Georgia Power

Plant McIntosh

Prepared by:

TŁ TETRA TECH

Monthly Dewatering Results¹

November 2020

		Efflu	ent Concent	ration	Permit Limits			
Parameter	Units	Daily Min ³	Daily Avg ³	Daily Max ³	Daily Min	Daily Avg	Daily Max	
Flow	MGD	0.00	0.22	0.28	***	***	***	
рН	SU	6.9	***	7.8	6.0	***	9.0	
Total Suspended Solids	mg/L	ND ²	ND	ND	***	30.0	100.0	
Oil and Grease	mg/L	ND	ND	ND	***	15.0	20.0	

Parameter	Units		Daily				
Falameter		Week 1	Week 2	Week 3	Week 4	Week 5	Average
		11/4/2020	11/11/2020	11/18/2020	No discharge	No discharge	
Turbidity	NTU	1.5	1.5	0.9			1.3
Total Dissolved Solids	mg/L	389	385	401			392
Ammonia	mg/L	ND	ND	ND			ND
Total Kjeldahl Nitrogen	mg/L	ND	ND	ND			ND
Nitrate-Nitrite	mg/L	ND	ND	ND			ND
Organic Nitrogen	mg/L	ND	ND	ND			ND
Phosphorus	mg/L	ND	ND	ND			ND
Ortho-Phosphorus	mg/L	ND	ND	ND			ND
Biological Oxygen Demand	mg/L	ND	ND	5.7			1.9
Hardness	mg/L	136	118	134			129

		Effluent Concentration ⁴					Calculated Receiving Water Concentration ⁴					Water Quality Criteria⁵		
Parameter	Units	Week 1	Week 2	Week 3	Week 4	Week 5	Week 1	Week 2	Week 3	Week 4	Week 5	Average		Chronic ⁶
		11/4/2020	11/11/2020	11/18/2020	No discharge	No discharge	11/4/2020	11/11/2020	11/18/2020	No discharge	No discharge		Acute ⁶	
Arsenic	μg/L	ND	ND	ND			***	***	***			***	340	150
Cadmium	μg/L	ND	ND	ND			***	***	***			***	1	0.43
Chromium ⁷	μg/L	ND	ND	ND			***	***	***			***	16	11
Copper	μg/L	ND	ND	ND			***	***	***			***	7	5
Lead	μg/L	ND	ND	ND			***	***	***			***	30	1.2
Nickel	μg/L	ND	ND	ND			***	***	***			***	260	29
Selenium ⁸	μg/L	ND	2.6	ND			***	0.0003	***			0.0001	***	5
Zinc	μg/L	ND	ND	ND			***	***	***			***	65	65
Mercury	ng/L	ND	1.3	0.6			***	0.0001	0.0001			0.0001	1400	12

Tetra Tech verifies the correct laboratory analysis methods were used, any applicable permit limits have been met and other results are protective of Georgia EPD's water quality standards

Teta Tech verifies the correct laboratory analysis methods were used, any applicable permit limits have been met and other results are protective of Georgia EPD's water quality standards.
ND = Not Detected (below the lab's reporting limit).
Daily Min and Daily Max are the lowest and highest values for any day in the month. Daily Ag is the arithmetic average of all daily values during the entire month.
Calculated Receiving Water Concentration shows the effluent concentration at the discharge once it has fully mixed in the receiving waterbody. This value is calculated as a dissolved concentration for an appropriate comparison to the numeric water quality criteria, which are also in the dissolved form. Concentrations are not translated in the Calculated Receiving Water Concentrations.
Numeric Water Quality Criteria is the maximum concentration of a parameter (calculated at a default hardness of 50 mg/L as calculated Receiving Water Concentrations.
Acte (short-term) water quality criterion to be compared with the weekly calculated receiving water concentrations.
Acte (short-term) water quality criterion to be compared with the weekly calculated receiving water concentrations.
Numeric Water Quality criterion shown is for Hazvalent Chronium.
The numeric water quality criterion shown is the chronic (long-term) water quality criterion to be compared with the average calculated receiving water concentrations.
The numeric water quality criterion shown is the chronic (long-term) water quality criterion to an acute (short-term) water quality criterion.
The numeric water quality criterion shown is the chronic (long-term) water quality criterion to a cost ser million: uol. = microarmas per liter = parts per tillion: SU = Standard Units: MGD = Million Salors Dav

mg/L = milligrams per liter = parts per million; µg/L = micrograms per liter = parts per bilion; ng/L = nanograms per liter = parts per trillion; SU = Standard Units; MGD = Million Gallons Day

Plant McIntosh

Prepared by:

Ŧŧ

TETRA TECH

Monthly Instream Results¹

November 2020

		Savannah River ²							
Parameter ³	Units	11/4/2020	11/4/2020	11/11/2020	11/11/2020				
		Upstream	Downstream	Upstream	Downstream				
pН	SU	7.1	7.1	6.8	6.9				
TSS	mg/L	16.0	17.5	9.5	6.5				
O&G	mg/L	ND^4	ND	ND	ND				
Turbidity	NTU	14.7	15.6	10.6	10.0				
TDS	mg/L	48	41	48	63				
BOD	mg/L	ND	ND	ND	ND				
Arsenic	μg/L	ND	ND	ND	ND				
Cadmium	μg/L	ND	ND	ND	ND				
Chromium	μg/L	ND	ND	ND	ND				
Copper	μg/L	ND	ND	ND	ND				
Lead	μg/L	ND	ND	ND	ND				
Mercury	ng/L	1.6	1.8	1.9	2.9				
Nickel	μg/L	ND	ND	ND	ND				
Selenium	μg/L	ND	ND	ND	ND				
Zinc	μg/L	ND	ND	ND	ND				
Ammonia	mg/L	ND	ND	ND	ND				
TKN	mg/L	ND	ND	ND	ND				
Nitrate-Nitrite	mg/L	0.21	0.21	0.15	0.15				
Organic Nitrogen	mg/L	ND	ND	ND	ND				
Phosphorus	mg/L	ND	ND	ND	0.06				
Ortho-phosphorus	mg/L	0.03	0.03	ND	ND				
Hardness	mg/L	15	15	14	14				

1 Tetra Tech verifies the correct laboratory analysis methods were used.

2 Savannah River measured 1,000ft upstream and 1,000ft downstream of Outfall 01.

3 Metals results are total recoverable.

4 ND = Non-detect

mg/L = milligrams per liter = parts per million; $\mu g/L = micrograms$ per liter = parts per billion; ng/L = nanograms per liter = parts per trillion; SU = Standard Units; MGD = Million Gallons Day