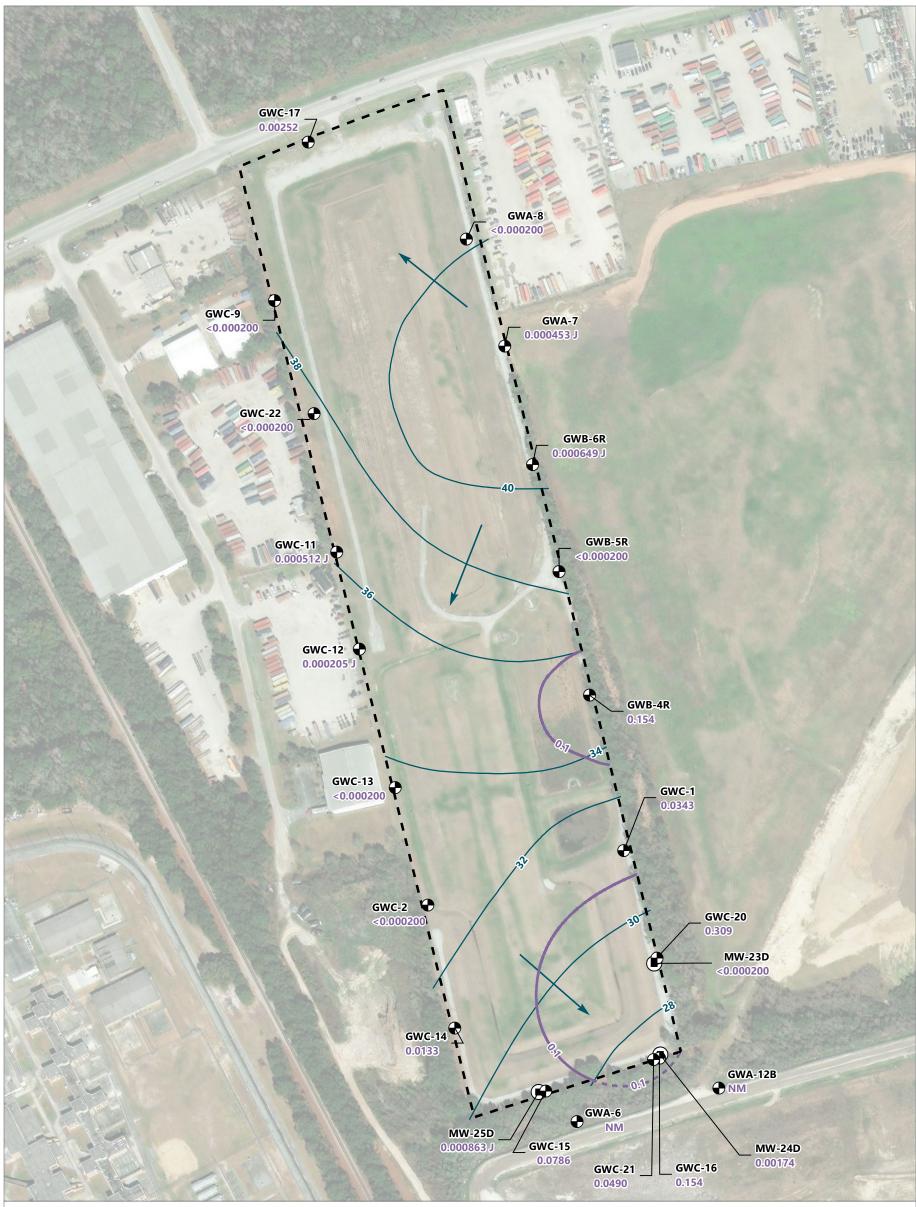
2. Savannah Regional Industrial Landfill arsenic data (wells GWA-6 and GWA-12B) are from the August 2022 semiannual sampling event.

3. Concentrations are reported in mg/L.

4. Site background concentration for arsenic is 0.0287 mg/L and is the site-specific groundwater protection standard.

5. The groundwater protection standard was calculated wing data through the August campling ovent.

- 5. The groundwater protection standard was calculated using data through the August sampling event.
- 6. Groundwater elevations are in feet MSL.
- 7. MW-23D, MW-24D, and MW-25D were not used to create the isocontour. 8. Aerial imagery is from Esri basemap service (source date: February 25, 2022).


- <: Indicates the substance was not detected above the relevant laboratory method detection limit.

 J: Indicates the substance was detected at such low levels that the precision of the laboratory instruments could not produce a reliable value. Therefore, the value displayed value is qualified by the laboratory as an estimated number. mg/L: milligrams per liter

MSL: mean sea level


Publish Date: 2023/02/22, 12:30 PM | User: jquinley Report Title: Semiannual Remedy Selection and Design Progress Report

LEGEND:

Site Boundary

- Assessment Monitoring Well
- Molybdenum Isoconcentration Contour
- Projected Molybdenum Isoconcentration Contour
- Groundwater Flow Direction
- Groundwater Contour (feet MSL)

Molybdenum Concentration

- NOTES:

 1. Molybdenum and groundwater elevation data are from the August 2022 sampling event. Groundwater contours were provided by Atlantic Coast Consulting, Inc. 2022 Semiannual Groundwater Monitoring and Corrective Action Report. Grumman Road Private Industrial Landfill. Prepared for Georgia Power Company. February 2023.

 2. Concentrations are reported in mg/L.

 3. The groundwater protection standard for molybdenum is 0.1 mg/L.

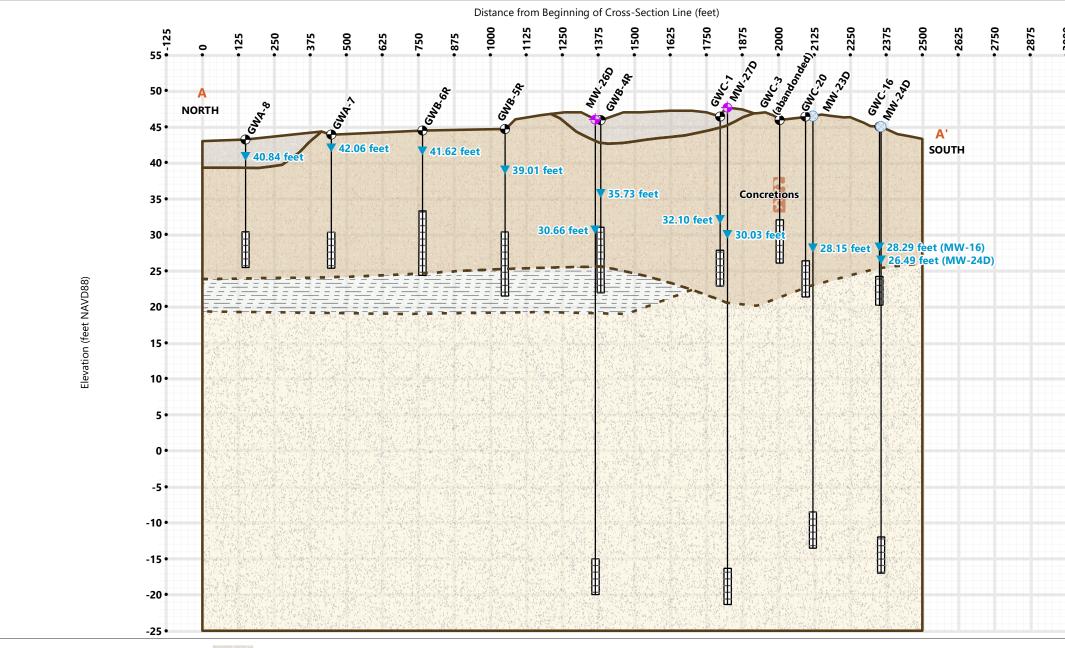
- 4. Dashed lines indicate projected molybdenum isoconcentration contours. 5. MW-23D, MW-24D, and MW-25D were not used to create the isocontour.
- 6. The contour lines are extended to the south based on the most recent available data from two nearby Savannah Regional
- Industrial Landfill wells, GWA-6 and GWA-12B (August 2020).

 7. Aerial imagery is from Esri basemap service (source date: February 25, 2022).
- <: Indicates the substance was not detected above the relevant laboratory method detection limit.

 J: Indicates the substance was detected at such low levels that the precision of the laboratory instruments could not produce a reliable value. Therefore, the value displayed is quialified by the laboratory as an estimated number. mg/L: milligrams per liter

MSL: mean sea level NM: not measured

Publish Date: 2023/02/22, 12:30 PM | User: jquinley Report Title: Semiannual Remedy Selection and Design Progress Report





LEGEND:

Detection Monitoring Well

Assessment Monitoring Well

Piezometer

— Well Depth Below Ground Surface

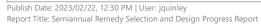
Measured Groundwater Elevation

Plan View Cross Section

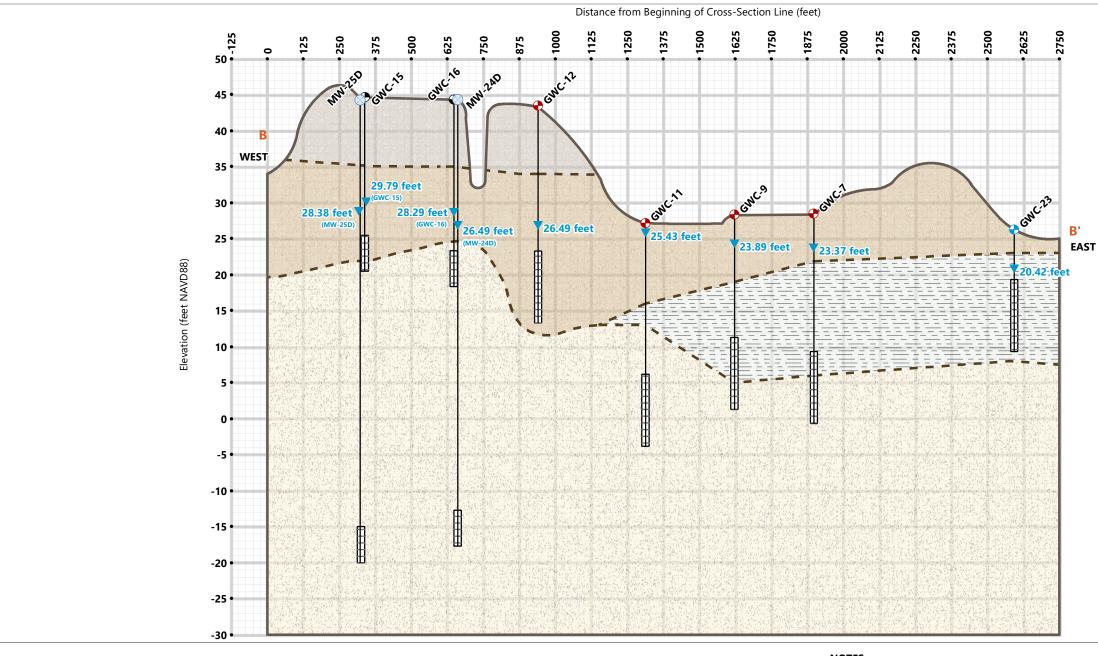
Upper Sands and Topsoil: tan to brown or black, silty fine sand with occasional organic matter

Unit 1: Uppermost Water-Bearing Zone: gray, tan, yellow, orange, and/or brown, silty fine sand with occasional opaque minerals and orange-brown concretions

Unit 2: Low Permeability Zone: olive gray to light gray, very silty fine sands, clayey sands, and sandy silt


Unit 3: Lower Sand Water Bearing Zone: light yellowish brown to light or olive gray, and silty to clayey fine to coarse sands

- 1. Cross section redrawn from figures provided in Assessment of Corrective Measures (Anchor QEA 2020).
- 2. Stratigraphic layers were correlated using a combination of boring data and gamma logs.


 3. Aerial imagery is from Esri basemap service (source date: February 21, 2021).
- 4. Measured groundwater elevation data for Grumman Road landfill are from the March 8, 2021, gauging event. 5. Vertical exaggeration is 25x.

NAVD88: North American Vertical Datum of 1988

LEGEND:

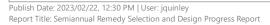
- Clifton Rental Company, Inc. Landfill
- Grumman Road Private Industrial Landfill
- Savannah Regional Industrial Landfill
- Assessment Monitoring Well
- ▼ Approximate Groundwater Elevation
- Well Depth Below Ground Surface
- Plan View Cross Section
- Monitoring Well Screened Interval

Upper Sands and Topsoil: tan to brown or black, silty fine sand with occasional organic matter

Unit 1: Uppermost Water-Bearing Zone: gray, tan, yellow, orange, and/or brown, silty fine sand with occasional opaque minerals and orange-brown concretions

Unit 2: Low Permeability Zone: olive gray to light gray, very silty fine sands, clayey sands, and sandy silt

Unit 3: Lower Sand Water Bearing Zone: light yellowish brown to light or olive gray, and silty to clayey fine to coarse sands


- 1. Cross section redrawn from figures provided in Assessment of Corrective Measures (Anchor QEA 2020).
- 2. Stratigraphic layers were correlated using a combination of boring data and gamma logs.
- 3. Aerial imagery is from Esri basemap service (source date: February 21, 2021).

 4. Measured groundwater elevation data for Grumman Road landfill are from the March 8, 2021, gauging event.

 5. Vertical exaggeration is 25x.

NAVD88: North American Vertical Datum of 1988

Appendix A Certificate of Authorization

State Board of Registration for Professional Engineers and Land Surveyors

LICENSE NO.

PEF006751

Anchor QEA, LLC

10320 Little Patuxent Parkway Suite 1140 Columbia MD 21044

1776 Engineer Firm

EXP DATE - 06/30/2024 Status: Active Issue Date: 06/18/2015

A pocket-sized license card is below. Above is an enlarged copy of your pocket card.

Please make note of the expiration date on your license. It is your responsibility to renew your license before it expires. Please notify the Board if you have a change of address.

Wall certificates suitable for framing are available at cost, see board fee schedule. To order a wall certificate, please order from the web site – www.sos.ga.gov/plb.

Please refer to Board Rules for any continuing education requirements your profession may require.

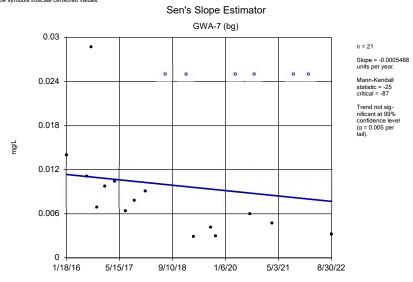
Georgia State Board of Professional Licensing 237 Coliseum Drive Macon GA 31217 Phone: (404) 424-9966

Phone: (404) 424-996 www.sos.ga.gov/plb

Anchor QEA, LLC 10320 Little Patuxent Parkway Suite 1140 Columbia MD 21044

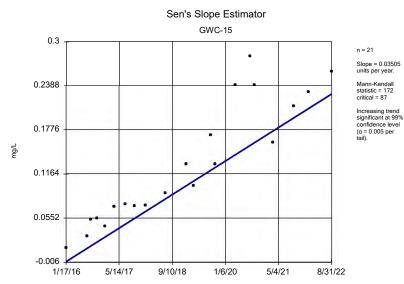
Georgia State Board of Registration for Professional Engineers and Land Surveyors

License No. PEF006751 Anchor QEA, LLC

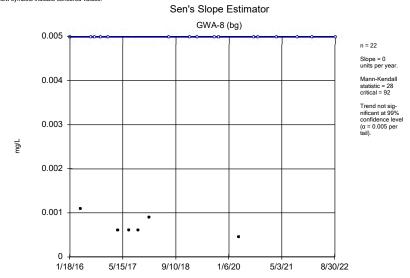

10320 Little Patuxent Parkway Suite 1140 Columbia MD 21044

Engineer Firm

EXP DATE - 06/30/2024 Status: Active Issue Date: 06/18/2015


Appendix B Trend Test Graphs

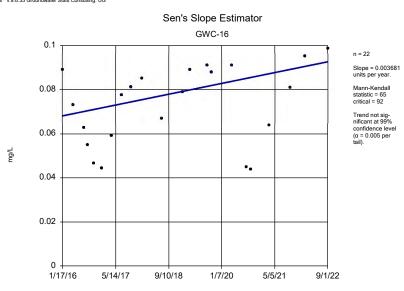
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Arsenic Analysis Run 11/5/2022 6:48 PM View: Appendix IV - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

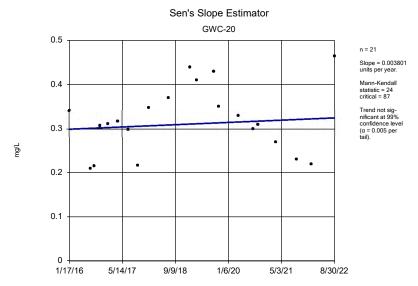
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Constituent: Arsenic Analysis Run 11/5/2022 6:48 PM View: Appendix IV - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

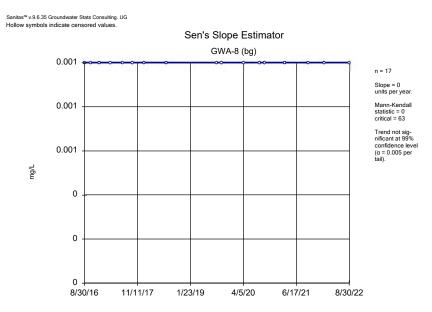
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



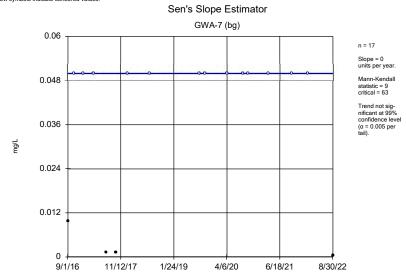
Constituent: Arsenic Analysis Run 11/5/2022 6:48 PM View: Appendix IV - Trend Tests


Data: Grumman Road Landfill

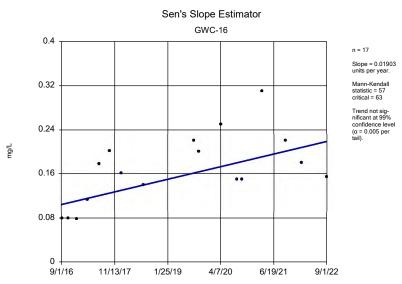
Grumman Road Landfill Client: Southern Company


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

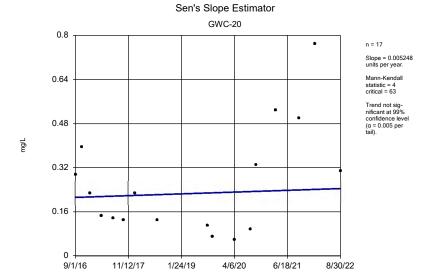
Constituent: Arsenic Analysis Run 11/5/2022 6:48 PM View: Appendix IV - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill



Constituent: Arsenic Analysis Run 11/5/2022 6:48 PM View: Appendix IV - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Constituent: Molybdenum Analysis Run 11/5/2022 6:48 PM View: Appendix IV - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Molybdenum Analysis Run 11/5/2022 6:48 PM View: Appendix IV - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Constituent: Molybdenum Analysis Run 11/5/2022 6:48 PM View: Appendix IV - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Constituent: Molybdenum Analysis Run 11/5/2022 6:48 PM View: Appendix IV - Trend Tests Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Appendix C Well Survey

Grumman Road Landfill

135 Gulfstream Road Savannah, GA 31408

Inquiry Number: 7215311.1s

January 03, 2023

The EDR GeoCheck® Report

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

TABLE OF CONTENTS

SECTION	PAGE
GEOCHECK ADDENDUM	
Physical Setting Source Addendum	A-1
Physical Setting Source Summary	A-2
Physical Setting Source Map.	A-8
Physical Setting Source Map Findings.	A-9
Physical Setting Source Records Searched	PSGR-1

Thank you for your business.
Please contact EDR at 1-800-352-0050
with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, LLC. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. This Report is provided on an "AS IS", "AS AVAILABLE" basis. NO WARRANTY EXPRESS OR IMPLIED IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, LLC AND ITS SUBSIDIARIES, AFFILIATES AND THIRD PARTY SUPPLIERS DISCLAIM ALL WARRANTIES, OF ANY KIND OR NATURE, EXPRESS OR IMPLIED, ARISING OUT OF OR RELATED TO THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES REGARDING ACCURACY, QUALITY, CORRECTNESS, COMPLETENESS, COMPREHENSIVENESS, SUITABILITY, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, MISAPPROPRIATION, OR OTHERWISE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, LLC OR ITS SUBSIDIARIES, AFFILIATES OR THIRD PARTY SUPPLIERS BE LIABLE TO ANYONE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES OF ANY TYPE OR KIND (INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS, LOSS OF USE, OR LOSS OF DATA) INFORMATION PROVIDED IN THIS REPORT. Any analyses, estimates, ratings, environmental risk levels, or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only an assessment performed by a qualified environmental professional can provide findings, opinions or conclusions regarding the environmental risk or conditions in, on or at any property.

Copyright 2023 by Environmental Data Resources, LLC. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, LLC, or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, LLC or its affiliates. All other trademarks used herein are the property of their respective owners.

GEOCHECK® - PHYSICAL SETTING SOURCE REPORT

TARGET PROPERTY ADDRESS

GRUMMAN ROAD LANDFILL 135 GULFSTREAM ROAD SAVANNAH, GA 31408

TARGET PROPERTY COORDINATES

Latitude (North): 32.142978 - 32⁸ '34.72" Longitude (West): 81.184041 - 81¹ 11' 2.55"

Universal Tranverse Mercator: Zone 17 UTM X (Meters): 482643.0 UTM Y (Meters): 3556110.5

Elevation: 41 ft. above sea level

USGS TOPOGRAPHIC MAP

Target Property Map: 32081-B2 PORT WENTWORTH, GA SC

Version Date: 1998

EDR's GeoCheck Physical Setting Source Addendum is provided to assist the environmental professional in forming an opinion about the impact of potential contaminant migration.

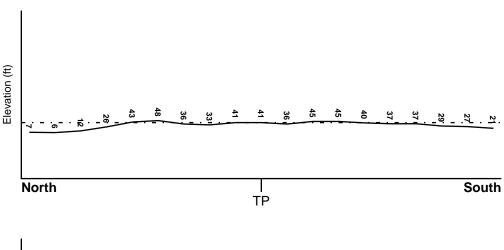
Assessment of the impact of contaminant migration generally has two principle investigative components:

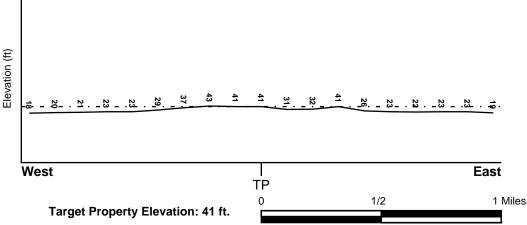
- 1. Groundwater flow direction, and
- 2. Groundwater flow velocity.

Groundwater flow direction may be impacted by surface topography, hydrology, hydrogeology, characteristics of the soil, and nearby wells. Groundwater flow velocity is generally impacted by the nature of the geologic strata.

GROUNDWATER FLOW DIRECTION INFORMATION

Groundwater flow direction for a particular site is best determined by a qualified environmental professional using site-specific well data. If such data is not reasonably ascertainable, it may be necessary to rely on other sources of information, such as surface topographic information, hydrologic information, hydrogeologic data collected on nearby properties, and regional groundwater flow information (from deep aquifers).


TOPOGRAPHIC INFORMATION


Surface topography may be indicative of the direction of surficial groundwater flow. This information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

TARGET PROPERTY TOPOGRAPHY

General Topographic Gradient: General NNE

SURROUNDING TOPOGRAPHY: ELEVATION PROFILES

Source: Topography has been determined from the USGS 7.5' Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified.

HYDROLOGIC INFORMATION

Surface water can act as a hydrologic barrier to groundwater flow. Such hydrologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

Refer to the Physical Setting Source Map following this summary for hydrologic information (major waterways and bodies of water).

FEMA FLOOD ZONE

Flood Plain Panel at Target Property	FEMA Source Type
13051C0045F	FEMA FIRM Flood data
Additional Panels in search area:	FEMA Source Type
13051C0040G 13051C0127G 13051C0135G	FEMA FIRM Flood data FEMA FIRM Flood data FEMA FIRM Flood data

NATIONAL WETLAND INVENTORY

-	NWI Electronic
NWI Quad at Ta	Data Coverage

PORT WENTWORTH YES - refer to the Overview Map and Detail Map

HYDROGEOLOGIC INFORMATION

Hydrogeologic information obtained by installation of wells on a specific site can often be an indicator of groundwater flow direction in the immediate area. Such hydrogeologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

AQUIFLOW®

Search Radius: 1.000 Mile.

EDR has developed the AQUIFLOW Information System to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted by environmental professionals to regulatory authorities at select sites and has extracted the date of the report, groundwater flow direction as determined hydrogeologically, and the depth to water table.

	LOCATION	GENERAL DIRECTION
MAP ID	FROM TP	GROUNDWATER FLOW
B5	1/2 - 1 Mile NW	E
B6	1/2 - 1 Mile NW	WNW
B7	1/2 - 1 Mile NW	Not Reported
B8	1/2 - 1 Mile NW	Varies

For additional site information, refer to Physical Setting Source Map Findings.

GROUNDWATER FLOW VELOCITY INFORMATION

Groundwater flow velocity information for a particular site is best determined by a qualified environmental professional using site specific geologic and soil strata data. If such data are not reasonably ascertainable, it may be necessary to rely on other sources of information, including geologic age identification, rock stratigraphic unit and soil characteristics data collected on nearby properties and regional soil information. In general, contaminant plumes move more quickly through sandy-gravelly types of soils than silty-clayey types of soils.

GEOLOGIC INFORMATION IN GENERAL AREA OF TARGET PROPERTY

Geologic information can be used by the environmental professional in forming an opinion about the relative speed at which contaminant migration may be occurring.

ROCK STRATIGRAPHIC UNIT

GEOLOGIC AGE IDENTIFICATION

Era: Cenozoic Category: Stratifed Sequence

System: Quaternary Series: Holocene

Code: Qh (decoded above as Era, System & Series)

Geologic Age and Rock Stratigraphic Unit Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - a digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

DOMINANT SOIL COMPOSITION IN GENERAL AREA OF TARGET PROPERTY

The U.S. Department of Agriculture's (USDA) Soil Conservation Service (SCS) leads the National Cooperative Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps. The following information is based on Soil Conservation Service STATSGO data.

Soil Component Name: MANDARIN

Soil Surface Texture: fine sand

Hydrologic Group: Class C - Slow infiltration rates. Soils with layers impeding downward

movement of water, or soils with moderately fine or fine textures.

Soil Drainage Class: Somewhat poorly. Soils commonly have a layer with low hydraulic

conductivity, wet state high in profile, etc. Depth to water table is

1 to 3 feet.

Hydric Status: Soil does not meet the requirements for a hydric soil.

Corrosion Potential - Uncoated Steel: MODERATE

Depth to Bedrock Min: > 60 inches

Depth to Bedrock Max: > 60 inches

	Soil Layer Information						
	Bou	ındary		Classi	fication		
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	Permeability Rate (in/hr)	Soil Reaction (pH)
1	0 inches	26 inches	fine sand	Granular materials (35 pct. or less passing No. 200), Fine Sand.	COARSE-GRAINED SOILS, Sands, Clean Sands, Poorly graded sand.	Max: 20.00 Min: 6.00	Max: 6.00 Min: 3.60
2	26 inches	40 inches	fine sand	Granular materials (35 pct. or less passing No. 200), Fine Sand.	COARSE-GRAINED SOILS, Sands, Clean Sands, Poorly graded sand. COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 2.00 Min: 0.60	Max: 6.00 Min: 3.60
3	40 inches	73 inches	fine sand	Granular materials (35 pct. or less passing No. 200), Fine Sand.	COARSE-GRAINED SOILS, Sands, Clean Sands, Poorly graded sand.	Max: 20.00 Min: 6.00	Max: 7.30 Min: 3.60
4	73 inches	80 inches	fine sand	Granular materials (35 pct. or less passing No. 200), Fine Sand.	COARSE-GRAINED SOILS, Sands, Clean Sands, Poorly graded sand.	Max: 2.00 Min: 0.60	Max: 7.30 Min: 3.60

OTHER SOIL TYPES IN AREA

Based on Soil Conservation Service STATSGO data, the following additional subordinant soil types may appear within the general area of target property.

Soil Surface Textures: sand Surficial Soil Types: sand

Shallow Soil Types: No Other Soil Types

Deeper Soil Types: sand

LOCAL / REGIONAL WATER AGENCY RECORDS

EDR Local/Regional Water Agency records provide water well information to assist the environmental professional in assessing sources that may impact ground water flow direction, and in forming an opinion about the impact of contaminant migration on nearby drinking water wells.

WELL SEARCH DISTANCE INFORMATION

DATABASE SEARCH DISTANCE (miles)

Federal USGS 2.000 Federal FRDS PWS 2.000 State Database 2.000

FEDERAL USGS WELL INFORMATION

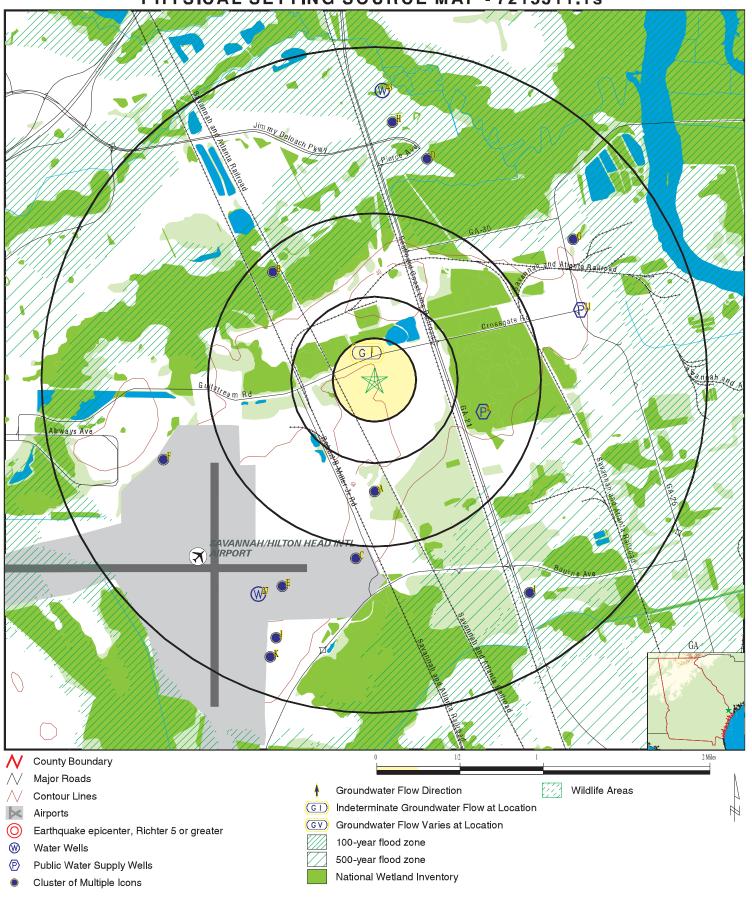
MAP ID	WELL ID	LOCATION FROM TP
	USGS40000259556	1/2 - 1 Mile South
C9	USGS40000259548	1 - 2 Miles South
E13	USGS40000259536	1 - 2 Miles SSW
F17	USGS40000259566	1 - 2 Miles WSW
E20	USGS40000259535	1 - 2 Miles SSW
D21	USGS40000259654	1 - 2 Miles NNE
G22	USGS40000259637	1 - 2 Miles NE
G26	USGS40000259634	1 - 2 Miles NE
G29	USGS40000259635	1 - 2 Miles NE
H31	USGS40000259658	1 - 2 Miles North
133	USGS40000259537	1 - 2 Miles SE
H34	USGS40000259661	1 - 2 Miles North
J35	USGS40000259527	1 - 2 Miles SSW
J37	USGS40000259528	1 - 2 Miles SSW
J41	USGS40000259520	1 - 2 Miles SSW
43	USGS40000259664	1 - 2 Miles North

FEDERAL FRDS PUBLIC WATER SUPPLY SYSTEM INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
4	GA0510057	1/2 - 1 Mile ESE
11	GA0510268	1 - 2 Miles ENE
D12	GA0510020	1 - 2 Miles NNE
E15	GA0510102	1 - 2 Miles SSW
D18	GA0510019	1 - 2 Miles NNE
G28	GA0510002	1 - 2 Miles ENE
G30	GA0510002	1 - 2 Miles ENE
H32	GA0510136	1 - 2 Miles North
H38	GA0510137	1 - 2 Miles North
139	GA0510162	1 - 2 Miles SE
J40	GA0510102	1 - 2 Miles SSW
K45	GA0510102	1 - 2 Miles SSW

Note: PWS System location is not always the same as well location.

STATE DATABASE WELL INFORMATION


		LOCATION
MAP ID	WELL ID	FROM TP

GEOCHECK[®] - PHYSICAL SETTING SOURCE SUMMARY

STATE DATABASE WELL INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
	0000001906	1/2 - 1 Mile South
C10	000001904	1 - 2 Miles South
E14	0000001901	1 - 2 Miles SSW
F16	0000001908	1 - 2 Miles WSW
E19	614	1 - 2 Miles SSW
G23	000001919	1 - 2 Miles NE
G24	612	1 - 2 Miles NE
G25	000001918	1 - 2 Miles NE
27	615	1 - 2 Miles SSW
J36	000001899	1 - 2 Miles SSW
J42	000001897	1 - 2 Miles SSW
K44	617	1 - 2 Miles SSW

PHYSICAL SETTING SOURCE MAP - 7215311.1s

SITE NAME: Grumman Road Landfill ADDRESS: 135 Gulfstream Road Savannah GA 31408

32.142978 / 81.184041

LAT/LONG:

CLIENT: ANCHOR QEA, LLC CONTACT: Kristi Mitchell INQUIRY #: 7215311.1s

DATE: January 03, 2023 11:13 am

Map ID Direction Distance

EDR ID Number Elevation Database

Well num:

Alt datum:

Latlon datum:

Casing matl:

Depth to bot:

Constr date:

Depth to casing:

Lat:

NNW 1/8 - 1/4 Mile Lower

Site ID: 9000518 Groundwater Flow:

NOT REPORTED

Shallow Water Depth: 6

Deep Water Depth: 9

Average Water Depth: Not Reported 10-23-90 Date:

AQUIFLOW

11620

South 1/2 - 1 Mile Lower

> County code: 051

PORT WENTWORTH CORP 1 Remarks: Lon: 0811103 40.00 Alt: 1088 Depth: Casing dia: 10.00 Depth to top: 271.00

Opening type: Х Discharge:

Aquifer code: 120FLRD

Not Reported

GA WELLS

36R006

320759 NAD27

NGVD29

0000001906

270.00 Not Reported 1088.00 195610 С

Prim use: Edr id: 0000001906

A3 South 1/2 - 1 Mile Lower

> Organization ID: USGS-GA Monitor Location: 36R006

PORT WENTWORTH CORP 1 Description: Drainage Area: Not Reported

Contrib Drainage Area: Not Reported Aquifer:

Floridan aquifer system Aquifer Type: Confined multiple aquifer

Well Depth: 1088 Well Hole Depth: 1089 **FED USGS**

USGS40000259556

USGS Georgia Water Science Center

Organization Name: Type: Well HUC: 03060109 Not Reported Drainage Area Units:

Contrib Drainage Area Unts: Not Reported Formation Type: Floridan Aquifer System

Construction Date: 19561001 Well Depth Units: ft

Well Hole Depth Units:

ESE 1/2 - 1 Mile Lower

> Epa region: 04

GA0510057 Pwsid: Cityserved: Not Reported Zipserved: Not Reported Status: Closed

Pwssvcconn: 210 **CWS** Pwstype:

WOODLAWN TERRACE Contact: Contactphone: 912-964-1711 Contactaddress2: 96 MAIN ST.

Contactstate: GΑ Pwsactivitycode: ı

FRDS PWS GA0510057

ft

State: WOODLAWN TERRACE Pwsname:

Stateserved: GΑ 13025 Fipscounty: Retpopsrvd: 730 Groundwater Psource longname:

Owner: unknown Contactorgname: Not Reported Contactaddress1: Not Reported Contactcity: **GARDEN** Contactzip: 31408

Pwsid: GA0510057 Facid: 1T

Facname: 06DW0000000000 Factype: Treatment_plant Facactivitycode: I Trtobjective: disinfection

Trtprocess: chlorination (frds-1.5) Factypecode: TP

Pwsid: GA0510057 Facid: 2T

Facname: 00DW0000000000 Factype: Treatment_plant Facactivitycode: I Trtobjective: disinfection

Trtprocess: chlorination (frds-1.5) Factypecode: TP

PWS ID: GA0510057 PWS type: Not Reported PWS name: Not Reported PWS address: Not Reported PWS city: Not Reported PWS state: Not Reported PWS zip: Not Reported PWS ID: GA0510057 Date system activated: Activity status: Active 7706

Activity status: Active Date system activated: 7706

Date system deactivated: Not Reported Retail population: 00000730

System name: WOODLAWN TERRACE System address: Not Reported

System address: 96 MAIN ST. System city: GARDEN System state: GA System zip: 31408

County FIPS: 025 City served: SAVANNAH GEORGI

Population served: 501 - 1,000 Persons Treatment: Treated

Latitude: 320534 Longitude: 0811023

Latitude: 320824 Longitude: 0811023

 B5
 Site ID:
 9-025076

 NW
 Groundwater Flow:
 F
 AQUIFLOW
 11615

NW Groundwater Flow: E
1/2 - 1 Mile Shallow Water Depth: 7 FT.

Average Water Depth:

Date:

Deep Water Depth: 8 FT.
Average Water Depth: Not Reported

Date: FEB. 29, 1996

 B6
 Site ID:
 9-025152

 NW
 Groundwater Flow:
 WNW
 AQUIFLOW
 11616

Not Reported

1/2 - 1 Mile
Lower
Shallow Water Depth: 2.5 FT
Deep Water Depth: 5 FT.

Date: AUGUST 29, 1994

B7 Site ID: 4250162

NW Groundwater Flow: Not Reported AQUIFLOW 19243
1/2 - 1 Mile
Lower Shallow Water Depth: 15
Deep Water Depth: 18

Average Water Depth: Not Reported
Date: 12

 B8
 Site ID:
 4250096

 NW
 Groundwater Flow:
 Varies

 1/2 - 1 Mile Lower
 Shallow Water Depth:
 3.5

Not Reported

Deep Water Depth: 13.14
Average Water Depth: Not Reported

Map ID Direction Distance

Database EDR ID Number Elevation

C9 South 1 - 2 Miles

FED USGS USGS40000259548

Lower

Organization ID: **USGS-GA** Organization Name: USGS Georgia Water Science Center

Monitor Location: 36R009 Type: Well CHEROKEE OIL TW HUC: 03060109 Description: Not Reported Drainage Area: Not Reported Drainage Area Units: Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported Aquifer: Not Reported Formation Type: Not Reported Aquifer Type: Not Reported Construction Date: 19200101 Well Depth: Well Depth Units: ft 2150 Well Hole Depth: Well Hole Depth Units: 2150 ft

C10 South 1 - 2 Miles

GA WELLS 0000001904

Lower

051 Well num: 36R009 County code: Remarks: CHEROKEE OIL TW Lat: 320738

Lon: 0811110 Latlon datum: NAD27 NGVD29 Alt: 21.50 Alt datum: Depth: 2150 Depth to casing: 2126.00 Casing dia: 8.00 Casing matl: Not Reported Depth to top: 2126 Depth to bot: 2150 Opening type: Χ Constr date: 1920 Not Reported Prim use: Discharge: U

Not Reported 0000001904 Aquifer code: Edr id:

ENE 1 - 2 Miles

Lower

Epa region: 04 State: GA GA0510268 GA PACIFIC- GA STEAMSHIP CO. Pwsid: Pwsname:

Cityserved: Not Reported Stateserved: GΑ Zipserved: Not Reported Fipscounty: 13051 Status: Closed Retpopsrvd: 70

Pwssvcconn: Psource longname: Groundwater **NTNCWS** Private Pwstype: Owner:

GA PACIFIC- GA STEAMSHIP CO. Contact:

Contactorgname: Not Reported Contactphone: Not Reported Contactaddress1: Not Reported Contactaddress2: Not Reported Contactcity: Not Reported Contactstate: Not Reported

Contactzip: Not Reported Pwsactivitycode:

PWS ID: GA0510268 PWS type: Not Reported PWS name: Not Reported PWS address: Not Reported PWS city: PWS state: Not Reported Not Reported GA0510268 PWS zip: Not Reported PWS ID: Activity status: Active Date system activated: Not Reported

00000070 Date system deactivated: Not Reported Retail population:

GA PACIFIC- GA STEAMSHIP CO. System name: System address: GA PACIFIC-GA STEAMSHIP CO.

FRDS PWS

GA0510268

4226 CROSSGATE RD PORT WENTWORTH System address: System city:

System state: System zip: 31407

Population served: Under 101 Persons Treatment: Untreated

Latitude: 320856 Longitude: 0810947

Latitude: 315902 Longitude: 0810657

D12 **FRDS PWS** GA0510020

1 - 2 Miles Lower

> Epa region: 04 State:

GA0510020 **COLLUMS TRAILER PARK** Pwsid: Pwsname:

Cityserved: Not Reported Stateserved: GA Zipserved: Not Reported 13051 Fipscounty: Status: Closed Retpopsrvd: 112 Psource longname: Groundwater Pwssvcconn: 32

Pwstype: **CWS** Owner: Private COLLUM, LOIS Contact: Contactorgname: Not Reported 912-964-6163 10 DIXIE STREET Contactphone: Contactaddress1: PORT WENTWORTH

Contactaddress2: Not Reported Contactcity: Contactstate: GΑ Contactzip: 31407

Pwsactivitycode:

PWS ID: GA0510020 PWS type: Not Reported PWS address: PWS name: Not Reported Not Reported PWS city: Not Reported PWS state: Not Reported PWS zip: Not Reported PWS ID: GA0510020 Activity status: Active Date system activated: Not Reported

Retail population: 00000112 Date system deactivated: Not Reported

System address: System name: **COLLUMS TRAILER PARK COLLUMS TRAILER PARK** System address: 10 DIXIE STREET System city: PORT WENTWORTH

System state: GA System zip: 31407

Population served: 101 - 500 Persons Treatment: Untreated

Latitude: 320941 Longitude: 0811042

GΑ Latitude degrees: State: 32 41.0000 Latitude minutes: 9 Latitude seconds: Longitude degrees: 81 Longitude minutes: 10

Longitude seconds: 42.0000

PWS currently has or had major violation(s) or enforcement. Yes

Violation ID: 9200002 Violation source ID: Not Reported COLIFORM (TCR) PWS telephone: Not Reported Contaminant:

Violation type: Monitoring, Routine Major (TCR)

Violation start date: 090192 Violation end date: 093092 001 Not Reported Violation period (months): Violation awareness date: Major violator: Maximum contaminant level: Not Reported Yes

Number of required samples: Not Reported Number of samples taken: Not Reported Not Reported Analysis method: Not Reported Analysis result:

Map ID Direction Distance

EDR ID Number Elevation Database

9

SSW 1 - 2 Miles Higher

E13

FED USGS USGS40000259536

Organization ID: **USGS-GA** Monitor Location: 36Q014

Description: SAVANNAH, GA 19 Drainage Area: Not Reported Contrib Drainage Area: Not Reported

Aquifer: Floridan aquifer system Confined multiple aquifer Aquifer Type:

Well Depth: 680 Well Hole Depth: 680

Ground water levels, Number of Measurements:

Feet below surface: 101.88

Note: Not Reported

Level reading date: 1998-05-25 Feet to sea level:

Not Reported

Level reading date: 1985-05-21 Feet to sea level: Not Reported

1984-11-20 Level reading date: Feet to sea level: Not Reported

Level reading date: 1984-10-31 Feet to sea level: Not Reported

Level reading date: 1984-04-30

Feet to sea level: Not Reported

Level reading date: 1983-11-04 Feet to sea level: Not Reported

Level reading date: 1983-05-03 Feet to sea level: Not Reported

Level reading date: 1982-11-02

Feet to sea level: Not Reported Organization Name: USGS Georgia Water Science Center

ft

Not Reported

Not Reported

Not Reported

Not Reported

Not Reported

105.32

102.12

90.42

96.70

Well Type: HUC: 03060109 Drainage Area Units: Not Reported

Contrib Drainage Area Unts: Not Reported Formation Type: Upper Floridan Aquifer

Construction Date: 19450101 ft

Well Depth Units: Well Hole Depth Units:

Level reading date: 2000-09-08 Feet to sea level: Not Reported

Feet below surface: 98.70

Note:

Feet below surface: 125.77 Not Reported

Note:

Feet below surface: 102.68

Note:

Feet below surface:

Note:

Feet below surface:

Note:

Feet below surface:

Note:

Feet below surface:

Note:

Well num:

Alt datum:

Casing matl:

Depth to bot:

Constr date:

Prim use:

Edr id:

Latlon datum:

Depth to casing:

Lat:

Feet below surface:

Note:

99.62 Not Reported

Not Reported

1 - 2 Miles Higher

> County code: 051

SAVANNAH, GA 19 Remarks: Lon: 0811134 Alt: 45.06 Depth: 680 Casing dia: 12.00 Depth to top: 250.00 Opening type: Χ

Not Reported Discharge: Aquifer code:

120FLRDU

GA WELLS

36Q014

320729

NAD27

250.00

680.00

1945

NGVD29

Not Reported

0000001901

0000001901

TC7215311.1s Page 13

Map ID Direction Distance

Elevation Database EDR ID Number E15

SSW 1 - 2 Miles Higher

Epa region: 04 State: GA

Pwsid: GA0510102 Pwsname: SAVANNAH-TRAVIS FIELD

Cityserved: Not Reported GΑ Stateserved: 13051 Zipserved: Not Reported Fipscounty: Status: Closed Retpopsrvd: 304 Pwssvcconn: 117 Psource longname: Groundwater Pwstype: **CWS** Owner: Local_Govt

JUE, HARRY Not Reported Contact: Contactorgname: POB 1027 Contactphone: 912-651-4241 Contactaddress1: Contactaddress2: Not Reported Contactcity: SAVANNAH 314021027 Contactstate: GΑ Contactzip:

Pwsactivitycode: I

Pwsid: GA0510102 Facid: 3972

Facname: WELL #17 PLANT Factype: Treatment_plant Facactivitycode: I Trobjective: disinfection

Trtprocess: hypochlorination, post Factypecode: TP

Pwsid: GA0510102 Facid: 3979

Facname: WELL #18 PLANT Factype: Treatment_plant

Facactivitycode: I Trtobjective: disinfection

Trtprocess: hypochlorination, post Factypecode: TP

Pwsid: GA0510102 Facid: 3985

Facname: WELL #19 PLANT Factype: Treatment_plant

Facactivitycode: I Trtobjective: disinfection

Trtprocess: hypochlorination, post Factypecode: TP

PWS ID: GA0510102 PWS type: Not Reported Not Reported PWS name: PWS address: Not Reported PWS city: PWS state: Not Reported Not Reported GA0510102 PWS zip: Not Reported PWS ID: Activity status: Active Date system activated: Not Reported

Activity status: Active Date system activated: Not Reported

Date system deactivated: Not Reported Retail population: 00001100

System name: SAVANNAH-TRAVIS FIELD System address: SAVANNAH-TRAVIS FIELD

System address: 702 STILES AVE System city: SAVANNAH

System state: GA System zip: 31402

Population served: 1,001 - 2,500 Persons Treatment: Treated

Latitude: 320731 Longitude: 0811140

Latitude: 320705 Longitude: 0811140

Latitude: 320710 Longitude: 0811136

State:GALatitude degrees:32Latitude minutes:7Latitude seconds:5.0000Longitude degrees:81Longitude minutes:11

Longitude seconds: 40.0000

State:GALatitude degrees:32Latitude minutes:7Latitude seconds:10.0000

Longitude degrees: 81 Longitude minutes: 11 Longitude seconds: 36.0000

FRDS PWS

GA0510102

State:GALatitude degrees:32Latitude minutes:7Latitude seconds:31.0000Longitude degrees:81Longitude minutes:11

Longitude seconds: 40.0000

F16
WSW
GA WELLS 0000001908

1 - 2 Miles Lower

> County code: 051 Well num: 36R041 Remarks: VPI DOE 044 SAV AIRPORT Lat: 320809 Lon: 0811221 Latlon datum: NAD27 Alt datum: NGVD29 Alt: 20 Depth: 1000 Depth to casing:

Not Reported Casing dia: Not Reported Casing matl: Not Reported Depth to top: Not Reported Depth to bot: Not Reported Constr date: Opening type: Not Reported 19800810 Discharge: Not Reported Prim use: U

Aquifer code: Not Reported Edr id: 0000001908

F17 WSW 1 - 2 Miles Lower

Lower

Organization ID: USGS-GA Organization Name: USGS Georgia Water Science Center

36R041 Well Monitor Location: Type: Description: VPI DOE 044 SAV AIRPORT HUC: 03060109 Drainage Area: Not Reported Drainage Area Units: Not Reported Contrib Drainage Area: Contrib Drainage Area Unts: Not Reported Not Reported Not Reported Formation Type: Not Reported Aquifer: Aquifer Type: Not Reported Construction Date: 19800810 Well Depth: 1000 Well Depth Units: ft Well Hole Depth: 1000 Well Hole Depth Units: ft

D18
NNE FRDS PWS GA0510019
1 - 2 Miles

Epa region: 04 State: GA

Pwsid: GA0510019 Pwsname: CHEROKEE MOBILE HOME PARK

Cityserved:Not ReportedStateserved:GAZipserved:Not ReportedFipscounty:13051Status:ClosedRetpopsrvd:88

Psource longname: Groundwater Pwssvcconn: 33 **CWS** Pwstype: Owner: Private ROYAL, JAMES Contact: Contactorgname: Not Reported Contactphone: 912-964-4270 Contactaddress1: 6500 HIGHWAY 21

Contactaddress2: Not Reported Contactcity: PORT WENTWORTH Contactstate: GA Contactzip: 31407

Pwsactivitycode: I

Pwsid: GA0510019 Facid: 403

Facname: WELL #1 PLANT Factype: Treatment_plant Facactivitycode: I Trtobjective: disinfection

Trtprocess: hypochlorination, post Factypecode: TP

FED USGS

USGS40000259566

PWS ID: GA0510019 PWS name: CHEROKEE MOBILE HOME PARK Address: Care of: CHEROKEE MOBILE HOME PARK

City: PORT WENTWORTH State: GA
Zip: 31407 Owner: CHEROKEE MOBILE HOME PARK

Zip:31407Owner:CHERSource code:Ground waterPopulation:88

PWS ID: GA0510019 PWS type: Not Reported PWS name: Not Reported PWS address: Not Reported Not Reported PWS state: Not Reported PWS city: County: **CHATHAM** PWS zip: Not Reported

Source: Ground water Treatment Objective: DISINFECTION

Process: HYPOCHLORINATION, POST Population: 88

PWS ID: GA0510019 Activity status: Active

Date system activated: Not Reported Date system deactivated: Not Reported

Retail population: 00000088 System name: CHEROKEE MOBILE HOME PARK

System address: CHEROKEE MOBILE HOME PARK System address: 6500 HIGHWAY 21

System city: PORT WENTWORTH System state: GA

System zip: 31407

Population served: Under 101 Persons Treatment: Treated

Latitude: 320944 Longitude: 0811045

State:GALatitude degrees:32Latitude minutes:9Latitude seconds:44.0000Longitude degrees:81Longitude minutes:10

Longitude seconds: 45.0000

Violation id:200Orig code:SState:GAViolation Year:1999

Contamination code: 7000 Contamination Name: Consumer Confidence Rule
Violation code: 71 Violation name: CCR Complete Failure to Report

Rule code: 420 Rule name: CCR

Violation measur:

Not Reported

State mcl:

Not Reported

Cmp bdt:

10/19/1999

Cmp edt: Not Reported

Violation id:30101Orig code:SState:GAViolation Year:2001

Contamination code: 7000 Contamination Name: Consumer Confidence Rule
Violation code: 71 Violation name: CCR Complete Failure to Report

Rule code:420Rule name:CCRViolation measur:Not ReportedUnit of measure:Not ReportedState mcl:Not ReportedCmp bdt:07/01/2001

Cmp edt: Not Reported

Violation ID: 200 Orig Code: S

Enforcement FY: 2001 Enforcement Action: 10/06/2000 Enforcement Detail: St AO (w/penalty) issued Enforcement Category: Formal

Violation ID: 200 Orig Code: S

Enforcement FY: 2001 Enforcement Action: 10/06/2000 Enforcement Detail: St Compliance achieved Enforcement Category: Resolving

Violation ID: 30101 Orig Code: S

Enforcement FY: 2001 Enforcement Action: 07/02/2001 Enforcement Detail: St Intentional no-action Enforcement Category: Resolving

Violation ID: 30101 Orig Code: S

Enforcement FY: 2001 Enforcement Action: 09/10/2001 Enforcement Detail: St Compliance achieved Enforcement Category: Resolving

Map ID Direction Distance

Elevation Database EDR ID Number F19

E19 SSW_____ GA WELLS 614

1 - 2 Miles Higher

> ld: 614 Water source id: 25M4B19 CITY OF SAVANNAH-TRAVIS F Name: Latitude: 32.1247 81.1942 Longitude: Source: G Gw mgd: 0.67 Sw mgd: 0.00 Gwsi id: 36Q014 Status: 1 Population: 0 County: **CHATHAM**

County fips: 51 Ggs: 1

1 - 2 Miles Higher

Organization ID: USGS-GA Organization Name: USGS Georgia Water Science Center

Monitor Location: 36Q365 Type: Well HUC: 03060109 Description: Not Reported Drainage Area: Not Reported Drainage Area Units: Not Reported Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported Aquifer: Not Reported Formation Type: Not Reported Aquifer Type: Not Reported Construction Date: Not Reported Well Depth: Not Reported Well Depth Units: Not Reported Well Hole Depth: Well Hole Depth Units: Not Reported Not Reported

D21
NNE
FED USGS USGS40000259654

1 - 2 Miles Lower

Organization ID: USGS-GA Organization Name: USGS Georgia Water Science Center

Monitor Location: 36R022 Type: Well HUC: Description: Not Reported 03060109 Drainage Area Units: Drainage Area: Not Reported Not Reported Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported Aquifer: Not Reported Formation Type: Not Reported Aquifer Type: Not Reported Construction Date: Not Reported Well Depth: Not Reported Well Depth Units: Not Reported Well Hole Depth: Not Reported Well Hole Depth Units: Not Reported

G22 NE FED USGS USGS40000259637

NE 1 - 2 Miles

Organization ID: USGS-GA Organization Name: USGS Georgia Water Science Center

36R008 Monitor Location: Type: Well Description: PORT WENTWORTH, GA 2 HUC: 03060109 Drainage Area: Not Reported Drainage Area Units: Not Reported Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported

Aquifer: Floridan aquifer system Formation Type: Upper Floridan Aquifer

Aquifer Type: Confined multiple aquifer Construction Date: 19230101

Well Depth Units:

ft

502

Well Depth:

Feet to sea level:

Not Reported

Well Hole Depth: 502 Well Hole Depth Units: ft 2000-09-14 Ground water levels, Number of Measurements: 22 Level reading date: Feet below surface: 78.70 Feet to sea level: Not Reported Note: Not Reported Level reading date: 1998-05-22 Feet below surface: 70.03 Feet to sea level: Not Reported Not Reported Note: Level reading date: 1993-11-10 Feet below surface: 78.87 Feet to sea level: Not Reported Note: Not Reported Feet below surface: Level reading date: 1990-05-17 80.62 Feet to sea level: Not Reported Note: Not Reported Feet below surface: 89.85 Level reading date: 1988-05-24 Feet to sea level: Not Reported Note: Not Reported Level reading date: 1985-05-20 Feet below surface: 83.10 Feet to sea level: Not Reported Note: Not Reported Feet below surface: Level reading date: 1984-11-01 84.77 Feet to sea level: Note: Not Reported Not Reported Level reading date: 1984-05-18 Feet below surface: 82.87 Feet to sea level: Not Reported Note: Not Reported Level reading date: 1983-11-08 Feet below surface: 82.90 Feet to sea level: Not Reported Note: Not Reported Feet below surface: Level reading date: 1983-06-15 79.37 Feet to sea level: Not Reported Note: Not Reported Level reading date: 1982-11-03 Feet below surface: 76.00 Feet to sea level: Not Reported Note: Not Reported Level reading date: 1981-10-27 Feet below surface: 81.90 Feet to sea level: Not Reported Note: Not Reported Level reading date: 1980-05-21 Feet below surface: 74.10 Feet to sea level: Not Reported Note: Not Reported Level reading date: 1979-11-02 Feet below surface: 79.20 Feet to sea level: Not Reported Note: Not Reported Feet below surface: 1978-12-04 78.35 Level reading date: Not Reported Feet to sea level: Note: Not Reported Feet below surface: Level reading date: 1977-11-07 79.60 Feet to sea level: Not Reported Note: Not Reported Level reading date: Feet below surface: 1976-12-14 72.40 Feet to sea level: Not Reported Note: Not Reported Level reading date: 1976-02-20 Feet below surface: 71.80 Feet to sea level: Note: Not Reported Not Reported 1976-01-16 Level reading date: Feet below surface: 70.00

Note:

Not Reported

Level reading date: 1975-09-22 Feet below surface: 72.20

Feet to sea level: Not Reported Note: Not Reported

Level reading date: 1973-11-29 Feet below surface: 76.40

Feet to sea level: Not Reported Note: Not Reported

Level reading date: 1972-11-30 Feet below surface: 58.35

Feet to sea level: Not Reported Note: Not Reported

G23 NE GA WELLS 0000001919

1 - 2 Miles Lower

> 36R008 County code: 051 Well num: PORT WENTWORTH, GA 2 Remarks: Lat: 320920 0810952 NAD27 Lon: Latlon datum: NGVD29 Alt: 18 Alt datum: Depth: 502 Depth to casing: 200.00 Casing dia: 12.00 Casing matl: Not Reported Depth to top: 200.00 Depth to bot: 502.00 Opening type: Χ Constr date: 1923

> Discharge:
> 34.72
> Prim use:
> P
>
>
> Aquifer code:
> 120FLRDU
> Edr id:
> 0000001919

G24
NE GA WELLS 612

1 - 2 Miles Lower

> ld: 612 Water source id: 25M0301 CITY OF PORT WENTWORTH Latitude: 32.1550 Name: Longitude: 81.1639 Source: G Gw mgd: 0.29 Sw mgd: 0.00 Gwsi id: 36K010 Status: CHATHAM Population: 3,947 County:

County fips: 51 Ggs: 1

G25 NE GA WELLS 0000001918

Depth to bot:

1 - 2 Miles Lower

Depth to top:

County code: 051 Well num: 36R010 Remarks: PORT WENTWORTH, GA 1 320918 Lat: 0810950 NAD27 Lon: Latlon datum: Alt: 16.00 Alt datum: NGVD29 Depth: 650 Depth to casing: 254.00 Casing matl: Casing dia: 12.00 S

Opening type: X Constr date: 19420930 Discharge: 525.00 Prim use: P

254.00

Aquifer code: Not Reported Edr id: 0000001918

650.00

Map ID Direction Distance

Elevation Database EDR ID Number

G26 NE

FED USGS USGS40000259634

1 - 2 Miles Lower

Organization ID: USGS-GA Organization Name: USGS Georgia Water Science Center

Monitor Location: 36R010 Type: Well PORT WENTWORTH, GA 1 HUC: 03060109 Description: Not Reported Drainage Area: Not Reported Drainage Area Units: Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported Aquifer: Not Reported Formation Type: Not Reported Aquifer Type: Construction Date: 19420930

Aquifer Type:Not ReportedConstruction Date:19-Well Depth:650Well Depth Units:ftWell Hole Depth:650Well Hole Depth Units:ft

Ground water levels, Number of Measurements: 1 Level reading date: 1973-08-01 Feet below surface: 61.00 Feet to sea level: Not Reported

Note: Not Reported

27 SSW GA WELLS 615

1 - 2 Miles Higher

 Id:
 615
 Water source id:
 25M4B17

 Name:
 CITY OF SAVANNAH-TRAVIS F
 Latitude:
 32.1241

 Name:
 CTTY OF SAVANNAH-TRAVIS F
 Latitude:
 32.1241

 Longitude:
 81.1961
 Source:
 G

 Gw mgd:
 0.67
 Sw mgd:
 0.00

Status: 1 Gwsi id: Not Reported Population: 0 County: CHATHAM

County fips: 51 Ggs: 1

G28
ENE FRDS PWS GA0510002

1 - 2 Miles Lower

Epa region: 04 State: GA

Pwsid: GA0510002 Pwsname: PORT WENTWORTH

Cityserved: Not Reported Stateserved: GΑ Zipserved: Not Reported Fipscounty: 13051 Status: Active Retpopsrvd: 7985 1800 Psource longname: Pwssvcconn: Groundwater Pwstype: **CWS** Owner: Local_Govt

Contact: CLAXTON, PHILLIP Contactorgname: CLAXTON, PHILLIP

Contactphone: 912-964-4379 Contactaddress1: 305 SOUTH COASTAL HWY.

Contactaddress2: Not Reported Contactcity: PORT WENTWORTH

Contactstate: GA Contactzip: 31407

Pwsactivitycode: A

Pwsid: GA0510002 Facid: 17602

Facname: WELL #3 PLANT Factype: Treatment_plant

Facactivitycode: A Trtobjective: disinfection

Triprocess: gaseous chlorination, post

Factypecode: TP

Pwsid: GA0510002 Facid: 17602

WELL #3 PLANT Facname: Treatment_plant Factype:

Facactivitycode: Trtobjective: other Trtprocess: fluoridation Factypecode: TP

Pwsid: GA0510002 Facid: 2633

Factype: Facname: ANTRIM ST WELL PLANT Treatment_plant Facactivitycode: disinfection

Trtobjective:

Trtprocess: gaseous chlorination, post Factypecode: TP

System zip:

Pwsid: GA0510002 Facid: 2633

ANTRIM ST WELL PLANT Factype: Treatment_plant Facname:

Facactivitycode: Trtobjective: other Trtprocess: fluoridation Factypecode: TP

Pwsid: GA0510002 Facid: 388

Facname: APPLEBY RD WELL PLANT Factype: Treatment_plant

Facactivitycode: Trtobjective: disinfection

Trtprocess: gaseous chlorination, post Factypecode: ΤP

Pwsid: GA0510002 Facid: 388 APPLEBY RD WELL PLANT Facname: Factype: Treatment_plant

Facactivitycode: Trtobjective: other Trtprocess: fluoridation Factypecode:

PWS ID: GA0510002 PWS name: PORT WENTWORTH

305 SOUTH COASTAL HIGHWAY CITY OF PORT WENTWORTH Address: Care of:

City: PORT WENTWORTH State:

PORT WENTWORTH Zip: 31407 Owner:

Source code: Ground water Population: 3349

PWS ID: GA0510002 Not Reported PWS type: PWS address: PWS name: Not Reported Not Reported PWS city: Not Reported PWS state: Not Reported

PWS zip: Not Reported PWS name: PORT WENTWORTH

PWS type code: Retail population served: 7985

CLAXTON, PHILLIP 305 SOUTH COASTAL HWY. Contact: Contact address:

PORT WENTWORTH Contact address: Contact city: GΑ

Contact state: Contact zip: 912-964-43

Contact telephone: Not Reported

Ground water **CHATHAM** Source: County:

HYPOCHLORINATION, POST Treatment Objective: DISINFECTION Process:

Population: 3349

PWS ID: GA0510002 Activity status: Active

Date system activated: Not Reported Date system deactivated: Not Reported PORT WENTWORTH Retail population: 00002639 System name:

CITY OF PORT WENTWORTH System address: System address: 305 SOUTH COASTAL HWY.

PORT WENTWORTH System city: System state: GA

2,501 - 3,300 Persons Treatment: Treated Population served:

31407

Latitude: 320916 Longitude: 0810948

Latitude: 320916 0810946 Longitude:

State: GΑ Latitude degrees: 32

16.0000 Latitude minutes: 9 Latitude seconds: Longitude degrees: 81 Longitude minutes: 9

Longitude seconds: 46.0000

State:GALatitude degrees:32Latitude minutes:9Latitude seconds:16.0000Longitude degrees:81Longitude minutes:9

Longitude seconds: 48.0000

Violation id:20205Orig code:SState:GAViolation Year:2004

Contamination code: 7000 Contamination Name: Consumer Confidence Rule
Violation code: 71 Violation name: CCR Complete Failure to Report

Rule code: 420 Rule name: CCR

Violation measur:Not ReportedUnit of measure:Not ReportedState mcl:Not ReportedCmp bdt:07/01/2004Cmp edt:Not Reported

Violation id:20410Orig code:SState:GAViolation Year:2009

Contamination code: 3100 Contamination Name: Coliform (TCR)

Violation code: 23 Violation name: Monitoring, Routine Major (TCR)

Rule code: 110 Rule name: TCR

Violation measur:Not ReportedUnit of measure:Not ReportedState mcl:Not ReportedCmp bdt:09/01/2009

Cmp edt: 09/30/2009

Violation id:20613Orig code:SState:GAViolation Year:2013Contamination code:2950Contamination Name:TTHM

Violation code: 02 Violation name: MCL, Average Rule code: 210 Rule name: St1 DBP Violation measur: 0.118 UG/L Unit of measure: State mcl: 0.08 Cmp bdt: 01/01/2013

Cmp edt: 03/31/2013

Violation ID: 20205 Orig Code: S

Enforcement FY: 2005 Enforcement Action: 07/01/2005 Enforcement Detail: St Intentional no-action Enforcement Category: Resolving

Violation ID: 20205 Orig Code: S

Enforcement FY: 2005 Enforcement Action: 07/05/2005 Enforcement Detail: St Compliance achieved Enforcement Category: Resolving

Violation ID: 20410 Orig Code: S

Enforcement FY: 2010 Enforcement Action: 10/22/2009

Enforcement Detail: St Violation/Reminder Notice

Enforcement Category: Informal

Violation ID: 20410 Orig Code: S

Enforcement FY: 2010 Enforcement Action: 11/16/2009
Enforcement Detail: St Public Notif received Enforcement Category: Informal

Violation ID: 20410 Orig Code: S

Enforcement FY: 2010 Enforcement Action: 10/22/2009
Enforcement Detail: St Public Notif requested Enforcement Category: Informal

Violation ID: 20613 Orig Code: S

Enforcement FY: 2014 Enforcement Action: 02/25/2014

Enforcement Detail: St Violation/Reminder Notice

Enforcement Category: Informal

Violation ID: 20613 Orig Code: S

Enforcement FY: 2014 Enforcement Action: 02/25/2014

Enforcement Detail: St Public Notif requested **Enforcement Category:** Informal

PORT WENTWORTH PWS name: Population served: 7985 PWS type code: С Violation ID: 20205 Contaminant: 7000 Violation type: 71

7/1/2005 0:00:00 7/5/2005 0:00:00 Compliance start date: Compliance end date:

Enforcement date: 7/1/2005 0:00:00 Enforcement action: State Intentional no-action

Violation measurement: Not Reported

PORT WENTWORTH PWS name: Population served: 7985 20205 PWS type code: С Violation ID: Contaminant: 7000 Violation type: 71

Compliance start date: 7/1/2005 0:00:00 Compliance end date: 7/5/2005 0:00:00

Enforcement date: 7/5/2005 0:00:00 Enforcement action: State Compliance Achieved

Violation measurement: Not Reported

G29 FED USGS USGS40000259635 ΝE

1 - 2 Miles Lower

> USGS-GA Organization ID: Organization Name: USGS Georgia Water Science Center

36R013 Monitor Location: Type: Well Description: Not Reported HUC: 03060109 Drainage Area: Not Reported Drainage Area Units: Not Reported Contrib Drainage Area Unts: Contrib Drainage Area: Not Reported Not Reported Aquifer: Not Reported Formation Type: Not Reported Aquifer Type: Not Reported Construction Date: Not Reported Well Depth: Not Reported Well Depth Units: Not Reported Well Hole Depth: Not Reported Well Hole Depth Units: Not Reported

FRDS PWS GA0510002

1 - 2 Miles Lower

> Epa region: 04 State: GΑ

Pwsid: GA0510002 Pwsname: PORT WENTWORTH

Cityserved: Not Reported Stateserved: GA Zipserved: Not Reported Fipscounty: 13051 Active Status: Retpopsrvd: 7985 Pwssvcconn: 1800 Psource longname: Groundwater Pwstype: **CWS** Owner: Local_Govt

CLAXTON, PHILLIP CLAXTON, PHILLIP Contact: Contactorgname:

912-964-4379 Contactaddress1: 305 SOUTH COASTAL HWY. Contactphone:

PORT WENTWORTH Contactaddress2: Not Reported Contactcity: Contactzip: 31407

Contactstate: GΑ

Pwsactivitycode: Α

GA0510002 Pwsid: Facid: 17602

WELL #3 PLANT Treatment_plant Facname: Factype: Trtobjective: disinfection

Facactivitycode:

Trtprocess: gaseous chlorination, post

Factypecode: TΡ

Pwsid: GA0510002 Facid: 17602

WELL #3 PLANT Facname: Factype: Treatment_plant

Facactivitycode: Trtobjective:

Trtprocess: fluoridation Factypecode: TP

other

Pwsid: GA0510002 Facid: 2633

Facname: ANTRIM ST WELL PLANT Factype: Treatment_plant Facactivitycode: A Trtobiective: disinfection

Facactivitycode: A Trtobjective: disinfection
Trtprocess: gaseous chlorination, post

Factypecode: TP

Pwsid: GA0510002 Facid: 2633

Facname: ANTRIM ST WELL PLANT Factype: Treatment_plant

Facactivitycode: A Trtobjective: other Trtprocess: fluoridation Factypecode: TP

Pwsid: GA0510002 Facid: 388

Facname: APPLEBY RD WELL PLANT Factype: Treatment_plant Facactivitycode: A Trtobjective: disinfection

Trtprocess: gaseous chlorination, post

Factypecode: TP

Pwsid: GA0510002 Facid: 388

Facname: APPLEBY RD WELL PLANT Factype: Treatment_plant

Facactivitycode: A Trtobjective: other

Trtprocess: fluoridation Factypecode: TP

PWS ID: GA0510002 PWS name: PORT WENTWORTH

Address: 305 SOUTH COASTAL HIGHWAY Care of: CITY OF PORT WENTWORTH

City: PORT WENTWORTH State: GA

Zip: 31407 Owner: PORT WENTWORTH

Source code: Ground water Population: 3349

PWS ID:GA0510002PWS type:Not ReportedPWS name:Not ReportedPWS address:Not ReportedPWS city:Not ReportedPWS state:Not Reported

PWS zip: Not Reported PWS name: PORT WENTWORTH

PWS type code: C Retail population served: 7985

Contact: CLAXTON, PHILLIP Contact address: 305 SOUTH COASTAL HWY.

Contact address: PORT WENTWORTH Contact city: GA

Contact state: 31 Contact zip: 912-964-43

Contact state: 51 Contact zip: 912-304-40

County: CHATHAM Source: Ground water

Treatment Objective: DISINFECTION Process: HYPOCHLORINATION, POST

Population: 3349

PWS ID: GA0510002 Activity status: Active

Date system activated:

Not Reported

Date system deactivated:

Not Reported

Retail population: 00002639 System name: PORT WENTWORTH
System address: CITY OF PORT WENTWORTH System address: 305 SOUTH COASTAL HWY.

System city: PORT WENTWORTH System state: GA

System zip: 31407

Population served: 2,501 - 3,300 Persons Treatment: Treated

Latitude: 320916 Longitude: 0810948

Latitude: 320916 Longitude: 0810946

State:GALatitude degrees:32Latitude minutes:9Latitude seconds:16.0000Longitude degrees:81Longitude minutes:9

Longitude degrees. 81 Longitude minutes. 9

Longitude seconds: 46.0000

State: GA Latitude degrees: 32 Latitude minutes: 9 Latitude seconds: 16.0000

9 Longitude degrees: Longitude minutes: 81

Longitude seconds: 48.0000

S Violation id: 20205 Orig code: State: GA Violation Year: 2004

Contamination code: 7000 Contamination Name: Consumer Confidence Rule Violation code: 71 Violation name: CCR Complete Failure to Report

Cmp bdt:

Rule code: 420 Rule name: Not Reported Not Reported Violation measur: Unit of measure: 07/01/2004

Not Reported State mcl: Cmp edt: Not Reported

Violation id: 20410 Orig code: S State: GΑ Violation Year: 2009

3100 Contamination Name: Coliform (TCR) Contamination code:

Monitoring, Routine Major (TCR) Violation code: 23 Violation name: 110 Rule name:

Rule code: Not Reported Not Reported Violation measur: Unit of measure: Not Reported 09/01/2009 State mcl: Cmp bdt:

09/30/2009 Cmp edt:

Violation id: 20613 Orig code: S State: GΑ Violation Year: 2013 2950 Contamination code: Contamination Name: TTHM

Violation code: Violation name: MCL, Average 02 Rule code: 210 Rule name: St1 DBP Violation measur: 0.118 Unit of measure: UG/L 01/01/2013 State mcl: 0.08 Cmp bdt:

Cmp edt: 03/31/2013

Violation ID: 20205 Orig Code: S

07/01/2005 Enforcemnt FY: 2005 Enforcement Action: **Enforcement Detail:** St Intentional no-action Enforcement Category: Resolving

Violation ID: 20205 Orig Code: S

07/05/2005 Enforcemnt FY: 2005 **Enforcement Action:** St Compliance achieved **Enforcement Detail: Enforcement Category:** Resolving

Violation ID: 20410 Orig Code:

Enforcemnt FY: 2010 **Enforcement Action:** 10/22/2009

Enforcement Detail: St Violation/Reminder Notice

Enforcement Category: Informal

20410 Violation ID: Orig Code:

Enforcemnt FY: **Enforcement Action:** 11/16/2009 **Enforcement Detail:** St Public Notif received **Enforcement Category:** Informal

Violation ID: 20410 Orig Code: S

10/22/2009 Enforcemnt FY: **Enforcement Action:**

Enforcement Detail: St Public Notif requested **Enforcement Category:** Informal

20613 Violation ID: Orig Code: S

02/25/2014 Enforcemnt FY: 2014 **Enforcement Action:**

St Violation/Reminder Notice **Enforcement Detail:**

Enforcement Category: Informal

20613 Violation ID: Orig Code:

Enforcement Action: Enforcemnt FY: 2014 02/25/2014 **Enforcement Detail:** St Public Notif requested **Enforcement Category:** Informal

PORT WENTWORTH PWS name: Population served: 7985 PWS type code: С Violation ID: 20205

Contaminant: 7000 Violation type: 71

Compliance start date: 7/1/2005 0:00:00 Compliance end date: 7/5/2005 0:00:00

Enforcement date: 7/1/2005 0:00:00 Enforcement action: State Intentional no-action Violation measurement: Not Reported

PWS name: PORT WENTWORTH Population served: 7985
PWS type code: Violation ID: 20205

Contaminant: 7000 Violation type: 71
Compliance start date: 7/1/2005 0:00:00 Compliance end date: 7/5/2005 0:00:00

Enforcement date: 7/5/2005 0:00:00 Enforcement action: State Compliance Achieved

Violation measurement: Not Reported

1 - 2 Miles Lower

Organization ID: USGS-GA Organization Name: USGS Georgia Water Science Center

Monitor Location: 36R021 Type: Well Description: Not Reported HUC: 03060109 Drainage Area: Not Reported Drainage Area Units: Not Reported Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported Formation Type: Aquifer: Not Reported Not Reported Aquifer Type: Not Reported Construction Date: Not Reported Well Depth: Not Reported Well Depth Units: Not Reported Well Hole Depth: Not Reported Well Hole Depth Units: Not Reported

H32
North FRDS PWS GA0510136

1 - 2 Miles

Epa region: 04 State: GA

Pwsid: GA0510136 Pwsname: C & S MOBILE ESTATES

Cityserved:Not ReportedStateserved:GAZipserved:Not ReportedFipscounty:13051Status:ClosedRetpopsrvd:80

 Pwssvcconn:
 31
 Psource longname:
 Groundwater

 Pwstype:
 CWS
 Owner:
 Private

 Contact:
 RAHN, CHARLES B
 Contactorgname:
 Not Reported

Contactphone:912-964-8106Contactaddress1:POB 7865Contactaddress2:Not ReportedContactcity:GARDEN CITYContactstate:GAContactzip:314187865

Pwsactivitycode: I

 PWS ID:
 GA0510136
 PWS name:
 C & S MOBILE ESTATES

 Address:
 POB 7865
 Care of:
 C & S MOBILE ESTATES

City: GARDEN CITY State: GA

Zip: 314187865 Owner: C & S MOBILE ESTATES

Source code: Ground water Population: 80

PWS ID: GA0510136 PWS type: Not Reported PWS name: Not Reported PWS address: Not Reported PWS state: PWS city: Not Reported Not Reported PWS zip: Not Reported PWS ID: GA0510136 Activity status: Active Date system activated: Not Reported

Date system deactivated: Not Reported Retail population: 00000080

System name: C & S MOBILE ESTATES System address: C & S MOBILE ESTATES

System address: POB 7865 System city: GARDEN CITY

System state: GA System zip: 314187865

Population served: Under 101 Persons Treatment: Untreated

Latitude: 320953 Longitude: 0811056

State:GALatitude degrees:32Latitude minutes:9Latitude seconds:53.0000Longitude degrees:81Longitude minutes:10

Longitude seconds: 56.0000

 Violation id:
 20101
 Orig code:
 S

 State:
 GA
 Violation Year:
 2001

Contamination code: 3100 Contamination Name: Coliform (TCR)

Violation code: 23 Violation name: Monitoring, Routine Major (TCR)

 Rule code:
 110
 Rule name:
 TCR

 Violation measur:
 0
 Unit of measure:
 Not Reported

 State mcl:
 0
 Cmp bdt:
 04/01/2001

Cmp edt: 04/30/2001

Violation id:20301Orig code:SState:GAViolation Year:2001

Contamination code: 3100 Contamination Name: Coliform (TCR)
Violation code: 22 Violation name: MCL, Monthly (TCR)

Rule code: 110 Rule name: TCR
Violation measur: 0 Unit of measure: Not Reported

 State mcl:
 0
 Cmp bdt:
 06/01/2001

 Cmp edt:
 06/30/2001

Violation id:20401Orig code:SState:GAViolation Year:2001

Contamination code: 7000 Contamination Name: Consumer Confidence Rule
Violation code: 71 Violation name: CCR Complete Failure to Report

Rule code: 420 Rule name: CCR

Violation measur:Not ReportedUnit of measure:Not ReportedState mcl:Not ReportedCmp bdt:07/01/2001Cmp edt:Not Reported

Violation id:20602Orig code:SState:GAViolation Year:2002

Contamination code: 3100 Contamination Name: Coliform (TCR)
Violation code: 22 Violation name: MCL, Monthly (TCR)

Rule code: 110 Rule name: TCR
Violation measur: Not Reported Unit of measure: Not Reported
State mcl: Not Reported Cmp bdt: 07/01/2002

Cmp edt: 07/31/2002

Violation ID: 20101 Orig Code: S

Enforcement FY: 2001 Enforcement Action: 05/24/2001

Enforcement Detail: St Violation/Reminder Notice

Enforcement Category: Informal

Violation ID: 20101 Orig Code: S

Enforcement FY: 2001 Enforcement Action: 05/24/2001 Enforcement Detail: St Public Notif requested Enforcement Category: Informal

Violation ID: 20301 Orig Code: S

Enforcement FY: 2001 Enforcement Action: 07/31/2001

Enforcement Detail: St Violation/Reminder Notice

Enforcement Category: Informal

Violation ID: 20301 Orig Code: S

Enforcement Action:

Enforcemnt FY: 2001

Enforcement Detail: St Public Notif requested Enforcement Category: Informal

Violation ID: 20401 Orig Code: S

Enforcement FY: 2001 Enforcement Action: 09/04/2001 Enforcement Detail: St Compliance achieved Enforcement Category: Resolving

Violation ID: 20401 Orig Code: S

Enforcement FY: 2001 Enforcement Action: 07/02/2001 Enforcement Detail: St Intentional no-action Enforcement Category: Resolving

Violation ID: 20602 Orig Code: S

Enforcement FY: 2002 Enforcement Action: 09/11/2002 Enforcement Detail: St Public Notif received Enforcement Category: Informal

Violation ID: 20602 Orig Code: S

Enforcement FY: 2002 Enforcement Action: 08/27/2002 Enforcement Detail: St Public Notif requested Enforcement Category: Informal

Violation ID: 20602 Orig Code: S

Enforcement FY: 2002 Enforcement Action: 08/27/2002

Enforcement Detail: St Violation/Reminder Notice

Enforcement Category: Informal

ISS FED USGS USGS40000259537

1 - 2 Miles Lower

Lower

Organization ID: USGS-GA Organization Name: USGS Georgia Water Science Center

Monitor Location: 36R019 Type: Well HUC: 03060109 Description: Not Reported Drainage Area: Not Reported Drainage Area Units: Not Reported Not Reported Contrib Drainage Area: Contrib Drainage Area Unts: Not Reported Aquifer: Not Reported Formation Type: Not Reported Aquifer Type: Not Reported Construction Date: Not Reported Well Depth: Well Depth Units: Not Reported Not Reported Well Hole Depth: Not Reported Well Hole Depth Units: Not Reported

H34
North
1 - 2 Miles

FED USGS USGS40000259661

Organization ID: USGS-GA Organization Name: USGS Georgia Water Science Center

Monitor Location: 36R024 Type: Well Description: Not Reported HUC: 03060109 Not Reported Drainage Area: Not Reported Drainage Area Units: Contrib Drainage Area Unts: Not Reported Contrib Drainage Area: Not Reported Aquifer: Not Reported Formation Type: Not Reported Aquifer Type: Construction Date: Not Reported Not Reported Well Depth: Not Reported Well Depth Units: Not Reported Well Hole Depth: Not Reported Well Hole Depth Units: Not Reported

07/31/2001

Map ID Direction Distance

Elevation Database EDR ID Number

J35 SSW

FED USGS USGS40000259527

1 - 2 Miles Lower

Organization ID: USGS-GA Organization Name: USGS Georgia Water Science Center

Monitor Location: 36Q293 Type: Well SAVANNAH, GA, 17 HUC: 03060109 Description: Not Reported Drainage Area: Not Reported Drainage Area Units: Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported

Aquifer: Floridan aquifer system Formation Type: Floridan Aquifer System Aquifer Type: Confined multiple aquifer Construction Date: Not Reported

Aquifer Type: Confined multiple aquifer Construction Date: No. Well Depth: 652 Well Depth Units: ft

Well Hole Depth: Not Reported Well Hole Depth Units: Not Reported

J36
SSW
GA WELLS 0000001899
1 - 2 Miles

Lower

County code: 051 Well num: 36Q293

Remarks: SAVANNAH, GA, 17 Lat: 320716 Lon: 0811137 Latlon datum: NAD27 38.93 NGVD29 Alt: Alt datum: Depth: 652 Depth to casing: 272

Casing dia: 10 Casing matl: Not Reported
Depth to top: 272 Depth to bot: 652
Constitution: Y

Opening type: X Constr date: 194208
Discharge: Not Reported Prim use: P

Aquifer code: 120FLRD Edr id: 0000001899

J37 SSW 1 - 2 Miles Lower

Organization ID: USGS-GA Organization Name: USGS Georgia Water Science Center

Monitor Location: 36Q364 Well Type: HUC: 03060109 Description: Not Reported Drainage Area: Not Reported Drainage Area Units: Not Reported Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported Aquifer: Not Reported Formation Type: Not Reported Not Reported Aquifer Type: Construction Date: Not Reported Well Depth: Not Reported Well Depth Units: Not Reported Well Hole Depth: Not Reported Well Hole Depth Units: Not Reported

H38
North FRDS PWS GA0510137
1 - 2 Miles

Lower

Epa region: 04 State: GA

Pwsid: GA0510137 Pwsname: BARNWELL GARDENS SUBDIVISION

Cityserved: Not Reported Stateserved: GA
Zipserved: Not Reported Fipscounty: 13051

FED USGS

USGS40000259528

Status: Active Retpopsrvd: 97

Pwssvcconn:38Psource longname:GroundwaterPwstype:CWSOwner:Private

Contact: THOMPSON, VINCE Contactorgname: THOMPSON, VINCE Contactphone: 912-964-4770 Contactaddress1: 8144 OLD HWY. 21 Contactaddress2: Not Reported Contactcity: PORT WENTWORTH

Contactstate: GA Contactzip: 31407
Pwsactivitycode: A

PWS ID: GA0510137 PWS name: BARNWELL GARDENS SUBDIVISION Address: 6594 HIGHWAY 21 Care of: BARNWELL GARDENS MHP

City: PORT WENTWORTH State: GA

Zip: 31407 Owner: BARNWELL GARDENS SUBDIVISION

Source code: Ground water Population: 99

PWS ID:GA0510137PWS type:Not ReportedPWS name:Not ReportedPWS address:Not ReportedPWS city:Not ReportedPWS state:Not Reported

PWS city: Not Reported PWS state: Not Reported
PWS zip: Not Reported PWS name: BARNWELL GARDENS SUBDIVISION

PWS zip: Not Reported PWS name: BARI PWS type code: C Retail population served: 97

Contact: THOMPSON, VINCE Contact address: 8144 OLD HWY. 21

Contact address: PORT WENTWORTH Contact city: GA

Contact state: 31 Contact zip: 912-964-47

Contact state. 51 Contact zip. 912-904-4
Contact telephone: Not Reported

PWS ID: GA0510137 Activity status: Active
Date system activated: Not Reported Date system deactivated: Not Reported

Retail population: System name: BARNWELL GARDENS SUBDIVISION

System address: BARNWELL GARDENS S/D System address: 6594 HIGHWAY 21

System city: PORT WENTWORTH System state: GA

System zip: 31407

Population served: Under 101 Persons Treatment: Untreated

Latitude: 320958 Longitude: 0811058

State:GALatitude degrees:32Latitude minutes:9Latitude seconds:58.0000Longitude degrees:81Longitude minutes:10Longitude seconds:58.0000

Violation id:10102Orig code:SState:GAViolation Year:2002

Contamination code: 7000 Contamination Name: Consumer Confidence Rule
Violation code: 71 Violation name: CCR Complete Failure to Report

Rule code: 420 Rule name: CCR

Violation measur:Not ReportedUnit of measure:Not ReportedState mcl:Not ReportedCmp bdt:07/01/2002

Cmp edt: Not Reported

Violation id:10303Orig code:SState:GAViolation Year:2002

Contamination code: 3100 Contamination Name: Coliform (TCR)

Violation code: 25 Violation name: Monitoring, Repeat Major (TCR)

Rule code: 110 Rule name: TCR
Violation measur: Not Reported Unit of measure: Not Reported
State mcl: Not Reported Cmp bdt: 12/01/2002

State mcl: Not Reported Cmp Cmp edt: 12/31/2002

Violation id:10503Orig code:SState:GAViolation Year:2003

Contamination code: 7000 Contamination Name: Consumer Confidence Rule

Violation code: 71 Violation name: CCR Complete Failure to Report

Rule code:420Rule name:CCRViolation measur:Not ReportedUnit of measure:Not ReportedState mcl:Not ReportedCmp bdt:07/01/2003

Cmp edt: Not Reported

Violation id:10604Orig code:SState:GAViolation Year:2004

Contamination code: 7000 Contamination Name: Consumer Confidence Rule
Violation code: 71 Violation name: CCR Complete Failure to Report

Rule code: 420 Rule name: CCR

Violation measur:Not ReportedUnit of measure:Not ReportedState mcl:Not ReportedCmp bdt:07/01/2004Cmp edt:Not Reported

Violation id:10705Orig code:SState:GAViolation Year:2005

Contamination code: 3100 Contamination Name: Coliform (TCR)

Violation code: 23 Violation name: Monitoring, Routine Major (TCR)

Rule code: 110 Rule name: TCR

Violation measur:Not ReportedUnit of measure:Not ReportedState mcl:Not ReportedCmp bdt:05/01/2005

Cmp edt: 05/31/2005

Violation id:10805Orig code:SState:GAViolation Year:2005

Contamination code: 7000 Contamination Name: Consumer Confidence Rule
Violation code: 71 Violation name: CCR Complete Failure to Report

Rule code:420Rule name:CCRViolation measur:Not ReportedUnit of measure:Not ReportedState mcl:Not ReportedCmp bdt:07/01/2005

Cmp edt: Not Reported

Violation id:10906Orig code:SState:GAViolation Year:2005

Contamination code: 3100 Contamination Name: Coliform (TCR)

Violation code: 23 Violation name: Monitoring, Routine Major (TCR)

Rule code: 110 Rule name: TCR
Violation measur: Not Reported Unit of measure: Not Reported

Violation measur: Not Reported Unit of measure: Not Reported

State mcl: Not Reported Cmp bdt: 12/01/2005

Cmp edt: 12/31/2005

Violation id:11006Orig code:SState:GAViolation Year:2006

Contamination code: 3100 Contamination Name: Coliform (TCR)

Violation code: 23 Violation name: Monitoring, Routine Major (TCR)

Rule code: 110 Rule name: TCR

Violation measur:Not ReportedUnit of measure:Not ReportedState mcl:Not ReportedCmp bdt:01/01/2006

Cmp edt: 01/31/2006

Violation id:11106Orig code:SState:GAViolation Year:2006

Contamination code: 7000 Contamination Name: Consumer Confidence Rule
Violation code: 71 Violation name: CCR Complete Failure to Report

Rule code:420Rule name:CCRViolation measur:Not ReportedUnit of measure:Not ReportedState mcl:Not ReportedCmp bdt:07/01/2006

Cmp edt: Not Reported

Violation id:11207Orig code:SState:GAViolation Year:2007

Contamination code: 7000 Contamination Name: Consumer Confidence Rule Violation code: 71 Violation name: CCR Complete Failure to Report

Rule code: 420 Rule name: CCR Not Reported Not Reported Violation measur: Unit of measure: 07/01/2007 State mcl: Not Reported Cmp bdt:

Cmp edt: Not Reported

Violation id: 11308 Orig code: S GA Violation Year: 2008 State:

3100 Contamination code: Contamination Name: Coliform (TCR) Monitoring, Routine Major (TCR) Violation code: 23 Violation name:

110 Rule code: Rule name:

Violation measur: Not Reported Unit of measure: Not Reported Not Reported 03/01/2008 State mcl: Cmp bdt: 03/31/2008 Cmp edt:

Violation id: 11408 Orig code: Violation Year: 2008 State: GΑ

Contamination code: 7000 Contamination Name: Consumer Confidence Rule Violation code: 71 Violation name: CCR Complete Failure to Report

420 Rule code: Rule name:

Violation measur: Not Reported Unit of measure: Not Reported 07/01/2008 State mcl: Not Reported Cmp bdt:

Cmp edt: Not Reported

Cmp edt:

Violation id: 11508 Orig code: State: GΑ Violation Year: 2008

3100 Coliform (TCR) Contamination code: Contamination Name:

Violation code: 26 Violation name: Monitoring, Repeat Minor (TCR)

Rule code: 110 Rule name: **TCR**

Violation measur: Not Reported Not Reported Unit of measure: State mcl: Not Reported Cmp bdt: 06/01/2008 06/30/2008

Violation id: 11608 Orig code: S State: GA Violation Year: 2008

Contamination code: Coliform (TCR) 3100 Contamination Name:

Monitoring, Routine Minor (TCR) Violation code: 24 Violation name:

Rule code: 110 Rule name: **TCR** Not Reported Violation measur: Unit of measure: Not Reported

State mcl: Not Reported Cmp bdt: 07/01/2008 Cmp edt: 07/31/2008

11709 S Violation id: Orig code: GΑ Violation Year: 2008 State:

Contamination code: 3100 Contamination Name: Coliform (TCR) 22 Violation name: MCL, Monthly (TCR) Violation code:

110 **TCR** Rule code: Rule name:

Violation measur: Not Reported Unit of measure: Not Reported State mcl: Not Reported Cmp bdt: 09/01/2008

09/30/2008 Cmp edt:

Violation id: 11809 Orig code: S Violation Year: 2008 State: GΑ

Contamination code: 3100 Contamination Name: Coliform (TCR)

Monitoring, Routine Minor (TCR) Violation code: 24 Violation name:

110 Rule code: Rule name: **TCR**

Violation measur: Not Reported Unit of measure: Not Reported State mcl: Not Reported Cmp bdt: 10/01/2008 Cmp edt: 10/31/2008

Violation id: 11909 Orig code: S

State: GA Violation Year: 2008
Contamination code: 1040 Contamination Name: Nitrate

Violation code: 03 Violation name: Monitoring, Regular

Rule code:331Rule name:NitratesViolation measur:Not ReportedUnit of measure:Not ReportedState mcl:Not ReportedCmp bdt:01/01/2008

Cmp edt: 12/31/2008

Violation id:12009Orig code:SState:GAViolation Year:2009

Contamination code: 7000 Contamination Name: Consumer Confidence Rule Violation code: 71 Violation name: CCR Complete Failure to Report

Rule code:420Rule name:CCRViolation measur:Not ReportedUnit of measure:Not ReportedState mcl:Not ReportedCmp bdt:07/01/2009

Cmp edt: Not Reported

Violation id:12109Orig code:SState:GAViolation Year:2009

Contamination code: 3100 Contamination Name: Coliform (TCR)

Violation code: 24 Violation name: Monitoring, Routine Minor (TCR)

Rule code: 110 Rule name: TCR

Violation measur:Not ReportedUnit of measure:Not ReportedState mcl:Not ReportedCmp bdt:07/01/2009

Cmp edt: 07/31/2009

Violation id:12210Orig code:SState:GAViolation Year:2009

Contamination code: 5000 Contamination Name: Lead and Copper Rule

Violation code: 52 Violation name: Follow-up Or Routine LCR Tap M/R

Rule code:350Rule name:LCRViolation measur:Not ReportedUnit of measure:Not ReportedState mcl:Not ReportedCmp bdt:10/01/2009

Cmp edt: Not Reported

PWS currently has or had major violation(s) or enforcement:Yes

 Violation ID:
 9200001
 Violation source ID:
 Not Reported

 PWS telephone:
 Not Reported
 Contaminant:
 COLIFORM (TCR)

Violation type: Max Contaminant Level, Monthly (TCR)

Violation start date: 040192 Violation end date: 043092 Violation period (months): 001 Not Reported Violation awareness date: Major violator: Not Reported Not Reported Maximum contaminant level: Number of required samples: Not Reported Number of samples taken: Not Reported Analysis method: Not Reported Analysis result: Not Reported

PWS currently has or had major violation(s) or enforcement. Yes

Violation ID:9200002Violation source ID:Not ReportedPWS telephone:Not ReportedContaminant:COLIFORM (TCR)

Violation type: Monitoring, Repeat Minor (TCR)

043092 Violation start date: 040192 Violation end date: Violation period (months): 001 Violation awareness date: Not Reported Not Reported Major violator: No Maximum contaminant level: Number of required samples: Not Reported Number of samples taken: Not Reported Analysis method: Not Reported Analysis result: Not Reported

Violation ID: 100 Orig Code: S

Enforcement FY: 2000 Enforcement Action: 02/17/2000 Enforcement Detail: St Public Notif requested Enforcement Category: Informal

Violation ID: Orig Code: S

Enforcemnt FY: 2000 02/17/2000 **Enforcement Action:**

Enforcement Detail: St Violation/Reminder Notice **Enforcement Category:** Informal

Violation ID: 100 Orig Code:

03/27/2000 Enforcemnt FY: 2000 **Enforcement Action: Enforcement Detail:** St Public Notif received **Enforcement Category:** Informal

Violation ID: 10102 Orig Code:

Enforcemnt FY: 2002 **Enforcement Action:** 07/18/2002 **Enforcement Category: Enforcement Detail:** St Compliance achieved Resolving

Violation ID: 10102 Orig Code:

Enforcemnt FY: 2002 **Enforcement Action:** 07/02/2002

Enforcement Detail: St Violation/Reminder Notice

Enforcement Category: Informal

Violation ID: 10303 Orig Code:

Enforcemnt FY: **Enforcement Action:** 01/21/2003 2003

Enforcement Detail: St Public Notif requested **Enforcement Category:** Informal

Violation ID: 10303 Orig Code:

01/21/2003 Enforcemnt FY: 2003 **Enforcement Action:**

St Violation/Reminder Notice **Enforcement Detail:**

Enforcement Category: Informal

10503 Violation ID: Orig Code:

Enforcemnt FY: 2003 08/11/2003 **Enforcement Action:**

Enforcement Detail: State CCR Follow-up Notice

Enforcement Category: Informal

Violation ID: 10503 Orig Code: S

09/17/2003 Enforcemnt FY: 2003 Enforcement Action: **Enforcement Detail:** St Compliance achieved **Enforcement Category:** Resolving

Violation ID: 10604 Orig Code:

Enforcemnt FY: 2004 **Enforcement Action:** 09/14/2004 St Compliance achieved **Enforcement Category: Enforcement Detail:** Resolving

Violation ID: 10604 Orig Code:

Enforcemnt FY: 2004 **Enforcement Action:** 08/20/2004

State CCR Follow-up Notice **Enforcement Detail:**

Enforcement Category: Informal

Violation ID: 10705 Orig Code:

Enforcemnt FY: 2006 **Enforcement Action:** 08/21/2006 **Enforcement Detail:** St Public Notif received **Enforcement Category:** Informal

Violation ID: 10705 Orig Code:

Enforcemnt FY: 2005 **Enforcement Action:** 06/27/2005

St Violation/Reminder Notice **Enforcement Detail: Enforcement Category:** Informal

Violation ID: 10705 Orig Code: 07/14/2006 Enforcemnt FY: 2006 **Enforcement Action:**

Enforcement Detail: St AO (w/penalty) issued **Enforcement Category:** Formal

Violation ID: 10705 Orig Code:

Enforcemnt FY: 2006 **Enforcement Action:**

05/30/2006 **Enforcement Detail:** St Compliance Meeting conducted

Enforcement Category: Informal

Violation ID: 10705 Orig Code:

Enforcemnt FY: 2006 **Enforcement Action:** 05/09/2006 **Enforcement Detail:** St Formal NOV issued **Enforcement Category:** Informal

Violation ID: 10705 Orig Code:

Enforcemnt FY: 2007 **Enforcement Action:** 03/15/2007 **Enforcement Detail:** St Formal NOV issued **Enforcement Category:** Informal

Violation ID: 10705 Orig Code:

Enforcemnt FY: 2005 **Enforcement Action:** 06/27/2005 **Enforcement Detail:** St Public Notif requested **Enforcement Category:** Informal

Violation ID: 10805 Orig Code: S

Enforcemnt FY: 2006 **Enforcement Action:** 07/14/2006 **Enforcement Detail:** St AO (w/penalty) issued **Enforcement Category:** Formal

Violation ID: 10805 Orig Code:

Enforcemnt FY: 2005 08/01/2005 **Enforcement Action:**

State CCR Follow-up Notice **Enforcement Detail:**

Enforcement Category: Informal

Violation ID: 10805 Orig Code:

03/15/2007 Enforcemnt FY: 2007 **Enforcement Action:**

St Formal NOV issued **Enforcement Detail: Enforcement Category:** Informal

Violation ID: 10805 Orig Code:

08/29/2006 Enforcemnt FY: 2006 **Enforcement Action: Enforcement Detail:**

St Compliance achieved **Enforcement Category:** Resolving

Violation ID: 10805 Orig Code:

Enforcemnt FY: 2006 **Enforcement Action:** 10/03/2005

Enforcement Detail: State CCR Follow-up Notice

Enforcement Category: Informal

Violation ID: 10906 Orig Code:

01/23/2006 Enforcemnt FY: 2006 **Enforcement Action: Enforcement Detail:** St Public Notif requested **Enforcement Category:** Informal

Violation ID: 10906 Orig Code: S

05/09/2006 Enforcemnt FY: 2006 **Enforcement Action: Enforcement Detail:** St Formal NOV issued **Enforcement Category:** Informal

Violation ID: 10906 Orig Code:

Enforcemnt FY: 2006 **Enforcement Action:** 05/30/2006

Enforcement Detail: St Compliance Meeting conducted

Enforcement Category: Informal

Violation ID: 10906 Orig Code: S

03/15/2007 Enforcemnt FY: 2007 **Enforcement Action:**

Enforcement Detail: St Formal NOV issued **Enforcement Category:** Informal

10906 Violation ID: Orig Code: S

08/21/2006 Enforcemnt FY: 2006 **Enforcement Action:**

Enforcement Detail: St Public Notif received **Enforcement Category:** Informal

10906 Orig Code: Violation ID: S

Enforcement Action: 07/14/2006 Enforcemnt FY: 2006 **Enforcement Detail:** St AO (w/penalty) issued **Enforcement Category:** Formal

10906 Violation ID: Orig Code: S

Enforcemnt FY: **Enforcement Action:** 01/23/2006 2006

Enforcement Detail: St Violation/Reminder Notice

Enforcement Category: Informal

Violation ID: 11006 Orig Code:

02/22/2006 Enforcemnt FY: 2006 **Enforcement Action:**

St Violation/Reminder Notice **Enforcement Detail: Enforcement Category:** Informal

Violation ID: 11006 Orig Code:

02/22/2006 Enforcemnt FY: **Enforcement Action:** 2006 **Enforcement Detail:** St Public Notif requested **Enforcement Category:** Informal

Violation ID: 11006 Orig Code: S

Enforcemnt FY: 2006 **Enforcement Action:** 05/09/2006 St Formal NOV issued **Enforcement Detail: Enforcement Category:** Informal

Violation ID: 11006 Orig Code: S

05/30/2006 Enforcemnt FY: 2006 **Enforcement Action:**

St Compliance Meeting conducted **Enforcement Detail:**

Enforcement Category: Informal

Violation ID: 11006 Orig Code:

Enforcemnt FY: 2006 **Enforcement Action:** 08/21/2006 **Enforcement Detail:** St Public Notif received **Enforcement Category:** Informal

Violation ID: 11006 Orig Code: Enforcemnt FY: **Enforcement Action:** 03/15/2007

Enforcement Detail: St Formal NOV issued **Enforcement Category:** Informal

11006 Violation ID: Orig Code: S

07/14/2006 Enforcemnt FY: 2006 **Enforcement Action:**

Enforcement Category: Enforcement Detail: St AO (w/penalty) issued Formal

Orig Code: S Violation ID: 11106

Enforcement Action: 08/15/2006 Enforcemnt FY: 2006

Enforcement Detail: State CCR Follow-up Notice

Enforcement Category: Informal

Violation ID: 11106 Orig Code:

03/15/2007 Enforcemnt FY: 2007 **Enforcement Action: Enforcement Detail:** St Formal NOV issued **Enforcement Category:** Informal

Violation ID: 11106 Orig Code:

08/20/2006 Enforcemnt FY: Enforcement Action: 2006 **Enforcement Detail:** St Compliance achieved **Enforcement Category:** Resolving

Violation ID: 11106 Orig Code:

Enforcemnt FY: **Enforcement Action:** 07/14/2006

Enforcement Detail: Formal St AO (w/penalty) issued **Enforcement Category:**

Violation ID: 11207 Orig Code: S

09/28/2007 Enforcemnt FY: 2007 **Enforcement Action:**

Enforcement Detail: St Compliance achieved **Enforcement Category:** Resolving

Violation ID: 11207 Orig Code:

Enforcemnt FY: 2007 **Enforcement Action:** 08/31/2007

State CCR Follow-up Notice Enforcement Detail:

Enforcement Category: Informal

Violation ID: 11308 Orig Code:

02/20/2009 Enforcemnt FY: 2009 **Enforcement Action:** St AO (w/penalty) issued **Enforcement Detail: Enforcement Category:** Formal

Violation ID:11308Orig Code:SEnforcemnt FY:2009Enforcement Action:02/23/2009Enforcement Detail:St AO (w/penalty) issuedEnforcement Category:FormalViolation ID:11308Orig Code:S

Enforcement FY: 2008 Enforcement Action: 04/18/2008

Enforcement Detail: St Violation/Reminder Notice Enforcement Category: Informal

Violation ID:11308Orig Code:SEnforcemnt FY:2008Enforcement Action:04/18/2008Enforcement Detail:St Public Notif requestedEnforcement Category:Informal

Violation ID: 11408 Orig Code: S

Enforcement FY: 2010 Enforcement Action: 03/30/2010 Enforcement Detail: St AO (w/penalty) issued Enforcement Category: Formal

Violation ID: 11408 Orig Code: S

Enforcement FY: 2010 Enforcement Action: 05/03/2010

Enforcement Detail: St Compliance achieved Enforcement Category: Resolving

Violation ID: 11408 Orig Code: S

Enforcement FY: 2008 Enforcement Action: 08/12/2008

Enforcement Detail: State CCR Follow-up Notice

Enforcement Category: Informal

Violation ID: 11508 Orig Code: S

Enforcement FY: 2008 Enforcement Action: 07/18/2008

Enforcement Detail: St Violation/Reminder Notice

Enforcement Category: Informal

Violation ID: 11508 Orig Code: S

Enforcement FY: 2008 Enforcement Action: 07/18/2008
Enforcement Detail: St Public Notif requested Enforcement Category: Informal

Violation ID: 11508 Orig Code: S

Enforcement FY: 2009 Enforcement Action: 02/20/2009
Enforcement Detail: St AO (w/penalty) issued Enforcement Category: Formal

Violation ID: 11508 Orig Code: S

Enforcement FY: 2009 Enforcement Action: 02/23/2009
Enforcement Detail: St AO (w/penalty) issued Enforcement Category: Formal

Violation ID: 11608 Orig Code: S

Enforcement FY: 2009 Enforcement Action: 02/20/2009

Enforcement Detail: St AO (w/penalty) issued Enforcement Category: Formal

Violation ID: 11608 Orig Code: S

Enforcement FY: 2008 Enforcement Action: 08/23/2008

Enforcement Detail: St Public Notif requested Enforcement Category: Informal

Violation ID: 11608 Orig Code: S

Enforcement FY: 2009 Enforcement Action: 02/23/2009

Enforcement Detail: St AO (w/penalty) issued Enforcement Category: Formal

Violation ID: 11608 Orig Code: S

Enforcement FY: 2008 Enforcement Action: 08/23/2008

Enforcement Detail: St Violation/Reminder Notice

Enforcement Category: Informal

Violation ID: 11709 Orig Code: S

Enforcement FY: 2009 Enforcement Action: 02/23/2009

Enforcement Detail: St AO (w/penalty) issued **Enforcement Category:** Formal Violation ID: 11709 Orig Code: S 10/06/2008 Enforcemnt FY: 2009 **Enforcement Action: Enforcement Detail:** St Public Notif requested **Enforcement Category:** Informal Violation ID: 11709 Orig Code: Enforcemnt FY: 2009 **Enforcement Action:** 02/20/2009 **Enforcement Detail:** St AO (w/penalty) issued **Enforcement Category:** Formal Violation ID: 11709 Orig Code: Enforcemnt FY: 2009 **Enforcement Action:** 10/06/2008 **Enforcement Detail:** St Violation/Reminder Notice **Enforcement Category:** Informal Violation ID: 11809 Orig Code: S 11/20/2008 Enforcemnt FY: 2009 **Enforcement Action:** St Public Notif requested **Enforcement Category: Enforcement Detail:** Informal Violation ID: 11809 Orig Code: 2009 **Enforcement Action:** 02/20/2009 Enforcemnt FY: **Enforcement Detail:** St AO (w/penalty) issued **Enforcement Category:** Formal Violation ID: 11809 Orig Code: S Enforcemnt FY: 2009 **Enforcement Action:** 11/20/2008 **Enforcement Detail:** St Violation/Reminder Notice **Enforcement Category:** Informal 11809 Violation ID: Orig Code: S 02/23/2009 Enforcemnt FY: 2009 **Enforcement Action: Enforcement Category: Enforcement Detail:** St AO (w/penalty) issued Formal 11909 Orig Code: S Violation ID: 03/30/2010 Enforcemnt FY: 2010 **Enforcement Action: Enforcement Detail:** St AO (w/penalty) issued **Enforcement Category: Formal** Violation ID: Orig Code: 11909 Enforcement Action: 10/12/2010 Enforcemnt FY: 2011 **Enforcement Detail:** St Compliance achieved **Enforcement Category:** Resolving Violation ID: 11909 Orig Code: 04/07/2010 Enforcemnt FY: 2010 **Enforcement Action:** St Public Notif received **Enforcement Category: Enforcement Detail:** Informal Violation ID: 11909 Orig Code: Enforcemnt FY: 2009 **Enforcement Action:** 03/20/2009 Enforcement Detail: St Violation/Reminder Notice Informal **Enforcement Category:** Violation ID: 11909 Orig Code: S 03/20/2009 Enforcemnt FY: 2009 **Enforcement Action: Enforcement Detail:** St Public Notif requested **Enforcement Category:** Informal Violation ID: 12009 Orig Code: S 05/03/2010 Enforcemnt FY: **Enforcement Action: Enforcement Detail:** St Compliance achieved **Enforcement Category:** Resolving Violation ID: 12009 Orig Code: Enforcemnt FY: 2010 **Enforcement Action:** 10/07/2009 State CCR Follow-up Notice **Enforcement Detail:**

Enforcement Category:

Informal

Violation ID: 12009 Orig Code: S

Enforcement FY: 2010 Enforcement Action: 03/30/2010 Enforcement Detail: St AO (w/penalty) issued Enforcement Category: Formal

Violation ID: 12009 Orig Code: S

Enforcemnt FY: 2009 Enforcement Action: 08/05/2009

Enforcement Detail: State CCR Follow-up Notice

Enforcement Category: Informal

Violation ID: 12109 Orig Code: S

Enforcemnt FY: 2009 Enforcement Action: 08/19/2009

Enforcement Detail: St Violation/Reminder Notice

Enforcement Category: Informal

Violation ID: 12109 Orig Code: S

Enforcement FY: 2009 Enforcement Action: 09/03/2009 Enforcement Detail: St Public Notif received Enforcement Category: Informal

Violation ID: 12109 Orig Code: S

Enforcement FY: 2009 Enforcement Action: 08/19/2009
Enforcement Detail: St Public Notif requested Enforcement Category: Informal

Violation ID: 12210 Orig Code: S

Enforcement FY: 2010 Enforcement Action: 09/14/2010 Enforcement Detail: St Compliance achieved Enforcement Category: Resolving

Violation ID: 12210 Orig Code: S

Enforcement FY: 2010 Enforcement Action: 05/12/2010 Enforcement Detail: St Public Notif requested Enforcement Category: Informal

Violation ID: 12210 Orig Code: S

Enforcemnt FY: 2010 Enforcement Action: 05/12/2010

Enforcement Detail: St Violation/Reminder Notice

Enforcement Category: Informal

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C Violation ID: 10102 Contaminant: 7000

Violation type:71Compliance start date:7/1/2002 0:00:00Compliance end date:7/18/2002 0:00:00Enforcement date:7/18/2002 0:00:00Enforcement action:State Compliance AchievedViolation measurement:Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C Violation ID: 10102 Contaminant: 7000

 Violation type:
 71
 Compliance start date:
 7/1/2002 0:00:00

 Compliance end date:
 7/18/2002 0:00:00
 Enforcement date:
 7/2/2002 0:00:00

Enforcement action: State Violation/Reminder Notice

Violation measurement: Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C

Violation ID: 10303 Contaminant: COLIFORM (TCR)

Violation type: Monitoring, Repeat Major (TCR)

Enforcement date: 1/21/2003 0:00:00 Enforcement action: State Violation/Reminder Notice

Violation measurement: Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C

Violation ID: 10303 Contaminant: COLIFORM (TCR)

Violation type: Monitoring, Repeat Major (TCR)

Compliance start date: 12/1/2002 0:00:00 Compliance end date: 12/31/2002 0:00:00

Enforcement date: 1/21/2003 0:00:00 Enforcement action: State Public Notif Requested

Violation measurement: Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C
Violation ID: 10503 Contaminant: 7000

Violation type:71Compliance start date:7/1/2003 0:00:00Compliance end date:9/17/2003 0:00:00Enforcement date:8/11/2003 0:00:00Enforcement action:SIIViolation measurement:Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C Violation ID: 10503 Contaminant: 7000

Violation type:71Compliance start date:7/1/2003 0:00:00Compliance end date:9/17/2003 0:00:00Enforcement date:9/17/2003 0:00:00Enforcement action:State Compliance AchievedViolation measurement:Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C Violation ID: 10604 Contaminant: 7000

Violation type:71Compliance start date:7/1/2004 0:00:00Compliance end date:9/14/2004 0:00:00Enforcement date:8/20/2004 0:00:00Enforcement action:SIIViolation measurement:Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C Violation ID: 10604 Contaminant: 7000

Violation type:71Compliance start date:7/1/2004 0:00:00Compliance end date:9/14/2004 0:00:00Enforcement date:9/14/2004 0:00:00Enforcement action:State Compliance AchievedViolation measurement:Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C

Violation ID: 10705 Contaminant: COLIFORM (TCR)

Violation type: Monitoring, Routine Major (TCR)

Compliance start date: 5/1/2005 0:00:00 Compliance end date: 5/31/2005 0:00:00

Enforcement date: 3/15/2007 0:00:00 Enforcement action: State Formal NOV Issued

Violation measurement: Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C

Violation ID: 10705 Contaminant: COLIFORM (TCR)

Violation type: Monitoring, Routine Major (TCR)

Compliance start date: 5/1/2005 0:00:00 Compliance end date: 5/31/2005 0:00:00

Enforcement date: 5/30/2006 0:00:00 Enforcement action: State Compliance Meeting Conducted

Violation measurement: Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C

Violation ID: 10705 Contaminant: COLIFORM (TCR)

Violation type: Monitoring, Routine Major (TCR)

Compliance start date: 5/1/2005 0:00:00 Compliance end date: 5/31/2005 0:00:00 Enforcement date: 5/9/2006 0:00:00 Enforcement action: State Formal NOV Issued

Violation measurement: Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C

Violation ID: 10705 Contaminant: COLIFORM (TCR)

Violation type: Monitoring, Routine Major (TCR)

Compliance start date: 5/1/2005 0:00:00 Compliance end date: 5/31/2005 0:00:00

Enforcement date: 6/27/2005 0:00:00 Enforcement action: State Violation/Reminder Notice

Violation measurement: Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C

Violation ID: 10705 Contaminant: COLIFORM (TCR)

Violation type: Monitoring, Routine Major (TCR)

Enforcement date: 6/27/2005 0:00:00 Enforcement action: State Public Notif Requested

Violation measurement: Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C

Violation ID: 10705 Contaminant: COLIFORM (TCR)

Violation type: Monitoring, Routine Major (TCR)

Enforcement date: 7/14/2006 0:00:00 Enforcement action: State AO (w/penalty) Issued

Violation measurement: Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C

Violation ID: 10705 Contaminant: COLIFORM (TCR)

Violation type: Monitoring, Routine Major (TCR)

Enforcement date: 8/21/2006 0:00:00 Enforcement action: State Public Notif Received

Violation measurement: Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C Violation ID: 10805 Contaminant: 7000

Violation type:71Compliance start date:7/1/2005 0:00:00Compliance end date:8/29/2006 0:00:00Enforcement date:10/3/2005 0:00:00Enforcement action:SIIViolation measurement:Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C
Violation ID: 10805 Contaminant: 7000

Violation type:71Compliance start date:7/1/2005 0:00:00Compliance end date:8/29/2006 0:00:00Enforcement date:3/15/2007 0:00:00Enforcement action:State Formal NOV IssuedViolation measurement:Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C Violation ID: 10805 Contaminant: 7000

 Violation type:
 71
 Compliance start date:
 7/1/2005 0:00:00

 Compliance end date:
 8/29/2006 0:00:00
 Enforcement date:
 7/14/2006 0:00:00

Enforcement action: State AO (w/penalty) Issued

Violation measurement: Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C
Violation ID: 10805 Contaminant: 7000

Violation type:71Compliance start date:7/1/2005 0:00:00Compliance end date:8/29/2006 0:00:00Enforcement date:8/1/2005 0:00:00Enforcement action:SIIViolation measurement:Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C
Violation ID: 10805 Contaminant: 7000

Violation type:71Compliance start date:7/1/2005 0:00:00Compliance end date:8/29/2006 0:00:00Enforcement date:8/29/2006 0:00:00Enforcement action:State Compliance AchievedViolation measurement:Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C

Violation ID: 10906 Contaminant: COLIFORM (TCR)

Violation type: Monitoring, Routine Major (TCR)

Enforcement date: 1/23/2006 0:00:00 Enforcement action: State Violation/Reminder Notice

Violation measurement: Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C

Violation ID: 10906 Contaminant: COLIFORM (TCR)

Violation type: Monitoring, Routine Major (TCR)

Enforcement date: 1/23/2006 0:00:00 Enforcement action: State Public Notif Requested

Violation measurement: Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C

Violation ID: 10906 Contaminant: COLIFORM (TCR)

Violation type: Monitoring, Routine Major (TCR)

Compliance start date: 12/1/2005 0:00:00 Compliance end date: 12/31/2005 0:00:00 Enforcement date: 3/15/2007 0:00:00 Enforcement action: State Formal NOV Issued

Violation measurement: Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C

Violation ID: 10906 Contaminant: COLIFORM (TCR)

Violation type: Monitoring, Routine Major (TCR)

Enforcement date: 5/30/2006 0:00:00 Enforcement action: State Compliance Meeting Conducted

Violation measurement: Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C

Violation ID: 10906 Contaminant: COLIFORM (TCR)

Violation type: Monitoring, Routine Major (TCR)

Violation measurement: Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C

Violation ID: 10906 Contaminant: COLIFORM (TCR)

Violation type: Monitoring, Routine Major (TCR)

Compliance start date: 12/1/2005 0:00:00 Compliance end date: 12/31/2005 0:00:00

Enforcement date: 7/14/2006 0:00:00 Enforcement action: State AO (w/penalty) Issued

Violation measurement: Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C

Violation ID: 10906 Contaminant: COLIFORM (TCR)

Violation type: Monitoring, Routine Major (TCR)

Compliance start date: 12/1/2005 0:00:00 Compliance end date: 12/31/2005 0:00:00 Enforcement date: 8/21/2006 0:00:00 Enforcement action: State Public Notif Received

Violation measurement: Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C

Violation ID: 11006 Contaminant: COLIFORM (TCR)

Violation type: Monitoring, Routine Major (TCR)

Compliance start date: 1/1/2006 0:00:00 Compliance end date: 1/31/2006 0:00:00

Enforcement date: 2/22/2006 0:00:00 Enforcement action: State Violation/Reminder Notice

Violation measurement: Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C

Violation ID: 11006 Contaminant: COLIFORM (TCR)

Violation type: Monitoring, Routine Major (TCR)

Compliance start date: 1/1/2006 0:00:00 Compliance end date: 1/31/2006 0:00:00

Enforcement date: 2/22/2006 0:00:00 Enforcement action: State Public Notif Requested

Violation measurement: Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C

Violation ID: 11006 Contaminant: COLIFORM (TCR)

Violation type: Monitoring, Routine Major (TCR)

Compliance start date: 1/1/2006 0:00:00 Compliance end date: 1/31/2006 0:00:00 Enforcement date: 3/15/2007 0:00:00 Enforcement action: State Formal NOV Issued

Violation measurement: Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C

Violation ID: 11006 Contaminant: COLIFORM (TCR)

Violation type: Monitoring, Routine Major (TCR)

Compliance start date: 1/1/2006 0:00:00 Compliance end date: 1/31/2006 0:00:00

Enforcement date: 5/30/2006 0:00:00 Enforcement action: State Compliance Meeting Conducted

Violation measurement: Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C

Violation ID: 11006 Contaminant: COLIFORM (TCR)

Violation type: Monitoring, Routine Major (TCR)

Compliance start date: 1/1/2006 0:00:00 Compliance end date: 1/31/2006 0:00:00 Enforcement date: 5/9/2006 0:00:00 Enforcement action: State Formal NOV Issued

Violation measurement: Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C

Violation ID: 11006 Contaminant: COLIFORM (TCR)

Violation type: Monitoring, Routine Major (TCR)

Compliance start date: 1/1/2006 0:00:00 Compliance end date: 1/31/2006 0:00:00

Enforcement date: 7/14/2006 0:00:00 Enforcement action: State AO (w/penalty) Issued

Violation measurement: Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C

Violation ID: 11006 Contaminant: COLIFORM (TCR)

Violation type: Monitoring, Routine Major (TCR)

Compliance start date: 1/1/2006 0:00:00 Compliance end date: 1/31/2006 0:00:00

Enforcement date: 8/21/2006 0:00:00 Enforcement action: State Public Notif Received

Violation measurement: Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C Violation ID: 11106 Contaminant: 7000

Violation type:71Compliance start date:7/1/2006 0:00:00Compliance end date:8/20/2006 0:00:00Enforcement date:3/15/2007 0:00:00Enforcement action:State Formal NOV IssuedViolation measurement:Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C
Violation ID: 11106 Contaminant: 7000

 Violation type:
 71
 Compliance start date:
 7/1/2006 0:00:00

 Compliance end date:
 8/20/2006 0:00:00
 Enforcement date:
 7/14/2006 0:00:00

Enforcement action: State AO (w/penalty) Issued

Violation measurement: Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C Violation ID: 11106 Contaminant: 7000

Violation type:71Compliance start date:7/1/2006 0:00:00Compliance end date:8/20/2006 0:00:00Enforcement date:8/15/2006 0:00:00Enforcement action:SIIViolation measurement:Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C
Violation ID: 11106 Contaminant: 7000

Violation type:71Compliance start date:7/1/2006 0:00:00Compliance end date:8/20/2006 0:00:00Enforcement date:8/20/2006 0:00:00Enforcement action:State Compliance AchievedViolation measurement:Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C Violation ID: 11207 Contaminant: 7000

Violation type:71Compliance start date:7/1/2007 0:00:00Compliance end date:9/28/2007 0:00:00Enforcement date:8/31/2007 0:00:00Enforcement action:SIIViolation measurement:Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C Violation ID: 11207 Contaminant: 7000

Violation type:71Compliance start date:7/1/2007 0:00:00Compliance end date:9/28/2007 0:00:00Enforcement date:9/28/2007 0:00:00Enforcement action:State Compliance AchievedViolation measurement:Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C

Violation ID: 11308 Contaminant: COLIFORM (TCR)

Violation type: Monitoring, Routine Major (TCR)

Compliance start date: 3/1/2008 0:00:00 Compliance end date: 3/31/2008 0:00:00

Enforcement date: 4/18/2008 0:00:00 Enforcement action: State Violation/Reminder Notice

Violation measurement: Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C

Violation ID: 11308 Contaminant: COLIFORM (TCR)

Violation type: Monitoring, Routine Major (TCR)

Compliance start date: 3/1/2008 0:00:00 Compliance end date: 3/31/2008 0:00:00

Enforcement date: 4/18/2008 0:00:00 Enforcement action: State Public Notif Requested

Violation measurement: Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C Violation ID: 11408 Contaminant: 7000

Violation type:71Compliance start date:7/1/2008 0:00:00Compliance end date:12/31/2025 0:00:00Enforcement date:8/12/2008 0:00:00Enforcement action:SIIViolation measurement:Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C

Violation ID: 11508 Contaminant: COLIFORM (TCR)

Violation type: Monitoring, Repeat Minor (TCR)

Compliance start date: 6/1/2008 0:00:00 Compliance end date: 6/30/2008 0:00:00

Enforcement date: 7/18/2008 0:00:00 Enforcement action: State Violation/Reminder Notice

Violation measurement: Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C

Violation ID: 11508 Contaminant: COLIFORM (TCR)

Violation type: Monitoring, Repeat Minor (TCR)

Compliance start date: 6/1/2008 0:00:00 Compliance end date: 6/30/2008 0:00:00

Enforcement date: 7/18/2008 0:00:00 Enforcement action: State Public Notif Requested

Violation measurement: Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C

Violation ID: 11608 Contaminant: COLIFORM (TCR)

Violation type: Monitoring, Routine Minor (TCR)

Compliance start date: 7/1/2008 0:00:00 Compliance end date: 7/31/2008 0:00:00

Enforcement date: 8/23/2008 0:00:00 Enforcement action: State Violation/Reminder Notice

Violation measurement: Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C

Violation ID: 11608 Contaminant: COLIFORM (TCR)

Violation type: Monitoring, Routine Minor (TCR)

Compliance start date: 7/1/2008 0:00:00 Compliance end date: 7/31/2008 0:00:00

Enforcement date: 8/23/2008 0:00:00 Enforcement action: State Public Notif Requested

Violation measurement: Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C

Violation ID: 11709 Contaminant: COLIFORM (TCR)

Violation type: Max Contaminant Level, Monthly (TCR)

Compliance start date: 9/1/2008 0:00:00 Compliance end date: 9/30/2008 0:00:00

Enforcement date: 10/6/2008 0:00:00 Enforcement action: State Violation/Reminder Notice

Violation measurement: Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C

Violation ID: 11709 Contaminant: COLIFORM (TCR)

Violation type: Max Contaminant Level, Monthly (TCR)

Enforcement date: 10/6/2008 0:00:00 Enforcement action: State Public Notif Requested

Violation measurement: Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C

Violation ID: 11809 Contaminant: COLIFORM (TCR)

Violation type: Monitoring, Routine Minor (TCR)

Compliance start date: 10/1/2008 0:00:00 Compliance end date: 10/31/2008 0:00:00

Enforcement date: 11/20/2008 0:00:00 Enforcement action: State Violation/Reminder Notice

Violation measurement: Not Reported

PWS name: BARNWELL GARDENS SUBDIVISION

Population served: 97 PWS type code: C

Violation ID: 11809 Contaminant: COLIFORM (TCR)

Violation type: Monitoring, Routine Minor (TCR)

Enforcement date: 11/20/2008 0:00:00 Enforcement action: State Public Notif Requested

Violation measurement: Not Reported

Map ID Direction Distance

Elevation Database EDR ID Number

I39 SE

FRDS PWS GA0510162

1 - 2 Miles Lower

Epa region: 04 State: GA

Pwsid: GA0510162 Pwsname: BUILDERS TRANSPORT INC.

Cityserved:Not ReportedStateserved:GAZipserved:Not ReportedFipscounty:13051Status:ClosedRetpopsrvd:65

Pwssvcconn:3Psource longname:GroundwaterPwstype:NTNCWSOwner:Private

Contact: BUILDERS TRANSPORT INC. Contactorgname: Not Reported
Contactphone: 912-964-1313 Contactaddress1: BUILDER'S TRANSPORT INC.

Contactaddress2: POB 2726 Contactcity: SAVANNAH
Contactstate: GA Contactzip: 314982726

Pwsactivitycode: I

PWS ID: GA0510162 PWS type: Not Reported PWS name: Not Reported PWS address: Not Reported PWS city: Not Reported PWS state: Not Reported Not Reported PWS ID: GA0510162 PWS zip: Activity status: Date system activated: Not Reported Active Date system deactivated: Not Reported Retail population: 00000050

System name: BUILDERS TRANSPORT INC. System address: BUILDERS TRANSPORT, INC.

System address: POB 7005 System city: CAMDEN System state: SC System zip: 290207005

Population served: Under 101 Persons Treatment: Untreated

Latitude: 341447 Longitude: 0803625

Latitude: 320724 Longitude: 0811005

PWS currently has or had major violation(s) or enforcement:Yes

Violation ID:9200001Violation source ID:Not ReportedPWS telephone:Not ReportedContaminant:COLIFORM (TCR)

Violation type: Monitoring, Routine Major (TCR)

Violation start date: 070192 Violation end date: 093092 Violation period (months): Violation awareness date: Not Reported 003 Major violator: Yes Maximum contaminant level: Not Reported Number of required samples: Not Reported Number of samples taken: Not Reported Analysis method: Not Reported Analysis result: Not Reported

J40
SSW FRDS PWS GA0510102
1 - 2 Miles
Lower

Epa region: 04 State: GA

Pwsid: GA0510102 Pwsname: SAVANNAH-TRAVIS FIELD

Cityserved:Not ReportedStateserved:GAZipserved:Not ReportedFipscounty:13051Status:ClosedRetpopsrvd:304

Pwssvcconn: 117 Psource longname: Groundwater **CWS** Pwstype: Owner: Local_Govt JUE, HARRY Contactorgname: Not Reported Contact: Contactphone: 912-651-4241 Contactaddress1: **POB 1027**

Contactaddress2: Not Reported Contactcity: SAVANNAH Contactstate: GA Contactzip: 314021027

Pwsactivitycode: I

Pwsid: GA0510102 Facid: 3972

Facname: WELL #17 PLANT Factype: Treatment_plant Facactivitycode: I Trtobjective: disinfection

Trtprocess: hypochlorination, post Factypecode: TP

Pwsid: GA0510102 Facid: 3979

Facname: WELL #18 PLANT Factype: Treatment_plant Facactivitycode: I Trtobjective: disinfection

Trtprocess: hypochlorination, post Factypecode: TP

Pwsid: GA0510102 Facid: 3985

Facname: WELL #19 PLANT Factype: Treatment_plant Facactivitycode: I Trobjective: disinfection

Trtprocess: hypochlorination, post Factypecode: TP

PWS ID: GA0510102 PWS type: Not Reported PWS name: Not Reported PWS address: Not Reported PWS city: Not Reported PWS state: Not Reported PWS zip: Not Reported PWS ID: GA0510102 Activity status: Active Date system activated: Not Reported

Activity status: Active Date system activated: Not Reported

Date system deactivated: Not Reported Retail population: 00001100

System name: SAVANNAH-TRAVIS FIELD System address: SAVANNAH-TRAVIS FIELD

System address: 702 STILES AVE System city: SAVANNAH System state: SAVANNAH System state: System zip: 31402

System state. On System zip. 51402

Population served: 1,001 - 2,500 Persons Treatment: Treated

Latitude: 320731 Longitude: 0811140

Latitude: 320705 Longitude: 0811140

Latitude: 320710 Longitude: 0811136

State:GALatitude degrees:32Latitude minutes:7Latitude seconds:5.0000Longitude degrees:81Longitude minutes:11Longitude seconds:40.0000

State:GALatitude degrees:32Latitude minutes:7Latitude seconds:10.0000Longitude degrees:81Longitude minutes:11

Longitude degrees. 81 Lor Longitude seconds: 36.0000

State:GALatitude degrees:32Latitude minutes:7Latitude seconds:31.0000

Longitude degrees: 81 Longitude minutes: 11 Longitude seconds: 40.0000

J41
SSW
FED USGS USGS40000259520
1 - 2 Miles
Lower

Organization ID: USGS-GA Organization Name: USGS Georgia Water Science Center

Monitor Location:36Q013Type:WellDescription:SAVANNAH, GA 18HUC:03060109Drainage Area:Not ReportedDrainage Area Units:Not Reported

Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported

Aquifer: Floridan aquifer system Formation Type: Upper Floridan Aquifer

Aquifer Type: Confined multiple aquifer Construction Date: 19420901

Well Depth Units: Well Depth: 681 ft Well Hole Depth: 681 Well Hole Depth Units: ft

Ground water levels, Number of Measurements: 18 Level reading date: 1998-05-25

Feet to sea level: Feet below surface: 92.88 Not Reported

Not Reported Note:

Level reading date: 1988-05-25 Feet below surface: 99.41 Feet to sea level: Not Reported Note: Not Reported

Level reading date: Feet below surface: 1985-05-21 95.52 Feet to sea level: Not Reported Note: Not Reported

Feet below surface: 93.30 Level reading date: 1984-10-31 Note:

Feet to sea level: Not Reported Not Reported

Level reading date: 1984-04-30 Feet below surface: 86.65

Feet to sea level: Note: Not Reported Not Reported

Feet below surface: Level reading date: 1983-11-04 91.80

Feet to sea level: Note: Not Reported Not Reported

1982-11-02 Feet below surface: 87.50

Level reading date: Feet to sea level: Not Reported Note: Not Reported

Level reading date: 1981-10-26 Feet below surface: 90.42 Feet to sea level: Not Reported Note: Not Reported

Feet below surface: Level reading date: 1981-05-21 90.25 Note:

Feet to sea level: Not Reported Not Reported

Level reading date: 1980-05-19 Feet below surface: 85.90

Feet to sea level: Not Reported Note: Not Reported

Level reading date: 1979-10-29 Feet below surface: 90.00

Feet to sea level: Not Reported Note: Not Reported

Level reading date: 1978-12-04 Feet below surface: 91.10

Feet to sea level: Not Reported Note: Not Reported

Level reading date: 1977-11-07 Feet below surface: 91.40

Feet to sea level: Not Reported Note: Not Reported

1976-12-14 Feet below surface: 83.90 Level reading date:

Not Reported Feet to sea level: Note: Not Reported

Feet below surface: Level reading date: 1976-01-12 76.60

Feet to sea level: Not Reported Note: Not Reported

Level reading date: Feet below surface: 81.80 1975-05-02

Feet to sea level: Not Reported Note: Not Reported

1973-11-29 Level reading date: Feet below surface: 86.50

Feet to sea level: Note: Not Reported Not Reported

Level reading date: 1942-10-09 Feet below surface: 40.26

Feet to sea level: Not Reported Note: Not Reported

Map ID Direction Distance

ElevationDatabaseEDR ID NumberJ42
SSWGA WELLS0000001897

1 - 2 Miles Lower

> County code: 051 Well num: 36Q013 SAVANNAH, GA 18 Remarks: 320710 Lat: NAD27 0811143 Latlon datum: Lon: NGVD29 Alt: 34.27 Alt datum: Depth: 681 Depth to casing: 269.00 Casing dia: 10.00 Casing matl: Not Reported Depth to top: 269.00 Depth to bot: 681.00 Opening type: Constr date: 194209 Χ Discharge: 825.00 Prim use:

Aquifer code: 120FLRDU Edr id: 0000001897

North 1 - 2 Miles Lower

Organization ID: USGS-GA Organization Name: USGS Georgia Water Science Center

Monitor Location: 36R025 Type: Well HUC: 03060109 Description: Not Reported Drainage Area: Not Reported Drainage Area Units: Not Reported Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported Formation Type: Not Reported Aquifer: Not Reported Aquifer Type: Not Reported Construction Date: Not Reported Well Depth: Not Reported Well Depth Units: Not Reported Well Hole Depth Units: Well Hole Depth: Not Reported Not Reported

K44 SSW GA WELLS 617

1 - 2 Miles Lower

 Id:
 617
 Water source id:
 25M4B18

 Name:
 CITY OF SAVANNAH-TRAVIS F
 Latitude:
 32.1192

 Longitude:
 81.1953
 Source:
 G

 Gw mgd:
 0.67
 Sw mgd:
 0.00

 Status:
 1
 Gwsi id:
 36Q013

 Population:
 0
 County:
 CHATHAM

County fips: 51 Ggs: 1

K45 SSW FRDS PWS GA0510102

1 - 2 Miles Lower

Epa region: 04 State: GA

Pwsid: GA0510102 Pwsname: SAVANNAH-TRAVIS FIELD

Cityserved:Not ReportedStateserved:GAZipserved:Not ReportedFipscounty:13051Status:ClosedRetpopsrvd:304

 Pwssvcconn:
 117
 Psource longname:
 Groundwater

 Pwstype:
 CWS
 Owner:
 Local_Govt

FED USGS

USGS40000259664

JUE, HARRY Not Reported Contact: Contactorgname: Contactphone: 912-651-4241 Contactaddress1: POB 1027 Contactaddress2: Not Reported Contactcity: SAVANNAH

314021027 Contactstate: GΑ Contactzip: Pwsactivitycode:

Pwsid: GA0510102 Facid: 3972 Facname: WELL #17 PLANT Factype: Treatment_plant

Facactivitycode: Trtobjective: disinfection

Trtprocess: hypochlorination, post Factypecode: TP

Pwsid: GA0510102 Facid: 3979 Facname: WELL #18 PLANT Factype: Treatment_plant Facactivitycode: Trtobjective: disinfection Trtprocess: hypochlorination, post Factypecode:

Pwsid: GA0510102 Facid: 3985 WELL #19 PLANT Treatment_plant Facname: Factype: Trtobjective: disinfection Facactivitycode:

Trtprocess: hypochlorination, post Factypecode: TP

PWS ID: GA0510102 PWS type: Not Reported PWS name: Not Reported PWS address: Not Reported Not Reported PWS city: Not Reported PWS state: PWS zip: Not Reported PWS ID: GA0510102 Activity status: Active Date system activated: Not Reported

Date system deactivated: Not Reported Retail population: 00001100

SAVANNAH-TRAVIS FIELD SAVANNAH-TRAVIS FIELD System address: System name: System address: 702 STILES AVE System city: SAVANNAH

System state: GA System zip: 31402

Population served: 1,001 - 2,500 Persons Treatment: Treated

Longitude: Latitude: 320731 0811140

Latitude: 320705 Longitude: 0811140

320710 Latitude: Longitude: 0811136

State: GΑ Latitude degrees: 32 Latitude minutes: 7 Latitude seconds: 5.0000 Longitude degrees: 81 Longitude minutes: 11 40.0000 Longitude seconds:

State: GΑ Latitude degrees: 32 Latitude minutes: Latitude seconds: 10.0000 Longitude degrees: 81 Longitude minutes: 11

36.0000 Longitude seconds:

State: GΑ Latitude degrees: 32 31.0000 Latitude minutes: 7 Latitude seconds:

Longitude degrees: 81 Longitude minutes: 11 40.0000 Longitude seconds:

AREA RADON INFORMATION

Federal EPA Radon Zone for CHATHAM County: 3

Note: Zone 1 indoor average level > 4 pCi/L.

: Zone 2 indoor average level >= 2 pCi/L and <= 4 pCi/L.

: Zone 3 indoor average level < 2 pCi/L.

Federal Area Radon Information for CHATHAM COUNTY, GA

Number of sites tested: 21

Area	Average Activity	% <4 pCi/L	% 4-20 pCi/L	% >20 pCi/L
Living Area - 1st Floor Living Area - 2nd Floor	0.881 pCi/L Not Reported	100% Not Reported	0% Not Reported	0% Not Reported
Basement	Not Reported	Not Reported	Not Reported	Not Reported

PHYSICAL SETTING SOURCE RECORDS SEARCHED

TOPOGRAPHIC INFORMATION

USGS 7.5' Digital Elevation Model (DEM)

Source: United States Geologic Survey

EDR acquired the USGS 7.5 Digital Elevation Model in 2002 and updated it in 2006. The 7.5 minute DEM corresponds to the USGS 1:24,000- and 1:25,000-scale topographic quadrangle maps. The DEM provides elevation data with consistent elevation units and projection.

HYDROLOGIC INFORMATION

Flood Zone Data: This data was obtained from the Federal Emergency Management Agency (FEMA). It depicts 100-year and 500-year flood zones as defined by FEMA. It includes the National Flood Hazard Layer (NFHL) which incorporates Flood Insurance Rate Map (FIRM) data and Q3 data from FEMA in areas not covered by NFHL.

Source: FEMA

Telephone: 877-336-2627

Date of Government Version: 2003, 2015

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002, 2005, 2010 and 2015 from the U.S. Fish and Wildlife Service.

State Wetlands Data: Wetlands Inventory Source: Georgia GIS Clearinghouse

Telephone: 706-542-1581

HYDROGEOLOGIC INFORMATION

AQUIFLOW^R Information System

Source: EDR proprietary database of groundwater flow information

EDR has developed the AQUIFLOW Information System (AIS) to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted to regulatory authorities at select sites and has extracted the date of the report, hydrogeologically determined groundwater flow direction and depth to water table information.

GEOLOGIC INFORMATION

Geologic Age and Rock Stratigraphic Unit

Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - A digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

STATSGO: State Soil Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Service (NRCS)

The U.S. Department of Agriculture's (USDA) Natural Resources Conservation Service (NRCS) leads the national Conservation Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps.

SSURGO: Soil Survey Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Service (NRCS)

Telephone: 800-672-5559

SSURGO is the most detailed level of mapping done by the Natural Resources Conservation Service, mapping scales generally range from 1:12,000 to 1:63,360. Field mapping methods using national standards are used to construct the soil maps in the Soil Survey Geographic (SSURGO) database. SSURGO digitizing duplicates the original soil survey maps. This level of mapping is designed for use by landowners, townships and county natural resource planning and management.

PHYSICAL SETTING SOURCE RECORDS SEARCHED

LOCAL / REGIONAL WATER AGENCY RECORDS

FEDERAL WATER WELLS

PWS: Public Water Systems

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Public Water System data from the Federal Reporting Data System. A PWS is any water system which provides water to at least 25 people for at least 60 days annually. PWSs provide water from wells, rivers and other sources.

PWS ENF: Public Water Systems Violation and Enforcement Data

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Violation and Enforcement data for Public Water Systems from the Safe Drinking Water Information System (SDWIS) after August 1995. Prior to August 1995, the data came from the Federal Reporting Data System (FRDS).

USGS Water Wells: USGS National Water Inventory System (NWIS)

This database contains descriptive information on sites where the USGS collects or has collected data on surface water and/or groundwater. The groundwater data includes information on wells, springs, and other sources of groundwater.

OTHER STATE DATABASE INFORMATION

A listing of Private Water Well locations Georgia Department of Public Health Telephone: (404) 657-2700

A listing of Private Water Well locations

Georgia Public Supply Wells

Source: Georgia Department of Community Affairs

Telephone: 404-894-0127

USGS Georgia Water Wells

Source: USGS, Georgia District Office

Telephone: 770-903-9100

DNR Managed Lands

Source: Department of Natural Resources

Telephone: 706-557-3032

This dataset provides 1:24,000-scale data depicting boundaries of land parcels making up the public lands managed by the Georgia Department of Natural Resources (GDNR). It includes polygon representations of State Parks, State Historic Parks, State Conservation Parks, State Historic Sites, Wildlife Management Areas, Public Fishing Areas, Fish Hatcheries, Natural Areas and other specially-designated areas. The data were collected and located by the Georgia Department of Natural Resources. Boundaries were digitized from survey plats or other information.

RADON

Area Radon Information

Source: USGS

Telephone: 703-356-4020

The National Radon Database has been developed by the U.S. Environmental Protection Agency

(USEPA) and is a compilation of the EPA/State Residential Radon Survey and the National Residential Radon Survey. The study covers the years 1986 - 1992. Where necessary data has been supplemented by information collected at

private sources such as universities and research institutions.

EPA Radon Zones

Source: EPA

Telephone: 703-356-4020

Sections 307 & 309 of IRAA directed EPA to list and identify areas of U.S. with the potential for elevated indoor

radon levels.

PHYSICAL SETTING SOURCE RECORDS SEARCHED

OTHER

Airport Landing Facilities: Private and public use landing facilities

Source: Federal Aviation Administration, 800-457-6656

Epicenters: World earthquake epicenters, Richter 5 or greater

Source: Department of Commerce, National Oceanic and Atmospheric Administration

Earthquake Fault Lines: The fault lines displayed on EDR's Topographic map are digitized quaternary faultlines, prepared

in 1975 by the United State Geological Survey

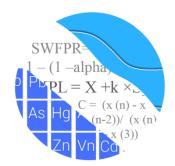
STREET AND ADDRESS INFORMATION

© 2015 TomTom North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.

APPENDIX C

Statistical Analyses

Grumman Road Private Industrial Landfill
Chatham County, Georgia
2022 Semiannual Groundwater Monitoring and Corrective Action Report


APPENDIX C

Statistical Analysis Report August 2022 Monitoring Event

GROUNDWATER STATS CONSULTING

February 28, 2023

Southern Company Services Attn: Ms. Kristen Jurinko 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, Georgia 30308

Re: Plant Kraft's Grumman Road Landfill Statistical Analysis – August/September 2022 Sample Event

Dear Ms. Jurinko,

Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the groundwater statistical analysis of the August/September 2022 sample event for Georgia Power Company's Plant Kraft's Grumman Road Landfill. The analysis complies with the Georgia Environmental Protection Division (EPD) Rules for Solid Waste Management Chapter 391-3-4-.10 and follows the United States Environmental Protection Agency (USEPA) Unified Guidance (2009).

Sampling began for the Coal Combustion Residuals (CCR) program in 2016, and at least 8 background samples were collected at each of the groundwater monitoring wells. Semi-annual sampling of the majority of Appendix IV constituents has been performed at most wells for several years in accordance with the Georgia Department of Natural Resources, Environmental Protection Division groundwater monitoring regulations. The monitoring well network, as provided by Southern Company Services, consists of the following:

- Upgradient wells: GWA-7 and GWA-8
- Downgradient wells: GWB-4R, GWB-5R, GWB-6R, GWC-1, GWC-2, GWC-9, GWC-11, GWC-12, GWC-13, GWC-14, GWC-15, GWC-16, GWC-17, GWC-20, GWC-21, and GWC-22
- Assessment wells: MW-23D, MW-24D, and MW-25D

Assessment wells were installed in late 2020 and were first sampled in early 2021 for all constituents except mercury, which was first sampled in September 2021. These assessment wells currently have limited samples available; however, data are evaluated

with confidence intervals for well/constituent pairs when a minimum of four observations are available. Note that sampling has ceased at assessment wells MW-26D and MW-27D; therefore, no analysis was required.

Data were sent electronically to Groundwater Stats Consulting, and the statistical analysis was reviewed by Kristina Rayner, Founder and Senior Statistician to Groundwater Stats Consulting.

The program monitors the constituents listed below. Georgia EPD Appendix II and CCR Appendix IV constituents overlap with the exception of vanadium and zinc, which are required for Georgia EPD. The terms "parameters" and "constituents" are used interchangeably throughout.

- o **Georgia EPD Appendix I** (Detection Monitoring) antimony, arsenic, barium, chromium, lead, selenium, vanadium, and zinc
- CCR Appendix III (Detection Monitoring) boron, calcium, chloride, fluoride, pH, sulfate, and TDS
- Georgia EPD Appendix II/CCR Appendix IV (Assessment Monitoring) antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 + 228, fluoride, lead, lithium, mercury, molybdenum, selenium, thallium, vanadium, and zinc

Note that when there are no detections present in downgradient wells for a given constituent, statistical analyses are not required. A summary of well/constituent pairs containing 100% non-detects follows this letter.

Time series plots for all parameters at each well are provided for the purpose of screening data at these wells (Figure A). Additionally, time series plots of all parameters at upgradient wells are included to more easily display concentrations upgradient of the facility (Figure A). A separate section of box plots is included for all constituents at upgradient and downgradient wells (Figure B). The time series plots are used to initially screen for suspected outliers and trends, while the box plots provide visual representation of variation within individual wells and between all wells. Values in background which have been flagged as outliers may be seen in a lighter font and as a disconnected symbol on the graphs. A summary of flagged outliers follows this report (Figure C).

Due to varying detection limits in background data sets as a result of improved laboratory practices, a substitution of the most recent reporting limit is used for all non-detects. Of particular note is the reporting limits for metals at upgradient well GWA-7. Due to higher dilutions required for some metal analyses for this well, the reporting limits may vary

between sampling events and are sometimes considerably higher than corresponding reporting limits for other wells. In the case of cobalt, a high reporting limit of 0.025 mg/L was observed during the 1st SA 2022 analysis for well GWA-7, but the most recent reporting limit of 0.001 mg/L was substituted in order to maintain conservative (i.e., lower) statistical limits. On the other hand, some detected observations are recorded at extremely low concentrations for this well, below the MCL of 0.01 mg/L for arsenic, as an example. Therefore, the most recent reporting limit substitution of 0.005 mg/L is used for this well as for all other wells.

Data at all wells were originally evaluated during 2019 for the following: 1) outliers; 2) trends; 3) most appropriate statistical method for parameters based on site characteristics of groundwater data upgradient of the facility; and 4) eligibility of downgradient wells when intrawell statistical methods are recommended. However, interwell methods are currently implemented in accordance with the Georgia EPD regulations and are used to evaluate compliance samples in downgradient wells. Power curves were provided along with the previous screening and demonstrated that the selected statistical methods comply with the USEPA Unified Guidance. The EPA suggests that the selected statistical method should provide at least 55% power at 3 standard deviations or at least 80% power at 4 standard deviations.

Summary of Statistical Methods - Detection Monitoring

Georgia EPD Appendix I Constituents:

Semi-Annual Sampling Interwell Prediction Limits with 1 of 2 resample plan # Constituents Downgradient: 8 # Downgradient wells: 16

CCR Appendix III Constituents:

Semi-Annual Sampling Interwell Prediction Limits with 1 of 2 resample plan # Constituents Downgradient: 7 # Downgradient wells: 16

Parametric prediction limits are utilized when the screened historical data follow a normal or transformed-normal distribution. When data cannot be normalized or the majority of data are non-detects, a nonparametric test is utilized. While the false positive rate associated with the parametric limits is based on an annual rate of 10% (5% per semi-annual event) as recommended by the EPA Unified Guidance (2009), the false positive rate associated with the nonparametric limits is dependent upon the available background

sample size, number of future comparisons, and verification resample plan. The distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. After testing for normality and performing any adjustments as discussed below (US EPA, 2009), data are analyzed using either parametric or non-parametric prediction limits, along with the following methodology for handling non-detects:

- No statistical analyses are required on wells and analytes containing 100% non-detects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% non-detects in background, simple substitution of one-half the reporting limit is utilized in the statistical analysis. The reporting limit utilized for non-detects is the most recent practical quantification limit (PQL) as reported by the laboratory. Due to varying detection limits, the following substitution of 0.03 mg/L was made for lithium.
- When data contain between 15-50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric prediction limits are used on data containing greater than 50% non-detects.

Natural systems continuously evolve due to physical changes made to the environment. Examples include capping a landfill, paving areas near a well, or lining a drainage channel to prevent erosion. Periodic updating of background statistical limits is necessary to accommodate these types of changes. In the interwell case, prediction limits are updated with upgradient well data during each event after careful screening for any new outliers. In some cases, an earlier portion of data may require deselection prior to construction of limits to provide sensitive limits that will rapidly detect changes in groundwater quality. Even though the data are excluded from the calculation, the values will continue to be reported and shown in tables and graphs.

Summary of Background Screening – Georgia EPD Appendix I Constituents – Conducted in August 2019

Outlier Testing

Time series plots were used to identify suspected outliers, or extreme values that would result in limits that are not representative of the current background data population. Suspected outliers at all wells and parameters were formally tested using Tukey's box plot method and, when identified, flagged in the computer database with "o" and deselected prior to construction of statistical limits.

Using the Tukey's box plot method, several outliers were identified. A summary of those findings was submitted with the August 2019 report. As a general rule, when the most recent values are identified as outliers, values are not flagged in the database (except in cases where they would cause background limits to be elevated) as they may represent a possible trend. If future values do not remain at similar concentrations, these values will be flagged as outliers and deselected. Several low values exist in the data sets and appear on the graphs as possible low outliers relative to the laboratory's Practical Quantitation Limit. However, these values are observed trace values (i.e., measurements reported by the laboratory between the Method Detection Limit and the Practical Quantitation Limit) and, therefore, were not flagged as outliers.

Additionally, values that were not identified by Tukey's test but that are much higher than the remaining measurements were flagged as appropriate in order to obtain conservative prediction limits that are capable of detecting future changes. As mentioned above, when any values are flagged in the database as outliers, they are plotted in a disconnected and lighter symbol on the time series graph. The accompanying data pages display the flagged value in a lighter font as well.

Seasonality

No obvious seasonal patterns were observed on the time series plots for any of the detected data; therefore, no deseasonalizing adjustments were made to the data. When seasonal patterns are observed, data may be deseasonalized so that the resulting limits will correctly account for the seasonality as a predictable pattern rather than random variation or a release.

Trend Testing

While trends may be identified by visual inspection, a quantification of the trend and its significance is needed. The Sen's Slope/Mann Kendall trend test, which tests for statistically significant increasing or decreasing trends, was used to evaluate data at all upgradient wells and downgradient wells with detections.

In the absence of suspected contamination, significant trending data are typically not included as part of the background data used for construction of prediction limits. This step serves to eliminate the trend and, thus, reduce variation in background. When statistically significant decreasing trends are present, all available data are evaluated to determine whether earlier concentration levels are significantly different from current reported concentrations and will be deselected as necessary. This step would apply to upgradient wells GWA-7 and GWA-8 only since pooled data from these wells are used to

913.829.1470

construct interwell prediction limits. While this was not required, when any records of data are truncated for the reasons above, a summary report will be provided to show the date ranges used in construction of the statistical limits. A summary of the trend analyses was submitted with the screening report.

Determination of Spatial Variation

The Analysis of Variance (ANOVA) was used to statistically evaluate differences in average concentrations among upgradient wells for constituents detected in downgradient wells. The ANOVA assists in identifying the most appropriate statistical approach. Interwell tests, which compare downgradient well data to statistical limits constructed from pooled upgradient well data, are appropriate when average concentrations are similar across upgradient wells. Intrawell tests, which compare compliance data from a single well to screened historical data within the same well, are appropriate when upgradient wells exhibit spatial variation; when statistical limits constructed from upgradient wells are not representative of the current background data population; and when downgradient water quality is unimpacted compared to upgradient water quality for the same parameter.

The ANOVA identified significant differences among upgradient well data for all constituents which would suggest intrawell methods as the most appropriate statistical method. However, interwell methods are currently constructed in accordance with the Georgia EPD regulations and are used to evaluate compliance samples in downgradient wells.

Summary of Background Screening – CCR Appendices III and IV Parameters – Conducted in March 2019

Outlier and Trend Testing

Time series plots were used to identify suspected outliers, or extreme values that would result in limits that are not representative of the current background data population. Suspected outliers at all wells for Appendix III and Appendix IV parameters were formally tested using Tukey's box plot method and, when identified, flagged in the computer database with "o" and deselected prior to construction of statistical limits.

Using the Tukey box plot method, several outliers were identified. A summary of those findings was included with the screening report. When the most recent values are identified as outliers, values were not flagged in the database at this time (except in cases where they would cause background limits to be elevated) as they may represent a possible trend. If future values do not remain at similar concentrations, these values will

be flagged as outliers and deselected. Several low values exist in the data sets and appear on the graphs as possible low outliers relative to the laboratory's Practical Quantitation Limit. However, these values are observed trace values (i.e., measurements reported by the laboratory between the Method Detection Limit and the Practical Quantitation Limit) and, therefore, were not flagged as outliers.

Of the outliers identified by Tukey's method, several values were flagged in the database, and the remaining values were similar to other measurements within a given well or neighboring wells or were reported non-detects. A summary of all flagged values follows this letter (Figure C).

<u>Seasonality</u>

No obvious seasonal patterns were observed on the time series plots for any of the detected data; therefore, no deseasonalizing adjustments were made to the data. When seasonal patterns are observed, data may be deseasonalized so that the resulting limits will correctly account for the seasonality as a predictable pattern rather than random variation or a release.

Trend Tests

The results of the Sen's Slope/Mann Kendall trend analyses showed a number of statistically significant increasing and decreasing trends for the Appendix III parameters. Most of the statistically significant trends identified, particularly those in upgradient wells GWA-7 and GWA-8 from which data are used in construction of the interwell prediction limits, were relatively low in magnitude when compared to average concentrations. Also, the background period was short in 2019, making it difficult to determine whether an apparent trend represents a long-term change or simply normal year-to-year variation; therefore, no adjustments were made to the data sets.

<u>Appendix III – Determination of Spatial Variation</u>

The ANOVA identified no variation among upgradient well data for fluoride, making interwell analyses the most appropriate statistical method for this constituent. Variation was noted for boron, calcium, chloride, pH, sulfate, and TDS which suggests the use of intrawell methods as the most appropriate statistical method. However, interwell methods are currently constructed in accordance with the Georgia EPD regulations and are used to evaluate compliance samples in downgradient wells.

<u>Statistical Analysis of Georgia EPD Appendix I Constituents – August/September</u> 2022

All Appendix I parameters were analyzed using interwell prediction limits. Background (upgradient) well data were re-assessed for potential outliers during this analysis. No new values were flagged as shown in the outlier summary following this report (Figure C).

Interwell Prediction Limits

Interwell prediction limits, combined with a 1-of-2 resample plan, were constructed from carefully screened pooled upgradient well data through September 2022 for antimony, arsenic, barium, chromium, lead, selenium, vanadium, and zinc (Figure D). The August/September 2022 sample at each downgradient well is compared to these background limits.

In the event of an initial exceedance of compliance well data, the 1-of-2 resample plan allows for collection of one additional sample to determine whether the initial exceedance is confirmed. When the resample confirms the initial exceedance, a statistically significant increase (SSI) is identified and further research would be required to identify the cause of the exceedance (i.e., impact from the site, natural variation, or an off-site source). If the resample falls within the statistical limit, the initial exceedance is considered to be a false positive result, and therefore, no further action is necessary. If no resample is collected, the initial exceedance is automatically confirmed. A summary table and complete graphical results of the interwell prediction limits follow this letter and include a list of exceedances. Exceedances were identified for the following well/constituent pairs:

• Arsenic: GWC-15, GWC-16, and GWC-20

<u>Trend Tests – Appendix I Exceedances</u>

When prediction limit exceedances are identified in downgradient wells, data are further evaluated using the Sen's Slope/Mann Kendall trend test to determine whether concentrations are statistically increasing, decreasing, or stable (Figure E). Upgradient well data are included in the trend analyses for all parameters found to exceed their prediction limit in downgradient wells to identify whether similar patterns exist upgradient of the site. When trends are present in upgradient wells it is an indication of natural variability in groundwater quality unrelated to practices at the site. Statistically significant trends were noted for the following well/constituent pairs:

Increasing Trends:

• Arsenic: GWC-15

Decreasing Trends:

Arsenic: GWA-7 and GWA-8 (both upgradient)

Note that while the trend test identified statistically significant decreasing trends for arsenic in upgradient well GWA-8, the slope is displayed as zero which represents the median slopes of all the possible pairwise slopes. The zero median slopes result from the large number of non-detects in the record, and the negative test statistics result from a few trace values being recorded in the latter part of the records. Both a summary and complete graphical presentation of the trend test results follow this letter.

Statistical Analysis of CCR Appendix III Parameters - August/September 2022

All Appendix III parameters were analyzed using interwell prediction limits. Background (upgradient) well data were re-assessed for potential outliers during this analysis. No new values were flagged as shown in the outlier summary following this report (Figure C).

Interwell Prediction Limits

Interwell prediction limits, combined with a 1-of-2 resample plan, were constructed using pooled upgradient well data through September 2022 to develop background limits for boron, calcium, chloride, fluoride, pH, sulfate, and TDS (Figure F). In the event of an initial exceedance of compliance well data, the 1-of-2 resample plan allows for collection of one additional sample to determine whether the initial exceedance is confirmed. When the resample confirms the initial exceedance, a statistically significant increase (SSI) is identified and further research would be required to identify the cause of the exceedance (i.e., impact from the site, natural variation, or an off-site source). If the resample falls within the statistical limit, the initial exceedance is considered to be a false positive result and, therefore, no further action is necessary. The August/September 2022 sample from each downgradient well is compared to the background limit to determine whether there are statistically significant increases (SSIs). Summary tables of the prediction limits follow this letter. Exceedances were identified for the following well/constituent pairs:

• Calcium: GWB-4R, GWB-5R, GWB-6R, GWC-1, GWC-11, GWC-12, GWC-14,

GWC-15, GWC-16, GWC-17, GWC-20, and GWC-21

Chloride: GWC-17Fluoride: GWC-17

pH: GWC-12 (lower limit) and GWC-15 (upper limit)

Sulfate: GWB-4R, GWB-5R, GWB-6R, GWC-11, GWC-12, GWC-14, GWC-16,

GWC-17, GWC-20, and GWC-21

<u>Trend Tests – Appendix III Exceedances</u>

Data from downgradient well/constituent pairs found to exceed their respective prediction limit were further evaluated using the Sen's Slope/Mann Kendall trend test 99% confidence level along with upgradient wells for the same constituents (Figure G). Upgradient wells are included in the trend analyses for all parameters found to exceed their prediction limit in downgradient wells to identify whether similar patterns exist upgradient of the site. Such patterns are an indication of natural variability in groundwater unrelated to practices at the site. Statistically significant trends were noted for the following well/constituent pairs:

Increasing trends:

• Calcium: GWB-4R, GWB-5R, GWB-6R, GWC-1, GWC-11, GWC-16, and

GWC-20

• Sulfate: GWB-5R, GWB-6R, GWC-11, and GWC-16

Decreasing trends:

• Calcium: GWA-7 (upgradient) and GWC-12

Chloride: GWA-7 (upgradient)
 Fluoride: GWA-8 (upgradient)
 pH: GWA-7 (upgradient)

• Sulfate: GWA-7, GWA-8 (both upgradient), and GWC-12

<u>Statistical Analysis of Georgia EPD Appendix II and CCR Appendix IV – August/September 2022</u>

For Appendix II and IV parameters, confidence intervals for each downgradient well/constituent pair were compared against corresponding Groundwater Protection Standards (GWPS). GWPS were developed as described below. Well/constituent pairs containing 100% non-detects do not require analysis. Data from upgradient wells for Appendix II and IV parameters are reassessed for outliers during each analysis. A historically high reporting limit of 0.025 mg/L for cobalt at upgradient well GWA-7 was flagged in order to construct statistical limits that are conservative (i.e., lower) from a regulatory perspective and are more representative of present-day groundwater quality conditions. A summary of flagged outliers follows this report (Figure C).

Interwell Upper Tolerance Limits

Interwell upper tolerance limits (UTLs) are calculated using Sanitas software, from all historical pooled upgradient well data for Appendix II and IV constituents (Figure H). The UTLs serve as site-specific background limits for each constituent. Parametric tolerance limits are used when data follow a normal or transformed-normal distribution, i.e., fluoride and lead. When data contain greater than 50% non-detects or do not follow a normal or transformed-normal distribution, non-parametric tolerance limits are used.

Groundwater Protection Standards

The background limits were then used when determining the groundwater protection standard (GWPS) under 40 CFR §257.95(h) and Georgia EPD Rule 391-3-4-.10(6)(a). On July 30, 2018, US EPA revised the Federal CCR rule updating GWPS for cobalt, lead, lithium, and molybdenum as described above in 40 CFR §257.95(h)(2). Effective on February 22, 2022, Georgia EPD incorporated the updated GWPS into the current Georgia EPD Rules for Solid Waste Management 391-3-4-.10(6)(a). In accordance with the updated Rules, the GWPS is:

- The maximum contaminant level (MCL) established under §141.62 and §141.66 of this title
- Where an MCL has not been established for a constituent, Federal and State CCR Rules specify levels for cobalt (0.006 mg/L), lead (0.015 mg/L), lithium (0.040 mg/L), and molybdenum (0.100 mg/L)
- The respective background level for a constituent when the background level is higher than the MCL or Federal CCR Rule identified GWPS

Following Georgia EPD Rule requirements and the Federal CCR requirements, GWPS were established for statistical comparison of Appendix II and IV constituents for this sample event (Figure I).

Confidence Intervals

To complete the statistical comparison of current sampling data to GWPS, confidence intervals were constructed using Sanitas software using data from 2016 through the present for each of the Appendix II and IV constituents in each downgradient well (Figure J). As mentioned above, any well/constituent pairs containing 100% non-detects since 2016 were not required for statistical analyses. The confidence intervals were then compared to the GWPS as described above. Only when the entire confidence interval is above a GWPS is the downgradient well/constituent pair considered to exceed its respective standard. If there is an exceedance of the GWPS, a statistically significant level

(SSL) exceedance is identified. A summary of the confidence intervals follows this letter and exceedances were identified for the following well/constituent pairs:

• Arsenic: GWC-15, GWC-16, and GWC-20

• Molybdenum: GWC-16 and GWC-20

<u>Trend Test Evaluation – Appendix IV</u>

Data at wells with confidence interval exceedances are further evaluated using the Sen's Slope/Mann Kendall trend test at the 99% confidence level to determine whether concentrations are statistically increasing, decreasing, or stable (Figure K). Upgradient wells are included in the trend analyses to identify whether similar patterns exist upgradient of the site for the same constituents. When trends are present in upgradient trends, it is an indication of natural variability in groundwater quality unrelated to practices at the site. A summary of the Appendix IV trend test results follows this letter. Statistically significant trends were identified for the following well/constituent pairs:

Increasing trends:

• Arsenic: GWC-15

Decreasing trends:

None

SUMMARY

Based on the statistical analyses described in this letter, the following statistical exceedances were noted:

<u>Prediction Limits (Detection Monitoring Parameters)</u>

Georgia EPD Appendix I:

• Arsenic: GWC-15, GWC-16, and GWC-20

CCR Appendix III:

Calcium: GWB-4R, GWB-5R, GWB-6R, GWC-1, GWC-11, GWC-12, GWC-14,

GWC-15, GWC-16, GWC-17, GWC-20, and GWC-21

Chloride: GWC-17Fluoride: GWC-17

• pH: GWC-12 (lower limit) and GWC-15 (upper limit)

• Sulfate: GWB-4R, GWB-5R, GWB-6R, GWC-11, GWC-12, GWC-14, GWC-16,

GWC-17, GWC-20, and GWC-21

Confidence Intervals (Assessment Monitoring Parameters)

Georgia EPD Appendix II and CCR Appendix IV:

• Arsenic: GWC-15, GWC-16, and GWC-20

• Molybdenum: GWC-16 and GWC-20

Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for Plant Kraft's Grumman Road Landfill. If you have any questions or comments, please feel free to contact us.

For Groundwater Stats Consulting,

Andrew Collins
Project Manager

Kristina Rayner Senior Statistician

Kristina Rayner

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

100% Non-Detects: Appendix I Downgradient

Analysis Run 9/28/2022 10:38 AM View: Appendix I

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Arsenic (mg/L) GWC-11

Selenium (mg/L) GWC-13 Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

100% Non-Detects: Appendix II & IV Downgradient & Assessment

Analysis Run 11/5/2022 5:57 PM View: Appendix II & IV - Confidence Intervals

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Antimony (mg/L) GWC-14, GWC-16, MW-23D, MW-24D, MW-25D

Arsenic (mg/L)

GWC-11, MW-23D, MW-24D

Beryllium (mg/L)

GWC-1, GWC-15, GWC-20, GWC-21, MW-23D, MW-24D

Cadmium (mg/L)

GWB-5R, GWB-6R, GWC-12, GWC-13, GWC-15, GWC-16, GWC-17, GWC-2, GWC-21, GWC-9, MW-24D

Chromium (mg/L)

MW-23D

Cobalt (mg/L)

GWC-1, GWC-13, GWC-15, GWC-16, GWC-20, GWC-21, MW-23D, MW-24D, MW-25D

Fluoride (mg/L)

GWC-11, MW-24D

Lithium (mg/L)

GWB-6R, GWC-1, GWC-11, GWC-14, GWC-15, GWC-16, GWC-2, GWC-20, GWC-21, GWC-22, MW-23D, MW-24D, MW-25D

Molybdenum (mg/L)

GWC-2, GWC-22, GWC-9, MW-23D

Selenium (mg/L)

GWC-13, GWC-9, MW-23D, MW-24D, MW-25D

Thallium (mg/L)

GWB-6R, GWC-13, GWC-15, GWC-20, GWC-9, MW-23D, MW-24D, MW-25D

Vanadium (mg/L)

MW-23D

	GWB-4R An	_{senic} (mg/L) GWB-5R Ar	_{senic} (mg/L) GWC-1 Arse	_{enic} (mg/L) GWC-16 Ar	_{senic} (mg/L) GWC-21 Ar	_{senic} (mg/L) GWA-7 Bari	_{um (mg/L)} GWB-5R Bi	_{arium} (mg/L) GWC-12 Ba	_{rium (mg/L)} GWC-14 Ba	_{rium} (mg/L) GWC-15 Barium (mg/L)
9/29/2000										
11/21/2000										
1/20/2001										
3/14/2001										
7/16/2001									0.28 (O)	
11/1/2001							0.61 (O)			
4/25/2002							(-,	0.24 (O)		
11/20/2002								. ,		
6/6/2003		0.07 (O)	0.03 (O)	1.2 (0)			0.72 (O)	0.28 (O)		0.083 (O)
12/12/2003				0.27 (O)				0.27 (O)		0.094 (O)
5/26/2004								0.31 (O)		
12/7/2004								0.46 (O)		
6/21/2005										
12/12/2005										
6/27/2006										
12/4/2006										
6/23/2007										
12/11/2007										
6/24/2008										
12/5/2008										
7/7/2009										
12/21/2009										
6/20/2010										
6/21/2010	0.018 (O)				0.013 (O)					
7/8/2011										
7/9/2012										
1/18/2013										
4/3/2014										
1/17/2016			0.024 (O)							
8/31/2016										
9/1/2016						0.415 (O)				
10/26/2016										
10/3/2017										
7/10/2018										
7/11/2018										
1/16/2019										
1/17/2019										
1/18/2019										
1/21/2019										
3/25/2019										
10/8/2019										
4/6/2020										
9/28/2020										
1/31/2022										

	GWC-16 Ba	_{arium} (mg/L) GWC-2 Bar	ium (mg/L) GWC-15 Bo	_{oron (mg/L)} GWC- ⁹ Bor	on (mg/L) GWA-7 Chr	_{omium} (mg/L) GWB-5R Ch	_{nromium} (mg/L GWB-6R Cl	.) _{nromium} (mg/L GWC-16 Ch) _{romium (mg/L)} GWC-17 Ch	romium (mg/L) GWA-7 Cobalt (mg/L)
9/29/2000										
11/21/2000										
1/20/2001										
3/14/2001						0.052 (O)				
7/16/2001						0.08 (O)				
11/1/2001						0.13 (O)				
4/25/2002						. ,				
11/20/2002						0.053 (O)				
6/6/2003	0.48 (O)					0.064 (O)		0.063 (O)		
12/12/2003	0.13 (O)					(1)			0.036 (O)	
5/26/2004	. ,								, ,	
12/7/2004										
6/21/2005										
12/12/2005										
6/27/2006										
12/4/2006										
6/23/2007										
12/11/2007										
6/24/2008							0.032 (O)			
12/5/2008							(1)			
7/7/2009										
12/21/2009										
6/20/2010										
6/21/2010										
7/8/2011										
7/9/2012										
1/18/2013										
4/3/2014										
1/17/2016										
8/31/2016				0.096 (JO)						
9/1/2016			9.01 (O)	, ,	0.119 (O)					
10/26/2016		0.113 (O)	. ,		` ,					
10/3/2017	0.135 (O)	. ,								
7/10/2018	0.16 (O)									
7/11/2018	. ,									<0.05 (O)
1/16/2019										, ,
1/17/2019										
1/18/2019										
1/21/2019										
3/25/2019										
10/8/2019										
4/6/2020										
9/28/2020										
1/31/2022										<0.025 (o)
										• •

			228 (pCi	i/L)						
	. a com	bined Radium	226 + 228 (pCi (mg/L) GWA-8 Lead	(mg/L) GWB-4R Lea	ad (mg/L) GWB-5R Lea	ad (mg/L) GWC-14 Lea	id (mg/L) GWC-16 Lea	GMC-9 Lead (mg/L)	(mg/L)	um (mg/L) GWA-8 pH (SU)
	GWA-1 Co.	GWA-7 Los	GWA-8 Los	GWB-4K		GWC-14 C	GMC-16 C-	GWC-9 Los	GMC-a run	GWA-8 Pr.
9/29/2000					0.017 (O)					
11/21/2000										
1/20/2001										
3/14/2001					0.026 (O)					
7/16/2001					0.043 (O)					
11/1/2001 4/25/2002					0.075 (O)					
11/20/2002				0.018 (O)	0.057 (O)	0.011 (O)		0.0086 (O)		
6/6/2003		0.037 (O)	0.016 (O)	0.015 (O)	0.057 (O) 0.16 (O)	0.011 (0)	0.099 (O)	0.0000 (0)		
12/12/2003		0.007 (0)	0.010 (0)	0.010 (0)	0.10 (0)		0.017 (O)			
5/26/2004							(-)			
12/7/2004					0.038 (O)					
6/21/2005					0.036 (O)					
12/12/2005										
6/27/2006				0.024 (O)						
12/4/2006				0.023 (O)						
6/23/2007										
12/11/2007										
6/24/2008				0.02 (O)						
12/5/2008										
7/7/2009										
12/21/2009										
6/20/2010										
6/21/2010										
7/8/2011										
7/9/2012										
1/18/2013										
4/3/2014										
1/17/2016										
8/31/2016									<0.05 (O)	
9/1/2016		0.0663 (O)		0.0166 (O)						
10/26/2016										
10/3/2017										
7/10/2018										
7/11/2018		40.00F (O)								0.40 (0)
1/16/2019		<0.025 (O)								6.16 (O)
1/17/2019 1/18/2019										
1/18/2019										
3/25/2019										
10/8/2019	33.8 (o)									
4/6/2020	25.7 (o)									
9/28/2020	22.4 (o)									
1/31/2022	(0)									

	GWC-13 pH	(SU) GWC-15 PH	(SU) GWC-20 pH	(SU) GWC-22 pH	(SU) GWC-9 pH	(SU) GWB-4R Se	elenium (mg/L) GWC-1 Sele	_{enium} (mg/L) GWC-14 Se	_{lenium (mg/L)} GWC-15 Se	_{llenium (mg/L)} GWC-16 Selei	_{nium} (mg/L)
9/29/2000											
11/21/2000											
1/20/2001						0.014 (O)					
3/14/2001											
7/16/2001						0.015 (O)					
11/1/2001						0.012 (O)					
4/25/2002								0.1 (O)			
11/20/2002						0.026 (O)	0.19 (O)				
6/6/2003						0.022 (O)	0.32 (O)		0.021 (O)	0.021 (O)	
12/12/2003						0.028 (O)			0.016 (O)		
5/26/2004						0.012 (O)					
12/7/2004											
6/21/2005											
12/12/2005						0.013 (O)					
6/27/2006											
12/4/2006											
6/23/2007											
12/11/2007											
6/24/2008											
12/5/2008											
7/7/2009											
12/21/2009											
6/20/2010											
6/21/2010											
7/8/2011											
7/9/2012									0.066 (O)		
1/18/2013									0.04 (O)		
4/3/2014											
1/17/2016											
8/31/2016											
9/1/2016											
10/26/2016											
10/3/2017											
7/10/2018											
7/11/2018											
1/16/2019	6.45 (O)										
1/17/2019		8.44 (O)		0.00 (0)	0.07.(0)						
1/18/2019			7.73 (0)	6.98 (O)	6.87 (O)						
1/21/2019			7.73 (O)								
3/25/2019											
10/8/2019 4/6/2020											
9/28/2020											
1/31/2022											

Composition			. olved S	Solids (mg/L)) (ma/L)	- (ma/L)	. (ma/L)	- (ma/L)		.0.		a \
112112000		GWB-5R To	tal Dissolve GWB-5R Va	anadium (11.9 GWC-1 Van	adium (Ing. 17 GWC-14 Va	nadium (119 GWC-15 Va	nadium (1119 GWC-16 Var	nadium (1119 GWA-7 Zinc	(mg/L) GWB-5R Zin	c (mg/L) GWB-6R Zir	_{IC} (mg/L) GWC-11 Zin	c (mg/L)
1402001	9/29/2000											
14/2001	11/21/2000									0.024 (O)		
111/12/2012	1/20/2001								0.031 (O)	<0.02 (O)		
1111/2001	3/14/2001		0.077 (O)						0.063 (O)	<0.02 (O)		
4252002	7/16/2001		0.12 (O)						0.08 (O)	<0.02 (O)		
11202002	11/1/2001		0.21 (O)						0.16 (O)	<0.02 (O)		
6492003	4/25/2002		0.086 (O)							<0.02 (O)		
121/12/2003	11/20/2002		0.14 (O)						0.14 (O)	0.028 (O)		
578/2004 0.06 (0) 0.01 (0) 0.01 (0) 0.028 (0) 0.028 (0) 0.028 (0) 0.028 (0) 0.028 (0) 0.028 (0) 0.028 (0) 0.028 (0) 0.028 (0) 0.028 (0) 0.028 (0) 0.028 (0) 0.028 (0) 0.028 (0) 0.028 (0) 0.027 (0) 0.027 (0) 0.027 (0) 0.024 (0) 0.028 (0) 0.	6/6/2003		0.12 (O)	0.16 (O)		0.019 (O)	0.082 (O)	0.69 (O)	0.51 (O)	0.032 (O)		
1271/22064	12/12/2003					0.018 (O)				<0.01 (O)		
6/21/2005 6/27/2006 6/27/2006 6/27/2006 6/27/2007 6/27/2008 6/27/2009 6/27/2009 6/27/2009 6/27/2009 6/27/2009 6/27/2010 6/27/2	5/26/2004		0.06 (O)						0.036 (O)	<0.01 (O)		
12/12/2005	12/7/2004								0.069 (O)	0.012 (O)	0.028 (O)	
6/27/2006 12/4/2006 6/23/2007 0.094 (O) 12/11/2007 0.098 (O) 12/15/2008 0.047 (O) 12/15/2009 0.024 (O) 12/15/2009 0.024 (O) 12/15/2009 0.045 (O) 12/15/2009 0.045 (O) 12/15/2010 1/16/2013 1/16/2013 1/16/2016 10/16/2016 10/16/2017 1/16/2018 1/16/2019 1/17/2018 1/17/2018 1/17/2019	6/21/2005								0.076 (O)	<0.01 (O)		
12/4/2006 6/23/2007 12/11/2007 6/24/2008 6/24/2008 6/24/2008 7/7/2009 7/7/2009 12/21/2009 6/20/2010 6/20/2	12/12/2005									<0.01 (O)		
0.094 (0) 12/11/2007 0.042 (0) 0.042 (0) 0.042 (0) 0.042 (0) 0.042 (0) 0.042 (0) 0.043 (0) 0.043 (0) 0.043 (0) 0.043 (0) 0.043 (0) 0.043 (0) 0.045 (0) 0.0	6/27/2006											
12/11/2007 6/24/2008 12/5/2008 12/5/2008 12/5/2009 12/21/2009 12/21/2009 12/21/2009 12/21/2009 12/21/2009 12/21/2009 12/21/2010 12/21/2010 13/2011 17/9/2012 11/18/2013 14/3/2014 10/3/2014 10/3/2016 10/3/2016 10/3/2016 10/3/2017 7/10/2018 17/3/2019 11/17/2019	12/4/2006											
6/24/2008 12/25/2008 12/25/2008 17/7/2009 12/21/2009 12/21/2009 12/21/2010 6/20/2010 6/20/2010 6/20/2010 6/21/2010 7/8/2011 7/8/2012 11/8/2013 4/3/2014 0.077 (O) 11/7/2016 8/31/2016 10/3/2017 7/10/2018 17/30 (O) 7/11/2018 17/30 (O) 7/11/2018 17/30 (O) 7/11/2019 11/8/2019	6/23/2007									0.094 (O)		
12/5/2008	12/11/2007									0.042 (O)		
7/7/2009 12/21/2009 12/21/2010 6/20/2010 6/20/2010 7/8/2011 7/8/2012 1/18/2013 4/3/2014 0.077 (O) 1/17/2016 8/31/2016 9/1/2016 10/28/2016 10/28/2017 7/1/2018 1730 (O) 7/11/2018 1/18/2019	6/24/2008									0.098 (O)		
12/21/2009 6/20/2010 6/20/2010 6/21/2010 7/8/2011 7/9/2012 1/18/2013 4/3/2014 0.077 (O) 11/17/2016 8/31/2016 10/3/2017 7/10/2018 1730 (O) 7/11/2018 1/17/2019 1/1/2019	12/5/2008									0.047 (O)		
6/20/2010 6/21/2010 7/8/2011 7/9/2012 1/18/2013 4/3/2014 0.077 (O) 1/1/7/2016 8/31/2016 10/36/2016 10/36/2016 11/3/2017 7/10/2018 1/30 (O) 7/11/2018 1/30 (O) 1/11/7/2019 1/14/2019 1/14/2019 1/14/2019 1/14/2019 1/14/2019 1/14/2019 1/14/2019 1/16/2019 1/16/2019 1/16/2019 1/16/2019 1/16/2019 1/16/2019 1/16/2019 1/16/2019 1/16/2019 1/16/2019 1/16/2019 1/16/2019 1/16/2019 1/16/2019 1/16/2019 1/16/2019 1/16/2019 1/16/2019 1/16/2019	7/7/2009									0.024 (O)		
6/21/2010 7/8/2011 7/9/2012 11/18/2013 4/3/2014 0.077 (O) 11/17/2016 8/31/2016 9/1/2016 10/26/2016 10/3/2017 7/10/2018 1730 (O) 7/11/2018 1/18/2019 1/18/2019 1/18/2019 1/18/2019 1/18/2019 1/18/2019 1/18/2019 4/6/2020 9/28/2020	12/21/2009									0.049 (O)		
7/8/2011 7/9/2012 1/18/2013 4/3/2014 0.077 (O) 1/1/7/2016 8/31/2016 9/1/2016 10/26/2016 10/3/2017 7/10/2018 1730 (O) 7/11/2018 1/16/2019 1/17/2019 1/18/2019 1/18/2019 1/18/2019 1/18/2019 1/18/2019 1/18/2019 4/6/2020 9/28/2020	6/20/2010									0.045 (O)		
7/9/2012 1/18/2013 4/3/2014 0.077 (O) 1/17/2016 8/31/2016 9/1/2016 10/26/2016 10/3/2017 7/10/2018 1/730 (O) 7/11/2018 1/16/2019 1/18/2019 1/21/2019 1/21/2019 1/21/2019 1/21/2019 1/21/2019 1/21/2019 1/21/2019 1/21/2019 1/21/2019 1/21/2019 1/21/2019 1/21/2019 1/21/2019 1/21/2019 1/21/2019	6/21/2010											
1/18/2013 4/3/2014 0.077 (O) 1/17/2016 8/31/2016 9/1/2016 10/26/2016 10/3/2017 7/10/2018 1730 (O) 7/11/2018 1/16/2019 1/18/2019 1/21/2019 1/22/2020	7/8/2011											
4/3/2014 0.077 (O) 1/17/2016 8/31/2016 9/1/2016 10/26/2016 10/3/2017 7/10/2018 1730 (O) 7/11/2018 1/16/2019 1/18/2019 1/21/2019 3/25/2019 4/6/2020 9/28/2020	7/9/2012											
1/17/2016 8/31/2016 9/1/2016 10/26/2016 10/3/2017 7/10/2018 1/730 (O) 7/11/2018 1/16/2019 1/17/2019 1/18/2019 1/21/2019 1/21/2019 3/25/2019 4/6/2020 9/28/2020	1/18/2013											
8/31/2016 9/1/2016 10/26/2016 10/3/2017 7/10/2018 1730 (O) 7/11/2018 1/16/2019 1/17/2019 1/121/2019 3/25/2019 4/6/2020 9/28/2020	4/3/2014				0.077 (O)							
9/1/2016 10/26/2016 10/3/2017 7/10/2018 1730 (O) 7/11/2018 1/16/2019 1/17/2019 1/18/2019 1/21/2019 3/25/2019 4/6/2020 9/28/2020	1/17/2016											
10/26/2016 10/3/2017 7/10/2018 1730 (O) 7/11/2018 1/16/2019 1/17/2019 1/18/2019 1/21/2019 3/25/2019 <0.05 (O) 10/8/2020 9/28/2020	8/31/2016											
10/3/2017 7/10/2018 1730 (O) 7/11/2018 1/16/2019 1/17/2019 1/18/2019 1/21/2019 3/25/2019 4/6/2020 9/28/2020	9/1/2016											
7/10/2018 1730 (O) 7/11/2018 1/16/2019 1/17/2019 1/18/2019 1/21/2019 3/25/2019 1/08/2019 4/6/2020 9/28/2020	10/26/2016											
7/11/2018 1/16/2019 1/17/2019 1/18/2019 1/21/2019 3/25/2019 4/6/2020 9/28/2020	10/3/2017											
1/16/2019 1/17/2019 1/18/2019 1/21/2019 3/25/2019 4/6/2020 9/28/2020	7/10/2018	1730 (O)										
1/17/2019 1/18/2019 1/21/2019 3/25/2019 <0.05 (O) 10/8/2019 4/6/2020 9/28/2020	7/11/2018											
1/18/2019 1/21/2019 3/25/2019 <0.05 (O) 10/8/2019 4/6/2020 9/28/2020	1/16/2019											
1/21/2019 3/25/2019 <0.05 (O) 10/8/2019 4/6/2020 9/28/2020	1/17/2019											
3/25/2019 <0.05 (O) 10/8/2019 4/6/2020 9/28/2020	1/18/2019											
10/8/2019 4/6/2020 9/28/2020	1/21/2019											
4/6/2020 9/28/2020	3/25/2019							<0.05 (O)				
9/28/2020	10/8/2019											
	4/6/2020											
1/31/2022	9/28/2020											
	1/31/2022											

```
9/29/2000
               0.38 (O)
11/21/2000
               0.077 (O)
                                                         0.021 (O)
1/20/2001
               0.23 (O)
3/14/2001
               0.24 (O)
7/16/2001
               0.053 (O)
11/1/2001
               0.022 (O)
                         0.044 (O)
4/25/2002
               1.2 (O)
11/20/2002
               0.045 (O)
                                                                                                   0.033 (O)
               0.042 (O)
                                               0.035 (O)
6/6/2003
12/12/2003
5/26/2004
12/7/2004
6/21/2005
12/12/2005
                                    0.064 (O)
                                                                                                   0.032 (O)
6/27/2006
               0.012 (O)
                                               0.077 (O)
                                                                                                   0.018 (O)
12/4/2006
                         0.046 (O)
6/23/2007
               0.025 (O)
12/11/2007
6/24/2008
12/5/2008
7/7/2009
12/21/2009
               0.013 (O)
6/20/2010
                                                                              0.04 (O)
6/21/2010
                                                                    0.086 (JO)
                                                                                         0.1 (O)
7/8/2011
7/9/2012
1/18/2013
4/3/2014
1/17/2016
8/31/2016
9/1/2016
10/26/2016
10/3/2017
7/10/2018
7/11/2018
1/16/2019
1/17/2019
1/18/2019
1/21/2019
3/25/2019
10/8/2019
4/6/2020
9/28/2020
1/31/2022
```

Appendix I Interwell Prediction Limits - Significant Results Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill Printed 9/28/2022, 10:41 AM

	Grumman Road Landilli Client: Southern Company Data: Grumm					Grumman Road Landiiii	Printed 9/	28/2022, 10:41 AM			
Constituent	Well	Upper Lir	n. Lower Lin	n. Date	Observ.	Sig. Bg N Bg Mean	Std. Dev.	%NDs ND Adj.	Transform	<u>Alpha</u>	Method
Arsenic (mg/L)	GWC-15	0.0287	n/a	8/31/2022	0.259	Yes 127 n/a	n/a	77.17 n/a	n/a	0.0001219	NP Inter (NDs) 1 of 2
Arsenic (mg/L)	GWC-16	0.0287	n/a	9/1/2022	0.0987	Yes 127 n/a	n/a	77.17 n/a	n/a	0.0001219	NP Inter (NDs) 1 of 2
Arsenic (mg/L)	GWC-20	0.0287	n/a	8/30/2022	0.465	Yes 127 n/a	n/a	77.17 n/a	n/a	0.0001219	NP Inter (NDs) 1 of 2

Appendix I Interwell Prediction Limits - All Results

Data: Grumman Road Landfill Printed 9/28/2022, 10:41 AM Client: Southern Company Std. Dev. Constituent Sig. Bg N Bg Mean %NDs ND Adj. Method Upper Lim. Lower Lim. Date **Transform** 0.0001219 NP Inter (NDs) 1 of 2 GWB-4R 0.003 8/30/2022 0.003ND No 95.28 n/a Antimony (mg/L) 127 n/a n/a n/a n/a GWB-5R 8/30/2022 Antimony (mg/L) 0.003 n/a 0.003ND Nο 127 n/a n/a 95.28 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 GWB-6R 95.28 n/a 0.0001219 NP Inter (NDs) 1 of 2 Antimony (ma/L) 0.003 8/30/2022 0.003ND No 127 n/a n/a n/a n/a 0.003 Antimony (mg/L) GWC-1 n/a 9/1/2022 0.003ND No 127 n/a 95.28 n/a 0.0001219 NP Inter (NDs) 1 of 2 Antimony (mg/L) GWC-11 0.003 8/31/2022 0.003ND 95.28 n/a 0.0001219 NP Inter (NDs) 1 of 2 n/a No 127 n/a n/a n/a Antimony (mg/L) GWC-12 0.003 n/a 8/30/2022 0.003ND No n/a 95.28 n/a 0.0001219 NP Inter (NDs) 1 of 2 127 n/a n/a Antimony (mg/L) GWC-13 0.003 n/a 8/31/2022 0.003ND No 127 n/a n/a 95.28 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 Antimony (mg/L) GWC-14 0.003 n/a 8/30/2022 0.003ND No 127 n/a 95.28 n/a 0.0001219 NP Inter (NDs) 1 of 2 Antimony (mg/L) GWC-15 0.003 n/a 8/31/2022 0.003ND No 127 n/a n/a 95.28 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 Antimony (mg/L) GWC-16 0.003 n/a 9/1/2022 0.003ND No 127 n/a 95.28 n/a 0.0001219 NP Inter (NDs) 1 of 2 Antimony (mg/L) GWC-17 0.003 n/a 8/31/2022 0.003ND No 127 n/a n/a 95.28 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 Antimony (mg/L) GWC-2 0.003 n/a 9/1/2022 0.003ND No 127 95.28 n/a 0.0001219 NP Inter (NDs) 1 of 2 GWC-20 8/30/2022 0.003ND 95.28 n/a 0.0001219 NP Inter (NDs) 1 of 2 Antimony (mg/L) 0.003 n/a No 127 n/a n/a n/a Antimony (mg/L) GWC-21 0.003 n/a 8/30/2022 0.003ND No 127 n/a 95.28 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 Antimony (mg/L) GWC-22 0.003 n/a 8/31/2022 0.003ND Nο 127 n/a n/a 95 28 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 Antimony (mg/L) GWC-9 0.003 9/1/2022 0.003ND No 127 n/a 95.28 n/a 0.0001219 NP Inter (NDs) 1 of 2 n/a n/a Arsenic (mg/L) GWB-4R 0.0287 n/a 8/30/2022 0.0049.1 Nο 127 n/a n/a 77 17 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 GWB-5R 0.0287 8/30/2022 0.00253J 127 77.17 n/a 0.0001219 NP Inter (NDs) 1 of 2 Arsenic (mg/L) n/a No n/a n/a n/a Arsenic (ma/L) GWB-6R 0.0287 n/a 8/30/2022 0.00716 Nο 127 n/a n/a 77 17 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 Arsenic (ma/L) GWC-1 0.0287 n/a 9/1/2022 0.00568 Nο 127 n/a n/a 77 17 n/a 0.0001219 NP Inter (NDs) 1 of 2 n/a Arsenic (mg/L) GWC-12 0.0287 n/a 8/30/2022 0.005ND No 127 n/a n/a 77.17 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 77.17 n/a Arsenic (mg/L) GWC-13 0.0287 n/a 8/31/2022 0.005ND 127 n/a 0.0001219 NP Inter (NDs) 1 of 2 No n/a n/a GWC-14 0.0287 8/30/2022 0.005ND No 127 77.17 n/a 0.0001219 NP Inter (NDs) 1 of 2 Arsenic (mg/L) n/a n/a n/a Arsenic (mg/L) GWC-15 0.0287 n/a 8/31/2022 0.259 Yes 127 n/a n/a 77.17 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 Arsenic (mg/L) **GWC-16** 0.0287 n/a 9/1/2022 0.0987 n/a 77.17 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 GWC-17 0.0287 8/31/2022 0.005ND 77.17 n/a 0.0001219 NP Inter (NDs) 1 of 2 Arsenic (ma/L) n/a No 127 n/a n/a n/a GWC-2 0.0287 9/1/2022 0.005ND 77.17 n/a 0.0001219 NP Inter (NDs) 1 of 2 Arsenic (mg/L) n/a No 127 n/a n/a 0.0001219 Arsenic (mg/L) GWC-20 0.0287 n/a 8/30/2022 0.465 127 n/a n/a 77.17 n/a n/a NP Inter (NDs) 1 of 2 Arsenic (mg/L) GWC-21 0.0287 n/a 8/30/2022 0.0271 No 127 n/a 77.17 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 Arsenic (mg/L) GWC-22 0.0287 n/a 8/31/2022 0.005ND No 127 n/a n/a 77.17 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 Arsenic (ma/L) GWC-9 0.0287 n/a 9/1/2022 0.005ND 127 n/a 77.17 n/a 0.0001219 NP Inter (NDs) 1 of 2 0.0001254 Barium (mg/L) GWR-4R 0.22 n/a 8/30/2022 0.134 Nο 125 n/a n/a n n/a n/a NP Inter (normality) 1 of 2 Barium (mg/L) GWB-5R 0.22 n/a 8/30/2022 0.051 No 125 n/a n/a n/a 0.0001254 NP Inter (normality) 1 of 2 0.0001254 NP Inter (normality) 1 of 2 Barium (mg/L) GWB-6R 0.22 n/a 8/30/2022 0.0266 No 125 n/a n/a 0 n/a n/a Barium (mg/L) GWC-1 0.22 9/1/2022 0.0583 No 0 n/a n/a 0.0001254 NP Inter (normality) 1 of 2 n/a 125 n/a Barium (mg/L) GWC-11 0.22 n/a 8/31/2022 0.115 No 125 n/a n/a 0 n/a n/a 0.0001254 NP Inter (normality) 1 of 2 Barium (mg/L) GWC-12 0.22 n/a 8/30/2022 0.0275 No 125 n/a n/a 0 n/a n/a 0.0001254 NP Inter (normality) 1 of 2 Barium (mg/L) GWC-13 0.22 n/a 8/31/2022 0.0379 Nο 125 n/a 0 n/a n/a 0.0001254 NP Inter (normality) 1 of 2 n/a Barium (mg/L) GWC-14 0.22 8/30/2022 0.0773 0 n/a 0.0001254 NP Inter (normality) 1 of 2 n/a No 125 n/a n/a n/a Barium (mg/L) GWC-15 0.22 n/a 8/31/2022 0.055 No n/a 0 n/a 0.0001254 NP Inter (normality) 1 of 2 125 n/a n/a GWC-16 0.22 n/a 9/1/2022 0.165 0 0.0001254 NP Inter (normality) 1 of 2 Barium (mg/L) No 125 n/a n/a n/a n/a Barium (mg/L) GWC-17 0.22 n/a 8/31/2022 0.0375 No 125 n/a n/a 0 n/a n/a 0.0001254 NP Inter (normality) 1 of 2 Barium (mg/L) GWC-2 0.22 9/1/2022 0.0508 0 0.0001254 NP Inter (normality) 1 of 2 n/a No 125 n/a n/a n/a n/a Barium (mg/L) GWC-20 0.22 n/a 8/30/2022 0.21 Nο n/a 0 n/a 0.0001254 NP Inter (normality) 1 of 2 125 n/a n/a Barium (mg/L) GWC-21 0.22 8/30/2022 0.0001254 0.191 No 125 n/a 0 NP Inter (normality) 1 of 2 n/a n/a n/a n/a GWC-22 0.22 8/31/2022 Barium (mg/L) n/a 0.0741 No 125 0 n/a n/a 0.0001254 NP Inter (normality) 1 of 2 GWC-9 9/1/2022 0 0.0001254 NP Inter (normality) 1 of 2 Barium (mg/L) 0.22 n/a 0.151 No 125 n/a n/a n/a n/a GWB-4R 0.068 8/30/2022 0.01ND 0.0001236 NP Inter (NDs) 1 of 2 Chromium (mg/L) n/a No 126 n/a 61.9 n/a n/a Chromium (ma/L) GWB-5R 0.068 8/30/2022 0.01ND 61.9 n/a 0.0001236 NP Inter (NDs) 1 of 2 n/a No 126 n/a n/a n/a Chromium (mg/L) GWB-6R 0.068 n/a 8/30/2022 0.00356J 61.9 n/a 0.0001236 NP Inter (NDs) 1 of 2 0.0001236 Chromium (mg/L) GWC-1 0.068 n/a 9/1/2022 0.01ND No 126 n/a n/a 61.9 n/a n/a NP Inter (NDs) 1 of 2 Chromium (mg/L) GWC-11 0.068 n/a 8/31/2022 0.01ND No 126 n/a 61.9 n/a 0.0001236 NP Inter (NDs) 1 of 2 Chromium (mg/L) GWC-12 0.068 n/a 8/30/2022 0.01ND No 126 n/a n/a 61.9 n/a n/a 0.0001236 NP Inter (NDs) 1 of 2 Chromium (mg/L) GWC-13 0.068 n/a 8/31/2022 0.01ND n/a 61.9 n/a NP Inter (NDs) 1 of 2 GWC-14 8/30/2022 619 0.0001236 NP Inter (NDs) 1 of 2 Chromium (ma/L) 0.068 n/a 0.01ND Nο 126 n/a n/a n/a n/a

Appendix I Interwell Prediction Limits - All Results

Client: Southern Company

Data: Grumman Road Landfill

Printed 9/28/2022, 10:41 AM

Std. Dev. Constituent Sig. Bg N Bg Mean %NDs ND Adj. Method Upper Lim. Lower Lim. Date **Transform** NP Inter (NDs) 1 of 2 GWC-15 8/31/2022 0.01ND 61.9 n/a Chromium (mg/L) 0.068 No 126 n/a n/a 0.0001236 n/a n/a GWC-16 9/1/2022 Chromium (mg/L) 0.068 n/a 0.01ND Nο 126 n/a n/a 61.9 n/a n/a 0.0001236 NP Inter (NDs) 1 of 2 GWC-17 0.01ND NP Inter (NDs) 1 of 2 Chromium (ma/L) 0.068 n/a 8/31/2022 126 61.9 0.0001236 No n/a n/a n/a n/a Chromium (mg/L) GWC-2 0.068 n/a 9/1/2022 0.01ND No 126 n/a 61.9 0.0001236 NP Inter (NDs) 1 of 2 Chromium (mg/L) GWC-20 0.068 8/30/2022 0.01ND 61.9 0.0001236 NP Inter (NDs) 1 of 2 n/a No 126 n/a n/a n/a n/a Chromium (mg/L) GWC-21 0.068 n/a 8/30/2022 0.01ND 61.9 0.0001236 NP Inter (NDs) 1 of 2 No 126 n/a n/a n/a n/a GWC-22 Chromium (mg/L) 0.068 n/a 8/31/2022 0.01ND No 126 n/a n/a 61.9 n/a n/a 0.0001236 NP Inter (NDs) 1 of 2 Chromium (mg/L) GWC-9 0.068 n/a 9/1/2022 0.01ND No 61.9 0.0001236 NP Inter (NDs) 1 of 2 Lead (mg/L) GWB-4R 0.013 n/a 8/30/2022 0.002ND No 123 n/a n/a 75.61 n/a n/a 0.0001289 NP Inter (NDs) 1 of 2 Lead (mg/L) GWB-5R 0.013 n/a 8/30/2022 0.002ND 123 n/a 75.61 n/a 0.0001289 NP Inter (NDs) 1 of 2 Lead (mg/L) GWB-6R 0.013 n/a 8/30/2022 0.002ND No 123 n/a n/a 75.61 n/a n/a 0.0001289 NP Inter (NDs) 1 of 2 Lead (mg/L) GWC-1 0.013 n/a 9/1/2022 0.002ND No 75.61 n/a 0.0001289 NP Inter (NDs) 1 of 2 GWC-11 0.013 8/31/2022 0.002ND 75.61 n/a 0.0001289 NP Inter (NDs) 1 of 2 Lead (mg/L) n/a No 123 n/a n/a n/a Lead (mg/L) GWC-12 0.013 n/a 8/30/2022 0.002ND No 123 n/a 75.61 n/a n/a 0.0001289 NP Inter (NDs) 1 of 2 Lead (mg/L) GWC-13 0.013 n/a 8/31/2022 0.002ND Nο 123 n/a n/a 75.61 n/a n/a 0.0001289 NP Inter (NDs) 1 of 2 GWC-14 0.013 n/a 8/30/2022 0.002ND No 123 75.61 n/a NP Inter (NDs) 1 of 2 Lead (mg/L) n/a n/a Lead (mg/L) GWC-15 0.013 n/a 8/31/2022 0.002ND Nο 123 n/a n/a 75.61 n/a n/a 0.0001289 NP Inter (NDs) 1 of 2 GWC-16 0.013 9/1/2022 0.002ND 123 75.61 n/a 0.0001289 NP Inter (NDs) 1 of 2 Lead (mg/L) n/a No n/a n/a n/a Lead (mg/L) GWC-17 0.013 n/a 8/31/2022 0.002ND No 123 n/a n/a 75.61 n/a n/a 0.0001289 NP Inter (NDs) 1 of 2 Lead (mg/L) GWC-2 0.013 n/a 9/1/2022 0.002ND Nο 123 n/a n/a 75.61 n/a 0.0001289 NP Inter (NDs) 1 of 2 n/a Lead (mg/L) GWC-20 0.013 n/a 8/30/2022 0.002ND No 123 n/a n/a 75.61 n/a n/a 0.0001289 NP Inter (NDs) 1 of 2 Lead (mg/L) GWC-21 0.013 8/30/2022 123 n/a 75.61 n/a 0.0001289 NP Inter (NDs) 1 of 2 n/a 0.002ND No n/a n/a GWC-22 0.013 8/31/2022 0.002ND 75.61 n/a NP Inter (NDs) 1 of 2 Lead (mg/L) n/a No 123 n/a n/a 0.0001289 Lead (mg/L) GWC-9 0.013 n/a 9/1/2022 0.002ND No 123 n/a n/a 75.61 n/a n/a 0.0001289 NP Inter (NDs) 1 of 2 Selenium (mg/L) GWB-4R 0.0438 n/a 8/30/2022 0.00265J No n/a 83.46 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 Selenium (mg/L) GWB-5R 0.0438 8/30/2022 0.005ND No 83.46 n/a 0.0001219 NP Inter (NDs) 1 of 2 n/a 127 n/a n/a n/a Selenium (mg/L) GWB-6R 8/30/2022 0.00277J No 83 46 n/a 0.0001219 NP Inter (NDs) 1 of 2 0.0438 n/a 127 n/a n/a 9/1/2022 0.0001219 NP Inter (NDs) 1 of 2 Selenium (ma/L) GWC-1 0.0438 0.00252J 83.46 n/a n/a No 127 n/a n/a n/a GWC-11 8/31/2022 83.46 n/a NP Inter (NDs) 1 of 2 Selenium (mg/L) 0.0438 n/a 0.00344J No 127 n/a n/a 0.0001219 Selenium (mg/L) GWC-12 0.0438 n/a 8/30/2022 0.005ND No 127 n/a n/a 83.46 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 Selenium (ma/L) GWC-14 0.0438 n/a 8/30/2022 0.00544 No 127 n/a 83.46 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 8/31/2022 0.0001219 NP Inter (NDs) 1 of 2 Selenium (mg/L) GWC-15 0.0438 n/a 0.00192.1 Nο 127 n/a n/a 83.46 n/a n/a Selenium (mg/L) GWC-16 0.0438 n/a 9/1/2022 0.00334J No 127 n/a 83.46 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 0.0001219 NP Inter (NDs) 1 of 2 Selenium (mg/L) GWC-17 0.0438 n/a 8/31/2022 0.005ND No 127 n/a n/a 83.46 n/a n/a Selenium (mg/L) GWC-2 0.0438 n/a 9/1/2022 0.005ND No n/a 83.46 n/a 0.0001219 NP Inter (NDs) 1 of 2 127 n/a Selenium (mg/L) GWC-20 0.0438 n/a 8/30/2022 0.00192JNo 127 n/a n/a 83.46 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 Selenium (mg/L) GWC-21 0.0438 n/a 8/30/2022 0.00648 No 127 n/a n/a 83.46 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 Selenium (mg/L) GWC-22 0.0438 n/a 8/31/2022 0.005ND No 127 n/a 83.46 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 n/a Selenium (mg/L) GWC-9 0.0438 9/1/2022 0.005ND n/a 83.46 n/a 0.0001219 NP Inter (NDs) 1 of 2 n/a No 127 n/a n/a Vanadium (mg/L) GWB-4R 0.425 n/a 8/30/2022 0.00943J No n/a 61.98 n/a 0.0001324 NP Inter (NDs) 1 of 2 121 n/a Vanadium (mg/L) GWB-5R 0.425 8/30/2022 0.0138J 121 61.98 n/a 0.0001324 NP Inter (NDs) 1 of 2 n/a No n/a n/a n/a Vanadium (mg/L) GWB-6R 0.425 n/a 8/30/2022 0.0192.1 No 121 n/a n/a 61.98 n/a n/a 0.0001324 NP Inter (NDs) 1 of 2 Vanadium (mg/L) GWC-1 0.425 9/1/2022 0.00748J No 121 61.98 n/a 0.0001324 NP Inter (NDs) 1 of 2 n/a n/a n/a n/a Vanadium (mg/L) GWC-11 0.425 n/a 8/31/2022 0.00481J No 121 n/a 61.98 n/a n/a 0.0001324 NP Inter (NDs) 1 of 2 Vanadium (mg/L) GWC-12 0.425 8/30/2022 61.98 n/a 0.0001324 NP Inter (NDs) 1 of 2 0.00949J No 121 n/a n/a n/a n/a GWC-13 8/31/2022 61.98 n/a NP Inter (NDs) 1 of 2 Vanadium (mg/L) 0.425 n/a 0.02ND No 121 0.0001324 GWC-14 8/30/2022 61.98 n/a 0.0001324 NP Inter (NDs) 1 of 2 Vanadium (mg/L) 0.425 n/a 0.00933J No 121 n/a n/a n/a Vanadium (mg/L) GWC-15 0.425 n/a 8/31/2022 0.00476J 61.98 n/a 0.0001324 NP Inter (NDs) 1 of 2 No 121 n/a n/a Vanadium (mg/L) GWC-16 0.425 9/1/2022 0.0065J No 121 61.98 n/a 0.0001324 NP Inter (NDs) 1 of 2 n/a n/a n/a n/a Vanadium (mg/L) GWC-17 0.425 n/a 8/31/2022 0.00599J No 61.98 n/a n/a 0.0001324 NP Inter (NDs) 1 of 2 0.0001324 NP Inter (NDs) 1 of 2 Vanadium (mg/L) GWC-2 0.425 n/a 9/1/2022 0.0045JNo 121 n/a n/a 61.98 n/a n/a Vanadium (mg/L) GWC-20 0.425 n/a 8/30/2022 0.00647J No 121 n/a n/a 61.98 n/a n/a 0.0001324 NP Inter (NDs) 1 of 2 Vanadium (mg/L) GWC-21 0.425 n/a 8/30/2022 0.00715JNo 121 n/a n/a 61.98 n/a n/a 0.0001324 NP Inter (NDs) 1 of 2 Vanadium (mg/L) GWC-22 0.425 n/a 8/31/2022 No 121 n/a 61.98 n/a n/a 0.0001324 NP Inter (NDs) 1 of 2 GWC-9 0.425 9/1/2022 61 98 n/a 0.0001324 NP Inter (NDs) 1 of 2 Vanadium (mg/L) n/a 0.00514.1 Nο 121 n/a n/a n/a

Page 3

Appendix I Interwell Prediction Limits - All Results

	Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill			Printed 9/	28/2022, 10:41 AM								
Constituent	Well	Upper Li	m. Lower Li	n. <u>Date</u>	Observ.	Si	g. <u>Bg N</u>	Bg Mean	Std. Dev.	%NDs ND Adj.	Transform	<u>Alpha</u>	Method
Zinc (mg/L)	GWB-4R	0.16	n/a	8/30/2022	0.02ND	N	o 119	n/a	n/a	28.57 n/a	n/a	0.000137	NP Inter (normality) 1 of 2
Zinc (mg/L)	GWB-5R	0.16	n/a	8/30/2022	0.02ND	N	o 119	n/a	n/a	28.57 n/a	n/a	0.000137	NP Inter (normality) 1 of 2
Zinc (mg/L)	GWB-6R	0.16	n/a	8/30/2022	0.0132J	N	o 119	n/a	n/a	28.57 n/a	n/a	0.000137	NP Inter (normality) 1 of 2
Zinc (mg/L)	GWC-1	0.16	n/a	9/1/2022	0.00578J	No	o 119	n/a	n/a	28.57 n/a	n/a	0.000137	NP Inter (normality) 1 of 2
Zinc (mg/L)	GWC-11	0.16	n/a	8/31/2022	0.02ND	No	o 119	n/a	n/a	28.57 n/a	n/a	0.000137	NP Inter (normality) 1 of 2
Zinc (mg/L)	GWC-12	0.16	n/a	8/30/2022	0.0262	No	o 119	n/a	n/a	28.57 n/a	n/a	0.000137	NP Inter (normality) 1 of 2
Zinc (mg/L)	GWC-13	0.16	n/a	8/31/2022	0.0266	No	o 119	n/a	n/a	28.57 n/a	n/a	0.000137	NP Inter (normality) 1 of 2
Zinc (mg/L)	GWC-14	0.16	n/a	8/30/2022	0.02ND	No	o 119	n/a	n/a	28.57 n/a	n/a	0.000137	NP Inter (normality) 1 of 2
Zinc (mg/L)	GWC-15	0.16	n/a	8/31/2022	0.00395J	No	o 119	n/a	n/a	28.57 n/a	n/a	0.000137	NP Inter (normality) 1 of 2
Zinc (mg/L)	GWC-16	0.16	n/a	9/1/2022	0.0119J	No	o 119	n/a	n/a	28.57 n/a	n/a	0.000137	NP Inter (normality) 1 of 2
Zinc (mg/L)	GWC-17	0.16	n/a	8/31/2022	0.0068J	N	o 119	n/a	n/a	28.57 n/a	n/a	0.000137	NP Inter (normality) 1 of 2
Zinc (mg/L)	GWC-2	0.16	n/a	9/1/2022	0.0125J	No	o 119	n/a	n/a	28.57 n/a	n/a	0.000137	NP Inter (normality) 1 of 2
Zinc (mg/L)	GWC-20	0.16	n/a	8/30/2022	0.0171J	No	o 119	n/a	n/a	28.57 n/a	n/a	0.000137	NP Inter (normality) 1 of 2
Zinc (mg/L)	GWC-21	0.16	n/a	8/30/2022	0.00814J	N	o 119	n/a	n/a	28.57 n/a	n/a	0.000137	NP Inter (normality) 1 of 2
Zinc (mg/L)	GWC-22	0.16	n/a	8/31/2022	0.02ND	N	o 119	n/a	n/a	28.57 n/a	n/a	0.000137	NP Inter (normality) 1 of 2
Zinc (mg/L)	GWC-9	0.16	n/a	9/1/2022	0.0163J	N	o 119	n/a	n/a	28.57 n/a	n/a	0.000137	NP Inter (normality) 1 of 2

Appendix I Trend Tests - Prediction Limit Exceedances - Significant Results Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill Printed 9/28/2022, 10:43 AM

	Grumman Road Landilli	Client: Southern Compa	iny Data: Gr	umman Re	bad Landilli	Prir	itea 9/2	.8/2022,	10:43 AW			
Constituent	Well		Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Arsenic (mg/L)	GWA-7 (bg)		-0.0004514	-4.07	-2.58	Yes	53	56.6	n/a	n/a	0.01	NP
Arsenic (mg/L)	GWA-8 (bg)		0	-2.799	-2.58	Yes	74	91.89	n/a	n/a	0.01	NP
Arsenic (ma/L)	GWC-15		0.005378	8.362	2.58	Yes	54	46.3	n/a	n/a	0.01	NP

Appendix I Trend Tests - Prediction Limit Exceedances - All Results Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill Printed 9/28/2022, 10:43 AM

	Grumman Road Landfill	Client: Southern Compa	oad Landfill	Prir	ited 9/2	8/2022,	10:43 AM					
Constituent	Well		Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	Xform	<u>Alpha</u>	Method
Arsenic (mg/L)	GWA-7 (bg)		-0.0004514	-4.07	-2.58	Yes	53	56.6	n/a	n/a	0.01	NP
Arsenic (mg/L)	GWA-8 (bg)		0	-2.799	-2.58	Yes	74	91.89	n/a	n/a	0.01	NP
Arsenic (mg/L)	GWC-15		0.005378	8.362	2.58	Yes	54	46.3	n/a	n/a	0.01	NP
Arsenic (mg/L)	GWC-16		-0.000927	-2.349	-2.58	No	73	0	n/a	n/a	0.01	NP
Arsenic (mg/L)	GWC-20		0.009885	118	167	No	33	3.03	n/a	n/a	0.01	NP

Appendix III Interwell Prediction Limits - Significant Results

	Grumman Road	l Landfill	Client: Sout	hern Compa	ny Data: (Grumman R	toad Landfill	Printed 9/	28/202	2, 10:45 AM			
Constituent	Well	Upper Lin	n. Lower Lin	n. <u>Date</u>	Observ.	Sig. Bg N	N Bg Mean	Std. Dev.	%ND	s ND Adj.	Transform	<u>Alpha</u>	Method
Calcium (mg/L)	GWB-4R	35.8	n/a	8/30/2022	79.3	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Calcium (mg/L)	GWB-5R	35.8	n/a	8/30/2022	70.3	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Calcium (mg/L)	GWB-6R	35.8	n/a	8/30/2022	81.8	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Calcium (mg/L)	GWC-1	35.8	n/a	9/1/2022	46.9	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Calcium (mg/L)	GWC-11	35.8	n/a	8/31/2022	115	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Calcium (mg/L)	GWC-12	35.8	n/a	8/30/2022	70.8	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Calcium (mg/L)	GWC-14	35.8	n/a	8/30/2022	144	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Calcium (mg/L)	GWC-15	35.8	n/a	8/31/2022	135	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Calcium (mg/L)	GWC-16	35.8	n/a	9/1/2022	255	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Calcium (mg/L)	GWC-17	35.8	n/a	8/31/2022	102	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Calcium (mg/L)	GWC-20	35.8	n/a	8/30/2022	193	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Calcium (mg/L)	GWC-21	35.8	n/a	8/30/2022	131	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Chloride (mg/L)	GWC-17	260	n/a	8/31/2022	694	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Fluoride (mg/L)	GWC-17	0.4247	n/a	8/31/2022	0.442	Yes 38	-2.348	0.6768	23.68	Kaplan-Meie	r ln(x)	0.0004702	Param Inter 1 of 2
pH (SU)	GWC-12	6.43	4.23	8/30/2022	3.92	Yes 36	n/a	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
pH (SU)	GWC-15	6.43	4.23	8/31/2022	6.57	Yes 36	n/a	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWB-4R	160	n/a	8/30/2022	379	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWB-5R	160	n/a	8/30/2022	403	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWB-6R	160	n/a	8/30/2022	978	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-11	160	n/a	8/31/2022	653	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-12	160	n/a	8/30/2022	415	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-14	160	n/a	8/30/2022	410	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-16	160	n/a	9/1/2022	1140	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-17	160	n/a	8/31/2022	721	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-20	160	n/a	8/30/2022	606	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-21	160	n/a	8/30/2022	451	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2

Appendix III Interwell Prediction Limits - All Results

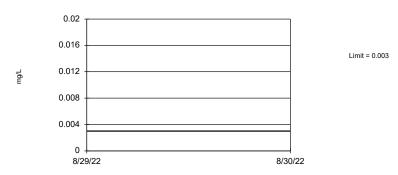
Printed 9/28/2022, 10:45 AM Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill Std. Dev. Constituent %NDs ND Adj. <u>Upper</u> Lim. Lower Lim Observ. Bg N Bg Mean Method Boron (mg/L) GWB-4R 21.8 8/30/2022 4.95 No 34 n/a 0 NP Inter (normality) 1 of 2 n/a n/a n/a n/a 0.001453 8/30/2022 Boron (mg/L) GWB-5R 21.8 n/a 4.66 No 34 n/a n/a 0 n/a n/a 0.001453 NP Inter (normality) 1 of 2 Boron (mg/L) GWB-6R 21.8 n/a 8/30/2022 7.13 34 0 n/a 0.001453 NP Inter (normality) 1 of 2 21.8 9/1/2022 Boron (mg/L) GWC-1 n/a 0.728 Nο 34 n/a n/a n n/a n/a 0.001453 NP Inter (normality) 1 of 2 Boron (mg/L) GWC-11 21.8 n/a 8/31/2022 1.65 34 0 n/a 0.001453 NP Inter (normality) 1 of 2 GWC-12 21.8 8/30/2022 8.21 34 n/a 0 0.001453 NP Inter (normality) 1 of 2 Boron (mg/L) n/a No n/a n/a n/a GWC-13 21.8 n/a 8/31/2022 0.231 34 n/a 0 0.001453 NP Inter (normality) 1 of 2 Boron (mg/L) No n/a n/a n/a GWC-14 21.8 8/30/2022 NP Inter (normality) 1 of 2 Boron (mg/L) 0.046 34 n/a 0 0.001453 n/a No n/a n/a n/a n/a Boron (mg/L) GWC-15 21.8 8/31/2022 0.719 No 34 n/a 0 n/a 0.001453 NP Inter (normality) 1 of 2 n/a n/a Boron (mg/L) GWC-16 21.8 n/a 9/1/2022 15.9 No 34 n/a 0 n/a 0.001453 NP Inter (normality) 1 of 2 n/a Boron (mg/L) GWC-17 21.8 n/a 8/31/2022 2.51 Nο 34 n/a n/a n n/a n/a 0.001453 NP Inter (normality) 1 of 2 Boron (mg/L) GWC-2 21.8 n/a 9/1/2022 0.0204 No 34 n/a 0 n/a n/a 0.001453 NP Inter (normality) 1 of 2 Boron (mg/L) GWC-20 21.8 n/a 8/30/2022 8.14 No 34 n/a n/a 0 n/a n/a 0.001453 NP Inter (normality) 1 of 2 Boron (mg/L) GWC-21 21.8 n/a 8/30/2022 5.08 No 34 0 n/a 0.001453 NP Inter (normality) 1 of 2 GWC-22 21.8 8/31/2022 0 0.001453 NP Inter (normality) 1 of 2 Boron (mg/L) n/a 0.271 No 34 n/a n/a n/a n/a GWC-9 21.8 9/1/2022 0.0187 34 0 0.001453 NP Inter (normality) 1 of 2 Boron (mg/L) n/a No n/a n/a n/a n/a Calcium (mg/L) GWB-4R 35.8 8/30/2022 79.3 Yes 34 n/a 0.001453 NP Inter (normality) 1 of 2 n/a n/a 0 n/a n/a Calcium (mg/L) GWB-5R 35.8 8/30/2022 70.3 34 0 0.001453 NP Inter (normality) 1 of 2 n/a n/a n/a n/a n/a 8/30/2022 Calcium (mg/L) GWB-6R 35.8 81.8 34 0 n/a 0.001453 NP Inter (normality) 1 of 2 n/a Yes n/a n/a Calcium (mg/L) GWC-1 35.8 n/a 9/1/2022 46.9 Yes 34 n/a n/a 0 n/a n/a 0.001453 NP Inter (normality) 1 of 2 Calcium (mg/L) GWC-11 35.8 n/a 8/31/2022 115 Yes 34 n/a n/a 0 n/a n/a 0.001453 NP Inter (normality) 1 of 2 8/30/2022 Calcium (mg/L) GWC-12 35.8 n/a 70.8 Yes 34 n/a n/a 0 n/a n/a 0.001453 NP Inter (normality) 1 of 2 34 Calcium (mg/L) GWC-13 35.8 n/a 8/31/2022 2.54 0 0.001453 NP Inter (normality) 1 of 2 Calcium (mg/L) GWC-14 35.8 n/a 8/30/2022 144 Yes 34 n/a n/a 0 n/a n/a 0.001453 NP Inter (normality) 1 of 2 Calcium (mg/L) GWC-15 35.8 n/a 8/31/2022 135 34 n/a n/a 0 n/a n/a 0.001453 NP Inter (normality) 1 of 2 Calcium (mg/L) GWC-16 35.8 9/1/2022 255 Yes 34 0.001453 NP Inter (normality) 1 of 2 n/a n/a 0 n/a n/a n/a Calcium (mg/L) GWC-17 35.8 8/31/2022 102 34 0.001453 0 NP Inter (normality) 1 of 2 Calcium (mg/L) GWC-2 35.8 9/1/2022 0.236 No 34 n/a n/a 0 n/a 0.001453 NP Inter (normality) 1 of 2 n/a n/a Calcium (mg/L) GWC-20 35.8 n/a 8/30/2022 193 Yes 34 n/a n/a 0 n/a n/a 0.001453 NP Inter (normality) 1 of 2 35.8 8/30/2022 131 0 Calcium (mg/L) **GWC-21** 34 n/a n/a 0.001453 NP Inter (normality) 1 of 2 n/a Yes n/a n/a Calcium (mg/L) GWC-22 35.8 n/a 8/31/2022 23.2 No 34 n/a n/a 0 n/a n/a 0.001453 NP Inter (normality) 1 of 2 Calcium (mg/L) GWC-9 35.8 n/a 9/1/2022 34 0 n/a 0.001453 NP Inter (normality) 1 of 2 Chloride (mg/L) GWB-4R 8/30/2022 65 34 0.001453 NP Inter (normality) 1 of 2 260 n/a No n/a n/a 0 n/a n/a n/a Chloride (mg/L) GWB-5R 260 n/a 8/30/2022 76.8 No 34 n/a n/a 0 0.001453 NP Inter (normality) 1 of 2 n/a Chloride (ma/L) GWB-6R 260 8/30/2022 52 n/a No 34 n/a n/a 0 n/a n/a 0.001453 NP Inter (normality) 1 of 2 NP Inter (normality) 1 of 2 Chloride (mg/L) GWC-1 260 n/a 9/1/2022 9.17 No 34 n/a 0 n/a n/a 0.001453 Chloride (mg/L) GWC-11 260 8/31/2022 110 No 34 n/a 0 n/a 0.001453 NP Inter (normality) 1 of 2 n/a n/a Chloride (mg/L) GWC-12 260 n/a 8/30/2022 58 4 No 34 n/a n/a 0 n/a n/a 0.001453 NP Inter (normality) 1 of 2 Chloride (mg/L) GWC-13 260 n/a 8/31/2022 6.69 No 34 n/a n/a 0 n/a 0.001453 NP Inter (normality) 1 of 2 n/a NP Inter (normality) 1 of 2 Chloride (ma/L) GWC-14 260 n/a 8/30/2022 26.7 No 34 n/a n/a 0 n/a n/a 0.001453 Chloride (ma/L) GWC-15 260 8/31/2022 4.83 No 34 n/a 0 n/a 0.001453 NP Inter (normality) 1 of 2 n/a GWC-16 9/1/2022 57.2 34 0.001453 Chloride (mg/L) 260 n/a No n/a n/a 0 n/a n/a NP Inter (normality) 1 of 2 GWC-17 260 8/31/2022 694 Chloride (mg/L) n/a 34 n/a 0 n/a n/a 0.001453 NP Inter (normality) 1 of 2 Chloride (mg/L) GWC-2 260 n/a 9/1/2022 6.59 34 n/a n/a 0 n/a 0.001453 NP Inter (normality) 1 of 2 No n/a GWC-20 260 8/30/2022 24.4 34 0 Chloride (mg/L) No n/a n/a 0.001453 NP Inter (normality) 1 of 2 260 8/30/2022 0 Chloride (mg/L) GWC-21 29.4 34 n/a n/a n/a 0.001453 NP Inter (normality) 1 of 2 n/a No n/a Chloride (mg/L) GWC-22 260 n/a 8/31/2022 51.2 No 34 n/a n/a 0 n/a n/a 0.001453 NP Inter (normality) 1 of 2 Chloride (mg/L) GWC-9 260 n/a 9/1/2022 17.6 No 34 n/a 0 n/a 0.001453 NP Inter (normality) 1 of 2 Fluoride (ma/L) GWR-4R 0 4247 n/a 8/30/2022 0.1ND Nο 38 -2 348 0.6768 23.68 Kaplan-Meier In(x) 0.0004702 Param Inter 1 of 2 Fluoride (mg/L) GWB-5R n/a 8/30/2022 38 0.6768 23.68 Kaplan-Meier 0.0004702 Fluoride (mg/L) GWB-6R 0.4247 n/a 8/30/2022 0.1ND No 38 -2.3480.6768 23.68 Kaplan-Meier In(x) 0.0004702 Param Inter 1 of 2 Fluoride (mg/L) GWC-1 0.4247 n/a 9/1/2022 0.1ND No 38 -2.348 0.6768 23.68 Kaplan-Meier In(x) 0.0004702 Param Inter 1 of 2 Fluoride (mg/L) GWC-11 8/31/2022 38 0.0004702 Param Inter 1 of 2 0.4247 0.1ND -2.3480.6768 23.68 Kaplan-Meier In(x) n/a No 0.0004702 Param Inter 1 of 2 Fluoride (mg/L) GWC-12 0.4247 n/a 8/30/2022 0.273 No 38 -2.348 0.6768 23.68 Kaplan-Meier In(x) GWC-13 8/31/2022 0.051,J 38 -2.348 0.6768 23.68 Kaplan-Meier In(x) 0.0004702 Param Inter 1 of 2 Fluoride (ma/L) 0.4247 n/a No Fluoride (mg/L) GWC-14 0.4247 n/a 8/30/2022 0.1ND Nο 38 -2.348 0.6768 23.68 Kaplan-Meier In(x) 0.0004702 Param Inter 1 of 2

Appendix III Interwell Prediction Limits - All Results

	Grumman Boo			thorn Compo		Grumman			Drinted 0/	20/2022	10:45 AM			
	Grumman Roa			thern Compa	·	Grumman					, 10:45 AM			
Constituent	<u>Well</u>		n. Lower Lin		Observ.	Sig. Bo			Std. Dev.		ND Adj.	Transform	<u>Alpha</u>	Method
Fluoride (mg/L)	GWC-15	0.4247	n/a	8/31/2022		No 38	-2.	.348	0.6768		Kaplan-Meier		0.0004702	Param Inter 1 of 2
Fluoride (mg/L)	GWC-16	0.4247	n/a	9/1/2022	0.0374J	No 38		.348	0.6768		Kaplan-Meier	` '		Param Inter 1 of 2
Fluoride (mg/L)	GWC-17	0.4247	n/a	8/31/2022	0.442	Yes 38		.348	0.6768	23.68	Kaplan-Meie	r ln(x)	0.0004702	Param Inter 1 of 2
Fluoride (mg/L)	GWC-2	0.4247	n/a	9/1/2022	0.1ND	No 38	-2.3	.348	0.6768	23.68	Kaplan-Meier	ln(x)	0.0004702	Param Inter 1 of 2
Fluoride (mg/L)	GWC-20	0.4247	n/a	8/30/2022	0.1ND	No 38	-2.3	.348	0.6768	23.68	Kaplan-Meier	ln(x)	0.0004702	Param Inter 1 of 2
Fluoride (mg/L)	GWC-21	0.4247	n/a	8/30/2022	0.1ND	No 38	-2.3	.348	0.6768	23.68	Kaplan-Meier	ln(x)	0.0004702	Param Inter 1 of 2
Fluoride (mg/L)	GWC-22	0.4247	n/a	8/31/2022	0.1ND	No 38	-2.3	.348	0.6768	23.68	Kaplan-Meier	ln(x)	0.0004702	Param Inter 1 of 2
Fluoride (mg/L)	GWC-9	0.4247	n/a	9/1/2022	0.0783J	No 38	-2.3	.348	0.6768	23.68	Kaplan-Meier	ln(x)	0.0004702	Param Inter 1 of 2
pH (SU)	GWB-4R	6.43	4.23	8/30/2022	5.67	No 36	n/a	а	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
pH (SU)	GWB-5R	6.43	4.23	8/30/2022	5.22	No 36	n/a	а	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
pH (SU)	GWB-6R	6.43	4.23	8/30/2022	5.55	No 36	n/a	а	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
pH (SU)	GWC-1	6.43	4.23	9/1/2022	5.8	No 36	n/a	а	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
pH (SU)	GWC-11	6.43	4.23	8/31/2022	4.85	No 36	n/a	a	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
pH (SU)	GWC-12	6.43	4.23	8/30/2022	3.92	Yes 36	n/a	а	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
pH (SU)	GWC-13	6.43	4.23	8/31/2022	4.76	No 36	n/a	a	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
pH (SU)	GWC-14	6.43	4.23	8/30/2022	5.86	No 36	n/a	a	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
pH (SU)	GWC-15	6.43	4.23	8/31/2022	6.57	Yes 36	n/a	а	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
pH (SU)	GWC-16	6.43	4.23	9/1/2022	5.37	No 36	n/a	a	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
pH (SU)	GWC-17	6.43	4.23	8/31/2022	4.33	No 36	n/a	a	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
pH (SU)	GWC-2	6.43	4.23	9/1/2022	4.73	No 36	n/a	a	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
pH (SU)	GWC-20	6.43	4.23	8/30/2022	6.01	No 36	n/a	a	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
pH (SU)	GWC-21	6.43	4.23	8/30/2022	5.76	No 36	n/a	а	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
pH (SU)	GWC-22	6.43	4.23	8/31/2022	4.68	No 36	n/a	а	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
pH (SU)	GWC-9	6.43	4.23	9/1/2022	4.6	No 36	n/a	а	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWB-4R	160	n/a	8/30/2022	379	Yes 34	n/a	а	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWB-5R	160	n/a	8/30/2022	403	Yes 34	n/a	a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWB-6R	160	n/a	8/30/2022	978	Yes 34	n/a	a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-1	160	n/a	9/1/2022	44	No 34	n/a	а	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-11	160	n/a	8/31/2022	653	Yes 34	n/a	a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-12	160	n/a	8/30/2022	415	Yes 34	n/a	а	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-13	160	n/a	8/31/2022	29	No 34	n/a	a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-14	160	n/a	8/30/2022	410	Yes 34	n/a	a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-15	160	n/a	8/31/2022	88.5	No 34	n/a	a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-16	160	n/a	9/1/2022	1140	Yes 34	n/a	а	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-17	160	n/a	8/31/2022	721	Yes 34	n/a	а	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-2	160	n/a	9/1/2022	10.3	No 34	n/a	а	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-20	160	n/a	8/30/2022	606	Yes 34	n/a	a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-21	160	n/a	8/30/2022	451	Yes 34	n/a	а	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-22	160	n/a	8/31/2022	45.3	No 34	n/a	а	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-9	160	n/a	9/1/2022	28.7	No 34	n/a	a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWB-4R	3660	n/a	8/30/2022	882	No 34	n/a	a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWB-5R	3660	n/a	8/30/2022	886	No 34	n/a	a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWB-6R	3660	n/a	8/30/2022	1810	No 34	n/a	а	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-1	3660	n/a	9/1/2022	228	No 34	n/a	a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-11	3660	n/a	8/31/2022	1240	No 34	n/a	a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-12	3660	n/a	8/30/2022	713	No 34	n/a	a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-13	3660	n/a	8/31/2022	55	No 34	n/a	a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-14	3660	n/a	8/30/2022	720	No 34	n/a	a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-15	3660	n/a	8/31/2022	530	No 34	n/a	a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-16	3660	n/a	9/1/2022	1720	No 34	n/a	a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-17	3660	n/a	8/31/2022	2050	No 34	n/a	а	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-2	3660	n/a	9/1/2022	9J	No 34			n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-20	3660	n/a	8/30/2022		No 34			n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-21	3660	n/a	8/30/2022		No 34			n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-22	3660	n/a	8/31/2022		No 34			n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-9	3660	n/a	9/1/2022	85	No 34			n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
(3· - /														, ,,,=

Appendix III Trend Tests - Prediction Limit Exceedances - Significant Results

	Grumman Road Landfill	Client: Southern Company	Data: Grumman	Road Landfill	Prin	ited 9/28	8/2022,	11:11 AM			
Constituent	Well	Sk	ope <u>Calc.</u>	Critical	Sig.	<u>N</u>	%NDs	Normality	Xform	<u>Alpha</u>	Method
Calcium (mg/L)	GWA-7 (bg)	-0.	.6724 -93	-63	Yes	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWB-4R	13	3.74 86	63	Yes	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWB-5R	10	0.79 85	63	Yes	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWB-6R	5.7	768 83	63	Yes	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-1	6.6	631 84	63	Yes	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-11	16	6.98 90	63	Yes	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-12	-10	0.48 -92	-63	Yes	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-16	26	6.5 90	63	Yes	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-20	31	1.64 64	63	Yes	17	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GWA-7 (bg)	-22	2.35 -89	-63	Yes	17	0	n/a	n/a	0.01	NP
Fluoride (mg/L)	GWA-8 (bg)	-0.	.01163 -79	-74	Yes	19	15.79	n/a	n/a	0.01	NP
pH (SU)	GWA-7 (bg)	-0.	.05 -76	-68	Yes	18	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-7 (bg)	-3.	.991 -78	-63	Yes	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-8 (bg)	-10	0.42 -76	-63	Yes	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWB-5R	57	7.5 74	63	Yes	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWB-6R	98	3.19 96	63	Yes	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWC-11	91	1.12 86	63	Yes	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWC-12	-13	30.7 -92	-63	Yes	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWC-16	11	14.5 88	63	Yes	17	0	n/a	n/a	0.01	NP

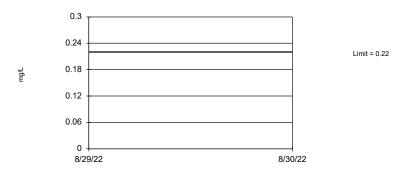

Appendix III Trend Tests - Prediction Limit Exceedances - All Results

	Grumman Road Landfill Clier	nt: Southern Company	y Data: Grur	mman Ro	ad Landfill	Prin	ted 9/28	8/2022,	11:11 AM			
Constituent	Well	<u>s</u>	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Calcium (mg/L)	GWA-7 (bg)	-0	0.6724	-93	-63	Yes	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWA-8 (bg)	-0	0.485	-13	-63	No	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWB-4R	1:	13.74	86	63	Yes	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWB-5R	1	0.79	85	63	Yes	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWB-6R	5.	5.768	83	63	Yes	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-1	6.	6.631	84	63	Yes	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-11	10	6.98	90	63	Yes	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-12	-1	10.48	-92	-63	Yes	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-14	3.	3.68	8	63	No	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-15	1.	.953	15	63	No	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-16	2	26.5	90	63	Yes	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-17	-3	3.105	-18	-63	No	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-20	3	31.64	64	63	Yes	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-21	11	6.62	57	63	No	17	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GWA-7 (bg)	-2	22.35	-89	-63	Yes	17	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GWA-8 (bg)	-0	0.1945	-17	-63	No	17	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GWC-17	-6	61.65	-37	-63	No	17	0	n/a	n/a	0.01	NP
Fluoride (mg/L)	GWA-7 (bg)	-0	0.004548	-23	-74	No	19	31.58	n/a	n/a	0.01	NP
Fluoride (mg/L)	GWA-8 (bg)	-0	0.01163	-79	-74	Yes	19	15.79	n/a	n/a	0.01	NP
Fluoride (mg/L)	GWC-17	-0	0.1299	-65	-74	No	19	5.263	n/a	n/a	0.01	NP
pH (SU)	GWA-7 (bg)	-0	0.05	-76	-68	Yes	18	0	n/a	n/a	0.01	NP
pH (SU)	GWA-8 (bg)	0.	0.02069	35	68	No	18	0	n/a	n/a	0.01	NP
pH (SU)	GWC-12	-0	0.007247	-14	-74	No	19	0	n/a	n/a	0.01	NP
pH (SU)	GWC-15	0	0.04875	39	68	No	18	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-7 (bg)	-3	3.991	-78	-63	Yes	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-8 (bg)	-1	10.42	-76	-63	Yes	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWB-4R	4.	1.182	18	63	No	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWB-5R	5	57.5	74	63	Yes	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWB-6R	98	8.19	96	63	Yes	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWC-11	9	1.12	86	63	Yes	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWC-12	-1	130.7	-92	-63	Yes	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWC-14	-3	30.55	-34	-63	No	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWC-16	1	14.5	88	63	Yes	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWC-17	-8	8.669	-7	-63	No	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWC-20	1	12.8	42	63	No	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWC-21	2	25.95	49	63	No	17	0	n/a	n/a	0.01	NP

Upper Tolerance Limit Summary Table

	Gri	umman Roa	d Landfill	Client: Sou	uthern Comp	any Dat	ta: Grumman	Road Landfill	Printed	11/6/2022, 9:	53 AM		
Constituent	Well	Upper Lin	n. Lower Lin	n. Date	Observ.	Sig.Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	n/a	0.003	n/a	n/a	n/a	n/a 127	n/a	n/a	95.28	n/a	n/a	0.001482	NP Inter(NDs)
Arsenic (mg/L)	n/a	0.0287	n/a	n/a	n/a	n/a 127	n/a	n/a	77.17	n/a	n/a	0.001482	NP Inter(NDs)
Barium (mg/L)	n/a	0.22	n/a	n/a	n/a	n/a 125	n/a	n/a	0	n/a	n/a	0.001642	NP Inter(normality)
Beryllium (mg/L)	n/a	0.0017	n/a	n/a	n/a	n/a 47	n/a	n/a	51.06	n/a	n/a	0.08974	NP Inter(NDs)
Cadmium (mg/L)	n/a	0.001	n/a	n/a	n/a	n/a 45	n/a	n/a	95.56	n/a	n/a	0.09944	NP Inter(NDs)
Chromium (mg/L)	n/a	0.068	n/a	n/a	n/a	n/a 126	n/a	n/a	61.9	n/a	n/a	0.00156	NP Inter(NDs)
Cobalt (mg/L)	n/a	0.0102	n/a	n/a	n/a	n/a 45	n/a	n/a	48.89	n/a	n/a	0.09944	NP Inter(normality)
Combined Radium 226 + 228 (pCi/L)	n/a	12.22	n/a	n/a	n/a	n/a 31	1.952	0.6987	0	None	sqrt(x)	0.05	Inter
Fluoride (mg/L)	n/a	0.4072	n/a	n/a	n/a	n/a 38	-2.348	0.6768	23.68	Kaplan-Meier	ln(x)	0.05	Inter
Lead (mg/L)	n/a	0.013	n/a	n/a	n/a	n/a 123	n/a	n/a	75.61	n/a	n/a	0.00182	NP Inter(NDs)
Lithium (mg/L)	n/a	0.03	n/a	n/a	n/a	n/a 34	n/a	n/a	73.53	n/a	n/a	0.1748	NP Inter(NDs)
Mercury (mg/L)	n/a	0.0002	n/a	n/a	n/a	n/a 28	n/a	n/a	82.14	n/a	n/a	0.2378	NP Inter(NDs)
Molybdenum (mg/L)	n/a	0.0098	n/a	n/a	n/a	n/a 34	n/a	n/a	88.24	n/a	n/a	0.1748	NP Inter(NDs)
Selenium (mg/L)	n/a	0.0438	n/a	n/a	n/a	n/a 127	n/a	n/a	83.46	n/a	n/a	0.001482	NP Inter(NDs)
Thallium (mg/L)	n/a	0.002	n/a	n/a	n/a	n/a 66	n/a	n/a	93.94	n/a	n/a	0.03387	NP Inter(NDs)
Vanadium (mg/L)	n/a	0.425	n/a	n/a	n/a	n/a 121	n/a	n/a	61.98	n/a	n/a	0.002016	NP Inter(NDs)
Zinc (mg/L)	n/a	0.16	n/a	n/a	n/a	n/a 119	n/a	n/a	28.57	n/a	n/a	0.002234	NP Inter(normality)

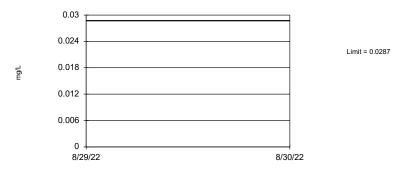
Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 127 background values. 95.28% NDs. 96.29% coverage at alpha=0.01; 97.85% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha=0.01482.

Constituent: Antimony Analysis Run 11/6/2022 9:52 AM View: Appendix IV - UTLs Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

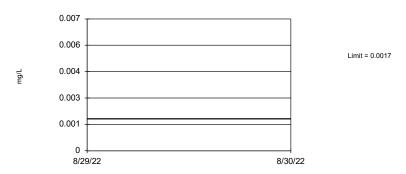
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 125 background values. 96.29% coverage at alpha=0.01; 97.46% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha = 0.001642.

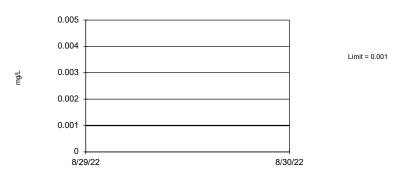
itas™ v.9.6.35 Groundwater Stats Consulting. UG

Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 127 background values. 77.17% NDs. 96.29% coverage at alpha=0.01; 97.85% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha=0.001482.

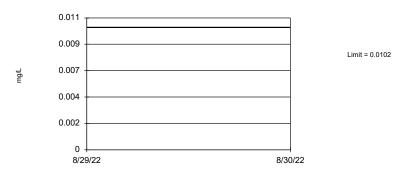
Constituent: Arsenic Analysis Run 11/6/2022 9:52 AM View: Appendix IV - UTLs Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Tolerance Limit Interwell Non-parametric

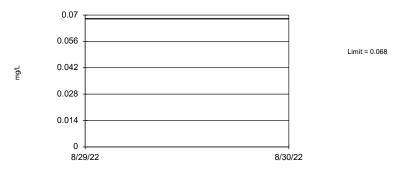
Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 47 background values. 51.06% NDs. 90.82% coverage at alpha=0.01; 93.95% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha = 0.08974.

Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 45 background values. 95.56% NDs. 90.43% coverage at alpha=0.01; 93.55% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha=0.09944.

Constituent: Cadmium Analysis Run 11/6/2022 9:53 AM View: Appendix IV - UTLs Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

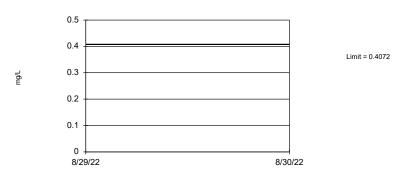
Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 45 background values. 48.89% NDs. 90.43% coverage at alpha=0.01; 93.55% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha=0.09944.

Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 126 background values. 61.9% NDs. 96.29% coverage at alpha=0.01; 97.46% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha = 0.00156.

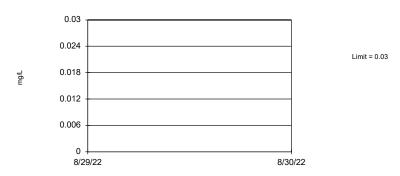
Constituent: Chromium Analysis Run 11/6/2022 9:53 AM View: Appendix IV - UTLs Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Tolerance Limit Interwell Parametric

95% coverage. Background Data Summary (based on square root transformation): Mean=1.952, Std. Dev.=0.6987, n=31. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9115, critical = 0.902. Report alpha = 0.05.

Tolerance Limit Interwell Parametric

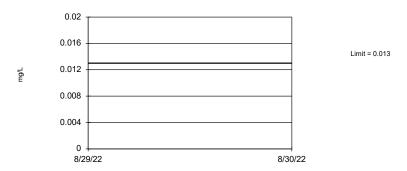


95% coverage. Background Data Summary (based on natural log transformation) (after Kaplan-Meier Adjustment): Mean=-2.348, Std. Dev.=0.6768, n=38, 23.68% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9171, critical = 0.916. Report alpha = 0.05.

Constituent: Fluoride Analysis Run 11/6/2022 9:53 AM View: Appendix IV - UTLs Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Tolerance Limit Interwell Non-parametric

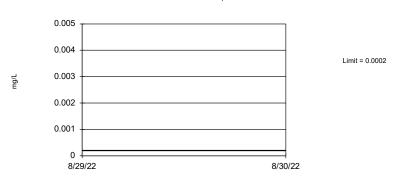


Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 34 background values. 73.53% NDs. 87.3% coverage at alpha=0.01; 91.6% coverage at alpha=0.05; 97.85% coverage at alpha=0.5. Report alpha = 0.1748.

Constituent: Lithium Analysis Run 11/6/2022 9:53 AM View: Appendix IV - UTLs

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

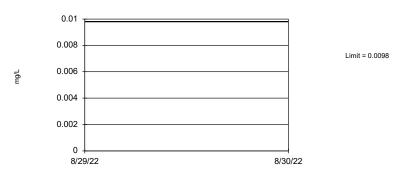
Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 123 background values. 75.61% NDs. 96.29% coverage at alpha=0.01; 97.46% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha = 0.00182.

Constituent: Lead Analysis Run 11/6/2022 9:53 AM View: Appendix IV - UTLs
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

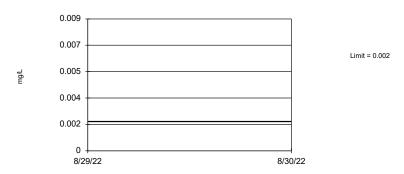
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 28 background values. 82.14% NDs. 84.96% coverage at alpha=0.01; 90.04% coverage at alpha=0.5. Report alpha = 0.2378.

Constituent: Mercury Analysis Run 11/6/2022 9:53 AM View: Appendix IV - UTLs Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

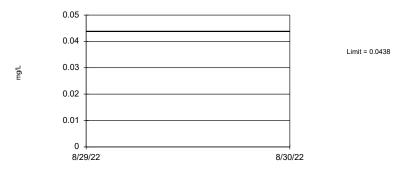
Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 34 background values. 88.24% NDs. 87.3% coverage at alpha=0.01; 91.6% coverage at alpha=0.05; 97.85% coverage at alpha=0.5. Report alpha = 0.1748.

Constituent: Molybdenum Analysis Run 11/6/2022 9:53 AM View: Appendix IV - UTLs Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

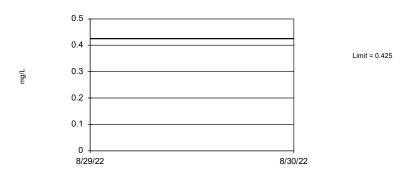
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 66 background values. 93.94% NDs. 93.16% coverage at alpha=0.01; 95.51% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.03387.

Constituent: Thallium Analysis Run 11/6/2022 9:53 AM View: Appendix IV - UTLs Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

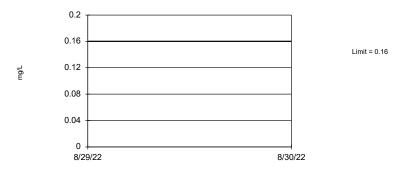
Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 127 background values. 83.46% NDs. 96.29% coverage at alpha=0.01; 97.85% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha=0.001482.

Constituent: Selenium Analysis Run 11/6/2022 9:53 AM View: Appendix IV - UTLs Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 121 background values. 61.98% NDs. 96.29% coverage at alpha=0.01; 97.46% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha=0.002016.

Sanitas™ v.9.6.35 Groundwater Stats Consulting, UG

Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 119 background values. 28.57% NDs. 96.29% coverage at alpha=0.01; 97.46% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha = 0.002234.

Constituent: Zinc Analysis Run 11/6/2022 9:53 AM View: Appendix IV - UTLs

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

GRUMMAN ROAD LANDFILL GWPS												
		CCR-Rule	Background									
Constituent Name	MCL	Specified	Limit	GWPS								
Antimony, Total (mg/L)	0.006		0.003	0.006								
Arsenic, Total (mg/L)	0.01		0.029	0.029								
Barium, Total (mg/L)	2		0.22	2								
Beryllium, Total (mg/L)	0.004		0.0017	0.004								
Cadmium, Total (mg/L)	0.005		0.001	0.005								
Chromium, Total (mg/L)	0.1		0.068	0.1								
Cobalt, Total (mg/L)	n/a	0.006	0.0102	0.0102								
Combined Radium, Total (pCi/L)	5		12.22	12.22								
Fluoride, Total (mg/L)	4		0.41	4								
Lead, Total (mg/L)	n/a	0.015	0.013	0.015								
Lithium, Total (mg/L)	n/a	0.04	0.03	0.04								
Mercury, Total (mg/L)	0.002		0.0002	0.002								
Molybdenum, Total (mg/L)	n/a	0.1	0.01	0.1								
Selenium, Total (mg/L)	0.05		0.044	0.05								
Thallium, Total (mg/L)	0.002		0.002	0.002								
Vanadium, Total (mg/L)	n/a		0.43	0.43								
Zinc, Total (mg/L)	n/a		0.16	0.16								

^{*}Highlighted cells indicated Background is higher than MCLs

^{*}MCL = Maximum Contaminant Level

^{*}CCR = Coal Combustion Residuals

^{*}GWPS = Groundwater Protection Standard

Confidence Intervals - Significant Results Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill Printed 11/6/2022, 10:03 AM

	Grumma	in Road Landfill	Client: Southe	rn Company	Data	: Gru	ımman Road I	Landfill Printed	11/6/2	022, 10:03 AM			
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Arsenic (mg/L)	GWC-15	0.176	0.08366	0.029	Yes	21	0.1298	0.08372	0	None	No	0.01	Param.
Arsenic (mg/L)	GWC-16	0.08264	0.06341	0.029	Yes	22	0.07303	0.01792	0	None	No	0.01	Param.
Arsenic (mg/L)	GWC-20	0.3604	0.2763	0.029	Yes	21	0.3184	0.07621	0	None	No	0.01	Param.
Molybdenum (mg/L)	GWC-16	0.2078	0.1293	0.1	Yes	17	0.1686	0.06266	0	None	No	0.01	Param.
Molybdenum (ma/L)	GWC-20	0.3536	0.137	0.1	Yes	17	0.2629	0.1946	0	None	sart(x)	0.01	Param.

Confidence Intervals - All Results

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill Printed 11/6/2022, 10:03 AM													
		an Road Landfill				a: Gr	ımman Koad						
Constituent	Well	Upper Lim.	Lower Lim.	Compliance		<u>N</u>		Std. Dev.		ND Adj.	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	GWB-4R	0.003	0.0003	0.006	No		0.002871	0.0005892		None	No	0.01	NP (NDs)
Antimony (mg/L)	GWB-5R	0.003	0.0013	0.006	No		0.002673	0.0008364		None	No	0.01	NP (NDs)
Antimony (mg/L)	GWB-6R	0.003	0.00059	0.006	No		0.002756	0.0007715	90.48	None	No	0.01	NP (NDs)
Antimony (mg/L)	GWC-1	0.003	0.0016	0.006	No		0.002583	0.0009051	80.95		No	0.01	NP (NDs)
Antimony (mg/L)	GWC-11	0.003	0.0006	0.006	No	21	0.00186	0.00123	52.38	None	No	0.01	NP (NDs)
Antimony (mg/L)	GWC-12	0.003	0.0003	0.006	No	21	0.002871	0.0005892	95.24	None	No	0.01	NP (NDs)
Antimony (mg/L)	GWC-13	0.003	0.0006	0.006	No	21	0.002886	0.0005237	95.24	None	No	0.01	NP (NDs)
Antimony (mg/L)	GWC-15	0.003	0.0018	0.006	No	21	0.002943	0.0002619	95.24	None	No	0.01	NP (NDs)
Antimony (mg/L)	GWC-17	0.003	0.0014	0.006	No	21	0.0028	0.000653	90.48	None	No	0.01	NP (NDs)
Antimony (mg/L)	GWC-2	0.003	0.0016	0.006	No	21	0.002852	0.0004686	90.48	None	No	0.01	NP (NDs)
Antimony (mg/L)	GWC-20	0.003	0.0019	0.006	No	21	0.002836	0.0005552	90.48	None	No	0.01	NP (NDs)
Antimony (mg/L)	GWC-21	0.003	0.00033	0.006	No	21	0.002873	0.0005826	95.24	None	No	0.01	NP (NDs)
Antimony (mg/L)	GWC-22	0.003	0.0022	0.006	No	21	0.00253	0.0009363	76.19	None	No	0.01	NP (NDs)
Antimony (mg/L)	GWC-9	0.003	0.0016	0.006	No	21	0.002806	0.0006442	90.48	None	No	0.01	NP (NDs)
Arsenic (mg/L)	GWB-4R	0.003338	0.002047	0.029	No	21	0.002693	0.00117	9.524	None	No	0.01	Param.
Arsenic (mg/L)	GWB-5R	0.001983	0.001062	0.029	No	21	0.002535	0.001726	23.81	Kaplan-Meier	x^(1/3)	0.01	Param.
Arsenic (mg/L)	GWB-6R	0.004092	0.001557	0.029	No	21	0.003714	0.002361	23.81	Kaplan-Meier	No	0.01	Param.
Arsenic (mg/L)	GWC-1	0.00526	0.002364	0.029	No	20	0.004764	0.00551	0	None	ln(x)	0.01	Param.
Arsenic (mg/L)	GWC-12	0.005	0.0016	0.029	No	21	0.004233	0.001628	80.95	None	No	0.01	NP (NDs)
Arsenic (mg/L)	GWC-13	0.005	0.0025	0.029	No	21	0.004461	0.001397	85.71	None	No	0.01	NP (NDs)
Arsenic (mg/L)	GWC-14	0.002219	0.001636	0.029	No	22	0.002615	0.001262	18.18	Kaplan-Meier	ln(x)	0.01	Param.
Arsenic (mg/L)	GWC-15	0.176	0.08366	0.029	Yes	21	0.1298	0.08372	0	None	No	0.01	Param.
Arsenic (mg/L)	GWC-16	0.08264	0.06341	0.029	Yes		0.07303	0.01792	0	None	No	0.01	Param.
Arsenic (mg/L)	GWC-17	0.005	0.0011	0.029	No		0.002853	0.00192	42.86	None	No	0.01	NP (normality)
Arsenic (mg/L)	GWC-2	0.005	0.00094	0.029	No		0.004378	0.001565	85.71		No	0.01	NP (NDs)
Arsenic (mg/L)	GWC-20	0.3604	0.2763	0.029	Yes		0.3184	0.07621	0	None	No	0.01	Param.
Arsenic (mg/L)	GWC-21	0.0059	0.0029	0.029	No		0.006271	0.006103	33.33		No	0.01	NP (normality)
Arsenic (mg/L)	GWC-22	0.005	0.0023	0.029	No		0.00336	0.001997	57.14		No	0.01	NP (NDs)
Arsenic (mg/L)	GWC-9	0.005	0.00011	0.029			0.004802	0.0009078	95.24	None	No	0.01	NP (NDs)
, ,		0.005		0.029	No								, ,
Arsenic (mg/L)	MW-25D	0.005	0.00092		No	5	0.004184	0.001825	80	None	No No	0.031	NP (NDs)
Barium (mg/L)	GWB-4R		0.076	2	No			0.02394	0	None	No	0.01	NP (normality)
Barium (mg/L)	GWB-5R	0.1426	0.0869	2	No		0.1184	0.05621	0	None	sqrt(x)	0.01	Param.
Barium (mg/L)	GWB-6R	0.106	0.014	2	No		0.0674	0.04169	0	None	No	0.01	NP (normality)
Barium (mg/L)	GWC-1	0.05704	0.05117	2	No		0.0541	0.005314	0	None	No	0.01	Param.
Barium (mg/L)	GWC-11	0.1216	0.07385	2	No		0.09771	0.04325	0	None	No	0.01	Param.
Barium (mg/L)	GWC-12	0.023	0.017	2	No		0.01983	0.004585	0	None	No	0.01	NP (normality)
Barium (mg/L)	GWC-13	0.02905	0.02171	2	No		0.02538	0.006658	0	None	No	0.01	Param.
Barium (mg/L)	GWC-14	0.067	0.025	2	No		0.04429	0.02732	0	None	No	0.01	NP (normality)
Barium (mg/L)	GWC-15	0.05018	0.04022	2	No		0.0452	0.009027	0	None	No	0.01	Param.
Barium (mg/L)	GWC-16	0.1648	0.07656	2	No	20	0.1207	0.07768	0	None	No	0.01	Param.
Barium (mg/L)	GWC-17	0.1004	0.04728	2	No		0.0791	0.05487	0	None	sqrt(x)	0.01	Param.
Barium (mg/L)	GWC-2	0.053	0.05	2	No	20	0.05294	0.007254	0	None	No	0.01	NP (normality)
Barium (mg/L)	GWC-20	0.2024	0.1006	2	No	21	0.1746	0.1195	0	None	ln(x)	0.01	Param.
Barium (mg/L)	GWC-21	0.1145	0.05692	2	No	21	0.09323	0.06186	0	None	x^(1/3)	0.01	Param.
Barium (mg/L)	GWC-22	0.09072	0.0587	2	No	21	0.07471	0.02902	0	None	No	0.01	Param.
Barium (mg/L)	GWC-9	0.2461	0.1791	2	No	21	0.2126	0.06074	0	None	No	0.01	Param.
Barium (mg/L)	MW-23D	0.079	0.076	2	No	4	0.07688	0.001436	0	None	No	0.0625	NP (normality)
Barium (mg/L)	MW-24D	0.05583	0.01802	2	No	4	0.03693	0.008328	0	None	No	0.01	Param.
Barium (mg/L)	MW-25D	0.03304	0.01676	2	No	4	0.0249	0.003583	0	None	No	0.01	Param.
Beryllium (mg/L)	GWB-4R	0.0005	0.0001	0.004	No	17	0.0003765	0.0001855	64.71	None	No	0.01	NP (NDs)
Beryllium (mg/L)	GWB-5R	0.0001657	0.00008436	0.004	No	17	0.0002436	0.000165	23.53	Kaplan-Meier	x^(1/3)	0.01	Param.
Beryllium (mg/L)	GWB-6R	0.0005	0.00005	0.004	No	17	0.0004468	0.0001501	88.24	Kaplan-Meier	No	0.01	NP (NDs)
Beryllium (mg/L)	GWC-11	0.0005	0.000047	0.004	No	17	0.0004734	0.0001099	94.12	Kaplan-Meier	No	0.01	NP (NDs)
Beryllium (mg/L)	GWC-12	0.0007522	0.0005148	0.004	No	17	0.0006514	0.0002157	0	None	ln(x)	0.01	Param.
Beryllium (mg/L)	GWC-13	0.0005	0.000058	0.004	No	17	0.000474	0.0001072	94.12	None	No	0.01	NP (NDs)
· · · · · · ·													. ,

	Grumm	an Road Landfill	Client: South	ern Company	Data	a: Gr	umman Road	Landfill Printe	d 11/6/2	2022, 10:03 AM			
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	Mean	Std. Dev.	%NDs	ND Adj.	Transform	Alpha	Method
Beryllium (mg/L)	GWC-14	0.0005	0.0001	0.004	No	17	0.0004266	0.0001636	82.35	None	No	0.01	NP (NDs)
Beryllium (mg/L)	GWC-16	0.0005	0.00008	0.004	No	17	0.000255	0.0002116	41.18	None	No	0.01	NP (normality)
Beryllium (mg/L)	GWC-17	0.00262	0.001628	0.004	No	17	0.002181	0.0008605	0	None	x^(1/3)	0.01	Param.
Beryllium (mg/L)	GWC-2	0.0005	0.000088	0.004	No	18	0.0003709	0.0001944	66.67	None	No	0.01	NP (NDs)
Beryllium (mg/L)	GWC-22	0.0005	0.00009	0.004	No	17	0.0003433	0.0001961	58.82	None	No	0.01	NP (NDs)
Beryllium (mg/L)	GWC-9	0.0003	0.00019	0.004	No	17	0.0002529	0.00008122	5.882	None	No	0.01	NP (normality)
Beryllium (mg/L)	MW-25D	0.0005	0.000084	0.004	No	4	0.000396	0.000208	75	None	No	0.062	5 NP (NDs)
Cadmium (mg/L)	GWB-4R	0.001	0.0002	0.005	No	17	0.0007988	0.0003748	76.47	None	No	0.01	NP (NDs)
Cadmium (mg/L)	GWC-1	0.001	0.0001	0.005	No	17	0.0008924	0.0003039	88.24	None	No	0.01	NP (NDs)
Cadmium (mg/L)	GWC-11	0.0006077	0.000276	0.005	No	17	0.0004418	0.0002647	5.882	None	No	0.01	Param.
Cadmium (mg/L)	GWC-14	0.001	0.00017	0.005	No	17	0.0006582	0.0004219	58.82	None	No	0.01	NP (NDs)
Cadmium (mg/L)	GWC-20	0.001	0.0002	0.005	No	17	0.0008535	0.0003264	82.35	None	No	0.01	NP (NDs)
Cadmium (mg/L)	GWC-22	0.001	0.00012	0.005	No	17	0.0005324	0.0004155	41.18	None	No	0.01	NP (normality)
Cadmium (mg/L)	MW-23D	0.001	0.00027	0.005	No	4	0.0008175	0.000365	75	None	No	0.062	5 NP (NDs)
Cadmium (mg/L)	MW-25D	0.001	0.00019	0.005	No	4	0.0007975	0.000405	75	None	No	0.062	5 NP (NDs)
Chromium (mg/L)	GWB-4R	0.0101	0.0022	0.1	No	21	0.006514	0.004437	4.762	None	No	0.01	NP (normality)
Chromium (mg/L)	GWB-5R	0.003715	0.001047	0.1	No	21	0.008143	0.01523	28.57	Kaplan-Meier	ln(x)	0.01	Param.
Chromium (mg/L)	GWB-6R	0.006407	0.002325	0.1	No	21	0.005174	0.005004	0	None	x^(1/3)	0.01	Param.
Chromium (mg/L)	GWC-1	0.0024	0.0017	0.1	No	21	0.002929	0.002547	9.524	None	No	0.01	NP (normality)
Chromium (mg/L)	GWC-11	0.01	0.00091	0.1	No	21	0.004813	0.004589	38.1	None	No	0.01	NP (normality)
Chromium (mg/L)	GWC-12	0.0028	0.00091	0.1	No	21	0.003316	0.003853	23.81	None	No	0.01	NP (normality)
Chromium (mg/L)	GWC-13	0.01	0.00077	0.1	No	21	0.006108	0.004612	57.14	None	No	0.01	NP (NDs)
Chromium (mg/L)	GWC-14	0.01	0.0008	0.1	No	22	0.00503	0.004648	45.45	None	No	0.01	NP (normality)
Chromium (mg/L)	GWC-15	0.01	0.0013	0.1	No	21	0.004343	0.004122	33.33	None	No	0.01	NP (normality)
Chromium (mg/L)	GWC-16	0.01	0.001	0.1	No		0.005121	0.004563	40.91		No	0.01	NP (normality)
Chromium (mg/L)	GWC-17	0.01	0.00096	0.1	No		0.004262	0.004269	33.33		No	0.01	NP (normality)
Chromium (mg/L)	GWC-2	0.01	0.0008	0.1	No		0.006482	0.004596	61.9	None	No	0.01	NP (NDs)
Chromium (mg/L)	GWC-20	0.01	0.0009	0.1	No		0.004576	0.004398	38.1	None	No	0.01	NP (normality)
Chromium (mg/L)	GWC-21	0.01	0.00067	0.1	No		0.005583	0.004749	47.62		No	0.01	NP (normality)
Chromium (mg/L)	GWC-22	0.01	0.0006	0.1	No		0.00597	0.004768		None	No	0.01	NP (NDs)
Chromium (mg/L)	GWC-9	0.01	0.0011	0.1	No		0.004604	0.00435	38.1	None	No	0.01	NP (normality)
Chromium (mg/L)	MW-24D	0.01	0.00069	0.1	No	4	0.007672	0.004655	75	None	No		5 NP (NDs)
Chromium (mg/L)	MW-25D	0.01	0.0016	0.1	No	4	0.0079	0.0042	75	None	No		5 NP (NDs)
Cobalt (mg/L)	GWB-4R	0.001418	0.0008127	0.0102	No		0.001188	0.0006122		None	ln(x)	0.01	Param.
Cobalt (mg/L)	GWB-5R	0.00401	0.00056	0.0102	No		0.003782	0.005909		None	No	0.01	NP (normality)
Cobalt (mg/L)	GWB-6R	0.0049	0.00038	0.0102	No		0.007993	0.01955	76.47		No	0.01	NP (NDs)
Cobalt (mg/L)	GWC-11	0.001	0.000646	0.0102	No		0.0008656	0.0002376		None	No	0.01	NP (NDs)
Cobalt (mg/L)	GWC-12	0.001239	0.000785	0.0102	No		0.001012	0.0003624	0	None	No	0.01	Param.
Cobalt (mg/L)	GWC-14	0.001	0.0003	0.0102	No		0.0009588	0.0001698		None	No	0.01	NP (NDs)
Cobalt (mg/L)	GWC-17	0.005438	0.002894	0.0102	No		0.004305	0.002077	0	None	sqrt(x)	0.01	Param.
Cobalt (mg/L)	GWC-2	0.0011	0.00036	0.0102	No		0.0008544	0.0002951		None	No No	0.01	NP (NDs)
Cobalt (mg/L)	GWC-22	0.001	0.00077	0.0102	No		0.0009082	0.0001762		None	No	0.01	NP (NDs)
Cobalt (mg/L)	GWC-9	0.0017	0.00096	0.0102	No		0.00132	0.0004016	0	None	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	GWB-4R	5	2.44	12.22	No		3.468	1.248	0	None	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	GWB-5R	3.835	2.314	12.22	No		3.141	1.362	0	None	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GWB-6R	4.788	2.83	12.22	No		3.809	1.562	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GWC-1	2.147	1.447	12.22	No		1.797	0.5585	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L) Combined Radium 226 + 228 (pCi/L)	GWC-11	6.438	3.399	12.22	No		4.918	2.425	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GWC-11	2.849	1.731	12.22	No		2.29	0.8921	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GWC-12 GWC-13	1.468	0.8765	12.22	No		1.172	0.4722	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L) Combined Radium 226 + 228 (pCi/L)	GWC-13 GWC-14	1.466	0.7077	12.22	No		1.088	0.4722	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GWC-14 GWC-15	1.879	1.065	12.22	No		1.472	0.6494	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L) Combined Radium 226 + 228 (pCi/L)	GWC-15 GWC-16	2.705	1.753	12.22	No		2.279	0.847	0	None	x^(1/3)	0.01	Param.
Combined Radium 226 + 228 (pCi/L) Combined Radium 226 + 228 (pCi/L)	GWC-16 GWC-17	3.853	2.7	12.22	No		3.276	0.92	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L) Combined Radium 226 + 228 (pCi/L)	GWC-17 GWC-2	1.09	0.725	12.22	No		0.8945	0.3858	0	None	No	0.01	NP (normality)
Combined Naulum 220 + 220 (pol/L)	O11 O-2	1.00	0.120	14.44	INU	17	0.0340	0.0000	J	MOHE	140	0.01	in (inormality)

	Grumm	nan Road Landfill	Client: South	ern Company	Data	a: Gr	umman Road	Landfill Printe	ed 11/6/2	2022, 10:03 AM			
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Combined Radium 226 + 228 (pCi/L)	GWC-20	4.759	2.321	12.22	No	17	3.54	1.945	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GWC-21	2.443	1.317	12.22	No	17	1.88	0.8982	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GWC-22	6.161	3.134	12.22	No	17	4.825	2.333	0	None	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GWC-9	3.524	2.026	12.22	No	17	2.947	1.554	0	None	ln(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-23D	2.044	0.9313	12.22	No	4	1.488	0.245	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-24D	4.691	-1.605	12.22	No	4	1.543	1.386	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-25D	1.504	-0.2912	12.22	No	4	0.6065	0.3954	0	None	No	0.01	Param.
Fluoride (mg/L)	GWB-4R	0.17	0.08	4	No	19	0.1671	0.26	63.16	None	No	0.01	NP (NDs)
Fluoride (mg/L)	GWB-5R	0.11	0.05	4	No	19	0.0872	0.03977	47.37	None	No	0.01	NP (normality)
Fluoride (mg/L)	GWB-6R	0.13	0.09	4	No	19	0.1173	0.05903	52.63	None	No	0.01	NP (NDs)
Fluoride (mg/L)	GWC-1	0.18	0.051	4	No	19	0.1048	0.03827	78.95	None	No	0.01	NP (NDs)
Fluoride (mg/L)	GWC-12	0.7212	0.2723	4	No	19	0.4968	0.3833	5.263	None	No	0.01	Param.
Fluoride (mg/L)	GWC-13	0.55	0.09	4	No	19	0.1181	0.1057		None	No	0.01	NP (NDs)
Fluoride (mg/L)	GWC-14	0.25	0.1	4	No		0.1674	0.124		None	No	0.01	NP (NDs)
Fluoride (mg/L)	GWC-15	0.13	0.06	4	No		0.1295	0.09513		None	No	0.01	NP (NDs)
Fluoride (mg/L)	GWC-16	0.2	0.1	4	No		0.1767	0.2046		None	No	0.01	NP (NDs)
Fluoride (mg/L)	GWC-17	1.162	0.5173	4	No		0.8964	0.5551		None	sqrt(x)	0.01	Param.
Fluoride (mg/L)	GWC-2	0.17	0.08	4	No		0.1233	0.1224		None	No	0.01	NP (NDs)
Fluoride (mg/L)	GWC-20	0.14	0.043	4	No		0.09174	0.02744		None	No	0.01	NP (NDs)
Fluoride (mg/L)	GWC-21	0.1	0.071	4	No		0.09847	0.006653		None	No	0.01	NP (NDs)
Fluoride (mg/L)	GWC-22	0.12	0.1	4	No		0.09316	0.02358		None	No	0.01	NP (NDs)
Fluoride (mg/L)	GWC-9	0.2313	0.09769	4	No		0.2058	0.2196		None	ln(x)	0.01	Param.
Fluoride (mg/L)	MW-23D	0.2313	0.0791	4	No	5	0.09582	0.009347	80	None	No	0.031	NP (NDs)
Fluoride (mg/L)	MW-25D	0.1881	0.04793	4	No	5		0.04182	0	None	No	0.031	Param.
, ,	GWB-4R	0.004315	0.001028	0.015			0.003249	0.002759	25	Kaplan-Meier		0.01	Param.
Lead (mg/L)					No					•	No		
Lead (mg/L)	GWB-5R GWB-6R	0.002 0.002	0.0002 0.0002	0.015 0.015	No		0.001221 0.001118	0.0008915 0.0008882	42.86	None None	No	0.01	NP (normality)
Lead (mg/L)	GWC-1	0.002	0.0002	0.015	No		0.001118	0.000882			No		NP (normality)
Lead (mg/L)					No					None	No	0.01	NP (NDs)
Lead (mg/L)	GWC-11	0.00042	0.00021	0.015	No		0.0006767	0.0007619		None	No No	0.01	NP (normality)
Lead (mg/L)	GWC-12	0.002	0.000081	0.015	No		0.0009953	0.001073	38.1	None	No No	0.01	NP (normality)
Lead (mg/L)	GWC-13	0.002	0.00013	0.015	No		0.001028	0.0008476	38.1	None	No	0.01	NP (normality)
Lead (mg/L)	GWC-14	0.002	0.00051	0.015	No		0.001672	0.0007159		None	No	0.01	NP (NDs)
Lead (mg/L)	GWC-15	0.002	0.0001	0.015	No		0.00112	0.0009478	52.38		No	0.01	NP (NDs)
Lead (mg/L)	GWC-16	0.002	0.0001	0.015	No		0.0009847	0.0009495		None	No	0.01	NP (normality)
Lead (mg/L)	GWC-17	0.002	0.00014	0.015	No		0.00132	0.0009033	61.9	None	No	0.01	NP (NDs)
Lead (mg/L)	GWC-2	0.002	0.0002	0.015	No	21		0.000859	71.43		No	0.01	NP (NDs)
Lead (mg/L)	GWC-20	0.002	0.0002	0.015	No		0.001553	0.0008197		None	No	0.01	NP (NDs)
Lead (mg/L)	GWC-21	0.002	0.0001	0.015	No		0.001286	0.0009331	61.9	None	No	0.01	NP (NDs)
Lead (mg/L)	GWC-22	0.0007979	0.0002964	0.015	No		0.0009176	0.0008104	19.05	•	sqrt(x)	0.01	Param.
Lead (mg/L)	GWC-9	0.002	0.0001	0.015	No		0.00122	0.0009321	57.14		No	0.01	NP (NDs)
Lead (mg/L)	MW-23D	0.002	0.000057	0.015	No	4	0.001514	0.0009715	75	Kaplan-Meier	No		5 NP (NDs)
Lead (mg/L)	MW-24D	0.002	0.000094	0.015	No	4	0.001524	0.000953	75	Kaplan-Meier	No		5 NP (NDs)
Lead (mg/L)	MW-25D	0.002	0.000095	0.015	No	4	0.001524	0.0009525	75	None	No		5 NP (NDs)
Lithium (mg/L)	GWB-4R	0.015	0.0042	0.04	No		0.009871	0.005	0	None	No	0.01	NP (normality)
Lithium (mg/L)	GWB-5R	0.03	0.0041	0.04	No	17	0.01921	0.01331	58.82	None	No	0.01	NP (NDs)
Lithium (mg/L)	GWC-12	0.03	0.00094	0.04	No	17	0.01293	0.01472	41.18	None	No	0.01	NP (normality)
Lithium (mg/L)	GWC-13	0.03	0.00087	0.04	No		0.02657	0.009691		None	No	0.01	NP (NDs)
Lithium (mg/L)	GWC-17	0.006758	0.005122	0.04	No		0.00594	0.001306	0	None	No	0.01	Param.
Lithium (mg/L)	GWC-9	0.0022	0.0017	0.04	No	16	0.003662	0.007026	6.25	None	No	0.01	NP (normality)
Mercury (mg/L)	GWB-4R	0.0002	0.0001	0.002	No	14	0.0001821	0.00004666	85.71	None	No	0.01	NP (NDs)
Mercury (mg/L)	GWB-5R	0.0002	0.0001	0.002	No	15	0.0001858	0.00003755	86.67	None	No	0.01	NP (NDs)
Mercury (mg/L)	GWB-6R	0.0002	0.0001	0.002	No	14	0.0001816	0.00004798	85.71	None	No	0.01	NP (NDs)
Mercury (mg/L)	GWC-1	0.0002	0.0001	0.002	No	14	0.0001814	0.00004865	85.71	None	No	0.01	NP (NDs)
Mercury (mg/L)	GWC-11	0.0002	0.0001	0.002	No	14	0.0001929	0.00002673	92.86	None	No	0.01	NP (NDs)
Mercury (mg/L)	GWC-12	0.0002	0.0001	0.002	No	14	0.0001929	0.00002673	92.86	None	No	0.01	NP (NDs)

	Grumm	nan Road Landfill	Client: South	ern Company	Data	a: Gr	umman Road	Landfill Printe	ed 11/6/2	2022, 10:03 AM			
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	<u>Mean</u>	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Mercury (mg/L)	GWC-13	0.0002	0.00013	0.002	No	14	0.0001879	0.00003142	85.71	None	No	0.01	NP (NDs)
Mercury (mg/L)	GWC-14	0.0002	0.00011	0.002	No	14	0.0001936	0.00002405	92.86	None	No	0.01	NP (NDs)
Mercury (mg/L)	GWC-15	0.0002	0.0001	0.002	No	14	0.0001929	0.00002673	92.86	None	No	0.01	NP (NDs)
Mercury (mg/L)	GWC-16	0.0002	0.0001	0.002	No	14	0.0001929	0.00002673	92.86	None	No	0.01	NP (NDs)
Mercury (mg/L)	GWC-17	0.0002	0.00011	0.002	No	14	0.0001936	0.00002405	92.86	None	No	0.01	NP (NDs)
Mercury (mg/L)	GWC-2	0.0002	0.0001	0.002	No	15	0.0001933	0.00002582	93.33	None	No	0.01	NP (NDs)
Mercury (mg/L)	GWC-20	0.0002	0.00011	0.002	No	14	0.0001936	0.00002405	92.86	None	No	0.01	NP (NDs)
Mercury (mg/L)	GWC-21	0.0002	0.00011	0.002	No	14	0.0001936	0.00002405	92.86	None	No	0.01	NP (NDs)
Mercury (mg/L)	GWC-22	0.0002	0.0001	0.002	No	14	0.0001929	0.00002673	92.86	None	No	0.01	NP (NDs)
Mercury (mg/L)	GWC-9	0.0002	0.00011	0.002	No	14	0.0001829	0.00004514	85.71	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	GWB-4R	0.13	0.024	0.1	No	17	0.07922	0.05491	0	None	No	0.01	NP (normality)
Molybdenum (mg/L)	GWB-5R	0.0012	0.001	0.1	No	17	0.001012	0.00004851	94.12	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	GWB-6R	0.0013	0.001	0.1	No	17	0.001081	0.0004098	64.71	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	GWC-1	0.146	0.06224	0.1	No	17	0.1041	0.06687	0	None	No	0.01	Param.
Molybdenum (mg/L)	GWC-11	0.0018	0.00077	0.1	No	17	0.001005	0.0002412	82.35	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	GWC-12	0.001	0.000205	0.1	No		0.0009532	0.0001928		None	No	0.01	NP (NDs)
Molybdenum (mg/L)	GWC-13	0.0056	0.001	0.1	No	17	0.001271	0.001116		None	No	0.01	NP (NDs)
Molybdenum (mg/L)	GWC-14	0.01488	0.004383	0.1	No		0.01072	0.009545	0	None	sqrt(x)	0.01	Param.
Molybdenum (mg/L)	GWC-15	0.1091	0.08978	0.1	No		0.09946	0.01545	0	None	No	0.01	Param.
Molybdenum (mg/L)	GWC-16	0.2078	0.1293	0.1	Yes		0.1686	0.06266	0	None	No	0.01	Param.
Molybdenum (mg/L)	GWC-17	0.0038	0.001	0.1	No		0.002214	0.001477	47.06		No	0.01	NP (normality)
Molybdenum (mg/L)	GWC-20	0.3536	0.137	0.1	Yes		0.2629	0.1946	0	None	sqrt(x)	0.01	Param.
Molybdenum (mg/L)	GWC-20 GWC-21	0.05718	0.02102	0.1	No		0.0391	0.02886	0	None	No No	0.01	Param.
Molybdenum (mg/L)	MW-24D	0.003964	0.000932	0.1	No	5	0.002448	0.0009047	0	None	No	0.01	Param.
Molybdenum (mg/L)	MW-25D	0.003904	0.000932	0.1		5	0.002448	0.0009047	40	Kaplan-Meier		0.01	Param.
Selenium (mg/L)	GWB-4R	0.003863	0.0006	0.05	No		0.001093	0.0002428	42.86	•	No No	0.01	Param.
Selenium (mg/L)	GWB-4R GWB-5R	0.003803	0.0020	0.05	No No		0.004131	0.001204		Kaplan-Meier	No	0.01	NP (NDs)
	GWB-5R GWB-6R	0.005	0.0033	0.05			0.004924	0.0009823				0.01	
Selenium (mg/L)					No					Kaplan-Meier	No		NP (NDs)
Selenium (mg/L)	GWC-1	0.0026	0.0018	0.05	No		0.003491	0.004609		None	No	0.01	NP (normality)
Selenium (mg/L)	GWC-11	0.007591	0.003421	0.05	No		0.007207	0.005946		Kaplan-Meier	ln(x)	0.01	Param.
Selenium (mg/L)	GWC-12	0.005	0.003	0.05	No		0.004495	0.001084		Kaplan-Meier	No	0.01	NP (NDs)
Selenium (mg/L)	GWC-14	0.004476	0.003098	0.05	No		0.003787	0.001284		None	No	0.01	Param.
Selenium (mg/L)	GWC-15	0.004932	0.002125	0.05	No		0.005101	0.002916		Kaplan-Meier	sqrt(x)	0.01	Param.
Selenium (mg/L)	GWC-16	0.005345	0.003529	0.05	No		0.004437	0.001692		None	No	0.01	Param.
Selenium (mg/L)	GWC-17	0.005	0.0016	0.05	No		0.003619	0.001743		None	No	0.01	NP (NDs)
Selenium (mg/L)	GWC-2	0.005	0.0035	0.05	No	21		0.0007171	90.48		No	0.01	NP (NDs)
Selenium (mg/L)	GWC-20	0.005	0.00192	0.05	No		0.003868	0.001656		None	No	0.01	NP (NDs)
Selenium (mg/L)	GWC-21	0.01972	0.0105	0.05	No		0.01511	0.008357	0	None	No	0.01	Param.
Selenium (mg/L)	GWC-22	0.005	0.0023	0.05	No		0.004376	0.00134		None	No	0.01	NP (NDs)
Thallium (mg/L)	GWB-4R	0.002	0.00007	0.002	No		0.001773	0.000641		None	No	0.01	NP (NDs)
Thallium (mg/L)	GWB-5R	0.002	0.00031	0.002	No		0.001786	0.0006049		None	No	0.01	NP (NDs)
Thallium (mg/L)	GWC-1	0.002	0.000054	0.002	No		0.001656	0.0007652		None	No	0.01	NP (NDs)
Thallium (mg/L)	GWC-11	0.002	0.0001	0.002	No		0.001125	0.000958		None	No	0.01	NP (NDs)
Thallium (mg/L)	GWC-12	0.002	0.00014	0.002	No		0.001146	0.0009346		None	No	0.01	NP (NDs)
Thallium (mg/L)	GWC-14	0.002	0.00007	0.002	No		0.001772	0.0006426		None	No	0.01	NP (NDs)
Thallium (mg/L)	GWC-16	0.002	0.00006	0.002	No		0.001771	0.0006459	88.24	None	No	0.01	NP (NDs)
Thallium (mg/L)	GWC-17	0.002	0.000076	0.002	No		0.001323	0.0009444		None	No	0.01	NP (NDs)
Thallium (mg/L)	GWC-2	0.002	0.00011	0.002	No		0.001895	0.0004455		None	No	0.01	NP (NDs)
Thallium (mg/L)	GWC-21	0.002	0.00005	0.002	No		0.001885	0.0004729	94.12	None	No	0.01	NP (NDs)
Thallium (mg/L)	GWC-22	0.002	0.0001	0.002	No	17	0.00144	0.0008944	70.59	None	No	0.01	NP (NDs)
Vanadium (mg/L)	GWB-4R	0.0388	0.0031	0.43	No	16	0.01918	0.01676	6.25	None	No	0.01	NP (normality)
Vanadium (mg/L)	GWB-5R	0.01088	0.004351	0.43	No	16	0.008994	0.00808	6.25	None	ln(x)	0.01	Param.
Vanadium (mg/L)	GWB-6R	0.02669	0.008142	0.43	No	16	0.02263	0.02488	0	None	ln(x)	0.01	Param.
Vanadium (mg/L)	GWC-1	0.008409	0.00372	0.43	No	16	0.006849	0.005337	12.5	None	ln(x)	0.01	Param.
Vanadium (mg/L)	GWC-11	0.00481	0.0021	0.43	No	16	0.005832	0.007061	18.75	None	No	0.01	NP (normality)

	Grumma	n Road Landfill	Client: Souther	n Company	Data:	Gru	mman Road L	andfill Printed	11/6/2	022, 10:03 AM			
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Vanadium (mg/L)	GWC-12	0.008356	0.003653	0.43	No	16	0.006837	0.005433	12.5	None	ln(x)	0.01	Param.
Vanadium (mg/L)	GWC-13	0.02	0.0019	0.43	No	16	0.01482	0.008138	68.75	None	No	0.01	NP (NDs)
Vanadium (mg/L)	GWC-14	0.01685	0.008245	0.43	No	19	0.01406	0.007586	15.79	Kaplan-Meier	No	0.01	Param.
Vanadium (mg/L)	GWC-15	0.02	0.0022	0.43	No	18	0.00837	0.008492	33.33	None	No	0.01	NP (normality)
Vanadium (mg/L)	GWC-16	0.0065	0.0026	0.43	No	19	0.006719	0.007108	21.05	None	No	0.01	NP (normality)
Vanadium (mg/L)	GWC-17	0.02	0.0024	0.43	No	16	0.0105	0.008699	43.75	None	No	0.01	NP (normality)
Vanadium (mg/L)	GWC-2	0.02	0.0045	0.43	No	16	0.01793	0.005666	87.5	None	No	0.01	NP (NDs)
Vanadium (mg/L)	GWC-20	0.02	0.0025	0.43	No	18	0.007865	0.007799	27.78	None	No	0.01	NP (normality)
Vanadium (mg/L)	GWC-21	0.02	0.0029	0.43	No	16	0.007603	0.007491	25	None	No	0.01	NP (normality)
Vanadium (mg/L)	GWC-22	0.02	0.0016	0.43	No	16	0.01237	0.008989	56.25	None	No	0.01	NP (NDs)
Vanadium (mg/L)	GWC-9	0.02	0.00514	0.43	No	16	0.01675	0.00704	81.25	None	No	0.01	NP (NDs)
Vanadium (mg/L)	MW-24D	0.02	0.00414	0.43	No	4	0.01603	0.00793	75	None	No	0.0625	NP (NDs)
Vanadium (mg/L)	MW-25D	0.02	0.0024	0.43	No	4	0.0156	0.0088	75	None	No	0.0625	NP (NDs)
Zinc (mg/L)	GWB-4R	0.008677	0.004539	0.16	No	16	0.01116	0.006702	31.25	Kaplan-Meier	x^(1/3)	0.01	Param.
Zinc (mg/L)	GWB-5R	0.02	0.0023	0.16	No	16	0.01588	0.007495	75	Kaplan-Meier	No	0.01	NP (NDs)
Zinc (mg/L)	GWB-6R	0.02	0.0032	0.16	No	16	0.01415	0.007714	56.25	Kaplan-Meier	No	0.01	NP (NDs)
Zinc (mg/L)	GWC-1	0.02	0.0057	0.16	No	16	0.01526	0.007441	68.75	Kaplan-Meier	No	0.01	NP (NDs)
Zinc (mg/L)	GWC-11	0.02	0.0031	0.16	No	16	0.01487	0.007904	68.75	Kaplan-Meier	No	0.01	NP (NDs)
Zinc (mg/L)	GWC-12	0.02	0.0025	0.16	No	16	0.009019	0.008732	25	None	No	0.01	NP (normality)
Zinc (mg/L)	GWC-13	0.039	0.0027	0.16	No	16	0.02045	0.01819	0	None	No	0.01	NP (normality)
Zinc (mg/L)	GWC-14	0.02	0.01	0.16	No	19	0.01682	0.006502	78.95	None	No	0.01	NP (NDs)
Zinc (mg/L)	GWC-15	0.032	0.0051	0.16	No	18	0.01895	0.005959	83.33	None	No	0.01	NP (NDs)
Zinc (mg/L)	GWC-16	0.02	0.0031	0.16	No	19	0.01362	0.008076	57.89	None	No	0.01	NP (NDs)
Zinc (mg/L)	GWC-17	0.01465	0.008288	0.16	No	16	0.01147	0.004888	12.5	None	No	0.01	Param.
Zinc (mg/L)	GWC-2	0.056	0.0018	0.16	No	16	0.01656	0.01312	56.25	None	No	0.01	NP (NDs)
Zinc (mg/L)	GWC-20	0.031	0.0171	0.16	No	18	0.01869	0.005951	77.78	None	No	0.01	NP (NDs)
Zinc (mg/L)	GWC-21	0.02	0.002	0.16	No	16	0.01437	0.007802	62.5	None	No	0.01	NP (NDs)
Zinc (mg/L)	GWC-22	0.02	0.0031	0.16	No	16	0.01322	0.007473	50	None	No	0.01	NP (normality)
Zinc (mg/L)	GWC-9	0.02	0.0026	0.16	No	16	0.009862	0.008504	25	None	No	0.01	NP (normality)
Zinc (mg/L)	MW-23D	0.01308	0.004223	0.16	No	4	0.01432	0.006744	50	Kaplan-Meier	No	0.01	Param.
Zinc (mg/L)	MW-24D	0.01509	-0.002391	0.16	No	4	0.01317	0.008485	50	Kaplan-Meier	No	0.01	Param.
Zinc (mg/L)	MW-25D	0.06176	-0.02013	0.16	No	4	0.02312	0.01958	25	Kaplan-Meier	No	0.01	Param.

Appendix IV Trend Tests - Significant Results

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill Printed 11/5/2022, 6:52 PM

 Constituent
 Well
 Slope
 Calc.
 Critical
 Sig.
 N
 %NDs
 Normality
 Xform
 Alpha
 Method

 Arsenic (mg/L)
 GWC-15
 0.03505
 172
 87
 Yes
 21
 0
 n/a
 n/a
 0.01
 NP

Appendix IV Trend Tests - All Results

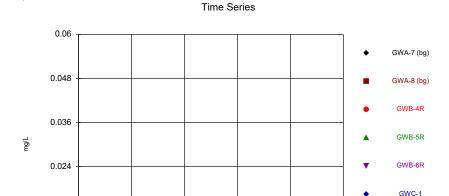

	Grumman Road Landfill	Client: Southern Comp	any Data: G	rumman R	oad Landfil	Pri	nted 11	/5/2022	6:52 PM			
Constituent	<u>Well</u>		Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Arsenic (mg/L)	GWA-7 (bg)		-0.0005488	-25	-87	No	21	28.57	n/a	n/a	0.01	NP
Arsenic (mg/L)	GWA-8 (bg)		0	28	92	No	22	72.73	n/a	n/a	0.01	NP
Arsenic (mg/L)	GWC-15		0.03505	172	87	Yes	21	0	n/a	n/a	0.01	NP
Arsenic (mg/L)	GWC-16		0.003681	65	92	No	22	0	n/a	n/a	0.01	NP
Arsenic (mg/L)	GWC-20		0.003801	24	87	No	21	0	n/a	n/a	0.01	NP
Molybdenum (mg/L)	GWA-7 (bg)		0	9	63	No	17	76.47	n/a	n/a	0.01	NP
Molybdenum (mg/L)	GWA-8 (bg)		0	0	63	No	17	100	n/a	n/a	0.01	NP
Molybdenum (mg/L)	GWC-16		0.01903	57	63	No	17	0	n/a	n/a	0.01	NP
Molybdenum (mg/L)	GWC-20		0.005248	4	63	No	17	0	n/a	n/a	0.01	NP

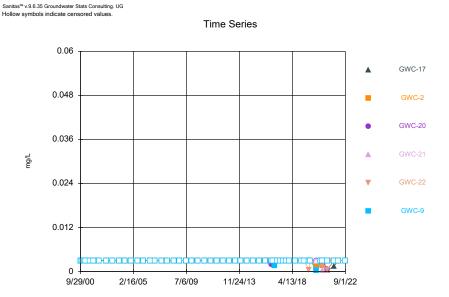
FIGURE A.

0.012

9/29/00

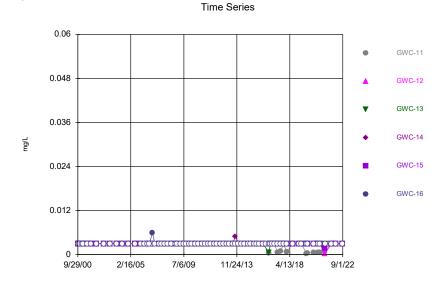
2/16/05

Constituent: Antimony Analysis Run 11/6/2022 9:43 AM

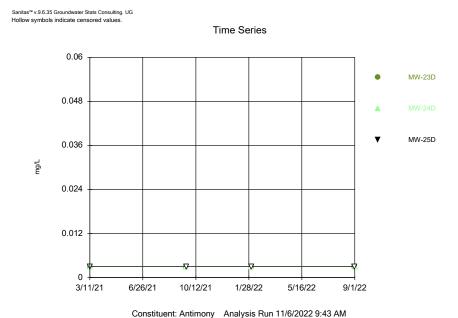

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

11/24/13

4/13/18

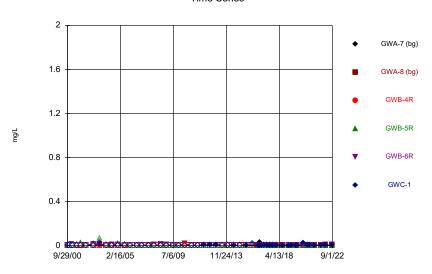

7/6/09

9/1/22


Constituent: Antimony Analysis Run 11/6/2022 9:43 AM

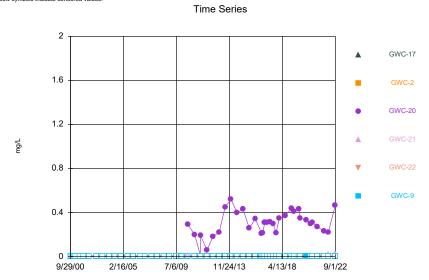
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill




Constituent: Antimony Analysis Run 11/6/2022 9:43 AM

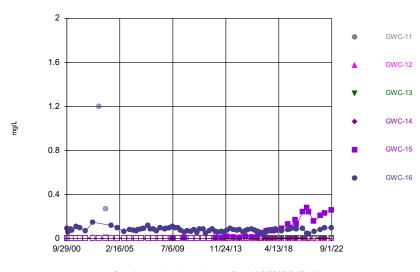
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

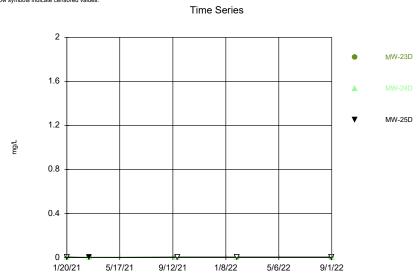
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill



Constituent: Arsenic Analysis Run 11/6/2022 9:43 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

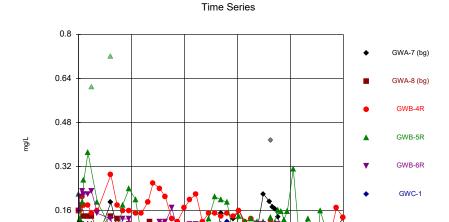

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Arsenic Analysis Run 11/6/2022 9:43 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Time Series

Constituent: Arsenic Analysis Run 11/6/2022 9:43 AM
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill



Constituent: Arsenic Analysis Run 11/6/2022 9:43 AM
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

9/29/00

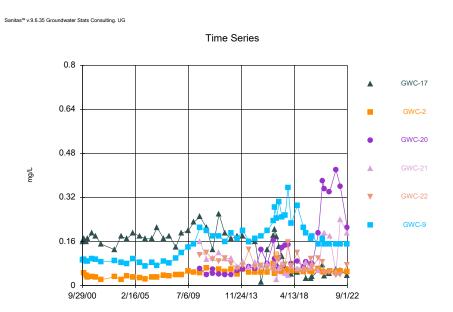
2/16/05

8.0

Constituent: Barium Analysis Run 11/6/2022 9:44 AM
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

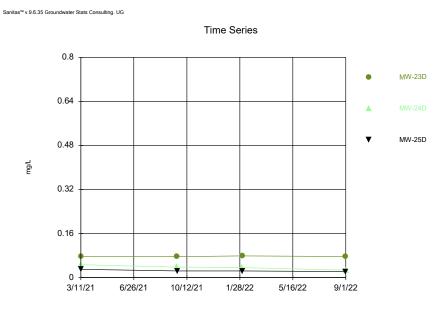
7/6/09

11/24/13


4/13/18

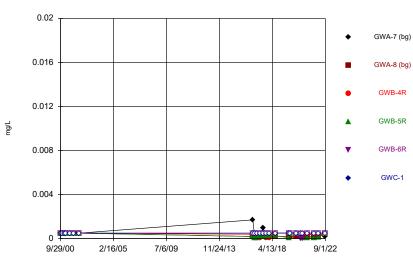
9/1/22

GWC-11 0.64 **GWC-12** GWC-13 0.48 GWC-14 mg/L 0.32 GWC-15 GWC-16 0.16 2/16/05 7/6/09 11/24/13 9/1/22 9/29/00 Constituent: Barium Analysis Run 11/6/2022 9:44 AM


Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

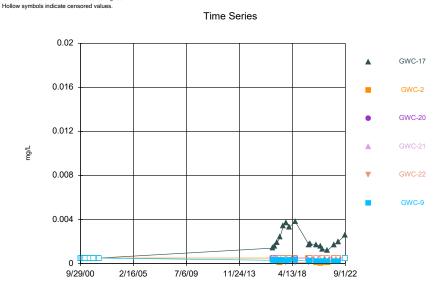
Time Series

Constituent: Barium Analysis Run 11/6/2022 9:44 AM


Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

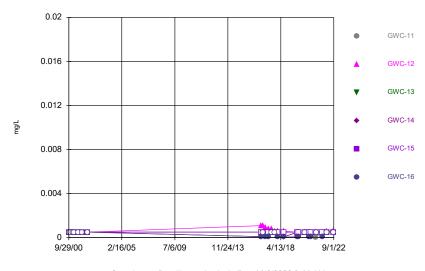
Constituent: Barium Analysis Run 11/6/2022 9:44 AM

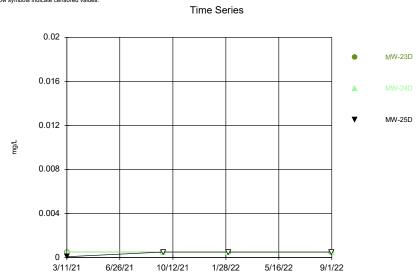
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill



Constituent: Beryllium Analysis Run 11/6/2022 9:44 AM

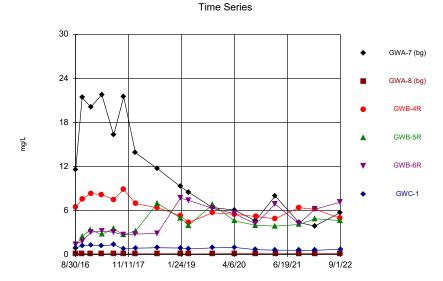
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

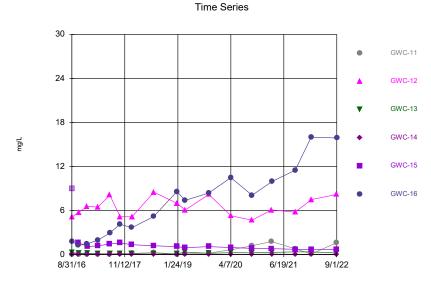

Constituent: Beryllium Analysis Run 11/6/2022 9:44 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Time Series

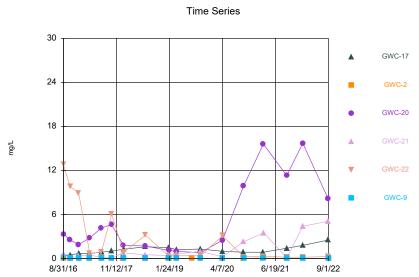


Constituent: Beryllium Analysis Run 11/6/2022 9:44 AM
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Constituent: Beryllium Analysis Run 11/6/2022 9:44 AM

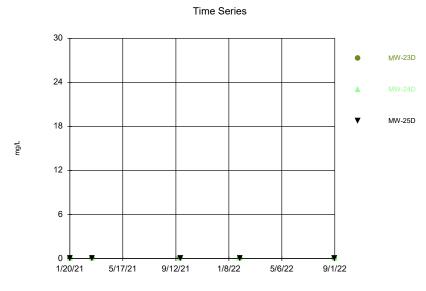
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Constituent: Boron Analysis Run 11/6/2022 9:44 AM


Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Constituent: Boron Analysis Run 11/6/2022 9:44 AM

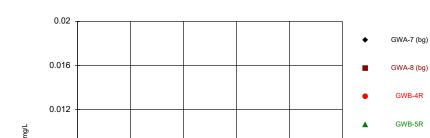
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill



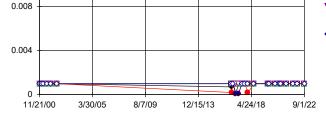
Constituent: Boron Analysis Run 11/6/2022 9:44 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

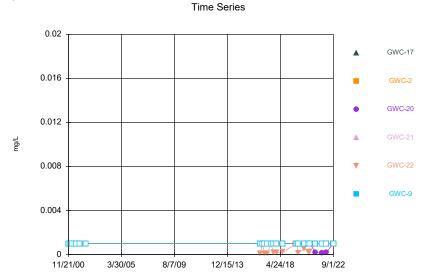


Constituent: Boron Analysis Run 11/6/2022 9:44 AM


Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

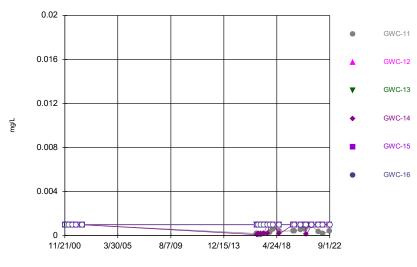
GWB-6R

GWC-1

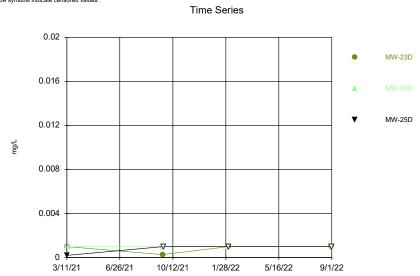

Time Series

Constituent: Cadmium Analysis Run 11/6/2022 9:44 AM

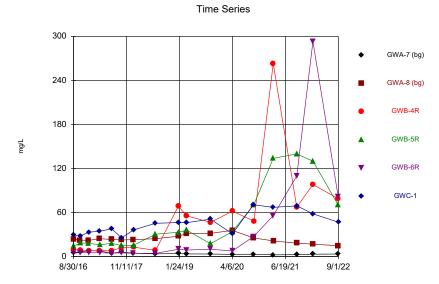
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

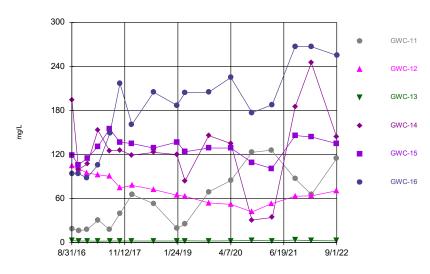
Constituent: Cadmium Analysis Run 11/6/2022 9:44 AM


Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Time Series

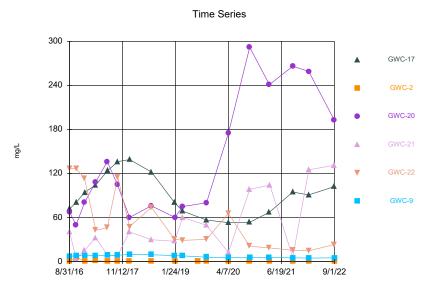

Constituent: Cadmium Analysis Run 11/6/2022 9:44 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Constituent: Cadmium Analysis Run 11/6/2022 9:44 AM

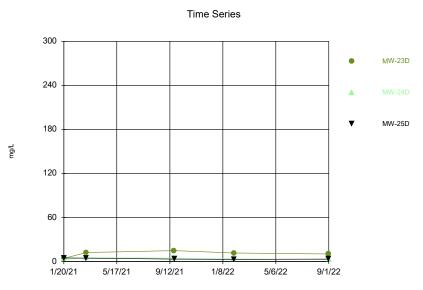
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Constituent: Calcium Analysis Run 11/6/2022 9:44 AM

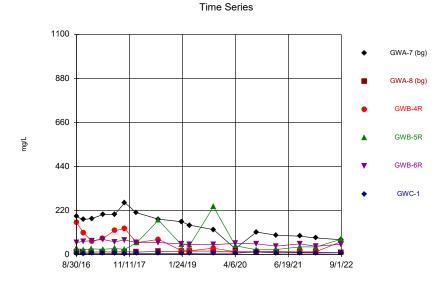

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Constituent: Calcium Analysis Run 11/6/2022 9:44 AM

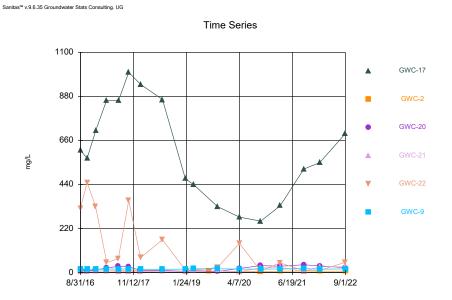
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill



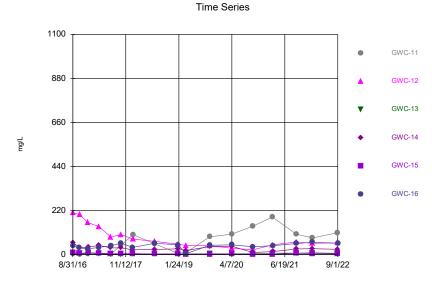
Constituent: Calcium Analysis Run 11/6/2022 9:44 AM


Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

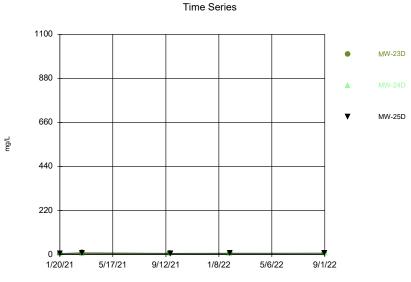
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Constituent: Calcium Analysis Run 11/6/2022 9:44 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

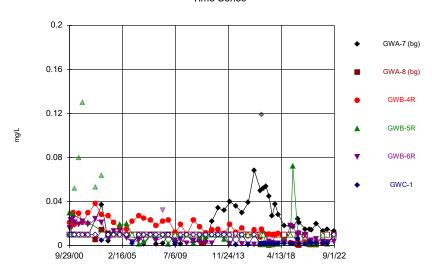

Constituent: Chloride Analysis Run 11/6/2022 9:44 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

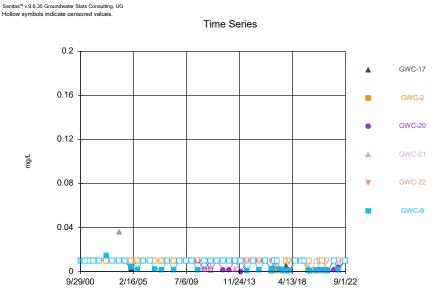

Constituent: Chloride Analysis Run 11/6/2022 9:44 AM

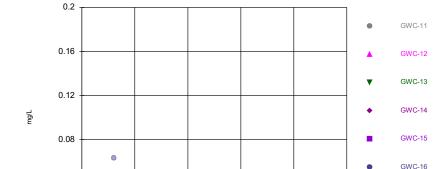
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Constituent: Chloride Analysis Run 11/6/2022 9:44 AM
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill



Constituent: Chloride Analysis Run 11/6/2022 9:44 AM


Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Constituent: Chromium Analysis Run 11/6/2022 9:44 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Constituent: Chromium Analysis Run 11/6/2022 9:44 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

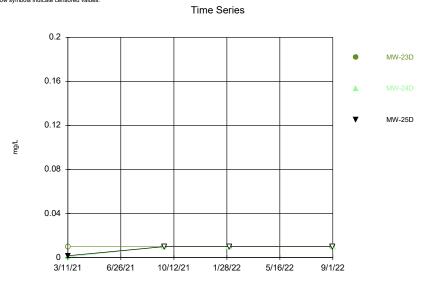
Constituent: Chromium Analysis Run 11/6/2022 9:44 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

11/24/13

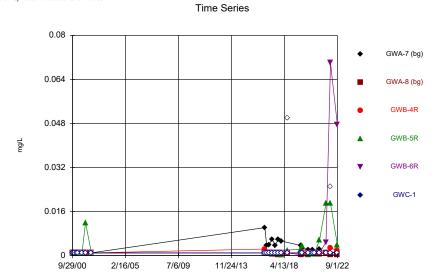
4/13/18

9/1/22

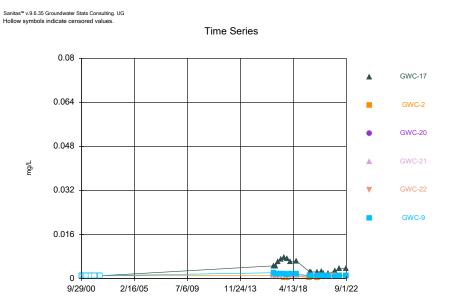

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

0.04

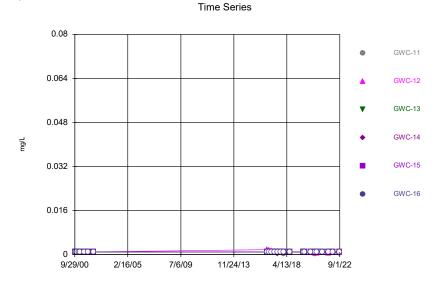
9/29/00


2/16/05

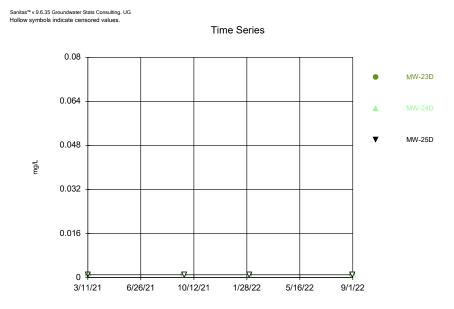
7/6/09


Constituent: Chromium Analysis Run 11/6/2022 9:44 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

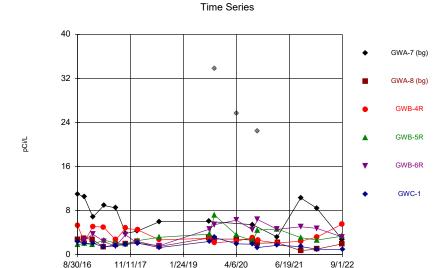

Constituent: Cobalt Analysis Run 11/6/2022 9:44 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

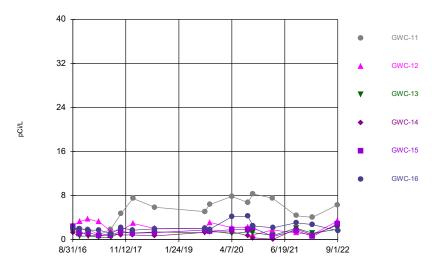


Constituent: Cobalt Analysis Run 11/6/2022 9:44 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

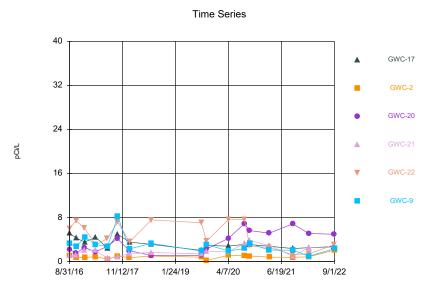


Constituent: Cobalt Analysis Run 11/6/2022 9:44 AM
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Constituent: Cobalt Analysis Run 11/6/2022 9:44 AM

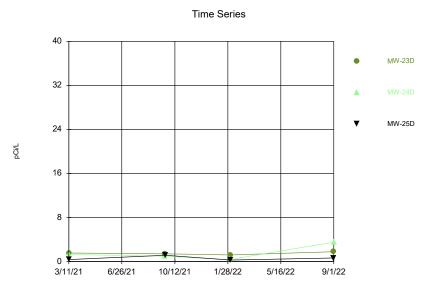
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Constituent: Combined Radium 226 + 228 Analysis Run 11/6/2022 9:44 AM


Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Constituent: Combined Radium 226 + 228 Analysis Run 11/6/2022 9:44 AM

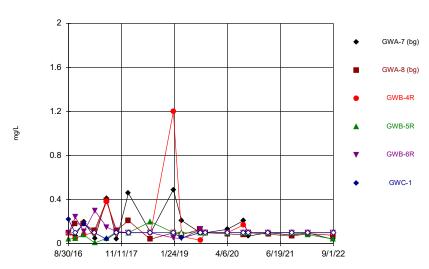
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill



Constituent: Combined Radium 226 + 228 Analysis Run 11/6/2022 9:44 AM

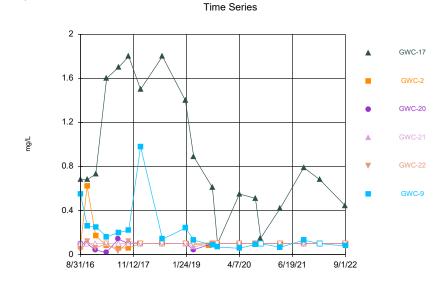
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

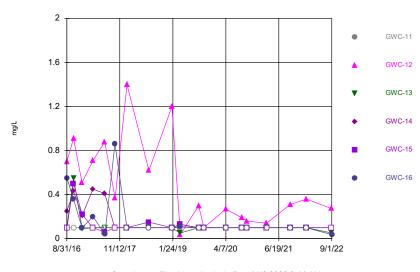

Constituent: Combined Radium 226 + 228 Analysis Run 11/6/2022 9:44 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

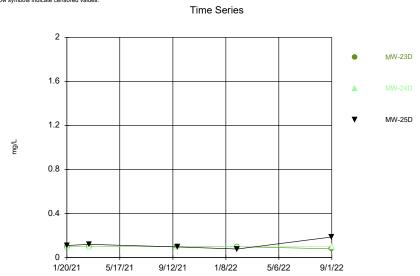
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Hollow symbols indicate censored values

Constituent: Fluoride Analysis Run 11/6/2022 9:44 AM

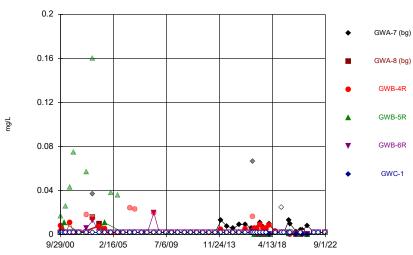

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Constituent: Fluoride Analysis Run 11/6/2022 9:44 AM

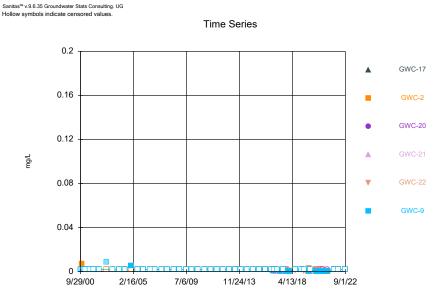

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

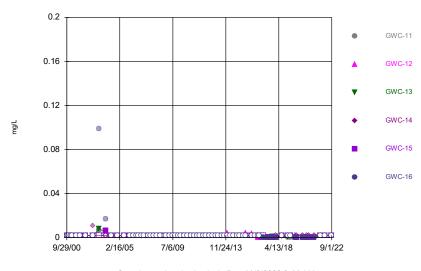
Time Series

Constituent: Fluoride Analysis Run 11/6/2022 9:44 AM

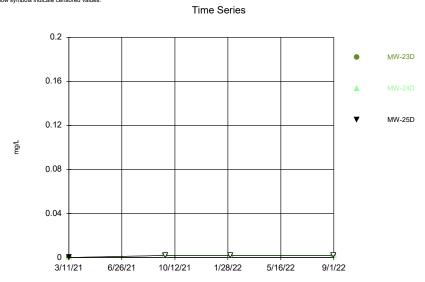

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Constituent: Fluoride Analysis Run 11/6/2022 9:44 AM

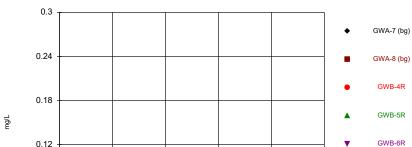

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

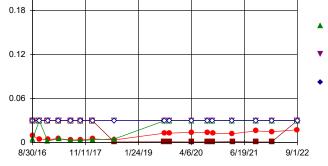

Constituent: Lead Analysis Run 11/6/2022 9:44 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Constituent: Lead Analysis Run 11/6/2022 9:44 AM Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

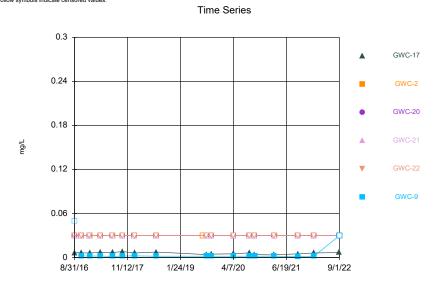
Time Series


Constituent: Lead Analysis Run 11/6/2022 9:44 AM


Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Constituent: Lead Analysis Run 11/6/2022 9:44 AM

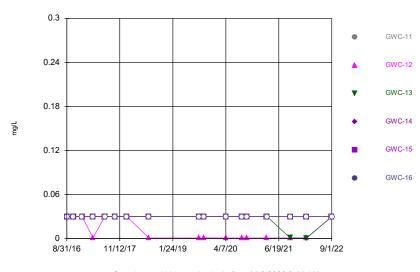
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

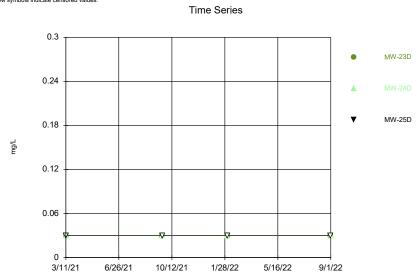


GWC-1

Constituent: Lithium Analysis Run 11/6/2022 9:44 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

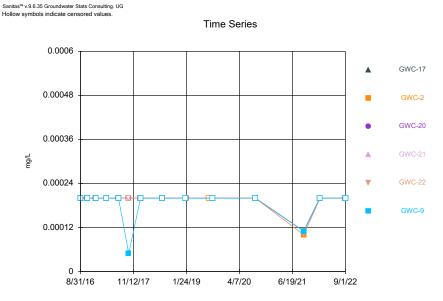

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

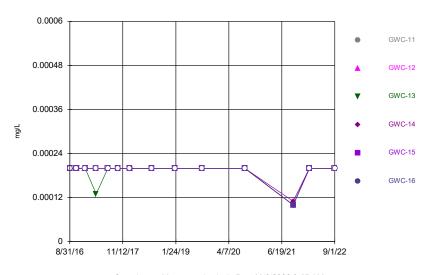

Constituent: Lithium Analysis Run 11/6/2022 9:45 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

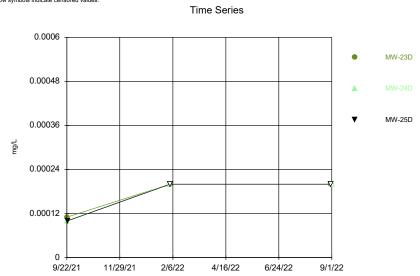
Constituent: Lithium Analysis Run 11/6/2022 9:44 AM
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Constituent: Lithium Analysis Run 11/6/2022 9:45 AM


Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Constituent: Mercury Analysis Run 11/6/2022 9:45 AM

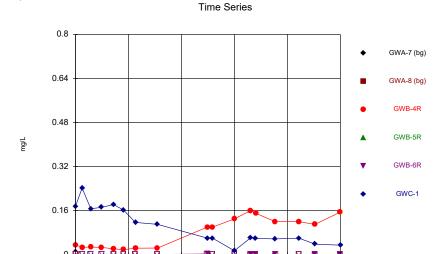
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Constituent: Mercury Analysis Run 11/6/2022 9:45 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Constituent: Mercury Analysis Run 11/6/2022 9:45 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill



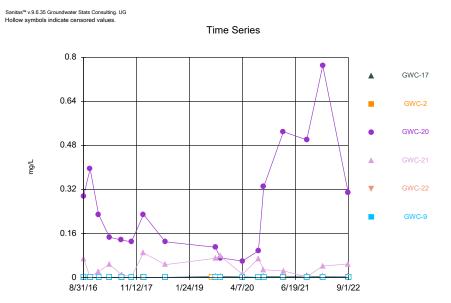
Constituent: Mercury Analysis Run 11/6/2022 9:45 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

8/30/16

11/11/17

Constituent: Molybdenum Analysis Run 11/6/2022 9:45 AM

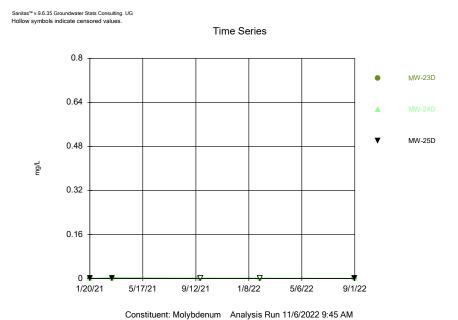

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

4/6/20

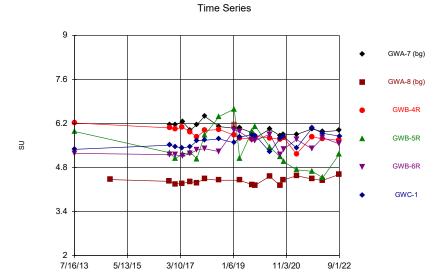
1/24/19


6/19/21

9/1/22

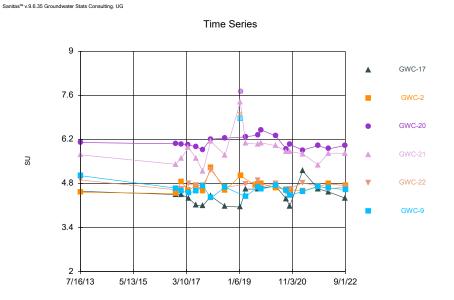

Constituent: Molybdenum Analysis Run 11/6/2022 9:45 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

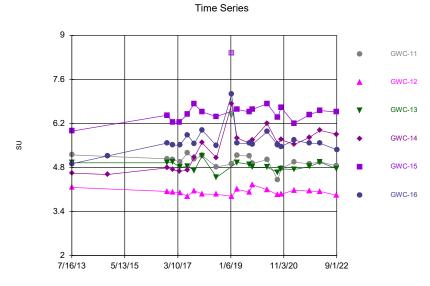


Constituent: Molybdenum Analysis Run 11/6/2022 9:45 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

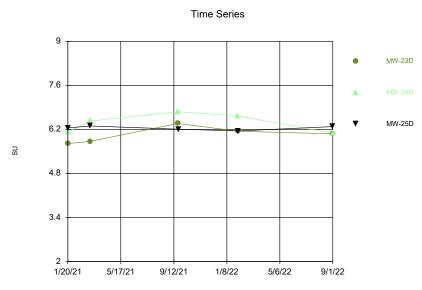


Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Constituent: pH Analysis Run 11/6/2022 9:45 AM

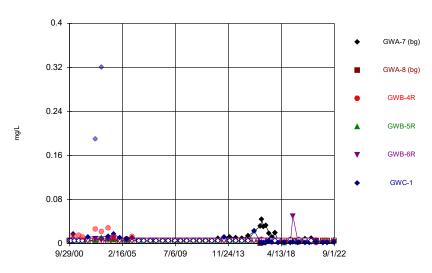
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Constituent: pH Analysis Run 11/6/2022 9:45 AM


Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

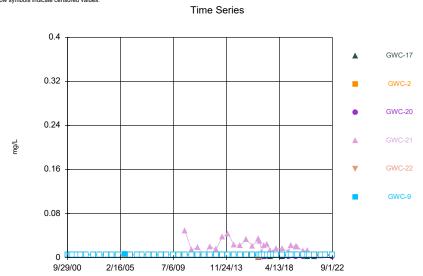
Constituent: pH Analysis Run 11/6/2022 9:45 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill



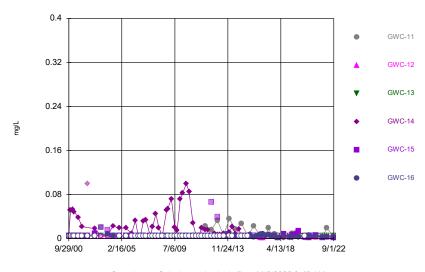
Constituent: pH Analysis Run 11/6/2022 9:45 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

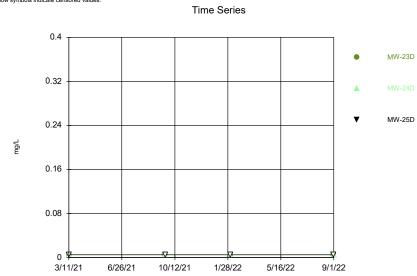


Constituent: Selenium Analysis Run 11/6/2022 9:45 AM

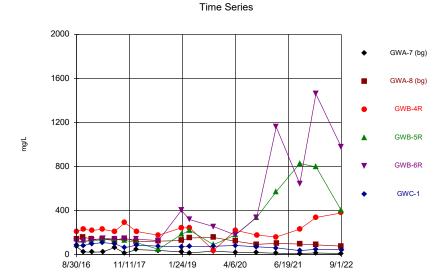
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

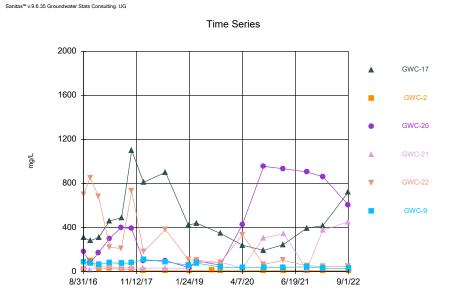
Constituent: Selenium Analysis Run 11/6/2022 9:45 AM


Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

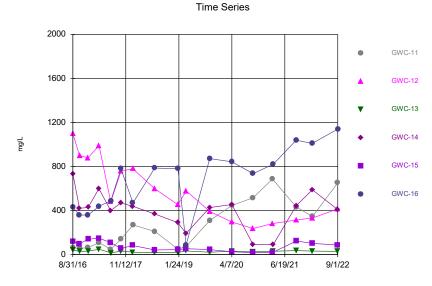
Time Series


Constituent: Selenium Analysis Run 11/6/2022 9:45 AM

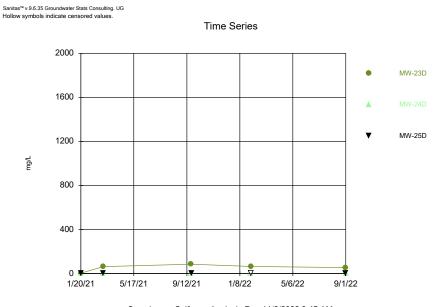
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Constituent: Selenium Analysis Run 11/6/2022 9:45 AM

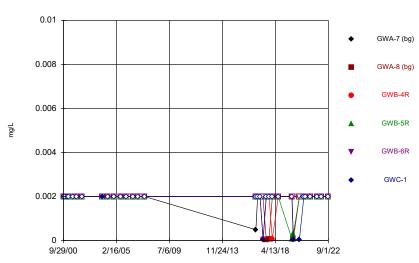
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Constituent: Sulfate Analysis Run 11/6/2022 9:45 AM

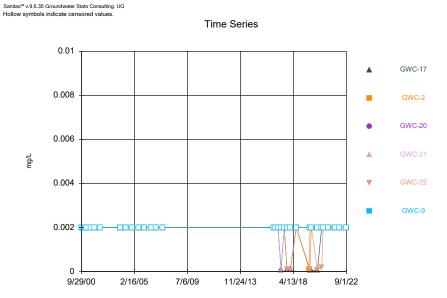
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

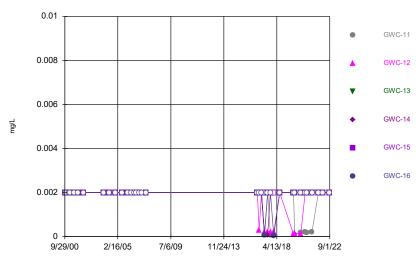

Constituent: Sulfate Analysis Run 11/6/2022 9:45 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

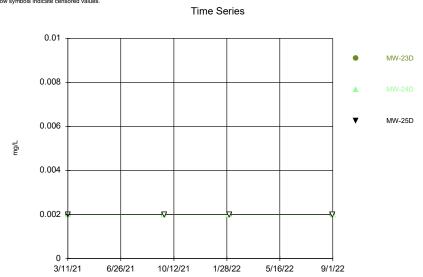

Constituent: Sulfate Analysis Run 11/6/2022 9:45 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

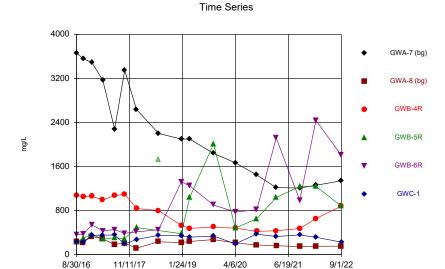

Constituent: Sulfate Analysis Run 11/6/2022 9:45 AM
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Constituent: Thallium Analysis Run 11/6/2022 9:45 AM

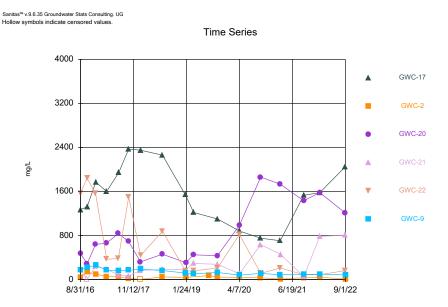
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Constituent: Thallium Analysis Run 11/6/2022 9:45 AM Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

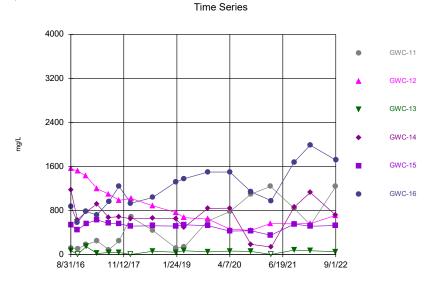
Time Series


Constituent: Thallium Analysis Run 11/6/2022 9:45 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

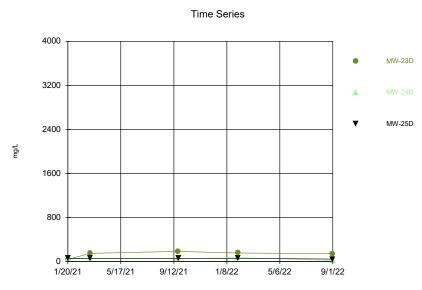

Constituent: Thallium Analysis Run 11/6/2022 9:45 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Constituent: Total Dissolved Solids Analysis Run 11/6/2022 9:45 AM

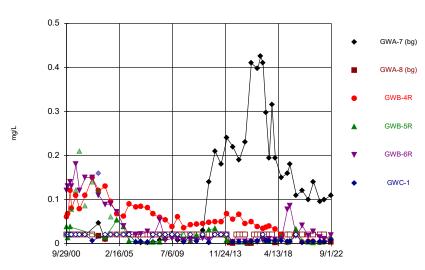
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Constituent: Total Dissolved Solids Analysis Run 11/6/2022 9:45 AM

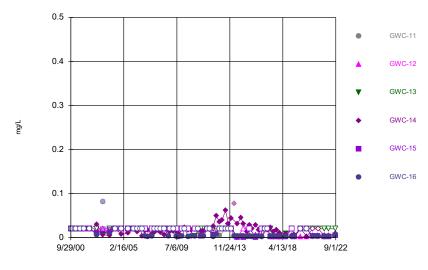

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Constituent: Total Dissolved Solids Analysis Run 11/6/2022 9:45 AM

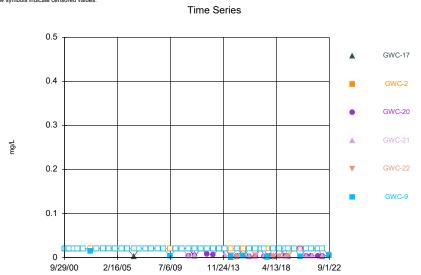
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill



Constituent: Total Dissolved Solids Analysis Run 11/6/2022 9:45 AM

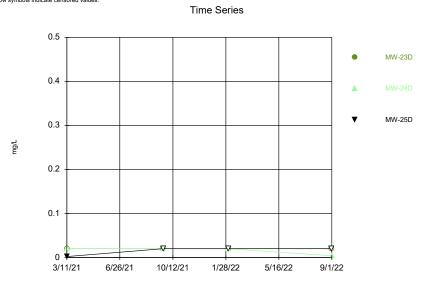

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

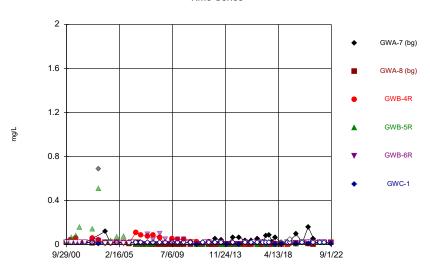
Constituent: Vanadium Analysis Run 11/6/2022 9:45 AM


Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Constituent: Vanadium Analysis Run 11/6/2022 9:45 AM

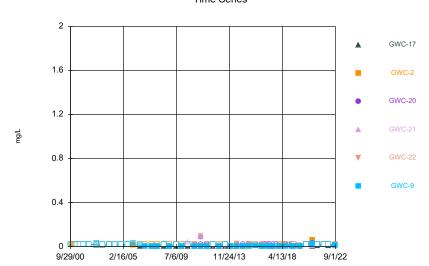
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

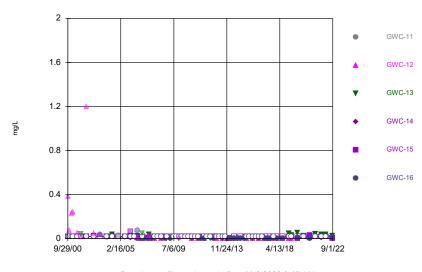

Constituent: Vanadium Analysis Run 11/6/2022 9:45 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

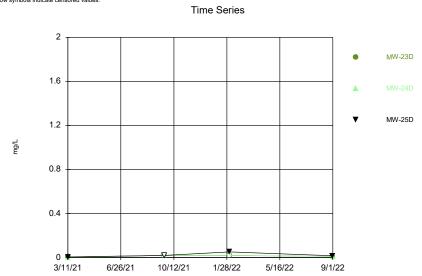
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Zinc Analysis Run 11/6/2022 9:45 AM


Hollow symbols indicate censored values Time Series

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG



Constituent: Zinc Analysis Run 11/6/2022 9:45 AM Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Time Series

Constituent: Zinc Analysis Run 11/6/2022 9:45 AM Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Constituent: Zinc Analysis Run 11/6/2022 9:45 AM Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Constituent: Antimony (mg/L) Analysis Run 11/6/2022 9:47 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

GWA-7 (bg) GWA-8 (bg) GWB-4R GWB-5R GWB-6R GWC-1 9/29/2000 <0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 11/21/2000 <0.003 < 0.003 < 0.003 <0.003 1/20/2001 <0.003 < 0.003 <0.003 < 0.003 <0.003 <0.003 3/14/2001 <0.003 < 0.003 < 0.003 < 0.003 < 0.003 <0.003 7/16/2001 <0.003 < 0.003 <0.003 <0.003 <0.003 <0.003 11/1/2001 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 4/25/2002 <0.003 <0.003 <0.003 < 0.003 <0.003 <0.003 11/20/2002 <0.003 <0.003 <0.003 <0.003 <0.003 6/6/2003 <0.003 < 0.003 < 0.003 < 0.003 < 0.003 <0.003 <0.003 <0.003 12/12/2003 < 0.003 < 0.003 < 0.003 <0.003 5/26/2004 <0.003 < 0.003 <0.003 <0.003 <0.003 <0.003 12/7/2004 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 6/21/2005 <0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 12/12/2005 <0.003 < 0.003 <0.003 <0.003 <0.003 <0.003 4/4/2006 < 0.003 6/27/2006 <0.003 < 0.003 <0.003 < 0.003 <0.003 <0.003 8/30/2006 <0.003 12/4/2006 <0.003 <0.003 < 0.003 < 0.003 < 0.003 <0.003 2/15/2007 <0.003 6/23/2007 <0.003 < 0.003 <0.003 <0.003 <0.003 <0.003 9/11/2007 < 0.003 12/11/2007 <0.003 < 0.003 <0.003 <0.003 <0.003 <0.003 3/11/2008 < 0.003 6/23/2008 <0.003 < 0.003 6/24/2008 <0.003 <0.003 <0.003 <0.003 11/3/2008 < 0.003 <0.003 <0.003 12/4/2008 <0.003 < 0.003 <0.003 <0.003 12/5/2008 3/25/2009 < 0.003 7/7/2009 <0.003 <0.003 <0.003 < 0.003 <0.003 <0.003 <0.003 9/14/2009 12/20/2009 <0.003 < 0.003 < 0.003 12/21/2009 <0.003 <0.003 <0.003 3/4/2010 < 0.003 6/20/2010 <0.003 < 0.003 < 0.003 < 0.003 < 0.003 6/21/2010 <0.003 9/14/2010 < 0.003 <0.003 <0.003 1/6/2011 <0.003 <0.003 <0.003 1/7/2011 < 0.003 <0.003 4/15/2011 7/7/2011 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 7/8/2011 9/25/2011 < 0.003 1/17/2012 <0.003 < 0.003 <0.003 <0.003 1/18/2012 < 0.003 < 0.003 4/4/2012 < 0.003 7/9/2012 <0.003 <0.003 <0.003 7/10/2012 <0.003 <0.003 < 0.003 <0.003 10/9/2012 1/17/2013 < 0.003 <0.003 1/18/2013 < 0.003 < 0.003 <0.003 < 0.003 4/5/2013 < 0.003

	GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1	
7/16/2013				<0.003		<0.003	
7/17/2013	<0.003	<0.003	<0.003		<0.003		
10/11/2013		<0.003					
1/13/2014	<0.003			< 0.003		<0.003	
1/14/2014		<0.003	<0.003		<0.003		
4/3/2014		<0.003					
7/9/2014	0.0022 (J)	<0.003	0.002 (J)	< 0.003	<0.003	<0.003	
10/24/2014		<0.003					
1/12/2015			<0.003				
1/13/2015	<0.003			< 0.003		<0.003	
1/14/2015		<0.003			<0.003		
5/10/2015		<0.003					
7/16/2015	0.0028 (J)		0.0021 (J)	< 0.003		<0.003	
7/17/2015	. ,	<0.003			<0.003		
10/6/2015		<0.003					
1/17/2016		-				<0.003	
1/18/2016	<0.003	<0.003	<0.003	<0.003	<0.003		
4/26/2016	5.555	<0.003	5.550	0.000	0.000		
7/27/2016	<0.003	-0.000		<0.003		<0.003	
7/28/2016	-0.003	<0.003		-0.000	<0.003	-0.000	
7/28/2016		-0.003	0.0003 (1)		-0.000		
		<0.003	0.0003 (J)	<0.003	<0.003	<0.003	
8/30/2016	0.0017 (1)	<0.003	-0.000	<0.003	<0.003	<0.003	
9/1/2016	0.0017 (J)	-0.000	<0.003				
10/24/2016	.0.000	<0.003				0.000	
10/25/2016	<0.003		.0.000			<0.003	
10/26/2016		-0.000	<0.003	<0.003	<0.003		
1/3/2017		<0.003		<0.003			
1/4/2017						<0.003	
1/5/2017					<0.003		
1/6/2017	0.0009 (J)		<0.003				
4/3/2017		<0.003					
4/4/2017			<0.003			<0.003	
4/6/2017	<0.003			<0.003	<0.003		
7/11/2017		<0.003					
7/12/2017			<0.003	<0.003	<0.003	<0.003	
7/13/2017	0.0013 (J)						
10/2/2017		<0.003					
10/3/2017				<0.003	<0.003	<0.003	
10/4/2017	0.0008 (J)		<0.003				
1/9/2018	<0.003	<0.003			<0.003		
1/10/2018				<0.003		<0.003	
1/11/2018			<0.003				
7/9/2018		<0.003					
7/10/2018				<0.003	<0.003	<0.003	
7/11/2018	<0.003		<0.003				
1/16/2019	<0.003	<0.003	<0.003	< 0.003	<0.003	<0.003	
3/25/2019	<0.003	<0.003	<0.003				
3/26/2019				<0.003	<0.003	<0.003	
8/26/2019	<0.003	<0.003					
8/27/2019			<0.003		<0.003	<0.003	
8/28/2019				0.00054 (J)			
				` '			

	GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1
10/8/2019	<0.003					
10/9/2019			<0.003	<0.003	<0.003	<0.003
4/6/2020	<0.003	<0.003				
4/7/2020			<0.003	<0.003	<0.003	<0.003
8/17/2020		<0.003				
8/19/2020	<0.003		<0.003	<0.003	<0.003	0.00061 (J)
9/28/2020	<0.003	<0.003				0.00035 (J)
9/30/2020				0.0003 (J)	0.00059 (J)	
10/1/2020			<0.003			
3/10/2021			<0.003	<0.003	0.00029 (J)	0.00069 (J)
3/11/2021	<0.003					
3/12/2021		<0.003				
9/21/2021	<0.003	<0.003	<0.003	0.0013 (J)	<0.003	
9/23/2021						0.0016 (J)
1/31/2022	<0.003	<0.003				
2/2/2022			<0.003		<0.003	
2/3/2022				<0.003		<0.003
8/30/2022	<0.003	<0.003	<0.003	<0.003	<0.003	
9/1/2022						<0.003

						, -	
		GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16
9/29/2	2000	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
11/21/	/2000	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
1/20/2	2001	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
3/14/2	2001	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
7/16/2	2001	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
11/1/2	2001	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
4/25/2	2002	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
11/20/	/2002	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
6/6/20	03	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
12/12/	/2003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
5/26/2	2004	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
12/7/2	2004	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
6/21/2	2005	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
12/12/	/2005	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
4/4/20	06				<0.003		<0.003
6/27/2	2006	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
8/30/2	2006				<0.003		<0.003
12/4/2	2006	<0.003	<0.003	<0.003	<0.003	<0.003	0.006
2/15/2	2007				<0.003		<0.003
6/23/2	2007	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
9/11/2	2007				<0.003		<0.003
12/11/	/2007	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
3/11/2	2008				<0.003		<0.003
6/23/2	2008	<0.003	<0.003	<0.003			
6/24/2	2008				<0.003	<0.003	<0.003
11/3/2	2008				<0.003		<0.003
12/4/2	2008	<0.003	<0.003	<0.003	<0.003		
12/5/2	2008					<0.003	<0.003
3/25/2	2009				<0.003		<0.003
7/8/20	09	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
9/14/2	2009				<0.003		<0.003
12/20/	/2009				<0.003	<0.003	<0.003
12/21/	/2009	<0.003	<0.003	<0.003			
3/4/20	110				<0.003		<0.003
6/20/2	2010	<0.003	<0.003	<0.003	<0.003	<0.003	
6/21/2	2010						<0.003
9/14/2	2010				<0.003		<0.003
1/6/20	111	<0.003		<0.003			
1/7/20	111		<0.003		<0.003	<0.003	<0.003
4/15/2	2011				<0.003		<0.003
7/7/20	111	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
9/25/2	2011				<0.003		<0.003
1/17/2	2012	<0.003	<0.003	<0.003	<0.003	<0.003	
1/18/2	2012						<0.003
4/4/20	112				<0.003		<0.003
7/9/20	112	<0.003	<0.003	<0.003	<0.003	<0.003	
7/10/2	2012						<0.003
10/9/2	2012				<0.003		<0.003
1/17/2	2013	<0.003	<0.003	<0.003			
1/18/2	2013				<0.003	<0.003	<0.003
4/5/20					<0.003		<0.003
7/16/2	2013	<0.003	<0.003	<0.003			

			Gruillinaii No	au Lanumi Chem.	. Southern Company	Data. Grunnian Noau Landiii
	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16
7/17/2013				<0.003	<0.003	<0.003
10/11/2013				0.005		<0.003
1/13/2014	<0.003	<0.003	<0.003		<0.003	
1/14/2014				<0.003		<0.003
4/3/2014				<0.003		<0.003
7/8/2014	<0.003	<0.003	<0.003			
7/9/2014				<0.003	<0.003	<0.003
10/24/2014				<0.003		<0.003
1/13/2015	<0.003	<0.003	<0.003		<0.003	
1/14/2015				<0.003		<0.003
5/10/2015				<0.003		
5/11/2015						<0.003
7/16/2015	<0.003	<0.003	<0.003		<0.003	<0.003
7/17/2015				<0.003		
10/6/2015				<0.003		<0.003
1/17/2016				<0.003	<0.003	<0.003
1/18/2016		< 0.003	<0.003			
1/19/2016	<0.003					
4/26/2016				<0.003		<0.003
7/26/2016	0.0005 (J)		0.0006 (J)			
7/27/2016	()	<0.003	.,	<0.003	<0.003	
7/28/2016						<0.003
8/31/2016	<0.003	<0.003	<0.003			
9/1/2016				<0.003	<0.003	<0.003
10/25/2016				<0.003	<0.003	<0.003
10/26/2016	<0.003	<0.003	<0.003			
1/4/2017	<0.003	<0.003				<0.003
1/5/2017			<0.003	<0.003	<0.003	
4/3/2017					<0.003	
4/4/2017				<0.003		
4/5/2017		< 0.003				<0.003
4/6/2017	0.0006 (J)		<0.003			
7/10/2017	()	<0.003				
7/11/2017	0.0009 (J)			<0.003	<0.003	
7/12/2017	(1)		<0.003			<0.003
10/2/2017				<0.003	<0.003	
10/3/2017	<0.003					<0.003
10/4/2017		<0.003	<0.003			
1/9/2018				<0.003	<0.003	
1/10/2018			<0.003			<0.003
1/11/2018	0.0007 (J)	<0.003				
7/9/2018	(1)			<0.003		
7/10/2018					<0.003	<0.003
7/11/2018	<0.003	<0.003	<0.003			
1/16/2019	-		<0.003	<0.003		
1/17/2019	<0.003	<0.003			<0.003	<0.003
3/26/2019			<0.003	<0.003	<0.003	<0.003
3/27/2019	<0.003	<0.003				
8/27/2019	0.00033 (J)	<0.003	<0.003	<0.003	<0.003	
8/28/2019						<0.003
10/8/2019	0.00046 (J)		<0.003	<0.003	<0.003	<0.003
10/9/2019	(0)	<0.003			2.300	

	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16
4/7/2020	0.00066 (J)	<0.003		<0.003	<0.003	<0.003
4/8/2020			<0.003			
8/17/2020		<0.003	<0.003			
8/18/2020	0.00064 (J)			<0.003	<0.003	<0.003
9/28/2020			<0.003			
9/29/2020	0.00051 (J)	<0.003		<0.003		
9/30/2020					<0.003	<0.003
3/10/2021	0.00076 (J)	0.0003 (J)				
3/12/2021					0.0018 (J)	
3/15/2021			<0.003			
3/16/2021				<0.003		<0.003
9/21/2021	<0.003	<0.003	<0.003			
9/22/2021				<0.003		<0.003
9/23/2021					<0.003	
2/1/2022						<0.003
2/2/2022				<0.003		
2/3/2022	<0.003	<0.003	<0.003		<0.003	
8/30/2022		<0.003		<0.003		
8/31/2022	<0.003		<0.003		<0.003	
9/1/2022						<0.003

Constituent: Antimony (mg/L) Analysis Run 11/6/2022 9:47 AM

	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
9/29/2000	<0.003					<0.003
11/21/2000	<0.003	<0.003				<0.003
1/20/2001	<0.003	<0.003				<0.003
3/14/2001	<0.003	<0.003				<0.003
7/16/2001	<0.003	<0.003				<0.003
11/1/2001	<0.003	<0.003				<0.003
4/25/2002	<0.003	<0.003				<0.003
11/20/2002	<0.003	<0.003				<0.003
6/6/2003	<0.003	<0.003				<0.003
12/12/2003	<0.003	<0.003				<0.003
5/26/2004	<0.003	<0.003				<0.003
12/7/2004	<0.003	<0.003				<0.003
6/21/2005	<0.003	<0.003				<0.003
12/12/2005	<0.003	<0.003				<0.003
6/27/2006	<0.003	<0.003				<0.003
12/4/2006	<0.003	<0.003				<0.003
6/23/2007	<0.003	<0.003				<0.003
12/11/2007	<0.003	<0.003				<0.003
6/23/2008						<0.003
6/24/2008	<0.003	<0.003				
12/4/2008		<0.003				<0.003
12/5/2008	<0.003					
7/8/2009	<0.003	<0.003				<0.003
12/20/2009		<0.003				
12/21/2009	<0.003					<0.003
6/20/2010		<0.003				<0.003
6/21/2010	<0.003		<0.003	<0.003	<0.003	
1/6/2011		<0.003				
1/7/2011	<0.003		<0.003	<0.003	<0.003	<0.003
7/7/2011			<0.003			
7/8/2011	<0.003		<0.003	<0.003	<0.003	<0.003
1/17/2012		<0.003				
1/18/2012	<0.003		<0.003	<0.003	<0.003	<0.003
7/9/2012		<0.003				
7/10/2012	<0.003		<0.003	<0.003	<0.003	<0.003
1/17/2013		<0.003				
1/18/2013	<0.003		<0.003	<0.003	<0.003	<0.003
7/17/2013	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
1/13/2014		<0.003				
1/14/2014	<0.003		<0.003	<0.003	<0.003	<0.003
7/9/2014	<0.003	<0.003		<0.003		<0.003
7/10/2014			<0.003		<0.003	
1/12/2015			<0.003			
1/13/2015		<0.003				
1/14/2015	<0.003			<0.003	<0.003	<0.003
7/16/2015		<0.003				
7/17/2015				<0.003		<0.003
7/18/2015	<0.003		<0.003		<0.003	
1/17/2016		<0.003	<0.003	<0.003		
1/18/2016	<0.003				<0.003	<0.003
7/27/2016		<0.003				
7/28/2016			0.0019 (J)	<0.003		<0.003

	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
7/29/2016	<0.003				<0.003	
8/31/2016		<0.003			< 0.003	<0.003
9/1/2016	<0.003		<0.003	<0.003		
10/25/2016			<0.003	<0.003		
10/26/2016	<0.003	<0.003			<0.003	
10/27/2016						0.0016 (J)
1/4/2017			<0.003	<0.003	<0.003	
1/5/2017	<0.003	<0.003				
1/6/2017						<0.003
4/4/2017		<0.003	<0.003	<0.003		
4/5/2017	<0.003					
4/6/2017					<0.003	<0.003
7/11/2017			<0.003		<0.003	
7/12/2017						<0.003
7/13/2017	<0.003	<0.003		<0.003		
10/2/2017			<0.003			
10/3/2017		<0.003		<0.003		
10/4/2017	<0.003				<0.003	<0.003
1/9/2018	0.000			<0.003	0.000	0.000
1/10/2018		<0.003	<0.003	-0.000		
1/11/2018	<0.003	-0.000	-0.000		<0.003	<0.003
7/9/2018	10.000		<0.003		10.000	·0.000
7/10/2018		<0.003	~0.003	<0.003		
7/10/2018	<0.003	<0.003		<0.003	<0.003	<0.003
					<0.003	C 0.003
1/16/2019	<0.003			<0.002		
1/17/2019				<0.003	<0.003	<0.003
1/18/2019		<0.002	<0.002		<0.003	<0.003
1/21/2019		<0.003	<0.003			
3/25/2019	-0.000		<0.003	-0.000		
3/26/2019	<0.003			<0.003	<0.002	-0.002
3/27/2019		-0.000			<0.003	<0.003
7/30/2019		<0.003			0.00045 (1)	
8/27/2019		<0.003	.0.000		0.00045 (J)	0.000
8/28/2019	<0.003		<0.003	<0.003		<0.003
10/8/2019				<0.003		
10/9/2019	<0.003	<0.003	<0.003		<0.003	<0.003
4/7/2020				<0.003	0.00049 (J)	
4/8/2020	<0.003	0.0013 (J)	<0.003			0.00033 (J)
8/18/2020	<0.003	<0.003	<0.003	<0.003	0.0022 (J)	
8/19/2020						<0.003
9/29/2020		0.0016 (J)				
9/30/2020	<0.003		<0.003	0.00033 (J)	0.0016 (J)	
10/1/2020						<0.003
3/10/2021					0.0004 (J)	<0.003
3/11/2021	0.00039 (J)					
3/12/2021			0.00065 (J)			
3/15/2021		<0.003				
3/16/2021				<0.003		
9/21/2021					<0.003	
9/22/2021	0.0014 (J)	<0.003	<0.003	<0.003		<0.003
2/1/2022	<0.003		<0.003	<0.003		
2/2/2022		<0.003				<0.003

	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
2/3/2022					<0.003	
8/30/2022			<0.003	<0.003		
8/31/2022	<0.003				<0.003	
9/1/2022		<0.003				<0.003

Constituent: Antimony (mg/L) Analysis Run 11/6/2022 9:47 AM

	MW-23D	MW-24D	MW-25D
3/11/2021	<0.003	<0.003	<0.003
9/22/2021	<0.003	<0.003	
9/23/2021			<0.003
2/1/2022		<0.003	
2/3/2022	<0.003		<0.003
8/31/2022	<0.003		<0.003
9/1/2022		<0.003	

				au Lanuiii Cilent.	. ,	Data. Grunnlan Noau La
	GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1
9/29/2000	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
11/21/2000	<0.005		<0.005	<0.005	<0.005	<0.005
1/20/2001	<0.005	<0.005	0.01	<0.005	0.014	<0.005
3/14/2001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
7/16/2001	<0.005	<0.005	<0.005	0.014	<0.005	<0.005
11/1/2001	<0.005	<0.005	<0.005	0.023	<0.005	<0.005
4/25/2002	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
11/20/2002		<0.005	0.0096	0.022	0.014	<0.005
6/6/2003	0.02	<0.005	0.0076	0.07 (O)	0.014	0.03 (O)
12/12/2003	<0.005	<0.005	0.0058	<0.005	<0.005	<0.005
5/26/2004	<0.005	<0.005	0.0068	0.0074	0.0082	<0.005
12/7/2004	<0.005	<0.005	0.0066	0.017	0.0062	<0.005
6/21/2005	<0.005	<0.005	<0.005	0.013	<0.005	<0.005
12/12/2005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
4/4/2006		<0.005				
6/27/2006	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/30/2006		<0.005				
12/4/2006	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2/15/2007		<0.005				
6/23/2007	<0.005	<0.005	<0.005	<0.005	0.0053	<0.005
9/11/2007		<0.005				
12/11/2007	<0.005	<0.005	<0.005	<0.005	0.0057	<0.005
3/11/2008		<0.005				
6/23/2008	<0.005	<0.005				
6/24/2008			0.005	<0.005	0.012	<0.005
11/3/2008		<0.005				
12/4/2008	<0.005	<0.005				
12/5/2008			<0.005	<0.005	0.0064	<0.005
3/25/2009		<0.005				
7/7/2009	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
9/14/2009		<0.005				
12/20/2009	<0.005	<0.005				<0.005
12/21/2009			<0.005	<0.005	<0.005	
3/4/2010		<0.005				
6/20/2010	<0.005	<0.005		<0.005	0.017	<0.005
6/21/2010			0.018 (O)			
9/14/2010		<0.005				
1/6/2011				<0.005		<0.005
1/7/2011	<0.005	<0.005	<0.005		<0.005	
4/15/2011		<0.005				
7/7/2011	<0.005	<0.005		<0.005	<0.005	<0.005
7/8/2011			<0.005			
9/25/2011		<0.005				
1/17/2012	<0.005	<0.005		<0.005		0.0071
1/18/2012			<0.005		<0.005	
4/4/2012		<0.005				
7/9/2012	0.0052			<0.005		0.0076
7/10/2012		<0.005	0.0052		<0.005	
10/9/2012		<0.005				
1/17/2013				<0.005		0.0086
1/18/2013	0.0087	<0.005	<0.005		<0.005	
4/5/2013		<0.005				

	GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1
7/16/2013	2 (-9)	2 (43)		<0.005		<0.005
7/17/2013	0.0084	<0.005	<0.005		<0.005	
10/11/2013		<0.005				
1/13/2014	0.009			<0.005		<0.005
1/14/2014	0.000	<0.005	<0.005	0.000	<0.005	3.555
4/3/2014		<0.005	10.000		10.000	
7/9/2014	0.008	<0.005	0.0023 (J)	<0.005	<0.005	0.0022 (J)
10/24/2014	0.000	<0.005	0.0023 (0)	10.003	10.000	0.0022 (0)
1/12/2015		10.000	0.0028 (J)			
1/13/2015	0.0077		0.0020 (0)	<0.005		<0.005
1/14/2015	0.0077	<0.005		-0.000	<0.005	3.000
5/10/2015		<0.005			10.000	
7/16/2015	0.0077	40.000	<0.005	<0.005		0.0037 (J)
7/17/2015	0.0077	<0.005	~0.003	<0.003	<0.005	0.0037 (3)
		<0.005			<0.005	
10/6/2015		<0.005				0.024 (0)
1/17/2016	0.014	<0.00E	<0.00E	<0.00E	<0.00E	0.024 (O)
1/18/2016	0.014	<0.005	<0.005	<0.005	<0.005	
4/26/2016	0.0444	0.0011 (J)		0.0000 (1)		0.0040 (1)
7/27/2016	0.0111	-0.005		0.0008 (J)	0.0000 (1)	0.0046 (J)
7/28/2016		<0.005	0.004470		0.0009 (J)	
7/29/2016			0.0014 (J)			2 222 (1)
8/30/2016		<0.005		<0.005	<0.005	0.0023 (J)
9/1/2016	0.0287		0.0033 (J)			
10/24/2016		<0.005				
10/25/2016	0.0069					0.0035 (J)
10/26/2016			0.0016 (J)	<0.005	<0.005	
1/3/2017		<0.005		<0.005		
1/4/2017						0.0018 (J)
1/5/2017					0.0021 (J)	
1/6/2017	0.0097		<0.005			
4/3/2017		0.0006 (J)				2 22 4 7 7 7
4/4/2017			0.0021 (J)			0.0015 (J)
4/6/2017	0.0104			0.0006 (J)	0.0011 (J)	
7/11/2017		0.0006 (J)				2 22 4 7 7 7
7/12/2017			0.0015 (J)	0.0009 (J)	0.0014 (J)	0.0015 (J)
7/13/2017	0.0064					
10/2/2017		0.0006 (J)				2 22 4 2 4 2
10/3/2017				0.001 (J)	0.0014 (J)	0.0013 (J)
10/4/2017	0.0078		0.0018 (J)			
1/9/2018	0.0091 (J)	0.0009 (J)			0.0017 (J)	
1/10/2018				0.0012 (J)		0.0023 (J)
1/11/2018			0.0015 (J)			
7/9/2018		<0.005				
7/10/2018				0.0016 (J)	0.00063 (J)	0.0031 (J)
7/11/2018	<0.005		0.00095 (J)			
1/16/2019	<0.005	<0.005	0.0024 (J)	0.0011 (J)	<0.005	0.0023 (J)
3/25/2019	0.0029 (J)	<0.005	0.0029 (J)			
3/26/2019				0.0014 (J)	0.0029 (J)	0.0032 (J)
8/26/2019	0.0041 (J)	<0.005				
8/27/2019			0.0023 (J)		0.0035 (J)	0.0022 (J)
8/28/2019				0.0023 (J)		
10/7/2019		<0.005				

	GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1
10/8/2019	0.003 (J)					
10/9/2019			0.0024 (J)	0.0053 (J)	0.0018 (J)	0.0042 (J)
4/6/2020	<0.005	0.00045 (J)				
4/7/2020			0.0027 (J)	0.0011 (J)	<0.005	0.027
8/17/2020		<0.005				
8/19/2020	0.006 (J)		0.0033 (J)	0.0019 (J)	0.0036 (J)	0.007
9/28/2020	<0.005	<0.005				0.0058
9/30/2020				0.0017 (J)	0.004 (J)	
10/1/2020			0.0027 (J)			
3/10/2021			0.0025 (J)	0.0019 (J)	0.0054	0.0055
3/11/2021	0.0047 (J)					
3/12/2021		<0.005				
9/21/2021	<0.005	<0.005	0.0027 (J)	<0.005	0.0054	
9/23/2021						0.0048 (J)
1/31/2022	<0.005	<0.005				
2/2/2022			0.0036 (J)		0.01	
2/3/2022				0.0029 (J)		0.0057
8/30/2022	0.00321 (J)	<0.005	0.0049 (J)	0.00253 (J)	0.00716	
9/1/2022						0.00568

			Grumman Road La	andfill Client: Sout	thern Company D	ata: Grumman Road Landfill
	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16
9/29/2000	<0.005	<0.005	<0.005	<0.005	<0.005	0.094
11/21/2000	<0.005	<0.005	<0.005	<0.005	<0.005	0.059
1/20/2001	<0.005	<0.005	<0.005	<0.005	<0.005	0.087
3/14/2001	<0.005	<0.005	<0.005	<0.005	<0.005	0.075
7/16/2001	<0.005	<0.005	<0.005	<0.005	<0.005	0.11
11/1/2001	<0.005	<0.005	<0.005	<0.005	<0.005	0.098
4/25/2002	<0.005	<0.005	<0.005	<0.005	<0.005	0.071
11/20/2002	<0.005	<0.005	<0.005	0.011	<0.005	0.15
6/6/2003	<0.005	<0.005	<0.005	<0.005	<0.005	1.2 (0)
12/12/2003	<0.005	<0.005	0.0064	<0.005	<0.005	0.27 (O)
5/26/2004	<0.005	<0.005	<0.005	<0.005	<0.005	0.12
12/7/2004	<0.005	<0.005	<0.005	<0.005	<0.005	0.098
6/21/2005	<0.005	<0.005	<0.005	<0.005	<0.005	0.065
12/12/2005	<0.005	<0.005	<0.005	<0.005	<0.005	0.081
4/4/2006				<0.005		0.077
6/27/2006	<0.005	<0.005	<0.005	<0.005	<0.005	0.071
8/30/2006				<0.005		0.08
12/4/2006	<0.005	<0.005	<0.005	<0.005	<0.005	0.085
2/15/2007				<0.005		0.09
6/23/2007	<0.005	<0.005	<0.005	<0.005	<0.005	0.12
9/11/2007				<0.005		0.088
12/11/2007	<0.005	<0.005	<0.005	<0.005	<0.005	0.088
3/11/2008				<0.005		0.071
6/23/2008	<0.005	<0.005	<0.005			
6/24/2008				<0.005	<0.005	0.097
11/3/2008				<0.005		0.089
12/4/2008	<0.005	<0.005	<0.005	<0.005		
12/5/2008					<0.005	0.092
3/25/2009				<0.005		0.095
7/8/2009	<0.005	<0.005	<0.005	<0.005	0.0052	0.11
9/14/2009				<0.005		0.099
12/20/2009				<0.005	<0.005	0.1
12/21/2009	<0.005	<0.005	<0.005			
3/4/2010				<0.005		0.074
6/20/2010	<0.005	<0.005	<0.005	<0.005	0.0068	
6/21/2010				.0.005		0.056
9/14/2010	10.005		-0.005	<0.005		0.067
1/6/2011	<0.005	<0.00E	<0.005	<0.00E	<0.00E	0.000
1/7/2011		<0.005		<0.005	<0.005	0.066
4/15/2011	<0.00E	<0.00E	<0.00E	<0.005	<0.00E	0.08
7/7/2011 9/25/2011	<0.005	<0.005	<0.005	<0.005 <0.005	<0.005	0.054 0.085
1/17/2012	<0.005	<0.005	<0.005	<0.005	<0.005	0.065
1/18/2012	10.003	~0.003	~0.003	~0.003	~0.003	0.089
4/4/2012				<0.005		0.0473
7/9/2012	<0.005	<0.005	<0.005	<0.005	<0.005	0.0473
7/10/2012	10.003	~0.003	~0.003	~0.003	~0.003	0.07
10/9/2012				<0.005		0.088
1/17/2013	<0.005	<0.005	<0.005	-0.000		0.000
1/18/2013	000	000	000	<0.005	0.0089	0.063
4/5/2013				<0.005		0.06
7/16/2013	<0.005	<0.005	<0.005	2.000		
-						

	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16
7/17/2013				<0.005	0.011	0.063
10/11/2013				0.005		0.059
1/13/2014	<0.005	<0.005	<0.005		0.017	
1/14/2014				<0.005		0.077
4/3/2014				<0.005		0.091
7/8/2014	<0.005	<0.005	<0.005	-0.000		0.001
7/9/2014	-0.000	10.000	10.000	<0.005	0.014	0.08
10/24/2014				<0.005	0.014	0.073
1/13/2015	<0.005	<0.005	<0.005	40.003	0.011	0.073
1/13/2015	<0.005	<0.005	<0.005	<0.005	0.011	0.079
						0.079
5/10/2015				<0.005		0.050
5/11/2015						0.058
7/16/2015	<0.005	<0.005	<0.005		0.02	0.068
7/17/2015				<0.005		
10/6/2015				<0.005	_	0.078
1/17/2016		_		0.002 (J)	0.014	0.089
1/18/2016		<0.005	<0.005			
1/19/2016	<0.005					
4/26/2016				0.00183 (J)		0.0731
7/26/2016	<0.005		<0.005			
7/27/2016		<0.005		0.0021 (J)	0.0303	
7/28/2016						0.0627
8/31/2016	<0.005	<0.005	<0.005			
9/1/2016				0.0024 (J)	0.0533	0.0551
10/25/2016				<0.005	0.0551	0.0466
10/26/2016	<0.005	<0.005	<0.005			
1/4/2017	<0.005	<0.005				0.0444
1/5/2017			<0.005	0.0024 (J)	0.0437	
4/3/2017					0.0713	
4/4/2017				0.003 (J)		
4/5/2017		0.0006 (J)		. (-)		0.0591
4/6/2017	<0.005	(-,	<0.005			
7/10/2017		0.0008 (J)				
7/11/2017	<0.005			0.0019 (J)	0.0745	
7/11/2017	0.000		<0.005	3.3370 (0)	5.57.40	0.0776
10/2/2017			-0.000	0.0026 (J)	0.0723	5.55
10/2/2017	<0.005			0.0020 (0)	0.0720	0.0813
10/3/2017	~0.000	0.0009 (1)	<0.005			0.0013
		0.0009 (J)	~0.000	0.002171	0.0721	
1/9/2018			0.0000 (1)	0.0021 (J)	0.0731	0.005
1/10/2018	-0.005	-0.005	0.0006 (J)			0.085
1/11/2018	<0.005	<0.005		0.0045.11		
7/9/2018				0.0019 (J)		
7/10/2018					0.09	0.067
7/11/2018	<0.005	<0.005	<0.005			
1/16/2019			<0.005	0.0016 (J)		
1/17/2019	<0.005	<0.005			0.13	0.079
3/26/2019			0.00058 (J)	0.0023 (J)	0.1	0.089
3/27/2019	<0.005	<0.005				
8/27/2019	<0.005	<0.005	<0.005	0.0017 (J)	0.17	
8/28/2019						0.091
10/8/2019	<0.005		<0.005	0.0017 (J)	0.13	0.088
		<0.005				

	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16
4/7/2020	<0.005	<0.005		0.0018 (J)	0.24	0.091
4/8/2020			<0.005			
8/17/2020		<0.005	<0.005			
8/18/2020	<0.005			0.0012 (J)	0.28	0.045
9/28/2020			<0.005			
9/29/2020	<0.005	<0.005		<0.005		
9/30/2020					0.24	0.044
3/10/2021	<0.005	<0.005				
3/12/2021					0.16	
3/15/2021			<0.005			
3/16/2021				<0.005		0.064
9/21/2021	<0.005	<0.005	<0.005			
9/22/2021				0.0014 (J)		0.081
9/23/2021					0.21	
2/1/2022						0.095
2/2/2022				0.0036 (J)		
2/3/2022	<0.005	0.0016 (J)	0.0025 (J)		0.23	
8/30/2022		<0.005		<0.005		
8/31/2022	<0.005		<0.005		0.259	
9/1/2022						0.0987

Constituent: Arsenic (mg/L) Analysis Run 11/6/2022 9:47 AM

	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9	
9/29/2000	<0.005					<0.005	
11/21/2000	<0.005	<0.005				<0.005	
1/20/2001	<0.005	<0.005				<0.005	
3/14/2001	<0.005	<0.005				<0.005	
7/16/2001	<0.005	<0.005				<0.005	
11/1/2001	<0.005	<0.005				<0.005	
4/25/2002	<0.005	<0.005				<0.005	
11/20/2002	<0.005	<0.005				<0.005	
6/6/2003	<0.005	<0.005				<0.005	
12/12/2003	<0.005	<0.005				<0.005	
5/26/2004	<0.005	<0.005				<0.005	
12/7/2004	<0.005	<0.005				<0.005	
6/21/2005	<0.005	<0.005				<0.005	
12/12/2005	<0.005	<0.005				<0.005	
6/27/2006						<0.005	
12/4/2006	<0.005 <0.005	<0.005 <0.005				<0.005	
6/23/2007	<0.005	<0.005				<0.005	
12/11/2007						<0.005	
	<0.005	<0.005					
6/23/2008	<0.00E	<0.005				<0.005	
6/24/2008	<0.005					10.005	
12/4/2008	<0.00F	<0.005				<0.005	
12/5/2008	<0.005	<0.00F				<0.00E	
7/8/2009	<0.005	<0.005				<0.005	
12/20/2009	<0.00F	<0.005				<0.00E	
12/21/2009	<0.005	<0.00F				<0.005	
6/20/2010	<0.00F	<0.005	0.20	0.012.(0)	<0.005	<0.005	
6/21/2010	<0.005	<0.00F	0.29	0.013 (O)	<0.005		
1/6/2011	<0.00F	<0.005	0.2	<0.00F	<0.00F	<0.00E	
1/7/2011	<0.005		0.2	<0.005	<0.005	<0.005	
7/7/2011	<0.00F		<0.005	<0.00E	<0.005	<0.00E	
7/8/2011	<0.005	<0.00E	0.19	<0.005	<0.005	<0.005	
1/17/2012	<0.00F	<0.005	0.050	<0.00F	<0.00F	<0.00E	
1/18/2012	<0.005	<0.00F	0.058	<0.005	<0.005	<0.005	
7/9/2012	<0.00F	<0.005	0.19	<0.00E	<0.005	<0.00E	
7/10/2012	<0.005	<0.00F	0.18	<0.005	<0.005	<0.005	
1/17/2013	-0.00 5	<0.005	0.00	0.0001	-0.005	<0.00E	
1/18/2013	<0.005	-0 00F	0.22	0.0061	<0.005	<0.005	
7/17/2013	<0.005	<0.005	0.45	<0.005	<0.005	<0.005	
1/13/2014	0.00=	<0.005	0.50	0.000	.0.00=	0.005	
1/14/2014	<0.005	.0.65=	0.52	0.006	<0.005	<0.005	
7/9/2014	<0.005	<0.005	0.4	<0.005	0.0007 (1)	<0.005	
7/10/2014			0.4		0.0027 (J)		
1/12/2015			0.43				
1/13/2015		<0.005					
1/14/2015	<0.005			<0.005	<0.005	<0.005	
7/16/2015		<0.005					
7/17/2015				<0.005		<0.005	
7/18/2015	<0.005		0.26		<0.005		
1/17/2016		<0.005	0.34	0.0065			
1/10/0010	<0.005				<0.005	<0.005	
1/18/2016							
7/27/2016 7/28/2016		<0.005	0.209	<0.005		<0.005	

	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
7/29/2016	0.0009 (J)				0.002 (J)	
8/31/2016		<0.005			0.0017 (J)	<0.005
9/1/2016	<0.005		0.215	0.0039 (J)		
10/25/2016			0.307	<0.005		
10/26/2016	<0.005	<0.005			<0.005	
10/27/2016						<0.005
1/4/2017			0.311	<0.005	<0.005	
1/5/2017	<0.005	<0.005				
1/6/2017						<0.005
4/4/2017		<0.005	0.317	0.0031 (J)		
4/5/2017	0.0011 (J)					
4/6/2017					0.0006 (J)	<0.005
7/11/2017			0.299		0.0012 (J)	
7/12/2017						<0.005
7/13/2017	0.0016 (J)	<0.005		<0.005		
10/2/2017			0.216			
10/3/2017		<0.005		<0.005		
10/4/2017	0.0019 (J)				0.0025 (J)	<0.005
1/9/2018				0.0033 (J)		
1/10/2018		0.0006 (J)	0.347			
1/11/2018	0.0015 (J)				0.0006 (J)	<0.005
7/9/2018	,		0.37		.,	
7/10/2018		<0.005		0.0027 (J)		
7/11/2018	0.00082 (J)			()	0.0011 (J)	<0.005
1/16/2019	<0.005				.,	
1/17/2019				0.0022 (J)		
1/18/2019				()	<0.005	<0.005
1/21/2019		<0.005	0.44			
3/25/2019			0.41			
3/26/2019	0.0015 (J)			0.0045 (J)		
3/27/2019	. ,			()	<0.005	<0.005
7/30/2019		0.00039 (J)				
8/27/2019		<0.005			0.00044 (J)	
8/28/2019	0.0011 (J)		0.43	0.002 (J)	()	<0.005
10/8/2019	. ,			0.0028 (J)		
10/9/2019	0.0011 (J)	<0.005	0.35	()	<0.005	<0.005
4/7/2020	. ,			<0.005	0.00043 (J)	
4/8/2020	0.0013 (J)	0.00094 (J)	0.33		- (-)	0.00084 (J)
8/18/2020	<0.005	<0.005	0.3	0.0059	<0.005	
8/19/2020						<0.005
9/29/2020		<0.005				
9/30/2020	0.0012 (J)		0.31	0.0029 (J)	<0.005	
10/1/2020	V-7			- (-)	-	<0.005
3/10/2021					<0.005	<0.005
3/11/2021	0.0009 (J)					
3/12/2021	- \-/-/		0.27			
3/15/2021		<0.005	-			
3/16/2021		2.230		0.0098		
9/21/2021				3.3300	<0.005	
9/22/2021	<0.005	<0.005	0.23	<0.005	2.000	<0.005
2/1/2022	<0.005	3.330	0.22	0.02		
2/1/2022	0.000	<0.005	V.LL	0.02		<0.005
		3.000				

	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
2/3/2022					<0.005	
8/30/2022			0.465	0.0271		
8/31/2022	<0.005				<0.005	
9/1/2022		<0.005				<0.005

Constituent: Arsenic (mg/L) Analysis Run 11/6/2022 9:47 AM

	MW-23D	MW-24D	MW-25D
1/20/2021			<0.005
1/21/2021	<0.005	<0.005	
3/11/2021	<0.005	<0.005	0.00092 (J)
9/22/2021	<0.005	<0.005	
9/23/2021			<0.005
2/1/2022		<0.005	
2/3/2022	<0.005		<0.005
8/31/2022	<0.005		<0.005
9/1/2022		<0.005	

			Grumman Road L	andfill Client: Sout	thern Company L	Data: Grumman Road Landfill
	GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1
9/29/2000	0.11	0.16	0.16	0.22	0.16	0.044
11/21/2000	0.12		0.16	0.13	0.21	0.047
1/20/2001	0.11	0.18	0.21	0.19	0.23	0.051
3/14/2001	0.11	0.14	0.18	0.27	0.22	0.048
7/16/2001	0.11	0.14	0.18	0.37	0.22	0.054
11/1/2001	0.11	0.14	0.15	0.61 (O)	0.23	0.063
4/25/2002	0.058	0.088	0.16	0.19	0.15	0.032
6/6/2003	0.19	0.14	0.29	0.72 (O)	0.13	0.046
12/12/2003	0.1	0.13	0.18	0.054	0.034	0.034
5/26/2004	0.084	0.09	0.16	0.18	0.13	0.035
12/7/2004	0.094	0.11	0.16	0.24	0.13	0.024
6/21/2005	0.089	0.084	0.15	0.2	0.07	0.039
12/12/2005	0.089	0.1	0.15	0.074	0.04	0.042
4/4/2006		0.089				
6/27/2006	0.096	0.1	0.19	0.075	0.041	0.033
8/30/2006		0.12				
12/4/2006	0.092	0.086	0.26	0.092	0.048	0.04
2/15/2007		0.088				
6/23/2007	0.08	0.089	0.24	0.089	0.12	0.044
9/11/2007		0.092				
12/11/2007	0.067	0.077	0.21	0.072	0.12	0.049
3/11/2008		0.082				
6/23/2008	0.056	0.086				
6/24/2008			0.13	0.049	0.17	0.038
11/3/2008		0.088				
12/4/2008	0.054	0.081				
12/5/2008			0.12	0.067	0.093	0.06
3/25/2009		0.069				
7/7/2009	0.034	0.078	0.17	0.04	0.06	0.043
9/14/2009		0.079				
12/20/2009	0.034	0.081				0.065
12/21/2009			0.2	0.044	0.11	
3/4/2010		0.065				
6/20/2010	0.062	0.078		0.036	0.11	0.095
6/21/2010			0.22			
9/14/2010		0.076				
1/6/2011				0.075		0.093
1/7/2011	0.039	0.074	0.12		0.025	
4/15/2011		0.065				
7/7/2011	0.036	0.081		0.13	0.025	0.095
7/8/2011			0.15			
9/25/2011		0.078				
1/17/2012	0.041	0.082		0.21		0.1
1/18/2012			0.15		0.03	
4/4/2012		0.0861				
7/9/2012	0.15			0.2		0.11
7/10/2012		0.082	0.14		0.028	
10/9/2012		0.09				
1/17/2013				0.19		0.12
1/18/2013	0.15	0.083	0.15		0.058	
4/5/2013		0.078				
7/16/2013				0.076		0.081

	GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1
7/17/2013	0.13	0.083	0.14		0.086	
10/11/2013	-	0.078				
1/13/2014	0.16	-		0.14		0.096
1/14/2014		0.081	0.16		0.1	
4/3/2014		0.077	0.10		0.1	
7/9/2014	0.11	0.077	0.12	0.12	0.082	0.066
	0.11		0.12	0.12	0.082	0.000
10/24/2014		0.087	0.10			
1/12/2015	0.000		0.13	0.40		0.000
1/13/2015	0.083	0.070		0.13	0.004	0.068
1/14/2015		0.079			0.094	
5/10/2015		0.076				
7/16/2015	0.094		0.11	0.12		0.07
7/17/2015		0.061			0.11	
10/6/2015		0.067				
1/17/2016						0.062
1/18/2016	0.22	0.068	0.095	0.12	0.11	
4/26/2016		0.0596				
7/27/2016	0.192			0.112		0.0417
7/28/2016		0.0701			0.105	
7/29/2016			0.0883			
8/30/2016		0.0687		0.135	0.106	0.0545
9/1/2016	0.415 (O)		0.123			
10/24/2016		0.07				
10/25/2016	0.173					0.0504
10/26/2016			0.0863	0.103	0.107	
1/3/2017		0.061		0.118		
1/4/2017						0.0534
1/5/2017					0.107	
1/6/2017	0.167		0.0758			
4/3/2017		0.0612				
4/4/2017			0.091			0.0549
4/6/2017	0.136			0.162	0.111	
7/11/2017		0.0624				
7/12/2017			0.0941	0.157	0.106	0.0614
7/13/2017	0.0891					
10/2/2017		0.0618				
10/3/2017		2.20.0		0.127	0.105	0.0436
10/3/2017	0.113		0.0994	0.127	0.100	0.0.00
1/9/2018	0.113	0.0574	0.0007		0.0969	
1/10/2018	0.0001	0.0374		0.158	0.0303	0.053
			ሀ ሀልል	0.100		0.000
1/11/2018		0.056	0.088			
7/9/2018		0.056		0.21	0.097	0.050
7/10/2018	0.005		0.07/	0.31	0.087	0.059
7/11/2018	0.065	0.000	0.071	0.05	0.040 ())	0.054
1/16/2019	0.062	0.062	0.083	0.054	0.013 (J)	0.054
3/25/2019	0.054	0.064	0.077			
3/26/2019				0.057	0.012 (J)	0.055
8/26/2019	0.11	0.065				
8/27/2019			0.076		0.013	0.054
8/28/2019				0.1		
		0.069				
10/7/2019 10/8/2019	0.1	0.000				

	GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1
10/9/2019			0.076	0.13	0.014 (J)	0.058
4/6/2020	0.072	0.057				
4/7/2020			0.09	0.098	0.01 (J)	0.05
8/17/2020		0.051				
8/19/2020	0.1		0.076	0.1	0.064	0.057
9/28/2020	0.095	0.05				0.051
9/30/2020				0.16	0.092	
10/1/2020			0.077			
3/10/2021			0.07	0.096	0.027	0.052
3/11/2021	0.07					
3/12/2021		0.052				
9/21/2021	0.073	0.049	0.098	0.076	0.077	
9/23/2021						0.062
1/31/2022	0.1	0.051				
2/2/2022			0.17		0.026	
2/3/2022				0.062		0.051
8/30/2022	0.133	0.0512	0.134	0.051	0.0266	
9/1/2022						0.0583

				andilli Cilent. 3000		ata. Gruninan Noad Landiiii
	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16
9/29/2000	0.1	0.075	<0.005	0.11	0.028	0.076
11/21/2000		0.072	0.01	0.15	0.035	0.075
1/20/2001	0.083	0.086	<0.005	0.1	0.032	0.053
3/14/2001		0.088	0.01	0.095	0.036	0.055
7/16/2001		0.084	<0.005	0.28 (O)	0.036	0.041
11/1/2001	0.068	0.13	<0.005	0.16	0.036	0.045
4/25/2002		0.24 (O)	<0.005	0.054	0.045	0.055
6/6/2003		0.28 (O)	0.028	0.063	0.083 (O)	0.48 (O)
12/12/2003		0.27 (O)	0.019	0.041	0.094 (O)	0.13 (O)
5/26/2004		0.31 (O)	<0.005	0.059	0.034	0.055
12/7/2004		0.46 (O)	0.009	0.076	0.042	0.072
6/21/2005	0.033	0.053	0.0089	0.042	0.039	0.061
12/12/2005	0.034	0.1	0.026	0.048	0.043	0.047
4/4/2006				0.05		0.042
6/27/2006	0.029	0.098	0.029	0.036	0.031	0.042
8/30/2006	0.00	0.000	0.017	0.059	0.040	0.05
12/4/2006	0.02	0.068	0.017	0.062	0.043	0.044
2/15/2007				0.079		0.041
6/23/2007	0.017	0.042	0.014	0.03	0.031	0.044
9/11/2007	0.040	0.04	0.011	0.053	0.044	0.04
12/11/2007	0.013	0.04	0.011	0.075	0.044	0.0035
3/11/2008	0.010	0.044	0.010	0.052		0.034
6/23/2008	0.012	0.041	0.018	0.000	0.057	0.040
6/24/2008				0.039	0.057	0.042
11/3/2008	0.011	0.005	0.010	0.082		0.049
12/4/2008	0.011	0.035	0.019	0.079	0.041	0.05
12/5/2008				0.093	0.041	0.052
3/25/2009 7/8/2009	0.012	0.036	0.011	0.039	0.058	0.046
9/14/2009	0.012	0.030	0.011	0.039	0.036	0.048
12/20/2009				0.088	0.062	0.062
12/21/2009	0.011	0.028	0.01	0.000	0.002	0.002
3/4/2010	0.011	0.020	0.01	0.077		0.058
6/20/2010	0.0089	0.025	0.0081	0.075	0.03	0.000
6/21/2010	0.0003	0.023	0.0001	0.075	0.03	0.041
9/14/2010				0.093		0.036
1/6/2011	0.014		0.012	0.033		0.000
1/7/2011	0.014	0.037	0.012	0.13	0.049	0.054
4/15/2011		0.007		0.086	0.0.0	0.049
7/7/2011	0.018	0.039	0.015	0.051	0.05	0.063
9/25/2011	0.0.0	0.000	0.0.0	0.056	0.00	0.037
1/17/2012	0.23	0.045	0.0086	0.052	0.044	0.007
1/18/2012						0.034
4/4/2012				0.0519		0.0446
7/9/2012	0.17	0.032	0.01	0.048	0.045	
7/10/2012						0.033
10/9/2012				0.065		0.041
1/17/2013	0.2	0.033	0.014			
1/18/2013			•	0.045	0.049	0.036
4/5/2013				0.047		0.036
7/16/2013	0.11	0.027	0.012			
7/17/2013				0.032	0.039	0.054

	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16
10/11/2013				0.028		0.052
1/13/2014	0.083	0.027	0.015		0.038	
1/14/2014				0.036		0.051
4/3/2014				0.038		0.047
7/8/2014	0.066	0.037	0.017			
7/9/2014				0.03	0.031	0.08
10/24/2014				0.025		0.072
1/13/2015	0.053	0.023	0.019		0.041	
1/14/2015				0.04		0.047
5/10/2015				0.026		
5/11/2015						0.053
7/16/2015	0.052	0.03	0.022		0.041	0.059
7/17/2015				0.029		
10/6/2015				0.03		0.053
1/17/2016				0.038	0.048	0.056
1/18/2016		0.032	0.026			
1/19/2016	0.048					
4/26/2016				0.025		0.0721
7/26/2016	0.051		0.0236			
7/27/2016		0.0191		0.0248	0.0487	
7/28/2016						0.0534
8/31/2016	0.0565	0.019	0.0273			
9/1/2016				0.0346	0.0403	0.0445
10/25/2016				0.0248	0.0329	0.0464
10/26/2016	0.0591	0.0197	0.0238			
1/4/2017	0.0598	0.0174				0.0379
1/5/2017	0.000	0.0171	0.0218	0.0245	0.0392	3.3373
4/3/2017					0.0439	
4/4/2017				0.0342		
4/5/2017		0.0174		0.00.12		0.0534
4/6/2017	0.0813	0.0171	0.0204			
7/10/2017		0.0172				
7/11/2017	0.0302			0.0276	0.051	
7/12/2017			0.0161			0.0944
10/2/2017				0.0274	0.047	
10/3/2017	0.103					0.135 (O)
10/4/2017		0.0162	0.0185			
1/9/2018				0.0222	0.0431	
1/10/2018			0.0166			0.0603
1/11/2018	0.166	0.018				
7/9/2018				0.026		
7/10/2018					0.047	0.16 (O)
7/11/2018	0.12	0.014	0.019			
1/16/2019			0.019	0.028		
1/17/2019	0.039	0.017			0.042	0.13
3/26/2019			0.026	0.034	0.047	0.14
3/27/2019	0.053	0.017			-	
8/27/2019	0.12	0.017	0.024	0.067	0.049	
8/28/2019	-					0.09
10/8/2019	0.13		0.024	0.085	0.057	0.13
10/9/2019	-	0.019	-			
4/7/2020	0.14	0.017		0.073	0.033	0.13

	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16
4/8/2020			0.027			
8/17/2020		0.018	0.024			
8/18/2020	0.12			0.028	0.03	0.32
9/28/2020			0.029			
9/29/2020	0.14	0.018		0.026		
9/30/2020					0.034	0.14
3/10/2021	0.13	0.028				
3/12/2021					0.038	
3/15/2021			0.034			
3/16/2021				0.037		0.16
9/21/2021	0.12	0.023	0.037			
9/22/2021				0.11		0.26
9/23/2021					0.062	
2/1/2022						0.23
2/2/2022				0.1		
2/3/2022	0.17	0.025	0.038		0.061	
8/30/2022		0.0275		0.0773		
8/31/2022	0.115		0.0379		0.055	
9/1/2022						0.165

Constituent: Barium (mg/L) Analysis Run 11/6/2022 9:47 AM

	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
9/29/2000	0.16					0.093
11/21/2000	0.17	0.046				0.095
1/20/2001	0.16	0.036				0.089
3/14/2001	0.17	0.03				0.088
7/16/2001	0.19	0.032				0.096
11/1/2001	0.18	0.029				0.094
4/25/2002	0.15	0.021				0.085
6/6/2003	0.13	0.032				0.09
12/12/2003	0.18	0.021				0.084
5/26/2004	0.17	0.035				0.08
12/7/2004	0.19	0.031				0.098
6/21/2005	0.18	0.028				0.084
12/12/2005	0.17	0.024				0.07
6/27/2006	0.17	0.03				0.083
12/4/2006	0.21	0.031				0.072
6/23/2007	0.17	0.037				0.087
12/11/2007	0.18	0.034				0.082
6/23/2008						0.1
6/24/2008	0.14	0.038				
12/4/2008		0.038				0.12
12/5/2008	0.19					
7/8/2009	0.2	0.053				0.14
12/20/2009		0.047				
12/21/2009	0.23					0.15
6/20/2010		0.046				0.21
6/21/2010	0.25		0.062	0.16	0.11	
1/6/2011		0.063				
1/7/2011	0.21		0.039	0.095	0.12	0.2
7/7/2011			0.06			
7/8/2011	0.13		0.043	0.1	0.094	0.18
1/17/2012		0.06				
1/18/2012	0.26		0.042	0.12	0.087	0.18
7/9/2012		0.05				
7/10/2012	0.19		0.039	0.097	0.1	0.16
1/17/2013		0.058				
1/18/2013	0.17		0.04	0.1	0.078	0.19
7/17/2013	0.18	0.041	0.055	0.069	0.062	0.17
1/13/2014		0.058				
1/14/2014	0.18		0.059	0.086	0.073	0.2
7/9/2014	0.16	0.048		0.065		0.16
7/10/2014			0.067		0.13	
1/12/2015			0.061			
1/13/2015		0.048				
1/14/2015	0.16			0.084	0.065	0.17
7/16/2015		0.048				
7/17/2015				0.071		0.18
7/18/2015	0.012		0.13		0.073	
1/17/2016		0.049	0.08	0.079		
1/18/2016	0.13				0.062	0.2
7/27/2016		0.0796				
7/28/2016			0.164	0.0626		0.234
7/29/2016	0.181				0.0575	

	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
8/31/2016		0.0429			0.0693	0.284
9/1/2016	0.203		0.0976	0.077		
10/25/2016			0.0702	0.0217		
10/26/2016	0.177	0.113 (O)			0.0966	
10/27/2016						0.244
1/4/2017			0.0999	0.0617	0.0975	
1/5/2017	0.142	0.0526				
1/6/2017						0.305
4/4/2017		0.0503	0.136	0.0761		
4/5/2017	0.106					
4/6/2017					0.064	0.249
7/11/2017			0.145		0.0778	
7/12/2017						0.256
7/13/2017	0.0686	0.0529		0.0428		
10/2/2017	0.0000	0.0020	0.148	0.0420		
10/3/2017		0.057	0.140	0.0376		
10/4/2017	0.0589	0.037		0.0370	0.156	0.356
1/9/2018	0.0309			0.0704	0.130	0.000
		0.0507	0.0700	0.0704		
1/10/2018	0.0440	0.0527	0.0788		0.0700	0.000
1/11/2018	0.0412		0.007		0.0702	0.226
7/9/2018			0.087			
7/10/2018		0.054		0.061		
7/11/2018	0.049				0.12	0.29
1/16/2019	0.063					
1/17/2019				0.061		
1/18/2019					0.052	0.21
1/21/2019		0.05	0.069			
3/25/2019			0.085			
3/26/2019	0.025			0.084		
3/27/2019					0.057	0.19
7/30/2019		0.052				
8/27/2019		0.053			0.097	
8/28/2019	0.026		0.078	0.063		0.17
10/8/2019				0.079		
10/9/2019	0.032	0.05	0.078		0.065	0.18
4/7/2020				0.054	0.1	
4/8/2020	0.055	0.061	0.19			0.15
8/18/2020	0.074	0.05	0.38	0.18	0.085	
8/19/2020						0.17
9/29/2020		0.049				
9/30/2020	0.035		0.35	0.19	0.045	
10/1/2020						0.15
3/10/2021					0.049	0.15
3/11/2021	0.044				2.2.70	
3/12/2021			0.34			
3/15/2021		0.053	0.0 1			
3/16/2021		0.000		0.18		
9/21/2021				V. 10	0.036	
9/21/2021	0.058	0.047	0.42	0.046	0.030	0.15
		0.047				U. IU
2/1/2022	0.055	0.052	0.36	0.24		0.15
2/2/2022		0.052			0.000	0.15
2/3/2022					0.038	

Page 3

Time Series

	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
8/30/2022			0.21	0.191		
8/31/2022	0.0375				0.0741	
9/1/2022		0.0508				0.151

Constituent: Barium (mg/L) Analysis Run 11/6/2022 9:47 AM

	MW-23D	MW-24D	MW-25D
3/11/2021	0.076	0.047	0.03
9/22/2021	0.076	0.038	
9/23/2021			0.024
2/1/2022		0.036	
2/3/2022	0.079		0.024
8/31/2022	0.0765		0.0216
9/1/2022		0.0267	

Constituent: Beryllium (mg/L) Analysis Run 11/6/2022 9:47 AM

						un 11/6/2022 9:47 AM Data: Grumman Road Landfill
	GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1
9/29/2000	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
11/21/2000	<0.0005		<0.0005	<0.0005	<0.0005	<0.0005
1/20/2001	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
3/14/2001	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
7/16/2001	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
11/1/2001	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
4/25/2002	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
8/30/2016	0.0000	0.0002 (J)	0.000	0.0002 (J)	<0.0005	<0.0005
9/1/2016	0.0017 (J)	0.0002 (0)	0.0004 (J)	0.0002 (0)	0.0000	0.0000
10/24/2016	0.0017 (0)	<0.0005	0.000 . (0)			
10/25/2016	0.0002 (J)	0.0000				<0.0005
10/26/2016	0.0002 (0)		0.0001 (J)	0.0001 (J)	<0.0005	0.0000
1/3/2017		0.0002 (J)	0.0001 (0)	0.0001 (J)	10.0000	
1/4/2017		0.0002 (0)		0.0001 (0)		<0.0005
1/5/2017					<0.0005	-0.0000
1/6/2017	0.0003 (J)		0.0001 (J)		10.0000	
4/3/2017	0.0003 (3)	0.0002 (J)	0.0001 (3)			
4/4/2017		0.0002 (3)	0.0001 (J)			<0.0005
4/6/2017	0.0004 (J)		0.0001 (3)	0.0003 (J)	<0.0005	-0.0000
7/11/2017	0.0004 (3)	0.0002 (J)		0.0003 (3)	~0.0003	
7/11/2017		0.0002 (0)	<0.0005	0.0002 (J)	<0.0005	<0.0005
7/13/2017	0.001 (J)		<0.0003	0.0002 (3)	~0.0003	10.0000
10/2/2017	0.001 (3)	0.0002 (J)				
10/2/2017		0.0002 (3)		0.0002 (J)	<0.0005	<0.0005
10/3/2017	0.0002 (J)		0.0001 (J)	0.0002 (3)	~0.0003	10.0000
1/9/2018	<0.0005	0.0002 (J)	0.0001 (3)		<0.0005	
1/10/2018	<0.0005	0.0002 (3)		0.0003 (J)	<0.0005	<0.0005
1/11/2018			0.0001 (J)	0.0003 (3)		-0.0000
7/9/2018		0.0002 (J)	0.0001 (3)			
7/10/2018		0.0002 (3)		0.00028 (J)	<0.0005	<0.0005
7/10/2018	<0.0005		<0.0005	0.00028 (3)	~0.0003	10.0000
8/26/2019	<0.0005	0.00021 (J)	10.0000			
8/27/2019	10.0003	0.00021 (3)	<0.0005		<0.0005	<0.0005
8/28/2019			10.0000	7.6E-05 (J)	10.0000	-0.0000
10/7/2019		0.00024 (J)		7.0L-03 (3)		
10/7/2019	<0.0005	0.00024 (3)				
10/9/2019	~0.0003		<0.0005	<0.0005	<0.0005	<0.0005
4/6/2020	<0.0005	0.00017 (J)	<0.0005	<0.0005	<0.0005	C 0.0003
4/7/2020	~0.0003	0.00017 (3)	<0.0005	<0.0005	<0.0005	<0.0005
8/17/2020		0.00019 (J)	<0.0005	<0.0005	<0.0005	C 0.0003
8/19/2020	<0.000E	0.00019 (3)	<0.000E	<0.000E	EE 0E (I)	<0.000E
9/28/2020	<0.0005 <0.0005	0.0002171	<0.0005	<0.0005	5E-05 (J)	<0.0005 <0.0005
9/30/2020	~U.UUU3	0.00021 (J)		6.5E-05 (J)	4.6E-05 (J)	-0.0000
			<0.000E	6.5⊑-05 (3)	4.6E-05 (J)	
10/1/2020 3/10/2021			<0.0005 <0.0005	8 25 05 (1)	<0.0005	<0.0005
3/11/2021	0.00038 (1)		~ 0.0003	8.2E-05 (J)	<0.0005	-0.0000
	0.00028 (J)	0.00033 (1)				
3/12/2021	<0.0005	0.00023 (J)	<0.0005	0.05.05.71	<0.000F	
9/21/2021	<0.0005	0.00016 (J)	<0.0005	9.9E-05 (J)	<0.0005	<0.0005
9/23/2021	<0.0005	0.0001671				~0.00U0
1/31/2022	<0.0005	0.00016 (J)	<0.0005		<0.000F	
2/2/2022 2/3/2022			<0.0005	0.00014 (J)	<0.0005	<0.0005
21312022				0.00014 (0)		-0.0000

Constituent: Beryllium (mg/L) Analysis Run 11/6/2022 9:47 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

GWA-7 (bg) GWA-8 (bg) GWB-4R GWB-5R GWB-6R GWC-1 8/30/2022 0.000219 (J) <0.0005 <0.0005 <0.0005 <0.0005 9/1/2022 <0.0005

			Grumman Road La	andfill Client: Sou	thern Company L	Data: Grumman Road Landfill
	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16
9/29/2000	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
11/21/2000	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
1/20/2001	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
3/14/2001	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
7/16/2001	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
11/1/2001	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
4/25/2002	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
8/31/2016	<0.0005	0.0011 (J)	<0.0005			
9/1/2016				0.0001 (J)	<0.0005	0.0001 (J)
10/25/2016				<0.0005	<0.0005	<0.0005
10/26/2016	<0.0005	0.0011 (J)	<0.0005			
1/4/2017	<0.0005	0.0009 (J)				9E-05 (J)
1/5/2017			<0.0005	<0.0005	<0.0005	
4/3/2017					<0.0005	
4/4/2017				9E-05 (J)		
4/5/2017		0.0008 (J)				9E-05 (J)
4/6/2017	<0.0005		<0.0005			
7/10/2017		0.0008 (J)				
7/11/2017	<0.0005			<0.0005	<0.0005	
7/12/2017			<0.0005			<0.0005
10/2/2017				<0.0005	<0.0005	
10/3/2017	<0.0005					<0.0005
10/4/2017		0.0006 (J)	<0.0005			
1/9/2018				<0.0005	<0.0005	
1/10/2018			<0.0005			0.0001 (J)
1/11/2018	<0.0005	0.0006 (J)				
7/9/2018				6.2E-05 (J)		
7/10/2018					<0.0005	6E-05 (J)
7/11/2018	<0.0005	0.00061 (J)	5.8E-05 (J)			
8/27/2019	<0.0005	0.00047 (J)	<0.0005	<0.0005	<0.0005	
8/28/2019						8E-05 (J)
10/8/2019	<0.0005		<0.0005	<0.0005	<0.0005	9.8E-05 (J)
10/9/2019		0.00046 (J)				
4/7/2020	<0.0005	0.00051 (J)		<0.0005	<0.0005	<0.0005
4/8/2020			<0.0005			
8/17/2020		0.00046 (J)	<0.0005			
8/18/2020	<0.0005			<0.0005	<0.0005	6.8E-05 (J)
9/28/2020			<0.0005			
9/29/2020	<0.0005	0.00043 (J)		<0.0005	.0.0005	0.05.05.40
9/30/2020	4.75.05 (1)	0.00054			<0.0005	8.9E-05 (J)
3/10/2021	4.7E-05 (J)	0.00054			<0.0005	
3/12/2021			-0.0005		<0.0005	
3/15/2021			<0.0005	-0.0005		40,0005
3/16/2021	<0.000E	0.00047 (1)	<0.000E	<0.0005		<0.0005
9/21/2021	<0.0005	0.00047 (J)	<0.0005	<0.0005		SE OF (I)
9/22/2021				<0.0005	<0.0005	6E-05 (J)
9/23/2021 2/1/2022					·UUUU.U-	<0.0005
2/1/2022				<0.0005		10.0000
2/3/2022	<0.0005	0.00056	<0.0005	-0.0000	<0.0005	
8/30/2022	-0.0000	0.000663	-0.0000	<0.0005	-0.0000	
8/31/2022	<0.0005	5.500005	<0.0005	-0.0000	<0.0005	
	0.0000		5.5550		0.000	

Page 2

Time Series

Constituent: Beryllium (mg/L) Analysis Run 11/6/2022 9:47 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

GWC-11 GWC-12 GWC-13 GWC-14 GWC-15 GWC-16

9/1/2022 <0.0005

			Gruilliair Noau	Landini Chem. 30	utiletti Company I	Data. Gruffillian Noad Landilli
	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
9/29/2000	<0.0005					<0.0005
11/21/2000	<0.0005	<0.0005				<0.0005
1/20/2001	<0.0005	<0.0005				<0.0005
3/14/2001	<0.0005	<0.0005				<0.0005
7/16/2001	<0.0005	<0.0005				<0.0005
11/1/2001	<0.0005	<0.0005				<0.0005
4/25/2002	<0.0005	<0.0005				<0.0005
8/31/2016		<0.0005			0.0002 (J)	0.0003 (J)
9/1/2016	0.0014 (J)		<0.0005	<0.0005	,	
10/25/2016	(-)		<0.0005	<0.0005		
10/26/2016	0.0016 (J)	0.0003 (J)			0.0002 (J)	
10/27/2016	(5)	(,,			(-)	0.0003 (J)
1/4/2017			<0.0005	<0.0005	0.0001 (J)	0.0000 (0)
1/5/2017	0.0019 (J)	<0.0005	0.0000	0.0000	0.000 . (0)	
1/6/2017	0.0010 (0)	-0.0000				0.0002 (J)
4/4/2017		9E-05 (J)	<0.0005	<0.0005		0.0002 (0)
4/5/2017	0.0024 (J)	9L-03 (3)	~ 0.0003	<0.0003		
4/6/2017	0.0024 (3)				<0.000E	0.0003 (J)
			10.0005		<0.0005	0.0003 (J)
7/11/2017			<0.0005		<0.0005	0.0002 (1)
7/12/2017	0.0004			.0.005		0.0003 (J)
7/13/2017	0.0034	<0.0005		<0.0005		
10/2/2017			<0.0005			
10/3/2017		<0.0005		<0.0005		
10/4/2017	0.0037				0.0001 (J)	0.0002 (J)
1/9/2018				<0.0005		
1/10/2018		<0.0005	<0.0005			
1/11/2018	0.0033				<0.0005	0.0003 (J)
7/9/2018			<0.0005			
7/10/2018		<0.0005		<0.0005		
7/11/2018	0.0038				7E-05 (J)	0.0003 (J)
7/30/2019		<0.0005				
8/27/2019		<0.0005			9E-05 (J)	
8/28/2019	0.0017 (J)		<0.0005	<0.0005		0.00022 (J)
10/8/2019				<0.0005		
10/9/2019	0.0018 (J)	<0.0005	<0.0005		<0.0005	0.00023 (J)
4/7/2020				<0.0005	<0.0005	
4/8/2020	0.0017 (J)	8.8E-05 (J)	<0.0005			0.00019 (J)
8/18/2020	0.0016 (J)	5.1E-05 (J)	<0.0005	<0.0005	7.6E-05 (J)	
8/19/2020						0.00022 (J)
9/29/2020		7.5E-05 (J)				
9/30/2020	0.0013 (J)		<0.0005	<0.0005	<0.0005	
10/1/2020						0.0002 (J)
3/10/2021					<0.0005	0.00019 (J)
3/11/2021	0.0012					
3/12/2021			<0.0005			
3/15/2021		7.3E-05 (J)				
3/16/2021		(-/		<0.0005		
9/21/2021				0.000	<0.0005	
9/22/2021	0.0017	<0.0005	<0.0005	<0.0005	0.0000	0.00017 (J)
2/1/2022	0.0017	-0.0000	<0.0005	<0.0005		
2/1/2022	0.002	<0.0005	-0.0000	÷0.0003		0.00018 (J)
2/3/2022		-0.0000			<0.0005	0.00010 (0)
2,0,2022					-0.0003	

	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
8/30/2022			<0.0005	<0.0005		
8/31/2022	0.00258				<0.0005	
9/1/2022		<0.0005				<0.0005

Constituent: Beryllium (mg/L) Analysis Run 11/6/2022 9:47 AM

	MW-23D	MW-24D	MW-25D
3/11/2021	<0.0005	<0.0005	8.4E-05 (J)
9/22/2021	<0.0005	<0.0005	
9/23/2021			<0.0005
2/1/2022		<0.0005	
2/3/2022	<0.0005		<0.0005
8/31/2022	<0.0005		<0.0005
9/1/2022		<0.0005	

	GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1
8/30/2016		0.117		1.09	1.41	0.875
9/1/2016	11.6		6.48			
10/24/2016		0.126				
10/25/2016	21.4					1.22
10/26/2016			7.57	2.5	1.83	
1/3/2017		0.124		3.39		
1/4/2017						1.3
1/5/2017					3.07	
1/6/2017	20.1		8.34			
4/3/2017		0.105				
4/4/2017			8.18			1.19
4/6/2017	21.8			2.76	3.19	
7/11/2017		0.136				
7/12/2017			7.51	3.55	3.06	1.37
7/13/2017	16.3					
10/2/2017		0.107				
10/3/2017				2.72	2.69	0.765
10/4/2017	21.5		8.88			
1/9/2018	13.9	0.123			2.81	
1/10/2018				3.21		0.876
1/11/2018			6.95			
7/9/2018		0.11				
7/10/2018				7	2.9	0.94
7/11/2018	11.7		6.4			
1/16/2019	9.3	0.13	5.3	5	7.7	0.91
3/25/2019	8.5	0.098	4.4			
3/26/2019				4	7.4	0.77
10/7/2019		0.12				
10/8/2019	6.4					
10/9/2019			5.7	6.8	6.3	0.93
4/6/2020	6.1	0.14				
4/7/2020			5.5	4.6	5.6	1
9/28/2020	4.6	0.15				0.69
9/30/2020				4	4.2	
10/1/2020			5.2			
3/10/2021			4.9	3.9	6.9	0.63
3/11/2021	8					
3/12/2021		0.11				
9/21/2021	4.4	0.13	6.4	4.1	4.2	
9/23/2021						0.59
1/31/2022	3.9	0.13				
2/2/2022			6.2		6.2	
2/3/2022				4.9		0.59
8/30/2022	5.72	0.152	4.95	4.66	7.13	
9/1/2022						0.728

	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16
8/31/2016	0.0688 (J)	5.1	0.261			
9/1/2016				0.071 (J)	9.01 (O)	1.82
10/25/2016				0.0819 (J)	1.66	1.26
10/26/2016	0.083 (J)	5.74	0.211			
1/4/2017	0.0738	6.56				1.46
1/5/2017			0.179	0.0813	1.1	
4/3/2017					1.21	
4/4/2017				0.0723		
4/5/2017		6.49				2
4/6/2017	0.0754		0.112			
7/10/2017		8.13				
7/11/2017	0.0614			0.0734	1.44	
7/12/2017			0.0882			2.95
10/2/2017				0.0748	1.59	
10/3/2017	0.0838					4.15
10/4/2017		5.18	0.116			
1/9/2018				0.0679	1.35	
1/10/2018			0.101			3.68
1/11/2018	0.169	5.16	-			
7/9/2018				0.061		
7/10/2018					1.2	5.2
7/11/2018	0.3	8.5	0.098			
1/16/2019			0.11	0.046		
1/17/2019	0.065	7		0.010	1.1	8.6
3/26/2019			0.35	0.037 (J)	0.95	7.4
3/27/2019	0.089	6.1	0.00	0.007 (0)	0.00	
10/8/2019	0.22	0	0.18	0.048	1.1	8.4
10/9/2019	0.22	8.2	0.10	0.010		
4/7/2020	0.67	5.3		0.061 (J)	0.96	10.5
4/8/2020	0.07	0.0	0.28	0.001 (0)	0.50	10.0
9/28/2020			0.24			
9/29/2020	1.2	4.7		0.053		
9/30/2020		,		3.000	0.86	8.1
3/10/2021	1.8	6.1			0.00	
3/10/2021	1.0	0.1			0.81	
3/15/2021			0.31		0.01	
3/16/2021			0.01	0.08		10
9/21/2021	0.8	5.8	0.38	0.00		10
9/22/2021	0.0	0.0	0.00	0.052		11.5
9/23/2021				0.032	0.72	11.0
2/1/2022					0.72	16
2/1/2022				0.044		10
2/3/2022	0.1	7.5	0.37	0.044	0.71	
8/30/2022	0.1		0.37	0.046	0.71	
	1.65	8.21	0.231	0.046	0.719	
8/31/2022	1.65		0.231		0.719	15.0
9/1/2022						15.9

					,	
	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
8/31/2016		0.0196 (J)			12.8	0.096 (JO)
9/1/2016	0.408		3.34	0.62		
10/25/2016			2.54	0.0658 (J)		
10/26/2016	0.5	0.05 (J)		.,	9.81	
10/27/2016		(-)				0.0281 (J)
1/4/2017			1.91	0.36	8.94	0.0201 (0)
1/5/2017	0.676	0.0162 (J)	1.51	0.50	0.04	
	0.070	0.0102 (J)				0.0100 / 15
1/6/2017						0.0189 (J)
4/4/2017		0.019 (J)	2.77	0.509		
4/5/2017	0.69					
4/6/2017					0.733	0.0181 (J)
7/11/2017			4.14		0.852	
7/12/2017						0.0211 (J)
7/13/2017	0.888	0.023 (J)		0.126		
10/2/2017			4.65			
10/3/2017		0.0266 (J)		0.1		
10/4/2017	1.02	0.0200 (0)			6.05	0.0254 (J)
	1.02			0.702	0.00	0.0234 (0)
1/9/2018		0.0000 ("	1.70	0.783		
1/10/2018		0.0203 (J)	1.79			
1/11/2018	1.28				0.838	0.018 (J)
7/9/2018			1.7			
7/10/2018		0.026 (J)		0.5		
7/11/2018	1.6				3.2	0.02 (J)
1/16/2019	1.5					
1/17/2019				0.43		
1/18/2019					0.37	0.018 (J)
1/21/2019		0.018 (J)	1.1		2.07	5.0 (5)
3/25/2019		0.010 (0)	1			
	1.0		ı	0.01		
3/26/2019	1.2			0.61		
3/27/2019					0.37	0.016 (J)
7/30/2019		0.02 (J)				
10/8/2019				1		
10/9/2019	1.3	0.024 (J)	0.79		0.39	0.019 (J)
4/7/2020				0.24	3.1	
4/8/2020	0.99	0.031 (J)	2.5			0.023 (J)
9/29/2020		0.024 (J)				- \-/
9/30/2020	0.86	J.027 (0)	9.9	2.3	0.25	
	0.00		ອ.ອ	۷.3	0.20	0.000 (1)
10/1/2020					0.00	0.028 (J)
3/10/2021					0.32	0.022 (J)
3/11/2021	0.85					
3/12/2021			15.6			
3/15/2021		0.084				
3/16/2021				3.5		
9/21/2021					0.19	
9/22/2021	1.4	0.017 (J)	11.3	0.095		0.015 (J)
2/1/2022	1.8	(-/	15.7	4.4		(-)
	1.0	0.023 (J)	10.7	7.7		0.011 / 1\
2/2/2022		U.U23 (J)			0.40	0.011 (J)
2/3/2022					0.18	
8/30/2022			8.14	5.08		
8/31/2022	2.51				0.271	
9/1/2022		0.0204				0.0187

Constituent: Boron (mg/L) Analysis Run 11/6/2022 9:47 AM

MW-23D MW-24D MW-25D 1/20/2021 0.018 (J) 0.014 (J) 3/11/2021 0.03 (J) 0.019 (J) 0.017 (J) 9/22/2021 0.033 (J) 0.014 (J) 9/23/2021 0.033 (J) 0.014 (J) 2/1/2022 0.03 (J) 0.014 (J) 8/31/2022 0.0283 0.0166 9/1/2022 0.0303				
1/21/2021 0.018 (J) 0.014 (J) 3/11/2021 0.03 (J) 0.019 (J) 0.017 (J) 9/22/2021 0.033 (J) 0.014 (J) 9/23/2021 0.012 (J) 2/1/2022 0.03 (J) 0.014 (J) 2/3/2022 0.03 (J) 0.0166		MW-23D	MW-24D	MW-25D
3/11/2021 0.03 (J) 0.019 (J) 0.017 (J) 9/22/2021 0.033 (J) 0.014 (J) 9/23/2021 0.012 (J) 2/1/2022 0.03 (J) 0.014 (J) 2/3/2022 0.03 (J) 0.013 (J) 8/31/2022 0.0283 0.0166	1/20/2021			0.013 (J)
9/22/2021 0.033 (J) 0.014 (J) 9/23/2021 0.012 (J) 2/1/2022 0.014 (J) 2/3/2022 0.03 (J) 0.013 (J) 8/31/2022 0.0283 0.0166	1/21/2021	0.018 (J)	0.014 (J)	
9/23/2021 0.012 (J) 2/1/2022 0.014 (J) 2/3/2022 0.03 (J) 0.013 (J) 8/31/2022 0.0283 0.0166	3/11/2021	0.03 (J)	0.019 (J)	0.017 (J)
2/1/2022 0.014 (J) 2/3/2022 0.03 (J) 0.013 (J) 8/31/2022 0.0283 0.0166	9/22/2021	0.033 (J)	0.014 (J)	
2/3/2022 0.03 (J) 0.013 (J) 8/31/2022 0.0283 0.0166	9/23/2021			0.012 (J)
8/31/2022 0.0283 0.0166	2/1/2022		0.014 (J)	
	2/3/2022	0.03 (J)		0.013 (J)
9/1/2022 0.0303	8/31/2022	0.0283		0.0166
	9/1/2022		0.0303	

			Grumman Roa	d Landfill Client	:: Southern Company	Data: Grumman Road Landfill	
	GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1	
11/21/2000	<0.001		<0.001	<0.001	<0.001	<0.001	
1/20/2001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
3/14/2001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
7/16/2001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
11/1/2001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
4/25/2002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
8/30/2016		<0.001		<0.001	<0.001	<0.001	
9/1/2016	0.0007 (J)		0.0002 (J)				
10/24/2016		<0.001					
10/25/2016						<0.001	
10/26/2016			<0.001	<0.001	<0.001		
1/3/2017		<0.001		<0.001			
1/4/2017						0.0001 (J)	
1/5/2017					<0.001		
1/6/2017	0.0001 (J)		9E-05 (J)				
4/3/2017	. ,	<0.001	. ,				
4/4/2017			9E-05 (J)			7E-05 (J)	
4/6/2017	<0.001		. ,	<0.001	<0.001	` '	
7/11/2017		<0.001					
7/12/2017			<0.001	<0.001	<0.001	<0.001	
7/13/2017	<0.001						
10/2/2017		<0.001					
10/3/2017		0.001		<0.001	<0.001	<0.001	
10/4/2017	<0.001		<0.001	10.001	-0.001	3.301	
1/9/2018	<0.001	<0.001	0.001		<0.001		
1/10/2018	-0.001	-0.001		<0.001	-0.001	<0.001	
1/11/2018			0.0002 (J)	10.001		3.301	
7/9/2018		<0.001	0.0002 (0)				
7/10/2018		-0.001		<0.001	<0.001	<0.001	
7/11/2018	<0.001		<0.001	40.001	40.001	10.001	
8/26/2019	<0.001	<0.001	10.001				
8/27/2019	-0.001	-0.001	<0.001		<0.001	<0.001	
8/28/2019			0.001	<0.001	0.001	5.551	
10/7/2019		<0.001		10.001			
10/8/2019	<0.001	-0.001					
10/9/2019	0.001		<0.001	<0.001	<0.001	<0.001	
4/6/2020	<0.001	<0.001	-0.001	10.001	-0.001	-5.501	
4/7/2020	40.001	40.001	<0.001	<0.001	<0.001	<0.001	
8/17/2020		<0.001	10.001	40.001	40.001	10.001	
8/19/2020	<0.001	~0.001	<0.001	<0.001	<0.001	<0.001	
9/28/2020	<0.001	<0.001	\0.001	\0.001	~0.001	<0.001	
9/30/2020	~0.001	~0.001		<0.001	<0.001	~0.001	
10/1/2020			<0.001	40.001	40.001		
3/10/2021			<0.001	<0.001	<0.001	<0.001	
3/11/2021	<0.001		<0.001	\0.001	<0.001	~0.001	
	<0.001	<0.001					
3/12/2021	<0.001	<0.001	<0.001	<0.001	<0.001		
9/21/2021	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
9/23/2021	<0.001	<0.001				<0.001	
1/31/2022	<0.001	<0.001	<0.001		<0.001		
2/2/2022			<0.001	~0.001	<0.001	<0.001	
2/3/2022	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
8/30/2022	<0.001	<0.001	<0.001	<0.001	<0.001		

Page 2

Time Series

Constituent: Cadmium (mg/L) Analysis Run 11/6/2022 9:47 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

GWA-7 (bg) GWA-8 (bg) GWB-4R GWB-5R GWB-6R GWC-1 9/1/2022 < GWB-6R GWC-1 40.001

			Grumman Road La	andfill Client: Sout	thern Company D	Data: Grumman Road Landfill
	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16
11/21/2000	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
1/20/2001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
3/14/2001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
7/16/2001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
11/1/2001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
4/25/2002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
8/31/2016	0.0002 (J)	<0.001	<0.001			
9/1/2016				0.0001 (J)	<0.001	<0.001
10/25/2016				0.0002 (J)	<0.001	<0.001
10/26/2016	0.0001 (J)	<0.001	<0.001			
1/4/2017	0.0001 (J)	<0.001				<0.001
1/5/2017			<0.001	0.0002 (J)	<0.001	
4/3/2017					<0.001	
4/4/2017				0.0002 (J)		
4/5/2017		<0.001				<0.001
4/6/2017	0.0002 (J)		<0.001			
7/10/2017		<0.001				
7/11/2017	<0.001			0.0002 (J)	<0.001	
7/12/2017			<0.001			<0.001
10/2/2017				<0.001	<0.001	
10/3/2017	0.0003 (J)					<0.001
10/4/2017		<0.001	<0.001			
1/9/2018				<0.001	<0.001	
1/10/2018			<0.001			<0.001
1/11/2018	0.0006 (J)	<0.001				
7/9/2018				0.00017 (J)		
7/10/2018					<0.001	<0.001
7/11/2018	0.0004 (J)	<0.001	<0.001			
8/27/2019	0.00044 (J)	<0.001	<0.001	<0.001	<0.001	
8/28/2019						<0.001
10/8/2019	0.00043 (J)		<0.001	<0.001	<0.001	<0.001
10/9/2019		<0.001				
4/7/2020	0.00051 (J)	<0.001		<0.001	<0.001	<0.001
4/8/2020			<0.001			
8/17/2020		<0.001	<0.001			
8/18/2020	0.00058 (J)			<0.001	<0.001	<0.001
9/28/2020			<0.001			
9/29/2020	0.00077 (J)	<0.001		0.00012 (J)		
9/30/2020					<0.001	<0.001
3/10/2021	0.0009	<0.001				
3/12/2021					<0.001	
3/15/2021			<0.001			
3/16/2021				<0.001		<0.001
9/21/2021	0.00036 (J)	<0.001	<0.001			
9/22/2021				<0.001		<0.001
9/23/2021					<0.001	
2/1/2022						<0.001
2/2/2022				<0.001		
2/3/2022	0.00019 (J)	<0.001	<0.001		<0.001	
8/30/2022		<0.001		<0.001		
8/31/2022	0.000431 (J)		<0.001		<0.001	
9/1/2022						<0.001

			Gruilliaii Noau L	andilii Cilent. 300	inem Company D	vata. Grunninan Noau Lanunii
	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
11/21/2000	<0.001	<0.001				<0.001
1/20/2001	<0.001	<0.001				<0.001
3/14/2001	<0.001	<0.001				<0.001
7/16/2001	<0.001	<0.001				<0.001
11/1/2001	<0.001	<0.001				<0.001
4/25/2002	<0.001	<0.001				<0.001
8/31/2016		<0.001			8E-05 (J)	<0.001
9/1/2016	<0.001		<0.001	<0.001		
10/25/2016			<0.001	<0.001		
10/26/2016	<0.001	<0.001			<0.001	
10/27/2016						<0.001
1/4/2017			<0.001	<0.001	0.0001 (J)	
1/5/2017	<0.001	<0.001			. ,	
1/6/2017						<0.001
4/4/2017		<0.001	<0.001	<0.001		
4/5/2017	<0.001					
4/6/2017					0.0001 (J)	<0.001
7/11/2017			<0.001		<0.001	••••
7/12/2017			0.001		0.001	<0.001
7/13/2017	<0.001	<0.001		<0.001		0.001
10/2/2017	-0.001	10.001	<0.001	-0.001		
10/3/2017		<0.001	-0.001	<0.001		
10/4/2017	<0.001	10.001			0.0002 (J)	<0.001
1/9/2018	40.001			<0.001	0.0002 (3)	V.001
1/10/2018		<0.001	<0.001	10.001		
1/11/2018	<0.001	10.001	40.001		0.0002 (J)	<0.001
7/9/2018	40.001		<0.001		0.0002 (3)	V.001
7/10/2018		<0.001	40.001	<0.001		
7/11/2018	<0.001	10.001		10.001	0.00023 (J)	<0.001
7/30/2019	~0.001	<0.001			0.00023 (3)	V.001
8/27/2019		<0.001			<0.001	
8/28/2019	<0.001	~0.001	<0.001	<0.001	~0.001	<0.001
10/8/2019	~0.001		~0.001	<0.001		V.001
10/9/2019	<0.001	<0.001	<0.001	\0.001	0.00012 (J)	<0.001
4/7/2020	<0.001	<0.001	\0.001	<0.001	0.00012 (J) 0.00054 (J)	NO.001
4/8/2020	<0.001	<0.001	<0.001	\0.001	0.00034 (3)	<0.001
8/18/2020	<0.001	<0.001	<0.001	<0.001	0.00024 (J)	V.001
8/19/2020	<0.001	<0.001	\0.001	V 0.001	0.00024 (3)	<0.001
9/29/2020		<0.001				V.001
9/30/2020	<0.001	~0.001	<0.001	<0.001	0.00024 (J)	
	<0.001		\0.001	<0.001	0.00024 (3)	40.004
10/1/2020					<0.001	<0.001 <0.001
3/10/2021	<0.001				<0.001	<0.001
3/11/2021	<0.001		0.00010 (1)			
3/12/2021			0.00018 (J)			
3/15/2021		<0.001		.0.004		
3/16/2021				<0.001	-0.001	
9/21/2021	10.001	-0.004	0.00010./."	-0.001	<0.001	v0.004
9/22/2021	<0.001		0.00013 (J)	<0.001		<0.001
2/1/2022	<0.001		0.0002 (J)	<0.001		v0.004
2/2/2022		<0.001			-0.001	<0.001
2/3/2022			0.004	.0.004	<0.001	
8/30/2022			<0.001	<0.001		

Page 2

Time Series

	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
8/31/2022	<0.001				<0.001	
9/1/2022		<0.001				<0.001

Constituent: Cadmium (mg/L) Analysis Run 11/6/2022 9:47 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

	MW-23D	MW-24D	MW-25D
3/11/2021	<0.001	<0.001	0.00019 (J)
9/22/2021	0.00027 (J)	<0.001	
9/23/2021			<0.001
2/1/2022		<0.001	
2/3/2022	<0.001		<0.001
8/31/2022	<0.001		<0.001
9/1/2022		<0.001	

			Grumman Road L	andilii Client: 50u	inem Company L	Data: Grumman Road Landiiii
	GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1
8/30/2016		23.8		14.3	4.68	29.4
9/1/2016	5.59		9.91			
10/24/2016		22.5				
10/25/2016	6.43					28.3
10/26/2016			8.56	18.6	5.45	
1/3/2017		22.1		18.1		
1/4/2017						33.4
1/5/2017					5.35	
1/6/2017	8.13		8.18			
4/3/2017		24.6 (J)				
4/4/2017			8.12			34.6
4/6/2017	7.72			16.2	5.41	
7/11/2017		23.5				
7/12/2017			8	18.1	4.81	38
7/13/2017	4.57					
10/2/2017		22.7				
10/3/2017				15.2	5.17	25.5
10/4/2017	6.41		12.5			
1/9/2018	4.68	23.2			4.73	
1/10/2018				15.5		36.5
1/11/2018			12.9			
7/9/2018		24.6 (J)				
7/10/2018				30.6	4.5	45.5
7/11/2018	3.9		8.6			
1/16/2019	4.3	27.7	68.8	33.3	10.1	46.5
3/25/2019	3.9	31.7	55.6			
3/26/2019				36.1	9	46.3
10/7/2019		31.6				
10/8/2019	3.5					
10/9/2019			46.7	17.7	10.1	51.2
4/6/2020	3.1	35.8				
4/7/2020			62.1	34.1	7.8	31.1
9/28/2020	3.3	25.6				70.7
9/30/2020				70.4	27.5	
10/1/2020			48.4			
3/10/2021			263	134	55.9	67.2
3/11/2021	2.4					
3/12/2021		21.4				
9/21/2021	2.7	18.5	67.5	140	110	
9/23/2021						69.1
1/31/2022	3.4	17.2				
2/2/2022			98.2		293	
2/3/2022				130		58.2
8/30/2022	3.56	15	79.3	70.3	81.8	
9/1/2022						46.9

	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16
8/31/2016	18.8	105	2.77			
9/1/2016				194	119	93.8
10/25/2016				100	106	94.1
10/26/2016	16.6	101	2.25			
1/4/2017	17.6	94.9				88.2
1/5/2017			2.27	107	115	
4/3/2017					131	
4/4/2017				153		
4/5/2017		92.5				106
4/6/2017	30.9		2.04			
7/10/2017		90.3				
7/11/2017	17.7			125	155	
7/12/2017			2.25			149
10/2/2017				126	137	
10/3/2017	39.8					217
10/4/2017		74.6	2.19			
1/9/2018				119	135	
1/10/2018			2.28			161
1/11/2018	65.6	78.1				
7/9/2018				123		
7/10/2018					129	205
7/11/2018	53	72.2	2.3			
1/16/2019			2.3	120		
1/17/2019	19.8 (J)	64.7			137	187
3/26/2019	(4)		2.4	84.2	124	204
3/27/2019	25.1	63.1				
10/8/2019	69.2		2.3	146	129	205
10/9/2019		54.2				
4/7/2020	84.7	52.1		135	129	225
4/8/2020			2.5			
9/28/2020			2.9			
9/29/2020	123	42	-	30.8		
9/30/2020	· 				109	177
3/10/2021	126	53.1				
3/12/2021					101	
3/15/2021			2.4		-	
3/16/2021			-	34.4		188
9/21/2021	87	63.4	3.6	- ···		
9/22/2021			-	185		267
9/23/2021					146	
2/1/2022						267
2/2/2022				245		
2/3/2022	65.4	63.7	2.7	2.0	144	
8/30/2022	JJ1	70.8	<u> </u>	144	177	
8/31/2022	115	70.0	2.54	177	135	
	110		2.04		100	
9/1/2022						255

Constituent: Calcium (mg/L) Analysis Run 11/6/2022 9:47 AM

						un 11/6/2022 9:4 / AM
			Grumman Ro	bad Landfill Client	: Southern Company	/ Data: Grumman Road Landfill
	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
8/31/2016		0.371 (J)			127	6.9
9/1/2016	71.9		67.2	40.5		
10/25/2016			50.1	3.91		
10/26/2016	80.3	5.84			127	
10/27/2016						8.2
1/4/2017			80.4	15.2	113	
1/5/2017	94.4	0.379 (J)				
1/6/2017						7.97
4/4/2017		0.993	108	32.3		
4/5/2017	104					
4/6/2017					42.7	7.95
7/11/2017			136		46	
7/12/2017						8.37
7/13/2017	124	0.388 (J)		8.92		***
10/2/2017		0.000 (0)	105	0.02		
10/3/2017		0.251 (J)	103	7.88		
10/4/2017	136	0.231 (3)		7.00	115	8.57
1/9/2018	130			40.5	113	0.37
		0.177 (1)	60.1	40.5		
1/10/2018	120	0.177 (J)	60.1		47.6	0.70
1/11/2018	139		75.0		47.6	9.78
7/9/2018		0.47 (1)	75.9	00.0		
7/10/2018		0.17 (J)		29.8		
7/11/2018	122				73.7	9.2
1/16/2019	80.5					
1/17/2019				27.6		
1/18/2019					30.6	8.1
1/21/2019		0.19 (J)	60			
3/25/2019			74.8			
3/26/2019	68.8			60.1		
3/27/2019					28.8	7.7
7/30/2019		0.43				
10/8/2019				49.5		
10/9/2019	56.6	0.18	80.1		30.1	6
4/7/2020				12.5	65.7	
4/8/2020	53.1	0.24 (J)	175			5.3
9/29/2020		0.18 (J)				
9/30/2020	53.5		292	98.4	20.9	
10/1/2020						5.5
3/10/2021					18.7	5.3
3/11/2021	67					
3/12/2021			241			
3/15/2021		0.22 (J)				
3/16/2021				104		
9/21/2021					15.3	
9/22/2021	94.6	0.19 (J)	266	5.8		5
2/1/2022	90.8		259	125		
2/2/2022		0.16 (J)				4.6
2/3/2022					14.6	
8/30/2022			193	131		
8/31/2022	102				23.2	
9/1/2022		0.236				5

Constituent: Calcium (mg/L) Analysis Run 11/6/2022 9:47 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

1/20/2021 1/21/2021	4.4	2.8	4.9
1/21/2021	4.4	2.8	
		2.0	
3/11/2021	12.4	5.4	4.7
9/22/2021	14.9	4.7	
9/23/2021			3.4
2/1/2022		3.7	
2/3/2022	11.6		3
8/31/2022	10.3		3.38
9/1/2022		2.75	

			Gramman roda E	didini Onorit. Ooc	anom company :	Sata. Gramman Hoda Ednami
	GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1
8/30/2016		15		31	60	5.5
9/1/2016	190		160			
10/24/2016		13				
10/25/2016	175 (D)					5.1
10/26/2016			110	24	67	
1/3/2017		13		29		
1/4/2017						6.9
1/5/2017					70	
1/6/2017	180		67			
4/3/2017		14				
4/4/2017			80			6.5
4/6/2017	200			27	76	
7/11/2017		13				
7/12/2017			120	31	64	6.5
7/13/2017	200					
10/2/2017		15				
10/3/2017				27	73	4.5
10/4/2017	260		130			
1/9/2018	210	13			61	
1/10/2018				59		6.9
1/11/2018			60			
7/9/2018		15.4				
7/10/2018				172	60.2	6.2
7/11/2018	177		75.9			
1/16/2019	165	16	20.2	49.7	54.1	6.6
3/25/2019	147	17.7	19.7			
3/26/2019				47.9	51.8	7
10/7/2019		18				
10/8/2019	125					
10/9/2019			32.1	239	49.7	7.2
4/6/2020	30.2	13.5				
4/7/2020			14.5	44.3	56.4	7.7
9/28/2020	113	13.7				13.8
9/30/2020				24.1	53.9	
10/1/2020			15.7			
3/10/2021			16	25.7	42.4	8.5
3/11/2021	96.7					
3/12/2021		14.1				
9/21/2021	92.2	12.2	13.9	38.8	53.8	
9/23/2021						8.8
1/31/2022	83.4	11.2				
2/2/2022			14.5		42.3	
2/3/2022				38.5		8
8/30/2022	74.4	9.93	65	76.8	52	
9/1/2022						9.17

					. ,	
	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16
8/31/2016	3.5	210	4.3			
9/1/2016				60	10	43
10/25/2016				36	6.5	34
10/26/2016	2.5	200	4.9			
1/4/2017	3.8	160				29
1/5/2017			4.1	37	10	
4/3/2017					7.3	
4/4/2017				47		
4/5/2017		140				36
4/6/2017	7.1		3.7			
7/10/2017		88				
7/11/2017	3.1			34	5.7	
7/12/2017			2.6			44
10/2/2017				34	4.4	
10/3/2017	46					58
10/4/2017		100	3			
1/9/2018				24	5.7	
1/10/2018			3.4			36
1/11/2018	100	78				
7/9/2018				25.9		
7/10/2018					3.1	57
7/11/2018	53.7	66.9	3.2			
1/16/2019			3.8	29.2		
1/17/2019	6.6	52			3.2	48.9
3/26/2019			3.2	21.1	3	5.1
3/27/2019	11.9	45.6				
10/8/2019	89		4	40.2	2.9	46.4
10/9/2019		44.1				
4/7/2020	103	32.5		41.6	3.4	49.3
4/8/2020			4.5			
9/28/2020			4.3			
9/29/2020	143	24.3		10.6		
9/30/2020					1.7	39.6
3/10/2021	188	48.7				
3/12/2021					2.3	
3/15/2021			7.6			
3/16/2021				15.8		44.9
9/21/2021	103	63.8	7.9			
9/22/2021				28		55.8
9/23/2021					7.1	
2/1/2022						61.5
2/2/2022				29.6		
2/3/2022	83.4	57	8.8		5.1	
8/30/2022		58.4		26.7		
8/31/2022	110		6.69		4.83	
9/1/2022						57.2

0/04/02/12	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
8/31/2016		7.8			320	17
9/1/2016	610		16	5.9		
10/25/2016			8.1	4.4		
10/26/2016	570	12			450	
10/27/2016						17
1/4/2017			13	7.7	330	
1/5/2017	710	7.4				
1/6/2017						16
4/4/2017		8.7	23	8		
4/5/2017	860					
4/6/2017					50	17
7/11/2017			31		70	
7/12/2017						18
7/13/2017	860	8.3		5.4		
10/2/2017	000	0.0	30	0.4		
		0	30	4.4		
10/3/2017	1000	9		4.4	200	10
10/4/2017	1000				360	18
1/9/2018				4.4		
1/10/2018		8.2	9.7			
1/11/2018	940				74	16
7/9/2018			10.8			
7/10/2018		7.3		6.3		
7/11/2018	864				164	16.2
1/16/2019	469					
1/17/2019				5.4		
1/18/2019					11	17.5
1/21/2019		6.9	5.1			
3/25/2019		0.0	9.4			
	420		3.4	11.0		
3/26/2019	439			11.9	44.5	10.0
3/27/2019					11.5	18.9
7/30/2019		7.1				
10/8/2019				7.8		
10/9/2019	330	7	5.4		25.3	19
4/7/2020				4.7	146	
4/8/2020	277	5.2	20.2			16.9
9/29/2020		5.4				
9/30/2020	257		34.9	23.7	8.5	
10/1/2020				==		16.8
3/10/2021					48.2	
	224				40.2	18.3
3/11/2021	334					
3/12/2021			31.9			
3/15/2021		6.4				
3/16/2021				25.3		
9/21/2021					9.4	
9/22/2021	517	7.4	38.9	6		19.3
2/1/2022	549		33.4	29.3		
2/2/2022		6.9				17.5
2/3/2022					10.8	•
8/30/2022			24.4	29.4	. 5.5	
			£-7T	20. T		
	604				E1 2	
8/31/2022 9/1/2022	694	6.59			51.2	17.6

Constituent: Chloride (mg/L) Analysis Run 11/6/2022 9:47 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

	MW-23D	MW-24D	MW-25D
1/20/2021			6.1
1/21/2021	6.1	6.1	
3/11/2021	9.9	6	6.4
9/22/2021	7.1	4.9	
9/23/2021			5.5
2/1/2022		5.4	
2/3/2022	7.5		6.3
8/31/2022	7.84		6.6
9/1/2022		6.3	

Constituent: Chromium (mg/L) Analysis Run 11/6/2022 9:47 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

GWA-7 (bg) GWA-8 (bg) GWB-4R GWB-5R GWB-6R GWC-1 9/29/2000 <0.01 <0.01 0.021 0.03 0.016 <0.01 11/21/2000 0.017 < 0.01 < 0.01 0.023 <0.01 1/20/2001 <0.01 <0.01 0.03 0.028 0.025 <0.01 3/14/2001 <0.01 <0.01 0.019 0.021 <0.01 7/16/2001 <0.01 <0.01 0.029 0.08 (O) 0.019 <0.01 11/1/2001 <0.01 <0.01 0.021 0.13 (O) 0.022 <0.01 4/25/2002 <0.01 <0.01 0.03 0.021 0.019 <0.01 11/20/2002 0.0051 0.038 0.053 (O) 0.024 <0.01 6/6/2003 0.037 0.014 0.028 0.064 (O) 0.021 0.005 0.0044 0.011 0.0066 <0.01 12/12/2003 0.027 <0.01 5/26/2004 <0.01 <0.01 0.021 0.012 0.013 <0.01 12/7/2004 <0.01 < 0.01 0.016 0.019 0.013 <0.01 0.0067 6/21/2005 <0.01 < 0.01 0.015 0.02 <0.01 12/12/2005 <0.01 < 0.01 0.022 <0.01 0.0033 0.002 4/4/2006 <0.01 0.0015 0.0047 6/27/2006 <0.01 <0.01 0.027 <0.01 8/30/2006 <0.01 0.0034 0.0084 12/4/2006 0.0015 <0.01 0.025 <0.01 2/15/2007 <0.01 6/23/2007 <0.01 <0.01 0.023 <0.01 0.01 <0.01 9/11/2007 < 0.01 12/11/2007 0.0016 < 0.01 0.018 <0.01 0.0049 <0.01 3/11/2008 < 0.01 6/23/2008 0.0019 < 0.01 6/24/2008 0.022 <0.01 0.032(O) <0.01 11/3/2008 <0.01 12/4/2008 <0.01 <0.01 12/5/2008 0.023 0.0016 0.009 <0.01 3/25/2009 <0.01 7/7/2009 0.0037 <0.01 0.012 <0.01 0.0044 0.0013 <0.01 9/14/2009 12/20/2009 0.0016 < 0.01 <0.01 12/21/2009 0.019 <0.01 0.0055 3/4/2010 < 0.01 0.002 6/20/2010 < 0.01 < 0.01 < 0.01 <0.01 6/21/2010 0.01 9/14/2010 <0.01 0.0017 <0.01 1/6/2011 1/7/2011 0.0033 <0.01 0.023 0.0039 <0.01 4/15/2011 7/7/2011 0.0044 <0.01 0.008 0.0031 <0.01 0.017 7/8/2011 9/25/2011 0.0021 1/17/2012 0.0038 <0.01 0.0082 <0.01 1/18/2012 0.0114 0.0023 4/4/2012 < 0.01 7/9/2012 0.022 0.01 <0.01 7/10/2012 <0.01 0.014 0.0022 10/9/2012 < 0.01 1/17/2013 0.01 <0.01 1/18/2013 0.034 <0.01 0.015 <0.01 4/5/2013 < 0.01

	GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1	
7/16/2013	(-9)	- (-9)	• •	0.0061		<0.01	
7/17/2013	0.032	<0.01	0.011		<0.01		
10/11/2013		<0.01					
1/13/2014	0.04			0.002		<0.01	
1/14/2014		<0.01	0.019		0.0013		
4/3/2014		<0.01	0.010		0.00.0		
7/9/2014	0.036	<0.01	0.012	<0.01	<0.01	0.0011 (J)	
10/24/2014	0.000	<0.01	0.012	0.01	0.0.	5.5511 (6)	
1/12/2015		-0.01	0.016				
1/13/2015	0.03		0.010	<0.01		<0.01	
1/14/2015	0.03	<0.01		40.01	0.0015	50.01	
5/10/2015		<0.01			0.0013		
7/16/2015	0.039	\0.01	0.0084	<0.01		0.0011 (J)	
	0.039	-0.01	0.0084	\0.01	0.0011 (1)	0.0011(3)	
7/17/2015		<0.01			0.0011 (J)		
10/6/2015		<0.01				2.24	
1/17/2016	0.000	-0.01	0.014	-0.01	0.0011 (1)	<0.01	
1/18/2016	0.068	<0.01	0.014	<0.01	0.0011 (J)		
4/26/2016	0.67	<0.01		0.0000		0.0040 (1)	
7/27/2016	0.05			0.0006 (J)		0.0016 (J)	
7/28/2016		<0.01			0.001 (J)		
7/29/2016			0.0077 (J)				
8/30/2016		<0.01		<0.01	0.0013 (J)	0.0015 (J)	
9/1/2016	0.119 (O)		0.015				
10/24/2016		<0.01					
10/25/2016	0.0519					0.0018 (J)	
10/26/2016			0.0106	<0.01	0.0014 (J)		
1/3/2017		<0.01		0.001 (J)			
1/4/2017						0.0021 (J)	
1/5/2017					0.002 (J)		
1/6/2017	0.0536		0.0098 (J)				
4/3/2017		0.0004 (J)					
4/4/2017			0.0101			0.002 (J)	
4/6/2017	0.0447 (J)			0.0013 (J)	0.0034 (J)		
7/11/2017		0.0006 (J)					
7/12/2017			0.0096 (J)	0.0011 (J)	0.0024 (J)	0.0021 (J)	
7/13/2017	0.0269						
10/2/2017		<0.01					
10/3/2017				0.0012 (J)	0.0022 (J)	0.0014 (J)	
10/4/2017	0.0378		0.0097 (J)				
1/9/2018	0.0283 (J)	<0.01			0.0019 (J)		
1/10/2018	.,			0.0016 (J)	.,	0.0017 (J)	
1/11/2018			0.0109	.,		•	
7/9/2018		<0.01					
7/10/2018		-		0.0055 (J)	0.0023 (J)	0.0021 (J)	
7/11/2018	0.018 (J)		0.0055 (J)		(0)	• • • • • • • • • • • • • • • • • • • •	
1/16/2019	0.018 (J)	<0.01	0.0024 (J)	<0.01	0.018 (J)	0.0021 (J)	
3/25/2019	0.018 (J) 0.017 (J)	<0.01	0.0024 (3) 0.002 (J)	5.01	0.010(0)	(0)	
3/25/2019	0.017 (0)	~U.U1	0.002 (0)	0.072	0.017 (J)	0.0018 (J)	
8/26/2019	0.024 (J)	0.001 (J)		0.072	0.017 (J)	0.0010 (3)	
	0.024 (J)	0.001 (3)	0.0027 / 1		0.000771	0.006371)	
8/27/2019			0.0027 (J)	0.0074 ()	0.0097 (J)	0.0062 (J)	
8/28/2019				0.0071 (J)			
10/7/2019		0.00052 (J)					

	GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1
10/8/2019	0.021 (J)					
10/9/2019			0.002 (J)	0.012 (J)	0.011 (J)	0.0019 (J)
4/6/2020	0.015 (J)	<0.01				
4/7/2020			0.0028 (J)	0.0022 (J)	0.0094 (J)	0.0015 (J)
8/17/2020		0.00082 (J)				
8/19/2020	0.015 (J)		0.0022 (J)	0.0012 (J)	0.0037 (J)	0.0028 (J)
9/28/2020	0.014 (J)	0.00071 (J)				0.0024 (J)
9/30/2020				0.0018 (J)	0.0045 (J)	
10/1/2020			0.002 (J)			
3/10/2021			0.003 (J)	0.001 (J)	0.006	0.0023 (J)
3/11/2021	0.02 (J)					
3/12/2021		0.00074 (J)				
9/21/2021	0.013 (J)	<0.01	0.0018 (J)	<0.01	0.0035 (J)	
9/23/2021						0.0023 (J)
1/31/2022	0.015 (J)	<0.01				
2/2/2022			0.003 (J)		0.0033 (J)	
2/3/2022				0.0014 (J)		0.0019 (J)
8/30/2022	0.0129	<0.01	<0.01	<0.01	0.00356 (J)	
9/1/2022						<0.01

			Gruillian Noau L	andilii Cilent. 300t	inem Company D	ata. Grunnian Noau Lanunii
	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16
9/29/2000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
11/21/2000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
1/20/2001	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
3/14/2001	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
7/16/2001	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
11/1/2001	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
4/25/2002	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
11/20/2002	0.006	0.002	<0.01	0.014	0.0058	0.0041
6/6/2003	0.0082	<0.01	0.003	<0.01	0.0068	0.063 (O)
12/12/2003	0.0023	<0.01	<0.01	<0.01	0.0041	0.0059
5/26/2004	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
12/7/2004	<0.01	<0.01	<0.01	<0.01	0.0026	<0.01
6/21/2005	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
12/12/2005	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
4/4/2006				<0.01		<0.01
6/27/2006	<0.01	<0.01	<0.01	<0.01	0.0013	<0.01
8/30/2006				<0.01		<0.01
12/4/2006	0.0021	0.0032	0.0017	0.0042	<0.01	0.0036
2/15/2007				<0.01		<0.01
6/23/2007	0.0017	<0.01	<0.01	<0.01	<0.01	0.0016
9/11/2007				<0.01		<0.01
12/11/2007	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
3/11/2008				<0.01		<0.01
6/23/2008	<0.01	0.0016	<0.01			
6/24/2008				<0.01	0.0014	<0.01
11/3/2008				<0.01		0.0025
12/4/2008	<0.01	<0.01	<0.01	<0.01		
12/5/2008					<0.01	<0.01
3/25/2009				<0.01		<0.01
7/8/2009	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
9/14/2009				<0.01		<0.01
12/20/2009				<0.01	<0.01	<0.01
12/21/2009	<0.01	<0.01	<0.01			
3/4/2010				<0.01		<0.01
6/20/2010	<0.01	<0.01	<0.01	<0.01	<0.01	
6/21/2010						<0.01
9/14/2010				<0.01		<0.01
1/6/2011	<0.01		<0.01			
1/7/2011		<0.01		0.0016	<0.01	0.0018
4/15/2011				0.0034		<0.01
7/7/2011	0.0023	<0.01	0.0019	<0.01	<0.01	<0.01
9/25/2011				0.0013		<0.01
1/17/2012	<0.01	<0.01	<0.01	<0.01	<0.01	
1/18/2012						<0.01
4/4/2012				<0.01		<0.01
7/9/2012	0.0017	<0.01	<0.01	<0.01	<0.01	
7/10/2012						<0.01
10/9/2012				0.0019		0.0018
1/17/2013	<0.01	<0.01	<0.01			
1/18/2013				0.0017	<0.01	<0.01
4/5/2013				0.0019		<0.01
7/16/2013	<0.01	<0.01	<0.01			

	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16
7/17/2013				0.0017	<0.01	<0.01
10/11/2013				0.0013		<0.01
1/13/2014	<0.01	<0.01	<0.01		<0.01	
1/14/2014				0.001		<0.01
4/3/2014				0.0031		<0.01
7/8/2014	<0.01	<0.01	<0.01			
7/9/2014				0.0012 (J)	<0.01	<0.01
10/24/2014				<0.01	0.01	<0.01
1/13/2015	<0.01	<0.01	<0.01	-0.01	<0.01	-0.01
1/14/2015	10.01	40.01	40.01	0.0013	40.01	<0.01
5/10/2015				<0.01		-0.01
5/11/2015				10.01		<0.01
7/16/2015	<0.01	0.001 (J)	<0.01		<0.01	<0.01
	<0.01	0.001 (3)	<0.01	0.001 (1)	<0.01	\0.01
7/17/2015				0.001 (J)		-0.04
10/6/2015				<0.01	.0.04	<0.01
1/17/2016				0.0012 (J)	<0.01	<0.01
1/18/2016		<0.01	<0.01			
1/19/2016	<0.01					
4/26/2016				<0.01		<0.01
7/26/2016	0.0005 (J)		<0.01			
7/27/2016		0.0014 (J)		0.0008 (J)	0.0007 (J)	
7/28/2016						0.0006 (J)
8/31/2016	0.001 (J)	0.0012 (J)	0.0011 (J)			
9/1/2016				0.0015 (J)	0.0011 (J)	0.0011 (J)
10/25/2016				<0.01	<0.01	<0.01
10/26/2016	<0.01	0.0012 (J)	<0.01			
1/4/2017	<0.01	0.0012 (J)				<0.01
1/5/2017			<0.01	0.001 (J)	<0.01	
4/3/2017					0.0015 (J)	
4/4/2017				0.001 (J)		
4/5/2017		0.0013 (J)				0.001 (J)
4/6/2017	0.0007 (J)		0.0011 (J)			
7/10/2017		0.0014 (J)				
7/11/2017	0.0006 (J)			0.0008 (J)	0.0013 (J)	
7/12/2017			0.0007 (J)			0.0011 (J)
10/2/2017				0.0009 (J)	0.0013 (J)	
10/3/2017	0.0007 (J)					0.0009 (J)
10/4/2017		0.0011 (J)	0.0008 (J)			
1/9/2018				0.0006 (J)	0.0012 (J)	
1/10/2018			0.0007 (J)			0.0007 (J)
1/11/2018	0.0098 (J)	0.001 (J)				
7/9/2018	.,	.,		<0.01		
7/10/2018					<0.01	<0.01
7/11/2018	<0.01	<0.01	0.0019 (J)			
1/16/2019			<0.01	<0.01		
1/17/2019	<0.01	0.0028 (J)			<0.01	0.01 (J)
3/26/2019		3020 (0)	<0.01	<0.01	<0.01	<0.01
3/27/2019	<0.01	<0.01	-0.01	-0.01	-0.01	5.5.
8/27/2019	0.00092 (J)	0.00085 (J)	<0.01	0.001 (J)	0.0016 (J)	
8/28/2019	0.00032 (0)	0.00000 (0)	-U.U I	0.001 (0)	0.0010(0)	0.0011 (J)
	0.00001 / 1)		<0.01	0.00052 (1)	0.0017 (1)	
10/8/2019 10/9/2019	0.00091 (J)	0.00081 (J)	<0.01	0.00053 (J)	0.0017 (J)	0.00099 (J)
		11 1 H H H H H H H H H H H H H H H H H				

	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16
4/7/2020	0.00094 (J)	0.00082 (J)		0.00074 (J)	0.0014 (J)	<0.01
4/8/2020			0.00058 (J)			
8/17/2020		0.001 (J)	0.00077 (J)			
8/18/2020	0.0015 (J)			0.00059 (J)	0.0018 (J)	0.0012 (J)
9/28/2020			0.00062 (J)			
9/29/2020	0.0011 (J)	0.00085 (J)		<0.01		
9/30/2020					0.0016 (J)	0.00098 (J)
3/10/2021	0.0013 (J)	0.00091 (J)				
3/12/2021					0.0031 (J)	
3/15/2021			<0.01			
3/16/2021				<0.01		0.0012 (J)
9/21/2021	<0.01	<0.01	<0.01			
9/22/2021				<0.01		0.0018 (J)
9/23/2021					0.0013 (J)	
2/1/2022						<0.01
2/2/2022				<0.01		
2/3/2022	0.0011 (J)	0.0018 (J)	<0.01		0.0016 (J)	
8/30/2022		<0.01		<0.01		
8/31/2022	<0.01		<0.01		<0.01	
9/1/2022						<0.01

Constituent: Chromium (mg/L) Analysis Run 11/6/2022 9:47 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
9/29/2000	<0.01					<0.01
11/21/2000	<0.01	<0.01				<0.01
1/20/2001	<0.01	<0.01				<0.01
3/14/2001	<0.01	<0.01				<0.01
7/16/2001	<0.01	<0.01				<0.01
11/1/2001	<0.01	<0.01				<0.01
4/25/2002	<0.01	<0.01				<0.01
11/20/2002	<0.01	<0.01				0.014
6/6/2003	<0.01	<0.01				<0.01
12/12/2003	0.036 (O)	<0.01				<0.01
5/26/2004	<0.01	<0.01				<0.01
12/7/2004	0.0021	<0.01				0.0039
6/21/2005	<0.01	<0.01				0.002
12/12/2005	<0.01	<0.01				<0.01
6/27/2006	<0.01	<0.01				<0.01
12/4/2006	<0.01	<0.01				0.0019
6/23/2007	<0.01	<0.01				0.0015
12/11/2007	<0.01	<0.01				<0.01
6/23/2008	-0.01	-0.01				0.0015
6/24/2008	<0.01	<0.01				0.0010
12/4/2008	-0.01	<0.01				<0.01
12/5/2008	<0.01	40.01				40.01
7/8/2009	<0.01	<0.01				<0.01
12/20/2009	40.01	<0.01				-0.01
12/21/2009	<0.01	40.01				<0.01
6/20/2010	40.01	<0.01				0.0015
6/21/2010	<0.01	40.01	<0.01	0.0019	<0.01	0.0010
1/6/2011	10.01	<0.01	-0.01	0.0010	10.01	
1/7/2011	<0.01	-0.01	0.0018	0.0017	<0.01	<0.01
7/7/2011	-0.01		<0.01	0.0017	10.01	-0.01
7/8/2011	0.0013		0.0019	0.0023	<0.01	<0.01
1/17/2012	0.0010	<0.01	0.0010	0.0020	10.01	5.01
1/18/2012	<0.01	-0.01	<0.01	<0.01	<0.01	<0.01
7/9/2012	10.01	<0.01	-0.01	-0.01	10.01	5.01
7/10/2012	<0.01	-0.01	0.0013	<0.01	<0.01	<0.01
1/17/2013	10.01	<0.01	0.0010	-0.01	10.01	5.01
1/18/2013	<0.01	-0.01	0.0015	<0.01	<0.01	<0.01
7/17/2013	<0.01	<0.01	<0.01	0.0019	<0.01	<0.01
1/13/2014	10.01	<0.01	-0.01	0.0010	10.01	5.01
1/14/2014	<0.01	-0.01	0	<0.01	<0.01	<0.01
7/9/2014	<0.01	<0.01	Ü	<0.01	40.01	0.0011 (J)
7/10/2014	40.01	40.01	<0.01	40.01	<0.01	0.0011 (3)
1/12/2015			<0.01		10.01	
1/13/2015		<0.01	-0.01			
1/14/2015	<0.01	40.01		<0.01	<0.01	<0.01
7/16/2015	10.01	<0.01		-0.01	10.01	5.01
7/17/2015		5.01		<0.01		0.0013
7/18/2015	<0.01		<0.01	-0.01	<0.01	0.00.0
1/17/2016	-0.01	<0.01	<0.01	<0.01	-0.01	
1/18/2016	<0.01				<0.01	<0.01
7/27/2016	0.0.	0.0008 (J)			0.0.	 :
7/28/2016		5.5000 (0)	0.0007 (J)	0.0005 (J)		0.0011 (J)
20,2010			3.3007 (0)	3.3000 (0)		(4)

	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9	
7/29/2016	0.0009 (J)				0.0007 (J)		
8/31/2016		<0.01			<0.01	0.0024 (J)	
9/1/2016	0.0011 (J)		<0.01	<0.01			
10/25/2016			<0.01	<0.01			
10/26/2016	<0.01	0.001 (J)			<0.01		
10/27/2016						<0.01	
1/4/2017			<0.01	<0.01	<0.01		
1/5/2017	0.0012 (J)	<0.01					
1/6/2017	(0)					<0.01	
4/4/2017		0.0008 (J)	0.0011 (J)	0.0008 (J)		· · · · · · · · · · · · · · · · · · ·	
4/5/2017	0.0015 (J)	0.0000 (0)	0.0011(0)	0.0000 (0)			
4/6/2017	0.0013 (3)				0.0006 (1)	0.0010 / I)	
7/11/2017			0.0009 (J)		0.0006 (J)	0.0019 (J)	
			0.0009 (3)		0.0005 (J)	0.0014 (1)	
7/12/2017	0.0010 (1)	0.0000 (1)		0.0000 (1)		0.0011 (J)	
7/13/2017	0.0012 (J)	0.0006 (J)		0.0006 (J)			
10/2/2017			0.0009 (J)				
10/3/2017		<0.01		0.0005 (J)			
10/4/2017	0.0055 (J)				0.0006 (J)	0.0011 (J)	
1/9/2018				0.0007 (J)			
1/10/2018		<0.01	0.0008 (J)				
1/11/2018	0.0009 (J)				<0.01	0.001 (J)	
7/9/2018			<0.01				
7/10/2018		<0.01		<0.01			
7/11/2018	<0.01				<0.01	<0.01	
1/16/2019	<0.01						
1/17/2019				0.01			
1/18/2019					<0.01	<0.01	
1/21/2019		<0.01	<0.01				
3/25/2019			<0.01				
3/26/2019	<0.01			<0.01			
3/27/2019					<0.01	<0.01	
7/30/2019		0.00065 (J)					
8/27/2019		<0.01			0.00057 (J)		
8/28/2019	0.0013 (J)		0.00089 (J)	0.00087 (J)	(1)	0.00089 (J)	
10/8/2019				0.00067 (d)			
10/9/2019	0.00081 (J)	0.00049 (J)	0.0011 (J)	2.2000 (0)	0.00072 (J)	0.0009 (J)	
4/7/2020	0.00001 (0)	0.00040 (0)	0.0071(0)	<0.01	0.00072 (J) 0.00049 (J)	5.5555 (v)	
4/7/2020	0.00073 (J)	0.00069 (J)	0.001 (J)	50.0 I	0.00043 (0)	0.0015 (J)	
				0.001271	0.00056 (1)	0.0010 (0)	
8/18/2020	0.0011 (J)	<0.01	0.0011 (J)	0.0012 (J)	0.00056 (J)	0.0012 ())	
8/19/2020		-0.01				0.0013 (J)	
9/29/2020	0.00000 ("	<0.01	0.0040 ("	0.0000= / "	0.00004 / "		
9/30/2020	0.00096 (J)		0.0013 (J)	0.00067 (J)	0.00064 (J)		
10/1/2020					_	0.0012 (J)	
3/10/2021					<0.01	0.0011 (J)	
3/11/2021	0.0009 (J)						
			0.0014 (J)				
3/12/2021							
		0.0011 (J)					
3/12/2021		0.0011 (J)		0.00075 (J)			
3/12/2021 3/15/2021		0.0011 (J)		0.00075 (J)	<0.01		
3/12/2021 3/15/2021 3/16/2021	<0.01	0.0011 (J) <0.01	0.0013 (J)	0.00075 (J) <0.01	<0.01	<0.01	
3/12/2021 3/15/2021 3/16/2021 9/21/2021	<0.01 0.0014 (J)		0.0013 (J) 0.0036 (J)		<0.01	<0.01	

	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
2/3/2022					<0.01	
8/30/2022			<0.01	<0.01		
8/31/2022	<0.01				<0.01	
9/1/2022		<0.01				<0.01

Constituent: Chromium (mg/L) Analysis Run 11/6/2022 9:47 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

	MW-23D	MW-24D	MW-25D
3/11/2021	<0.01	0.00069 (J)	0.0016 (J)
9/22/2021	<0.01	<0.01	
9/23/2021			<0.01
2/1/2022		<0.01	
2/3/2022	<0.01		<0.01
8/31/2022	<0.01		<0.01
9/1/2022		<0.01	

			Gruillinaii Noau L	andilli Cilent. 300	inem Company D	ata. Gruninan Noau Landiiii
	GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1
9/29/2000	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
11/21/2000	<0.001		<0.001	<0.001	<0.001	<0.001
1/20/2001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
3/14/2001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
7/16/2001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
11/1/2001	<0.001	<0.001	<0.001	0.012	<0.001	<0.001
4/25/2002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
8/30/2016		<0.001		<0.001	<0.001	<0.001
9/1/2016	0.0102		0.0024 (J)			
10/24/2016		<0.001	(-,			
10/25/2016	0.0037 (J)					<0.001
10/26/2016	(-)		0.0011 (J)	<0.001	<0.001	
1/3/2017		<0.001		<0.001		
1/4/2017						<0.001
1/5/2017					<0.001	
1/6/2017	0.0039 (J)		0.001 (J)		-0.001	
4/3/2017	0.0039 (3)	0.0005 (J)	0.001 (3)			
4/4/2017		0.0003 (3)	0.001 (1)			<0.001
	0.006 (1)		0.001 (J)	<0.001	-0.001	NO.001
4/6/2017	0.006 (J)	0.0005 (1)		<0.001	<0.001	
7/11/2017		0.0005 (J)	0.0000 (1)	10.001	-0.004	40.004
7/12/2017	0.0007 (1)		0.0008 (J)	<0.001	<0.001	<0.001
7/13/2017	0.0037 (J)					
10/2/2017		0.0004 (J)				
10/3/2017				<0.001	<0.001	<0.001
10/4/2017	0.0058 (J)		0.001 (J)			
1/9/2018	0.0053 (J)	0.0004 (J)			<0.001	
1/10/2018				0.0004 (J)		<0.001
1/11/2018			0.0008 (J)			
7/9/2018		<0.001				
7/10/2018				0.002 (J)	<0.001	<0.001
7/11/2018	<0.05 (O)		<0.001			
8/26/2019	0.0037 (J)	0.00042 (J)				
8/27/2019			0.0011 (J)		0.00038 (J)	<0.001
8/28/2019				0.0024 (J)		
10/7/2019		0.00046 (J)				
10/8/2019	0.0028 (J)					
10/9/2019			0.0015 (J)	0.0037 (J)	<0.001	<0.001
4/6/2020	0.0021 (J)	0.00036 (J)				
4/7/2020			0.0009 (J)	0.00053 (J)	<0.001	<0.001
8/17/2020		<0.001				
8/19/2020	0.0021 (J)		0.00072 (J)	<0.001	<0.001	<0.001
9/28/2020	<0.001	<0.001				<0.001
9/30/2020				0.00056 (J)	<0.001	
10/1/2020			0.0005 (J)			
3/10/2021			0.00069 (J)	0.0057	<0.001	<0.001
3/11/2021	0.0023 (J)					
3/12/2021		0.00058 (J)				
9/21/2021	<0.001	<0.001	<0.001	0.019	0.0049 (J)	
9/23/2021						<0.001
1/31/2022	<0.025 (o)	0.00044 (J)				
2/2/2022			0.0027 (J)		0.07	
2/3/2022				0.019		<0.001

Constituent: Cobalt (mg/L) Analysis Run 11/6/2022 9:47 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

GWA-7 (bg) GWA-8 (bg) GWB-4R GWB-5R GWB-6R GWC-1 8/30/2022 0.00134 0.00042 (J) 0.00198 0.00401 0.0476 <0.001

Constituent: Cobalt (mg/L) Analysis Run 11/6/2022 9:47 AM

Constituent: Cobalt (mg/L) Analysis Run 11/6/2022 9:47 AM Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill									
	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16			
9/29/2000	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
11/21/2000	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
1/20/2001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
3/14/2001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
7/16/2001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
11/1/2001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
4/25/2002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
8/31/2016	<0.001	0.0018 (J)	<0.001						
9/1/2016	0.001	0.00.0 (0)	0.001	<0.001	<0.001	<0.001			
10/25/2016				<0.001	<0.001	<0.001			
10/26/2016	<0.001	0.0016 (J)	<0.001	0.001	0.001	5.50			
1/4/2017	<0.001	0.0014 (J)	-0.001			<0.001			
1/5/2017	10.001	0.0014 (3)	<0.001	<0.001	<0.001	30.001			
4/3/2017			10.001	40.001	<0.001				
4/4/2017				<0.001	~0.001				
		0.0012 (1)		<0.001		40.001			
4/5/2017	<0.001	0.0013 (J)	<0.001			<0.001			
4/6/2017	<0.001	0.0012 (1)	<0.001						
7/10/2017	<0.001	0.0013 (J)		0.0000 / 15	<0.001				
7/11/2017	<0.001		-0.001	0.0003 (J)	<0.001	40.004			
7/12/2017			<0.001	.0.004	.0.004	<0.001			
10/2/2017				<0.001	<0.001				
10/3/2017	<0.001					<0.001			
10/4/2017		0.0011 (J)	<0.001						
1/9/2018				<0.001	<0.001				
1/10/2018			<0.001			<0.001			
1/11/2018	0.0003 (J)	0.0011 (J)							
7/9/2018				<0.001					
7/10/2018					<0.001	<0.001			
7/11/2018	<0.001	0.00096 (J)	<0.001						
8/27/2019	<0.001	0.0009 (J)	<0.001	<0.001	<0.001				
8/28/2019						<0.001			
10/8/2019	<0.001		<0.001	<0.001	<0.001	<0.001			
10/9/2019		0.00094 (J)							
4/7/2020	<0.001	0.00077 (J)		<0.001	<0.001	<0.001			
4/8/2020			<0.001						
8/17/2020		0.0006 (J)	<0.001						
8/18/2020	0.0004 (J)			<0.001	<0.001	<0.001			
9/28/2020			<0.001						
9/29/2020	0.00055 (J)	0.00057 (J)		<0.001					
9/30/2020					<0.001	<0.001			
3/10/2021	0.00082 (J)	0.00071 (J)							
3/12/2021					<0.001				
3/15/2021			<0.001						
3/16/2021				<0.001		<0.001			
9/21/2021	<0.001	0.00065 (J)	<0.001						
9/22/2021				<0.001		<0.001			
9/23/2021					<0.001				
2/1/2022						<0.001			
2/2/2022				<0.001					
2/3/2022	<0.001	0.00072 (J)	<0.001		<0.001				
8/30/2022		0.000786 (J)		<0.001					
8/31/2022	0.000646 (J)		<0.001		<0.001				

Page 2

Time Series

Constituent: Cobalt (mg/L) Analysis Run 11/6/2022 9:47 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

GWC-11 GWC-12 GWC-13 GWC-14 GWC-15 GWC-16 9/1/2022 GWC-18 GWC-19 GWC-19 CWC-19 GWC-19 GWC-19

			Grumman Roa	d Landfill Client: S	Southern Company	Data: Grumman Road Landfill
	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
9/29/2000	<0.001					<0.001
11/21/2000	<0.001	<0.001				<0.001
1/20/2001	<0.001	<0.001				<0.001
3/14/2001	<0.001	<0.001				<0.001
7/16/2001	<0.001	<0.001				<0.001
11/1/2001	<0.001	<0.001				<0.001
4/25/2002	<0.001	<0.001				<0.001
8/31/2016		<0.001			0.001 (J)	0.0021 (J)
9/1/2016	0.0046 (J)		<0.001	<0.001		
10/25/2016			<0.001	<0.001		
10/26/2016	0.0046 (J)	0.0011 (J)			0.0009 (J)	
10/27/2016						0.0017 (J)
1/4/2017			<0.001	<0.001	0.0007 (J)	
1/5/2017	0.0062 (J)	<0.001				
1/6/2017						0.0017 (J)
4/4/2017		<0.001	<0.001	<0.001		•
4/5/2017	0.007 (J)					
4/6/2017	()				<0.001	0.0017 (J)
7/11/2017			<0.001		<0.001	· · · · · · · · · · · · · · · · · · ·
7/12/2017						0.0016 (J)
7/13/2017	0.0077 (J)	0.0003 (J)		<0.001		
10/2/2017	0.0077 (0)	0.0000 (0)	<0.001	0.001		
10/3/2017		0.0003 (J)	-0.001	<0.001		
10/4/2017	0.0073 (J)	0.0003 (0)		10.001	0.0007 (J)	0.0015 (J)
1/9/2018	0.0070 (0)			<0.001	0.0007 (0)	0.0010 (0)
1/10/2018		<0.001	<0.001	10.001		
1/11/2018	0.0061 (J)	10.001	10.001		<0.001	0.0017 (J)
7/9/2018	0.0001 (0)		<0.001		-0.001	0.0017 (0)
7/10/2018		<0.001	10.001	<0.001		
7/10/2018	0.0064 (J)	~0.001		\0.001	<0.001	0.0017 (J)
7/11/2018	0.0004 (3)	0.00032 (J)			\0.001	0.0017 (3)
8/27/2019		<0.001			0.00077 (J)	
8/28/2019	0.0023 (J)	\0.001	<0.001	<0.001	0.00077 (3)	0.00099 (J)
10/8/2019	0.0023 (3)		<0.001	<0.001		0.00099 (3)
10/9/2019	0.0024 (1)	<0.001	<0.001	<0.001	<0.001	0.00099 (J)
	0.0024 (J)	<0.001	<0.001	<0.001		0.00099 (3)
4/7/2020	0.0024 (1)	0.00036 (1)	<0.001	<0.001	0.00037 (J)	0.001 (1)
4/8/2020	0.0024 (J) 0.0025 (J)	0.00036 (J)	<0.001	<0.001	<0.001	0.001 (J)
8/18/2020	0.0025 (3)	<0.001	<0.001	<0.001	<0.001	0.001171
8/19/2020		<0.001				0.0011 (J)
9/29/2020	0.0010 (1)	<0.001	-0.004	-0.004	-0.001	
9/30/2020	0.0018 (J)		<0.001	<0.001	<0.001	0.00000 (1)
10/1/2020					0.004	0.00099 (J)
3/10/2021	0.0040 (1)				<0.001	0.00096 (J)
3/11/2021	0.0019 (J)		-0.004			
3/12/2021		10.001	<0.001			
3/15/2021		<0.001		10.001		
3/16/2021				<0.001	.0.004	
9/21/2021	0.0000 (1)	10.001	10.001	-0.004	<0.001	0.00002 (1)
9/22/2021	0.0028 (J)	<0.001	<0.001	<0.001		0.00082 (J)
2/1/2022	0.0036 (J)	.0.001	<0.001	<0.001		0.00000 (1)
2/2/2022		<0.001			10.001	0.00096 (J)
2/3/2022					<0.001	

	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
8/30/2022			<0.001	<0.001		
8/31/2022	0.00358				<0.001	
9/1/2022		<0.001				0.00093 (J)

Constituent: Cobalt (mg/L) Analysis Run 11/6/2022 9:47 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

	MW-23D	MW-24D	MW-25D
3/11/2021	<0.001	<0.001	<0.001
9/22/2021	<0.001	<0.001	
9/23/2021			<0.001
2/1/2022		<0.001	
2/3/2022	<0.001		<0.001
8/31/2022	<0.001		<0.001
9/1/2022		<0.001	

					. ,	
	GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1
8/30/2016		2.72		1.81	2.19	2.36
9/1/2016	11		5.27			
10/24/2016		2.96				
10/25/2016	10.5					2.02
10/26/2016			2.32	2.03	2.67	
1/3/2017		2.76		1.85		
1/4/2017						2.1
1/5/2017					3.74	
1/6/2017	6.81		5.1			
4/3/2017		1.36				
4/4/2017			5			1.39 (U)
4/6/2017	8.93			2.66	2.36	
7/11/2017		1.85				
7/12/2017			2.69	2.1	1.54	1.63
7/13/2017	8.51					
10/2/2017		1.9				
10/3/2017				2	3.63	1.84
10/4/2017	3.85		4.82			
1/9/2018	4.28	2.39			2.07	
1/10/2018				2.55		2.11
1/11/2018			4.48			
7/9/2018		1.49				
7/10/2018				3.14	1.63	1.29
7/11/2018	5.99		2.69			
8/26/2019	6.03	3.03				
8/27/2019			2.97		4.63	2.41
8/28/2019				3.74		
10/7/2019		2.83				
10/8/2019	33.8 (o)					
10/9/2019			2.17	7.23	5.45	3.13
4/6/2020	25.7 (o)	2.83				
4/7/2020			2.44	3.57	6.25	1.97
8/17/2020		2.63				
8/19/2020	5.45		3.1	2.49	4.53	1.91
9/28/2020	22.4 (o)	2.08				1.29
9/30/2020				4.45	6.39	
10/1/2020			2.6			
3/10/2021			2.11	4.67	4.61	1.7
3/11/2021	3.22					
3/12/2021		2.17				
9/21/2021	10.3	0.73 (U)	2.45	3.1	5.07	
9/23/2021		` '				1.48
1/31/2022	8.46 (U)	1.01				
2/2/2022	. ,		3.17		4.79	
2/3/2022				2.65		1
8/30/2022	2.75	1.97	5.57	3.36	3.2	
9/1/2022						0.911(U)

					, ,	
	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16
8/31/2016	2.2	2.61	1.23			
9/1/2016				1.28	2.45	1.99
10/25/2016				1.54	1.04 (U)	1.98
10/26/2016	1.96	3.28	0.641 (U)			
1/4/2017	1.88	3.77				1.72
1/5/2017			0.657 (U)	0.715 (U)	1.36	
4/3/2017					0.697 (U)	
4/4/2017				0.699 (U)		
4/5/2017		3.25				1.72
4/6/2017			0.439 (U)			
4/8/2017	0.893 (U)					
7/10/2017		1.55				
7/11/2017	1.89			1.12	0.754 (U)	
7/12/2017			0.414 (U)			1.11
10/2/2017				0.855 (U)	1.52	
10/3/2017	4.73					2.13
10/4/2017		1.68	1.33			
1/9/2018				0.861 (U)	1.17	
1/10/2018			1.21			1.74
1/11/2018	7.49	2.94				
7/9/2018				0.693 (U)		
7/10/2018					1.26	1.97
7/11/2018	5.88	2.03	1.4 (U)			
8/27/2019	5.09	2.09	1.27	1.32	1.75	
8/28/2019						2.04
10/8/2019	6.39		1.62	1.41	1.52	1.89
10/9/2019		3.11				
4/7/2020	7.87	2.18		1.41	1.82	4.17
4/8/2020			1.08 (U)			
8/17/2020		2.25	1.42			
8/18/2020	6.76			0.731 (U)	1.84	4.24
9/28/2020			1.28			
9/29/2020	8.3	0.845 (U)		0.331 (U)		
9/30/2020		ν-/		ν-/	2.14	2.47
3/10/2021	7.55	1.77				
3/12/2021					0.607 (U)	
3/15/2021			0.769 (U)		ν-/	
3/16/2021				0.0831 (U)		2.15
9/21/2021	4.35	1.24 (U)	2.09	(-)		
9/22/2021	·· ·····	(-)		1.94 (U)		3.06
9/23/2021				(5)	1.64	
2/1/2022						2.73
2/2/2022				0.881 (U)		
2/3/2022	4.04	0.957	1.18	3.501 (0)	0.58 (U)	
8/30/2022	7.07	3.37	1.10	2.62	0.00 (0)	
8/31/2022	6.34	5.57	1.9	2.02	2.88	
9/1/2022	0.04		1.3		2.00	1.64 (U)
31 112022						1.04 (0)

	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
8/31/2016		1.01			5.96	3.3
9/1/2016	5.19		2.21	1.05		
10/25/2016			1.51 (U)	1.2		
10/26/2016	4.25	0.725 (U)			7.42	
10/27/2016						2.7
1/4/2017			2.56	2.11	6.07	
1/5/2017	3.55	0.735 (U)				
1/6/2017						4.45
4/4/2017		0.87 (U)	1.77	2.02		
4/5/2017	4.39					
4/6/2017					3	3.1
7/11/2017			2.76		4.2	
7/12/2017						2.73
7/13/2017	2.44	0.42 (U)		0.576 (U)		
10/2/2017			4.15			
10/3/2017		0.995 (U)		0.86		
10/4/2017	4.95				7.16	8.16
1/9/2018				1.43		
1/10/2018		0.698 (U)	1.96			
1/11/2018	3.53				3.57	2.31
7/9/2018			1.11			
7/10/2018		1.01		1.63		
7/11/2018	3.13				7.57	3.31
8/27/2019		0.787 (U)			7.04	
8/28/2019	2.01		1.13 (U)	1.4 (U)		1.91
10/8/2019				1.88		
10/9/2019	2.91	0.22 (U)	2.28		3.68	3.09
4/7/2020				1.8	7.66	
4/8/2020	2.79	1.13 (U)	4.19			1.92
8/18/2020	3.11	1.09 (U)	6.86	3.27	7.65	
8/19/2020						2.34
9/29/2020		1 (U)				
9/30/2020	3.09		5.62	3.83	2.79	
10/1/2020						3.3
3/10/2021					2.53	2.08
3/11/2021	2.77					
3/12/2021			5.17			
3/15/2021		0.804 (U)				
3/16/2021				2.88		
9/21/2021					1.25 (U)	
9/22/2021	2.36	0.769 (U)	6.84	0.959 (U)		2.08
2/1/2022	2.51		5.11	2.51		
2/2/2022		0.854 (U)				0.967 (U)
2/3/2022					1.4	
8/30/2022	0.70		4.95	2.56	0.07	
8/31/2022	2.72	2.00			3.07	0.05
9/1/2022		2.09				2.35

	MW-23D	MW-24D	MW-25D
3/11/2021	1.55	1.29	0.353 (U)
9/22/2021	1.4	0.982 (U)	
9/23/2021			1.15
2/1/2022		0.36 (U)	
2/3/2022	1.21		0.278 (U)
8/31/2022	1.79		0.645 (U)
9/1/2022		3.54	

	GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1
8/30/2016		0.1 (J)		0.04 (J)	0.09 (J)	0.22 (J)
9/1/2016	<0.1		<0.1			
10/24/2016		0.18 (J)				
10/25/2016	0.07 (J)					<0.1
10/26/2016			0.05 (J)	0.05 (J)	0.24 (J)	
1/3/2017		0.18 (J)	. ,	0.08 (J)	. ,	
1/4/2017		. ,		. ,		0.18 (J)
1/5/2017					0.11 (J)	\-/
1/6/2017	0.2 (J)		0.08 (J)		J (0)	
4/3/2017	0.2 (0)	0.1271	0.00 (0)			
		0.12 (J)	-0.1			~0.1
4/4/2017			<0.1			<0.1
4/6/2017	0.05 (J)			0.006 (J)	0.3	
7/11/2017		0.39				
7/12/2017			0.38	0.05 (J)	0.15 (J)	0.04 (J)
7/13/2017	0.41					
10/2/2017		0.12 (J)				
10/3/2017				0.11 (J)	0.11 (J)	<0.1
10/4/2017	0.04 (J)		<0.1			
1/9/2018	0.46	0.21 (J)			<0.1	
1/10/2018				<0.1		<0.1
1/11/2018			<0.1			
7/9/2018		0.04 (J)				
7/10/2018		. ,		0.2 (J)	<0.1	<0.1
7/11/2018	<0.1		<0.1	- \-/	-	•
1/16/2019	0.49	<0.1	1.2	<0.1	0.053 (J)	<0.1
3/25/2019	0.43 0.21 (J)	0.082 (J)	0.064 (J)	· · ·	0.000 (0)	•••
3/26/2019	0.21(0)	0.002 (0)	0.004 (0)	<0.1	0.046 (J)	0.051 (J)
	-0.1	0.12		~ 0.1	0.040 (3)	0.031 (0)
8/26/2019	<0.1	0.13	0.004 ())		0.42 ())	-0.4
8/27/2019			0.031 (J)		0.13 (J)	<0.1
8/28/2019				0.097 (J)		
10/7/2019		<0.1				
10/8/2019	<0.1					
10/9/2019			<0.1	<0.1	<0.1	<0.1
4/6/2020	0.13 (J)	0.089 (J)				
4/7/2020			<0.1	<0.1	<0.1	<0.1
8/17/2020		0.079 (J)				
8/19/2020	0.21		0.17	<0.1	<0.1	<0.1
9/28/2020	0.069 (J)	<0.1				<0.1
9/30/2020	` '			<0.1	<0.1	
10/1/2020			<0.1		-	
3/10/2021			<0.1	<0.1	<0.1	<0.1
	-0.1		~ 0. i	~ 0.1	~ 0.1	~ 0.1
3/11/2021	<0.1	0.007 (1)				
3/12/2021		0.087 (J)				
9/21/2021	0.077 (J)	0.068 (J)	<0.1	<0.1	<0.1	
9/23/2021						<0.1
1/31/2022	<0.1	0.09 (J)				
			-0.1		<0.1	
2/2/2022			<0.1			
			<0.1	0.081 (J)		<0.1
2/2/2022	0.0391 (J)	0.0759 (J)	<0.1	0.081 (J) 0.0428 (J)	<0.1	<0.1

	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16
8/31/2016	<0.1	0.7	<0.1			
9/1/2016				0.25 (J)	<0.1	0.55
10/25/2016				0.43	0.5	0.36
10/26/2016	<0.1	0.91	0.55			
1/4/2017	<0.1	0.51				0.1 (J)
1/5/2017			0.09 (J)	0.21 (J)	0.22 (J)	
4/3/2017					<0.1	
4/4/2017				0.45		
4/5/2017		0.71				0.2 (J)
4/6/2017	<0.1		<0.1			
7/10/2017		0.88				
7/11/2017	<0.1			0.41	0.06 (J)	
7/12/2017			<0.1		(4)	0.04 (J)
10/2/2017				<0.1	<0.1	(-)
10/3/2017	<0.1			-0.1	-0.1	0.86
10/3/2017	-0.1	0.37	<0.1			
1/9/2018		0.37	NO. 1	<0.1	<0.1	
			-0.1	> 0.1	~ 0.1	-0.1
1/10/2018	-0.1	1.4	<0.1			<0.1
1/11/2018	<0.1	1.4		-0.4		
7/9/2018				<0.1	2.47.40	
7/10/2018					0.15 (J)	<0.1
7/11/2018	<0.1	0.62	<0.1			
1/16/2019			<0.1	<0.1		
1/17/2019	<0.1	1.2			<0.1	<0.1
3/26/2019			0.052 (J)	0.13 (J)	0.13 (J)	0.11 (J)
3/27/2019	<0.1	0.036 (J)				
8/27/2019	<0.1	0.3	<0.1	<0.1	<0.1	
8/28/2019						<0.1
10/8/2019	<0.1		<0.1	<0.1	<0.1	<0.1
10/9/2019		<0.1				
4/7/2020	<0.1	0.27 (J)		<0.1	<0.1	<0.1
4/8/2020			<0.1			
8/17/2020		0.19	<0.1			
8/18/2020	<0.1			<0.1	<0.1	<0.1
9/28/2020			<0.1			
9/29/2020	<0.1	0.16		<0.1		
9/30/2020					<0.1	<0.1
3/10/2021	<0.1	0.14				
3/12/2021					<0.1	
3/15/2021			<0.1			
3/16/2021			-	<0.1		<0.1
9/21/2021	<0.1	0.31	<0.1			
9/22/2021				<0.1		<0.1
9/23/2021				•	<0.1	
2/1/2022					-U. I	<0.1
				<0.1		-0.1
2/2/2022	-0.1	0.26	-0.1	<0.1	-0.1	
2/3/2022	<0.1	0.36	<0.1	-0.4	<0.1	
8/30/2022	.0.4	0.273	0.051 (1)	<0.1	<0.1	
0/04/0000					<11 T	
8/31/2022 9/1/2022	<0.1		0.051 (J)		-0.1	0.0374 (J)

			Gruiiiiiaii Noa	u Lanumii Chem. C	Southern Company	Data. Gruffillari Noau Lariuliii
	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
8/31/2016		0.07 (J)			0.04 (J)	0.55
9/1/2016	0.68		<0.1	<0.1		
10/25/2016			<0.1	<0.1		
10/26/2016	0.68	0.62			0.12 (J)	
10/27/2016					-	0.26 (J)
1/4/2017			0.04 (J)	<0.1	0.06 (J)	• •
1/5/2017	0.73	0.17 (J)	. ,		, ,	
1/6/2017		. ,				0.25 (J)
4/4/2017		0.08 (J)	0.02 (J)	<0.1		
4/5/2017	1.6	(-)	(3)			
4/6/2017					<0.1	0.16 (J)
7/11/2017			0.14 (J)		0.03 (J)	
7/12/2017			0.14 (0)		0.00 (0)	0.2 (J)
7/13/2017	1.7	0.06 (J)		<0.1		0.2 (0)
10/2/2017	1.7	0.00 (3)	<0.1	~0.1		
		0.06 (1)	<0.1	-0.1		
10/3/2017 10/4/2017	1 0	0.06 (J)		<0.1	0.1271	0.22 (1)
	1.8			-0.1	0.12 (J)	0.22 (J)
1/9/2018		-0.4	-0.4	<0.1		
1/10/2018		<0.1	<0.1			
1/11/2018	1.5		.0.4		<0.1	0.98
7/9/2018			<0.1			
7/10/2018		<0.1		<0.1		
7/11/2018	1.8				<0.1	0.14 (J)
1/16/2019	1.4					
1/17/2019				<0.1		
1/18/2019					<0.1	0.24 (J)
1/21/2019		<0.1	<0.1			
3/25/2019			0.043 (J)			
3/26/2019	0.89			0.071 (J)		
3/27/2019					<0.1	0.13 (J)
7/30/2019		0.083 (J)				
8/27/2019		<0.1			0.1	
8/28/2019	0.61		<0.1	<0.1		0.088 (J)
10/8/2019				<0.1		
10/9/2019	<0.1	<0.1	<0.1		<0.1	0.068 (J)
4/7/2020				<0.1	<0.1	
4/8/2020	0.55	<0.1	<0.1			0.058 (J)
8/18/2020	0.51	<0.1	<0.1	<0.1	<0.1	
8/19/2020						0.092 (J)
9/29/2020		<0.1				
9/30/2020	0.15		<0.1	<0.1	<0.1	
10/1/2020						<0.1
3/10/2021					<0.1	0.066 (J)
3/11/2021	0.42					
3/12/2021			<0.1			
3/15/2021		<0.1				
3/16/2021				<0.1		
9/21/2021				-0.1	<0.1	
9/22/2021	0.79	<0.1	<0.1	<0.1	-0.1	0.13
2/1/2022	0.68	-0.1	<0.1	<0.1		55
2/1/2022	5.00	<0.1	30.1	30.1		<0.1
2/3/2022		~ 0.1			<0.1	~0.1
21312022					50.1	

	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
8/30/2022			<0.1	<0.1		
8/31/2022	0.442				<0.1	
9/1/2022		<0.1				0.0783 (J)

Constituent: Fluoride (mg/L) Analysis Run 11/6/2022 9:47 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

	MW-23D	MW-24D	MW-25D
1/20/2021			0.11
1/21/2021	<0.1	<0.1	
3/11/2021	<0.1	<0.1	0.12
9/22/2021	<0.1	<0.1	
9/23/2021			0.096 (J)
2/1/2022		<0.1	
2/3/2022	<0.1		0.077 (J)
8/31/2022	0.0791 (J)		0.187
9/1/2022		<0.1	

Constituent: Lead (mg/L) Analysis Run 11/6/2022 9:47 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill GWA-7 (bg) GWA-8 (bg) GWB-4R GWB-5R GWB-6R GWC-1 9/29/2000 <0.002 <0.002 0.0083 0.017 (O) <0.002 <0.002 0.0052 11/21/2000 <0.002 < 0.002 < 0.002 <0.002 1/20/2001 <0.002 < 0.002 < 0.002 0.011 <0.002 <0.002 3/14/2001 <0.002 <0.002 <0.002 0.026 (O) <0.002 <0.002 7/16/2001 <0.002 <0.002 0.011 0.043 (O) <0.002 <0.002 11/1/2001 <0.002 <0.002 <0.002 0.075 (O) <0.002 <0.002 4/25/2002 <0.002 <0.002 <0.002 <0.002 <0.002 < 0.002 11/20/2002 <0.002 0.018 (O) 0.057 (O) 0.0057 (J) <0.002 6/6/2003 0.037 (O) 0.016 (O) 0.015 (O) 0.16 (O) 0.013 <0.002 0.008 12/12/2003 0.0095 0.0072 < 0.002 < 0.002 <0.002 5/26/2004 <0.002 <0.002 0.0055 0.011 <0.002 <0.002 0.038 (O) 12/7/2004 <0.002 < 0.002 < 0.002 <0.002 <0.002 <0.002 6/21/2005 < 0.002 < 0.002 0.036 (O) < 0.002 <0.002 12/12/2005 <0.002 <0.002 <0.002 < 0.002 <0.002 <0.002 4/4/2006 <0.002 6/27/2006 <0.002 <0.002 0.024 (O) < 0.002 <0.002 <0.002 8/30/2006 <0.002 12/4/2006 <0.002 <0.002 0.023 (O) <0.002 <0.002 <0.002 2/15/2007 <0.002 6/23/2007 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 9/11/2007 <0.002 12/11/2007 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 3/11/2008 < 0.002 6/23/2008 <0.002 < 0.002 6/24/2008 0.02(O) <0.002 0.02 <0.002 11/3/2008 <0.002 <0.002 <0.002 12/4/2008 <0.002 <0.002 <0.002 <0.002 12/5/2008 3/25/2009 <0.002 7/7/2009 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 9/14/2009 12/20/2009 <0.002 <0.002 <0.002 12/21/2009 <0.002 <0.002 <0.002 3/4/2010 < 0.002 6/20/2010 <0.002 < 0.002 < 0.002 < 0.002 <0.002 6/21/2010 <0.002 9/14/2010 <0.002 <0.002 <0.002 1/6/2011 <0.002 <0.002 <0.002 1/7/2011 <0.002 <0.002 4/15/2011 7/7/2011 <0.002 <0.002 <0.002 <0.002 <0.002 7/8/2011 <0.002 9/25/2011 < 0.002 1/17/2012 <0.002 <0.002 <0.002 <0.002 1/18/2012 <0.002 <0.002 4/4/2012 <0.002 7/9/2012 <0.002 <0.002 <0.002 7/10/2012 <0.002 <0.002 <0.002 10/9/2012 <0.002 1/17/2013 <0.002 <0.002 1/18/2013 <0.002 <0.002 <0.002 < 0.002 4/5/2013 <0.002

		GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1	
7/16/2	2013	(0)	(0,		<0.002		<0.002	
7/17/2		<0.002	<0.002	<0.002		<0.002		
10/11/			<0.002					
1/13/2		0.013			<0.002		<0.002	
1/14/2			<0.002	0.005		<0.002		
4/3/20			<0.002					
7/9/20		0.0076 (J)	<0.002	<0.002	<0.002	<0.002	<0.002	
10/24/		. ,	<0.002					
1/12/2				<0.002				
1/13/2		0.0057 (J)			<0.002		<0.002	
1/14/2		. ,	<0.002			<0.002		
5/10/2			<0.002					
7/16/2		0.009 (J)		<0.002	<0.002		<0.002	
7/17/2		0.000 (0)	<0.002	0.002	0.002	<0.002	3.032	
10/6/2			<0.002			0.002		
1/17/2			0.002				<0.002	
1/18/2		0.0094 (J)	<0.002	0.0055 (J)	<0.002	<0.002	0.002	
4/26/2		0.0004 (0)	<0.002	0.0000 (0)	-0.002	-0.002		
7/27/2		0.0058	-0.002		<0.002		<0.002	
7/28/2		0.0030	<0.002		10.002	<0.002	10.002	
7/29/2			10.002	0.003 (J)		10.002		
8/30/2			<0.002	0.003 (3)	<0.002	<0.002	<0.002	
9/1/20		0.0663 (O)	~0.002	0.0166 (O)	~0.002	~0.002	V0.002	
10/24/		0.0003 (O)	<0.002	0.0100 (O)				
10/24/		0.0003 (1)	~0.002				<0.002	
10/25/		0.0003 (J)		0.0057	0.0002 (J)	<0.002	V0.002	
1/3/20			0.0001 (J)	0.0037	0.0002 (J) 0.0001 (J)	\0.002		
1/4/20			0.0001 (3)		0.0001 (3)		<0.002	
1/5/20						0.0003 (J)	V0.002	
1/6/20		0.006		0.0053		0.0003 (3)		
4/3/20		0.000	0.0002 (J)	0.0033				
4/4/20			0.0002 (3)	0.0092			<0.002	
4/6/20		0.0109		0.0032	0.0003 (J)	0.0002 (J)	10.002	
7/11/2		0.0103	0.0001 (J)		0.0003 (3)	0.0002 (3)		
7/11/2			0.0001 (3)	0.006	0.0002 (J)	0.0002 (J)	<0.002	
7/12/2		0.007		0.000	0.0002 (3)	0.0002 (0)	10.002	
10/2/2		0.007	0.0001 (J)					
10/2/2			0.0001 (3)		0.0002 (J)	0.0001 (J)	<0.002	
10/4/2		0.0042 (J)		0.0057	0.0002 (3)	0.0001 (0)	10.00Z	
1/9/20		0.0042 (3)	0.0001 (J)	0.0037		0.0003 (J)		
1/10/2		3.0030	0.0001 (0)		0.0003 (J)	0.0003 (3)	0.0001 (J)	
1/10/2				0.0085	0.0003 (3)		5.5551 (0)	
7/9/20			<0.002	0.0000				
7/10/2			~U.UUZ		<0.002	<0.002	<0.002	
7/10/2		0.0028 (J)		0.0029 (J)	~0.002	~U.UUZ	-V.VVL	
1/16/2		<0.0028 (3) <0.025 (O)	<0.002	<0.0029 (3)	<0.002	<0.002	<0.002	
3/25/2			<0.002	<0.002	~0.002	~U.UUZ	-V.VVL	
3/26/2		0.0019 (J)	~U.UUZ	~U.UUZ	<0.002	<0.002	<0.002	
8/26/2		0.013 (J)	<0.002		~ 0.002	~ 0.00∠	~U.UUZ	
8/27/2		0.013 (J)	~ 0.00∠	0.001 (J)		0.0011 (J)	<0.002	
8/28/2				0.001 (3)	0.0011 (J)	0.0011(3)	-V.VVL	
10/7/2			<0.002		0.0011 (3)			
10///2	_010		~0.00Z					

	GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1
10/8/2019	0.0098 (J)					
10/9/2019			0.00041 (J)	0.0025 (J)	0.00033 (J)	<0.002
4/6/2020	0.0024 (J)	0.0001 (J)				
4/7/2020			0.00073 (J)	0.0014 (J)	0.00063 (J)	0.00012 (J)
8/17/2020		<0.002				
8/19/2020	0.0044 (J)		0.00048 (J)	7.9E-05 (J)	0.00014 (J)	<0.002
9/28/2020	0.0043 (J)	<0.002				4.3E-05 (J)
9/30/2020				0.0012 (J)	8E-05 (J)	
10/1/2020			0.00026 (J)			
3/10/2021			0.0003 (J)	5.2E-05 (J)	9.6E-05 (J)	0.0001 (J)
3/11/2021	0.0079					
3/12/2021		9.3E-05 (J)				
9/21/2021	<0.002	<0.002	<0.002	<0.002	<0.002	
9/23/2021						<0.002
1/31/2022	<0.002	<0.002				
2/2/2022			<0.002		<0.002	
2/3/2022				<0.002		<0.002
8/30/2022	0.0022	<0.002	<0.002	<0.002	<0.002	
9/1/2022						<0.002

					,	
	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16
9/29/2000	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
11/21/2000	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
1/20/2001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
3/14/2001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
7/16/2001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
11/1/2001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
4/25/2002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
11/20/2002	<0.002	<0.002	<0.002	0.011 (O)	<0.002	<0.002
6/6/2003	0.0068	<0.002	0.0078	<0.002	<0.002	0.099 (O)
12/12/2003	<0.002	<0.002	0.0055	<0.002	0.0065	0.017 (O)
5/26/2004	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
12/7/2004	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
6/21/2005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
12/12/2005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
4/4/2006				<0.002		<0.002
6/27/2006	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
8/30/2006				<0.002		<0.002
12/4/2006	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
2/15/2007				<0.002		<0.002
6/23/2007	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
9/11/2007				<0.002		<0.002
12/11/2007	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
3/11/2008				<0.002		<0.002
6/23/2008	<0.002	<0.002	<0.002			
6/24/2008				<0.002	<0.002	<0.002
11/3/2008				<0.002		<0.002
12/4/2008	<0.002	<0.002	<0.002	<0.002		
12/5/2008					<0.002	<0.002
3/25/2009				<0.002		<0.002
7/8/2009	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
9/14/2009				<0.002		<0.002
12/20/2009				<0.002	<0.002	<0.002
12/21/2009	<0.002	<0.002	<0.002			
3/4/2010				<0.002		<0.002
6/20/2010	<0.002	<0.002	<0.002	<0.002	<0.002	
6/21/2010						<0.002
9/14/2010				<0.002		<0.002
1/6/2011	<0.002		<0.002			
1/7/2011		<0.002		<0.002	<0.002	<0.002
4/15/2011				<0.002		<0.002
7/7/2011	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
9/25/2011				<0.002		<0.002
1/17/2012	<0.002	<0.002	<0.002	<0.002	<0.002	
1/18/2012						<0.002
4/4/2012				<0.002		<0.002
7/9/2012	<0.002	<0.002	<0.002	<0.002	<0.002	
7/10/2012						<0.002
10/9/2012				<0.002		<0.002
1/17/2013	<0.002	<0.002	<0.002			
1/18/2013				<0.002	<0.002	<0.002
4/5/2013				<0.002		<0.002
7/16/2013	<0.002	<0.002	<0.002			

	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16	
7/17/2013				<0.002	<0.002	<0.002	
10/11/2013				<0.002		<0.002	
1/13/2014	<0.002	0.004	<0.002		<0.002		
1/14/2014				<0.002		<0.002	
4/3/2014				<0.002		<0.002	
7/8/2014	<0.002	<0.002	<0.002				
7/9/2014				<0.002	<0.002	<0.002	
10/24/2014				<0.002	0.002	<0.002	
1/13/2015	<0.002	<0.002	<0.002	-0.002	<0.002	0.002	
1/14/2015	40.002	10.002	10.002	<0.002	10.00 <u>2</u>	<0.002	
5/10/2015				<0.002		0.002	
5/11/2015				10.002		<0.002	
7/16/2015	<0.002	0.0044 (1)	<0.002		<0.002	<0.002	
	<0.002	0.0044 (J)	<0.002	<0.000	<0.002	VU.UUZ	
7/17/2015				<0.002	-0.000	40,000	
1/17/2016		0.000471		<0.002	<0.002	<0.002	
1/18/2016	-0.000	0.0034 (J)	<0.002				
1/19/2016	<0.002			-0.000		40.000	
4/26/2016	0.00017.0		0.055	<0.002		<0.002	
7/26/2016	0.0001 (J)	0.0001.11	<0.002	.0.000	.0.055		
7/27/2016		0.0001 (J)		<0.002	<0.002		
7/28/2016						<0.002	
8/31/2016	0.0002 (J)	0.0001 (J)	<0.002				
9/1/2016				<0.002	<0.002	<0.002	
10/25/2016				<0.002	<0.002	0.0002 (J)	
10/26/2016	0.0001 (J)	0.0001 (J)	<0.002				
1/4/2017	0.0002 (J)	<0.002				0.0001 (J)	
1/5/2017			0.0002 (J)	<0.002	<0.002		
4/3/2017					0.0003 (J)		
4/4/2017				0.0001 (J)			
4/5/2017		0.0003 (J)				0.0002 (J)	
4/6/2017	0.0003 (J)		0.0005 (J)				
7/10/2017		0.0003 (J)					
7/11/2017	0.0002 (J)			8E-05 (J)	0.0001 (J)		
7/12/2017			0.0005 (J)			0.0001 (J)	
10/2/2017				0.0001 (J)	0.0002 (J)		
10/3/2017	0.0003 (J)					0.0001 (J)	
10/4/2017		0.0001 (J)	0.0007 (J)				
1/9/2018				<0.002	0.0002 (J)		
1/10/2018			0.0009 (J)			0.0002 (J)	
1/11/2018	0.0003 (J)	0.0002 (J)					
7/9/2018				<0.002			
7/10/2018					<0.002	<0.002	
7/11/2018	<0.002	<0.002	0.0015 (J)				
1/16/2019			0.00061 (J)	<0.002			
1/17/2019	0.00028 (J)	<0.002	(-)	-	<0.002	<0.002	
3/26/2019		-	<0.002	<0.002	<0.002	<0.002	
3/27/2019	0.00029 (J)	<0.002	002		002		
8/27/2019	0.00023 (J) 0.00021 (J)	<0.002	0.0001 (J)	0.00051 (J)	0.00033 (J)		
8/28/2019	0.00021(0)	~U.UUZ	0.0001 (0)	0.00001 (0)	0.00000 (0)	0.0001 (J)	
10/8/2019	U UUU36 (I)		0.0001271	<0.002	0.0001271		
	0.00028 (J)	6 6E 0F (1)	0.00013 (J)	~U.UUZ	0.00012 (J)	0.0001 (J)	
10/9/2019		6.6E-05 (J)					
4/7/2020	0.00036 (J)	8.1E-05 (J)		< 0.002	8.6E-05 (J)	0.00023 (J)	

	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16
4/8/2020			0.00017 (J)			
8/17/2020		4.9E-05 (J)	7.6E-05 (J)			
8/18/2020	0.00035 (J)			<0.002	9E-05 (J)	0.00017 (J)
9/28/2020			6.4E-05 (J)			
9/29/2020	0.00032 (J)	3.7E-05 (J)		<0.002		
9/30/2020					4.7E-05 (J)	9.1E-05 (J)
3/10/2021	0.00042 (J)	6.8E-05 (J)				
3/12/2021					5.3E-05 (J)	
3/15/2021			0.00013 (J)			
3/16/2021				<0.002		7.3E-05 (J)
9/21/2021	<0.002	<0.002	<0.002			
9/22/2021				<0.002		<0.002
9/23/2021					<0.002	
2/1/2022						<0.002
2/2/2022				<0.002		
2/3/2022	<0.002	<0.002	<0.002		<0.002	
8/30/2022		<0.002		<0.002		
8/31/2022	<0.002		<0.002		<0.002	
9/1/2022						<0.002

Constituent: Lead (mg/L) Analysis Run 11/6/2022 9:47 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
9/29/2000	<0.002					<0.002
11/21/2000	<0.002	0.0069				<0.002
1/20/2001	<0.002	<0.002				<0.002
3/14/2001	<0.002	<0.002				<0.002
7/16/2001	<0.002	<0.002				<0.002
11/1/2001	<0.002	<0.002				<0.002
4/25/2002	<0.002	<0.002				<0.002
11/20/2002	<0.002	<0.002				0.0086 (O)
6/6/2003	<0.002	<0.002				<0.002
12/12/2003	<0.002	<0.002				<0.002
5/26/2004	<0.002	<0.002				<0.002
12/7/2004	<0.002	<0.002				0.0051
6/21/2005	<0.002	<0.002				<0.002
12/12/2005	<0.002	<0.002				<0.002
6/27/2006	<0.002	<0.002				<0.002
12/4/2006	<0.002	<0.002				<0.002
6/23/2007	<0.002	<0.002				<0.002
12/11/2007	<0.002	<0.002				<0.002
6/23/2008						<0.002
6/24/2008	<0.002	<0.002				
12/4/2008		<0.002				<0.002
12/5/2008	<0.002					
7/8/2009	<0.002	<0.002				<0.002
12/20/2009		<0.002				
12/21/2009	<0.002					<0.002
6/20/2010		<0.002				<0.002
6/21/2010	<0.002		<0.002	<0.002	<0.002	
1/6/2011		<0.002				
1/7/2011	<0.002		<0.002	<0.002	<0.002	<0.002
7/7/2011			<0.002			
7/8/2011	<0.002		<0.002	<0.002	<0.002	<0.002
1/17/2012		<0.002				
1/18/2012	<0.002		<0.002	<0.002	<0.002	<0.002
7/9/2012		<0.002				
7/10/2012	<0.002		<0.002	<0.002	<0.002	<0.002
1/17/2013		<0.002				
1/18/2013	<0.002		<0.002	<0.002	<0.002	<0.002
7/17/2013	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
1/13/2014		<0.002				
1/14/2014	<0.002		<0.002	<0.002	<0.002	<0.002
7/9/2014	<0.002	<0.002		<0.002		<0.002
7/10/2014			<0.002		<0.002	
1/12/2015			<0.002			
1/13/2015		<0.002				
1/14/2015	<0.002			<0.002	<0.002	<0.002
7/16/2015		<0.002				
7/17/2015				<0.002		<0.002
7/18/2015	<0.002		<0.002		<0.002	
1/17/2016		<0.002	<0.002	<0.002		
1/18/2016	<0.002				<0.002	<0.002
7/27/2016		<0.002				
7/28/2016			<0.002	<0.002		<0.002

					,	
	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
7/29/2016	<0.002				0.0004 (J)	
8/31/2016		<0.002			0.0003 (J)	0.0007 (J)
9/1/2016	<0.002		<0.002	<0.002		
10/25/2016			0.0001 (J)	<0.002		
10/26/2016	<0.002	<0.002			0.0003 (J)	
10/27/2016						<0.002
1/4/2017			<0.002	<0.002	0.0003 (J)	
1/5/2017	<0.002	<0.002				
1/6/2017						<0.002
4/4/2017		0.0002 (J)	7E-05 (J)	9E-05 (J)		
4/5/2017	0.0009 (J)	()	. ,	. ,		
4/6/2017	(-,				0.0003 (J)	0.0001 (J)
7/11/2017			<0.002		0.0002 (J)	
7/12/2017					(0)	<0.002
7/13/2017	<0.002	0.0003 (J)		7E-05 (J)		0.002
10/2/2017	10.002	0.0000 (0)	<0.002	72 00 (0)		
10/3/2017		<0.002	10.002	0.0001 (J)		
10/3/2017	0.0001 / 1)	~0.002		0.0001 (3)	0.0008 (1)	0E 0E / I)
	0.0001 (J)			0E 0E (I)	0.0008 (J)	9E-05 (J)
1/9/2018		05.05.(1)	0.0000 (1)	9E-05 (J)		
1/10/2018	0.0004 (1)	8E-05 (J)	0.0002 (J)		0.0000 (1)	0.0000 (1)
1/11/2018	0.0001 (J)				0.0009 (J)	0.0002 (J)
7/9/2018			<0.002			
7/10/2018		<0.002		<0.002		
7/11/2018	<0.002				0.001 (J)	<0.002
1/16/2019	<0.002					
1/17/2019				<0.002		
1/18/2019					0.0012 (J)	<0.002
1/21/2019		<0.002	<0.002			
3/25/2019			<0.002			
3/26/2019	<0.002			<0.002		
3/27/2019					0.00047 (J)	<0.002
7/30/2019		0.0002 (J)				
8/27/2019		<0.002			0.003 (J)	
8/28/2019	<0.002		6.5E-05 (J)	0.00018 (J)		6.1E-05 (J)
10/8/2019				0.00016 (J)		
10/9/2019	0.00015 (J)	6.4E-05 (J)	0.00018 (J)		0.00032 (J)	<0.002
4/7/2020				<0.002	0.00067 (J)	
4/8/2020	8.4E-05 (J)	<0.002	<0.002			0.00021 (J)
8/18/2020	0.00014 (J)	<0.002	<0.002	0.00027 (J)	0.00072 (J)	
8/19/2020						9.6E-05 (J)
9/29/2020		<0.002				
9/30/2020	6E-05 (J)		<0.002	5.4E-05 (J)	0.00023 (J)	
10/1/2020						3.8E-05 (J)
3/10/2021					0.00016 (J)	0.00012 (J)
3/11/2021	0.00019 (J)					
3/12/2021			<0.002			
3/15/2021		4.1E-05 (J)				
3/16/2021		(-)		<0.002		
9/21/2021					<0.002	
9/22/2021	<0.002	<0.002	<0.002	<0.002		<0.002
2/1/2022	<0.002		<0.002	<0.002		
2/2/2022	-	<0.002				<0.002

	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
2/3/2022					<0.002	
8/30/2022			<0.002	<0.002		
8/31/2022	<0.002				<0.002	
9/1/2022		<0.002				<0.002

Constituent: Lead (mg/L) Analysis Run 11/6/2022 9:47 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

	MW-23D	MW-24D	MW-25D
3/11/2021	5.7E-05 (J)	9.4E-05 (J)	9.5E-05 (J)
9/22/2021	<0.002	<0.002	
9/23/2021			<0.002
2/1/2022		<0.002	
2/3/2022	<0.002		<0.002
8/31/2022	<0.002		<0.002
9/1/2022		<0.002	

					. ,	
	GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1
8/30/2016		<0.03		0.0042 (J)	<0.03	<0.03
9/1/2016	<0.03		0.0092 (J)	.,		
10/24/2016		<0.03				
10/25/2016	<0.03					<0.03
10/26/2016			0.0046 (J)	<0.03	<0.03	
1/3/2017		<0.03		0.0024 (J)		
1/4/2017						<0.03
1/5/2017					<0.03	
1/6/2017	<0.03		0.0042 (J)			
4/3/2017		<0.03				
4/4/2017			0.0056 (J)			<0.03
4/6/2017	<0.03			0.0051 (J)	<0.03	
7/11/2017		<0.03				
7/12/2017			0.0035 (J)	0.0031 (J)	<0.03	<0.03
7/13/2017	<0.03					
10/2/2017		<0.03				
10/3/2017				0.0027 (J)	<0.03	<0.03
10/4/2017	<0.03		0.0041 (J)			
1/9/2018	<0.03	<0.03			<0.03	
1/10/2018				0.0041 (J)		<0.03
1/11/2018			0.0052 (J)			
7/9/2018		0.001 (J)				
7/10/2018				0.005 (J)	<0.03	<0.03
7/11/2018	<0.03		0.0039 (J)			
8/26/2019	<0.03	0.0012 (J)				
8/27/2019			0.013 (J)		<0.03	<0.03
8/28/2019				<0.03		
10/7/2019		0.0012 (J)				
10/8/2019	<0.03					
10/9/2019			0.013 (J)	<0.03	<0.03	<0.03
4/6/2020	<0.03	0.00086 (J)				
4/7/2020			0.014 (J)	<0.03	<0.03	<0.03
8/17/2020		0.001 (J)				
8/19/2020	<0.03		0.014 (J)	<0.03	<0.03	<0.03
9/28/2020	<0.03	0.001 (J)				<0.03
9/30/2020				<0.03	<0.03	
10/1/2020			0.013 (J)			
3/10/2021			0.012 (J)	<0.03	<0.03	<0.03
3/11/2021	<0.03					
3/12/2021		0.0013 (J)				
9/21/2021	<0.03	0.00092 (J)	0.016 (J)	<0.03	<0.03	
9/23/2021						<0.03
1/31/2022	<0.03	0.00091 (J)				
2/2/2022			0.015 (J)		<0.03	
2/3/2022				<0.03		<0.03
8/30/2022	<0.03	<0.03	0.0175	<0.03	<0.03	
9/1/2022						<0.03

			Grumman Road L	andilli Client: 50u	thern Company I	Data: Grumman Road Landiiii
	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16
8/31/2016	<0.03	<0.03	<0.03			
9/1/2016				<0.03	<0.03	<0.03
10/25/2016				<0.03	<0.03	<0.03
10/26/2016	<0.03	<0.03	<0.03			
1/4/2017	<0.03	<0.03				<0.03
1/5/2017			<0.03	<0.03	<0.03	
4/3/2017					<0.03	
4/4/2017				<0.03		
4/5/2017		0.0012 (J)				<0.03
4/6/2017	<0.03		<0.03			
7/10/2017		<0.03				
7/11/2017	<0.03			<0.03	<0.03	
7/12/2017			<0.03			<0.03
10/2/2017				<0.03	<0.03	
10/3/2017	<0.03					<0.03
10/4/2017		<0.03	<0.03			
1/9/2018				<0.03	<0.03	
1/10/2018			<0.03			<0.03
1/11/2018	<0.03	<0.03				
7/9/2018				<0.03		
7/10/2018					<0.03	<0.03
7/11/2018	<0.03	0.00098 (J)	<0.03			
8/27/2019	<0.03	0.00094 (J)	<0.03	<0.03	<0.03	
8/28/2019						<0.03
10/8/2019	<0.03		<0.03	<0.03	<0.03	<0.03
10/9/2019		0.0011 (J)				
4/7/2020	<0.03	0.00094 (J)		<0.03	<0.03	<0.03
4/8/2020			<0.03			
8/17/2020		0.00091 (J)	<0.03			
8/18/2020	<0.03			<0.03	<0.03	<0.03
9/28/2020			<0.03			
9/29/2020	<0.03	0.00086 (J)		<0.03		
9/30/2020					<0.03	<0.03
3/10/2021	<0.03	0.00095 (J)				
3/12/2021					<0.03	
3/15/2021			<0.03			
3/16/2021				<0.03		<0.03
9/21/2021	<0.03	0.00091 (J)	0.00087 (J)			
9/22/2021				<0.03		<0.03
9/23/2021					<0.03	
2/1/2022						<0.03
2/2/2022				<0.03		
2/3/2022	<0.03	0.001 (J)	0.00077 (J)		<0.03	
8/30/2022		<0.03		<0.03		
8/31/2022	<0.03		<0.03		<0.03	
9/1/2022						<0.03

			Graninan Noad L	andilii Cilent. 000	unern Company L	Sata. Gramman Noad Eandini
	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
8/31/2016		<0.03			<0.03	<0.05 (O)
9/1/2016	0.0066 (J)		<0.03	<0.03		
10/25/2016			<0.03	<0.03		
10/26/2016	0.0065 (J)	<0.03			<0.03	
10/27/2016						0.0023 (J)
1/4/2017			<0.03	<0.03	<0.03	• •
1/5/2017	0.0062 (J)	<0.03				
1/6/2017						0.0021 (J)
4/4/2017		<0.03	<0.03	<0.03		
4/5/2017	0.007 (J)					
4/6/2017	, ,				<0.03	0.0021 (J)
7/11/2017			<0.03		<0.03	• •
7/12/2017						0.0017 (J)
7/13/2017	0.0069 (J)	<0.03		<0.03		• •
10/2/2017	,		<0.03			
10/3/2017		<0.03		<0.03		
10/4/2017	0.0082 (J)				<0.03	0.0021 (J)
1/9/2018	. ,			<0.03		• •
1/10/2018		<0.03	<0.03			
1/11/2018	0.0061 (J)				<0.03	0.0022 (J)
7/9/2018	(-)		<0.03			
7/10/2018		<0.03		<0.03		
7/11/2018	0.0075 (J)				<0.03	0.0019 (J)
7/30/2019		<0.03				
8/27/2019		<0.03			<0.03	
8/28/2019	0.0041 (J)		<0.03	<0.03		0.0018 (J)
10/8/2019	. ,			<0.03		• •
10/9/2019	0.0046 (J)	<0.03	<0.03		<0.03	0.0018 (J)
4/7/2020	, ,			<0.03	<0.03	•
4/8/2020	0.0051 (J)	<0.03	<0.03			0.0018 (J)
8/18/2020	0.0065 (J)	<0.03	<0.03	<0.03	<0.03	•
8/19/2020						0.0019 (J)
9/29/2020		<0.03				
9/30/2020	0.0041 (J)		<0.03	<0.03	<0.03	
10/1/2020						0.0019 (J)
3/10/2021					<0.03	0.0018 (J)
3/11/2021	0.0036 (J)					
3/12/2021			<0.03			
3/15/2021		<0.03				
3/16/2021				<0.03		
9/21/2021					<0.03	
9/22/2021	0.005 (J)	<0.03	<0.03	<0.03		0.0015 (J)
2/1/2022	0.0061 (J)		<0.03	<0.03		
2/2/2022		<0.03				0.0017 (J)
2/3/2022					<0.03	
8/30/2022			<0.03	<0.03		
8/31/2022	0.00688 (J)				<0.03	
9/1/2022		<0.03				<0.03

Constituent: Lithium (mg/L) Analysis Run 11/6/2022 9:47 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

	MW-23D	MW-24D	MW-25D
3/11/2021	<0.03	<0.03	<0.03
9/22/2021	<0.03	<0.03	
9/23/2021			<0.03
2/1/2022		<0.03	
2/3/2022	<0.03		<0.03
8/31/2022	<0.03		<0.03
9/1/2022		< 0.03	

Constituent: Mercury (mg/L) Analysis Run 11/6/2022 9:47 AM

				distituent. Mercury (i			
			Grumman Roa	ad Landfill Client:	Southern Company	Data: Grumman Road Landfill	
	GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1	
8/30/2016	. •,	<0.0002		<0.0002	<0.0002	4E-05 (J)	
9/1/2016	0.00017 (J)		<0.0002				
10/24/2016		<0.0002					
10/25/2016	<0.0002					<0.0002	
10/26/2016			<0.0002	<0.0002	<0.0002		
1/3/2017		<0.0002		<0.0002			
1/4/2017						<0.0002	
1/5/2017					<0.0002		
1/6/2017	<0.0002		<0.0002				
4/3/2017		<0.0002					
4/4/2017			<0.0002			<0.0002	
4/6/2017	4E-05 (J)			<0.0002	<0.0002		
7/11/2017		<0.0002					
7/12/2017			<0.0002	<0.0002	<0.0002	<0.0002	
7/13/2017	<0.0002						
10/2/2017		<0.0002					
10/3/2017				<0.0002	<0.0002	<0.0002	
10/4/2017	0.0001 (J)		<0.0002				
1/9/2018	<0.0002	<0.0002			<0.0002		
1/10/2018				<0.0002		<0.0002	
1/11/2018			<0.0002				
7/9/2018		<0.0002					
7/10/2018				<0.0002	<0.0002	<0.0002	
7/11/2018	<0.0002		<0.0002				
1/16/2019	<0.0002	<0.0002	4.9E-05 (J)	<0.0002	4.3E-05 (J)	<0.0002	
8/26/2019	<0.0002	<0.0002					
8/27/2019			<0.0002		<0.0002	<0.0002	
8/28/2019				<0.0002			
10/9/2019				<0.0002			
8/17/2020		<0.0002					
8/19/2020	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002	
9/21/2021	0.0001 (J)	0.00011 (J)	0.0001 (J)	0.0001 (J)	0.0001 (J)		
9/23/2021						0.0001 (J)	
1/31/2022	<0.0002	<0.0002					
2/2/2022			<0.0002		<0.0002		
2/3/2022				<0.0002		<0.0002	
8/30/2022	<0.0002	<0.0002	<0.0002	8.7E-05 (J)	<0.0002		
9/1/2022						<0.0002	

			Gramman Noad I	Landini Chem. Oot	illieni Company	Data. Gramman Noad Earlaini
	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16
8/31/2016	<0.0002	<0.0002	<0.0002			
9/1/2016				<0.0002	<0.0002	<0.0002
10/25/2016				<0.0002	<0.0002	<0.0002
10/26/2016	<0.0002	<0.0002	<0.0002			
1/4/2017	<0.0002	<0.0002				<0.0002
1/5/2017			<0.0002	<0.0002	<0.0002	
4/3/2017					<0.0002	
4/4/2017				<0.0002		
4/5/2017		<0.0002				<0.0002
4/6/2017	<0.0002		0.00013 (J)			
7/10/2017		<0.0002				
7/11/2017	<0.0002			<0.0002	<0.0002	
7/12/2017			<0.0002			<0.0002
10/2/2017				<0.0002	<0.0002	
10/3/2017	<0.0002					<0.0002
10/4/2017		<0.0002	<0.0002			
1/9/2018				<0.0002	<0.0002	
1/10/2018			<0.0002			<0.0002
1/11/2018	<0.0002	<0.0002				
7/9/2018				<0.0002		
7/10/2018					<0.0002	<0.0002
7/11/2018	<0.0002	<0.0002	<0.0002			
1/16/2019			<0.0002	<0.0002		
1/17/2019	<0.0002	<0.0002			<0.0002	<0.0002
8/27/2019	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	
8/28/2019						<0.0002
8/17/2020		<0.0002	<0.0002			
8/18/2020	<0.0002			<0.0002	<0.0002	<0.0002
9/21/2021	0.0001 (J)	0.0001 (J)	0.0001 (J)			
9/22/2021				0.00011 (J)		0.0001 (J)
9/23/2021					0.0001 (J)	
2/1/2022						<0.0002
2/2/2022				<0.0002		
2/3/2022	<0.0002	<0.0002	<0.0002		<0.0002	
8/30/2022		<0.0002		<0.0002		
8/31/2022	<0.0002		<0.0002		<0.0002	
9/1/2022						<0.0002

			Gruiilliair Noau L	andini Chem. 300	unern Company I	Data. Grufffillari Noau Lanuffil
	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
8/31/2016		<0.0002			<0.0002	<0.0002
9/1/2016	<0.0002		<0.0002	<0.0002		
10/25/2016			<0.0002	<0.0002		
10/26/2016	<0.0002	<0.0002			<0.0002	
10/27/2016						<0.0002
1/4/2017			<0.0002	<0.0002	<0.0002	
1/5/2017	<0.0002	<0.0002				
1/6/2017						<0.0002
4/4/2017		<0.0002	<0.0002	<0.0002		
4/5/2017	<0.0002					
4/6/2017					<0.0002	<0.0002
7/11/2017			<0.0002		<0.0002	
7/12/2017						<0.0002
7/13/2017	<0.0002	<0.0002		<0.0002		
10/2/2017			<0.0002			
10/3/2017		<0.0002		<0.0002		
10/4/2017	<0.0002				<0.0002	5E-05 (J)
1/9/2018				<0.0002		
1/10/2018		<0.0002	<0.0002			
1/11/2018	<0.0002				<0.0002	<0.0002
7/9/2018			<0.0002			
7/10/2018		<0.0002		<0.0002		
7/11/2018	<0.0002				<0.0002	<0.0002
1/16/2019	<0.0002					
1/17/2019				<0.0002		
1/18/2019					<0.0002	<0.0002
1/21/2019		<0.0002	<0.0002			
7/30/2019		<0.0002				
8/27/2019		<0.0002			<0.0002	
8/28/2019	<0.0002		<0.0002	<0.0002		<0.0002
8/18/2020	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	
8/19/2020						<0.0002
9/21/2021					0.0001 (J)	
9/22/2021	0.00011 (J)	0.0001 (J)	0.00011 (J)	0.00011 (J)		0.00011 (J)
2/1/2022	<0.0002		<0.0002	<0.0002		
2/2/2022		<0.0002				<0.0002
2/3/2022			0.000	0.000	<0.0002	
8/30/2022			<0.0002	<0.0002		
8/31/2022	<0.0002	-0.0000			<0.0002	0.000
9/1/2022		<0.0002				<0.0002

Constituent: Mercury (mg/L) Analysis Run 11/6/2022 9:47 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

	MW-23D	MW-24D	MW-25D
9/22/2021	0.00011 (J)	0.0001 (J)	
9/23/2021			0.0001 (J)
2/1/2022		<0.0002	
2/3/2022	<0.0002		<0.0002
8/31/2022	<0.0002		<0.0002
9/1/2022		<0.0002	

	GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1
8/30/201	6	<0.001		<0.001	<0.001	0.175
9/1/2016	0.0098 (J)		0.035			
10/24/20	116	<0.001				
10/25/20	<0.001					0.242
10/26/20	116		0.0267	<0.001	<0.001	
1/3/2017	,	<0.001		<0.001		
1/4/2017	,					0.167
1/5/2017	,				<0.001	
1/6/2017	<0.001		0.0278			
4/3/2017	•	<0.001				
4/4/2017	•		0.0265			0.172
4/6/2017	<0.001			<0.001	<0.001	
7/11/201	7	<0.001				
7/12/201	7		0.0209	<0.001	<0.001	0.182
7/13/201	7 0.0013 (J)					
10/2/201	7	<0.001				
10/3/201	7			<0.001	<0.001	0.162
10/4/201	7 0.0013 (J)		0.0181			
1/9/2018	<0.001	<0.001			<0.001	
1/10/201	8			<0.001		0.117
1/11/201	8		0.0237			
7/9/2018	1	<0.001				
7/10/201	8			<0.001	<0.001	0.11
7/11/201	8 <0.001		0.024			
8/26/201	9 <0.001	<0.001				
8/27/201	9		0.1		0.0026 (J)	0.06
8/28/201	9			0.0012 (J)		
10/7/201	9	<0.001				
10/8/201	9 <0.001					
10/9/201	9		0.1	<0.001	<0.001	0.06
4/6/2020	<0.001	<0.001				
4/7/2020)		0.13	<0.001	<0.001	0.014
8/17/202	20	<0.001				
8/19/202	20 <0.001		0.16	<0.001	0.001 (J)	0.061
9/28/202		<0.001				0.059
9/30/202	20			<0.001	0.00097 (J)	
10/1/202	20		0.15			
3/10/202			0.12	<0.001	0.0013 (J)	0.057
3/11/202						
3/12/202		<0.001				
9/21/202		<0.001	0.12	<0.001	<0.001	
9/23/202						0.06
1/31/202		<0.001				
2/2/2022			0.11		0.00085 (J)	
2/3/2022				<0.001		0.038
8/30/202		<0.001	0.154	<0.001	0.000649 (J)	
9/1/2022	!					0.0343

	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16
8/31/2016	<0.001	<0.001	<0.001			
9/1/2016				0.0027 (J)	0.132	0.08
10/25/2016				0.0028 (J)	0.117	0.08
10/26/2016	<0.001	<0.001	<0.001			
1/4/2017	<0.001	<0.001				0.0786
1/5/2017			<0.001	0.0022 (J)	0.109	
4/3/2017					0.0994	
4/4/2017				0.0022 (J)		
4/5/2017		<0.001				0.113
4/6/2017	<0.001		<0.001			
7/10/2017		<0.001				
7/11/2017	<0.001			0.0024 (J)	0.0938	
7/12/2017			<0.001			0.178
10/2/2017				0.0025 (J)	0.103	
10/3/2017	<0.001					0.201
10/4/2017		<0.001	<0.001			
1/9/2018				0.0038 (J)	0.106	
1/10/2018			<0.001			0.161
1/11/2018	0.0018 (J)	<0.001				
7/9/2018				0.01		
7/10/2018					0.088	0.14
7/11/2018	<0.001	<0.001	<0.001			
8/27/2019	<0.001	<0.001	<0.001	0.028	0.095	
8/28/2019						0.22
10/8/2019	<0.001		<0.001	0.034	0.091	0.2
10/9/2019		<0.001				
4/7/2020	<0.001	<0.001		0.014	0.07	0.25
4/8/2020			0.0056 (J)			
8/17/2020		<0.001	<0.001			
8/18/2020	0.00077 (J)			0.017	0.12	0.15
9/28/2020			<0.001			
9/29/2020	<0.001	<0.001		0.0089 (J)		
9/30/2020					0.11	0.15
3/10/2021	<0.001	<0.001				
3/12/2021					0.098	
3/15/2021			<0.001			
3/16/2021				0.0054 (J)		0.31
9/21/2021	<0.001	<0.001	<0.001			
9/22/2021				0.018		0.22
9/23/2021					0.094	
2/1/2022						0.18
2/2/2022				0.015		
2/3/2022	<0.001	<0.001	<0.001		0.086	
8/30/2022		0.000205 (J)		0.0133		
8/31/2022	0.000512 (J)		<0.001		0.0786	
9/1/2022						0.154

	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9	
8/31/2016		<0.001			<0.001	<0.001	
9/1/2016			0.296	0.0686			
10/25/201			0.395	0.0018 (J)			
10/26/201		<0.001		` '	<0.001		
10/27/201						<0.001	
1/4/2017			0.229	0.0222	<0.001		
1/5/2017		<0.001					
1/6/2017						<0.001	
4/4/2017		<0.001	0.147	0.0476			
4/5/2017	<0.001						
4/6/2017					<0.001	<0.001	
7/11/2017			0.136		<0.001		
7/12/2017						<0.001	
7/13/2017		<0.001		0.0105			
10/2/2017		501	0.13				
10/3/2017		<0.001	30	0.0031 (J)			
10/4/2017		-0.001		0.0001(0)	<0.001	<0.001	
1/9/2018				0.09	0.001		
1/10/2018		<0.001	0.229	0.00			
1/11/2018		~0.00 I	0.223		<0.001	<0.001	
7/9/2018			0.13		-0.001	5.501	
7/9/2018		<0.001	0.13	0.047			
7/10/2018		~0.001		0.047	<0.001	<0.001	
7/30/2019		<0.001			~0.001	\0.001	
8/27/2019		<0.001			<0.001		
8/28/2019		~0.00 I	0.11	0.07	-0.001	<0.001	
10/8/2019			0.11	0.07		-0.001	
10/8/2019		<0.001	0.071	0.070	<0.001	<0.001	
	J 0.0030 (J)	~U.UU I	0.071	0.012		N.001	
4/7/2020	0.003471	<0.001	0.06	0.012	<0.001	<0.001	
4/8/2020 8/18/2020		<0.001	0.06 0.097	0.069	<0.001	<0.001	
		<0.001	0.097	0.009	~ 0.001	<0.001	
8/19/2020		~0.001				<0.001	
9/29/2020		<0.001	0.22	0.029	<0.001		
9/30/2020			0.33	0.028	<0.001	<0.001	
10/1/2020					<0.001	<0.001	
3/10/2021					<0.001	~0.001	
3/11/2021			0.52				
3/12/2021		~0.001	0.53				
3/15/2021 3/16/2021		<0.001		0.024			
				0.024	-0.001		
9/21/2021		40.004	0.5	0.0010 (1)	<0.001	40.001	
9/22/2021		<0.001	0.5	0.0019 (J)		<0.001	
2/1/2022		.0.624	0.77	0.042		0.004	
2/2/2022		<0.001			.0.051	<0.001	
2/3/2022					<0.001		
8/30/2022			0.309	0.049			
8/31/2022	2 0.00252				<0.001		
9/1/2022		< 0.001				<0.001	

	MW-23D	MW-24D	MW-25D
1/20/2021			0.0011 (J)
1/21/2021	<0.001	0.0014 (J)	
3/11/2021	<0.001	0.0035 (J)	0.0015 (J)
9/22/2021	<0.001	0.0032 (J)	
9/23/2021			<0.001
2/1/2022		0.0024 (J)	
2/3/2022	<0.001		<0.001
8/31/2022	<0.001		0.000863 (J)
9/1/2022		0.00174	

			Grumman Road L	andfill Client: Sou	thern Company L	Jata: Grumman Road Landfill
	GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1
7/16/2013			6.22	5.95	5.25	5.38
10/11/2014		4.42				
10/24/2016		4.36				
10/25/2016	6.17					5.51
10/26/2016			6.06	5.27	5.21	
1/3/2017		4.28		5.09		
1/4/2017						5.46
1/5/2017					5.2	
1/6/2017	6.16		6.02			
4/3/2017		4.29				
4/4/2017			6.08			5.43
4/6/2017	6.26			5.22	5.17	
7/11/2017		4.35				
7/12/2017			5.93	5.29	5.24	5.46
7/13/2017	5.99					
10/2/2017		4.32				
10/3/2017				5.08	5.36	5.65
10/4/2017	6.16		5.77			
1/9/2018	6.43	4.44			5.4	
1/10/2018				5.83		5.67
1/11/2018			5.98			
7/9/2018		4.4				
7/10/2018				6.42	5.31	5.71
7/11/2018	6.1		6.01			
1/16/2019	6.05	6.16 (O)	5.83	6.66	5.99	5.59
3/25/2019	6.06	4.4	5.74			
3/26/2019				5.1	5.94	5.77
8/26/2019	5.91	4.26				
8/27/2019			5.7		5.67	5.84
8/28/2019				5.95		
10/7/2019		4.24				
10/8/2019	5.74					
10/9/2019			5.79	6.11	5.66	5.82
4/6/2020	6.02	4.52				
4/7/2020			5.74	5.45	5.86	5.3
8/17/2020		4.23				
8/19/2020	5.81 (D)		5.7	5.14 (D)	5.21	5.73
9/28/2020	5.86	4.41				5.79
9/30/2020				4.99	5.39	
10/1/2020			5.75			
3/10/2021			5.23	4.73	5.69	5.42
3/11/2021	5.85					
3/12/2021		4.54				
9/21/2021	6.03	4.44	5.78	4.68	5.4	
9/23/2021						6.06
1/31/2022	5.94	4.39				
2/2/2022			5.71		5.75	
2/3/2022				4.48		5.89
8/30/2022	5.98	4.58	5.67	5.22	5.55	5.0
9/1/2022						5.8

Constituent: pH (SU) Analysis Run 11/6/2022 9:47 AM

Constituent: pH (SU) Analysis Run 11/6/2 Grumman Road Landfill Client: Southern Company D						
	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16
7/16/2013	5.2	4.17	4.95	4.62	5.96	4.92
10/11/2014				4.58		5.17
10/25/2016				4.79	6.46	5.58
10/26/2016	5.08	4.04	4.95		2.72	
1/4/2017	5.06	4.01				5.51
1/5/2017	0.00	4.01	4.97	4.73	6.25	0.01
4/3/2017			4.07	4.70	6.25	
4/4/2017				4.68	0.23	
		4	4.81	4.06		E E1
4/5/2017	4.07	4	4.01			5.51
4/6/2017	4.97	0.00				
7/10/2017		3.89				
7/11/2017	5.26			4.72	6.5	
7/12/2017			4.83			5.84
10/2/2017				5.13	6.83	
10/3/2017	5.07					5.55
10/4/2017		4.06	4.71			
1/9/2018				5.59	6.57	
1/10/2018			5.17			5.99
1/11/2018	5.18	3.96				
7/9/2018				5.11		
7/10/2018					6.42	5.5
7/11/2018	4.82	3.95	4.49			
1/16/2019			6.45 (O)	6.82		
1/17/2019	4.91	3.89			8.44 (O)	7.13
3/26/2019			4.96	5.74	6.65	5.57
3/27/2019	5.18	4.11				
8/27/2019	5.17	4.02	4.9	5.58	6.57	
8/28/2019						5.57
10/8/2019	4.93		4.81	5.68	6.65	5.54
10/9/2019		4.25				
4/7/2020	5.05	4.1		6.2	6.83	5.94
4/8/2020	0.00		4.81	0.2	0.00	
8/17/2020		3.94	4.65			
8/18/2020	4.41	3.34	4.03	5.56	6.39	5.52
	4.41		4.76	5.50	0.39	5.52
9/28/2020	4 77	2.05	4.76	F 60		
9/29/2020	4.77	3.95		5.69	0.74	5.47
9/30/2020	4.07	4.00			6.71	5.47
3/10/2021	4.97	4.08			0.24	
3/12/2021					6.21	
3/15/2021			4.74			
3/16/2021				5.53		5.67
9/21/2021	4.92	4.05	4.83			
9/22/2021				5.76		5.57
9/23/2021					6.48	
2/1/2022						5.57
2/2/2022				5.98		
2/3/2022	4.98	4.04	4.97		6.61	
8/30/2022		3.92		5.86		
8/31/2022	4.85		4.76		6.57	
9/1/2022						5.37

			Grumman Road L	andfill Client: Sou	thern Company L	Jata: Grumman Road Landfill
	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
7/16/2013	4.55	4.52	6.1	5.71	4.91	5.05
10/25/2016			6.06	5.41		
10/26/2016	4.45	4.48			4.6	
10/27/2016						4.65
1/4/2017			6.05	5.6	4.63	
1/5/2017	4.45	4.85				
1/6/2017						4.56
4/4/2017		4.58	6.03	5.94		
4/5/2017	4.33					
4/6/2017					4.79	4.5
7/11/2017			5.96		4.73	
7/12/2017						4.56
7/13/2017	4.11	4.74		5.6		
10/2/2017			5.88			
10/3/2017		4.57		5.18		
10/4/2017	4.09				4.74	4.72
1/9/2018				6.14		
1/10/2018		5.31	6.21			
1/11/2018	4.4				5.22	4.34
7/9/2018			6.24		0.22	
7/10/2018		4.58		5.7		
7/11/2018	4.07			···	4.68	4.68
1/16/2019	4.05				4.00	4.00
1/17/2019	4.00			7.39		
1/18/2019				7.00	6.98 (O)	6.87 (O)
1/21/2019		5.05	7.73 (O)		0.55 (0)	0.07 (0)
3/25/2019		0.00	6.28			
3/26/2019	4.62		0.20	6.08		
3/27/2019				0.00	4.77	4.38
7/30/2019		4.74			4.77	4.00
8/27/2019		4.77			4.89	
8/28/2019	4.62	7.77	6.34	6.05	4.00	4.68
10/8/2019	4.02		0.04	6.09		4.00
10/9/2019	4.66	4.79	6.5	0.00	4.68	4.62
4/7/2020	4.00	4.75	0.5	6	4.8	1.02
4/8/2020	4.71	4.66	6.31	•	4.0	4.73
8/18/2020	4.31	4.6	5.89	5.82	4.52	4.70
8/19/2020	4.51	4.0	3.03	3.02	4.52	4.58
9/29/2020		4.6				1.00
9/30/2020	4.08	4.0	6.04	5.82	4.63	
10/1/2020	4.00		0.04	3.02	4.05	4.42
3/10/2021					4.82	4.55
3/11/2021	5.2				4.02	4.00
3/12/2021	5.2		5.86			
3/15/2021		4.56	3.00			
3/16/2021		4.50		5.74		
9/21/2021				J./T	4.72	
9/21/2021	4.63	4.71	6	5.39	7.72	4.7
2/1/2022	4.53	7./1	5.9	5.76		7.7
2/1/2022	7.00	4.79	0.0	5.70		4.66
2/3/2022		7./3			4.63	7.00
8/30/2022			6.01	5.76	4.03	
0/30/2022			0.01	5.70		

Page 2

Time Series

Constituent: pH (SU) Analysis Run 11/6/2022 9:47 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
8/31/2022	4.33				4.68	
9/1/2022		4.73				4.6

Constituent: pH (SU) Analysis Run 11/6/2022 9:48 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

		MW-23D	MW-24D	MW-25D
•	1/20/2021			6.25
•	1/21/2021	5.75	6.13	
3	3/11/2021	5.82	6.47	6.31
ę	9/22/2021	6.39	6.76	
ę	9/23/2021			6.21
2	2/1/2022		6.63	
2	2/3/2022	6.14		6.15
8	8/31/2022	6.06		6.29
9	9/1/2022		6.08	

			Grunnan No	da Landilli Client.	Southern Company	Data. Grunnian Noa
	GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1
9/29/2000	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
11/21/2000	<0.005		<0.005	<0.005	<0.005	<0.005
1/20/2001	<0.005	<0.005	0.014 (O)	<0.005	<0.005	0.017
3/14/2001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
7/16/2001	<0.005	<0.005	0.015 (O)	<0.005	<0.005	<0.005
11/1/2001	<0.005	<0.005	0.012 (O)	<0.005	<0.005	<0.005
4/25/2002	<0.005	<0.005	0.01	<0.005	<0.005	0.012
11/20/2002		<0.005	0.026 (O)	0.0064	0.008	0.19 (O)
6/6/2003	<0.005	<0.005	0.022 (O)	0.011	0.0066	0.32 (O)
12/12/2003	<0.005	<0.005	0.028 (O)	<0.005	0.0056	0.013
5/26/2004	<0.005	<0.005	0.012 (O)	0.007	0.0084	0.017
12/7/2004	<0.005	<0.005	0.0073	<0.005	<0.005	0.011
6/21/2005	<0.005	<0.005	0.0087	0.0063	0.0062	0.0088
12/12/2005	<0.005	<0.005	0.013 (O)	<0.005	<0.005	0.011
4/4/2006		<0.005				
6/27/2006	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/30/2006		<0.005				
12/4/2006	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2/15/2007		<0.005				
6/23/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
9/11/2007		<0.005				
12/11/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
3/11/2008		<0.005				
6/23/2008	<0.005	<0.005				
6/24/2008			<0.005	<0.005	<0.005	<0.005
11/3/2008		<0.005				
12/4/2008	<0.005	<0.005				
12/5/2008			<0.005	<0.005	<0.005	<0.005
3/25/2009		<0.005				
7/7/2009	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
9/14/2009		<0.005				
12/20/2009	<0.005	<0.005				<0.005
12/21/2009			<0.005	<0.005	<0.005	
3/4/2010		<0.005				
6/20/2010	<0.005	<0.005		<0.005	<0.005	<0.005
6/21/2010			<0.005			
9/14/2010		<0.005				
1/6/2011				<0.005		<0.005
1/7/2011	<0.005	<0.005	<0.005		<0.005	
4/15/2011		<0.005				
7/7/2011	<0.005	<0.005		<0.005	<0.005	<0.005
7/8/2011			<0.005			
9/25/2011		<0.005				
1/17/2012	<0.005	<0.005		<0.005		<0.005
1/18/2012			<0.005		<0.005	
4/4/2012		<0.005				
7/9/2012	<0.005			<0.005		<0.005
7/10/2012		<0.005	<0.005		<0.005	
10/9/2012		<0.005				
1/17/2013				<0.005		<0.005
1/18/2013	0.009	<0.005	<0.005		<0.005	
4/5/2013		<0.005				

1717/2013		GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1	
11132011 113	7/16/2013							
1142014	7/17/2013	0.011	<0.005	<0.005		<0.005		
1402014	10/11/2013		<0.005					
1402014		0.012			<0.005		<0.005	
10026014			<0.005	<0.005		<0.005		
10240214								
1012/2015		0.011		<0.005	<0.005	<0.005	<0.005	
1112/2015								
1142015				<0.005				
1142015		0.0092		0.000	< 0.005		<0.005	
1002015			<0.005			<0.005		
7116/2015						0.000		
71772015		0.014	0.000	<0.005	<0.005		<0.005	
106/2015		0.014	<0.005	10.000	-0.000	<0.005	-0.000	
1117/2016						-0.000		
1/18/2016 0.023			10.003				0.033	
A/26/2016		0.023	<0.005	<0.005	<0.005	<0.005	0.023	
7/27/2016 0.0323 0.001 0.001 0.005 0.0005 0		0.023		~ 0.003	<0.003	~ 0.003		
7/28/2016 0.001 (J) < 0.005		0.0000	<0.005		-0.005		0.000 (1)	
7/29/2016		0.0323	0.001 (1)		<0.005	-0.005	0.002 (J)	
8/30/2016			0.001 (3)	0.0000 (1)		<0.005		
911/2016 0.0438 0.0067 (J)			.0.005	0.0036 (J)	.0.005	.0.005	0.000 (1)	
10/24/2016 0.031 0.0013 (J) 0.002 (J) 0.0022 (J) 0.0022 (J) 0.0022 (J) 0.0022 (J) 0.0026 (J			<0.005		<0.005	<0.005	0.002 (J)	
10/25/2016 0.031 0.0042 (J)		0.0438	0.0010 (1)	0.0067 (J)				
10/26/2016		0.004	0.0013 (J)				0.0000 (1)	
1/3/2017		0.031					0.0022 (J)	
1/4/2017			.0.005	0.0042 (J)		<0.005		
1/6/2017 0.0324 0.0042 (J) 4/3/2017 0.0324 0.0042 (J) 4/3/2017 0.0188 (J) 0.0043 (J) 0.005 0.0052 (J) 4/4/2017 0.0188 (J) 0.005 0.005 0.005 0.0052 (J) 0.0052 (J) 0.0180 (J) 0.0188 (J) 0.005 0.005 0.005 0.005 0.0024 (J) 0.0180 (J) 0.0118 0.0018 (J) 0.0018 (J) 0.0118 0.005			<0.005		<0.005		0.0040 (1)	
1/6/2017 0.0324 0.0042 (J)							0.0016 (J)	
4/3/2017						0.0014 (J)		
4/4/2017 0.0188 (J)		0.0324		0.0042 (J)				
4/6/2017 0.0188 (J)			<0.005					
7/11/2017 <0.005				0.0043 (J)			0.0052 (J)	
7/12/2017 0.0118 10/2/2017 < 0.005		0.0188 (J)			<0.005	<0.005		
7/13/2017 0.0118 10/2/2017 < 0.005			<0.005					
10/2/2017				0.0033 (J)	<0.005	<0.005	0.0024 (J)	
10/3/2017		0.0118						
10/4/2017 0.0195 0.0038 (J)			<0.005					
1/9/2018 <0.005 <0.005 <0.005 <0.005 <0.005 <0.0018 (J) 1/11/2018 <0.005 <0.0029 (J) 7/9/2018 <0.005 <0.0018 (J) 7/10/2018 <0.005 <0.0018 (J) 7/11/2018 <0.005 <0.0015 (J) 1/16/2019 <0.005 <0.005 <0.005 <0.005 3/25/2019 <0.005 <0.005 <0.005 <0.005 8/26/2019 <0.005 <0.005 <0.005 <0.005 <0.005 8/28/2019 <0.005 <0.005 <0.005 <0.005 <0.005 8/28/2019 <0.005 <0.005 <0.005 <0.003 (J) 8/28/2019 <0.005 <0.005 <0.005 <0.005 <0.003 (J) 8/28/2019 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0					<0.005	<0.005	<0.005	
1/10/2018				0.0038 (J)				
1/11/2018 0.0029 (J) 7/9/2018 <0.005		<0.005	<0.005			<0.005		
7/9/2018 < 0.005 7/10/2018					<0.005		0.0018 (J)	
7/10/2018				0.0029 (J)				
7/11/2018			<0.005					
1/16/2019 0.0071 (J) <0.005					0.0018 (J)	0.0016 (J)	0.0026 (J)	
3/25/2019 <0.005 <0.005 <0.005 <0.005 3/26/2019 <0.005 <0.005 8/26/2019 <0.005 <0.005 8/27/2019 <0.005 <0.005 8/28/2019 0.0033 (J) 0.0016 (J)								
3/26/2019 <0.005 0.05 (J) 0.0023 (J) 8/26/2019 <0.005 <0.005 8/27/2019 <0.005 0.0033 (J) 0.0016 (J) 8/28/2019 0.0033 (J)					<0.005	<0.005	0.0018 (J)	
8/26/2019 <0.005 <0.005 8/27/2019 <0.005 0.0033 (J) 0.0016 (J) 8/28/2019 0.0033 (J)		<0.005	<0.005	<0.005				
8/27/2019 <0.005 0.0033 (J) 0.0016 (J) 8/28/2019 0.0033 (J)					<0.005	0.05 (J)	0.0023 (J)	
8/28/2019 0.0033 (J)	8/26/2019	<0.005	<0.005					
	8/27/2019			<0.005		0.0033 (J)	0.0016 (J)	
10/7/2019 <0.005	8/28/2019				0.0033 (J)			
	10/7/2019		<0.005					

	GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1
10/8/2019	0.0072 (J)					
10/9/2019			<0.005	0.0073 (J)	<0.005	0.0024 (J)
4/6/2020	0.0078 (J)	<0.005				
4/7/2020			0.0025 (J)	<0.005	<0.005	0.0013 (J)
8/17/2020		<0.005				
8/19/2020	<0.005		<0.005	<0.005	<0.005	0.002 (J)
9/28/2020	0.01 (J)	<0.005				<0.005
9/30/2020				<0.005	0.0023 (J)	
10/1/2020			<0.005			
3/10/2021			0.0021 (J)	0.006	0.0049 (J)	0.0026 (J)
3/11/2021	<0.005					
3/12/2021		<0.005				
9/21/2021	<0.005	<0.005	<0.005	<0.005	0.0016 (J)	
9/23/2021						0.0018 (J)
1/31/2022	<0.005	<0.005				
2/2/2022			<0.005		0.0017 (J)	
2/3/2022				<0.005		0.0022 (J)
8/30/2022	0.0063	<0.005	0.00265 (J)	<0.005	0.00277 (J)	
9/1/2022						0.00252 (J)

					,	
	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16
9/29/2000	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
11/21/2000	<0.005	<0.005	<0.005	0.052	<0.005	<0.005
1/20/2001	<0.005	<0.005	<0.005	0.053	<0.005	<0.005
3/14/2001	<0.005	<0.005	<0.005	0.049	<0.005	<0.005
7/16/2001	<0.005	<0.005	<0.005	0.038	<0.005	<0.005
11/1/2001	<0.005	<0.005	<0.005	0.022	<0.005	<0.005
4/25/2002	<0.005	<0.005	<0.005	0.1 (O)	<0.005	<0.005
11/20/2002	<0.005	<0.005	<0.005	0.018	0.0094	<0.005
6/6/2003	<0.005	<0.005	<0.005	<0.005	0.021 (O)	0.021 (O)
12/12/2003	<0.005	<0.005	<0.005	<0.005	0.016 (O)	0.0078
5/26/2004	<0.005	<0.005	<0.005	0.023	<0.005	0.0053
12/7/2004	<0.005	<0.005	<0.005	0.019	<0.005	<0.005
6/21/2005	<0.005	<0.005	<0.005	0.019	<0.005	<0.005
12/12/2005	<0.005	<0.005	<0.005	0.0095	<0.005	<0.005
4/4/2006				0.033		<0.005
6/27/2006	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/30/2006				<0.005		<0.005
12/4/2006	<0.005	<0.005	<0.005	0.032	<0.005	<0.005
2/15/2007				0.034		<0.005
6/23/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
9/11/2007				0.022		<0.005
12/11/2007	<0.005	<0.005	<0.005	0.045	<0.005	<0.005
3/11/2008				0.02		<0.005
6/23/2008	<0.005	<0.005	<0.005			
6/24/2008				<0.005	<0.005	<0.005
11/3/2008				0.052		<0.005
12/4/2008	<0.005	<0.005	<0.005	0.054		
12/5/2008					<0.005	<0.005
3/25/2009				0.072		<0.005
7/8/2009	<0.005	<0.005	<0.005	0.021	<0.005	<0.005
9/14/2009				0.015	.0.005	<0.005
12/20/2009	-0.005	-0.005	10.005	0.072	<0.005	<0.005
12/21/2009	<0.005	<0.005	<0.005	0.083		<0.00E
3/4/2010	<0.005	<0.005	<0.005	0.063	<0.005	<0.005
6/20/2010 6/21/2010	<0.005	<0.005	<0.005	0.1	<0.005	<0.005
9/14/2010				0.085		<0.005
1/6/2011	<0.005		<0.005	0.003		\0.003
1/7/2011	10.000	<0.005	10.003	0.028	<0.005	<0.005
4/15/2011		10.000		<0.005	10.003	<0.005
7/7/2011	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
9/25/2011	-0.000	-0.000	-0.000	0.02	-0.000	<0.005
1/17/2012	0.023	<0.005	<0.005	0.016	<0.005	0.000
1/18/2012	0.020	0.000	0.000	0.010	0.000	<0.005
4/4/2012				0.0156		<0.005
7/9/2012	0.016	<0.005	<0.005	<0.005	0.066 (O)	0.000
7/10/2012					(- /	<0.005
10/9/2012				0.0094		<0.005
1/17/2013	0.033	<0.005	<0.005			
1/18/2013			•	0.0067	0.04 (O)	<0.005
4/5/2013				0.0077	V-7	<0.005
7/16/2013	0.0068	<0.005	<0.005			

	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16	
7/17/2013				0.01	<0.005	<0.005	
10/11/2013				0.0087		0.0069	
1/13/2014	0.036	<0.005	<0.005		<0.005		
1/14/2014				0.012		<0.005	
4/3/2014				0.022		<0.005	
7/8/2014	0.017	<0.005	<0.005				
7/9/2014				0.0089	<0.005	0.005	
10/24/2014				0.017	0.000	<0.005	
1/13/2015	0.027	<0.005	<0.005	0.017	<0.005	0.000	
1/14/2015	0.027	0.000	0.000	<0.005	0.000	<0.005	
5/10/2015				<0.005			
5/11/2015				0.000		<0.005	
7/16/2015	<0.005	<0.005	<0.005		<0.005	<0.005	
7/17/2015	10.000	10.000	-0.000	<0.005	10.000	-0.000	
10/6/2015				<0.005		0.0073	
1/17/2016				<0.005	<0.005	0.0031 (J)	
1/18/2016		<0.005	<0.005	10.003	10.000	0.0051 (0)	
1/19/2016	0.023	-0.003	-0.000				
4/26/2016	0.023			0.00428 (J)		0.00497 (J)	
7/26/2016	0.0056 (J)		<0.005	0.00420 (3)		0.00 1 07 (0)	
7/27/2016	0.0030 (3)	0.0025 (1)	<0.003	0.0038 (1)	<0.005		
		0.0025 (J)		0.0038 (J)	<0.005	0.0076 (1)	
7/28/2016	0.0094 / 1)	0.0010 (1)	<0.00E			0.0076 (J)	
8/31/2016	0.0084 (J)	0.0019 (J)	<0.005	0.0056 (1)	<0.00E	0.0052 (1)	
9/1/2016				0.0056 (J)	<0.005	0.0052 (J)	
10/25/2016	0.0052 (1)	0.002 (1)	<0.00E	0.0023 (J)	<0.005	0.0085 (J)	
10/26/2016	0.0052 (J)	0.002 (J)	<0.005			0.0049 (1)	
1/4/2017	0.0062 (J)	<0.005	<0.00E	0.0028 (1)	<0.00E	0.0048 (J)	
1/5/2017			<0.005	0.0038 (J)	<0.005		
4/3/2017				0.000470	<0.005		
4/4/2017		-0.005		0.0064 (J)		0.0000 (1)	
4/5/2017	0.0105	<0.005	-0.005			0.0068 (J)	
4/6/2017	0.0195	.0.005	<0.005				
7/10/2017	.0.005	<0.005		0.004470	.0.005		
7/11/2017	<0.005		.0.005	0.0044 (J)	<0.005	0.0040 (1)	
7/12/2017			<0.005	0.004 (1)	.0.005	0.0048 (J)	
10/2/2017				0.004 (J)	<0.005		
10/3/2017	0.0079 (J)	-0.005	-0.005			0.0051 (J)	
10/4/2017		<0.005	<0.005	0.0040 ())	0.0040 ())		
1/9/2018			-0.005	0.0019 (J)	0.0019 (J)	0.0040 (1)	
1/10/2018	0.0054411	.0.05	<0.005			0.0018 (J)	
1/11/2018	0.0054 (J)	<0.005		0.0000 ("			
7/9/2018				0.0029 (J)	0.0000 ())	0.0045 (1)	
7/10/2018	0.0000 :				0.0086 (J)	0.0045 (J)	
7/11/2018	0.0022 (J)	<0.005	<0.005	0.0010111			
1/16/2019	.0.00=	.0.05	<0.005	0.0016 (J)	0.0000 ())	0.0004 (1)	
1/17/2019	<0.005	<0.005			0.0029 (J)	0.0031 (J)	
3/26/2019			<0.005	0.0022 (J)	0.0074 (J)	0.0033 (J)	
3/27/2019	0.01 (J)	<0.005					
8/27/2019	<0.005	<0.005	<0.005	0.0035 (J)	0.0092 (J)		
8/28/2019						0.004 (J)	
10/8/2019	<0.005		<0.005	0.0026 (J)	0.014	0.0023 (J)	
10/9/2019		<0.005					

	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16
4/7/2020	0.0021 (J)	<0.005		0.005 (J)	0.0029 (J)	<0.005
4/8/2020			<0.005			
8/17/2020		<0.005	<0.005			
8/18/2020	0.0028 (J)			0.0029 (J)	0.0022 (J)	0.0058 (J)
9/28/2020			<0.005			
9/29/2020	0.0024 (J)	<0.005		0.0051 (J)		
9/30/2020					<0.005	0.0037 (J)
3/10/2021	0.0044 (J)	0.003 (J)				
3/12/2021					0.0064	
3/15/2021			<0.005			
3/16/2021				0.0034 (J)		0.0044 (J)
9/21/2021	0.0038 (J)	<0.005	<0.005			
9/22/2021				0.0034 (J)		0.0031 (J)
9/23/2021					0.0016 (J)	
2/1/2022						0.0024 (J)
2/2/2022				0.0038 (J)		
2/3/2022	0.019	<0.005	<0.005		0.0031 (J)	
8/30/2022		<0.005		0.00544		
8/31/2022	0.00344 (J)		<0.005		0.00192 (J)	
9/1/2022						0.00334 (J)

Constituent: Selenium (mg/L) Analysis Run 11/6/2022 9:48 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
9/29/2000	<0.005					<0.005
11/21/2000	<0.005	<0.005				<0.005
1/20/2001	<0.005	<0.005				<0.005
3/14/2001	<0.005	<0.005				<0.005
7/16/2001	<0.005	<0.005				<0.005
11/1/2001	<0.005	<0.005				<0.005
4/25/2002	<0.005	<0.005				<0.005
11/20/2002	<0.005	<0.005				<0.005
6/6/2003	<0.005	<0.005				<0.005
12/12/2003	<0.005	<0.005				<0.005
5/26/2004	<0.005	0.005				<0.005
12/7/2004	<0.005	<0.005				<0.005
6/21/2005	<0.005	<0.005				0.0062
12/12/2005	<0.005	<0.005				<0.005
6/27/2006	<0.005	<0.005				<0.005
12/4/2006	<0.005	<0.005				<0.005
6/23/2007	<0.005	<0.005				<0.005
12/11/2007	<0.005	<0.005				<0.005
6/23/2008	y. 	y				<0.005
6/24/2008	<0.005	<0.005				0.000
12/4/2008		<0.005				<0.005
12/5/2008	<0.005					
7/8/2009	<0.005	<0.005				<0.005
12/20/2009		<0.005				
12/21/2009	<0.005					<0.005
6/20/2010		<0.005				<0.005
6/21/2010	<0.005		<0.005	0.048	<0.005	
1/6/2011		<0.005				
1/7/2011	<0.005		<0.005	0.014	<0.005	<0.005
7/7/2011			<0.005			
7/8/2011	<0.005		<0.005	0.018	<0.005	<0.005
1/17/2012		<0.005				
1/18/2012	<0.005		<0.005	<0.005	<0.005	<0.005
7/9/2012		<0.005				
7/10/2012	<0.005		<0.005	0.02	<0.005	<0.005
1/17/2013		<0.005				
1/18/2013	<0.005		0.005	0.015	<0.005	<0.005
7/17/2013	<0.005	<0.005	<0.005	0.037	<0.005	<0.005
1/13/2014		<0.005				
1/14/2014	<0.005		<0.005	0.043	<0.005	<0.005
7/9/2014	<0.005	<0.005		0.023		<0.005
7/10/2014			<0.005		<0.005	
1/12/2015			<0.005			
1/13/2015		<0.005				
1/14/2015	<0.005			0.022	<0.005	<0.005
7/16/2015		<0.005				
7/17/2015				0.033		<0.005
7/18/2015	<0.005		<0.005		<0.005	
1/17/2016		<0.005	<0.005	0.021		
1/18/2016	<0.005				<0.005	<0.005
7/27/2016		0.002 (J)				
7/28/2016			<0.005	0.0341		<0.005

			Gruinnan No	au Lanullii Client.	Southern Company	Data. Grufffffafi Noad Landilli
	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
7/29/2016	0.0011 (J)				0.0022 (J)	
8/31/2016		<0.005			0.0014 (J)	<0.005
9/1/2016	0.0012 (J)		<0.005	0.0297		
10/25/2016			0.0014 (J)	0.0095 (J)		
10/26/2016	0.0013 (J)	0.0035 (J)			0.001 (J)	
10/27/2016						<0.005
1/4/2017			0.0014 (J)	0.022	<0.005	
1/5/2017	0.0012 (J)	<0.005				
1/6/2017						<0.005
4/4/2017		<0.005	<0.005	0.0236		
4/5/2017	<0.005					
4/6/2017					<0.005	<0.005
7/11/2017			<0.005		<0.005	
7/12/2017						<0.005
7/13/2017	0.0018 (J)	<0.005		0.013		-0.000
10/2/2017	0.0010(0)	-0.000	<0.005	0.010		
10/2/2017		<0.005	-0.000	0.01 (J)		
	0.0042717	~0.00 5		0.01 (3)	0.0023 (J)	<0.005
10/4/2017 1/9/2018	0.0042 (J)			0.0162	0.00∠3 (J)	~ 0.000
		<0.00E	<0.00E	0.0162		
1/10/2018	-0.005	<0.005	<0.005		-0.005	-0.005
1/11/2018	<0.005		0.005		<0.005	<0.005
7/9/2018			<0.005			
7/10/2018		<0.005		0.016		
7/11/2018	0.0016 (J)				<0.005	<0.005
1/16/2019	<0.005					
1/17/2019				0.011		
1/18/2019					<0.005	<0.005
1/21/2019		<0.005	0.0014 (J)			
3/25/2019			<0.005			
3/26/2019	<0.005			0.022		
3/27/2019					<0.005	<0.005
7/30/2019		<0.005				
8/27/2019		<0.005			<0.005	
8/28/2019	<0.005		0.0014 (J)	0.019		<0.005
10/8/2019				0.019		
10/9/2019	<0.005	<0.005	<0.005		<0.005	<0.005
4/7/2020				0.012	<0.005	
4/8/2020	<0.005	<0.005	0.0013 (J)			<0.005
8/18/2020	0.002 (J)	<0.005	<0.005	0.013	<0.005	
8/19/2020						<0.005
9/29/2020		<0.005				
9/30/2020	<0.005		<0.005	0.0061 (J)	<0.005	
10/1/2020						<0.005
3/10/2021					<0.005	<0.005
3/11/2021	0.0016 (J)					
3/12/2021			<0.005			
3/15/2021		<0.005				
3/16/2021				0.0055		
9/21/2021					<0.005	
9/22/2021	<0.005	<0.005	0.0024 (J)	0.0027 (J)		<0.005
2/1/2022	<0.005	3.000	<0.005	0.0027 (3)		
2/1/2022	3.000	<0.005	3.000	3.5004		<0.005
		0.000				

	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
2/3/2022					<0.005	
8/30/2022			0.00192 (J)	0.00648		
8/31/2022	<0.005				<0.005	
9/1/2022		<0.005				<0.005

Constituent: Selenium (mg/L) Analysis Run 11/6/2022 9:48 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

	MW-23D	MW-24D	MW-25D
3/11/2021	<0.005	<0.005	<0.005
9/22/2021	<0.005	<0.005	
9/23/2021			<0.005
2/1/2022		<0.005	
2/3/2022	<0.005		<0.005
8/31/2022	<0.005		<0.005
9/1/2022		<0.005	

Constituent: Sulfate (mg/L) Analysis Run 11/6/2022 9:48 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill GWA-7 (bg) GWA-8 (bg) GWB-4R GWB-5R GWB-6R GWC-1 8/30/2016 100 120 87 140 9/1/2016 210 73 10/24/2016 160 10/25/2016 26 83 10/26/2016 230 130 120 1/3/2017 140 120 1/4/2017 99 1/5/2017 130 1/6/2017 23 220 4/3/2017 140 4/4/2017 230 110 4/6/2017 25 140 150 7/11/2017 130 7/12/2017 210 140 140 100 7/13/2017 65 10/2/2017 150 10/3/2017 130 140 63 10/4/2017 290 13 1/9/2018 45 120 140 1/10/2018 110 86 1/11/2018 210 7/9/2018 123 128 77.7 7/10/2018 48.1 7/11/2018 177 37.7 1/16/2019 24.5 129 244 184 402 71.2 3/25/2019 14.7 152 245 73.8 3/26/2019 222 319 10/7/2019 156 10/8/2019 32.8 10/9/2019 38.5 90.8 255 76.3 4/6/2020 20.3 123 4/7/2020 221 180 180 83 9/28/2020 20 93.6 71.6 9/30/2020 339 339 10/1/2020 178 3/10/2021 160 572 1160 61.2 3/11/2021 12 3/12/2021 103 9/21/2021 11.1 96.5 232 829 645 9/23/2021 37.3 1/31/2022 15 89.7 2/2/2022 338 1460 2/3/2022 49.2 797 8/30/2022 10.6 77.4 379 403 978

44

9/1/2022

			G. G	diam onent ou	o oopa, D	ata. Gramman Noda Editami
	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16
8/31/2016	64	1100	43			
9/1/2016				730	120	430
10/25/2016				420	100	360
10/26/2016	56	900	29			
1/4/2017	65	880				360
1/5/2017			32	430	140	
4/3/2017					150	
4/4/2017				600		
4/5/2017		990				440
4/6/2017	110		49			
7/10/2017		480				
7/11/2017	49			400	110	
7/12/2017			16			490
10/2/2017				470	56	
10/3/2017	140					780
10/4/2017		760	33			
1/9/2018				440	84	
1/10/2018			22			470
1/11/2018	270	780				
7/9/2018				369		
7/10/2018					43	787
7/11/2018	211	598	17.8			
1/16/2019			20.2	291		
1/17/2019	50.3	454			45.2	780
3/26/2019			33.6	192	54	87.9
3/27/2019	76.8	579				
10/8/2019	310		22	428	45.8	872
10/9/2019		392				
4/7/2020	446	297		456	26.9	844
4/8/2020			30.7			
9/28/2020			25.6			
9/29/2020	516	237		93.5		
9/30/2020					18.5	736
3/10/2021	687	282				
3/12/2021					21.1	
3/15/2021			30.6			
3/16/2021				92		821
9/21/2021	433	315	36.6			
9/22/2021				444		1040
9/23/2021					124	
2/1/2022						1010
2/2/2022				589		
2/3/2022	347	333	32.1		102	
8/30/2022		415		410		
8/31/2022	653		29		88.5	
9/1/2022						1140

0/01/0010	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
8/31/2016	040	21	100	00	700	84
9/1/2016	310		180	36		
10/25/2016			79	16		
10/26/2016	280	100			850	
10/27/2016						76
1/4/2017			170	45	680	
1/5/2017	310	22				
1/6/2017						66
4/4/2017		29	300	46		
4/5/2017	460					
4/6/2017					220	79
7/11/2017			400		210	
7/12/2017						75
7/13/2017	490	20		33		
10/2/2017			390			
10/3/2017		20		34		
10/4/2017	1100				730	78
1/9/2018	-			29		
1/10/2018		9.5	99			
1/11/2018	810	0.0	55		180	110
7/9/2018	010		99.2		100	110
7/9/2018		9 5	33.2	22.2		
	000	8.5		33.2	204	07.4
7/11/2018	902				381	87.4
1/16/2019	422					
1/17/2019				24.1		
1/18/2019					107	56.9
1/21/2019		10.2	35.5			
3/25/2019			95.6			
3/26/2019	439			83.9		
3/27/2019					103	76.2
7/30/2019		12.3				
10/8/2019				85.6		
10/9/2019	346	10.1	58.5		80.2	41.1
4/7/2020				33.2	333	
4/8/2020	239	12.9	428			34.2
9/29/2020		8.6				
9/30/2020	193		956	306	65.5	
10/1/2020	.00		500	500	50.0	35
3/10/2021					101	38.7
	244				101	50.7
3/11/2021	244		000			
3/12/2021		10	933			
3/15/2021		10				
3/16/2021				343		
9/21/2021					52.4	
9/22/2021	394	10.3	905	14.6		42.7
2/1/2022	416		862	374		
2/2/2022		9				31.5
2/3/2022					46.2	
8/30/2022			606	451		
8/31/2022	721				45.3	
9/1/2022		10.3				28.7

Constituent: Sulfate (mg/L) Analysis Run 11/6/2022 9:48 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

	MW-23D	MW-24D	MW-25D
1/20/2021			1.6
1/21/2021	5	0.79 (J)	
3/11/2021	62.4	<1	0.52 (J)
9/22/2021	84.6	<1	
9/23/2021			0.7 (J)
2/1/2022		<1	
2/3/2022	64.8		<1
8/31/2022	54.6		1.12
9/1/2022		0.682	

Constituent: Thallium (mg/L) Analysis Run 11/6/2022 9:48 AM

			Grumman Ro	ad Landfill Client:	Southern Company	Data: Grumman Road Landfill	
	GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1	
9/29/2000	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
11/21/2000	<0.002		<0.002	<0.002	<0.002	<0.002	
1/20/2001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
3/14/2001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
7/16/2001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
11/1/2001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
4/25/2002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
12/12/2003	<0.002	<0.002	<0.002	<0.002	<0.002	0.002	
5/26/2004	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
12/7/2004	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
6/21/2005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
12/12/2005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
4/4/2006		<0.002					
6/27/2006	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
8/30/2006		<0.002					
12/4/2006	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
2/15/2007		<0.002					
6/23/2007	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
8/30/2016		<0.002		<0.002	<0.002	<0.002	
9/1/2016	0.0005 (J)		<0.002				
10/24/2016		<0.002					
10/25/2016	<0.002					<0.002	
10/26/2016			<0.002	<0.002	<0.002		
1/3/2017		<0.002		<0.002			
1/4/2017						<0.002	
1/5/2017					<0.002		
1/6/2017	<0.002		<0.002				
4/3/2017		<0.002					
4/4/2017			7E-05 (J)			5E-05 (J)	
4/6/2017	<0.002			<0.002	<0.002		
7/11/2017		5E-05 (J)					
7/12/2017			<0.002	<0.002	<0.002	<0.002	
7/13/2017	<0.002						
10/2/2017		6E-05 (J)					
10/3/2017				<0.002	<0.002	<0.002	
10/4/2017	<0.002		<0.002				
1/9/2018	<0.002	<0.002			<0.002		
1/10/2018				<0.002		<0.002	
1/11/2018			7E-05 (J)				
7/9/2018		<0.002					
7/10/2018				<0.002	<0.002	<0.002	
7/11/2018	<0.002		<0.002				
8/26/2019	<0.002	<0.002					
8/27/2019			<0.002		<0.002	<0.002	
8/28/2019				5.7E-05 (J)			
10/7/2019		6.2E-05 (J)					
10/8/2019	<0.002						
10/9/2019			<0.002	0.00031 (J)	<0.002	5.4E-05 (J)	
4/6/2020	<0.002	<0.002					
4/7/2020			<0.002	<0.002	<0.002	5.4E-05 (J)	
8/17/2020		<0.002					
	<0.002		<0.002	<0.002			

	GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1
9/28/2020	<0.002	<0.002				<0.002
9/30/2020				<0.002	<0.002	
10/1/2020			<0.002			
3/10/2021			<0.002	<0.002	<0.002	<0.002
3/11/2021	<0.002					
3/12/2021		<0.002				
9/21/2021	<0.002	<0.002	<0.002	<0.002	<0.002	
9/23/2021						<0.002
1/31/2022	<0.002	<0.002				
2/2/2022			<0.002		<0.002	
2/3/2022				<0.002		<0.002
8/30/2022	<0.002	<0.002	<0.002	<0.002	<0.002	
9/1/2022						<0.002

			Gruillian Noau La	andilii Cilent. 300t	nem Company D	ata. Gruninian Noau Lanuiiii
	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16
9/29/2000	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
11/21/2000	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
1/20/2001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
3/14/2001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
7/16/2001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
11/1/2001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
4/25/2002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
12/12/2003	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
5/26/2004	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
12/7/2004	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
6/21/2005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
12/12/2005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
4/4/2006				<0.002		<0.002
6/27/2006	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
8/30/2006				<0.002		<0.002
12/4/2006	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
2/15/2007				<0.002		<0.002
6/23/2007	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
8/31/2016	<0.002	<0.002	<0.002			
9/1/2016				<0.002	<0.002	<0.002
10/25/2016				<0.002	<0.002	<0.002
10/26/2016	<0.002	0.0003 (J)	<0.002			
1/4/2017	<0.002	<0.002				<0.002
1/5/2017			<0.002	<0.002	<0.002	
4/3/2017					<0.002	
4/4/2017				7E-05 (J)		
4/5/2017		0.0002 (J)				6E-05 (J)
4/6/2017	6E-05 (J)		<0.002			
7/10/2017		0.0002 (J)				
7/11/2017	<0.002			6E-05 (J)	<0.002	
7/12/2017			<0.002			<0.002
10/2/2017				<0.002	<0.002	
10/3/2017	7E-05 (J)					<0.002
10/4/2017		0.0002 (J)	<0.002			
1/9/2018				<0.002	<0.002	
1/10/2018			<0.002			5E-05 (J)
1/11/2018	0.0001 (J)	0.0002 (J)				
7/9/2018				<0.002		
7/10/2018					<0.002	<0.002
7/11/2018	<0.002	<0.002	<0.002			
8/27/2019	<0.002	0.00011 (J)	<0.002	<0.002	<0.002	
8/28/2019						<0.002
10/8/2019	9.8E-05 (J)		<0.002	<0.002	<0.002	<0.002
10/9/2019		0.00014 (J)				
4/7/2020	0.00019 (J)	0.00013 (J)		<0.002	<0.002	<0.002
4/8/2020			<0.002			
8/17/2020	0.00021 (1)	<0.002	<0.002	-0.000	-0.000	-0.000
8/18/2020	0.00021 (J)		-0.000	<0.002	<0.002	<0.002
9/28/2020	0.00017 / 15	~ 0.002	<0.002	<0.002		
9/29/2020	0.00017 (J)	<0.002		<0.002	-0.002	-0.002
9/30/2020	0.0002271	<0.002			<0.002	<0.002
3/10/2021	0.00022 (J)	<0.002				

	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16
3/12/2021					<0.002	
3/15/2021			<0.002			
3/16/2021				<0.002		<0.002
9/21/2021	<0.002	<0.002	<0.002			
9/22/2021				<0.002		<0.002
9/23/2021					<0.002	
2/1/2022						<0.002
2/2/2022				<0.002		
2/3/2022	<0.002	<0.002	<0.002		<0.002	
8/30/2022		<0.002		<0.002		
8/31/2022	<0.002		<0.002		<0.002	
9/1/2022						<0.002

Constituent: Thallium (mg/L) Analysis Run 11/6/2022 9:48 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
9/29/2000	<0.002					<0.002
11/21/2000	<0.002	<0.002				<0.002
1/20/2001	<0.002	<0.002				<0.002
3/14/2001	<0.002	<0.002				<0.002
7/16/2001	<0.002	<0.002				<0.002
11/1/2001	<0.002	<0.002				<0.002
4/25/2002	<0.002	<0.002				<0.002
12/12/2003	<0.002	<0.002				<0.002
5/26/2004	<0.002	<0.002				<0.002
12/7/2004	<0.002	<0.002				<0.002
6/21/2005	<0.002	<0.002				<0.002
12/12/2005	<0.002	<0.002				<0.002
6/27/2006	<0.002	<0.002				<0.002
12/4/2006	<0.002	<0.002				<0.002
6/23/2007	<0.002	<0.002				<0.002
8/31/2016		<0.002			<0.002	<0.002
9/1/2016	<0.002		<0.002	<0.002		
10/25/2016			<0.002	<0.002		
10/26/2016	<0.002	<0.002			<0.002	
10/27/2016						<0.002
1/4/2017			<0.002	<0.002	<0.002	
1/5/2017	<0.002	<0.002				
1/6/2017						<0.002
4/4/2017		<0.002	<0.002	5E-05 (J)		
4/5/2017	0.0001 (J)					
4/6/2017					<0.002	<0.002
7/11/2017			<0.002		<0.002	
7/12/2017						<0.002
7/13/2017	<0.002	<0.002		<0.002		
10/2/2017			<0.002			
10/3/2017		<0.002		<0.002		
10/4/2017	0.0001 (J)				0.0001 (J)	<0.002
1/9/2018	,			<0.002	.,	
1/10/2018		<0.002	<0.002			
1/11/2018	0.0001 (J)				6E-05 (J)	<0.002
7/9/2018			<0.002			
7/10/2018		<0.002		<0.002		
7/11/2018	<0.002				<0.002	<0.002
7/30/2019		0.00011 (J)				
8/27/2019		<0.002			8.6E-05 (J)	
8/28/2019	6.6E-05 (J)		<0.002	<0.002	.,	<0.002
10/8/2019				<0.002		
10/9/2019	7.6E-05 (J)	<0.002	<0.002		<0.002	<0.002
4/7/2020				<0.002	6.5E-05 (J)	
4/8/2020	5.6E-05 (J)	<0.002	<0.002		.,	<0.002
8/18/2020	<0.002	<0.002	<0.002	<0.002	0.00017 (J)	
8/19/2020						<0.002
9/29/2020		<0.002				
9/30/2020	<0.002		<0.002	<0.002	<0.002	
10/1/2020						<0.002
3/10/2021					<0.002	<0.002
3/11/2021	<0.002					

	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
3/12/2021			<0.002			
3/15/2021		<0.002				
3/16/2021				<0.002		
9/21/2021					<0.002	
9/22/2021	<0.002	<0.002	<0.002	<0.002		<0.002
2/1/2022	<0.002		<0.002	<0.002		
2/2/2022		<0.002				<0.002
2/3/2022					<0.002	
8/30/2022			<0.002	<0.002		
8/31/2022	<0.002				<0.002	
9/1/2022		<0.002				<0.002

Constituent: Thallium (mg/L) Analysis Run 11/6/2022 9:48 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

	MW-23D	MW-24D	MW-25D
3/11/2021	<0.002	<0.002	<0.002
9/22/2021	<0.002	<0.002	
9/23/2021			<0.002
2/1/2022		<0.002	
2/3/2022	<0.002		<0.002
8/31/2022	<0.002		<0.002
9/1/2022		<0.002	

	GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1
8/30/2016		234		224	365	225
9/1/2016	3660		1080			
10/24/2016		216				
10/25/2016	3560					230
10/26/2016			1050	297	373	
1/3/2017		333		366		
1/4/2017						349
1/5/2017					543	
1/6/2017	3490		1060			
4/3/2017		288				
4/4/2017			994			356
4/6/2017	3170			279	434	
7/11/2017		188				
7/12/2017			1070	308	454	357
7/13/2017	2280					
10/2/2017		210				
10/3/2017				288	389	192
10/4/2017	3350		1100			
1/9/2018	2640	118			415	
1/10/2018				493		277
1/11/2018			838			
7/9/2018		235				
7/10/2018				1730 (O)	453	349
7/11/2018	2200		799			
1/16/2019	2100	219	530	382	1320	341
3/25/2019	2100	240	479			
3/26/2019				1040	1250	317
10/7/2019		275				
10/8/2019	1840					
10/9/2019			502	2010	903	338
4/6/2020	1670	214				
4/7/2020			482	483	775	195
9/28/2020	1450	175				373
9/30/2020				652	816	
10/1/2020			424			
3/10/2021			434	1040	2120	329
3/11/2021	1220					
3/12/2021		163				
9/21/2021	1210	145	476	1240	985	
9/23/2021						360
1/31/2022	1260	153				
2/2/2022			654		2440	
2/3/2022				1240		315
8/30/2022	1340	154	882	886	1810	
9/1/2022						228

			Gramman rioda E	unum onom. oou	incin company D	du. Gramman Noda Editami
	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16
8/31/2016	119	1560	77			
9/1/2016				1170	539	878
10/25/2016				633	449	585
10/26/2016	108	1520	<10			
1/4/2017	182	1430				783
1/5/2017			146	781	565	
4/3/2017					632	
4/4/2017				916		
4/5/2017		1200				722
4/6/2017	248		23 (J)			
7/10/2017		1100	. ,			
7/11/2017	88			675	569	
7/12/2017			39			962
10/2/2017				689	559	
10/3/2017	248					1240
10/4/2017		986	38			
1/9/2018				653	520	
1/10/2018			<10		020	935
1/11/2018	681	1020	-10			300
7/9/2018	001	1020		659		
7/10/2018				000	524	1040
7/11/2018	440	888	63		324	1040
1/16/2019	440		44	656		
1/17/2019	118	765	44	030	518 (D)	1320
3/26/2019	110		72	496	541	1380
3/27/2019	138	673	72	490	341	1300
10/8/2019	613		51	841	526	1500
10/9/2019	013	647	31	041	320	1300
4/7/2020	780	464		843	428	1500
	760		ee.	043	420	1300
4/8/2020 9/28/2020			65 60			
	1100		00	187		
9/29/2020	1100	440		107	404	4440
9/30/2020	1010	500			434	1140
3/10/2021	1240	566			252	
3/12/2021			40		353	
3/15/2021			<10			
3/16/2021	0.40	550	00	137		980
9/21/2021	842	558	83			
9/22/2021				864		1680
9/23/2021					556	
2/1/2022						1990
2/2/2022				1130		
2/3/2022	538		72		516	
8/30/2022		713		720		
8/31/2022	1240		55		530	
9/1/2022						1720

					, ,		
	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9	
8/31/2016	6	39			1570	173	
9/1/2016	1270		470	184			
10/25/20			289	<10			
10/26/20		135			1840		
10/27/20						221	
1/4/2017			639	242	1560	221	
1/5/2017		99	033	272	1300		
		99				250	
1/6/2017		E4	660	107		259	
4/4/2017		54	660	187			
4/5/2017					000	100	
4/6/2017					368	169	
7/11/2017			836		383		
7/12/2017						163	
7/13/2017	7 1940	50		86			
10/2/2017	7		698				
10/3/2017	7	18 (J)		66			
10/4/2017	7 2370				1500	168	
1/9/2018				167			
1/10/2018		<10	322				
1/11/2018					438	190	
7/9/2018			461				
7/10/2018		49	-	180			
7/11/2018					876	165	
1/16/2019					070	100	
				179			
1/17/2019				178	154	110	
1/18/2019		20	207		154	118	
1/21/2019		39	307				
3/25/2019			449				
3/26/2019				292			
3/27/2019					158	104	
7/30/2019	9	70					
10/8/2019	9			278			
10/9/2019	9 1100	46	434		211	128	
4/7/2020				106	819		
4/8/2020	881	38	986			80	
9/29/2020		33					
9/30/2020			1860	634	113		
10/1/2020			-			111	
3/10/202					210	89	
3/11/202					2.0		
			1730				
3/12/202		11	1730				
3/15/202		11		454			
3/16/202				454			
9/21/202					87		
9/22/202		33	1430	51		94	
2/1/2022			1580	783			
2/2/2022		43				96	
2/3/2022					89		
8/30/2022	2		1210	807			
8/31/2022	2 2050				163		
9/1/2022		9 (J)				85	

	MW-23D	MW-24D	MW-25D
1/20/2021			58
1/21/2021	41	50	
3/11/2021	149	53	57
9/22/2021	184	53	
9/23/2021			56
2/1/2022		75	
2/3/2022	156		58
8/31/2022	143		44
9/1/2022		20	

	GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1
9/29/2000	<0.02	<0.02	0.06	0.038	0.12	<0.02
11/21/2000	<0.02		0.068	0.013	0.13	<0.02
1/20/2001	<0.02	<0.02	0.12	0.038	0.14	<0.02
3/14/2001	<0.02	<0.02	0.08	0.077 (O)	0.13	<0.02
7/16/2001	<0.02	<0.02	0.11	0.12 (O)	0.18	<0.02
11/1/2001	<0.02	<0.02	0.079	0.21 (O)	0.12	<0.02
4/25/2002	<0.02	<0.02	0.11	0.086 (O)	0.15	<0.02
11/20/2002		<0.02	0.15	0.14 (O)	0.15	0.0069
6/6/2003	0.047	0.017	0.12	0.12 (O)	0.11	0.16 (O)
12/12/2003	0.0086	0.011	0.13	0.014	0.089	<0.02
5/26/2004	<0.02	<0.02	0.095	0.06 (O)	0.09	<0.02
12/7/2004	<0.02	<0.02	0.067	0.054	0.072	<0.02
6/21/2005	<0.02	<0.02	0.062	0.038	0.04	<0.02
12/12/2005	<0.02	<0.02	0.09	0.0056	0.021	<0.02
4/4/2006		<0.02				
6/27/2006	<0.02	<0.02	0.083	0.0043	0.02	0.0029
8/30/2006		<0.02				
12/4/2006	0.0027	<0.02	0.084	0.0044	0.022	0.0047
2/15/2007		<0.02				
6/23/2007	0.0027	<0.02	0.081	0.0039	0.027	0.0029
9/11/2007		<0.02				
12/11/2007	0.0033	<0.02	0.067	0.0029	0.017	<0.02
3/11/2008		<0.02				
6/23/2008	0.0074	<0.02				
6/24/2008			0.059	0.003	0.053	<0.02
11/3/2008		<0.02				
12/4/2008	0.0084	<0.02				
12/5/2008			0.054	<0.02	0.0078	<0.02
3/25/2009		<0.02				
7/7/2009	0.023	<0.02	0.038	<0.02	0.012	<0.02
9/14/2009		<0.02				
12/20/2009	0.007	<0.02				<0.02
12/21/2009			0.06	<0.02	0.011	
3/4/2010		<0.02				
6/20/2010	0.0047	<0.02		<0.02	0.0083	0.0037
6/21/2010			0.036			
9/14/2010		<0.02				
1/6/2011				0.0067		<0.02
1/7/2011	0.018	<0.02	0.043		0.0079	
4/15/2011		<0.02				
7/7/2011	0.019	<0.02		0.019	0.007	0.0045
7/8/2011			0.044			
9/25/2011		<0.02				
1/17/2012	0.0298	<0.02		0.021		<0.02
1/18/2012			0.045		0.0116	
4/4/2012		<0.02				
7/9/2012	0.14			0.032		0.0026
7/10/2012		<0.02	0.048		0.0096	
10/9/2012		<0.02				
1/17/2013				0.034		<0.02
1/18/2013	0.21	<0.02	0.049		<0.02	
4/5/2013		<0.02				

					,	
	GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1
7/16/2013				0.021		<0.02
7/17/2013	0.18	<0.02	0.05		<0.02	
10/11/2013		<0.02				
1/13/2014	0.24			0.008		<0.02
1/14/2014		<0.02	0.067		<0.02	
4/3/2014		0.0015 (J)				
7/9/2014	0.22	0.0012 (J)	0.055	0.0052	0.0039 (J)	0.0041 (J)
10/24/2014		<0.02				
1/12/2015			0.066			
1/13/2015	0.19			0.0036 (J)		0.0029 (J)
1/14/2015		<0.02		. ,	0.005	``
5/10/2015		<0.02				
7/16/2015	0.23	0.02	0.045	0.004 (J)		0.0034 (J)
7/17/2015		<0.02			0.0045 (J)	
10/6/2015		0.0012 (J)			0.00 10 (0)	
1/17/2016		0.0012 (0)				0.0046 (J)
1/18/2016	0.41	0.00079 (J)	0.049	0.0069	0.0044 (J)	0.0040 (3)
	0.41		0.049	0.0009	0.0044 (3)	
4/26/2016	0.007	<0.02		0.0046 (1)		0.0004 (1)
7/27/2016	0.397	-0.02		0.0046 (J)	0.0028 / 1)	0.0064 (J)
7/28/2016		<0.02	0.0000		0.0038 (J)	
7/29/2016		.0.00	0.0388			
10/24/2016		<0.02				
10/25/2016	0.425					
1/3/2017		<0.02		<0.02		
1/4/2017						<0.02
1/5/2017					0.0077 (J)	
1/6/2017	0.41		0.0341			
4/3/2017		<0.02				
4/4/2017			0.0371			0.0061 (J)
4/6/2017	0.297			0.0063 (J)	0.0069 (J)	
7/11/2017		<0.02				
7/12/2017			0.0399	0.0064 (J)	0.0098 (J)	0.0067 (J)
7/13/2017	0.194					
10/2/2017		<0.02				
10/4/2017	0.316					
1/9/2018	0.194	0.0014 (J)			0.0086 (J)	
1/10/2018				0.0077 (J)		0.0056 (J)
1/11/2018			0.0327			
7/9/2018		<0.02				
7/10/2018				0.016	0.0098 (J)	0.0056 (J)
7/11/2018	0.15		0.02			
1/16/2019	0.16	<0.02	0.0022 (J)	0.0033 (J)	0.077	0.0043 (J)
3/25/2019	0.18	<0.02	0.004 (J)			
3/26/2019				0.0058 (J)	0.086	0.0051 (J)
10/7/2019		<0.02				
10/8/2019	0.11					
10/9/2019			<0.02	0.033 (J)	0.018 (J)	<0.02
4/6/2020	0.12	<0.02				
4/7/2020			0.0037 (J)	0.0053 (J)	0.041 (J)	0.0015 (J)
9/28/2020	0.1	<0.02				0.0042 (J)
9/30/2020				0.0037 (J)	0.018	
10/1/2020			0.0047 (J)			

	GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1
3/10/2021			0.0054 (J)	0.0026 (J)	0.027	0.005 (J)
3/11/2021	0.14					
3/12/2021		<0.02				
9/21/2021	0.096	<0.02	0.0027 (J)	0.0039 (J)	0.015	
9/23/2021						0.0042 (J)
1/31/2022	0.1	<0.02				
2/2/2022			0.0031 (J)		0.0099 (J)	
2/3/2022				0.0046 (J)		0.0028 (J)
8/30/2022	0.11	0.00372 (J)	0.00943 (J)	0.0138 (J)	0.0192 (J)	
9/1/2022						0.00748 (J)

	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16
9/29/2000	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
11/21/2000	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
1/20/2001	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
3/14/2001	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
7/16/2001	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
11/1/2001	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
4/25/2002	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
11/20/2002	0.0071	<0.02	<0.02	0.03	0.0099	0.0069
6/6/2003	0.0098	<0.02	0.0063	0.0065	0.019 (O)	0.082 (O)
12/12/2003	0.0074	<0.02	<0.02	0.0052	0.018 (O)	0.012
5/26/2004	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
12/7/2004	<0.02	<0.02	<0.02	0.0074	<0.02	<0.02
6/21/2005	<0.02	<0.02	<0.02	0.01	<0.02	<0.02
12/12/2005	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
4/4/2006				0.013		<0.02
6/27/2006	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
8/30/2006				0.0039		<0.02
12/4/2006	<0.02	<0.02	<0.02	0.016	<0.02	0.0031
2/15/2007				0.017		0.0025
6/23/2007	0.0036	<0.02	<0.02	0.0076	<0.02	0.0032
9/11/2007				0.012		<0.02
12/11/2007	<0.02	<0.02	<0.02	0.017	<0.02	<0.02
3/11/2008				0.012		<0.02
6/23/2008	<0.02	<0.02	<0.02			
6/24/2008				0.0069	<0.02	<0.02
11/3/2008				0.016		0.0032
12/4/2008	<0.02	<0.02	<0.02	0.013		
12/5/2008					<0.02	<0.02
3/25/2009				0.014		<0.02
7/8/2009	0.0026	<0.02	<0.02	0.014	<0.02	0.0036
9/14/2009				0.0072		0.0026
12/20/2009				0.02	<0.02	0.0031
12/21/2009	<0.02	<0.02	<0.02			
3/4/2010				0.023		<0.02
6/20/2010	<0.02	<0.02	<0.02	0.017	<0.02	
6/21/2010						0.0025
9/14/2010				0.018		0.0035
1/6/2011	0.003		0.0028			
1/7/2011		<0.02		0.019	<0.02	0.0036
4/15/2011				0.019		<0.02
7/7/2011	0.004	<0.02	<0.02	0.014	0.0036	0.003
9/25/2011				0.015		0.0037
1/17/2012	<0.02	<0.02	<0.02	0.021	<0.02	
1/18/2012						<0.02
4/4/2012				0.0191		<0.02
7/9/2012	0.005	<0.02	<0.02	0.026	0.0059	
7/10/2012						0.0026
10/9/2012				0.049		0.007
1/17/2013	0.005	<0.02	<0.02			
1/18/2013				0.036	<0.02	<0.02
4/5/2013				0.04		<0.02
7/16/2013	<0.02	<0.02	<0.02			

	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16
7/17/2013				0.062	<0.02	<0.02
10/11/2013				0.032		<0.02
1/13/2014	<0.02	<0.02	<0.02		<0.02	
1/14/2014				0.044		<0.02
4/3/2014				0.077 (O)		0.0032 (J)
7/8/2014	0.0024 (J)	0.0034 (J)	0.002 (J)	. (-/		- 17
7/9/2014		,	(3)	0.032	0.0012 (J)	0.0031 (J)
10/24/2014				0.045	5.00.2 (0)	0.0028 (J)
1/13/2015	0.0023 (J)	<0.02	0.0015 (J)	3.0-10	0.0013 (J)	5.5525 (0)
1/13/2015	J.002J (J)	50.0Z	0.0013 (3)	0.031	0.0013 (0)	0.0034 (J)
5/10/2015				0.031		0.000 1 (0)
				0.013		0.0026 (1)
5/11/2015	0.00271	0.004071	<0.02		~0.02	0.0026 (J)
7/16/2015	0.002 (J)	0.0049 (J)	<0.02	0.000	<0.02	0.0028 (J)
7/17/2015				0.028		0.0040 (1)
10/6/2015				0.02		0.0016 (J)
1/17/2016				0.028	0.0013 (J)	0.0029 (J)
1/18/2016		0.0058	0.0011 (J)			
1/19/2016	0.0025 (J)					
4/26/2016				0.0181		0.00296 (J)
7/26/2016	0.0027 (J)		<0.02			
7/27/2016		0.0058 (J)		0.0189	<0.02	
7/28/2016						0.0026 (J)
10/25/2016				0.0206	<0.02	<0.02
1/4/2017	<0.02	<0.02				<0.02
1/5/2017			<0.02	0.0172	<0.02	
4/3/2017					0.002 (J)	
4/4/2017				0.0235		
4/5/2017		0.0039 (J)				0.0033 (J)
4/6/2017	0.0025 (J)		<0.02			
7/10/2017		0.0062 (J)				
7/11/2017	0.0027 (J)	• •		0.0136	0.0022 (J)	
7/12/2017	• •		0.0016 (J)		` '	0.0037 (J)
10/2/2017			(-)	0.0175	0.0022 (J)	• •
10/3/2017					ν-/	0.0036 (J)
1/9/2018				0.0103	0.0021 (J)	\(\cdot \)
1/10/2018			0.0019 (J)		(0)	0.0029 (J)
1/11/2018	0.0019 (J)	0.0025 (J)	3.00.0 (0)			(0)
7/9/2018	0.0010 (0)	3.0020 (0)		0.0078 (J)		
7/10/2018				0.0070 (0)	0.0025 (J)	0.0025 (J)
7/10/2018	0.0021 (J)	0.0059 (J)	0.0097 (J)		0.0020 (0)	0.0020 (0)
	0.0021 (J)	0.0059 (1)		0.0042 (!)		
1/16/2019	0.002171	z0.02	<0.02	0.0043 (J)	-0.02	0.0021 (1)
1/17/2019	0.0021 (J)	<0.02	0.0000 / 15	0.0000 ())	<0.02	0.0021 (J)
3/26/2019			0.0029 (J)	0.0063 (J)	0.0026 (J)	0.0038 (J)
3/27/2019	0.0023 (J)	0.0049 (J)				
10/8/2019	<0.02		<0.02	<0.02	<0.02	<0.02
10/9/2019		0.0021 (J)				
4/7/2020	<0.02	0.0024 (J)		0.0026 (J)	<0.02	<0.02
4/8/2020			<0.02			
9/28/2020			<0.02			
9/29/2020	0.0023 (J)	0.0046 (J)		<0.02		
9/30/2020					0.0028 (J)	0.0028 (J)
3/10/2021	0.0023 (J)	0.0055 (J)				

	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16
3/12/2021					0.0037 (J)	
3/15/2021			<0.02			
3/16/2021				<0.02		0.0034 (J)
9/21/2021	0.002 (J)	0.0051 (J)	<0.02			
9/22/2021				0.0052 (J)		0.0025 (J)
9/23/2021					0.0022 (J)	
2/1/2022						0.0021 (J)
2/2/2022				0.004 (J)		
2/3/2022	0.0031 (J)	0.0052 (J)	<0.02		0.0023 (J)	
8/30/2022		0.00949 (J)		0.00933 (J)		
8/31/2022	0.00481 (J)		<0.02		0.00476 (J)	
9/1/2022						0.0065 (J)

Constituent: Vanadium (mg/L) Analysis Run 11/6/2022 9:48 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
9/29/2000	<0.02					<0.02
11/21/2000	<0.02	<0.02				<0.02
1/20/2001	<0.02	<0.02				<0.02
3/14/2001	<0.02	<0.02				<0.02
7/16/2001	<0.02	<0.02				<0.02
11/1/2001	<0.02	<0.02				<0.02
4/25/2002	<0.02	<0.02				<0.02
11/20/2002	<0.02	<0.02				0.014
6/6/2003	<0.02	<0.02				<0.02
12/12/2003	<0.02	<0.02				<0.02
5/26/2004	<0.02	<0.02				<0.02
12/7/2004	<0.02	<0.02				<0.02
6/21/2005	<0.02	<0.02				<0.02
12/12/2005	<0.02	<0.02				<0.02
6/27/2006	0.0025	<0.02				<0.02
12/4/2006	<0.02	<0.02				<0.02
6/23/2007	<0.02	<0.02				<0.02
12/11/2007	<0.02	<0.02				<0.02
6/23/2008						<0.02
6/24/2008	<0.02	<0.02				
12/4/2008		<0.02				<0.02
12/5/2008	<0.02					
7/8/2009	<0.02	<0.02				0.0029
12/20/2009		<0.02				
12/21/2009	<0.02					<0.02
6/20/2010		<0.02				<0.02
6/21/2010	<0.02		<0.02	<0.02	<0.02	
1/6/2011		<0.02				
1/7/2011	<0.02		0.0029	0.0031	<0.02	<0.02
7/7/2011			<0.02			
7/8/2011	0.0031		0.0046	0.0048	<0.02	<0.02
1/17/2012		<0.02				
1/18/2012	<0.02		<0.02	<0.02	<0.02	<0.02
7/9/2012		<0.02				
7/10/2012	<0.02		0.0081	<0.02	<0.02	<0.02
1/17/2013		<0.02				
1/18/2013	<0.02		0.0063	<0.02	<0.02	<0.02
7/17/2013	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
1/13/2014		<0.02				
1/14/2014	<0.02		<0.02	0.006	<0.02	<0.02
7/9/2014	0.0012 (J)	<0.02		0.0019 (J)		0.0016 (J)
7/10/2014			0.0026 (J)		0.0053	
1/12/2015			0.0031 (J)			
1/13/2015		<0.02				
1/14/2015	0.002 (J)			0.0037 (J)	0.0013 (J)	<0.02
7/16/2015		<0.02				
7/17/2015				0.0028 (J)		0.0029 (J)
7/18/2015	<0.02		0.003 (J)		0.0043 (J)	
1/17/2016		<0.02	0.0025 (J)	0.0039 (J)		
1/18/2016	0.0019 (J)				<0.02	<0.02
7/27/2016		<0.02				
7/28/2016			0.0024 (J)	0.0022 (J)		<0.02

						. ,	
		GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
7	7/29/2016	0.0031 (J)				0.0052 (J)	
1	10/25/2016			<0.02			
1	1/4/2017			<0.02	<0.02	<0.02	
1	1/5/2017	<0.02	<0.02				
1	1/6/2017						<0.02
4	1/4/2017		<0.02	0.0024 (J)	0.003 (J)		
4	1/5/2017	0.0029 (J)					
4	1/6/2017					<0.02	<0.02
7	7/11/2017			0.003 (J)		0.0016 (J)	
7	7/12/2017						0.0013 (J)
7	7/13/2017	0.0037 (J)	<0.02		0.0019 (J)		
1	10/2/2017			0.0028 (J)			
1	1/9/2018				0.0046 (J)		
1	1/10/2018		<0.02	0.0026 (J)			
1	1/11/2018	0.0026 (J)				0.0012 (J)	<0.02
7	7/9/2018			<0.02			
7	7/10/2018		<0.02		0.0031 (J)		
7	7/11/2018	0.0032 (J)				0.0025 (J)	<0.02
1	1/16/2019	<0.02					
1	1/17/2019				0.0022 (J)		
1	1/18/2019					<0.02	<0.02
1	1/21/2019		0.0024 (J)	0.0031 (J)			
3	3/25/2019			0.0024 (J)			
3	3/26/2019	0.0024 (J)			0.0041 (J)		
3	3/27/2019					0.002 (J)	<0.02
7	7/30/2019		<0.02				
1	10/8/2019				<0.02		
1	10/9/2019	<0.02	<0.02	<0.02		<0.02	<0.02
4	1/7/2020				<0.02	0.0014 (J)	
4	1/8/2020	<0.02	<0.02	<0.02			0.0015 (J)
g	9/29/2020		<0.02				
g	9/30/2020	<0.02		0.0029 (J)	0.0029 (J)	<0.02	
1	10/1/2020						<0.02
3	3/10/2021					<0.02	<0.02
3	3/11/2021	<0.02					
3	3/12/2021			0.0038 (J)			
3	3/15/2021		<0.02				
3	3/16/2021				0.003 (J)		
9	9/21/2021					<0.02	
9	9/22/2021	<0.02	<0.02	0.0033 (J)	<0.02		<0.02
2	2/1/2022	0.0022 (J)		0.0039 (J)	0.0036 (J)		
2	2/2/2022		<0.02				<0.02
2	2/3/2022					<0.02	
	3/30/2022			0.00647 (J)	0.00715 (J)		
8	3/31/2022	0.00599 (J)				0.00396 (J)	
9	9/1/2022		0.0045 (J)				0.00514 (J)

	MW-23D	MW-24D	MW-25D
3/11/2021	<0.02	<0.02	0.0024 (J)
9/22/2021	<0.02	<0.02	
9/23/2021			<0.02
2/1/2022		<0.02	
2/3/2022	<0.02		<0.02
8/31/2022	<0.02		<0.02
9/1/2022		0.00414 (J)	

	GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1
9/29/2000	<0.02	<0.02	<0.02	0.026 (O)	<0.02 (O)	<0.02
11/21/2000	<0.02		<0.02	<0.02	0.024 (O)	<0.02
1/20/2001	<0.02	0.025	0.041	0.031 (O)	<0.02 (O)	<0.02
3/14/2001	<0.02	<0.02	<0.02	0.063 (O)	<0.02 (O)	<0.02
7/16/2001	<0.02	<0.02	0.059	0.08 (O)	<0.02 (O)	<0.02
11/1/2001	<0.02	<0.02	<0.02	0.16 (O)	<0.02 (O)	<0.02
4/25/2002	<0.02	<0.02	<0.02	<0.02	<0.02 (O)	<0.02
11/20/2002		0.016	0.061	0.14 (O)	0.028 (O)	<0.02
6/6/2003	0.69 (O)	0.032	0.041	0.51 (O)	0.032 (O)	0.011
12/12/2003	0.12	0.019	0.012	<0.02	<0.01 (O)	<0.02
5/26/2004	0.013	<0.02	0.016	0.036 (O)	<0.01 (O)	<0.02
12/7/2004	<0.02	<0.02	<0.02	0.069 (O)	0.012 (O)	<0.02
6/21/2005	<0.02	<0.02	<0.02	0.076 (O)	<0.01 (O)	<0.02
12/12/2005	0.014	0.01	0.017	<0.02	<0.01 (O)	<0.02
4/4/2006		<0.02			(0)	
6/27/2006	0.01	0.0043	0.11	0.01	0.0071	<0.02
	0.01		0.11	0.01	0.0071	~U.UZ
8/30/2006	0.0005	0.017	0.000	0.0005	0.0000	-0.00
12/4/2006	0.0065	0.0053	0.086	0.0035	0.0096	<0.02
2/15/2007		0.0045				
6/23/2007	0.0049	0.0043	0.076	0.0032	0.094 (O)	<0.02
9/11/2007		0.004				
12/11/2007	0.0043	0.0048	0.087	0.0079	0.042 (O)	<0.02
3/11/2008		0.0043				
6/23/2008	0.0025	0.0037				
6/24/2008			0.062	<0.02	0.098 (O)	<0.02
11/3/2008		0.0032				
12/4/2008	0.0025	0.0029				
12/5/2008			0.014	<0.02	0.047 (O)	<0.02
3/25/2009		0.0055			\-'-/	
7/7/2009	<0.02	0.0028	0.052	<0.02	0.024 (O)	<0.02
9/14/2009	-0.02	0.0028	0.002	~U.UZ	0.024 (0)	-0.02
	0.0024					~0.02
12/20/2009	0.0031	0.0029	0.046	0.05	0.045 (5)	<0.02
12/21/2009			0.046	<0.02	0.049 (O)	
3/4/2010		0.0042				
6/20/2010	<0.02	0.0027		<0.02	0.045 (O)	<0.02
6/21/2010			0.045			
9/14/2010		<0.02				
1/6/2011				<0.02		<0.02
1/7/2011	<0.02	0.0032	0.024		0.0044	
4/15/2011		<0.02				
7/7/2011	0.0031	0.005		0.0027	0.003	0.0025
7/8/2011			0.023		-	
9/25/2011		0.0041				
	0.004			0.0039		<0.02
1/17/2012	0.004	0.0043	0.011	บ.บบอช	0.0049	<0.02
1/18/2012		.0.00	0.011		0.0048	
4/4/2012		<0.02				
7/9/2012	0.0096			<0.02		<0.02
7/10/2012		0.0028	0.024		<0.02	
10/9/2012		0.0033				
1/17/2013				<0.02		<0.02
		0.0000	0.011		0.0000	
1/18/2013	0.051	0.0038	0.011		0.0028	

	GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1
7/16/2013	G (5g)	GTT (5 (59)	G.1.5	0.0032	G112 011	<0.02
7/17/2013	0.042	<0.02	0.0029	0.0002	<0.02	0.02
10/11/2013	0.042	0.0046	0.0020		-0.02	
1/13/2014	0.0025	0.0040		0.0025		0.0025
	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025
1/14/2014		0.0025	0.0025		0.0025	
4/3/2014	0.004	0.0029	0.0054	0.00070 (1)	0.00000 (1)	0.00
7/9/2014	0.064	0.002 (J)	0.0051	0.00076 (J)	0.00093 (J)	<0.02
10/24/2014		0.0031				
1/12/2015			0.0023 (J)			
1/13/2015	0.066			0.0036		0.0025
1/14/2015		0.003			0.0023 (J)	
5/10/2015		0.0028				
7/16/2015	0.036		0.0021 (J)	<0.02		<0.02
7/17/2015		0.0018 (J)			<0.02	
10/6/2015		0.0018 (J)				
1/17/2016						<0.02
1/18/2016	0.035	0.0028	0.0092	<0.02	0.0029	
4/26/2016		<0.02				
7/27/2016	0.0529			0.0015 (J)		<0.02
7/28/2016		0.0018 (J)			<0.02	
7/29/2016			0.003 (J)			
10/24/2016		0.0024 (J)				
10/25/2016	0.0035 (J)					
1/3/2017		0.0035 (J)		<0.02		
1/4/2017						<0.02
1/5/2017					<0.02	
1/6/2017	0.0235		0.0104			
4/3/2017		0.0041 (J)				
4/4/2017		(-,	0.0132			<0.02
4/6/2017	0.0829			0.0023 (J)	0.0032 (J)	***
7/11/2017	0.0025	0.0029 (J)		0.0020 (0)	0.0002 (0)	
7/12/2017		0.0020 (0)	0.0046 (J)	<0.02	0.002 (J)	<0.02
7/12/2017	0.0853		0.0040 (3)	~0.02	0.002 (3)	NU.UZ
	0.0655	0.0006 (1)				
10/2/2017	0.0363	0.0026 (J)				
10/4/2017	0.0263	0.0005 (1)			0.0000 (1)	
1/9/2018	0.0665	0.0035 (J)		0.0005 ("	0.0036 (J)	0.004470
1/10/2018				0.0022 (J)		0.0014 (J)
1/11/2018			0.0095 (J)			
7/9/2018		0.0022 (J)				
7/10/2018				<0.02	0.0055 (J)	0.0021 (J)
7/11/2018	0.02 (J)		0.0028 (J)			
1/16/2019	0.014 (J)	0.0037 (J)	0.0052 (J)	<0.02	<0.02	<0.02
3/25/2019	<0.05 (O)	<0.02	0.0078 (J)			
3/26/2019				<0.02	<0.02	<0.02
10/7/2019		0.0077 (J)				
10/8/2019	0.095					
10/9/2019			0.0064 (J)	0.0081 (J)	0.016 (J)	0.0057 (J)
	<0.02	<0.02				
4/6/2020			-0.00	<0.02	<0.02	<0.02
4/6/2020 4/7/2020			<0.02	-0.0 <u>2</u>		
	0.16	0.0092 (J)	<0.02	-0.02		0.0092 (J)
4/7/2020	0.16	0.0092 (J)	<0.02	<0.02	<0.02	

	GWA-7 (bg)	GWA-8 (bg)	GWB-4R	GWB-5R	GWB-6R	GWC-1
3/10/2021			<0.02	<0.02	<0.02	<0.02
3/11/2021	0.054					
3/12/2021		0.0028 (J)				
9/21/2021	<0.02	<0.02	<0.02	<0.02	<0.02	
9/23/2021						<0.02
1/31/2022	<0.02	<0.02				
2/2/2022			<0.02		<0.02	
2/3/2022				<0.02		<0.02
8/30/2022	0.011 (J)	<0.02	<0.02	<0.02	0.0132 (J)	
9/1/2022						0.00578 (J)

	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16	
9/29/2000	<0.02	0.38 (O)	<0.02	<0.02	<0.02	<0.02	
11/21/2000	<0.02	0.077 (O)	<0.02	<0.02	<0.02	<0.02	
1/20/2001	<0.02	0.23 (O)	<0.02	<0.02	<0.02	<0.02	
3/14/2001	<0.02	0.24 (O)	<0.02	<0.02	<0.02	<0.02	
7/16/2001	<0.02	0.053 (O)	<0.02	<0.02	<0.02	<0.02	
11/1/2001	<0.02	0.022 (O)	0.044 (O)	<0.02	<0.02	<0.02	
4/25/2002	<0.02	1.2 (0)	<0.02	<0.02	<0.02	<0.02	
11/20/2002	<0.02	0.045 (O)	0.023	<0.02	<0.02	<0.02	
6/6/2003	<0.02	0.042 (O)	<0.02	<0.02	<0.02	0.035 (O)	
12/12/2003	0.013	<0.02	<0.02	<0.02	<0.02	<0.02	
5/26/2004	<0.02	<0.02	0.035	<0.02	<0.02	<0.02	
12/7/2004	0.028 (O)	<0.02	0.018	<0.02	<0.02	<0.02	
6/21/2005	<0.02	<0.02	0.014	<0.02	<0.02	<0.02	
12/12/2005	<0.02	<0.02	0.023	0.011	0.064 (O)	<0.02	
4/4/2006				<0.02		<0.02	
6/27/2006	0.0028	0.012 (O)	0.023	0.0045	0.011	0.077 (O)	
8/30/2006				<0.02		0.0027	
12/4/2006	0.0028	0.0067	0.046 (O)	<0.02	0.0033	<0.02	
2/15/2007				<0.02		0.0032	
6/23/2007	0.0063	0.025 (O)	0.036	<0.02	0.0029	0.0058	
9/11/2007				<0.02		0.0033	
12/11/2007	<0.02	0.0038	0.011	<0.02	<0.02	<0.02	
3/11/2008				<0.02		<0.02	
6/23/2008	<0.02	0.0051	0.0091				
6/24/2008				<0.02	<0.02	<0.02	
11/3/2008				<0.02		0.0025	
12/4/2008	<0.02	<0.02	0.0038	<0.02			
12/5/2008					<0.02	<0.02	
3/25/2009				<0.02		0.0025	
7/8/2009	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
9/14/2009				<0.02		<0.02	
12/20/2009				<0.02	<0.02	<0.02	
12/21/2009	<0.02	0.013 (O)	0.0032				
3/4/2010				<0.02		<0.02	
6/20/2010	<0.02	<0.02	<0.02	<0.02	<0.02		
6/21/2010						<0.02	
9/14/2010				<0.02		<0.02	
1/6/2011	<0.02		0.004				
1/7/2011		0.004		<0.02	<0.02	<0.02	
4/15/2011				<0.02		<0.02	
7/7/2011	<0.02	0.0028	0.0037	<0.02	<0.02	<0.02	
9/25/2011				<0.02		0.0028	
1/17/2012	0.0043	0.0043	0.0031	<0.02	<0.02		
1/18/2012						0.0029	
4/4/2012				<0.02		<0.02	
7/9/2012	<0.02	<0.02	0.003	<0.02	<0.02		
7/10/2012						<0.02	
10/9/2012				<0.02		0.0027	
1/17/2013	0.0025	0.0033	<0.02				
1/18/2013				<0.02	<0.02	<0.02	
4/5/2013				<0.02		<0.02	
7/16/2013	<0.02	0.0028	0.0029				

	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16	
7/17/2013				<0.02	<0.02	<0.02	
10/11/2013				<0.02		<0.02	
1/13/2014	0.0025	0.0025	0.0025		0.0025		
1/14/2014				0.0025		0.0025	
4/3/2014				0.0014 (J)		0.0015 (J)	
7/8/2014	0.0011 (J)	0.002 (J)	0.0018 (J)	(4)			
7/9/2014		(,,	(0)	0.00086 (J)	<0.02	0.0012 (J)	
10/24/2014				0.00083 (J)	0.02	0.0013 (J)	
1/13/2015	0.0021 (J)	0.0079	0.0028	0.00003 (3)	<0.02	0.0013 (0)	
1/13/2015	0.0021 (3)	0.0079	0.0028	<0.02	~0.02	0.0017 (J)	
5/10/2015				<0.02		0.0017 (3)	
				<0.02		0.0015 / 1)	
5/11/2015	-0.02	0.0006	0.0018 (1)		<0.02	0.0015 (J)	
7/16/2015	<0.02	0.0026	0.0018 (J)	-0.00	<0.02	<0.02	
7/17/2015				<0.02		0.00	
10/6/2015				<0.02		<0.02	
1/17/2016		0.005-	0.0047.40	<0.02	<0.02	<0.02	
1/18/2016	0.0000	0.0025	0.0017 (J)				
1/19/2016	0.0029						
4/26/2016				<0.02		<0.02	
7/26/2016	<0.02		0.0028 (J)				
7/27/2016		0.0021 (J)		<0.02	<0.02		
7/28/2016						<0.02	
10/25/2016				<0.02	<0.02	<0.02	
1/4/2017	<0.02	0.0025 (J)				0.0025 (J)	
1/5/2017			0.0021 (J)	<0.02	<0.02		
4/3/2017					<0.02		
4/4/2017				<0.02			
4/5/2017		0.0026 (J)				0.0025 (J)	
4/6/2017	0.004 (J)		0.0027 (J)				
7/10/2017		0.0023 (J)					
7/11/2017	<0.02			<0.02	<0.02		
7/12/2017			0.0043 (J)			0.002 (J)	
10/2/2017				0.0026 (J)	<0.02		
10/3/2017						<0.02	
1/9/2018				0.0018 (J)	<0.02		
1/10/2018			0.0021 (J)			0.0016 (J)	
1/11/2018	0.0018 (J)	0.0031 (J)					
7/9/2018				<0.02			
7/10/2018					<0.02	0.0031 (J)	
7/11/2018	<0.02	0.0036 (J)	0.0039 (J)				
1/16/2019			0.047	<0.02			
1/17/2019	<0.02	0.0032 (J)			<0.02	<0.02	
3/26/2019			0.03	<0.02	<0.02	<0.02	
3/27/2019	<0.02	0.0031 (J)					
10/8/2019	0.0061 (J)		0.053	0.0052 (J)	0.0051 (J)	0.01	
10/9/2019		0.0057 (J)					
4/7/2020	<0.02	<0.02		<0.02	<0.02	<0.02	
4/8/2020			0.023				
9/28/2020			0.016				
9/29/2020	0.0031 (J)	0.0074 (J)		<0.02			
					0.032	0.0051 (J)	
9/30/2020						• •	

	GWC-11	GWC-12	GWC-13	GWC-14	GWC-15	GWC-16
3/12/2021					<0.02	
3/15/2021			0.039			
3/16/2021				<0.02		<0.02
9/21/2021	<0.02	<0.02	0.036			
9/22/2021				0.01		<0.02
9/23/2021					<0.02	
2/1/2022						<0.02
2/2/2022				<0.02		
2/3/2022	<0.02	<0.02	0.037		<0.02	
8/30/2022		0.0262		<0.02		
8/31/2022	<0.02		0.0266		0.00395 (J)	
9/1/2022						0.0119 (J)

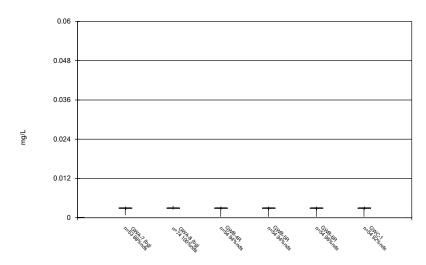
Constituent: Zinc (mg/L) Analysis Run 11/6/2022 9:48 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

		GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
9/29	9/2000	<0.02					<0.02
	21/2000	<0.02	0.021 (O)				<0.02
1/20)/2001	<0.02	<0.02				<0.02
	1/2001	<0.02	<0.02				<0.02
	6/2001	<0.02	<0.02				<0.02
	/2001	<0.02	<0.02				<0.02
	5/2002	<0.02	<0.02				<0.02
	20/2002	0.014	<0.02				0.033 (O)
	2003	0.012	<0.02				<0.02
	2/2003	<0.02	<0.02				<0.02
	6/2004	<0.02	<0.02				<0.02
	7/2004	<0.02	<0.02				<0.02
	/2005	<0.02	<0.02				<0.02
	2/2005	<0.02	0.012				0.032 (O)
	7/2006	0.0046	<0.02				0.018 (O)
	1/2006	0.0071	<0.02				0.0044
	3/2007	0.005	<0.02				0.0041
	1/2007	0.0033	<0.02				0.0039
	3/2008						<0.02
	1/2008	0.0037	<0.02				
	1/2008		<0.02				0.0039
	5/2008	0.0027					
7/8/2	2009	0.0048	<0.02				<0.02
	20/2009		<0.02				
12/2	21/2009	0.0032					0.004
6/20	0/2010		<0.02				<0.02
6/21	/2010	0.0028		<0.02	0.04 (O)	<0.02	
1/6/2	2011		<0.02				
1/7/2	2011	0.003		<0.02	<0.02	0.019	0.0032
7/7/2	2011			<0.02			
7/8/2	2011	0.0034		0.086 (JO)	0.0044	0.1 (O)	0.0025
1/17	7/2012		<0.02				
1/18	3/2012	0.0049		<0.02	<0.02	0.0051	0.0045
7/9/2	2012		<0.02				
7/10)/2012	0.0039		<0.02	<0.02	0.01	<0.02
1/17	7/2013		<0.02				
1/18	3/2013	0.0043		0.0032	<0.02	0.0036	0.0029
7/17	7/2013	0.0035	<0.02	<0.02	<0.02	0.0025	<0.02
1/13	3/2014		0.0025				
1/14	1/2014	0.0025		0.0025	0.0025	0.0025	0.0025
7/9/2	2014	0.0033	0.00058 (J)		0.00084 (J)		0.0016 (J)
7/10)/2014			<0.02		0.024	
1/12	2/2015			<0.02			
1/13	3/2015		0.0024 (J)				
1/14	1/2015	0.0067			0.0018 (J)	0.0016 (J)	0.0024 (J)
7/16	6/2015		<0.02				
7/17	7/2015				<0.02		0.0031
7/18	3/2015	<0.02		<0.02		0.014	
1/17	7/2016		<0.02	<0.02	<0.02		
1/18	3/2016	0.012				<0.02	0.0059
7/27	7/2016		0.0018 (J)				
7/28	3/2016			<0.02	<0.02		0.0019 (J)

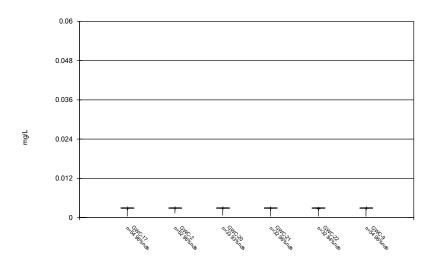
	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9
7/29/2016	0.0086 (J)				0.0129	
10/25/2016			<0.02			
1/4/2017			<0.02	<0.02	0.006 (J)	
1/5/2017	0.016	<0.02				
1/6/2017						0.0026 (J)
4/4/2017		0.0015 (J)	<0.02	0.0015 (J)		
4/5/2017	0.0175					
4/6/2017					0.0031 (J)	0.0047 (J)
7/11/2017			<0.02		0.0029 (J)	
7/12/2017						0.003 (J)
7/13/2017	0.0126	0.0014 (J)		0.002 (J)		
10/2/2017			<0.02			
1/9/2018				0.0016 (J)		
1/10/2018		<0.02	0.0034 (J)	. ,		
1/11/2018	0.012		- (-)		0.0106	0.0046 (J)
7/9/2018			<0.02			VI
7/10/2018		<0.02		<0.02		
7/11/2018	0.011	0.02		0.02	0.0057 (J)	0.0033 (J)
1/16/2019	0.0094 (J)				0.0007 (0)	(3)
1/17/2019	0.0004 (0)			<0.02		
1/18/2019				10.02	0.0024 (J)	0.0025 (J)
1/21/2019		<0.02	<0.02		0.0024 (3)	0.0023 (3)
3/25/2019		~0.02	<0.02			
3/26/2019	0.0057 (J)		\0.02	<0.02		
3/27/2019	0.0037 (3)			\0.02	<0.02	0.0026 (J)
		0.0067 (1)			<0.02	0.0020 (3)
7/30/2019		0.0067 (J)		0.0071 (1)		
10/8/2019	0.011	0.005 (1)	0.0040 (1)	0.0071 (J)	0.0070 (1)	0.0054 (1)
10/9/2019	0.011	0.005 (J)	0.0049 (J)	.0.00	0.0079 (J)	0.0054 (J)
4/7/2020				<0.02	<0.02	
4/8/2020	<0.02	<0.02	<0.02			<0.02
9/29/2020		0.056				
9/30/2020	0.0043 (J)		0.031	0.0096 (J)	<0.02	
10/1/2020						0.025
3/10/2021					<0.02	<0.02
3/11/2021	0.0056 (J)					
3/12/2021			<0.02			
3/15/2021		<0.02				
3/16/2021				<0.02		
9/21/2021					<0.02	
9/22/2021	<0.02	<0.02	<0.02	<0.02		<0.02
2/1/2022	0.011		<0.02	<0.02		
2/2/2022		<0.02				<0.02
2/3/2022					<0.02	
8/30/2022			0.0171 (J)	0.00814 (J)		
8/31/2022	0.0068 (J)				<0.02	
0/3/1/2022		0.0125 (J)				

Time Series

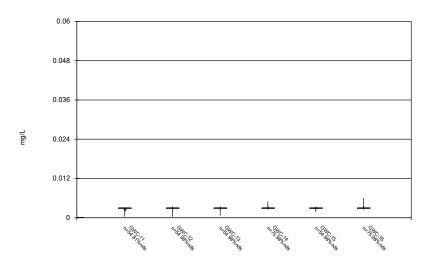

Constituent: Zinc (mg/L) Analysis Run 11/6/2022 9:48 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

	MW-23D	MW-24D	MW-25D
3/11/2021	0.0067 (J)	0.0025 (J)	0.0054 (J)
9/22/2021	<0.02	<0.02	
9/23/2021			<0.02
2/1/2022		<0.02	
2/3/2022	<0.02		0.051
8/31/2022	0.0106 (J)		0.0161 (J)
9/1/2022		0.0102 (J)	


FIGURE B.

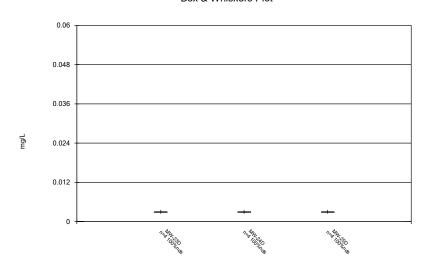
Constituent: Antimony Analysis Run 11/6/2022 9:48 AM


Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Constituent: Antimony Analysis Run 11/6/2022 9:48 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

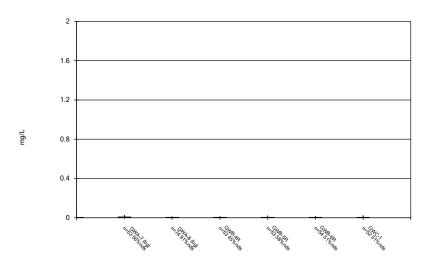
Box & Whiskers Plot



Constituent: Antimony Analysis Run 11/6/2022 9:48 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

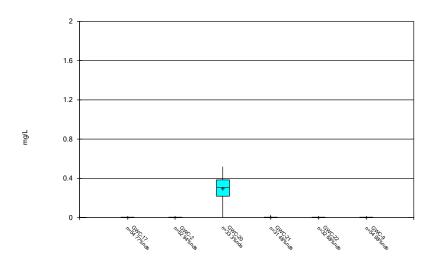
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Antimony Analysis Run 11/6/2022 9:48 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

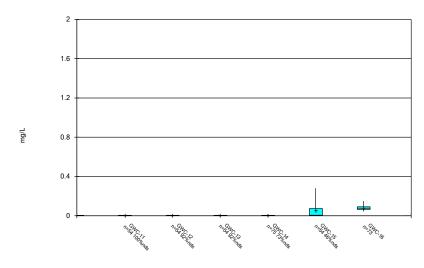
Box & Whiskers Plot



Constituent: Arsenic Analysis Run 11/6/2022 9:48 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

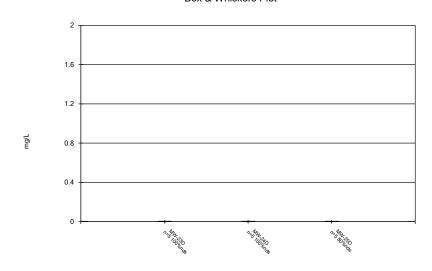
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Arsenic Analysis Run 11/6/2022 9:48 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

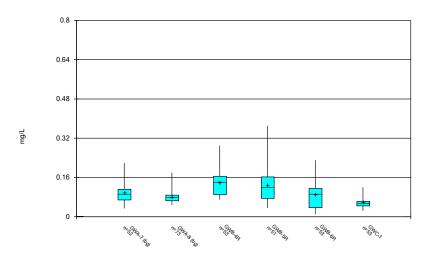
Box & Whiskers Plot



Constituent: Arsenic Analysis Run 11/6/2022 9:48 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

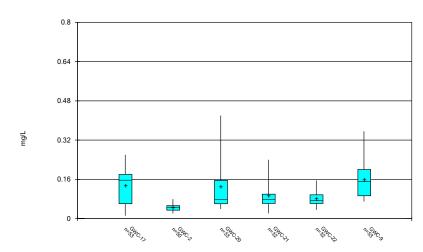
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Arsenic Analysis Run 11/6/2022 9:48 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

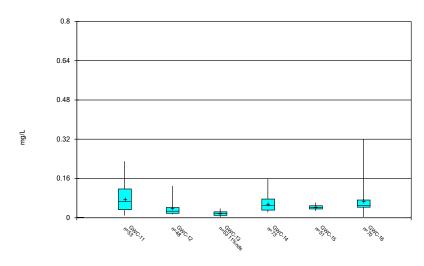
Box & Whiskers Plot



Constituent: Barium Analysis Run 11/6/2022 9:48 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

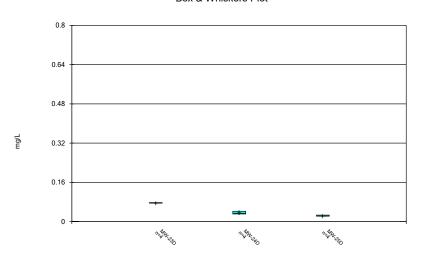
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

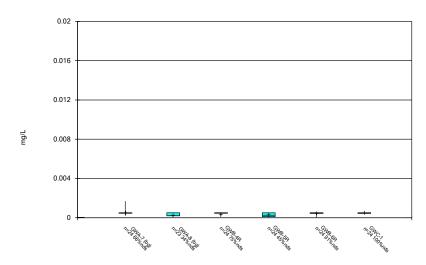
Constituent: Barium Analysis Run 11/6/2022 9:48 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Box & Whiskers Plot

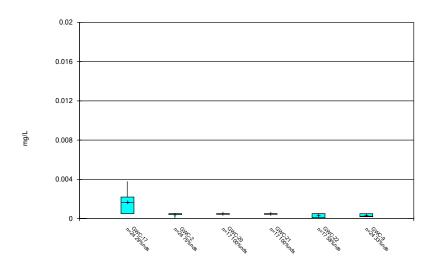


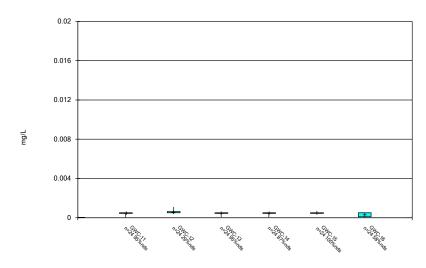
Constituent: Barium Analysis Run 11/6/2022 9:48 AM


Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

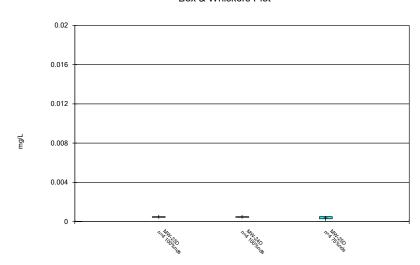
Box & Whiskers Plot




Constituent: Beryllium Analysis Run 11/6/2022 9:48 AM
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

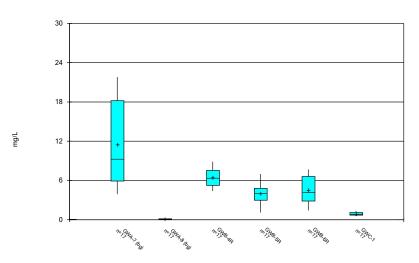
Box & Whiskers Plot

Constituent: Beryllium Analysis Run 11/6/2022 9:48 AM


Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Constituent: Beryllium Analysis Run 11/6/2022 9:48 AM
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

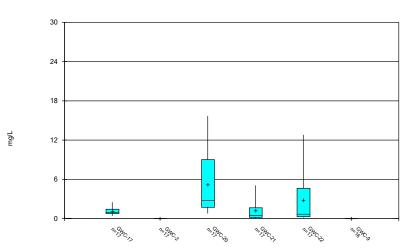
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Beryllium Analysis Run 11/6/2022 9:48 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

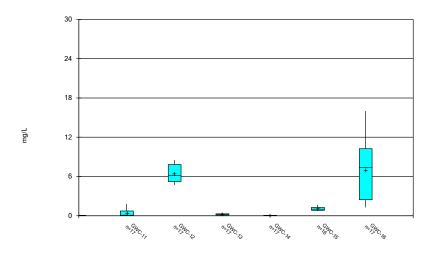
Box & Whiskers Plot



Constituent: Boron Analysis Run 11/6/2022 9:48 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

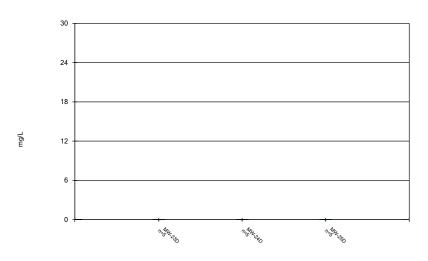
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Boron Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

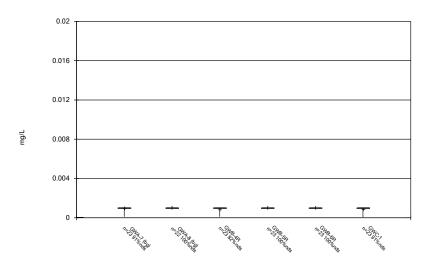
Box & Whiskers Plot



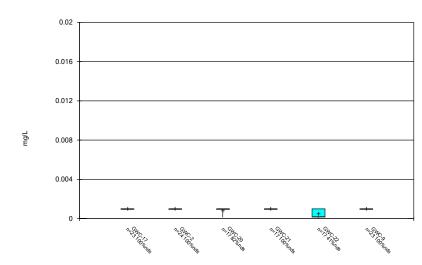
Constituent: Boron Analysis Run 11/6/2022 9:48 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

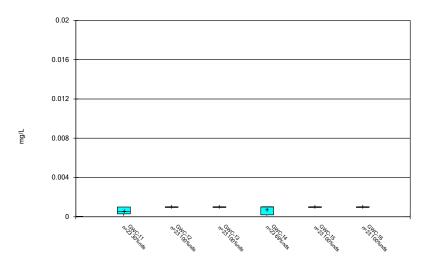
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Boron Analysis Run 11/6/2022 9:49 AM


Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

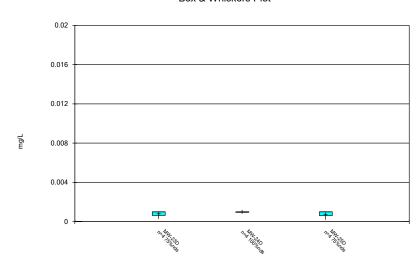
Constituent: Cadmium Analysis Run 11/6/2022 9:49 AM


Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Constituent: Cadmium Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

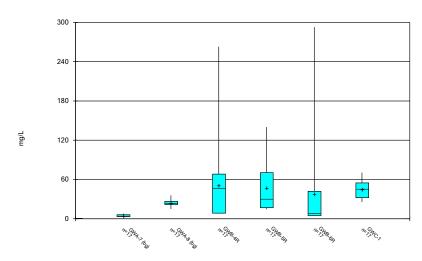
Box & Whiskers Plot



Constituent: Cadmium Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

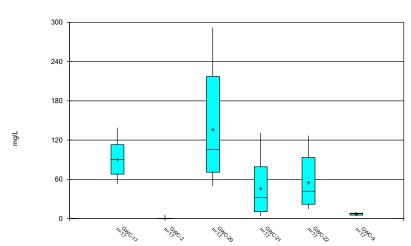
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Cadmium Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

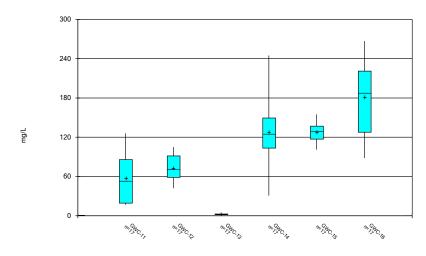
Box & Whiskers Plot



Constituent: Calcium Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

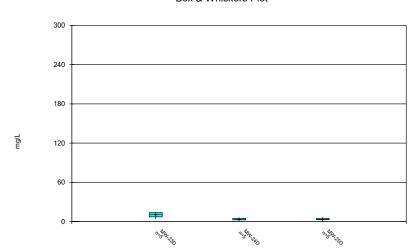
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Calcium Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

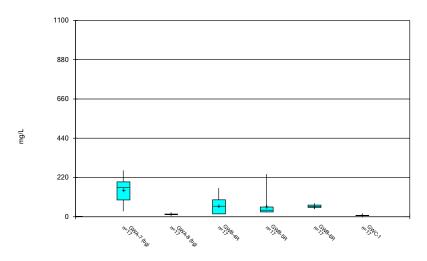
Box & Whiskers Plot



Constituent: Calcium Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

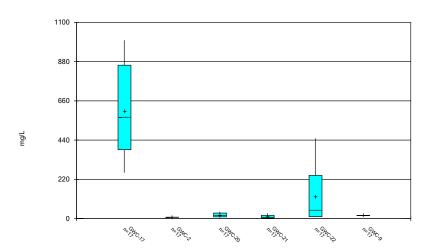
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Calcium Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

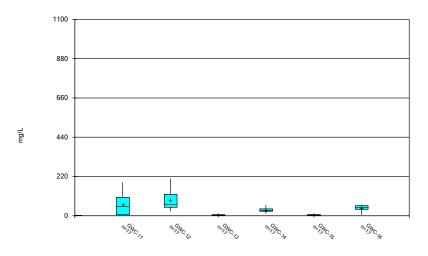
Box & Whiskers Plot



Constituent: Chloride Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

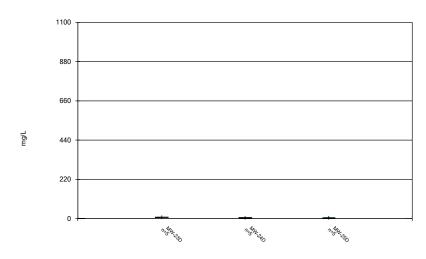
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Chloride Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

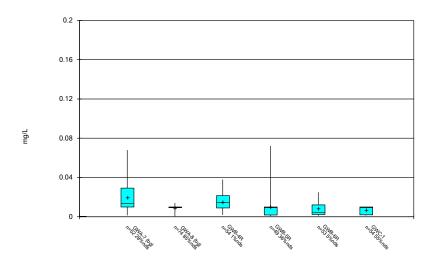
Box & Whiskers Plot



Constituent: Chloride Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

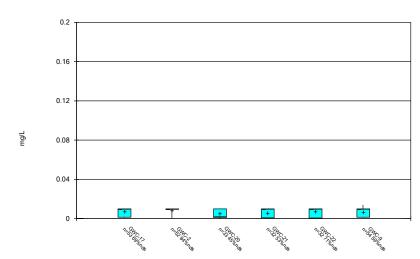
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Chloride Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

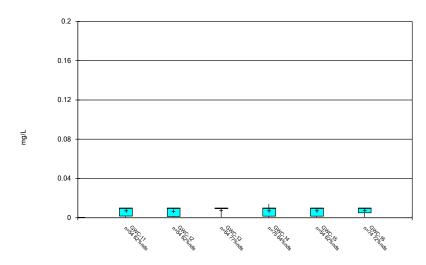
Box & Whiskers Plot



Constituent: Chromium Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

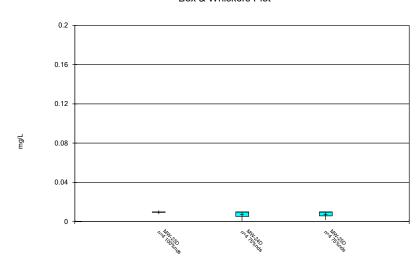
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Chromium Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

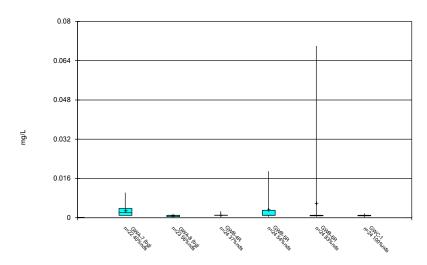
Box & Whiskers Plot



Constituent: Chromium Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

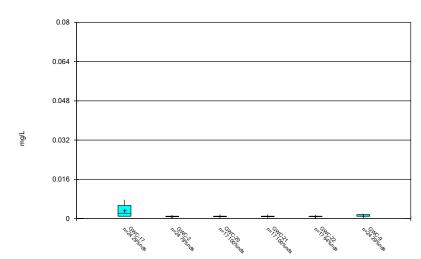
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Chromium Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

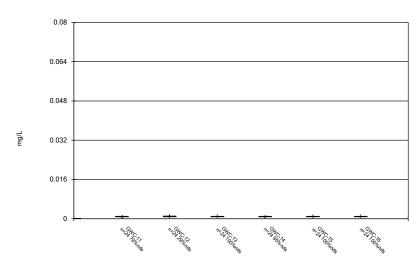
Box & Whiskers Plot



Constituent: Cobalt Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

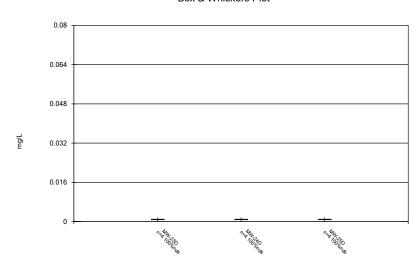
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Cobalt Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

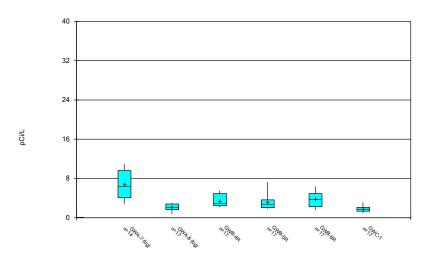
Box & Whiskers Plot



Constituent: Cobalt Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

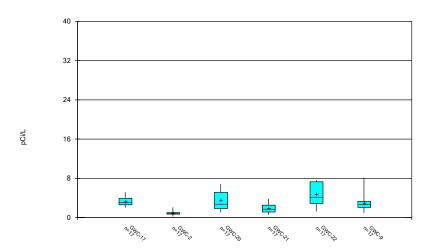
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Cobalt Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

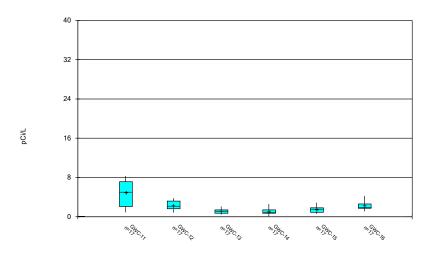
Box & Whiskers Plot



Constituent: Combined Radium 226 + 228 Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

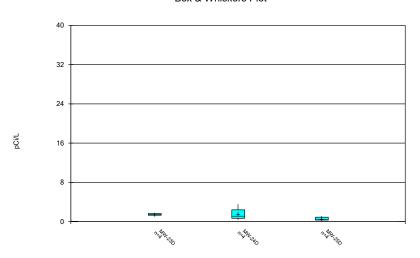
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Combined Radium 226 + 228 Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

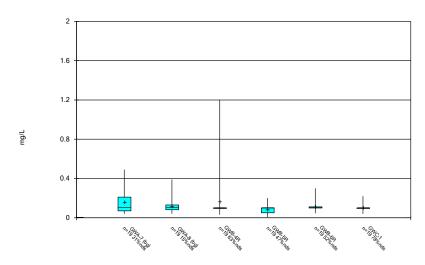
Box & Whiskers Plot



Constituent: Combined Radium 226 + 228 Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

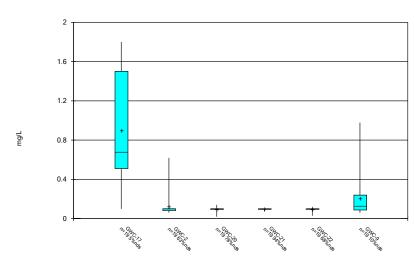
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Combined Radium 226 + 228 Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

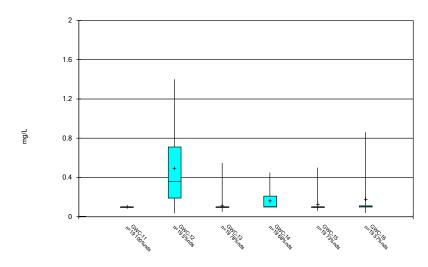
Box & Whiskers Plot



Constituent: Fluoride Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

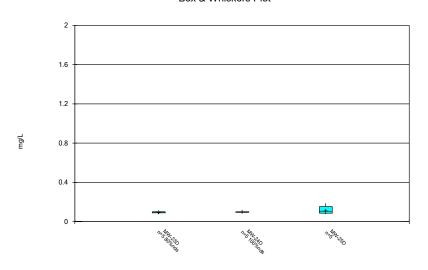
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Fluoride Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

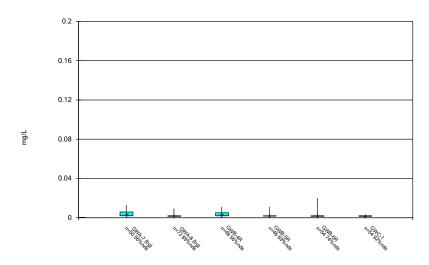
Box & Whiskers Plot



Constituent: Fluoride Analysis Run 11/6/2022 9:49 AM

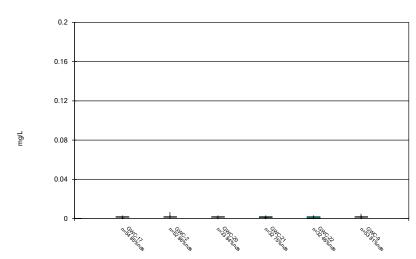
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

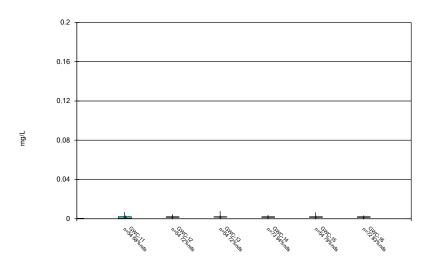
Constituent: Fluoride Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill



Constituent: Lead Analysis Run 11/6/2022 9:49 AM

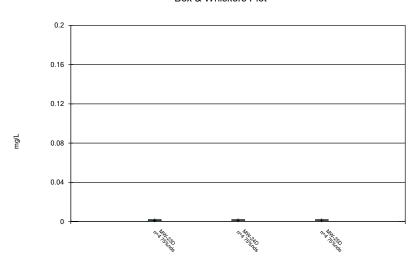
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Box & Whiskers Plot

Constituent: Lead Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

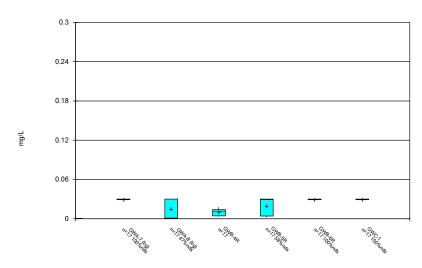
Box & Whiskers Plot



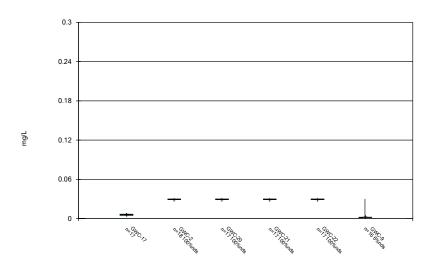
Constituent: Lead Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

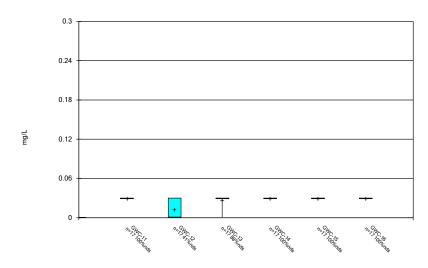
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Lead Analysis Run 11/6/2022 9:49 AM


Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

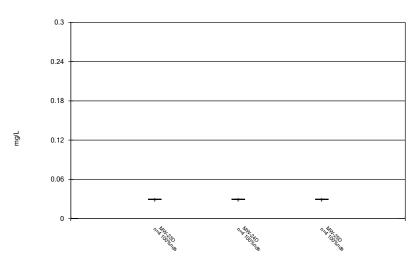
Constituent: Lithium Analysis Run 11/6/2022 9:49 AM


Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Constituent: Lithium Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

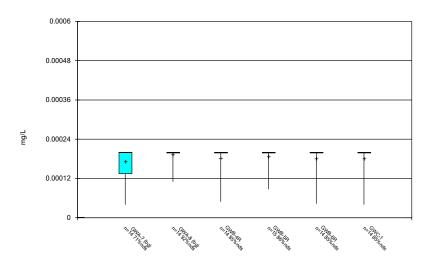
Box & Whiskers Plot



Constituent: Lithium Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

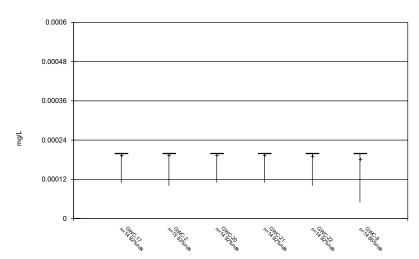
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Lithium Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

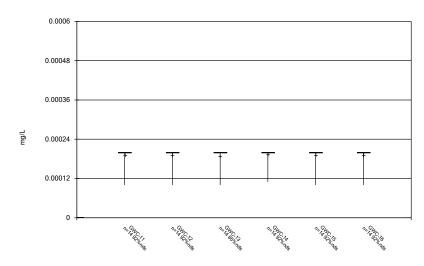
Box & Whiskers Plot



Constituent: Mercury Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

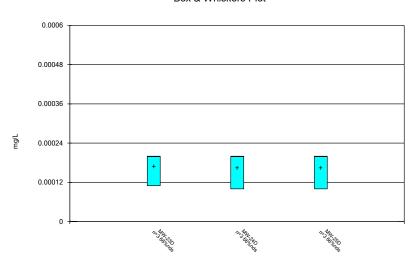
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

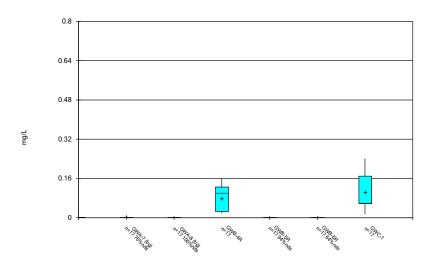
Constituent: Mercury Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Box & Whiskers Plot



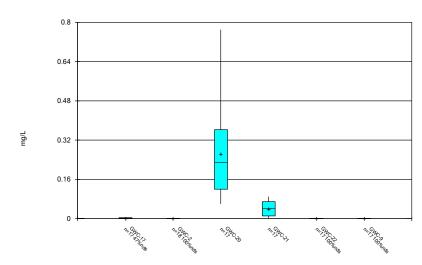
Constituent: Mercury Analysis Run 11/6/2022 9:49 AM


Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Box & Whiskers Plot

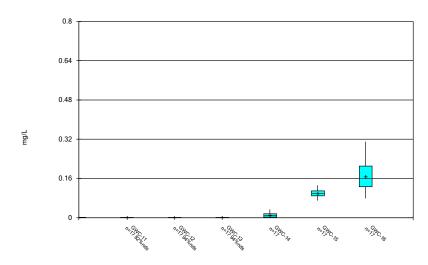
Box & Whiskers Plot



Constituent: Molybdenum Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

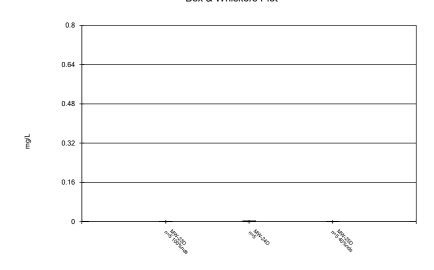
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Molybdenum Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

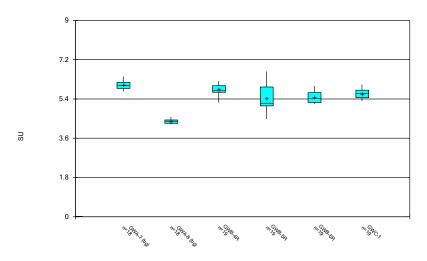
Box & Whiskers Plot



Constituent: Molybdenum Analysis Run 11/6/2022 9:49 AM

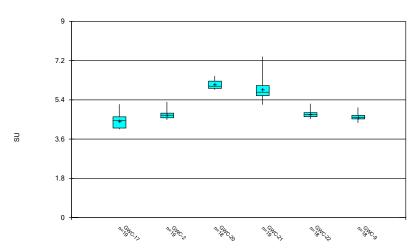
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

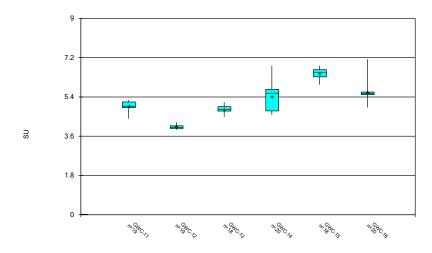
Constituent: Molybdenum Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill



Constituent: pH Analysis Run 11/6/2022 9:49 AM

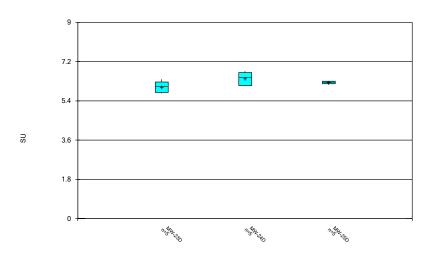
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Box & Whiskers Plot

Constituent: pH Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

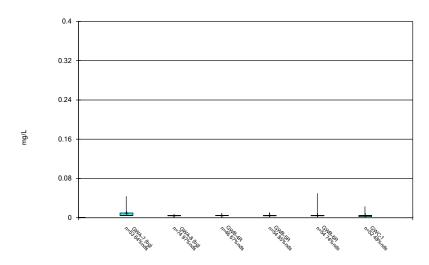
Box & Whiskers Plot



Constituent: pH Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

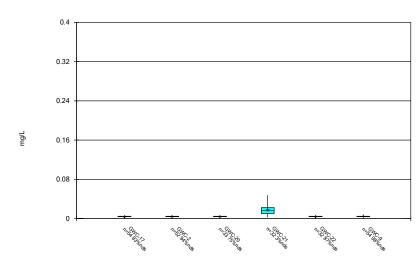
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: pH Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

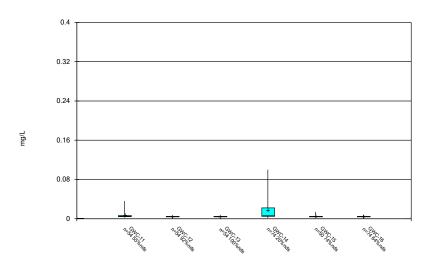
Box & Whiskers Plot



Constituent: Selenium Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

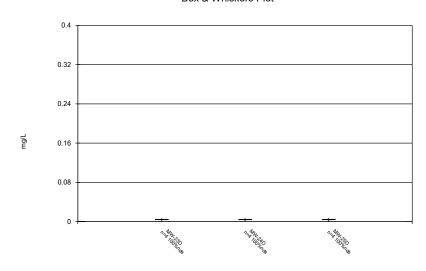
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Selenium Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

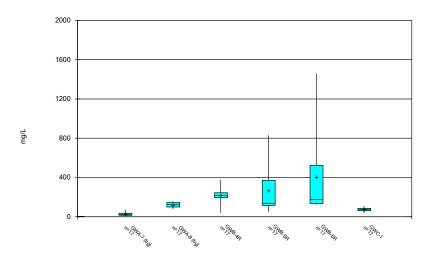
Box & Whiskers Plot



Constituent: Selenium Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

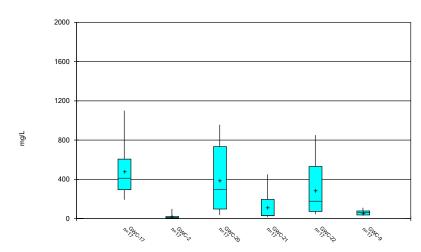
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Selenium Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

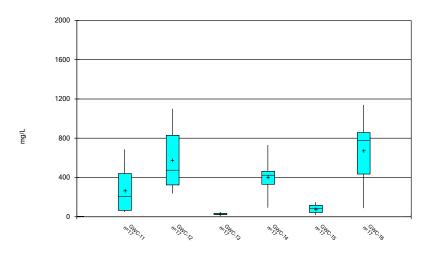
Box & Whiskers Plot



Constituent: Sulfate Analysis Run 11/6/2022 9:49 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

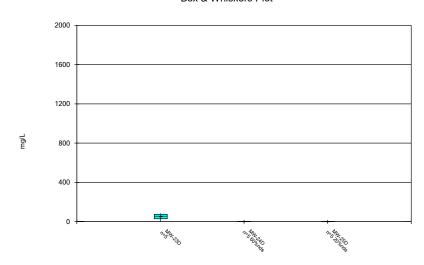
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Sulfate Analysis Run 11/6/2022 9:50 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

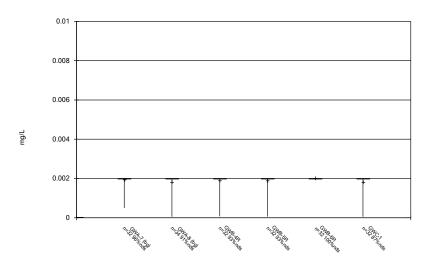
Box & Whiskers Plot



Constituent: Sulfate Analysis Run 11/6/2022 9:49 AM

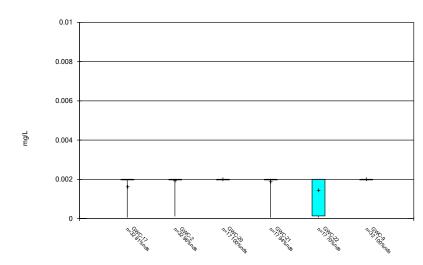
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

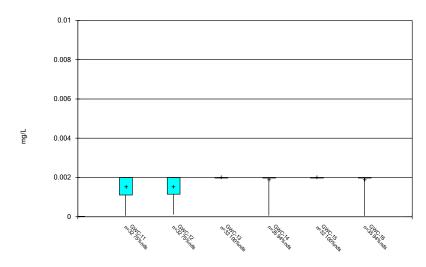

Box & Whiskers Plot

Constituent: Sulfate Analysis Run 11/6/2022 9:50 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill



Constituent: Thallium Analysis Run 11/6/2022 9:50 AM


Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Box & Whiskers Plot

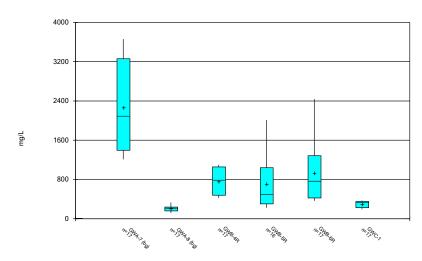
Constituent: Thallium Analysis Run 11/6/2022 9:50 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Constituent: Thallium Analysis Run 11/6/2022 9:50 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

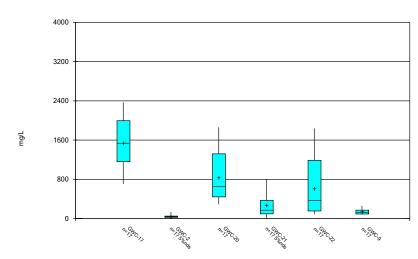
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Thallium Analysis Run 11/6/2022 9:50 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

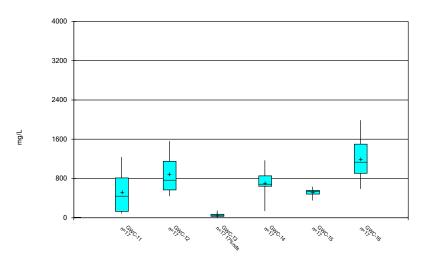
Box & Whiskers Plot



Constituent: Total Dissolved Solids Analysis Run 11/6/2022 9:50 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

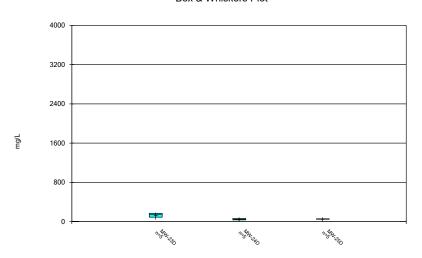
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Total Dissolved Solids Analysis Run 11/6/2022 9:50 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

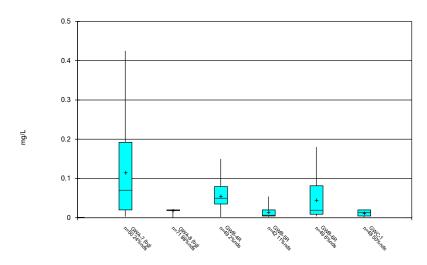
Box & Whiskers Plot



Constituent: Total Dissolved Solids Analysis Run 11/6/2022 9:50 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

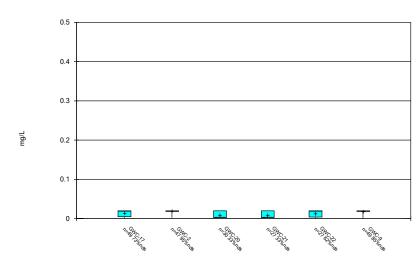
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Total Dissolved Solids Analysis Run 11/6/2022 9:50 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

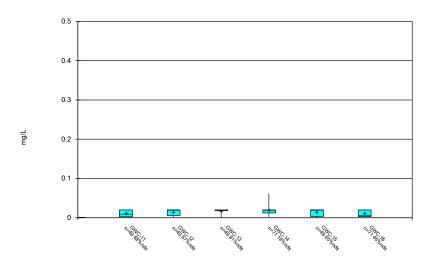
Box & Whiskers Plot



Constituent: Vanadium Analysis Run 11/6/2022 9:50 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

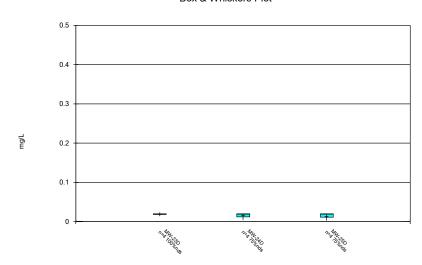
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Vanadium Analysis Run 11/6/2022 9:50 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

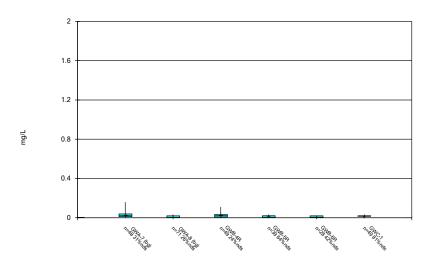
Box & Whiskers Plot



Constituent: Vanadium Analysis Run 11/6/2022 9:50 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

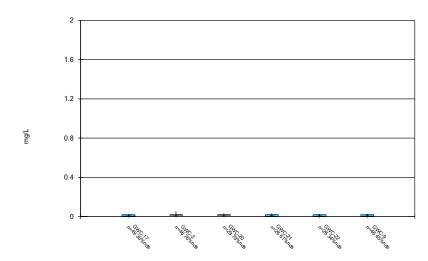
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Vanadium Analysis Run 11/6/2022 9:50 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

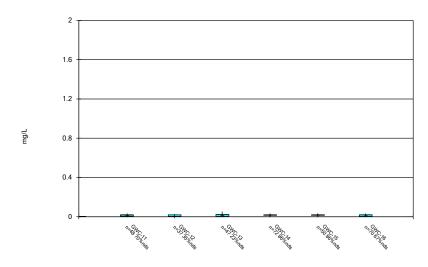
Box & Whiskers Plot



Constituent: Zinc Analysis Run 11/6/2022 9:50 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

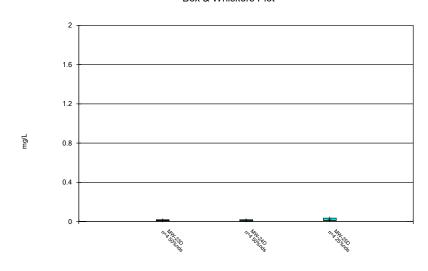
 $Sanitas^{\text{\tiny{TM}}} \ v.9.6.35 \ Groundwater \ Stats \ Consulting. \ UG$


Box & Whiskers Plot

Constituent: Zinc Analysis Run 11/6/2022 9:50 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Box & Whiskers Plot



Constituent: Zinc Analysis Run 11/6/2022 9:50 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Zinc Analysis Run 11/6/2022 9:50 AM

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

FIGURE C.

	GWB-4R Ar	_{senic} (mg/L) GWB-5R Ar	_{senic} (mg/L) GWC-1 Arse	_{enic} (mg/L) GWC-16 Are	_{senic} (mg/L) GWC-21 Ar	_{senic} (mg/L) GWA-7 Bari	_{um (mg/L)} GWB-5R Bi	_{arium} (mg/L) GWC-12 Ba	_{rium (mg/L)} GWC-14 Ba	_{rium} (mg/L) GWC-15 Barium (mg/L)
9/29/2000										
11/21/2000										
1/20/2001										
3/14/2001										
7/16/2001									0.28 (O)	
11/1/2001							0.61 (O)			
4/25/2002							(-,	0.24 (O)		
11/20/2002								. ,		
6/6/2003		0.07 (O)	0.03 (O)	1.2 (O)			0.72 (O)	0.28 (O)		0.083 (O)
12/12/2003				0.27 (O)				0.27 (O)		0.094 (O)
5/26/2004								0.31 (O)		
12/7/2004								0.46 (O)		
6/21/2005										
12/12/2005										
6/27/2006										
12/4/2006										
6/23/2007										
12/11/2007										
6/24/2008										
12/5/2008										
7/7/2009										
12/21/2009										
6/20/2010										
6/21/2010	0.018 (O)				0.013 (O)					
7/8/2011										
7/9/2012										
1/18/2013										
4/3/2014										
1/17/2016			0.024 (O)							
8/31/2016										
9/1/2016						0.415 (O)				
10/26/2016										
10/3/2017										
7/10/2018										
7/11/2018										
1/16/2019										
1/17/2019										
1/18/2019										
1/21/2019										
3/25/2019										
10/8/2019										
4/6/2020										
9/28/2020										
1/31/2022										

	GWC-16 Ba	_{irium} (mg/L) GWC-2 Bar	ium (mg/L) GWC-15 Bo	_{oron (mg/L)} GWC- ⁹ Bor	on (mg/L) GWA-7 Chr	_{omium} (mg/L) GWB-5R Ch	_{nromium} (mg/L GWB-6R Cl	.) _{nromium} (mg/L GWC-16 Ch) _{romium (mg/L)} GWC-17 Ch	romium (mg/L) GWA-7 Cobalt (mg/L)
9/29/2000										
11/21/2000										
1/20/2001										
3/14/2001						0.052 (O)				
7/16/2001						0.08 (O)				
11/1/2001						0.13 (O)				
4/25/2002						. ,				
11/20/2002						0.053 (O)				
6/6/2003	0.48 (O)					0.064 (O)		0.063 (O)		
12/12/2003	0.13 (O)					, ,		,	0.036 (O)	
5/26/2004	. ,								, ,	
12/7/2004										
6/21/2005										
12/12/2005										
6/27/2006										
12/4/2006										
6/23/2007										
12/11/2007										
6/24/2008							0.032 (O)			
12/5/2008										
7/7/2009										
12/21/2009										
6/20/2010										
6/21/2010										
7/8/2011										
7/9/2012										
1/18/2013										
4/3/2014										
1/17/2016										
8/31/2016				0.096 (JO)						
9/1/2016			9.01 (O)		0.119 (O)					
10/26/2016		0.113 (O)								
10/3/2017	0.135 (O)									
7/10/2018	0.16 (O)									
7/11/2018										<0.05 (O)
1/16/2019										
1/17/2019										
1/18/2019										
1/21/2019										
3/25/2019										
10/8/2019										
4/6/2020										
9/28/2020										
1/31/2022										<0.025 (o)

			228 (pCi	i/L)						
	. a Com	bined Radium	226 + 228 (pCi (mg/L) GWA-8 Lead	(mg/L) GWB-4R Lea	ad (mg/L) GWB-5R Lea	ad (mg/L) GWC-14 Lea	id (mg/L) GWC-16 Lea	GMC-9 Lead (mg/L)	(mg/L)	um (mg/L) GWA-8 pH (SU)
	GWA-1 Co.	GWA-7 Los	GWA-8 Los	GWB-4K		GWC-14 C	GMC-16 C	GWC-9 Los	GMC-a run	GWA-8 Pr.
9/29/2000					0.017 (O)					
11/21/2000										
1/20/2001										
3/14/2001					0.026 (O)					
7/16/2001					0.043 (O)					
11/1/2001 4/25/2002					0.075 (O)					
11/20/2002				0.018 (O)	0.057 (O)	0.011 (O)		0.0086 (O)		
6/6/2003		0.037 (O)	0.016 (O)	0.015 (O)	0.057 (O) 0.16 (O)	0.011 (0)	0.099 (O)	0.0000 (0)		
12/12/2003		0.007 (0)	0.010 (0)	0.010 (0)	0.10 (0)		0.017 (O)			
5/26/2004							(-)			
12/7/2004					0.038 (O)					
6/21/2005					0.036 (O)					
12/12/2005										
6/27/2006				0.024 (O)						
12/4/2006				0.023 (O)						
6/23/2007										
12/11/2007										
6/24/2008				0.02 (O)						
12/5/2008										
7/7/2009										
12/21/2009										
6/20/2010										
6/21/2010										
7/8/2011										
7/9/2012										
1/18/2013										
4/3/2014										
1/17/2016										
8/31/2016									<0.05 (O)	
9/1/2016		0.0663 (O)		0.0166 (O)						
10/26/2016										
10/3/2017										
7/10/2018										
7/11/2018		40.00F (O)								0.40 (0)
1/16/2019		<0.025 (O)								6.16 (O)
1/17/2019 1/18/2019										
1/18/2019										
3/25/2019										
10/8/2019	33.8 (o)									
4/6/2020	25.7 (o)									
9/28/2020	22.4 (o)									
1/31/2022	(0)									

	GWC-13 pH	(SU) GWC-15 PH	(SU) GWC-20 pH	(SU) GWC-22 pH	(SU) GWC-9 pH	(SU) GWB-4R Se	elenium (mg/L) GWC-1 Sele	_{enium} (mg/L) GWC-14 Se	_{lenium (mg/L)} GWC-15 Se	_{llenium (mg/L)} GWC-16 Selei	_{nium} (mg/L)
9/29/2000											
11/21/2000											
1/20/2001						0.014 (O)					
3/14/2001											
7/16/2001						0.015 (O)					
11/1/2001						0.012 (O)					
4/25/2002								0.1 (O)			
11/20/2002						0.026 (O)	0.19 (O)				
6/6/2003						0.022 (O)	0.32 (O)		0.021 (O)	0.021 (O)	
12/12/2003						0.028 (O)			0.016 (O)		
5/26/2004						0.012 (O)					
12/7/2004											
6/21/2005											
12/12/2005						0.013 (O)					
6/27/2006											
12/4/2006											
6/23/2007											
12/11/2007											
6/24/2008											
12/5/2008											
7/7/2009											
12/21/2009											
6/20/2010											
6/21/2010											
7/8/2011											
7/9/2012									0.066 (O)		
1/18/2013									0.04 (O)		
4/3/2014											
1/17/2016											
8/31/2016											
9/1/2016											
10/26/2016											
10/3/2017											
7/10/2018											
7/11/2018	0.45 (0)										
1/16/2019	6.45 (O)	0.44.(0)									
1/17/2019		8.44 (O)		0.00 (0)	0.07.(0)						
1/18/2019			7.73 (0)	6.98 (O)	6.87 (O)						
1/21/2019			7.73 (O)								
3/25/2019											
10/8/2019 4/6/2020											
9/28/2020											
1/31/2022											

	GWB-5R Tot	al Dissolved S	_{Solids (mg/L) anadium (mg/L' GWC-1 Van}) adium (mg/L) GWC-14 Va	_{inadium} (mg/L) GWC-15 Va	_{nadium} (mg/L) GWC-16 Va) _{nadium} (mg/L) GWA-7 Zind	(mg/L)	oc (mg/L)	oc (mg/L)	(mg/L)
	GWB-5R 101	GWB-5R Va	GWC-1 Van	GWC-14 Va	GWC-15 Va	GWC-16 Va	nadium (mg/L) GWA-7 Zinc	(mg/L) GWB-5R Zir	nc (mg/L) GWB-6R Zir	nc (mg/L) GWC-11 Zin	3 (* 3
9/29/2000								0.026 (O)	<0.02 (O)		
11/21/2000									0.024 (O)		
1/20/2001								0.031 (O)	<0.02 (O)		
3/14/2001		0.077 (O)						0.063 (O)	<0.02 (O)		
7/16/2001		0.12 (O)						(O) 80.0	<0.02 (O)		
11/1/2001		0.21 (O)						0.16 (O)	<0.02 (O)		
4/25/2002		0.086 (O)							<0.02 (O)		
11/20/2002		0.14 (O)						0.14 (O)	0.028 (O)		
6/6/2003		0.12 (O)	0.16 (O)		0.019 (O)	0.082 (O)	0.69 (O)	0.51 (O)	0.032 (O)		
12/12/2003					0.018 (O)				<0.01 (O)		
5/26/2004		0.06 (O)						0.036 (O)	<0.01 (O)		
12/7/2004								0.069 (O)	0.012 (O)	0.028 (O)	
6/21/2005								0.076 (O)	<0.01 (O)		
12/12/2005									<0.01 (O)		
6/27/2006											
12/4/2006											
6/23/2007									0.094 (O)		
12/11/2007									0.042 (O)		
6/24/2008									0.098 (O)		
12/5/2008									0.047 (O)		
7/7/2009									0.024 (O)		
12/21/2009									0.049 (O)		
6/20/2010									0.045 (O)		
6/21/2010											
7/8/2011											
7/9/2012											
1/18/2013											
4/3/2014				0.077 (O)							
1/17/2016											
8/31/2016											
9/1/2016											
10/26/2016											
10/3/2017											
7/10/2018	1730 (O)										
7/11/2018	` '										
1/16/2019											
1/17/2019											
1/18/2019											
1/21/2019											
3/25/2019							<0.05 (O)				
10/8/2019							(-)				
4/6/2020											
9/28/2020											
1/31/2022											
., 0 ., 2022											

```
9/29/2000
               0.38 (O)
11/21/2000
               0.077 (O)
                                                         0.021 (O)
1/20/2001
               0.23 (O)
3/14/2001
               0.24 (O)
7/16/2001
               0.053 (O)
11/1/2001
               0.022 (O)
                         0.044 (O)
4/25/2002
               1.2 (O)
11/20/2002
               0.045 (O)
                                                                                                   0.033 (O)
               0.042 (O)
                                               0.035 (O)
6/6/2003
12/12/2003
5/26/2004
12/7/2004
6/21/2005
12/12/2005
                                    0.064 (O)
                                                                                                   0.032 (O)
6/27/2006
               0.012 (O)
                                               0.077 (O)
                                                                                                   0.018 (O)
12/4/2006
                         0.046 (O)
6/23/2007
               0.025 (O)
12/11/2007
6/24/2008
12/5/2008
7/7/2009
12/21/2009
               0.013 (O)
6/20/2010
                                                                              0.04 (O)
6/21/2010
                                                                    0.086 (JO)
                                                                                         0.1 (O)
7/8/2011
7/9/2012
1/18/2013
4/3/2014
1/17/2016
8/31/2016
9/1/2016
10/26/2016
10/3/2017
7/10/2018
7/11/2018
1/16/2019
1/17/2019
1/18/2019
1/21/2019
3/25/2019
10/8/2019
4/6/2020
9/28/2020
1/31/2022
```

FIGURE D.

Appendix I Interwell Prediction Limits - Significant Results Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill Printed 9/28/2022, 10:41 AM

	Grumman Roa	a Landilli									
Constituent	Well	Upper Lir	n. Lower Lin	n. Date	Observ.	Sig. Bg N Bg Mean	Std. Dev.	%NDs ND Adj.	Transform	<u>Alpha</u>	Method
Arsenic (mg/L)	GWC-15	0.0287	n/a	8/31/2022	0.259	Yes 127 n/a	n/a	77.17 n/a	n/a	0.0001219	NP Inter (NDs) 1 of 2
Arsenic (mg/L)	GWC-16	0.0287	n/a	9/1/2022	0.0987	Yes 127 n/a	n/a	77.17 n/a	n/a	0.0001219	NP Inter (NDs) 1 of 2
Arsenic (mg/L)	GWC-20	0.0287	n/a	8/30/2022	0.465	Yes 127 n/a	n/a	77.17 n/a	n/a	0.0001219	NP Inter (NDs) 1 of 2

Appendix I Interwell Prediction Limits - All Results

Client: Southern Company

Data: Grumman Road Landfill

Printed 9/28/2022, 10:41 AM

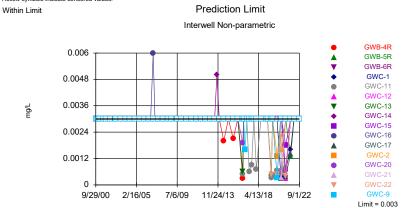
Std. Dev. Constituent Sig. Bg N Bg Mean %NDs ND Adj. Method Upper Lim. Lower Lim. Date **Transform** 0.0001219 NP Inter (NDs) 1 of 2 GWB-4R 0.003 8/30/2022 0.003ND No 95.28 n/a Antimony (mg/L) 127 n/a n/a n/a n/a GWB-5R 8/30/2022 Antimony (mg/L) 0.003 n/a 0.003ND Nο 127 n/a n/a 95.28 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 GWB-6R 95.28 n/a 0.0001219 NP Inter (NDs) 1 of 2 Antimony (ma/L) 0.003 8/30/2022 0.003ND No 127 n/a n/a n/a n/a 0.003 Antimony (mg/L) GWC-1 n/a 9/1/2022 0.003ND No 127 n/a 95.28 n/a 0.0001219 NP Inter (NDs) 1 of 2 Antimony (mg/L) GWC-11 0.003 8/31/2022 0.003ND 95.28 n/a 0.0001219 NP Inter (NDs) 1 of 2 n/a No 127 n/a n/a n/a Antimony (mg/L) GWC-12 0.003 n/a 8/30/2022 0.003ND No n/a 95.28 n/a 0.0001219 NP Inter (NDs) 1 of 2 127 n/a n/a Antimony (mg/L) GWC-13 0.003 n/a 8/31/2022 0.003ND No 127 n/a n/a 95.28 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 Antimony (mg/L) GWC-14 0.003 n/a 8/30/2022 0.003ND No 127 n/a 95.28 n/a 0.0001219 NP Inter (NDs) 1 of 2 Antimony (mg/L) GWC-15 0.003 n/a 8/31/2022 0.003ND No 127 n/a n/a 95.28 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 Antimony (mg/L) GWC-16 0.003 n/a 9/1/2022 0.003ND No 127 n/a 95.28 n/a 0.0001219 NP Inter (NDs) 1 of 2 Antimony (mg/L) GWC-17 0.003 n/a 8/31/2022 0.003ND No 127 n/a n/a 95.28 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 Antimony (mg/L) GWC-2 0.003 n/a 9/1/2022 0.003ND No 127 95.28 n/a 0.0001219 NP Inter (NDs) 1 of 2 GWC-20 8/30/2022 0.003ND 95.28 n/a 0.0001219 NP Inter (NDs) 1 of 2 Antimony (mg/L) 0.003 n/a No 127 n/a n/a n/a Antimony (mg/L) GWC-21 0.003 n/a 8/30/2022 0.003ND No 127 n/a 95.28 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 Antimony (mg/L) GWC-22 0.003 n/a 8/31/2022 0.003ND Nο 127 n/a n/a 95 28 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 Antimony (mg/L) GWC-9 0.003 9/1/2022 0.003ND No 127 n/a 95.28 n/a 0.0001219 NP Inter (NDs) 1 of 2 n/a n/a Arsenic (mg/L) GWB-4R 0.0287 n/a 8/30/2022 0.0049.1 Nο 127 n/a n/a 77 17 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 GWB-5R 0.0287 8/30/2022 0.00253J 127 77.17 n/a 0.0001219 NP Inter (NDs) 1 of 2 Arsenic (mg/L) n/a No n/a n/a n/a Arsenic (ma/L) GWB-6R 0.0287 n/a 8/30/2022 0.00716 Nο 127 n/a n/a 77 17 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 Arsenic (ma/L) GWC-1 0.0287 n/a 9/1/2022 0.00568 Nο 127 n/a n/a 77 17 n/a 0.0001219 NP Inter (NDs) 1 of 2 n/a Arsenic (mg/L) GWC-12 0.0287 n/a 8/30/2022 0.005ND No 127 n/a n/a 77.17 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 77.17 n/a Arsenic (mg/L) GWC-13 0.0287 n/a 8/31/2022 0.005ND 127 n/a 0.0001219 NP Inter (NDs) 1 of 2 No n/a n/a GWC-14 0.0287 8/30/2022 0.005ND No 127 77.17 n/a 0.0001219 NP Inter (NDs) 1 of 2 Arsenic (mg/L) n/a n/a n/a Arsenic (mg/L) GWC-15 0.0287 n/a 8/31/2022 0.259 Yes 127 n/a n/a 77.17 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 Arsenic (mg/L) **GWC-16** 0.0287 n/a 9/1/2022 0.0987 n/a 77.17 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 GWC-17 0.0287 8/31/2022 0.005ND 77.17 n/a 0.0001219 NP Inter (NDs) 1 of 2 Arsenic (mg/L) n/a No 127 n/a n/a n/a GWC-2 0.0287 9/1/2022 0.005ND 77.17 n/a 0.0001219 NP Inter (NDs) 1 of 2 Arsenic (mg/L) n/a No 127 n/a n/a 0.0001219 Arsenic (mg/L) GWC-20 0.0287 n/a 8/30/2022 0.465 127 n/a n/a 77.17 n/a n/a NP Inter (NDs) 1 of 2 Arsenic (mg/L) GWC-21 0.0287 n/a 8/30/2022 0.0271 No 127 n/a 77.17 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 Arsenic (mg/L) GWC-22 0.0287 n/a 8/31/2022 0.005ND No 127 n/a n/a 77.17 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 Arsenic (ma/L) GWC-9 0.0287 n/a 9/1/2022 0.005ND 127 n/a 77.17 n/a 0.0001219 NP Inter (NDs) 1 of 2 0.0001254 Barium (mg/L) GWR-4R 0.22 n/a 8/30/2022 0.134 Nο 125 n/a n/a n n/a n/a NP Inter (normality) 1 of 2 Barium (mg/L) GWB-5R 0.22 n/a 8/30/2022 0.051 No 125 n/a n/a n/a 0.0001254 NP Inter (normality) 1 of 2 0.0001254 NP Inter (normality) 1 of 2 Barium (mg/L) GWB-6R 0.22 n/a 8/30/2022 0.0266 No 125 n/a n/a 0 n/a n/a Barium (mg/L) GWC-1 0.22 9/1/2022 0.0583 No 0 n/a n/a 0.0001254 NP Inter (normality) 1 of 2 n/a 125 n/a Barium (mg/L) GWC-11 0.22 n/a 8/31/2022 0.115 No 125 n/a n/a 0 n/a n/a 0.0001254 NP Inter (normality) 1 of 2 Barium (mg/L) GWC-12 0.22 n/a 8/30/2022 0.0275 No 125 n/a n/a 0 n/a n/a 0.0001254 NP Inter (normality) 1 of 2 Barium (mg/L) GWC-13 0.22 n/a 8/31/2022 0.0379 Nο 125 n/a 0 n/a n/a 0.0001254 NP Inter (normality) 1 of 2 n/a Barium (mg/L) GWC-14 0.22 8/30/2022 0.0773 0 n/a 0.0001254 NP Inter (normality) 1 of 2 n/a No 125 n/a n/a n/a Barium (mg/L) GWC-15 0.22 n/a 8/31/2022 0.055 No n/a 0 n/a 0.0001254 NP Inter (normality) 1 of 2 125 n/a n/a GWC-16 0.22 n/a 9/1/2022 0.165 0 0.0001254 NP Inter (normality) 1 of 2 Barium (mg/L) No 125 n/a n/a n/a n/a Barium (mg/L) GWC-17 0.22 n/a 8/31/2022 0.0375 No 125 n/a n/a 0 n/a n/a 0.0001254 NP Inter (normality) 1 of 2 Barium (mg/L) GWC-2 0.22 9/1/2022 0.0508 0 0.0001254 NP Inter (normality) 1 of 2 n/a No 125 n/a n/a n/a n/a Barium (mg/L) GWC-20 0.22 n/a 8/30/2022 0.21 Nο n/a 0 n/a 0.0001254 NP Inter (normality) 1 of 2 125 n/a n/a Barium (mg/L) GWC-21 0.22 8/30/2022 0.0001254 0.191 No 125 n/a 0 NP Inter (normality) 1 of 2 n/a n/a n/a n/a GWC-22 0.22 8/31/2022 Barium (mg/L) n/a 0.0741 No 125 0 n/a n/a 0.0001254 NP Inter (normality) 1 of 2 GWC-9 9/1/2022 0 0.0001254 NP Inter (normality) 1 of 2 Barium (mg/L) 0.22 n/a 0.151 No 125 n/a n/a n/a n/a GWB-4R 0.068 8/30/2022 0.01ND 0.0001236 NP Inter (NDs) 1 of 2 Chromium (mg/L) n/a No 126 n/a 61.9 n/a n/a Chromium (ma/L) GWB-5R 0.068 8/30/2022 0.01ND 61.9 n/a 0.0001236 NP Inter (NDs) 1 of 2 n/a No 126 n/a n/a n/a Chromium (mg/L) GWB-6R 0.068 n/a 8/30/2022 0.00356J 61.9 n/a 0.0001236 NP Inter (NDs) 1 of 2 0.0001236 Chromium (mg/L) GWC-1 0.068 n/a 9/1/2022 0.01ND No 126 n/a n/a 61.9 n/a n/a NP Inter (NDs) 1 of 2 Chromium (mg/L) GWC-11 0.068 n/a 8/31/2022 0.01ND No 126 n/a 61.9 n/a 0.0001236 NP Inter (NDs) 1 of 2 Chromium (mg/L) GWC-12 0.068 n/a 8/30/2022 0.01ND No 126 n/a n/a 61.9 n/a n/a 0.0001236 NP Inter (NDs) 1 of 2 Chromium (mg/L) GWC-13 0.068 n/a 8/31/2022 0.01ND n/a 61.9 n/a NP Inter (NDs) 1 of 2 GWC-14 8/30/2022 619 0.0001236 NP Inter (NDs) 1 of 2 Chromium (ma/L) 0.068 n/a 0.01ND Nο 126 n/a n/a n/a n/a

Appendix I Interwell Prediction Limits - All Results

Client: Southern Company

Data: Grumman Road Landfill

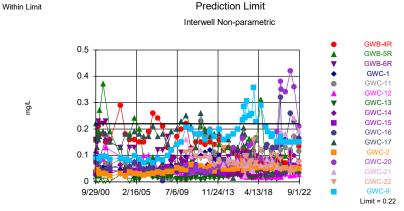
Printed 9/28/2022, 10:41 AM


Std. Dev. Constituent Sig. Bg N Bg Mean %NDs ND Adj. Method Upper Lim. Lower Lim. Date **Transform** NP Inter (NDs) 1 of 2 GWC-15 8/31/2022 0.01ND 61.9 n/a Chromium (mg/L) 0.068 No 126 n/a n/a 0.0001236 n/a n/a GWC-16 9/1/2022 Chromium (mg/L) 0.068 n/a 0.01ND Nο 126 n/a n/a 61.9 n/a n/a 0.0001236 NP Inter (NDs) 1 of 2 GWC-17 0.01ND NP Inter (NDs) 1 of 2 Chromium (ma/L) 0.068 n/a 8/31/2022 126 61.9 0.0001236 No n/a n/a n/a n/a Chromium (mg/L) GWC-2 0.068 n/a 9/1/2022 0.01ND No 126 n/a 61.9 0.0001236 NP Inter (NDs) 1 of 2 Chromium (mg/L) GWC-20 0.068 8/30/2022 0.01ND 61.9 0.0001236 NP Inter (NDs) 1 of 2 n/a No 126 n/a n/a n/a n/a Chromium (mg/L) GWC-21 0.068 n/a 8/30/2022 0.01ND 61.9 0.0001236 NP Inter (NDs) 1 of 2 No 126 n/a n/a n/a n/a GWC-22 Chromium (mg/L) 0.068 n/a 8/31/2022 0.01ND No 126 n/a n/a 61.9 n/a n/a 0.0001236 NP Inter (NDs) 1 of 2 Chromium (mg/L) GWC-9 0.068 n/a 9/1/2022 0.01ND No 61.9 0.0001236 NP Inter (NDs) 1 of 2 Lead (mg/L) GWB-4R 0.013 n/a 8/30/2022 0.002ND No 123 n/a n/a 75.61 n/a n/a 0.0001289 NP Inter (NDs) 1 of 2 Lead (mg/L) GWB-5R 0.013 n/a 8/30/2022 0.002ND 123 n/a 75.61 n/a 0.0001289 NP Inter (NDs) 1 of 2 Lead (mg/L) GWB-6R 0.013 n/a 8/30/2022 0.002ND No 123 n/a n/a 75.61 n/a n/a 0.0001289 NP Inter (NDs) 1 of 2 Lead (mg/L) GWC-1 0.013 n/a 9/1/2022 0.002ND No 75.61 n/a 0.0001289 NP Inter (NDs) 1 of 2 GWC-11 0.013 8/31/2022 0.002ND 75.61 n/a 0.0001289 NP Inter (NDs) 1 of 2 Lead (mg/L) n/a No 123 n/a n/a n/a Lead (mg/L) GWC-12 0.013 n/a 8/30/2022 0.002ND No 123 n/a 75.61 n/a n/a 0.0001289 NP Inter (NDs) 1 of 2 Lead (mg/L) GWC-13 0.013 n/a 8/31/2022 0.002ND Nο 123 n/a n/a 75.61 n/a n/a 0.0001289 NP Inter (NDs) 1 of 2 GWC-14 0.013 n/a 8/30/2022 0.002ND No 123 75.61 n/a NP Inter (NDs) 1 of 2 Lead (mg/L) n/a n/a Lead (mg/L) GWC-15 0.013 n/a 8/31/2022 0.002ND Nο 123 n/a n/a 75.61 n/a n/a 0.0001289 NP Inter (NDs) 1 of 2 GWC-16 0.013 9/1/2022 0.002ND 123 75.61 n/a 0.0001289 NP Inter (NDs) 1 of 2 Lead (mg/L) n/a No n/a n/a n/a Lead (mg/L) GWC-17 0.013 n/a 8/31/2022 0.002ND No 123 n/a n/a 75.61 n/a n/a 0.0001289 NP Inter (NDs) 1 of 2 Lead (mg/L) GWC-2 0.013 n/a 9/1/2022 0.002ND Nο 123 n/a n/a 75.61 n/a 0.0001289 NP Inter (NDs) 1 of 2 n/a Lead (mg/L) GWC-20 0.013 n/a 8/30/2022 0.002ND No 123 n/a n/a 75.61 n/a n/a 0.0001289 NP Inter (NDs) 1 of 2 Lead (mg/L) GWC-21 0.013 8/30/2022 123 n/a 75.61 n/a 0.0001289 NP Inter (NDs) 1 of 2 n/a 0.002ND No n/a n/a GWC-22 0.013 8/31/2022 0.002ND 75.61 n/a NP Inter (NDs) 1 of 2 Lead (mg/L) n/a No 123 n/a n/a 0.0001289 Lead (mg/L) GWC-9 0.013 n/a 9/1/2022 0.002ND No 123 n/a n/a 75.61 n/a n/a 0.0001289 NP Inter (NDs) 1 of 2 Selenium (mg/L) GWB-4R 0.0438 n/a 8/30/2022 0.00265J No n/a 83.46 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 Selenium (mg/L) GWB-5R 0.0438 8/30/2022 0.005ND No 83.46 n/a 0.0001219 NP Inter (NDs) 1 of 2 n/a 127 n/a n/a n/a Selenium (mg/L) GWB-6R 8/30/2022 0.00277J No 83 46 n/a 0.0001219 NP Inter (NDs) 1 of 2 0.0438 n/a 127 n/a n/a 9/1/2022 0.0001219 NP Inter (NDs) 1 of 2 Selenium (ma/L) GWC-1 0.0438 0.00252J 83.46 n/a n/a No 127 n/a n/a n/a GWC-11 8/31/2022 83.46 n/a NP Inter (NDs) 1 of 2 Selenium (mg/L) 0.0438 n/a 0.00344J No 127 n/a n/a 0.0001219 Selenium (mg/L) GWC-12 0.0438 n/a 8/30/2022 0.005ND No 127 n/a n/a 83.46 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 Selenium (ma/L) GWC-14 0.0438 n/a 8/30/2022 0.00544 No 127 n/a 83.46 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 8/31/2022 0.0001219 NP Inter (NDs) 1 of 2 Selenium (mg/L) GWC-15 0.0438 n/a 0.00192.1 Nο 127 n/a n/a 83.46 n/a n/a Selenium (mg/L) GWC-16 0.0438 n/a 9/1/2022 0.00334J No 127 n/a 83.46 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 0.0001219 NP Inter (NDs) 1 of 2 Selenium (mg/L) GWC-17 0.0438 n/a 8/31/2022 0.005ND No 127 n/a n/a 83.46 n/a n/a Selenium (mg/L) GWC-2 0.0438 n/a 9/1/2022 0.005ND No n/a 83.46 n/a 0.0001219 NP Inter (NDs) 1 of 2 127 n/a Selenium (mg/L) GWC-20 0.0438 n/a 8/30/2022 0.00192JNo 127 n/a n/a 83.46 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 Selenium (mg/L) GWC-21 0.0438 n/a 8/30/2022 0.00648 No 127 n/a n/a 83.46 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 Selenium (mg/L) GWC-22 0.0438 n/a 8/31/2022 0.005ND No 127 n/a 83.46 n/a n/a 0.0001219 NP Inter (NDs) 1 of 2 n/a Selenium (mg/L) GWC-9 0.0438 9/1/2022 0.005ND n/a 83.46 n/a 0.0001219 NP Inter (NDs) 1 of 2 n/a No 127 n/a n/a Vanadium (mg/L) GWB-4R 0.425 n/a 8/30/2022 0.00943J No n/a 61.98 n/a 0.0001324 NP Inter (NDs) 1 of 2 121 n/a Vanadium (mg/L) GWB-5R 0.425 8/30/2022 0.0138J 121 61.98 n/a 0.0001324 NP Inter (NDs) 1 of 2 n/a No n/a n/a n/a Vanadium (mg/L) GWB-6R 0.425 n/a 8/30/2022 0.0192.1 No 121 n/a n/a 61.98 n/a n/a 0.0001324 NP Inter (NDs) 1 of 2 Vanadium (mg/L) GWC-1 0.425 9/1/2022 0.00748J No 121 61.98 n/a 0.0001324 NP Inter (NDs) 1 of 2 n/a n/a n/a n/a Vanadium (mg/L) GWC-11 0.425 n/a 8/31/2022 0.00481J No 121 n/a 61.98 n/a n/a 0.0001324 NP Inter (NDs) 1 of 2 Vanadium (mg/L) GWC-12 0.425 8/30/2022 61.98 n/a 0.0001324 NP Inter (NDs) 1 of 2 0.00949J No 121 n/a n/a n/a n/a GWC-13 8/31/2022 61.98 n/a NP Inter (NDs) 1 of 2 Vanadium (mg/L) 0.425 n/a 0.02ND No 121 0.0001324 GWC-14 8/30/2022 61.98 n/a 0.0001324 NP Inter (NDs) 1 of 2 Vanadium (mg/L) 0.425 n/a 0.00933J No 121 n/a n/a n/a Vanadium (mg/L) GWC-15 0.425 n/a 8/31/2022 0.00476J 61.98 n/a 0.0001324 NP Inter (NDs) 1 of 2 No 121 n/a n/a Vanadium (mg/L) GWC-16 0.425 9/1/2022 0.0065J No 121 61.98 n/a 0.0001324 NP Inter (NDs) 1 of 2 n/a n/a n/a n/a Vanadium (mg/L) GWC-17 0.425 n/a 8/31/2022 0.00599J No 61.98 n/a n/a 0.0001324 NP Inter (NDs) 1 of 2 0.0001324 NP Inter (NDs) 1 of 2 Vanadium (mg/L) GWC-2 0.425 n/a 9/1/2022 0.0045JNo 121 n/a n/a 61.98 n/a n/a Vanadium (mg/L) GWC-20 0.425 n/a 8/30/2022 0.00647J No 121 n/a n/a 61.98 n/a n/a 0.0001324 NP Inter (NDs) 1 of 2 Vanadium (mg/L) GWC-21 0.425 n/a 8/30/2022 0.00715JNo 121 n/a n/a 61.98 n/a n/a 0.0001324 NP Inter (NDs) 1 of 2 Vanadium (mg/L) GWC-22 0.425 n/a 8/31/2022 No 121 n/a 61.98 n/a n/a 0.0001324 NP Inter (NDs) 1 of 2 GWC-9 0.425 9/1/2022 61 98 n/a 0.0001324 NP Inter (NDs) 1 of 2 Vanadium (mg/L) n/a 0.00514.1 Nο 121 n/a n/a n/a

Page 3

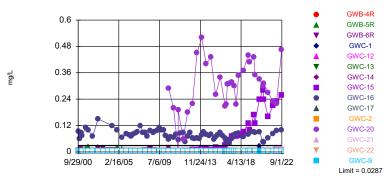
Appendix I Interwell Prediction Limits - All Results

	Grumman Roa	d Landfill	Client: Sou	thern Compa	ny Data: (Grur	nman R	oad Landfill	Printed 9/	28/2022, 10:41 AM			
Constituent	Well	Upper Li	m. Lower Li	n. <u>Date</u>	Observ.	Si	g. <u>Bg N</u>	Bg Mean	Std. Dev.	%NDs ND Adj.	Transform	<u>Alpha</u>	Method
Zinc (mg/L)	GWB-4R	0.16	n/a	8/30/2022	0.02ND	N	o 119	n/a	n/a	28.57 n/a	n/a	0.000137	NP Inter (normality) 1 of 2
Zinc (mg/L)	GWB-5R	0.16	n/a	8/30/2022	0.02ND	N	o 119	n/a	n/a	28.57 n/a	n/a	0.000137	NP Inter (normality) 1 of 2
Zinc (mg/L)	GWB-6R	0.16	n/a	8/30/2022	0.0132J	N	o 119	n/a	n/a	28.57 n/a	n/a	0.000137	NP Inter (normality) 1 of 2
Zinc (mg/L)	GWC-1	0.16	n/a	9/1/2022	0.00578J	No	o 119	n/a	n/a	28.57 n/a	n/a	0.000137	NP Inter (normality) 1 of 2
Zinc (mg/L)	GWC-11	0.16	n/a	8/31/2022	0.02ND	No	o 119	n/a	n/a	28.57 n/a	n/a	0.000137	NP Inter (normality) 1 of 2
Zinc (mg/L)	GWC-12	0.16	n/a	8/30/2022	0.0262	No	o 119	n/a	n/a	28.57 n/a	n/a	0.000137	NP Inter (normality) 1 of 2
Zinc (mg/L)	GWC-13	0.16	n/a	8/31/2022	0.0266	No	o 119	n/a	n/a	28.57 n/a	n/a	0.000137	NP Inter (normality) 1 of 2
Zinc (mg/L)	GWC-14	0.16	n/a	8/30/2022	0.02ND	No	o 119	n/a	n/a	28.57 n/a	n/a	0.000137	NP Inter (normality) 1 of 2
Zinc (mg/L)	GWC-15	0.16	n/a	8/31/2022	0.00395J	No	o 119	n/a	n/a	28.57 n/a	n/a	0.000137	NP Inter (normality) 1 of 2
Zinc (mg/L)	GWC-16	0.16	n/a	9/1/2022	0.0119J	No	o 119	n/a	n/a	28.57 n/a	n/a	0.000137	NP Inter (normality) 1 of 2
Zinc (mg/L)	GWC-17	0.16	n/a	8/31/2022	0.0068J	N	o 119	n/a	n/a	28.57 n/a	n/a	0.000137	NP Inter (normality) 1 of 2
Zinc (mg/L)	GWC-2	0.16	n/a	9/1/2022	0.0125J	No	o 119	n/a	n/a	28.57 n/a	n/a	0.000137	NP Inter (normality) 1 of 2
Zinc (mg/L)	GWC-20	0.16	n/a	8/30/2022	0.0171J	No	o 119	n/a	n/a	28.57 n/a	n/a	0.000137	NP Inter (normality) 1 of 2
Zinc (mg/L)	GWC-21	0.16	n/a	8/30/2022	0.00814J	N	o 119	n/a	n/a	28.57 n/a	n/a	0.000137	NP Inter (normality) 1 of 2
Zinc (mg/L)	GWC-22	0.16	n/a	8/31/2022	0.02ND	N	o 119	n/a	n/a	28.57 n/a	n/a	0.000137	NP Inter (normality) 1 of 2
Zinc (mg/L)	GWC-9	0.16	n/a	9/1/2022	0.0163J	N	o 119	n/a	n/a	28.57 n/a	n/a	0.000137	NP Inter (normality) 1 of 2


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

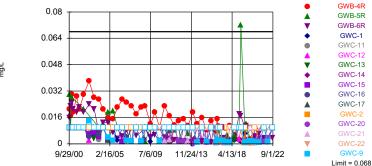
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 127 background values. 95.28% NDs. Annual per-constituent alpha = 0.003893. Individual comparison alpha = 0.0001219 (1 of 2). Comparing 16 points to limit.

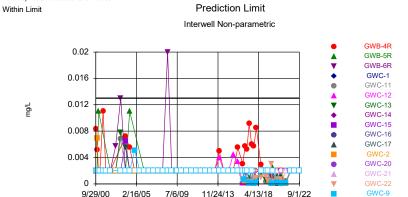
Constituent: Antimony Analysis Run 9/28/2022 10:39 AM View: Appendix I
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


 ${\it Sanitas^{\rm IM}}~v.9.6.35~Groundwater~Stats~Consulting.~UG~Hollow~symbols~indicate~censored~values.$

Non-parametric test used in lieu of parametric prediction limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 125 background values. Annual per-constituent alpha = 0.004005. Individual comparison alpha = 0.001254 (1 of 2). Comparing 16 points to limit.

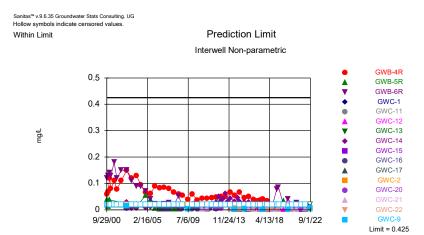
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Exceeds Limit: GWC-15, GWC-16, GWC-20 Prediction Limit
Interwell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 127 background values. 77.17% NDs. Annual per-constituent alpha = 0.003893. Individual comparison alpha = 0.0001219 (1 of 2). Comparing 15 points to limit. Assumes 1 future value.

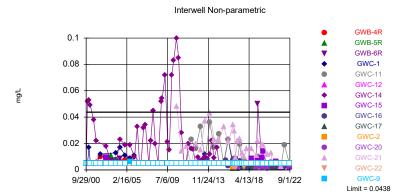
Constituent: Arsenic Analysis Run 9/28/2022 10:39 AM View: Appendix I
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 126 background values. 61.9% NDs. Annual per-constituent alpha = 0.003949. Individual comparison alpha = 0.001236 (1 of 2). Comparing 16 points to limit.



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 123 background values. 75.61% NDs. Annual per-constituent alpha = 0.004116. Individual comparison alpha = 0.0001289 (1 of 2). Comparing 16 points to limit.

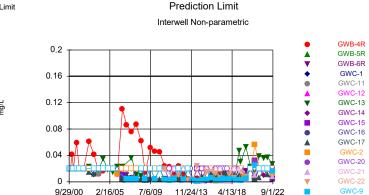
Limit = 0.013


Constituent: Lead Analysis Run 9/28/2022 10:39 AM View: Appendix I

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 121 background values. 61.98% NDs. Annual per-constituent alpha = 0.004228. Individual comparison alpha = 0.0001324 (1 of 2). Comparing 16 points to limit.

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 127 background values. 83.46% NDs. Annual per-constituent alpha = 0.003893. Individual comparison alpha = 0.0001219 (1 of 2). Comparing 15 points to limit. Assumes 1 future value.

Constituent: Selenium Analysis Run 9/28/2022 10:39 AM View: Appendix I
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Non-parametric test used in lieu of parametric prediction limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 119 background values. 28.87% NDs. Annual perconstituent alpha = 0.004375. Individual comparison alpha = 0.000137 (1 of 2). Comparing 16 points to limit.

Limit = 0.16

	GWA-7 (bg)	GWB-4R	GWA-8 (bg)	GWC-13	GWC-12	GWB-5R	GWC-9	GWC-15	GWC-11
9/29/2000	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
11/21/2000	<0.003	<0.003		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
1/20/2001	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
3/14/2001	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	< 0.003
7/16/2001	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
11/1/2001	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
4/25/2002	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
11/20/2002		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
6/6/2003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
12/12/2003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
5/26/2004	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
12/7/2004	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
6/21/2005	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
12/12/2005	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
4/4/2006			<0.003						
6/27/2006	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
8/30/2006			<0.003						
12/4/2006	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
2/15/2007			<0.003						
6/23/2007	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
9/11/2007			<0.003						
12/11/2007	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
3/11/2008			<0.003						
6/23/2008	<0.003		<0.003	<0.003	<0.003		<0.003		<0.003
6/24/2008		<0.003				<0.003		<0.003	
11/3/2008			<0.003						
12/4/2008	<0.003		<0.003	<0.003	<0.003		<0.003		<0.003
12/5/2008		<0.003				<0.003		<0.003	
3/25/2009		0.000	<0.003			0.000		0.000	
7/7/2009	<0.003	<0.003	<0.003			<0.003			
7/8/2009	0.000	0.000	0.000	<0.003	<0.003	0.000	<0.003	<0.003	<0.003
9/14/2009			<0.003	0.000	0.000		0.000	0.000	0.000
12/20/2009	<0.003		<0.003					<0.003	
12/21/2009	-0.000	<0.003	-0.000	<0.003	<0.003	<0.003	<0.003	-0.000	<0.003
3/4/2010		-0.000	<0.003	-0.000	-0.000	10.000	-0.000		-0.000
6/20/2010	<0.003		<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
6/21/2010	0.000	<0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000
9/14/2010		0.000	<0.003						
1/6/2011			0.000	<0.003		<0.003			<0.003
1/7/2011	<0.003	<0.003	<0.003	0.000	<0.003	0.000	<0.003	<0.003	0.000
4/15/2011	10.000	-0.000	<0.003		10.000		-0.000	-0.000	
7/7/2011	<0.003		<0.003	<0.003	<0.003	<0.003		<0.003	<0.003
7/8/2011	10.000	<0.003	-0.000	-0.000	10.000	-0.000	<0.003	-0.000	-0.000
9/25/2011		-0.000	<0.003				-0.000		
1/17/2012	<0.003		<0.003	<0.003	<0.003	<0.003		<0.003	<0.003
1/18/2012	10.000	<0.003	-0.000	-0.000	10.000	-0.000	<0.003	-0.000	-0.000
4/4/2012		5.000	<0.003				3.000		
7/9/2012	<0.003		3.000	<0.003	<0.003	<0.003		<0.003	<0.003
7/10/2012	5.000	<0.003	<0.003	3.000	5.000	5.000	<0.003	3.000	.0.000
10/9/2012		5.000	<0.003				3.000		
1/17/2013			0.000	<0.003	<0.003	<0.003			<0.003
1/18/2013	<0.003	<0.003	<0.003	-0.000	-0.000	-0.000	<0.003	<0.003	-0.003
., 10/2013	-0.000	-0.000	-0.005				-0.000	-0.000	

	GWA-7 (bg)	GWB-4R	GWA-8 (bg)	GWC-13	GWC-12	GWB-5R	GWC-9	GWC-15	GWC-11
4/5/2013			<0.003						
7/16/2013				<0.003	<0.003	<0.003			<0.003
7/17/2013	<0.003	<0.003	<0.003				<0.003	<0.003	
10/11/2013			<0.003						
1/13/2014	<0.003			<0.003	<0.003	<0.003		<0.003	<0.003
1/14/2014		<0.003	<0.003				<0.003		
4/3/2014			<0.003						
7/8/2014				<0.003	<0.003				<0.003
7/9/2014	0.0022 (J)	0.002 (J)	<0.003			<0.003	<0.003	<0.003	
7/10/2014									
10/24/2014			<0.003						
1/12/2015		<0.003							
1/13/2015	<0.003			<0.003	<0.003	<0.003		<0.003	<0.003
1/14/2015			<0.003				<0.003		
5/10/2015			<0.003						
5/11/2015									
7/16/2015	0.0028 (J)	0.0021 (J)		<0.003	<0.003	<0.003		<0.003	<0.003
7/17/2015			<0.003				<0.003		
7/18/2015									
10/6/2015			<0.003						
1/17/2016								<0.003	
1/18/2016	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003		
1/19/2016									<0.003
4/26/2016			<0.003						
7/26/2016				0.0006 (J)					0.0005 (J)
7/27/2016	<0.003			0.0000 (0)	<0.003	<0.003		<0.003	0.0000 (0)
7/28/2016	-0.000		<0.003		-0.000	-0.000	<0.003	-0.000	
7/29/2016		0.0003 (J)	0.000				0.000		
8/30/2016		0.0000 (0)	<0.003			<0.003			
8/31/2016			-0.000	<0.003	<0.003	-0.000	<0.003		<0.003
9/1/2016	0.0017 (J)	<0.003		-0.000	-0.000		-0.000	<0.003	-0.000
10/24/2016	0.0017 (0)	-0.000	<0.003					-0.000	
10/25/2016	<0.003		10.000					<0.003	
10/26/2016	10.005	<0.003		<0.003	<0.003	<0.003		10.003	<0.003
10/27/2016		10.003		10.003	10.003	10.003	0.0016 (J)		10.005
1/3/2017			<0.003			<0.003	0.0010 (0)		
1/4/2017			-0.000		<0.003	-0.000			<0.003
1/5/2017				<0.003	10.000			<0.003	-0.003
1/6/2017	0.0009 (J)	<0.003		-0.000			<0.003	-0.000	
4/3/2017	0.0003 (3)	10.003	<0.003				10.000	<0.003	
4/4/2017		<0.003	10.003					10.003	
4/5/2017		~0.003			<0.003				
4/6/2017	<0.003			<0.003	10.003	<0.003	<0.003		0.0006 (J)
7/10/2017	10.003			~0.003	<0.003	~0.003	10.003		0.0000 (3)
7/11/2017			<0.003		~0.003			<0.003	0.0009 (J)
7/11/2017		<0.003	3.000	<0.003		<0.003	<0.003	0.000	0.0000 (0)
7/13/2017	0.0013 (J)	-0.000		-0.000		-0.000	-0.000		
10/2/2017	0.0013 (3)		<0.003					<0.003	
10/2/2017			~0.000			<0.003		50.003	<0.003
10/3/2017	0.0008 (1)	<0.003		<0.003	<0.003	-0.003	<0.003		-0.003
	0.0008 (J)	<0.003	~0.002	~0.003	~0.003		<0.003	<0.003	
1/9/2018	<0.003		<0.003	<0.003		<0.003		<0.003	
1/10/2018				<0.003		~U.UU3			

	GWA-7 (bg)	GWB-4R	GWA-8 (bg)	GWC-13	GWC-12	GWB-5R	GWC-9	GWC-15	GWC-11
1/11/2018		<0.003			<0.003		<0.003		0.0007 (J)
7/9/2018			<0.003						
7/10/2018						<0.003		<0.003	
7/11/2018	<0.003	<0.003		<0.003	<0.003		<0.003		<0.003
1/16/2019	<0.003	<0.003	<0.003	<0.003		<0.003			
1/17/2019					<0.003			<0.003	<0.003
1/18/2019							<0.003		
1/21/2019									
3/25/2019	<0.003	<0.003	<0.003						
3/26/2019				<0.003		<0.003		<0.003	
3/27/2019					<0.003		<0.003		<0.003
7/30/2019									
8/26/2019	<0.003		<0.003						
8/27/2019		<0.003		<0.003	<0.003			<0.003	0.00033 (J)
8/28/2019						0.00054 (J)	<0.003		
10/7/2019			<0.003						
10/8/2019	<0.003			<0.003				<0.003	0.00046 (J)
10/9/2019		<0.003			<0.003	<0.003	<0.003		
4/6/2020	<0.003		<0.003						
4/7/2020		<0.003			<0.003	<0.003		<0.003	0.00066 (J)
4/8/2020				<0.003			0.00033 (J)		
8/17/2020			<0.003	<0.003	<0.003				
8/18/2020								<0.003	0.00064 (J)
8/19/2020	<0.003	<0.003				<0.003	<0.003		
9/28/2020	<0.003		<0.003	<0.003					
9/29/2020					<0.003				0.00051 (J)
9/30/2020						0.0003 (J)		<0.003	
10/1/2020		<0.003					<0.003		
3/10/2021		<0.003			0.0003 (J)	<0.003	<0.003		0.00076 (J)
3/11/2021	<0.003								
3/12/2021			<0.003					0.0018 (J)	
3/15/2021				<0.003					
3/16/2021									
9/21/2021	<0.003	<0.003	<0.003	<0.003	<0.003	0.0013 (J)			<0.003
9/22/2021							<0.003		
9/23/2021								<0.003	
1/31/2022	<0.003		<0.003						
2/1/2022									
2/2/2022		<0.003					<0.003		
2/3/2022				<0.003	<0.003	<0.003		<0.003	<0.003
8/30/2022	<0.003	<0.003	<0.003		<0.003	<0.003			
8/31/2022				<0.003				<0.003	<0.003
9/1/2022							<0.003		

	GWB-6R	GWC-16	GWC-14	GWC-17	GWC-1	GWC-2	GWC-22	GWC-20	GWC-21
9/29/2000	<0.003	<0.003	<0.003	<0.003	<0.003				
11/21/2000	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003			
1/20/2001	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003			
3/14/2001	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003			
7/16/2001	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003			
11/1/2001	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003			
4/25/2002	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003			
11/20/2002	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003			
6/6/2003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003			
12/12/2003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003			
5/26/2004									
	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003			
12/7/2004	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003			
6/21/2005	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003			
12/12/2005	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003			
4/4/2006		<0.003	<0.003						
6/27/2006	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003			
8/30/2006		<0.003	<0.003						
12/4/2006	<0.003	0.006	<0.003	<0.003	<0.003	<0.003			
2/15/2007		<0.003	<0.003						
6/23/2007	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003			
9/11/2007		<0.003	<0.003						
12/11/2007	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003			
3/11/2008		<0.003	<0.003						
6/23/2008									
6/24/2008	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003			
11/3/2008		<0.003	<0.003						
12/4/2008			<0.003			<0.003			
12/5/2008	<0.003	<0.003		<0.003	<0.003				
3/25/2009		<0.003	<0.003						
7/7/2009	<0.003				<0.003				
7/8/2009		<0.003	<0.003	<0.003		<0.003			
9/14/2009		<0.003	<0.003						
12/20/2009		<0.003	<0.003		<0.003	<0.003			
12/21/2009	<0.003			<0.003					
3/4/2010		<0.003	<0.003						
6/20/2010	<0.003		<0.003		<0.003	<0.003			
6/21/2010		<0.003		<0.003			<0.003	<0.003	<0.003
9/14/2010		<0.003	<0.003						
1/6/2011					<0.003	<0.003			
1/7/2011	<0.003	<0.003	<0.003	<0.003			<0.003	<0.003	<0.003
4/15/2011		<0.003	<0.003						
7/7/2011	<0.003	<0.003	<0.003		<0.003			<0.003	
7/8/2011				<0.003			<0.003	<0.003	<0.003
9/25/2011		<0.003	<0.003						
1/17/2012		0.000	<0.003		<0.003	<0.003			
1/18/2012	<0.003	<0.003	0.000	<0.003	0.000	0.000	<0.003	<0.003	<0.003
4/4/2012	3.000	<0.003	<0.003	0.000			3.000	3.000	3.000
7/9/2012		-0.000	<0.003		<0.003	<0.003			
7/10/2012	<0.003	<0.003	~0.003	<0.003	~0.003	~0.003	<0.003	<0.003	<0.003
	-0.005		<0.003	-0.000			-0.003	-0.003	-0.003
10/9/2012		<0.003	<0.003		<0.003	<0.003			
1/17/2013	<0.002	~0.002	~0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
1/18/2013	<0.003	<0.003	<0.003	<0.003			<0.003	<0.003	<0.003

	GWB-6R	GWC-16	GWC-14	GWC-17	GWC-1	GWC-2	GWC-22	GWC-20	GWC-21
4/5/2013	GWB-0K	<0.003	<0.003	GWC-17	GWC-1	GWC-2	GWC-22	GWC-20	GWC-21
		<0.003	<0.003		<0.003				
7/16/2013	<0.002	<0.002	<0.002	-0.002	<0.003	<0.002	<0.002	<0.003	~ 0.002
7/17/2013	<0.003	<0.003	<0.003	<0.003		<0.003	<0.003	<0.003	<0.003
10/11/2013		<0.003	0.005						
1/13/2014					<0.003	<0.003			
1/14/2014	<0.003	<0.003	<0.003	<0.003			<0.003	<0.003	<0.003
4/3/2014		<0.003	<0.003						
7/8/2014									
7/9/2014	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003			<0.003
7/10/2014							<0.003	<0.003	
10/24/2014		<0.003	<0.003						
1/12/2015								<0.003	
1/13/2015					<0.003	<0.003			
1/14/2015	<0.003	<0.003	<0.003	<0.003			<0.003		<0.003
5/10/2015			<0.003						
5/11/2015		<0.003							
7/16/2015		<0.003			<0.003	<0.003			
7/17/2015	<0.003		<0.003						<0.003
7/18/2015				<0.003			<0.003	<0.003	
10/6/2015		<0.003	<0.003						
1/17/2016		<0.003	<0.003		<0.003	<0.003		<0.003	<0.003
1/18/2016	<0.003			<0.003			<0.003		
1/19/2016									
4/26/2016		<0.003	<0.003						
7/26/2016									
7/27/2016			<0.003		<0.003	<0.003			
7/28/2016	<0.003	<0.003						0.0019 (J)	<0.003
7/29/2016				<0.003			<0.003		
8/30/2016	<0.003				<0.003				
8/31/2016						<0.003	<0.003		
9/1/2016		<0.003	<0.003	<0.003				<0.003	<0.003
10/24/2016									
10/25/2016		<0.003	<0.003		<0.003			<0.003	<0.003
10/26/2016	<0.003			<0.003		<0.003	<0.003		
10/27/2016	0.000			0.000		0.000	0.000		
1/3/2017									
1/4/2017		<0.003			<0.003		<0.003	<0.003	<0.003
1/5/2017	<0.003	10.005	<0.003	<0.003	10.003	<0.003	10.003	10.000	-0.003
1/6/2017	-0.003		10.005	10.003		10.003			
4/3/2017									
4/4/2017			<0.003		<0.003	<0.002		<0.003	<0.003
		<0.002	<0.003	-0.002	<0.003	<0.003		<0.003	<0.003
4/5/2017	<0.002	<0.003		<0.003			<0.002		
4/6/2017	<0.003						<0.003		
7/10/2017			-0.000				-0.000	-0.000	
7/11/2017		0.000	<0.003				<0.003	<0.003	
7/12/2017	<0.003	<0.003		.0.00	<0.003	0.000			
7/13/2017				<0.003		<0.003			<0.003
10/2/2017			<0.003					<0.003	
10/3/2017	<0.003	<0.003			<0.003	<0.003			<0.003
10/4/2017				<0.003			<0.003		
1/9/2018	<0.003		<0.003						<0.003
1/10/2018		<0.003			<0.003	<0.003		<0.003	

	GWB-6R	GWC-16	GWC-14	GWC-17	GWC-1	GWC-2	GWC-22	GWC-20	GWC-21
1/11/2018				<0.003			<0.003		
7/9/2018			<0.003					<0.003	
7/10/2018	<0.003	<0.003			<0.003	<0.003			<0.003
7/11/2018				<0.003			<0.003		
1/16/2019	<0.003		< 0.003	<0.003	<0.003				
1/17/2019		<0.003							<0.003
1/18/2019							<0.003		
1/21/2019						<0.003		<0.003	
3/25/2019								<0.003	
3/26/2019	<0.003	<0.003	< 0.003	<0.003	<0.003				<0.003
3/27/2019							<0.003		
7/30/2019						<0.003			
8/26/2019									
8/27/2019	<0.003		<0.003		<0.003	<0.003	0.00045 (J)		
8/28/2019		<0.003		<0.003				<0.003	<0.003
10/7/2019									
10/8/2019		<0.003	<0.003						<0.003
10/9/2019	<0.003			<0.003	<0.003	<0.003	<0.003	<0.003	
4/6/2020									
4/7/2020	<0.003	<0.003	<0.003		<0.003		0.00049 (J)		<0.003
4/8/2020				<0.003		0.0013 (J)		<0.003	
8/17/2020									
8/18/2020		<0.003	<0.003	<0.003		<0.003	0.0022 (J)	<0.003	<0.003
8/19/2020	<0.003				0.00061 (J)				
9/28/2020					0.00035 (J)				
9/29/2020			<0.003			0.0016 (J)			
9/30/2020	0.00059 (J)	<0.003		<0.003			0.0016 (J)	<0.003	0.00033 (J)
10/1/2020									
3/10/2021	0.00029 (J)				0.00069 (J)		0.0004 (J)		
3/11/2021				0.00039 (J)					
3/12/2021								0.00065 (J)	
3/15/2021						<0.003			
3/16/2021		<0.003	<0.003						<0.003
9/21/2021	<0.003						<0.003		
9/22/2021		<0.003	<0.003	0.0014 (J)		<0.003		<0.003	<0.003
9/23/2021					0.0016 (J)				
1/31/2022									
2/1/2022		<0.003		<0.003				<0.003	<0.003
2/2/2022	<0.003		<0.003			<0.003			
2/3/2022					<0.003		<0.003		
8/30/2022	<0.003		<0.003					<0.003	<0.003
8/31/2022				<0.003			<0.003		
9/1/2022		<0.003			<0.003	<0.003			

	GWA-7 (bg)	GWB-5R	GWB-6R	GWC-1	GWA-8 (bg)	GWC-12	GWC-13	GWC-14	GWC-15
9/29/2000	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
11/21/2000	<0.005	<0.005	<0.005	<0.005		<0.005	<0.005	<0.005	<0.005
1/20/2001	<0.005	<0.005	0.014	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005
3/14/2001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005
7/16/2001	<0.005	0.014	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
11/1/2001	<0.005	0.023	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
4/25/2002	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
11/20/2002		0.022	0.014	<0.005	<0.005	<0.005	<0.005	0.011	<0.005
6/6/2003	0.02	0.07 (O)	0.014	0.03 (O)	<0.005	<0.005	<0.005	<0.005	<0.005
12/12/2003	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.0064	<0.005	<0.005
5/26/2004	<0.005	0.0074	0.0082	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
12/7/2004	<0.005	0.017	0.0062	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
6/21/2005	<0.005	0.013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
12/12/2005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
4/4/2006	0.000	0.000	0.000	0.000	<0.005	0.000	0.000	<0.005	0.000
6/27/2006	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/30/2006	10.003	10.003	10.003	10.003	<0.005	10.000	40.000	<0.005	40.003
12/4/2006	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2/15/2007	10.003	10.003	10.003	10.003	<0.005	10.000	40.005	<0.005	40.003
6/23/2007	<0.005	<0.005	0.0053	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
9/11/2007	10.003	10.003	0.0033	10.003	<0.005	10.000	40.005	<0.005	40.003
12/11/2007	<0.005	<0.005	0.0057	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
3/11/2007	<0.005	<0.005	0.0037	<0.005		<0.005	<0.005		<0.005
	<0.00E				<0.005 <0.005	<0.00E	<0.00E	<0.005	
6/23/2008	<0.005	-0.005	0.010	-0.005	<0.005	<0.005	<0.005	-0.005	-0.005
6/24/2008		<0.005	0.012	<0.005	-0.005			<0.005	<0.005
11/3/2008	-0.005				<0.005	-0.005	-0.005	<0.005	
12/4/2008	<0.005	-0.005	0.0004	-0.005	<0.005	<0.005	<0.005	<0.005	-0.005
12/5/2008		<0.005	0.0064	<0.005	.0.005			.0.005	<0.005
3/25/2009	.0.005	.0.005		.0.005	<0.005			<0.005	
7/7/2009	<0.005	<0.005	<0.005	<0.005	<0.005	-0.005	-0.005	-0.005	0.0050
7/8/2009					.0.005	<0.005	<0.005	<0.005	0.0052
9/14/2009	.0.005			.0.005	<0.005			<0.005	
12/20/2009	<0.005			<0.005	<0.005			<0.005	<0.005
12/21/2009		<0.005	<0.005		-0.005	<0.005	<0.005	-0.005	
3/4/2010	.0.005	.0.005	0.017	.0.005	<0.005	.0.005	.0.005	<0.005	0.0000
6/20/2010	<0.005	<0.005	0.017	<0.005	<0.005	<0.005	<0.005	<0.005	0.0068
6/21/2010					-0.005			-0.005	
9/14/2010		.0.005		.0.005	<0.005		.0.005	<0.005	
1/6/2011		<0.005		<0.005			<0.005		
1/7/2011	<0.005		<0.005		<0.005	<0.005		<0.005	<0.005
4/15/2011					<0.005			<0.005	
7/7/2011	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
7/8/2011									
9/25/2011					<0.005			<0.005	
1/17/2012	<0.005	<0.005		0.0071	<0.005	<0.005	<0.005	<0.005	<0.005
1/18/2012			<0.005						
4/4/2012					<0.005			<0.005	
7/9/2012	0.0052	<0.005		0.0076		<0.005	<0.005	<0.005	<0.005
7/10/2012			<0.005		<0.005				
10/9/2012					<0.005			<0.005	
1/17/2013		<0.005		0.0086		<0.005	<0.005		
1/18/2013	0.0087		<0.005		<0.005			<0.005	0.0089

	GWA-7 (bg)	GWB-5R	GWB-6R	GWC-1	GWA-8 (bg)	GWC-12	GWC-13	GWC-14	GWC-15
4/5/2013					<0.005			<0.005	
7/16/2013		<0.005		<0.005		<0.005	<0.005		
7/17/2013	0.0084		<0.005		<0.005			<0.005	0.011
10/11/2013					<0.005			0.005	
1/13/2014	0.009	<0.005		<0.005		<0.005	<0.005		0.017
1/14/2014			<0.005		<0.005			<0.005	
4/3/2014					<0.005			<0.005	
7/8/2014						<0.005	<0.005		
7/9/2014	0.008	<0.005	<0.005	0.0022 (J)	<0.005			<0.005	0.014
7/10/2014									
10/24/2014					<0.005			<0.005	
1/12/2015									
1/13/2015	0.0077	<0.005		<0.005		<0.005	<0.005		0.011
1/14/2015			<0.005		<0.005			<0.005	
5/10/2015					<0.005			<0.005	
5/11/2015									
7/16/2015	0.0077	<0.005		0.0037 (J)		<0.005	<0.005		0.02
7/17/2015			<0.005		<0.005			<0.005	
7/18/2015									
10/6/2015					<0.005			<0.005	
1/17/2016				0.024 (O)				0.002 (J)	0.014
1/18/2016	0.014	<0.005	<0.005		<0.005	<0.005	<0.005	.,	
4/26/2016					0.0011 (J)			0.00183 (J)	
7/26/2016							<0.005	(5)	
7/27/2016	0.0111	0.0008 (J)		0.0046 (J)		<0.005		0.0021 (J)	0.0303
7/28/2016		(,,	0.0009 (J)	(-)	<0.005				
7/29/2016			(-)						
8/30/2016		<0.005	<0.005	0.0023 (J)	<0.005				
8/31/2016				(,,		<0.005	<0.005		
9/1/2016	0.0287							0.0024 (J)	0.0533
10/24/2016					<0.005				
10/25/2016	0.0069			0.0035 (J)				<0.005	0.0551
10/26/2016		<0.005	<0.005	(,,		<0.005	<0.005		
10/27/2016									
1/3/2017		<0.005			<0.005				
1/4/2017				0.0018 (J)		<0.005			
1/5/2017			0.0021 (J)	(,,			<0.005	0.0024 (J)	0.0437
1/6/2017	0.0097								
4/3/2017					0.0006 (J)				0.0713
4/4/2017				0.0015 (J)	(-)			0.003 (J)	
4/5/2017				(,,		0.0006 (J)		(-,	
4/6/2017	0.0104	0.0006 (J)	0.0011 (J)				<0.005		
7/10/2017		(,,				0.0008 (J)			
7/11/2017					0.0006 (J)	(-)		0.0019 (J)	0.0745
7/12/2017		0.0009 (J)	0.0014 (J)	0.0015 (J)	0.0000 (0)		<0.005	0.0010 (0)	0.07.10
7/13/2017	0.0064	(,,		(0)					
10/2/2017					0.0006 (J)			0.0026 (J)	0.0723
10/3/2017		0.001 (J)	0.0014 (J)	0.0013 (J)	0.0000 (0)			0.0020 (0)	0.0720
10/4/2017	0.0078	(0)		50.0 (5)		0.0009 (J)	<0.005		
1/9/2018	0.0070 0.0091 (J)		0.0017 (J)		0.0009 (J)		2.000	0.0021 (J)	0.0731
1/10/2018	2.000. (0)	0.0012 (J)		0.0023 (J)	5555 (5)		0.0006 (J)		
1/11/2018		00.2 (0)		0020 (0)		<0.005	0000 (0)		
						3.000			

	GWA-7 (bg)	GWB-5R	GWB-6R	GWC-1	GWA-8 (bg)	GWC-12	GWC-13	GWC-14	GWC-15
7/9/2018					<0.005			0.0019 (J)	
7/10/2018		0.0016 (J)	0.00063 (J)	0.0031 (J)					0.09
7/11/2018	<0.005					<0.005	<0.005		
1/16/2019	<0.005	0.0011 (J)	<0.005	0.0023 (J)	<0.005		<0.005	0.0016 (J)	
1/17/2019						<0.005			0.13
1/18/2019									
1/21/2019									
3/25/2019	0.0029 (J)				<0.005				
3/26/2019		0.0014 (J)	0.0029 (J)	0.0032 (J)			0.00058 (J)	0.0023 (J)	0.1
3/27/2019						<0.005			
7/30/2019									
8/26/2019	0.0041 (J)				<0.005				
8/27/2019			0.0035 (J)	0.0022 (J)		<0.005	<0.005	0.0017 (J)	0.17
8/28/2019		0.0023 (J)							
10/7/2019					<0.005				
10/8/2019	0.003 (J)						<0.005	0.0017 (J)	0.13
10/9/2019		0.0053 (J)	0.0018 (J)	0.0042 (J)		<0.005			
4/6/2020	<0.005				0.00045 (J)				
4/7/2020		0.0011 (J)	<0.005	0.027		<0.005		0.0018 (J)	0.24
4/8/2020							<0.005		
8/17/2020					<0.005	<0.005	<0.005		
8/18/2020								0.0012 (J)	0.28
8/19/2020	0.006 (J)	0.0019 (J)	0.0036 (J)	0.007					
9/28/2020	<0.005			0.0058	<0.005		<0.005		
9/29/2020						<0.005		<0.005	
9/30/2020		0.0017 (J)	0.004 (J)						0.24
10/1/2020									
3/10/2021		0.0019 (J)	0.0054	0.0055		<0.005			
3/11/2021	0.0047 (J)								
3/12/2021					<0.005				0.16
3/15/2021							<0.005		
3/16/2021								<0.005	
9/21/2021	<0.005	<0.005	0.0054		<0.005	<0.005	<0.005		
9/22/2021								0.0014 (J)	
9/23/2021				0.0048 (J)				. ,	0.21
1/31/2022	<0.005				<0.005				
2/1/2022									
2/2/2022			0.01					0.0036 (J)	
2/3/2022		0.0029 (J)		0.0057		0.0016 (J)	0.0025 (J)	. /	0.23
8/30/2022	0.00321 (J)	0.00253 (J)	0.00716		<0.005	<0.005	.,	<0.005	
8/31/2022	· · · · · · · · · · · · · · · · · · ·	(-)					<0.005		0.259
9/1/2022				0.00568					

	GWC-16	GWC-17	GWB-4R	GWC-9	GWC-2	GWC-20	GWC-22	GWC-21
9/29/2000	0.094	<0.005	<0.005	<0.005				
11/21/2000	0.059	<0.005	<0.005	<0.005	<0.005			
1/20/2001	0.087	<0.005	0.01	<0.005	<0.005			
3/14/2001	0.075	<0.005	<0.005	<0.005	<0.005			
7/16/2001	0.11	<0.005	<0.005	<0.005	<0.005			
11/1/2001	0.098	<0.005	<0.005	<0.005	<0.005			
4/25/2002	0.071	<0.005	<0.005	<0.005	<0.005			
11/20/2002	0.15	<0.005	0.0096	<0.005	<0.005			
6/6/2003	1.2 (O)	<0.005	0.0076	<0.005	<0.005			
12/12/2003	0.27 (O)	<0.005	0.0058	<0.005	<0.005			
5/26/2004	0.12	<0.005	0.0068	<0.005	<0.005			
12/7/2004	0.098	<0.005	0.0066	<0.005	<0.005			
6/21/2005	0.065	<0.005	<0.005	<0.005	<0.005			
12/12/2005	0.081	<0.005	<0.005	<0.005	<0.005			
4/4/2006	0.077							
6/27/2006	0.071	<0.005	<0.005	<0.005	<0.005			
8/30/2006	0.08							
12/4/2006	0.085	<0.005	<0.005	<0.005	<0.005			
2/15/2007	0.09							
6/23/2007	0.12	<0.005	<0.005	<0.005	<0.005			
9/11/2007	0.088							
12/11/2007	0.088	<0.005	<0.005	<0.005	<0.005			
3/11/2008	0.071							
6/23/2008				<0.005				
6/24/2008	0.097	<0.005	0.005		<0.005			
11/3/2008	0.089							
12/4/2008				<0.005	<0.005			
12/5/2008	0.092	<0.005	<0.005					
3/25/2009	0.095							
7/7/2009			<0.005					
7/8/2009	0.11	<0.005		<0.005	<0.005			
9/14/2009	0.099							
12/20/2009	0.1				<0.005			
12/21/2009		<0.005	<0.005	<0.005				
3/4/2010	0.074							
6/20/2010				<0.005	<0.005			
6/21/2010	0.056	<0.005	0.018 (O)			0.29	<0.005	0.013 (O)
9/14/2010	0.067							
1/6/2011					<0.005			
1/7/2011	0.066	<0.005	<0.005	<0.005		0.2	<0.005	<0.005
4/15/2011	0.08							
7/7/2011	0.054					<0.005		
7/8/2011		<0.005	<0.005	<0.005		0.19	<0.005	<0.005
9/25/2011	0.085							
1/17/2012					<0.005			
1/18/2012	0.089	<0.005	<0.005	<0.005		0.058	<0.005	<0.005
4/4/2012	0.0473							
7/9/2012					<0.005			
7/10/2012	0.07	<0.005	0.0052	<0.005		0.18	<0.005	<0.005
10/9/2012	0.088							
1/17/2013					<0.005			
1/18/2013	0.063	<0.005	<0.005	<0.005		0.22	<0.005	0.0061

					,			
	GWC-16	GWC-17	GWB-4R	GWC-9	GWC-2	GWC-20	GWC-22	GWC-21
4/5/2013	0.06							
7/16/2013								
7/17/2013	0.063	<0.005	<0.005	<0.005	<0.005	0.45	<0.005	<0.005
10/11/2013	0.059							
1/13/2014					<0.005			
1/14/2014	0.077	<0.005	<0.005	<0.005		0.52	<0.005	0.006
4/3/2014	0.091							
7/8/2014								
7/9/2014	0.08	<0.005	0.0023 (J)	<0.005	<0.005			<0.005
7/10/2014						0.4	0.0027 (J)	
10/24/2014	0.073							
1/12/2015			0.0028 (J)			0.43		
1/13/2015					<0.005			
1/14/2015	0.079	<0.005		<0.005			<0.005	<0.005
5/10/2015								
5/11/2015	0.058							
7/16/2015	0.068		<0.005		<0.005			
7/17/2015				<0.005				<0.005
7/18/2015		<0.005				0.26	<0.005	
10/6/2015	0.078							
1/17/2016	0.089				<0.005	0.34		0.0065
1/18/2016		<0.005	<0.005	<0.005			<0.005	
4/26/2016	0.0731							
7/26/2016								
7/27/2016					<0.005			
7/28/2016	0.0627			<0.005		0.209		<0.005
7/29/2016		0.0009 (J)	0.0014 (J)				0.002 (J)	
8/30/2016		. ,	.,				. ,	
8/31/2016				<0.005	<0.005		0.0017 (J)	
9/1/2016	0.0551	<0.005	0.0033 (J)			0.215	(-,	0.0039 (J)
10/24/2016			. ,					,
10/25/2016	0.0466					0.307		<0.005
10/26/2016		<0.005	0.0016 (J)		<0.005		<0.005	
10/27/2016				<0.005				
1/3/2017								
1/4/2017	0.0444					0.311	<0.005	<0.005
1/5/2017		<0.005			<0.005			
1/6/2017			<0.005	<0.005				
4/3/2017								
4/4/2017			0.0021 (J)		<0.005	0.317		0.0031 (J)
4/5/2017	0.0591	0.0011 (J)						
4/6/2017				<0.005			0.0006 (J)	
7/10/2017								
7/11/2017						0.299	0.0012 (J)	
7/12/2017	0.0776		0.0015 (J)	<0.005				
7/13/2017		0.0016 (J)			<0.005			<0.005
10/2/2017						0.216		
10/3/2017	0.0813				<0.005			<0.005
10/4/2017		0.0019 (J)	0.0018 (J)	<0.005			0.0025 (J)	
1/9/2018		•	•				-	0.0033 (J)
1/10/2018	0.085				0.0006 (J)	0.347		•
1/11/2018		0.0015 (J)	0.0015 (J)	<0.005			0.0006 (J)	

	GWC-16	GWC-17	GWB-4R	GWC-9	GWC-2	GWC-20	GWC-22	GWC-21
7/9/2018						0.37		
7/10/2018	0.067				<0.005			0.0027 (J)
7/11/2018		0.00082 (J)	0.00095 (J)	<0.005			0.0011 (J)	
1/16/2019		<0.005	0.0024 (J)					
1/17/2019	0.079							0.0022 (J)
1/18/2019				<0.005			<0.005	
1/21/2019					<0.005	0.44		
3/25/2019			0.0029 (J)			0.41		
3/26/2019	0.089	0.0015 (J)						0.0045 (J)
3/27/2019				<0.005			<0.005	
7/30/2019					0.00039 (J)			
8/26/2019								
8/27/2019			0.0023 (J)		<0.005		0.00044 (J)	
8/28/2019	0.091	0.0011 (J)		<0.005		0.43		0.002 (J)
10/7/2019								
10/8/2019	0.088							0.0028 (J)
10/9/2019		0.0011 (J)	0.0024 (J)	<0.005	<0.005	0.35	<0.005	
4/6/2020								
4/7/2020	0.091		0.0027 (J)				0.00043 (J)	<0.005
4/8/2020		0.0013 (J)		0.00084 (J)	0.00094 (J)	0.33		
8/17/2020								
8/18/2020	0.045	<0.005			<0.005	0.3	<0.005	0.0059
8/19/2020			0.0033 (J)	<0.005				
9/28/2020								
9/29/2020					<0.005			
9/30/2020	0.044	0.0012 (J)				0.31	<0.005	0.0029 (J)
10/1/2020			0.0027 (J)	<0.005				
3/10/2021			0.0025 (J)	<0.005			<0.005	
3/11/2021		0.0009 (J)						
3/12/2021						0.27		
3/15/2021					<0.005			
3/16/2021	0.064							0.0098
9/21/2021			0.0027 (J)				<0.005	
9/22/2021	0.081	<0.005		<0.005	<0.005	0.23		<0.005
9/23/2021								
1/31/2022								
2/1/2022	0.095	<0.005				0.22		0.02
2/2/2022			0.0036 (J)	<0.005	<0.005		0.005	
2/3/2022			0.0040.("			0.405	<0.005	0.0074
8/30/2022		0.005	0.0049 (J)			0.465	0.005	0.0271
8/31/2022	0.0007	<0.005		-0.005	10.005		<0.005	
9/1/2022	0.0987			<0.005	<0.005			

	GWA-7 (bg)	GWC-14	GWC-13	GWC-16	GWC-12	GWC-11	GWC-17	GWC-1	GWB-6R
9/29/2000	0.11	0.11	<0.005	0.076	0.075	0.1	0.16	0.044	0.16
11/21/2000	0.12	0.15	0.01	0.075	0.072	0.082	0.17	0.047	0.21
1/20/2001	0.11	0.1	<0.005	0.053	0.086	0.083	0.16	0.051	0.23
3/14/2001	0.11	0.095	0.01	0.055	0.088	0.075	0.17	0.048	0.22
7/16/2001	0.11	0.28 (O)	<0.005	0.041	0.084	0.091	0.19	0.054	0.22
11/1/2001	0.11	0.16	<0.005	0.045	0.13	0.068	0.18	0.063	0.23
4/25/2002	0.058	0.054	<0.005	0.055	0.24 (O)	0.066	0.15	0.032	0.15
6/6/2003	0.19	0.063	0.028	0.48 (O)	0.28 (O)	0.085	0.13	0.046	0.13
12/12/2003	0.1	0.041	0.019	0.13 (O)	0.27 (O)	0.072	0.18	0.034	0.034
5/26/2004	0.084	0.059	<0.005	0.055	0.31 (O)	0.055	0.17	0.035	0.13
12/7/2004	0.094	0.076	0.009	0.072	0.46 (O)	0.066	0.19	0.024	0.13
6/21/2005	0.089	0.042	0.0089	0.061	0.053	0.033	0.18	0.039	0.07
12/12/2005	0.089	0.048	0.026	0.047	0.1	0.034	0.17	0.042	0.04
4/4/2006		0.05		0.042					
6/27/2006	0.096	0.036	0.029	0.042	0.098	0.029	0.17	0.033	0.041
8/30/2006		0.059		0.05					
12/4/2006	0.092	0.062	0.017	0.044	0.068	0.02	0.21	0.04	0.048
2/15/2007		0.079		0.041					
6/23/2007	0.08	0.03	0.014	0.044	0.042	0.017	0.17	0.044	0.12
9/11/2007		0.053		0.04					
12/11/2007	0.067	0.075	0.011	0.0035	0.04	0.013	0.18	0.049	0.12
3/11/2008		0.052		0.034					
6/23/2008	0.056		0.018		0.041	0.012			
6/24/2008		0.039		0.042			0.14	0.038	0.17
11/3/2008		0.082		0.049					
12/4/2008	0.054	0.079	0.019		0.035	0.011			
12/5/2008				0.05			0.19	0.06	0.093
3/25/2009		0.093		0.052					
7/7/2009	0.034							0.043	0.06
7/8/2009		0.039	0.011	0.046	0.036	0.012	0.2		
9/14/2009		0.061		0.048					
12/20/2009	0.034	0.088		0.062				0.065	
12/21/2009			0.01		0.028	0.011	0.23		0.11
3/4/2010		0.077		0.058					
6/20/2010	0.062	0.075	0.0081		0.025	0.0089		0.095	0.11
6/21/2010				0.041			0.25		
9/14/2010		0.093		0.036					
1/6/2011			0.012			0.014		0.093	
1/7/2011	0.039	0.13		0.054	0.037		0.21		0.025
4/15/2011		0.086		0.049					
7/7/2011	0.036	0.051	0.015	0.063	0.039	0.018		0.095	0.025
7/8/2011							0.13		
9/25/2011		0.056		0.037					
1/17/2012	0.041	0.052	0.0086		0.045	0.23		0.1	
1/18/2012				0.034			0.26		0.03
4/4/2012		0.0519		0.0446					
7/9/2012	0.15	0.048	0.01		0.032	0.17		0.11	
7/10/2012				0.033			0.19		0.028
10/9/2012		0.065		0.041					
1/17/2013			0.014		0.033	0.2		0.12	
1/18/2013	0.15	0.045		0.036			0.17		0.058
4/5/2013		0.047		0.036					

	GWA-7 (bg)	GWC-14	GWC-13	GWC-16	GWC-12	GWC-11	GWC-17	GWC-1	GWB-6R
7/16/2013			0.012		0.027	0.11		0.081	
7/17/2013	0.13	0.032		0.054			0.18		0.086
10/11/2013		0.028		0.052					
1/13/2014	0.16		0.015		0.027	0.083		0.096	
1/14/2014		0.036		0.051			0.18		0.1
4/3/2014		0.038		0.047					
7/8/2014			0.017		0.037	0.066			
7/9/2014	0.11	0.03		0.08			0.16	0.066	0.082
7/10/2014									
10/24/2014		0.025		0.072					
1/12/2015									
1/13/2015	0.083		0.019		0.023	0.053		0.068	
1/14/2015		0.04		0.047			0.16		0.094
5/10/2015		0.026							
5/11/2015				0.053					
7/16/2015	0.094		0.022	0.059	0.03	0.052		0.07	
7/17/2015		0.029							0.11
7/18/2015							0.012		
10/6/2015		0.03		0.053					
1/17/2016		0.038		0.056				0.062	
1/18/2016	0.22		0.026		0.032		0.13		0.11
1/19/2016						0.048			
4/26/2016		0.025		0.0721					
7/26/2016			0.0236			0.051			
7/27/2016	0.192	0.0248			0.0191			0.0417	
7/28/2016				0.0534					0.105
7/29/2016							0.181		
8/30/2016								0.0545	0.106
8/31/2016			0.0273		0.019	0.0565			
9/1/2016	0.415 (O)	0.0346		0.0445			0.203		
10/24/2016									
10/25/2016	0.173	0.0248		0.0464				0.0504	
10/26/2016			0.0238		0.0197	0.0591	0.177		0.107
10/27/2016									
1/3/2017									
1/4/2017				0.0379	0.0174	0.0598		0.0534	
1/5/2017		0.0245	0.0218				0.142		0.107
1/6/2017	0.167								
4/3/2017									
4/4/2017		0.0342						0.0549	
4/5/2017				0.0534	0.0174		0.106		
4/6/2017	0.136		0.0204			0.0813			0.111
7/10/2017					0.0172				
7/11/2017		0.0276				0.0302			
7/12/2017			0.0161	0.0944				0.0614	0.106
7/13/2017	0.0891						0.0686		
10/2/2017		0.0274							
10/3/2017				0.135 (O)		0.103		0.0436	0.105
10/4/2017	0.113		0.0185		0.0162		0.0589		
1/9/2018	0.0901	0.0222							0.0969
1/10/2018			0.0166	0.0603				0.053	
1/11/2018					0.018	0.166	0.0412		

7/0	V2019	GWA-7 (bg)	GWC-14	GWC-13	GWC-16	GWC-12	GWC-11	GWC-17	GWC-1	GWB-6R
	0/2018		0.026		0.10 (0)				0.050	0.007
	0/2018	0.005		0.010	0.16 (O)	0.014	0.10	0.040	0.059	0.087
	1/2018	0.065	0.000	0.019		0.014	0.12	0.049	0.054	0.040 (1)
	6/2019	0.062	0.028	0.019	0.10	0.017	0.000	0.063	0.054	0.013 (J)
	7/2019				0.13	0.017	0.039			
	8/2019									
	1/2019	0.054								
	5/2019	0.054	0.004	0.000	0.44			0.005	0.055	0.040 (1)
	6/2019		0.034	0.026	0.14	0.047	0.050	0.025	0.055	0.012 (J)
	7/2019					0.017	0.053			
	0/2019	0.44								
	6/2019	0.11	0.007	0.004		0.017	0.10		0.054	0.012
	7/2019		0.067	0.024	0.00	0.017	0.12	0.000	0.054	0.013
	8/2019				0.09			0.026		
	7/2019	0.1	0.005	0.004	0.40		0.40			
	/8/2019	0.1	0.085	0.024	0.13	0.010	0.13	0.000	0.050	0.01471)
	/9/2019	0.070				0.019		0.032	0.058	0.014 (J)
	1/2020	0.072	0.070		0.10	0.017	0.14		0.05	0.01 (1)
	//2020		0.073	0.007	0.13	0.017	0.14	0.055	0.05	0.01 (J)
	7/2020			0.027		0.010		0.055		
	7/2020		0.000	0.024	0.00	0.018	0.10	0.074		
	8/2020	0.1	0.028		0.32		0.12	0.074	0.057	0.004
	9/2020	0.1		0.000					0.057	0.064
	8/2020	0.095	0.000	0.029		0.010	0.14		0.051	
	9/2020		0.026		0.14	0.018	0.14	0.005		0.000
	0/2020				0.14			0.035		0.092
	/1/2020					0.028	0.13		0.052	0.027
	0/2021	0.07				0.028	0.13	0.044	0.052	0.027
	1/2021	0.07						0.044		
	2/2021			0.024						
	5/2021		0.037	0.034	0.16					
	6/2021	0.073	0.037	0.037	0.16	0.023	0.12			0.077
	21/2021	0.073	0.11	0.037	0.26	0.023	0.12	0.058		0.077
	2/2021		0.11		0.26			0.056	0.062	
	1/2022	0.1							0.002	
		0.1			0.23			0.055		
	/2022		0.1		0.23			0.055		0.026
	1/2022		0.1	0.038		0.025	0.17		0.051	0.020
	60/2022 60/2022	0.133	0.0773	0.000		0.025	0.17		0.001	0.0266
	1/2022	0.133	0.0773	0.0379		0.0273	0.115	0.0375		0.0200
	/2022			0.03/8	0.165		0.110	0.03/3	0.0583	
9/ 1.	12022				0.100				0.0303	

	GWB-5R	GWB-4R	GWC-9	GWA-8 (bg)	GWC-15	GWC-2	GWC-21	GWC-22	GWC-20
9/29/2000	0.22	0.16	0.093	0.16	0.028				
11/21/2000	0.13	0.16	0.095		0.035	0.046			
1/20/2001	0.19	0.21	0.089	0.18	0.032	0.036			
3/14/2001	0.27	0.18	0.088	0.14	0.036	0.03			
7/16/2001	0.37	0.18	0.096	0.14	0.036	0.032			
11/1/2001	0.61 (O)	0.15	0.094	0.14	0.036	0.029			
4/25/2002	0.19	0.16	0.085	0.088	0.045	0.021			
6/6/2003	0.72 (O)	0.29	0.09	0.14	0.083 (O)	0.032			
12/12/2003	0.054	0.18	0.084	0.13	0.094 (O)	0.021			
5/26/2004	0.18	0.16	0.08	0.09	0.034	0.035			
12/7/2004	0.24	0.16	0.098	0.11	0.042	0.031			
6/21/2005	0.2	0.15	0.084	0.084	0.039	0.028			
12/12/2005	0.074	0.15	0.07	0.1	0.043	0.024			
4/4/2006				0.089					
6/27/2006	0.075	0.19	0.083	0.1	0.031	0.03			
8/30/2006				0.12					
12/4/2006	0.092	0.26	0.072	0.086	0.043	0.031			
2/15/2007				0.088					
6/23/2007	0.089	0.24	0.087	0.089	0.031	0.037			
9/11/2007				0.092					
12/11/2007	0.072	0.21	0.082	0.077	0.044	0.034			
3/11/2008				0.082					
6/23/2008			0.1	0.086					
6/24/2008	0.049	0.13			0.057	0.038			
11/3/2008				0.088					
12/4/2008			0.12	0.081		0.038			
12/5/2008	0.067	0.12			0.041				
3/25/2009				0.069					
7/7/2009	0.04	0.17		0.078					
7/8/2009			0.14		0.058	0.053			
9/14/2009				0.079					
12/20/2009				0.081	0.062	0.047			
12/21/2009	0.044	0.2	0.15						
3/4/2010				0.065					
6/20/2010	0.036		0.21	0.078	0.03	0.046			
6/21/2010		0.22					0.16	0.11	0.062
9/14/2010				0.076					
1/6/2011	0.075					0.063			
1/7/2011		0.12	0.2	0.074	0.049		0.095	0.12	0.039
4/15/2011				0.065					
7/7/2011	0.13			0.081	0.05				0.06
7/8/2011		0.15	0.18				0.1	0.094	0.043
9/25/2011				0.078					
1/17/2012	0.21			0.082	0.044	0.06			
1/18/2012		0.15	0.18				0.12	0.087	0.042
4/4/2012				0.0861					
7/9/2012	0.2				0.045	0.05			
7/10/2012		0.14		0.082			0.097	0.1	0.039
10/9/2012				0.09					
1/17/2013	0.19					0.058			
1/18/2013		0.15		0.083	0.049		0.1	0.078	0.04
4/5/2013				0.078					

	GWB-5R	GWB-4R	GWC-9	GWA-8 (bg)	GWC-15	GWC-2	GWC-21	GWC-22	GWC-20
7/16/2013	0.076								
7/17/2013		0.14	0.17	0.083	0.039	0.041	0.069	0.062	0.055
10/11/2013				0.078					
1/13/2014	0.14				0.038	0.058			
1/14/2014		0.16	0.2	0.081			0.086	0.073	0.059
4/3/2014				0.077					
7/8/2014									
7/9/2014	0.12	0.12	0.16	0.073	0.031	0.048	0.065		
7/10/2014								0.13	0.067
10/24/2014				0.087					
1/12/2015		0.13							0.061
1/13/2015	0.13	0.10			0.041	0.048			0.00
1/14/2015	0.10		0.17	0.079	0.041	0.040	0.084	0.065	
5/10/2015				0.076			0.00	0.000	
5/11/2015				0.070					
7/16/2015	0.12	0.11			0.041	0.048			
7/17/2015	0.12	0.11	0.18	0.061	0.041	0.040	0.071		
7/18/2015			0.16	0.001			0.071	0.073	0.13
				0.067				0.073	0.13
10/6/2015				0.007	0.049	0.040	0.079		0.08
1/17/2016	0.12	0.005	0.2	0.068	0.048	0.049	0.079	0.063	0.08
1/18/2016	0.12	0.095	0.2	0.068				0.062	
1/19/2016				0.0500					
4/26/2016				0.0596					
7/26/2016	0.110				0.0407	0.0700			
7/27/2016	0.112				0.0487	0.0796			
7/28/2016		0.0000	0.234	0.0701			0.0626	0.0575	0.164
7/29/2016	0.405	0.0883		0.0007				0.0575	
8/30/2016	0.135			0.0687					
8/31/2016			0.284			0.0429		0.0693	
9/1/2016		0.123			0.0403		0.077		0.0976
10/24/2016				0.07					
10/25/2016					0.0329		0.0217		0.0702
10/26/2016	0.103	0.0863				0.113 (O)		0.0966	
10/27/2016			0.244						
1/3/2017	0.118			0.061					
1/4/2017							0.0617	0.0975	0.0999
1/5/2017					0.0392	0.0526			
1/6/2017		0.0758	0.305						
4/3/2017				0.0612	0.0439				
4/4/2017		0.091				0.0503	0.0761		0.136
4/5/2017									
4/6/2017	0.162		0.249					0.064	
7/10/2017									
7/11/2017				0.0624	0.051			0.0778	0.145
7/12/2017	0.157	0.0941	0.256						
7/13/2017						0.0529	0.0428		
10/2/2017				0.0618	0.047				0.148
10/3/2017	0.127					0.057	0.0376		
10/4/2017		0.0994	0.356					0.156	
1/9/2018				0.0574	0.0431		0.0704		
1/10/2018	0.158					0.0527			0.0788
1/11/2018		0.088	0.226					0.0702	

7/9/2018	GWB-5R	GWB-4R	GWC-9	GWA-8 (bg) 0.056	GWC-15	GWC-2	GWC-21	GWC-22	GWC-20 0.087
7/10/2018	0.31				0.047	0.054	0.061		
7/11/2018		0.071	0.29					0.12	
1/16/2019	0.054	0.083		0.062					
1/17/2019					0.042		0.061		
1/18/2019			0.21					0.052	
1/21/2019						0.05			0.069
3/25/2019		0.077		0.064					0.085
3/26/2019	0.057				0.047		0.084		
3/27/2019			0.19					0.057	
7/30/2019						0.052			
8/26/2019				0.065					
8/27/2019		0.076			0.049	0.053		0.097	
8/28/2019	0.1		0.17				0.063		0.078
10/7/2019				0.069					
10/8/2019					0.057		0.079		
10/9/2019	0.13	0.076	0.18			0.05		0.065	0.078
4/6/2020				0.057					
4/7/2020	0.098	0.09			0.033		0.054	0.1	
4/8/2020			0.15			0.061			0.19
8/17/2020				0.051					
8/18/2020					0.03	0.05	0.18	0.085	0.38
8/19/2020	0.1	0.076	0.17						
9/28/2020				0.05					
9/29/2020						0.049			
9/30/2020	0.16				0.034		0.19	0.045	0.35
10/1/2020		0.077	0.15						
3/10/2021	0.096	0.07	0.15					0.049	
3/11/2021									
3/12/2021				0.052	0.038				0.34
3/15/2021						0.053			
3/16/2021							0.18		
9/21/2021	0.076	0.098		0.049				0.036	
9/22/2021			0.15			0.047	0.046		0.42
9/23/2021					0.062				
1/31/2022				0.051					
2/1/2022		0.47	0.45			0.050	0.24		0.36
2/2/2022	0.000	0.17	0.15		0.004	0.052		0.000	
2/3/2022	0.062	0.124		0.0512	0.061		0.101	0.038	0.01
8/30/2022	0.051	0.134		0.0512	0.055		0.191	0.0744	0.21
8/31/2022			0.151		0.055	0.0508		0.0741	
9/1/2022			0.151			0.0508			

	GWA-7 (bg)	GWC-9	GWC-13	GWB-6R	GWB-4R	GWC-14	GWC-12	GWC-17	GWB-5R
9/29/2000	<0.01	<0.01	<0.01	0.016	0.021	<0.01	<0.01	<0.01	0.03
11/21/2000	<0.01	<0.01	<0.01	0.023	0.017	<0.01	<0.01	<0.01	<0.01
1/20/2001	<0.01	<0.01	<0.01	0.025	0.03	<0.01	<0.01	<0.01	0.028
3/14/2001	<0.01	<0.01	<0.01	0.021	0.019	<0.01	<0.01	<0.01	0.052 (O)
7/16/2001	<0.01	<0.01	<0.01	0.019	0.029	<0.01	<0.01	<0.01	0.08 (O)
11/1/2001									0.13 (O)
									0.021
									0.053 (O)
	0.037								0.064 (O)
									<0.01
									0.012
									0.019
									0.02
									<0.01
	-0.01	-0.01	-0.01	0.0000	0.022		-0.01	-0.01	-0.01
	<0.01	<0.01	<0.01	0.0047	0.027		<0.01	<0.01	0.0015
	10.01	10.01	10.01	0.0047	0.027		-0.01	10.01	0.0013
	0.0015	0.0010	0.0017	0.0084	0.025		0.0033	<0.01	0.0034
	0.0013	0.0019	0.0017	0.0004	0.023		0.0032	~0.01	0.0034
	<0.01	0.0015	<0.01	0.01	0.033		<0.01	<0.01	<0.01
	~0.01	0.0013	~0.01	0.01	0.023		~0.01	~0.01	~0.01
	0.0016	~0.01	-0.01	0.0040	0.019		<0.01	-0.01	<0.01
	0.0010	<0.01	<0.01	0.0049	0.016		<0.01	<0.01	~0.01
	0.0010	0.0015	<0.01			<0.01	0.0016		
	0.0019	0.0015	~0.01	0.033 (0)	0.022	<0.01	0.0016	-0.01	<0.01
				0.032 (0)	0.022			<0.01	~0.01
	~0.01	~0.01	-0.01				<0.01		
	<0.01	<0.01	<0.01	0.000	0.022	<0.01	<0.01	-0.01	0.0016
				0.009	0.023	<0.01		<0.01	0.0010
	0.0027			0.0044	0.012	<0.01			-0.01
	0.0037	<0.01	-0.01	0.0044	0.012	<0.01	-0.01	-0.01	<0.01
		<0.01	<0.01				<0.01	<0.01	
	0.0016								
	0.0016	10.01	10.01	0.0055	0.010	<0.01	-0.01	10.01	-0.01
		<0.01	<0.01	0.0055	0.019	z0.01	<0.01	<0.01	<0.01
	10.01	0.0015	10.01	0.000			-0.01		-0.01
	<0.01	0.0015	<0.01	0.002	0.01	<0.01	<0.01	10.01	<0.01
					0.01	<0.01		<0.01	
			10.01			<0.01			0.0017
	0.0000	10.01	<0.01	0.0000	0.000	0.0010	-0.01	-0.01	0.0017
	0.0033	<0.01		0.0039	0.023		<0.01	<0.01	
	0.0044		0.0010	0.0001			-0.01		0.000
	0.0044	.0.04	0.0019	0.0031	0.017	<0.01	<0.01	0.0040	0.008
		<0.01			0.017			0.0013	
	0.0038		<0.01			<0.01	<0.01		0.0082
		<0.01		0.0023	U.U114	.0.04		<0.01	
	0.022		<0.01			<0.01	<0.01		0.01
		<0.01		0.0022	0.014			<0.01	
						0.0019			
			<0.01				<0.01		0.01
1/18/2013	0.034	<0.01		<0.01	0.015	0.0017		<0.01	
	9/29/2000 11/21/2000 11/21/2001 13/14/2001 7/16/2001 11/1/2002 11/20/2002 11/20/2002 11/20/2002 6/6/2003 12/12/2003 5/26/2004 12/7/2004 6/21/2005 12/12/2005 14/4/2006 6/27/2006 8/30/2006 12/4/2006 2/15/2007 6/23/2007 9/11/2007 12/11/2007 12/11/2007 12/11/2007 3/11/2008 6/23/2008 6/24/2008 11/3/2008 12/4/2008 11/3/2008 12/4/2008 11/3/2008 12/4/2008 12/5/2009 9/14/2009 9/14/2009 9/14/2009 9/14/2009 12/20/2009 12/21/2009 3/4/2010 6/20/2010 6/20/2010 6/21/2010 9/14/2010 1/6/2011 1/7/2011 1/7/2011 1/7/2011 1/7/2011 1/17/2012 1/18/2012 1/18/2012 1/19/2012 1/19/2012 1/19/2012 1/19/2012 1/19/2012 1/17/2013 1/18/2013	9/29/2000	9/29/2000	929/2000	929/2000	9/29/2000	92922000 -0.01 -0.02 -0.03 -0.01 -0.01 -0.01 -0.02 -0.03 -0.01 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01	9292000 40.01 <	

		GWA-7 (bg)	GWC-9	GWC-13	GWB-6R	GWB-4R	GWC-14	GWC-12	GWC-17	GWB-5R
4/	5/2013						0.0019			
7/	16/2013			<0.01				<0.01		0.0061
7/	17/2013	0.032	<0.01		<0.01	0.011	0.0017		<0.01	
10	0/11/2013						0.0013			
1/	13/2014	0.04		<0.01				<0.01		0.002
1/	14/2014		<0.01		0.0013	0.019	0.001		<0.01	
4/	3/2014						0.0031			
7/3	8/2014			<0.01				<0.01		
	9/2014	0.036	0.0011 (J)		<0.01	0.012	0.0012 (J)		<0.01	<0.01
	10/2014		. ,				.,			
	0/24/2014						<0.01			
	12/2015					0.016				
	13/2015	0.03		<0.01				<0.01		<0.01
	14/2015		<0.01		0.0015		0.0013		<0.01	
	10/2015						<0.01			
	11/2015						0.01			
	16/2015	0.039		<0.01		0.0084		0.001 (J)		<0.01
	17/2015	0.000	0.0013	40.01	0.0011 (J)	0.0004	0.001 (J)	0.001 (3)		·0.01
	18/2015		0.0013		0.0011(3)		0.001 (3)		<0.01	
	0/6/2015						<0.01		<0.01	
	17/2016	0.000	-0.01	-0.01	0.0011 (1)	0.014	0.0012 (J)	-0.01	-0.01	-0.01
	18/2016	0.068	<0.01	<0.01	0.0011 (J)	0.014		<0.01	<0.01	<0.01
	19/2016									
	26/2016						<0.01			
	26/2016			<0.01						
	27/2016	0.05					0.0008 (J)	0.0014 (J)		0.0006 (J)
	28/2016		0.0011 (J)		0.001 (J)					
	29/2016					0.0077 (J)			0.0009 (J)	
	30/2016				0.0013 (J)					<0.01
	31/2016		0.0024 (J)	0.0011 (J)				0.0012 (J)		
	1/2016	0.119 (O)				0.015	0.0015 (J)		0.0011 (J)	
10	0/24/2016									
10	0/25/2016	0.0519					<0.01			
10	0/26/2016			<0.01	0.0014 (J)	0.0106		0.0012 (J)	<0.01	<0.01
10	0/27/2016		<0.01							
1/3	3/2017									0.001 (J)
1/-	4/2017							0.0012 (J)		
1/	5/2017			<0.01	0.002 (J)		0.001 (J)		0.0012 (J)	
1/	6/2017	0.0536	<0.01			0.0098 (J)				
4/	3/2017									
4/-	4/2017					0.0101	0.001 (J)			
4/	5/2017							0.0013 (J)	0.0015 (J)	
4/	6/2017	0.0447 (J)	0.0019 (J)	0.0011 (J)	0.0034 (J)					0.0013 (J)
7/	10/2017							0.0014 (J)		
7/	11/2017						0.0008 (J)			
7/	12/2017		0.0011 (J)	0.0007 (J)	0.0024 (J)	0.0096 (J)				0.0011 (J)
7/	13/2017	0.0269							0.0012 (J)	
10	0/2/2017						0.0009 (J)			
10	0/3/2017				0.0022 (J)					0.0012 (J)
10	0/4/2017	0.0378	0.0011 (J)	0.0008 (J)		0.0097 (J)		0.0011 (J)	0.0055 (J)	
1/	9/2018	0.0283 (J)			0.0019 (J)		0.0006 (J)			
1/	10/2018			0.0007 (J)						0.0016 (J)

11112018										
79/2018		GWA-7 (bg)	GWC-9	GWC-13	GWB-6R	GWB-4R	GWC-14	GWC-12	GWC-17	GWB-5R
71102018	1/11/2018		0.001 (J)			0.0109		0.001 (J)	0.0009 (J)	
711/2018	7/9/2018						<0.01			
1/16/2019	7/10/2018				0.0023 (J)					0.0055 (J)
1/17/2019	7/11/2018	0.018 (J)	<0.01	0.0019 (J)		0.0055 (J)		<0.01	<0.01	
1/18/2019	1/16/2019	0.018 (J)		<0.01	0.018 (J)	0.0024 (J)	<0.01		<0.01	<0.01
1212019	1/17/2019							0.0028 (J)		
325/2019	1/18/2019		<0.01							
3262019	1/21/2019									
327/2019	3/25/2019	0.017 (J)				0.002 (J)				
7/30/2019 8/26/2019 0.024 (J) 8/26/2019 0.024 (J) 0.024 (J) 0.0087 (J) 0.0007 (J) 0.001 (J) 0.00085 (J) 0.0013 (J) 0.00081 (J) 0.0	3/26/2019			<0.01	0.017 (J)		<0.01		<0.01	0.072
8/28/2019 0.024 (J)	3/27/2019		<0.01					<0.01		
82722019	7/30/2019									
8282019	8/26/2019	0.024 (J)								
1007/2019 1008/2019 0.021 (J)	8/27/2019			<0.01	0.0097 (J)	0.0027 (J)	0.001 (J)	0.00085 (J)		
10/8/2019 0.021 (J)	8/28/2019		0.00089 (J)						0.0013 (J)	0.0071 (J)
1019/2019 0.0009 (J) 0.0011 (J) 0.002 (J) 0.00081 (J) 0.00081 (J) 0.00081 (J) 0.004 (J) 0.004 (J) 0.00081 (J) 0.00081 (J) 0.004 (J) 0.004 (J) 0.00081 (J) 0.00081 (J) 0.004 (J) 0.00081 (J) 0.00081 (J) 0.004 (J) 0.00081 (J) 0.00	10/7/2019									
4/6/2020	10/8/2019	0.021 (J)		<0.01			0.00053 (J)			
477/2020	10/9/2019		0.0009 (J)		0.011 (J)	0.002 (J)		0.00081 (J)	0.00081 (J)	0.012 (J)
4/8/2020	4/6/2020	0.015 (J)								
8/17/2020	4/7/2020				0.0094 (J)	0.0028 (J)	0.00074 (J)	0.00082 (J)		0.0022 (J)
8/18/2020 0.015 (J) 0.0013 (J) 0.00062 (J) 0.00059 (J) 0.00059 (J) 0.0011 (J) 0.00096 (J) 0.0011 (J) 0.00096 (J) 0.0011 (J) 0.00096 (J) 0.0011 (J) 0.0011 (J) 0.00096 (J) 0.0011 (J) 0.00096 (J) 0.0011 (J) 0.001	4/8/2020		0.0015 (J)	0.00058 (J)					0.00073 (J)	
8/19/2020 0.015 (J) 0.0013 (J) 0.0037 (J) 0.0022 (J)	8/17/2020			0.00077 (J)				0.001 (J)		
9/28/2020 0.014 (J) 0.00062 (J)	8/18/2020						0.00059 (J)		0.0011 (J)	
9/29/2020	8/19/2020	0.015 (J)	0.0013 (J)		0.0037 (J)	0.0022 (J)				0.0012 (J)
9/30/2020	9/28/2020	0.014 (J)		0.00062 (J)						
10/1/2020	9/29/2020						<0.01	0.00085 (J)		
3/10/2021 0.0011 (J) 0.006 0.003 (J) 0.00091 (J) 0.00 3/11/2021 0.02 (J) 0.0009 (J) 0.001 0.0	9/30/2020				0.0045 (J)				0.00096 (J)	0.0018 (J)
3/11/2021 0.02 (J) 0.0009 (J) 3/12/2021 3/15/2021 < 0.011 3/16/2021	10/1/2020		0.0012 (J)			0.002 (J)				
3/12/2021	3/10/2021		0.0011 (J)		0.006	0.003 (J)		0.00091 (J)		0.001 (J)
3/15/2021	3/11/2021	0.02 (J)							0.0009 (J)	
3/16/2021	3/12/2021									
9/21/2021 0.013 (J) <0.01 0.0035 (J) 0.0018 (J) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	3/15/2021			<0.01						
9/22/2021 < 0.01	3/16/2021						<0.01			
9/23/2021 1/31/2022 0.015 (J) 2/1/2022 0.0012 (J) 0.0033 (J) 0.003 (J) <0.01 2/3/2022 <0.0012 (J) 0.00356 (J) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.0	9/21/2021	0.013 (J)		<0.01	0.0035 (J)	0.0018 (J)		<0.01		<0.01
1/31/2022 0.015 (J) 2/1/2022 0.0012 (J) 0.0033 (J) 0.003 (J) <0.01 2/3/2022 0.0129 0.00356 (J) <0.01 0.00356 (J) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.	9/22/2021		<0.01				<0.01		<0.01	
2/1/2022 0.0012 (J) 0.0033 (J) 0.003 (J) <0.01 2/3/2022 <0.012 0.0018 (J) 0.00356 (J) <0.01	9/23/2021									
2/2/2022 0.0012 (J) 0.0033 (J) 0.003 (J) <0.01	1/31/2022	0.015 (J)								
2/3/2022 < 0.01	2/1/2022								0.0014 (J)	
8/30/2022 0.0129 0.00356 (J) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	2/2/2022		0.0012 (J)		0.0033 (J)	0.003 (J)	<0.01			
8/31/2022 <0.01 <0.01	2/3/2022			<0.01				0.0018 (J)		0.0014 (J)
		0.0129			0.00356 (J)	<0.01	<0.01	<0.01		<0.01
9/1/2022 <0.01				<0.01					<0.01	
	9/1/2022		<0.01							

	GWC-16	GWC-15	GWC-11	GWA-8 (bg)	GWC-1	GWC-2	GWC-20	GWC-21	GWC-22
9/29/2000	<0.01	<0.01	<0.01	<0.01	<0.01				
11/21/2000	<0.01	<0.01	<0.01		<0.01	<0.01			
1/20/2001	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
3/14/2001	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
7/16/2001	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
11/1/2001	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
4/25/2002	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
11/20/2002	0.0041	0.0058	0.006	0.0051	<0.01	<0.01			
6/6/2003	0.063 (O)	0.0068	0.0082	0.014	0.005	<0.01			
12/12/2003	0.0059	0.0041	0.0023	0.011	<0.01	<0.01			
5/26/2004	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
12/7/2004	<0.01	0.0026	<0.01	<0.01	<0.01	<0.01			
6/21/2005	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
12/12/2005	<0.01	<0.01	<0.01	<0.01	0.002	<0.01			
4/4/2006	<0.01			<0.01					
6/27/2006	<0.01	0.0013	<0.01	<0.01	<0.01	<0.01			
8/30/2006	<0.01			<0.01					
12/4/2006	0.0036	<0.01	0.0021	<0.01	<0.01	<0.01			
2/15/2007	<0.01			<0.01					
6/23/2007	0.0016	<0.01	0.0017	<0.01	<0.01	<0.01			
9/11/2007	<0.01			<0.01					
12/11/2007	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
3/11/2008	<0.01			<0.01					
6/23/2008			<0.01	<0.01					
6/24/2008	<0.01	0.0014			<0.01	<0.01			
11/3/2008	0.0025			<0.01					
12/4/2008			<0.01	<0.01		<0.01			
12/5/2008	<0.01	<0.01			<0.01				
3/25/2009	<0.01			<0.01					
7/7/2009				<0.01	0.0013				
7/8/2009	<0.01	<0.01	<0.01			<0.01			
9/14/2009	<0.01			<0.01					
12/20/2009	<0.01	<0.01		<0.01	<0.01	<0.01			
12/21/2009			<0.01						
3/4/2010	<0.01			<0.01					
6/20/2010		<0.01	<0.01	<0.01	<0.01	<0.01			
6/21/2010	<0.01						<0.01	0.0019	<0.01
9/14/2010	<0.01			<0.01					
1/6/2011			<0.01		<0.01	<0.01			
1/7/2011	0.0018	<0.01		<0.01			0.0018	0.0017	<0.01
4/15/2011	<0.01			<0.01					
7/7/2011	<0.01	<0.01	0.0023	<0.01	<0.01		<0.01		
7/8/2011							0.0019	0.0023	<0.01
9/25/2011	<0.01			0.0021					
1/17/2012		<0.01	<0.01	<0.01	<0.01	<0.01			
1/18/2012	<0.01						<0.01	<0.01	<0.01
4/4/2012	<0.01			<0.01					
7/9/2012		<0.01	0.0017		<0.01	<0.01			
7/10/2012	<0.01			<0.01			0.0013	<0.01	<0.01
10/9/2012	0.0018			<0.01					
1/17/2013	.0.04	.0.04	<0.01	.0.04	<0.01	<0.01	0.0015	.0.04	.0.04
1/18/2013	<0.01	<0.01		<0.01			0.0015	<0.01	<0.01

		GWC-16	GWC-15	GWC-11	GWA-8 (bg)	GWC-1	GWC-2	GWC-20	GWC-21	GWC-22
4/5/2	013	<0.01			<0.01					
7/16/	2013			<0.01		<0.01				
7/17/	2013	<0.01	<0.01		<0.01		<0.01	<0.01	0.0019	<0.01
10/11	1/2013	<0.01			<0.01					
1/13/	2014		<0.01	<0.01		<0.01	<0.01			
1/14/	2014	<0.01			<0.01			0	<0.01	<0.01
4/3/2	014	<0.01			<0.01					
7/8/2	014			<0.01						
7/9/2	014	<0.01	<0.01		<0.01	0.0011 (J)	<0.01		<0.01	
7/10/	2014							<0.01		<0.01
10/24	1/2014	<0.01			<0.01					
1/12/	2015							<0.01		
1/13/	2015		<0.01	<0.01		<0.01	<0.01			
1/14/	2015	<0.01			<0.01				<0.01	<0.01
5/10/	2015				<0.01					
5/11/	2015	<0.01								
7/16/	2015	<0.01	<0.01	<0.01		0.0011 (J)	<0.01			
7/17/	2015				<0.01				<0.01	
7/18/	2015							<0.01		<0.01
10/6/	2015	<0.01			<0.01					
1/17/	2016	<0.01	<0.01			<0.01	<0.01	<0.01	<0.01	
1/18/	2016				<0.01					<0.01
1/19/	2016			<0.01						
4/26/	2016	<0.01			<0.01					
7/26/	2016			0.0005 (J)						
7/27/	2016		0.0007 (J)			0.0016 (J)	0.0008 (J)			
7/28/	2016	0.0006 (J)			<0.01			0.0007 (J)	0.0005 (J)	
7/29/	2016									0.0007 (J)
8/30/	2016				<0.01	0.0015 (J)				
8/31/	2016			0.001 (J)			<0.01			<0.01
9/1/2	016	0.0011 (J)	0.0011 (J)					<0.01	<0.01	
10/24	1/2016				<0.01					
10/25	5/2016	<0.01	<0.01			0.0018 (J)		<0.01	<0.01	
10/26	6/2016			<0.01			0.001 (J)			<0.01
10/27	7/2016									
1/3/2	017				<0.01					
1/4/2		<0.01		<0.01		0.0021 (J)		<0.01	<0.01	<0.01
1/5/2			<0.01				<0.01			
1/6/2										
4/3/2			0.0015 (J)		0.0004 (J)					
4/4/2						0.002 (J)	0.0008 (J)	0.0011 (J)	0.0008 (J)	
4/5/2		0.001 (J)								
4/6/2				0.0007 (J)						0.0006 (J)
7/10/										
7/11/			0.0013 (J)	0.0006 (J)	0.0006 (J)			0.0009 (J)		0.0005 (J)
7/12/		0.0011 (J)				0.0021 (J)				
7/13/							0.0006 (J)		0.0006 (J)	
10/2/		0.0000 / "	0.0013 (J)	0.0007 (1)	<0.01	0.00147."	.0.04	0.0009 (J)	0.0005 (1)	
10/3/		0.0009 (J)		0.0007 (J)		0.0014 (J)	<0.01		0.0005 (J)	0.0000 (11
10/4/			0.0046 ();		.0.04					0.0006 (J)
1/9/2		0.0007 / 11	0.0012 (J)		<0.01	0.0017 / "	10.01	0.0000 ()	0.0007 (J)	
1/10/	∠∪ I Ծ	0.0007 (J)				0.0017 (J)	<0.01	0.0008 (J)		

	GWC-16	GWC-15	GWC-11	GWA-8 (bg)	GWC-1	GWC-2	GWC-20	GWC-21	GWC-22
1/11/2018			0.0098 (J)						<0.01
7/9/2018				<0.01			<0.01		
7/10/2018	<0.01	<0.01			0.0021 (J)	<0.01		<0.01	
7/11/2018			<0.01						<0.01
1/16/2019				<0.01	0.0021 (J)				
1/17/2019	0.01 (J)	<0.01	<0.01					0.01	
1/18/2019									<0.01
1/21/2019						<0.01	<0.01		
3/25/2019				<0.01			<0.01		
3/26/2019	<0.01	<0.01			0.0018 (J)			<0.01	
3/27/2019			<0.01						<0.01
7/30/2019						0.00065 (J)			
8/26/2019				0.001 (J)					
8/27/2019		0.0016 (J)	0.00092 (J)		0.0062 (J)	<0.01			0.00057 (J)
8/28/2019	0.0011 (J)						0.00089 (J)	0.00087 (J)	
10/7/2019				0.00052 (J)					
10/8/2019	0.00099 (J)	0.0017 (J)	0.00091 (J)					0.00065 (J)	
10/9/2019					0.0019 (J)	0.00049 (J)	0.0011 (J)		0.00072 (J)
4/6/2020				<0.01					
4/7/2020	<0.01	0.0014 (J)	0.00094 (J)		0.0015 (J)			<0.01	0.00049 (J)
4/8/2020						0.00069 (J)	0.001 (J)		
8/17/2020				0.00082 (J)					
8/18/2020	0.0012 (J)	0.0018 (J)	0.0015 (J)			<0.01	0.0011 (J)	0.0012 (J)	0.00056 (J)
8/19/2020					0.0028 (J)				
9/28/2020				0.00071 (J)	0.0024 (J)				
9/29/2020			0.0011 (J)			<0.01			
9/30/2020	0.00098 (J)	0.0016 (J)					0.0013 (J)	0.00067 (J)	0.00064 (J)
10/1/2020									
3/10/2021			0.0013 (J)		0.0023 (J)				<0.01
3/11/2021									
3/12/2021		0.0031 (J)		0.00074 (J)			0.0014 (J)		
3/15/2021						0.0011 (J)			
3/16/2021	0.0012 (J)							0.00075 (J)	
9/21/2021			<0.01	<0.01					<0.01
9/22/2021	0.0018 (J)					<0.01	0.0013 (J)	<0.01	
9/23/2021		0.0013 (J)			0.0023 (J)				
1/31/2022				<0.01					
2/1/2022	<0.01						0.0036 (J)	<0.01	
2/2/2022						<0.01			
2/3/2022		0.0016 (J)	0.0011 (J)		0.0019 (J)				<0.01
8/30/2022				<0.01			<0.01	<0.01	
8/31/2022		<0.01	<0.01						<0.01
9/1/2022	<0.01				<0.01	<0.01			

	GWA-7 (bg)	GWC-16	GWB-4R	GWC-15	GWC-17	GWC-9	GWB-6R	GWC-14	GWC-12
9/29/2000	<0.002	<0.002	0.0083	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
11/21/2000	<0.002	<0.002	0.0052	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
1/20/2001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
3/14/2001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
7/16/2001		<0.002	0.011	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
	<0.002								
11/1/2001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
4/25/2002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
11/20/2002		<0.002	0.018 (O)	<0.002	<0.002	0.0086 (O)	• ,	0.011 (O)	<0.002
6/6/2003	0.037 (O)	0.099 (O)	0.015 (O)	<0.002	<0.002	<0.002	0.013	<0.002	<0.002
12/12/2003	0.008	0.017 (O)	0.0072	0.0065	<0.002	<0.002	<0.002	<0.002	<0.002
5/26/2004	<0.002	<0.002	0.0055	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
12/7/2004	<0.002	<0.002	<0.002	<0.002	<0.002	0.0051	<0.002	<0.002	<0.002
6/21/2005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
12/12/2005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
4/4/2006		<0.002						<0.002	
6/27/2006	<0.002	<0.002	0.024 (O)	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
8/30/2006		<0.002						<0.002	
12/4/2006	<0.002	<0.002	0.023 (O)	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
2/15/2007		<0.002						<0.002	
6/23/2007	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
9/11/2007		<0.002						<0.002	
12/11/2007	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
3/11/2008		<0.002						<0.002	
6/23/2008	<0.002					<0.002			<0.002
6/24/2008		<0.002	0.02 (O)	<0.002	<0.002		0.02	<0.002	
11/3/2008		<0.002	()					<0.002	
12/4/2008	<0.002	0.002				<0.002		<0.002	<0.002
12/5/2008	0.002	<0.002	<0.002	<0.002	<0.002	0.002	<0.002	0.002	0.002
3/25/2009		<0.002	-0.002	-0.002	-0.002		-0.002	<0.002	
7/7/2009	<0.002	10.002	<0.002				<0.002	10.002	
7/8/2009	\0.002	<0.002	~0.002	<0.002	<0.002	<0.002	~0.002	<0.002	<0.002
				\0.002	<0.002	<0.002			<0.002
9/14/2009	-0.000	<0.002		-0.000				<0.002	
12/20/2009	<0.002	<0.002		<0.002				<0.002	
12/21/2009			<0.002		<0.002	<0.002	<0.002	0.000	<0.002
3/4/2010		<0.002						<0.002	
6/20/2010	<0.002			<0.002		<0.002	<0.002	<0.002	<0.002
6/21/2010		<0.002	<0.002		<0.002				
9/14/2010		<0.002						<0.002	
1/6/2011									
1/7/2011	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
4/15/2011		<0.002						<0.002	
7/7/2011	<0.002	<0.002		<0.002			<0.002	<0.002	<0.002
7/8/2011			<0.002		<0.002	<0.002			
9/25/2011		<0.002						<0.002	
1/17/2012	<0.002			<0.002				<0.002	<0.002
1/18/2012		<0.002	<0.002		<0.002	<0.002	<0.002		
4/4/2012		<0.002						<0.002	
7/9/2012	<0.002			<0.002				<0.002	<0.002
7/10/2012		<0.002	<0.002		<0.002	<0.002	<0.002		
10/9/2012		<0.002						<0.002	
1/17/2013									<0.002
1/18/2013	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	

	GWA-7 (bg)	GWC-16	GWB-4R	GWC-15	GWC-17	GWC-9	GWB-6R	GWC-14	GWC-12
4/5/2013		<0.002						<0.002	
7/16/2013									<0.002
7/17/2013	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
10/11/2013		<0.002						<0.002	
1/13/2014	0.013			<0.002					0.004
1/14/2014		<0.002	0.005		<0.002	<0.002	<0.002	<0.002	
4/3/2014		<0.002						<0.002	
7/8/2014									<0.002
7/9/2014	0.0076 (J)	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
7/10/2014									
10/24/2014		<0.002						<0.002	
1/12/2015			<0.002						
1/13/2015	0.0057 (J)			<0.002					<0.002
1/14/2015		<0.002			<0.002	<0.002	<0.002	<0.002	
5/10/2015								<0.002	
5/11/2015		<0.002							
7/16/2015	0.009 (J)	<0.002	<0.002	<0.002					0.0044 (J)
7/17/2015						<0.002	<0.002	<0.002	
7/18/2015					<0.002				
10/6/2015									
1/17/2016		<0.002		<0.002				<0.002	
1/18/2016	0.0094 (J)		0.0055 (J)		<0.002	<0.002	<0.002		0.0034 (J)
1/19/2016									
4/26/2016		<0.002						<0.002	
7/26/2016									
7/27/2016	0.0058			<0.002				<0.002	0.0001 (J)
7/28/2016		<0.002				<0.002	<0.002		
7/29/2016			0.003 (J)		<0.002				
8/30/2016							<0.002		
8/31/2016						0.0007 (J)			0.0001 (J)
9/1/2016	0.0663 (O)	<0.002	0.0166 (O)	<0.002	<0.002			<0.002	
10/24/2016									
10/25/2016	0.0003 (J)	0.0002 (J)		<0.002				<0.002	
10/26/2016			0.0057		<0.002		<0.002		0.0001 (J)
10/27/2016						<0.002			
1/3/2017									
1/4/2017		0.0001 (J)							<0.002
1/5/2017				<0.002	<0.002		0.0003 (J)	<0.002	
1/6/2017	0.006		0.0053			<0.002			
4/3/2017				0.0003 (J)					
4/4/2017			0.0092					0.0001 (J)	
4/5/2017		0.0002 (J)			0.0009 (J)				0.0003 (J)
4/6/2017	0.0109					0.0001 (J)	0.0002 (J)		
7/10/2017									0.0003 (J)
7/11/2017				0.0001 (J)				8E-05 (J)	
7/12/2017		0.0001 (J)	0.006			<0.002	0.0002 (J)		
7/13/2017	0.007				<0.002				
10/2/2017				0.0002 (J)				0.0001 (J)	
10/3/2017		0.0001 (J)					0.0001 (J)		
10/4/2017	0.0042 (J)		0.0057		0.0001 (J)	9E-05 (J)			0.0001 (J)
1/9/2018	0.0098			0.0002 (J)			0.0003 (J)	<0.002	
1/10/2018		0.0002 (J)							

	GWA-7 (bg)	GWC-16	GWB-4R	GWC-15	GWC-17	GWC-9	GWB-6R	GWC-14	GWC-12
1/11/2018			0.0085		0.0001 (J)	0.0002 (J)			0.0002 (J)
7/9/2018								<0.002	
7/10/2018		<0.002		<0.002			<0.002		
7/11/2018	0.0028 (J)		0.0029 (J)		<0.002	<0.002			<0.002
1/16/2019	<0.025 (O)		<0.002		<0.002		<0.002	<0.002	
1/17/2019		<0.002		<0.002					<0.002
1/18/2019						<0.002			
1/21/2019									
3/25/2019	0.0019 (J)		<0.002						
3/26/2019		<0.002		<0.002	<0.002		<0.002	<0.002	
3/27/2019						<0.002			<0.002
7/30/2019									
8/26/2019	0.013 (J)								
8/27/2019			0.001 (J)	0.00033 (J)			0.0011 (J)	0.00051 (J)	<0.002
8/28/2019		0.0001 (J)			<0.002	6.1E-05 (J)			
10/7/2019									
10/8/2019	0.0098 (J)	0.0001 (J)		0.00012 (J)				<0.002	
10/9/2019			0.00041 (J)		0.00015 (J)	<0.002	0.00033 (J)		6.6E-05 (J)
4/6/2020	0.0024 (J)								
4/7/2020		0.00023 (J)	0.00073 (J)	8.6E-05 (J)			0.00063 (J)	<0.002	8.1E-05 (J)
4/8/2020					8.4E-05 (J)	0.00021 (J)			
8/17/2020									4.9E-05 (J)
8/18/2020		0.00017 (J)		9E-05 (J)	0.00014 (J)			<0.002	
8/19/2020	0.0044 (J)		0.00048 (J)			9.6E-05 (J)	0.00014 (J)		
9/28/2020	0.0043 (J)								
9/29/2020								<0.002	3.7E-05 (J)
9/30/2020		9.1E-05 (J)		4.7E-05 (J)	6E-05 (J)		8E-05 (J)		
10/1/2020			0.00026 (J)			3.8E-05 (J)			
3/10/2021			0.0003 (J)			0.00012 (J)	9.6E-05 (J)		6.8E-05 (J)
3/11/2021	0.0079				0.00019 (J)				
3/12/2021				5.3E-05 (J)					
3/15/2021									
3/16/2021		7.3E-05 (J)						<0.002	
9/21/2021	<0.002		<0.002				<0.002		<0.002
9/22/2021		<0.002			<0.002	<0.002		<0.002	
9/23/2021				<0.002					
1/31/2022	<0.002								
2/1/2022		<0.002			<0.002				
2/2/2022			<0.002			<0.002	<0.002	<0.002	
2/3/2022				<0.002					<0.002
8/30/2022	0.0022		<0.002				<0.002	<0.002	<0.002
8/31/2022				<0.002	<0.002				
9/1/2022		<0.002				<0.002			

	GWC-13	GWC-11	GWC-1	GWA-8 (bg)	GWB-5R	GWC-2	GWC-20	GWC-21	GWC-22
9/29/2000	<0.002	<0.002	<0.002	<0.002	0.017 (O)				
11/21/2000	<0.002	<0.002	<0.002		<0.002	0.0069			
1/20/2001	<0.002	<0.002	<0.002	<0.002	0.011	<0.002			
3/14/2001	<0.002	<0.002	<0.002	<0.002	0.026 (O)	<0.002			
7/16/2001	<0.002	<0.002	<0.002	<0.002	0.043 (O)	<0.002			
11/1/2001	<0.002	<0.002	<0.002	<0.002	0.075 (O)	<0.002			
4/25/2002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002			
11/20/2002	<0.002	<0.002	<0.002	<0.002	0.057 (O)	<0.002			
6/6/2003	0.0078	0.0068	<0.002	0.016 (O)	0.16 (O)	<0.002			
12/12/2003	0.0055	<0.002	<0.002	0.0095	<0.002	<0.002			
5/26/2004	<0.002	<0.002	<0.002	<0.002	0.011	<0.002			
12/7/2004	<0.002	<0.002	<0.002	<0.002	0.038 (O)	<0.002			
6/21/2005	<0.002	<0.002	<0.002	<0.002	0.036 (O)	<0.002			
12/12/2005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002			
4/4/2006	~0.002	10.002	10.002	<0.002	\0.002	\0.002			
6/27/2006	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002			
8/30/2006	~0.002	~0.002	~0.002	<0.002	\0.002	\0.002			
12/4/2006	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002			
	<0.002	<0.002	<0.002		<0.002	<0.002			
2/15/2007	~0.002	~0.002	-0.002	<0.002	<0.002	<0.002			
6/23/2007	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002			
9/11/2007	-0.000	-0.000	-0.000	<0.002	10.000	10.000			
12/11/2007	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002			
3/11/2008	-0.000	-0.000		<0.002					
6/23/2008	<0.002	<0.002		<0.002	.0.000	.0.000			
6/24/2008			<0.002		<0.002	<0.002			
11/3/2008				<0.002		.0.000			
12/4/2008	<0.002	<0.002		<0.002		<0.002			
12/5/2008			<0.002		<0.002				
3/25/2009				<0.002					
7/7/2009			<0.002	<0.002	<0.002	.0.000			
7/8/2009	<0.002	<0.002				<0.002			
9/14/2009				<0.002					
12/20/2009			<0.002	<0.002		<0.002			
12/21/2009	<0.002	<0.002			<0.002				
3/4/2010				<0.002					
6/20/2010	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002			
6/21/2010							<0.002	<0.002	<0.002
9/14/2010				<0.002					
1/6/2011	<0.002	<0.002	<0.002		<0.002	<0.002			
1/7/2011				<0.002			<0.002	<0.002	<0.002
4/15/2011				<0.002					
7/7/2011	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002		
7/8/2011							<0.002	<0.002	<0.002
9/25/2011				<0.002					
1/17/2012	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002			
1/18/2012							<0.002	<0.002	<0.002
4/4/2012				<0.002					
7/9/2012	<0.002	<0.002	<0.002		<0.002	<0.002			
7/10/2012				<0.002			<0.002	<0.002	<0.002
10/9/2012				<0.002					
1/17/2013	<0.002	<0.002	<0.002		<0.002	<0.002			
1/18/2013				<0.002			<0.002	<0.002	<0.002

4/5/2013	GWC-13	GWC-11	GWC-1	GWA-8 (bg) <0.002	GWB-5R	GWC-2	GWC-20	GWC-21	GWC-22
7/16/2013	<0.002	<0.002	<0.002	<0.002	<0.002				
7/17/2013	-0.002	-0.002	-0.002	<0.002	-0.002	<0.002	<0.002	<0.002	<0.002
10/11/2013				<0.002		0.002	0.002	0.002	0.002
1/13/2014	<0.002	<0.002	<0.002	10.002	<0.002	<0.002			
1/14/2014	0.002	0.002	0.002	<0.002	0.002	0.002	<0.002	<0.002	<0.002
4/3/2014				<0.002					
7/8/2014	<0.002	<0.002							
7/9/2014			<0.002	<0.002	<0.002	<0.002		<0.002	
7/10/2014							<0.002		<0.002
10/24/2014				<0.002					
1/12/2015							<0.002		
1/13/2015	<0.002	<0.002	<0.002		<0.002	<0.002			
1/14/2015				<0.002				<0.002	<0.002
5/10/2015				<0.002					
5/11/2015									
7/16/2015	<0.002	<0.002	<0.002		<0.002	<0.002			
7/17/2015				<0.002				<0.002	
7/18/2015							<0.002		<0.002
10/6/2015				<0.002					
1/17/2016			<0.002			<0.002	<0.002	<0.002	
1/18/2016	<0.002			<0.002	<0.002				<0.002
1/19/2016		<0.002							
4/26/2016				<0.002					
7/26/2016	<0.002	0.0001 (J)							
7/27/2016			<0.002		<0.002	<0.002			
7/28/2016				<0.002			<0.002	<0.002	
7/29/2016									0.0004 (J)
8/30/2016			<0.002	<0.002	<0.002				
8/31/2016	<0.002	0.0002 (J)				<0.002			0.0003 (J)
9/1/2016							<0.002	<0.002	
10/24/2016				<0.002					
10/25/2016			<0.002				0.0001 (J)	<0.002	
10/26/2016	<0.002	0.0001 (J)			0.0002 (J)	<0.002			0.0003 (J)
10/27/2016									
1/3/2017				0.0001 (J)	0.0001 (J)				
1/4/2017		0.0002 (J)	<0.002				<0.002	<0.002	0.0003 (J)
1/5/2017	0.0002 (J)					<0.002			
1/6/2017									
4/3/2017				0.0002 (J)					
4/4/2017			<0.002			0.0002 (J)	7E-05 (J)	9E-05 (J)	
4/5/2017									
4/6/2017	0.0005 (J)	0.0003 (J)			0.0003 (J)				0.0003 (J)
7/10/2017									
7/11/2017		0.0002 (J)		0.0001 (J)			<0.002		0.0002 (J)
7/12/2017	0.0005 (J)		<0.002		0.0002 (J)				
7/13/2017						0.0003 (J)		7E-05 (J)	
10/2/2017				0.0001 (J)			<0.002		
10/3/2017		0.0003 (J)	<0.002		0.0002 (J)	<0.002		0.0001 (J)	
10/4/2017	0.0007 (J)								0.0008 (J)
1/9/2018				0.0001 (J)				9E-05 (J)	
1/10/2018	0.0009 (J)		0.0001 (J)		0.0003 (J)	8E-05 (J)	0.0002 (J)		

	GWC-13	GWC-11	GWC-1	GWA-8 (bg)	GWB-5R	GWC-2	GWC-20	GWC-21	GWC-22
1/11/2018		0.0003 (J)							0.0009 (J)
7/9/2018				<0.002			<0.002		
7/10/2018			<0.002		<0.002	<0.002		<0.002	
7/11/2018	0.0015 (J)	<0.002							0.001 (J)
1/16/2019	0.00061 (J)		<0.002	<0.002	<0.002				
1/17/2019		0.00028 (J)						<0.002	
1/18/2019									0.0012 (J)
1/21/2019						<0.002	<0.002		
3/25/2019				<0.002			<0.002		
3/26/2019	<0.002		<0.002		<0.002			<0.002	
3/27/2019		0.00029 (J)							0.00047 (J)
7/30/2019						0.0002 (J)			
8/26/2019				<0.002					
8/27/2019	0.0001 (J)	0.00021 (J)	<0.002			<0.002			0.003 (J)
8/28/2019					0.0011 (J)		6.5E-05 (J)	0.00018 (J)	
10/7/2019				<0.002					
10/8/2019	0.00013 (J)	0.00028 (J)						0.00016 (J)	
10/9/2019			<0.002		0.0025 (J)	6.4E-05 (J)	0.00018 (J)		0.00032 (J)
4/6/2020				0.0001 (J)					
4/7/2020		0.00036 (J)	0.00012 (J)		0.0014 (J)			<0.002	0.00067 (J)
4/8/2020	0.00017 (J)					<0.002	<0.002		
8/17/2020	7.6E-05 (J)			<0.002					
8/18/2020		0.00035 (J)				<0.002	<0.002	0.00027 (J)	0.00072 (J)
8/19/2020			<0.002		7.9E-05 (J)				
9/28/2020	6.4E-05 (J)		4.3E-05 (J)	<0.002					
9/29/2020		0.00032 (J)				<0.002			
9/30/2020					0.0012 (J)		<0.002	5.4E-05 (J)	0.00023 (J)
10/1/2020									
3/10/2021		0.00042 (J)	0.0001 (J)		5.2E-05 (J)				0.00016 (J)
3/11/2021									
3/12/2021				9.3E-05 (J)			<0.002		
3/15/2021	0.00013 (J)					4.1E-05 (J)			
3/16/2021								<0.002	
9/21/2021	<0.002	<0.002		<0.002	<0.002				<0.002
9/22/2021						<0.002	<0.002	<0.002	
9/23/2021			<0.002						
1/31/2022				<0.002					
2/1/2022							<0.002	<0.002	
2/2/2022						<0.002			
2/3/2022	<0.002	<0.002	<0.002		<0.002				<0.002
8/30/2022				<0.002	<0.002		<0.002	<0.002	
8/31/2022	<0.002	<0.002							<0.002
9/1/2022			<0.002			<0.002			

	GWA-7 (bg)	GWB-5R	GWB-6R	GWC-1	GWC-11	GWC-12	GWA-8 (bg)	GWC-14	GWC-15
9/29/2000	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
11/21/2000	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		0.052	<0.005
1/20/2001	<0.005	<0.005	<0.005	0.017	<0.005	<0.005	<0.005	0.053	<0.005
3/14/2001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.049	<0.005
7/16/2001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.038	<0.005
11/1/2001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.022	<0.005
4/25/2002	<0.005	<0.005	<0.005	0.012	<0.005	<0.005	<0.005	0.1 (O)	<0.005
11/20/2002		0.0064	0.008	0.19 (O)	<0.005	<0.005	<0.005	0.018	0.0094
6/6/2003	<0.005	0.011	0.0066	0.32 (O)	<0.005	<0.005	<0.005	<0.005	0.021 (O)
12/12/2003	<0.005	<0.005	0.0056	0.013	<0.005	<0.005	<0.005	<0.005	0.016 (O)
5/26/2004	<0.005	0.007	0.0084	0.017	<0.005	<0.005	<0.005	0.023	<0.005
12/7/2004	<0.005	<0.005	<0.005	0.011	<0.005	<0.005	<0.005	0.019	<0.005
6/21/2005	<0.005	0.0063	0.0062	0.0088	<0.005	<0.005	<0.005	0.019	<0.005
12/12/2005	<0.005	<0.005	<0.005	0.011	<0.005	<0.005	<0.005	0.0095	<0.005
4/4/2006	-0.000	-0.000	-0.000	0.011	-0.000	-0.000	<0.005	0.033	-0.000
6/27/2006	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
8/30/2006	10.000	10.003	10.003	10.000	10.000	10.003	<0.005	<0.005	-0.003
12/4/2006	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.032	<0.005
2/15/2007	10.000	10.003	10.003	10.000	10.000	10.003	<0.005	0.034	-0.003
6/23/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
9/11/2007	~0.003	~0.003	~0.003	~0.003	~0.003	~0.003	<0.005	0.022	\0.003
12/11/2007	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.022	<0.005
	<0.005	<0.005	<0.005	<0.003	<0.005	<0.005		0.02	<0.005
3/11/2008	<0.00E				<0.00E	<0.00E	<0.005	0.02	
6/23/2008	<0.005	<0.00E	<0.00E	<0.00E	<0.005	<0.005	<0.005	<0.00E	<0.00E
6/24/2008		<0.005	<0.005	<0.005			-0.005	<0.005	<0.005
11/3/2008	<0.00E				<0.00E	<0.00E	<0.005	0.052	
12/4/2008	<0.005	-0.005	-0.005	10.005	<0.005	<0.005	<0.005	0.054	-0.005
12/5/2008		<0.005	<0.005	<0.005			.0.005	0.070	<0.005
3/25/2009	-0.005	-0.005	-0.005	10.005			<0.005	0.072	
7/7/2009	<0.005	<0.005	<0.005	<0.005	10.005	-0.005	<0.005	0.004	-0.005
7/8/2009					<0.005	<0.005	.0.005	0.021	<0.005
9/14/2009	0.005			.0.005			<0.005	0.015	0.005
12/20/2009	<0.005	.0.005	.0.005	<0.005	0.005	0.005	<0.005	0.072	<0.005
12/21/2009		<0.005	<0.005		<0.005	<0.005	-0.005	0.000	
3/4/2010	.0.005	.0.005	.0.005	.0.005	.0.005	.0.005	<0.005	0.083	2 225
6/20/2010	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.1	<0.005
6/21/2010							-0.005	0.005	
9/14/2010		.0.005		.0.005	.0.005		<0.005	0.085	
1/6/2011		<0.005		<0.005	<0.005				
1/7/2011	<0.005		<0.005			<0.005	<0.005	0.028	<0.005
4/15/2011							<0.005	<0.005	
7/7/2011	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
7/8/2011									
9/25/2011							<0.005	0.02	
1/17/2012	<0.005	<0.005		<0.005	0.023	<0.005	<0.005	0.016	<0.005
1/18/2012			<0.005						
4/4/2012							<0.005	0.0156	
7/9/2012	<0.005	<0.005		<0.005	0.016	<0.005		<0.005	0.066 (O)
7/10/2012			<0.005				<0.005		
10/9/2012							<0.005	0.0094	
1/17/2013		<0.005		<0.005	0.033	<0.005			
1/18/2013	0.009		<0.005				<0.005	0.0067	0.04 (O)

	GWA-7 (bg)	GWB-5R	GWB-6R	GWC-1	GWC-11	GWC-12	GWA-8 (bg)	GWC-14	GWC-15
4/5/2013							<0.005	0.0077	
7/16/2013		<0.005		0.012	0.0068	<0.005			
7/17/2013	0.011		<0.005				<0.005	0.01	<0.005
10/11/2013							<0.005	0.0087	
1/13/2014	0.012	<0.005		<0.005	0.036	<0.005			<0.005
1/14/2014			<0.005				<0.005	0.012	
4/3/2014							<0.005	0.022	
7/8/2014					0.017	<0.005			
7/9/2014	0.011	<0.005	<0.005	<0.005			<0.005	0.0089	<0.005
7/10/2014									
10/24/2014							<0.005	0.017	
1/12/2015									
1/13/2015	0.0092	<0.005		<0.005	0.027	<0.005			<0.005
1/14/2015			<0.005				<0.005	<0.005	
5/10/2015							<0.005	<0.005	
5/11/2015									
7/16/2015	0.014	<0.005		<0.005	<0.005	<0.005			<0.005
7/17/2015			<0.005				<0.005	<0.005	
7/18/2015			0.000				0.000	0.000	
10/6/2015							<0.005	<0.005	
1/17/2016				0.023			0.000	<0.005	<0.005
1/18/2016	0.023	<0.005	<0.005	0.020		<0.005	<0.005	0.000	0.000
1/19/2016	0.020	-0.000	-0.000		0.023	-0.000	-0.000		
4/26/2016					0.023		<0.005	0.00428 (J)	
7/26/2016					0.0056 (J)		-0.000	0.00420 (0)	
7/27/2016	0.0323	<0.005		0.002 (J)	0.0030 (3)	0.0025 (J)		0.0038 (J)	<0.005
7/28/2016	0.0323	~0.003	<0.005	0.002 (3)		0.0023 (3)	0.001 (J)	0.0038 (3)	\0.003
7/29/2016			10.000				0.001 (3)		
8/30/2016		<0.005	<0.005	0.002 (J)			<0.005		
8/31/2016		~0.003	~0.003	0.002 (3)	0.0084 (J)	0.0019 (J)	~0.003		
9/1/2016	0.0438				0.0064 (3)	0.0019 (3)		0.0056 (J)	<0.005
10/24/2016	0.0438						0.0013 (J)	0.0030 (3)	\0.003
10/25/2016	0.031			0.0022 (J)			0.0013 (3)	0.0023 (J)	<0.005
10/25/2016	0.031	<0.005	<0.005	0.0022 (3)	0.0052 (1)	0.002 (1)		0.0023 (3)	<0.005
10/27/2016		<0.005	<0.005		0.0052 (J)	0.002 (J)			
1/3/2017		<0.005					<0.005		
1/4/2017		<0.005		0.0016 (1)	0.0063 (1)	<0.00E	<0.005		
1/5/2017			0.001471)	0.0016 (J)	0.0062 (J)	<0.005		0.0038 (1)	<0.005
1/6/2017	0.0324		0.0014 (J)					0.0038 (J)	<0.005
4/3/2017	0.0324						<0.005		<0.005
4/4/2017				0.0052 (1)			<0.005	0.0064 (1)	<0.005
				0.0052 (J)		<0.005		0.0064 (J)	
4/5/2017	0.0100 (1)	<0.00E	<0.00E		0.0105	<0.005			
4/6/2017	0.0188 (J)	<0.005	<0.005		0.0195	<0.00E			
7/10/2017					<0.00E	<0.005	<0.00E	0.0044 (1)	<0.00E
7/11/2017		<0.00E	<0.00E	0.002471	<0.005		<0.005	0.0044 (J)	<0.005
7/12/2017	0.0119	<0.005	<0.005	0.0024 (J)					
7/13/2017	0.0118						<0.00E	0.004 (1)	<0.00E
10/2/2017		<0.00E	<0.00E	<0.00E	0.0070 / 1)		<0.005	0.004 (J)	<0.005
10/3/2017	0.0105	<0.005	<0.005	<0.005	0.0079 (J)	<0.00E			
10/4/2017	0.0195		<0.00E			<0.005	<0.00E	0.0010 / 1	0.0010 / 1)
1/9/2018	<0.005	<0.00E	<0.005	0.0018 / 1			<0.005	0.0019 (J)	0.0019 (J)
1/10/2018		<0.005		0.0018 (J)					

	GWA-7 (bg)	GWB-5R	GWB-6R	GWC-1	GWC-11	GWC-12	GWA-8 (bg)	GWC-14	GWC-15
1/11/2018					0.0054 (J)	<0.005			
7/9/2018							<0.005	0.0029 (J)	
7/10/2018		0.0018 (J)	0.0016 (J)	0.0026 (J)					0.0086 (J)
7/11/2018	<0.005				0.0022 (J)	<0.005			
1/16/2019	0.0071 (J)	<0.005	<0.005	0.0018 (J)			<0.005	0.0016 (J)	
1/17/2019					<0.005	<0.005			0.0029 (J)
1/18/2019									
1/21/2019									
3/25/2019	<0.005						<0.005		
3/26/2019		<0.005	0.05 (J)	0.0023 (J)				0.0022 (J)	0.0074 (J)
3/27/2019					0.01 (J)	<0.005			
7/30/2019									
8/26/2019	<0.005						<0.005		
8/27/2019			0.0033 (J)	0.0016 (J)	<0.005	<0.005		0.0035 (J)	0.0092 (J)
8/28/2019		0.0033 (J)							
10/7/2019							<0.005		
10/8/2019	0.0072 (J)				<0.005			0.0026 (J)	0.014
10/9/2019		0.0073 (J)	<0.005	0.0024 (J)		<0.005			
4/6/2020	0.0078 (J)						<0.005		
4/7/2020		<0.005	<0.005	0.0013 (J)	0.0021 (J)	<0.005		0.005 (J)	0.0029 (J)
4/8/2020									
8/17/2020						<0.005	<0.005		
8/18/2020					0.0028 (J)			0.0029 (J)	0.0022 (J)
8/19/2020	<0.005	<0.005	<0.005	0.002 (J)					
9/28/2020	0.01 (J)			<0.005			<0.005		
9/29/2020					0.0024 (J)	<0.005		0.0051 (J)	
9/30/2020		<0.005	0.0023 (J)						<0.005
10/1/2020									
3/10/2021		0.006	0.0049 (J)	0.0026 (J)	0.0044 (J)	0.003 (J)			
3/11/2021	<0.005								
3/12/2021							<0.005		0.0064
3/15/2021									
3/16/2021								0.0034 (J)	
9/21/2021	<0.005	<0.005	0.0016 (J)		0.0038 (J)	<0.005	<0.005		
9/22/2021								0.0034 (J)	
9/23/2021				0.0018 (J)					0.0016 (J)
1/31/2022	<0.005						<0.005		
2/1/2022									
2/2/2022			0.0017 (J)					0.0038 (J)	
2/3/2022		<0.005		0.0022 (J)	0.019	<0.005			0.0031 (J)
8/30/2022	0.0063	<0.005	0.00277 (J)			<0.005	<0.005	0.00544	
8/31/2022					0.00344 (J)				0.00192 (J)
9/1/2022				0.00252 (J)					

	GWC-16	GWC-17	GWC-9	GWB-4R	GWC-2	GWC-20	GWC-21	GWC-22
9/29/2000	<0.005	<0.005	<0.005	<0.005				
11/21/2000	<0.005	<0.005	<0.005	<0.005	<0.005			
1/20/2001	<0.005	<0.005	<0.005	0.014 (O)	<0.005			
3/14/2001	<0.005	<0.005	<0.005	<0.005	<0.005			
7/16/2001	<0.005	<0.005	<0.005	0.015 (O)	<0.005			
11/1/2001	<0.005	<0.005	<0.005	0.012 (O)	<0.005			
4/25/2002	<0.005	<0.005	<0.005	0.01	<0.005			
11/20/2002	<0.005	<0.005	<0.005	0.026 (O)	<0.005			
6/6/2003	0.021 (O)	<0.005	<0.005	0.022 (O)	<0.005			
12/12/2003	0.0078	<0.005	<0.005	0.028 (O)	<0.005			
5/26/2004	0.0053	<0.005	<0.005	0.012 (O)	0.005			
12/7/2004	<0.005	<0.005	<0.005	0.0073	<0.005			
6/21/2005	<0.005	<0.005	0.0062	0.0087	<0.005			
12/12/2005	<0.005	<0.005	<0.005	0.013 (O)	<0.005			
4/4/2006	<0.005							
6/27/2006	<0.005	<0.005	<0.005	<0.005	<0.005			
8/30/2006	<0.005							
12/4/2006	<0.005	<0.005	<0.005	<0.005	<0.005			
2/15/2007	<0.005							
6/23/2007	<0.005	<0.005	<0.005	<0.005	<0.005			
9/11/2007	<0.005							
12/11/2007	<0.005	<0.005	<0.005	<0.005	<0.005			
3/11/2008	<0.005							
6/23/2008			<0.005					
6/24/2008	<0.005	<0.005		<0.005	<0.005			
11/3/2008	<0.005							
12/4/2008			<0.005		<0.005			
12/5/2008	<0.005	<0.005		<0.005				
3/25/2009	<0.005							
7/7/2009				<0.005				
7/8/2009	<0.005	<0.005	<0.005		<0.005			
9/14/2009	<0.005							
12/20/2009	<0.005				<0.005			
12/21/2009		<0.005	<0.005	<0.005				
3/4/2010	<0.005							
6/20/2010			<0.005		<0.005			
6/21/2010	<0.005	<0.005		<0.005		<0.005	0.048	<0.005
9/14/2010	<0.005							
1/6/2011					<0.005			
1/7/2011	<0.005	<0.005	<0.005	<0.005		<0.005	0.014	<0.005
4/15/2011	<0.005							
7/7/2011	<0.005					<0.005		
7/8/2011		<0.005	<0.005	<0.005		<0.005	0.018	<0.005
9/25/2011	<0.005							
1/17/2012					<0.005			
1/18/2012	<0.005	<0.005	<0.005	<0.005		<0.005	<0.005	<0.005
4/4/2012	<0.005							
7/9/2012					<0.005			
7/10/2012	<0.005	<0.005	<0.005	<0.005		<0.005	0.02	<0.005
10/9/2012	<0.005							
1/17/2013					<0.005			
1/18/2013	<0.005	<0.005	<0.005	<0.005		0.005	0.015	<0.005

					,			
	GWC-16	GWC-17	GWC-9	GWB-4R	GWC-2	GWC-20	GWC-21	GWC-22
4/5/2013	<0.005							
7/16/2013								
7/17/2013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.037	<0.005
10/11/2013	0.0069							
1/13/2014					<0.005			
1/14/2014	<0.005	<0.005	<0.005	<0.005		<0.005	0.043	<0.005
4/3/2014	<0.005							
7/8/2014								
7/9/2014	0.005	<0.005	<0.005	<0.005	<0.005		0.023	
7/10/2014						<0.005		<0.005
10/24/2014	<0.005							
1/12/2015				<0.005		<0.005		
1/13/2015					<0.005			
1/14/2015	<0.005	<0.005	<0.005				0.022	<0.005
5/10/2015								
5/11/2015	<0.005							
7/16/2015	<0.005			<0.005	<0.005			
7/17/2015			<0.005				0.033	
7/18/2015		<0.005				<0.005		<0.005
10/6/2015	0.0073							
1/17/2016	0.0031 (J)				<0.005	<0.005	0.021	
1/18/2016		<0.005	<0.005	<0.005				<0.005
1/19/2016								
4/26/2016	0.00497 (J)							
7/26/2016								
7/27/2016					0.002 (J)			
7/28/2016	0.0076 (J)		<0.005			<0.005	0.0341	
7/29/2016		0.0011 (J)		0.0036 (J)				0.0022 (J)
8/30/2016								
8/31/2016			<0.005		<0.005			0.0014 (J)
9/1/2016	0.0052 (J)	0.0012 (J)		0.0067 (J)		<0.005	0.0297	
10/24/2016	0.0005 (1)					0.001471)	0.0005 (1)	
10/25/2016	0.0085 (J)	0.0012 (1)		0.0042 (1)	0.0025 (1)	0.0014 (J)	0.0095 (J)	0.001 (1)
10/26/2016 10/27/2016		0.0013 (J)	<0.005	0.0042 (J)	0.0035 (J)			0.001 (J)
1/3/2017			~0.003					
1/4/2017	0.0048 (J)					0.0014 (J)	0.022	<0.005
1/5/2017	0.00 10 (0)	0.0012 (J)			<0.005	0.0011(0)	0.022	0.000
1/6/2017		(5)	<0.005	0.0042 (J)				
4/3/2017				(-,				
4/4/2017				0.0043 (J)	<0.005	<0.005	0.0236	
4/5/2017	0.0068 (J)	<0.005		. ,				
4/6/2017			<0.005					<0.005
7/10/2017								
7/11/2017						<0.005		<0.005
7/12/2017	0.0048 (J)		<0.005	0.0033 (J)				
7/13/2017		0.0018 (J)			<0.005		0.013	
10/2/2017						<0.005		
10/3/2017	0.0051 (J)				<0.005		0.01 (J)	
10/4/2017		0.0042 (J)	<0.005	0.0038 (J)				0.0023 (J)
1/9/2018							0.0162	
1/10/2018	0.0018 (J)				<0.005	<0.005		

	GWC-16	GWC-17	GWC-9	GWB-4R	GWC-2	GWC-20	GWC-21	GWC-22
1/11/2018		<0.005	<0.005	0.0029 (J)				<0.005
7/9/2018						<0.005		
7/10/2018	0.0045 (J)				<0.005		0.016	
7/11/2018		0.0016 (J)	<0.005	0.0015 (J)				<0.005
1/16/2019		<0.005		<0.005				
1/17/2019	0.0031 (J)						0.011	
1/18/2019			<0.005					<0.005
1/21/2019					<0.005	0.0014 (J)		
3/25/2019				<0.005		<0.005		
3/26/2019	0.0033 (J)	<0.005					0.022	
3/27/2019			<0.005					<0.005
7/30/2019					<0.005			
8/26/2019								
8/27/2019				<0.005	<0.005			<0.005
8/28/2019	0.004 (J)	<0.005	<0.005			0.0014 (J)	0.019	
10/7/2019								
10/8/2019	0.0023 (J)						0.019	
10/9/2019		<0.005	<0.005	<0.005	<0.005	<0.005		<0.005
4/6/2020								
4/7/2020	<0.005			0.0025 (J)			0.012	<0.005
4/8/2020		<0.005	<0.005		<0.005	0.0013 (J)		
8/17/2020								
8/18/2020	0.0058 (J)	0.002 (J)			<0.005	<0.005	0.013	<0.005
8/19/2020			<0.005	<0.005				
9/28/2020								
9/29/2020					<0.005			
9/30/2020	0.0037 (J)	<0.005				<0.005	0.0061 (J)	<0.005
10/1/2020			<0.005	<0.005				
3/10/2021			<0.005	0.0021 (J)				<0.005
3/11/2021		0.0016 (J)						
3/12/2021						<0.005		
3/15/2021					<0.005			
3/16/2021	0.0044 (J)						0.0055	
9/21/2021				<0.005				<0.005
9/22/2021	0.0031 (J)	<0.005	<0.005		<0.005	0.0024 (J)	0.0027 (J)	
9/23/2021								
1/31/2022								
2/1/2022	0.0024 (J)	<0.005				<0.005	0.0054	
2/2/2022			<0.005	<0.005	<0.005			
2/3/2022								<0.005
8/30/2022				0.00265 (J)		0.00192 (J)	0.00648	
8/31/2022		<0.005						<0.005
9/1/2022	0.00334 (J)		<0.005		<0.005			

		GWA-7 (bg)	GWC-14	GWC-13	GWC-16	GWC-12	GWC-11	GWC-17	GWC-1	GWB-6R
9/29/20	000	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.12
11/21/2	2000	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.13
1/20/20	001	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.14
3/14/20	001	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.13
7/16/20	001	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.18
11/1/20		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.12
4/25/20		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.15
11/20/2			0.03	<0.02	0.0069	<0.02	0.0071	<0.02	0.0069	0.15
6/6/200		0.047	0.0065	0.0063	0.082 (O)	<0.02	0.0098	<0.02	0.16 (O)	0.11
12/12/2		0.0086	0.0052	<0.02	0.012	<0.02	0.0074	<0.02	<0.02	0.089
5/26/20		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.09
12/7/20		<0.02	0.0074	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.072
6/21/20		<0.02	0.0074	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.072
12/12/2		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.021
4/4/200		~0.02	0.013	~0.02	<0.02	~0.02	~0.02	~0.02	\0.02	0.021
6/27/20		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.0005	0.0000	0.02
		<0.02		<0.02		<0.02	<0.02	0.0025	0.0029	0.02
8/30/20		0.0007	0.0039	-0.00	<0.02	-0.00	-0.00	-0.00	0.0047	0.000
12/4/20		0.0027	0.016	<0.02	0.0031	<0.02	<0.02	<0.02	0.0047	0.022
2/15/20		0.0007	0.017		0.0025		0.0000		0.000	0.007
6/23/20		0.0027	0.0076	<0.02	0.0032	<0.02	0.0036	<0.02	0.0029	0.027
9/11/20			0.012		<0.02					
12/11/2		0.0033	0.017	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.017
3/11/20			0.012		<0.02					
6/23/20		0.0074		<0.02		<0.02	<0.02			
6/24/20			0.0069		<0.02			<0.02	<0.02	0.053
11/3/20			0.016		0.0032					
12/4/20	800	0.0084	0.013	<0.02		<0.02	<0.02			
12/5/20	800				<0.02			<0.02	<0.02	0.0078
3/25/20	009		0.014		<0.02					
7/7/200	09	0.023							<0.02	0.012
7/8/200	09		0.014	<0.02	0.0036	<0.02	0.0026	<0.02		
9/14/20	009		0.0072		0.0026					
12/20/2	2009	0.007	0.02		0.0031				<0.02	
12/21/2	2009			<0.02		<0.02	<0.02	<0.02		0.011
3/4/201	10		0.023		<0.02					
6/20/20	010	0.0047	0.017	<0.02		<0.02	<0.02		0.0037	0.0083
6/21/20	010				0.0025			<0.02		
9/14/20	010		0.018		0.0035					
1/6/201	11			0.0028			0.003		<0.02	
1/7/201	11	0.018	0.019		0.0036	<0.02		<0.02		0.0079
4/15/20	011		0.019		<0.02					
7/7/201	11	0.019	0.014	<0.02	0.003	<0.02	0.004		0.0045	0.007
7/8/201	11							0.0031		
9/25/20	011		0.015		0.0037					
1/17/20	012	0.0298	0.021	<0.02		<0.02	<0.02		<0.02	
1/18/20	012				<0.02			<0.02		0.0116
4/4/201	12		0.0191		<0.02					
7/9/201	12	0.14	0.026	<0.02		<0.02	0.005		0.0026	
7/10/20	012				0.0026			<0.02		0.0096
10/9/20	012		0.049		0.007					
1/17/20				<0.02		<0.02	0.005		<0.02	
1/18/20		0.21	0.036		<0.02			<0.02		<0.02

	GWA-7 (bg)	GWC-14	GWC-13	GWC-16	GWC-12	GWC-11	GWC-17	GWC-1	GWB-6R
4/5/2013		0.04		<0.02					
7/16/2013			<0.02		<0.02	<0.02		<0.02	
7/17/2013	0.18	0.062		<0.02			<0.02		<0.02
10/11/2013		0.032		<0.02					
1/13/2014	0.24		<0.02		<0.02	<0.02		<0.02	
1/14/2014		0.044		<0.02			<0.02		<0.02
4/3/2014		0.077 (O)		0.0032 (J)					
7/8/2014			0.002 (J)		0.0034 (J)	0.0024 (J)			
7/9/2014	0.22	0.032		0.0031 (J)			0.0012 (J)	0.0041 (J)	0.0039 (J)
7/10/2014									
10/24/2014		0.045		0.0028 (J)					
1/12/2015									
1/13/2015	0.19		0.0015 (J)		<0.02	0.0023 (J)		0.0029 (J)	
1/14/2015		0.031		0.0034 (J)			0.002 (J)		0.005
5/10/2015		0.013							
5/11/2015				0.0026 (J)					
7/16/2015	0.23		<0.02	0.0028 (J)	0.0049 (J)	0.002 (J)		0.0034 (J)	
7/17/2015		0.028							0.0045 (J)
7/18/2015							<0.02		
10/6/2015		0.02		0.0016 (J)					
1/17/2016		0.028		0.0029 (J)				0.0046 (J)	
1/18/2016	0.41		0.0011 (J)		0.0058		0.0019 (J)		0.0044 (J)
1/19/2016						0.0025 (J)			
4/26/2016		0.0181		0.00296 (J)					
7/26/2016			<0.02			0.0027 (J)			
7/27/2016	0.397	0.0189			0.0058 (J)			0.0064 (J)	
7/28/2016				0.0026 (J)					0.0038 (J)
7/29/2016							0.0031 (J)		
10/24/2016									
10/25/2016	0.425	0.0206		<0.02					
1/3/2017									
1/4/2017				<0.02	<0.02	<0.02		<0.02	
1/5/2017		0.0172	<0.02				<0.02		0.0077 (J)
1/6/2017	0.41								
4/3/2017									
4/4/2017		0.0235						0.0061 (J)	
4/5/2017				0.0033 (J)	0.0039 (J)		0.0029 (J)		
4/6/2017	0.297		<0.02			0.0025 (J)			0.0069 (J)
7/10/2017					0.0062 (J)				
7/11/2017		0.0136				0.0027 (J)			
7/12/2017			0.0016 (J)	0.0037 (J)				0.0067 (J)	0.0098 (J)
7/13/2017	0.194						0.0037 (J)		
10/2/2017		0.0175							
10/3/2017				0.0036 (J)					
10/4/2017	0.316								
1/9/2018	0.194	0.0103							0.0086 (J)
1/10/2018			0.0019 (J)	0.0029 (J)				0.0056 (J)	
1/11/2018					0.0025 (J)	0.0019 (J)	0.0026 (J)		
7/9/2018		0.0078 (J)							
7/10/2018				0.0025 (J)				0.0056 (J)	0.0098 (J)
7/11/2018	0.15		0.0097 (J)		0.0059 (J)	0.0021 (J)	0.0032 (J)		
1/16/2019	0.16	0.0043 (J)	<0.02				<0.02	0.0043 (J)	0.077

	GWA-7 (bg)	GWC-14	GWC-13	GWC-16	GWC-12	GWC-11	GWC-17	GWC-1	GWB-6R
1/17/2019				0.0021 (J)	<0.02	0.0021 (J)			
1/18/2019									
1/21/2019									
3/25/2019	0.18								
3/26/2019		0.0063 (J)	0.0029 (J)	0.0038 (J)			0.0024 (J)	0.0051 (J)	0.086
3/27/2019					0.0049 (J)	0.0023 (J)			
7/30/2019									
10/7/2019									
10/8/2019	0.11	<0.02	<0.02	<0.02		<0.02			
10/9/2019					0.0021 (J)		<0.02	<0.02	0.018 (J)
4/6/2020	0.12								
4/7/2020		0.0026 (J)		<0.02	0.0024 (J)	<0.02		0.0015 (J)	0.041 (J)
4/8/2020			<0.02				<0.02		
9/28/2020	0.1		<0.02					0.0042 (J)	
9/29/2020		<0.02			0.0046 (J)	0.0023 (J)			
9/30/2020				0.0028 (J)			<0.02		0.018
10/1/2020									
3/10/2021					0.0055 (J)	0.0023 (J)		0.005 (J)	0.027
3/11/2021	0.14						<0.02		
3/12/2021									
3/15/2021			<0.02						
3/16/2021		<0.02		0.0034 (J)					
9/21/2021	0.096		<0.02		0.0051 (J)	0.002 (J)			0.015
9/22/2021		0.0052 (J)		0.0025 (J)			<0.02		
9/23/2021								0.0042 (J)	
1/31/2022	0.1								
2/1/2022				0.0021 (J)			0.0022 (J)		
2/2/2022		0.004 (J)							0.0099 (J)
2/3/2022			<0.02		0.0052 (J)	0.0031 (J)		0.0028 (J)	
8/30/2022	0.11	0.00933 (J)			0.00949 (J)				0.0192 (J)
8/31/2022			<0.02			0.00481 (J)	0.00599 (J)		
9/1/2022				0.0065 (J)				0.00748 (J)	

	GWB-5R	GWB-4R	GWC-9	GWA-8 (bg)	GWC-15	GWC-2	GWC-22	GWC-20	GWC-21
9/29/2000	0.038	0.06	<0.02	<0.02	<0.02				
11/21/2000	0.013	0.068	<0.02		<0.02	<0.02			
1/20/2001	0.038	0.12	<0.02	<0.02	<0.02	<0.02			
3/14/2001	0.077 (O)	0.08	<0.02	<0.02	<0.02	<0.02			
7/16/2001	0.12 (O)	0.11	<0.02	<0.02	<0.02	<0.02			
11/1/2001	0.21 (O)	0.079	<0.02	<0.02	<0.02	<0.02			
4/25/2002	0.086 (O)	0.11	<0.02	<0.02	<0.02	<0.02			
11/20/2002	0.14 (O)	0.15	0.014	<0.02	0.0099	<0.02			
6/6/2003	0.12 (O)	0.12	<0.02	0.017	0.019 (O)	<0.02			
12/12/2003	0.014	0.13	<0.02	0.011	0.018 (O)	<0.02			
5/26/2004	0.06 (O)	0.095	<0.02	<0.02	<0.02	<0.02			
12/7/2004	0.054	0.067	<0.02	<0.02	<0.02	<0.02			
6/21/2005	0.038	0.062	<0.02	<0.02	<0.02	<0.02			
12/12/2005	0.0056	0.09	<0.02	<0.02	<0.02	<0.02			
4/4/2006	0.000	0.00	0.02	<0.02	0.02	0.02			
6/27/2006	0.0043	0.083	<0.02	<0.02	<0.02	<0.02			
8/30/2006	0.0010	0.000	0.02	<0.02	0.02	0.02			
12/4/2006	0.0044	0.084	<0.02	<0.02	<0.02	<0.02			
2/15/2007	0.0011	0.001	0.02	<0.02	0.02	0.02			
6/23/2007	0.0039	0.081	<0.02	<0.02	<0.02	<0.02			
9/11/2007	0.000	0.001	0.02	<0.02	0.02	0.02			
12/11/2007	0.0029	0.067	<0.02	<0.02	<0.02	<0.02			
3/11/2008	0.0020	0.007	-0.02	<0.02	10.02	-0.02			
6/23/2008			<0.02	<0.02					
6/24/2008	0.003	0.059	10.02	10.02	<0.02	<0.02			
11/3/2008	0.003	0.000		<0.02	10.02	10.02			
12/4/2008			<0.02	<0.02		<0.02			
12/5/2008	<0.02	0.054	-0.02	10.02	<0.02	10.02			
3/25/2009	10.02	0.034		<0.02	10.02				
7/7/2009	<0.02	0.038		<0.02					
7/8/2009	\0.02	0.036	0.0029	10.02	<0.02	<0.02			
9/14/2009			0.0023	<0.02	10.02	10.02			
12/20/2009				<0.02	<0.02	<0.02			
12/20/2009	<0.02	0.06	<0.02	10.02	10.02	~0.02			
3/4/2010	\0.02	0.00	10.02	<0.02					
6/20/2010	<0.02		<0.02	<0.02	<0.02	<0.02			
6/21/2010	10.02	0.036	-0.02	10.02	10.02	10.02	<0.02	<0.02	<0.02
9/14/2010		0.030		<0.02			10.02	10.02	10.02
1/6/2011	0.0067			10.02		<0.02			
1/7/2011	0.0007	0.043	<0.02	<0.02	<0.02	10.02	<0.02	0.0029	0.0031
4/15/2011		0.043	-0.02	<0.02	10.02		10.02	0.0023	0.0001
7/7/2011	0.019			<0.02	0.0036			<0.02	
7/8/2011	0.013	0.044	<0.02	10.02	0.0000		<0.02	0.0046	0.0048
9/25/2011		0.044	10.02	<0.02			10.02	0.0040	0.0040
1/17/2012	0.021			<0.02	<0.02	<0.02			
1/18/2012	0.021	0.045	<0.02	-0.02	10.02	-0.02	<0.02	<0.02	<0.02
4/4/2012		0.043	10.02	<0.02			10.02	10.02	10.02
7/9/2012	0.032			-0.02	0.0059	<0.02			
7/9/2012 7/10/2012	0.002	0.048	<0.02	<0.02	0.0009	30.0Z	<0.02	0.0081	<0.02
10/9/2012		0.040	-0.02	<0.02			-0.02	0.0001	-0.02
1/17/2013	0.034			-0.02		<0.02			
1/17/2013	0.004	0.049	<0.02	<0.02	<0.02	-U.UZ	<0.02	0.0063	<0.02
1, 10,2013		0.040	-0.02	-0.02	-0.02		-0.02	0.0000	-0.02

	GWB-5R	GWB-4R	GWC-9	GWA-8 (bg)	GWC-15	GWC-2	GWC-22	GWC-20	GWC-21
4/5/2013				<0.02					
7/16/2013	0.021								
7/17/2013		0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
10/11/2013				<0.02					
1/13/2014	0.008				<0.02	<0.02			
1/14/2014		0.067	<0.02	<0.02			<0.02	<0.02	0.006
4/3/2014				0.0015 (J)					
7/8/2014				. ,					
7/9/2014	0.0052	0.055	0.0016 (J)	0.0012 (J)	0.0012 (J)	<0.02			0.0019 (J)
7/10/2014			(-,	(-,	(3)		0.0053	0.0026 (J)	(-,
10/24/2014				<0.02				(-,	
1/12/2015		0.066						0.0031 (J)	
1/13/2015	0.0036 (J)	0.000			0.0013 (J)	<0.02		0.000 . (0)	
1/14/2015	0.0000 (0)		<0.02	<0.02	0.0010 (0)	10.02	0.0013 (J)		0.0037 (J)
5/10/2015			-0.02	<0.02			0.0010 (0)		0.0007 (0)
5/11/2015				10.02					
7/16/2015	0.004 (J)	0.045			<0.02	<0.02			
	0.004 (3)	0.043	0.0020 (1)	<0.02	\0.02	~0.02			0.0038 (1)
7/17/2015			0.0029 (J)	<0.02			0.0042 (1)	0.002 (1)	0.0028 (J)
7/18/2015				0.0012 (1)			0.0043 (J)	0.003 (J)	
10/6/2015				0.0012 (J)	0.0010 (1)	-0.00		0.0005 (1)	0.0000 (1)
1/17/2016	0.0000	0.040	10.00	0.00070 (1)	0.0013 (J)	<0.02	-0.00	0.0025 (J)	0.0039 (J)
1/18/2016	0.0069	0.049	<0.02	0.00079 (J)			<0.02		
1/19/2016				.0.00					
4/26/2016				<0.02					
7/26/2016									
7/27/2016	0.0046 (J)				<0.02	<0.02			
7/28/2016			<0.02	<0.02				0.0024 (J)	0.0022 (J)
7/29/2016		0.0388					0.0052 (J)		
10/24/2016				<0.02					
10/25/2016					<0.02			<0.02	
1/3/2017	<0.02			<0.02					
1/4/2017							<0.02	<0.02	<0.02
1/5/2017					<0.02	<0.02			
1/6/2017		0.0341	<0.02						
4/3/2017				<0.02	0.002 (J)				
4/4/2017		0.0371				<0.02		0.0024 (J)	0.003 (J)
4/5/2017									
4/6/2017	0.0063 (J)		<0.02				<0.02		
7/10/2017									
7/11/2017				<0.02	0.0022 (J)		0.0016 (J)	0.003 (J)	
7/12/2017	0.0064 (J)	0.0399	0.0013 (J)						
7/13/2017						<0.02			0.0019 (J)
10/2/2017				<0.02	0.0022 (J)			0.0028 (J)	
10/3/2017									
10/4/2017									
1/9/2018				0.0014 (J)	0.0021 (J)				0.0046 (J)
1/10/2018	0.0077 (J)					<0.02		0.0026 (J)	
1/11/2018		0.0327	<0.02				0.0012 (J)		
7/9/2018				<0.02				<0.02	
7/10/2018	0.016				0.0025 (J)	<0.02			0.0031 (J)
7/11/2018		0.02	<0.02				0.0025 (J)		
1/16/2019	0.0033 (J)	0.0022 (J)		<0.02					

	GWB-5R	GWB-4R	GWC-9	GWA-8 (bg)	GWC-15	GWC-2	GWC-22	GWC-20	GWC-21
1/17/2019					<0.02				0.0022 (J)
1/18/2019			<0.02				<0.02		
1/21/2019						0.0024 (J)		0.0031 (J)	
3/25/2019		0.004 (J)		<0.02				0.0024 (J)	
3/26/2019	0.0058 (J)				0.0026 (J)				0.0041 (J)
3/27/2019			<0.02				0.002 (J)		
7/30/2019						<0.02			
10/7/2019				<0.02					
10/8/2019					<0.02				<0.02
10/9/2019	0.033 (J)	<0.02	<0.02			<0.02	<0.02	<0.02	
4/6/2020				<0.02					
4/7/2020	0.0053 (J)	0.0037 (J)			<0.02		0.0014 (J)		<0.02
4/8/2020			0.0015 (J)			<0.02		<0.02	
9/28/2020				<0.02					
9/29/2020						<0.02			
9/30/2020	0.0037 (J)				0.0028 (J)		<0.02	0.0029 (J)	0.0029 (J)
10/1/2020		0.0047 (J)	<0.02						
3/10/2021	0.0026 (J)	0.0054 (J)	<0.02				<0.02		
3/11/2021									
3/12/2021				<0.02	0.0037 (J)			0.0038 (J)	
3/15/2021						<0.02			
3/16/2021									0.003 (J)
9/21/2021	0.0039 (J)	0.0027 (J)		<0.02			<0.02		
9/22/2021			<0.02			<0.02		0.0033 (J)	<0.02
9/23/2021					0.0022 (J)				
1/31/2022				<0.02					
2/1/2022								0.0039 (J)	0.0036 (J)
2/2/2022		0.0031 (J)	<0.02			<0.02			
2/3/2022	0.0046 (J)				0.0023 (J)		<0.02		
8/30/2022	0.0138 (J)	0.00943 (J)		0.00372 (J)				0.00647 (J)	0.00715 (J)
8/31/2022					0.00476 (J)		0.00396 (J)		
9/1/2022			0.00514 (J)			0.0045 (J)			

	GWA-7 (bg)	GWA-8 (bg)	GWC-9	GWC-1	GWC-15	GWB-4R	GWC-14	GWC-16	GWC-17
9/29/2000	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
11/21/2000	<0.02		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
1/20/2001	<0.02	0.025	<0.02	<0.02	<0.02	0.041	<0.02	<0.02	<0.02
3/14/2001	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
7/16/2001	<0.02	<0.02	<0.02	<0.02	<0.02	0.059	<0.02	<0.02	<0.02
11/1/2001	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
4/25/2002	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
11/20/2002		0.016	0.033 (O)	<0.02	<0.02	0.061	<0.02	<0.02	0.014
6/6/2003	0.69 (O)	0.032	<0.02	0.011	<0.02	0.041	<0.02	0.035 (O)	0.012
12/12/2003	0.12	0.019	<0.02	<0.02	<0.02	0.012	<0.02	<0.02	<0.02
5/26/2004	0.013	<0.02	<0.02	<0.02	<0.02	0.016	<0.02	<0.02	<0.02
12/7/2004	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
6/21/2005	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
12/12/2005	0.014	0.01	0.032 (O)	<0.02	0.064 (O)	0.017	0.011	<0.02	<0.02
4/4/2006		<0.02					<0.02	<0.02	
6/27/2006	0.01	0.0043	0.018 (O)	<0.02	0.011	0.11	0.0045	0.077 (O)	0.0046
8/30/2006		0.017	()				<0.02	0.0027	
12/4/2006	0.0065	0.0053	0.0044	<0.02	0.0033	0.086	<0.02	<0.02	0.0071
2/15/2007		0.0045					<0.02	0.0032	
6/23/2007	0.0049	0.0043	0.0041	<0.02	0.0029	0.076	<0.02	0.0058	0.005
9/11/2007		0.004					<0.02	0.0033	
12/11/2007	0.0043	0.0048	0.0039	<0.02	<0.02	0.087	<0.02	<0.02	0.0033
3/11/2008		0.0043					<0.02	<0.02	
6/23/2008	0.0025	0.0037	<0.02						
6/24/2008				<0.02	<0.02	0.062	<0.02	<0.02	0.0037
11/3/2008		0.0032					<0.02	0.0025	
12/4/2008	0.0025	0.0029	0.0039				<0.02	0.0020	
12/5/2008				<0.02	<0.02	0.014		<0.02	0.0027
3/25/2009		0.0055		0.02	0.02	0.011	<0.02	0.0025	0.0027
7/7/2009	<0.02	0.0028		<0.02		0.052			
7/8/2009			<0.02		<0.02		<0.02	<0.02	0.0048
9/14/2009		0.0027					<0.02	<0.02	
12/20/2009	0.0031	0.0029		<0.02	<0.02		<0.02	<0.02	
12/21/2009			0.004			0.046			0.0032
3/4/2010		0.0042					<0.02	<0.02	
6/20/2010	<0.02	0.0027	<0.02	<0.02	<0.02		<0.02		
6/21/2010						0.045		<0.02	0.0028
9/14/2010		<0.02					<0.02	<0.02	
1/6/2011				<0.02					
1/7/2011	<0.02	0.0032	0.0032		<0.02	0.024	<0.02	<0.02	0.003
4/15/2011	0.02	<0.02	0.0002		0.02	0.02	<0.02	<0.02	0.000
7/7/2011	0.0031	0.005		0.0025	<0.02		<0.02	<0.02	
7/8/2011			0.0025			0.023			0.0034
9/25/2011		0.0041	0.0020			0.020	<0.02	0.0028	0.0001
1/17/2012	0.004	0.0043		<0.02	<0.02		<0.02	0.0020	
1/18/2012		2.00.0	0.0045	3.02	3.02	0.011		0.0029	0.0049
4/4/2012		<0.02	2.00.0				<0.02	<0.02	00.0
7/9/2012	0.0096	5.02		<0.02	<0.02		<0.02	J.UL	
7/10/2012	5.0000	0.0028	<0.02	0.02	0.02	0.024	J.UL	<0.02	0.0039
10/9/2012		0.0028	J.UL			J.023	<0.02	0.0027	5.0000
1/17/2013		0.0000		<0.02			0.02	5.5027	
1/18/2013	0.051	0.0038	0.0029	0.02	<0.02	0.011	<0.02	<0.02	0.0043
17 10/2013	0.001	5.0000	0.0020		-0.02	0.011	-0.02	-0.02	0.0073

	GWA-7 (bg)	GWA-8 (bg)	GWC-9	GWC-1	GWC-15	GWB-4R	GWC-14	GWC-16	GWC-17
4/5/2013	(0,	0.0026					<0.02	<0.02	
7/16/2013				<0.02					
7/17/2013	0.042	<0.02	<0.02		<0.02	0.0029	<0.02	<0.02	0.0035
10/11/2013		0.0046					<0.02	<0.02	
1/13/2014	0.0025	0.0010		0.0025	0.0025		0.02	0.02	
1/14/2014	0.0020	0.0025	0.0025	0.0020	0.0020	0.0025	0.0025	0.0025	0.0025
4/3/2014		0.0029	0.0020			0.0020	0.0014 (J)	0.0015 (J)	0.0020
7/8/2014		0.0023					0.0014 (3)	0.0013 (3)	
7/9/2014	0.064	0.002 (J)	0.0016 (1)	<0.02	<0.02	0.0051	0.00086 (J)	0.0012 (J)	0.0033
7/10/2014	0.004	0.002 (3)	0.0016 (J)	\0.02	\0.02	0.0031	0.00080 (3)	0.0012 (3)	0.0033
10/24/2014		0.0031					0.00083 (J)	0.0013 (J)	
1/12/2015		0.0031				0.0023 (J)	0.00083 (3)	0.0013 (3)	
1/13/2015	0.066			0.0025	<0.02	0.0023 (3)			
	0.000	0.003	0.0024 (1)	0.0025	<0.02		-0.0 2	0.0017 (1)	0.0067
1/14/2015		0.003	0.0024 (J)				<0.02	0.0017 (J)	0.0067
5/10/2015		0.0028					<0.02	0.0045 (1)	
5/11/2015	0.026			-0.02	-0.02	0.0021 (1)		0.0015 (J)	
7/16/2015	0.036	0.0040 (1)	0.0004	<0.02	<0.02	0.0021 (J)		<0.02	
7/17/2015		0.0018 (J)	0.0031				<0.02		.0.00
7/18/2015		0.0010 (1)					-0.00	10.00	<0.02
10/6/2015		0.0018 (J)					<0.02	<0.02	
1/17/2016				<0.02	<0.02		<0.02	<0.02	
1/18/2016	0.035	0.0028	0.0059			0.0092			0.012
1/19/2016									
4/26/2016		<0.02					<0.02	<0.02	
7/26/2016									
7/27/2016	0.0529			<0.02	<0.02		<0.02		
7/28/2016		0.0018 (J)	0.0019 (J)					<0.02	
7/29/2016						0.003 (J)			0.0086 (J)
10/24/2016		0.0024 (J)							
10/25/2016	0.0035 (J)				<0.02		<0.02	<0.02	
1/3/2017		0.0035 (J)							
1/4/2017				<0.02				0.0025 (J)	
1/5/2017					<0.02		<0.02		0.016
1/6/2017	0.0235		0.0026 (J)			0.0104			
4/3/2017		0.0041 (J)			<0.02				
4/4/2017				<0.02		0.0132	<0.02		
4/5/2017								0.0025 (J)	0.0175
4/6/2017	0.0829		0.0047 (J)						
7/10/2017									
7/11/2017		0.0029 (J)			<0.02		<0.02		
7/12/2017			0.003 (J)	<0.02		0.0046 (J)		0.002 (J)	
7/13/2017	0.0853								0.0126
10/2/2017		0.0026 (J)			<0.02		0.0026 (J)		
10/3/2017								<0.02	
10/4/2017	0.0263								
1/9/2018	0.0665	0.0035 (J)			<0.02		0.0018 (J)		
1/10/2018				0.0014 (J)				0.0016 (J)	
1/11/2018			0.0046 (J)			0.0095 (J)			0.012
7/9/2018		0.0022 (J)					<0.02		
7/10/2018				0.0021 (J)	<0.02			0.0031 (J)	
7/11/2018	0.02 (J)		0.0033 (J)			0.0028 (J)			0.011
1/16/2019	0.014 (J)	0.0037 (J)		<0.02		0.0052 (J)	<0.02		0.0094 (J)

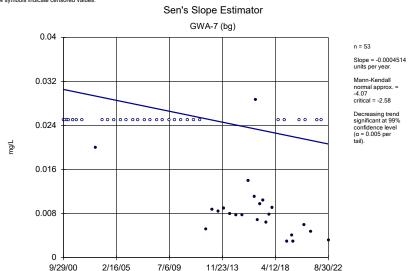
	GWA-7 (bg)	GWA-8 (bg)	GWC-9	GWC-1	GWC-15	GWB-4R	GWC-14	GWC-16	GWC-17
1/17/2019					<0.02			<0.02	
1/18/2019			0.0025 (J)						
1/21/2019									
3/25/2019	<0.05 (O)	<0.02				0.0078 (J)			
3/26/2019				<0.02	<0.02		<0.02	<0.02	0.0057 (J)
3/27/2019			0.0026 (J)						
7/30/2019									
10/7/2019		0.0077 (J)							
10/8/2019	0.095				0.0051 (J)		0.0052 (J)	0.01	
10/9/2019			0.0054 (J)	0.0057 (J)		0.0064 (J)			0.011
4/6/2020	<0.02	<0.02							
4/7/2020				<0.02	<0.02	<0.02	<0.02	<0.02	
4/8/2020			<0.02						<0.02
9/28/2020	0.16	0.0092 (J)		0.0092 (J)					
9/29/2020							<0.02		
9/30/2020					0.032			0.0051 (J)	0.0043 (J)
10/1/2020			0.025			0.0064 (J)			
3/10/2021			<0.02	<0.02		<0.02			
3/11/2021	0.054	0.0000 (1)			0.00				0.0056 (J)
3/12/2021		0.0028 (J)			<0.02				
3/15/2021									
3/16/2021		.0.00					<0.02	<0.02	
9/21/2021	<0.02	<0.02	<0.02			<0.02	0.01	-0.00	<0.02
9/22/2021			<0.02	<0.02	<0.02		0.01	<0.02	<0.02
9/23/2021 1/31/2022	<0.02	<0.02		<0.02	<0.02				
2/1/2022	<0.02	<0.02						<0.02	0.011
2/1/2022			<0.02			<0.02	<0.02	<0.02	0.011
2/3/2022			~ 0.02	<0.02	<0.02	<0.02	<0.02		
8/30/2022	0.011 (J)	<0.02		~U.UZ	~U.UZ	<0.02	<0.02		
8/31/2022	0.011 (0)	NU.UZ			0.00395 (J)	~U.UZ	~U.UZ		0.0068 (J)
9/1/2022			0.0163 (J)	0.00578 (J)	0.00030 (0)			0.0119 (J)	0.0000 (3)
JI 1/2022			0.0103 (3)	0.00370 (3)				0.0113 (0)	

	GWC-11	GWC-13	GWB-5R	GWC-2	GWC-12	GWB-6R	GWC-22	GWC-20	GWC-21
9/29/2000	<0.02	<0.02	0.026 (O)		0.38 (O)	<0.02 (O)			
11/21/2000	<0.02	<0.02	<0.02	0.021 (O)	0.077 (O)	0.024 (O)			
1/20/2001	<0.02	<0.02	0.031 (O)	<0.02	0.23 (O)	<0.02 (O)			
3/14/2001	<0.02	<0.02	0.063 (O)	<0.02	0.24 (O)	<0.02 (O)			
7/16/2001	<0.02	<0.02	0.08 (O)	<0.02	0.053 (O)	<0.02 (O)			
11/1/2001	<0.02	0.044 (O)	0.16 (O)	<0.02	0.022 (O)	<0.02 (O)			
4/25/2002	<0.02	<0.02	<0.02	<0.02	1.2 (O)	<0.02 (O)			
11/20/2002	<0.02	0.023	0.14 (O)	<0.02	0.045 (O)	0.028 (O)			
6/6/2003	<0.02	<0.02	0.51 (O)	<0.02	0.042 (O)	0.032 (O)			
12/12/2003	0.013	<0.02	<0.02	<0.02	<0.02	<0.01 (O)			
5/26/2004	<0.02	0.035	0.036 (O)	<0.02	<0.02	<0.01 (O)			
12/7/2004	0.028 (O)	0.018	0.069 (O)	<0.02	<0.02	0.012 (O)			
6/21/2005	<0.02	0.014	0.076 (O)	<0.02	<0.02	<0.01 (O)			
12/12/2005	<0.02	0.023	<0.02	0.012	<0.02	<0.01 (O)			
4/4/2006									
6/27/2006	0.0028	0.023	0.01	<0.02	0.012 (O)	0.0071			
8/30/2006					()				
12/4/2006	0.0028	0.046 (O)	0.0035	<0.02	0.0067	0.0096			
2/15/2007									
6/23/2007	0.0063	0.036	0.0032	<0.02	0.025 (O)	0.094 (O)			
9/11/2007					(-)	(-)			
12/11/2007	<0.02	0.011	0.0079	<0.02	0.0038	0.042 (O)			
3/11/2008	0.02	0.011	0.0070	0.02	0.0000	0.0.2 (0)			
6/23/2008	<0.02	0.0091			0.0051				
6/24/2008	0.02	0.0001	<0.02	<0.02	0.0001	0.098 (O)			
11/3/2008			0.02	0.02		0.000 (0)			
12/4/2008	<0.02	0.0038		<0.02	<0.02				
12/5/2008			<0.02			0.047 (O)			
3/25/2009			0.02			0.017 (0)			
7/7/2009			<0.02			0.024 (O)			
7/8/2009	<0.02	<0.02	0.02	<0.02	<0.02	0.02 (0)			
9/14/2009	0.02	0.02		0.02	0.02				
12/20/2009				<0.02					
12/21/2009	<0.02	0.0032	<0.02	10.02	0.013 (O)	0.049 (O)			
3/4/2010	-0.02	0.0002	-0.02		0.010 (0)	0.040 (0)			
6/20/2010	<0.02	<0.02	<0.02	<0.02	<0.02	0.045 (O)			
6/21/2010	-0.02	-0.02	-0.02	-0.02	-0.02	0.040 (0)	<0.02	<0.02	0.04 (O)
9/14/2010							10.02	10.02	0.04 (0)
1/6/2011	<0.02	0.004	<0.02	<0.02					
1/7/2011	-0.02	0.004	-0.02	10.02	0.004	0.0044	0.019	<0.02	<0.02
4/15/2011					0.004	0.0044	0.015	10.02	10.02
7/7/2011	<0.02	0.0037	0.0027		0.0028	0.003		<0.02	
7/8/2011	-0.02	0.0007	0.0027		0.0020	0.000	0.1 (O)	0.086 (JO)	0.0044
9/25/2011							0.1 (0)	0.000 (30)	0.0044
1/17/2012	0.0043	0.0031	0.0039	<0.02	0.0043				
1/18/2012	0.0043	0.0031	0.0000	10.02	0.0043	0.0048	0.0051	<0.02	<0.02
4/4/2012						3.0040	J.0051	-0.02	-0.02
7/9/2012	<0.02	0.003	<0.02	<0.02	<0.02				
7/9/2012	~U.UZ	0.003	~ 0.02	NU.UZ	\U.UZ	<0.02	0.01	<0.02	<0.02
						~U.UZ	0.01	~U.UZ	~U.UZ
10/9/2012	0.0025	<0.02	<0.03	<0.02	0.0033				
1/17/2013	0.0025	\U.U Z	<0.02	~U.UZ	0.0033	0.0038	0.0036	0.0033	<0.02
1/18/2013						0.0028	0.0036	0.0032	~U.UZ

	GWC-11	GWC-13	GWB-5R	GWC-2	GWC-12	GWB-6R	GWC-22	GWC-20	GWC-21
4/5/2013									
7/16/2013	<0.02	0.0029	0.0032		0.0028				
7/17/2013				<0.02		<0.02	0.0025	<0.02	<0.02
10/11/2013									
1/13/2014	0.0025	0.0025	0.0025	0.0025	0.0025				
1/14/2014						0.0025	0.0025	0.0025	0.0025
4/3/2014									
7/8/2014	0.0011 (J)	0.0018 (J)			0.002 (J)				
7/9/2014			0.00076 (J)	0.00058 (J)		0.00093 (J)			0.00084 (J)
7/10/2014							0.024	<0.02	
10/24/2014									
1/12/2015								<0.02	
1/13/2015	0.0021 (J)	0.0028	0.0036	0.0024 (J)	0.0079				
1/14/2015						0.0023 (J)	0.0016 (J)		0.0018 (J)
5/10/2015									
5/11/2015									
7/16/2015	<0.02	0.0018 (J)	<0.02	<0.02	0.0026				
7/17/2015						<0.02			<0.02
7/18/2015							0.014	<0.02	
10/6/2015									
1/17/2016				<0.02				<0.02	<0.02
1/18/2016		0.0017 (J)	<0.02		0.0025	0.0029	<0.02		
1/19/2016	0.0029								
4/26/2016									
7/26/2016	<0.02	0.0028 (J)							
7/27/2016			0.0015 (J)	0.0018 (J)	0.0021 (J)				
7/28/2016						<0.02		<0.02	<0.02
7/29/2016							0.0129		
10/24/2016									
10/25/2016								<0.02	
1/3/2017			<0.02						
1/4/2017	<0.02				0.0025 (J)		0.006 (J)	<0.02	<0.02
1/5/2017		0.0021 (J)		<0.02		<0.02			
1/6/2017									
4/3/2017				0.0015 (1)				-0.00	0.0015 (J)
4/4/2017 4/5/2017				0.0015 (J)	0.0036 (1)			<0.02	0.0013 (3)
4/6/2017	0.004 (J)	0.0027 (J)	0.0023 (J)		0.0026 (J)	0.0032 (J)	0.0031 (J)		
7/10/2017	0.004 (0)	0.0027 (0)	0.0023 (0)		0.0023 (J)	0.0032 (0)	0.0031 (0)		
7/11/2017	<0.02				0.0020 (0)		0.0029 (J)	<0.02	
7/12/2017	0.02	0.0043 (J)	<0.02			0.002 (J)	0.0020 (0)	0.02	
7/13/2017		0.00.0 (0)	0.02	0.0014 (J)		0.002 (0)			0.002 (J)
10/2/2017								<0.02	(-)
10/3/2017									
10/4/2017									
1/9/2018						0.0036 (J)			0.0016 (J)
1/10/2018		0.0021 (J)	0.0022 (J)	<0.02				0.0034 (J)	
1/11/2018	0.0018 (J)				0.0031 (J)		0.0106		
7/9/2018								<0.02	
7/10/2018			<0.02	<0.02		0.0055 (J)			<0.02
7/11/2018	<0.02	0.0039 (J)			0.0036 (J)		0.0057 (J)		
1/16/2019		0.047	<0.02			<0.02			

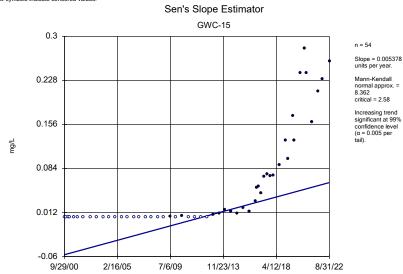
	GWC-11	GWC-13	GWB-5R	GWC-2	GWC-12	GWB-6R	GWC-22	GWC-20	GWC-21
1/17/2019	<0.02				0.0032 (J)				<0.02
1/18/2019							0.0024 (J)		
1/21/2019				<0.02				<0.02	
3/25/2019								<0.02	
3/26/2019		0.03	<0.02			<0.02			<0.02
3/27/2019	<0.02				0.0031 (J)		<0.02		
7/30/2019				0.0067 (J)					
10/7/2019									
10/8/2019	0.0061 (J)	0.053							0.0071 (J)
10/9/2019			0.0081 (J)	0.005 (J)	0.0057 (J)	0.016 (J)	0.0079 (J)	0.0049 (J)	
4/6/2020									
4/7/2020	<0.02		<0.02		<0.02	<0.02	<0.02		<0.02
4/8/2020		0.023		<0.02				<0.02	
9/28/2020		0.016							
9/29/2020	0.0031 (J)			0.056	0.0074 (J)				
9/30/2020			<0.02			<0.02	<0.02	0.031	0.0096 (J)
10/1/2020									
3/10/2021	<0.02		<0.02		<0.02	<0.02	<0.02		
3/11/2021									
3/12/2021								<0.02	
3/15/2021		0.039		<0.02					
3/16/2021									<0.02
9/21/2021	<0.02	0.036	<0.02		<0.02	<0.02	<0.02		
9/22/2021				<0.02				<0.02	<0.02
9/23/2021									
1/31/2022									
2/1/2022								<0.02	<0.02
2/2/2022				<0.02		<0.02			
2/3/2022	<0.02	0.037	<0.02		<0.02		<0.02		
8/30/2022			<0.02		0.0262	0.0132 (J)		0.0171 (J)	0.00814 (J)
8/31/2022	<0.02	0.0266					<0.02		
9/1/2022				0.0125 (J)					

FIGURE E.

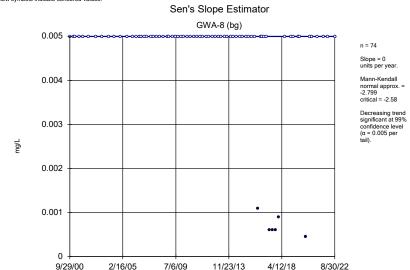

Appendix I Trend Tests - Prediction Limit Exceedances - Significant Results Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill Printed 9/28/2022, 10:43 AM

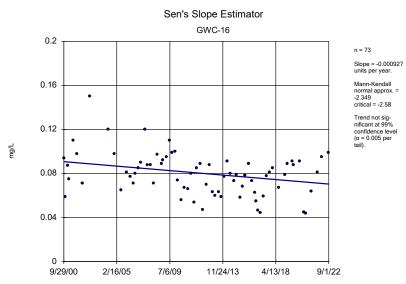
	Grumman Road Landilli	Client: Southern Compa	iny Data: Gr	umman Re	bad Landilli	Prir	itea 9/2	.8/2022,	10:43 AW			
Constituent	Well		Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Arsenic (mg/L)	GWA-7 (bg)		-0.0004514	-4.07	-2.58	Yes	53	56.6	n/a	n/a	0.01	NP
Arsenic (mg/L)	GWA-8 (bg)		0	-2.799	-2.58	Yes	74	91.89	n/a	n/a	0.01	NP
Arsenic (ma/L)	GWC-15		0.005378	8.362	2.58	Yes	54	46.3	n/a	n/a	0.01	NP

Appendix I Trend Tests - Prediction Limit Exceedances - All Results Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill Printed 9/28/2022, 10:43 AM

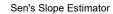

	Grumman Road Landfill	Client: Southern Compa	any Data: Gr	umman Ro	oad Landfill	Prir	ited 9/2	8/2022,	10:43 AM			
Constituent	Well		Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	Xform	<u>Alpha</u>	Method
Arsenic (mg/L)	GWA-7 (bg)		-0.0004514	-4.07	-2.58	Yes	53	56.6	n/a	n/a	0.01	NP
Arsenic (mg/L)	GWA-8 (bg)		0	-2.799	-2.58	Yes	74	91.89	n/a	n/a	0.01	NP
Arsenic (mg/L)	GWC-15		0.005378	8.362	2.58	Yes	54	46.3	n/a	n/a	0.01	NP
Arsenic (mg/L)	GWC-16		-0.000927	-2.349	-2.58	No	73	0	n/a	n/a	0.01	NP
Arsenic (mg/L)	GWC-20		0.009885	118	167	No	33	3.03	n/a	n/a	0.01	NP

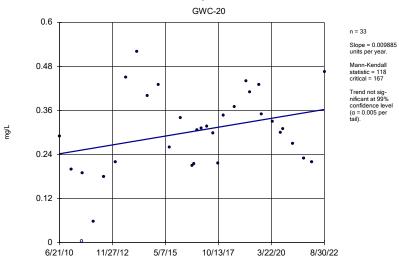
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Arsenic Analysis Run 9/28/2022 10:43 AM View: Appendix I - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Constituent: Arsenic Analysis Run 9/28/2022 10:43 AM View: Appendix I - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.




Constituent: Arsenic Analysis Run 9/28/2022 10:43 AM View: Appendix I - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Constituent: Arsenic Analysis Run 9/28/2022 10:43 AM View: Appendix I - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

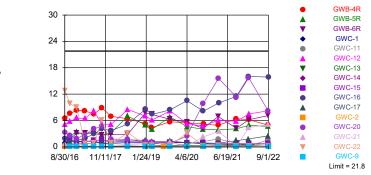
FIGURE F.

Appendix III Interwell Prediction Limits - Significant Results

	Grumman Road	l Landfill	Client: Sout	hern Compa	ny Data: (Grumman R	toad Landfill	Printed 9/	28/202	2, 10:45 AM			
Constituent	Well	Upper Lin	n. Lower Lin	n. <u>Date</u>	Observ.	Sig. Bg N	N Bg Mean	Std. Dev.	%ND	s ND Adj.	Transform	<u>Alpha</u>	Method
Calcium (mg/L)	GWB-4R	35.8	n/a	8/30/2022	79.3	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Calcium (mg/L)	GWB-5R	35.8	n/a	8/30/2022	70.3	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Calcium (mg/L)	GWB-6R	35.8	n/a	8/30/2022	81.8	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Calcium (mg/L)	GWC-1	35.8	n/a	9/1/2022	46.9	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Calcium (mg/L)	GWC-11	35.8	n/a	8/31/2022	115	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Calcium (mg/L)	GWC-12	35.8	n/a	8/30/2022	70.8	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Calcium (mg/L)	GWC-14	35.8	n/a	8/30/2022	144	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Calcium (mg/L)	GWC-15	35.8	n/a	8/31/2022	135	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Calcium (mg/L)	GWC-16	35.8	n/a	9/1/2022	255	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Calcium (mg/L)	GWC-17	35.8	n/a	8/31/2022	102	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Calcium (mg/L)	GWC-20	35.8	n/a	8/30/2022	193	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Calcium (mg/L)	GWC-21	35.8	n/a	8/30/2022	131	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Chloride (mg/L)	GWC-17	260	n/a	8/31/2022	694	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Fluoride (mg/L)	GWC-17	0.4247	n/a	8/31/2022	0.442	Yes 38	-2.348	0.6768	23.68	Kaplan-Meie	r ln(x)	0.0004702	Param Inter 1 of 2
pH (SU)	GWC-12	6.43	4.23	8/30/2022	3.92	Yes 36	n/a	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
pH (SU)	GWC-15	6.43	4.23	8/31/2022	6.57	Yes 36	n/a	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWB-4R	160	n/a	8/30/2022	379	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWB-5R	160	n/a	8/30/2022	403	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWB-6R	160	n/a	8/30/2022	978	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-11	160	n/a	8/31/2022	653	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-12	160	n/a	8/30/2022	415	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-14	160	n/a	8/30/2022	410	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-16	160	n/a	9/1/2022	1140	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-17	160	n/a	8/31/2022	721	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-20	160	n/a	8/30/2022	606	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-21	160	n/a	8/30/2022	451	Yes 34	n/a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2

Appendix III Interwell Prediction Limits - All Results

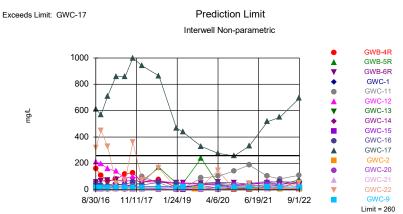
Printed 9/28/2022, 10:45 AM Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill Std. Dev. Constituent %NDs ND Adj. <u>Upper</u> Lim. Lower Lim Observ. Bg N Bg Mean Method Boron (mg/L) GWB-4R 21.8 8/30/2022 4.95 No 34 n/a 0 NP Inter (normality) 1 of 2 n/a n/a n/a n/a 0.001453 8/30/2022 Boron (mg/L) GWB-5R 21.8 n/a 4.66 No 34 n/a n/a 0 n/a n/a 0.001453 NP Inter (normality) 1 of 2 Boron (mg/L) GWB-6R 21.8 n/a 8/30/2022 7.13 34 0 n/a 0.001453 NP Inter (normality) 1 of 2 21.8 9/1/2022 Boron (mg/L) GWC-1 n/a 0.728 Nο 34 n/a n/a n n/a n/a 0.001453 NP Inter (normality) 1 of 2 Boron (mg/L) GWC-11 21.8 n/a 8/31/2022 1.65 34 0 n/a 0.001453 NP Inter (normality) 1 of 2 GWC-12 21.8 8/30/2022 8.21 34 n/a 0 0.001453 NP Inter (normality) 1 of 2 Boron (mg/L) n/a No n/a n/a n/a GWC-13 21.8 n/a 8/31/2022 0.231 34 n/a 0 0.001453 NP Inter (normality) 1 of 2 Boron (mg/L) No n/a n/a n/a GWC-14 21.8 8/30/2022 NP Inter (normality) 1 of 2 Boron (mg/L) 0.046 34 n/a 0 0.001453 n/a No n/a n/a n/a n/a Boron (mg/L) GWC-15 21.8 8/31/2022 0.719 No 34 n/a 0 n/a 0.001453 NP Inter (normality) 1 of 2 n/a n/a Boron (mg/L) GWC-16 21.8 n/a 9/1/2022 15.9 No 34 n/a 0 n/a 0.001453 NP Inter (normality) 1 of 2 n/a Boron (mg/L) GWC-17 21.8 n/a 8/31/2022 2.51 Nο 34 n/a n/a n n/a n/a 0.001453 NP Inter (normality) 1 of 2 Boron (mg/L) GWC-2 21.8 n/a 9/1/2022 0.0204 No 34 n/a 0 n/a n/a 0.001453 NP Inter (normality) 1 of 2 Boron (mg/L) GWC-20 21.8 n/a 8/30/2022 8.14 No 34 n/a n/a 0 n/a n/a 0.001453 NP Inter (normality) 1 of 2 Boron (mg/L) GWC-21 21.8 n/a 8/30/2022 5.08 No 34 0 n/a 0.001453 NP Inter (normality) 1 of 2 GWC-22 21.8 8/31/2022 0 0.001453 NP Inter (normality) 1 of 2 Boron (mg/L) n/a 0.271 No 34 n/a n/a n/a n/a GWC-9 21.8 9/1/2022 0.0187 34 0 0.001453 NP Inter (normality) 1 of 2 Boron (mg/L) n/a No n/a n/a n/a n/a Calcium (mg/L) GWB-4R 35.8 8/30/2022 79.3 Yes 34 n/a 0.001453 NP Inter (normality) 1 of 2 n/a n/a 0 n/a n/a Calcium (mg/L) GWB-5R 35.8 8/30/2022 70.3 34 0 0.001453 NP Inter (normality) 1 of 2 n/a n/a n/a n/a n/a 8/30/2022 Calcium (mg/L) GWB-6R 35.8 81.8 34 0 n/a 0.001453 NP Inter (normality) 1 of 2 n/a Yes n/a n/a Calcium (mg/L) GWC-1 35.8 n/a 9/1/2022 46.9 Yes 34 n/a n/a 0 n/a n/a 0.001453 NP Inter (normality) 1 of 2 Calcium (mg/L) GWC-11 35.8 n/a 8/31/2022 115 Yes 34 n/a n/a 0 n/a n/a 0.001453 NP Inter (normality) 1 of 2 8/30/2022 Calcium (mg/L) GWC-12 35.8 n/a 70.8 Yes 34 n/a n/a 0 n/a n/a 0.001453 NP Inter (normality) 1 of 2 34 Calcium (mg/L) GWC-13 35.8 n/a 8/31/2022 2.54 0 0.001453 NP Inter (normality) 1 of 2 Calcium (mg/L) GWC-14 35.8 n/a 8/30/2022 144 Yes 34 n/a n/a 0 n/a n/a 0.001453 NP Inter (normality) 1 of 2 Calcium (mg/L) GWC-15 35.8 n/a 8/31/2022 135 34 n/a n/a 0 n/a n/a 0.001453 NP Inter (normality) 1 of 2 Calcium (mg/L) GWC-16 35.8 9/1/2022 255 Yes 34 0.001453 NP Inter (normality) 1 of 2 n/a n/a 0 n/a n/a n/a Calcium (mg/L) GWC-17 35.8 8/31/2022 102 34 0.001453 0 NP Inter (normality) 1 of 2 Calcium (mg/L) GWC-2 35.8 9/1/2022 0.236 No 34 n/a n/a 0 n/a 0.001453 NP Inter (normality) 1 of 2 n/a n/a Calcium (mg/L) GWC-20 35.8 n/a 8/30/2022 193 Yes 34 n/a n/a 0 n/a n/a 0.001453 NP Inter (normality) 1 of 2 35.8 8/30/2022 131 0 Calcium (mg/L) **GWC-21** 34 n/a n/a 0.001453 NP Inter (normality) 1 of 2 n/a Yes n/a n/a Calcium (mg/L) GWC-22 35.8 n/a 8/31/2022 23.2 No 34 n/a n/a 0 n/a n/a 0.001453 NP Inter (normality) 1 of 2 Calcium (mg/L) GWC-9 35.8 n/a 9/1/2022 34 0 n/a 0.001453 NP Inter (normality) 1 of 2 Chloride (mg/L) GWB-4R 8/30/2022 65 34 0.001453 NP Inter (normality) 1 of 2 260 n/a No n/a n/a 0 n/a n/a n/a Chloride (mg/L) GWB-5R 260 n/a 8/30/2022 76.8 No 34 n/a n/a 0 0.001453 NP Inter (normality) 1 of 2 n/a Chloride (ma/L) GWB-6R 260 8/30/2022 52 n/a No 34 n/a n/a 0 n/a n/a 0.001453 NP Inter (normality) 1 of 2 NP Inter (normality) 1 of 2 Chloride (mg/L) GWC-1 260 n/a 9/1/2022 9.17 No 34 n/a 0 n/a n/a 0.001453 Chloride (mg/L) GWC-11 260 8/31/2022 110 No 34 n/a 0 n/a 0.001453 NP Inter (normality) 1 of 2 n/a n/a Chloride (mg/L) GWC-12 260 n/a 8/30/2022 58 4 No 34 n/a n/a 0 n/a n/a 0.001453 NP Inter (normality) 1 of 2 Chloride (mg/L) GWC-13 260 n/a 8/31/2022 6.69 No 34 n/a n/a 0 n/a 0.001453 NP Inter (normality) 1 of 2 n/a NP Inter (normality) 1 of 2 Chloride (ma/L) GWC-14 260 n/a 8/30/2022 26.7 No 34 n/a n/a 0 n/a n/a 0.001453 Chloride (ma/L) GWC-15 260 8/31/2022 4.83 No 34 n/a 0 n/a 0.001453 NP Inter (normality) 1 of 2 n/a GWC-16 9/1/2022 57.2 34 0.001453 Chloride (mg/L) 260 n/a No n/a n/a 0 n/a n/a NP Inter (normality) 1 of 2 GWC-17 260 8/31/2022 694 Chloride (mg/L) n/a 34 n/a 0 n/a n/a 0.001453 NP Inter (normality) 1 of 2 Chloride (mg/L) GWC-2 260 n/a 9/1/2022 6.59 34 n/a n/a 0 n/a 0.001453 NP Inter (normality) 1 of 2 No n/a GWC-20 260 8/30/2022 24.4 34 0 Chloride (mg/L) No n/a n/a 0.001453 NP Inter (normality) 1 of 2 260 8/30/2022 0 Chloride (mg/L) GWC-21 29.4 34 n/a n/a n/a 0.001453 NP Inter (normality) 1 of 2 n/a No n/a Chloride (mg/L) GWC-22 260 n/a 8/31/2022 51.2 No 34 n/a n/a 0 n/a n/a 0.001453 NP Inter (normality) 1 of 2 Chloride (mg/L) GWC-9 260 n/a 9/1/2022 17.6 No 34 n/a 0 n/a 0.001453 NP Inter (normality) 1 of 2 Fluoride (ma/L) GWR-4R 0 4247 n/a 8/30/2022 0.1ND Nο 38 -2 348 0.6768 23.68 Kaplan-Meier In(x) 0.0004702 Param Inter 1 of 2 Fluoride (mg/L) GWB-5R n/a 8/30/2022 38 0.6768 23.68 Kaplan-Meier 0.0004702 Fluoride (mg/L) GWB-6R 0.4247 n/a 8/30/2022 0.1ND No 38 -2.3480.6768 23.68 Kaplan-Meier In(x) 0.0004702 Param Inter 1 of 2 Fluoride (mg/L) GWC-1 0.4247 n/a 9/1/2022 0.1ND No 38 -2.348 0.6768 23.68 Kaplan-Meier In(x) 0.0004702 Param Inter 1 of 2 Fluoride (mg/L) GWC-11 8/31/2022 38 0.0004702 Param Inter 1 of 2 0.4247 0.1ND -2.3480.6768 23.68 Kaplan-Meier In(x) n/a No 0.0004702 Param Inter 1 of 2 Fluoride (mg/L) GWC-12 0.4247 n/a 8/30/2022 0.273 No 38 -2.348 0.6768 23.68 Kaplan-Meier In(x) GWC-13 8/31/2022 0.051,J 38 -2.348 0.6768 23.68 Kaplan-Meier In(x) 0.0004702 Param Inter 1 of 2 Fluoride (ma/L) 0.4247 n/a No Fluoride (mg/L) GWC-14 0.4247 n/a 8/30/2022 0.1ND Nο 38 -2.348 0.6768 23.68 Kaplan-Meier In(x) 0.0004702 Param Inter 1 of 2


Appendix III Interwell Prediction Limits - All Results

	Grumman Boo			thorn Compo		Grumman			Drinted 0/	20/2022	10:45 AM			
	Grumman Roa			thern Compa	·	Grumman					, 10:45 AM			
Constituent	<u>Well</u>		n. Lower Lin		Observ.	Sig. Bo			Std. Dev.		ND Adj.	Transform	<u>Alpha</u>	Method
Fluoride (mg/L)	GWC-15	0.4247	n/a	8/31/2022		No 38	-2.	.348	0.6768		Kaplan-Meier		0.0004702	Param Inter 1 of 2
Fluoride (mg/L)	GWC-16	0.4247	n/a	9/1/2022	0.0374J	No 38		.348	0.6768		Kaplan-Meier	` '		Param Inter 1 of 2
Fluoride (mg/L)	GWC-17	0.4247	n/a	8/31/2022	0.442	Yes 38		.348	0.6768	23.68	Kaplan-Meie	r ln(x)	0.0004702	Param Inter 1 of 2
Fluoride (mg/L)	GWC-2	0.4247	n/a	9/1/2022	0.1ND	No 38	-2.3	.348	0.6768	23.68	Kaplan-Meier	ln(x)	0.0004702	Param Inter 1 of 2
Fluoride (mg/L)	GWC-20	0.4247	n/a	8/30/2022	0.1ND	No 38	-2.3	.348	0.6768	23.68	Kaplan-Meier	ln(x)	0.0004702	Param Inter 1 of 2
Fluoride (mg/L)	GWC-21	0.4247	n/a	8/30/2022	0.1ND	No 38	-2.3	.348	0.6768	23.68	Kaplan-Meier	ln(x)	0.0004702	Param Inter 1 of 2
Fluoride (mg/L)	GWC-22	0.4247	n/a	8/31/2022	0.1ND	No 38	-2.3	.348	0.6768	23.68	Kaplan-Meier	ln(x)	0.0004702	Param Inter 1 of 2
Fluoride (mg/L)	GWC-9	0.4247	n/a	9/1/2022	0.0783J	No 38	-2.3	.348	0.6768	23.68	Kaplan-Meier	ln(x)	0.0004702	Param Inter 1 of 2
pH (SU)	GWB-4R	6.43	4.23	8/30/2022	5.67	No 36	n/a	а	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
pH (SU)	GWB-5R	6.43	4.23	8/30/2022	5.22	No 36	n/a	а	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
pH (SU)	GWB-6R	6.43	4.23	8/30/2022	5.55	No 36	n/a	а	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
pH (SU)	GWC-1	6.43	4.23	9/1/2022	5.8	No 36	n/a	а	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
pH (SU)	GWC-11	6.43	4.23	8/31/2022	4.85	No 36	n/a	a	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
pH (SU)	GWC-12	6.43	4.23	8/30/2022	3.92	Yes 36	n/a	a	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
pH (SU)	GWC-13	6.43	4.23	8/31/2022	4.76	No 36	n/a	a	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
pH (SU)	GWC-14	6.43	4.23	8/30/2022	5.86	No 36	n/a	a	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
pH (SU)	GWC-15	6.43	4.23	8/31/2022	6.57	Yes 36	n/a	а	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
pH (SU)	GWC-16	6.43	4.23	9/1/2022	5.37	No 36	n/a	a	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
pH (SU)	GWC-17	6.43	4.23	8/31/2022	4.33	No 36	n/a	a	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
pH (SU)	GWC-2	6.43	4.23	9/1/2022	4.73	No 36	n/a	a	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
pH (SU)	GWC-20	6.43	4.23	8/30/2022	6.01	No 36	n/a	a	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
pH (SU)	GWC-21	6.43	4.23	8/30/2022	5.76	No 36	n/a	а	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
pH (SU)	GWC-22	6.43	4.23	8/31/2022	4.68	No 36	n/a	а	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
pH (SU)	GWC-9	6.43	4.23	9/1/2022	4.6	No 36	n/a	а	n/a	0	n/a	n/a	0.002622	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWB-4R	160	n/a	8/30/2022	379	Yes 34	n/a	а	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWB-5R	160	n/a	8/30/2022	403	Yes 34	n/a	a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWB-6R	160	n/a	8/30/2022	978	Yes 34	n/a	a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-1	160	n/a	9/1/2022	44	No 34	n/a	а	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-11	160	n/a	8/31/2022	653	Yes 34	n/a	a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-12	160	n/a	8/30/2022	415	Yes 34	n/a	а	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-13	160	n/a	8/31/2022	29	No 34	n/a	a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-14	160	n/a	8/30/2022	410	Yes 34	n/a	a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-15	160	n/a	8/31/2022	88.5	No 34	n/a	a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-16	160	n/a	9/1/2022	1140	Yes 34	n/a	а	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-17	160	n/a	8/31/2022	721	Yes 34	n/a	а	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-2	160	n/a	9/1/2022	10.3	No 34	n/a	а	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-20	160	n/a	8/30/2022	606	Yes 34	n/a	a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-21	160	n/a	8/30/2022	451	Yes 34	n/a	а	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-22	160	n/a	8/31/2022	45.3	No 34	n/a	а	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Sulfate (mg/L)	GWC-9	160	n/a	9/1/2022	28.7	No 34	n/a	a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWB-4R	3660	n/a	8/30/2022	882	No 34	n/a	a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWB-5R	3660	n/a	8/30/2022	886	No 34	n/a	a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWB-6R	3660	n/a	8/30/2022	1810	No 34	n/a	а	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-1	3660	n/a	9/1/2022	228	No 34	n/a	a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-11	3660	n/a	8/31/2022	1240	No 34	n/a	a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-12	3660	n/a	8/30/2022	713	No 34	n/a	a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-13	3660	n/a	8/31/2022	55	No 34	n/a	a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-14	3660	n/a	8/30/2022	720	No 34	n/a	a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-15	3660	n/a	8/31/2022	530	No 34	n/a	a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-16	3660	n/a	9/1/2022	1720	No 34	n/a	a	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-17	3660	n/a	8/31/2022	2050	No 34	n/a	а	n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-2	3660	n/a	9/1/2022	9J	No 34			n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-20	3660	n/a	8/30/2022		No 34			n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-21	3660	n/a	8/30/2022		No 34			n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-22	3660	n/a	8/31/2022		No 34			n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	GWC-9	3660	n/a	9/1/2022	85	No 34			n/a	0	n/a	n/a	0.001453	NP Inter (normality) 1 of 2
(3· - /														, ,,,=

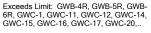
Within Limit

Prediction Limit

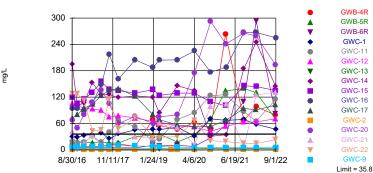


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 34 background values. Annual per-constituent alpha = 0.001458. Individual comparison alpha = 0.001453 (1 of 2). Comparing 16 points to limit.

Constituent: Boron Analysis Run 9/28/2022 10:44 AM View: Appendix III


Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

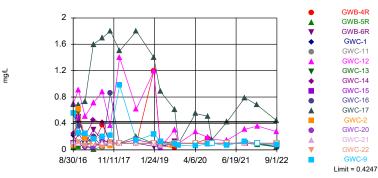
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 34 background values. Annual per-constituent alpha = 0.04548. Individual comparison alpha = 0.001453 (1 of 2). Comparing 16 points to limit.

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

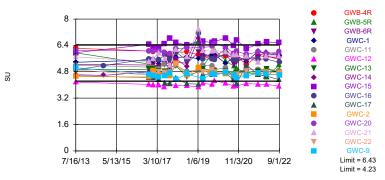
Prediction Limit Interwell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 34 background values. Annual per-constituent alpha = 0.001453. Individual comparison alpha = 0.001453 (1 of 2). Comparing 16 points to limit.

Constituent: Calcium Analysis Run 9/28/2022 10:44 AM View: Appendix III

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

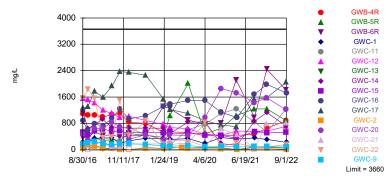


Background Data Summary (based on natural log transformation) (after Kaplan-Meier Adjustment): Mean=-2.348, Std. Dev.=0.6768, n=38, 23.68% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9171, critical = 0.916. Kappa = 2.204 (c=7, w=16, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.0004702. Comparing 16 points to limit.

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

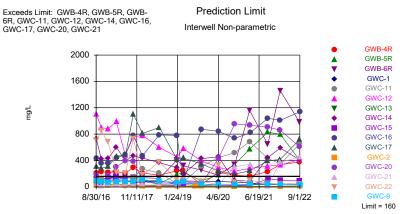
Exceeds Limits: GWC-12, GWC-15

Prediction Limit
Interwell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 36 background values. Annual perconstituent alpha = 0.08222. Individual comparison alpha = 0.002622 (1 of 2). Comparing 16 points to limit.

Constituent: pH Analysis Run 9/28/2022 10:44 AM View: Appendix III

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Limit Prediction Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 34 background values. Annual per-constituent alpha = 0.001458. Individual comparison alpha = 0.001453 (1 of 2). Comparing 16 points to limit.

Constituent: Total Dissolved Solids Analysis Run 9/28/2022 10:44 AM View: Appendix III Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 34 background values. Annual per-constituent alpha = 0.001458. Individual comparison alpha = 0.001453 (1 of 2). Comparing 16 points to limit.

	GWB-6R	GWC-1	GWB-5R	GWA-8 (bg)	GWC-11	GWC-12	GWC-13	GWC-22	GWC-2
8/30/2016	1.41	0.875	1.09	0.117					
8/31/2016					0.0688 (J)	5.1	0.261	12.8	0.0196 (J)
9/1/2016									
10/24/2016				0.126					
10/25/2016		1.22							
10/26/2016	1.83		2.5		0.083 (J)	5.74	0.211	9.81	0.05 (J)
10/27/2016									
1/3/2017			3.39	0.124					
1/4/2017		1.3			0.0738	6.56		8.94	
1/5/2017	3.07						0.179		0.0162 (J)
1/6/2017									
4/3/2017				0.105					
4/4/2017		1.19							0.019 (J)
4/5/2017						6.49			
4/6/2017	3.19		2.76		0.0754		0.112	0.733	
7/10/2017						8.13			
7/11/2017				0.136	0.0614			0.852	
7/12/2017	3.06	1.37	3.55				0.0882		
7/13/2017									0.023 (J)
10/2/2017				0.107					
10/3/2017	2.69	0.765	2.72		0.0838				0.0266 (J)
10/4/2017						5.18	0.116	6.05	
1/9/2018	2.81			0.123					
1/10/2018		0.876	3.21				0.101		0.0203 (J)
1/11/2018					0.169	5.16		0.838	
7/9/2018				0.11					
7/10/2018	2.9	0.94	7						0.026 (J)
7/11/2018					0.3	8.5	0.098	3.2	
1/16/2019	7.7	0.91	5	0.13			0.11		
1/17/2019					0.065	7			
1/18/2019								0.37	
1/21/2019									0.018 (J)
3/25/2019				0.098					
3/26/2019	7.4	0.77	4				0.35		
3/27/2019					0.089	6.1		0.37	
7/30/2019									0.02 (J)
10/7/2019				0.12	0.00		0.40		
10/8/2019					0.22		0.18		
10/9/2019	6.3	0.93	6.8			8.2		0.39	0.024 (J)
4/6/2020				0.14					
4/7/2020	5.6	1	4.6		0.67	5.3		3.1	
4/8/2020							0.28		0.031 (J)
9/28/2020		0.69		0.15			0.24		
9/29/2020	4.0				1.2	4.7		0.05	0.024 (J)
9/30/2020	4.2		4					0.25	
10/1/2020		0.00	0.0		1.0	0.4		0.00	
3/10/2021	6.9	0.63	3.9		1.8	6.1		0.32	
3/11/2021				0.11					
3/12/2021				0.11			0.21		0.004
3/15/2021							0.31		0.084
3/16/2021	4.2		4.1	0.13	0.8	5.9	0.38	0.10	
9/21/2021	4.2		4.1	0.13	0.8	5.8	0.38	0.19	

	GWB-6R	GWC-1	GWB-5R	GWA-8 (bg)	GWC-11	GWC-12	GWC-13	GWC-22	GWC-2
9/22/2021									0.017 (J)
9/23/2021		0.59							
1/31/2022				0.13					
2/1/2022									
2/2/2022	6.2								0.023 (J)
2/3/2022		0.59	4.9		0.1	7.5	0.37	0.18	
8/30/2022	7.13		4.66	0.152		8.21			
8/31/2022					1.65		0.231	0.271	
9/1/2022		0.728							0.0204

		GWC-14	GWB-4R	GWC-16	GWC-17	GWC-20	GWA-7 (bg)	GWC-21	GWC-15	GWC-9
8.	/30/2016									
	/31/2016									0.096 (JO)
	/1/2016	0.071 (J)	6.48	1.82	0.408	3.34	11.6	0.62	9.01 (O)	
	0/24/2016	. ,							, ,	
	0/25/2016	0.0819 (J)		1.26		2.54	21.4	0.0658 (J)	1.66	
	0/26/2016	0.0010 (0)	7.57	20	0.5	2.01		0.0000 (0)		
	0/27/2016				0.0					0.0281 (J)
	/3/2017									0.0201 (0)
	4/2017			1.46		1.91		0.36		
	/5/2017	0.0813		1.40	0.676	1.51		0.50	1.1	
	6/2017	0.0013	8.34		0.070		20.1		1.1	0.0189 (J)
	/3/2017		0.54				20.1		1.21	0.0109 (3)
		0.0722	0.10			2.77		0.500	1.21	
	/4/2017	0.0723	8.18	2	0.00	2.77		0.509		
	/5/2017			2	0.69		01.0			0.0404 (1)
	6/2017						21.8			0.0181 (J)
	/10/2017	0.0704								
	/11/2017	0.0734				4.14			1.44	
	/12/2017		7.51	2.95						0.0211 (J)
	/13/2017				0.888		16.3	0.126		
	0/2/2017	0.0748				4.65			1.59	
	0/3/2017			4.15				0.1		
	0/4/2017		8.88		1.02		21.5			0.0254 (J)
	/9/2018	0.0679					13.9	0.783	1.35	
	/10/2018			3.68		1.79				
1.	/11/2018		6.95		1.28					0.018 (J)
7.	/9/2018	0.061				1.7				
7.	/10/2018			5.2				0.5	1.2	
7.	/11/2018		6.4		1.6		11.7			0.02 (J)
1.	/16/2019	0.046	5.3		1.5		9.3			
1.	/17/2019			8.6				0.43	1.1	
1.	/18/2019									0.018 (J)
1.	21/2019					1.1				
3.	25/2019		4.4			1	8.5			
3.	/26/2019	0.037 (J)		7.4	1.2			0.61	0.95	
3.	27/2019									0.016 (J)
7.	/30/2019									
1	0/7/2019									
1	0/8/2019	0.048		8.4			6.4	1	1.1	
1	0/9/2019		5.7		1.3	0.79				0.019 (J)
4.	/6/2020						6.1			
4.	7/2020	0.061 (J)	5.5	10.5				0.24	0.96	
4.	/8/2020				0.99	2.5				0.023 (J)
9.	/28/2020						4.6			
	/29/2020	0.053								
9.	/30/2020			8.1	0.86	9.9		2.3	0.86	
	0/1/2020		5.2							0.028 (J)
	10/2021		4.9							0.022 (J)
	/11/2021				0.85		8			• •
	12/2021					15.6			0.81	
	15/2021									
	16/2021	0.08		10				3.5		
	21/2021		6.4	-			4.4	-		
3.							•			

	GWC-14	GWB-4R	GWC-16	GWC-17	GWC-20	GWA-7 (bg)	GWC-21	GWC-15	GWC-9
9/22/2021	0.052		11.5	1.4	11.3		0.095		0.015 (J)
9/23/2021								0.72	
1/31/2022						3.9			
2/1/2022			16	1.8	15.7		4.4		
2/2/2022	0.044	6.2							0.011 (J)
2/3/2022								0.71	
8/30/2022	0.046	4.95			8.14	5.72	5.08		
8/31/2022				2.51				0.719	
9/1/2022			15.9						0.0187

	GWB-5R	GWB-6R	GWA-8 (bg)	GWC-1	GWC-13	GWC-22	GWC-12	GWC-2	GWC-11
8/30/2016	14.3	4.68	23.8	29.4					
8/31/2016					2.77	127	105	0.371 (J)	18.8
9/1/2016									
10/24/2016			22.5						
10/25/2016				28.3					
10/26/2016	18.6	5.45			2.25	127	101	5.84	16.6
10/27/2016									
1/3/2017	18.1		22.1						
1/4/2017				33.4		113	94.9		17.6
1/5/2017		5.35			2.27			0.379 (J)	
1/6/2017									
4/3/2017			24.6 (J)						
4/4/2017				34.6				0.993	
4/5/2017							92.5		
4/6/2017	16.2	5.41			2.04	42.7			30.9
7/10/2017							90.3		
7/11/2017			23.5			46			17.7
7/12/2017	18.1	4.81		38	2.25				
7/13/2017								0.388 (J)	
10/2/2017			22.7						
10/3/2017	15.2	5.17		25.5				0.251 (J)	39.8
10/4/2017					2.19	115	74.6		
1/9/2018		4.73	23.2						
1/10/2018	15.5			36.5	2.28			0.177 (J)	
1/11/2018						47.6	78.1		65.6
7/9/2018			24.6 (J)						
7/10/2018	30.6	4.5		45.5				0.17 (J)	
7/11/2018					2.3	73.7	72.2		53
1/16/2019	33.3	10.1	27.7	46.5	2.3				
1/17/2019							64.7		19.8 (J)
1/18/2019						30.6			
1/21/2019								0.19 (J)	
3/25/2019			31.7						
3/26/2019	36.1	9		46.3	2.4				
3/27/2019						28.8	63.1		25.1
7/30/2019								0.43	
10/7/2019			31.6						
10/8/2019					2.3				69.2
10/9/2019	17.7	10.1		51.2		30.1	54.2	0.18	
4/6/2020			35.8						
4/7/2020	34.1	7.8		31.1		65.7	52.1		84.7
4/8/2020					2.5			0.24 (J)	
9/28/2020			25.6	70.7	2.9				
9/29/2020							42	0.18 (J)	123
9/30/2020	70.4	27.5				20.9			
10/1/2020									
3/10/2021	134	55.9		67.2		18.7	53.1		126
3/11/2021									
3/12/2021			21.4						
3/15/2021					2.4			0.22 (J)	
3/16/2021	140	110	10 E		2.6	15.2	62.4		0.7
9/21/2021	140	110	18.5		3.6	15.3	63.4		87

	GWB-5R	GWB-6R	GWA-8 (bg)	GWC-1	GWC-13	GWC-22	GWC-12	GWC-2	GWC-11
9/22/2021								0.19 (J)	
9/23/2021				69.1					
1/31/2022			17.2						
2/1/2022									
2/2/2022		293						0.16 (J)	
2/3/2022	130			58.2	2.7	14.6	63.7		65.4
8/30/2022	70.3	81.8	15				70.8		
8/31/2022					2.54	23.2			115
9/1/2022				46.9				0.236	

					,				
	GWC-9	GWA-7 (bg)	GWC-21	GWC-20	GWC-17	GWB-4R	GWC-16	GWC-14	GWC-15
8/30/2016									
8/31/2016	6.9								
9/1/2016		5.59	40.5	67.2	71.9	9.91	93.8	194	119
10/24/2016									
10/25/2016		6.43	3.91	50.1			94.1	100	106
10/26/2016					80.3	8.56			
10/27/2016	8.2								
1/3/2017									
1/4/2017			15.2	80.4			88.2		
1/5/2017					94.4			107	115
1/6/2017	7.97	8.13				8.18			
4/3/2017									131
4/4/2017			32.3	108		8.12		153	
4/5/2017					104		106		
4/6/2017	7.95	7.72							
7/10/2017									
7/11/2017				136				125	155
7/12/2017	8.37					8	149		
7/13/2017		4.57	8.92		124				
10/2/2017				105				126	137
10/3/2017			7.88				217		
10/4/2017	8.57	6.41			136	12.5			
1/9/2018		4.68	40.5					119	135
1/10/2018				60.1			161		
1/11/2018	9.78				139	12.9			
7/9/2018				75.9				123	
7/10/2018			29.8				205		129
7/11/2018	9.2	3.9			122	8.6			
1/16/2019		4.3			80.5	68.8		120	
1/17/2019			27.6				187		137
1/18/2019	8.1								
1/21/2019				60					
3/25/2019		3.9		74.8		55.6			
3/26/2019			60.1		68.8		204	84.2	124
3/27/2019	7.7								
7/30/2019									
10/7/2019									
10/8/2019		3.5	49.5				205	146	129
10/9/2019	6			80.1	56.6	46.7			
4/6/2020		3.1							
4/7/2020			12.5			62.1	225	135	129
4/8/2020	5.3			175	53.1				
9/28/2020		3.3							
9/29/2020								30.8	
9/30/2020			98.4	292	53.5		177		109
10/1/2020	5.5					48.4			
3/10/2021	5.3					263			
3/11/2021		2.4			67				
3/12/2021				241					101
3/15/2021									
3/16/2021			104				188	34.4	
9/21/2021		2.7				67.5			

	GWC-9	GWA-7 (bg)	GWC-21	GWC-20	GWC-17	GWB-4R	GWC-16	GWC-14	GWC-15
9/22/2021	5		5.8	266	94.6		267	185	
9/23/2021									146
1/31/2022		3.4							
2/1/2022			125	259	90.8		267		
2/2/2022	4.6					98.2		245	
2/3/2022									144
8/30/2022		3.56	131	193		79.3		144	
8/31/2022					102				135
9/1/2022	5						255		

	GWB-5R	GWB-6R	GWA-8 (bg)	GWC-1	GWC-13	GWC-22	GWC-12	GWC-2	GWC-11
8/30/2016	31	60	15	5.5					
8/31/2016					4.3	320	210	7.8	3.5
9/1/2016									
10/24/2016			13						
10/25/2016				5.1					
10/26/2016	24	67			4.9	450	200	12	2.5
10/27/2016									
1/3/2017	29		13						
1/4/2017				6.9		330	160		3.8
1/5/2017		70			4.1			7.4	
1/6/2017									
4/3/2017			14						
4/4/2017				6.5				8.7	
4/5/2017							140		
4/6/2017	27	76			3.7	50			7.1
7/10/2017							88		
7/11/2017			13			70			3.1
7/12/2017	31	64		6.5	2.6				
7/13/2017								8.3	
10/2/2017			15						
10/3/2017	27	73		4.5				9	46
10/4/2017					3	360	100		
1/9/2018		61	13						
1/10/2018	59			6.9	3.4			8.2	
1/11/2018						74	78		100
7/9/2018			15.4						
7/10/2018	172	60.2		6.2				7.3	
7/11/2018					3.2	164	66.9		53.7
1/16/2019	49.7	54.1	16	6.6	3.8				
1/17/2019							52		6.6
1/18/2019						11			
1/21/2019								6.9	
3/25/2019			17.7						
3/26/2019	47.9	51.8		7	3.2				
3/27/2019						11.5	45.6		11.9
7/30/2019								7.1	
10/7/2019			18						
10/8/2019					4				89
10/9/2019	239	49.7		7.2		25.3	44.1	7	
4/6/2020			13.5						
4/7/2020	44.3	56.4	10.0	7.7		146	32.5		103
4/8/2020		00.1			4.5		52.5	5.2	
9/28/2020			13.7	13.8	4.3			0.2	
9/29/2020			10.7	10.0	4.0		24.3	5.4	143
9/30/2020	24.1	53.9				8.5	24.5	0.4	140
10/1/2020		00.0				0.0			
3/10/2021	25.7	42.4		8.5		48.2	48.7		188
3/10/2021	_0.,	.6.7		5.0		.0.2			
3/11/2021			14.1						
3/15/2021					7.6			6.4	
3/16/2021					7.0			0.4	
9/21/2021	38.8	53.8	12.2		7.9	9.4	63.8		103
	-2.0	13.0					-5.0		

	GWB-5R	GWB-6R	GWA-8 (bg)	GWC-1	GWC-13	GWC-22	GWC-12	GWC-2	GWC-11
9/22/2021								7.4	
9/23/2021				8.8					
1/31/2022			11.2						
2/1/2022									
2/2/2022		42.3						6.9	
2/3/2022	38.5			8	8.8	10.8	57		83.4
8/30/2022	76.8	52	9.93				58.4		
8/31/2022					6.69	51.2			110
9/1/2022				9.17				6.59	

	GWC-9	GWA-7 (bg)	GWC-21	GWC-20	GWC-17	GWB-4R	GWC-16	GWC-14	GWC-15
8/30/2016									
8/31/2016	17								
9/1/2016		190	5.9	16	610	160	43	60	10
10/24/2016									
10/25/2016		175 (D)	4.4	8.1			34	36	6.5
10/26/2016					570	110			
10/27/2016	17								
1/3/2017									
1/4/2017			7.7	13			29		
1/5/2017					710			37	10
1/6/2017	16	180				67			
4/3/2017									7.3
4/4/2017			8	23		80		47	
4/5/2017					860		36		
4/6/2017	17	200							
7/10/2017									
7/11/2017				31				34	5.7
7/12/2017	18					120	44		
7/13/2017		200	5.4		860				
10/2/2017				30				34	4.4
10/3/2017			4.4				58		
10/4/2017	18	260			1000	130			
1/9/2018		210	4.4					24	5.7
1/10/2018				9.7			36		
1/11/2018	16				940	60			
7/9/2018				10.8				25.9	
7/10/2018			6.3				57		3.1
7/11/2018	16.2	177			864	75.9			
1/16/2019		165			469	20.2		29.2	
1/17/2019	47.5		5.4				48.9		3.2
1/18/2019	17.5			F.4					
1/21/2019 3/25/2019		147		5.1		10.7			
		147	11.0	9.4	420	19.7	E 1	01.1	2
3/26/2019 3/27/2019	18.9		11.9		439		5.1	21.1	3
7/30/2019	10.5								
10/7/2019									
10/8/2019		125	7.8				46.4	40.2	2.9
10/9/2019	19	.20	7.0	5.4	330	32.1			2.0
4/6/2020		30.2		0		52			
4/7/2020		55.2	4.7			14.5	49.3	41.6	3.4
4/8/2020	16.9			20.2	277				•
9/28/2020		113							
9/29/2020								10.6	
9/30/2020			23.7	34.9	257		39.6		1.7
10/1/2020	16.8					15.7			
3/10/2021	18.3					16			
3/11/2021		96.7			334				
3/12/2021				31.9					2.3
3/15/2021									
3/16/2021			25.3				44.9	15.8	
9/21/2021		92.2				13.9			

	GWC-9	GWA-7 (bg)	GWC-21	GWC-20	GWC-17	GWB-4R	GWC-16	GWC-14	GWC-15
9/22/2021	19.3		6	38.9	517		55.8	28	
9/23/2021									7.1
1/31/2022		83.4							
2/1/2022			29.3	33.4	549		61.5		
2/2/2022	17.5					14.5		29.6	
2/3/2022									5.1
8/30/2022		74.4	29.4	24.4		65		26.7	
8/31/2022					694				4.83
9/1/2022	17.6						57.2		

		GWB-5R	GWB-6R	GWC-1	GWA-8 (bg)	GWC-2	GWC-22	GWC-11	GWC-9	GWC-12
8/3	0/2016	0.04 (J)	0.09 (J)	0.22 (J)	0.1 (J)					
8/3	1/2016					0.07 (J)	0.04 (J)	<0.1	0.55	0.7
9/1	/2016									
10/	/24/2016				0.18 (J)					
10/	/25/2016			<0.1						
10/	/26/2016	0.05 (J)	0.24 (J)			0.62	0.12 (J)	<0.1		0.91
10/	27/2016								0.26 (J)	
1/3	/2017	0.08 (J)			0.18 (J)					
1/4	/2017			0.18 (J)			0.06 (J)	<0.1		0.51
1/5	/2017		0.11 (J)			0.17 (J)				
1/6	/2017								0.25 (J)	
4/3	3/2017				0.12 (J)					
4/4	/2017			<0.1		0.08 (J)				
4/5	/2017									0.71
4/6	5/2017	0.006 (J)	0.3				<0.1	<0.1	0.16 (J)	
7/1	0/2017									0.88
7/1	1/2017				0.39		0.03 (J)	<0.1		
7/1	2/2017	0.05 (J)	0.15 (J)	0.04 (J)					0.2 (J)	
7/1	3/2017					0.06 (J)				
10/	/2/2017				0.12 (J)					
10/	/3/2017	0.11 (J)	0.11 (J)	<0.1		0.06 (J)		<0.1		
10/	4/2017						0.12 (J)		0.22 (J)	0.37
1/9	/2018		<0.1		0.21 (J)					
1/1	0/2018	<0.1		<0.1		<0.1				
1/1	1/2018						<0.1	<0.1	0.98	1.4
7/9	/2018				0.04 (J)					
	0/2018	0.2 (J)	<0.1	<0.1		<0.1				
7/1	1/2018						<0.1	<0.1	0.14 (J)	0.62
1/1	6/2019	<0.1	0.053 (J)	<0.1	<0.1					
1/1	7/2019							<0.1		1.2
1/1	8/2019						<0.1		0.24 (J)	
1/2	1/2019					<0.1				
3/2	5/2019				0.082 (J)					
3/2	6/2019	<0.1	0.046 (J)	0.051 (J)						
3/2	7/2019						<0.1	<0.1	0.13 (J)	0.036 (J)
7/3	0/2019					0.083 (J)				
8/2	6/2019				0.13					
8/2	7/2019		0.13 (J)	<0.1		<0.1	0.1	<0.1		0.3
8/2	8/2019	0.097 (J)							0.088 (J)	
10/	7/2019				<0.1					
10/	/8/2019							<0.1		
10/	9/2019	<0.1	<0.1	<0.1		<0.1	<0.1		0.068 (J)	<0.1
4/6	/2020				0.089 (J)					
4/7	//2020	<0.1	<0.1	<0.1			<0.1	<0.1		0.27 (J)
4/8	3/2020					<0.1			0.058 (J)	
8/1	7/2020				0.079 (J)					0.19
8/1	8/2020					<0.1	<0.1	<0.1		
8/1	9/2020	<0.1	<0.1	<0.1					0.092 (J)	
9/2	8/2020			<0.1	<0.1					
9/2	9/2020					<0.1		<0.1		0.16
9/3	0/2020	<0.1	<0.1				<0.1			
10/	/1/2020								<0.1	

	GWB-5R	GWB-6R	GWC-1	GWA-8 (bg)	GWC-2	GWC-22	GWC-11	GWC-9	GWC-12
3/10/2021	<0.1	<0.1	<0.1			<0.1	<0.1	0.066 (J)	0.14
3/11/2021									
3/12/2021				0.087 (J)					
3/15/2021					<0.1				
3/16/2021									
9/21/2021	<0.1	<0.1		0.068 (J)		<0.1	<0.1		0.31
9/22/2021					<0.1			0.13	
9/23/2021			<0.1						
1/31/2022				0.09 (J)					
2/1/2022									
2/2/2022		<0.1			<0.1			<0.1	
2/3/2022	0.081 (J)		<0.1			<0.1	<0.1		0.36
8/30/2022	0.0428 (J)	<0.1		0.0759 (J)					0.273
8/31/2022						<0.1	<0.1		
9/1/2022			<0.1		<0.1			0.0783 (J)	

	GWC-13	GWC-16	GWC-21	GWC-15	GWB-4R	GWC-14	GWC-17	GWA-7 (bg)	GWC-20
8/30/2016									
8/31/2016	<0.1								
9/1/2016		0.55	<0.1	<0.1	<0.1	0.25 (J)	0.68	<0.1	<0.1
10/24/2016									
10/25/2016		0.36	<0.1	0.5		0.43		0.07 (J)	<0.1
10/26/2016	0.55				0.05 (J)		0.68		
10/27/2016									
1/3/2017									
1/4/2017		0.1 (J)	<0.1						0.04 (J)
1/5/2017	0.09 (J)			0.22 (J)		0.21 (J)	0.73		
1/6/2017					0.08 (J)			0.2 (J)	
4/3/2017				<0.1					
4/4/2017			<0.1		<0.1	0.45			0.02 (J)
4/5/2017		0.2 (J)					1.6		
4/6/2017	<0.1							0.05 (J)	
7/10/2017									
7/11/2017				0.06 (J)		0.41			0.14 (J)
7/12/2017	<0.1	0.04 (J)			0.38				
7/13/2017			<0.1				1.7	0.41	
10/2/2017				<0.1		<0.1			<0.1
10/3/2017		0.86	<0.1						
10/4/2017	<0.1				<0.1		1.8	0.04 (J)	
1/9/2018			<0.1	<0.1		<0.1		0.46	
1/10/2018	<0.1	<0.1							<0.1
1/11/2018					<0.1		1.5		
7/9/2018				0.45 (1)		<0.1			<0.1
7/10/2018		<0.1	<0.1	0.15 (J)	0.4		1.0	0.4	
7/11/2018	<0.1				<0.1	-0.1	1.8	<0.1	
1/16/2019	<0.1	-0.1	-0.1	-0.1	1.2	<0.1	1.4	0.49	
1/17/2019 1/18/2019		<0.1	<0.1	<0.1					
1/21/2019									<0.1
3/25/2019					0.064 (J)			0.21 (J)	0.043 (J)
3/26/2019	0.052 (J)	0.11 (J)	0.071 (J)	0.13 (J)	0.004 (0)	0.13 (J)	0.89	0.21 (0)	0.040 (0)
3/27/2019	0.032 (0)	0.11(0)	0.071 (0)	0.13 (0)		0.13 (3)	0.03		
7/30/2019									
8/26/2019								<0.1	
8/27/2019	<0.1			<0.1	0.031 (J)	<0.1			
8/28/2019		<0.1	<0.1		(1)		0.61		<0.1
10/7/2019									
10/8/2019	<0.1	<0.1	<0.1	<0.1		<0.1		<0.1	
10/9/2019					<0.1		<0.1		<0.1
4/6/2020								0.13 (J)	
4/7/2020		<0.1	<0.1	<0.1	<0.1	<0.1			
4/8/2020	<0.1						0.55		<0.1
8/17/2020	<0.1								
8/18/2020		<0.1	<0.1	<0.1		<0.1	0.51		<0.1
8/19/2020					0.17			0.21	
9/28/2020	<0.1							0.069 (J)	
9/29/2020						<0.1			
9/30/2020		<0.1	<0.1	<0.1			0.15		<0.1
10/1/2020					<0.1				

	GWC-13	GWC-16	GWC-21	GWC-15	GWB-4R	GWC-14	GWC-17	GWA-7 (bg)	GWC-20
3/10/2021					<0.1				
3/11/2021							0.42	<0.1	
3/12/2021				<0.1					<0.1
3/15/2021	<0.1								
3/16/2021		<0.1	<0.1			<0.1			
9/21/2021	<0.1				<0.1			0.077 (J)	
9/22/2021		<0.1	<0.1			<0.1	0.79		<0.1
9/23/2021				<0.1					
1/31/2022								<0.1	
2/1/2022		<0.1	<0.1				0.68		<0.1
2/2/2022					<0.1	<0.1			
2/3/2022	<0.1			<0.1					
8/30/2022			<0.1		<0.1	<0.1		0.0391 (J)	<0.1
8/31/2022	0.051 (J)			<0.1			0.442		
9/1/2022		0.0374 (J)							

7/16/2013 10/11/2014	GWC-14 4.62 4.58	GWB-6R 5.25	GWC-1 5.38	GWC-11 5.2	GWC-12 4.17	GWC-13 4.95	GWC-15 5.96	GWB-5R 5.95	GWC-16 4.92 5.17
10/11/2014	4.50								3.17
10/24/2010	4.79		5.51				6.46		5.58
10/25/2016	4.79	5.21	5.51	5.08	4.04	4.95	0.40	5.27	5.56
10/20/2010		J.Z I		3.00	4.04	4.93		5.27	
1/3/2017								5.09	
1/4/2017			5.46	E 06	4.01			5.09	5.51
1/5/2017	4 72	5.2	5.40	5.06	4.01	4.97	6.25		5.51
1/6/2017	4.73	5.2				4.97	0.23		
4/3/2017							6.25		
4/4/2017	4.68		5.43				0.23		
4/5/2017	4.00		3.43		4	4.81			5.51
4/6/2017		5.17		4.97	•	4.01		5.22	0.01
7/10/2017		3.17		4.57	3.89			5.22	
7/10/2017	4.72			5.26	3.09		6.5		
7/11/2017	4.72	5.24	5.46	5.20		4.83	0.5	5.29	5.84
7/13/2017		0.24	3.40			4.00		3.23	3.04
10/2/2017	5.13						6.83		
10/3/2017	5.15	5.36	5.65	5.07			0.00	5.08	5.55
10/4/2017		0.00	0.00	0.07	4.06	4.71		0.00	0.00
1/9/2018	5.59	5.4			4.00	4.71	6.57		
1/10/2018	0.00	0.4	5.67			5.17	0.07	5.83	5.99
1/11/2018			0.07	5.18	3.96	· · · ·		0.00	0.00
7/9/2018	5.11								
7/10/2018		5.31	5.71				6.42	6.42	5.5
7/11/2018				4.82	3.95	4.49			
1/16/2019	6.82	5.99	5.59			6.45 (O)		6.66	
1/17/2019				4.91	3.89		8.44 (O)		7.13
1/18/2019									
1/21/2019									
3/25/2019									
3/26/2019	5.74	5.94	5.77			4.96	6.65	5.1	5.57
3/27/2019				5.18	4.11				
7/30/2019									
8/26/2019									
8/27/2019	5.58	5.67	5.84	5.17	4.02	4.9	6.57		
8/28/2019								5.95	5.57
10/7/2019									
10/8/2019	5.68			4.93		4.81	6.65		5.54
10/9/2019		5.66	5.82		4.25			6.11	
4/6/2020									
4/7/2020	6.2	5.86	5.3	5.05	4.1		6.83	5.45	5.94
4/8/2020						4.81			
8/17/2020					3.94	4.65			
8/18/2020	5.56			4.41			6.39		5.52
8/19/2020		5.21	5.73			4.70		5.14 (D)	
9/28/2020	F 60		5.79	4 77	2.05	4.76			
9/29/2020	5.69	E 20		4.77	3.95		6 71	4.00	E 47
9/30/2020		5.39					6.71	4.99	5.47
10/1/2020 3/10/2021		5.69	5.42	4.97	4.08			4.73	
5, 10, 2021		0.00	U. T£	7.07	7.00			7.70	

	GWC-14	GWB-6R	GWC-1	GWC-11	GWC-12	GWC-13	GWC-15	GWB-5R	GWC-16
3/11/2021									
3/12/2021							6.21		
3/15/2021						4.74			
3/16/2021	5.53								5.67
9/21/2021		5.4		4.92	4.05	4.83		4.68	
9/22/2021	5.76								5.57
9/23/2021			6.06				6.48		
1/31/2022									
2/1/2022									5.57
2/2/2022	5.98	5.75							
2/3/2022			5.89	4.98	4.04	4.97	6.61	4.48	
8/30/2022	5.86	5.55			3.92			5.22	
8/31/2022				4.85		4.76	6.57		
9/1/2022			5.8						5.37

						, ,				
		GWB-4R	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9	GWA-8 (bg)	GWA-7 (bg)
	7/16/2013	6.22	4.55	4.52	6.1	5.71	4.91	5.05		
	10/11/2014								4.42	
	10/24/2016								4.36	
	10/25/2016				6.06	5.41				6.17
	10/26/2016	6.06	4.45	4.48			4.6			
	10/27/2016							4.65		
•	1/3/2017								4.28	
	1/4/2017				6.05	5.6	4.63			
	1/5/2017		4.45	4.85						
•	1/6/2017	6.02						4.56		6.16
2	1/3/2017								4.29	
4	1/4/2017	6.08		4.58	6.03	5.94				
4	1/5/2017		4.33							
4	1/6/2017						4.79	4.5		6.26
7	7/10/2017									
7	7/11/2017				5.96		4.73		4.35	
7	7/12/2017	5.93						4.56		
7	7/13/2017		4.11	4.74		5.6				5.99
•	10/2/2017				5.88				4.32	
•	10/3/2017			4.57		5.18				
	10/4/2017	5.77	4.09				4.74	4.72		6.16
•	1/9/2018					6.14			4.44	6.43
•	1/10/2018			5.31	6.21					
	1/11/2018	5.98	4.4				5.22	4.34		
7	7/9/2018				6.24				4.4	
7	7/10/2018			4.58		5.7				
7	7/11/2018	6.01	4.07				4.68	4.68		6.1
•	1/16/2019	5.83	4.05						6.16 (O)	6.05
	1/17/2019					7.39				
-	1/18/2019						6.98 (O)	6.87 (O)		
-	1/21/2019			5.05	7.73 (O)					
3	3/25/2019	5.74			6.28				4.4	6.06
3	3/26/2019		4.62			6.08				
3	3/27/2019						4.77	4.38		
7	7/30/2019			4.74						
8	3/26/2019								4.26	5.91
8	3/27/2019	5.7		4.77			4.89			
8	3/28/2019		4.62		6.34	6.05		4.68		
	10/7/2019								4.24	
-	10/8/2019					6.09				5.74
	10/9/2019	5.79	4.66	4.79	6.5		4.68	4.62		
4	1/6/2020								4.52	6.02
4	1/7/2020	5.74				6	4.8			
4	1/8/2020		4.71	4.66	6.31			4.73		
8	3/17/2020								4.23	
8	3/18/2020		4.31	4.6	5.89	5.82	4.52			
8	3/19/2020	5.7						4.58		5.81 (D)
9	9/28/2020								4.41	5.86
9	9/29/2020			4.6						
9	9/30/2020		4.08		6.04	5.82	4.63			
	10/1/2020	5.75						4.42		
3	3/10/2021	5.23					4.82	4.55		

	GWB-4R	GWC-17	GWC-2	GWC-20	GWC-21	GWC-22	GWC-9	GWA-8 (bg)	GWA-7 (bg)
3/11/2021		5.2							5.85
3/12/2021				5.86				4.54	
3/15/2021			4.56						
3/16/2021					5.74				
9/21/2021	5.78					4.72		4.44	6.03
9/22/2021		4.63	4.71	6	5.39		4.7		
9/23/2021									
1/31/2022								4.39	5.94
2/1/2022		4.53		5.9	5.76				
2/2/2022	5.71		4.79				4.66		
2/3/2022						4.63			
8/30/2022	5.67			6.01	5.76			4.58	5.98
8/31/2022		4.33				4.68			
9/1/2022			4.73				4.6		

	GWB-5R	GWB-6R	GWA-8 (bg)	GWC-1	GWC-13	GWC-22	GWC-12	GWC-2	GWC-11
8/30/2016	100	120	140	87					
8/31/2016					43	700	1100	21	64
9/1/2016									
10/24/2016			160						
10/25/2016				83					
10/26/2016	130	120			29	850	900	100	56
10/27/2016									
1/3/2017	120		140						
1/4/2017				99		680	880		65
1/5/2017		130			32			22	
1/6/2017									
4/3/2017			140						
4/4/2017				110				29	
4/5/2017							990		
4/6/2017	140	150			49	220			110
7/10/2017							480		
7/11/2017			130			210			49
7/12/2017	140	140		100	16				
7/13/2017								20	
10/2/2017			150						
10/3/2017	130	140		63				20	140
10/4/2017					33	730	760		
1/9/2018		140	120						
1/10/2018	110			86	22			9.5	
1/11/2018						180	780		270
7/9/2018			123						
7/10/2018	48.1	128		77.7				8.5	
7/11/2018					17.8	381	598		211
1/16/2019	184	402	129	71.2	20.2				
1/17/2019							454		50.3
1/18/2019						107			
1/21/2019								10.2	
3/25/2019			152						
3/26/2019	222	319		73.8	33.6				
3/27/2019						103	579		76.8
7/30/2019								12.3	
10/7/2019			156						
10/8/2019					22				310
10/9/2019	90.8	255		76.3		80.2	392	10.1	
4/6/2020			123						
4/7/2020	180	180		83		333	297		446
4/8/2020					30.7			12.9	
9/28/2020			93.6	71.6	25.6				
9/29/2020							237	8.6	516
9/30/2020	339	339				65.5			
10/1/2020									
3/10/2021	572	1160		61.2		101	282		687
3/11/2021									
3/12/2021			103						
3/15/2021					30.6			10	
3/16/2021									
9/21/2021	829	645	96.5		36.6	52.4	315		433

	GWB-5R	GWB-6R	GWA-8 (bg)	GWC-1	GWC-13	GWC-22	GWC-12	GWC-2	GWC-11
9/22/2021								10.3	
9/23/2021				37.3					
1/31/2022			89.7						
2/1/2022									
2/2/2022		1460						9	
2/3/2022	797			49.2	32.1	46.2	333		347
8/30/2022	403	978	77.4				415		
8/31/2022					29	45.3			653
9/1/2022				44				10.3	

	GWC-9	GWA-7 (bg)	GWC-21	GWC-20	GWC-17	GWB-4R	GWC-16	GWC-14	GWC-15
8/30/2016									
8/31/2016	84								
9/1/2016		73	36	180	310	210	430	730	120
10/24/2016									
10/25/2016		26	16	79			360	420	100
10/26/2016					280	230			
10/27/2016	76								
1/3/2017									
1/4/2017			45	170			360		
1/5/2017					310			430	140
1/6/2017	66	23				220			
4/3/2017									150
4/4/2017			46	300		230		600	
4/5/2017					460		440		
4/6/2017	79	25							
7/10/2017									
7/11/2017				400				400	110
7/12/2017	75					210	490		
7/13/2017		65	33		490				
10/2/2017				390				470	56
10/3/2017			34				780		
10/4/2017	78	13			1100	290			
1/9/2018		45	29					440	84
1/10/2018				99			470		
1/11/2018	110				810	210			
7/9/2018				99.2				369	
7/10/2018			33.2				787		43
7/11/2018	87.4	37.7			902	177			
1/16/2019		24.5			422	244		291	
1/17/2019			24.1				780		45.2
1/18/2019	56.9								
1/21/2019				35.5					
3/25/2019		14.7		95.6		245			
3/26/2019			83.9		439		87.9	192	54
3/27/2019	76.2								
7/30/2019									
10/7/2019									
10/8/2019		32.8	85.6				872	428	45.8
10/9/2019	41.1			58.5	346	38.5			
4/6/2020		20.3							
4/7/2020			33.2			221	844	456	26.9
4/8/2020	34.2			428	239				
9/28/2020		20							
9/29/2020								93.5	
9/30/2020			306	956	193		736		18.5
10/1/2020	35					178			
3/10/2021	38.7	10			244	160			
3/11/2021		12		933	244				21.1
3/12/2021				333					21.1
3/15/2021 3/16/2021			343				821	92	
3/16/2021 9/21/2021		11.1	J4J			232	UZ I	JZ	
5/2 1/202 I		1				202			

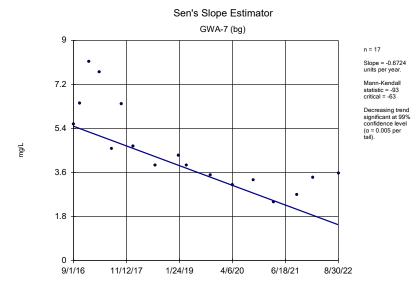
	GWC-9	GWA-7 (bg)	GWC-21	GWC-20	GWC-17	GWB-4R	GWC-16	GWC-14	GWC-15
9/22/2021	42.7		14.6	905	394		1040	444	
9/23/2021									124
1/31/2022		15							
2/1/2022			374	862	416		1010		
2/2/2022	31.5					338		589	
2/3/2022									102
8/30/2022		10.6	451	606		379		410	
8/31/2022					721				88.5
9/1/2022	28.7						1140		

	GWA-8 (bg)	GWB-5R	GWB-6R	GWC-1	GWC-9	GWC-22	GWC-2	GWC-11	GWC-12
8/30/2016	234	224	365	225					
8/31/2016					173	1570	39	119	1560
9/1/2016									
10/24/2016	216								
10/25/2016				230					
10/26/2016		297	373			1840	135	108	1520
10/27/2016					221				
1/3/2017	333	366							
1/4/2017				349		1560		182	1430
1/5/2017			543				99		
1/6/2017					259				
4/3/2017	288								
4/4/2017				356			54		
4/5/2017									1200
4/6/2017		279	434		169	368		248	
7/10/2017									1100
7/11/2017	188					383		88	
7/12/2017		308	454	357	163				
7/13/2017							50		
10/2/2017	210								
10/3/2017		288	389	192			18 (J)	248	
10/4/2017					168	1500			986
1/9/2018	118		415						
1/10/2018		493		277			<10		
1/11/2018					190	438		681	1020
7/9/2018	235								
7/10/2018		1730 (O)	453	349			49		
7/11/2018					165	876		440	888
1/16/2019	219	382	1320	341					
1/17/2019								118	765
1/18/2019					118	154			
1/21/2019							39		
3/25/2019	240								
3/26/2019		1040	1250	317					
3/27/2019					104	158		138	673
7/30/2019							70		
10/7/2019	275								
10/8/2019								613	
10/9/2019		2010	903	338	128	211	46		647
4/6/2020	214								
4/7/2020		483	775	195		819		780	464
4/8/2020					80		38		
9/28/2020	175			373					
9/29/2020							33	1100	440
9/30/2020		652	816			113			
10/1/2020					111				
3/10/2021		1040	2120	329	89	210		1240	566
3/11/2021									
3/12/2021	163								
3/15/2021							11		
3/16/2021									
9/21/2021	145	1240	985			87		842	558

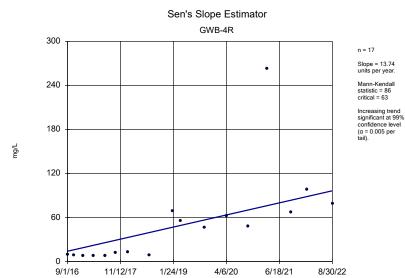
	GWA-8 (bg)	GWB-5R	GWB-6R	GWC-1	GWC-9	GWC-22	GWC-2	GWC-11	GWC-12
9/22/2021					94		33		
9/23/2021				360					
1/31/2022	153								
2/1/2022									
2/2/2022			2440		96		43		
2/3/2022		1240		315		89		538	566
8/30/2022	154	886	1810						713
8/31/2022						163		1240	
9/1/2022				228	85		9 (J)		

	GWC-13	GWC-15	GWC-16	GWC-17	GWC-20	GWC-21	GWB-4R	GWA-7 (bg)	GWC-14
8/30/2016									
8/31/2016	77								
9/1/2016		539	878	1270	470	184	1080	3660	1170
10/24/2016									
10/25/2016		449	585		289	<10		3560	633
10/26/2016	<10			1320			1050		
10/27/2016									
1/3/2017									
1/4/2017			783		639	242			
1/5/2017	146	565		1770					781
1/6/2017							1060	3490	
4/3/2017		632							
4/4/2017					660	187	994		916
4/5/2017			722	1600					
4/6/2017	23 (J)							3170	
7/10/2017									
7/11/2017		569			836				675
7/12/2017	39		962				1070		
7/13/2017				1940		86		2280	
10/2/2017		559			698				689
10/3/2017			1240			66			
10/4/2017	38			2370			1100	3350	
1/9/2018		520				167		2640	653
1/10/2018	<10		935		322				
1/11/2018				2350			838		
7/9/2018					461				659
7/10/2018		524	1040			180			
7/11/2018	63			2260			799	2200	050
1/16/2019	44	540 (D)	1000	1540		170	530	2100	656
1/17/2019		518 (D)	1320			178			
1/18/2019 1/21/2019					307				
3/25/2019					449		479	2100	
3/26/2019	72	541	1380	1220	449	292	475	2100	496
3/27/2019	72	341	1300	1220		292			430
7/30/2019									
10/7/2019									
10/8/2019	51	526	1500			278		1840	841
10/9/2019				1100	434		502		
4/6/2020								1670	
4/7/2020		428	1500			106	482		843
4/8/2020	65			881	986				
9/28/2020	60							1450	
9/29/2020									187
9/30/2020		434	1140	752	1860	634			
10/1/2020							424		
3/10/2021							434		
3/11/2021				705				1220	
3/12/2021		353			1730				
3/15/2021	<10								
3/16/2021			980			454			137
9/21/2021	83						476	1210	

	GWC-13	GWC-15	GWC-16	GWC-17	GWC-20	GWC-21	GWB-4R	GWA-7 (bg)	GWC-14
9/22/2021			1680	1530	1430	51			864
9/23/2021		556							
1/31/2022								1260	
2/1/2022			1990	1580	1580	783			
2/2/2022							654		1130
2/3/2022	72	516							
8/30/2022					1210	807	882	1340	720
8/31/2022	55	530		2050					
9/1/2022			1720						

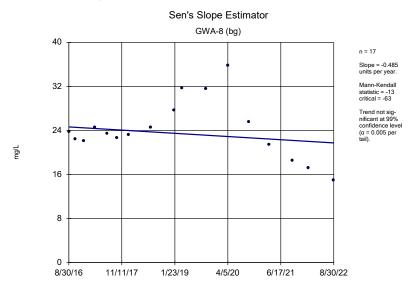

FIGURE G.

Appendix III Trend Tests - Prediction Limit Exceedances - Significant Results

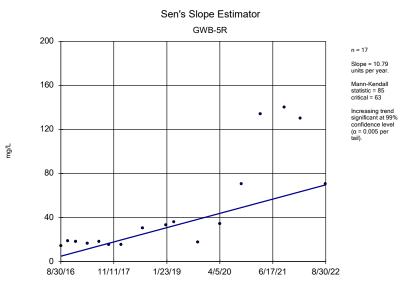

	Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill Prin						Printed 9/28/2022, 11:11 AM					
Constituent	<u>Well</u>	Sic	ope <u>Calc.</u>	Critical	Sig.	<u>N</u>	%NDs	Normality	Xform	<u>Alpha</u>	Method	
Calcium (mg/L)	GWA-7 (bg)	-0.	.6724 -93	-63	Yes	17	0	n/a	n/a	0.01	NP	
Calcium (mg/L)	GWB-4R	13.	.74 86	63	Yes	17	0	n/a	n/a	0.01	NP	
Calcium (mg/L)	GWB-5R	10	.79 85	63	Yes	17	0	n/a	n/a	0.01	NP	
Calcium (mg/L)	GWB-6R	5.7	768 83	63	Yes	17	0	n/a	n/a	0.01	NP	
Calcium (mg/L)	GWC-1	6.6	631 84	63	Yes	17	0	n/a	n/a	0.01	NP	
Calcium (mg/L)	GWC-11	16	.98 90	63	Yes	17	0	n/a	n/a	0.01	NP	
Calcium (mg/L)	GWC-12	-10	0.48 -92	-63	Yes	17	0	n/a	n/a	0.01	NP	
Calcium (mg/L)	GWC-16	26	5.5 90	63	Yes	17	0	n/a	n/a	0.01	NP	
Calcium (mg/L)	GWC-20	31.	.64 64	63	Yes	17	0	n/a	n/a	0.01	NP	
Chloride (mg/L)	GWA-7 (bg)	-22	2.35 -89	-63	Yes	17	0	n/a	n/a	0.01	NP	
Fluoride (mg/L)	GWA-8 (bg)	-0.	.01163 -79	-74	Yes	19	15.79	n/a	n/a	0.01	NP	
pH (SU)	GWA-7 (bg)	-0.	.05 -76	-68	Yes	18	0	n/a	n/a	0.01	NP	
Sulfate (mg/L)	GWA-7 (bg)	-3.	.991 -78	-63	Yes	17	0	n/a	n/a	0.01	NP	
Sulfate (mg/L)	GWA-8 (bg)	-10	0.42 -76	-63	Yes	17	0	n/a	n/a	0.01	NP	
Sulfate (mg/L)	GWB-5R	57.	7.5 74	63	Yes	17	0	n/a	n/a	0.01	NP	
Sulfate (mg/L)	GWB-6R	98	.19 96	63	Yes	17	0	n/a	n/a	0.01	NP	
Sulfate (mg/L)	GWC-11	91	.12 86	63	Yes	17	0	n/a	n/a	0.01	NP	
Sulfate (mg/L)	GWC-12	-13	30.7 -92	-63	Yes	17	0	n/a	n/a	0.01	NP	
Sulfate (mg/L)	GWC-16	11	4.5 88	63	Yes	17	0	n/a	n/a	0.01	NP	

Appendix III Trend Tests - Prediction Limit Exceedances - All Results

	Grumman Road Landfill Clier	nt: Southern Company	y Data: Grur	mman Ro	ad Landfill	Prin	ted 9/28	8/2022,	11:11 AM			
Constituent	Well	<u>s</u>	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Calcium (mg/L)	GWA-7 (bg)	-0	0.6724	-93	-63	Yes	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWA-8 (bg)	-0	0.485	-13	-63	No	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWB-4R	1:	13.74	86	63	Yes	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWB-5R	10	0.79	85	63	Yes	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWB-6R	5.	5.768	83	63	Yes	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-1	6.	6.631	84	63	Yes	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-11	10	6.98	90	63	Yes	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-12	-1	10.48	-92	-63	Yes	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-14	3.	3.68	8	63	No	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-15	1.	.953	15	63	No	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-16	2	26.5	90	63	Yes	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-17	-3	3.105	-18	-63	No	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-20	3	31.64	64	63	Yes	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	GWC-21	11	6.62	57	63	No	17	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GWA-7 (bg)	-2	22.35	-89	-63	Yes	17	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GWA-8 (bg)	-0	0.1945	-17	-63	No	17	0	n/a	n/a	0.01	NP
Chloride (mg/L)	GWC-17	-6	61.65	-37	-63	No	17	0	n/a	n/a	0.01	NP
Fluoride (mg/L)	GWA-7 (bg)	-0	0.004548	-23	-74	No	19	31.58	n/a	n/a	0.01	NP
Fluoride (mg/L)	GWA-8 (bg)	-0	0.01163	-79	-74	Yes	19	15.79	n/a	n/a	0.01	NP
Fluoride (mg/L)	GWC-17	-0	0.1299	-65	-74	No	19	5.263	n/a	n/a	0.01	NP
pH (SU)	GWA-7 (bg)	-0	0.05	-76	-68	Yes	18	0	n/a	n/a	0.01	NP
pH (SU)	GWA-8 (bg)	0.	0.02069	35	68	No	18	0	n/a	n/a	0.01	NP
pH (SU)	GWC-12	-0	0.007247	-14	-74	No	19	0	n/a	n/a	0.01	NP
pH (SU)	GWC-15	0.	0.04875	39	68	No	18	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-7 (bg)	-3	3.991	-78	-63	Yes	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWA-8 (bg)	-1	10.42	-76	-63	Yes	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWB-4R	4.	1.182	18	63	No	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWB-5R	5	57.5	74	63	Yes	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWB-6R	98	8.19	96	63	Yes	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWC-11	9	1.12	86	63	Yes	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWC-12	-1	130.7	-92	-63	Yes	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWC-14	-3	30.55	-34	-63	No	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWC-16	1	14.5	88	63	Yes	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWC-17	-8	8.669	-7	-63	No	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWC-20	1	12.8	42	63	No	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	GWC-21	2	25.95	49	63	No	17	0	n/a	n/a	0.01	NP

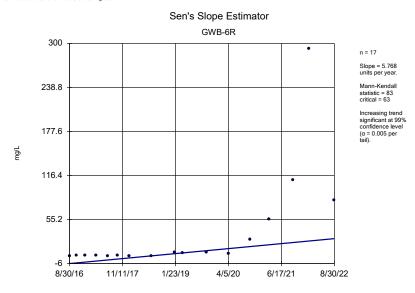


Constituent: Calcium Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

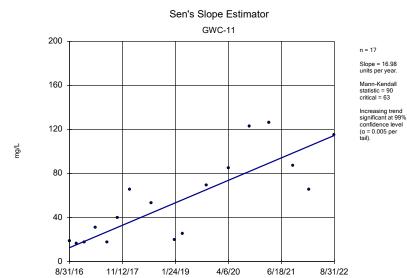


Constituent: Calcium Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

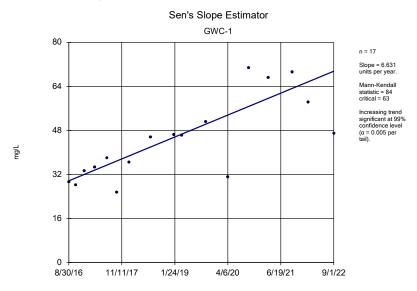


Constituent: Calcium Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill



Constituent: Calcium Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests

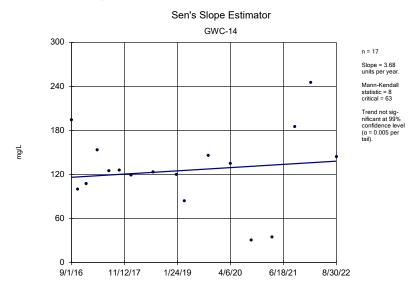
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill



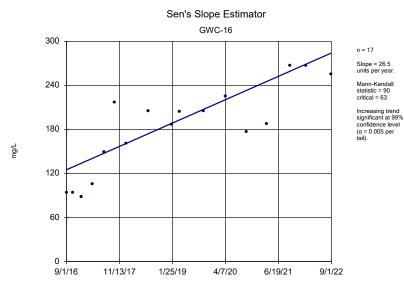
Constituent: Calcium Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Constituent: Calcium Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

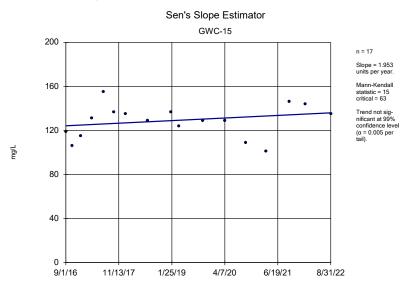


Constituent: Calcium Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

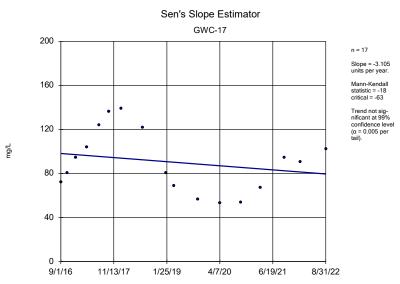


Constituent: Calcium Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests

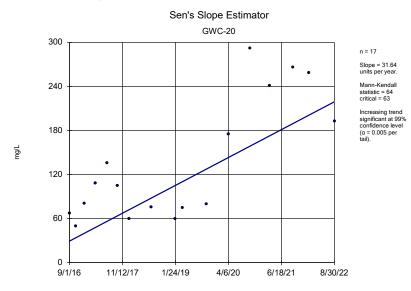
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

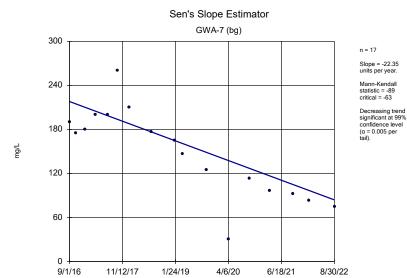


Constituent: Calcium Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

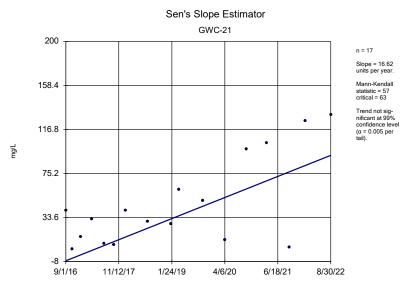


Constituent: Calcium Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests

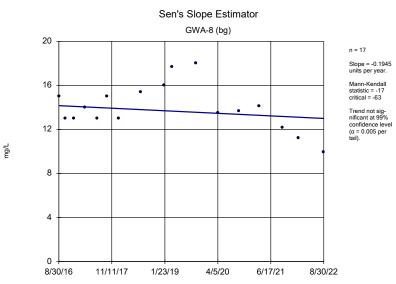

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Constituent: Calcium Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

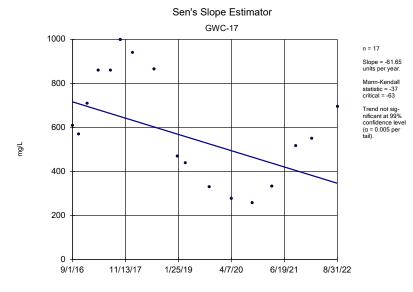
Constituent: Calcium Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

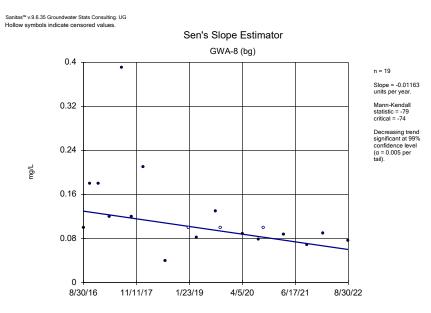


Constituent: Calcium Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

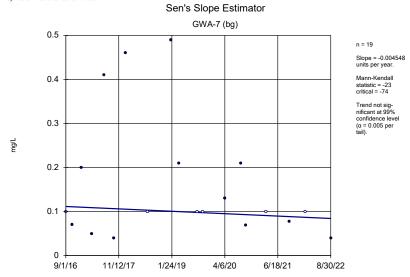


Constituent: Chloride Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests

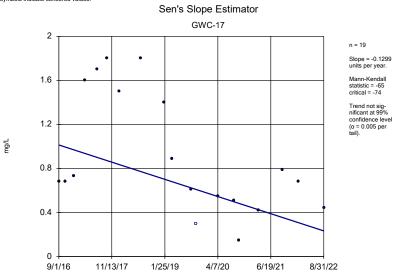

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Constituent: Calcium Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Constituent: Chloride Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

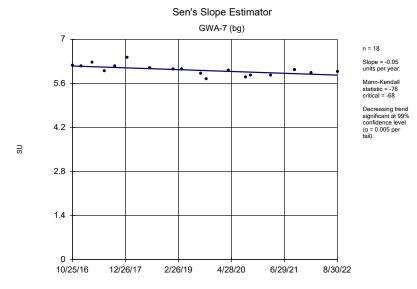


Constituent: Chloride Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

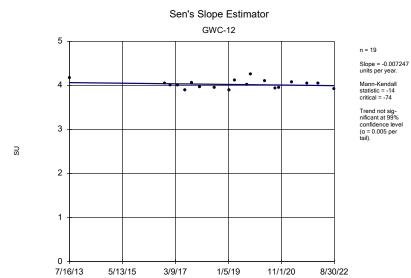

Constituent: Fluoride Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

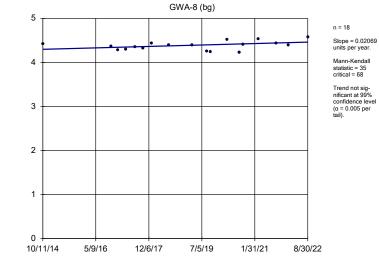
Constituent: Fluoride Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill



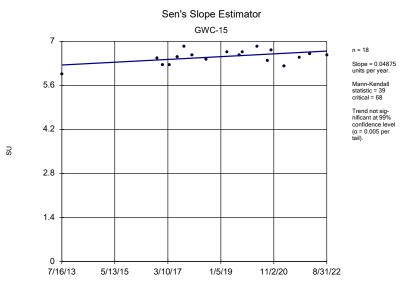
Constituent: Fluoride Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests


Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

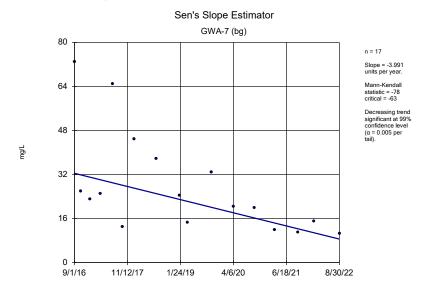
SU

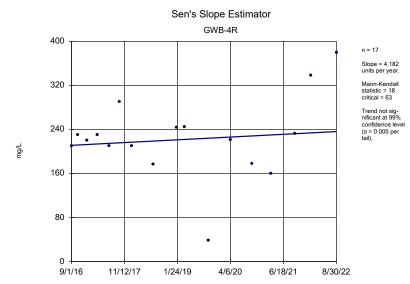

Constituent: pH Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

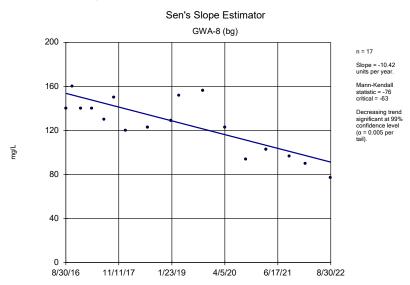
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

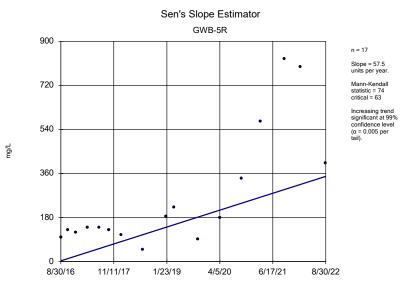


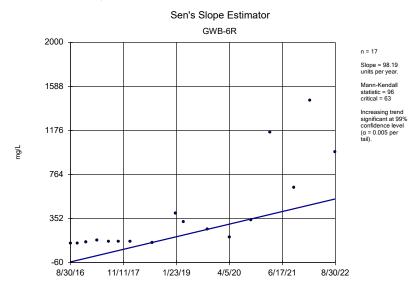
Constituent: pH Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

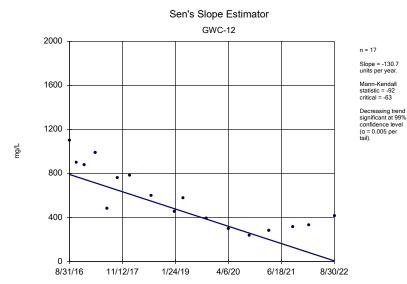

Sen's Slope Estimator

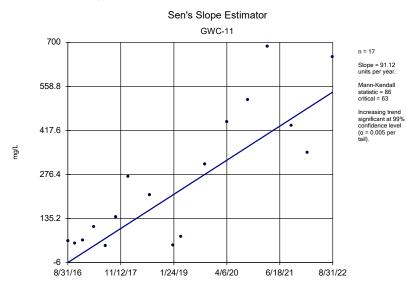

Constituent: pH Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Constituent: pH Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

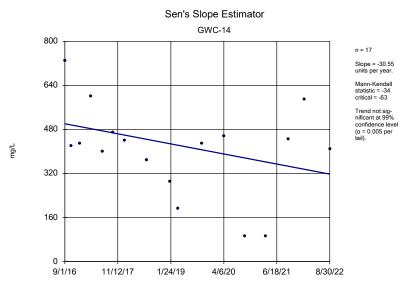

Constituent: Sulfate Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Constituent: Sulfate Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

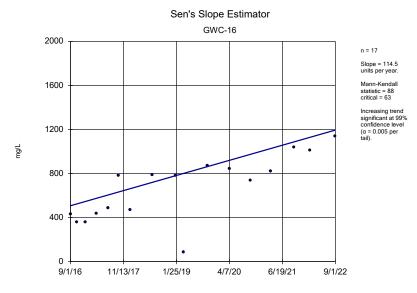

Constituent: Sulfate Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Constituent: Sulfate Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

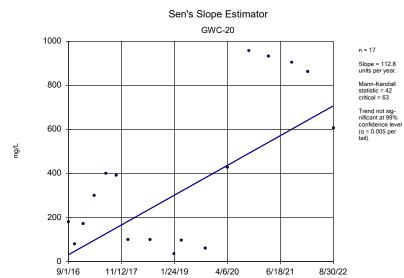
Constituent: Sulfate Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

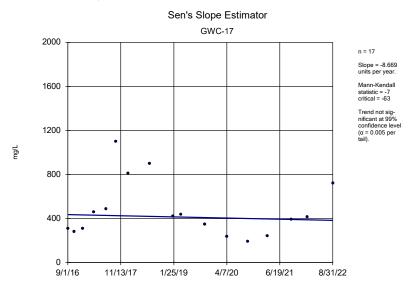


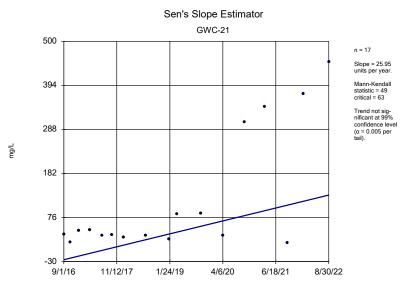
Constituent: Sulfate Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill



Constituent: Sulfate Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests


Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Constituent: Sulfate Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Constituent: Sulfate Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Constituent: Sulfate Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Constituent: Sulfate Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Constituent: Sulfate Analysis Run 9/28/2022 11:08 AM View: Appendix III - Trend Tests

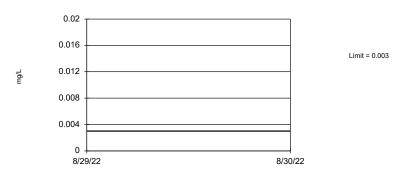
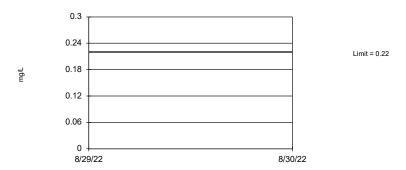

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

FIGURE H.

Upper Tolerance Limit Summary Table

	Gri	umman Roa	d Landfill	Client: Sou	uthern Comp	any Dat	ta: Grumman	Road Landfill	Printed	11/6/2022, 9:	53 AM		
Constituent	Well	Upper Lin	n. Lower Lin	n. Date	Observ.	Sig.Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	n/a	0.003	n/a	n/a	n/a	n/a 127	n/a	n/a	95.28	n/a	n/a	0.001482	NP Inter(NDs)
Arsenic (mg/L)	n/a	0.0287	n/a	n/a	n/a	n/a 127	n/a	n/a	77.17	n/a	n/a	0.001482	NP Inter(NDs)
Barium (mg/L)	n/a	0.22	n/a	n/a	n/a	n/a 125	n/a	n/a	0	n/a	n/a	0.001642	NP Inter(normality)
Beryllium (mg/L)	n/a	0.0017	n/a	n/a	n/a	n/a 47	n/a	n/a	51.06	n/a	n/a	0.08974	NP Inter(NDs)
Cadmium (mg/L)	n/a	0.001	n/a	n/a	n/a	n/a 45	n/a	n/a	95.56	n/a	n/a	0.09944	NP Inter(NDs)
Chromium (mg/L)	n/a	0.068	n/a	n/a	n/a	n/a 126	n/a	n/a	61.9	n/a	n/a	0.00156	NP Inter(NDs)
Cobalt (mg/L)	n/a	0.0102	n/a	n/a	n/a	n/a 45	n/a	n/a	48.89	n/a	n/a	0.09944	NP Inter(normality)
Combined Radium 226 + 228 (pCi/L)	n/a	12.22	n/a	n/a	n/a	n/a 31	1.952	0.6987	0	None	sqrt(x)	0.05	Inter
Fluoride (mg/L)	n/a	0.4072	n/a	n/a	n/a	n/a 38	-2.348	0.6768	23.68	Kaplan-Meier	ln(x)	0.05	Inter
Lead (mg/L)	n/a	0.013	n/a	n/a	n/a	n/a 123	n/a	n/a	75.61	n/a	n/a	0.00182	NP Inter(NDs)
Lithium (mg/L)	n/a	0.03	n/a	n/a	n/a	n/a 34	n/a	n/a	73.53	n/a	n/a	0.1748	NP Inter(NDs)
Mercury (mg/L)	n/a	0.0002	n/a	n/a	n/a	n/a 28	n/a	n/a	82.14	n/a	n/a	0.2378	NP Inter(NDs)
Molybdenum (mg/L)	n/a	0.0098	n/a	n/a	n/a	n/a 34	n/a	n/a	88.24	n/a	n/a	0.1748	NP Inter(NDs)
Selenium (mg/L)	n/a	0.0438	n/a	n/a	n/a	n/a 127	n/a	n/a	83.46	n/a	n/a	0.001482	NP Inter(NDs)
Thallium (mg/L)	n/a	0.002	n/a	n/a	n/a	n/a 66	n/a	n/a	93.94	n/a	n/a	0.03387	NP Inter(NDs)
Vanadium (mg/L)	n/a	0.425	n/a	n/a	n/a	n/a 121	n/a	n/a	61.98	n/a	n/a	0.002016	NP Inter(NDs)
Zinc (mg/L)	n/a	0.16	n/a	n/a	n/a	n/a 119	n/a	n/a	28.57	n/a	n/a	0.002234	NP Inter(normality)

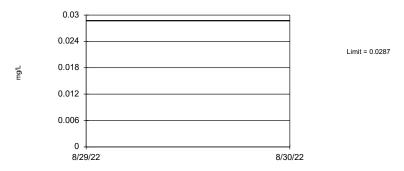
Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 127 background values. 95.28% NDs. 96.29% coverage at alpha=0.01; 97.85% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha=0.01482.

Constituent: Antimony Analysis Run 11/6/2022 9:52 AM View: Appendix IV - UTLs Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

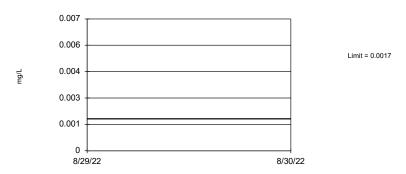
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 125 background values. 96.29% coverage at alpha=0.01; 97.46% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha = 0.001642.

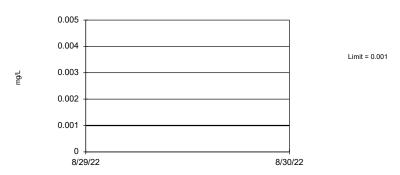
itas™ v.9.6.35 Groundwater Stats Consulting. UG

Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 127 background values. 77.17% NDs. 96.29% coverage at alpha=0.01; 97.85% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha=0.001482.

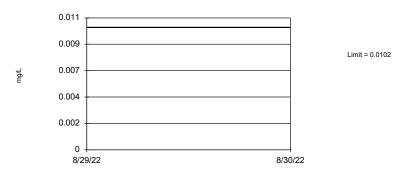
Constituent: Arsenic Analysis Run 11/6/2022 9:52 AM View: Appendix IV - UTLs Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Tolerance Limit Interwell Non-parametric

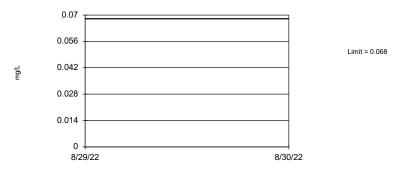
Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 47 background values. 51.06% NDs. 90.82% coverage at alpha=0.01; 93.95% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha = 0.08974.

Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 45 background values. 95.56% NDs. 90.43% coverage at alpha=0.01; 93.55% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha=0.09944.

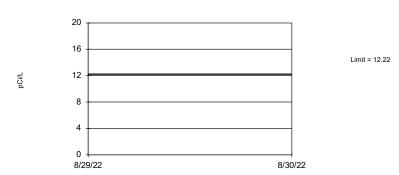
Constituent: Cadmium Analysis Run 11/6/2022 9:53 AM View: Appendix IV - UTLs Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Tolerance Limit Interwell Non-parametric

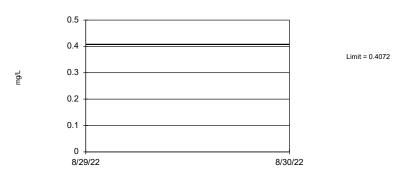
Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 45 background values. 48.89% NDs. 90.43% coverage at alpha=0.01; 93.55% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha=0.09944.

Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 126 background values. 61.9% NDs. 96.29% coverage at alpha=0.01; 97.46% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha = 0.00156.

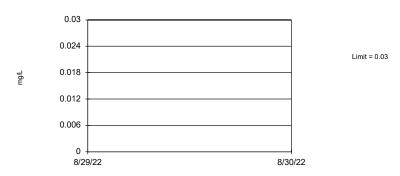
Constituent: Chromium Analysis Run 11/6/2022 9:53 AM View: Appendix IV - UTLs Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Tolerance Limit Interwell Parametric

95% coverage. Background Data Summary (based on square root transformation): Mean=1.952, Std. Dev.=0.6987, n=31. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9115, critical = 0.902. Report alpha = 0.05.

Tolerance Limit Interwell Parametric

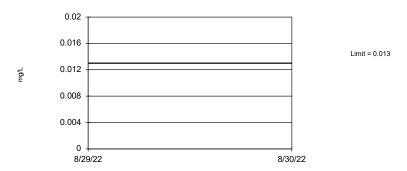


95% coverage. Background Data Summary (based on natural log transformation) (after Kaplan-Meier Adjustment): Mean=-2.348, Std. Dev.=0.6768, n=38, 23.68% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9171, critical = 0.916. Report alpha = 0.05.

Constituent: Fluoride Analysis Run 11/6/2022 9:53 AM View: Appendix IV - UTLs Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Tolerance Limit Interwell Non-parametric

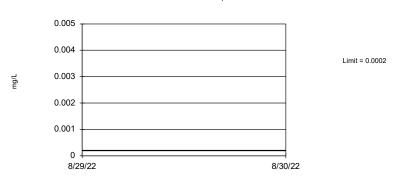


Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 34 background values. 73.53% NDs. 87.3% coverage at alpha=0.01; 91.6% coverage at alpha=0.05; 97.85% coverage at alpha=0.5. Report alpha = 0.1748.

Constituent: Lithium Analysis Run 11/6/2022 9:53 AM View: Appendix IV - UTLs

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

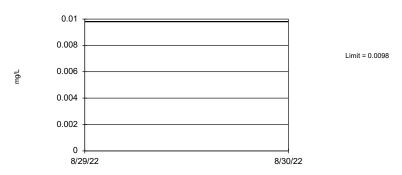
Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 123 background values. 75.61% NDs. 96.29% coverage at alpha=0.01; 97.46% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha = 0.00182.

Constituent: Lead Analysis Run 11/6/2022 9:53 AM View: Appendix IV - UTLs
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

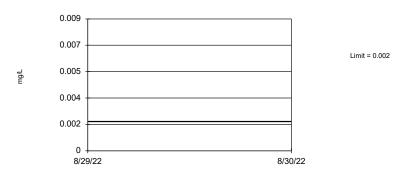
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 28 background values. 82.14% NDs. 84.96% coverage at alpha=0.01; 90.04% coverage at alpha=0.5. Report alpha = 0.2378.

Constituent: Mercury Analysis Run 11/6/2022 9:53 AM View: Appendix IV - UTLs Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

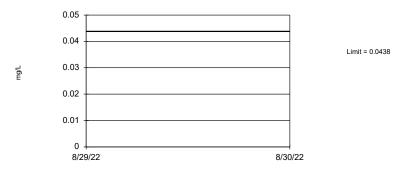
Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 34 background values. 88.24% NDs. 87.3% coverage at alpha=0.01; 91.6% coverage at alpha=0.05; 97.85% coverage at alpha=0.5. Report alpha = 0.1748.

Constituent: Molybdenum Analysis Run 11/6/2022 9:53 AM View: Appendix IV - UTLs Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

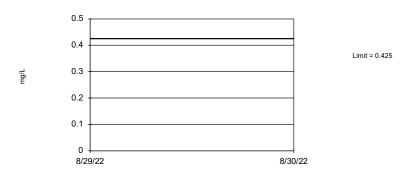
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 66 background values. 93.94% NDs. 93.16% coverage at alpha=0.01; 95.51% coverage at alpha=0.05; 99.02% coverage at alpha=0.5. Report alpha = 0.03387.

Constituent: Thallium Analysis Run 11/6/2022 9:53 AM View: Appendix IV - UTLs Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

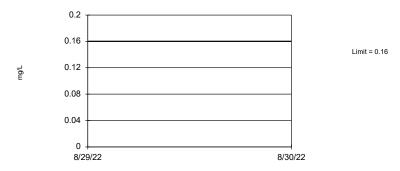
Tolerance Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 127 background values. 83.46% NDs. 96.29% coverage at alpha=0.01; 97.85% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha=0.001482.

Constituent: Selenium Analysis Run 11/6/2022 9:53 AM View: Appendix IV - UTLs Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 121 background values. 61.98% NDs. 96.29% coverage at alpha=0.01; 97.46% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha=0.002016.

Sanitas™ v.9.6.35 Groundwater Stats Consulting, UG

Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 119 background values. 28.57% NDs. 96.29% coverage at alpha=0.01; 97.46% coverage at alpha=0.05; 99.41% coverage at alpha=0.5. Report alpha = 0.002234.

Constituent: Zinc Analysis Run 11/6/2022 9:53 AM View: Appendix IV - UTLs

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

FIGURE I.

GRUMMAN ROAD LANDFILL GWPS									
		CCR-Rule	Background						
Constituent Name	MCL	Specified	Limit	GWPS					
Antimony, Total (mg/L)	0.006		0.003	0.006					
Arsenic, Total (mg/L)	0.01		0.029	0.029					
Barium, Total (mg/L)	2		0.22	2					
Beryllium, Total (mg/L)	0.004		0.0017	0.004					
Cadmium, Total (mg/L)	0.005		0.001	0.005					
Chromium, Total (mg/L)	0.1		0.068	0.1					
Cobalt, Total (mg/L)	n/a	0.006	0.0102	0.0102					
Combined Radium, Total (pCi/L)	5		12.22	12.22					
Fluoride, Total (mg/L)	4		0.41	4					
Lead, Total (mg/L)	n/a	0.015	0.013	0.015					
Lithium, Total (mg/L)	n/a	0.04	0.03	0.04					
Mercury, Total (mg/L)	0.002		0.0002	0.002					
Molybdenum, Total (mg/L)	n/a	0.1	0.01	0.1					
Selenium, Total (mg/L)	0.05		0.044	0.05					
Thallium, Total (mg/L)	0.002		0.002	0.002					
Vanadium, Total (mg/L)	n/a		0.43	0.43					
Zinc, Total (mg/L)	n/a		0.16	0.16					

^{*}Highlighted cells indicated Background is higher than MCLs

^{*}MCL = Maximum Contaminant Level

^{*}CCR = Coal Combustion Residuals

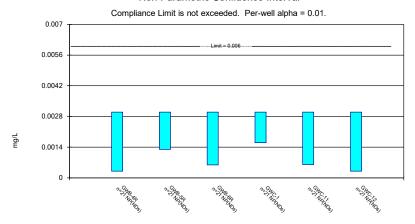
^{*}GWPS = Groundwater Protection Standard

FIGURE J.

Confidence Intervals - Significant Results Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill Printed 11/6/2022, 10:03 AM

	Grumma	n Road Landfill	Client: Souther	rn Company	Data	: Gru	ımman Road I	Landfill Printed	11/6/2	022, 10:03 AM			
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Arsenic (mg/L)	GWC-15	0.176	0.08366	0.029	Yes	21	0.1298	0.08372	0	None	No	0.01	Param.
Arsenic (mg/L)	GWC-16	0.08264	0.06341	0.029	Yes	22	0.07303	0.01792	0	None	No	0.01	Param.
Arsenic (mg/L)	GWC-20	0.3604	0.2763	0.029	Yes	21	0.3184	0.07621	0	None	No	0.01	Param.
Molybdenum (mg/L)	GWC-16	0.2078	0.1293	0.1	Yes	17	0.1686	0.06266	0	None	No	0.01	Param.
Molybdenum (ma/L)	GWC-20	0.3536	0.137	0.1	Yes	17	0.2629	0.1946	0	None	sart(x)	0.01	Param.

	Crumm		Cliants South					Landfill Drinta		0000 40:00 AM			
		an Road Landfill	Client: South			i: Gr	umman Road			022, 10:03 AM			
Constituent	Well	Upper Lim.	Lower Lim.	Compliance		N		Std. Dev.		ND Adj.	Transform	<u>Alpha</u>	
Antimony (mg/L)	GWB-4R	0.003	0.0003	0.006	No		0.002871	0.0005892		None	No	0.01	NP (NDs)
Antimony (mg/L)	GWB-5R	0.003	0.0013	0.006	No		0.002673	0.0008364		None	No	0.01	NP (NDs)
Antimony (mg/L)	GWB-6R	0.003	0.00059	0.006	No		0.002756	0.0007715	90.48	None	No	0.01	NP (NDs)
Antimony (mg/L)	GWC-1	0.003	0.0016	0.006	No		0.002583	0.0009051	80.95		No	0.01	NP (NDs)
Antimony (mg/L)	GWC-11	0.003	0.0006	0.006	No	21	0.00186	0.00123	52.38	None	No	0.01	NP (NDs)
Antimony (mg/L)	GWC-12	0.003	0.0003	0.006	No	21	0.002871	0.0005892	95.24	None	No	0.01	NP (NDs)
Antimony (mg/L)	GWC-13	0.003	0.0006	0.006	No	21	0.002886	0.0005237	95.24	None	No	0.01	NP (NDs)
Antimony (mg/L)	GWC-15	0.003	0.0018	0.006	No	21	0.002943	0.0002619	95.24	None	No	0.01	NP (NDs)
Antimony (mg/L)	GWC-17	0.003	0.0014	0.006	No	21	0.0028	0.000653	90.48	None	No	0.01	NP (NDs)
Antimony (mg/L)	GWC-2	0.003	0.0016	0.006	No	21	0.002852	0.0004686	90.48	None	No	0.01	NP (NDs)
Antimony (mg/L)	GWC-20	0.003	0.0019	0.006	No	21	0.002836	0.0005552	90.48	None	No	0.01	NP (NDs)
Antimony (mg/L)	GWC-21	0.003	0.00033	0.006	No	21	0.002873	0.0005826	95.24	None	No	0.01	NP (NDs)
Antimony (mg/L)	GWC-22	0.003	0.0022	0.006	No	21	0.00253	0.0009363	76.19	None	No	0.01	NP (NDs)
Antimony (mg/L)	GWC-9	0.003	0.0016	0.006	No	21	0.002806	0.0006442	90.48	None	No	0.01	NP (NDs)
Arsenic (mg/L)	GWB-4R	0.003338	0.002047	0.029	No	21	0.002693	0.00117	9.524	None	No	0.01	Param.
Arsenic (mg/L)	GWB-5R	0.001983	0.001062	0.029	No	21	0.002535	0.001726	23.81	Kaplan-Meier	x^(1/3)	0.01	Param.
Arsenic (mg/L)	GWB-6R	0.004092	0.001557	0.029	No	21	0.003714	0.002361	23.81	Kaplan-Meier	No	0.01	Param.
Arsenic (mg/L)	GWC-1	0.00526	0.002364	0.029	No	20	0.004764	0.00551	0	None	ln(x)	0.01	Param.
Arsenic (mg/L)	GWC-12	0.005	0.0016	0.029	No	21	0.004233	0.001628	80.95	None	No	0.01	NP (NDs)
Arsenic (mg/L)	GWC-13	0.005	0.0025	0.029	No	21	0.004461	0.001397	85.71	None	No	0.01	NP (NDs)
Arsenic (mg/L)	GWC-14	0.002219	0.001636	0.029	No	22	0.002615	0.001262	18.18	Kaplan-Meier	ln(x)	0.01	Param.
Arsenic (mg/L)	GWC-15	0.176	0.08366	0.029	Yes	21	0.1298	0.08372	0	None	No	0.01	Param.
Arsenic (mg/L)	GWC-16	0.08264	0.06341	0.029	Yes		0.07303	0.01792	0	None	No	0.01	Param.
Arsenic (mg/L)	GWC-17	0.005	0.0011	0.029	No		0.002853	0.00192	42.86	None	No	0.01	NP (normality)
Arsenic (mg/L)	GWC-2	0.005	0.00094	0.029	No		0.004378	0.001565	85.71		No	0.01	NP (NDs)
Arsenic (mg/L)	GWC-20	0.3604	0.2763	0.029	Yes		0.3184	0.07621	0	None	No	0.01	Param.
Arsenic (mg/L)	GWC-21	0.0059	0.0029	0.029	No		0.006271	0.006103	33.33		No	0.01	NP (normality)
Arsenic (mg/L)	GWC-22	0.005	0.0023	0.029	No		0.00336	0.001997	57.14		No	0.01	NP (NDs)
Arsenic (mg/L)	GWC-9	0.005	0.00011	0.029			0.004802	0.0009078	95.24	None	No	0.01	NP (NDs)
, ,		0.005		0.029	No								, ,
Arsenic (mg/L)	MW-25D	0.005	0.00092		No	5	0.004184	0.001825	80	None	No No	0.031	NP (NDs)
Barium (mg/L)	GWB-4R		0.076	2	No		0.09233	0.02394	0	None	No	0.01	NP (normality)
Barium (mg/L)	GWB-5R	0.1426	0.0869	2	No		0.1184	0.05621	0	None	sqrt(x)	0.01	Param.
Barium (mg/L)	GWB-6R	0.106	0.014	2	No		0.0674	0.04169	0	None	No	0.01	NP (normality)
Barium (mg/L)	GWC-1	0.05704	0.05117	2	No		0.0541	0.005314	0	None	No	0.01	Param.
Barium (mg/L)	GWC-11	0.1216	0.07385	2	No		0.09771	0.04325	0	None	No	0.01	Param.
Barium (mg/L)	GWC-12	0.023	0.017	2	No		0.01983	0.004585	0	None	No	0.01	NP (normality)
Barium (mg/L)	GWC-13	0.02905	0.02171	2	No		0.02538	0.006658	0	None	No	0.01	Param.
Barium (mg/L)	GWC-14	0.067	0.025	2	No		0.04429	0.02732	0	None	No	0.01	NP (normality)
Barium (mg/L)	GWC-15	0.05018	0.04022	2	No		0.0452	0.009027	0	None	No	0.01	Param.
Barium (mg/L)	GWC-16	0.1648	0.07656	2	No	20	0.1207	0.07768	0	None	No	0.01	Param.
Barium (mg/L)	GWC-17	0.1004	0.04728	2	No		0.0791	0.05487	0	None	sqrt(x)	0.01	Param.
Barium (mg/L)	GWC-2	0.053	0.05	2	No	20	0.05294	0.007254	0	None	No	0.01	NP (normality)
Barium (mg/L)	GWC-20	0.2024	0.1006	2	No	21	0.1746	0.1195	0	None	ln(x)	0.01	Param.
Barium (mg/L)	GWC-21	0.1145	0.05692	2	No	21	0.09323	0.06186	0	None	x^(1/3)	0.01	Param.
Barium (mg/L)	GWC-22	0.09072	0.0587	2	No	21	0.07471	0.02902	0	None	No	0.01	Param.
Barium (mg/L)	GWC-9	0.2461	0.1791	2	No	21	0.2126	0.06074	0	None	No	0.01	Param.
Barium (mg/L)	MW-23D	0.079	0.076	2	No	4	0.07688	0.001436	0	None	No	0.0625	5 NP (normality)
Barium (mg/L)	MW-24D	0.05583	0.01802	2	No	4	0.03693	0.008328	0	None	No	0.01	Param.
Barium (mg/L)	MW-25D	0.03304	0.01676	2	No	4	0.0249	0.003583	0	None	No	0.01	Param.
Beryllium (mg/L)	GWB-4R	0.0005	0.0001	0.004	No	17	0.0003765	0.0001855	64.71	None	No	0.01	NP (NDs)
Beryllium (mg/L)	GWB-5R	0.0001657	0.00008436	0.004	No	17	0.0002436	0.000165	23.53	Kaplan-Meier	x^(1/3)	0.01	Param.
Beryllium (mg/L)	GWB-6R	0.0005	0.00005	0.004	No	17	0.0004468	0.0001501	88.24	Kaplan-Meier	No	0.01	NP (NDs)
Beryllium (mg/L)	GWC-11	0.0005	0.000047	0.004	No	17	0.0004734	0.0001099	94.12	Kaplan-Meier	No	0.01	NP (NDs)
Beryllium (mg/L)	GWC-12	0.0007522	0.0005148	0.004	No	17	0.0006514	0.0002157	0	None	ln(x)	0.01	Param.
Beryllium (mg/L)	GWC-13	0.0005	0.000058	0.004	No		0.000474	0.0001072	94.12	None	No	0.01	NP (NDs)
,													. ,

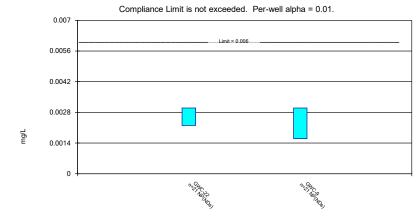

	Grumm	an Road Landfill	Client: South	ern Company	Data	a: Gr	umman Road	Landfill Printe	d 11/6/2	2022, 10:03 AM			
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	Mean	Std. Dev.	%NDs	ND Adj.	Transform	Alpha	Method
Beryllium (mg/L)	GWC-14	0.0005	0.0001	0.004	No	17	0.0004266	0.0001636	82.35	None	No	0.01	NP (NDs)
Beryllium (mg/L)	GWC-16	0.0005	0.00008	0.004	No	17	0.000255	0.0002116	41.18	None	No	0.01	NP (normality)
Beryllium (mg/L)	GWC-17	0.00262	0.001628	0.004	No	17	0.002181	0.0008605	0	None	x^(1/3)	0.01	Param.
Beryllium (mg/L)	GWC-2	0.0005	0.000088	0.004	No	18	0.0003709	0.0001944	66.67	None	No	0.01	NP (NDs)
Beryllium (mg/L)	GWC-22	0.0005	0.00009	0.004	No	17	0.0003433	0.0001961	58.82	None	No	0.01	NP (NDs)
Beryllium (mg/L)	GWC-9	0.0003	0.00019	0.004	No	17	0.0002529	0.00008122	5.882	None	No	0.01	NP (normality)
Beryllium (mg/L)	MW-25D	0.0005	0.000084	0.004	No	4	0.000396	0.000208	75	None	No	0.062	5 NP (NDs)
Cadmium (mg/L)	GWB-4R	0.001	0.0002	0.005	No	17	0.0007988	0.0003748	76.47	None	No	0.01	NP (NDs)
Cadmium (mg/L)	GWC-1	0.001	0.0001	0.005	No	17	0.0008924	0.0003039	88.24	None	No	0.01	NP (NDs)
Cadmium (mg/L)	GWC-11	0.0006077	0.000276	0.005	No	17	0.0004418	0.0002647	5.882	None	No	0.01	Param.
Cadmium (mg/L)	GWC-14	0.001	0.00017	0.005	No	17	0.0006582	0.0004219	58.82	None	No	0.01	NP (NDs)
Cadmium (mg/L)	GWC-20	0.001	0.0002	0.005	No	17	0.0008535	0.0003264	82.35	None	No	0.01	NP (NDs)
Cadmium (mg/L)	GWC-22	0.001	0.00012	0.005	No	17	0.0005324	0.0004155	41.18	None	No	0.01	NP (normality)
Cadmium (mg/L)	MW-23D	0.001	0.00027	0.005	No	4	0.0008175	0.000365	75	None	No	0.062	5 NP (NDs)
Cadmium (mg/L)	MW-25D	0.001	0.00019	0.005	No	4	0.0007975	0.000405	75	None	No	0.062	5 NP (NDs)
Chromium (mg/L)	GWB-4R	0.0101	0.0022	0.1	No	21	0.006514	0.004437	4.762	None	No	0.01	NP (normality)
Chromium (mg/L)	GWB-5R	0.003715	0.001047	0.1	No	21	0.008143	0.01523	28.57	Kaplan-Meier	ln(x)	0.01	Param.
Chromium (mg/L)	GWB-6R	0.006407	0.002325	0.1	No	21	0.005174	0.005004	0	None	x^(1/3)	0.01	Param.
Chromium (mg/L)	GWC-1	0.0024	0.0017	0.1	No		0.002929	0.002547	9.524	None	No	0.01	NP (normality)
Chromium (mg/L)	GWC-11	0.01	0.00091	0.1	No	21	0.004813	0.004589	38.1	None	No	0.01	NP (normality)
Chromium (mg/L)	GWC-12	0.0028	0.00091	0.1	No		0.003316	0.003853	23.81		No	0.01	NP (normality)
Chromium (mg/L)	GWC-13	0.01	0.00077	0.1	No		0.006108	0.004612		None	No	0.01	NP (NDs)
Chromium (mg/L)	GWC-14	0.01	0.0008	0.1	No		0.00503	0.004648		None	No	0.01	NP (normality)
Chromium (mg/L)	GWC-15	0.01	0.0013	0.1	No		0.004343	0.004122		None	No	0.01	NP (normality)
Chromium (mg/L)	GWC-16	0.01	0.001	0.1	No		0.005121	0.004563	40.91		No	0.01	NP (normality)
Chromium (mg/L)	GWC-17	0.01	0.00096	0.1	No		0.004262	0.004269	33.33		No	0.01	NP (normality)
Chromium (mg/L)	GWC-2	0.01	0.0008	0.1	No		0.006482	0.004596	61.9	None	No	0.01	NP (NDs)
Chromium (mg/L)	GWC-20	0.01	0.0009	0.1	No		0.004576	0.004398	38.1	None	No	0.01	NP (normality)
Chromium (mg/L)	GWC-21	0.01	0.00067	0.1	No		0.005583	0.004749	47.62		No	0.01	NP (normality)
Chromium (mg/L)	GWC-22	0.01	0.0006	0.1	No		0.00597	0.004768		None	No	0.01	NP (NDs)
Chromium (mg/L)	GWC-9	0.01	0.0011	0.1	No		0.004604	0.004755	38.1	None	No	0.01	NP (normality)
Chromium (mg/L)	MW-24D	0.01	0.00069	0.1	No	4	0.007672	0.004655	75	None	No		5 NP (NDs)
Chromium (mg/L)	MW-25D	0.01	0.0006	0.1	No	4	0.007072	0.004033	75	None	No		5 NP (NDs)
Cobalt (mg/L)	GWB-4R	0.001418	0.0008127	0.0102	No		0.0073	0.0006122		None	In(x)	0.002	Param.
Cobalt (mg/L)	GWB-5R	0.00401	0.00056	0.0102	No		0.003782	0.005909		None	No	0.01	NP (normality)
Cobalt (mg/L)	GWB-6R	0.0049	0.00038	0.0102	No		0.007993	0.01955	76.47		No	0.01	NP (NDs)
Cobalt (mg/L)	GWC-11	0.0043	0.000646	0.0102	No		0.0008656	0.0002376		None	No	0.01	NP (NDs)
Cobalt (mg/L)	GWC-12	0.001	0.000785	0.0102	No		0.001012	0.0002570	0	None	No	0.01	Param.
Cobalt (mg/L)	GWC-12 GWC-14	0.001239	0.000783	0.0102	No		0.001012	0.0003024		None	No	0.01	NP (NDs)
Cobalt (mg/L)	GWC-17	0.005438	0.002894	0.0102	No		0.004305	0.002077	0	None	sqrt(x)	0.01	Param.
Cobalt (mg/L)	GWC-17	0.003438	0.002894	0.0102	No		0.004303	0.002077		None	No No	0.01	NP (NDs)
Cobalt (mg/L)	GWC-22	0.0011	0.00077	0.0102	No		0.0009082	0.0002331		None	No	0.01	NP (NDs)
Cobalt (mg/L)	GWC-22 GWC-9	0.001	0.00077	0.0102			0.0009082	0.0001762	04.71				NP (normality)
(0 /	GWC-9 GWB-4R				No					None	No	0.01	, ,,
Combined Radium 226 + 228 (pCi/L)		5	2.44	12.22	No		3.468 3.141	1.248	0	None	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	GWB-5R	3.835	2.314	12.22	No			1.362	0	None	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GWB-6R	4.788	2.83	12.22	No		3.809	1.562	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GWC-1	2.147	1.447	12.22	No		1.797	0.5585	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GWC-11	6.438	3.399	12.22	No		4.918	2.425	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GWC-12	2.849	1.731	12.22	No		2.29	0.8921	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GWC-13	1.468	0.8765	12.22	No		1.172	0.4722	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GWC-14	1.467	0.7077	12.22	No		1.088	0.6063	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GWC-15	1.879	1.065	12.22	No		1.472	0.6494	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GWC-16	2.705	1.753	12.22	No		2.279	0.847	0	None	x^(1/3)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GWC-17	3.853	2.7	12.22	No		3.276	0.92	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GWC-2	1.09	0.725	12.22	No	17	0.8945	0.3858	0	None	No	0.01	NP (normality)

	Grumma	an Road Landfill	Client: Southe	rn Company	Data	: Gr	umman Road	Landfill Printe	d 11/6/2	022, 10:03 AM			
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Combined Radium 226 + 228 (pCi/L)	GWC-20	4.759	2.321	12.22	No	17	3.54	1.945	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GWC-21	2.443	1.317	12.22	No	17	1.88	0.8982	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GWC-22	6.161	3.134	12.22	No	17	4.825	2.333	0	None	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	GWC-9	3.524	2.026	12.22	No	17	2.947	1.554	0	None	ln(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-23D	2.044	0.9313	12.22	No	4	1.488	0.245	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-24D	4.691	-1.605	12.22	No	4	1.543	1.386	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-25D	1.504	-0.2912	12.22	No	4	0.6065	0.3954	0	None	No	0.01	Param.
Fluoride (mg/L)	GWB-4R	0.17	0.08	4	No	19	0.1671	0.26	63.16	None	No	0.01	NP (NDs)
Fluoride (mg/L)	GWB-5R	0.11	0.05	4	No	19	0.0872	0.03977	47.37	None	No	0.01	NP (normality)
Fluoride (mg/L)	GWB-6R	0.13	0.09	4	No	19	0.1173	0.05903	52.63	None	No	0.01	NP (NDs)
Fluoride (mg/L)	GWC-1	0.18	0.051	4	No	19	0.1048	0.03827	78.95	None	No	0.01	NP (NDs)
Fluoride (mg/L)	GWC-12	0.7212	0.2723	4	No	19	0.4968	0.3833	5.263	None	No	0.01	Param.
Fluoride (mg/L)	GWC-13	0.55	0.09	4	No	19	0.1181	0.1057	78.95	None	No	0.01	NP (NDs)
Fluoride (mg/L)	GWC-14	0.25	0.1	4	No	19	0.1674	0.124	68.42	None	No	0.01	NP (NDs)
Fluoride (mg/L)	GWC-15	0.13	0.06	4	No	19	0.1295	0.09513	73.68	None	No	0.01	NP (NDs)
Fluoride (mg/L)	GWC-16	0.2	0.1	4	No	19	0.1767	0.2046	57.89	None	No	0.01	NP (NDs)
Fluoride (mg/L)	GWC-17	1.162	0.5173	4	No	19	0.8964	0.5551	5.263	None	sqrt(x)	0.01	Param.
Fluoride (mg/L)	GWC-2	0.17	0.08	4	No	19	0.1233	0.1224	63.16	None	No	0.01	NP (NDs)
Fluoride (mg/L)	GWC-20	0.14	0.043	4	No	19	0.09174	0.02744	78.95	None	No	0.01	NP (NDs)
Fluoride (mg/L)	GWC-21	0.1	0.071	4	No	19	0.09847	0.006653	94.74	None	No	0.01	NP (NDs)
Fluoride (mg/L)	GWC-22	0.12	0.1	4	No	19	0.09316	0.02358	68.42	None	No	0.01	NP (NDs)
Fluoride (mg/L)	GWC-9	0.2313	0.09769	4	No	19	0.2058	0.2196	10.53	None	ln(x)	0.01	Param.
Fluoride (mg/L)	MW-23D	0.1	0.0791	4	No	5	0.09582	0.009347	80	None	No	0.031	NP (NDs)
Fluoride (mg/L)	MW-25D	0.1881	0.04793	4	No	5	0.118	0.04182	0	None	No	0.01	Param.
Lead (mg/L)	GWB-4R	0.004315	0.001028	0.015	No	20	0.003249	0.002759	25	Kaplan-Meier	No	0.01	Param.
Lead (mg/L)	GWB-5R	0.002	0.0002	0.015	No	21	0.001221	0.0008915	42.86	None	No	0.01	NP (normality)
Lead (mg/L)	GWB-6R	0.002	0.0002	0.015	No	21	0.001118	0.0008882	47.62	None	No	0.01	NP (normality)
Lead (mg/L)	GWC-1	0.002	0.00012	0.015	No	21	0.001636	0.0007683	80.95	None	No	0.01	NP (NDs)
Lead (mg/L)	GWC-11	0.00042	0.00021	0.015	No	21	0.0006767	0.0007619	23.81	None	No	0.01	NP (normality)
Lead (mg/L)	GWC-12	0.002	0.000081	0.015	No	21	0.0009953	0.001073	38.1	None	No	0.01	NP (normality)
Lead (mg/L)	GWC-13	0.002	0.00013	0.015	No	21	0.001028	0.0008476	38.1	None	No	0.01	NP (normality)
Lead (mg/L)	GWC-14	0.002	0.00051	0.015	No	22	0.001672	0.0007159	81.82	None	No	0.01	NP (NDs)
Lead (mg/L)	GWC-15	0.002	0.0001	0.015	No	21	0.00112	0.0009478	52.38	None	No	0.01	NP (NDs)
Lead (mg/L)	GWC-16	0.002	0.0001	0.015	No	22	0.0009847	0.0009495	45.45	None	No	0.01	NP (normality)
Lead (mg/L)	GWC-17	0.002	0.00014	0.015	No	21	0.00132	0.0009033	61.9	None	No	0.01	NP (NDs)
Lead (mg/L)	GWC-2	0.002	0.0002	0.015	No	21	0.001471	0.000859	71.43	None	No	0.01	NP (NDs)
Lead (mg/L)	GWC-20	0.002	0.0002	0.015	No	21	0.001553	0.0008197	76.19	None	No	0.01	NP (NDs)
Lead (mg/L)	GWC-21	0.002	0.0001	0.015	No	21	0.001286	0.0009331	61.9	None	No	0.01	NP (NDs)
Lead (mg/L)	GWC-22	0.0007979	0.0002964	0.015	No	21	0.0009176	0.0008104	19.05	Kaplan-Meier	sqrt(x)	0.01	Param.
Lead (mg/L)	GWC-9	0.002	0.0001	0.015	No	21	0.00122	0.0009321	57.14	Kaplan-Meier	No	0.01	NP (NDs)
Lead (mg/L)	MW-23D	0.002	0.000057	0.015	No	4	0.001514	0.0009715	75	Kaplan-Meier	No	0.0625	5 NP (NDs)
Lead (mg/L)	MW-24D	0.002	0.000094	0.015	No	4	0.001524	0.000953	75	Kaplan-Meier	No	0.0625	5 NP (NDs)
Lead (mg/L)	MW-25D	0.002	0.000095	0.015	No	4	0.001524	0.0009525	75	None	No	0.0625	5 NP (NDs)
Lithium (mg/L)	GWB-4R	0.015	0.0042	0.04	No	17	0.009871	0.005	0	None	No	0.01	NP (normality)
Lithium (mg/L)	GWB-5R	0.03	0.0041	0.04	No	17	0.01921	0.01331	58.82	None	No	0.01	NP (NDs)
Lithium (mg/L)	GWC-12	0.03	0.00094	0.04	No	17	0.01293	0.01472	41.18	None	No	0.01	NP (normality)
Lithium (mg/L)	GWC-13	0.03	0.00087	0.04	No	17	0.02657	0.009691	88.24	None	No	0.01	NP (NDs)
Lithium (mg/L)	GWC-17	0.006758	0.005122	0.04	No	17	0.00594	0.001306	0	None	No	0.01	Param.
Lithium (mg/L)	GWC-9	0.0022	0.0017	0.04	No	16	0.003662	0.007026	6.25	None	No	0.01	NP (normality)
Mercury (mg/L)	GWB-4R	0.0002	0.0001	0.002	No		0.0001821	0.00004666		None	No	0.01	NP (NDs)
Mercury (mg/L)	GWB-5R	0.0002	0.0001	0.002	No		0.0001858	0.00003755		None	No	0.01	NP (NDs)
Mercury (mg/L)	GWB-6R	0.0002	0.0001	0.002	No		0.0001816	0.00004798		None	No	0.01	NP (NDs)
Mercury (mg/L)	GWC-1	0.0002	0.0001	0.002	No		0.0001814	0.00004865		None	No	0.01	NP (NDs)
Mercury (mg/L)	GWC-11	0.0002	0.0001	0.002	No		0.0001929	0.00002673		None	No	0.01	NP (NDs)
Mercury (mg/L)	GWC-12	0.0002	0.0001	0.002	No		0.0001929	0.00002673		None	No	0.01	NP (NDs)

	Grumm	an Road Landfill	Client: Southe	ern Company	Data	a: G	rumman Road	Landfill Printe	d 11/6/2	2022, 10:03 AM			
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Mercury (mg/L)	GWC-13	0.0002	0.00013	0.002	No	14	0.0001879	0.00003142	85.71	None	No	0.01	NP (NDs)
Mercury (mg/L)	GWC-14	0.0002	0.00011	0.002	No	14	0.0001936	0.00002405	92.86	None	No	0.01	NP (NDs)
Mercury (mg/L)	GWC-15	0.0002	0.0001	0.002	No	14	0.0001929	0.00002673	92.86	None	No	0.01	NP (NDs)
Mercury (mg/L)	GWC-16	0.0002	0.0001	0.002	No	14	0.0001929	0.00002673	92.86	None	No	0.01	NP (NDs)
Mercury (mg/L)	GWC-17	0.0002	0.00011	0.002	No	14	0.0001936	0.00002405	92.86	None	No	0.01	NP (NDs)
Mercury (mg/L)	GWC-2	0.0002	0.0001	0.002	No	15	0.0001933	0.00002582	93.33	None	No	0.01	NP (NDs)
Mercury (mg/L)	GWC-20	0.0002	0.00011	0.002	No	14	0.0001936	0.00002405	92.86	None	No	0.01	NP (NDs)
Mercury (mg/L)	GWC-21	0.0002	0.00011	0.002	No	14	0.0001936	0.00002405	92.86	None	No	0.01	NP (NDs)
Mercury (mg/L)	GWC-22	0.0002	0.0001	0.002	No	14	0.0001929	0.00002673	92.86	None	No	0.01	NP (NDs)
Mercury (mg/L)	GWC-9	0.0002	0.00011	0.002	No	14	0.0001829	0.00004514	85.71	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	GWB-4R	0.13	0.024	0.1	No	17	0.07922	0.05491	0	None	No	0.01	NP (normality)
Molybdenum (mg/L)	GWB-5R	0.0012	0.001	0.1	No	17	0.001012	0.00004851	94.12	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	GWB-6R	0.0013	0.001	0.1	No	17	0.001081	0.0004098	64.71	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	GWC-1	0.146	0.06224	0.1	No	17	0.1041	0.06687	0	None	No	0.01	Param.
Molybdenum (mg/L)	GWC-11	0.0018	0.00077	0.1	No	17	0.001005	0.0002412	82.35	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	GWC-12	0.001	0.000205	0.1	No	17	0.0009532	0.0001928	94.12	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	GWC-13	0.0056	0.001	0.1	No	17	0.001271	0.001116	94.12	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	GWC-14	0.01488	0.004383	0.1	No	17	0.01072	0.009545	0	None	sqrt(x)	0.01	Param.
Molybdenum (mg/L)	GWC-15	0.1091	0.08978	0.1	No	17	0.09946	0.01545	0	None	No	0.01	Param.
Molybdenum (mg/L)	GWC-16	0.2078	0.1293	0.1	Yes	17	0.1686	0.06266	0	None	No	0.01	Param.
Molybdenum (mg/L)	GWC-17	0.0038	0.001	0.1	No	17	0.002214	0.001477	47.06	None	No	0.01	NP (normality)
Molybdenum (mg/L)	GWC-20	0.3536	0.137	0.1	Yes	17	0.2629	0.1946	0	None	sqrt(x)	0.01	Param.
Molybdenum (mg/L)	GWC-21	0.05718	0.02102	0.1	No	17	0.0391	0.02886	0	None	No	0.01	Param.
Molybdenum (mg/L)	MW-24D	0.003964	0.000932	0.1	No	5	0.002448	0.0009047	0	None	No	0.01	Param.
Molybdenum (mg/L)	MW-25D	0.001454	0.0006211	0.1	No	5	0.001093	0.0002428	40	Kaplan-Meier	No	0.01	Param.
Selenium (mg/L)	GWB-4R	0.003863	0.0026	0.05	No	2	0.004131	0.001264	42.86	Kaplan-Meier	No	0.01	Param.
Selenium (mg/L)	GWB-5R	0.006	0.0033	0.05	No	2	0.004924	0.0009823	80.95	Kaplan-Meier	No	0.01	NP (NDs)
Selenium (mg/L)	GWB-6R	0.005	0.0023	0.05	No	2	0.00617	0.01014	57.14	Kaplan-Meier	No	0.01	NP (NDs)
Selenium (mg/L)	GWC-1	0.0026	0.0018	0.05	No	2	0.003491	0.004609	9.524	None	No	0.01	NP (normality)
Selenium (mg/L)	GWC-11	0.007591	0.003421	0.05	No	2	0.007207	0.005946	19.05	Kaplan-Meier	ln(x)	0.01	Param.
Selenium (mg/L)	GWC-12	0.005	0.003	0.05	No	2	0.004495	0.001084	80.95	Kaplan-Meier	No	0.01	NP (NDs)
Selenium (mg/L)	GWC-14	0.004476	0.003098	0.05	No	22	0.003787	0.001284	4.545	None	No	0.01	Param.
Selenium (mg/L)	GWC-15	0.004932	0.002125	0.05	No	2	0.005101	0.002916	42.86	Kaplan-Meier	sqrt(x)	0.01	Param.
Selenium (mg/L)	GWC-16	0.005345	0.003529	0.05	No	22	0.004437	0.001692	4.545	None	No	0.01	Param.
Selenium (mg/L)	GWC-17	0.005	0.0016	0.05	No	2	0.003619	0.001743	57.14	None	No	0.01	NP (NDs)
Selenium (mg/L)	GWC-2	0.005	0.0035	0.05	No	2	0.004786	0.0007171	90.48	None	No	0.01	NP (NDs)
Selenium (mg/L)	GWC-20	0.005	0.00192	0.05	No	2	0.003868	0.001656	66.67	None	No	0.01	NP (NDs)
Selenium (mg/L)	GWC-21	0.01972	0.0105	0.05	No	2	0.01511	0.008357	0	None	No	0.01	Param.
Selenium (mg/L)	GWC-22	0.005	0.0023	0.05	No	2	0.004376	0.00134	80.95	None	No	0.01	NP (NDs)
Thallium (mg/L)	GWB-4R	0.002	0.00007	0.002	No	17	0.001773	0.000641	88.24	None	No	0.01	NP (NDs)
Thallium (mg/L)	GWB-5R	0.002	0.00031	0.002	No	17	0.001786	0.0006049	88.24	None	No	0.01	NP (NDs)
Thallium (mg/L)	GWC-1	0.002	0.000054	0.002	No	17	0.001656	0.0007652	82.35	None	No	0.01	NP (NDs)
Thallium (mg/L)	GWC-11	0.002	0.0001	0.002	No	17	0.001125	0.000958	52.94	None	No	0.01	NP (NDs)
Thallium (mg/L)	GWC-12	0.002	0.00014	0.002	No	17	0.001146	0.0009346	52.94	None	No	0.01	NP (NDs)
Thallium (mg/L)	GWC-14	0.002	0.00007	0.002	No	17	0.001772	0.0006426	88.24	None	No	0.01	NP (NDs)
Thallium (mg/L)	GWC-16	0.002	0.00006	0.002	No	17	0.001771	0.0006459	88.24	None	No	0.01	NP (NDs)
Thallium (mg/L)	GWC-17	0.002	0.000076	0.002	No	17	0.001323	0.0009444	64.71	None	No	0.01	NP (NDs)
Thallium (mg/L)	GWC-2	0.002	0.00011	0.002	No	18	0.001895	0.0004455	94.44	None	No	0.01	NP (NDs)
Thallium (mg/L)	GWC-21	0.002	0.00005	0.002	No	17	0.001885	0.0004729	94.12	None	No	0.01	NP (NDs)
Thallium (mg/L)	GWC-22	0.002	0.0001	0.002	No	17	0.00144	0.0008944	70.59	None	No	0.01	NP (NDs)
Vanadium (mg/L)	GWB-4R	0.0388	0.0031	0.43	No	16	0.01918	0.01676	6.25	None	No	0.01	NP (normality)
Vanadium (mg/L)	GWB-5R	0.01088	0.004351	0.43	No	16	0.008994	0.00808	6.25	None	ln(x)	0.01	Param.
Vanadium (mg/L)	GWB-6R	0.02669	0.008142	0.43	No	16	0.02263	0.02488	0	None	ln(x)	0.01	Param.
Vanadium (mg/L)	GWC-1	0.008409	0.00372	0.43	No	16	0.006849	0.005337	12.5	None	ln(x)	0.01	Param.
Vanadium (mg/L)	GWC-11	0.00481	0.0021	0.43	No	16	0.005832	0.007061	18.75	None	No	0.01	NP (normality)

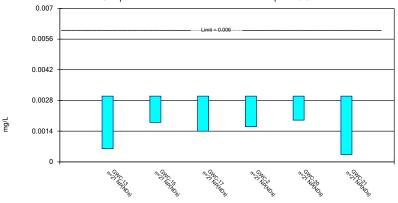
	Grumm	nan Road Landfill	Client: South	ern Company	Data	a: G	rumman Road	Landfill Printe	ed 11/6/2	2022, 10:03 AM			
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	N	Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Vanadium (mg/L)	GWC-12	0.008356	0.003653	0.43	No	1	6 0.006837	0.005433	12.5	None	ln(x)	0.01	Param.
Vanadium (mg/L)	GWC-13	0.02	0.0019	0.43	No	1	6 0.01482	0.008138	68.75	None	No	0.01	NP (NDs)
Vanadium (mg/L)	GWC-14	0.01685	0.008245	0.43	No	1	9 0.01406	0.007586	15.79	Kaplan-Meier	No	0.01	Param.
Vanadium (mg/L)	GWC-15	0.02	0.0022	0.43	No	1	8 0.00837	0.008492	33.33	None	No	0.01	NP (normality)
Vanadium (mg/L)	GWC-16	0.0065	0.0026	0.43	No	1	9 0.006719	0.007108	21.05	None	No	0.01	NP (normality)
Vanadium (mg/L)	GWC-17	0.02	0.0024	0.43	No	1	6 0.0105	0.008699	43.75	None	No	0.01	NP (normality)
Vanadium (mg/L)	GWC-2	0.02	0.0045	0.43	No	1	6 0.01793	0.005666	87.5	None	No	0.01	NP (NDs)
Vanadium (mg/L)	GWC-20	0.02	0.0025	0.43	No	1	8 0.007865	0.007799	27.78	None	No	0.01	NP (normality)
Vanadium (mg/L)	GWC-21	0.02	0.0029	0.43	No	1	6 0.007603	0.007491	25	None	No	0.01	NP (normality)
Vanadium (mg/L)	GWC-22	0.02	0.0016	0.43	No	1	6 0.01237	0.008989	56.25	None	No	0.01	NP (NDs)
Vanadium (mg/L)	GWC-9	0.02	0.00514	0.43	No	1	6 0.01675	0.00704	81.25	None	No	0.01	NP (NDs)
Vanadium (mg/L)	MW-24D	0.02	0.00414	0.43	No	4	0.01603	0.00793	75	None	No	0.0625	NP (NDs)
Vanadium (mg/L)	MW-25D	0.02	0.0024	0.43	No	4	0.0156	0.0088	75	None	No	0.0625	NP (NDs)
Zinc (mg/L)	GWB-4R	0.008677	0.004539	0.16	No	1	6 0.01116	0.006702	31.25	Kaplan-Meier	x^(1/3)	0.01	Param.
Zinc (mg/L)	GWB-5R	0.02	0.0023	0.16	No	1	6 0.01588	0.007495	75	Kaplan-Meier	No	0.01	NP (NDs)
Zinc (mg/L)	GWB-6R	0.02	0.0032	0.16	No	1	6 0.01415	0.007714	56.25	Kaplan-Meier	No	0.01	NP (NDs)
Zinc (mg/L)	GWC-1	0.02	0.0057	0.16	No	1	6 0.01526	0.007441	68.75	Kaplan-Meier	No	0.01	NP (NDs)
Zinc (mg/L)	GWC-11	0.02	0.0031	0.16	No	1	6 0.01487	0.007904	68.75	Kaplan-Meier	No	0.01	NP (NDs)
Zinc (mg/L)	GWC-12	0.02	0.0025	0.16	No	1	6 0.009019	0.008732	25	None	No	0.01	NP (normality)
Zinc (mg/L)	GWC-13	0.039	0.0027	0.16	No	1	6 0.02045	0.01819	0	None	No	0.01	NP (normality)
Zinc (mg/L)	GWC-14	0.02	0.01	0.16	No	1	9 0.01682	0.006502	78.95	None	No	0.01	NP (NDs)
Zinc (mg/L)	GWC-15	0.032	0.0051	0.16	No	1	8 0.01895	0.005959	83.33	None	No	0.01	NP (NDs)
Zinc (mg/L)	GWC-16	0.02	0.0031	0.16	No	1	9 0.01362	0.008076	57.89	None	No	0.01	NP (NDs)
Zinc (mg/L)	GWC-17	0.01465	0.008288	0.16	No	1	6 0.01147	0.004888	12.5	None	No	0.01	Param.
Zinc (mg/L)	GWC-2	0.056	0.0018	0.16	No	1	6 0.01656	0.01312	56.25	None	No	0.01	NP (NDs)
Zinc (mg/L)	GWC-20	0.031	0.0171	0.16	No	1	8 0.01869	0.005951	77.78	None	No	0.01	NP (NDs)
Zinc (mg/L)	GWC-21	0.02	0.002	0.16	No	1	6 0.01437	0.007802	62.5	None	No	0.01	NP (NDs)
Zinc (mg/L)	GWC-22	0.02	0.0031	0.16	No	1	6 0.01322	0.007473	50	None	No	0.01	NP (normality)
Zinc (mg/L)	GWC-9	0.02	0.0026	0.16	No	1	6 0.009862	0.008504	25	None	No	0.01	NP (normality)
Zinc (mg/L)	MW-23D	0.01308	0.004223	0.16	No	4	0.01432	0.006744	50	Kaplan-Meier	No	0.01	Param.
Zinc (mg/L)	MW-24D	0.01509	-0.002391	0.16	No	4	0.01317	0.008485	50	Kaplan-Meier	No	0.01	Param.
Zinc (mg/L)	MW-25D	0.06176	-0.02013	0.16	No	4	0.02312	0.01958	25	Kaplan-Meier	No	0.01	Param.

Non-Parametric Confidence Interval



Constituent: Antimony Analysis Run 11/6/2022 10:01 AM View: Appendix II & IV - Confidence Intervals

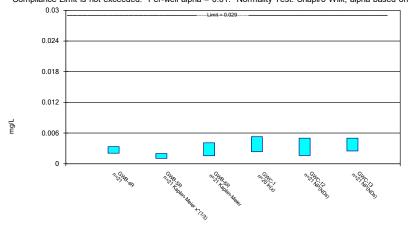
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

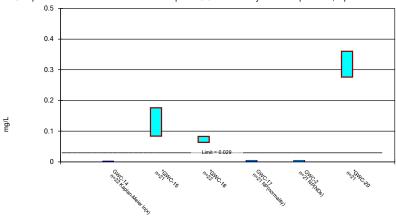
Non-Parametric Confidence Interval

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.



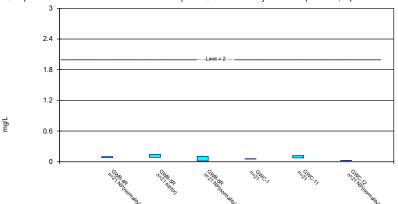
Constituent: Antimony Analysis Run 11/6/2022 10:01 AM View: Appendix II & IV - Confidence Intervals


Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

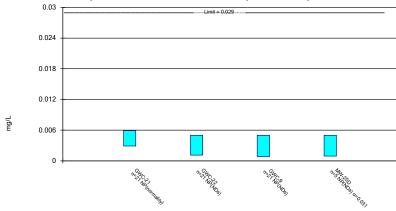
Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Arsenic Analysis Run 11/6/2022 10:01 AM View: Appendix II & IV - Confidence Intervals

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

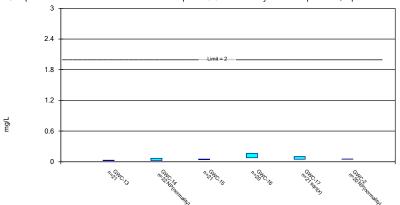
Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

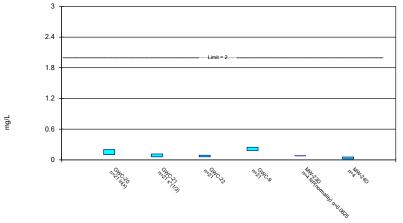
Constituent: Barium Analysis Run 11/6/2022 10:01 AM View: Appendix II & IV - Confidence Intervals Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.



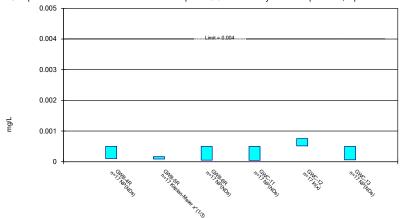
Constituent: Arsenic Analysis Run 11/6/2022 10:01 AM View: Appendix II & IV - Confidence Intervals


Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

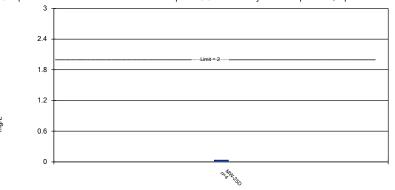

Constituent: Barium Analysis Run 11/6/2022 10:01 AM View: Appendix II & IV - Confidence Intervals

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

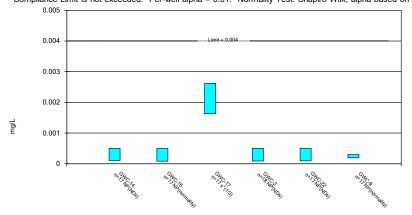
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

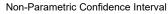


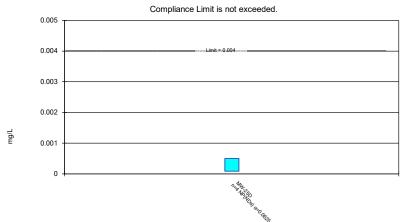
Constituent: Beryllium Analysis Run 11/6/2022 10:01 AM View: Appendix II & IV - Confidence Intervals

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Parametric Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



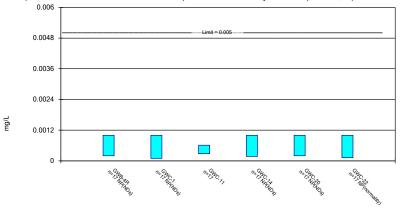

Constituent: Barium Analysis Run 11/6/2022 10:01 AM View: Appendix II & IV - Confidence Intervals
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

Constituent: Beryllium Analysis Run 11/6/2022 10:02 AM View: Appendix II & IV - Confidence Intervals
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Non-Parametric Confidence Interval

Constituent: Cadmium Analysis Run 11/6/2022 10:02 AM View: Appendix II & IV - Confidence Intervals
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

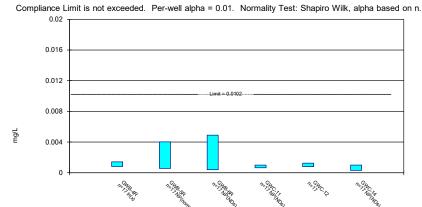


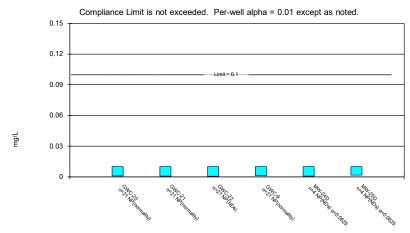
Constituent: Cadmium Analysis Run 11/6/2022 10:02 AM View: Appendix II & IV - Confidence Intervals


Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

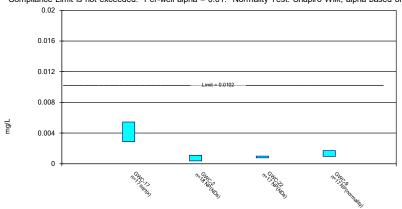
Parametric and Non-Parametric (NP) Confidence Interval


Non-Parametric Confidence Interval


Constituent: Chromium Analysis Run 11/6/2022 10:02 AM View: Appendix II & IV - Confidence Intervals Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

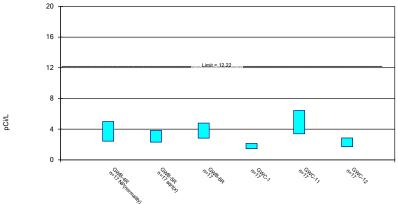
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval


Non-Parametric Confidence Interval

Constituent: Chromium Analysis Run 11/6/2022 10:02 AM View: Appendix II & IV - Confidence Intervals Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

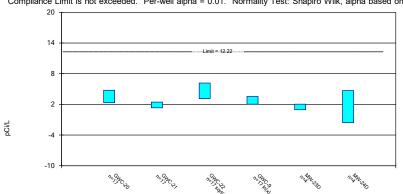
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Parametric and Non-Parametric (NP) Confidence Interval

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

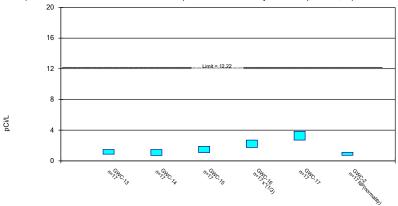
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



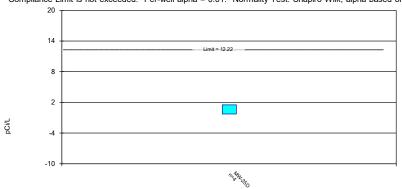
Constituent: Combined Radium 226 + 228 Analysis Run 11/6/2022 10:02 AM View: Appendix II & IV - Con Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

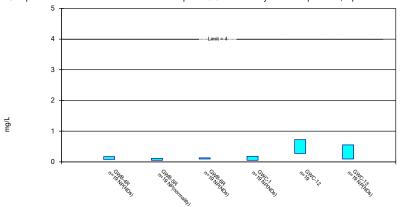
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric and Non-Parametric (NP) Confidence Interval

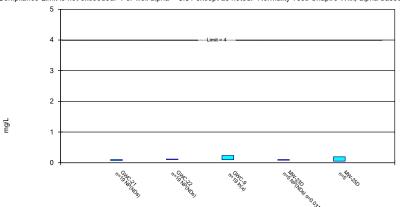

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Combined Radium 226 + 228 Analysis Run 11/6/2022 10:02 AM View: Appendix II & IV - Con Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

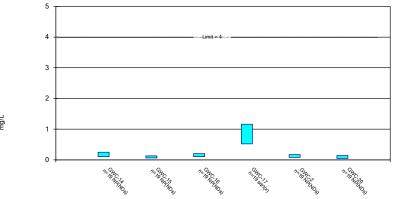
Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Fluoride Analysis Run 11/6/2022 10:02 AM View: Appendix II & IV - Confidence Intervals

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

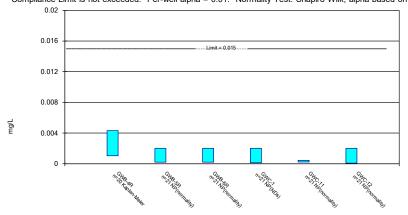
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Parametric and Non-Parametric (NP) Confidence Interval

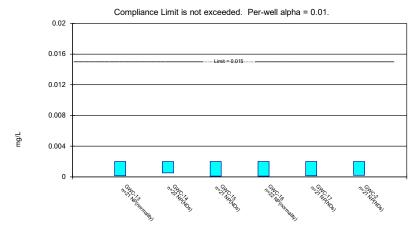
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Fluoride Analysis Run 11/6/2022 10:02 AM View: Appendix II & IV - Confidence Intervals


Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

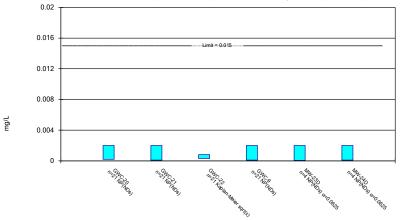
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

Non-Parametric Confidence Interval

Constituent: Lead Analysis Run 11/6/2022 10:02 AM View: Appendix II & IV - Confidence Intervals

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

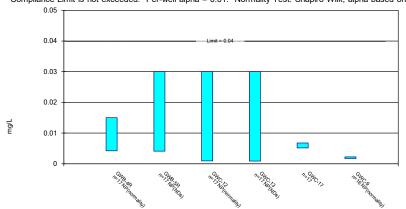

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Non-Parametric Confidence Interval Compliance Limit is not exceeded. 0.02 0.016 0.012 0.008 0.008 0.004

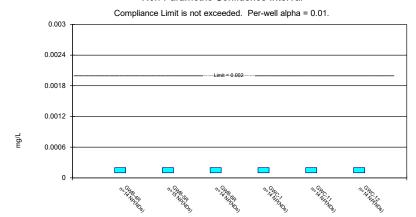
Constituent: Lead Analysis Run 11/6/2022 10:02 AM View: Appendix II & IV - Confidence Intervals Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

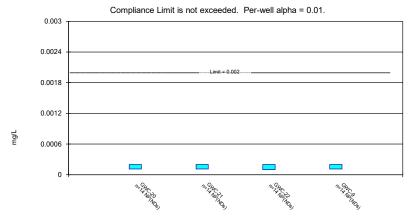


Constituent: Lead Analysis Run 11/6/2022 10:02 AM View: Appendix II & IV - Confidence Intervals

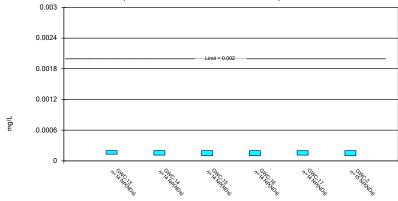

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval


Non-Parametric Confidence Interval

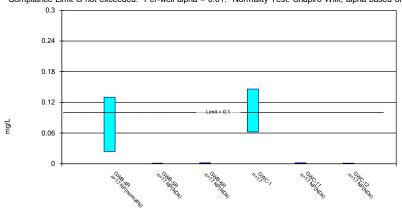
Constituent: Mercury Analysis Run 11/6/2022 10:02 AM View: Appendix II & IV - Confidence Intervals
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill


Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

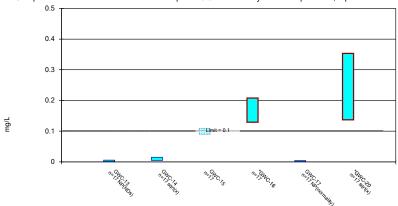
Non-Parametric Confidence Interval

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.



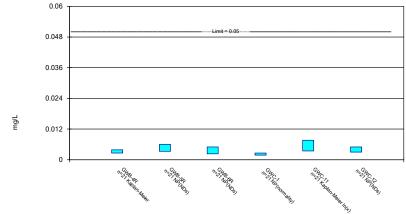
Constituent: Mercury Analysis Run 11/6/2022 10:02 AM View: Appendix II & IV - Confidence Intervals


Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

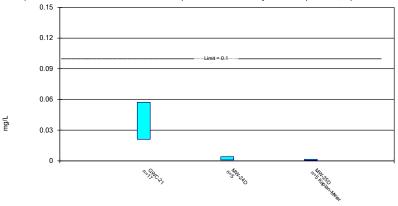
Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Molybdenum Analysis Run 11/6/2022 10:02 AM View: Appendix II & IV - Confidence Intervals
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

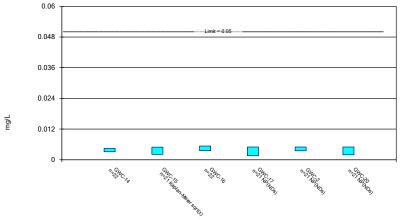
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

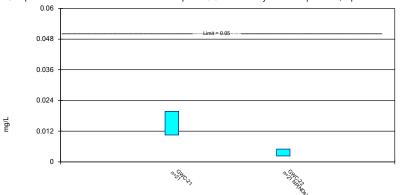
Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Selenium Analysis Run 11/6/2022 10:02 AM View: Appendix II & IV - Confidence Intervals Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Parametric Confidence Interval

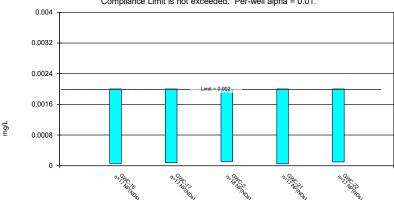

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Molybdenum Analysis Run 11/6/2022 10:02 AM View: Appendix II & IV - Confidence Intervals
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

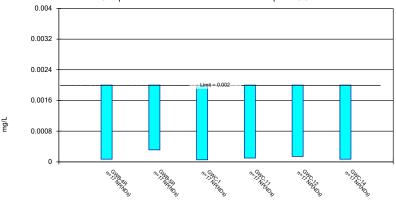
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



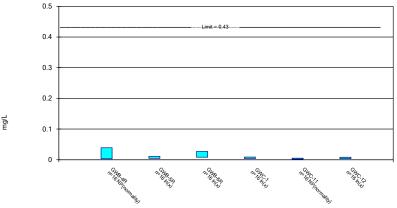
Constituent: Selenium Analysis Run 11/6/2022 10:02 AM View: Appendix II & IV - Confidence Intervals Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

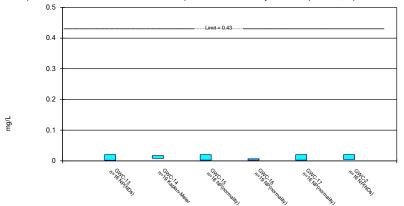
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

Non-Parametric Confidence Interval

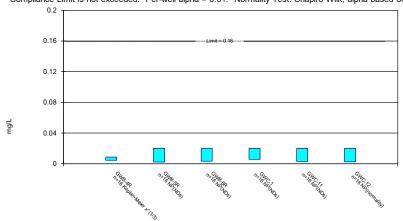

Compliance Limit is not exceeded. Per-well alpha = 0.01.


Constituent: Thallium Analysis Run 11/6/2022 10:02 AM View: Appendix II & IV - Confidence Intervals Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

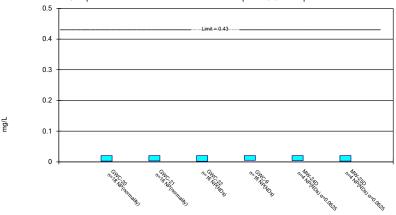
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Vanadium Analysis Run 11/6/2022 10:03 AM View: Appendix II & IV - Confidence Intervals
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

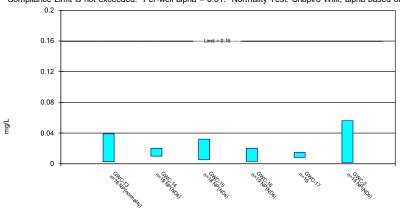
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

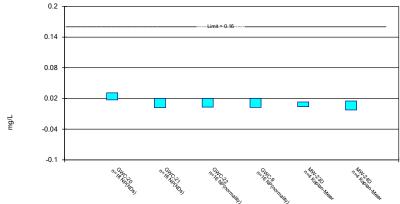
Constituent: Zinc Analysis Run 11/6/2022 10:03 AM View: Appendix II & IV - Confidence Intervals
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Non-Parametric Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.

Constituent: Vanadium Analysis Run 11/6/2022 10:03 AM View: Appendix II & IV - Confidence Intervals
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

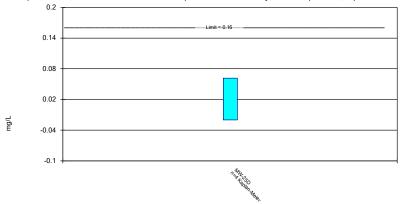
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Parametric and Non-Parametric (NP) Confidence Interval

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Zinc Analysis Run 11/6/2022 10:03 AM View: Appendix II & IV - Confidence Intervals

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

	GWB-4R	GWB-5R	GWB-6R	GWC-1	GWC-11	GWC-12
1/17/2016				<0.003		
1/18/2016	<0.003	<0.003	<0.003			<0.003
1/19/2016					<0.003	
7/26/2016					0.0005 (J)	
7/27/2016		<0.003		<0.003		<0.003
7/28/2016			<0.003			
7/29/2016	0.0003 (J)					
8/30/2016		<0.003	<0.003	<0.003		
8/31/2016		0.000	0.000	0.000	<0.003	<0.003
9/1/2016	<0.003				-0.000	-0.000
10/25/2016	-0.000			<0.003		
	<0.002	<0.002	<0.002	~0.003	<0.002	~0.002
10/26/2016	<0.003	<0.003	<0.003		<0.003	<0.003
1/3/2017		<0.003		10.000	-0.000	-0.000
1/4/2017				<0.003	<0.003	<0.003
1/5/2017			<0.003			
1/6/2017	<0.003					
4/4/2017	<0.003			<0.003		
4/5/2017						<0.003
4/6/2017		<0.003	<0.003		0.0006 (J)	
7/10/2017						<0.003
7/11/2017					0.0009 (J)	
7/12/2017	<0.003	<0.003	<0.003	<0.003		
10/3/2017		<0.003	<0.003	<0.003	<0.003	
10/4/2017	< 0.003					<0.003
1/9/2018			<0.003			
1/10/2018		<0.003		<0.003		
1/11/2018	<0.003				0.0007 (J)	<0.003
7/10/2018		<0.003	<0.003	<0.003		
7/11/2018	<0.003				<0.003	<0.003
1/16/2019	<0.003	<0.003	<0.003	<0.003	-	
1/17/2019	0.000	5.550	3.550	5.550	<0.003	<0.003
3/25/2019	<0.003				2.000	2.200
3/26/2019	-0.000	<0.003	<0.003	<0.003		
3/26/2019		50.000	-0.003	50.000	<0.003	<0.003
	<0.000		<0.003	<0.003	<0.003	
8/27/2019	<0.003	0.0005470	<0.003	<0.003	0.00033 (J)	<0.003
8/28/2019		0.00054 (J)			0.000.10	
10/8/2019					0.00046 (J)	
10/9/2019	<0.003	<0.003	<0.003	<0.003		<0.003
4/7/2020	<0.003	<0.003	<0.003	<0.003	0.00066 (J)	<0.003
8/17/2020						<0.003
8/18/2020					0.00064 (J)	
8/19/2020	<0.003	<0.003	<0.003	0.00061 (J)		
9/28/2020				0.00035 (J)		
9/29/2020					0.00051 (J)	<0.003
9/30/2020		0.0003 (J)	0.00059 (J)			
10/1/2020	<0.003					
3/10/2021	<0.003	<0.003	0.00029 (J)	0.00069 (J)	0.00076 (J)	0.0003 (J)
9/21/2021	<0.003	0.0013 (J)	<0.003		<0.003	<0.003
9/23/2021		.,		0.0016 (J)		
2/2/2022	<0.003		<0.003	` '		
2/3/2022	-	<0.003		<0.003	<0.003	<0.003
8/30/2022	<0.003	<0.003	<0.003	3.000	5.000	<0.003
0/30/2022	50.003	-0.003	×0.003			×0.000

	GWB-4R	GWB-5R	GWB-6R	GWC-1	GWC-11	GWC-12
8/31/2022					< 0.003	
9/1/2022				<0.003		
Mean	0.002871	0.002673	0.002756	0.002583	0.00186	0.002871
Std. Dev.	0.0005892	0.0008364	0.0007715	0.0009051	0.00123	0.0005892
Upper Lim.	0.003	0.003	0.003	0.003	0.003	0.003
Lower Lim.	0.0003	0.0013	0.00059	0.0016	0.0006	0.0003

					,	
	GWC-13	GWC-15	GWC-17	GWC-2	GWC-20	GWC-21
1/17/2016		<0.003		<0.003	<0.003	<0.003
1/18/2016	<0.003		<0.003			
7/26/2016	0.0006 (J)					
7/27/2016		<0.003		<0.003		
7/28/2016					0.0019 (J)	<0.003
7/29/2016			<0.003		. ,	
8/31/2016	<0.003			<0.003		
9/1/2016		<0.003	<0.003		<0.003	<0.003
10/25/2016		<0.003	0.000		<0.003	<0.003
10/26/2016	<0.003		<0.003	<0.003		
1/4/2017	-:-30				<0.003	<0.003
1/5/2017	<0.003	<0.003	<0.003	<0.003	0.000	0.000
4/3/2017	.0.000	<0.003	-0.000	-0.000		
4/4/2017		-0.000		<0.003	<0.003	<0.003
4/4/2017			<0.003	÷0.003	-0.005	-0.003
	<0.003		~U.UU3			
4/6/2017	<0.003	<0.002			<0.003	
7/11/2017	<0.002	<0.003			<0.003	
7/12/2017	<0.003		-0.000	10.000		-0.000
7/13/2017			<0.003	<0.003		<0.003
10/2/2017		<0.003			<0.003	
10/3/2017				<0.003		<0.003
10/4/2017	<0.003		<0.003			
1/9/2018		<0.003				<0.003
1/10/2018	<0.003			<0.003	<0.003	
1/11/2018			<0.003			
7/9/2018					<0.003	
7/10/2018		<0.003		<0.003		<0.003
7/11/2018	<0.003		<0.003			
1/16/2019	<0.003		<0.003			
1/17/2019		<0.003				<0.003
1/21/2019				<0.003	<0.003	
3/25/2019					<0.003	
3/26/2019	<0.003	<0.003	<0.003			<0.003
7/30/2019				<0.003		
8/27/2019	<0.003	<0.003		<0.003		
8/28/2019			<0.003		<0.003	<0.003
10/8/2019	<0.003	<0.003				<0.003
10/9/2019			<0.003	<0.003	<0.003	
4/7/2020		<0.003				<0.003
4/8/2020	<0.003		<0.003	0.0013 (J)	<0.003	
8/17/2020	<0.003			,(0)		
8/18/2020	0.000	<0.003	<0.003	<0.003	<0.003	<0.003
9/28/2020	<0.003	-0.000	-0.000	-0.000	-0.000	.0.000
	-0.003			0.0016 (J)		
9/29/2020		<0.002	<0.003	0.00 io (J)	<0.003	0.00033 (!)
9/30/2020		<0.003	<0.003		<0.003	0.00033 (J)
3/11/2021		0.0010.75	0.00039 (J)		0.00005 (1)	
3/12/2021		0.0018 (J)			0.00065 (J)	
3/15/2021	<0.003			<0.003		
3/16/2021						<0.003
9/21/2021	<0.003					
9/22/2021			0.0014 (J)	<0.003	<0.003	<0.003
9/23/2021		<0.003				

	GWC-13	GWC-15	GWC-17	GWC-2	GWC-20	GWC-21
2/1/2022			<0.003		< 0.003	<0.003
2/2/2022				<0.003		
2/3/2022	<0.003	<0.003				
8/30/2022					< 0.003	<0.003
8/31/2022	<0.003	<0.003	<0.003			
9/1/2022				<0.003		
Mean	0.002886	0.002943	0.0028	0.002852	0.002836	0.002873
Std. Dev.	0.0005237	0.0002619	0.000653	0.0004686	0.0005552	0.0005826
Upper Lim.	0.003	0.003	0.003	0.003	0.003	0.003
Lower Lim.	0.0006	0.0018	0.0014	0.0016	0.0019	0.00033

	GWC-22	GWC-9
1/18/2016	<0.003	<0.003
7/28/2016		<0.003
7/29/2016	<0.003	
8/31/2016	<0.003	<0.003
10/26/2016	<0.003	
10/27/2016		0.0016 (J)
1/4/2017	<0.003	
1/6/2017		<0.003
4/6/2017	<0.003	<0.003
7/11/2017	<0.003	
7/12/2017		<0.003
10/4/2017	<0.003	<0.003
1/11/2018	<0.003	<0.003
7/11/2018	<0.003	<0.003
1/18/2019	<0.003	<0.003
3/27/2019	<0.003	<0.003
8/27/2019	0.00045 (J)	
8/28/2019		<0.003
10/9/2019	<0.003	<0.003
4/7/2020	0.00049 (J)	
4/8/2020		0.00033 (J)
8/18/2020	0.0022 (J)	
8/19/2020		<0.003
9/30/2020	0.0016 (J)	
10/1/2020		<0.003
3/10/2021	0.0004 (J)	<0.003
9/21/2021	<0.003	
9/22/2021		<0.003
2/2/2022		<0.003
2/3/2022	<0.003	
8/31/2022	<0.003	
9/1/2022		<0.003
Mean	0.00253	0.002806
Std. Dev.	0.0009363	0.0006442
Upper Lim.	0.003	0.003
Lower Lim.	0.0022	0.0016

			Gruiillian Noau L	-andini Cherit. 30t	illieni Company L	Ada. Grunninan Noau Eanunii
	GWB-4R	GWB-5R	GWB-6R	GWC-1	GWC-12	GWC-13
1/17/2016				0.024 (O)		
1/18/2016	<0.005	<0.005	<0.005		<0.005	<0.005
7/26/2016						<0.005
7/27/2016		0.0008 (J)		0.0046 (J)	<0.005	
7/28/2016			0.0009 (J)			
7/29/2016	0.0014 (J)					
8/30/2016		<0.005	<0.005	0.0023 (J)		
8/31/2016					<0.005	<0.005
9/1/2016	0.0033 (J)					
10/25/2016				0.0035 (J)		
10/26/2016	0.0016 (J)	<0.005	<0.005		<0.005	<0.005
1/3/2017		<0.005				
1/4/2017				0.0018 (J)	<0.005	
1/5/2017			0.0021 (J)			<0.005
1/6/2017	<0.005					
4/4/2017	0.0021 (J)			0.0015 (J)		
4/5/2017					0.0006 (J)	
4/6/2017		0.0006 (J)	0.0011 (J)			<0.005
7/10/2017		.,	.,		0.0008 (J)	
7/12/2017	0.0015 (J)	0.0009 (J)	0.0014 (J)	0.0015 (J)	. ,	<0.005
10/3/2017	, ,	0.001 (J)	0.0014 (J)	0.0013 (J)		
10/4/2017	0.0018 (J)	. ,	· · ·	· · ·	0.0009 (J)	<0.005
1/9/2018	(1)		0.0017 (J)		(-,	
1/10/2018		0.0012 (J)	(-)	0.0023 (J)		0.0006 (J)
1/11/2018	0.0015 (J)	(-,		(-)	<0.005	
7/10/2018	(1)	0.0016 (J)	0.00063 (J)	0.0031 (J)		
7/11/2018	0.00095 (J)	(-)			<0.005	<0.005
1/16/2019	0.0024 (J)	0.0011 (J)	<0.005	0.0023 (J)		<0.005
1/17/2019				(0)	<0.005	
3/25/2019	0.0029 (J)				0.000	
3/26/2019	0.0020 (0)	0.0014 (J)	0.0029 (J)	0.0032 (J)		0.00058 (J)
3/27/2019				(0)	<0.005	(-)
8/27/2019	0.0023 (J)		0.0035 (J)	0.0022 (J)	<0.005	<0.005
8/28/2019	0.0020 (0)	0.0023 (J)	0.0000 (0)	0.0022 (0)	0.000	3.335
10/8/2019		0.0020 (0)				<0.005
10/9/2019	0.0024 (J)	0.0053 (J)	0.0018 (J)	0.0042 (J)	<0.005	0.000
4/7/2020	0.0027 (J)	0.0011 (J)	<0.005	0.027	<0.005	
4/8/2020	0.0027 (0)	0.0011(0)	0.000	0.027	0.000	<0.005
8/17/2020					<0.005	<0.005
8/19/2020	0.0033 (J)	0.0019 (J)	0.0036 (J)	0.007	0.000	3.335
9/28/2020	0.0000 (0)	0.0010 (0)	0.0000 (0)	0.0058		<0.005
9/29/2020				0.0000	<0.005	0.000
9/30/2020		0.0017 (J)	0.004 (J)		-0.000	
10/1/2020	0.0027 (J)	0.0017 (0)	0.004 (3)			
3/10/2021	0.0027 (J)	0.0019 (J)	0.0054	0.0055	<0.005	
3/15/2021	0.0020 (0)	3.0010 (0)	3.0007	3.0000	3.000	<0.005
9/21/2021	0.0027 (J)	<0.005	0.0054		<0.005	<0.005
9/21/2021 9/23/2021	J.0027 (J)	·0.003	J.000 4	0.0048 (J)	.0.000	-0.000
2/2/2022	0.0036 (J)		0.01	5.00 1 0 (0)		
2/3/2022	0.0000 (0)	0.0029 (J)	J.01	0.0057	0.0016 (J)	0.0025 (J)
8/30/2022	0.0049 (J)	0.0029 (J) 0.00253 (J)	0.00716	3.0037	<0.005	0.0020 (v)
8/31/2022	0.0040 (0)	0.00200 (0)	5.00710		-0.000	<0.005
U. U II L U L L						

	GWB-4R	GWB-5R	GWB-6R	GWC-1	GWC-12	GWC-13
9/1/2022				0.00568		
Mean	0.002693	0.002535	0.003714	0.004764	0.004233	0.004461
Std. Dev.	0.00117	0.001726	0.002361	0.00551	0.001628	0.001397
Upper Lim.	0.003338	0.001983	0.004092	0.00526	0.005	0.005
Lower Lim.	0.002047	0.001062	0.001557	0.002364	0.0016	0.0025

	GWC-14	GWC-15	GWC-16	GWC-17	GWC-2	GWC-20
1/17/2016	0.002 (J)	0.014	0.089		<0.005	0.34
1/18/2016				<0.005		
4/26/2016	0.00183 (J)		0.0731			
7/27/2016	0.0021 (J)	0.0303			<0.005	
7/28/2016			0.0627			0.209
7/29/2016				0.0009 (J)		
8/31/2016					<0.005	
9/1/2016	0.0024 (J)	0.0533	0.0551	<0.005		0.215
10/25/2016	<0.005	0.0551	0.0466			0.307
10/26/2016				<0.005	<0.005	
1/4/2017			0.0444			0.311
1/5/2017	0.0024 (J)	0.0437		<0.005	<0.005	
4/3/2017		0.0713				
4/4/2017	0.003 (J)				<0.005	0.317
4/5/2017			0.0591	0.0011 (J)		
7/11/2017	0.0019 (J)	0.0745				0.299
7/12/2017			0.0776			
7/13/2017				0.0016 (J)	<0.005	
10/2/2017	0.0026 (J)	0.0723				0.216
10/3/2017			0.0813		<0.005	
10/4/2017				0.0019 (J)		
1/9/2018	0.0021 (J)	0.0731				
1/10/2018			0.085		0.0006 (J)	0.347
1/11/2018				0.0015 (J)		
7/9/2018	0.0019 (J)					0.37
7/10/2018		0.09	0.067		<0.005	
7/11/2018				0.00082 (J)		
1/16/2019	0.0016 (J)			<0.005		
1/17/2019		0.13	0.079			
1/21/2019					<0.005	0.44
3/25/2019						0.41
3/26/2019	0.0023 (J)	0.1	0.089	0.0015 (J)		
7/30/2019					0.00039 (J)	
8/27/2019	0.0017 (J)	0.17			<0.005	
8/28/2019			0.091	0.0011 (J)		0.43
10/8/2019	0.0017 (J)	0.13	0.088			
10/9/2019				0.0011 (J)	<0.005	0.35
4/7/2020	0.0018 (J)	0.24	0.091			
4/8/2020				0.0013 (J)	0.00094 (J)	0.33
8/18/2020	0.0012 (J)	0.28	0.045	<0.005	<0.005	0.3
9/29/2020	<0.005				<0.005	
9/30/2020		0.24	0.044	0.0012 (J)		0.31
3/11/2021				0.0009 (J)		
3/12/2021		0.16				0.27
3/15/2021					<0.005	
3/16/2021	<0.005		0.064			
9/22/2021	0.0014 (J)		0.081	<0.005	<0.005	0.23
9/23/2021		0.21				
2/1/2022			0.095	<0.005		0.22
2/2/2022	0.0036 (J)				<0.005	
2/3/2022		0.23				
8/30/2022	<0.005					0.465

	GWC-14	GWC-15	GWC-16	GWC-17	GWC-2	GWC-20
8/31/2022		0.259		<0.005		
9/1/2022			0.0987		<0.005	
Mean	0.002615	0.1298	0.07303	0.002853	0.004378	0.3184
Std. Dev.	0.001262	0.08372	0.01792	0.00192	0.001565	0.07621
Upper Lim.	0.002219	0.176	0.08264	0.005	0.005	0.3604
Lower Lim.	0.001636	0.08366	0.06341	0.0011	0.00094	0.2763

			Gruininan No	ad Cardinii Cilent. Southern Company Data. Grumman Noad Cardinii
	GWC-21	GWC-22	GWC-9	MW-25D
1/17/2016	0.0065			
1/18/2016		<0.005	<0.005	
7/28/2016	<0.005		<0.005	
7/29/2016		0.002 (J)		
8/31/2016		0.0017 (J)	<0.005	
9/1/2016	0.0039 (J)			
10/25/2016	<0.005			
10/26/2016		<0.005		
10/27/2016			<0.005	
1/4/2017	<0.005	<0.005		
1/6/2017			<0.005	
4/4/2017	0.0031 (J)		0.000	
4/6/2017	0.0001 (0)	0.0006 (J)	<0.005	
7/11/2017		0.0000 (J) 0.0012 (J)	10.003	
7/11/2017		0.0012 (3)	<0.005	
	-0.005		<0.005	
7/13/2017	<0.005			
10/3/2017	<0.005	0.0005 (1)	.0.005	
10/4/2017		0.0025 (J)	<0.005	
1/9/2018	0.0033 (J)			
1/11/2018		0.0006 (J)	<0.005	
7/10/2018	0.0027 (J)			
7/11/2018		0.0011 (J)	<0.005	
1/17/2019	0.0022 (J)			
1/18/2019		<0.005	<0.005	
3/26/2019	0.0045 (J)			
3/27/2019		<0.005	<0.005	
8/27/2019		0.00044 (J)		
8/28/2019	0.002 (J)		<0.005	
10/8/2019	0.0028 (J)			
10/9/2019		<0.005	<0.005	
4/7/2020	<0.005	0.00043 (J)		
4/8/2020			0.00084 (J)	
8/18/2020	0.0059	<0.005		
8/19/2020			<0.005	
9/30/2020	0.0029 (J)	<0.005		
10/1/2020			<0.005	
1/20/2021				<0.005
3/10/2021		<0.005	<0.005	
3/11/2021				0.00092 (J)
3/16/2021	0.0098			
9/21/2021		<0.005		
9/22/2021	<0.005		<0.005	
9/23/2021				<0.005
2/1/2022	0.02			
2/2/2022	0.02		<0.005	
2/3/2022		<0.005	~0.000	<0.005
	0.0271	~0.000		-0.000
8/30/2022	0.0271	~0.00 5		40.00F
8/31/2022		<0.005	<0.00F	<0.005
9/1/2022	0.0000=:	0.0000	<0.005	0.004404
Mean	0.006271	0.00336	0.004802	0.004184
Std. Dev.	0.006103	0.001997	0.0009078	0.001825
Upper Lim.	0.0059	0.005	0.005	0.005

Page 2

Confidence Interval

	GWC-21	GWC-22	GWC-9	MW-25D
Lower Lim.	0.0029	0.0011	0.00084	0.00092

	GWB-4R	GWB-5R	GWB-6R	GWC-1	GWC-11	GWC-12	
1/17/2016				0.062			
1/18/2016	0.095	0.12	0.11			0.032	
1/19/2016					0.048		
7/26/2016					0.051		
7/27/2016		0.112		0.0417		0.0191	
7/28/2016			0.105				
7/29/2016	0.0883						
8/30/2016		0.135	0.106	0.0545			
8/31/2016					0.0565	0.019	
9/1/2016	0.123						
10/25/2016				0.0504			
10/26/2016	0.0863	0.103	0.107		0.0591	0.0197	
1/3/2017		0.118					
1/4/2017				0.0534	0.0598	0.0174	
1/5/2017			0.107				
1/6/2017	0.0758						
4/4/2017	0.091			0.0549			
4/5/2017						0.0174	
4/6/2017		0.162	0.111		0.0813		
7/10/2017		0.102	0		0.0010	0.0172	
7/11/2017					0.0302	0.0172	
7/12/2017	0.0941	0.157	0.106	0.0614	0.0002		
10/3/2017	0.0341	0.137	0.105	0.0436	0.103		
	0.0994	0.127	0.105	0.0436	0.103	0.0162	
10/4/2017	0.0994		0.0060			0.0102	
1/9/2018		0.150	0.0969	0.052			
1/10/2018	0.000	0.158		0.053	0.100	0.010	
1/11/2018	0.088	0.01	0.007	0.050	0.166	0.018	
7/10/2018	0.074	0.31	0.087	0.059	0.40	0.044	
7/11/2018	0.071				0.12	0.014	
1/16/2019	0.083	0.054	0.013 (J)	0.054			
1/17/2019					0.039	0.017	
3/25/2019	0.077						
3/26/2019		0.057	0.012 (J)	0.055			
3/27/2019					0.053	0.017	
8/27/2019	0.076		0.013	0.054	0.12	0.017	
8/28/2019		0.1					
10/8/2019					0.13		
10/9/2019	0.076	0.13	0.014 (J)	0.058		0.019	
4/7/2020	0.09	0.098	0.01 (J)	0.05	0.14	0.017	
8/17/2020						0.018	
8/18/2020					0.12		
8/19/2020	0.076	0.1	0.064	0.057			
9/28/2020				0.051			
9/29/2020					0.14	0.018	
9/30/2020		0.16	0.092				
10/1/2020	0.077						
3/10/2021	0.07	0.096	0.027	0.052	0.13	0.028	
9/21/2021	0.098	0.076	0.077		0.12	0.023	
9/23/2021				0.062			
2/2/2022	0.17		0.026				
2/3/2022		0.062		0.051	0.17	0.025	
8/30/2022	0.134	0.051	0.0266			0.0275	

	GWB-4R	GWB-5R	GWB-6R	GWC-1	GWC-11	GWC-12
8/31/2022					0.115	
9/1/2022				0.0583		
Mean	0.09233	0.1184	0.0674	0.0541	0.09771	0.01983
Std. Dev.	0.02394	0.05621	0.04169	0.005314	0.04325	0.004585
Upper Lim.	0.098	0.1426	0.106	0.05704	0.1216	0.023
Lower Lim.	0.076	0.0869	0.014	0.05117	0.07385	0.017

	GWC-13	GWC-14	GWC-15	GWC-16	GWC-17	GWC-2
1/17/2016		0.038	0.048	0.056		0.049
1/18/2016	0.026				0.13	
4/26/2016		0.025		0.0721		
7/26/2016	0.0236					
7/27/2016	0.0200	0.0248	0.0487			0.0796
7/28/2016		0.0240	0.0407	0.0534		0.0700
7/29/2016				0.0004	0.181	
8/31/2016	0.0273				0.101	0.0429
9/1/2016	0.0273	0.0346	0.0403	0.0445	0.203	0.0423
10/25/2016		0.0248	0.0329	0.0464	0.203	
10/26/2016	0.0238	0.0240	0.0323	0.0404	0.177	0.113 (O)
1/4/2017	0.0230			0.0379	0.177	0.113 (0)
1/5/2017	0.0218	0.0245	0.0392	0.0379	0.142	0.0526
4/3/2017	0.0216	0.0243	0.0392		0.142	0.0320
4/4/2017		0.0342	0.0439			0.0503
		0.0342		0.0534	0.106	0.0303
4/5/2017	0.0204			0.0534	0.106	
4/6/2017	0.0204	0.0076	0.051			
7/11/2017	0.0101	0.0276	0.051	0.0044		
7/12/2017	0.0161			0.0944	0.0000	0.0500
7/13/2017		0.0074	0.047		0.0686	0.0529
10/2/2017		0.0274	0.047			
10/3/2017				0.135 (O)		0.057
10/4/2017	0.0185				0.0589	
1/9/2018		0.0222	0.0431			
1/10/2018	0.0166			0.0603		0.0527
1/11/2018					0.0412	
7/9/2018		0.026				
7/10/2018			0.047	0.16 (O)		0.054
7/11/2018	0.019				0.049	
1/16/2019	0.019	0.028			0.063	
1/17/2019			0.042	0.13		
1/21/2019						0.05
3/26/2019	0.026	0.034	0.047	0.14	0.025	
7/30/2019						0.052
8/27/2019	0.024	0.067	0.049			0.053
8/28/2019				0.09	0.026	
10/8/2019	0.024	0.085	0.057	0.13		
10/9/2019					0.032	0.05
4/7/2020		0.073	0.033	0.13		
4/8/2020	0.027				0.055	0.061
8/17/2020	0.024					
8/18/2020		0.028	0.03	0.32	0.074	0.05
9/28/2020	0.029					
9/29/2020		0.026				0.049
9/30/2020			0.034	0.14	0.035	
3/11/2021					0.044	
3/12/2021			0.038			
3/15/2021	0.034					0.053
3/16/2021		0.037		0.16		
9/21/2021	0.037					
9/22/2021		0.11		0.26	0.058	0.047
9/23/2021			0.062			

	GWC-13	GWC-14	GWC-15	GWC-16	GWC-17	GWC-2
2/1/2022				0.23	0.055	
2/2/2022		0.1				0.052
2/3/2022	0.038		0.061			
8/30/2022		0.0773				
8/31/2022	0.0379		0.055		0.0375	
9/1/2022				0.165		0.0508
Mean	0.02538	0.04429	0.0452	0.1207	0.0791	0.05294
Std. Dev.	0.006658	0.02732	0.009027	0.07768	0.05487	0.007254
Upper Lim.	0.02905	0.067	0.05018	0.1648	0.1004	0.053
Lower Lim.	0.02171	0.025	0.04022	0.07656	0.04728	0.05

	GWC-20	GWC-21	GWC-22	GWC-9	MW-23D	MW-24D
1/17/2016	0.08	0.079				
1/18/2016			0.062	0.2		
7/28/2016	0.164	0.0626		0.234		
7/29/2016			0.0575			
8/31/2016			0.0693	0.284		
9/1/2016	0.0976	0.077				
10/25/2016	0.0702	0.0217				
10/26/2016			0.0966			
10/27/2016				0.244		
1/4/2017	0.0999	0.0617	0.0975			
1/6/2017				0.305		
4/4/2017	0.136	0.0761				
4/6/2017			0.064	0.249		
7/11/2017	0.145		0.0778			
7/12/2017				0.256		
7/13/2017		0.0428		5.25		
10/2/2017	0.148	5.5 120				
10/3/2017	510	0.0376				
10/3/2017		0.0070	0.156	0.356		
1/9/2018		0.0704	0.130	0.550		
1/10/2018	0.0788	0.0704				
1/11/2018	0.0786		0.0702	0.226		
	0.097		0.0702	0.220		
7/9/2018 7/10/2018	0.087	0.061				
		0.061	0.12	0.20		
7/11/2018		0.001	0.12	0.29		
1/17/2019		0.061	0.050	0.01		
1/18/2019	0.000		0.052	0.21		
1/21/2019	0.069					
3/25/2019	0.085					
3/26/2019		0.084				
3/27/2019			0.057	0.19		
8/27/2019			0.097			
8/28/2019	0.078	0.063		0.17		
10/8/2019		0.079				
10/9/2019	0.078		0.065	0.18		
4/7/2020		0.054	0.1			
4/8/2020	0.19	_	_	0.15		
8/18/2020	0.38	0.18	0.085			
8/19/2020				0.17		
9/30/2020	0.35	0.19	0.045			
10/1/2020				0.15		
3/10/2021			0.049	0.15		
3/11/2021					0.076	0.047
3/12/2021	0.34					
3/16/2021		0.18				
9/21/2021			0.036			
9/22/2021	0.42	0.046		0.15	0.076	0.038
2/1/2022	0.36	0.24				0.036
2/2/2022				0.15		
2/3/2022			0.038		0.079	
8/30/2022	0.21	0.191				
8/31/2022			0.0741		0.0765	

	GWC-20	GWC-21	GWC-22	GWC-9	MW-23D	MW-24D
9/1/2022				0.151		0.0267
Mean	0.1746	0.09323	0.07471	0.2126	0.07688	0.03693
Std. Dev.	0.1195	0.06186	0.02902	0.06074	0.001436	0.008328
Upper Lim.	0.2024	0.1145	0.09072	0.2461	0.079	0.05583
Lower Lim.	0.1006	0.05692	0.0587	0.1791	0.076	0.01802

	MW-25D
3/11/2021	0.03
9/23/2021	0.024
2/3/2022	0.024
8/31/2022	0.0216
Mean	0.0249
Std. Dev.	0.003583
Upper Lim.	0.03304
Lower Lim.	0.01676

			Gramman rioda i		o oopa	rata. Gramman rioda zarrami
	GWB-4R	GWB-5R	GWB-6R	GWC-11	GWC-12	GWC-13
8/30/2016		0.0002 (J)	<0.0005			
8/31/2016				<0.0005	0.0011 (J)	<0.0005
9/1/2016	0.0004 (J)					
10/26/2016	0.0001 (J)	0.0001 (J)	<0.0005	<0.0005	0.0011 (J)	<0.0005
1/3/2017		0.0001 (J)				
1/4/2017				<0.0005	0.0009 (J)	
1/5/2017			<0.0005			<0.0005
1/6/2017	0.0001 (J)					
4/4/2017	0.0001 (J)					
4/5/2017					0.0008 (J)	
4/6/2017		0.0003 (J)	<0.0005	<0.0005		<0.0005
7/10/2017					0.0008 (J)	
7/11/2017				<0.0005		
7/12/2017	<0.0005	0.0002 (J)	<0.0005			<0.0005
10/3/2017		0.0002 (J)	<0.0005	<0.0005		
10/4/2017	0.0001 (J)				0.0006 (J)	<0.0005
1/9/2018			<0.0005			
1/10/2018		0.0003 (J)				<0.0005
1/11/2018	0.0001 (J)			<0.0005	0.0006 (J)	
7/10/2018		0.00028 (J)	<0.0005			
7/11/2018	<0.0005			<0.0005	0.00061 (J)	5.8E-05 (J)
8/27/2019	<0.0005		<0.0005	<0.0005	0.00047 (J)	<0.0005
8/28/2019		7.6E-05 (J)				
10/8/2019				<0.0005		<0.0005
10/9/2019	<0.0005	<0.0005	<0.0005		0.00046 (J)	
4/7/2020	<0.0005	<0.0005	<0.0005	<0.0005	0.00051 (J)	
4/8/2020						<0.0005
8/17/2020					0.00046 (J)	<0.0005
8/18/2020				<0.0005		
8/19/2020	<0.0005	<0.0005	5E-05 (J)			
9/28/2020						<0.0005
9/29/2020				<0.0005	0.00043 (J)	
9/30/2020		6.5E-05 (J)	4.6E-05 (J)			
10/1/2020	<0.0005					
3/10/2021	<0.0005	8.2E-05 (J)	<0.0005	4.7E-05 (J)	0.00054	
3/15/2021						<0.0005
9/21/2021	<0.0005	9.9E-05 (J)	<0.0005	<0.0005	0.00047 (J)	<0.0005
2/2/2022	<0.0005		<0.0005			
2/3/2022		0.00014 (J)		<0.0005	0.00056	<0.0005
8/30/2022	<0.0005	<0.0005	<0.0005		0.000663	
8/31/2022				<0.0005		<0.0005
Mean	0.0003765	0.0002436	0.0004468	0.0004734	0.0006514	0.000474
Std. Dev.	0.0001855	0.000165	0.0001501	0.0001099	0.0002157	0.0001072
Upper Lim.	0.0005	0.0001657	0.0005	0.0005	0.0007522	0.0005
Lower Lim.	0.0001	8.436E-05	5E-05	4.7E-05	0.0005148	5.8E-05

	GWC-14	GWC-16	GWC-17	GWC-2	GWC-22	GWC-9
8/31/2016				<0.0005	0.0002 (J)	0.0003 (J)
9/1/2016	0.0001 (J)	0.0001 (J)	0.0014 (J)			
10/25/2016	<0.0005	<0.0005				
10/26/2016			0.0016 (J)	0.0003 (J)	0.0002 (J)	
10/27/2016						0.0003 (J)
1/4/2017		9E-05 (J)			0.0001 (J)	
1/5/2017	<0.0005		0.0019 (J)	<0.0005		
1/6/2017						0.0002 (J)
4/4/2017	9E-05 (J)			9E-05 (J)		
4/5/2017		9E-05 (J)	0.0024 (J)			
4/6/2017					<0.0005	0.0003 (J)
7/11/2017	<0.0005				<0.0005	. ,
7/12/2017		<0.0005				0.0003 (J)
7/13/2017			0.0034	<0.0005		. ,
10/2/2017	<0.0005					
10/3/2017		<0.0005		<0.0005		
10/4/2017			0.0037		0.0001 (J)	0.0002 (J)
1/9/2018	<0.0005		0.0007		0.000 (0)	0.0002 (0)
1/10/2018	0.000	0.0001 (J)		<0.0005		
1/11/2018		0.0001 (0)	0.0033	10.0000	<0.0005	0.0003 (J)
7/9/2018	6.2E-05 (J)		0.0000		0.000	0.0000 (0)
7/10/2018	0.22 00 (0)	6E-05 (J)		<0.0005		
7/11/2018		02-03 (0)	0.0038	10.0003	7E-05 (J)	0.0003 (J)
7/11/2018			0.0038	<0.0005	7L-03 (3)	0.0003 (3)
8/27/2019	<0.0005			<0.0005	0E 05 (I)	
8/28/2019	<0.0005	9E 0E (I)	0.0017 (1)	<0.0005	9E-05 (J)	0.00022 (I)
10/8/2019	<0.0005	8E-05 (J) 9.8E-05 (J)	0.0017 (J)			0.00022 (J)
10/9/2019	<0.0003	9.86-03 (3)	0.0019 (1)	<0.0005	<0.0005	0.00023 (1)
4/7/2020	<0.000E	<0.0005	0.0018 (J)	<0.0005	<0.0005	0.00023 (J)
	<0.0005	<0.0005	0.0017 (1)	9.95.05.(1)	<0.0005	0.00010 (1)
4/8/2020	<0.000E	6 9E 0E (1)	0.0017 (J)	8.8E-05 (J)	7.6E.0E.(1)	0.00019 (J)
8/18/2020	<0.0005	6.8E-05 (J)	0.0016 (J)	5.1E-05 (J)	7.6E-05 (J)	0.00022 (1)
8/19/2020 9/29/2020	<0.000E			7.55.05.(1)		0.00022 (J)
	<0.0005	9 OE OE (I)	0.0012 (1)	7.5E-05 (J)	<0.000E	
9/30/2020 10/1/2020		8.9E-05 (J)	0.0013 (J)		<0.0005	0.0002 (J)
					<0.0005	0.0002 (J)
3/10/2021			0.0012		<0.0005	0.00019 (3)
3/11/2021			0.0012	7.25 05 (1)		
3/15/2021	-0.0005	-0.0005		7.3E-05 (J)		
3/16/2021	<0.0005	<0.0005			-0.0005	
9/21/2021	-0.0005	CE OF (I)	0.0017	-0.0005	<0.0005	0.00047 (1)
9/22/2021	<0.0005	6E-05 (J)	0.0017	<0.0005		0.00017 (J)
2/1/2022		<0.0005	0.002			
2/2/2022	<0.0005			<0.0005		0.00018 (J)
2/3/2022					<0.0005	
8/30/2022	<0.0005					
8/31/2022			0.00258		<0.0005	
9/1/2022		<0.0005		<0.0005		<0.0005
Mean	0.0004266	0.000255	0.002181	0.0003709	0.0003433	0.0002529
Std. Dev.	0.0001636	0.0002116	0.0008605	0.0001944	0.0001961	8.122E-05
Upper Lim.	0.0005	0.0005	0.00262	0.0005	0.0005	0.0003
Lower Lim.	0.0001	8E-05	0.001628	8.8E-05	9E-05	0.00019

	MW-25D
3/11/2021	8.4E-05 (J)
9/23/2021	<0.0005
2/3/2022	<0.0005
8/31/2022	<0.0005
Mean	0.000396
Std. Dev.	0.000208
Upper Lim.	0.0005
Lower Lim.	8.4E-05

			Gramman Noad L	diami Olient. 000	theri Company L	Sata. Grunnan Noau Eanum
	GWB-4R	GWC-1	GWC-11	GWC-14	GWC-20	GWC-22
8/30/2016		<0.001				
8/31/2016			0.0002 (J)			8E-05 (J)
9/1/2016	0.0002 (J)			0.0001 (J)	<0.001	
10/25/2016		<0.001		0.0002 (J)	<0.001	
10/26/2016	<0.001		0.0001 (J)			<0.001
1/4/2017		0.0001 (J)	0.0001 (J)		<0.001	0.0001 (J)
1/5/2017				0.0002 (J)		
1/6/2017	9E-05 (J)					
4/4/2017	9E-05 (J)	7E-05 (J)		0.0002 (J)	<0.001	
4/6/2017			0.0002 (J)			0.0001 (J)
7/11/2017			<0.001	0.0002 (J)	<0.001	<0.001
7/12/2017	<0.001	<0.001				
10/2/2017				<0.001	<0.001	
10/3/2017		<0.001	0.0003 (J)			
10/4/2017	<0.001					0.0002 (J)
1/9/2018				<0.001		.,
1/10/2018		<0.001			<0.001	
1/11/2018	0.0002 (J)		0.0006 (J)			0.0002 (J)
7/9/2018				0.00017 (J)	<0.001	
7/10/2018		<0.001				
7/11/2018	<0.001		0.0004 (J)			0.00023 (J)
8/27/2019	<0.001	<0.001	0.00044 (J)	<0.001		<0.001
8/28/2019			.,		<0.001	
10/8/2019			0.00043 (J)	<0.001		
10/9/2019	<0.001	<0.001			<0.001	0.00012 (J)
4/7/2020	<0.001	<0.001	0.00051 (J)	<0.001		0.00054 (J)
4/8/2020			, ,		<0.001	
8/18/2020			0.00058 (J)	<0.001	<0.001	0.00024 (J)
8/19/2020	<0.001	<0.001				
9/28/2020		<0.001				
9/29/2020			0.00077 (J)	0.00012 (J)		
9/30/2020					<0.001	0.00024 (J)
10/1/2020	<0.001					
3/10/2021	<0.001	<0.001	0.0009			<0.001
3/12/2021					0.00018 (J)	
3/16/2021				<0.001		
9/21/2021	<0.001		0.00036 (J)			<0.001
9/22/2021				<0.001	0.00013 (J)	
9/23/2021		<0.001				
2/1/2022					0.0002 (J)	
2/2/2022	<0.001			<0.001		
2/3/2022		<0.001	0.00019 (J)			<0.001
8/30/2022	<0.001			<0.001	<0.001	
8/31/2022			0.000431 (J)			<0.001
9/1/2022		<0.001				
Mean	0.0007988	0.0008924	0.0004418	0.0006582	0.0008535	0.0005324
Std. Dev.	0.0003748	0.0003039	0.0002647	0.0004219	0.0003264	0.0004155
Upper Lim.	0.001	0.001	0.0006077	0.001	0.001	0.001
Lower Lim.	0.0002	0.0001	0.000276	0.00017	0.0002	0.00012

	MW-23D	MW-25D
3/11/2021	<0.001	0.00019 (J)
9/22/2021	0.00027 (J)	
9/23/2021		<0.001
2/3/2022	<0.001	<0.001
8/31/2022	<0.001	<0.001
Mean	0.0008175	0.0007975
Std. Dev.	0.000365	0.000405
Upper Lim.	0.001	0.001
Lower Lim.	0.00027	0.00019

Constituent: Chromium (mg/L) Analysis Run 11/6/2022 10:03 AM View: Appendix II & IV - Confidence Intervals

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

	GWB-4R	GWB-5R	GWB-6R	GWC-1	GWC-11	GWC-12
1/17/2016				<0.01		
1/18/2016	0.014	<0.01	0.0011 (J)			<0.01
1/19/2016					<0.01	
7/26/2016					0.0005 (J)	
7/27/2016		0.0006 (J)		0.0016 (J)		0.0014 (J)
7/28/2016			0.001 (J)			
7/29/2016	0.0077 (J)					
8/30/2016		<0.01	0.0013 (J)	0.0015 (J)		
8/31/2016					0.001 (J)	0.0012 (J)
9/1/2016	0.015					
10/25/2016				0.0018 (J)		
10/26/2016	0.0106	<0.01	0.0014 (J)		<0.01	0.0012 (J)
1/3/2017		0.001 (J)				
1/4/2017				0.0021 (J)	<0.01	0.0012 (J)
1/5/2017			0.002 (J)			
1/6/2017	0.0098 (J)					
4/4/2017	0.0101			0.002 (J)		
4/5/2017						0.0013 (J)
4/6/2017		0.0013 (J)	0.0034 (J)		0.0007 (J)	
7/10/2017						0.0014 (J)
7/11/2017					0.0006 (J)	
7/12/2017	0.0096 (J)	0.0011 (J)	0.0024 (J)	0.0021 (J)		
10/3/2017		0.0012 (J)	0.0022 (J)	0.0014 (J)	0.0007 (J)	
10/4/2017	0.0097 (J)					0.0011 (J)
1/9/2018			0.0019 (J)			
1/10/2018		0.0016 (J)		0.0017 (J)		
1/11/2018	0.0109				0.0098 (J)	0.001 (J)
7/10/2018		0.0055 (J)	0.0023 (J)	0.0021 (J)		
7/11/2018	0.0055 (J)				<0.01	<0.01
1/16/2019	0.0024 (J)	<0.01	0.018 (J)	0.0021 (J)		
1/17/2019					<0.01	0.0028 (J)
3/25/2019	0.002 (J)					
3/26/2019		0.072	0.017 (J)	0.0018 (J)		
3/27/2019					<0.01	<0.01
8/27/2019	0.0027 (J)		0.0097 (J)	0.0062 (J)	0.00092 (J)	0.00085 (J)
8/28/2019		0.0071 (J)				
10/8/2019					0.00091 (J)	
10/9/2019	0.002 (J)	0.012 (J)	0.011 (J)	0.0019 (J)		0.00081 (J)
4/7/2020	0.0028 (J)	0.0022 (J)	0.0094 (J)	0.0015 (J)	0.00094 (J)	0.00082 (J)
8/17/2020						0.001 (J)
8/18/2020					0.0015 (J)	
8/19/2020	0.0022 (J)	0.0012 (J)	0.0037 (J)	0.0028 (J)		
9/28/2020				0.0024 (J)		
9/29/2020					0.0011 (J)	0.00085 (J)
9/30/2020		0.0018 (J)	0.0045 (J)			
10/1/2020	0.002 (J)					
3/10/2021	0.003 (J)	0.001 (J)	0.006	0.0023 (J)	0.0013 (J)	0.00091 (J)
9/21/2021	0.0018 (J)	<0.01	0.0035 (J)		<0.01	<0.01
9/23/2021				0.0023 (J)		
2/2/2022	0.003 (J)		0.0033 (J)			
2/3/2022		0.0014 (J)		0.0019 (J)	0.0011 (J)	0.0018 (J)
8/30/2022	<0.01	<0.01	0.00356 (J)			<0.01

	GWB-4R	GWB-5R	GWB-6R	GWC-1	GWC-11	GWC-12
8/31/2022					<0.01	
9/1/2022				<0.01		
Mean	0.006514	0.008143	0.005174	0.002929	0.004813	0.003316
Std. Dev.	0.004437	0.01523	0.005004	0.002547	0.004589	0.003853
Upper Lim.	0.0101	0.003715	0.006407	0.0024	0.01	0.0028
Lower Lim.	0.0022	0.001047	0.002325	0.0017	0.00091	0.00091

Constituent: Chromium (mg/L) Analysis Run 11/6/2022 10:03 AM View: Appendix II & IV - Confidence Intervals

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill GWC-13 GWC-14 GWC-15 GWC-16 GWC-17 GWC-2 1/17/2016 0.0012 (J) <0.01 <0.01 <0.01 1/18/2016 < 0.01 <0.01 4/26/2016 <0.01 <0.01 7/26/2016 <0.01 7/27/2016 0.0008 (J) 0.0007 (J) 0.0008 (J) 7/28/2016 0.0006 (J) 7/29/2016 0.0009 (J) 8/31/2016 0.0011 (J) <0.01 9/1/2016 0.0015 (J) 0.0011 (J) 0.0011 (J) 0.0011 (J) <0.01 <0.01 10/25/2016 <0.01 10/26/2016 <0.01 <0.01 0.001 (J) 1/4/2017 <0.01 1/5/2017 < 0.01 0.001 (J) < 0.01 0.0012 (J) <0.01 4/3/2017 0.0015 (J) 4/4/2017 0.001 (J) 0.0008 (J) 4/5/2017 0.001 (J) 0.0015 (J) 4/6/2017 0.0011 (J) 0.0013 (J) 7/11/2017 0.0008 (J) 7/12/2017 0.0007 (J) 0.0011 (J) 0.0012 (J) 0.0006 (J) 7/13/2017 0.0009 (J) 10/2/2017 0.0013 (J) 10/3/2017 0.0009 (J) <0.01 0.0055 (J) 10/4/2017 0.0008 (J) 1/9/2018 0.0006 (J) 0.0012 (J) 1/10/2018 0.0007 (J) 0.0007 (J) <0.01 1/11/2018 0.0009 (J) 7/9/2018 <0.01 7/10/2018 <0.01 <0.01 <0.01 <0.01 7/11/2018 0.0019 (J) 1/16/2019 <0.01 <0.01 <0.01 0.01 (J) 1/17/2019 <0.01 1/21/2019 <0.01 3/26/2019 <0.01 <0.01 <0.01 <0.01 <0.01 7/30/2019 0.00065 (J) 8/27/2019 < 0.01 0.001 (J) 0.0016 (J) <0.01 8/28/2019 0.0011 (J) 0.0013 (J) 10/8/2019 0.00053 (J) <0.01 0.0017 (J) 0.00099 (J) 10/9/2019 0.00081 (J) 0.00049 (J) 4/7/2020 0.00074 (J) 0.0014 (J) <0.01 4/8/2020 0.00058 (J) 0.00073 (J) 0.00069 (J) 8/17/2020 0.00077 (J) 0.00059 (J) 8/18/2020 0.0018 (J) 0.0012 (J) 0.0011 (J) <0.01 0.00062 (J) 9/28/2020 9/29/2020 <0.01 <0.01 9/30/2020 0.0016 (J) 0.00098 (J) 0.00096 (J) 3/11/2021 0.0009 (J) 3/12/2021 0.0031 (J) 3/15/2021 <0.01 0.0011 (J) 3/16/2021 <0.01 0.0012 (J) 9/21/2021 <0.01 9/22/2021 <0.01 0.0018 (J) <0.01 < 0.01 9/23/2021 0.0013 (J)

	GWC-13	GWC-14	GWC-15	GWC-16	GWC-17	GWC-2
2/1/2022				<0.01	0.0014 (J)	
2/2/2022		<0.01				<0.01
2/3/2022	<0.01		0.0016 (J)			
8/30/2022		<0.01				
8/31/2022	<0.01		<0.01		<0.01	
9/1/2022				<0.01		<0.01
Mean	0.006108	0.00503	0.004343	0.005121	0.004262	0.006482
Std. Dev.	0.004612	0.004648	0.004122	0.004563	0.004269	0.004596
Upper Lim.	0.01	0.01	0.01	0.01	0.01	0.01
Lower Lim.	0.00077	0.0008	0.0013	0.001	0.00096	0.0008

	GWC-20	GWC-21	GWC-22	GWC-9	MW-24D	MW-25D
1/17/2016	<0.01	<0.01				
1/18/2016			<0.01	<0.01		
7/28/2016	0.0007 (J)	0.0005 (J)		0.0011 (J)		
7/29/2016			0.0007 (J)			
8/31/2016			<0.01	0.0024 (J)		
9/1/2016	<0.01	<0.01				
10/25/2016	<0.01	<0.01				
10/26/2016			<0.01			
10/27/2016				<0.01		
1/4/2017	<0.01	<0.01	<0.01			
1/6/2017				<0.01		
4/4/2017	0.0011 (J)	0.0008 (J)				
4/6/2017	0.0011 (0)	0.0000 (0)	0.0006 (J)	0.0019 (J)		
7/11/2017	0.0009 (J)		0.0005 (J)	0.00.0		
7/11/2017	0.0000 (0)		0.0000 (0)	0.0011 (J)		
7/12/2017		0.0006 (J)		0.0011 (3)		
10/2/2017	0.0000 (1)	0.0000 (3)				
	0.0009 (J)	0.0005 (1)				
10/3/2017		0.0005 (J)	0.0000 ("	0.0044 ("		
10/4/2017		0.000= / "	0.0006 (J)	0.0011 (J)		
1/9/2018		0.0007 (J)				
1/10/2018	0.0008 (J)					
1/11/2018			<0.01	0.001 (J)		
7/9/2018	<0.01					
7/10/2018		<0.01				
7/11/2018			<0.01	<0.01		
1/17/2019		0.01				
1/18/2019			<0.01	<0.01		
1/21/2019	<0.01					
3/25/2019	<0.01					
3/26/2019		<0.01				
3/27/2019			<0.01	<0.01		
8/27/2019			0.00057 (J)			
8/28/2019	0.00089 (J)	0.00087 (J)		0.00089 (J)		
10/8/2019		0.00065 (J)				
10/9/2019	0.0011 (J)		0.00072 (J)	0.0009 (J)		
4/7/2020		<0.01	0.00049 (J)			
4/8/2020	0.001 (J)		• •	0.0015 (J)		
8/18/2020	0.0011 (J)	0.0012 (J)	0.00056 (J)	\-,'		
8/19/2020	(-)	ν-,	(-)	0.0013 (J)		
9/30/2020	0.0013 (J)	0.00067 (J)	0.00064 (J)	(0)		
10/1/2020	3.55.5 (0)	3.33307 (0)	3.33304 (0)	0.0012 (J)		
3/10/2021			<0.01	0.0012 (J) 0.0011 (J)		
			~ 0.01	0.0011 (3)	0.00060 (1)	0.0016 / 1)
3/11/2021	0.00117.0				0.00069 (J)	0.0016 (J)
3/12/2021	0.0014 (J)	0.000== ("				
3/16/2021		0.00075 (J)				
9/21/2021		_	<0.01			
9/22/2021	0.0013 (J)	<0.01		<0.01	<0.01	
9/23/2021						<0.01
2/1/2022	0.0036 (J)	<0.01			<0.01	
2/2/2022				0.0012 (J)		
2/3/2022			<0.01			<0.01
		<0.01				

	GWC-20	GWC-21	GWC-22	GWC-9	MW-24D	MW-25D
8/31/2022			<0.01			<0.01
9/1/2022				<0.01	<0.01	
Mean	0.004576	0.005583	0.00597	0.004604	0.007672	0.0079
Std. Dev.	0.004398	0.004749	0.004768	0.00435	0.004655	0.0042
Upper Lim.	0.01	0.01	0.01	0.01	0.01	0.01
Lower Lim.	0.0009	0.00067	0.0006	0.0011	0.00069	0.0016

	GWB-4R	GWB-5R	GWB-6R	GWC-11	GWC-12	GWC-14
8/30/2016		<0.001	<0.001			
8/31/2016				<0.001	0.0018 (J)	
9/1/2016	0.0024 (J)					<0.001
10/25/2016						<0.001
10/26/2016	0.0011 (J)	<0.001	<0.001	<0.001	0.0016 (J)	
1/3/2017		<0.001				
1/4/2017				<0.001	0.0014 (J)	
1/5/2017			<0.001			<0.001
1/6/2017	0.001 (J)					
4/4/2017	0.001 (J)					<0.001
4/5/2017					0.0013 (J)	
4/6/2017		<0.001	<0.001	<0.001		
7/10/2017					0.0013 (J)	
7/11/2017				<0.001		0.0003 (J)
7/12/2017	0.0008 (J)	<0.001	<0.001			
10/2/2017	,					<0.001
10/3/2017		<0.001	<0.001	<0.001		
10/4/2017	0.001 (J)				0.0011 (J)	
1/9/2018	()		<0.001		. ,	<0.001
1/10/2018		0.0004 (J)				
1/11/2018	0.0008 (J)	. ,		0.0003 (J)	0.0011 (J)	
7/9/2018	(-,			(-,	(-)	<0.001
7/10/2018		0.002 (J)	<0.001			
7/11/2018	<0.001	(-)		<0.001	0.00096 (J)	
8/27/2019	0.0011 (J)		0.00038 (J)	<0.001	0.0009 (J)	<0.001
8/28/2019	,	0.0024 (J)	. ,		.,	
10/8/2019		. ,		<0.001		<0.001
10/9/2019	0.0015 (J)	0.0037 (J)	<0.001		0.00094 (J)	
4/7/2020	0.0009 (J)	0.00053 (J)	<0.001	<0.001	0.00077 (J)	<0.001
8/17/2020					0.0006 (J)	
8/18/2020				0.0004 (J)		<0.001
8/19/2020	0.00072 (J)	<0.001	<0.001			
9/29/2020				0.00055 (J)	0.00057 (J)	<0.001
9/30/2020		0.00056 (J)	<0.001			
10/1/2020	0.0005 (J)					
3/10/2021	0.00069 (J)	0.0057	<0.001	0.00082 (J)	0.00071 (J)	
3/16/2021						<0.001
9/21/2021	<0.001	0.019	0.0049 (J)	<0.001	0.00065 (J)	
9/22/2021						<0.001
2/2/2022	0.0027 (J)		0.07			<0.001
2/3/2022		0.019		<0.001	0.00072 (J)	
8/30/2022	0.00198	0.00401	0.0476		0.000786 (J)	<0.001
8/31/2022				0.000646 (J)	.,	
Mean	0.001188	0.003782	0.007993	0.0008656	0.001012	0.0009588
Std. Dev.	0.0006122	0.005909	0.01955	0.0002376	0.0003624	0.0001698
Upper Lim.	0.001418	0.00401	0.0049	0.001	0.001239	0.001
Lower Lim.	0.0008127	0.00056	0.00038	0.000646	0.000785	0.0003

			Gramman rioda L	u 0
	GWC-17	GWC-2	GWC-22	GWC-9
8/31/2016		<0.001	0.001 (J)	0.0021 (J)
9/1/2016	0.0046 (J)			
10/26/2016	0.0046 (J)	0.0011 (J)	0.0009 (J)	
10/27/2016				0.0017 (J)
1/4/2017			0.0007 (J)	
1/5/2017	0.0062 (J)	<0.001		
1/6/2017				0.0017 (J)
4/4/2017		<0.001		
4/5/2017	0.007 (J)			
4/6/2017			<0.001	0.0017 (J)
7/11/2017			<0.001	
7/12/2017				0.0016 (J)
7/13/2017	0.0077 (J)	0.0003 (J)		
10/3/2017		0.0003 (J)		
10/4/2017	0.0073 (J)		0.0007 (J)	0.0015 (J)
1/10/2018		<0.001		
1/11/2018	0.0061 (J)		<0.001	0.0017 (J)
7/10/2018		<0.001		
7/11/2018	0.0064 (J)		<0.001	0.0017 (J)
7/30/2019		0.00032 (J)		
8/27/2019		<0.001	0.00077 (J)	
8/28/2019	0.0023 (J)			0.00099 (J)
10/9/2019	0.0024 (J)	<0.001	<0.001	0.00099 (J)
4/7/2020			0.00037 (J)	
4/8/2020	0.0024 (J)	0.00036 (J)		0.001 (J)
8/18/2020	0.0025 (J)	<0.001	<0.001	
8/19/2020				0.0011 (J)
9/29/2020		<0.001		
9/30/2020	0.0018 (J)		<0.001	
10/1/2020				0.00099 (J)
3/10/2021			<0.001	0.00096 (J)
3/11/2021	0.0019 (J)			
3/15/2021		<0.001		
9/21/2021			<0.001	
9/22/2021	0.0028 (J)	<0.001		0.00082 (J)
2/1/2022	0.0036 (J)			
2/2/2022		<0.001		0.00096 (J)
2/3/2022			<0.001	
8/31/2022	0.00358		<0.001	
9/1/2022		<0.001		0.00093 (J)
Mean	0.004305	0.0008544	0.0009082	0.00132
Std. Dev.	0.002077	0.0002951	0.0001762	0.0004016
Upper Lim.	0.005438	0.0011	0.001	0.0017
Lower Lim.	0.002894	0.00036	0.00077	0.00096

			Gramman Hoda E	dridiii Olicrit. Cod	anom company E	add. Gramman Noda Editami
	GWB-4R	GWB-5R	GWB-6R	GWC-1	GWC-11	GWC-12
8/30/2016		1.81	2.19	2.36		
8/31/2016					2.2	2.61
9/1/2016	5.27					
10/25/2016				2.02		
10/26/2016	2.32	2.03	2.67		1.96	3.28
1/3/2017		1.85				
1/4/2017				2.1	1.88	3.77
1/5/2017			3.74			
1/6/2017	5.1					
4/4/2017	5			1.39 (U)		
4/5/2017						3.25
4/6/2017		2.66	2.36			
4/8/2017					0.893 (U)	
7/10/2017						1.55
7/11/2017					1.89	
7/12/2017	2.69	2.1	1.54	1.63		
10/3/2017		2	3.63	1.84	4.73	
10/4/2017	4.82					1.68
1/9/2018			2.07			
1/10/2018		2.55		2.11		
1/11/2018	4.48				7.49	2.94
7/10/2018		3.14	1.63	1.29		
7/11/2018	2.69				5.88	2.03
8/27/2019	2.97		4.63	2.41	5.09	2.09
8/28/2019		3.74				
10/8/2019					6.39	
10/9/2019	2.17	7.23	5.45	3.13		3.11
4/7/2020	2.44	3.57	6.25	1.97	7.87	2.18
8/17/2020						2.25
8/18/2020					6.76	
8/19/2020	3.1	2.49	4.53	1.91		
9/28/2020				1.29		
9/29/2020					8.3	0.845 (U)
9/30/2020		4.45	6.39			
10/1/2020	2.6					
3/10/2021	2.11	4.67	4.61	1.7	7.55	1.77
9/21/2021	2.45	3.1	5.07		4.35	1.24 (U)
9/23/2021			. ==	1.48		
2/2/2022	3.17		4.79			
2/3/2022		2.65		1	4.04	0.957
8/30/2022	5.57	3.36	3.2		0.04	3.37
8/31/2022				0.044 (1)	6.34	
9/1/2022 Maga	2.469	2 141	2 800	0.911 (U)	4.010	2.20
Mean Std. Dev.	3.468 1.248	3.141	3.809	1.797	4.918	2.29 0.8921
Upper Lim.		1.362	1.562	0.5585	2.425	
Upper Lim. Lower Lim.	5 2.44	3.835 2.314	4.788 2.83	2.147 1.447	6.438 3.399	2.849 1.731
LOWEI LIIII.	۷.44	2.014	2.00	1.777	5.555	1.701

			Gramman Noad	Landilli Ollent. Oot	athern company	Data. Gruninian Noau Eandiii
	GWC-13	GWC-14	GWC-15	GWC-16	GWC-17	GWC-2
8/31/2016	1.23					1.01
9/1/2016		1.28	2.45	1.99	5.19	
10/25/2016		1.54	1.04 (U)	1.98		
10/26/2016	0.641 (U)				4.25	0.725 (U)
1/4/2017				1.72		
1/5/2017	0.657 (U)	0.715 (U)	1.36		3.55	0.735 (U)
4/3/2017			0.697 (U)			
4/4/2017		0.699 (U)				0.87 (U)
4/5/2017				1.72	4.39	
4/6/2017	0.439 (U)					
7/11/2017		1.12	0.754 (U)			
7/12/2017	0.414 (U)			1.11		
7/13/2017	, ,				2.44	0.42 (U)
10/2/2017		0.855 (U)	1.52			
10/3/2017				2.13		0.995 (U)
10/4/2017	1.33				4.95	· /
1/9/2018		0.861 (U)	1.17			
1/10/2018	1.21	(-,		1.74		0.698 (U)
1/11/2018					3.53	(1)
7/9/2018		0.693 (U)				
7/10/2018			1.26	1.97		1.01
7/11/2018	1.4 (U)				3.13	
8/27/2019	1.27	1.32	1.75		0.10	0.787 (U)
8/28/2019	,			2.04	2.01	5.767 (8)
10/8/2019	1.62	1.41	1.52	1.89	2.0.	
10/9/2019					2.91	0.22 (U)
4/7/2020		1.41	1.82	4.17	2.01	5.22 (5)
4/8/2020	1.08 (U)	11	1.02	4.17	2.79	1.13 (U)
8/17/2020	1.42				2.70	1.10 (0)
8/18/2020	1.72	0.731 (U)	1.84	4.24	3.11	1.09 (U)
9/28/2020	1.28	0.701 (0)	1.04	7.27	0.11	1.55 (5)
9/29/2020	1.20	0.331 (U)				1 (U)
9/30/2020		0.551 (0)	2.14	2.47	3.09	1(0)
3/11/2021			2.14	2.47	2.77	
3/11/2021			0.607 (U)		2.77	
3/15/2021	0.769 (U)		0.007 (0)			0.804 (U)
3/16/2021	0.709 (0)	0.0831 (U)		2.15		0.804 (0)
9/21/2021	2.09	0.0631 (0)		2.15		
	2.09	1.04 (11)		2.06	2.26	0.760 (11)
9/22/2021		1.94 (U)	1.64	3.06	2.36	0.769 (U)
9/23/2021 2/1/2022			1.64	2.72	2.51	
2/1/2022		0.001 (11)		2.73	2.51	0.954 (11)
2/3/2022	1.10	0.881 (U)	0.58 (11)			0.854 (U)
8/30/2022	1.18	0.00	0.58 (U)			
	1.0	2.62	0.00		0.70	
8/31/2022	1.9		2.88	1.64 (11)	2.72	2.00
9/1/2022	1 170	1 000	1 470	1.64 (U)	2.076	2.09
Mean	1.172	1.088	1.472	2.279	3.276	0.8945
Std. Dev.	0.4722	0.6063	0.6494	0.847	0.92	0.3858
Upper Lim.	1.468	1.467	1.879	2.705	3.853	1.09
Lower Lim.	0.8765	0.7077	1.065	1.753	2.7	0.725

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 11/6/2022 10:04 AM View: Appendix II & IV - Confidence Intervals

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

			Grammarric	au Lunum Onom	Council Company	Bata. Gramman road Earlaini	
	GWC-20	GWC-21	GWC-22	GWC-9	MW-23D	MW-24D	
8/31/2016			5.96	3.3			
9/1/2016	2.21	1.05					
10/25/2016	1.51 (U)	1.2					
10/26/2016			7.42				
10/27/2016				2.7			
1/4/2017	2.56	2.11	6.07				
1/6/2017				4.45			
4/4/2017	1.77	2.02					
4/6/2017			3	3.1			
7/11/2017	2.76		4.2				
7/12/2017				2.73			
7/13/2017		0.576 (U)					
10/2/2017	4.15						
10/3/2017		0.86					
10/4/2017			7.16	8.16			
1/9/2018		1.43					
1/10/2018	1.96						
1/11/2018			3.57	2.31			
7/9/2018	1.11						
7/10/2018		1.63					
7/11/2018			7.57	3.31			
8/27/2019			7.04				
8/28/2019	1.13 (U)	1.4 (U)		1.91			
10/8/2019	. ,	1.88					
10/9/2019	2.28		3.68	3.09			
4/7/2020		1.8	7.66				
4/8/2020	4.19			1.92			
8/18/2020	6.86	3.27	7.65				
8/19/2020				2.34			
9/30/2020	5.62	3.83	2.79				
10/1/2020				3.3			
3/10/2021			2.53	2.08			
3/11/2021					1.55	1.29	
3/12/2021	5.17						
3/16/2021		2.88					
9/21/2021			1.25 (U)				
9/22/2021	6.84	0.959 (U)	()	2.08	1.4	0.982 (U)	
2/1/2022	5.11	2.51				0.36 (U)	
2/2/2022				0.967 (U)		· /	
2/3/2022			1.4	. ,	1.21		
8/30/2022	4.95	2.56					
8/31/2022			3.07		1.79		
9/1/2022				2.35		3.54	
Mean	3.54	1.88	4.825	2.947	1.488	1.543	
Std. Dev.	1.945	0.8982	2.333	1.554	0.245	1.386	
Upper Lim.	4.759	2.443	6.161	3.524	2.044	4.691	
Lower Lim.	2.321	1.317	3.134	2.026	0.9313	-1.605	
2001 2	2.02.		55	2.020	0.0010		

	MW-25D
3/11/2021	0.353 (U)
9/23/2021	1.15
2/3/2022	0.278 (U)
8/31/2022	0.645 (U)
Mean	0.6065
Std. Dev.	0.3954
Upper Lim.	1.504
Lower Lim.	-0.2912

	GWB-4R	GWB-5R	GWB-6R	GWC-1	GWC-12	GWC-13
8/30/2016		0.04 (J)	0.09 (J)	0.22 (J)		
8/31/2016					0.7	<0.1
9/1/2016	<0.1					
10/25/2016				<0.1		
10/26/2016	0.05 (J)	0.05 (J)	0.24 (J)		0.91	0.55
1/3/2017		0.08 (J)				
1/4/2017				0.18 (J)	0.51	
1/5/2017			0.11 (J)			0.09 (J)
1/6/2017	0.08 (J)		. ,			
4/4/2017	<0.1			<0.1		
4/5/2017					0.71	
4/6/2017		0.006 (J)	0.3			<0.1
7/10/2017		` '			0.88	
7/12/2017	0.38	0.05 (J)	0.15 (J)	0.04 (J)		<0.1
10/3/2017		0.11 (J)	0.11 (J)	<0.1		
10/4/2017	<0.1	\-/	\-/	-	0.37	<0.1
1/9/2018			<0.1		- · - -	
1/10/2018		<0.1	-	<0.1		<0.1
1/11/2018	<0.1	-		-	1.4	
7/10/2018		0.2 (J)	<0.1	<0.1	•	
7/11/2018	<0.1	- (-/			0.62	<0.1
1/16/2019	1.2	<0.1	0.053 (J)	<0.1	- · 	<0.1
1/17/2019	·-		(0)	=	1.2	
3/25/2019	0.064 (J)					
3/26/2019	(-)	<0.1	0.046 (J)	0.051 (J)		0.052 (J)
3/27/2019			(0)	(0)	0.036 (J)	···· v/
8/27/2019	0.031 (J)		0.13 (J)	<0.1	0.3	<0.1
8/28/2019	(-)	0.097 (J)	(-)		- · -	
10/8/2019		(-)				<0.1
10/9/2019	<0.1	<0.1	<0.1	<0.1	<0.1	- -
4/7/2020	<0.1	<0.1	<0.1	<0.1	0.27 (J)	
4/8/2020	2	z	2	J	(0)	<0.1
8/17/2020					0.19	<0.1
8/19/2020	0.17	<0.1	<0.1	<0.1	5.10	•••
9/28/2020	3.17	-0.1	-0.1	<0.1		<0.1
9/29/2020				·	0.16	•••
9/30/2020		<0.1	<0.1		0.10	
10/1/2020	<0.1	-0.1	-0.1			
3/10/2021	<0.1	<0.1	<0.1	<0.1	0.14	
3/15/2021	-0.1	-0.1	-0.1	-0.1	V. 17	<0.1
9/21/2021	<0.1	<0.1	<0.1		0.31	<0.1
9/21/2021	~U. I	~U. I	~U. I	<0.1	0.01	30.1
2/2/2022	<0.1		<0.1	50.1		
	~U. I	0.001 / 1	~U. I	<0.1	0.26	<0.1
2/3/2022 8/30/2022	<0.1	0.081 (J) 0.0428 (J)	<0.1	~0.1	0.36 0.273	N.1
	<0.1	U.U420 (J)	~U. I		0.2/3	0.05171)
8/31/2022				-0.1		0.051 (J)
9/1/2022 Maan	0.1671	0.0072	0.1172	<0.1	0.4069	0.1101
Mean Std. Dov	0.1671	0.0872 0.03977	0.1173	0.1048	0.4968	0.1181
Std. Dev.	0.26		0.05903	0.03827	0.3833	0.1057
Upper Lim.	0.17	0.11	0.13	0.18	0.7212	0.55
Lower Lim.	0.08	0.05	0.09	0.051	0.2723	0.09

			Grumman Road L	andfill Client: Sou	thern Company D	Data: Grumman Road Landfill
	GWC-14	GWC-15	GWC-16	GWC-17	GWC-2	GWC-20
8/31/2016					0.07 (J)	
9/1/2016	0.25 (J)	<0.1	0.55	0.68		<0.1
10/25/2016	0.43	0.5	0.36			<0.1
10/26/2016				0.68	0.62	
1/4/2017			0.1 (J)			0.04 (J)
1/5/2017	0.21 (J)	0.22 (J)	. ,	0.73	0.17 (J)	
4/3/2017	. ,	<0.1			, ,	
4/4/2017	0.45				0.08 (J)	0.02 (J)
4/5/2017			0.2 (J)	1.6	,	
7/11/2017	0.41	0.06 (J)	(J)			0.14 (J)
7/12/2017			0.04 (J)			
7/13/2017				1.7	0.06 (J)	
10/2/2017	<0.1	<0.1			(5)	<0.1
10/3/2017			0.86		0.06 (J)	
10/4/2017				1.8	(5)	
1/9/2018	<0.1	<0.1		1.0		
1/10/2018	-0.1	10.1	<0.1		<0.1	<0.1
1/11/2018				1.5	-0.1	V.1
7/9/2018	<0.1			1.5		<0.1
7/10/2018	-0.1	0.15 (J)	<0.1		<0.1	50.1
7/11/2018		0.13 (0)		1.8	-0.1	
1/16/2019	<0.1			1.4		
1/17/2019	<0.1	<0.1	<0.1	1.4		
1/21/2019		<0.1	<0.1		<0.1	<0.1
3/25/2019					~ 0.1	0.043 (J)
	0.12 (1)	0.12 (1)	0.11 (1)	0.00		0.043 (J)
3/26/2019	0.13 (J)	0.13 (J)	0.11 (J)	0.89	0.082 (1)	
7/30/2019	-0.4	-0.1			0.083 (J)	
8/27/2019	<0.1	<0.1	-0.1	0.01	<0.1	.0.1
8/28/2019	.0.4		<0.1	0.61		<0.1
10/8/2019	<0.1	<0.1	<0.1	-0.1	-0.1	.0.1
10/9/2019	.0.4			<0.1	<0.1	<0.1
4/7/2020	<0.1	<0.1	<0.1			
4/8/2020				0.55	<0.1	<0.1
8/18/2020	<0.1	<0.1	<0.1	0.51	<0.1	<0.1
9/29/2020	<0.1				<0.1	
9/30/2020		<0.1	<0.1	0.15		<0.1
3/11/2021				0.42		
3/12/2021		<0.1				<0.1
3/15/2021					<0.1	
3/16/2021	<0.1		<0.1			
9/22/2021	<0.1		<0.1	0.79	<0.1	<0.1
9/23/2021		<0.1				
2/1/2022			<0.1	0.68		<0.1
2/2/2022	<0.1				<0.1	
2/3/2022		<0.1				
8/30/2022	<0.1					<0.1
8/31/2022		<0.1		0.442		
9/1/2022			0.0374 (J)		<0.1	
Mean	0.1674	0.1295	0.1767	0.8964	0.1233	0.09174
Std. Dev.	0.124	0.09513	0.2046	0.5551	0.1224	0.02744
Upper Lim.	0.25			1.162	0.17	0.14
Lower Lim.	0.1	0.06	0.1	0.5173	0.08	0.043

					,	
	GWC-21	GWC-22	GWC-9	MW-23D	MW-25D	
8/31/2016		0.04 (J)	0.55			
9/1/2016	<0.1	` '				
10/25/2016	<0.1					
10/26/2016		0.12 (J)				
10/27/2016		S (0)	0.26 (J)			
1/4/2017	<0.1	0.06(1)	0.20 (3)			
	~ 0.1	0.06 (J)	0.25 (1)			
1/6/2017			0.25 (J)			
4/4/2017	<0.1					
4/6/2017		<0.1	0.16 (J)			
7/11/2017		0.03 (J)				
7/12/2017			0.2 (J)			
7/13/2017	<0.1					
10/3/2017	<0.1					
10/4/2017		0.12 (J)	0.22 (J)			
1/9/2018	<0.1					
1/11/2018		<0.1	0.98			
7/10/2018	<0.1		- 			
7/11/2018		<0.1	0.14 (J)			
1/17/2019	<0.1	50.1	0.17(0)			
	~ 0.1	-0.1	0.24 (1)			
1/18/2019	0.071.11	<0.1	0.24 (J)			
3/26/2019	0.071 (J)					
3/27/2019		<0.1	0.13 (J)			
8/27/2019		0.1				
8/28/2019	<0.1		0.088 (J)			
10/8/2019	<0.1					
10/9/2019		<0.1	0.068 (J)			
4/7/2020	<0.1	<0.1				
4/8/2020			0.058 (J)			
8/18/2020	<0.1	<0.1				
8/19/2020			0.092 (J)			
9/30/2020	<0.1	<0.1	(-)			
10/1/2020	-		<0.1			
1/20/2021			-0.1		0.11	
				-0.1	0.11	
1/21/2021		-0.1	0.060 (1)	<0.1		
3/10/2021		<0.1	0.066 (J)		0.15	
3/11/2021				<0.1	0.12	
3/16/2021	<0.1					
9/21/2021		<0.1				
9/22/2021	<0.1		0.13	<0.1		
9/23/2021					0.096 (J)	
2/1/2022	<0.1					
2/2/2022			<0.1			
2/3/2022		<0.1		<0.1	0.077 (J)	
8/30/2022	<0.1				. ,	
8/31/2022		<0.1		0.0791 (J)	0.187	
9/1/2022		· · ·	0.0783 (J)	0.0.01(0)	007	
	0.00047	0.00216		0.00583	0.110	
Mean	0.09847	0.09316	0.2058	0.09582	0.118	
Std. Dev.	0.006653	0.02358	0.2196	0.009347	0.04182	
Upper Lim.	0.1	0.12	0.2313	0.1	0.1881	
Lower Lim.	0.071	0.1	0.09769	0.0791	0.04793	

	GWB-4R	GWB-5R	GWB-6R	GWC-1	GWC-11	GWC-12
1/17/2016				<0.002		
1/18/2016	0.0055 (J)	<0.002	<0.002			0.0034 (J)
1/19/2016					<0.002	
7/26/2016					0.0001 (J)	
7/27/2016		<0.002		<0.002		0.0001 (J)
7/28/2016			<0.002			
7/29/2016	0.003 (J)					
8/30/2016		<0.002	<0.002	<0.002		
8/31/2016					0.0002 (J)	0.0001 (J)
9/1/2016	0.0166 (O)					
10/25/2016				<0.002		
10/26/2016	0.0057	0.0002 (J)	<0.002		0.0001 (J)	0.0001 (J)
1/3/2017		0.0001 (J)				
1/4/2017				<0.002	0.0002 (J)	<0.002
1/5/2017			0.0003 (J)			
1/6/2017	0.0053					
4/4/2017	0.0092			<0.002		
4/5/2017						0.0003 (J)
4/6/2017		0.0003 (J)	0.0002 (J)		0.0003 (J)	``
7/10/2017		(1)	(-,		(,,	0.0003 (J)
7/11/2017					0.0002 (J)	(,)
7/12/2017	0.006	0.0002 (J)	0.0002 (J)	<0.002	(,,	
10/3/2017	0.000	0.0002 (J)	0.0002 (J)	<0.002	0.0003 (J)	
10/4/2017	0.0057	0.0002 (0)	0.0001 (0)	10.002	0.0000 (0)	0.0001 (J)
1/9/2018	0.0007		0.0003 (J)			0.5551 (0)
1/10/2018		0.0003 (J)	0.0003 (3)	0.0001 (J)		
1/11/2018	0.0085	0.0003 (3)		0.0001 (3)	0.0003 (J)	0.0002 (J)
7/10/2018	0.0003	<0.002	<0.002	<0.002	0.0003 (3)	0.0002 (0)
7/11/2018	0.0020 (1)	~0.002	~0.002	~0.002	<0.002	<0.002
	0.0029 (J)	<0.002	<0.002	<0.002	<0.002	V0.002
1/16/2019	<0.002	<0.002	<0.002	<0.002	0.00038 (I)	<0.002
1/17/2019	<0.002				0.00028 (J)	<0.002
3/25/2019	<0.002	-0.000	-0.000	-0.000		
3/26/2019		<0.002	<0.002	<0.002	0.00000 (1)	0.000
3/27/2019	0.001 (1)		0.0011 (1)	-0.000	0.00029 (J)	<0.002
8/27/2019	0.001 (J)	0.0044 (1)	0.0011 (J)	<0.002	0.00021 (J)	<0.002
8/28/2019		0.0011 (J)				
10/8/2019					0.00028 (J)	2 2 2 4 4
10/9/2019	0.00041 (J)	0.0025 (J)	0.00033 (J)	<0.002		6.6E-05 (J)
4/7/2020	0.00073 (J)	0.0014 (J)	0.00063 (J)	0.00012 (J)	0.00036 (J)	8.1E-05 (J)
8/17/2020						4.9E-05 (J)
8/18/2020					0.00035 (J)	
8/19/2020	0.00048 (J)	7.9E-05 (J)	0.00014 (J)	<0.002		
9/28/2020				4.3E-05 (J)		
9/29/2020					0.00032 (J)	3.7E-05 (J)
9/30/2020		0.0012 (J)	8E-05 (J)			
10/1/2020	0.00026 (J)					
3/10/2021	0.0003 (J)	5.2E-05 (J)	9.6E-05 (J)	0.0001 (J)	0.00042 (J)	6.8E-05 (J)
9/21/2021	<0.002	<0.002	<0.002		<0.002	<0.002
9/23/2021				<0.002		
2/2/2022	<0.002		<0.002			
2/3/2022		<0.002		<0.002	<0.002	<0.002
8/30/2022	<0.002	<0.002	<0.002			<0.002

	GWB-4R	GWB-5R	GWB-6R	GWC-1	GWC-11	GWC-12
8/31/2022					<0.002	
9/1/2022				<0.002		
Mean	0.003249	0.001221	0.001118	0.001636	0.0006767	0.0009953
Std. Dev.	0.002759	0.0008915	0.0008882	0.0007683	0.0007619	0.001073
Upper Lim.	0.004315	0.002	0.002	0.002	0.00042	0.002
Lower Lim.	0.001028	0.0002	0.0002	0.00012	0.00021	8.1E-05

	GWC-13	GWC-14	GWC-15	GWC-16	GWC-17	GWC-2
1/17/2016		<0.002	<0.002	<0.002		<0.002
1/18/2016	<0.002				<0.002	
4/26/2016		<0.002		<0.002		
7/26/2016	<0.002					
7/27/2016		<0.002	<0.002			<0.002
7/28/2016				<0.002		
7/29/2016					<0.002	
8/31/2016	<0.002					<0.002
9/1/2016		<0.002	<0.002	<0.002	<0.002	
10/25/2016		<0.002	<0.002	0.0002 (J)		
10/26/2016	<0.002			(-,	<0.002	<0.002
1/4/2017				0.0001 (J)		
1/5/2017	0.0002 (J)	<0.002	<0.002		<0.002	<0.002
4/3/2017	(0)		0.0003 (J)			
4/4/2017		0.0001 (J)	0.0000 (0)			0.0002 (J)
4/5/2017		0.0001 (0)		0.0002 (J)	0.0009 (J)	0.0002 (0)
4/6/2017	0.0005 (J)			0.0002 (0)	0.0000 (0)	
7/11/2017	0.0000 (0)	8E-05 (J)	0.0001 (J)			
7/11/2017	0.0005 (J)	6L-03 (3)	0.0001 (3)	0.0001 (J)		
7/13/2017	0.0003 (3)			0.0001 (3)	<0.002	0.0003 (J)
10/2/2017		0.0001 (1)	0.0003 (1)		~0.002	0.0003 (3)
		0.0001 (J)	0.0002 (J)	0.0001 (1)		20.002
10/3/2017	0.0007 (1)			0.0001 (J)	0.0001 (1)	<0.002
10/4/2017	0.0007 (J)	<0.000	0.0002 (1)		0.0001 (J)	
1/9/2018	0.0000 (1)	<0.002	0.0002 (J)	0.0000 (1)		05.05 (1)
1/10/2018	0.0009 (J)			0.0002 (J)	0.0001 (1)	8E-05 (J)
1/11/2018		-0.000			0.0001 (J)	
7/9/2018		<0.002	10.000	10.000		-0.000
7/10/2018	0.0015 (1)		<0.002	<0.002		<0.002
7/11/2018	0.0015 (J)				<0.002	
1/16/2019	0.00061 (J)	<0.002	0.000	0.000	<0.002	
1/17/2019			<0.002	<0.002		
1/21/2019						<0.002
3/26/2019	<0.002	<0.002	<0.002	<0.002	<0.002	
7/30/2019						0.0002 (J)
8/27/2019	0.0001 (J)	0.00051 (J)	0.00033 (J)			<0.002
8/28/2019				0.0001 (J)	<0.002	
10/8/2019	0.00013 (J)	<0.002	0.00012 (J)	0.0001 (J)		
10/9/2019					0.00015 (J)	6.4E-05 (J)
4/7/2020		<0.002	8.6E-05 (J)	0.00023 (J)		
4/8/2020	0.00017 (J)				8.4E-05 (J)	<0.002
8/17/2020	7.6E-05 (J)					
8/18/2020		<0.002	9E-05 (J)	0.00017 (J)	0.00014 (J)	<0.002
9/28/2020	6.4E-05 (J)					
9/29/2020		<0.002				<0.002
9/30/2020			4.7E-05 (J)	9.1E-05 (J)	6E-05 (J)	
3/11/2021					0.00019 (J)	
3/12/2021			5.3E-05 (J)			
3/15/2021	0.00013 (J)					4.1E-05 (J)
3/16/2021		<0.002		7.3E-05 (J)		
9/21/2021	<0.002					
9/22/2021		<0.002		<0.002	<0.002	<0.002
9/23/2021			<0.002			

	GWC-13	GWC-14	GWC-15	GWC-16	GWC-17	GWC-2
2/1/2022				<0.002	<0.002	
2/2/2022		<0.002				<0.002
2/3/2022	<0.002		<0.002			
8/30/2022		<0.002				
8/31/2022	<0.002		<0.002		<0.002	
9/1/2022				<0.002		<0.002
Mean	0.001028	0.001672	0.00112	0.0009847	0.00132	0.001471
Std. Dev.	0.0008476	0.0007159	0.0009478	0.0009495	0.0009033	0.000859
Upper Lim.	0.002	0.002	0.002	0.002	0.002	0.002
Lower Lim.	0.00013	0.00051	0.0001	0.0001	0.00014	0.0002

GWC-20 GWC-21 GWC-22 GWC-9 MW-23D MW-24D 1/17/2016 <0.002 <0.002 <0.002 <0.002 7/28/2016 <0.002 <0.002 <0.002 <0.002 7/29/2016 <0.002 <0.0003 (J) 0.0007 (J) 9/1/2016 <0.002 <0.002 <0.002 10/25/2016 0.0001 (J) <0.002 <0.0003 (J) <0.002 10/27/2016 <0.002 <0.002 <0.002 10/27/2016 <0.002 <0.002 <0.002 <0.002 10/27/2016 <0.002 <0.002 <0.003 (J) <0.002 10/27/2016 <0.002 <0.002 <0.003 (J) <0.002 10/27/2016 <0.002 <0.002 <0.003 (J) <0.002 <0.002 10/27/2017 <0.002 <0.002 <0.003 (J) <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.0002 <0.002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.00	
1/18/2016 <0.002	
7/28/2016 < 0.002	
7/29/2016 0.0004 (J) 8/31/2016 0.0003 (J) 0.0007 (J) 9/1/2016 <0.002	
8/31/2016	
9/1/2016 <0.002 <0.002 10/25/2016 0.0001 (J) <0.002 10/26/2016 0.0003 (J) 10/27/2016 <0.002 <0.002 1/4/2017 <0.002 <0.002 0.0003 (J) 1/6/2017 <0.002	
10/25/2016	
10/26/2016 0.0003 (J) 10/27/2016 < 0.002 1/4/2017 <0.002 <0.002 0.0003 (J) 1/6/2017 <0.002	
10/27/2016 <	
1/4/2017 <0.002 <0.002 0.0003 (J) 1/6/2017 <0.002	
1/6/2017 <0.002	
4/4/2017 7E-05 (J) 9E-05 (J)	
4/6/2017 0.0003 (J) 0.0001 (J)	
7/11/2017 <0.002 0.0002 (J)	
7/12/2017 <0.002	
7/13/2017 7E-05 (J)	
10/2/2017 <0.002	
10/3/2017 0.0001 (J)	
10/4/2017 0.0008 (J) 9E-05 (J)	
1/9/2018 9E-05 (J)	
1/10/2018 0.0002 (J)	
1/11/2018 0.0009 (J) 0.0002 (J)	
7/9/2018 <0.002	
7/10/2018 <0.002	
7/11/2018 0.001 (J) <0.002	
1/17/2019 <0.002	
1/18/2019 0.0012 (J) <0.002	
1/21/2019 <0.002	
3/25/2019 <0.002	
3/26/2019 <0.002	
3/27/2019 0.00047 (J) <0.002	
8/27/2019 0.003 (J)	
8/28/2019 6.5E-05 (J) 0.00018 (J) 6.1E-05 (J)	
10/8/2019 0.00016 (J)	
10/9/2019 0.00018 (J) 0.00032 (J) <0.002	
4/7/2020 <0.002 0.00067 (J)	
4/8/2020 <0.002 0.00021 (J)	
8/18/2020 <0.002 0.00027 (J) 0.00072 (J)	
8/19/2020 9.6E-05 (J)	
9/30/2020 <0.002 5.4E-05 (J) 0.00023 (J)	
10/1/2020 3.8E-05 (J)	
3/10/2021 0.00016 (J) 0.00012 (J)	
3/11/2021 5.7E-05 (J) 9.4E-05 (J)	
3/12/2021 <0.002	
3/16/2021 <0.002	
9/21/2021 <0.002	
9/22/2021 <0.002 <0.002 <0.002 <0.002 <0.002	
2/1/2022 <0.002 <0.002 <0.002 <0.002 <0.002	
2/2/2022 <0.002	
2/2/2022 <0.002	
2/2/2022 <0.002	

	GWC-20	GWC-21	GWC-22	GWC-9	MW-23D	MW-24D
9/1/2022				<0.002		<0.002
Mean	0.001553	0.001286	0.0009176	0.00122	0.001514	0.001524
Std. Dev.	0.0008197	0.0009331	0.0008104	0.0009321	0.0009715	0.000953
Upper Lim.	0.002	0.002	0.0007979	0.002	0.002	0.002
Lower Lim.	0.0002	0.0001	0.0002964	0.0001	5.7E-05	9.4E-05

	MW-25D
3/11/2021	9.5E-05 (J)
9/23/2021	<0.002
2/3/2022	<0.002
8/31/2022	<0.002
Mean	0.001524
Std. Dev.	0.0009525
Upper Lim.	0.002
Lower Lim.	9.5E-05

	GWB-4R	GWB-5R	GWC-12	GWC-13	GWC-17	GWC-9
8/30/2016		0.0042 (J)				
8/31/2016			<0.03	<0.03		<0.05 (O)
9/1/2016	0.0092 (J)				0.0066 (J)	
10/26/2016	0.0046 (J)	<0.03	<0.03	<0.03	0.0065 (J)	
10/27/2016						0.0023 (J)
1/3/2017		0.0024 (J)				
1/4/2017			<0.03			
1/5/2017				<0.03	0.0062 (J)	
1/6/2017	0.0042 (J)					0.0021 (J)
4/4/2017	0.0056 (J)					
4/5/2017			0.0012 (J)		0.007 (J)	
4/6/2017		0.0051 (J)		<0.03		0.0021 (J)
7/10/2017			<0.03			
7/12/2017	0.0035 (J)	0.0031 (J)		<0.03		0.0017 (J)
7/13/2017					0.0069 (J)	
10/3/2017		0.0027 (J)				
10/4/2017	0.0041 (J)		<0.03	<0.03	0.0082 (J)	0.0021 (J)
1/10/2018		0.0041 (J)		<0.03		
1/11/2018	0.0052 (J)		<0.03		0.0061 (J)	0.0022 (J)
7/10/2018		0.005 (J)				
7/11/2018	0.0039 (J)		0.00098 (J)	<0.03	0.0075 (J)	0.0019 (J)
8/27/2019	0.013 (J)		0.00094 (J)	<0.03		
8/28/2019		<0.03			0.0041 (J)	0.0018 (J)
10/8/2019				<0.03		
10/9/2019	0.013 (J)	<0.03	0.0011 (J)		0.0046 (J)	0.0018 (J)
4/7/2020	0.014 (J)	<0.03	0.00094 (J)			
4/8/2020				<0.03	0.0051 (J)	0.0018 (J)
8/17/2020			0.00091 (J)	<0.03		
8/18/2020					0.0065 (J)	
8/19/2020	0.014 (J)	<0.03				0.0019 (J)
9/28/2020				<0.03		
9/29/2020			0.00086 (J)			
9/30/2020		<0.03			0.0041 (J)	
10/1/2020	0.013 (J)					0.0019 (J)
3/10/2021	0.012 (J)	<0.03	0.00095 (J)			0.0018 (J)
3/11/2021					0.0036 (J)	
3/15/2021				<0.03		
9/21/2021	0.016 (J)	<0.03	0.00091 (J)	0.00087 (J)		
9/22/2021					0.005 (J)	0.0015 (J)
2/1/2022					0.0061 (J)	
2/2/2022	0.015 (J)					0.0017 (J)
2/3/2022		<0.03	0.001 (J)	0.00077 (J)		
8/30/2022	0.0175	<0.03	<0.03			
8/31/2022				<0.03	0.00688 (J)	
9/1/2022						<0.03
Mean	0.009871	0.01921	0.01293	0.02657	0.00594	0.003662
Std. Dev.	0.005	0.01331	0.01472	0.009691	0.001306	0.007026
Upper Lim.	0.015	0.03	0.03	0.03	0.006758	0.0022
Lower Lim.	0.0042	0.0041	0.00094	0.00087	0.005122	0.0017

	GWB-4R	GWB-5R	GWB-6R	GWC-1	GWC-11	GWC-12
8/30/2016		<0.0002	<0.0002	4E-05 (J)		
8/31/2016					<0.0002	<0.0002
9/1/2016	<0.0002					
10/25/2016				<0.0002		
10/26/2016	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002
1/3/2017		<0.0002				
1/4/2017				<0.0002	<0.0002	<0.0002
1/5/2017			<0.0002			
1/6/2017	<0.0002					
4/4/2017	<0.0002			<0.0002		
4/5/2017						<0.0002
4/6/2017		<0.0002	<0.0002		<0.0002	
7/10/2017						<0.0002
7/11/2017					<0.0002	
7/12/2017	<0.0002	<0.0002	<0.0002	<0.0002		
10/3/2017		<0.0002	<0.0002	<0.0002	<0.0002	
10/4/2017	<0.0002					<0.0002
1/9/2018			<0.0002			
1/10/2018		<0.0002		<0.0002		
1/11/2018	<0.0002				<0.0002	<0.0002
7/10/2018		<0.0002	<0.0002	<0.0002		
7/11/2018	<0.0002				<0.0002	<0.0002
1/16/2019	4.9E-05 (J)	<0.0002	4.3E-05 (J)	<0.0002		
1/17/2019					<0.0002	<0.0002
8/27/2019	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002
8/28/2019		<0.0002				
10/9/2019		<0.0002				
8/17/2020						<0.0002
8/18/2020					<0.0002	
8/19/2020	<0.0002	<0.0002	<0.0002	<0.0002		
9/21/2021	0.0001 (J)	0.0001 (J)	0.0001 (J)		0.0001 (J)	0.0001 (J)
9/23/2021				0.0001 (J)		
2/2/2022	<0.0002		<0.0002			
2/3/2022		<0.0002		<0.0002	<0.0002	<0.0002
8/30/2022	<0.0002	8.7E-05 (J)	<0.0002			<0.0002
8/31/2022					<0.0002	
9/1/2022				<0.0002		
Mean	0.0001821	0.0001858	0.0001816	0.0001814	0.0001929	0.0001929
Std. Dev.	4.666E-05	3.755E-05	4.798E-05	4.865E-05	2.673E-05	2.673E-05
Upper Lim.	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
Lower Lim.	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001

			Gramman rioda 2			ata: Gramman Hoda Zanami
	GWC-13	GWC-14	GWC-15	GWC-16	GWC-17	GWC-2
8/31/2016	<0.0002					<0.0002
9/1/2016		<0.0002	<0.0002	<0.0002	<0.0002	
10/25/2016		<0.0002	<0.0002	<0.0002		
10/26/2016	<0.0002				<0.0002	<0.0002
1/4/2017				<0.0002		
1/5/2017	<0.0002	<0.0002	<0.0002		<0.0002	<0.0002
4/3/2017			<0.0002			
4/4/2017		<0.0002				<0.0002
4/5/2017				<0.0002	<0.0002	
4/6/2017	0.00013 (J)					
7/11/2017		<0.0002	<0.0002			
7/12/2017	<0.0002			<0.0002		
7/13/2017					<0.0002	<0.0002
10/2/2017		<0.0002	<0.0002			
10/3/2017				<0.0002		<0.0002
10/4/2017	<0.0002				<0.0002	
1/9/2018		<0.0002	<0.0002			
1/10/2018	<0.0002			<0.0002		<0.0002
1/11/2018					<0.0002	
7/9/2018		<0.0002				
7/10/2018			<0.0002	<0.0002		<0.0002
7/11/2018	<0.0002				<0.0002	
1/16/2019	<0.0002	<0.0002			<0.0002	
1/17/2019			<0.0002	<0.0002		
1/21/2019						<0.0002
7/30/2019						<0.0002
8/27/2019	<0.0002	<0.0002	<0.0002			<0.0002
8/28/2019				<0.0002	<0.0002	
8/17/2020	<0.0002					
8/18/2020		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
9/21/2021	0.0001 (J)					
9/22/2021		0.00011 (J)		0.0001 (J)	0.00011 (J)	0.0001 (J)
9/23/2021			0.0001 (J)			
2/1/2022				<0.0002	<0.0002	
2/2/2022		<0.0002				<0.0002
2/3/2022	<0.0002		<0.0002			
8/30/2022		<0.0002				
8/31/2022	<0.0002		<0.0002		<0.0002	
9/1/2022				<0.0002		<0.0002
Mean	0.0001879	0.0001936	0.0001929	0.0001929	0.0001936	0.0001933
Std. Dev.	3.142E-05	2.405E-05	2.673E-05	2.673E-05	2.405E-05	2.582E-05
Upper Lim.	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
Lower Lim.	0.00013	0.00011	0.0001	0.0001	0.00011	0.0001

	GWC-20	GWC-21	GWC-22	GWC-9
8/31/2016			<0.0002	<0.0002
9/1/2016	<0.0002	<0.0002		
10/25/2016	<0.0002	<0.0002		
10/26/2016			<0.0002	
10/27/2016				<0.0002
1/4/2017	<0.0002	<0.0002	<0.0002	
1/6/2017				<0.0002
4/4/2017	<0.0002	<0.0002		
4/6/2017			<0.0002	<0.0002
7/11/2017	<0.0002		<0.0002	
7/12/2017				<0.0002
7/13/2017		<0.0002		
10/2/2017	<0.0002			
10/3/2017		<0.0002		
10/4/2017			<0.0002	5E-05 (J)
1/9/2018		<0.0002		
1/10/2018	<0.0002			
1/11/2018			<0.0002	<0.0002
7/9/2018	<0.0002			
7/10/2018		<0.0002		
7/11/2018			<0.0002	<0.0002
1/17/2019		<0.0002		
1/18/2019			<0.0002	<0.0002
1/21/2019	<0.0002			
8/27/2019			<0.0002	
8/28/2019	<0.0002	<0.0002		<0.0002
8/18/2020	<0.0002	<0.0002	<0.0002	
8/19/2020				<0.0002
9/21/2021			0.0001 (J)	
9/22/2021	0.00011 (J)	0.00011 (J)		0.00011 (J)
2/1/2022	<0.0002	<0.0002		
2/2/2022				<0.0002
2/3/2022			<0.0002	
8/30/2022	<0.0002	<0.0002		
8/31/2022			<0.0002	
9/1/2022				<0.0002
Mean	0.0001936	0.0001936	0.0001929	0.0001829
Std. Dev.	2.405E-05	2.405E-05	2.673E-05	4.514E-05
Upper Lim.	0.0002	0.0002	0.0002	0.0002
Lower Lim.	0.00011	0.00011	0.0001	0.00011

Constituent: Molybdenum (mg/L) Analysis Run 11/6/2022 10:04 AM View: Appendix II & IV - Confidence Intervals

Constituci	it. Worybacham (iii	g/L/ / lidiy	515 TUIT T170/2022 T0:04 7 W	view. Appendix ii a i	· Commuci
	Grumman Ro	ad Landfill	Client: Southern Company	Data: Grumman Road	d Landfill
-5R	GWB-6R	GWC-	1 GWC-11	GWC-12	

	GWB-4R	GWB-5R	GWB-6R	GWC-1	GWC-11	GWC-12
8/30/2016		<0.001	<0.001	0.175		
8/31/2016					<0.001	<0.001
9/1/2016	0.035					
10/25/2016				0.242		
10/26/2016	0.0267	<0.001	<0.001		<0.001	<0.001
1/3/2017		<0.001				
1/4/2017				0.167	<0.001	<0.001
1/5/2017			<0.001			
1/6/2017	0.0278					
4/4/2017	0.0265			0.172		
4/5/2017						<0.001
4/6/2017		<0.001	<0.001		<0.001	
7/10/2017						<0.001
7/11/2017					<0.001	
7/12/2017	0.0209	<0.001	<0.001	0.182		
10/3/2017		<0.001	<0.001	0.162	<0.001	
10/4/2017	0.0181					<0.001
1/9/2018			<0.001			
1/10/2018		<0.001		0.117		
1/11/2018	0.0237				0.0018 (J)	<0.001
7/10/2018		<0.001	<0.001	0.11		
7/11/2018	0.024				<0.001	<0.001
8/27/2019	0.1		0.0026 (J)	0.06	<0.001	<0.001
8/28/2019		0.0012 (J)				
10/8/2019					<0.001	
10/9/2019	0.1	<0.001	<0.001	0.06		<0.001
4/7/2020	0.13	<0.001	<0.001	0.014	<0.001	<0.001
8/17/2020						<0.001
8/18/2020					0.00077 (J)	
8/19/2020	0.16	<0.001	0.001 (J)	0.061		
9/28/2020				0.059		
9/29/2020					<0.001	<0.001
9/30/2020		<0.001	0.00097 (J)			
10/1/2020	0.15					
3/10/2021	0.12	<0.001	0.0013 (J)	0.057	<0.001	<0.001
9/21/2021	0.12	<0.001	<0.001		<0.001	<0.001
9/23/2021				0.06		
2/2/2022	0.11		0.00085 (J)			
2/3/2022		<0.001		0.038	<0.001	<0.001
8/30/2022	0.154	<0.001	0.000649 (J)			0.000205 (J)
8/31/2022					0.000512 (J)	
9/1/2022				0.0343	. ,	
Mean	0.07922	0.001012	0.001081	0.1041	0.001005	0.0009532
Std. Dev.	0.05491	4.851E-05	0.0004098	0.06687	0.0002412	0.0001928
Upper Lim.	0.13	0.0012	0.0013	0.146	0.0018	0.001
Lower Lim.	0.024	0.001	0.001	0.06224	0.00077	0.000205

	GWC-13	GWC-14	GWC-15	GWC-16	GWC-17	GWC-20
8/31/2016	<0.001					
9/1/2016		0.0027 (J)	0.132	0.08	<0.001	0.296
10/25/2016		0.0028 (J)	0.117	0.08		0.395
10/26/2016	<0.001				<0.001	
1/4/2017				0.0786		0.229
1/5/2017	<0.001	0.0022 (J)	0.109		<0.001	
4/3/2017	0.001	0.0022 (0)	0.0994		0.001	
4/4/2017		0.0022 (J)	0.0334			0.147
		0.0022 (3)		0.110	-0.004	0.147
4/5/2017	<0.004			0.113	<0.001	
4/6/2017	<0.001	0.0001111	0.0000			0.100
7/11/2017		0.0024 (J)	0.0938			0.136
7/12/2017	<0.001			0.178		
7/13/2017					<0.001	
10/2/2017		0.0025 (J)	0.103			0.13
10/3/2017				0.201		
10/4/2017	<0.001				<0.001	
1/9/2018		0.0038 (J)	0.106			
1/10/2018	<0.001			0.161		0.229
1/11/2018					<0.001	
7/9/2018		0.01				0.13
7/10/2018		5.5.	0.088	0.14		55
	<0.001		0.000	0.14	<0.001	
7/11/2018	<0.001	0.000	0.005		<0.001	
8/27/2019	<0.001	0.028	0.095			
8/28/2019				0.22	0.004 (J)	0.11
10/8/2019	<0.001	0.034	0.091	0.2		
10/9/2019					0.0036 (J)	0.071
4/7/2020		0.014	0.07	0.25		
4/8/2020	0.0056 (J)				0.0024 (J)	0.06
8/17/2020	<0.001					
8/18/2020		0.017	0.12	0.15	0.00092 (J)	0.097
9/28/2020	<0.001				` '	
9/29/2020		0.0089 (J)				
9/30/2020		0.0000 (0)	0.11	0.15	0.0041 (J)	0.33
			0.11	0.13		0.55
3/11/2021			0.000		0.0038 (J)	0.50
3/12/2021			0.098			0.53
3/15/2021	<0.001					
3/16/2021		0.0054 (J)		0.31		
9/21/2021	<0.001					
9/22/2021		0.018		0.22	0.0053 (J)	0.5
9/23/2021			0.094			
2/1/2022				0.18	0.003 (J)	0.77
2/2/2022		0.015				
2/3/2022	<0.001		0.086			
8/30/2022		0.0133				0.309
8/31/2022	<0.001	0.0100	0.0786		0.00252	0.000
	-0.00 i		0.0700	0.154	0.00232	
9/1/2022	0.004577	0.040=0	0.00010	0.154	0.005511	0.0055
Mean	0.001271	0.01072	0.09946	0.1686	0.002214	0.2629
Std. Dev.	0.001116	0.009545	0.01545	0.06266	0.001477	0.1946
	0.0056	0.01488	0.1091	0.2078	0.0038	0.3536
Upper Lim.	0.0056	0.01400	0.1001			

	GWC-21	MW-24D	MW-25D
9/1/2016	0.0686		
10/25/2016	0.0018 (J)		
1/4/2017	0.0222		
4/4/2017	0.0476		
7/13/2017	0.0105		
10/3/2017	0.0031 (J)		
1/9/2018	0.09		
7/10/2018	0.047		
8/28/2019	0.07		
10/8/2019	0.078		
4/7/2020	0.012		
8/18/2020	0.069		
9/30/2020	0.028		
1/20/2021			0.0011 (J)
1/21/2021		0.0014 (J)	
3/11/2021		0.0035 (J)	0.0015 (J)
3/16/2021	0.024		
9/22/2021	0.0019 (J)	0.0032 (J)	
9/23/2021			<0.001
2/1/2022	0.042	0.0024 (J)	
2/3/2022			<0.001
8/30/2022	0.049		
8/31/2022			0.000863 (J)
9/1/2022		0.00174	
Mean	0.0391	0.002448	0.001093
Std. Dev.	0.02886	0.0009047	0.0002428
Upper Lim.	0.05718	0.003964	0.001454
Lower Lim.	0.02102	0.000932	0.0006211

	GWB-4R	GWB-5R	GWB-6R	GWC-1	GWC-11	GWC-12
1/17/2016				0.023		
1/18/2016	<0.005	<0.005	<0.005			<0.005
1/19/2016					0.023	
7/26/2016					0.0056 (J)	
7/27/2016		<0.005		0.002 (J)		0.0025 (J)
7/28/2016			<0.005			
7/29/2016	0.0036 (J)					
8/30/2016		<0.005	<0.005	0.002 (J)		
8/31/2016					0.0084 (J)	0.0019 (J)
9/1/2016	0.0067 (J)					
10/25/2016				0.0022 (J)		
10/26/2016	0.0042 (J)	<0.005	<0.005		0.0052 (J)	0.002 (J)
1/3/2017		<0.005				
1/4/2017				0.0016 (J)	0.0062 (J)	<0.005
1/5/2017			0.0014 (J)			
1/6/2017	0.0042 (J)					
4/4/2017	0.0043 (J)			0.0052 (J)		
4/5/2017						<0.005
4/6/2017		<0.005	<0.005		0.0195	
7/10/2017						<0.005
7/11/2017					<0.005	
7/12/2017	0.0033 (J)	<0.005	<0.005	0.0024 (J)		
10/3/2017	. ,	<0.005	<0.005	<0.005	0.0079 (J)	
10/4/2017	0.0038 (J)				()	<0.005
1/9/2018	. ,		<0.005			
1/10/2018		<0.005		0.0018 (J)		
1/11/2018	0.0029 (J)			(-,	0.0054 (J)	<0.005
7/10/2018	(-,	0.0018 (J)	0.0016 (J)	0.0026 (J)	(-,	
7/11/2018	0.0015 (J)	(-,	(-,	(,,	0.0022 (J)	<0.005
1/16/2019	<0.005	<0.005	<0.005	0.0018 (J)	(-,	
1/17/2019				. ,	<0.005	<0.005
3/25/2019	<0.005					
3/26/2019		<0.005	0.05 (J)	0.0023 (J)		
3/27/2019			. ,	.,	0.01 (J)	<0.005
8/27/2019	<0.005		0.0033 (J)	0.0016 (J)	<0.005	<0.005
8/28/2019		0.0033 (J)				
10/8/2019					<0.005	
10/9/2019	<0.005	0.0073 (J)	<0.005	0.0024 (J)		<0.005
4/7/2020	0.0025 (J)	<0.005	<0.005	0.0013 (J)	0.0021 (J)	<0.005
8/17/2020						<0.005
8/18/2020					0.0028 (J)	
8/19/2020	<0.005	<0.005	<0.005	0.002 (J)		
9/28/2020				<0.005		
9/29/2020					0.0024 (J)	<0.005
9/30/2020		<0.005	0.0023 (J)			
10/1/2020	<0.005					
3/10/2021	0.0021 (J)	0.006	0.0049 (J)	0.0026 (J)	0.0044 (J)	0.003 (J)
9/21/2021	<0.005	<0.005	0.0016 (J)		0.0038 (J)	<0.005
9/23/2021			•	0.0018 (J)	-	
2/2/2022	<0.005		0.0017 (J)			
2/3/2022		<0.005	•	0.0022 (J)	0.019	<0.005
8/30/2022	0.00265 (J)	<0.005	0.00277 (J)	•		<0.005

	GWB-4R	GWB-5R	GWB-6R	GWC-1	GWC-11	GWC-12
8/31/2022					0.00344 (J)	
9/1/2022				0.00252 (J)		
Mean	0.004131	0.004924	0.00617	0.003491	0.007207	0.004495
Std. Dev.	0.001264	0.0009823	0.01014	0.004609	0.005946	0.001084
Upper Lim.	0.003863	0.006	0.005	0.0026	0.007591	0.005
Lower Lim.	0.0026	0.0033	0.0023	0.0018	0.003421	0.003

						,	
		GWC-14	GWC-15	GWC-16	GWC-17	GWC-2	GWC-20
1	1/17/2016	<0.005	<0.005	0.0031 (J)		<0.005	<0.005
1	1/18/2016				<0.005		
4	1/26/2016	0.00428 (J)		0.00497 (J)			
7	7/27/2016	0.0038 (J)	<0.005			0.002 (J)	
7	7/28/2016			0.0076 (J)			<0.005
7	7/29/2016				0.0011 (J)		
8	3/31/2016					<0.005	
	9/1/2016	0.0056 (J)	<0.005	0.0052 (J)	0.0012 (J)		<0.005
	10/25/2016	0.0023 (J)	<0.005	0.0085 (J)	(-)		0.0014 (J)
	10/26/2016	(-/		(-)	0.0013 (J)	0.0035 (J)	(-/
	1/4/2017			0.0048 (J)	(-)	(-)	0.0014 (J)
	1/5/2017	0.0038 (J)	<0.005	(-)	0.0012 (J)	<0.005	(-/
	1/3/2017	(0)	<0.005		(0)		
	1/4/2017	0.0064 (J)				<0.005	<0.005
	1/5/2017	0.0004 (0)		0.0068 (J)	<0.005	-0.000	0.000
	7/11/2017	0.0044 (1)	<0.005	0.0000 (0)	-0.003		<0.005
		0.0044 (J)	~ 0.000	0.0048 (1)			~U.UUO
	7/12/2017			0.0048 (J)	0.001971	<0.005	
	7/13/2017	0.00475	-0.005		0.0018 (J)	<0.005	10.005
	10/2/2017	0.004 (J)	<0.005	0.0054 (1)		-0.005	<0.005
	10/3/2017			0.0051 (J)		<0.005	
	10/4/2017				0.0042 (J)		
	1/9/2018	0.0019 (J)	0.0019 (J)				
	1/10/2018			0.0018 (J)		<0.005	<0.005
	1/11/2018				<0.005		
	7/9/2018	0.0029 (J)					<0.005
	7/10/2018		0.0086 (J)	0.0045 (J)		<0.005	
7	7/11/2018				0.0016 (J)		
1	1/16/2019	0.0016 (J)			<0.005		
1	1/17/2019		0.0029 (J)	0.0031 (J)			
1	1/21/2019					<0.005	0.0014 (J)
3	3/25/2019						<0.005
3	3/26/2019	0.0022 (J)	0.0074 (J)	0.0033 (J)	<0.005		
7	7/30/2019					<0.005	
8	3/27/2019	0.0035 (J)	0.0092 (J)			<0.005	
8	3/28/2019			0.004 (J)	<0.005		0.0014 (J)
1	10/8/2019	0.0026 (J)	0.014	0.0023 (J)			
	10/9/2019				<0.005	<0.005	<0.005
	1/7/2020	0.005 (J)	0.0029 (J)	<0.005			
	1/8/2020	• •			<0.005	<0.005	0.0013 (J)
	3/18/2020	0.0029 (J)	0.0022 (J)	0.0058 (J)	0.002 (J)	<0.005	<0.005
	9/29/2020	0.0051 (J)	(-)	(-)		<0.005	
	9/30/2020		<0.005	0.0037 (J)	<0.005		<0.005
	3/11/2021		0.000	3.3337 (0)	0.0016 (J)		0.000
	3/11/2021		0.0064		0.0010(0)		<0.005
	3/12/2021		0.0004			<0.005	-0.003
		0.003471		0.004471		~ 0.005	
	3/16/2021	0.0034 (J)		0.0044 (J)	<0.005	<0.005	0.002471
	9/22/2021	0.0034 (J)	0.0046.45	0.0031 (J)	<0.005	<0.005	0.0024 (J)
	9/23/2021		0.0016 (J)	0.0004 (1)	.0.005		.0.005
	2/1/2022			0.0024 (J)	<0.005		<0.005
	2/2/2022	0.0038 (J)				<0.005	
	2/3/2022		0.0031 (J)				
8	3/30/2022	0.00544					0.00192 (J)

	GWC-14	GWC-15	GWC-16	GWC-17	GWC-2	GWC-20
8/31/2022		0.00192 (J)		<0.005		
9/1/2022			0.00334 (J)		<0.005	
Mean	0.003787	0.005101	0.004437	0.003619	0.004786	0.003868
Std. Dev.	0.001284	0.002916	0.001692	0.001743	0.0007171	0.001656
Upper Lim.	0.004476	0.004932	0.005345	0.005	0.005	0.005
Lower Lim.	0.003098	0.002125	0.003529	0.0016	0.0035	0.00192

	GWC-21	GWC-22
1/17/2016	0.021	
1/18/2016		<0.005
7/28/2016	0.0341	
7/29/2016		0.0022 (J)
8/31/2016		0.0014 (J)
9/1/2016	0.0297	
10/25/2016	0.0095 (J)	
10/26/2016		0.001 (J)
1/4/2017	0.022	<0.005
4/4/2017	0.0236	
4/6/2017		<0.005
7/11/2017		<0.005
7/13/2017	0.013	
10/3/2017	0.01 (J)	
10/4/2017		0.0023 (J)
1/9/2018	0.0162	
1/11/2018		<0.005
7/10/2018	0.016	
7/11/2018		<0.005
1/17/2019	0.011	
1/18/2019		<0.005
3/26/2019	0.022	
3/27/2019		<0.005
8/27/2019		<0.005
8/28/2019	0.019	
10/8/2019	0.019	
10/9/2019		<0.005
4/7/2020	0.012	<0.005
8/18/2020	0.013	<0.005
9/30/2020	0.0061 (J)	<0.005
3/10/2021		<0.005
3/16/2021	0.0055	
9/21/2021		<0.005
9/22/2021	0.0027 (J)	
2/1/2022	0.0054	
2/3/2022		<0.005
8/30/2022	0.00648	
8/31/2022		<0.005
Mean	0.01511	0.004376
Std. Dev.	0.008357	0.00134
Upper Lim.	0.01972	0.005
Lower Lim.	0.0105	0.0023

			Gramman Not	da Landilli Cilent.	oddinerii Company	Data. Gramman Noad Eandiin
	GWB-4R	GWB-5R	GWC-1	GWC-11	GWC-12	GWC-14
8/30/2016		<0.002	<0.002			
8/31/2016				<0.002	<0.002	
9/1/2016	<0.002					<0.002
10/25/2016			<0.002			<0.002
10/26/2016	<0.002	<0.002		<0.002	0.0003 (J)	
1/3/2017		<0.002				
1/4/2017			<0.002	<0.002	<0.002	
1/5/2017						<0.002
1/6/2017	<0.002					
4/4/2017	7E-05 (J)		5E-05 (J)			7E-05 (J)
4/5/2017					0.0002 (J)	
4/6/2017		<0.002		6E-05 (J)		
7/10/2017					0.0002 (J)	
7/11/2017				<0.002		6E-05 (J)
7/12/2017	<0.002	<0.002	<0.002			
10/2/2017						<0.002
10/3/2017		<0.002	<0.002	7E-05 (J)		
10/4/2017	<0.002			. ,	0.0002 (J)	
1/9/2018					` '	<0.002
1/10/2018		<0.002	<0.002			
1/11/2018	7E-05 (J)			0.0001 (J)	0.0002 (J)	
7/9/2018	(-,			(-,	(-,	<0.002
7/10/2018		<0.002	<0.002			
7/11/2018	<0.002			<0.002	<0.002	
8/27/2019	<0.002		<0.002	<0.002	0.00011 (J)	<0.002
8/28/2019		5.7E-05 (J)			(-,	
10/8/2019		(-,		9.8E-05 (J)		<0.002
10/9/2019	<0.002	0.00031 (J)	5.4E-05 (J)	()	0.00014 (J)	
4/7/2020	<0.002	<0.002	5.4E-05 (J)	0.00019 (J)	0.00013 (J)	<0.002
8/17/2020			(1)	(-,	<0.002	
8/18/2020				0.00021 (J)		<0.002
8/19/2020	<0.002	<0.002	<0.002	(-,		
9/28/2020			<0.002			
9/29/2020				0.00017 (J)	<0.002	<0.002
9/30/2020		<0.002				
10/1/2020	<0.002					
3/10/2021	<0.002	<0.002	<0.002	0.00022 (J)	<0.002	
3/16/2021						<0.002
9/21/2021	<0.002	<0.002		<0.002	<0.002	
9/22/2021						<0.002
9/23/2021			<0.002			5.002
2/2/2022	<0.002		0.002			<0.002
2/3/2022	0.002	<0.002	<0.002	<0.002	<0.002	5.002
8/30/2022	<0.002	<0.002		002	<0.002	<0.002
8/31/2022	5.552	3.002		<0.002	002	-
9/1/2022			<0.002	002		
Mean	0.001773	0.001786	0.001656	0.001125	0.001146	0.001772
Std. Dev.	0.000641	0.0006049	0.001030	0.0001123	0.0001140	0.0006426
Upper Lim.	0.00041	0.000	0.0007032	0.000938	0.0009340	0.002
Lower Lim.	7E-05	0.002	5.4E-05	0.002	0.002	7E-05
	00					

	GWC-16	GWC-17	GWC-2	GWC-21	GWC-22
8/31/2016			<0.002		<0.002
9/1/2016	<0.002	<0.002		<0.002	
10/25/2016	<0.002			<0.002	
10/26/2016		<0.002	<0.002		<0.002
1/4/2017	<0.002			<0.002	<0.002
1/5/2017		<0.002	<0.002		
4/4/2017			<0.002	5E-05 (J)	
4/5/2017	6E-05 (J)	0.0001 (J)			
4/6/2017					<0.002
7/11/2017					<0.002
7/12/2017	<0.002				
7/13/2017		<0.002	<0.002	<0.002	
10/3/2017	<0.002		<0.002	<0.002	
10/4/2017		0.0001 (J)			0.0001 (J)
1/9/2018				<0.002	
1/10/2018	5E-05 (J)		<0.002		
1/11/2018		0.0001 (J)			6E-05 (J)
7/10/2018	<0.002		<0.002	<0.002	
7/11/2018		<0.002			<0.002
7/30/2019			0.00011 (J)		
8/27/2019			<0.002		8.6E-05 (J)
8/28/2019	<0.002	6.6E-05 (J)		<0.002	
10/8/2019	<0.002			<0.002	
10/9/2019		7.6E-05 (J)	<0.002		<0.002
4/7/2020	<0.002			<0.002	6.5E-05 (J)
4/8/2020		5.6E-05 (J)	<0.002		
8/18/2020	<0.002	<0.002	<0.002	<0.002	0.00017 (J)
9/29/2020			<0.002		
9/30/2020	<0.002	<0.002		<0.002	<0.002
3/10/2021					<0.002
3/11/2021		<0.002			
3/15/2021			<0.002		
3/16/2021	<0.002			<0.002	
9/21/2021					<0.002
9/22/2021	<0.002	<0.002	<0.002	<0.002	
2/1/2022	<0.002	<0.002		<0.002	
2/2/2022			<0.002		
2/3/2022					<0.002
8/30/2022				<0.002	
8/31/2022		<0.002			<0.002
9/1/2022	<0.002		<0.002		
Mean	0.001771	0.001323	0.001895	0.001885	0.00144
Std. Dev.	0.0006459	0.0009444	0.0004455	0.0004729	0.0008944
Upper Lim.	0.002	0.002	0.002	0.002	0.002
Lower Lim.	6E-05	7.6E-05	0.00011	5E-05	0.0001

1/17/2016 1/18/2016 1/19/2016 7/26/2016 7/28/2016 7/28/2016 7/29/2016 0 1/3/2017 1/4/2017 1/6/2017 4/4/2017 4/6/2017 7/10/2017 7/11/2017 7/11/2017 7/11/2018 1/10/2018 1/11/2018 1/11/2018 1/11/2018 1/11/2018 1/11/2019 1/17/2019 3/25/2019 3/25/2019 3/27/2019 10/8/2019 10/9/2019 4/7/2020 0	0.0388 0.0341 0.0371 0.0399	0.0069 0.0046 (J) <0.02 0.0063 (J) 0.0064 (J) 0.0077 (J)	GWB-6R 0.0044 (J) 0.0038 (J) 0.0077 (J) 0.0069 (J) 0.0098 (J) 0.0086 (J)	GWC-1 0.0046 (J) 0.0064 (J) <0.02 0.0061 (J) 0.0067 (J)	GWC-11 0.0025 (J) 0.0027 (J) <0.002 0.0025 (J) 0.0027 (J)	GWC-12 0.0058 0.0058 (J) <0.02 0.0039 (J) 0.0062 (J)
1/18/2016 0 1/19/2016 7/26/2016 7/27/2016 7/28/2016 7/29/2016 0 1/3/2017 1/4/2017 1/6/2017 4/4/2017 4/5/2017 4/6/2017 7/10/2017 7/11/2017 7/12/2017 1/9/2018 1/10/2018 1/11/2018 1/11/2018 1/11/2018 1/11/2018 1/11/2019 1/17/2019 3/25/2019 3/25/2019 3/27/2019 10/8/2019 10/9/2019 4/7/2020 0	0.0388 0.0341 0.0371 0.0399	0.0046 (J) <0.02 0.0063 (J) 0.0064 (J) 0.0077 (J)	0.0038 (J) 0.0077 (J) 0.0069 (J) 0.0098 (J)	0.0064 (J) <0.02 0.0061 (J)	0.0027 (J) <0.02	0.0058 (J) <0.02
1/19/2016 7/26/2016 7/27/2016 7/28/2016 7/29/2016 0 1/3/2017 1/4/2017 1/5/2017 1/6/2017 4/4/2017 4/5/2017 7/10/2017 7/11/2017 7/11/2018 1/10/2018 1/11/2018 1/11/2018 1/11/2018 1/11/2018 1/11/2018 0 1/16/2019 1/17/2019 3/25/2019 3/26/2019 3/27/2019 10/8/2019 10/9/2019 4/7/2020 0	0.0388 0.0341 0.0371 0.0399	0.0046 (J) <0.02 0.0063 (J) 0.0064 (J) 0.0077 (J)	0.0038 (J) 0.0077 (J) 0.0069 (J) 0.0098 (J)	<0.02 0.0061 (J) 0.0067 (J)	0.0027 (J) <0.02	0.0058 (J) <0.02
7/26/2016 7/28/2016 7/28/2016 7/29/2016 0 1/3/2017 1/4/2017 1/5/2017 1/6/2017 4/5/2017 4/6/2017 7/10/2017 7/11/2017 7/11/2018 1/10/2018 1/10/2018 1/11/2018 1/11/2018 1/11/2018 0 1/16/2019 1/17/2019 3/25/2019 3/26/2019 3/27/2019 10/8/2019 10/9/2019 4/7/2020 0	0.0388 0.0341 0.0371 0.0399	<0.02 0.0063 (J) 0.0064 (J) 0.0077 (J)	0.0077 (J) 0.0069 (J) 0.0098 (J)	<0.02 0.0061 (J) 0.0067 (J)	0.0027 (J) <0.02	<0.02 0.0039 (J)
7/27/2016 7/28/2016 7/28/2016 7/29/2016 0 1/3/2017 1/4/2017 1/5/2017 1/6/2017 4/5/2017 4/6/2017 7/10/2017 7/11/2017 7/11/2018 1/10/2018 1/10/2018 1/11/2018 1/11/2018 1/11/2018 1/11/2019 1/17/2019 3/25/2019 3/25/2019 3/27/2019 10/8/2019 10/8/2019 4/7/2020 0	0.0388 0.0341 0.0371 0.0399	<0.02 0.0063 (J) 0.0064 (J) 0.0077 (J)	0.0077 (J) 0.0069 (J) 0.0098 (J)	<0.02 0.0061 (J) 0.0067 (J)	<0.02 0.0025 (J)	<0.02 0.0039 (J)
7/28/2016 7/29/2016 0 1/3/2017 1/4/2017 1/5/2017 1/6/2017 4/4/2017 4/5/2017 4/6/2017 7/10/2017 7/11/2017 7/11/2017 1/9/2018 1/11/2018 1/11/2018 1/11/2018 1/11/2018 1/11/2019 1/17/2019 3/25/2019 3/25/2019 3/27/2019 10/8/2019 4/7/2020 0	0.0388 0.0341 0.0371 0.0399	<0.02 0.0063 (J) 0.0064 (J) 0.0077 (J)	0.0077 (J) 0.0069 (J) 0.0098 (J)	<0.02 0.0061 (J) 0.0067 (J)	0.0025 (J)	<0.02 0.0039 (J)
7/29/2016 0 1/3/2017 1/4/2017 1/5/2017 1/6/2017 4/4/2017 4/5/2017 4/6/2017 7/10/2017 7/11/2017 7/11/2017 1/9/2018 1/11/2018 1/11/2018 1/11/2018 1/11/2018 1/11/2019 1/17/2019 3/25/2019 3/25/2019 3/27/2019 10/8/2019 4/7/2020 0	0.0341 0.0371 0.0399	<0.02 0.0063 (J) 0.0064 (J) 0.0077 (J)	0.0077 (J) 0.0069 (J) 0.0098 (J)	0.0061 (J) 0.0067 (J)	0.0025 (J)	0.0039 (J)
1/3/2017 1/4/2017 1/5/2017 1/6/2017 4/4/2017 4/5/2017 4/6/2017 7/10/2017 7/11/2017 7/11/2017 7/12/2018 1/10/2018 1/11/2018 1/11/2018 1/11/2018 1/11/2018 1/11/2019 1/17/2019 3/25/2019 3/25/2019 3/27/2019 10/8/2019 4/7/2020 0	0.0341 0.0371 0.0399	0.0063 (J) 0.0064 (J) 0.0077 (J)	0.0069 (J) 0.0098 (J)	0.0061 (J) 0.0067 (J)	0.0025 (J)	0.0039 (J)
1/4/2017 1/5/2017 1/6/2017 0/4/2017 0/4/2017 4/6/2017 4/6/2017 7/10/2017 7/11/2017 7/12/2017 1/9/2018 1/10/2018 1/11/2018 1/11/2018 1/11/2018 1/11/2018 1/11/2019 1/17/2019 3/25/2019 3/26/2019 3/27/2019 10/8/2019 10/9/2019 4/7/2020 0	0.0371	0.0063 (J) 0.0064 (J) 0.0077 (J)	0.0069 (J) 0.0098 (J)	0.0061 (J) 0.0067 (J)	0.0025 (J)	0.0039 (J)
1/5/2017 1/6/2017 1/6/2017 4/4/2017 4/5/2017 4/6/2017 7/10/2017 7/11/2017 7/12/2017 1/9/2018 1/11/2018 1/11/2018 1/11/2018 7/10/2018 7/11/2018 0 1/16/2019 1/17/2019 3/25/2019 3/26/2019 3/27/2019 10/8/2019 4/7/2020 0	0.0371	0.0063 (J) 0.0064 (J) 0.0077 (J)	0.0069 (J) 0.0098 (J)	0.0061 (J) 0.0067 (J)	0.0025 (J)	0.0039 (J)
1/6/2017 0 4/4/2017 4/5/2017 4/6/2017 7/10/2017 7/11/2017 7/12/2017 0 1/9/2018 1/10/2018 1/11/2018 7/10/2018 7/11/2018 0 1/16/2019 1/17/2019 3/25/2019 3/26/2019 3/27/2019 10/8/2019 4/7/2020 0	0.0371	0.0063 (J) 0.0064 (J) 0.0077 (J)	0.0069 (J) 0.0098 (J)	0.0067 (J)		
4/4/2017 4/5/2017 4/6/2017 7/10/2017 7/11/2017 7/12/2017 1/9/2018 1/10/2018 1/11/2018 7/11/2018 7/11/2018 0 1/16/2019 1/17/2019 3/25/2019 3/26/2019 3/27/2019 10/8/2019 4/7/2020 0	0.0371	0.0064 (J) 0.0077 (J)	0.0098 (J)	0.0067 (J)		
4/5/2017 4/6/2017 7/10/2017 7/11/2017 7/11/2017 1/9/2018 1/10/2018 1/11/2018 7/10/2018 7/11/2018 0 1/16/2019 1/17/2019 3/25/2019 3/26/2019 3/27/2019 10/8/2019 4/7/2020 0	0.0399	0.0064 (J) 0.0077 (J)	0.0098 (J)	0.0067 (J)		
4/6/2017 7/10/2017 7/11/2017 7/11/2017 1/9/2018 1/10/2018 1/11/2018 0 7/10/2018 7/11/2018 0 1/16/2019 0 1/17/2019 3/25/2019 3/26/2019 3/27/2019 10/8/2019 4/7/2020 0	0.0399	0.0064 (J) 0.0077 (J)	0.0098 (J)			
7/10/2017 7/11/2017 7/12/2017 0 1/9/2018 1/10/2018 1/11/2018 7/10/2018 7/11/2018 0 1/16/2019 0 1/17/2019 3/25/2019 3/26/2019 3/27/2019 10/8/2019 10/9/2019 4/7/2020 0	0.0399	0.0064 (J) 0.0077 (J)	0.0098 (J)			0.0062 (J)
7/11/2017 7/12/2017 1/9/2018 1/10/2018 1/11/2018 7/10/2018 7/11/2018 1/16/2019 1/17/2019 3/25/2019 3/25/2019 3/27/2019 10/8/2019 10/9/2019 4/7/2020 0	0.0327	0.0077 (J)			0.0027 (J)	0.0062 (J)
7/12/2017 0 1/9/2018 1/10/2018 1/11/2018 7/10/2018 7/10/2018 7/11/2018 1/16/2019 1/17/2019 3/25/2019 3/26/2019 3/27/2019 10/8/2019 4/7/2020 0	0.0327	0.0077 (J)			0.0027 (J)	
1/9/2018 1/10/2018 1/11/2018 0 7/10/2018 7/11/2018 0 1/16/2019 1/17/2019 3/25/2019 3/26/2019 3/27/2019 10/8/2019 4/7/2020 0	0.0327	0.0077 (J)				
1/10/2018 1/11/2018 0 7/10/2018 7/11/2018 0 1/16/2019 1/17/2019 3/25/2019 3/26/2019 3/27/2019 10/8/2019 4/7/2020 0	0.0327	0.0077 (J)	0.0086 (J)	0.0056 (J)		
1/11/2018 0 7/10/2018 7/11/2018 0 1/16/2019 0 1/17/2019 3/25/2019 3/25/2019 3/27/2019 10/8/2019 4/7/2020 0	0.0327			0.0056 (J)		
7/10/2018 7/11/2018 0 1/16/2019 0 1/17/2019 3/25/2019 3/26/2019 3/27/2019 10/8/2019 10/9/2019 4/7/2020 0		0.016				
7/11/2018 0 1/16/2019 0 1/17/2019 3/25/2019 0 3/26/2019 3/27/2019 10/8/2019 10/9/2019 < 4/7/2020 0		0.016			0.0019 (J)	0.0025 (J)
1/16/2019 0 1/17/2019 3/25/2019 0 3/26/2019 3/27/2019 10/8/2019 10/9/2019 < 4/7/2020 0	1.02	-	0.0098 (J)	0.0056 (J)		
1/17/2019 3/25/2019 0 3/26/2019 3/27/2019 10/8/2019 10/9/2019 4/7/2020 0	J.UZ				0.0021 (J)	0.0059 (J)
3/25/2019 0 3/26/2019 3/27/2019 10/8/2019 10/9/2019 < 4/7/2020 0).0022 (J)	0.0033 (J)	0.077	0.0043 (J)		
3/26/2019 3/27/2019 10/8/2019 10/9/2019 < 4/7/2020 0					0.0021 (J)	<0.02
3/27/2019 10/8/2019 10/9/2019 < 4/7/2020 0	0.004 (J)					
10/8/2019 10/9/2019 < 4/7/2020 0		0.0058 (J)	0.086	0.0051 (J)		
10/9/2019 < 4/7/2020 0					0.0023 (J)	0.0049 (J)
4/7/2020 0					<0.02	
	<0.02	0.033 (J)	0.018 (J)	<0.02		0.0021 (J)
).0037 (J)	0.0053 (J)	0.041 (J)	0.0015 (J)	<0.02	0.0024 (J)
9/28/2020				0.0042 (J)		
9/29/2020					0.0023 (J)	0.0046 (J)
9/30/2020		0.0037 (J)	0.018			
10/1/2020 0).0047 (J)					
3/10/2021 0).0054 (J)	0.0026 (J)	0.027	0.005 (J)	0.0023 (J)	0.0055 (J)
9/21/2021 0	0.0027 (J)	0.0039 (J)	0.015		0.002 (J)	0.0051 (J)
9/23/2021				0.0042 (J)		
2/2/2022 0	0.0031 (J)		0.0099 (J)			
2/3/2022		0.0046 (J)		0.0028 (J)	0.0031 (J)	0.0052 (J)
8/30/2022 0	0.00943 (J)	0.0138 (J)	0.0192 (J)			0.00949 (J)
8/31/2022					0.00481 (J)	
9/1/2022				0.00748 (J)		
Mean 0	0.01918	0.008994	0.02263	0.006849	0.005832	0.006837
Std. Dev. 0	0.01676	0.00808	0.02488	0.005337	0.007061	0.005433
Upper Lim. 0		0.01088	0.02669	0.008409	0.00481	0.008356
Lower Lim. 0		0.004351	0.008142	0.00372	0.0021	0.003653

			Gruilliair Noau L	andini Chem. 300	mem Company L	vata. Grunninan Noau Lanunii
	GWC-13	GWC-14	GWC-15	GWC-16	GWC-17	GWC-2
1/17/2016		0.028	0.0013 (J)	0.0029 (J)		<0.02
1/18/2016	0.0011 (J)				0.0019 (J)	
4/26/2016		0.0181		0.00296 (J)		
7/26/2016	<0.02			. ,		
7/27/2016		0.0189	<0.02			<0.02
7/28/2016				0.0026 (J)		
7/29/2016					0.0031 (J)	
10/25/2016		0.0206	<0.02	<0.02	0.0001 (0)	
1/4/2017		0.0200	10.02	<0.02		
1/4/2017	<0.02	0.0172	<0.02	\0.02	<0.02	<0.02
	<0.02	0.0172			<0.02	V.UZ
4/3/2017		0.0005	0.002 (J)			0.00
4/4/2017		0.0235		0.0000 (1)	0.0000 (1)	<0.02
4/5/2017				0.0033 (J)	0.0029 (J)	
4/6/2017	<0.02					
7/11/2017		0.0136	0.0022 (J)			
7/12/2017	0.0016 (J)			0.0037 (J)		
7/13/2017					0.0037 (J)	<0.02
10/2/2017		0.0175	0.0022 (J)			
10/3/2017				0.0036 (J)		
1/9/2018		0.0103	0.0021 (J)			
1/10/2018	0.0019 (J)			0.0029 (J)		<0.02
1/11/2018					0.0026 (J)	
7/9/2018		0.0078 (J)				
7/10/2018			0.0025 (J)	0.0025 (J)		<0.02
7/11/2018	0.0097 (J)				0.0032 (J)	
1/16/2019	<0.02	0.0043 (J)			<0.02	
1/17/2019			<0.02	0.0021 (J)		
1/21/2019						0.0024 (J)
3/26/2019	0.0029 (J)	0.0063 (J)	0.0026 (J)	0.0038 (J)	0.0024 (J)	
7/30/2019						<0.02
10/8/2019	<0.02	<0.02	<0.02	<0.02		
10/9/2019					<0.02	<0.02
4/7/2020		0.0026 (J)	<0.02	<0.02		
4/8/2020	<0.02				<0.02	<0.02
9/28/2020	<0.02					
9/29/2020		<0.02				<0.02
9/30/2020			0.0028 (J)	0.0028 (J)	<0.02	
3/11/2021					<0.02	
3/12/2021			0.0037 (J)			
3/15/2021	<0.02					<0.02
3/16/2021		<0.02		0.0034 (J)		
9/21/2021	<0.02					
9/22/2021		0.0052 (J)		0.0025 (J)	<0.02	<0.02
9/23/2021			0.0022 (J)			
2/1/2022				0.0021 (J)	0.0022 (J)	
2/2/2022		0.004 (J)				<0.02
2/3/2022	<0.02		0.0023 (J)			
8/30/2022		0.00933 (J)	•			
8/31/2022	<0.02	• •	0.00476 (J)		0.00599 (J)	
9/1/2022				0.0065 (J)		0.0045 (J)
Mean	0.01482	0.01406	0.00837	0.006719	0.0105	0.01793
Std. Dev.	0.008138	0.007586	0.008492	0.007108	0.008699	0.005666

	GWC-13	GWC-14	GWC-15	GWC-16	GWC-17	GWC-2
Upper Lim.	0.02	0.01685	0.02	0.0065	0.02	0.02
Lower Lim.	0.0019	0.008245	0.0022	0.0026	0.0024	0.0045

			Gramman Noa	a 2aa	outhern company	Data. Graninan Noad Eandini
	GWC-20	GWC-21	GWC-22	GWC-9	MW-24D	MW-25D
1/17/2016	0.0025 (J)	0.0039 (J)				
1/18/2016			<0.02	<0.02		
7/28/2016	0.0024 (J)	0.0022 (J)		<0.02		
7/29/2016			0.0052 (J)			
10/25/2016	<0.02					
1/4/2017	<0.02	<0.02	<0.02			
1/6/2017				<0.02		
4/4/2017	0.0024 (J)	0.003 (J)				
4/6/2017			<0.02	<0.02		
7/11/2017	0.003 (J)		0.0016 (J)			
7/12/2017				0.0013 (J)		
7/13/2017		0.0019 (J)				
10/2/2017	0.0028 (J)	. ,				
1/9/2018	. ,	0.0046 (J)				
1/10/2018	0.0026 (J)					
1/11/2018	(-)		0.0012 (J)	<0.02		
7/9/2018	<0.02					
7/10/2018		0.0031 (J)				
7/11/2018		0.0001 (0)	0.0025 (J)	<0.02		
1/17/2019		0.0022 (J)	0.0020 (0)	-0.02		
1/18/2019		0.0022 (0)	<0.02	<0.02		
1/21/2019	0.0031 (J)		10.02	10.02		
3/25/2019	0.0031 (J)					
3/26/2019	0.0024 (3)	0.0041 (J)				
3/27/2019		0.0041 (0)	0.002 (J)	<0.02		
10/8/2019		<0.02	0.002 (3)	10.02		
10/9/2019	<0.02	~0.02	<0.02	<0.02		
4/7/2020	~0.02	<0.02	0.0014 (J)	~0.02		
	-0.02	\0.02	0.0014 (3)	0.0015 (1)		
4/8/2020	<0.02	0.0000 (1)	-0.00	0.0015 (J)		
9/30/2020	0.0029 (J)	0.0029 (J)	<0.02	-0.02		
10/1/2020			-0.00	<0.02		
3/10/2021			<0.02	<0.02	10.00	0.000470
3/11/2021	0.0000 (!!				<0.02	0.0024 (J)
3/12/2021	0.0038 (J)	0.002 (1)				
3/16/2021		0.003 (J)	.0.00			
9/21/2021	0.0000 (!!	.0.00	<0.02	.0.00	.0.00	
9/22/2021	0.0033 (J)	<0.02		<0.02	<0.02	0.00
9/23/2021						<0.02
2/1/2022	0.0039 (J)	0.0036 (J)			<0.02	
2/2/2022				<0.02		
2/3/2022			<0.02			<0.02
8/30/2022	0.00647 (J)	0.00715 (J)				
8/31/2022			0.00396 (J)			<0.02
9/1/2022				0.00514 (J)	0.00414 (J)	
Mean	0.007865	0.007603	0.01237	0.01675	0.01603	0.0156
Std. Dev.	0.007799	0.007491	0.008989	0.00704	0.00793	0.0088
Upper Lim.	0.02	0.02	0.02	0.02	0.02	0.02
Lower Lim.	0.0025	0.0029	0.0016	0.00514	0.00414	0.0024

	GWB-4R	GWB-5R	GWB-6R	GWC-1	GWC-11	GWC-12
1/17/2016				<0.02		
1/18/2016	0.0092	<0.02	0.0029			0.0025
1/19/2016					0.0029	
7/26/2016					<0.02	
7/27/2016		0.0015 (J)		<0.02		0.0021 (J)
7/28/2016			<0.02			
7/29/2016	0.003 (J)					
1/3/2017		<0.02				
1/4/2017				<0.02	<0.02	0.0025 (J)
1/5/2017			<0.02			, ,
1/6/2017	0.0104					
4/4/2017	0.0132			<0.02		
4/5/2017	0.0.02			0.02		0.0026 (J)
4/6/2017		0.0023 (J)	0.0032 (J)		0.004 (J)	0.0020 (0)
7/10/2017		0.0023 (0)	0.0032 (3)		0.004 (3)	0.0023 (J)
					<0.02	0.0023 (3)
7/11/2017	0.0046 (1)	<0.02	0.002 (1)	-0.02	<0.02	
7/12/2017	0.0046 (J)	<0.02	0.002 (J)	<0.02		
1/9/2018			0.0036 (J)			
1/10/2018	0.0005 (1)	0.0022 (J)		0.0014 (J)	0.0040 (1)	0.0004 (1)
1/11/2018	0.0095 (J)				0.0018 (J)	0.0031 (J)
7/10/2018		<0.02	0.0055 (J)	0.0021 (J)		
7/11/2018	0.0028 (J)				<0.02	0.0036 (J)
1/16/2019	0.0052 (J)	<0.02	<0.02	<0.02		
1/17/2019					<0.02	0.0032 (J)
3/25/2019	0.0078 (J)					
3/26/2019		<0.02	<0.02	<0.02		
3/27/2019					<0.02	0.0031 (J)
10/8/2019					0.0061 (J)	
10/9/2019	0.0064 (J)	0.0081 (J)	0.016 (J)	0.0057 (J)		0.0057 (J)
4/7/2020	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
9/28/2020				0.0092 (J)		
9/29/2020					0.0031 (J)	0.0074 (J)
9/30/2020		<0.02	<0.02			
10/1/2020	0.0064 (J)					
3/10/2021	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
9/21/2021	<0.02	<0.02	<0.02		<0.02	<0.02
9/23/2021				<0.02		
2/2/2022	<0.02		<0.02			
2/3/2022		<0.02		<0.02	<0.02	<0.02
8/30/2022	<0.02	<0.02	0.0132 (J)			0.0262
8/31/2022			. ,		<0.02	
9/1/2022				0.00578 (J)		
Mean	0.01116	0.01588	0.01415	0.01526	0.01487	0.009019
Std. Dev.	0.006702	0.007495	0.007714	0.007441	0.007904	0.008732
Upper Lim.	0.008677	0.02	0.02	0.02	0.02	0.02
Lower Lim.	0.004539	0.0023	0.0032	0.0057	0.0031	0.0025

	GWC-13	GWC-14	GWC-15	GWC-16	GWC-17	GWC-2
1/17/2016		<0.02	<0.02	<0.02		<0.02
1/18/2016	0.0017 (J)				0.012	
4/26/2016	. ,	<0.02		<0.02		
7/26/2016	0.0028 (J)					
7/27/2016	(,,	<0.02	<0.02			0.0018 (J)
7/28/2016				<0.02		(-)
7/29/2016					0.0086 (J)	
10/25/2016		<0.02	<0.02	<0.02	(-)	
1/4/2017				0.0025 (J)		
1/5/2017	0.0021 (J)	<0.02	<0.02		0.016	<0.02
4/3/2017	(-,		<0.02			
4/4/2017		<0.02				0.0015 (J)
4/5/2017				0.0025 (J)	0.0175	(-)
4/6/2017	0.0027 (J)					
7/11/2017		<0.02	<0.02			
7/12/2017	0.0043 (J)	0.02	0.02	0.002 (J)		
7/13/2017	0.00 10 (0)			0.002 (0)	0.0126	0.0014 (J)
10/2/2017		0.0026 (J)	<0.02		0.0120	0.0014 (0)
10/3/2017		0.0020 (0)	0.02	<0.02		
1/9/2018		0.0018 (J)	<0.02	-0.02		
1/10/2018	0.0021 (J)	0.0010 (0)	-0.02	0.0016 (J)		<0.02
1/11/2018	0.0021(0)			0.0010(0)	0.012	-0.02
7/9/2018		<0.02			0.012	
7/10/2018		10.02	<0.02	0.0031 (J)		<0.02
7/11/2018	0.0039 (J)		-0.02	0.0001 (0)	0.011	-0.02
1/16/2019	0.047	<0.02			0.0094 (J)	
1/17/2019	0.047	-0.02	<0.02	<0.02	0.0004 (0)	
1/21/2019			0.02	0.02		<0.02
3/26/2019	0.03	<0.02	<0.02	<0.02	0.0057 (J)	0.02
7/30/2019	0.00	0.02	0.02	0.02	0.0007 (0)	0.0067 (J)
10/8/2019	0.053	0.0052 (J)	0.0051 (J)	0.01		0.0007 (0)
10/9/2019		(-)			0.011	0.005 (J)
4/7/2020		<0.02	<0.02	<0.02		
4/8/2020	0.023				<0.02	<0.02
9/28/2020	0.016					
9/29/2020		<0.02				0.056
9/30/2020			0.032	0.0051 (J)	0.0043 (J)	
3/11/2021				(,,	0.0056 (J)	
3/12/2021			<0.02		,	
3/15/2021	0.039					<0.02
3/16/2021		<0.02		<0.02		
9/21/2021	0.036					
9/22/2021		0.01		<0.02	<0.02	<0.02
9/23/2021			<0.02			
2/1/2022				<0.02	0.011	
2/2/2022		<0.02				<0.02
2/3/2022	0.037		<0.02			
8/30/2022		<0.02				
8/31/2022	0.0266		0.00395 (J)		0.0068 (J)	
9/1/2022			,	0.0119 (J)	\-/	0.0125 (J)
Mean	0.02045	0.01682	0.01895	0.01362	0.01147	0.01656
Std. Dev.	0.01819	0.006502	0.005959	0.008076	0.004888	0.01312

Page 2

Confidence Interval

	GWC-13	GWC-14	GWC-15	GWC-16	GWC-17	GWC-2
Upper Lim.	0.039	0.02	0.032	0.02	0.01465	0.056
Lower Lim.	0.0027	0.01	0.0051	0.0031	0.008288	0.0018

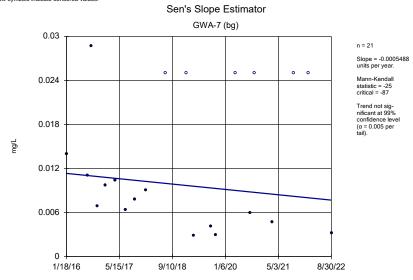
						. ,		
		GWC-20	GWC-21	GWC-22	GWC-9	MW-23D	MW-24D	
1	/17/2016	<0.02	<0.02					
1	/18/2016			<0.02	0.0059			
7	/28/2016	<0.02	<0.02		0.0019 (J)			
7	//29/2016			0.0129				
1	0/25/2016	<0.02						
1	/4/2017	<0.02	<0.02	0.006 (J)				
1	/6/2017				0.0026 (J)			
	/4/2017	<0.02	0.0015 (J)					
	/6/2017		.,	0.0031 (J)	0.0047 (J)			
	//11/2017	<0.02		0.0029 (J)	.,			
	/12/2017			.,	0.003 (J)			
	/13/2017		0.002 (J)		` '			
	0/2/2017	<0.02	\-/					
	/9/2018	-	0.0016 (J)					
	/10/2018	0.0034 (J)	(-)					
	/11/2018	0.0004 (0)		0.0106	0.0046 (J)			
	//1//2018	<0.02		0.0100	0.00 1 0 (0)			
	//10/2018	-0.02	<0.02					
	/10/2018		~U.UZ	0.0057 (!)	0.0033 (1)			
	/11/2018 /17/2019		<0.02	0.0057 (J)	0.0033 (J)			
			~U.UZ	0.002471	0.0035 (1)			
	/18/2019	-0.0 2		0.0024 (J)	0.0025 (J)			
	/21/2019	<0.02						
	/25/2019	<0.02	-0.00					
	/26/2019		<0.02	0.00	0.0000 ("			
	/27/2019			<0.02	0.0026 (J)			
	0/8/2019		0.0071 (J)					
	0/9/2019	0.0049 (J)		0.0079 (J)	0.0054 (J)			
	/7/2020		<0.02	<0.02				
	/8/2020	<0.02			<0.02			
	/30/2020	0.031	0.0096 (J)	<0.02				
1	0/1/2020				0.025			
3	/10/2021			<0.02	<0.02			
3	/11/2021					0.0067 (J)	0.0025 (J)	
3	/12/2021	<0.02						
3	/16/2021		<0.02					
9	/21/2021			<0.02				
9	/22/2021	<0.02	<0.02		<0.02	<0.02	<0.02	
2	/1/2022	<0.02	<0.02				<0.02	
2	/2/2022				<0.02			
2	/3/2022			<0.02		<0.02		
8	/30/2022	0.0171 (J)	0.00814 (J)					
8	/31/2022			<0.02		0.0106 (J)		
	/1/2022				0.0163 (J)	-	0.0102 (J)	
	Mean	0.01869	0.01437	0.01322	0.009862	0.01432	0.01317	
	Std. Dev.	0.005951	0.007802	0.007473	0.008504	0.006744	0.008485	
	Jpper Lim.	0.031	0.02	0.02	0.02	0.01308	0.01509	
	ower Lim.	0.0171	0.002	0.0031	0.0026	0.004223	-0.002391	
		-						

	MW-25D
3/11/2021	0.0054 (J)
9/23/2021	<0.02
2/3/2022	0.051
8/31/2022	0.0161 (J)
Mean	0.02312
Std. Dev.	0.01958
Upper Lim.	0.06176
Lower Lim.	-0.02013

FIGURE K.

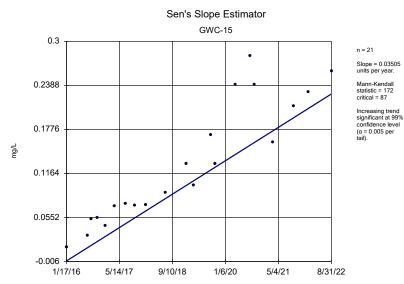
Appendix IV Trend Tests - Significant Results

Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill Printed 11/5/2022, 6:52 PM

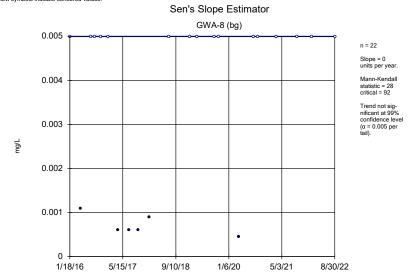

 Constituent
 Well
 Slope
 Calc.
 Critical
 Sig.
 N
 %NDs
 Normality
 Xform
 Alpha
 Method

 Arsenic (mg/L)
 GWC-15
 0.03505
 172
 87
 Yes
 21
 0
 n/a
 n/a
 0.01
 NP

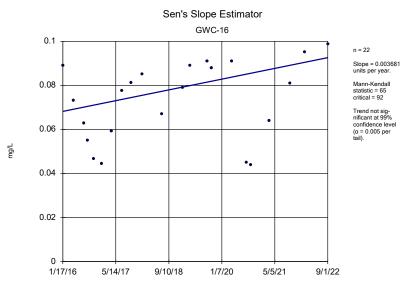
Appendix IV Trend Tests - All Results


	Grumman Road Landfill	Client: Southern Comp	any Data: G	rumman R	oad Landfil	Pri	nted 11	/5/2022	6:52 PM			
Constituent	<u>Well</u>		Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Arsenic (mg/L)	GWA-7 (bg)		-0.0005488	-25	-87	No	21	28.57	n/a	n/a	0.01	NP
Arsenic (mg/L)	GWA-8 (bg)		0	28	92	No	22	72.73	n/a	n/a	0.01	NP
Arsenic (mg/L)	GWC-15		0.03505	172	87	Yes	21	0	n/a	n/a	0.01	NP
Arsenic (mg/L)	GWC-16		0.003681	65	92	No	22	0	n/a	n/a	0.01	NP
Arsenic (mg/L)	GWC-20		0.003801	24	87	No	21	0	n/a	n/a	0.01	NP
Molybdenum (mg/L)	GWA-7 (bg)		0	9	63	No	17	76.47	n/a	n/a	0.01	NP
Molybdenum (mg/L)	GWA-8 (bg)		0	0	63	No	17	100	n/a	n/a	0.01	NP
Molybdenum (mg/L)	GWC-16		0.01903	57	63	No	17	0	n/a	n/a	0.01	NP
Molybdenum (mg/L)	GWC-20		0.005248	4	63	No	17	0	n/a	n/a	0.01	NP

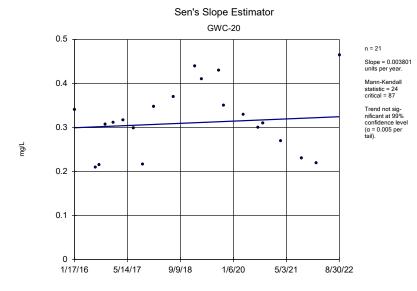
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Arsenic Analysis Run 11/5/2022 6:48 PM View: Appendix IV - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

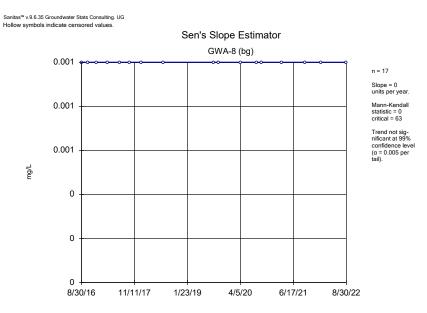
Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

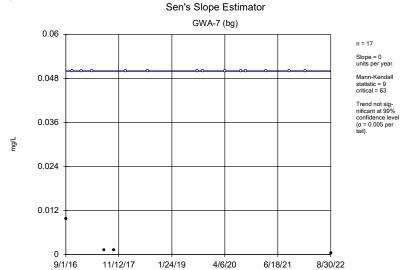

Constituent: Arsenic Analysis Run 11/5/2022 6:48 PM View: Appendix IV - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

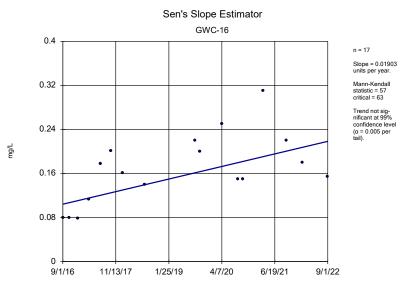


Constituent: Arsenic Analysis Run 11/5/2022 6:48 PM View: Appendix IV - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

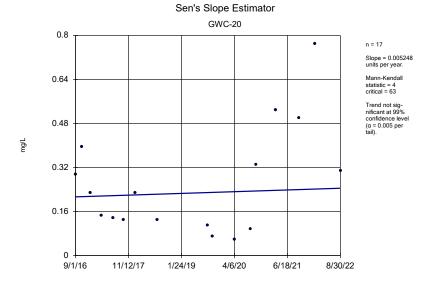

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG


Constituent: Arsenic Analysis Run 11/5/2022 6:48 PM View: Appendix IV - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Constituent: Arsenic Analysis Run 11/5/2022 6:48 PM View: Appendix IV - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill



Constituent: Molybdenum Analysis Run 11/5/2022 6:48 PM View: Appendix IV - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill



Constituent: Molybdenum Analysis Run 11/5/2022 6:48 PM View: Appendix IV - Trend Tests
Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Sanitas™ v.9.6.35 Groundwater Stats Consulting. UG

Constituent: Molybdenum Analysis Run 11/5/2022 6:48 PM View: Appendix IV - Trend Tests Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Constituent: Molybdenum Analysis Run 11/5/2022 6:48 PM View: Appendix IV - Trend Tests Grumman Road Landfill Client: Southern Company Data: Grumman Road Landfill

Roswell, GA 1150 Northmeadow Pkwy, Suite 100 Roswell, GA 30076 Phone: 770.594.5998 Savannah, GA 7414 Hodgson Memorial Dr Suite 2B Savannah, GA 31401 Phone: 912.236.3471 Knoxville, TN 8848 Cedar Springs Lane, Suite 202 Knoxville, TN 37923 Phone: 865.531.9143